WorldWideScience

Sample records for power sub-terahertz radiations

  1. Generation of high-power terahertz radiation by femtosecond-terawatt lasers

    International Nuclear Information System (INIS)

    Nashima, Shigeki; Hosoda, Makoto; Daido, Hiroyuki

    2007-01-01

    We observed electromagnetic waves in the terahertz (THz) frequency range from a Ti foil excited by tabletop terawatt (T-cube) laser pulses. The radiation power was increased drastically with increasing its laser power. We also investigated the polarization characteristics of the sub-terahertz wave. It is found that the polarization of the radiated sub-terahertz waves was parallel to the incident beam plane, which is independent on the pump laser polarization. These results indicate transient electric field to the incident plane is generated by laser-plasma interaction, i.e., laser wake field and coherent plasma wave. (author)

  2. Response of asymmetric carbon nanotube network devices to sub-terahertz and terahertz radiation

    International Nuclear Information System (INIS)

    Gayduchenko, I.; Kardakova, A.; Voronov, B.; Finkel, M.; Fedorov, G.; Jiménez, D.; Morozov, S.; Presniakov, M.; Goltsman, G.

    2015-01-01

    Demand for efficient terahertz radiation detectors resulted in intensive study of the asymmetric carbon nanostructures as a possible solution for that problem. It was maintained that photothermoelectric effect under certain conditions results in strong response of such devices to terahertz radiation even at room temperature. In this work, we investigate different mechanisms underlying the response of asymmetric carbon nanotube (CNT) based devices to sub-terahertz and terahertz radiation. Our structures are formed with CNT networks instead of individual CNTs so that effects probed are more generic and not caused by peculiarities of an individual nanoscale object. We conclude that the DC voltage response observed in our structures is not only thermal in origin. So called diode-type response caused by asymmetry of the device IV characteristic turns out to be dominant at room temperature. Quantitative analysis provides further routes for the optimization of the device configuration, which may result in appearance of novel terahertz radiation detectors

  3. Coherent emission of terahertz radiation from intrinsic Josephson junctions in Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8}

    Energy Technology Data Exchange (ETDEWEB)

    Rudau, Fabian; Wieland, Raphael; Koelle, Dieter; Kleiner, Reinhold [Physikalisches Institut and Center for Quantum Science (CQ) in LISA+, Universitaet Tuebingen (Germany); Zhou, Xianjing; Ji, Min; Hao, Luyao; Huang, Ya; Wang, Huabing [Research Institute of Superconductor Electronics, Nanjing University (China); National Institute for Materials Science, Tsukuba (Japan); Kinev, Nickolay; Koshelets, Valery [Kotel' nikov Institute of Radio Engineering and Electronics, Moscow (Russian Federation); Li, Jun; Wu, Peiheng [Research Institute of Superconductor Electronics, Nanjing University (China); Hatano, Takeshi [National Institute for Materials Science, Tsukuba (Japan)

    2016-07-01

    Stacks of intrinsic Josephson junctions, made of the high-T{sub c} superconductor Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8}, can be used as emitters of electromagnetic waves at terahertz frequencies. Coherent emission from 0.3 to 2.4 THz was detected from large, rectangular or disc-shaped mesa structures. Having a linewidth of only a few MHz, emission powers of several tens of microwatt can be produced for single stacks and up to 0.61 mW for an array of mesas. Since the mechanisms of synchronizing all the junctions in the stack is still not fully understood, we investigated the temperature distribution and electromagnetic standing waves in such stacks, as well as the generation of terahertz radiation, using a combination of electric transport measurements, direct radiation detection and low temperature scanning laser microscopy. Recent experimental results from our collaboration will be presented and compared to numerical simulations.

  4. Coherent terahertz emission from Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} intrinsic Josephson junction stacks

    Energy Technology Data Exchange (ETDEWEB)

    Rudau, Fabian; Gross, Boris; Wieland, Raphael; Judd, Thomas; Koelle, Dieter; Kleiner, Reinhold [Physikalisches Institut and Center for Collective Quantum Phenomena in LISA" +, Universitaet Tuebingen, Tuebingen (Germany); Kinev, Nickolay; Koshelets, Valery [Kotel' nikov Institute of Radio Engineering and Electronics, Moscow (Russian Federation); Tsujimoto, Manabu [Kyoto University, Kyoto (Japan); Ji, Min; Huang, Ya; Zhou, Xianjing; An, Deyue; Wang, Huabing [National Institute for Materials Science, Tsukuba (Japan); Research Institute of Superconductor Electronics, Nanjing University, Nanjing (China); Wu, Peiheng [Research Institute of Superconductor Electronics, Nanjing University, Nanjing (China); Hatano, Takeshi [National Institute for Materials Science, Tsukuba (Japan)

    2015-07-01

    Stacks of intrinsic Josephson junctions, made of the high temperature superconductor Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8}, are promising candidates to be used as generators of electromagnetic waves in the terahertz regime, in principle allowing frequencies up to ∝10 THz. Ranging from 0.4 to 1 THz, coherent emission was detected from large, rectangular stacks, producing several tens of microwatt in power. Despite of several years of research, the mechanism of synchronizing all the junctions in the stack is still not fully understood. We investigated the heat distribution and electromagnetic standing waves in such stacks, as well as the generation of terahertz radiation, using a combination of electric transport measurements, direct radiation detection and low temperature scanning laser microscopy. Recent experimental results from our collaboration will be presented and compared to numerical simulations.

  5. Terahertz radiation mixer

    Science.gov (United States)

    Wanke, Michael C [Albuquerque, NM; Allen, S James [Santa Barbara, CA; Lee, Mark [Albuquerque, NM

    2008-05-20

    A terahertz radiation mixer comprises a heterodyned field-effect transistor (FET) having a high electron mobility heterostructure that provides a gatable two-dimensional electron gas in the channel region of the FET. The mixer can operate in either a broadband pinch-off mode or a narrowband resonant plasmon mode by changing a grating gate bias of the FET. The mixer can beat an RF signal frequency against a local oscillator frequency to generate an intermediate frequency difference signal in the microwave region. The mixer can have a low local oscillator power requirement and a large intermediate frequency bandwidth. The terahertz radiation mixer is particularly useful for terahertz applications requiring high resolution.

  6. Mode coupling in terahertz metamaterials using sub-radiative and super-radiative resonators

    International Nuclear Information System (INIS)

    Qiao, Shen; Zhang, Yaxin; Zhao, Yuncheng; Xu, Gaiqi; Sun, Han; Yang, Ziqiang; Liang, Shixiong

    2015-01-01

    We theoretically and experimentally explored the electromagnetically induced transparency (EIT) mode-coupling in terahertz (THz) metamaterial resonators, in which a dipole resonator with a super-radiative mode is coupled to an inductance-capacitance resonator with a sub-radiative mode. The interference between these two resonators depends on the relative spacing between them, resulting in a tunable transparency window in the absorption spectrum. Mode coupling was experimentally demonstrated for three spacing dependent EIT metamaterials. Transmittance of the transparency windows could be either enhanced or suppressed, producing different spectral linewidths. These spacing dependent mode-coupling metamaterials provide alternative ways to create THz devices, such as filters, absorbers, modulators, sensors, and slow-light devices

  7. Detection of Terahertz Radiation

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a system for detecting terahertz radiation, a camera device, and a method for detecting terahertz radiation.......The present invention relates to a system for detecting terahertz radiation, a camera device, and a method for detecting terahertz radiation....

  8. Generating high-power short terahertz electromagnetic pulses with a multifoil radiator.

    Science.gov (United States)

    Vinokurov, Nikolay A; Jeong, Young Uk

    2013-02-08

    We describe a multifoil cone radiator capable of generating high-field short terahertz pulses using short electron bunches. Round flat conducting foil plates with successively decreasing radii are stacked, forming a truncated cone with the z axis. The gaps between the foil plates are equal and filled with some dielectric (or vacuum). A short relativistic electron bunch propagates along the z axis. At sufficiently high particle energy, the energy losses and multiple scattering do not change the bunch shape significantly. When passing by each gap between the foil plates, the electron bunch emits some energy into the gap. Then, the radiation pulses propagate radially outward. For transverse electromagnetic waves with a longitudinal (along the z axis) electric field and an azimuthal magnetic field, there is no dispersion in these radial lines; therefore, the radiation pulses conserve their shapes (time dependence). At the outer surface of the cone, we have synchronous circular radiators. Their radiation field forms a conical wave. Ultrashort terahertz pulses with gigawatt-level peak power can be generated with this device.

  9. Manifestation of plasmonic response in the detection of sub-terahertz radiation by graphene-based devices

    Science.gov (United States)

    Gayduchenko, I. A.; Fedorov, G. E.; Moskotin, M. V.; Yagodkin, D. I.; Seliverstov, S. V.; Goltsman, G. N.; Kuntsevich, A. Yu; Rybin, M. G.; Obraztsova, E. D.; Leiman, V. G.; Shur, M. S.; Otsuji, T.; Ryzhii, V. I.

    2018-06-01

    We report on the sub-terahertz (THz) (129–450 GHz) photoresponse of devices based on single layer graphene and graphene nanoribbons with asymmetric source and drain (vanadium and gold) contacts. Vanadium forms a barrier at the graphene interface, while gold forms an Ohmic contact. We find that at low temperatures (77 K) the detector responsivity rises with the increasing frequency of the incident sub-THz radiation. We interpret this result as a manifestation of a plasmonic effect in the devices with the relatively long plasmonic wavelengths. Graphene nanoribbon devices display a similar pattern, albeit with a lower responsivity.

  10. Imaging with terahertz radiation

    Energy Technology Data Exchange (ETDEWEB)

    Chan, W L; Deibel, Jason; Mittleman, Daniel M [Department of Electrical and Computer Engineering, MS-366, Rice University, 6100 Main St., Houston, TX 77005 (United States)

    2007-08-15

    Within the last several years, the field of terahertz science and technology has changed dramatically. Many new advances in the technology for generation, manipulation, and detection of terahertz radiation have revolutionized the field. Much of this interest has been inspired by the promise of valuable new applications for terahertz imaging and sensing. Among a long list of proposed uses, one finds compelling needs such as security screening and quality control, as well as whimsical notions such as counting the almonds in a bar of chocolate. This list has grown in parallel with the development of new technologies and new paradigms for imaging and sensing. Many of these proposed applications exploit the unique capabilities of terahertz radiation to penetrate common packaging materials and provide spectroscopic information about the materials within. Several of the techniques used for terahertz imaging have been borrowed from other, more well established fields such as x-ray computed tomography and synthetic aperture radar. Others have been developed exclusively for the terahertz field, and have no analogies in other portions of the spectrum. This review provides a comprehensive description of the various techniques which have been employed for terahertz image formation, as well as discussing numerous examples which illustrate the many exciting potential uses for these emerging technologies.

  11. Imaging with terahertz radiation

    International Nuclear Information System (INIS)

    Chan, W L; Deibel, Jason; Mittleman, Daniel M

    2007-01-01

    Within the last several years, the field of terahertz science and technology has changed dramatically. Many new advances in the technology for generation, manipulation, and detection of terahertz radiation have revolutionized the field. Much of this interest has been inspired by the promise of valuable new applications for terahertz imaging and sensing. Among a long list of proposed uses, one finds compelling needs such as security screening and quality control, as well as whimsical notions such as counting the almonds in a bar of chocolate. This list has grown in parallel with the development of new technologies and new paradigms for imaging and sensing. Many of these proposed applications exploit the unique capabilities of terahertz radiation to penetrate common packaging materials and provide spectroscopic information about the materials within. Several of the techniques used for terahertz imaging have been borrowed from other, more well established fields such as x-ray computed tomography and synthetic aperture radar. Others have been developed exclusively for the terahertz field, and have no analogies in other portions of the spectrum. This review provides a comprehensive description of the various techniques which have been employed for terahertz image formation, as well as discussing numerous examples which illustrate the many exciting potential uses for these emerging technologies

  12. High-energy coherent terahertz radiation emitted by wide-angle electron beams from a laser-wakefield accelerator

    Science.gov (United States)

    Yang, Xue; Brunetti, Enrico; Jaroszynski, Dino A.

    2018-04-01

    High-charge electron beams produced by laser-wakefield accelerators are potentially novel, scalable sources of high-power terahertz radiation suitable for applications requiring high-intensity fields. When an intense laser pulse propagates in underdense plasma, it can generate femtosecond duration, self-injected picocoulomb electron bunches that accelerate on-axis to energies from 10s of MeV to several GeV, depending on laser intensity and plasma density. The process leading to the formation of the accelerating structure also generates non-injected, sub-picosecond duration, 1–2 MeV nanocoulomb electron beams emitted obliquely into a hollow cone around the laser propagation axis. These wide-angle beams are stable and depend weakly on laser and plasma parameters. Here we perform simulations to characterise the coherent transition radiation emitted by these beams if passed through a thin metal foil, or directly at the plasma–vacuum interface, showing that coherent terahertz radiation with 10s μJ to mJ-level energy can be produced with an optical to terahertz conversion efficiency up to 10‑4–10‑3.

  13. Terahertz-radiation generation in low-temperature InGaAs epitaxial films on (100) and (411) InP substrates

    Energy Technology Data Exchange (ETDEWEB)

    Galiev, G. B., E-mail: galiev-galib@mail.ru [Russian Academy of Sciences, Institute of Ultra-High Frequency Semiconductor Electronics (Russian Federation); Grekhov, M. M. [National Research Nuclear University “MEPhI” (Russian Federation); Kitaeva, G. Kh. [Moscow State University, Faculty of Physics (Russian Federation); Klimov, E. A.; Klochkov, A. N. [Russian Academy of Sciences, Institute of Ultra-High Frequency Semiconductor Electronics (Russian Federation); Kolentsova, O. S. [National Research Nuclear University “MEPhI” (Russian Federation); Kornienko, V. V.; Kuznetsov, K. A. [Moscow State University, Faculty of Physics (Russian Federation); Maltsev, P. P.; Pushkarev, S. S. [Russian Academy of Sciences, Institute of Ultra-High Frequency Semiconductor Electronics (Russian Federation)

    2017-03-15

    The spectrum and waveforms of broadband terahertz-radiation pulses generated by low-temperature In{sub 0.53}Ga{sub 0.47}As epitaxial films under femtosecond laser pumping are investigated by terahertz time-resolved spectroscopy. The In{sub 0.53}Ga{sub 0.47}As films are fabricated by molecular-beam epitaxy at a temperature of 200°C under different arsenic pressures on (100)-oriented InP substrates and, for the first time, on (411)A InP substrates. The surface morphology of the samples is studied by atomic-force microscopy and the structural quality is established by high-resolution X-ray diffraction analysis. It is found that the amplitude of terahertz radiation from the LT-InGaAs layers on the (411)A InP substrates exceeds that from similar layers formed on the (100) InP substrates by a factor of 3–5.

  14. Widely tunable narrow-band coherent Terahertz radiation from an undulator at THU

    Science.gov (United States)

    Su, X.; Wang, D.; Tian, Q.; Liang, Y.; Niu, L.; Yan, L.; Du, Y.; Huang, W.; Tang, C.

    2018-01-01

    There is anxious demand for intense widely tunable narrow-band Terahertz (THz) radiation in scientific research, which is regarded as a powerful tool for the coherent control of matter. We report the generation of widely tunable THz radiation from a planar permanent magnet undulator at Tsinghua University (THU). A relativistic electron beam is compressed by a magnetic chicane into sub-ps bunch length to excite THz radiation in the undulator coherently. The THz frequency can be tuned from 0.4 THz to 10 THz continuously with narrow-band spectrums when the undulator gap ranges from 23 mm to 75 mm. The measured pulse THz radiation energy from 220 pC bunch is 3.5 μJ at 1 THz and tens of μJ pulse energy (corresponding peak power of 10 MW) can be obtained when excited by 1 nC beam extrapolated from the property of coherent radiation. The experimental results agree well with theoretical predictions, which demonstrates a suitable THz source for the many applications that require intense and widely tunable THz sources.

  15. Absorber for terahertz radiation management

    Science.gov (United States)

    Biallas, George Herman; Apeldoorn, Cornelis; Williams, Gwyn P.; Benson, Stephen V.; Shinn, Michelle D.; Heckman, John D.

    2015-12-08

    A method and apparatus for minimizing the degradation of power in a free electron laser (FEL) generating terahertz (THz) radiation. The method includes inserting an absorber ring in the FEL beam path for absorbing any irregular THz radiation and thus minimizes the degradation of downstream optics and the resulting degradation of the FEL output power. The absorber ring includes an upstream side, a downstream side, and a plurality of wedges spaced radially around the absorber ring. The wedges form a scallop-like feature on the innermost edges of the absorber ring that acts as an apodizer, stopping diffractive focusing of the THz radiation that is not intercepted by the absorber. Spacing between the scallop-like features and the shape of the features approximates the Bartlett apodization function. The absorber ring provides a smooth intensity distribution, rather than one that is peaked on-center, thereby eliminating minor distortion downstream of the absorber.

  16. Photonic techniques for sub-Terahertz wireless data transmission

    DEFF Research Database (Denmark)

    Tafur Monroy, Idelfonso

    2015-01-01

    Wireless data communication links with capacities beyond 100 Gbit/s will require operating at sub-Terahertz frequencies using a large bandpass bandwidth facing new engineering challenges. We review several implementation aspects by using photonic technologies. © 2015 OSA.......Wireless data communication links with capacities beyond 100 Gbit/s will require operating at sub-Terahertz frequencies using a large bandpass bandwidth facing new engineering challenges. We review several implementation aspects by using photonic technologies. © 2015 OSA....

  17. Nonrelativistic electron bunch train for coherently enhanced terahertz radiation sources

    International Nuclear Information System (INIS)

    Li Yuelin; Kim, Kwang-Je

    2008-01-01

    We propose to generate a train of prebunched electron beams for producing coherently enhanced Smith-Purcell radiation [S. J. Smith and E. M. Purcell, Phys. Rev. 92, 1069 (1953)] in the terahertz wavelength range. In this scheme, a train of picosecond laser pulses is produced to drive a photoemission gun to generate a train of 50 keV electron pulses. The parameters are chosen so that the space-charge effect does not destroy the pulse time structure. Smith-Purcell radiation from the electron pulse train is enhanced due both to the short length of the individual electron bunch and to the repetitive structure of the beam. Example systems producing coherent terahertz power at about 1 mW are described

  18. Enhanced terahertz magnetic dipole response by subwavelength fiber

    Directory of Open Access Journals (Sweden)

    Shaghik Atakaramians

    2018-05-01

    Full Text Available Dielectric sub-wavelength particles have opened up a new platform for realization of magnetic light. Recently, we have demonstrated that a dipole emitter by a sub-wavelength fiber leads to an enhanced magnetic response. Here, we experimentally demonstrate an enhanced magnetic dipole source in the terahertz frequency range. By placing the fiber next to the hole in a metal screen, we find that the radiation power can be enhanced more than one order of magnitude. The enhancement is due to the excitation of the Mie-type resonances in the fiber. We demonstrate that such a system is equivalent to a double-fiber system excited by a magnetic source. This coupled magnetic dipole and optical fiber system can be considered a unit cell of metasurfaces for manipulation of terahertz radiation and is a proof-of-concept of a possibility to achieve enhanced radiation of a dipole source in proximity of a sub-wavelength fiber. It can also be scaled down to optical frequencies opening up promising avenues for developing integrated nanophotonic devices such as nanoantennas or lasers on fibers.

  19. Highly Resolved Sub-Terahertz Vibrational Spectroscopy of Biological Macromolecules and Bacteria Cells

    Science.gov (United States)

    2016-07-01

    HIGHLY RESOLVED SUB-TERAHERTZ VIBRATIONAL SPECTROSCOPY OF BIOLOGICAL MACROMOLECULES AND BACTERIA CELLS ECBC...SUBTITLE Highly Resolved Sub-Terahertz Vibrational Spectroscopy of Biological Macromolecules and Bacteria Cells 5a. CONTRACT NUMBER W911SR-14-P...22 4.3 Bacteria THz Study

  20. Pulsed CH3OH terahertz laser radiation pumped by 9P(36) CO2 lasers

    International Nuclear Information System (INIS)

    Jiu Zhixian; Zuo Duluo; Miao Liang; Cheng Zuhai

    2011-01-01

    An efficient pulsed CH 3 OH terahertz (THz) laser pumped by a TEA CO 2 laser was investigated experimentally. A simple terahertz cavity and a TEA CO 2 laser for the optically pumped THz radiation were studied experimentally. To improve THz laser energy and photon conversion efficiency, two different TEA CO 2 lasers were developed to pump CH 3 OH. When CH 3 OH was pumped by the 9P(36) line with different powers of the CO 2 laser, the generation of terahertz radiation with energy as high as 0.307mJ and 23.75mJ were obtained, respectively. The corresponding photon conversion efficiencies were 0.29% and 2.4%. The photon conversion efficiency increases by a factor of about 8. Meanwhile, higher peak power of pump laser effectively improves the photon conversion efficiency. And the optimum THz laser pressure increases with narrower pulse width of pump laser because of increasing absorptive gases molecules of CH 3 OH with higher peak power of pump laser.

  1. Interferometrically enhanced sub-terahertz picosecond imaging utilizing a miniature collapsing-field-domain source

    Science.gov (United States)

    Vainshtein, Sergey N.; Duan, Guoyong; Mikhnev, Valeri A.; Zemlyakov, Valery E.; Egorkin, Vladimir I.; Kalyuzhnyy, Nikolay A.; Maleev, Nikolai A.; Näpänkangas, Juha; Sequeiros, Roberto Blanco; Kostamovaara, Juha T.

    2018-05-01

    Progress in terahertz spectroscopy and imaging is mostly associated with femtosecond laser-driven systems, while solid-state sources, mainly sub-millimetre integrated circuits, are still in an early development phase. As simple and cost-efficient an emitter as a Gunn oscillator could cause a breakthrough in the field, provided its frequency limitations could be overcome. Proposed here is an application of the recently discovered collapsing field domains effect that permits sub-THz oscillations in sub-micron semiconductor layers thanks to nanometer-scale powerfully ionizing domains arising due to negative differential mobility in extreme fields. This shifts the frequency limit by an order of magnitude relative to the conventional Gunn effect. Our first miniature picosecond pulsed sources cover the 100-200 GHz band and promise milliwatts up to ˜500 GHz. Thanks to the method of interferometrically enhanced time-domain imaging proposed here and the low single-shot jitter of ˜1 ps, our simple imaging system provides sufficient time-domain imaging contrast for fresh-tissue terahertz histology.

  2. Antenna-coupled terahertz radiation from joule-heated single-wall carbon nanotubes

    Directory of Open Access Journals (Sweden)

    M. Muthee

    2011-12-01

    Full Text Available In this letter an experimental method is introduced that allows detection of terahertz (THz radiation from arrays of joule-heated Single-Walled Carbon Nanotubes (SWCNTs, by coupling this radiation through integrated antennas and a silicon lens. The radiation forms a diffraction-limited beam with a total maximum radiated power of 450 nW, significantly greater than the power estimated from Nyquist thermal noise (8 nW. The physical radiation process is unknown at this stage, but possible explanations for the high radiated power are discussed briefly. The emission has a typical bandwidth of 1.2 THz and can be tuned to different frequencies by changing the dimensions of the antennas. Arrays of the devices could be integrated in CMOS integrated circuits, and find application in THz systems, such as in near-range medical imaging.

  3. A terahertz-vibration to terahertz-radiation converter based on gold nanoobjects: a feasibility study.

    Science.gov (United States)

    Moldosanov, Kamil; Postnikov, Andrei

    2016-01-01

    The need for practical and adaptable terahertz sources is apparent in the areas of application such as early cancer diagnostics, nondestructive inspection of pharmaceutical tablets, visualization of concealed objects. We outline the operation principle and suggest the design of a simple appliance for generating terahertz radiation by a system of nanoobjects - gold nanobars (GNBs) or nanorings (GNRs) - irradiated by microwaves. Our estimations confirm a feasibility of the idea that GNBs and GNRs irradiated by microwaves could become terahertz emitters with photon energies within the full width at half maximum of the longitudinal acoustic phononic DOS of gold (ca. 16-19 meV, i.e., 3.9-4.6 THz). A scheme of the terahertz radiation source is suggested based on the domestic microwave oven irradiating a substrate with multiple deposited GNBs or GNRs. The size of a nanoobject for optimal conversion is estimated to be approx. 3 nm (thickness) by approx. 100 nm (length of GNB, or along the GNR). This detailed prediction is open to experimental verification. An impact is expected onto further studies of interplay between atomic vibrations and electromagnetic waves in nanoobjects.

  4. A terahertz-vibration to terahertz-radiation converter based on gold nanoobjects: a feasibility study

    Directory of Open Access Journals (Sweden)

    Kamil Moldosanov

    2016-07-01

    Full Text Available Background: The need for practical and adaptable terahertz sources is apparent in the areas of application such as early cancer diagnostics, nondestructive inspection of pharmaceutical tablets, visualization of concealed objects. We outline the operation principle and suggest the design of a simple appliance for generating terahertz radiation by a system of nanoobjects – gold nanobars (GNBs or nanorings (GNRs – irradiated by microwaves.Results: Our estimations confirm a feasibility of the idea that GNBs and GNRs irradiated by microwaves could become terahertz emitters with photon energies within the full width at half maximum of the longitudinal acoustic phononic DOS of gold (ca. 16–19 meV, i.e., 3.9–4.6 THz. A scheme of the terahertz radiation source is suggested based on the domestic microwave oven irradiating a substrate with multiple deposited GNBs or GNRs.Conclusion: The size of a nanoobject for optimal conversion is estimated to be approx. 3 nm (thickness by approx. 100 nm (length of GNB, or along the GNR. This detailed prediction is open to experimental verification. An impact is expected onto further studies of interplay between atomic vibrations and electromagnetic waves in nanoobjects.

  5. Foreign Object Detection by Sub-Terahertz Quasi-Bessel Beam Imaging

    Directory of Open Access Journals (Sweden)

    Hyang Sook Chun

    2012-12-01

    Full Text Available Food quality monitoring, particularly foreign object detection, has recently become a critical issue for the food industry. In contrast to X-ray imaging, terahertz imaging can provide a safe and ionizing-radiation-free nondestructive inspection method for foreign object sensing. In this work, a quasi-Bessel beam (QBB known to be nondiffracting was generated by a conical dielectric lens to detect foreign objects in food samples. Using numerical evaluation via the finite-difference time-domain (FDTD method, the beam profiles of a QBB were evaluated and compared with the results obtained via analytical calculation and experimental characterization (knife edge method, point scanning method. The FDTD method enables a more precise estimation of the beam profile. Foreign objects in food samples, namely crickets, were then detected with the QBB, which had a deep focus and a high spatial resolution at 210 GHz. Transmitted images using a Gaussian beam obtained with a conventional lens were compared in the sub-terahertz frequency experimentally with those using a QBB generated using an axicon.

  6. Dual origin of room temperature sub-terahertz photoresponse in graphene field effect transistors

    Science.gov (United States)

    Bandurin, D. A.; Gayduchenko, I.; Cao, Y.; Moskotin, M.; Principi, A.; Grigorieva, I. V.; Goltsman, G.; Fedorov, G.; Svintsov, D.

    2018-04-01

    Graphene is considered as a promising platform for detectors of high-frequency radiation up to the terahertz (THz) range due to its superior electron mobility. Previously, it has been shown that graphene field effect transistors (FETs) exhibit room temperature broadband photoresponse to incoming THz radiation, thanks to the thermoelectric and/or plasma wave rectification. Both effects exhibit similar functional dependences on the gate voltage, and therefore, it was difficult to disentangle these contributions in previous studies. In this letter, we report on combined experimental and theoretical studies of sub-THz response in graphene field-effect transistors analyzed at different temperatures. This temperature-dependent study allowed us to reveal the role of the photo-thermoelectric effect, p-n junction rectification, and plasmonic rectification in the sub-THz photoresponse of graphene FETs.

  7. Nondestructive Imaging of an Object Using the Compact Continuous-Wave Sub-Terahertz Imaging System

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jin Seok; Kwon, Il Bub; Yoon, Dong Jin; Seo, Dae Cheol [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2010-08-15

    This paper presented compact CW sub-THz imaging system using the terahertz transmitter(Tx) that generating 0.34 THz electromagnetic wave on based electronic device. Using 0.34 THz electromagnetic wave generated by Tx, we transmitted to sample by point by point scan method and measured transmitting terahertz wave magnitude and phase information respectively with terahertz receiver(Rx) based on sub harmonic mixer. This paper measured and compared images of several samples to obtain better imaging results by changing time delay and step distance of scanning stage which affect image resolution. Also, through the imaging measurement of various samples, we were able to assure possibility of application of terahertz wave

  8. Nondestructive Imaging of an Object Using the Compact Continuous-Wave Sub-Terahertz Imaging System

    International Nuclear Information System (INIS)

    Jang, Jin Seok; Kwon, Il Bub; Yoon, Dong Jin; Seo, Dae Cheol

    2010-01-01

    This paper presented compact CW sub-THz imaging system using the terahertz transmitter(Tx) that generating 0.34 THz electromagnetic wave on based electronic device. Using 0.34 THz electromagnetic wave generated by Tx, we transmitted to sample by point by point scan method and measured transmitting terahertz wave magnitude and phase information respectively with terahertz receiver(Rx) based on sub harmonic mixer. This paper measured and compared images of several samples to obtain better imaging results by changing time delay and step distance of scanning stage which affect image resolution. Also, through the imaging measurement of various samples, we were able to assure possibility of application of terahertz wave

  9. NATO Advanced Research Workshop on Terahertz and Mid Infrared Radiation

    CERN Document Server

    Pereira, Mauro F; Terahertz and Mid Infrared Radiation

    2011-01-01

    Terahertz (THz) and Mid-Infrared (MIR) radiation  (TERA-MIR) can be transmitted through nearly any material without causing biological harm. Novel and rapid methods of detection can be created with devices operation in these spectral ranges allowing scanning for weapons, detecting hidden explosives (including plastic landmines), controlling the quality of food and a host of other exciting applications.  This book focuses on mathematical and physical aspects of the field, on unifying these two spectral domains (THz and MIR) with regard to common sources, detectors, materials and applications, and on key interdisciplinary topics. The main THz and MIR source is the quantum cascade laser (QCL). Thus significant attention is paid to the challenge of turning this advanced technology into affordable commercial devices so as to exploit its enormous potential. However other alternatives to THz QCLs are also presented, e.g.  sub-terahertz imaging from avalanching GaAs bipolar transistors, Josephson junctions as THz ...

  10. Compact high-power terahertz radiation source

    Directory of Open Access Journals (Sweden)

    G. A. Krafft

    2004-06-01

    Full Text Available In this paper a new type of THz radiation source, based on recirculating an electron beam through a high gradient superconducting radio frequency cavity, and using this beam to drive a standard electromagnetic undulator on the return leg, is discussed. Because the beam is recirculated and not stored, short bunches may be produced that radiate coherently in the undulator, yielding exceptionally high average THz power for relatively low average beam power. Deceleration from the coherent emission, and the detuning it causes, limits the charge-per-bunch possible in such a device.

  11. Investigation of radiant millimeter wave/terahertz radiation from low-infrared signature targets

    Science.gov (United States)

    Aytaç, B.; Alkuş, Ü.; Sivaslıgil, M.; Şahin, A. B.; Altan, H.

    2017-10-01

    Millimeter (mm) and sub-mm wave radiation is increasingly becoming a region of interest as better methods are developed to detect in this wavelength range. The development of sensitive focal plane array (FPA) architectures as well as single pixel scanners has opened up a new field of passive detection and imaging. Spectral signatures of objects, a long standing area of interest in the Short Wave Infrared (SWIR), Mid-Wave (MWIR) and Long Wave-IR (LWIR) bands can now be assessed in the mm-wave/terahertz (THz) region. The advantage is that this form of radiation is not as adversely affected by poor atmospheric conditions compared to other bands. In this study, a preliminary experiment in a laboratory environment is performed to assess the radiance from targets with low infrared signatures in the millimeter wave/terahertz (THz) band (<1 THz). The goal of this approach is to be able to model the experimental results to better understand the mm-wave/THz signature of targets with low observability in the IR bands.

  12. Invited Review Terahertz Transmission, Scattering, Reflection, and Absorption—the Interaction of THz Radiation with Soils

    Science.gov (United States)

    Lewis, R. A.

    2017-07-01

    Terahertz radiation has been proposed as a useful tool in the study of soils and related materials from such diverse perspectives as detection of non-metallic landmines to improving soil fertility by agricultural charcoals produced by pyrolysis of organic material. The main barrier to such applications is that soils are rather opaque at terahertz frequencies. In this article, the main findings to date on the interaction of terahertz radiation with soils are reviewed, organized around the four phenomena of terahertz: transmission, scattering, reflection, and absorption. Terahertz transmission through soils is generally low and decreases with frequency. Terahertz scattering is evident in many THz-soil interactions, as the wavelength of the radiation is of the order of the particle size. Terahertz reflection is important to communications as these develop from the GHz into the THz band. Terahertz absorption on diluted soil samples has been demonstrated to be effective in identifying soil constituents, such as aromatic compounds, and soil contaminants, such as pesticides.

  13. Plasma wave instability and amplification of terahertz radiation in field-effect-transistor arrays

    International Nuclear Information System (INIS)

    Popov, V V; Tsymbalov, G M; Shur, M S

    2008-01-01

    We show that the strong amplification of terahertz radiation takes place in an array of field-effect transistors at small DC drain currents due to hydrodynamic plasmon instability of the collective plasmon mode. Planar designs compatible with standard integrated circuit fabrication processes and strong coupling of terahertz radiation to plasmon modes in FET arrays make such arrays very attractive for potential applications in solid-state terahertz amplifiers and emitters

  14. Subluminal and superluminal terahertz radiation in metamaterials with electromagnetically induced transparency.

    Science.gov (United States)

    Bai, Zhengyang; Hang, Chao; Huang, Guoxiang

    2013-07-29

    We propose a scheme to design a new type of optical metamaterial that can mimic the functionality of four-state atomic systems of N-type energy-level configuration with electromagnetically induced transparency (EIT). We show that in such metamaterial a transition from a single EIT to a double EIT of terahertz radiation may be easily achieved by actively tuning the intensity of the infrared pump field or passively tuning the geometrical parameters of resonator structures. In addition, the group velocity of the terahertz radiation can be varied from subluminal to superluminal by changing the pump field intensity. The scheme suggested here may be used to construct chip-scale slow and fast light devices and to realize rapidly responded switching of terahertz radiation at room temperature.

  15. Terahertz radiation in In{sub 0.38}Ga{sub 0.62}As grown on a GaAs wafer with a metamorphic buffer layer under femtosecond laser excitation

    Energy Technology Data Exchange (ETDEWEB)

    Ponomarev, D. S., E-mail: ponomarev-dmitr@mail.ru; Khabibullin, R. A.; Yachmenev, A. E.; Maltsev, P. P. [Russian Academy of Sciences, Institute of Ultrahigh Frequency Semiconductor Electronics (Russian Federation); Grekhov, M. M. [National Research Nuclear University “MEPhI” (Russian Federation); Ilyakov, I. E.; Shishkin, B. V.; Akhmedzhanov, R. A. [Russian Academy of Sciences, Institute of Applied Physics (Russian Federation)

    2017-04-15

    The results of time-domain spectroscopy of the terahertz (THz) generation in a structure with an In{sub 0.38}Ga{sub 0.62}As photoconductive layer are presented. This structure grown by molecular-beam epitaxy on a GaAs substrate using a metamorphic buffer layer allows THz generation with a wide frequency spectrum (to 6 THz). This is due to the additional contribution of the photo-Dember effect to THz generation. The measured optical-to-terahertz conversion efficiency in this structure is 10{sup –5} at a rather low optical fluence of ~40 μJ/cm{sup 2}, which is higher than that in low-temperature grown GaAs by almost two orders of magnitude.

  16. Proposal of coherent Cherenkov radiation matched to circular plane wave for intense terahertz light source

    International Nuclear Information System (INIS)

    Sei, Norihiro; Sakai, Takeshi; Hayakawa, Ken; Tanaka, Toshinari; Hayakawa, Yasushi; Nakao, Keisuke; Nogami, Kyoko; Inagaki, Manabu

    2015-01-01

    Highlights: • We proposed a new intense terahertz-wave source based on coherent Cherenkov radiation (CCR). • A hollow conical dielectric is used to generate the CCR beam. • The wave front of the CCR beam can be matched to the basal plane. • The peak-power of the CCR beam is above 1 MW per micropulse with a short interval of 350 ps. - Abstract: We propose a high-peak-power terahertz-wave source based on an electron accelerator. By passing an electron beam through a hollow conical dielectric with apex facing the incident electron beam, the wave front of coherent Cherenkov radiation generated on the inner surface of the hollow conical dielectric matches the basal plane. Using the electron beam generated at the Laboratory for Electron Beam Research and Application at Nihon University, the calculated power of coherent Cherenkov radiation that matched the circular plane (CCR-MCP) was above 1 MW per micropulse with a short interval of 350 ps, for wavelengths ranging from 0.5 to 5 mm. The electron beam is not lost for generating the CCR-MCP beam by using the hollow conical dielectric. It is possible to combine the CCR-MCP beams with other light sources based on an accelerator

  17. Study of terahertz-radiation-induced DNA damage in human blood leukocytes

    Energy Technology Data Exchange (ETDEWEB)

    Angeluts, A A; Esaulkov, M N; Kosareva, O G; Solyankin, P M; Shkurinov, A P [International Laser Center, M. V. Lomonosov Moscow State University, Moscow (Russian Federation); Gapeyev, A B; Pashovkin, T N [Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region (Russian Federation); Matyunin, S N [Section of Applied Problems at the Presidium of the Russian Academy of Sciences, Moscow (Russian Federation); Nazarov, M M [Institute on Laser and Information Technologies, Russian Academy of Sciences, Shatura, Moscow Region (Russian Federation); Cherkasova, O P [Institute of Laser Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2014-03-28

    We have carried out the studies aimed at assessing the effect of terahertz radiation on DNA molecules in human blood leukocytes. Genotoxic testing of terahertz radiation was performed in three different oscillation regimes, the blood leukocytes from healthy donors being irradiated for 20 minutes with the mean intensity of 8 – 200 μW cm{sup -2} within the frequency range of 0.1 – 6.5 THz. Using the comet assay it is shown that in the selected regimes such radiation does not induce a direct DNA damage in viable human blood leukocytes. (biophotonics)

  18. Terahertz Pulse Generation in Underdense Relativistic Plasmas: From Photoionization-Induced Radiation to Coherent Transition Radiation

    Science.gov (United States)

    Déchard, J.; Debayle, A.; Davoine, X.; Gremillet, L.; Bergé, L.

    2018-04-01

    Terahertz to far-infrared emission by two-color, ultrashort optical pulses interacting with underdense helium gases at ultrahigh intensities (>1019 W /cm2 ) is investigated by means of 3D particle-in-cell simulations. The terahertz field is shown to be produced by two mechanisms occurring sequentially, namely, photoionization-induced radiation (PIR) by the two-color pulse, and coherent transition radiation (CTR) by the wakefield-accelerated electrons escaping the plasma. We exhibit laser-plasma parameters for which CTR proves to be the dominant process, providing terahertz bursts with field strength as high as 100 GV /m and energy in excess of 10 mJ. Analytical models are developed for both the PIR and CTR processes, which correctly reproduce the simulation data.

  19. Terahertz Coherent Synchrotron Radiation in the MIT-Bates South Hall Ring

    CERN Document Server

    Wang, Fuhua; Cheever, Dan; Farkhondeh, Manouchehr; Franklin, Wilbur; Graves, William; Ihloff, Ernie; Podobedov, Boris; Sannibale, Fernando; Tschalär, C; Wang, Defa; Wang, Dong; Zwart, Townsend; van der Laan, Jan

    2005-01-01

    We investigate the terahertz coherent synchrotron radiation (CSR) potential of the South Hall Ring (SHR) at MIT-Bates Linear Accelerator Center. The SHR is equipped with a unique single cavity, 2.856 GHz RF system. The high RF frequency is advantageous for producing short bunch length and for having higher bunch current threshold to generate stable CSR. Combining with other techniques such as external pulse stacking cavity, femtosecond laser slicing, the potential for generating ultra-stable, high power, broadband terahertz CSR is very attractive. Beam dynamics issues related to short bunch length operation, and may associated with the high frequency RF system, such as multi-bunch instability are concerned. They could affect bunch length, bunch intensity and beam stability. The SHR is ideal for experimental exploration of these problems. Results of initial test of low momentum compaction lattice and bunch length measurements are presented and compared to expectations.

  20. Terahertz Technology: A Boon to Tablet Analysis

    Science.gov (United States)

    Wagh, M. P.; Sonawane, Y. H.; Joshi, O. U.

    2009-01-01

    The terahertz gap has a frequency ranges from ∼0.3 THz to ∼10 THz in the electromagnetic spectrum which is in between microwave and infrared. The terahertz radiations are invisible to naked eye. In comparison with x-ray they are intrinsically safe, non-destructive and non-invasive. Terahertz spectroscopy enables 3D imaging of structures and materials, and the measurement of the unique spectral fingerprints of chemical and physical forms. Terahertz radiations are produced by a dendrimer based high power terahertz source and spectroscopy technologies. It resolves many of the questions left unanswered by complementary techniques, such as optical imaging, Raman and infrared spectra. In the pharmaceutical industries it enables nondestructive, internal, chemical analysis of tablets, capsules, and other dosage forms. Tablet coatings are a major factor in drug bioavailability. Therefore tablet coatings integrity and uniformity are of crucial importance to quality. Terahertz imaging gives an unparalleled certainty about the integrity of tablet coatings and the matrix performance of tablet cores. This article demonstrates the potential of terahertz pulse imaging for the analysis of tablet coating thickness by illustrating the technique on tablets. PMID:20490288

  1. Enhanced plasma wave detection of terahertz radiation using multiple high electron-mobility transistors connected in series

    KAUST Repository

    Elkhatib, Tamer A.; Kachorovskiǐ, Valentin Yu; Stillman, William J.; Veksler, Dmitry B.; Salama, Khaled N.; Zhang, Xicheng; Shur, Michael S.

    2010-01-01

    We report on enhanced room-temperature detection of terahertz radiation by several connected field-effect transistors. For this enhanced nonresonant detection, we have designed, fabricated, and tested plasmonic structures consisting of multiple InGaAs/GaAs pseudomorphic high electron-mobility transistors connected in series. Results show a 1.63-THz response that is directly proportional to the number of detecting transistors biased by a direct drain current at the same gate-to-source bias voltages. The responsivity in the saturation regime was found to be 170 V/W with the noise equivalent power in the range of 10-7 W/Hz0.5. The experimental data are in agreement with the detection mechanism based on the rectification of overdamped plasma waves excited by terahertz radiation in the transistor channel. © 2010 IEEE.

  2. Enhanced plasma wave detection of terahertz radiation using multiple high electron-mobility transistors connected in series

    KAUST Repository

    Elkhatib, Tamer A.

    2010-02-01

    We report on enhanced room-temperature detection of terahertz radiation by several connected field-effect transistors. For this enhanced nonresonant detection, we have designed, fabricated, and tested plasmonic structures consisting of multiple InGaAs/GaAs pseudomorphic high electron-mobility transistors connected in series. Results show a 1.63-THz response that is directly proportional to the number of detecting transistors biased by a direct drain current at the same gate-to-source bias voltages. The responsivity in the saturation regime was found to be 170 V/W with the noise equivalent power in the range of 10-7 W/Hz0.5. The experimental data are in agreement with the detection mechanism based on the rectification of overdamped plasma waves excited by terahertz radiation in the transistor channel. © 2010 IEEE.

  3. Terahertz imaging of sub-wavelength particles with Zenneck surface waves

    Czech Academy of Sciences Publication Activity Database

    Navarro-Cia, M.; Natrella, M.; Dominec, Filip; Delagnes, J.C.; Kužel, Petr; Mounaix, P.; Graham, C.; Renaud, C.C.; Seeds, A.J.; Mitrofanov, O.

    2013-01-01

    Roč. 103, č. 22 (2013), "221103-1"-"221103-5" ISSN 0003-6951 Institutional support: RVO:68378271 Keywords : terahertz * near-field * Zenneck plasmon * sub-wavelength * imaging Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 3.515, year: 2013

  4. Terahertz radiation generation by lasers with remarkable efficiency in electron–positron plasma

    International Nuclear Information System (INIS)

    Malik, Hitendra K.

    2015-01-01

    Photo-mixing of spatial-super-Gaussian lasers and electron–positron plasma are proposed for realizing a large amplitude nonlinear current in order to generate an efficient terahertz radiation. An external magnetic field together with a proper index of the lasers helps achieving controllable current and hence, the focused radiation of tunable frequency and power along with a remarkable efficiency of the scheme as ∼6%. - Highlights: • First proposal of photo-mixing of spatial-super-Gaussian (SSG) lasers in electron–positron (e–p) plasma. • Large amplitude nonlinear current due to the contribution of both the plasma species. • Magnetic field as an additional parameter for tunable THz radiation with a remarkable efficiency of ∼6%.

  5. Electrical Versus Optical: Comparing Methods for Detecting Terahertz Radiation Using Neon Lamps

    Science.gov (United States)

    Slocombe, L. L.; Lewis, R. A.

    2018-05-01

    Terahertz radiation impinging on a lit neon tube causes additional ionization of the encapsulated gas. As a result, the electrical current flowing between the electrodes increases and the glow discharge in the tube brightens. These dual phenomena suggest two distinct modes of terahertz sensing. The electrical mode simply involves measuring the electrical current. The optical mode involves monitoring the brightness of the weakly ionized plasma glow discharge. Here, we directly compare the two detection modes under identical experimental conditions. We measure 0.1-THz radiation modulated at frequencies in the range 0.1-10 kHz, for lamp currents in the range 1-10 mA. We find that electrical detection provides a superior signal-to-noise ratio while optical detection has a faster response. Either method serves as the basis of a compact, robust, and inexpensive room-temperature detector of terahertz radiation.

  6. Narrow-band tunable terahertz emission from ferrimagnetic Mn{sub 3-x}Ga thin films

    Energy Technology Data Exchange (ETDEWEB)

    Awari, N. [Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden (Germany); University of Groningen, 9747 AG Groningen (Netherlands); Kovalev, S., E-mail: s.kovalev@hzdr.de, E-mail: c.fowley@hzdr.de, E-mail: rodek@tcd.ie; Fowley, C., E-mail: s.kovalev@hzdr.de, E-mail: c.fowley@hzdr.de, E-mail: rodek@tcd.ie; Green, B.; Yildirim, O.; Lindner, J.; Fassbender, J.; Deac, A. M.; Gensch, M. [Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden (Germany); Rode, K., E-mail: s.kovalev@hzdr.de, E-mail: c.fowley@hzdr.de, E-mail: rodek@tcd.ie; Lau, Y.-C.; Betto, D.; Thiyagarajah, N.; Coey, J. M. D. [CRANN, AMBER and School of Physics, Trinity College Dublin, Dublin 2 (Ireland); Gallardo, R. A. [Departamento de Física, Universidad Técnica Federico Santa María, Avenida España 1680, 2390123 Valparíso (Chile)

    2016-07-18

    Narrow-band terahertz emission from coherently excited spin precession in metallic ferrimagnetic Mn{sub 3-x}Ga Heusler alloy nanofilms has been observed. The efficiency of the emission, per nanometer film thickness, is comparable or higher than that of classical laser-driven terahertz sources based on optical rectification. The center frequency of the emission from the films can be tuned precisely via the film composition in the range of 0.20–0.35 THz, making this type of metallic film a candidate for efficient on-chip terahertz emitters. Terahertz emission spectroscopy is furthermore shown to be a sensitive probe of magnetic properties of ultra-thin films.

  7. A polarization-insensitive plasmonic photoconductive terahertz emitter

    KAUST Repository

    Li, Xurong

    2017-11-16

    We present a polarization-insensitive plasmonic photoconductive terahertz emitter that uses a two-dimensional array of nanoscale cross-shaped apertures as the plasmonic contact electrodes. The geometry of the cross-shaped apertures is set to maximize optical pump absorption in close proximity to the contact electrodes. The two-dimensional symmetry of the cross-shaped apertures offers a polarization-insensitive interaction between the plasmonic contact electrodes and optical pump beam. We experimentally demonstrate a polarization-insensitive terahertz radiation from the presented emitter in response to a femtosecond optical pump beam and similar terahertz radiation powers compared to previously demonstrated polarization-sensitive photoconductive emitters with plasmonic contact electrode gratings at the optimum optical pump polarization.

  8. Graphene hyperlens for terahertz radiation

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Chigrin, D.; Novitsky, Andrey

    2012-01-01

    We propose the structured graphene terahertz hyperlens that allows overcoming natural diffraction limit and resolving subwavelength features. The proposed hyperlens can have applications in terahertz spectroscopy and imaging.......We propose the structured graphene terahertz hyperlens that allows overcoming natural diffraction limit and resolving subwavelength features. The proposed hyperlens can have applications in terahertz spectroscopy and imaging....

  9. Harmonics radiation of graphene surface plasmon polaritons in terahertz regime

    Energy Technology Data Exchange (ETDEWEB)

    Li, D., E-mail: dazhi_li@hotmail.com [Institute for Laser Technology, Suita, Osaka 565-0871 (Japan); Wang, Y. [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Nakajima, M. [Institute of Laser Engineering, Osaka University, Suita, Osaka 565-0871 (Japan); Hashida, M. [Advanced Research Center for Beam Science, ICR, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Wei, Y. [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Miyamoto, S. [Laboratory of Advanced Science and Technology for Industry, University of Hyogo, Ako, Hyogo 678-1205 (Japan)

    2016-06-03

    This letter presents an approach to extract terahertz radiation from surface plasmon polaritons excited in the surface of a uniform graphene structure by an electron beam. A sidewall configuration is proposed to lift the surface plasmon mode to be close to the light line, so that some of its harmonics have chances to go above the light line and become radiative. The harmonics are considered to be excited by a train of periodic electron bunches. The physical mechanism in this scheme is analyzed with three-dimensional theory, and the harmonics excitation and radiation are demonstrated through numerical calculations. The results show that this technique could be an alternative to transform the surface plasmon polaritons into radiation. - Highlights: • An approach to extract terahertz radiation from graphene surface plasmon polaritons is presented. • A sidewall configuration is proposed to lift the surface plasmon mode. • Harmonics of surface plasmon polaritons are possible to radiate.

  10. Modelling, simulation and computer-aided design (CAD) of gyrotrons for novel applications in the high-power terahertz science and technologies

    Science.gov (United States)

    Sabchevski, S.; Idehara, T.; Damyanova, M.; Zhelyazkov, I.; Balabanova, E.; Vasileva, E.

    2018-03-01

    Gyrotrons are the most powerful sources of CW coherent radiation in the sub-THz and THz frequency bands. In recent years, they have demonstrated a remarkable potential for bridging the so-called THz-gap in the electromagnetic spectrum and opened the road to many novel applications of the terahertz waves. Among them are various advanced spectroscopic techniques (e.g., ESR and DNP-NMR), plasma physics and fusion research, materials processing and characterization, imaging and inspection, new medical technologies and biological studies. In this paper, we review briefly the current status of the research in this broad field and present our problem-oriented software packages developed recently for numerical analysis, computer-aided design (CAD) and optimization of gyrotrons.

  11. Generation of phase-locked and tunable continuous-wave radiation in the terahertz regime.

    Science.gov (United States)

    Quraishi, Qudsia; Griebel, Martin; Kleine-Ostmann, Thomas; Bratschitsch, Rudolf

    2005-12-01

    Broadly tunable phase-stable single-frequency terahertz radiation is generated with an optical heterodyne photomixer. The photomixer is excited by two near-infrared CW diode lasers that are phase locked to the stabilized optical frequency comb of a femtosecond titanium:sapphire laser. The terahertz radiation emitted by the photomixer is downconverted into RF frequencies with a waveguide harmonic mixer and measurement-limited linewidths at the Hertz level are demonstrated.

  12. EDITORIAL: Terahertz nanotechnology Terahertz nanotechnology

    Science.gov (United States)

    Demming, Anna; Tonouchi, Masayoshi; Reno, John L.

    2013-05-01

    A useful synergy is being established between terahertz research and nanotechnology. High power sources [1-3] and detectors [4] in what was once considered the terahertz 'frequency gap' [5] in the electromagnetic spectrum have stimulated research with huge potential benefits in a range of industries including food, medicine and security, as well as fundamental physics and astrophysics. This special section, with guest editors Masayoshi Tonouchi and John Reno, gives a glimpse of the new horizons nanotechnology is broaching in terahertz research. While the wavelengths relevant to the terahertz domain range from hundreds of micrometres to millimetres, structures at the nanoscale reveal interesting low energy dynamics in this region. As a result terahertz spectroscopy techniques are becoming increasingly important in nanomaterial characterization, as demonstrated in this special section by colleagues at the University of Oxford in the UK and the Australian National University. They use terahertz spectroscopy to identify the best nanostructure parameters for specific applications [6]. The low energy dynamics in nanostructures also makes them valuable tools for terahertz detection [7]. In addition the much sought after terahertz detection over broadband frequency ranges has been demonstrated, providing versatility that has been greatly in demand, particularly in spectroscopy applications [8, 9]. Also in this special section, researchers in Germany and China tackle some of the coupling issues in terahertz time domain spectroscopy with an emitter specifically well suited for systems operated with an amplified fibre [3]. 'In medical imaging, the advantage of THz radiation is safety, because its energy is much lower than the ionization energy of biological molecules, in contrast to hazardous x-ray radiation,' explains Joo-Hiuk Son from the University of Seoul in Korea in his review [10]. As he also points out, the rotational and vibrational energies of water molecules are

  13. Graphene geometric diodes for terahertz rectennas

    International Nuclear Information System (INIS)

    Zhu Zixu; Joshi, Saumil; Grover, Sachit; Moddel, Garret

    2013-01-01

    We demonstrate a new thin-film graphene diode called a geometric diode that relies on geometric asymmetry to provide rectification at 28 THz. The geometric diode is coupled to an optical antenna to form a rectenna that rectifies incoming radiation. This is the first reported graphene-based antenna-coupled diode working at 28 THz, and potentially at optical frequencies. The planar structure of the geometric diode provides a low RC time constant, on the order of 10 −15 s, required for operation at optical frequencies, and a low impedance for efficient power transfer from the antenna. Fabricated geometric diodes show asymmetric current–voltage characteristics consistent with Monte Carlo simulations for the devices. Rectennas employing the geometric diode coupled to metal and graphene antennas rectify 10.6 µm radiation, corresponding to an operating frequency of 28 THz. The graphene bowtie antenna is the first demonstrated functional antenna made using graphene. Its response indicates that graphene is a suitable terahertz resonator material. Applications for this terahertz diode include terahertz-wave and optical detection, ultra-high-speed electronics and optical power conversion. (paper)

  14. Terahertz radiation induced chaotic electron transport in semiconductor superlattices with a tilted magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C., E-mail: cwang@mail.sim.ac.cn; Wang, F.; Cao, J. C., E-mail: jccao@mail.sim.ac.cn [Key Laboratory of Terahertz Solid-State Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai 200050 (China)

    2014-09-01

    Chaotic electron transport in semiconductor superlattice induced by terahertz electric field that is superimposed on a dc electric field along the superlattice axis are studied using the semiclassical motion equations including the effect of dissipation. A magnetic field that is tilted relative to the superlattice axis is also applied to the system. Numerical simulation shows that electrons in superlattice miniband exhibit complicate nonlinear oscillating modes with the influence of terahertz radiation. Transitions between frequency-locking and chaos via pattern forming bifurcations are observed with the varying of terahertz amplitude. It is found that the chaotic regions gradually contract as the dissipation increases. We attribute the appearance of complicate nonlinear oscillation in superlattice to the interaction between terahertz radiation and internal cooperative oscillating mode relative to Bloch oscillation and cyclotron oscillation.

  15. Terahertz radiation induced chaotic electron transport in semiconductor superlattices with a tilted magnetic field

    International Nuclear Information System (INIS)

    Wang, C.; Wang, F.; Cao, J. C.

    2014-01-01

    Chaotic electron transport in semiconductor superlattice induced by terahertz electric field that is superimposed on a dc electric field along the superlattice axis are studied using the semiclassical motion equations including the effect of dissipation. A magnetic field that is tilted relative to the superlattice axis is also applied to the system. Numerical simulation shows that electrons in superlattice miniband exhibit complicate nonlinear oscillating modes with the influence of terahertz radiation. Transitions between frequency-locking and chaos via pattern forming bifurcations are observed with the varying of terahertz amplitude. It is found that the chaotic regions gradually contract as the dissipation increases. We attribute the appearance of complicate nonlinear oscillation in superlattice to the interaction between terahertz radiation and internal cooperative oscillating mode relative to Bloch oscillation and cyclotron oscillation

  16. Terahertz radiation induced chaotic electron transport in semiconductor superlattices with a tilted magnetic field.

    Science.gov (United States)

    Wang, C; Wang, F; Cao, J C

    2014-09-01

    Chaotic electron transport in semiconductor superlattice induced by terahertz electric field that is superimposed on a dc electric field along the superlattice axis are studied using the semiclassical motion equations including the effect of dissipation. A magnetic field that is tilted relative to the superlattice axis is also applied to the system. Numerical simulation shows that electrons in superlattice miniband exhibit complicate nonlinear oscillating modes with the influence of terahertz radiation. Transitions between frequency-locking and chaos via pattern forming bifurcations are observed with the varying of terahertz amplitude. It is found that the chaotic regions gradually contract as the dissipation increases. We attribute the appearance of complicate nonlinear oscillation in superlattice to the interaction between terahertz radiation and internal cooperative oscillating mode relative to Bloch oscillation and cyclotron oscillation.

  17. Enhanced terahertz magnetic dipole response by subwavelength fiber

    DEFF Research Database (Denmark)

    Atakaramians, Shaghik; Shadrivov, Ilya V.; Miroshnichenko, Andrey E.

    2018-01-01

    Dielectric sub-wavelength particles have opened up a new platform for realization of magnetic light. Recently, we have demonstrated that a dipole emitter by a sub-wavelength fiber leads to an enhanced magnetic response. Here, we experimentally demonstrate an enhanced magnetic dipole source......-fiber system excited by a magnetic source. This coupled magnetic dipole and optical fiber system can be considered a unit cell of metasurfaces for manipulation of terahertz radiation and is a proof-of-concept of a possibility to achieve enhanced radiation of a dipole source in proximity of a sub...

  18. Continuous-wave terahertz light from optical parametric oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Sowade, Rosita

    2010-12-15

    Continuous-wave (cw) optical parametric oscillators (OPOs) are working horses for spectroscopy in the near and mid infrared. However, in the terahertz frequency range (0.1 to 10 THz), the pump threshold is more than 100 W due to the high absorption in nonlinear crystals and thus exceeds the power of standard cw single-frequency pump sources. In this thesis the first cw OPO capable of generating terahertz radiation is demonstrated. To overcome the high threshold, the signal wave of a primary infrared process is resonantly enhanced to serve as the pump wave for a cascaded parametric process with one wave being at the terahertz frequency level. A terahertz output power of more than two microwatts is measured and tuning is achieved from 1.3 to 1.7 THz. This terahertz source emits a narrow-band, diffraction-limited beam which remains mode-hop free over more than one hour. Such a device inhibits high potential for applications in areas like astronomy, telecommunications or high-resolution spectroscopy. (orig.)

  19. Continuous-wave terahertz light from optical parametric oscillators

    International Nuclear Information System (INIS)

    Sowade, Rosita

    2010-12-01

    Continuous-wave (cw) optical parametric oscillators (OPOs) are working horses for spectroscopy in the near and mid infrared. However, in the terahertz frequency range (0.1 to 10 THz), the pump threshold is more than 100 W due to the high absorption in nonlinear crystals and thus exceeds the power of standard cw single-frequency pump sources. In this thesis the first cw OPO capable of generating terahertz radiation is demonstrated. To overcome the high threshold, the signal wave of a primary infrared process is resonantly enhanced to serve as the pump wave for a cascaded parametric process with one wave being at the terahertz frequency level. A terahertz output power of more than two microwatts is measured and tuning is achieved from 1.3 to 1.7 THz. This terahertz source emits a narrow-band, diffraction-limited beam which remains mode-hop free over more than one hour. Such a device inhibits high potential for applications in areas like astronomy, telecommunications or high-resolution spectroscopy. (orig.)

  20. Design and simulation of a sub-terahertz folded-waveguide extended interaction oscillator

    Science.gov (United States)

    Liu, Wenxin; Zhang, Zhaochuan; Zhao, Chao; Guo, Xin; Liao, Suying

    2017-06-01

    In this paper, an interesting type of a two-section folded wave-guide (TSFW) slow wave structure (SWS) for the development of sub-Terahertz (sub-THz) extended interaction oscillator (EIO) is proposed. In this sub-THz device, the prebunching electron beam is produced by the TSFW SWS, which results in the enhancement of the output power. To verify this concept, the TSFW for sub-THz EIO is developed, which includes the design, simulation, and some fabrications. A small size of electron optics system (EOS), the TSFW SWS for beam-wave interactions, and the output structure are studied with simulations. Through the codes Egun and Superfish, the EOS is designed and optimized. With a help of CST studio and 3D particle-in-cell (PIC) simulation CHIPIC, the characteristics of beam-wave interaction generated by the TSFW are studied. The results of PIC simulation show that the output power is remarkably enhanced by a factor of 3, which exceeds 200 W at the frequency of 108 GHz. Based on the optimum parameters, the TSFW is manufactured with a high speed numerical mill, and the test transmission characteristic |S21| is 13 dB. At last, the output structure with a pill-box window is optimized, fabricated, integrated, and tested, and the result shows that the voltage standing-wave ratio of the window is about 2.2 at an operating frequency of 108 GHz. This design and simulation can provide an effective method to develop high power THz sources.

  1. Overview of terahertz radiation sources

    International Nuclear Information System (INIS)

    Gallerano, G.P.; Biedron, S.G.

    2004-01-01

    Although terahertz (THz) radiation was first observed about hundred years ago, the corresponding portion of the electromagnetic spectrum has been for long time considered a rather poorly explored region at the boundary between the microwaves and the infrared. This situation has changed during the past ten years with the rapid development of coherent THz sources, such as solid state oscillators, quantum cascade lasers, optically pumped solid state devices and novel free electron devices, which have in turn stimulated a wide variety of applications from material science to telecommunications, from biology to biomedicine. For a comprehensive review of THz technology the reader is addressed to a recent paper by P. Siegel. In this paper we focus on the development and perspectives of THz radiation sources.

  2. Continuous terahertz-wave generation using a monolithically integrated horn antenna

    Science.gov (United States)

    Peytavit, E.; Beck, A.; Akalin, T.; Lampin, J.-F.; Hindle, F.; Yang, C.; Mouret, G.

    2008-09-01

    A transverse electromagnetic horn antenna is monolithically integrated with a standard ultrafast interdigitated electrode photodetector on low-temperature-grown GaAs. Continuous-wave terahertz radiation is generated at frequencies up to 2 THz with a maximum power of approximately 1 μW at 780 GHz. Experimental variations in the terahertz power as function of the frequency are explained by means of electromagnetic simulations of the antenna and the photomixer vicinity.

  3. Digitally controlled chirped pulse laser for sub-terahertz-range fiber structure interrogation.

    Science.gov (United States)

    Chen, Zhen; Hefferman, Gerald; Wei, Tao

    2017-03-01

    This Letter reports a sweep velocity-locked laser pulse generator controlled using a digital phase-locked loop (DPLL) circuit. This design is used for the interrogation of sub-terahertz-range fiber structures for sensing applications that require real-time data collection with millimeter-level spatial resolution. A distributed feedback laser was employed to generate chirped laser pulses via injection current modulation. A DPLL circuit was developed to lock the optical frequency sweep velocity. A high-quality linearly chirped laser pulse with a frequency excursion of 117.69 GHz at an optical communication band was demonstrated. The system was further adopted to interrogate a continuously distributed sub-terahertz-range fiber structure (sub-THz-fs) for sensing applications. A strain test was conducted in which the sub-THz-fs showed a linear response to longitudinal strain change with predicted sensitivity. Additionally, temperature testing was conducted in which a heat source was used to generate a temperature distribution along the fiber structure to demonstrate its distributed sensing capability. A Gaussian temperature profile was measured using the described system and tracked in real time, as the heat source was moved.

  4. Terahertz transport dynamics of graphene charge carriers

    DEFF Research Database (Denmark)

    Buron, Jonas Christian Due

    The electronic transport dynamics of graphene charge carriers at femtosecond (10-15 s) to picosecond (10-12 s) time scales are investigated using terahertz (1012 Hz) time-domain spectroscopy (THz-TDS). The technique uses sub-picosecond pulses of electromagnetic radiation to gauge the electrodynamic...... response of thin conducting films at up to multi-terahertz frequencies. In this thesis THz-TDS is applied towards two main goals; (1) investigation of the fundamental carrier transport dynamics in graphene at femtosecond to picosecond timescales and (2) application of terahertz time-domain spectroscopy...... to rapid and non-contact electrical characterization of large-area graphene, relevant for industrial integration. We show that THz-TDS is an accurate and reliable probe of graphene sheet conductance, and that the technique provides insight into fundamental aspects of the nanoscopic nature of conduction...

  5. High energy multi-cycle terahertz generation

    International Nuclear Information System (INIS)

    Ahr, Frederike Beate

    2017-10-01

    Development of compact electron accelerators and free-electron lasers requires novel acceleration schemes at shorter driving wavelengths. The Axsis project seeks to develop terahertz based electron acceleration as well as the high energy terahertz sources required. This thesis explores the methods and optical material required for the generation of highenergy multi-cycle terahertz pulses. Two experimental concepts to generate high energy terahertz radiation are presented. In addition the theoretical background and the optical properties of pertinent optical materials in the terahertz range are discussed. Investigations of the materials are performed with a terahertz time domain spectrometer and a Fourier transform infrared spectrometer. The nonlinear optical crystal lithium niobate as well as other crystals suitable for the terahertz generation and in addition polymers and other radiation attenuators are characterized in the range from 0.2 to 1 THz. The theory describing the generation of narrowband terahertz radiation is evaluated. The experimental setups to generate terahertz radiation and to characterize its properties are described. The specific crystals - periodically poled lithium niobate (PPLN) - used in the experiments to generate the multi-cycle terahertz radiation are examined to determine e.g. the poling period. The first experimental concept splits the ultra fast, broadband pump pulses into a pulse train in order to pump the PPLN at a higher fluence while increasing the damage limit. The measurements confirm that a pulse train of ultra short, broadband pump pulses increases not only the terahertz energy but also the energy conversion efficiency. The second experimental concept utilizes chirped and delayed infrared laser pulses. This pulse format makes it possible to pump the crystal with high energy pulses resulting in high energy terahertz radiation. The concept is optimized to reach energies up to 127 μJ exceeding the existing results of narrowband

  6. High energy multi-cycle terahertz generation

    Energy Technology Data Exchange (ETDEWEB)

    Ahr, Frederike Beate

    2017-10-15

    Development of compact electron accelerators and free-electron lasers requires novel acceleration schemes at shorter driving wavelengths. The Axsis project seeks to develop terahertz based electron acceleration as well as the high energy terahertz sources required. This thesis explores the methods and optical material required for the generation of highenergy multi-cycle terahertz pulses. Two experimental concepts to generate high energy terahertz radiation are presented. In addition the theoretical background and the optical properties of pertinent optical materials in the terahertz range are discussed. Investigations of the materials are performed with a terahertz time domain spectrometer and a Fourier transform infrared spectrometer. The nonlinear optical crystal lithium niobate as well as other crystals suitable for the terahertz generation and in addition polymers and other radiation attenuators are characterized in the range from 0.2 to 1 THz. The theory describing the generation of narrowband terahertz radiation is evaluated. The experimental setups to generate terahertz radiation and to characterize its properties are described. The specific crystals - periodically poled lithium niobate (PPLN) - used in the experiments to generate the multi-cycle terahertz radiation are examined to determine e.g. the poling period. The first experimental concept splits the ultra fast, broadband pump pulses into a pulse train in order to pump the PPLN at a higher fluence while increasing the damage limit. The measurements confirm that a pulse train of ultra short, broadband pump pulses increases not only the terahertz energy but also the energy conversion efficiency. The second experimental concept utilizes chirped and delayed infrared laser pulses. This pulse format makes it possible to pump the crystal with high energy pulses resulting in high energy terahertz radiation. The concept is optimized to reach energies up to 127 μJ exceeding the existing results of narrowband

  7. Modeling of terahertz radiation emission from a free-electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Suresh C.; Panwar, Jyotsna; Sharma, Rinku [Department of Applied Physics, Delhi Technological University, Delhi (India)

    2017-05-15

    In this article, we report the generation of terahertz (THz) radiation using the interaction of a laser-modulated relativistic electron beam (REB) with a surface plasma wave. Two laser beams propagating through the modulator interact with the REB, leading to velocity modulation of the beam. This results in pre-bunching of the REB. The pre-bunched beam travels through the drift space, where the velocity modulation translates into density modulation. The density-modulated beam, on interacting with the surface plasma pump wave, acquires an oscillatory velocity that couples with the modulated beam density to give rise to a nonlinear current density which acts as an antenna to give THz radiation. By optimizing the parameters of the beam and the wiggler, we obtain power of the order of 10{sup -4} using the current scheme. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Enhancement of terahertz radiation in a Smith-Purcell backward-wave oscillator by an inverse wet-etched grating

    International Nuclear Information System (INIS)

    Kim, Jung-Il; Jeon, Seok-Gy; Kim, Geun-Ju; Kim, Jaehong

    2011-01-01

    A terahertz (THz) Smith-Purcell (SP) backward-wave oscillator with an inverse wet-etched grating based on silicon has been proposed to enhance radiation intensity. This grating strengthens the interactions between an electron beam and the evanescent wave due to the adjacent surface structure between gratings that improves the magnitude of the electric field up to 1.7 times compared to the conventional rectangular gratings. A two-dimensional particle-in-cell (PIC) simulation shows that the radiated power is increased up to 2.3 times higher at the radiated frequency of 0.66 THz for an electron-beam energy of 30 keV.

  9. Efficient terahertz wave generation from GaP crystals pumped by chirp-controlled pulses from femtosecond photonic crystal fiber amplifier

    International Nuclear Information System (INIS)

    Li, Jiang; Shi, Junkai; Xu, Baozhong; Xing, Qirong; Wang, Chingyue; Chai, Lu; Liu, Bowen; Hu, Minglie; Li, Yanfeng; Fedotov, Andrey B.; Zheltikov, Aleksei M.

    2014-01-01

    A chirp-tunable femtosecond 10 W, 42 MHz photonic-crystal-fiber oscillator-amplifier system that is capable of delivering sub-60 fs light pulses at 1040 nm is used to demonstrate high-efficiency terahertz radiation generation via optical rectification in GaP crystals only a few millimeters in length. The optimization of the chirp of the fiber-laser pulses is shown to radically enhance the terahertz output, indicating one possible way to more efficiently use these extended nonlinear crystals in compact fiber-pumped terahertz radiation sources

  10. High Power Room Temperature Terahertz Local Oscillator, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to build a high-power, room temperature compact continuous wave terahertz local oscillator for driving heterodyne receivers in the 1-5 THz frequency...

  11. Terahertz-radiation generation and detection in low-temperature-grown GaAs epitaxial films on GaAs (100) and (111)A substrates

    Energy Technology Data Exchange (ETDEWEB)

    Galiev, G. B.; Pushkarev, S. S., E-mail: s-s-e-r-p@mail.ru [Russian Academy of Sciences, Institute of Ultrahigh-Frequency Semiconductor Electronics (Russian Federation); Buriakov, A. M.; Bilyk, V. R.; Mishina, E. D. [Moscow Technological University “MIREA” (Russian Federation); Klimov, E. A. [Russian Academy of Sciences, Institute of Ultrahigh-Frequency Semiconductor Electronics (Russian Federation); Vasil’evskii, I. S. [National Research Nuclear University “MEPhI” (Russian Federation); Maltsev, P. P. [Russian Academy of Sciences, Institute of Ultrahigh-Frequency Semiconductor Electronics (Russian Federation)

    2017-04-15

    The efficiency of the generation and detection of terahertz radiation in the range up to 3 THz by LT-GaAs films containing equidistant Si doping δ layers and grown by molecular beam epitaxy on GaAs (100) and (111)Ga substrates is studied by terahertz spectroscopy. Microstrip photoconductive antennas are fabricated on the film surface. Terahertz radiation is generated by exposure of the antenna gap to femtosecond optical laser pulses. It is shown that the intensity of terahertz radiation from the photoconductive antenna on LT-GaAs/GaAs (111)Ga is twice as large as the intensity of a similar antenna on LT-GaAs/GaAs(100) and the sensitivity of the antenna on LT-GaAs/GaAs (111)Ga as a terahertz-radiation detector exceeds that of the antenna on LT-GaAs/GaAs(100) by a factor of 1.4.

  12. Power-scalable, polarization-stable, dual-colour DFB fibre laser system for CW terahertz imaging

    DEFF Research Database (Denmark)

    Eichhorn, Finn; Pedersen, Jens Engholm; Jepsen, Peter Uhd

    Imaging with electromagnetic radiation in the terahertz (THz) range has received a large amount of attention during recent years. THz imaging systems have diverse potential application areas such as security screening, medical diagnostics and non-destructive testing. We will discuss a power......-scalable, dual-colour, polarization-maintaining distributed feedback (DFB) fibre laser system with an inherent narrow linewidth from the DFB fibre laser oscillators. The laser system can be used as source in CW THz systems employing photomixing (optical heterodyning) for generation and detection...

  13. IKNO, a user facility for coherent terahertz and UV synchrotron radiation

    International Nuclear Information System (INIS)

    Sannibale, Fernando; Marcelli, Augusto; Innocenzi, Plinio

    2008-01-01

    IKNO (Innovation and KNOwledge) is a proposal for a multi-user facility based on an electron storage ring optimized for the generation of coherent synchrotron radiation (CSR) in the terahertz frequency range, and of broadband incoherent synchrotron radiation (SR) ranging from the IR to the VUV. IKNO can be operated in an ultra-stable CSR mode with photon flux in the terahertz frequency region up to nine orders of magnitude higher than in existing 3rd generation light sources. Simultaneously to the CSR operation, broadband incoherent SR up to VUV frequencies is available at the beamline ports. The main characteristics of the IKNO storage and its performance in terms of CSR and incoherent SR are described in this paper. The proposed location for the infrastructure facility is in Sardinia, Italy

  14. Computed tomography image using sub-terahertz waves generated from a high-T{sub c} superconducting intrinsic Josephson junction oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Kashiwagi, T., E-mail: kashiwagi@ims.tsukuba.ac.jp; Minami, H.; Kadowaki, K. [Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba (Japan); Division of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8573 (Japan); Nakade, K.; Saiwai, Y.; Kitamura, T.; Watanabe, C.; Ishida, K.; Sekimoto, S.; Asanuma, K.; Yasui, T.; Shibano, Y. [Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba (Japan); Tsujimoto, M. [Department of Electronic Science and Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 (Japan); Yamamoto, T. [Wide Bandgap Materials Group, Optical and Electronic Materials Unit, Environment and Energy Materials Division, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Marković, B. [Faculty of Sciences, University of Montenegro, George Washington Str., 81000 Podgorica (Montenegro); Mirković, J. [Faculty of Science, University of Montenegro, and CETI, Put Radomira Ivanovica, 81000 Podgorica (Montenegro); Klemm, R. A. [Department of Physics, University of Central Florida, 4000 Central Florida Blvd., Orlando, Florida 32816-2385 (United States)

    2014-02-24

    A computed tomography (CT) imaging system using monochromatic sub-terahertz coherent electromagnetic waves generated from a device constructed from the intrinsic Josephson junctions in a single crystalline mesa structure of the high-T{sub c} superconductor Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+δ} was developed and tested on three samples: Standing metallic rods supported by styrofoam, a dried plant (heart pea) containing seeds, and a plastic doll inside an egg shell. The images obtained strongly suggest that this CT imaging system may be useful for a variety of practical applications.

  15. Single crystal Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} structures as THz-emitters

    Energy Technology Data Exchange (ETDEWEB)

    Wieland, Raphael; Rudau, Fabian; Langer, Julian; Koelle, Dieter; Kleiner, Reinhold [Physikalisches Institut and Center for Collective Quantum Phenomena in LISA+, Universitaet Tuebingen, Tuebingen (Germany); Kinev, Nickolay; Koshelets, Valery [Kotel' nikov Institute of Radio Engineering and Electronics, Moscow (Russian Federation); Yuan, Jie; Ishii, Akira; Hatano, Takeshi [National Institute for Materials Science, Tsukuba (Japan); Huang, Ya; Ji, Min; Zhou, Xianjing; Wang, Huabing [National Institute for Materials Science, Tsukuba (Japan); Research Institute of Superconductor Electronics, Nanjing University, Nanjing (China); Wu, Peiheng [Research Institute of Superconductor Electronics, Nanjing University, Nanjing (China)

    2016-07-01

    By means of Josephson Junctions (JJs) one can easily convert a dc voltage into high-frequency electromagnetic radiation. The high-Tc superconductor Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} (BSCCO) has a layered crystal structure in such a way that JJs form intrinsically. This allows to fabricate hundreds of stacked junctions with reasonable effort. Terahertz emission can be observed at relatively low bias currents but also at higher input power. Emission frequencies from 0.4 to 2.4 THz have been measured. A hot spot forms at high bias currents with effect on both intensity and linewidth of the THz emission.BSCCO mesas probably act as a cavity for electromagnetic standing waves that synchronize all junctions in the stack. We investigated hotspot formation and THz emission using a combination of transport measurements, low temperature scanning laser microscopy and electromagnetic wave detection via a superconducting receiver.

  16. Ultra-short coherent terahertz radiation from ultra-short dips in electron bunches circulating in a storage ring

    International Nuclear Information System (INIS)

    Yamamoto, N.; Shimada, M.; Adachi, M.; Zen, H.; Tanikawa, T.; Taira, Y.; Kimura, S.; Hosaka, M.; Takashima, Y.; Takahashi, T.; Katoh, M.

    2011-01-01

    Terahertz (THz) coherent synchrotron radiation (CSR) is emitted not only from ultra-short electron bunches, but also from electron bunches with micro-structures. Formation of micro-structures at the sub-picosecond scale in electron bunches by a laser slicing technique is experimentally studied through observation of the THz CSR. The THz CSR spectrum was found to depend strongly on the intensity and the pulse width of the laser. The results agreed qualitatively with a numerical simulation. It was suggested that the evolution of the micro-structure during CSR emission is important under some experimental conditions.

  17. Terahertz absorption and emission upon the photoionization of acceptors in uniaxially stressed silicon

    Energy Technology Data Exchange (ETDEWEB)

    Zhukavin, R. Kh., E-mail: zhur@ipmras.ru; Kovalevsky, K. A.; Orlov, M. L.; Tsyplenkov, V. V. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation); Hübers, H.-W. [DLR Institute of Optical Sensor Systems (Germany); Dessmann, N. [Humboldt University of Berlin, Institute of Physics (Germany); Kozlov, D. V.; Shastin, V. N. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation)

    2016-11-15

    Experimental data on the spontaneous emission and absorption modulation in boron-doped silicon under CO{sub 2} laser excitation depending on the uniaxial stress applied along the [001] and [011] crystallographic directions are presented. Room-temperature radiation is used as the probe radiation. Low stress (less than 0.5 kbar) is shown to reduce losses in the terahertz region by 20%. The main contribution to absorption modulation at zero and low stress is made by A{sup +} centers. Intersubband free hole transitions additionally contribute to terahertz absorption at higher stress. These contributions can be minimized by compensation.

  18. A New Method for Simulating Power Flow Density Focused by a Silicon Lens Antenna Irradiated with Linearly Polarized THz Wave

    Directory of Open Access Journals (Sweden)

    Catur Apriono

    2015-08-01

    Full Text Available A terahertz system uses dielectric lens antennas for focusing and collimating beams of terahertz wave radiation. Linearly polarized terahertz wave radiation has been widely applied in the terahertz system. Therefore, an accurate method for analyzing the power flow density in the dielectric lens antenna irradiated with the linearly polarized terahertz wave radiation is important to design the terahertz systems. In optics, ray-tracing method has been used to calculate the power flow density by a number density of rays. In this study, we propose a method of ray-tracing combined with Fresnel’s transmission, including transmittance and polarization of the terahertz wave radiation to calculate power flow density in a Silicon lens antenna. We compare power flow density calculated by the proposed method with the regular ray-tracing method. When the Silicon lens antenna is irradiated with linearly polarized terahertz wave radiation, the proposed method calculates the power flow density more accurately than the regular ray-tracing.

  19. Terahertz radiation by subpicosecond spin-polarized photocurrent originating from Dirac electrons in a Rashba-type polar semiconductor

    Science.gov (United States)

    Kinoshita, Yuto; Kida, Noriaki; Miyamoto, Tatsuya; Kanou, Manabu; Sasagawa, Takao; Okamoto, Hiroshi

    2018-04-01

    The spin-splitting energy bands induced by the relativistic spin-orbit interaction in solids provide a new opportunity to manipulate the spin-polarized electrons on the subpicosecond timescale. Here, we report one such example in a bulk Rashba-type polar semiconductor BiTeBr. Strong terahertz electromagnetic waves are emitted after the resonant excitation of the interband transition between the Rashba-type spin-splitting energy bands with a femtosecond laser pulse circularly polarized. The phase of the emitted terahertz waves is reversed by switching the circular polarization. This suggests that the observed terahertz radiation originates from the subpicosecond spin-polarized photocurrents, which are generated by the asymmetric depopulation of the Dirac state. Our result provides a way for the current-induced terahertz radiation and its phase control by the circular polarization of incident light without external electric fields.

  20. High density terahertz frequency comb produced by coherent synchrotron radiation

    Science.gov (United States)

    Tammaro, S.; Pirali, O.; Roy, P.; Lampin, J.-F.; Ducournau, G.; Cuisset, A.; Hindle, F.; Mouret, G.

    2015-07-01

    Frequency combs have enabled significant progress in frequency metrology and high-resolution spectroscopy extending the achievable resolution while increasing the signal-to-noise ratio. In its coherent mode, synchrotron radiation is accepted to provide an intense terahertz continuum covering a wide spectral range from about 0.1 to 1 THz. Using a dedicated heterodyne receiver, we reveal the purely discrete nature of this emission. A phase relationship between the light pulses leads to a powerful frequency comb spanning over one decade in frequency. The comb has a mode spacing of 846 kHz, a linewidth of about 200 Hz, a fractional precision of about 2 × 10-10 and no frequency offset. The unprecedented potential of the comb for high-resolution spectroscopy is demonstrated by the accurate determination of pure rotation transitions of acetonitrile.

  1. Integrated heterodyne terahertz transceiver

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Mark [Albuquerque, NM; Wanke, Michael C [Albuquerque, NM

    2009-06-23

    A heterodyne terahertz transceiver comprises a quantum cascade laser that is integrated on-chip with a Schottky diode mixer. An antenna connected to the Schottky diode receives a terahertz signal. The quantum cascade laser couples terahertz local oscillator power to the Schottky diode to mix with the received terahertz signal to provide an intermediate frequency output signal. The fully integrated transceiver optimizes power efficiency, sensitivity, compactness, and reliability. The transceiver can be used in compact, fieldable systems covering a wide variety of deployable applications not possible with existing technology.

  2. Experimental study of intense radiation in terahertz region based on cylindrical surface wave resonator

    International Nuclear Information System (INIS)

    Gong, Shaoyan; Ogura, Kazuo; Yambe, Kiyoyuki; Nomizu, Shintaro; Shirai, Akihiro; Yamazaki, Kosuke; Kawamura, Jun; Miura, Takuro; Takanashi, Sho; San, Min Thu

    2015-01-01

    Periodical corrugations structured on a cylindrical conductor have cylindrical surface waves (CSWs), which are reflected at the corrugation ends and form a CSW-resonator. In this paper, intense radiations in terahertz region based on the CSW-resonator are reported. The CSW-resonators with upper cut off frequencies in the modern IEEE G-band (110–300 GHz) are excited by a coaxially injected annular beam in a weakly relativistic region less than 100 kV. It is shown that there exists an oscillation starting energy for the CSW-resonator. Above the starting energy, very intense terahertz radiations on the order of kW are obtained. The operation frequencies in the range of 166–173 GHz and 182–200 GHz are obtained using two types of CSW-resonator with the different corrugation amplitude. Electromagnetic properties of the CSW-resonator can be controlled by the artificial structure and may play an important role in high-intensity terahertz generations and applications

  3. Terahertz emission and electromagnetic waves in single crystal Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} structures

    Energy Technology Data Exchange (ETDEWEB)

    Wieland, Raphael; Rudau, Fabian; Gross, Boris; Judd, Thomas; Koelle, Dieter; Kleiner, Reinhold [Physikalisches Institut and Center for Collective Quantum Phenomena in LISA" +, Universitaet Tuebingen, Tuebingen (Germany); Kinev, Nickolay; Koshelets, Valery [Kotel' nikov Institute of Radio Engineering and Electronics, Moscow (Russian Federation); Tsujimoto, Manabu [Kyoto University, Kyoto (Japan); Ji, Min; Huang, Ya; Zhou, Xianjing; An, Deyue; Wang, Huabing [National Institute for Materials Science, Tsukuba (Japan); Research Institute of Superconductor Electronics, Nanjing University, Nanjing (China); Wu, Peihang [Research Institute of Superconductor Electronics, Nanjing University, Nanjing (China); Hatano, Takeshi [National Institute for Materials Science, Tsukuba (Japan)

    2015-07-01

    Josephson Junctions (JJs) offer a natural way to convert a dc voltage into high-frequency electromagnetic radiation. In the high-Tc superconductor Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} (BSCCO), JJs form intrinsically, allowing to fabricate stacks of hundreds of junctions easily. Emission can occur at relatively low bias currents but also at larger input power with frequencies from 0.4 to 1 THz. At high bias, a hot spot forms, affecting both the intensity and the linewidth of the radiation. BSCCO mesas are believed to work as a cavity for electromagnetic standing waves, synchronizing all the junctions in the stack. We investigated THz emission and hotspot formation using a combination of transport measurements, electromagnetic wave detection via a superconducting receiver and low temperature scanning laser microscopy.

  4. Bridging the terahertz gap

    International Nuclear Information System (INIS)

    Davies, Giles; Linfield, Edmund

    2004-01-01

    Over the last century or so, physicists and engineers have progressively explored and conquered the electromagnetic spectrum. Starting with visible light, we have encroached outwards, developing techniques for generating and detecting radiation at both higher and lower frequencies. And as each successive region of the spectrum has been colonized, we have developed technology to exploit the radiation found there. X-rays, for example, are routinely used to image hidden objects. Near-infrared radiation is used in fibre-optic communications and in compact-disc players, while microwaves are used to transmit signals from your mobile phone. But there is one part of the electromagnetic spectrum that has steadfastly resisted our advances. This is the terahertz region, which ranges from frequencies of about 300 GHz to 10 THz (10 x 10 sup 1 sup 2 Hz). This corresponds to wavelengths of between about 1 and 0.03 mm, and lies between the microwave and infrared regions of the spectrum. However, the difficulties involved in making suitably compact terahertz sources and detectors has meant that this region of the spectrum has only begun to be explored thoroughly over the last decade. A particularly intriguing feature of terahertz radiation is that the semiconductor devices that generate radiation at frequencies above and below this range operate in completely different ways. At lower frequencies, microwaves and millimetre- waves can be generated by 'electronic' devices such as those found in mobile phones. At higher frequencies, near-infrared and visible light are generated by 'optical' devices such as semiconductor laser diodes, in which electrons emit light when they jump across the semiconductor band gap. Unfortunately, neither electronic nor optical devices can conveniently be made to work in the terahertz region because the terahertz frequency range sits between the electronic and optical regions of the electromagnetic spectrum. Developing a terahertz source is therefore a

  5. Advances in the biological effects of terahertz wave radiation.

    Science.gov (United States)

    Zhao, Li; Hao, Yan-Hui; Peng, Rui-Yun

    2014-01-01

    The terahertz (THz) band lies between microwave and infrared rays in wavelength and consists of non-ionizing radiation. Both domestic and foreign research institutions, including the army, have attached considerable importance to the research and development of THz technology because this radiation exhibits both photon-like and electron-like properties, which grant it considerable application value and potential. With the rapid development of THz technology and related applications, studies of the biological effects of THz radiation have become a major focus in the field of life sciences. Research in this field has only just begun, both at home and abroad. In this paper, research progress with respect to THz radiation, including its biological effects, mechanisms and methods of protection, will be reviewed.

  6. Echo-enabled tunable terahertz radiation generation with a laser-modulated relativistic electron beam

    Directory of Open Access Journals (Sweden)

    Zhen Wang

    2014-09-01

    Full Text Available A new scheme to generate narrow-band tunable terahertz (THz radiation using a variant of the echo-enabled harmonic generation is analyzed. We show that by using an energy chirped beam, THz density modulation in the beam phase space can be produced with two lasers having the same wavelength. This removes the need for an optical parametric amplifier system to provide a wavelength-tunable laser to vary the central frequency of the THz radiation. The practical feasibility and applications of this scheme are demonstrated numerically with a start-to-end simulation using the beam parameters at the Shanghai Deep Ultraviolet Free-Electron Laser facility (SDUV. The central frequency of the density modulation can be continuously tuned by either varying the chirp of the beam or the momentum compactions of the chicanes. The influence of nonlinear rf chirp and longitudinal space charge effect have also been studied in our article. The methods to generate the THz radiation in SDUV with the new scheme and the estimation of the radiation power are also discussed briefly.

  7. Squeezing terahertz light into nanovolumes: Nanoantenna enhanced terahertz spectroscopy (NETS) of semiconductor quantum dots

    KAUST Repository

    Toma, Andrea; Tuccio, Salvatore; Prato, Mirko; De Donato, Francesco; Perucchi, Andrea; Di Pietro, Paola; Marras, Sergio; Liberale, Carlo; Proietti Zaccaria, Remo; De Angelis, Francesco De; Manna, Liberato; Lupi, Stefano; Di Fabrizio, Enzo M.; Razzari, Luca

    2015-01-01

    Terahertz spectroscopy has vast potentialities in sensing a broad range of elementary excitations (e.g., collective vibrations of molecules, phonons, excitons, etc.). However, the large wavelength associated with terahertz radiation (about 300 μm

  8. Imaging with a 90 frames/s microbolometer focal plane array and high-power terahertz free electron laser

    International Nuclear Information System (INIS)

    Dem'yanenko, M. A.; Esaev, D. G.; Knyazev, B. A.; Vinokurov, N. A.; Kulipanov, G. N.

    2008-01-01

    An uncooled microbolometer focal plane array (FPA) has been developed and used for imaging of objects illuminated by monochromatic coherent radiation of a free electron laser tunable in the range of 1.25-2.5 THz. A sensitivity threshold of 1.3x10 -3 W/cm 2 was obtained for the FPA with a homemade absolute interferometric power meter. Videos up to 90 frames/s were recorded in both transmission and reflection/scattering modes. When objects were illuminated by laser radiation scattered by a rough metal surface, speckled images were observed. Good quality terahertz images were achieved through the fast rotation of the scatterer

  9. Integrated heterodyne terahertz transceiver

    Science.gov (United States)

    Wanke, Michael C [Albuquerque, NM; Lee, Mark [Albuquerque, NM; Nordquist, Christopher D [Albuquerque, NM; Cich, Michael J [Albuquerque, NM

    2012-09-25

    A heterodyne terahertz transceiver comprises a quantum cascade laser that is integrated on-chip with a Schottky diode mixer. A terahertz signal can be received by an antenna connected to the mixer, an end facet or sidewall of the laser, or through a separate active section that can amplify the incident signal. The quantum cascade laser couples terahertz local oscillator power to the Schottky diode to mix with the received terahertz signal to provide an intermediate frequency output signal. The fully integrated transceiver optimizes power efficiency, sensitivity, compactness, and reliability. The transceiver can be used in compact, fieldable systems covering a wide variety of deployable applications not possible with existing technology.

  10. Development of intense terahertz coherent synchrotron radiation at KU-FEL

    Energy Technology Data Exchange (ETDEWEB)

    Sei, Norihiro, E-mail: sei.n@aist.go.jp [Research Institute for Measurement and Analytical Instrumentation, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Zen, Heishun; Ohgaki, Hideaki [Institute for Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)

    2016-10-01

    We produced intense coherent synchrotron radiation (CSR) in the terahertz (THz) region using an S-band linac at the Kyoto University Free Electron Laser (KU-FEL), which is a mid-infrared free-electron laser facility. The CSR beam was emitted from short-pulse electron bunches compressed by a 180° arc, and was transferred to air at a large solid angle of 0.10 rad. The measured CSR energy was 55 μJ per 7 μs macropulse, and KU-FEL was one of the most powerful CSR sources in normal conducting linear accelerator facilities. The CSR spectra were measured using an uncooled pyroelectric detector and a Michelson-type interferometer designed specifically for the KU-FEL electron beam, and had a maximum at a frequency of 0.11 THz. We found that adjusting the energy slit enhanced the CSR energy and shortened the electron beam bunch length in the CSR spectra measurements. Our results demonstrated that the efficient use of the energy slit can help improve the characteristics of CSR. - Highlights: • We have developed intense coherent synchrotron radiation (CSR) at KU-FEL. • The elevation angle of the CSR was correctly measured by a new technique. • The CSR power extracted to the air was 55 μJ per 7 μs macropulse. • It was demonstrated that an energy slit was effective to improve the CSR properties.

  11. Development of intense terahertz coherent synchrotron radiation at KU-FEL

    International Nuclear Information System (INIS)

    Sei, Norihiro; Zen, Heishun; Ohgaki, Hideaki

    2016-01-01

    We produced intense coherent synchrotron radiation (CSR) in the terahertz (THz) region using an S-band linac at the Kyoto University Free Electron Laser (KU-FEL), which is a mid-infrared free-electron laser facility. The CSR beam was emitted from short-pulse electron bunches compressed by a 180° arc, and was transferred to air at a large solid angle of 0.10 rad. The measured CSR energy was 55 μJ per 7 μs macropulse, and KU-FEL was one of the most powerful CSR sources in normal conducting linear accelerator facilities. The CSR spectra were measured using an uncooled pyroelectric detector and a Michelson-type interferometer designed specifically for the KU-FEL electron beam, and had a maximum at a frequency of 0.11 THz. We found that adjusting the energy slit enhanced the CSR energy and shortened the electron beam bunch length in the CSR spectra measurements. Our results demonstrated that the efficient use of the energy slit can help improve the characteristics of CSR. - Highlights: • We have developed intense coherent synchrotron radiation (CSR) at KU-FEL. • The elevation angle of the CSR was correctly measured by a new technique. • The CSR power extracted to the air was 55 μJ per 7 μs macropulse. • It was demonstrated that an energy slit was effective to improve the CSR properties.

  12. Initial scientific uses of coherent synchrotron radiation inelectron storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Basov, D.N.; Feikes, J.; Fried, D.; Holldack, K.; Hubers, H.W.; Kuske, P.; Martin, M.C.; Pavlov, S.G.; Schade, U.; Singley, E.J.; Wustefeld, G.

    2004-11-23

    The production of stable, high power, coherent synchrotron radiation at sub-terahertz frequency at the electron storage ring BESSY opens a new region in the electromagnetic spectrum to explore physical properties of materials. Just as conventional synchrotron radiation has been a boon to x-ray science, coherent synchrotron radiation may lead to many new innovations and discoveries in THz physics. With this new accelerator-based radiation source we have been able to extend traditional infrared measurements down into the experimentally poorly accessible sub-THz frequency range. The feasibility of using the coherent synchrotron radiation in scientific applications was demonstrated in a series of experiments: We investigated shallow single acceptor transitions in stressed and unstressed Ge:Ga by means of photoconductance measurements below 1 THz. We have directly measured the Josephson plasma resonance in optimally doped Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} for the first time and finally we succeeded to confine the sub-THz radiation for spectral near-field imaging on biological samples such as leaves and human teeth.

  13. Observation of dynamic interactions between fundamental and second-harmonic modes in a high-power sub-terahertz gyrotron operating in regimes of soft and hard self-excitation.

    Science.gov (United States)

    Saito, Teruo; Tatematsu, Yoshinori; Yamaguchi, Yuusuke; Ikeuchi, Shinji; Ogasawara, Shinya; Yamada, Naoki; Ikeda, Ryosuke; Ogawa, Isamu; Idehara, Toshitaka

    2012-10-12

    Dynamic mode interaction between fundamental and second-harmonic modes has been observed in high-power sub-terahertz gyrotrons [T. Notake et al., Phys. Rev. Lett. 103, 225002 (2009); T. Saito et al. Phys. Plasmas 19, 063106 (2012)]. Interaction takes place between a parasitic fundamental or first-harmonic (FH) mode and an operating second-harmonic (SH) mode, as well as among SH modes. In particular, nonlinear excitation of the parasitic FH mode in the hard self-excitation regime with assistance of a SH mode in the soft self-excitation regime was clearly observed. Moreover, both cases of stable two-mode oscillation and oscillation of the FH mode only were observed. These observations and theoretical analyses of the dynamic behavior of the mode interaction verify the nonlinear hard self-excitation of the FH mode.

  14. Aspheric lenses for terahertz imaging.

    Science.gov (United States)

    Lo, Yat Hei; Leonhardt, Rainer

    2008-09-29

    We present novel designs for aspheric lenses used in terahertz (THz) imaging. As different surfaces result in different beam shaping properties and in different losses from reflection and absorption, the resultant imaging resolution (i.e. the focal spot size) depends critically on the design approach. We evaluate the different lens designs using Kirchhoff's scalar diffraction theory, and test the predictions experimentally. We also show that our lenses can achieve sub-wavelength resolution. While our lens designs are tested with THz radiation, the design considerations are applicable also to other regions of the electro-magnetic spectrum.

  15. Convergence of Terahertz Sciences in Biomedical Systems

    CERN Document Server

    Kim, Yong; Han, Haewook; Han, Joon; Ahn, Jaewook; Son, Joo-Hiuk; Park, Woong-Yang; Jeong, Young

    2012-01-01

    Recent technological breakthrough in the field of Terahertz radiation has triggered new applications in biology and biomedicine. Particularly, biological applications are based on the specific spectroscopic fingerprints of biological matter in this spectral region. Historically with the discovery of new electromagnetic wave spectrum, we have always discovered new medical diagnostic imaging systems. The use of terahertz wave was not realized due to the absence of useful terahertz sources. Now after successful generation of THz waves, it is reported that a great potential for THz wave exists for its resonance with bio-molecules. There are many challenging issues such as development of THz passive and active instrumentations, understanding of THz-Bio interaction for THz spectroscopy, THz-Bio nonlinear phenomena and safety guideline, and THz imaging systems. Eventually the deeper understanding of THz-Bio interaction and novel THz systems enable us to develop powerful THz biomedical imaging systems which can contr...

  16. Terahertz-Radiation-Enhanced Emission of Fluorescence from Gas Plasma

    International Nuclear Information System (INIS)

    Liu Jingle; Zhang, X.-C.

    2009-01-01

    We report the study of femtosecond laser-induced air plasma fluorescence under the illumination of terahertz (THz) pulses. Semiclassical modeling and experimental verification indicate that time-resolved THz radiation-enhanced emission of fluorescence is dominated by the electron kinetics and the electron-impact excitation of gas molecules or ions. We demonstrate that the temporal waveform of the THz field could be retrieved from the transient enhanced fluorescence, making omnidirectional, coherent detection available for THz time-domain spectroscopy.

  17. A MODEL FOR PRODUCING STABLE, BROADBAND TERAHERTZ COHERENT SYNCHROTRON RADIATION IN STORAGE RINGS

    International Nuclear Information System (INIS)

    Sannibale, Fernando; Byrd, John M.; Loftsdottir, Agusta; Martin, MichaelC.; Venturini, Marco

    2003-01-01

    We present a model for producing stable broadband coherent synchrotron radiation (CSR) in the terahertz frequency region in an electron storage ring. The model includes distortion of bunch shape from the synchrotron radiation (SR), enhancing higher frequency coherent emission and limits to stable emission due to a microbunching instability excited by the SR. We use this model to optimize the performance of a source for CSR emission

  18. All-dielectric rod antenna array for terahertz communications

    Science.gov (United States)

    Withayachumnankul, Withawat; Yamada, Ryoumei; Fujita, Masayuki; Nagatsuma, Tadao

    2018-05-01

    The terahertz band holds a potential for point-to-point short-range wireless communications at sub-terabit speed. To realize this potential, supporting antennas must have a wide bandwidth to sustain high data rate and must have high gain and low dissipation to compensate for the free space path loss that scales quadratically with frequency. Here we propose an all-dielectric rod antenna array with high radiation efficiency, high gain, and wide bandwidth. The proposed array is integral to a low-loss photonic crystal waveguide platform, and intrinsic silicon is the only constituent material for both the antenna and the feed to maintain the simplicity, compactness, and efficiency. Effective medium theory plays a key role in the antenna performance and integrability. An experimental validation with continuous-wave terahertz electronic systems confirms the minimum gain of 20 dBi across 315-390 GHz. A demonstration shows that a pair of such identical rod array antennas can handle bit-error-free transmission at the speed up to 10 Gbit/s. Further development of this antenna will build critical components for future terahertz communication systems.

  19. Terahertz Coherent Synchrotron Radiation from Femtosecond Laser Modulation of the Electron Beam at the Advanced Light Source

    CERN Document Server

    Byrd, John; Martin, Michael C; Robin, David; Sannibale, Fernando; Schönlein, Robert W; Zholents, Alexander; Zolotorev, Max S

    2005-01-01

    At the Advanced Light Source (ALS), the "femtoslicing" beamline is in operation since 1999 for the production of x-ray synchrotron radiation pulses with femtosecond duration. The mechanism used for generating the short x-ray pulses induces at the same time temporary structures in the electron bunch longitudinal distribution with very short characteristic length. Such structures emit intense coherent synchrotron radiation (CSR) in the terahertz frequency range. This CSR, whose measured intensity is routinely used as a diagnostics for the tune-up of the femtoslicing experiments, represents a potential source of terahertz radiation with very interesting features. Several measurements have been performed for its characterization and in this paper an updated description of the experimental results and of their interpretation is presented.

  20. Numerical simulation of terahertz generation and detection based on ultrafast photoconductive antennas

    Science.gov (United States)

    Chen, Long-chao; Fan, Wen-hui

    2011-08-01

    The numerical simulation of terahertz generation and detection in the interaction between femtosecond laser pulse and photoconductive material has been reported in this paper. The simulation model based on the Drude-Lorentz theory is used, and takes into account the phenomena that photo-generated electrons and holes are separated by the external bias field, which is screened by the space-charge field simultaneously. According to the numerical calculation, the terahertz time-domain waveforms and their Fourier-transformed spectra are presented under different conditions. The simulation results indicate that terahertz generation and detection properties of photoconductive antennas are largely influenced by three major factors, including photo-carriers' lifetime, laser pulse width and pump laser power. Finally, a simple model has been applied to simulate the detected terahertz pulses by photoconductive antennas with various photo-carriers' lifetimes, and the results show that the detected terahertz spectra are very different from the spectra radiated from the emitter.

  1. Theoretical study of the generation of terahertz radiation by the interaction of two laser beams with graphite nanoparticles

    Science.gov (United States)

    Sepehri Javan, N.; Rouhi Erdi, F.

    2017-12-01

    In this theoretical study, we investigate the generation of terahertz radiation by considering the beating of two similar Gaussian laser beams with different frequencies of ω1 and ω2 in a spatially modulated medium of graphite nanoparticles. The medium is assumed to contain spherical graphite nanoparticles of two different configurations: in the first configuration, the electric fields of the laser beams are parallel to the normal vector of the basal plane of the graphite structure, whereas in the second configuration, the electric fields are perpendicular to the normal vector of the basal plane. The interaction of the electric fields of lasers with the electronic clouds of the nanoparticles generates a ponderomotive force that in turn leads to the creation of a macroscopic electron current in the direction of laser polarizations and at the beat frequency ω1-ω2 , which can generate terahertz radiation. We show that, when the beat frequency lies near the effective plasmon frequency of the nanoparticles and the electric fields are parallel to the basal-plane normal, a resonant interaction of the laser beams causes intense terahertz radiation.

  2. Transmission of terahertz radiation by anisotropic MWCNT/polystyrene composite films

    Energy Technology Data Exchange (ETDEWEB)

    Okotrub, A.V.; Bulusheva, L.G. [Nikolaev Institute of Inorganic Chemistry, SB RAS, 3 Acad. Lavrentiev Ave., 630090 Novosibirsk (Russian Federation); Novosibirsk State Technical University, 20 Karl Marx Ave., 630092 Novosibirsk (Russian Federation); Kubarev, V.V. [Budker Institute of Nuclear Physics, SB RAS, 11 Acad. Lavrentiev Ave., 630090 Novosibirsk (Russian Federation); Novosibirsk State University, 2 Pirogova st., 630090 Novosibirsk (Russian Federation); Kanygin, M.A.; Sedelnikova, O.V. [Nikolaev Institute of Inorganic Chemistry, SB RAS, 3 Acad. Lavrentiev Ave., 630090 Novosibirsk (Russian Federation)

    2011-11-15

    Anisotropic composite materials have been prepared by repeated forge rolling of polystyrene and carbon nanotubes (CNTs) with length of {proportional_to}65 {mu}m. Transmission spectra of the composites were recorded for two different polarizations of the electric field. Obtained data indicated that the forge rolling resulted in a predominant orientation of CNTs in polymer matrix. Anisotropic response of the composites was measured at 130 {mu}m wavelength on the Novosibirsk terahertz free electron laser and angular dependence of the transmitted light was determined. Absorption spectrum showed no strong resonance features and it was interpreted by CNTs breaking and agglomeration of CNT fragments during the composite fabrication procedure. Based on classical theory of scattering, considered the scatters as electromagnetic antennas, the size distribution of CNTs in composites was found. Anisotropy of terahertz radiation transmitted from MWCNT/polystyrene composite film on the Novosibirsk free electron laser at 130 {mu}m wavelength. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Homogeneous spectral spanning of terahertz semiconductor lasers with radio frequency modulation.

    Science.gov (United States)

    Wan, W J; Li, H; Zhou, T; Cao, J C

    2017-03-08

    Homogeneous broadband and electrically pumped semiconductor radiation sources emitting in the terahertz regime are highly desirable for various applications, including spectroscopy, chemical sensing, and gas identification. In the frequency range between 1 and 5 THz, unipolar quantum cascade lasers employing electron inter-subband transitions in multiple-quantum-well structures are the most powerful semiconductor light sources. However, these devices are normally characterized by either a narrow emission spectrum due to the narrow gain bandwidth of the inter-subband optical transitions or an inhomogeneous broad terahertz spectrum from lasers with heterogeneous stacks of active regions. Here, we report the demonstration of homogeneous spectral spanning of long-cavity terahertz semiconductor quantum cascade lasers based on a bound-to-continuum and resonant phonon design under radio frequency modulation. At a single drive current, the terahertz spectrum under radio frequency modulation continuously spans 330 GHz (~8% of the central frequency), which is the record for single plasmon waveguide terahertz lasers with a bound-to-continuum design. The homogeneous broadband terahertz sources can be used for spectroscopic applications, i.e., GaAs etalon transmission measurement and ammonia gas identification.

  4. Photogalvanic effects induced by terahertz-lasers in semiconductor quantum films and applications; Terahertzlaserinduzierte photogalvanische Effekte in Halbleiter-Quantenfilmen und deren Anwendung

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Wolfgang

    2008-06-16

    In this work photogalvanic effects where investigated in GaN/AlGaN heterostructures for the first time. For this purpose one of the strongest pulsed terahertz-lasers in the world was built and a computer controlled measurement system was developed. Additionally in this work an application of photogalvanic effects is presented, a pure-electric detection system, which allows to determine the polarisation state of terahertz radiation in sub-nanosecond time resolution. (orig.)

  5. Terahertz Spectroscopy and Imaging

    CERN Document Server

    Zeitler, Axel; Kuwata-Gonokami, Makoto

    2013-01-01

    "This book presents the current state of knowledge in the field of terahertz spectroscopy, providing a comprehensive source of information for beginners and experienced researchers alike whose interests lie in this area. The book aims to explain the fundamental physics that underpins terahertz  technology and to describe its key applications. Highlights of scientific research in the field of terahertz science are also outlined in some chapters, providing an overview as well as giving an insight into future directions for research.  Over the past decade terahertz spectroscopy has developed into one of the most rapidly growing areas of its kind, gaining an important impact across a wide range of scientific disciplines. Due to substantial advances in femtosecond laser technology, terahertz time-domain spectroscopy (THz-TDS) has established itself as the dominant spectroscopic technique for experimental scientists interested in measurements at this frequency range. In solids and liquids THz radiation is in reso...

  6. Terahertz spectra revealing the collective excitation mode in charge-density-wave single crystal LuFe{sub 2}O{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiumei; Jin, Zuanming; Lin, Xian; Ma, Guohong [Department of Physics, Shanghai University (China); Cheng, Zhenxiang [Institute for Superconducting and Electronic Materials, University of Wollongong, NSW (Australia); Balakrishnan, Geetha [Department of Physics, University of Warwick, Coventry (United Kingdom)

    2017-09-15

    A low-energy collective excitation mode in charge-ordered multiferroic LuFe{sub 2}O{sub 4} is reported via terahertz time-domain spectroscopy. Upon cooling from 300 to 40 K, the central resonance frequency showed a pronounced hardening from 0.85 to 1.15 THz. In analogy to the well-known low-energy optical properties of LuFe{sub 2}O{sub 4}, this emerging resonance was attributed to the charge-density-wave (CDW) collective excitations. By using the Drude-Lorentz model fitting, the CDW collective mode becomes increasingly damped with the increasing temperature. Furthermore, the kinks of the CDW collective mode at the magnetic transition temperature are analyzed, which indicate the coupling of spin order with electric polarization. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Generation of tunable narrow-band surface-emitted terahertz radiation in periodically poled lithium niobate.

    Science.gov (United States)

    Weiss, C; Torosyan, G; Avetisyan, Y; Beigang, R

    2001-04-15

    Generation of tunable narrow-band terahertz (THz) radiation perpendicular to the surface of periodically poled lithium niobate by optical rectification of femtosecond pulses is reported. The generated THz radiation can be tuned by use of different poling periods and different observation angles, limited only by the available bandwidth of the pump pulse. Typical bandwidths were 50-100 GHz, depending on the collection angle and the number of periods involved.

  8. Terahertz magnonics: Feasibility of using terahertz magnons for information processing

    Science.gov (United States)

    Zakeri, Khalil

    2018-06-01

    An immediate need of information technology is designing fast, small and low-loss devices. One of the ways to design such devices is using the bosonic quasiparticles, such as magnons, for information transfer/processing. This is the main idea behind the field of magnonics. When a magnon propagates through a magnetic medium, no electrical charge transport is involved and therefore no energy losses, creating Joule heating, occur. This is the most important advantage of using magnons for information transfer. Moreover the mutual conversion between magnons and the other carriers e.g. electrons, photons and plasmons shall open new opportunities to realize tunable multifunctional devices. Magnons cover a very wide range of frequency, from sub-gigahertz up to a few hundreds of terahertz. The magnon frequency has an important impact on the performance of magnon-based devices (the larger the excitation frequency, the faster the magnons). This means that the use of high-frequency (terahertz) magnons would provide a great opportunity for the design of ultrafast devices. However, up to now the focus in magnonics has been on the low-frequency gigahertz magnons. Here we discuss the feasibility of using terahertz magnons for application in magnonic devices. We shall bring the concept of terahertz magnonics into discussion. We discuss how the recently discovered phenomena in the field of terahertz magnons may inspire ideas for designing new magnonic devices. We further introduce methods to tune the fundamental properties of terahertz magnons, e.g. their eigenfrequency and lifetime.

  9. Wide-band continuous-wave terahertz source with a vertically integrated photomixer

    Science.gov (United States)

    Peytavit, E.; Lampin, J.-F.; Hindle, F.; Yang, C.; Mouret, G.

    2009-10-01

    A transverse electromagnetic horn antenna is monolithically integrated with a low temperature grown GaAs vertical photodetector on a silicon substrate forming a vertically integrated photomixer. Continuous-wave terahertz radiation is generated at frequencies up to 3.5 THz with a power level reaching 20 nW around 3 THz. Microwave and material concepts allow both qualitative and quantitative explanations of the experimental results. The thin film microstrip line topology has been adapted for active devices by an Au-Au thermocompression layer transfer technique and seems to be a promising generic tool for a new generation of efficient terahertz devices.

  10. Non-uniform absorption of terahertz radiation on superconducting hot electron bolometer microbridges

    International Nuclear Information System (INIS)

    Miao, W.; Zhang, W.; Zhong, J. Q.; Shi, S. C.; Delorme, Y.; Lefevre, R.; Feret, A.; Vacelet, T.

    2014-01-01

    We interpret the experimental observation of a frequency-dependence of superconducting hot electron bolometer (HEB) mixers by taking into account the non-uniform absorption of the terahertz radiation on the superconducting HEB microbridge. The radiation absorption is assumed to be proportional to the local surface resistance of the HEB microbridge, which is computed using the Mattis-Bardeen theory. With this assumption the dc and mixing characteristics of a superconducting niobium-nitride (NbN) HEB device have been modeled at frequencies below and above the equilibrium gap frequency of the NbN film

  11. Nonlinear photoresponse of field effect transistors terahertz detectors at high irradiation intensities

    International Nuclear Information System (INIS)

    But, D. B.; Drexler, C.; Ganichev, S. D.; Sakhno, M. V.; Sizov, F. F.; Dyakonova, N.; Drachenko, O.; Gutin, A.; Knap, W.

    2014-01-01

    Terahertz power dependence of the photoresponse of field effect transistors, operating at frequencies from 0.1 to 3 THz for incident radiation power density up to 100 kW/cm 2 was studied for Si metal–oxide–semiconductor field-effect transistors and InGaAs high electron mobility transistors. The photoresponse increased linearly with increasing radiation intensity up to the kW/cm 2 range. Nonlinearity followed by saturation of the photoresponse was observed for all investigated field effect transistors for intensities above several kW/cm 2 . The observed photoresponse nonlinearity is explained by nonlinearity and saturation of the transistor channel current. A theoretical model of terahertz field effect transistor photoresponse at high intensity was developed. The model explains quantitative experimental data both in linear and nonlinear regions. Our results show that dynamic range of field effect transistors is very high and can extend over more than six orders of magnitudes of power densities (from ∼0.5 mW/cm 2 to ∼5 kW/cm 2 )

  12. Uncovering the Terahertz Spectrum of Copper Sulfate Pentahydrate.

    Science.gov (United States)

    Ruggiero, Michael T; Korter, Timothy M

    2016-01-21

    Terahertz vibrational spectroscopy has evolved into a powerful tool for the detection and characterization of transition metal sulfate compounds, specifically for its ability to differentiate between various hydrated forms with high specificity. Copper(II) sulfate is one such system where multiple crystalline hydrates have had their terahertz spectra fully assigned, and the unique spectral fingerprints of the forms allows for characterization of multicomponent systems with relative ease. Yet the most commonly occurring form, copper(II) sulfate pentahydrate (CuSO4·5H2O), has proven elusive due to the presence of a broad absorption across much of the terahertz region, making the unambiguous identification of its spectral signature difficult. Here, it is shown that the sub-100 cm(-1) spectrum of CuSO4·5H2O is obscured by absorption from adsorbed water and that controlled drying reveals sharp underlying features. The crystalline composition of the samples was monitored in parallel by X-ray diffraction as a function of drying time, supporting the spectroscopic results. Finally, the terahertz spectrum of CuSO4·5H2O was fully assigned using solid-state density functional theory simulations, helping attribute the additional absorptions that appear after excessive drying to formation of CuSO4·3H2O.

  13. Real-Time, Single-Shot Temporal Measurements of Short Electron Bunches, Terahertz CSR and FEL Radiation

    CERN Document Server

    Berden, G; Van der Meer, A F G

    2005-01-01

    Electro-optic detection of the Coulomb field of electron bunches is a promising technique for single-shot measurements of the bunch length and shape in the sub-picosecond time domain. This technique has been applied to the measurement of 50 MeV electron bunches in the FELIX free electron laser, showing the longitudinal profile of single bunches of around 650 fs FWHM [Phys. Rev. Lett. 93, 114802 (2004)]. The method is non-destructive and real-time, and therefore ideal for online monitoring of the longitudinal shape of single electron bunches. At FELIX we have used it for real-time optimization of sub-picosecond electron bunches. Electro-optic detection has also been used to measure the electric field profiles of far-infrared (or terahertz) optical pulses generated by the relativistic electrons. We have characterised the far-infrared output of the free electron laser, and more recently, we have measured the temporal profile of terahertz optical pulses generated at one of the bending magnets.

  14. Terahertz waves radiated from two noncollinear femtosecond plasma filaments

    Energy Technology Data Exchange (ETDEWEB)

    Du, Hai-Wei; Hoshina, Hiromichi; Otani, Chiko, E-mail: otani@riken.jp [Terahertz Sensing and Imaging Research Team, RIKEN Center for Advanced Photonics, RIKEN, Sendai, Miyagi 980-0845 (Japan); Midorikawa, Katsumi [Attosecond Science Research Team, RIKEN Center for Advanced Photonics, RIKEN, Wako, Saitama 351-0198 (Japan)

    2015-11-23

    Terahertz (THz) waves radiated from two noncollinear femtosecond plasma filaments with a crossing angle of 25° are investigated. The irradiated THz waves from the crossing filaments show a small THz pulse after the main THz pulse, which was not observed in those from single-filament scheme. Since the position of the small THz pulse changes with the time-delay of two filaments, this phenomenon can be explained by a model in which the small THz pulse is from the second filament. The denser plasma in the overlap region of the filaments changes the movement of space charges in the plasma, thereby changing the angular distribution of THz radiation. As a result, this schematic induces some THz wave from the second filament to propagate along the path of the THz wave from the first filament. Thus, this schematic alters the direction of the THz radiation from the filamentation, which can be used in THz wave remote sensing.

  15. Terahertz-Frequency Spin Hall Auto-oscillator Based on a Canted Antiferromagnet

    Science.gov (United States)

    Sulymenko, O. R.; Prokopenko, O. V.; Tiberkevich, V. S.; Slavin, A. N.; Ivanov, B. A.; Khymyn, R. S.

    2017-12-01

    We propose a design of a terahertz-frequency signal generator based on a layered structure consisting of a current-driven platinum (Pt) layer and a layer of an antiferromagnet (AFM) with easy-plane anisotropy, where the magnetization vectors of the AFM sublattices are canted inside the easy plane by the Dzyaloshinskii-Moriya interaction (DMI). The dc electric current flowing in the Pt layer creates due to the spin Hall effect, a perpendicular spin current that, being injected in the AFM layer, tilts the DMI-canted AFM sublattices out of the easy plane, thus exposing them to the action of a strong internal exchange magnetic field of the AFM. The sublattice magnetizations, along with the small net magnetization vector mDMI of the canted AFM, start to rotate about the hard anisotropy axis of the AFM with the terahertz frequency proportional to the injected spin current and the AFM exchange field. The rotation of the small net magnetization mDMI results in the terahertz-frequency dipolar radiation that can be directly received by an adjacent (e.g., dielectric) resonator. We demonstrate theoretically that the radiation frequencies in the range f =0.05 - 2 THz are possible at the experimentally reachable magnitudes of the driving current density, and we evaluate the power of the signal radiated into different types of resonators. This power increases with the increase of frequency f , and it can exceed 1 μ W at f ˜0.5 THz for a typical dielectric resonator of the electric permittivity ɛ ˜10 and a quality factor Q ˜750 .

  16. 36th Annual International Conference on Infrared Millimeter and Terahertz Waves

    Energy Technology Data Exchange (ETDEWEB)

    Mittleman, Daniel M. [Rice University

    2011-12-31

    The Major Topic List of the 2011 conference featured a category entitled “IR, millimeter-wave, and THz spectroscopy,” another entitled “Gyro-Oscillators and Amplifiers, Plasma Diagnostics,” and a third called “Free Electron Lasers and Synchrotron Radiation.” Topical areas of interest to meeting participants include millimeter-wave electronics, high-power sources, high-frequency communications systems, and terahertz sensing and imaging, all of which are prominent in the research portfolios of the DOE. The development and study of new materials, components, and systems for use in the IR, THz, and MMW regions of the spectrum are of significant interest as well. a series of technical sessions were organized on the following topics: terahertz metamaterials and plasmonics; imaging techniques and applications; graphene spectroscopy; waveguide concepts; gyrotron science and technology; ultrafast terahertz measurements; and quantum cascade lasers.

  17. Extremely frequency-widened terahertz wave generation using Cherenkov-type radiation.

    Science.gov (United States)

    Suizu, Koji; Koketsu, Kaoru; Shibuya, Takayuki; Tsutsui, Toshihiro; Akiba, Takuya; Kawase, Kodo

    2009-04-13

    Terahertz (THz) wave generation based on nonlinear frequency conversion is promising way for realizing a tunable monochromatic bright THz-wave source. Such a development of efficient and wide tunable THz-wave source depends on discovery of novel brilliant nonlinear crystal. Important factors of a nonlinear crystal for THz-wave generation are, 1. High nonlinearity and 2. Good transparency at THz frequency region. Unfortunately, many nonlinear crystals have strong absorption at THz frequency region. The fact limits efficient and wide tunable THz-wave generation. Here, we show that Cherenkov radiation with waveguide structure is an effective strategy for achieving efficient and extremely wide tunable THz-wave source. We fabricated MgO-doped lithium niobate slab waveguide with 3.8 microm of thickness and demonstrated difference frequency generation of THz-wave generation with Cherenkov phase matching. Extremely frequency-widened THz-wave generation, from 0.1 to 7.2 THz, without no structural dips successfully obtained. The tuning frequency range of waveguided Cherenkov radiation source was extremely widened compare to that of injection seeded-Terahertz Parametric Generator. The tuning range obtained in this work for THz-wave generation using lithium niobate crystal was the widest value in our knowledge. The highest THz-wave energy obtained was about 3.2 pJ, and the energy conversion efficiency was about 10(-5) %. The method can be easily applied for many conventional nonlinear crystals, results in realizing simple, reasonable, compact, high efficient and ultra broad band THz-wave sources.

  18. Surface and interface states of Bi{sub 2}Se{sub 3} thin films investigated by optical second-harmonic generation and terahertz emission

    Energy Technology Data Exchange (ETDEWEB)

    Hamh, S. Y.; Park, S.-H.; Lee, J. S., E-mail: jsl@gist.ac.kr [Department of Physics and Photon Science, School of Physics and Chemistry, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Jerng, S.-K.; Jeon, J. H.; Chun, S. H. [Department of Physics and Graphene Research Institute, Sejong University, Seoul 143-747 (Korea, Republic of); Jeon, J. H.; Kahng, S. J. [Department of Physics, Korea University, Seoul 136-701 (Korea, Republic of); Yu, K.; Choi, E. J. [Department of Physics, University or Seoul, Seoul 130-743 (Korea, Republic of); Kim, S.; Choi, S.-H. [Department of Applied Physics, College of Applied Science, Kyung Hee University, Yongin 446-701 (Korea, Republic of); Bansal, N. [Department of Electrical and Computer Engineering, Rutgers, The state University of New Jersey, Piscataway, New Jersey 08854 (United States); Oh, S. [Department of Physics and Astronomy, Rutgers, The state University of New Jersey, Piscataway, New Jersey 08854 (United States); Park, Joonbum; Kho, Byung-Woo; Kim, Jun Sung [Department of Physics, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of)

    2016-02-01

    We investigate the surface and interface states of Bi{sub 2}Se{sub 3} thin films by using the second-harmonic generation technique. Distinct from the surface of bulk crystals, the film surface and interface show the isotropic azimuth dependence of second-harmonic intensity, which is attributed to the formation of randomly oriented domains on the in-plane. Based on the nonlinear susceptibility deduced from the model fitting, we determine that the surface band bending induced in a space charge region occurs more strongly at the film interface facing the Al{sub 2}O{sub 3} substrate or capping layer compared with the interface facing the air. We demonstrate that distinct behavior of the terahertz electric field emitted from the samples can provide further information about the surface electronic state of Bi{sub 2}Se{sub 3}.

  19. Terahertz Imaging for Biomedical Applications Pattern Recognition and Tomographic Reconstruction

    CERN Document Server

    Yin, Xiaoxia; Abbott, Derek

    2012-01-01

    Terahertz Imaging for Biomedical Applications: Pattern Recognition and Tomographic Reconstruction presents the necessary algorithms needed to assist screening, diagnosis, and treatment, and these algorithms will play a critical role in the accurate detection of abnormalities present in biomedical imaging. Terahertz biomedical imaging has become an area of interest due to its ability to simultaneously acquire both image and spectral information. Terahertz imaging systems are being commercialized with an increasing number of trials performed in a biomedical setting. Terahertz tomographic imaging and detection technology contributes to the ability to identify opaque objects with clear boundaries,and would be useful to both in vivo and ex vivo environments. This book also: Introduces terahertz radiation techniques and provides a number of topical examples of signal and image processing, as well as machine learning Presents the most recent developments in an emerging field, terahertz radiation Utilizes new methods...

  20. Strong terahertz field generation, detection, and application

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki-Yong [Univ. of Maryland, College Park, MD (United States)

    2016-05-22

    This report describes the generation and detection of high-power, broadband terahertz (THz) radiation with using femtosecond terawatt (TW) laser systems. In particular, this focuses on two-color laser mixing in gases as a scalable THz source, addressing both microscopic and macroscopic effects governing its output THz yield and radiation profile. This also includes the characterization of extremely broad THz spectra extending from microwaves to infrared frequencies. Experimentally, my group has generated high-energy (tens of microjoule), intense (>8 MV/cm), and broadband (0.01~60 THz) THz radiation in two-color laser mixing in air. Such an intense THz field can be utilized to study THz-driven extremely nonlinear phenomena in a university laboratory.

  1. Strong terahertz field generation, detection, and application

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki-Yong [Univ. of Maryland, College Park, MD (United States)

    2016-05-15

    This report describes the generation and detection of high-power, broadband terahertz (THz) radiation with using femtosecond terawatt (TW) laser systems. In particular, this focuses on two-color laser mixing in gases as a scalable THz source, addressing both microscopic and macroscopic effects governing its output THz yield and radiation profile. This also includes the characterization of extremely broad THz spectra extending from microwaves to infrared frequencies. Experimentally, my group has generated high-energy (tens of microjoule), intense (>8 MV/cm), and broadband (0.01~60 THz) THz radiation in two-color laser mixing in air. Such an intense THz field can be utilized to study THz-driven extremely nonlinear phenomena in a university laboratory.

  2. TiO{sub 2} microsphere-based metamaterials exhibiting effective magnetic response in the terahertz regime

    Energy Technology Data Exchange (ETDEWEB)

    Yahiaoui, R.; Mounaix, P. [Universite Bordeaux 1, CNRS, UMR 5798, LOMA, Talence (France); Nemec, H.; Kadlec, C.; Kadlec, F.; Kuzel, P. [Academy of Sciences of the Czech Republic, Institute of Physics, Prague (Czech Republic); Chung, U.C. [Universite Bordeaux, CNRS - UPR 9048, ICMCB, Pessac (France); CRPP, CNRS - UPR 8641, Pessac (France); Elissalde, C.; Maglione, M. [Universite Bordeaux, CNRS - UPR 9048, ICMCB, Pessac (France)

    2012-12-15

    Thin layers of all-dielectric metamaterials based on TiO{sub 2} spherical particle resonators are investigated. A new method based on spray drying of dissolved nanoparticles is used in the fabrication process. Spectral footprints of electric and magnetic dipoles are reported numerically and through experimental tests. It is a promising step for the construction of novel three-dimensional isotropic metamaterials exhibiting desired electromagnetic properties for terahertz applications. (orig.)

  3. Simulation of photoconductive antennas for terahertz radiation

    Directory of Open Access Journals (Sweden)

    Carlos Criollo

    2015-01-01

    Full Text Available Simulation of terahertz (THz emission based on PC antennas imposes a challenge to couple the semiconductor carrier phenomena, optical transport and the THz energy transport. In this paper a Multi-physics simulation for coupling these phenomena using COMSOL Multi-physics 4.3b is introduced. The main parameters of THz photoconductive (PC antenna as THz emitter have been reviewed and discussed. The results indicate the role of each parameter in the resulting photocurrent waveform and THz frequency: The radiated THz photocurrent waveform is determined by the photoconductive gap (the separation between the metallic electrodes, the incident laser illumination and the DC excitation voltage; while the THz frequency depends on the dipole length. The optimization of these parameters could enhance the emission. The simulations extend the advance of compact and cost-effective THz emitters.

  4. Nb{sub 3}Al thin film deposition for low-noise terahertz electronics

    Energy Technology Data Exchange (ETDEWEB)

    Dochev, D; Pavolotsky, A B; Belitsky, V; Olofsson, H [Group for Advanced Receiver Development and Onsala Space Observatory, Department of Radio- and Space Science, Chalmers University of Technology, SE 412 96 Gothenburg (Sweden)], E-mail: dimitar.dochev@chalmers.se

    2008-02-01

    Higher energy gap superconducting materials were always interesting for low-noise mixer applications such as superconductor-insulator-superconductor tunnel junctions (SIS) and hot-electron bolometer (HEB) used in sub-millimeter and terahertz parts of electro-magnetic spectrum. Here, we report a novel approach for producing Nb{sub 3}Al thin film by co-sputtering from two confocally arranged Nb and Al dc-magnetrons onto substrate heated up to 830 deg. C. Characterization of the deposited films revealed presence of the A15 phase and measured critical temperature was up to 15.7 K with the transition width 0.2-0.3 K for a 300 nm thick film. We measured the film critical magnetic field and studied influence of annealing on the film properties. We have investigated compositional depth profile of the deposited films by spectroscopy of reflected electrons.

  5. Widely tunable quantum cascade laser-based terahertz source.

    Science.gov (United States)

    Danylov, Andriy A; Light, Alexander R; Waldman, Jerry; Erickson, Neal; Qian, Xifeng

    2014-07-10

    A compact, tunable, ultranarrowband terahertz source, Δν∼1  MHz, is demonstrated by upconversion of a 2.324 THz, free-running quantum cascade laser with a THz Schottky-diode-balanced mixer using a swept, synthesized microwave source to drive the nonlinearity. Continuously tunable radiation of 1 μW power is demonstrated in two frequency regions: ν(Laser) ± 0 to 50 GHz and ν(Laser) ± 70 to 115 GHz. The sideband spectra were characterized with a Fourier-transform spectrometer, and the radiation was tuned through CO, HDO, and D2O rotational transitions.

  6. Nanoscale Terahertz Emission Spectroscopy

    DEFF Research Database (Denmark)

    Pedersen, Pernille Klarskov; Kim, Hyewon; Colvin, Vicki L.

    By utilizing plasmonic coupling to an AFM probe, we demonstrate Laser Terahertz Emission Nanoscopy (LTEN) with sub-20 nm resolution. We demonstrate the resolution by imaging a single gold nanorod on an InAs substrate....

  7. Mode-locked thin-disk lasers and their potential application for high-power terahertz generation

    Science.gov (United States)

    Saraceno, Clara J.

    2018-04-01

    The progress achieved in the last few decades in the performance of ultrafast laser systems with high average power has been tremendous, and continues to provide momentum to new exciting applications, both in scientific research and technology. Among the various technological advances that have shaped this progress, mode-locked thin-disk oscillators have attracted significant attention as a unique technology capable of providing ultrashort pulses with high energy (tens to hundreds of microjoules) and at very high repetition rates (in the megahertz regime) from a single table-top oscillator. This technology opens the door to compact high repetition rate ultrafast sources spanning the entire electromagnetic spectrum from the XUV to the terahertz regime, opening various new application fields. In this article, we focus on their unexplored potential as compact driving sources for high average power terahertz generation.

  8. Asymmetric devices based on carbon nanotubes for terahertz-range radiation detection

    Energy Technology Data Exchange (ETDEWEB)

    Fedorov, G. E., E-mail: gefedorov@mail.ru; Stepanova, T. S.; Gazaliev, A. Sh.; Gaiduchenko, I. A.; Kaurova, N. S.; Voronov, B. M.; Goltzman, G. N. [Moscow State Pedagogical University (Russian Federation)

    2016-12-15

    Various asymmetric detecting devices based on carbon nanotubes (CNTs) are studied. The asymmetry is understood as inhomogeneous properties along the conducting channel. In the first type of devices, an inhomogeneous morphology of the CNT grid is used. In the second type of devices, metals with highly varying work functions are used as the contact material. The relation between the sensitivity and detector configuration is analyzed. Based on the data obtained, approaches to the development of an efficient detector of terahertz radiation, based on carbon nanotubes are proposed.

  9. Highly accurate thickness measurement of multi-layered automotive paints using terahertz technology

    Science.gov (United States)

    Krimi, Soufiene; Klier, Jens; Jonuscheit, Joachim; von Freymann, Georg; Urbansky, Ralph; Beigang, René

    2016-07-01

    In this contribution, we present a highly accurate approach for thickness measurements of multi-layered automotive paints using terahertz time domain spectroscopy in reflection geometry. The proposed method combines the benefits of a model-based material parameters extraction method to calibrate the paint coatings, a generalized Rouard's method to simulate the terahertz radiation behavior within arbitrary thin films, and the robustness of a powerful evolutionary optimization algorithm to increase the sensitivity of the minimum thickness measurement limit. Within the framework of this work, a self-calibration model is introduced, which takes into consideration the real industrial challenges such as the effect of wet-on-wet spray in the painting process.

  10. Terahertz radar cross section measurements.

    Science.gov (United States)

    Iwaszczuk, Krzysztof; Heiselberg, Henning; Jepsen, Peter Uhd

    2010-12-06

    We perform angle- and frequency-resolved radar cross section (RCS) measurements on objects at terahertz frequencies. Our RCS measurements are performed on a scale model aircraft of size 5-10 cm in polar and azimuthal configurations, and correspond closely to RCS measurements with conventional radar on full-size objects. The measurements are performed in a terahertz time-domain system with freely propagating terahertz pulses generated by tilted pulse front excitation of lithium niobate crystals and measured with sub-picosecond time resolution. The application of a time domain system provides ranging information and also allows for identification of scattering points such as weaponry attached to the aircraft. The shapes of the models and positions of reflecting parts are retrieved by the filtered back projection algorithm.

  11. Continuous wave terahertz radiation from an InAs/GaAs quantum-dot photomixer device

    Science.gov (United States)

    Kruczek, T.; Leyman, R.; Carnegie, D.; Bazieva, N.; Erbert, G.; Schulz, S.; Reardon, C.; Reynolds, S.; Rafailov, E. U.

    2012-08-01

    Generation of continuous wave radiation at terahertz (THz) frequencies from a heterodyne source based on quantum-dot (QD) semiconductor materials is reported. The source comprises an active region characterised by multiple alternating photoconductive and QD carrier trapping layers and is pumped by two infrared optical signals with slightly offset wavelengths, allowing photoconductive device switching at the signals' difference frequency ˜1 THz.

  12. In vivo study of human skin using pulsed terahertz radiation

    Energy Technology Data Exchange (ETDEWEB)

    Pickwell, E [Semiconductor Physics Group, Cavendish Laboratory, Cambridge University, Madingley Road, Cambridge CB3 0HE (United Kingdom); Cole, B E [TeraView Ltd, Unit 302/4 Cambridge Science Park, Cambridge CB4 0WG (United Kingdom); Fitzgerald, A J [TeraView Ltd, Unit 302/4 Cambridge Science Park, Cambridge CB4 0WG (United Kingdom); Pepper, M [Semiconductor Physics Group, Cavendish Laboratory, Cambridge University, Madingley Road, Cambridge CB3 0HE (United Kingdom); Wallace, V P [TeraView Ltd, Unit 302/4 Cambridge Science Park, Cambridge CB4 0WG (United Kingdom)

    2004-05-07

    Studies in terahertz (THz) imaging have revealed a significant difference between skin cancer (basal cell carcinoma) and healthy tissue. Since water has strong absorptions at THz frequencies and tumours tend to have different water content from normal tissue, a likely contrast mechanism is variation in water content. Thus, we have previously devised a finite difference time-domain (FDTD) model which is able to closely simulate the interaction of THz radiation with water. In this work we investigate the interaction of THz radiation with normal human skin on the forearm and palm of the hand in vivo. We conduct the first ever systematic in vivo study of the response of THz radiation to normal skin. We take in vivo reflection measurements of normal skin on the forearm and palm of the hand of 20 volunteers. We compare individual examples of THz responses with the mean response for the areas of skin under investigation. Using the in vivo data, we demonstrate that the FDTD model can be applied to biological tissue. In particular, we successfully simulate the interaction of THz radiation with the volar forearm. Understanding the interaction of THz radiation with normal skin will form a step towards developing improved imaging algorithms for diagnostic detection of skin cancer and other tissue disorders using THz radiation.

  13. In vivo study of human skin using pulsed terahertz radiation

    International Nuclear Information System (INIS)

    Pickwell, E; Cole, B E; Fitzgerald, A J; Pepper, M; Wallace, V P

    2004-01-01

    Studies in terahertz (THz) imaging have revealed a significant difference between skin cancer (basal cell carcinoma) and healthy tissue. Since water has strong absorptions at THz frequencies and tumours tend to have different water content from normal tissue, a likely contrast mechanism is variation in water content. Thus, we have previously devised a finite difference time-domain (FDTD) model which is able to closely simulate the interaction of THz radiation with water. In this work we investigate the interaction of THz radiation with normal human skin on the forearm and palm of the hand in vivo. We conduct the first ever systematic in vivo study of the response of THz radiation to normal skin. We take in vivo reflection measurements of normal skin on the forearm and palm of the hand of 20 volunteers. We compare individual examples of THz responses with the mean response for the areas of skin under investigation. Using the in vivo data, we demonstrate that the FDTD model can be applied to biological tissue. In particular, we successfully simulate the interaction of THz radiation with the volar forearm. Understanding the interaction of THz radiation with normal skin will form a step towards developing improved imaging algorithms for diagnostic detection of skin cancer and other tissue disorders using THz radiation

  14. Squeezing terahertz light into nanovolumes: Nanoantenna enhanced terahertz spectroscopy (NETS) of semiconductor quantum dots

    KAUST Repository

    Toma, Andrea

    2015-01-14

    Terahertz spectroscopy has vast potentialities in sensing a broad range of elementary excitations (e.g., collective vibrations of molecules, phonons, excitons, etc.). However, the large wavelength associated with terahertz radiation (about 300 μm at 1 THz) severely hinders its interaction with nano-objects, such as nanoparticles, nanorods, nanotubes, and large molecules of biological relevance, practically limiting terahertz studies to macroscopic ensembles of these compounds, in the form of thick pellets of crystallized molecules or highly concentrated solutions of nanomaterials. Here we show that chains of terahertz dipole nanoantennas spaced by nanogaps of 20 nm allow retrieving the spectroscopic signature of a monolayer of cadmium selenide quantum dots, a significant portion of the signal arising from the dots located within the antenna nanocavities. A Fano-like interference between the fundamental antenna mode and the phonon resonance of the quantum dots is observed, accompanied by an absorption enhancement factor greater than one million. NETS can find immediate applications in terahertz spectroscopic studies of nanocrystals and molecules at extremely low concentrations. Furthermore, it shows a practicable route toward the characterization of individual nano-objects at these frequencies.

  15. Nanoscale Laser Terahertz Emission Microscopy

    DEFF Research Database (Denmark)

    Klarskov, Pernille; Kim, Hyewon; Colvin, Vicki L.

    2017-01-01

    Laser terahertz emission microscopy (LTEM) has become a powerful tool for studying ultrafast dynamics and local fields in many different types of materials. This technique, which relies on acceleration of charge carriers in a material upon femtosecond excitation, can provide insight into the phys......Laser terahertz emission microscopy (LTEM) has become a powerful tool for studying ultrafast dynamics and local fields in many different types of materials. This technique, which relies on acceleration of charge carriers in a material upon femtosecond excitation, can provide insight...

  16. Terahertz-infrared spectroscopy of overdoped manganites La{sub 1−x}Ca{sub x}MnO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Kadyrov, Lenar S., E-mail: kadyrov@phystech.edu [Moscow Institute of Physics and Technology (State University), Institutskiy Pereulok 9, Dolgoprudny 141700 (Russian Federation); A.M. Prokhorov General Physics Institute, Russian Academy of Sciences, Vavilov Str., 38, Moscow 119991 (Russian Federation); Zhukova, Elena S. [Moscow Institute of Physics and Technology (State University), Institutskiy Pereulok 9, Dolgoprudny 141700 (Russian Federation); A.M. Prokhorov General Physics Institute, Russian Academy of Sciences, Vavilov Str., 38, Moscow 119991 (Russian Federation); 1. Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, Stuttgart 70550 (Germany); Torgashev, Victor I. [Faculty of Physics, Southern Federal University, Bolshaya Sadovaya 105/42, Rostov-on-Don 344090 (Russian Federation); Gorshunov, Boris P. [Moscow Institute of Physics and Technology (State University), Institutskiy Pereulok 9, Dolgoprudny 141700 (Russian Federation); A.M. Prokhorov General Physics Institute, Russian Academy of Sciences, Vavilov Str., 38, Moscow 119991 (Russian Federation); 1. Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, Stuttgart 70550 (Germany); Prokhorov, Anatoly S.; Motovilova, Elizaveta A. [Moscow Institute of Physics and Technology (State University), Institutskiy Pereulok 9, Dolgoprudny 141700 (Russian Federation); A.M. Prokhorov General Physics Institute, Russian Academy of Sciences, Vavilov Str., 38, Moscow 119991 (Russian Federation); Fischgrabe, Florian; Moshnyaga, Vasily [1. Physikalisches Institut, Georg-August-Universität Göttingen, Fredrich-Hund-Platz 1, Göttingen 37077 (Germany); Zhang, Tao [Key Laboratory of Material Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); and others

    2015-03-01

    Terahertz and infrared spectra of dielectric permittivity and optical conductivity of overdoped manganites La{sub 1−x}Ca{sub x}MnO{sub 3} (0.5≤x≤1) have been measured at frequencies ν from 4 cm{sup −1} to 700 cm{sup −1} and at temperatures T from 5 K to 300 K. The samples were prepared in the form of bulk polycrystals (ceramics) and epitaxial films (free-standing and on MgO substrates). Strongly asymmetric absorption bands have been found in the compounds which are in charge-ordered state (0.5

  17. Coherent terahertz emission from Bi2Sr2CaCu2O8+δ intrinsic Josephson junction stacks

    International Nuclear Information System (INIS)

    Gross, Boris Andre

    2013-01-01

    In recent years, terahertz technology has become a rapidly growing sector, driven by the demands of a vast range of (potential) applications. The terahertz spectral range roughly spans from 300 GHz to 30 THz. In the low terahertz range, there is a lack of good and compact devices, that emit electromagnetic waves. Particularly, coherent, narrow-band and continuous-wave sources are lacking, and researchers are following many different approaches to fill this gap. The thesis at hand contributes to the exploration of one of those sources: Operating intrinsic Josephson junctions as emitters in the terahertz spectral range. Josephson junctions (JJs) work as direct current (dc) voltage to frequency converters, if operated in the resistive state. 1 mV voltage drop generates a frequency of about 484 GHz. Intrinsic Josephson junctions (IJJs) in the high temperature superconductor Bi 2 Sr 2 CaCu 2 O 8+δ (BSCCO) are adequate candidates for emitting devices; the layered structure of the material intrinsically provides stacks consisting of 1.5 nm thick, nearly perfectly equal JJs. The fabrication of a series of hundreds of JJs in a stack of micrometer thickness is easily feasible, which is essential for high power frequency generation. Further, the energy gap of BSCCO is in principle large enough to allow for frequencies up to more than 10 THz. The key challenge is the synchronization of all IJJs in order to produce coherent radiation. In 2007, a research team from Argonne National Laboratories succeeded in detecting coherent terahertz radiation from more than 500 synchronized IJJs in a mesa structure. The frequencies ranged from 350 to 850 GHz with output powers up to 0.5 μW. They proposed the formation of electromagnetic standing waves in the cavity of the mesa as synchronization mechanism. Coming from the fully resistive state (nonzero voltage across all junctions), the radiation occurred in the bias regime, where groups of junctions switch back to the zero voltage state

  18. Experimental investigation of terahertz quantum cascade laser with variable barrier heights

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Aiting; Vijayraghavan, Karun; Belkin, Mikhail A., E-mail: mbelkin@ece.utexas.edu [Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78758 (United States); Matyas, Alpar; Jirauschek, Christian [Institute for Nanoelectronics, Technische Universität München, D-80333 Munich (Germany); Wasilewski, Zbig R. [Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario N2L 3G (Canada)

    2014-04-28

    We report an experimental study of terahertz quantum cascade lasers with variable barrier heights based on the Al{sub x}Ga{sub 1–x}As/GaAs material system. Two new designs are developed based on semiclassical ensemble Monte Carlo simulations using state-of-the-art Al{sub 0.15}Ga{sub 0.85}As/GaAs three-quantum-well resonant phonon depopulation active region design as a reference. The new designs achieved maximum lasing temperatures of 188 K and 172 K, as compared to the maximum lasing temperature of 191 K for the reference structure. These results demonstrate that terahertz quantum cascade laser designs with variable barrier heights provide a viable alternative to the traditional active region designs with fixed barrier composition. Additional design space offered by using variable barriers may lead to future improvements in the terahertz quantum cascade laser performance.

  19. Highly accurate thickness measurement of multi-layered automotive paints using terahertz technology

    International Nuclear Information System (INIS)

    Krimi, Soufiene; Beigang, René; Klier, Jens; Jonuscheit, Joachim; Freymann, Georg von; Urbansky, Ralph

    2016-01-01

    In this contribution, we present a highly accurate approach for thickness measurements of multi-layered automotive paints using terahertz time domain spectroscopy in reflection geometry. The proposed method combines the benefits of a model-based material parameters extraction method to calibrate the paint coatings, a generalized Rouard's method to simulate the terahertz radiation behavior within arbitrary thin films, and the robustness of a powerful evolutionary optimization algorithm to increase the sensitivity of the minimum thickness measurement limit. Within the framework of this work, a self-calibration model is introduced, which takes into consideration the real industrial challenges such as the effect of wet-on-wet spray in the painting process.

  20. A low-voltage high-speed terahertz spatial light modulator using active metamaterial

    Directory of Open Access Journals (Sweden)

    Saroj Rout

    2016-11-01

    Full Text Available An all solid-state metamaterial based terahertz (THz spatial light modulator (SLM is presented which uses high mobility 2DEG to manipulate the metamaterial resonant frequency (0.45 THz leading to terahertz wave modulation. The 2DEG is created by embedding pseudomorphic high-electron mobility transistors in the capacitive gap of each electrical-LC resonator, allowing the charge density to be controlled with very low voltage (1 V and modulating speeds up to 10 MHz while consuming sub-milliwatt power. We have demonstrated our SLM as a 2 × 2 pixel array operating around 0.45 THz by raster scanning a 6 × 6 image of an occluded metal object behind a thick polystyrene screen using a single-pixel THz imaging setup.

  1. Graphene based terahertz phase modulators

    Science.gov (United States)

    Kakenov, N.; Ergoktas, M. S.; Balci, O.; Kocabas, C.

    2018-07-01

    Electrical control of amplitude and phase of terahertz radiation (THz) is the key technological challenge for high resolution and noninvasive THz imaging. The lack of active materials and devices hinders the realization of these imaging systems. Here, we demonstrate an efficient terahertz phase and amplitude modulation using electrically tunable graphene devices. Our device structure consists of electrolyte-gated graphene placed at quarter wavelength distance from a reflecting metallic surface. In this geometry, graphene operates as a tunable impedance surface which yields electrically controlled reflection phase. Terahertz time domain reflection spectroscopy reveals the voltage controlled phase modulation of π and the reflection modulation of 50 dB. To show the promises of our approach, we demonstrate a multipixel phase modulator array which operates as a gradient impedance surface.

  2. Strain Imaging Using Terahertz Waves and Metamaterials

    Science.gov (United States)

    2016-11-01

    predictions. 14. SUBJECT TERMS Birefringence, Terahertz Waves, Metamaterials 15. NUMBER OF PAGES 16 16. PRICE CODE 17. SECURITY...opaque objects by using the principles of strain-induced birefringence. 4 III. CONCEPT To overcome the inability of visual light to penetrate ...opaque objects, terahertz radiation was investigated. Longer wavelength EM waves, such as radio waves, have excellent penetration ability but low image

  3. Terahertz Plasma Waves in Two Dimensional Quantum Electron Gas with Electron Scattering

    International Nuclear Information System (INIS)

    Zhang Liping

    2015-01-01

    We investigate the Terahertz (THz) plasma waves in a two-dimensional (2D) electron gas in a nanometer field effect transistor (FET) with quantum effects, the electron scattering, the thermal motion of electrons and electron exchange-correlation. We find that, while the electron scattering, the wave number along y direction and the electron exchange-correlation suppress the radiation power, but the thermal motion of electrons and the quantum effects can amplify the radiation power. The radiation frequency decreases with electron exchange-correlation contributions, but increases with quantum effects, the wave number along y direction and thermal motion of electrons. It is worth mentioning that the electron scattering has scarce influence on the radiation frequency. These properties could be of great help to the realization of practical THz plasma oscillations in nanometer FET. (paper)

  4. High harmonic terahertz confocal gyrotron with nonuniform electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Wenjie; Guan, Xiaotong; Yan, Yang [THz Research Center, School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2016-01-15

    The harmonic confocal gyrotron with nonuniform electron beam is proposed in this paper in order to develop compact and high power terahertz radiation source. A 0.56 THz third harmonic confocal gyrotron with a dual arc section nonuniform electron beam has been designed and investigated. The studies show that confocal cavity has extremely low mode density, and has great advantage to operate at high harmonic. Nonuniform electron beam is an approach to improve output power and interaction efficiency of confocal gyrotron. A dual arc beam magnetron injection gun for designed confocal gyrotron has been developed and presented in this paper.

  5. Handbook of terahertz technologies devices and applications

    CERN Document Server

    Song, Ho-Jin

    2015-01-01

    Terahertz waves, which lie in the frequency range of 0.1-10 THz, have long been investigated in a few limited fields, such as astronomy, because of a lack of devices for their generation and detection. Several technical breakthroughs made over the last couple of decades now allow us to radiate and detect terahertz waves more easily, which has triggered the search for new uses of terahertz waves in many fields, such as bioscience, security, and information and communications technology. The book covers some of the technical breakthroughs in terms of device technologies. It discusses not only th

  6. Nanometer size field effect transistors for terahertz detectors

    International Nuclear Information System (INIS)

    Knap, W; Rumyantsev, S; Coquillat, D; Dyakonova, N; Teppe, F; Vitiello, M S; Tredicucci, A; Blin, S; Shur, M; Nagatsuma, T

    2013-01-01

    Nanometer size field effect transistors can operate as efficient resonant or broadband terahertz detectors, mixers, phase shifters and frequency multipliers at frequencies far beyond their fundamental cut-off frequency. This work is an overview of some recent results concerning the application of nanometer scale field effect transistors for the detection of terahertz radiation. (paper)

  7. Drug detection by terahertz time-domain spectroscopy

    International Nuclear Information System (INIS)

    Duan Ruixin; Zhu Yiming; Zhao Hongwei

    2013-01-01

    Due to unique spectral region, functional imaging ability, excellent penetration and safety characteristics of terahertz radiation, the terahertz technology rapidly becomes a vital method to detect and analyze drugs. In this paper, firstly, we identify the functional groups of anti-diabetic drugs by density functional theory (DFT), HIPHOP models and experimental results from terahertz time-domain spectroscopy measurements. Secondly, we identify four kinds of herbs of radix curcumae by using the support vector machine (SVM) analysis. Besides, we analyze the absorption of anhydrous and hydrous glucose, and determine the state of water in the crystalized D-glucose·H 2 O through the results of differential scanning calorimetry measurement. Finally, we summarize the advantages and disadvantages of terahertz time-domain spectroscopy method in drug detection and analyzing. (authors)

  8. Terahertz Coherent Synchrotron Radiation from Femtosecond Laser Modulation of the Electron Beam at the Advanced Light Source

    International Nuclear Information System (INIS)

    Byrd, John M.; Hao, Zhao; Martin, Michael C.; Robin, David S.; Sannibale, Fernando; Schoenlein, Robert W.; Zholents, Alexander A.; Zolotorev, Max S.

    2005-01-01

    At the Advanced Light Source (ALS), the ''femtoslicing'' beamline is in operation since 1999 for the production of x-ray synchrotron radiation pulses with femtosecond duration. The mechanism used for generating the short x-ray pulses induces at the same time temporary structures in the electron bunch longitudinal distribution with very short characteristic length. Such structures emit intense coherent synchrotron radiation (CSR) in the terahertz frequency range. These CSR pulses were first observed at the ALS, and the measurement of their intensity is now routinely used as a diagnostics for the tune-up of the femtoslicing x-ray experiments. At the same time, these CSR pulses synchronous with the modulating laser, represent a potential source of terahertz radiation with very interesting features. Several measurements have been performed for their characterization and in this paper we present an updated description of the experimental results and of their interpretation. In particular, we include more data on the interesting interaction, previously observed at the ALS, between the slicing and the microbunching instability (MBI), where under particular circumstances, the slicing seems to trigger the onset of the instability

  9. In–HgCdTe–In structures with symmetric nonlinear I–V characteristics for sub-THz direct detection

    Directory of Open Access Journals (Sweden)

    N.I. Kukhtaruk

    2017-07-01

    Full Text Available This paper reports on the development and investigations of In–Hg1–xCdxTe–In structures with symmetric nonlinear I–V curves that are sensitive to sub-terahertz radiation. It is shown that at low currents photoresponse of the detectors based on these structures is due to the presence of potential barriers at the contacts. The dependences of the photoresponse as the function of the bias current are measured at the radiation frequency  = 140 GHz in 77–300 K temperature range. The studied structures may be used as the detectors of sub-terahertz radiation at room temperature or under weak cooling. The calculated NEP of investigated In–n-Hg0.61Cd0.39Te–In detectors was 3.5•10–9 W/Hz1/2, if taking into account thermal and shot noise.

  10. Terahertz emission from CdHgTe/HgTe quantum wells with an inverted band structure

    Energy Technology Data Exchange (ETDEWEB)

    Vasilyev, Yu. B., E-mail: Yu.Vasilyev@mail.ioffe.ru [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation); Mikhailov, N. N. [Russian Academy of Sciences, Rzhanov Institute of Semiconductor Physics, Siberian Branch (Russian Federation); Vasilyeva, G. Yu.; Ivánov, Yu. L.; Zakhar’in, A. O.; Andrianov, A. V. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation); Vorobiev, L. E.; Firsov, D. A. [Peter the Great Saint-Petersburg Polytechnic University (Russian Federation); Grigoriev, M. N. [Ustinov Baltic State Technical University “VOENMEKh” (Russian Federation); Antonov, A. V.; Ikonnikov, A. V.; Gavrilenko, V. I. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation)

    2016-07-15

    The terahertz electroluminescence from Cd{sub 0.7}Hg{sub 0.3}Te/HgTe quantum wells with an inverted band structure in lateral electric fields is experimentally detected and studied. The emission-spectrum maximum for wells 6.5 and 7 nm wide is near 6 meV which corresponds to interband optical transitions. The emission is explained by state depletion in the valence band and conduction band filling due to Zener tunneling, which is confirmed by power-law current–voltage characteristics.

  11. Field transients of coherent terahertz synchrotron radiation accessed via time-resolving and correlation techniques

    Energy Technology Data Exchange (ETDEWEB)

    Pohl, A.; Hübers, H.-W. [Humboldt-Universität zu Berlin, Institute of Physics, Newtonstraße 15, 12489 Berlin (Germany); Institute of Optical Sensor Systems, German Aerospace Center (DLR), Rutherfordstrasse 29, 12489 Berlin (Germany); Semenov, A. [Institute of Optical Sensor Systems, German Aerospace Center (DLR), Rutherfordstrasse 29, 12489 Berlin (Germany); Hoehl, A.; Ulm, G. [Physikalisch-Technische Bundesanstalt (PTB), Abbestraße 2-12, 10587 Berlin (Germany); Ries, M.; Wüstefeld, G. [Helmholz-Zentrum Berlin, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Ilin, K.; Thoma, P.; Siegel, M. [Institute of Micro- and Nanoelectronic Systems, Karlsruhe Institute of Technology (KIT), Hertzstrasse 16, 76187 Karlsruhe (Germany)

    2016-03-21

    Decaying oscillations of the electric field in repetitive pulses of coherent synchrotron radiation in the terahertz frequency range was evaluated by means of time-resolving and correlation techniques. Comparative analysis of real-time voltage transients of the electrical response and interferograms, which were obtained with an ultrafast zero-bias Schottky diode detector and a Martin-Puplett interferometer, delivers close values of the pulse duration. Consistent results were obtained via the correlation technique with a pair of Golay Cell detectors and a pair of resonant polarisation-sensitive superconducting detectors integrated on one chip. The duration of terahertz synchrotron pulses does not closely correlate with the duration of single-cycle electric field expected for the varying size of electron bunches. We largely attribute the difference to the charge density oscillations in electron bunches and to the low-frequency spectral cut-off imposed by both the synchrotron beamline and the coupling optics of our detectors.

  12. Ultrafast terahertz scanning tunneling microscopy with atomic resolution

    DEFF Research Database (Denmark)

    Jelic, Vedran; Iwaszczuk, Krzysztof; Nguyen, Peter H.

    2016-01-01

    We demonstrate that ultrafast terahertz scanning tunneling microscopy (THz-STM) can probe single atoms on a silicon surface with simultaneous sub-nanometer and sub-picosecond spatio-temporal resolution. THz-STM is established as a new technique for exploring high-field non-equilibrium tunneling...

  13. The three-dimensional particle-in-cell simulation analysis of cavity of high power subterahertz pulsed gyrotron

    International Nuclear Information System (INIS)

    Ito, Koyu; Jiang, Weihua

    2013-01-01

    High power sub-terahertz pulsed gyrotrons for Collective Thomson Scattering (CTS) diagnostics of fusion plasmas are being developed. The typical target parameters are: output power of 100-200 kW, operation frequency of 300 GHz, and pulsed length > 10 us. In order to support experimental development, numerical simulations were carried out by using Particle-In-Cell (PIC) code MAGIC. The oscillation mode of the electromagnetic radiation was selected as TE_1_5_,_2, for which the beam parameters and cavity dimensions were determined accordingly. The simulation results have showed maximum power of 144 kW at oscillation frequency of 292.80 GHz, with oscillation efficiency of 22.15%. (author)

  14. Terahertz-infrared spectroscopy of overdoped manganites La.sub.1-x./sub.Ca.sub.x./sub.MnO.sub.3./sub

    Czech Academy of Sciences Publication Activity Database

    Kadyrov, L.S.; Zhukova, E.S.; Torgashev, V. I.; Gorshunov, B. P.; Prokhorov, A. S.; Motovilova, E.A.; Fischgrabe, F.; Moshnyaga, V.; Zhang, T.; Kremer, R.; Pracht, U.; Zapf, S.; Pokorný, Jan; Untereiner, G.; Kamba, Stanislav; Dressel, M.

    2015-01-01

    Roč. 460, SI (2015), s. 199-201 ISSN 0921-4526 R&D Projects: GA ČR GAP204/12/1163 Institutional support: RVO:68378271 Keywords : manganites * terahertz spectroscopy * Raman spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.352, year: 2015

  15. A Broadband Terahertz Waveguide T-Junction Variable Power Splitter

    Science.gov (United States)

    Reichel, Kimberly S.; Mendis, Rajind; Mittleman, Daniel M.

    2016-06-01

    In order for the promise of terahertz (THz) wireless communications to become a reality, many new devices need to be developed, such as those for routing THz waves. We demonstrate a power splitting router based on a parallel-plate waveguide (PPWG) T-junction excited by the TE1 waveguide mode. By integrating a small triangular septum into the waveguide plate, we are able to direct the THz light down either one of the two output channels with precise control over the ratio between waveguide outputs. We find good agreement between experiment and simulation in both amplitude and phase. We show that the ratio between waveguide outputs varies exponentially with septum translation offset and that nearly 100% transmission can be achieved. The splitter operates over almost the entire range in which the waveguide is single mode, providing a sensitive and broadband method for THz power splitting.

  16. Optical generation,detection and non-destructive testing applications of terahertz waves

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Weili; LIANG; Dachuan; TIAN; Zhen; HAN; Jiaguang; GU; Jianqiang; HE; Mingxia; OUYANG; Chunmei

    2016-01-01

    Optoelectronic terahertz generation and detection play a key role in the applications of non-destructive testing,which involves different areas such as physics,biological,material science,imaging,explosions detection,astronomy applications,semiconductor technology and superconductiong electronics. In this article,we present a reviewof the principle and performance of typical terahertz sources,detectors and non-destructive testing applications. On this basis,the newdevelopment and trends of terahertz radiation detectors are also discussed.

  17. Terahertz Quantum Cascade Laser With Efficient Coupling and Beam Profile

    Science.gov (United States)

    Chattopadhyay, Goutam; Kawamura, Jonathan H.; Lin, Robert H.; Williams, Benjamin

    2012-01-01

    Quantum cascade lasers (QCLs) are unipolar semiconductor lasers, where the wavelength of emitted radiation is determined by the engineering of quantum states within the conduction band in coupled multiple-quantum-well heterostructures to have the desired energy separation. The recent development of terahertz QCLs has provided a new generation of solid-state sources for radiation in the terahertz frequency range. Terahertz QCLs have been demonstrated from 0.84 to 5.0 THz both in pulsed mode and continuous wave mode (CW mode). The approach employs a resonant-phonon depopulation concept. The metal-metal (MM) waveguide fabrication is performed using Cu-Cu thermo-compression bonding to bond the GaAs/AlGaAs epitaxial layer to a GaAs receptor wafer.

  18. Mobile Charge Generation Dynamics in P3HT:PCBM Observed by Time-Resolved Terahertz Spectroscopy

    DEFF Research Database (Denmark)

    Cooke, D. G.; Krebs, Frederik C; Jepsen, Peter Uhd

    2012-01-01

    Ultra-broadband time-resolved terahertz spectroscopy is used to examine the sub-ps conductivity dynamics of a conjugated polymer bulk heterojunction film P3HT:PCBM. We directly observe mobile charge generation dynamics on a sub-100 fs time scale.......Ultra-broadband time-resolved terahertz spectroscopy is used to examine the sub-ps conductivity dynamics of a conjugated polymer bulk heterojunction film P3HT:PCBM. We directly observe mobile charge generation dynamics on a sub-100 fs time scale....

  19. Mobile charge generation dynamics in P3HT: PCBM observed by time-resolved terahertz spectroscopy

    DEFF Research Database (Denmark)

    Cooke, D. G.; Krebs, Frederik C; Jepsen, Peter Uhd

    2012-01-01

    Ultra-broadband time-resolved terahertz spectroscopy is used to examine the sub-ps conductivity dynamics of a conjugated polymer bulk heterojunction film P3HT:PCBM. We directly observe mobile charge generation dynamics on a sub-100 fs time scale.......Ultra-broadband time-resolved terahertz spectroscopy is used to examine the sub-ps conductivity dynamics of a conjugated polymer bulk heterojunction film P3HT:PCBM. We directly observe mobile charge generation dynamics on a sub-100 fs time scale....

  20. Radar cross section measurements using terahertz waves

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Heiselberg, Henning; Jepsen, Peter Uhd

    2010-01-01

    Radar cross sections at terahertz frequencies are measured on scale models of aircrafts. A time domain broadband THz system generates freely propagating THz pulses measured with sub-picosecond time resolution. The THz radiation is generated using fs laser pulses by optical rectification...... in order to measure realistic radar cross sections. RCS polar and azimuthal angle plots of F-16 and F-35 are presented....... in a lithium niobate crystal with application of the tilted wave front method, resulting in high electric field THz pulses with a broad band spectrum from 100 GHz up to 4 THz. The corresponding wave lengths are two orders of magnitude smaller than normal radars and we therefore use scale models of size 5-10 cm...

  1. Terahertz radiation in alkali vapor plasmas

    International Nuclear Information System (INIS)

    Sun, Xuan; Zhang, X.-C.

    2014-01-01

    By taking advantage of low ionization potentials of alkali atoms, we demonstrate terahertz wave generation from cesium and rubidium vapor plasmas with an amplitude nearly one order of magnitude larger than that from nitrogen gas at low pressure (0.02–0.5 Torr). The observed phenomena are explained by the numerical modeling based upon electron tunneling ionization

  2. Observation of coherently enhanced tunable narrow-band terahertz transition radiation from a relativistic sub-picosecond electron bunch train

    International Nuclear Information System (INIS)

    Piot, P.; Maxwell, T. J.; Sun, Y.-E; Ruan, J.; Lumpkin, A. H.; Thurman-Keup, R.; Rihaoui, M. M.

    2011-01-01

    We experimentally demonstrate the production of narrow-band (δf/f≅20% at f≅0.5THz) transition radiation with tunable frequency over [0.37, 0.86] THz. The radiation is produced as a train of sub-picosecond relativistic electron bunches transits at the vacuum-aluminum interface of an aluminum converter screen. The bunch train is generated via a transverse-to-longitudinal phase space exchange technique. We also show a possible application of modulated beams to extend the dynamical range of a popular bunch length diagnostic technique based on the spectral analysis of coherent radiation.

  3. Terahertz wave manipulation based on multi-bit coding artificial electromagnetic surfaces

    Science.gov (United States)

    Li, Jiu-Sheng; Zhao, Ze-Jiang; Yao, Jian-Quan

    2018-05-01

    A polarization insensitive multi-bit coding artificial electromagnetic surface is proposed for terahertz wave manipulation. The coding artificial electromagnetic surfaces composed of four-arrow-shaped particles with certain coding sequences can generate multi-bit coding in the terahertz frequencies and manipulate the reflected terahertz waves to the numerous directions by using of different coding distributions. Furthermore, we demonstrate that our coding artificial electromagnetic surfaces have strong abilities to reduce the radar cross section with polarization insensitive for TE and TM incident terahertz waves as well as linear-polarized and circular-polarized terahertz waves. This work offers an effectively strategy to realize more powerful manipulation of terahertz wave.

  4. FDTD-based quantitative analysis of terahertz wave detection for multilayered structures.

    Science.gov (United States)

    Tu, Wanli; Zhong, Shuncong; Shen, Yaochun; Zhou, Qing; Yao, Ligang

    2014-10-01

    Experimental investigations have shown that terahertz pulsed imaging (TPI) is able to quantitatively characterize a range of multilayered media (e.g., biological issues, pharmaceutical tablet coatings, layered polymer composites, etc.). Advanced modeling of the interaction of terahertz radiation with a multilayered medium is required to enable the wide application of terahertz technology in a number of emerging fields, including nondestructive testing. Indeed, there have already been many theoretical analyses performed on the propagation of terahertz radiation in various multilayered media. However, to date, most of these studies used 1D or 2D models, and the dispersive nature of the dielectric layers was not considered or was simplified. In the present work, the theoretical framework of using terahertz waves for the quantitative characterization of multilayered media was established. A 3D model based on the finite difference time domain (FDTD) method is proposed. A batch of pharmaceutical tablets with a single coating layer of different coating thicknesses and different refractive indices was modeled. The reflected terahertz wave from such a sample was computed using the FDTD method, assuming that the incident terahertz wave is broadband, covering a frequency range up to 3.5 THz. The simulated results for all of the pharmaceutical-coated tablets considered were found to be in good agreement with the experimental results obtained using a commercial TPI system. In addition, we studied a three-layered medium to mimic the occurrence of defects in the sample.

  5. Terahertz spectroscopy of shift currents resulting from asymmetric (110)-oriented GaAs/AlGaAs quantum wells

    International Nuclear Information System (INIS)

    Priyadarshi, Shekhar; Leidinger, Markus; Pierz, Klaus; Racu, Ana M.; Siegner, Uwe; Bieler, Mark; Dawson, Philip

    2009-01-01

    We report the observation and the study of an additional shift current tensor element in (110)-oriented GaAs quantum wells, which arises from an out-of-plane asymmetry of the quantum well structure. The current resulting from this tensor element is optically induced with 150 fs laser pulses and detected by measuring the simultaneously emitted terahertz radiation. This terahertz spectroscopy of shift currents is a powerful technique for symmetry investigations, which shows, for example, that our nominally symmetric (110)-oriented GaAs/AlGaAs quantum wells grown by molecular beam epitaxy are in reality asymmetric structures with different right and left interfaces.

  6. High-intensity coherent FIR radiation from sub-picosecond electron bunches

    International Nuclear Information System (INIS)

    Kung, P.H.; Lihn, Hung-chi; Wiedemann, H.; Bocek, D.

    1994-01-01

    A facility to generate high-intensity, ultra-short pulses of broad-band far-infrared radiation has been assembled and tested at Stanford. The device uses sub-picosecond relativistic electron bunches to generate coherent radiation through transition or synchrotron radiation in the far-infrared (FIR) regime between millimeter waves and wavelengths of about 100 μm and less. Experimental results show a peak radiation power of greater than 0.33 MW within a micro-bunch and an average FIR radiation power of 4 mW. The average bunch length of 2856 micro-bunches within a 1 μsec macro-pulse is estimated to be about 480 sec. Simulations experimental setup and results will be discussed

  7. Dispersion characteristics of planar grating with arbitrary grooves for terahertz Smith-Purcell radiation

    International Nuclear Information System (INIS)

    Cao, Miaomiao; Li, Ke; Liu, Wenxin; Wang, Yong

    2015-01-01

    In this paper, a novel method of getting the dispersion relations in planar grating with arbitrary grooves for terahertz Smith-Purcell radiation is investigated analytically. The continuous profile of the groove is approximately replaced by a series of rectangular steps. By making use of field matches method and the continuity of transverse admittance, the universal dispersion equation for grating with arbitrarily shaped grooves is derived. By solving the dispersion equation in presence of electron beam, the growth rate is obtained directly and the dependence on beam parameters is analyzed. Comparisons of the dispersion characteristics among some special groove shapes have been made by numerical calculation. The results show that the rectangular-step approximation method provides a novel approach to obtain the universal dispersion relation for grating with arbitrary grooves for Smith-Purcell radiation

  8. Superiority of terahertz over infrared transmission through bandages and burn wound ointments

    International Nuclear Information System (INIS)

    Suen, Jonathan Y.; Padilla, Willie J.

    2016-01-01

    Terahertz electromagnetic waves have long been proposed to be ideal for spectroscopy and imaging through non-polar dielectric materials that contain no water. Terahertz radiation may thus be useful for monitoring burn and wound injury recovery, as common care treatments involve application of both a clinical dressing and topical ointment. Here, we investigate the optical properties of typical care treatments in the millimeter wave (150–300 GHz), terahertz (0.3–3 THz), and infrared (14.5–0.67 μm) ranges of the electromagnetic spectrum. We find that THz radiation realizes low absorption coefficients and high levels of transmission compared to infrared wavelengths, which were strongly attenuated. Terahertz imaging can enable safe, non-ionizing, noninvasive monitoring of the healing process directly through clinical dressings and recovery ointments, minimizing the frequency of dressing changes and thus increasing the rate of the healing process.

  9. Superiority of terahertz over infrared transmission through bandages and burn wound ointments

    Energy Technology Data Exchange (ETDEWEB)

    Suen, Jonathan Y., E-mail: j.suen@duke.edu; Padilla, Willie J. [Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708 (United States)

    2016-06-06

    Terahertz electromagnetic waves have long been proposed to be ideal for spectroscopy and imaging through non-polar dielectric materials that contain no water. Terahertz radiation may thus be useful for monitoring burn and wound injury recovery, as common care treatments involve application of both a clinical dressing and topical ointment. Here, we investigate the optical properties of typical care treatments in the millimeter wave (150–300 GHz), terahertz (0.3–3 THz), and infrared (14.5–0.67 μm) ranges of the electromagnetic spectrum. We find that THz radiation realizes low absorption coefficients and high levels of transmission compared to infrared wavelengths, which were strongly attenuated. Terahertz imaging can enable safe, non-ionizing, noninvasive monitoring of the healing process directly through clinical dressings and recovery ointments, minimizing the frequency of dressing changes and thus increasing the rate of the healing process.

  10. Characteristic responses of biological and nanoscale systems in the terahertz frequency range

    Energy Technology Data Exchange (ETDEWEB)

    Angeluts, A A; Balakin, A V; Evdokimov, M G; Ozheredov, I A; Sapozhnikov, D A; Solyankin, P M; Shkurinov, A P [International Laser Center, M. V. Lomonosov Moscow State University, Moscow (Russian Federation); Esaulkov, M N; Nazarov, M M [Institute on Laser and Information Technologies, Russian Academy of Sciences, Shatura, Moscow Region (Russian Federation); Cherkasova, O P [Institute of Laser Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2014-07-31

    This paper briefly examines methods for the generation of pulsed terahertz radiation and principles of pulsed terahertz spectroscopy, an advanced informative method for studies of complex biological and nanostructured systems. Some of its practical applications are described. Using a number of steroid hormones as examples, we demonstrate that terahertz spectroscopy in combination with molecular dynamics methods and computer simulation allows one to gain information about the structure of molecules in crystals. A 'terahertz colour vision' method is proposed for analysis of pulsed terahertz signals reflected from biological tissues and it is shown that this method can be effectively used to analyse the properties of biological tissues and for early skin cancer diagnosis. (laser biophotonics)

  11. Graphene-based magnetless converter of terahertz wave polarization

    Science.gov (United States)

    Melnikova, Veronica S.; Polischuk, Olga V.; Popov, Vyacheslav V.

    2016-04-01

    The polarization conversion of terahertz radiation by the periodic array of graphene nanoribbons located at the surface of a high-refractive-index dielectric substrate (terahertz prism) is studied theoretically. Giant polarization conversion at the plasmon resonance frequencies takes place without applying external DC magnetic field. It is shown that the total polarization conversion can be reached at the total internal reflection of THz wave from the periodic array of graphene nanoribbons even at room temperature.

  12. Terahertz generation via laser coupling to anharmonic carbon nanotube array

    Science.gov (United States)

    Sharma, Soni; Vijay, A.

    2018-02-01

    A scheme of terahertz radiation generation employing a matrix of anharmonic carbon nanotubes (CNTs) embedded in silica is proposed. The matrix is irradiated by two collinear laser beams that induce large excursions on CNT electrons and exert a nonlinear force at the beat frequency ω = ω1-ω2. The force derives a nonlinear current producing THz radiation. The THz field is resonantly enhanced at the plasmon resource, ω = ω p ( 1 + β ) / √{ 2 } , where ωp is the plasma frequency and β is a characteristic parameter. Collisions are a limiting factor, suppressing the plasmon resonance. For typical values of plasma parameters, we obtain power conversion efficiency of the order of 10-6.

  13. Towards terahertz detection and calibration through spontaneous parametric down-conversion in the terahertz idler-frequency range generated by a 795 nm diode laser system

    Directory of Open Access Journals (Sweden)

    Vladimir V. Kornienko

    2018-05-01

    Full Text Available We study a calibration scheme for terahertz wave nonlinear-optical detectors based on spontaneous parametric down-conversion. Contrary to the usual low wavelength pump in the green, we report here on the observation of spontaneous parametric down-conversion originating from an in-growth poled lithium niobate crystal pumped with a continuous wave 50 mW, 795 nm diode laser system, phase-matched to a terahertz frequency idler wave. Such a system is more compact and allows for longer poling periods as well as lower losses in the crystal. Filtering the pump radiation by a rubidium-87 vapor cell allowed the frequency-angular spectra to be obtained down to ∼0.5 THz or ∼1 nm shift from the pump radiation line. The presence of an amplified spontaneous emission “pedestal” in the diode laser radiation spectrum significantly hampers the observation of spontaneous parametric down-conversion spectra, in contrast to conventional narrowband gas lasers. Benefits of switching to longer pump wavelengths are pointed out, such as collinear optical-terahertz phase-matching in bulk crystals.

  14. Towards terahertz detection and calibration through spontaneous parametric down-conversion in the terahertz idler-frequency range generated by a 795 nm diode laser system

    Science.gov (United States)

    Kornienko, Vladimir V.; Kitaeva, Galiya Kh.; Sedlmeir, Florian; Leuchs, Gerd; Schwefel, Harald G. L.

    2018-05-01

    We study a calibration scheme for terahertz wave nonlinear-optical detectors based on spontaneous parametric down-conversion. Contrary to the usual low wavelength pump in the green, we report here on the observation of spontaneous parametric down-conversion originating from an in-growth poled lithium niobate crystal pumped with a continuous wave 50 mW, 795 nm diode laser system, phase-matched to a terahertz frequency idler wave. Such a system is more compact and allows for longer poling periods as well as lower losses in the crystal. Filtering the pump radiation by a rubidium-87 vapor cell allowed the frequency-angular spectra to be obtained down to ˜0.5 THz or ˜1 nm shift from the pump radiation line. The presence of an amplified spontaneous emission "pedestal" in the diode laser radiation spectrum significantly hampers the observation of spontaneous parametric down-conversion spectra, in contrast to conventional narrowband gas lasers. Benefits of switching to longer pump wavelengths are pointed out, such as collinear optical-terahertz phase-matching in bulk crystals.

  15. Terahertz computed tomography in three-dimensional using a pyroelectric array detector

    Science.gov (United States)

    Li, Bin; Wang, Dayong; Zhou, Xun; Rong, Lu; Huang, Haochong; Wan, Min; Wang, Yunxin

    2017-05-01

    Terahertz frequency range spans from 0.1 to 10 THz. Terahertz radiation can penetrate nonpolar materials and nonmetallic materials, such as plastics, wood, and clothes. Then the feature makes the terahertz imaging have important research value. Terahertz computed tomography makes use of the penetrability of terahertz radiation and obtains three-dimensional object projection data. In the paper, continuous-wave terahertz computed tomography with a pyroelectric array detectoris presented. Compared with scanning terahertz computed tomography, a pyroelectric array detector can obtain a large number of projection data in a short time, as the acquisition mode of the array pyroelectric detector omit the projection process on the vertical and horizontal direction. With the two-dimensional cross-sectional images of the object are obtained by the filtered back projection algorithm. The two side distance of the straw wall account for 80 pixels, so it multiplied by the pixel size is equal to the diameter of the straw about 6.4 mm. Compared with the actual diameter of the straw, the relative error is 6%. In order to reconstruct the three-dimensional internal structure image of the straw, the y direction range from 70 to 150 are selected on the array pyroelectric detector and are reconstructed by the filtered back projection algorithm. As the pixel size is 80 μm, the height of three-dimensional internal structure image of the straw is 6.48 mm. The presented system can rapidly reconstruct the three-dimensional object by using a pyroelectric array detector and explores the feasibility of on non-destructive evaluation and security testing.

  16. Numerical Investigation of Terahertz Emission Properties of Microring Difference-Frequency Resonators

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Bisgaard, Christer Zoffmann; Andronico, Alessio

    2013-01-01

    We investigate the electromagnetic design of whispering gallery mode (WGM) terahertz (THz) resonators. Terahertz radiation is generated by difference-frequency mixing of two electrically pumped high-order near-infrared laser WGM's at room temperature in the active cavity. Due to the leaky nature...... this symmetry by modification of the dielectric environment of the resonator, and demonstrate a fabrication-optimized structure based on a concentric grating design which efficiently couples the emitted radiation into a narrow, near-gaussian forward-propagating cone of well-defined linear or circular...

  17. Computed tomography image using sub-terahertz waves generated from a high-Tc superconducting intrinsic Josephson junction oscillator

    International Nuclear Information System (INIS)

    Kashiwagi, T.; Minami, H.; Kadowaki, K.; Nakade, K.; Saiwai, Y.; Kitamura, T.; Watanabe, C.; Ishida, K.; Sekimoto, S.; Asanuma, K.; Yasui, T.; Shibano, Y.; Tsujimoto, M.; Yamamoto, T.; Marković, B.; Mirković, J.; Klemm, R. A.

    2014-01-01

    A computed tomography (CT) imaging system using monochromatic sub-terahertz coherent electromagnetic waves generated from a device constructed from the intrinsic Josephson junctions in a single crystalline mesa structure of the high-T c superconductor Bi 2 Sr 2 CaCu 2 O 8+δ was developed and tested on three samples: Standing metallic rods supported by styrofoam, a dried plant (heart pea) containing seeds, and a plastic doll inside an egg shell. The images obtained strongly suggest that this CT imaging system may be useful for a variety of practical applications

  18. Resonant magnetic response of TiO.sub.2./sub. microspheres at terahertz frequencies

    Czech Academy of Sciences Publication Activity Database

    Němec, Hynek; Kadlec, Christelle; Kadlec, Filip; Kužel, Petr; Yahiaoui, R.; Chung, U.-C.; Elissalde, C.; Maglione, M.; Mounaix, P.

    2012-01-01

    Roč. 100, č. 6 (2012), "061107-1"-"014104-4" ISSN 0003-6951 R&D Projects: GA AV ČR(CZ) IAA100100907 Institutional research plan: CEZ:AV0Z10100520 Keywords : metamaterials * terahertz spectroscopy * effective magnetic properties Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.794, year: 2012

  19. Terahertz radiation-induced sub-cycle field electron emission across a split-gap dipole antenna

    International Nuclear Information System (INIS)

    Zhang, Jingdi; Averitt, Richard D.; Zhao, Xiaoguang; Fan, Kebin; Wang, Xiaoning; Zhang, Xin; Zhang, Gu-Feng; Geng, Kun

    2015-01-01

    We use intense terahertz pulses to excite the resonant mode (0.6 THz) of a micro-fabricated dipole antenna with a vacuum gap. The dipole antenna structure enhances the peak amplitude of the in-gap THz electric field by a factor of ∼170. Above an in-gap E-field threshold amplitude of ∼10 MV/cm −1 , THz-induced field electron emission is observed as indicated by the field-induced electric current across the dipole antenna gap. Field emission occurs within a fraction of the driving THz period. Our analysis of the current (I) and incident electric field (E) is in agreement with a Millikan-Lauritsen analysis where log (I) exhibits a linear dependence on 1/E. Numerical estimates indicate that the electrons are accelerated to a value of approximately one tenth of the speed of light

  20. Observation of terahertz-radiation-induced ionization in a single nano island.

    Science.gov (United States)

    Seo, Minah; Kang, Ji-Hun; Kim, Hyo-Suk; Hyong Cho, Joon; Choi, Jaebin; Min Jhon, Young; Lee, Seok; Hun Kim, Jae; Lee, Taikjin; Park, Q-Han; Kim, Chulki

    2015-05-22

    Terahertz (THz) electromagnetic wave has been widely used as a spectroscopic probe to detect the collective vibrational mode in vast molecular systems and investigate dielectric properties of various materials. Recent technological advances in generating intense THz radiation and the emergence of THz plasmonics operating with nanoscale structures have opened up new pathways toward THz applications. Here, we present a new opportunity in engineering the state of matter at the atomic scale using THz wave and a metallic nanostructure. We show that a medium strength THz radiation of 22 kV/cm can induce ionization of ambient carbon atoms through interaction with a metallic nanostructure. The prepared structure, made of a nano slot antenna and a nano island located at the center, acts as a nanogap capacitor and enhances the local electric field by two orders of magnitudes thereby causing the ionization of ambient carbon atoms. Ionization and accumulation of carbon atoms are also observed through the change of the resonant condition of the nano slot antenna and the shift of the characteristic mode in the spectrum of the transmitted THz waves.

  1. Graphene hyperlens for terahertz radiation

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Lavrinenko, Andrei; Chigrin, Dmitry N.

    2012-01-01

    We propose a graphene hyperlens for the terahertz (THz) range. We employ and numerically examine a structured graphene-dielectric multilayered stack that is an analog of a metallic wire medium. As an example of the graphene hyperlens in action, we demonstrate an imaging of two point sources...... separated by a distance λ0/5. An advantage of such a hyperlens as compared to a metallic one is the tunability of its properties by changing the chemical potential of graphene. We also propose a method to retrieve the hyperbolic dispersion, check the effective medium approximation, and retrieve...

  2. Terahertz ptychography.

    Science.gov (United States)

    Valzania, Lorenzo; Feurer, Thomas; Zolliker, Peter; Hack, Erwin

    2018-02-01

    We realized a phase retrieval technique using terahertz (THz) radiation as an alternative to THz digital holography, named THz ptychography. Ptychography has been used in x-ray imaging as a groundbreaking improvement of conventional coherent diffraction imaging. Here we show that ptychography can be performed at THz frequencies too. We reconstructed an amplitude and a phase object with both simulated and real data. Lateral resolution accounts to <2λ, while depth variations as low as λ/30 can be assessed.

  3. Nano-Antenna For Terahertz (THz) Medical Imaging Applications

    Data.gov (United States)

    National Aeronautics and Space Administration — As a result of technological breakthroughs, research and applications in the Terahertz (THz) radiation system are experiencing explosive growth. The non-ionizing and...

  4. Percolation-enhanced generation of terahertz pulses by optical rectification on ultrathin gold films

    NARCIS (Netherlands)

    Ramakrishnan, G.; Planken, P.C.M.

    2011-01-01

    Emission of pulses of electromagnetic radiation in the terahertz range is observed when ultrathin gold films on glass are illuminated with femtosecond near-IR laser pulses. A distinct maximum is observed in the emitted terahertz amplitude from films of average thickness just above the percolation

  5. Lithium niobate bulk crystallization promoted by CO{sub 2} laser radiation

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, N.M., E-mail: nmferreira@ua.pt [i3N - Aveiro, Physics Department, Aveiro University, Campus Universitario de Santiago, 3810-193 Aveiro (Portugal); Costa, F.M. [i3N - Aveiro, Physics Department, Aveiro University, Campus Universitario de Santiago, 3810-193 Aveiro (Portugal); Nogueira, R.N. [Instituto de Telecomunicacoes, 3810-193 Aveiro (Portugal); Graca, M.P.F. [i3N - Aveiro, Physics Department, Aveiro University, Campus Universitario de Santiago, 3810-193 Aveiro (Portugal)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Crystallization of LiNbO{sub 3} nanocrystals in a SiO{sub 2} matrix by CO{sub 2} laser irradiation process. Black-Right-Pointing-Pointer Samples heat-treated at 650 Degree-Sign C (4 h) and laser treated (4 W/500 s) show similar morphology. Black-Right-Pointing-Pointer Glass-ceramics produced by laser process requires a very low processing time. - Abstract: The crystallization induced by laser radiation is a very promising technique to promote glass/ceramic transformation, being already used to produce crystalline patterns on glass surfaces. In this work, a SiO{sub 2}-Li{sub 2}O-Nb{sub 2}O{sub 5} glass, prepared by the sol-gel route, was submitted to CO{sub 2} laser radiation and conventional heat-treatments in order to induce the LiNbO{sub 3} crystallization. The structure and morphology of the samples prepared by both routes was analyzed as a function of exposure time, radiation power and heat-treatment temperatures by XRD, Raman spectroscopy and SEM. The results reveal a correlation between the crystallization degree of LiNbO{sub 3} particles and glass matrix with the heat treatment type and experimental parameters. An heat-treatment at 650 Degree-Sign C/4 h was necessary to induce crystallization in heat treatments samples while 4 W/500 s was enough for laser radiation ones, corresponding a reduction time processing of {approx}14 000 s.

  6. Optimization of a coherent synchrotron radiation source in the Tera-hertz range for high-resolution spectroscopy of molecules of astrophysical interest

    International Nuclear Information System (INIS)

    Barros, J.

    2012-01-01

    Fourier Transform spectroscopy is the most used multiplex tool for high-resolution measurements in the infrared range. Its extension to the Tera-hertz domain is of great interest for spectroscopic studies of interstellar molecules. This application is however hampered by the lack of dedicated, broadband sources with a sufficient intensity and stability. In this work, Coherent Synchrotron Radiation (CSR) was used as a source for molecular spectroscopy at high resolution on the AILES infrared and Tera-hertz beamline of SOLEIL synchrotron. The beamline being optimized for far-infrared, we could characterize the properties of CSR and compare them to the incoherent synchrotron radiation. A double detection system allowed to correct the effect of the source-related instabilities, hence to significantly increase the signal-to-noise ratio. Pure rotational spectra were measured using these developments. The case of the propynal molecule, for which a refined set of rotational and centrifugal distortion constants was calculated, proves the complementarity between CSR and the classical microwave or infrared sources. (author)

  7. Enhanced transmission of terahertz radiation through a periodically modulated slab of layered superconductor

    International Nuclear Information System (INIS)

    Kadygrob, D V; Slipchenko, T M; Yampol'skii, V A; Makarov, N M; Pérez-Rodríguez, F

    2013-01-01

    We predict the enhanced transparency of a modulated slab of layered superconductor for terahertz radiation due to the diffraction of an incident wave and the resonance excitation of eigenmodes. The electromagnetic field is transferred from the irradiated side of the slab to the other by excited waveguide modes (WGMs) which do not decay in layered superconductors, in contrast to metals, where the enhanced light transmission is caused by the excitation of evanescent surface waves. We show that a series of resonance peaks can be observed in the dependence of transmittance on the incidence angle when the dispersion curve of the diffracted wave crosses successive dispersion curves for the WGMs. (paper)

  8. Terahertz imaging and spectroscopy based on hot electron bolometer (HEB) heterodyne detection

    Science.gov (United States)

    Gerecht, Eyal; You, Lixing

    2008-02-01

    Imaging and spectroscopy at terahertz frequencies have great potential for healthcare, plasma diagnostics, and homeland security applications. Terahertz frequencies correspond to energy level transitions of important molecules in biology and astrophysics. Terahertz radiation (T-rays) can penetrate clothing and, to some extent, can also penetrate biological materials. Because of their shorter wavelengths, they offer higher spatial resolution than do microwaves or millimeter waves. We are developing hot electron bolometer (HEB) mixer receivers for heterodyne detection at terahertz frequencies. HEB detectors provide unprecedented sensitivity and spectral resolution at terahertz frequencies. We describe the development of a two-pixel focal plane array (FPA) based on HEB technology. Furthermore, we have demonstrated a fully automated, two-dimensional scanning, passive imaging system based on our HEB technology operating at 0.85 THz. Our high spectral resolution terahertz imager has a total system noise equivalent temperature difference (NEΔT) value of better than 0.5 K and a spatial resolution of a few millimeters. HEB technology is becoming the basis for advanced terahertz imaging and spectroscopic technologies for the study of biological and chemical agents over the entire terahertz spectrum.

  9. Dynamic localization and negative absolute conductance in terahertz driven semiconductor superlattices

    International Nuclear Information System (INIS)

    Keay, B.J.; Allen, S.J.; Campman, K.L.

    1995-01-01

    We report the first observation of Negative Absolute Conductance (NAC), dynamic localization and multiphoton stimulated emission assisted tunneling in terahertz driven semiconductor superlattices. Theories predicting NAC in semiconductor superlattices subjected to AC electric fields have existed for twenty years, but have never been verified experimentally. Most theories are based upon semiclassical arguments and are only valid for superlattices in the miniband or coherent tunneling regime. We are not aware of models predicting NAC in superlattices in the sequential tunneling regime, although there has been recent theoretical work on double-barrier structures. Perhaps the most remarkable result is found in the power dependence of the current-voltage (I-V) characteristics near zero DC bias. As the laser power is increased the current decreases towards zero and then becomes negative. This result implies that the electrons are absorbing energy from the laser field, producing a net current in the direction opposite to the applied voltage. NAC around zero DC bias is a particularly surprising observation considering photon-assisted tunneling is not expected to be observable between the ground states of neighboring quantum wells in a semiconductor superlattice. Contrary to this believe our results are most readily attributable to photon absorption and multiphoton emission between ground states of neighboring wells. The I-V characteristics measured in the presence of terahertz radiation at low DC bias also contain steps and plateaus analogous to photon-assisted steps observed in superconducting junctions. As many as three steps have been clearly resolved corresponding to stimulated emission into the terahertz field by a three-photon process

  10. Charge transport in anodic TiO.sub.2./sub. nanotubes studied by terahertz spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Krbal, M.; Kuchařík, Jiří; Sopha, H.; Němec, Hynek; Macák, J. M.

    2016-01-01

    Roč. 10, č. 9 (2016), s. 691-695 ISSN 1862-6254 R&D Projects: GA ČR GA13-12386S Institutional support: RVO:68378271 Keywords : terahertz spectroscopy * charge transport * TiO2 nanotubes Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.032, year: 2016

  11. Terahertz light-emitting graphene-channel transistor toward single-mode lasing

    Science.gov (United States)

    Yadav, Deepika; Tamamushi, Gen; Watanabe, Takayuki; Mitsushio, Junki; Tobah, Youssef; Sugawara, Kenta; Dubinov, Alexander A.; Satou, Akira; Ryzhii, Maxim; Ryzhii, Victor; Otsuji, Taiichi

    2018-03-01

    A distributed feedback dual-gate graphene-channel field-effect transistor (DFB-DG-GFET) was fabricated as a current-injection terahertz (THz) light-emitting laser transistor. We observed a broadband emission in a 1-7.6-THz range with a maximum radiation power of 10 μW as well as a single-mode emission at 5.2 THz with a radiation power of 0.1 μW both at 100 K when the carrier injection stays between the lower cutoff and upper cutoff threshold levels. The device also exhibited peculiar nonlinear threshold-like behavior with respect to the current-injection level. The LED-like broadband emission is interpreted as an amplified spontaneous THz emission being transcended to a single-mode lasing. Design constraints on waveguide structures for better THz photon field confinement with higher gain overlapping as well as DFB cavity structures with higher Q factors are also addressed towards intense, single-mode continuous wave THz lasing at room temperature.

  12. Modelling the propagation of terahertz radiation through a tissue simulating phantom

    International Nuclear Information System (INIS)

    Walker, Gillian C; Berry, Elizabeth; Smye, Stephen W; Zinov'ev, Nick N; Fitzgerald, Anthony J; Miles, Robert E; Chamberlain, Martyn; Smith, Michael A

    2004-01-01

    Terahertz (THz) frequency radiation, 0.1 THz to 20 THz, is being investigated for biomedical imaging applications following the introduction of pulsed THz sources that produce picosecond pulses and function at room temperature. Owing to the broadband nature of the radiation, spectral and temporal information is available from radiation that has interacted with a sample; this information is exploited in the development of biomedical imaging tools and sensors. In this work, models to aid interpretation of broadband THz spectra were developed and evaluated. THz radiation lies on the boundary between regions best considered using a deterministic electromagnetic approach and those better analysed using a stochastic approach incorporating quantum mechanical effects, so two computational models to simulate the propagation of THz radiation in an absorbing medium were compared. The first was a thin film analysis and the second a stochastic Monte Carlo model. The Cole-Cole model was used to predict the variation with frequency of the physical properties of the sample and scattering was neglected. The two models were compared with measurements from a highly absorbing water-based phantom. The Monte Carlo model gave a prediction closer to experiment over 0.1 to 3 THz. Knowledge of the frequency-dependent physical properties, including the scattering characteristics, of the absorbing media is necessary. The thin film model is computationally simple to implement but is restricted by the geometry of the sample it can describe. The Monte Carlo framework, despite being initially more complex, provides greater flexibility to investigate more complicated sample geometries

  13. The application of terahertz spectroscopy and imaging in biomedicine

    International Nuclear Information System (INIS)

    Liu Shangjian; Yu Fei; Li Kai; Zhou Jing

    2013-01-01

    Terahertz (THz) science and technology is gaining increasing attention in the biomedical field. Compared with traditional medical diagnosis methods using infrared radiation, nuclear magnetic resonance, X-rays or ultrasound, THz radiation has low energy, high spatial resolution, a broad spectral range, and is a reliable means of imaging for the human body. Terahertz waves have strong penetration and high fingerprint specificity, so they can play an important role in drug detection and identification. This paper reviews the special techniques based on conventional THz time-domain setups in disease detection and drug identification. With regard to the biomedical fields, we focus on the application of THz radiation in studies of skin tissue, gene expression, cells, cancer imaging, the quantitative analysis of drugs, and so on. We also present an overview of the future challenges and prospects of THz research in medicine. (authors)

  14. A new algorithm to determine the total radiated power at ASDEX upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Gloeggler, Stephan; Bernert, Matthias; Eich, Thomas [Max Planck Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching (Germany); Collaboration: The ASDEX Upgrade Team

    2016-07-01

    Radiation is an essential part of the power balance in a fusion plasma. In future fusion devices about 90% of the power will have to be dissipated, mainly by radiation. For the development of an appropriate operational scenario, information about the absolute level of plasma radiation (P{sub rad,tot}) is crucial. Bolometers are used to measure the radiated power, however, an algorithm is required to derive the absolute power out of many line-integrated measurements. The currently used algorithm (BPD) was developed for the main chamber radiation. It underestimates the divertor radiation as its basic assumptions are not satisfied in this region. Therefore, a new P{sub rad,tot} algorithm is presented. It applies an Abel inversion on the main chamber and uses empirically based assumptions for poloidal asymmetries and the divertor radiation. To benchmark the new algorithm, synthetic emissivity profiles are used. On average, the new Abel inversion based algorithm deviates by only 10% from the nominal synthetic value while BPD is about 25% too low. With both codes time traces of ASDEX Upgrade discharges are calculated. The analysis of these time traces shows that the underestimation of the divertor radiation can have significant consequences on the accuracy of BPD while the new algorithm is shown to be stable.

  15. Application of THz probe radiation in low-coherent tomographs based on spatially separated counterpropagating beams

    Energy Technology Data Exchange (ETDEWEB)

    Kuritsyn, I I; Shkurinov, A P; Nazarov, M M [Department of Physics, M.V. Lomonosov Moscow State University (Russian Federation); Mandrosov, V I [Moscow Institute of Physics and Technology (State University), Dolgoprudnyi, Moscow Region (Russian Federation); Cherkasova, O P [Institute of Laser Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2013-10-31

    A principle of designing a high-resolution low-coherent THz tomograph, which makes it possible to investigate media with a high spatial resolution (in the range λ{sub 0} – 2λ{sub 0}, where λ{sub 0} is the average probe wavelength) is considered. The operation principle of this tomograph implies probing a medium by radiation with a coherence length of 8λ{sub 0} and recording a hologram of a focused image of a fixed layer of this medium using spatially separated counterpropagating object and reference beams. Tomograms of the medium studied are calculated using a temporal approach based on application of the time correlation function of probe radiation. (terahertz radiation)

  16. Broadband terahertz generation using the semiconductor-metal transition in VO2

    Directory of Open Access Journals (Sweden)

    Nicholas A. Charipar

    2016-01-01

    Full Text Available We report the design, fabrication, and characterization of broadband terahertz emitters based on the semiconductor-metal transition in thin film VO2 (vanadium dioxide. With the appropriate geometry, picosecond electrical pulses are generated by illuminating 120 nm thick VO2 with 280 fs pulses from a femtosecond laser. These ultrafast electrical pulses are used to drive a simple dipole antenna, generating broadband terahertz radiation.

  17. TERAHERTZ REFLECTANCE SPECTRA OF SKIN DERMATITIS AND MORPHOLOGICAL CHANGES

    Directory of Open Access Journals (Sweden)

    E. A. Strepitov

    2013-05-01

    Full Text Available The article deals withthe diagnostics possibility of dermatitis and morphological changes of human skin using terahertz frequency range equal to 2,0¸0,05 THz. Features of different types of human skin diseases occur in vivo over the entire frequency range, especially in the field of vibration: 2,0¸1,5 THz. They were caused by the backscattering on skin new formations in its upper layers. In terahertz reflection spectra spectral lines of different dermatitis, age spots, haematoma are well distinguishable. Terahertz radiation penetrates well through the medical bandages. At the same time in a single scan, lasting about one minute, the spectrum is processed not only of the bandages, but of different skin layers.

  18. Application of Terahertz Radiation to Soil Measurements: Initial Results

    Science.gov (United States)

    Dworak, Volker; Augustin, Sven; Gebbers, Robin

    2011-01-01

    Developing soil sensors with the possibility of continuous online measurement is a major challenge in soil science. Terahertz (THz) electromagnetic radiation may provide the opportunity for the measurement of organic material density, water content and other soil parameters at different soil depths. Penetration depth and information content is important for a functional soil sensor. Therefore, we present initial research on the analysis of absorption coefficients of four different soil samples by means of THz transmission measurements. An optimized soil sample holder to determine absorption coefficients was used. This setup improves data acquisition because interface reflections can be neglected. Frequencies of 340 GHz to 360 GHz and 1.627 THz to 2.523 THz provided information about an existing frequency dependency. The results demonstrate the potential of this THz approach for both soil analysis and imaging of buried objects. Therefore, the THz approach allows different soil samples to be distinguished according to their different absorption properties so that relations among soil parameters may be established in future. PMID:22163737

  19. Ultrafast control and monitoring of material properties using terahertz pulses

    Energy Technology Data Exchange (ETDEWEB)

    Bowlan, Pamela Renee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Lab. for Ultrafast Materials Optical Science (LUMOS)

    2016-05-02

    These are a set of slides on ultrafast control and monitoring of material properties using terahertz pulses. A few of the topics covered in these slides are: How fast is a femtosecond (fs), Different frequencies probe different properties of molecules or solids, What can a THz pulse do to a material, Ultrafast spectroscopy, Generating and measuring ultrashort THz pulses, Tracking ultrafast spin dynamics in antiferromagnets through spin wave resonances, Coherent two-dimensional THz spectroscopy, and Probing vibrational dynamics at a surface. Conclusions are: Coherent two-dimensional THz spectroscopy: a powerful approach for studying coherence and dynamics of low energy resonances. Applying this to graphene we investigated the very strong THz light mater interaction which dominates over scattering. Useful for studying coupled excitations in multiferroics and monitoring chemical reactions. Also, THz-pump, SHG-probe spectoscopy: an ultrafast, surface sensitive probe of atomic-scale symmetry changes and nonlinear phonon dymanics. We are using this in Bi<sub>2sub>Se>3sub> to investigate the nonlinear surface phonon dynamics. This is potentially very useful for studying catalysis.

  20. Terahertz-range polar modes in domain-engineered BiFeO.sub.3./sub.

    Czech Academy of Sciences Publication Activity Database

    Hlinka, Jiří; Pasciak, Marek; Körbel, S.; Márton, Pavel

    2017-01-01

    Roč. 119, č. 5 (2017), 1-6, č. článku 057604. ISSN 0031-9007 R&D Projects: GA ČR GA15-04121S Institutional support: RVO:68378271 Keywords : ferroelectric domain walls * bismuth ferrite * terahertz spectroscopy * phonons * dielectric permittivity Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 8.462, year: 2016

  1. Terahertz radiation from accelerating charge carriers in graphene under ultrafast photoexcitation

    Science.gov (United States)

    Rustagi, Avinash; Stanton, C. J.

    2016-11-01

    We study the generation of terahertz (THz) radiation from the acceleration of ultrafast photoexcited charge carriers in graphene in the presence of a dc electric field. Our model is based on calculating the transient current density from the time-dependent distribution function which is determined using the Boltzmann transport equation (BTE) within a relaxation time approximation. We include the time-dependent generation of carriers by the pump pulse by solving for the carrier generation rate using the optical Bloch equations in the rotating wave approximation (RWA). The linearly polarized pump pulse generates an anisotropic distribution of photoexcited carriers in the kx-ky plane. The collision integral in the Boltzmann equation includes a term that leads to the thermalization of carriers via carrier-carrier scattering to an effective temperature above the lattice temperature, as well as a cooling term, which leads to energy relaxation via inelastic carrier-phonon scattering. The radiated signal is proportional to the time derivative of the transient current density. In spite of the fact that the magnitude of the velocity is the same for all the carriers in graphene, there is still emitted radiation from the photoexcited charge carriers with frequency components in the THz range due to a change in the direction of velocity of the photoexcited carriers in the external electric field as well as cooling of the photoexcited carriers on a subpicosecond time scale.

  2. Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue

    International Nuclear Information System (INIS)

    Woodward, Ruth M; Cole, Bryan E; Wallace, Vincent P; Pye, Richard J; Arnone, Donald D; Linfield, Edmund H; Pepper, Michael

    2002-01-01

    We demonstrate the application of terahertz pulse imaging (TPI) in reflection geometry for the study of skin tissue and related cancers both in vitro and in vivo. The sensitivity of terahertz radiation to polar molecules, such as water, makes TPI suitable for studying the hydration levels in the skin and the determination of the lateral spread of skin cancer pre-operatively. By studying the terahertz pulse shape in the time domain we have been able to differentiate between diseased and normal tissue for the study of basal cell carcinoma (BCC). Basal cell carcinoma has shown a positive terahertz contrast, and inflammation and scar tissue a negative terahertz contrast compared to normal tissue. In vivo measurements on the stratum corneum have enabled visualization of the stratum corneum-epidermis interface and the study of skin hydration levels. These results demonstrate the potential of terahertz pulse imaging for the study of skin tissue and its related disorders, both in vitro and in vivo

  3. Observation of high-power coherent synchrotron radiation in the THz region from the JAEA energy recovery linac

    International Nuclear Information System (INIS)

    Takahashi, Toshiharu; Okuda, Shuichi; Minehara, Eisuke J.; Hajima, Ryoichi; Sawamura, Masaru; Nagai, Ryoji; Kikuzawa, Nobihiro; Iijima, Hokuto; Nishitani, Tomohiro; Nishimori, Nobuyuki

    2007-01-01

    The energy recovery linac (ERL) is able to generate high-power coherent synchrotron radiation (CSR) in the terahertz and the millimeter-wave regions, because it produces shorter bunches than usual storage rings and a higher current than conventional linacs. The spectrum of CSR has been measured at the JAEA-ERL in the wavenumber range from 0.5 to 15 cm -1 . The detected power was 2x10 -4 W/cm -1 at 2.5 cm -1 for the average beam current of 17.7 μA. When the infrared FEL was operated with the undulator in the ERL, the CSR spectrum was shifted to the longer wavelengths because of the energy broadening of the electron beam. (author)

  4. Anomalous response of superconducting titanium nitride resonators to terahertz radiation

    International Nuclear Information System (INIS)

    Bueno, J.; Baselmans, J. J. A; Coumou, P. C. J. J.; Zheng, G.; Visser, P. J. de; Klapwijk, T. M.; Driessen, E. F. C.; Doyle, S.

    2014-01-01

    We present an experimental study of kinetic inductance detectors (KIDs) fabricated of atomic layer deposited TiN films and characterized at radiation frequencies of 350 GHz. The responsivity to radiation is measured and found to increase with the increase in radiation powers, opposite to what is expected from theory and observed for hybrid niobium titanium nitride/aluminium (NbTiN/Al) and all-aluminium (all-Al) KIDs. The noise is found to be independent of the level of the radiation power. The noise equivalent power improves with higher radiation powers, also opposite to what is observed and well understood for hybrid NbTiN/Al and all-Al KIDs. We suggest that an inhomogeneous state of these disordered superconductors should be used to explain these observations

  5. Anomalous response of superconducting titanium nitride resonators to terahertz radiation

    Energy Technology Data Exchange (ETDEWEB)

    Bueno, J., E-mail: j.bueno@sron.nl; Baselmans, J. J. A [SRON, Netherlands Institute of Space Research, Utrecht (Netherlands); Coumou, P. C. J. J.; Zheng, G. [Kavli Institute of Nanoscience, Delft University of Technology, Delft (Netherlands); Visser, P. J. de [SRON, Netherlands Institute of Space Research, Utrecht (Netherlands); Kavli Institute of Nanoscience, Delft University of Technology, Delft (Netherlands); Klapwijk, T. M. [Kavli Institute of Nanoscience, Delft University of Technology, Delft (Netherlands); Physics Department, Moscow State Pedagogical University, 119991 Moscow (Russian Federation); Driessen, E. F. C. [Université Grenoble Alpes, INAC-SPSMS, F-38000 Grenoble (France); CEA, INAC-SPSMS, F-38000 Grenoble (France); Doyle, S. [Cardiff University, School of Physics and Astronomy, Queens Buildings, Cardiff CF24 3AA (United Kingdom)

    2014-11-10

    We present an experimental study of kinetic inductance detectors (KIDs) fabricated of atomic layer deposited TiN films and characterized at radiation frequencies of 350 GHz. The responsivity to radiation is measured and found to increase with the increase in radiation powers, opposite to what is expected from theory and observed for hybrid niobium titanium nitride/aluminium (NbTiN/Al) and all-aluminium (all-Al) KIDs. The noise is found to be independent of the level of the radiation power. The noise equivalent power improves with higher radiation powers, also opposite to what is observed and well understood for hybrid NbTiN/Al and all-Al KIDs. We suggest that an inhomogeneous state of these disordered superconductors should be used to explain these observations.

  6. Ground-plane-less bidirectional terahertz absorber based on omega resonators

    NARCIS (Netherlands)

    Balmakou, Alexei; Podalov, Maxim; Khakhomov, Sergei; Stavenga, Doekele; Semchenko, Igor

    2015-01-01

    We present a new ultrathin metamaterial that acts as a frequency-selective absorber of terahertz radiation. The absorber is a square array of pairs of omega-shaped micro-resonators made of high-ohmic-loss metal. The metamaterial provides significant suppression of transmitted and reflected radiation

  7. THz calorimetry : An absolute power meter for TeraHertz radiation and the absorptivity of the Herschel Space Observatory telescope mirror coating

    NARCIS (Netherlands)

    Klaassen, T.O.; Hovenier, J.N.; Fischer, J.; Jakob, G.; Poglitsch, A.; Sternberg, O.

    2004-01-01

    A new calorimetric absolute power meter has been developed for THz radiation. This broad band THz power meter measures average power at ambient temperature and pressure, does not use a window, and is insensitive to polarization and time structure of THz radiation. The operation of the power meter is

  8. New Light on the Metal-Insulator Transition in VO<sub>2sub>: A Terahertz Perspective

    DEFF Research Database (Denmark)

    Jepsen, Peter Uhd; Fischer, Bernd M.; Thoman, Andreas

    2005-01-01

    We investigate the metal-insulator (MI) transition in vanadium dioxide (VO2), thin films with Terahertz Time-Domains Spectroscopy (THz-TDS). The capability of detecting both amplitude and phase of the transmission characteristics as the phase of the transmitted THz signal switches at a markedly...

  9. Terahertz probes of magnetic field induced spin reorientation in YFeO{sub 3} single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Xian; Jiang, Junjie; Ma, Guohong, E-mail: ghma@staff.shu.edu.cn [Department of Physics, Shanghai University, Shanghai 200444 (China); Jin, Zuanming [Department of Physics, Shanghai University, Shanghai 200444 (China); Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz (Germany); Wang, Dongyang; Tian, Zhen; Han, Jiaguang [Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Key Laboratory of Optoelectronics Information and Technology (Ministry of Education), Tianjin University, Tianjin 300072 (China); Cheng, Zhenxiang [Department of Physics, Shanghai University, Shanghai 200444 (China); Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, New South Wales 2522 (Australia)

    2015-03-02

    Using the terahertz time-domain spectroscopy, we demonstrate the spin reorientation of a canted antiferromagnetic YFeO{sub 3} single crystal, by evaluating the temperature and magnetic field dependence of resonant frequency and amplitude for the quasi-ferromagnetic (FM) and quasi-antiferromagnetic modes (AFM), a deeper insight into the dynamics of spin reorientation in rare-earth orthoferrites is established. Due to the absence of 4f-electrons in Y ion, the spin reorientation of Fe sublattices can only be induced by the applied magnetic field, rather than temperature. In agreement with the theoretical predication, the frequency of FM mode decreases with magnetic field. In addition, an obvious step of spin reorientation phase transition occurs with a relatively large applied magnetic field of 4 T. By comparison with the family members of RFeO{sub 3} (R = Y{sup 3+} or rare-earth ions), our results suggest that the chosen of R would tailor the dynamical rotation properties of Fe ions, leading to the designable spin switching in the orthoferrite antiferromagnetic systems.

  10. Development of terahertz laser diagnostics for electron density measurements.

    Science.gov (United States)

    Kawahata, K; Akiyama, T; Tanaka, K; Nakayama, K; Okajima, S

    2008-10-01

    A two color laser interferometer using terahertz laser sources is under development for high performance operation on the large helical device and for future burning plasma experiments such as ITER. Through investigation of terahertz laser sources, we have achieved high power simultaneous oscillations at 57.2 and 47.6 microm of a CH(3)OD laser pumped by a cw 9R(8) CO(2) laser line. The laser wavelength around 50 microm is the optimum value for future fusion devices from the consideration of the beam refraction effect and signal-to-noise ratio for an expected phase shift due to plasma. In this article, recent progress of the terahertz laser diagnostics, especially in mechanical vibration compensation by using a two color laser operation and terahertz laser beam transmission through a dielectric waveguide, will be presented.

  11. Terahertz emission from a large-area GaInAsN emitter

    International Nuclear Information System (INIS)

    Peter, Falk; Winnerl, Stephan; Schneider, Harald; Helm, Manfred; Koehler, Klaus

    2008-01-01

    A large-area interdigitated terahertz emitter based on molecular-beam epitaxy grown GaInAsN with an additional AlGaAs heterostructure is investigated as a terahertz source for excitation wavelengths between 1.1 and 1.5 μm. The optical and electrical properties of the emitter material exhibit absorption up to a wavelength of 1.5 μm and have a resistivity of 550 kΩ cm. Terahertz waves were detected by electro-optical sampling with a bandwidth exceeding 2 THz. Best performance is found for excitation wavelengths below 1.35 μm. Furthermore the emission properties for several excitation powers are investigated, showing a linear increase in terahertz emission

  12. Modulation of terahertz generation in dual-color filaments by an external electric field and preformed plasma

    International Nuclear Information System (INIS)

    Li Min; Li An-Yuan; Yuan Shuai; Zeng He-Ping; He Bo-Qu

    2016-01-01

    Terahertz generation driven by dual-color filaments in air is demonstrated to be remarkably enhanced by applying an external electric field to the filaments. As terahertz generation is sensitive to the dual-color phase difference, a preformed plasma is verified efficiently in modulating terahertz radiation from linear to elliptical polarization. In the presence of preformed plasma, a dual-color filament generates terahertz pulses of elliptical polarization and the corresponding ellipse rotates regularly with the change of the preformed plasma density. The observed terahertz modulation with the external electric field and the preformed plasma provides a simple way to estimate the plasma density and evaluate the photocurrent dynamics of the dual-color filaments. It provides further experimental evidence of the photo-current model in governing the dual-color filament driven terahertz generation processes. (paper)

  13. Influence of the electron density on the characteristics of terahertz waves generated under laser–cluster interaction

    Energy Technology Data Exchange (ETDEWEB)

    Frolov, A. A., E-mail: frolov@ihed.ras.ru [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

    2016-12-15

    A theory of generation of terahertz radiation under laser–cluster interaction, developed earlier for an overdense cluster plasma [A. A. Frolov, Plasma Phys. Rep. 42. 637 (2016)], is generalized for the case of arbitrary electron density. The spectral composition of radiation is shown to substantially depend on the density of free electrons in the cluster. For an underdense cluster plasma, there is a sharp peak in the terahertz spectrum at the frequency of the quadrupole mode of a plasma sphere. As the electron density increases to supercritical values, this spectral line vanishes and a broad maximum at the frequency comparable with the reciprocal of the laser pulse duration appears in the spectrum. The dependence of the total energy of terahertz radiation on the density of free electrons is analyzed. The radiation yield is shown to increase significantly under resonance conditions, when the laser frequency is close to the eigenfrequency of the dipole or quadrupole mode of a plasma sphere.

  14. Ultrafast terahertz photoconductivity in nanocrystalline mesoporous TiO.sub.2./sub. films

    Czech Academy of Sciences Publication Activity Database

    Němec, Hynek; Kužel, Petr; Kadlec, Filip; Fattakhova-Rohlfing, D.; Szeifert, J.; Bein, T.; Kalousek, Vít; Rathouský, Jiří

    2010-01-01

    Roč. 96, č. 6 (2010), 062103/1-062103/3 ISSN 0003-6951 R&D Projects: GA ČR(CZ) GP202/09/P099; GA AV ČR(CZ) IAA100100902; GA ČR GA104/08/0435; GA ČR GD203/08/H032 Institutional research plan: CEZ:AV0Z10100520; CEZ:AV0Z40400503 Keywords : time-resolved terahertz spectroscopy * ultrafast photoconductivity * TiO 2 nanoparticles * brick and mortar technology Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.820, year: 2010

  15. Terahertz in-line digital holography of human hepatocellular carcinoma tissue

    Science.gov (United States)

    Rong, Lu; Latychevskaia, Tatiana; Chen, Chunhai; Wang, Dayong; Yu, Zhengping; Zhou, Xun; Li, Zeyu; Huang, Haochong; Wang, Yunxin; Zhou, Zhou

    2015-02-01

    Terahertz waves provide a better contrast in imaging soft biomedical tissues than X-rays, and unlike X-rays, they cause no ionisation damage, making them a good option for biomedical imaging. Terahertz absorption imaging has conventionally been used for cancer diagnosis. However, the absorption properties of a cancerous sample are influenced by two opposing factors: an increase in absorption due to a higher degree of hydration and a decrease in absorption due to structural changes. It is therefore difficult to diagnose cancer from an absorption image. Phase imaging can thus be critical for diagnostics. We demonstrate imaging of the absorption and phase-shift distributions of 3.2 mm × 2.3 mm × 30-μm-thick human hepatocellular carcinoma tissue by continuous-wave terahertz digital in-line holography. The acquisition time of a few seconds for a single in-line hologram is much shorter than that of other terahertz diagnostic techniques, and future detectors will allow acquisition of meaningful holograms without sample dehydration. The resolution of the reconstructions was enhanced by sub-pixel shifting and extrapolation. Another advantage of this technique is its relaxed minimal sample size limitation. The fibrosis indicated in the phase distribution demonstrates the potential of terahertz holographic imaging to obtain a more objective, early diagnosis of cancer.

  16. Terahertz in-line digital holography of human hepatocellular carcinoma tissue.

    Science.gov (United States)

    Rong, Lu; Latychevskaia, Tatiana; Chen, Chunhai; Wang, Dayong; Yu, Zhengping; Zhou, Xun; Li, Zeyu; Huang, Haochong; Wang, Yunxin; Zhou, Zhou

    2015-02-13

    Terahertz waves provide a better contrast in imaging soft biomedical tissues than X-rays, and unlike X-rays, they cause no ionisation damage, making them a good option for biomedical imaging. Terahertz absorption imaging has conventionally been used for cancer diagnosis. However, the absorption properties of a cancerous sample are influenced by two opposing factors: an increase in absorption due to a higher degree of hydration and a decrease in absorption due to structural changes. It is therefore difficult to diagnose cancer from an absorption image. Phase imaging can thus be critical for diagnostics. We demonstrate imaging of the absorption and phase-shift distributions of 3.2 mm × 2.3 mm × 30-μm-thick human hepatocellular carcinoma tissue by continuous-wave terahertz digital in-line holography. The acquisition time of a few seconds for a single in-line hologram is much shorter than that of other terahertz diagnostic techniques, and future detectors will allow acquisition of meaningful holograms without sample dehydration. The resolution of the reconstructions was enhanced by sub-pixel shifting and extrapolation. Another advantage of this technique is its relaxed minimal sample size limitation. The fibrosis indicated in the phase distribution demonstrates the potential of terahertz holographic imaging to obtain a more objective, early diagnosis of cancer.

  17. Absorption-reduced waveguide structure for efficient terahertz generation

    Energy Technology Data Exchange (ETDEWEB)

    Pálfalvi, L., E-mail: palfalvi@fizika.ttk.pte.hu [Institute of Physics, University of Pécs, Ifjúság ú. 6, 7624 Pécs (Hungary); Fülöp, J. A. [MTA-PTE High-Field Terahertz Research Group, Ifjúság ú. 6, 7624 Pécs (Hungary); Szentágothai Research Centre, University of Pécs, Ifjúság ú. 20, 7624 Pécs (Hungary); Hebling, J. [Institute of Physics, University of Pécs, Ifjúság ú. 6, 7624 Pécs (Hungary); MTA-PTE High-Field Terahertz Research Group, Ifjúság ú. 6, 7624 Pécs (Hungary); Szentágothai Research Centre, University of Pécs, Ifjúság ú. 20, 7624 Pécs (Hungary)

    2015-12-07

    An absorption-reduced planar waveguide structure is proposed for increasing the efficiency of terahertz (THz) pulse generation by optical rectification of femtosecond laser pulses with tilted-pulse-front in highly nonlinear materials with large absorption coefficient. The structure functions as waveguide both for the optical pump and the generated THz radiation. Most of the THz power propagates inside the cladding with low THz absorption, thereby reducing losses and leading to the enhancement of the THz generation efficiency by up to more than one order of magnitude, as compared with a bulk medium. Such a source can be suitable for highly efficient THz pulse generation pumped by low-energy (nJ-μJ) pulses at high (MHz) repetition rates delivered by compact fiber lasers.

  18. Terahertz radiation generation by beating of two laser beams in a collisional plasma with oblique magnetic field

    Science.gov (United States)

    Hematizadeh, Ayoob; Jazayeri, Seyed Masud; Ghafary, Bijan

    2018-02-01

    A scheme for excitation of terahertz (THz) radiation is presented by photo mixing of two super-Gaussian laser beams in a rippled density collisional magnetized plasma. Lasers having different frequencies and wave numbers but the same electric fields create a ponderomotive force on the electrons of plasma in the beating frequency. Super-Gaussian laser beam has the exclusive features such as steep gradient in laser intensity distribution, wider cross-section in comparison with Gaussian profiles, which make stronger ponderomotive force and higher THz radiation. The magnetic field is considered oblique to laser beams propagation direction; in this case, depending on the phase matching conditions different mode waves can propagate in plasma. It is found that amplitude and efficiency of the emitted THz radiation not only are sensitive to the beating frequency, collision frequency, and magnetic field strength but to the angle between laser beams and static magnetic field. The efficiency of THz radiation can be optimized in a certain angle.

  19. In vitro terahertz monitoring of muscle tissue dehydration under the action of hyperosmotic agents

    Energy Technology Data Exchange (ETDEWEB)

    Kolesnikov, A S; Kolesnikova, E A; Popov, A P; Tuchin, V V [N.G. Chernyshevsky Saratov State University, Saratov (Russian Federation); Nazarov, M M [Institute on Laser and Information Technologies, Russian Academy of Sciences, Shatura, Moscow Region (Russian Federation); Shkurinov, A P [International Laser Center, M. V. Lomonosov Moscow State University, Moscow (Russian Federation)

    2014-07-31

    Dehydration of muscle tissue in vitro under the action of biologically compatible hyperosmotic agents is studied using a laser terahertz spectrometer in the frequency range from 0.25 to 2.5 THz. Broadband terahertz absorption and reflection spectra of the bovine skeletal muscle tissue were obtained under the action of glycerol, polyethylene glycol with the molecular weight 600 (PEG-600), and propylene glycol. The presented results are proposed for application in developing the methods of image contrast enhancement and increasing the depth of biological tissue probing with terahertz radiation. (laser biophotonics)

  20. Terahertz electric field driven electric currents and ratchet effects in graphene

    Energy Technology Data Exchange (ETDEWEB)

    Ganichev, Sergey D.; Weiss, Dieter; Eroms, Jonathan [Terahertz Center, University of Regensburg (Germany)

    2017-11-15

    Terahertz field induced photocurrents in graphene were studied experimentally and by microscopic modeling. Currents were generated by cw and pulsed laser radiation in large area as well as small-size exfoliated graphene samples. We review general symmetry considerations leading to photocurrents depending on linear and circular polarized radiation and then present a number of situations where photocurrents were detected. Starting with the photon drag effect under oblique incidence, we proceed to the photogalvanic effect enhancement in the reststrahlen band of SiC and edge-generated currents in graphene. Ratchet effects were considered for in-plane magnetic fields and a structure inversion asymmetry as well as for graphene with non-symmetric patterned top gates. Lastly, we demonstrate that graphene can be used as a fast, broadband detector of terahertz radiation. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Terahertz Fibres and Functional FibreI-Based Devices

    DEFF Research Database (Denmark)

    Bao, Hualong

    The area of Terahertz (THz) radiation has been proved to be a very promising utility for a wide range of applications. However, since current THz systems predominantly utilize freespace propagation, the large size and requirement of careful alignment thus increasing the complexity are the drawbacks...

  2. Open Resonator for Summation of Powers in Sub-Terahertz and Terahertz Frequencies

    Science.gov (United States)

    Kuz'michev, I. K.; Yeryomka, V. D.; May, A. V.; Troshchilo, A. S.

    2017-03-01

    Purpose: Study of excitation features for the first higher axialasymmetric type oscillations in an open resonator connected into the waveguide transmission line. Design/methodology/approach: To determine the efficiency of higher oscillation excitation in the resonator by using the highest wave of a rectangular waveguide, the coefficient of the antenna surface utilization is used. The coefficient of reflection from the open resonator is determined by the known method of summation of the partial coefficients of reflection from the resonant system. Findings: The excitation efficiency of the first higher axial asymmetric type TEM10q oscillations in an open resonator connected into the waveguide transmission line, using the TE20 type wave, is considered. The research efforts were made with accounting for the electromagnetic field vector nature. It is shown that for certain sizes of exciting coupler the excitation efficiency of the working excitation is equal to 0.867. Besides, this resonant system has a single frequency response within a wide band of frequencies. Due to this, it can be applied for summation of powers for individual sources of oscillations. Since this resonant system allows separating the matching functions as to the field and coupling, it is possible to provide any prescribed coupling of sources with a resonant volume. For this purpose, one- dimensional diffraction gratings (E-polarization) are used. Conclusions: With the matched excitation of axially asymmetric modes of oscillations the resonant system has an angular and frequency spectrum selection that is of great practical importance for powers summation. By application of one- dimensional diffraction gratings (E-polarization), located in apertures of coupling elements, the active elements can be matched with the resonant volume.

  3. High-power terahertz optical pulse generation with a dual-wavelength harmonically mode-locked Yb:YAG laser

    International Nuclear Information System (INIS)

    Zhuang, W Z; Chang, M T; Su, K W; Huang, K F; Chen, Y F

    2013-01-01

    We report on high-power terahertz optical pulse generation with a dual-wavelength harmonically mode-locked Yb:YAG laser. A semiconductor saturable absorber mirror is developed to achieve synchronously mode-locked operation at two spectral bands centered at 1031.67 and 1049.42 nm with a pulse duration of 1.54 ps and a pulse repetition rate of 80.3 GHz. With a diamond heat spreader to improve the heat removal efficiency, the average output power can be up to 1.1 W at an absorbed pump power of 5.18 W. The autocorrelation traces reveal that the mode-locked pulse is modulated with a beat frequency of 4.92 THz and displays a modulation depth to be greater than 80%. (paper)

  4. Breakdown-prone volume in terahertz wave beams

    Energy Technology Data Exchange (ETDEWEB)

    Nusinovich, G. S.; Qiao, F.; Kashyn, D. G.; Pu, R. [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20742-3511 (United States); Dolin, L. S. [Institute of Applied Physics, Nizhny Novgorod 603600 (Russian Federation)

    2013-06-21

    This study was motivated by the recently proposed concept of remote detection of concealed radioactive materials by a focused terahertz (THz) radiation [V. L. Granatstein and G. S. Nusinovich, J. Appl. Phys. 108, 063304 (2010)]. According to this concept, a high-power THz radiation should be focused in a small spot where the field intensity exceeds the breakdown threshold. In the presence of free electrons in such a breakdown-prone volume, a THz discharge will occur there. However, this volume should be so small that in the absence of ionizing sources in its vicinity the probability to have there any free electrons is low. Then, the increased breakdown rate in a series of THz pulses would indicate the presence of hidden radioactive materials in the vicinity of the focused spot. For this concept, it is important to accurately determine the breakdown-prone volume created by a focused THz radiation. This problem is analyzed in this paper, first, for the case of a single wave beam and, then, for the case of crossing wave beams of different polarizations. The problem is studied first ignoring the diffraction spread of wave beams in the vicinity of the focal plane and, then, with the account for the diffraction spreading. Then, relations between the THz wave power, the range of such a system and the breakdown-prone volume are analyzed. Finally, the effect of the atmospheric turbulence on propagation and focusing of THz wave beams in air is considered.

  5. Breakdown-prone volume in terahertz wave beams

    International Nuclear Information System (INIS)

    Nusinovich, G. S.; Qiao, F.; Kashyn, D. G.; Pu, R.; Dolin, L. S.

    2013-01-01

    This study was motivated by the recently proposed concept of remote detection of concealed radioactive materials by a focused terahertz (THz) radiation [V. L. Granatstein and G. S. Nusinovich, J. Appl. Phys. 108, 063304 (2010)]. According to this concept, a high-power THz radiation should be focused in a small spot where the field intensity exceeds the breakdown threshold. In the presence of free electrons in such a breakdown-prone volume, a THz discharge will occur there. However, this volume should be so small that in the absence of ionizing sources in its vicinity the probability to have there any free electrons is low. Then, the increased breakdown rate in a series of THz pulses would indicate the presence of hidden radioactive materials in the vicinity of the focused spot. For this concept, it is important to accurately determine the breakdown-prone volume created by a focused THz radiation. This problem is analyzed in this paper, first, for the case of a single wave beam and, then, for the case of crossing wave beams of different polarizations. The problem is studied first ignoring the diffraction spread of wave beams in the vicinity of the focal plane and, then, with the account for the diffraction spreading. Then, relations between the THz wave power, the range of such a system and the breakdown-prone volume are analyzed. Finally, the effect of the atmospheric turbulence on propagation and focusing of THz wave beams in air is considered.

  6. Large static tuning of narrow-beam terahertz plasmonic lasers operating at 78K

    Directory of Open Access Journals (Sweden)

    Chongzhao Wu

    2017-02-01

    Full Text Available A new tuning mechanism is demonstrated for single-mode metal-clad plasmonic lasers, in which the refractive-index of the laser’s surrounding medium affects the resonant-cavity mode in the same vein as the refractive-index of gain medium inside the cavity. Reversible, continuous, and mode-hop-free tuning of ∼57 GHz is realized for single-mode narrow-beam terahertz plasmonic quantum-cascade lasers (QCLs, which is demonstrated at a much more practical temperature of 78 K. The tuning is based on post-process deposition/etching of a dielectric (silicon-dioxide on a QCL chip that has already been soldered and wire-bonded onto a copper mount. This is a considerably larger tuning range compared to previously reported results for terahertz QCLs with directional far-field radiation patterns. The key enabling mechanism for tuning is a recently developed antenna-feedback scheme for plasmonic lasers, which leads to the generation of hybrid surface-plasmon-polaritons propagating outside the cavity of the laser with a large spatial extent. The effect of dielectric deposition on QCL’s characteristics is investigated in detail including that on maximum operating temperature, peak output power, and far-field radiation patterns. Single-lobed beam with low divergence (<7° is maintained through the tuning range. The antenna-feedback scheme is ideally suited for modulation of plasmonic lasers and their sensing applications due to the sensitive dependence of spectral and radiative properties of the laser on its surrounding medium.

  7. Spectral investigation of hot-spot and cavity resonance effects on the terahertz radiation emitted from high-Tc superconducting Bi2Sr2CaCu2O8+δ single crystal mesa structures

    Science.gov (United States)

    Kadowaki, Kazuo; Watanabe, Chiharu; Minami, Hidetoshi; Yamamoto, Takashi; Kashiwagi, Takanari; Klemm, Richard

    2014-03-01

    Terahertz (THz) electromagnetic radiation emitted from high-Tc superconducting Bi2Sr2CaCu2O8+δ mesa structures in the case of single mesa and series-connected mesas is investigated by the FTIR spectroscopic technique while observing its temperature distribution simultaneously by a SiC photoluminescence technique. Changing the bias level, sudden jumps of the hot-spot position were clearly observed. Although the radiation intensity changes drastically associated with the jump of the hot spot position, the frequency is unaffected as long as the voltage per junction is kept constant. Since the frequency of the intense radiation satisfies the cavity resonance condition, we confirmed that the cavity resonance is of primarily importance for the synchronization of whole intrinsic Josephson junctions in the mesa for high power radiation. This work was supported in part by the Grant-in-Aid for challenging Exploratory Research, the Ministry of Education, Culture, Sports, Science & Technology (MEXT).

  8. Combined application of sub-toxic level of silver nanoparticles with low powers of 2450 MHz microwave radiation lead to kill Escherichia coli in a short time

    Directory of Open Access Journals (Sweden)

    Bardia Varastehmoradi

    2013-09-01

    Full Text Available   Objective(s: Electromagnetic radiations which have lethal effects on the living cells are currently also considered as a disinfective physical agent.   Materials and Methods: In this investigation, silver nanoparticles were applied to enhance the lethal action of low powers (100 and 180 W of 2450 MHZ electromagnetic radiation especially against Escherichia coli ATCC 8739. Silver nanoparticles were biologically prepared and used for next experiments. Sterile normal saline solution was prepared and supplemented by silver nanoparticles to reach the sub-inhibitory concentration (6.25 μg/mL. Such diluted silver colloid as well as free-silver nanoparticles solution was inoculated along with test microorganisms, particularly E. coli. These suspensions were separately treated by 2450 MHz electromagnetic radiation for different time intervals in a microwave oven operated at low powers (100 W and 180 W. The viable counts of bacteria before and after each radiation time were determined by colony-forming unit (CFU method. Results: Results showed that the addition of silver nanoparticles significantly decreased the required radiation time to kill vegetative forms of microorganisms. However, these nanoparticles had no combined effect with low power electromagnetic radiation when used against Bacillus subtilis spores. Conclusion: The cumulative effect of silver nanoparticles and low powers electromagnetic radiation may be useful in medical centers to reduce contamination in polluted derange and liquid wastes materials and some devices.

  9. High-power dual-wavelength external-Cavity diode laser based on tapered amplifier with tunable terahertz frequency difference

    DEFF Research Database (Denmark)

    Chi, Mingjun; Jensen, Ole Bjarlin; Petersen, Paul Michael

    2011-01-01

    Tunable dual-wavelength operation of a diode laser system based on a tapered diode amplifier with double-Littrow external-cavity feedback is demonstrated around 800nm. The two wavelengths can be tuned individually, and the frequency difference of the two wavelengths is tunable from 0.5 to 5:0 THz......, this is the highest output power from a dual-wavelength diode laser system operating with tunable terahertz frequency difference. © 2011 Optical Society of America....

  10. Electromagnetic radiation from vortex flow in type-II superconductors

    OpenAIRE

    Bulaevskii, L. N.; Chudnovsky, E. M.

    2006-01-01

    We show that a moving vortex lattice, as it comes to a crystal edge, radiates into a free space the harmonics of the washboard frequency, $\\omega_0=2\\pi v/a$, up to a superconducting gap, $\\Delta/\\hbar$. Here $v$ is the velocity of the vortex lattice and $a$ is the intervortex spacing. We compute radiation power and show that this effect can be used for generation of terahertz radiation and for characterization of moving vortex lattices.

  11. Terahertz reflection spectroscopy of Debye relaxation in polar liquids

    DEFF Research Database (Denmark)

    Møller, Uffe; Cooke, David; Tanaka, Koichiro

    2009-01-01

    Terahertz (THz) radiation interacts strongly with the intermolecular hydrogen-bond network in aqueous liquids. The dielectric properties of liquid water and aqueous solutions in the THz spectral region are closely linked to the microscopic dynamics of the liquid solution, and hence THz spectrosco...

  12. Time-resolved single-shot terahertz time-domain spectroscopy for ultrafast irreversible processes

    Science.gov (United States)

    Zhai, Zhao-Hui; Zhong, Sen-Cheng; Li, Jun; Zhu, Li-Guo; Meng, Kun; Li, Jiang; Liu, Qiao; Peng, Qi-Xian; Li, Ze-Ren; Zhao, Jian-Heng

    2016-09-01

    Pulsed terahertz spectroscopy is suitable for spectroscopic diagnostics of ultrafast events. However, the study of irreversible or single shot ultrafast events requires ability to record transient properties at multiple time delays, i.e., time resolved at single shot level, which is not available currently. Here by angular multiplexing use of femtosecond laser pulses, we developed and demonstrated a time resolved, transient terahertz time domain spectroscopy technique, where burst mode THz pulses were generated and then detected in a single shot measurement manner. The burst mode THz pulses contain 2 sub-THz pulses, and the time gap between them is adjustable up to 1 ns with picosecond accuracy, thus it can be used to probe the single shot event at two different time delays. The system can detect the sub-THz pulses at 0.1 THz-2.5 THz range with signal to noise ratio (SNR) of ˜400 and spectrum resolution of 0.05 THz. System design was described here, and optimizations of single shot measurement of THz pulses were discussed in detail. Methods to improve SNR were also discussed in detail. A system application was demonstrated where pulsed THz signals at different time delays of the ultrafast process were successfully acquired within single shot measurement. This time resolved transient terahertz time domain spectroscopy technique provides a new diagnostic tool for irreversible or single shot ultrafast events where dynamic information can be extracted at terahertz range within one-shot experiment.

  13. Phase-locking to a free-space terahertz comb for metrological-grade terahertz lasers.

    Science.gov (United States)

    Consolino, L; Taschin, A; Bartolini, P; Bartalini, S; Cancio, P; Tredicucci, A; Beere, H E; Ritchie, D A; Torre, R; Vitiello, M S; De Natale, P

    2012-01-01

    Optical frequency comb synthesizers have represented a revolutionary approach to frequency metrology, providing a grid of frequency references for any laser emitting within their spectral coverage. Extending the metrological features of optical frequency comb synthesizers to the terahertz domain would be a major breakthrough, due to the widespread range of accessible strategic applications and the availability of stable, high-power and widely tunable sources such as quantum cascade lasers. Here we demonstrate phase-locking of a 2.5 THz quantum cascade laser to a free-space comb, generated in a LiNbO(3) waveguide and covering the 0.1-6 THz frequency range. We show that even a small fraction (quantum cascade laser is sufficient to generate a beat note suitable for phase-locking to the comb, paving the way to novel metrological-grade terahertz applications, including high-resolution spectroscopy, manipulation of cold molecules, astronomy and telecommunications.

  14. Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities

    KAUST Repository

    Zhang, Xueqian; Tian, Zhen; Yue, Weisheng; Gu, Jianqiang; Zhang, Shuang; Han, Jiaguang; Zhang, Weili

    2013-01-01

    A broadband terahertz wave deflector based on metasurface induced phase discontinuities is reported. Various frequency components ranging from 0.43 to 1.0 THz with polarization orthogonal to the incidence are deflected into a broad range of angles from 25° to 84°. A Fresnel zone plate consequently developed from the beam deflector is capable of focusing a broadband terahertz radiation. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities

    KAUST Repository

    Zhang, Xueqian

    2013-06-21

    A broadband terahertz wave deflector based on metasurface induced phase discontinuities is reported. Various frequency components ranging from 0.43 to 1.0 THz with polarization orthogonal to the incidence are deflected into a broad range of angles from 25° to 84°. A Fresnel zone plate consequently developed from the beam deflector is capable of focusing a broadband terahertz radiation. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Frequency-division multiplexer and demultiplexer for terahertz wireless links.

    Science.gov (United States)

    Ma, Jianjun; Karl, Nicholas J; Bretin, Sara; Ducournau, Guillaume; Mittleman, Daniel M

    2017-09-28

    The development of components for terahertz wireless communications networks has become an active and growing research field. However, in most cases these components have been studied using a continuous or broadband-pulsed terahertz source, not using a modulated data stream. This limitation may mask important aspects of the performance of the device in a realistic system configuration. We report the characterization of one such device, a frequency multiplexer, using modulated data at rates up to 10 gigabits per second. We also demonstrate simultaneous error-free transmission of two signals at different carrier frequencies, with an aggregate data rate of 50 gigabits per second. We observe that the far-field spatial variation of the bit error rate is different from that of the emitted power, due to a small nonuniformity in the angular detection sensitivity. This is likely to be a common feature of any terahertz communication system in which signals propagate as diffracting beams not omnidirectional broadcasts.There is growing interest in the development of components to facilitate wireless communications in the terahertz but the characterization of these systems involve an unmodulated input. Here the authors demonstrate multiplexing and demultiplexing of data streams in the terahertz range using a real data link.

  17. Terahertz Josephson spectral analysis and its applications

    Science.gov (United States)

    Snezhko, A. V.; Gundareva, I. I.; Lyatti, M. V.; Volkov, O. Y.; Pavlovskiy, V. V.; Poppe, U.; Divin, Y. Y.

    2017-04-01

    Principles of Hilbert-transform spectral analysis (HTSA) are presented and advantages of the technique in the terahertz (THz) frequency range are discussed. THz HTSA requires Josephson junctions with high values of characteristic voltages I c R n and dynamics described by a simple resistively shunted junction (RSJ) model. To meet these requirements, [001]- and [100]-tilt YBa2Cu3O7-x bicrystal junctions with deviations from the RSJ model less than 1% have been developed. Demonstrators of Hilbert-transform spectrum analyzers with various cryogenic environments, including integration into Stirling coolers, are described. Spectrum analyzers have been characterized in the spectral range from 50 GHz to 3 THz. Inside a power dynamic range of five orders, an instrumental function of the analyzers has been found to have a Lorentz form around a single frequency of 1.48 THz with a spectral resolution as low as 0.9 GHz. Spectra of THz radiation from optically pumped gas lasers and semiconductor frequency multipliers have been studied with these spectrum analyzers and the regimes of these radiation sources were optimized for a single-frequency operation. Future applications of HTSA will be related with quick and precise spectral characterization of new radiation sources and identification of substances in the THz frequency range.

  18. Numerical and experimental studies of mechanisms underlying the effect of pulsed broadband terahertz radiation on nerve cells

    Energy Technology Data Exchange (ETDEWEB)

    Duka, M V; Dvoretskaya, L N; Babelkin, N S; Khodzitskii, M K; Chivilikhin, S A; Smolyanskaya, O A [St. Petersburg National Research University of Information Technologies, Mechanics and Optics, St. Petersburg (Russian Federation)

    2014-08-31

    We have studied the mechanisms underlying the effect of pulsed broadband terahertz radiation on the growth of neurites of sensory ganglia using a comparative analysis of measured reflection spectra of ganglion neurites (in the frequency range 0.1 – 2.0 THz) and spectra obtained by numerical simulation with CST Microwave Studio. The observed changes are shown to be mainly due to pulse energy absorption in the ganglion neurites. Of particular interest are the observed single resonance frequencies related to resonance size effects, which can be used to irradiate ganglia in order to activate their growth. (laser biophotonics)

  19. Suggested design of gold-nanoobjects-based terahertz radiation source for biomedical research.

    Science.gov (United States)

    Postnikov, Andrei; Moldosanov, Kamil

    2018-04-18

    Gold nanoparticles (GNPs) may serve as "devices" to emit electromagnetic radiation in the terahertz (THz) range, whereby the energy is delivered by radio frequency or microwave photons which won't by themselves induce transitions between sparse confinement-shaped electron levels of a GNP, but may borrow the energy from longitudinal acoustic phonons to overcome the confinement gap. Upon excitation, the Fermi electron cannot relax otherwise than via emitting a THz photon, the other relaxation channels being blocked by force of shape and size considerations. Within this general scope that has been already outlined earlier, the present work specifically discusses two-phonon processes, namely (i) a combined absorption-emission of two phonons from the top of the longitudinal acoustic branch, and (ii) an absorption of two such phonons with nearly identical wavevectors. The case (i) may serve as a source of "soft" THz radiation (at ≃0.54 THz), the case (ii) the "hard" THz radia- tion at 8.7 THz. Numerical estimates are done for crystalline particles in the shape of rhombicuboctahedra, of 5 - 7 nm "diameter". A technical realisation of this idea is briefly discussed, assuming the deposition of GNPs onto / within the substrate of Teflon, the material sustaining high temperatures and transparent in the THz range. © 2018 IOP Publishing Ltd.

  20. Terahertz performance of quasioptical front-ends with a hotelectron bolometer

    International Nuclear Information System (INIS)

    Semenov, A; Richter, H; Guenther, B; Huebers, H-W; Karamarkovic, J

    2006-01-01

    We present terahertz performance of quasioptical front-ends consisting of a hotelectron bolometer imbedded in a planar feed antenna and integrated with an immersion lens. The impedance and radiation pattern of the log-spiral and double-slot planar feeds are evaluated using the method of moments; the collimating action of the lens is modelled using the physical optics. The total efficiency of the front-ends is computed taking into account frequency dependent impedance of the bolometer. Measured performance of the front-ends qualifies the simulation technique as a reliable tool for the design of terahertz receivers

  1. Electromagnetic radiation from vortex flow in Type-II superconductors.

    Science.gov (United States)

    Bulaevskii, L N; Chudnovsky, E M

    2006-11-10

    We show that a moving vortex lattice, as it comes to a crystal edge, radiates into a free space the harmonics of the washboard frequency, omega(0)=2pi v/a, up to a superconducting gap, Delta/variant Planck's over 2pi. Here v is the velocity of the vortex lattice and a is the intervortex spacing. We compute radiation power and show that this effect can be used for the generation of terahertz radiation and for characterization of moving vortex lattices.

  2. Electromagnetic Radiation from Vortex Flow in Type-II Superconductors

    International Nuclear Information System (INIS)

    Bulaevskii, L. N.; Chudnovsky, E. M.

    2006-01-01

    We show that a moving vortex lattice, as it comes to a crystal edge, radiates into a free space the harmonics of the washboard frequency, ω 0 =2πv/a, up to a superconducting gap, Δ/(ℎ/2π). Here v is the velocity of the vortex lattice and a is the intervortex spacing. We compute radiation power and show that this effect can be used for the generation of terahertz radiation and for characterization of moving vortex lattices

  3. Terahertz detectors using hot-electrons in superconducting films

    Energy Technology Data Exchange (ETDEWEB)

    Semenov, A. [DLR, Inst. of Planetary Research, Berlin (Germany)

    2007-07-01

    Recently the terahertz gap has been recognized as a prospective spectral range for radioastronomy as well as for material and security studies. Implementation of terahertz technology in these fields requires further improvement of instruments and their major subcomponents. Physical phenomena associated with the local and homogeneous non-equilibrium electron sates in thin superconducting films offer numerous possibilities for the development of terahertz and infrared detectors. Depending on the nature of the resistive state and the operation regime, a variety of detector can be realized. They are e.g. direct bolometric or kinetic inductance detectors, heterodyne mixers or photon counters. Operation principles and physical limitations of these devices will be discussed. Two examples of the detector development made in cooperation between the German Aerospace Center, the University of Karlsruhe and PTB, Berlin will be presented. The energy resolving single-photon detector with an almost fundamentally limited energy resolution of 0.6 eV at 6.5 K for photons with wavelengths from 400 nm to 2500 nm and the heterodyne mixer quasioptically coupled to radiation in the frequency range from 0.8 THz to 5 THz and providing a noise temperature of less then ten times the quantum limit. The mixers will be implemented in the terahertz radar for security screening (TERASEC) and in the heterodyne receiver of the stratospheric observatory SOFIA. (orig.)

  4. Thermal management in MoS{sub 2} based integrated device using near-field radiation

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Jiebin [Department of Physics, National University of Singapore, Singapore 117546 (Singapore); Zhang, Gang, E-mail: zhangg@ihpc.a-star.edu.sg [Institute of High Performance Computing, A*STAR, Singapore 138632 (Singapore); Li, Baowen [Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309 (United States)

    2015-09-28

    Recently, wafer-scale growth of monolayer MoS{sub 2} films with spatial homogeneity is realized on SiO{sub 2} substrate. Together with the latest reported high mobility, MoS{sub 2} based integrated electronic devices are expected to be fabricated in the near future. Owing to the low lattice thermal conductivity in monolayer MoS{sub 2}, and the increased transistor density accompanied with the increased power density, heat dissipation will become a crucial issue for these integrated devices. In this letter, using the formalism of fluctuation electrodynamics, we explored the near-field radiative heat transfer from a monolayer MoS{sub 2} to graphene. We demonstrate that in resonance, the maximum heat transfer via near-field radiation between MoS{sub 2} and graphene can be ten times higher than the in-plane lattice thermal conduction for MoS{sub 2} sheet. Therefore, an efficient thermal management strategy for MoS{sub 2} integrated device is proposed: Graphene sheet is brought into close proximity, 10–20 nm from MoS{sub 2} device; heat energy transfer from MoS{sub 2} to graphene via near-field radiation; this amount of heat energy then be conducted to contact due to ultra-high lattice thermal conductivity of graphene. Our work sheds light for developing cooling strategy for nano devices constructing with low thermal conductivity materials.

  5. Highly tunable SrTiO.sub.3./sub./DyScO.sub.3./sub. heterostructures for applications in the terahertz range

    Czech Academy of Sciences Publication Activity Database

    Kužel, Petr; Kadlec, Filip; Petzelt, Jan; Schubert, J.; Panaitov, G.

    2007-01-01

    Roč. 91, č. 23 (2007), 232911/1-232911/3 ISSN 0003-6951 R&D Projects: GA MŠk LC512; GA ČR(CZ) GA202/06/0286 Grant - others:DAAD-ASCR(XE) D20-CZ4/06-07 Institutional research plan: CEZ:AV0Z10100520 Keywords : ferroelectric * terahertz * strontium titanate * thin film * soft mode Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.596, year: 2007

  6. Harmonics generation of a terahertz wakefield free-electron laser from a dielectric loaded waveguide excited by a direct current electron beam.

    Science.gov (United States)

    Li, Weiwei; Lu, Yalin; He, Zhigang; Jia, Qika; Wang, Lin

    2016-06-01

    We propose to generate high-power terahertz (THz) radiation from a cylindrical dielectric loaded waveguide (DLW) excited by a direct-current electron beam with the harmonics generation method. The DLW supports a discrete set of modes that can be excited by an electron beam passing through the structure. The interaction of these modes with the co-propagating electron beam results in micro-bunching and the coherent enhancement of the wakefield radiation, which is dominated by the fundamental mode. By properly choosing the parameters of DLW and beam energy, the high order modes can be the harmonics of the fundamental one; thus, high frequency radiation corresponding to the high order modes will benefit from the dominating bunching process at the fundamental eigenfrequency and can also be coherently excited. With the proposed method, high power THz radiation can be obtained with an easily achievable electron beam and a large DLW structure.

  7. Terahertz Radiation Heterodyne Detector Using Two-Dimensional Electron Gas in a GaN Heterostructure

    Science.gov (United States)

    Karasik, Boris S.; Gill, John J.; Mehdi, Imran; Crawford, Timothy J.; Sergeev, Andrei V.; Mitin, Vladimir V.

    2012-01-01

    High-resolution submillimeter/terahertz spectroscopy is important for studying atmospheric and interstellar molecular gaseous species. It typically uses heterodyne receivers where an unknown (weak) signal is mixed with a strong signal from the local oscillator (LO) operating at a slightly different frequency. The non-linear mixer devices for this frequency range are unique and are not off-the-shelf commercial products. Three types of THz mixers are commonly used: Schottky diode, superconducting hot-electron bolometer (HEB), and superconductor-insulation-superconductor (SIS) junction. A HEB mixer based on the two-dimensional electron gas (2DEG) formed at the interface of two slightly dissimilar semiconductors was developed. This mixer can operate at temperatures between 100 and 300 K, and thus can be used with just passive radiative cooling available even on small spacecraft.

  8. High-T{sub c} superconducting Josephson mixers for terahertz heterodyne detection

    Energy Technology Data Exchange (ETDEWEB)

    Malnou, M.; Feuillet-Palma, C.; Olanier, L.; Lesueur, J.; Bergeal, N. [Laboratoire de Physique et d' Etude des Matériaux—UMR8213-CNRS-ESPCI ParisTech-UPMC-PSL university, 10 Rue Vauquelin—75005 Paris (France); Ulysse, C.; Faini, G. [Laboratoire de Photonique et de Nanostructures LPN-CNRS, Route de Nozay, 91460 Marcoussis (France); Febvre, P. [IMEP-LAHC—UMR 5130 CNRS, Université de Savoie, 73376 Le Bourget du Lac cedex (France); Sirena, M. [Centro Atómico Bariloche, Instituto Balseiro—CNEA and Univ. Nac. de Cuyo, Av. Bustillo 9500, 8400 Bariloche, Rio Negro (Argentina)

    2014-08-21

    We report on an experimental and theoretical study of the high-frequency mixing properties of ion-irradiated YBa{sub 2}Cu{sub 3}O{sub 7} Josephson junctions embedded in THz antennas. We investigated the influence of the local oscillator power and frequency on the device performances. The experimental data are compared with theoretical predictions of the general three-port model for mixers in which the junction is described by the resistively shunted junction model. A good agreement is obtained for the conversion efficiency in different frequency ranges, spanning above and below the characteristic frequencies f{sub c} of the junctions.

  9. B<sub>12sub>P>2sub>: Improved Epitaxial Growth and Evaluation of Alpha Irradiation on its Electrical Transport Properties

    Energy Technology Data Exchange (ETDEWEB)

    Frye, Clint D. [Kansas State Univ., Manhattan, KS (United States)

    2016-10-17

    The wide bandgap (3.35 eV) semiconductor icosahedral boron phosphide (B<sub>12sub>P>2sub>) has been reported to self-heal from radiation damage from β particles (electrons) with energies up to 400 keV by demonstrating no lattice damage using transmission electron microscopy. This property could be exploited to create radioisotope batteries–semiconductor devices that directly convert the decay energy from a radioisotope to electricity. Such devices potentially have enormous power densities and decades-long lifetimes. To date, the radiation hardness of B<sub>12sub>P>2sub> has not been characterized by electrical measurements nor have B<sub>12sub>P>2sub> radioisotope batteries been realized. Therefore, this study was undertaken to evaluate the radiation hardness of B<sub>12sub>P>2sub> after improving its epitaxial growth, developing ohmic electrical contacts, and reducing the residual impurities. Subsequently, the effects of radiation from a radioisotope on the electrical transport properties of B<sub>12sub>P>2sub> were tested.

  10. Terahertz Generation & Vortex Motion Control in Superconductors

    Science.gov (United States)

    Nori, Franco

    2005-03-01

    A grand challenge is to controllably generate electromagnetic waves in layered superconducting compounds because of its Terahertz frequency range. We propose [1] four experimentally realizable devices for generating continuous and pulsed THz radiation in a controllable frequency range. We also describe [2-4] several novel devices for controlling the motion of vortices in superconductors, including a reversible rectifier made of a magnetic-superconducting hybrid structure [4]. Finally, we summarize a study [5] of the friction force felt by moving vortices. 1) S. Savel'ev, V. Yampol'skii, A. Rakhmanov, F. Nori, Tunable Terahertz radiation from Josephson vortices, preprint 2) S. Savel'ev and F. Nori, Experimentally realizable devices for controlling the motion of magnetic flux quanta, Nature Mat. 1, 179 (2002) 3) S. Savel'ev, F. Marchesoni, F. Nori, Manipulating small particles, PRL 92, 160602 (2004); B. Zhu, F. Marchesoni, F. Nori, Controlling the motion of magnetic flux quanta, PRL 92, 180602 (2004) 4) J.E. Villegas, et al., Reversible Rectifier that Controls the Motion of Magnetic Flux Quanta, Science 302, 1188 (2003) 5) A. Maeda, et al., Nano-scale friction: kinetic friction of magnetic flux quanta and charge density waves, preprint

  11. Experimental Realization of an Epsilon-Near-Zero Graded-Index Metalens at Terahertz Frequencies

    Science.gov (United States)

    Pacheco-Peña, Victor; Engheta, Nader; Kuznetsov, Sergei; Gentselev, Alexandr; Beruete, Miguel

    2017-09-01

    The terahertz band has been historically hindered by the lack of efficient generators and detectors, but a series of recent breakthroughs have helped to effectively close the "terahertz gap." A rapid development of terahertz technology has been possible thanks to the translation of revolutionary concepts from other regions of the electromagnetic spectrum. Among them, metamaterials stand out for their unprecedented ability to control wave propagation and manipulate electromagnetic response of matter. They have become a workhorse in the development of terahertz devices such as lenses, polarizers, etc., with fascinating features. In particular, epsilon-near-zero (ENZ) metamaterials have attracted much attention in the past several years due to their unusual properties such as squeezing, tunneling, and supercoupling where a wave traveling inside an electrically small channel filled with an ENZ medium can be tunneled through it, reducing reflections and coupling most of its energy. Here, we design and experimentally demonstrate an ENZ graded-index (GRIN) metamaterial lens operating at terahertz with a power enhancement of 16.2 dB, using an array of narrow hollow rectangular waveguides working near their cutoff frequencies. This is a demonstration of an ENZ GRIN device at terahertz and can open the path towards other realizations of similar devices enabling full quasioptical processing of terahertz signals.

  12. Optical power limiting in ensembles of colloidal Ag{sub 2}S quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Ovchinnikov, O V; Smirnov, M S; Perepelitsa, A S; Shatskikh, T S [Voronezh State University, Voronezh (Russian Federation); Shapiro, B I [M.V. Lomonosov Moscow State Academy of Fine Chemical Technology, Moscow (Russian Federation)

    2015-12-31

    The effect of power limiting for optical radiation at a wavelength of 660 nm with a pulse duration of 10 ms and operation threshold of 2.2 – 3.1 mJ cm{sup -2} is observed in ensembles of colloidal Ag{sub 2}S quantum dots (QDs). Using the z-scanning method in an open-aperture scheme it is found that the power is limited mainly due to reverse saturable absorption caused by two-photon optical transitions that involve energy levels of Ag{sub 2}S photoluminescence centres, related to structural impurity defects in colloidal Ag{sub 2}S QDs. At the same time, the z-scanning in a closed-aperture scheme demonstrates the formation of a thermal dynamic lens. (nonlinear optical phenomena)

  13. Optimization of the THz radiation from superconductor at non-laminar regime

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini, Mehdi, E-mail: hosseini@sutech.ac.ir

    2016-10-15

    Highlights: • The terahertz radiation of a mesa structure at non laminar regime is considered here. • The non-laminarity of this media is modeled. • The equation of vortex motion and electromagnetic field is solved. • The radiated power is obtained and the parameter optimization for maximize the radiated power is done. - Abstract: The THz radiation due to the flux flow in a superconductor slab at non-laminar regime has been investigated and the radiated power spectrum has been calculated. The parameter (τ) is defined to show amount of non-laminarity. The results reveal that for small values of τ, the system radiated at the harmonics of famous washboard frequency. However, for large values of τ, the radiation spectrum will be changed and for extreme values of τ, the peaks will be flat. Therefore the washboard picture is not valid anymore. The results show that the radiation power is optimum for the special value of τ. Also, the results compared with other theoretical and experimental data.

  14. Terahertz Wave Approach and Application on FRP Composites

    Directory of Open Access Journals (Sweden)

    Kwang-Hee Im

    2013-01-01

    Full Text Available Terahertz (THz applications have emerged as one of the most new powerful nondestructive evaluation (NDE techniques. A new T-ray time-domain spectroscopy system was utilized for detecting and evaluating orientation influence in carbon fiber-reinforced plastics (CFRPs composite laminates. Investigation of terahertz time-domain spectroscopy (THz-TDS was made, and reflection and transmission configurations were studied as a nondestructive evaluation technique. Here, the CFRP composites derived their excellent mechanical strength, stiffness, and electrical conductivity from carbon fibers. Especially, the electrical conductivity of the CFRP composites depends on the direction of unidirectional fibers since carbon fibers are electrically conducting while the epoxy matrix is not. In order to solve various material properties, the index of refraction (n and the absorption coefficient (α are derived in reflective and transmission configurations using the terahertz time-domain spectroscopy. Also, for a 48-ply thermoplastic polyphenylene-sulfide-(PPS- based CFRP solid laminate and nonconducting materials, the terahertz scanning images were made at the angles ranged from 0° to 180° with respect to the nominal fiber axis. So, the images were mapped out based on the electrical field (E-field direction in the CFRP solid laminates. It is found that the conductivity (σ depends on the angles of the nominal axis in the unidirectional fiber.

  15. Near-field probing of Mie resonances in single TiO.sub.2./sub. microspheres at terahertz frequencies

    Czech Academy of Sciences Publication Activity Database

    Mitrofanov, O.; Dominec, Filip; Kužel, Petr; Reno, J.L.; Brener, I.; Chung, U.-C.; Elissalde, C.; Maglione, M.; Mounaix, P.

    2014-01-01

    Roč. 22, č. 19 (2014), s. 23034-23042 ISSN 1094-4087 R&D Projects: GA ČR(CZ) GA14-25639S EU Projects: European Commission(XE) 607521 - NOTEDEV Institutional support: RVO:68378271 Keywords : metamaterials * near-field microscopy * resonators * terahertz imaging Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.488, year: 2014

  16. High-resolution Tangential AXUV Arrays for Radiated Power Density Measurements on NSTX-U

    Energy Technology Data Exchange (ETDEWEB)

    Delgado-Aparicio, L [PPPL; Bell, R E [PPPL; Faust, I [MIT; Tritz, K [The Johns Hopkins University, Baltimore, MD, 21209, USA; Diallo, A [PPPL; Gerhardt, S P [PPPL; Kozub, T A [PPPL; LeBlanc, B P [PPPL; Stratton, B C [PPPL

    2014-07-01

    Precise measurements of the local radiated power density and total radiated power are a matter of the uttermost importance for understanding the onset of impurity-induced instabilities and the study of particle and heat transport. Accounting of power balance is also needed for the understanding the physics of various divertor con gurations for present and future high-power fusion devices. Poloidal asymmetries in the impurity density can result from high Mach numbers and can impact the assessment of their flux-surface-average and hence vary the estimates of P[sub]rad (r, t) and (Z[sub]eff); the latter is used in the calculation of the neoclassical conductivity and the interpretation of non-inductive and inductive current fractions. To this end, the bolometric diagnostic in NSTX-U will be upgraded, enhancing the midplane coverage and radial resolution with two tangential views, and adding a new set of poloidally-viewing arrays to measure the 2D radiation distribution. These systems are designed to contribute to the near- and long-term highest priority research goals for NSTX-U which will integrate non-inductive operation at reduced collisionality, with high-pressure, long energy-confinement-times and a divertor solution with metal walls.

  17. Tuning of dielectric properties of SrTiO.sub.3./sub. in the terahertz range

    Czech Academy of Sciences Publication Activity Database

    Skoromets, Volodymyr; Kadlec, Filip; Kadlec, Christelle; Němec, Hynek; Rychetský, Ivan; Panaitov, G.; Müller, V.; Fattakhova-Rohlfing, D.; Moch, P.; Kužel, Petr

    2011-01-01

    Roč. 84, č. 17 (2011), "174121-1"-"174121-10" ISSN 1098-0121 R&D Projects: GA ČR GD202/09/H041; GA AV ČR(CZ) IAA100100907; GA ČR GA202/09/0430 Institutional research plan: CEZ:AV0Z10100520 Keywords : strontium titanate * terahertz spectroscopy * anharmonic coefficient Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.691, year: 2011 http://link.aps.org/doi/10.1103/PhysRevB.84.174121

  18. Enhancement of the output power of terahertz folded waveguide oscillator by two parallel electron beams

    International Nuclear Information System (INIS)

    Li, Ke; Cao, Miaomiao; Liu, Wenxin; Wang, Yong; Liao, Suying

    2015-01-01

    A novel two-beam folded waveguide (FW) oscillator is presented for the purpose of gaining higher power with a small-size circuit compared with the normal FW oscillator. The high-frequency characteristics of the two-beam FW, including dispersion and interaction impedance, were investigated by the numerical simulation and compared with the one-beam FW. The radio-frequency loss of the two-beam FW was also analyzed. A 3-D particle-in-cell code CHIPIC was applied to analyze and optimize the performance of a G-band two-beam FW oscillator. The influences of the distance between the two beam tunnels, beam voltage, the number of periods, magnetic field, radius of beam tunnel, and the packing ratio on the circuit performance are investigated in detail. Compared with a one-beam circuit, a larger output power of the two-beam circuit with the same beam power was observed by the simulation. Moreover, the start-oscillation current of two-beam circuit is much lower than the one-beam circuit with better performance. It will favor the miniaturized design of the high-power terahertz oscillator

  19. Enhancement of the output power of terahertz folded waveguide oscillator by two parallel electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ke, E-mail: like.3714@163.com; Cao, Miaomiao, E-mail: mona486@yeah.net [Key Laboratory of High Power Microwave Sources and Technologies, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100190 (China); Liu, Wenxin, E-mail: lwenxin@mail.ie.ac.cn; Wang, Yong, E-mail: wangyong3845@sina.com [Key Laboratory of High Power Microwave Sources and Technologies, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190 (China); Liao, Suying, E-mail: suying-liao@163.com [Air Force Airborne Academy, Guilin, Guangxi 541003 (China)

    2015-11-15

    A novel two-beam folded waveguide (FW) oscillator is presented for the purpose of gaining higher power with a small-size circuit compared with the normal FW oscillator. The high-frequency characteristics of the two-beam FW, including dispersion and interaction impedance, were investigated by the numerical simulation and compared with the one-beam FW. The radio-frequency loss of the two-beam FW was also analyzed. A 3-D particle-in-cell code CHIPIC was applied to analyze and optimize the performance of a G-band two-beam FW oscillator. The influences of the distance between the two beam tunnels, beam voltage, the number of periods, magnetic field, radius of beam tunnel, and the packing ratio on the circuit performance are investigated in detail. Compared with a one-beam circuit, a larger output power of the two-beam circuit with the same beam power was observed by the simulation. Moreover, the start-oscillation current of two-beam circuit is much lower than the one-beam circuit with better performance. It will favor the miniaturized design of the high-power terahertz oscillator.

  20. Markets, Availability, Notice, and Technical Performance of Terahertz Systems: Historic Development, Present, and Trends

    Science.gov (United States)

    Hochrein, Thomas

    2015-03-01

    Although a lot of work has already been done under the older terms "far infrared" or "sub-millimeter waves", the term "terahertz" stands for a novel technique offering many potential applications. The latter term also represents a new generation of systems with the opportunity for coherent, time-resolved detection. In addition to the well-known technical opportunities, an historical examination of Internet usage, as well as the number of publications and patent applications, confirms ongoing interest in this technique. These activities' annual growth rate is between 9 % and 21 %. The geographical distribution shows the center of terahertz activities. A shift from the scientific to more application-oriented research can be observed. We present a survey among worldwide terahertz suppliers with special focus on the European region and the use of terahertz systems in the field of measurement and analytical applications. This reveals the current state of terahertz systems' commercial and geographical availability as well as their costs, target markets, and technical performance. Component cost distribution using the example of an optical pulsed time-domain terahertz system gives an impression of the prevailing cost structure. The predication regarding prospective market development, decreasing system costs and higher availability shows a convenient situation for potential users and interested customers. The causes are primarily increased competition and larger quantities in the future.

  1. Development of collective Thomson scattering system using the gyrotrons of sub-tera Hz region

    International Nuclear Information System (INIS)

    Tatematsu, Y.; Kubo, S.; Nishiura, M.

    2010-11-01

    Collective Thomson scattering (CTS) system is being developed for fusion plasma and CTS measurement on the large helical device (LHD) plasma is discussed. Sub-terahertz frequencies are suitable to the probe beam for CTS on LHD. According to the feasibility study, frequency around 0.4 THz is best for the CTS measurement on LHD high density plasma, and power of 100 kW is required. Thus, only gyrotrons in the sub-terahertz range can meet these parameters. At the first stage of development, second harmonic gyrotrons have been developed. A sealed-off type of gyrotrons has been manufactured to improve a demountable one. Measured output power has increased to about 60 kW. In parallel with the development of gyrotrons, an actual CTS system using a 77 GHz gyrotron originally installed for heating is being developed as a benchmark of LHD CTS. A heterodyne receiver system of a fundamental mixer with a fixed frequency local oscillator was installed on the upstream of the transmission line. The probe beam is 100% power modulated at 50 Hz to separate the scattering component from background ECE. Signals that can be attributed to the CTS were obtained and the analysis method of these data is developed. (author)

  2. Online terahertz thickness measurement in films and coatings

    Science.gov (United States)

    Duling, Irl N.; White, Jeffrey S.

    2017-02-01

    Pulsed terahertz systems are currently being deployed for online process control and quality control of multi-layered products for use in the building products and aerospace industries. While many laboratory applications of terahertz can allow waveforms to be acquired at rates of 1 - 40 Hz, online applications require measurement rates of in excess of 100Hz. The existing technologies of thickness measurement (nuclear, x-ray, or laser gauges) have rates between 100 and 1000 Hz. At these rates, the single waveform bandwidth must still remain at 2THz or above to allow thinner layers to be measured. In the applications where terahertz can provide unique capability (e.g. multi-layer thickness, delamination, density) long-term stability must be guaranteed within the tolerance required by the measurement. This can mean multi-day stability of less than a micron. The software that runs on these systems must be flexible enough to allow multiple product configurations, while maintaining the simplicity required by plant operators. The final requirement is to have systems that can withstand the environmental conditions of the measurement. This might mean qualification in explosive environments, or operation in hot, wet or dusty environments. All of these requirements can put restrictions on not only the voltage of electronic circuitry used, but also the wavelength and optical power used for the transmitter and receiver. The application of terahertz systems to online process control presents unique challenges that not only effect the physical design of the system, but can also effect the choices made on the terahertz technology itself.

  3. Nanoplasmonic-gold-cylinder-array-enhanced terahertz source

    Science.gov (United States)

    Zhiguang, Ao; Jinhai, Sun; He, Cai; Guofeng, Song; Jiakun, Song; Yuzhi, Song; Yun, Xu

    2016-12-01

    Photoconductive antennas (PCAs) based on nanoplasmonic gratings contact electrodes have been proposed to satisfy the demand for high power, efficiency and responsivity terahertz (THz) sources. Reducing the average photo-generated carrier transport path to the photoconductor contact electrodes was previously considered the dominant mechanism to improve PCAs' power. However, considering the bias in a real device, the electric field between gratings is limited and the role of surface plasmonic resonance (SPR) field enhancement is more important in improving THz radiation. This paper, based on SPR, analyzes the interaction between incident light and substrate in nano cylinder array PCAs and clearly shows that the SPR can enhance the light absorption in the substrate. After the optimization of the structure size, the proposed structure can offer 87% optical transmission into GaAs substrate. Compared with conventional PCAs, the optical transmission into the substrate will increase 5.8 times and the enhancement factor of substrate absorption will reach 13.7 respectively. Project supported by the National Basic Research Program of China (Nos. 2015CB351902, 2015CB932402), the National Key Research Program of China (No. 2011ZX01015-001), and the National Natural Science Foundation of China (No. U143231).

  4. Ginzburg's invention of undulators and their role in modern synchrotron radiation sources and free electron lasers

    International Nuclear Information System (INIS)

    Kulipanov, Gennadii N

    2007-01-01

    Undulators - periodic magnetic structures that were originally introduced by Vitalii Ginzburg in 1947 for electromagnetic radiation generation using relativistic electrons - are among the key elements of modern synchrotron radiation sources and free electron lasers (FELs). In this talk, the history of three generations of storage ring-based synchrotron X-ray sources using wigglers and undulators is briefly traced. Prospects for two types of next-generation space-coherent X-ray sources are discussed, which use long undulators and energy recovery accelerators or, alternatively, employ linear accelerator-based FELs. The recently developed Novosibirsk terahertz FEL facility, currently the world' s most powerful terahertz source, is described. It was the generation of electromagnetic radiation in this range that Ginzburg discussed in his 1947 work. (oral issue of the journal 'uspekhi fizicheskikh nauk')

  5. Anisotropic effects of terahertz emission from laser sparks in air

    International Nuclear Information System (INIS)

    Zharova, N. A.; Mironov, V. A.; Fadeev, D. A.

    2010-01-01

    Strong terahertz (THz) radiation can be generated by intense femtosecond laser pulses propagating in air. The excitation of transient current induced in the wake just behind the laser pulse is studied in detail using numerical simulations on the basis of Maxwell's equations for THz-band fields and hydrodynamic model for the plasma motion. It is shown that the thermal effects, anisotropic in character in the case of linear polarized laser field, can explain observed quadrupole-type THz radiation pattern in the experiment performed by Akhmedzhanov et al. [Radiophys. Quantum Electron. 52, 482 (2009)]. Taking into account the transverse structure of the plasma filament, our numerical code enables us to calculate the spatial distribution and temporal evolution of terahertz electron current, its spectrum, and angular emission pattern. It is shown that an expansion of full fields in terms of azimuthal modes is a useful tool for research of THz generation in many situations of practical interest.

  6. Study of image reconstruction for terahertz indirect holography with quasi-optics receiver.

    Science.gov (United States)

    Gao, Xiang; Li, Chao; Fang, Guangyou

    2013-06-01

    In this paper, an indirect holographic image reconstruction algorithm was studied for terahertz imaging with a quasi-optics receiver. Based on the combination of the reciprocity principle and modified quasi-optics theory, analytical expressions of the received spatial power distribution and its spectrum are obtained for the interference pattern of target wave and reference wave. These results clearly give the quantitative relationship between imaging quality and the parameters of a Gaussian beam, which provides a good criterion for terahertz quasi-optics transceivers design in terahertz off-axis holographic imagers. To validate the effectiveness of the proposed analysis method, some imaging results with a 0.3 THz prototype system are shown based on electromagnetic simulation.

  7. Terahertz spectroscopy for the study of paraffin-embedded gastric cancer samples

    Science.gov (United States)

    Wahaia, Faustino; Kasalynas, Irmantas; Seliuta, Dalius; Molis, Gediminas; Urbanowicz, Andrzej; Carvalho Silva, Catia D.; Carneiro, Fatima; Valusis, Gintaras; Granja, Pedro L.

    2015-01-01

    Terahertz (THz) spectroscopy constitute promising technique for biomedical applications as a complementary and powerful tool for diseases screening specially for early cancer diagnostic. The THz radiation is not harmful to biological tissues. As increased blood supply in cancer-affected tissues and consequent local increase in tissue water content makes THz technology a potentially attractive. In the present work, samples of healthy and adenocarcinoma-affected gastric tissue were analyzed using transmission time-domain THz spectroscopy (THz-TDS). The work shows the capability of the technique to distinguish between normal and cancerous regions in dried and paraffin-embedded samples. Plots of absorption coefficient α and refractive index n of normal and cancer affected tissues, are presented and the conditions for discrimination between normal and affected tissues are discussed.

  8. Design of Integrated Circuits Approaching Terahertz Frequencies

    OpenAIRE

    Yan, Lei; Johansen, Tom Keinicke

    2013-01-01

    In this thesis, monolithic microwave integrated circuits(MMICs) are presented for millimeter-wave and submillimeter-wave or terahertz(THz) applications. Millimeter-wave power generation from solid state devices is not only crucial for the emerging high data rate wireless communications but also important for driving THz signal sources. To meet the requirement of high output power, amplifiers based on InP double heterojunction bipolar transistor (DHBT) devices from the III-V Lab in Marcoussic,...

  9. Negative-mass mitigation of Coulomb repulsion for terahertz undulator radiation of electron bunches

    Energy Technology Data Exchange (ETDEWEB)

    Balal, N.; Magory, E. [Ariel University, Ariel 40700 (Israel); Bandurkin, I. V. [Institute of Applied Physics, Russian Academy of Sciences, 46 Ulyanov St., Nizhny Novgorod 603950 (Russian Federation); Bratman, V. L. [Ariel University, Ariel 40700 (Israel); Institute of Applied Physics, Russian Academy of Sciences, 46 Ulyanov St., Nizhny Novgorod 603950 (Russian Federation); Savilov, A. V. [Institute of Applied Physics, Russian Academy of Sciences, 46 Ulyanov St., Nizhny Novgorod 603950 (Russian Federation); Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, Nizhny Novgorod 603950 (Russian Federation)

    2015-10-19

    It is proposed to utilize the effect of negative mass for stabilization of the effective axial size of very dense and short electron bunches produced by photo-injector guns by using combined undulator and strong uniform magnetic fields. It has been shown that in the “abnormal” regime, an increase in the electron energy leads to a decrease in the axial velocity of the electron; due to the negative-mass effect, the Coulomb repulsion of electrons leads to their attraction and formation of a fairly stable and compact bunch “nucleus.” An undulator with a strong uniform magnetic field providing the negative-mass effect is designed for an experimental source of terahertz radiation. The use of the negative-mass regime in this experiment should result in a long-pulse coherent spontaneous undulator emission from a short dense moderately relativistic (5.5 MeV) photo-injector electron bunch with a high (up to 20%) efficiency and a narrow frequency spectrum.

  10. Terahertz antenna technology for space applications

    CERN Document Server

    Choudhury, Balamati; Jha, Rakesh Mohan

    2016-01-01

    This book explores the terahertz antenna technology towards implementation of compact, consistent and cheap terahertz sources, as well as the high sensitivity terahertz detectors. The terahertz EM band provides a transition between the electronic and the photonic regions thus adopting important characteristics from these regimes. These characteristics, along with the progress in semiconductor technology, have enabled researchers to exploit hitherto unexplored domains including satellite communication, bio-medical imaging, and security systems. The advances in new materials and nanostructures such as graphene will be helpful in miniaturization of antenna technology while simultaneously maintaining the desired output levels. Terahertz antenna characterization of bandwidth, impedance, polarization, etc. has not yet been methodically structured and it continues to be a major research challenge. This book addresses these issues besides including the advances of terahertz technology in space applications worldwide,...

  11. Photoacoustic Detection of Terahertz Radiation for Chemical Sensing and Imaging Applications

    Science.gov (United States)

    2013-03-01

    ISSN 2229-5518 [39] Jingle Liu, Benjamin Clough, and X. C. Zhang, “Enhancement of photoacoustic emission through terahertz-field driven electron...materials,” Journal of Electroceramics, vol. 2: p. 257-272, 2009. [47] Jingle Liu, Benjamin Clough, and X. C. Zhang, “Enhancement of photoacoustic

  12. Rectification of terahertz radiation in semiconductor superlattices in the absence of domains

    International Nuclear Information System (INIS)

    Isohätälä, J; Alekseev, K N

    2012-01-01

    We study theoretically the dynamical rectification of a terahertz AC electric field, i.e. the DC current and voltage response to the incident radiation, in strongly coupled semiconductor superlattices. We address the problem of stability against electric field domains: a spontaneous DC voltage is known to appear exactly for parameters for which a spatially homogeneous electron distribution is unstable. We show that by applying a weak direct current bias the rectifier can be switched from a state with zero DC voltage to one with a finite voltage in full absence of domains. The switching occurs near the conditions of dynamical symmetry breaking of an unbiased semiconductor superlattice. Therefore our scheme allows for the generation of DC voltages that would otherwise be unreachable due to domain instabilities. Furthermore, for realistic, highly doped wide miniband superlattices at room temperature, the generated DC field can be nearly quantized, that is, be approximately proportional to an integer multiple of ħω/ea where a is the superlattice period and ω is the AC field frequency. (paper)

  13. Fingerprint extraction from interference destruction terahertz spectrum.

    Science.gov (United States)

    Xiong, Wei; Shen, Jingling

    2010-10-11

    In this paper, periodic peaks in a terahertz absorption spectrum are confirmed to be induced from interference effects. Theoretically, we explained the periodic peaks and calculated the locations of them. Accordingly, a technique was suggested, with which the interference peaks in a terahertz spectrum can be eliminated and therefore a real terahertz absorption spectrum can be obtained. Experimentally, a sample, Methamphetamine, was investigated and its terahertz fingerprint was successfully extracted from its interference destruction spectrum. This technique is useful in getting samples' terahertz fingerprint spectra, and furthermore provides a fast nondestructive testing method using a large size terahertz beam to identify materials.

  14. Theory of terahertz electric oscillations by supercooled superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Mishonov, Todor M; Mishonov, Mihail T [Department of Theoretical Physics, Faculty of Physics, University of Sofia St Kliment Ohridski, 5 J Bourchier Boulevard, 1164 Sofia (Bulgaria); Laboratorium voor Vaste-Stoffysica en Magnetisme, Katholieke Universiteit Leuven, Celestijnenlaan 200 D B-3001 Leuven (Belgium)

    2005-11-15

    We predict that below T{sub c} a regime of negative differential conductivity (NDC) can be reached. The superconductor should be supercooled to Tsub c} in the normal phase under DC voltage. In such a nonequilibrium situation the NDC of the superconductor is created by the excess conductivity of the fluctuation Cooper pairs. We propose NDC of supercooled superconductors to be used as an active medium for generation of electric oscillations. Such generators can be used in the superconducting electronics as a new type THz source of radiation. Oscillations can be modulated by the change of the bias voltage, electrostatic doping by a gate electrode when the superconductor is the channel of a field effect transistor, or by light. When small amplitude oscillations are stabilized near the critical temperature T{sub c} the generator can be used as a bolometer. NDC, which is essential for the applications, is predicted on the basis of analysis of known results for fluctuation conductivity, obtained in previous papers by solving the Boltzmann kinetic equation for the Cooper pairs metastable in the normal phase. The Boltzmann equation for fluctuation Cooper pairs is a result of state-of-the-art application of the microscopic theory of superconductivity. Our theoretical conclusions are based on some approximations like time dependent Ginzburg-Landau theory initially derived for gapless superconductors, but nevertheless can reliably predict the appearance of NDC. NDC is the main ingredient of the proposed technical applications. The maximal frequency at which superconductors can operate as generators is determined by the critical temperature {Dirac_h}/2{pi}{omega}{sub max} {approx} k{sub B}T{sub c}. For high-T{sub c} superconductors this maximal frequency falls well inside the terahertz range. Technical conditions to avoid nucleation of the superconducting phase are briefly discussed. We suggest that nanostructured high-T{sub c} superconductors patterned in a single chip can

  15. Toward practical terahertz time-domain spectroscopy

    Science.gov (United States)

    Brigada, David J.

    Terahertz time-domain spectroscopy is a promising technology for the identification of explosive and pharmaceutical substances in adverse conditions. It interacts strongly with intermolecular vibrational and rotational modes. Terahertz also passes through many common dielectric covering materials, allowing for the identification of substances in envelopes, wrapped in opaque plastic, or otherwise hidden. However, there are several challenges preventing the adoption of terahertz spectroscopy outside the laboratory. This dissertation examines the problems preventing widespread adoption of terahertz technology and attempts to resolve them. In order to use terahertz spectroscopy to identify substances, a spectrum measured of the target sample must be compared to the spectra of various known standard samples. This dissertation examines various methods that can be employed throughout the entire process of acquiring and transforming terahertz waveforms to improve the accuracy of these comparisons. The concepts developed in this dissertation directly apply to terahertz spectroscopy, but also carry implications for other spectroscopy methods, from Raman to mass spectrometry. For example, these techniques could help to lower the rate of false positives at airport security checkpoints. This dissertation also examines the implementation of several of these methods as a way to realize a fully self-contained, handheld, battery-operated terahertz spectrometer. This device also employs techniques to allow minimally-trained operators use terahertz to detect different substances of interest. It functions as a proof-of-concept of the true benefits of the improvements that have been developed in this dissertation.

  16. Strontium titanate/silicon-based terahertz photonic crystal multilayer stack

    Energy Technology Data Exchange (ETDEWEB)

    Xin, J.Z.; Jim, K.L.; Tsang, Y.H.; Chan, H.L.W.; Leung, C.W. [Hong Kong Polytechnic University, Department of Applied Physics and Materials Research Centre, Kowloon, Hong Kong (China); Yang, J.; Gong, X.J.; Chen, L.Q.; Gao, F. [Chinese Academy of Sciences, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Shenzhen (China)

    2012-04-15

    A one-dimensional photonic crystal working in the terahertz (THz) range was designed and implemented. To facilitate the design, the transmission properties of strontium titanate crystals were characterized by THz-time-domain spectroscopy. Relatively high refractive index ({proportional_to}18.5) and transmission ratio (0.08) were observed between 0.2 to 1 THz. A stacked structure of (Si d{sub Si}/STO d{sub STO}){sub N} /Si d{sub Si} was then designed, with transmission spectra calculated by the transfer matrix method. The effects of the filling ratio (d{sub STO}/(d{sub Si}+d{sub STO})), periodicity (d{sub Si}+d{sub STO}) and the number of repeats N on the transmission of PC were investigated. The effect of introducing a defect layer was also studied. Based on these, Si/STO multilayers with STO defect thickness of 125 {mu}m and 200 {mu}m were measured. The shift of the defect mode was observed and compared with the calculations. (orig.)

  17. High-power and long-pulse operation of TE{sub 31,11} mode gyrotron

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Ryosuke, E-mail: ikeda.ryosuke@jaea.go.jp; Kajiwara, Ken; Oda, Yasuhisa; Takahashi, Koji; Sakamoto, Keishi

    2015-10-15

    Highlights: • We are under development of TE{sub 31,11} mode gyrotron to aim ITER specification. • HE{sub 11} mode purity reached 96% of ITER specification. • Mode competition was suppressed in initial phase of oscillation by anode voltage control. • Maximum output power of 1.2 MW was achieved. • Steady state operation of 500 MJ was achieved. - Abstract: The ITER electron cyclotron system is designed to inject a 20 MW RF beam by using twenty-four 170 GHz/1 MW gyrotrons. JAEA is currently developing a gyrotron having a high-order mode (TE{sub 31,11}) to reduce the heat load in the cavity resonator and achieve an output power greater than 1 MW. The measured radiation profile at the front of the diamond window agreed with the results of the calculation. In order to suppress RF loss in the equatorial and upper port launchers, a high-quality HE{sub 11} mode is required at the exit of the matching optics unit (MOU). An HE{sub 11} mode purity of 96% was achieved by finely adjusting the two mirrors in the MOU. During the oscillation start-up phase, mode competition with counter-rotating TE{sub 29,12} mode was observed on the higher magnetic field side which caused arcing and pressure increase in the gyrotron. To avoid the counter-rotating TE{sub 29,12} mode from being excited, a start-up scenario that controls the voltage between the anode and cathode electrodes at the initial phase of operation was introduced, which was able to achieve a stable start-up of TE{sub 31,11} mode. A 1.2 MW output power having a total electric efficiency of 43% was obtained in high-power experiments. In steady-state operation, a 1000 s oscillation length and output power of 0.51 MW was achieved.

  18. Plasmon-enhanced terahertz emission in self-assembled quantum dots by femtosecond pulses

    Energy Technology Data Exchange (ETDEWEB)

    Carreño, F., E-mail: ferpo@fis.ucm.es; Antón, M. A., E-mail: antonm@fis.ucm.es; Melle, Sonia, E-mail: smelle@fis.ucm.es; Calderón, Oscar G., E-mail: oscargc@fis.ucm.es; Cabrera-Granado, E., E-mail: ecabrera@fis.ucm.es [Facultad de Óptica y Optometría, Universidad Complutense de Madrid, C/ Arcos de Jalón 118, 28037 Madrid (Spain); Cox, Joel, E-mail: jcox27@uwo.ca; Singh, Mahi R., E-mail: msingh@uwo.ca [Department of Physics and Astronomy, The University of Western Ontario, London N6A 3K7 (Canada); Egatz-Gómez, A., E-mail: Ana.Egatz-Gomez.1@nd.edu [Department of Chemical and Biomolecular Engineering, University of Notre Dame, South Bend, Indiana 46556 (United States)

    2014-02-14

    A scheme for terahertz (THz) generation from intraband transition in a self-assembled quantum dot (QD) molecule coupled to a metallic nanoparticle (MNP) is analyzed. The QD structure is described as a three-level atom-like system using the density matrix formalism. The MNP with spherical geometry is considered in the quasistatic approximation. A femtosecond laser pulse creates a coherent superposition of two subbands in the quantum dots and produces localized surface plasmons in the nanoparticle which act back upon the QD molecule via dipole-dipole interaction. As a result, coherent THz radiation with a frequency corresponding to the interlevel spacing can be obtained, which is strongly modified by the presence of the MNP. The peak value of the terahertz signal is analyzed as a function of nanoparticle's size, the MNP to QD distance, and the area of the applied laser field. In addition, we theoretically demonstrate that the terahertz pulse generation can be effectively controlled by making use of a train of femtosecond laser pulses. We show that by a proper choice of the parameters characterizing the pulse train a huge enhancement of the terahertz signal is obtained.

  19. CO{sub 2} control technologies: ALSTOM Power approach

    Energy Technology Data Exchange (ETDEWEB)

    Stamatelopoulos, G.N.; Marion, J.L.; Nsakala, N.; Griffin, T.; Bill, A. [ALSTOM Power Boiler GmbH, Stuttgart (Germany)

    2002-07-01

    ALSTOM Power is one of the largest providers of power generation equipment, turnkey power plants and services in the world. The Company is aware of the present scientific concerns regarding greenhouse gas emissions and the role of fossil fuels used in power generation. ALSTOM Power R&D laboratories run various programs aiming to find options that reduce greenhouse gas emissions through: Increasing the efficiency of power generation equipment by implementing the most modern technologies. Application of technologies to remove and sequester carbon dioxide created in power plants in an environmentally and economically favorable manner. In this paper an overview of ALSTOM's on-going CO{sub 2} mitigation development activities will be presented. First, energy efficiency improvements for both new and existing fossil fuel power plants are reviewed for both coal and natural gas fuels. Second, the development of novel power generation processes, including those involving combustion in O{sub 2}/CO{sub 2} atmospheres using pure or enriched oxygen for the purpose of CO{sub 2} capture is discussed. And finally, novel chemical-looping CO{sub 2} capture process technologies are introduced. The major challenge in CO{sub 2} capture techniques is the efficient separation and capture of CO{sub 2}. Conclusions are drawn herein regarding the technical feasibility, the resultant efficiency penalties, and the CO{sub 2} mitigation costs for the various options under study and development within ALSTOM Power. 7 refs., 8 figs.

  20. A light-powered sub-threshold microprocessor

    Energy Technology Data Exchange (ETDEWEB)

    Liu Ming; Chen Hong; Zhang Chun; Li Changmeng; Wang Zhihua, E-mail: lium02@mails.tsinghua.edu.cn [Institute of Microelectronics, Tsinghua University, Beijing 100084 (China)

    2010-11-15

    This paper presents an 8-bit sub-threshold microprocessor which can be powered by an integrated photosensitive diode. With a custom designed sub-threshold standard cell library and 1 kbit sub-threshold SRAM design, the leakage power of 58 nW, dynamic power of 385 nW - 165 kHz, EDP 13 pJ/inst and the operating voltage of 350 mV are achieved. Under a light of about 150 kLux, the microprocessor can run at a rate of up to 500 kHz. The microprocessor can be used for wireless-sensor-network nodes.

  1. Theoretical Investigation of Current Instabilities and Terahertz Oscillations in a Two-Dimensional Electron Fluid

    National Research Council Canada - National Science Library

    Dyakonov, M

    1997-01-01

    The purpose of this work is to develop further the theory of novel mechanisms for generation and detection of electromagnetic radiation in the terahertz range using the plasma oscillations of the two...

  2. Terahertz detection of alcohol using a photonic crystal fiber sensor.

    Science.gov (United States)

    Sultana, Jakeya; Islam, Md Saiful; Ahmed, Kawsar; Dinovitser, Alex; Ng, Brian W-H; Abbott, Derek

    2018-04-01

    Ethanol is widely used in chemical industrial processes as well as in the food and beverage industry. Therefore, methods of detecting alcohol must be accurate, precise, and reliable. In this content, a novel Zeonex-based photonic crystal fiber (PCF) has been modeled and analyzed for ethanol detection in terahertz frequency range. A finite-element-method-based simulation of the PCF sensor shows a high relative sensitivity of 68.87% with negligible confinement loss of 7.79×10 -12    cm -1 at 1 THz frequency and x -polarization mode. Moreover, the core power fraction, birefringence, effective material loss, dispersion, and numerical aperture are also determined in the terahertz frequency range. Owing to the simple fiber structure, existing fabrication methods are feasible. With the outstanding waveguiding properties, the proposed sensor can potentially be used in ethanol detection, as well as polarization-preserving applications of terahertz waves.

  3. Terahertz radiation on the base of accelerated charge carriers in GaAs; Terahertz-Strahlung auf der Basis beschleunigter Ladungstraeger in GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Dreyhaupt, Andre

    2008-07-01

    Electromagnetic radiation in the frequency range between about 100 GHz and 5 THz can be used for spectroscopy and microscopy, but it is also promising for security screening and even wireless communication. In the present thesis a planar photoconducting large-area THz radiation source is presented. The device exhibits outstanding properties, in particular high THz field strength and generation efficiency and large spectral bandwidth with short THz pulse length. The THz emission is based on acceleration and deceleration of photoexcited carriers in semiconductor substrates. A metallic interdigitated structure at the surface of semi-insulating GaAs provides the electrodes of an Auston switch. In a biased structure photoexcited charge carriers are accelerated. Hence electromagnetic waves are emitted. An appropriately structured second metallization, electrically isolated from the electrodes, prevents destructive interference of the emitted waves. The structure investigated here combines several advantages of different conventional photoconducting THz sources. First, it provides high electric acceleration fields at moderate voltages owing to the small electrode separation. Second, the large active area in the mm2 range allows excitation by large optical powers of some mW. Optical excitation with near-infrared femtosecond lasers is possible with repetition rates in the GHz range. The presented results point out the excellent characteristics regarding the emitted THz field strength, average power, spectral properties, and easy handling of the interdigitated structure in comparison to various conventional emitter structures. Various modifications of the semiconductor substrate and the optimum excitation conditions were investigated. In the second part of this thesis the dynamic conductivity of GaAs/Al{sub x}Ga{sub 1-x}As superlattices in an applied static electric field was investigated with time-resolved THz spectroscopy. The original goal was to explore whether the

  4. Beta radiation induced luminescence of polycrystalline Cu-doped Li{sub 2}B{sub 4}O{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Cruz-Zaragoza, E., E-mail: ecruz@nucleares.unam.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, A.P. 70543, México D.F. 04510, México (Mexico); Furetta, C. [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, A.P. 70543, México D.F. 04510, México (Mexico); Marcazzó, J.; Santiago, M. [Instituto de Física Arroyo Seco (UNCPBA) and CIFICEN (UNCPBA – CICPBA – CONICET), Pinto 399, 7000 Tandil (Argentina); Guarneros, C. [Centro de Investigación en Ciencia y Tecnología Avanzada- IPN, Carretera Puerto Industrial Altamira Km 14.5, 896000 Altamira, Tamaulipas, México (Mexico); Consejo Nacional de Ciencia y Tecnología, Av. Insurgentes Sur 1582, 03940 México D.F., México (Mexico); Pacio, M. [Centro de Investigación en Dispositivos Semiconductores, Instituto de Ciencias Universidad Autónoma de Puebla, Av. 14 Sur, 72570 Puebla, México (Mexico); Palomino, R. [Facultad de Ciencias Físico-Matemáticas, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur, 72570 Puebla, México (Mexico)

    2016-11-15

    Thermoluminescence (TL) and radioluminescence (RL) properties of polycrystalline lithium tetraborate (Li{sub 2}B{sub 4}O{sub 7}) doped with different concentrations of copper (0.25, 0.5, 1 wt %) under beta irradiation have been investigated. The feasibility of using this borate in radiation dosimetry at low doses has been evaluated. Tissue equivalent Li{sub 2}B{sub 4}O{sub 7} was prepared by solid state reaction using mixing stoichiometric compositions of lithium carbonate (Li{sub 2}CO{sub 3}) and boric acid (H{sub 3}BO{sub 3}) and a solution of CuCl{sub 2} as dopant. The glow curve of the most efficient copper doped borate (Li{sub 2}B{sub 4}O{sub 7}:Cu 0.5 wt %) shows a main stable peak centered at 225 °C and a second low temperature peak centered at 80 °C. The low temperature peak fades completely after 24 h of storage in darkness and at room temperature or after an annealing at 120 °C for 10 s. The main peak of the Li{sub 2}B{sub 4}O{sub 7}:Cu remains constant. The TL response of Li{sub 2}B{sub 4}O{sub 7}:Cu shows good linearity in the analyzed dose range. The stability and repeatability of RL signals of the borate have been studied and the Li{sub 2}B{sub 4}O{sub 7}:Cu (0.5 wt %) shows the higher RL emission and a stable and repetitive response. Results show that polycrystalline Li{sub 2}B{sub 4}O{sub 7}:Cu has prospects to be used in beta radiation dosimetry. - Highlights: • Polycrystalline Cu-doped lithium tetraborate (LTB) was obtained by high temperature solid state reaction. • Beta-irradiated LTB:Cu (0.5 wt %) showed to have the highest TL and RL response. • A very good TL linearity in the dose range from 0.01 up to 100 Gy was obtained. • No fading is observed when an annealing at 120 °C for 10 s is carried out. • Results show that LTB:Cu has good prospects to be used in beta radiation dosimetry.

  5. Development of alloy-film coated dispenser cathode for terahertz vacuum electron devices application

    International Nuclear Information System (INIS)

    Barik, R.K.; Bera, A.; Raju, R.S.; Tanwar, A.K.; Baek, I.K.; Min, S.H.; Kwon, O.J.; Sattorov, M.A.; Lee, K.W.; Park, G.-S.

    2013-01-01

    High power terahertz vacuum electron devices demand high current density and uniform emission dispenser cathode. It was found that the coating of noble metals e.g., Os, Ir, and Re on the surface of tungsten dispenser cathodes enhances the emission capabilities and uniformity. Hence metal coated cathode might be the best candidate for terahertz devices applications. In this study, ternary-alloy-film cathode (2Os:2Re:1 W) and Os coated cathode have been developed and the results are presented. The cathodes made out of this alloy coating showed 1.5 times higher emission and 0.02 eV emission uniformity as compared to those of simply Os coated cathodes which can be used in terahertz devices application.

  6. Development of alloy-film coated dispenser cathode for terahertz vacuum electron devices application

    Energy Technology Data Exchange (ETDEWEB)

    Barik, R. K.; Bera, A. [School of Electrical Engineering and Computer Science, Seoul National University, Seoul (Korea, Republic of); Raju, R. S. [Central Electronics Engineering Research Institute (CEERI), Rajasthan (India); Tanwar, A. K.; Baek, I. K.; Min, S. H.; Kwon, O. J.; Sattorov, M. A. [Department of Physics and Astronomy, Center for THz-Bio Application Systems, and Seoul-Teracom Inc., Seoul National University, Seoul (Korea, Republic of); Lee, K. W. [LIG Nex1, Seoul (Korea, Republic of); Park, G.-S., E-mail: gunsik@snu.ac.kr [School of Electrical Engineering and Computer Science, Seoul National University, Seoul (Korea, Republic of); Department of Physics and Astronomy, Center for THz-Bio Application Systems, and Seoul-Teracom Inc., Seoul National University, Seoul (Korea, Republic of); Advanced Institute of Convergence Technology, Suwon-si, Gyeonggi-do (Korea, Republic of)

    2013-07-01

    High power terahertz vacuum electron devices demand high current density and uniform emission dispenser cathode. It was found that the coating of noble metals e.g., Os, Ir, and Re on the surface of tungsten dispenser cathodes enhances the emission capabilities and uniformity. Hence metal coated cathode might be the best candidate for terahertz devices applications. In this study, ternary-alloy-film cathode (2Os:2Re:1 W) and Os coated cathode have been developed and the results are presented. The cathodes made out of this alloy coating showed 1.5 times higher emission and 0.02 eV emission uniformity as compared to those of simply Os coated cathodes which can be used in terahertz devices application.

  7. Investigation of Layer Structure of the Takamatsuzuka Mural Paintings by Terahertz Imaging Technique

    Science.gov (United States)

    Inuzuka, M.; Kouzuma, Y.; Sugioka, N.; Fukunaga, K.; Tateishi, T.

    2017-04-01

    Terahertz imaging can be a powerful tool in conservation science for cultural heritages. In this study, a new terahertz imaging system was applied to the Takamatsuzuka mural painting of a blue dragon, and the condition of the plaster layer was diagnosed. As a result, the locations where the plaster layer appears solid on the surface but in actuality may have peeled off the underlying tuff stone were revealed and viewed as two-dimensional images.

  8. Multilayer Graphene for Waveguide Terahertz Modulator

    DEFF Research Database (Denmark)

    Khromova, I.; Andryieuski, Andrei; Lavrinenko, Andrei

    2014-01-01

    We study terahertz to infrared electromagnetic properties of multilayer graphene/dielectric artificial medium and present a novel concept of terahertz modulation at midinfrared wavelengths. This approach allows the realization of high-speed electrically controllable terahertz modulators based...... on hollow waveguide sections filled with multilayer graphene....

  9. Micro combustion in sub-millimeter channels for novel modular thermophotovoltaic power generators

    International Nuclear Information System (INIS)

    Pan, J F; Tang, A K; Duan, L; Li, X C; Yang, W M; Chou, S K; Xue, H

    2010-01-01

    The performance of micro combustion-driven power systems is strongly influenced by the combustor structure. A novel modular thermophotovoltaic (TPV) power generator is presented, which is based on the sub-millimeter parallel plate combustor. It has the potential to achieve a high power density because of the high radiation energy per unit volume due to the high surface-to-volume ratio of the micro-combustor. The work experimentally investigated the ignition limitation for two micro-combustors. It also studied the effects of three major parameters on a sub-millimeter combustor, namely hydrogen to oxygen mixing ratio, hydrogen volumetric flow rate and nozzle geometry. The results show that the combustion efficiency decreases with the increase of the hydrogen flow rate, which is caused by reduced residence time. The average wall temperature with the rectangular nozzle is 25 K higher than that with the circle nozzle. The output electrical power and power density of the modular TPV power generator are projected to be 0.175 W and 0.0722 W cm −3 respectively. We experimentally achieve 0.166 W of electrical power, which is in good agreement with the model prediction

  10. Widely tunable terahertz source based on intra-cavity frequency mixing in quantum cascade laser arrays

    International Nuclear Information System (INIS)

    Jiang, Aiting; Jung, Seungyong; Jiang, Yifan; Kim, Jae Hyun; Belkin, Mikhail A.; Vijayraghavan, Karun

    2015-01-01

    We demonstrate a compact monolithic terahertz source continuously tunable from 1.9 THz to 3.9 THz with the maximum peak power output of 106 μW at 3.46 THz at room temperature. The source consists of an array of 10 electrically tunable quantum cascade lasers with intra-cavity terahertz difference-frequency generation. To increase fabrication yield and achieve high THz peak power output in our devices, a dual-section current pumping scheme is implemented using two electrically isolated grating sections to independently control gain for the two mid-IR pumps

  11. Intense Plasma Waveguide Terahertz Sources for High-Field THz Probe Science with Ultrafast Lasers for Solid State Physics

    Science.gov (United States)

    2016-08-25

    Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a...Summary 2 1. Introduction 2. Two colour excitation of intense terahertz radiation in MOFs 2 3. Terahertz optical nonlinearities in...of 2- colour THz generation and propagation in waveguides that we have developed to evaluate fibre designs before fabrication is only one

  12. Coherent Synchrotron Radiation: Theory and Simulations

    International Nuclear Information System (INIS)

    Novokhatski, Alexander

    2012-01-01

    The physics of coherent synchrotron radiation (CSR) emitted by ultra-relativistic electron bunches, known since the last century, has become increasingly important with the development of high peak current free electron lasers and shorter bunch lengths in storage rings. Coherent radiation can be described as a low frequency part of the familiar synchrotron radiation in bending magnets. As this part is independent of the electron energy, the fields of different electrons of a short bunch can be in phase and the total power of the radiation will be quadratic with the number of electrons. Naturally the frequency spectrum of the longitudinal electron distribution in a bunch is of the same importance as the overall electron bunch length. The interest in the utilization of high power radiation from the terahertz and far infrared region in the field of chemical, physical and biological processes has led synchrotron radiation facilities to pay more attention to the production of coherent radiation. Several laboratories have proposed the construction of a facility wholly dedicated to terahertz production using the coherent radiation in bending magnets initiated by the longitudinal instabilities in the ring. Existing synchrotron radiation facilities also consider such a possibility among their future plans. There is a beautiful introduction to CSR in the 'ICFA Beam Dynamics Newsletter' N 35 (Editor C. Biscari). In this paper we recall the basic properties of CSR from the theory and what new effects, we can get from the precise simulations of the coherent radiation using numerical solutions of Maxwell's equations. In particular, transverse variation of the particle energy loss in a bunch, discovered in these simulations, explains the slice emittance growth in bending magnets of the bunch compressors and transverse de-coherence in undulators. CSR may play same the role as the effect of quantum fluctuations of synchrotron radiation in damping rings. It can limit the minimum

  13. Improvement of optical properties and radiation hardness of NaBi(WO sub 4) sub 2 Cherenkov crystals

    CERN Document Server

    Zadneprovski, B I; Polyansky, E V; Devitsin, E G; Kozlov, V A; Potashov, S Yu; Terkulov, A R

    2002-01-01

    On the basis of the data on melt evaporation while growing NaBi(WO sub 4) sub 2 Cherenkov crystals, the formation of nonstoichiometry and most probable types of dot defects of the crystals have been considered. The influence of melt nonstoichiometry and doping with Sc on optical transmission and radiation hardness of the crystals has been experimentally investigated. The surplus of WO sub 3 has been established to increase optical transmission and radiation hardness and lack of Bi sub 2 O sub 3 in the melt to reduce radiation hardness. Sc doping is shifting the absorption edge to UV region by 30-35 nm and is increasing radiation hardness of the crystals about three-fold. Analytical estimations give the increase of the number of Cherenkov photons by a factor of 1.3, which leads to an improvement of the energy resolution of a calorimeter based on NaBi(WO sub 4) sub 2 :Sc crystals compared with undoped NaBi(WO sub 4) sub 2 of approximately 15%.

  14. Terahertz Focusing and Polarization Control in Large-Area Bias-Free Semiconductor Emitters

    Science.gov (United States)

    Carthy, Joanna L.; Gow, Paul C.; Berry, Sam A.; Mills, Ben; Apostolopoulos, Vasilis

    2018-03-01

    We show that, when large-area multiplex terahertz semiconductor emitters, that work on diffusion currents and Schottky potentials, are illuminated by ultrashort optical pulses they can radiate a directional electromagnetic terahertz pulse which is controlled by the angular spectrum of the incident optical beam. Using the lens that focuses the incident near-infrared pulse, we have demonstrated THz emission focusing in free space, at the same point where the optical radiation would focus. We investigated the beam waist and Gouy phase shift of the THz emission as a function of frequency. We also show that the polarization profile of the emitted THz can be tailored by the metallic patterning on the semiconductor, demonstrating radial polarization when a circular emitter design is used. Our techniques can be used for fast THz beam steering and mode control for efficiently coupling to waveguides without the need for THz lenses or parabolic mirrors.

  15. Photoconductive, dielectric and percolation properties of anodic TiO.sub.2./sub. nanotubes studied by terahertz spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Kuchařík, Jiří; Sopha, H.; Krbal, M.; Rychetský, Ivan; Kužel, Petr; Macák, J. M.; Němec, Hynek

    2018-01-01

    Roč. 51, č. 1 (2018), s. 1-9, č. článku 014004. ISSN 0022-3727 R&D Projects: GA ČR GA17-03662S Institutional support: RVO:68378271 Keywords : anodic TiO 2 nanotubes * terahertz spectroscopy * charge transport * dielectric properties Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics , supercond.) Impact factor: 2.588, year: 2016

  16. Systematic study of terahertz time-domain spectra of historically informed black inks.

    Science.gov (United States)

    Bardon, Tiphaine; May, Robert K; Taday, Philip F; Strlič, Matija

    2013-09-07

    The potential of terahertz-time domain spectroscopy (THz-TDS) as a diagnostic tool for studies of inks in historical documents is investigated in this paper. Transmission mode THz-TDS was performed on historically informed model writing and drawing inks. Carbon black, bistre and sepia inks show featureless spectra between 5 and 75 cm(-1) (0.15-2.25 THz); however, their analysis still provided useful information on the interaction of terahertz radiation with amorphous materials. On the other hand, THz-TDS can be used to distinguish different iron gall inks with respect to the amount of iron(II) sulfate contained, as sharp spectral features are observed for inks containing different ratios of iron(II) sulfate to tannic or gallic acid. Additionally, copper sulfate was found to modify the structure of iron(II) precipitate. Furthermore, Principal Component Analysis (PCA) applied to THz-TDS spectra, highlights changes in iron gall inks during thermal degradation, during which a decrease in the sharp spectral bands associated with iron(II) sulfate is observed. ATR-FTIR spectroscopy combined with THz-TDS of dynamically heated ink samples indicate that this phenomenon is due to dehydration of iron(II) sulfate heptahydrate. While this research demonstrates the potential of THz-TDS to improve monitoring of the chemical state of historical documents, the outcomes go beyond the heritage field, as it also helps to develop the theoretical knowledge on interactions between terahertz radiation and matter, particularly in studies of long-range symmetry (polymorphism) in complex molecular structures and the role played by the surrounding matrix, and also indicates the potential of THz-TDS for the optimization of contrast in terahertz imaging.

  17. Ultrafast terahertz-induced response of GeSbTe phase-change materials

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Michael J. [Department of Applied Physics, Stanford University, Stanford, California 94305 (United States); Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Zalden, Peter [Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Chen, Frank [Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); Weems, Ben [Department of Materials Science and Engineering, Stanford University, Stanford, California 94305 (United States); Chatzakis, Ioannis [Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Xiong, Feng; Jeyasingh, Rakesh; Pop, Eric; Philip Wong, H.-S. [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); Hoffmann, Matthias C. [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Wuttig, Matthias [I. Physikalisches Institut, RWTH Aachen University, 52056 Aachen (Germany); JARA–Fundamentals of Information Technology, RWTH Aachen University, 52056 Aachen (Germany); Lindenberg, Aaron M., E-mail: aaronl@stanford.edu [Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Department of Materials Science and Engineering, Stanford University, Stanford, California 94305 (United States)

    2014-06-23

    The time-resolved ultrafast electric field-driven response of crystalline and amorphous GeSbTe films has been measured all-optically, pumping with single-cycle terahertz pulses as a means of biasing phase-change materials on a sub-picosecond time-scale. Utilizing the near-band-gap transmission as a probe of the electronic and structural response below the switching threshold, we observe a field-induced heating of the carrier system and resolve the picosecond-time-scale energy relaxation processes and their dependence on the sample annealing condition in the crystalline phase. In the amorphous phase, an instantaneous electroabsorption response is observed, quadratic in the terahertz field, followed by field-driven lattice heating, with Ohmic behavior up to 200 kV/cm.

  18. Conductivity mechanisms in Sb-doped SnO.sub.2./sub. nanoparticle assemblies: DC and terahertz regime

    Czech Academy of Sciences Publication Activity Database

    Skoromets, Volodymyr; Němec, Hynek; Kopeček, Jaromír; Kužel, Petr

    2015-01-01

    Roč. 119, č. 33 (2015), s. 19485-19495 ISSN 1932-7447 R&D Projects: GA MŠk(CZ) LM2011029; GA ČR GA13-12386S; GA MŠk LO1409 Grant - others:AVČR(CZ) M100101218; SAFMAT(XE) CZ.2.16/3.1.00/22132; FUNBIO(XE) CZ.2.16/3.1.00/21568 Institutional support: RVO:68378271 Keywords : semiconductor nanoparticles * terahertz spectroscopy * effective medium approximation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.509, year: 2015

  19. Measurement of the hydrogen recombination coefficient in the TEXT tokamak as a function of outgassing and power radiated during tokamak discharges

    International Nuclear Information System (INIS)

    Langley, R.A.; Rowan, W.L.; Bravenec, R.V.; Nelin, K.

    1986-10-01

    The global recombination rate coefficient k/sub r/ for hydrogen has been measured in the TEXT tokamak vacuum vessel for various surface conditions. An attempt was made to correlate the measured values of k/sub r/ with residual gas analyzer (RGA) data taken before each measurement of k/sub r/ and with the power radiated during tokamak discharges produced after each measurement of k/sub r/. The results show that k/sub r/ increases during a series of tokamak discharges, k/sub r/ is relatively insensitive to power radiated during tokamak discharges, and k/sub r/ increases with the RGA measurements of mass 28 and 40 but not with those of mass 18. In addition, it was found that the mass 18 (H 2 O) signal decreases as glow discharge experiments with hydrogen were performed

  20. Terahertz and Cultural Heritage Science: Examination of Art and Archaeology

    Directory of Open Access Journals (Sweden)

    Antonino Cosentino

    2016-02-01

    Full Text Available Cultural Heritage scientists need methodologies to examine Art and Archaeology in order to understand artistic materials and techniques and devise better conservation procedures. This review discusses the most successful and promising applications of Terahertz (THz technology in Cultural Heritage Science. THz is used in homeland security and for plenty of other industrial sectors and it presents a number of valuable features specifically for the investigation of Art and Archaeology: No radiation risk, low power, non-contact and reflection mode. Recent technical advancements are also making its application fast, mobile and relatively affordable creating a potential for its diffused implementation in museums. While THz is most promising for the investigation of multilayered art, such as paintings, it has been tested on a very large range of artifacts, from manuscripts to mummies and lacquered historical furniture.

  1. Terahertz Radome Inspection

    Directory of Open Access Journals (Sweden)

    Fabian Friederich

    2018-01-01

    Full Text Available Radomes protecting sensitive radar, navigational, and communications equipment of, e.g., aircraft, are strongly exposed to the environment and have to withstand harsh weather conditions and potential impacts. Besides their significance to the structural integrity of the radomes, it is often crucial to optimize the composite structures for best possible radio performance. Hence, there exists a significant interest in non-destructive testing techniques, which can be used for defect inspection of radomes in field use as well as for quality inspection during the manufacturing process. Contactless millimeter-wave and terahertz imaging techniques provide millimeter resolution and have the potential to address both application scenarios. We report on our development of a three-dimensional (3D terahertz imaging system for radome inspection during industrial manufacturing processes. The system was designed for operation within a machining center for radome manufacturing. It simultaneously gathers terahertz depth information in adjacent frequency ranges, from 70 to 110 GHz and from 110 to 170 GHz by combining two frequency modulated continuous-wave terahertz sensing units into a single measurement device. Results from spiraliform image acquisition of a radome test sample demonstrate the successful integration of the measurement system.

  2. Infrared and terahertz studies of polar phonons and magnetodielectric effect in multiferroic BiFeO.sub.3./sub..

    Czech Academy of Sciences Publication Activity Database

    Kamba, Stanislav; Noujni, Dmitri; Savinov, Maxim; Šebek, Josef; Petzelt, Jan; Prokleška, J.; Haumont, R.; Kreisel, J.

    2007-01-01

    Roč. 75, 02 (2007), 024403/1-024403/7 ISSN 1098-0121 R&D Projects: GA ČR(CZ) GA202/06/0403; GA ČR(CZ) GA106/06/0368 Institutional research plan: CEZ:AV0Z10100520 Keywords : phonons * magnetodielectric effect * infrared and terahertz spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.172, year: 2007

  3. Low-Cost Radiator for Fission Power Thermal Control

    Science.gov (United States)

    Maxwell, Taylor; Tarau, Calin; Anderson, William; Hartenstine, John; Stern, Theodore; Walmsley, Nicholas; Briggs, Maxwell

    2014-01-01

    NASA Glenn Research Center (GRC) is developing fission power system technology for future Lunar surface power applications. The systems are envisioned in the 10 to 100kW(sub e) range and have an anticipated design life of 8 to 15 years with no maintenance. NASA GRC is currently setting up a 55 kW(sub e) non-nuclear system ground test in thermal-vacuum to validate technologies required to transfer reactor heat, convert the heat into electricity, reject waste heat, process the electrical output, and demonstrate overall system performance. Reducing the radiator mass, size, and cost is essential to the success of the program. To meet these goals, Advanced Cooling Technologies, Inc. (ACT) and Vanguard Space Technologies, Inc. (VST) are developing a single facesheet radiator with heat pipes directly bonded to the facesheet. The facesheet material is a graphite fiber reinforced composite (GFRC) and the heat pipes are titanium/water. By directly bonding a single facesheet to the heat pipes, several heavy and expensive components can be eliminated from the traditional radiator design such as, POC(TradeMark) foam saddles, aluminum honeycomb, and a second facesheet. A two-heat pipe radiator prototype, based on the single facesheet direct-bond concept, was fabricated and tested to verify the ability of the direct-bond joint to withstand coefficient of thermal expansion (CTE) induced stresses during thermal cycling. The thermal gradients along the bonds were measured before and after thermal cycle tests to determine if the performance degraded. Overall, the results indicated that the initial uniformity of the adhesive was poor along one of the heat pipes. However, both direct bond joints showed no measureable amount of degradation after being thermally cycled at both moderate and aggressive conditions.

  4. Analysis of the hydration water around bovine serum albumin using terahertz coherent synchrotron radiation.

    Science.gov (United States)

    Bye, Jordan W; Meliga, Stefano; Ferachou, Denis; Cinque, Gianfelice; Zeitler, J Axel; Falconer, Robert J

    2014-01-09

    Terahertz spectroscopy was used to study the absorption of bovine serum albumin (BSA) in water. The Diamond Light Source operating in a low alpha mode generated coherent synchrotron radiation that covered a useable spectral bandwidth of 0.3-3.3 THz (10-110 cm(-1)). As the BSA concentration was raised, there was a nonlinear change in absorption inconsistent with Beer's law. At low BSA concentrations (0-1 mM), the absorption remained constant or rose slightly. Above a concentration of 1 mM BSA, a steady decrease in absorption was observed, which was followed by a plateau that started at 2.5 mM. Using a overlapping hydration layer model, the hydration layer was estimated to extend 15 Å from the protein. Calculation of the corrected absorption coefficient (αcorr) for the water around BSA by subtracting the excluded volume of the protein provides an alternative approach to studying the hydration layer that provides evidence for complexity in the population of water around BSA.

  5. Status of the Novosibirsk high-power terahertz FEL

    International Nuclear Information System (INIS)

    Gavrilov, N.G.; Knyazev, B.A.; Kolobanov, E.I.; Kotenkov, V.V.; Kubarev, V.V.; Kulipanov, G.N.; Matveenko, A.N.; Medvedev, L.E.; Miginsky, S.V.; Mironenko, L.A.; Oreshkov, A.D.; Ovchar, V.K.; Popik, V.M.; Salikova, T.V.; Scheglov, M.A.; Serednyakov, S.S.; Shevchenko, O.A.; Skrinsky, A.N.; Tcheskidov, V.G.; Vinokurov, N.A.

    2007-01-01

    The first stage of Novosibirsk high-power free electron laser (FEL) was commissioned in 2003. It is based on the normal conducting CW energy recovery linac (ERL). Now the FEL provides electromagnetic radiation in the wavelength range 120-230 μm. The maximum average power is 400 W. The minimum measured linewidth is 0.3%, which is close to the Fourier-transform limit. Four user stations are in operation now. Manufacturing of the second stage of the FEL (based on the four-turn ERL) is in progress

  6. [Terahertz Spectroscopic Identification with Deep Belief Network].

    Science.gov (United States)

    Ma, Shuai; Shen, Tao; Wang, Rui-qi; Lai, Hua; Yu, Zheng-tao

    2015-12-01

    Feature extraction and classification are the key issues of terahertz spectroscopy identification. Because many materials have no apparent absorption peaks in the terahertz band, it is difficult to extract theirs terahertz spectroscopy feature and identify. To this end, a novel of identify terahertz spectroscopy approach with Deep Belief Network (DBN) was studied in this paper, which combines the advantages of DBN and K-Nearest Neighbors (KNN) classifier. Firstly, cubic spline interpolation and S-G filter were used to normalize the eight kinds of substances (ATP, Acetylcholine Bromide, Bifenthrin, Buprofezin, Carbazole, Bleomycin, Buckminster and Cylotriphosphazene) terahertz transmission spectra in the range of 0.9-6 THz. Secondly, the DBN model was built by two restricted Boltzmann machine (RBM) and then trained layer by layer using unsupervised approach. Instead of using handmade features, the DBN was employed to learn suitable features automatically with raw input data. Finally, a KNN classifier was applied to identify the terahertz spectrum. Experimental results show that using the feature learned by DBN can identify the terahertz spectrum of different substances with the recognition rate of over 90%, which demonstrates that the proposed method can automatically extract the effective features of terahertz spectrum. Furthermore, this KNN classifier was compared with others (BP neural network, SOM neural network and RBF neural network). Comparisons showed that the recognition rate of KNN classifier is better than the other three classifiers. Using the approach that automatic extract terahertz spectrum features by DBN can greatly reduce the workload of feature extraction. This proposed method shows a promising future in the application of identifying the mass terahertz spectroscopy.

  7. Tutorial: Terahertz beamforming, from concepts to realizations

    Science.gov (United States)

    Headland, Daniel; Monnai, Yasuaki; Abbott, Derek; Fumeaux, Christophe; Withayachumnankul, Withawat

    2018-05-01

    The terahertz range possesses significant untapped potential for applications including high-volume wireless communications, noninvasive medical imaging, sensing, and safe security screening. However, due to the unique characteristics and constraints of terahertz waves, the vast majority of these applications are entirely dependent upon the availability of beam control techniques. Thus, the development of advanced terahertz-range beam control techniques yields a range of useful and unparalleled applications. This article provides an overview and tutorial on terahertz beam control. The underlying principles of wavefront engineering include array antenna theory and diffraction optics, which are drawn from the neighboring microwave and optical regimes, respectively. As both principles are applicable across the electromagnetic spectrum, they are reconciled in this overview. This provides a useful foundation for investigations into beam control in the terahertz range, which lies between microwaves and infrared light. Thereafter, noteworthy experimental demonstrations of beam control in the terahertz range are discussed, and these include geometric optics, phased array devices, leaky-wave antennas, reflectarrays, and transmitarrays. These techniques are compared and contrasted for their suitability in applications of terahertz waves.

  8. Quasioptische Terahertz-Bauelemente

    OpenAIRE

    Busch, Stefan Frederik (M. Sc.)

    2016-01-01

    Die Dissertation „Quasioptische Terahertz-Bauelemente“ beschäftigt sich mit der Frage, in wieweit sich das 3D-Druck-Verfahren Fused Deposition Modeling (FDM) für die Herstellung von quasioptischen Komponenten für Terahertz-Strahlung eignet. Neben der grundlegenden Validierung des Verfahrens werden verschiedenste 3D-gedruckte Bauelemente vorgestellt. Der Fokus liegt hierbei auf innovativen und neuartigen Quasioptiken, wie Alvarez-Optiken, Axicons, variablen Beugungsgittern und Diffractive Opti...

  9. Prospects and trends in the development of terahertz technologies: patent landscape

    Directory of Open Access Journals (Sweden)

    D. А. Usanov

    2017-01-01

    Full Text Available The article is dedicated to the analysis of areas where terahertz radiation is applicable with the hwlp of a patent papers review, as well as to obtaining knowledge about the invention activity changes in this area over the past 35 years.Orbit patent databases’ capabilities were used to complete this analysis. Data search was conducted by keywords “terahertz” or “THz.” The searches were neither limited by submission dates, by priorities, nor by the country. A comprehensive analysis will allow to determine a more than 7389 patent-analog families’ aplications submitted in the period between 1980 and 2017 years. Statistical processing of obtained documents has been completed with the assistance of program software, indicated in the database. It was revealed that terahertz technologies have significant prospects to be applied in various areas; a fact, that is confirmed by an identified range of fields, where electromagnetic radiation of terahertz spectrum is applicable and is constantly growing. The dynamics of patenting is characterized by annual stable positive growth in the number of applications for inventions in the researched area. The highest number of inventions was identified in the field of instrumentation technologies, optics, telecommunications, semiconductor technologies, and medicine. Additionally, there was analyzed the state of patenting over the course of last five years. Examples of inventions were given. There were identified leading countries and companies in the researched area.

  10. Terahertz plasmonic Bessel beamformer

    International Nuclear Information System (INIS)

    Monnai, Yasuaki; Shinoda, Hiroyuki; Jahn, David; Koch, Martin; Withayachumnankul, Withawat

    2015-01-01

    We experimentally demonstrate terahertz Bessel beamforming based on the concept of plasmonics. The proposed planar structure is made of concentric metallic grooves with a subwavelength spacing that couple to a point source to create tightly confined surface waves or spoof surface plasmon polaritons. Concentric scatterers periodically incorporated at a wavelength scale allow for launching the surface waves into free space to define a Bessel beam. The Bessel beam defined at 0.29 THz has been characterized through terahertz time-domain spectroscopy. This approach is capable of generating Bessel beams with planar structures as opposed to bulky axicon lenses and can be readily integrated with solid-state terahertz sources

  11. High speed, High resolution terahertz spectrometers

    International Nuclear Information System (INIS)

    Kim, Youngchan; Yee, Dae Su; Yi, Miwoo; Ahn, Jaewook

    2008-01-01

    A variety of sources and methods have been developed for terahertz spectroscopy during almost two decades. Terahertz time domain spectroscopy (THz TDS)has attracted particular attention as a basic measurement method in the fields of THz science and technology. Recently, asynchronous optical sampling (AOS)THz TDS has been demonstrated, featuring rapid data acquisition and a high spectral resolution. Also, terahertz frequency comb spectroscopy (TFCS)possesses attractive features for high precision terahertz spectroscopy. In this presentation, we report on these two types of terahertz spectrometer. Our high speed, high resolution terahertz spectrometer is demonstrated using two mode locked femtosecond lasers with slightly different repetition frequencies without a mechanical delay stage. The repetition frequencies of the two femtosecond lasers are stabilized by use of two phase locked loops sharing the same reference oscillator. The time resolution of our terahertz spectrometer is measured using the cross correlation method to be 270 fs. AOS THz TDS is presented in Fig. 1, which shows a time domain waveform rapidly acquired on a 10ns time window. The inset shows a zoom into the signal with 100ps time window. The spectrum obtained by the fast Fourier Transformation (FFT)of the time domain waveform has a frequency resolution of 100MHz. The dependence of the signal to noise ratio (SNR)on the measurement time is also investigated

  12. Photomlxer for terahertz electromagnetic wave emission comprising quantum dots in a laser cavity

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to a photomixer for generating terahertz electromagnetic radiation in response to illumination by a time-modulated optical signal. The photomixer (300) comprises a carrier substrate (310) with a plurality of quantum dots arranged in an emission region (308) thereof...

  13. Polymers and electromagnetic radiation fundamentals and practical applications

    CERN Document Server

    Schnabel, Wolfram

    2014-01-01

    This first book to cover the interaction of polymers with radiation from the entire electromagnetic spectrum adopts a multidisciplinary approach to bridge polymer chemistry and physics, photochemistry, photophysics and materials science. The text is equally unique in its scope, devoting equal amounts of attention to the three aspects of synthesis, characterization, and applications. The first part deals with the interaction of polymers with non-ionizing radiation in the frequency-range from sub-terahertz via infrared radiation to visible and ultraviolet light, while the second covers interaction with ionizing radiation from the extreme ultraviolet to X-ray photons. The result is a systematic overview of how both types of radiation can be used for different polymerization approaches, spectroscopy methods and lithography techniques. Authored by a world-renowned researcher and teacher with over 40 years of experience in the field, this is a highly practical and authoritative guide.

  14. Measurement of radiative widths of a{sub 2}(1320) and π{sub 2}(1670)

    Energy Technology Data Exchange (ETDEWEB)

    Adolph, C.; Braun, C.; Eyrich, W.; Lehmann, A.; Schmidt, A. [Physikalisches Institut, Universitaet Erlangen-Nuernberg, Erlangen (Germany); Akhunzyanov, R.; Alexeev, G.D.; Anosov, V.; Efremov, A.; Gavrichtchouk, O.P.; Guskov, A.; Ivanov, A.; Ivanshin, Yu.; Kisselev, Yu.; Kouznetsov, O.; Kroumchtein, Z.V.; Kuchinski, N.; Meshcheryakov, G.; Nagaytsev, A.; Orlov, I.; Olshevsky, A.G.; Rossiyskaya, N.S.; Savin, I.A.; Shevchenko, O.Yu.; Slunecka, M.; Zemlyanichkina, E. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Alexeev, M.G.; Birsa, R.; Dalla Torre, S.; Dasgupta, S.; Gobbo, B.; Levorato, S.; Sozzi, F.; Steiger, L.; Tessaro, S.; Tessarotto, F. [Trieste Section of INFN, Trieste (Italy); Amoroso, A.; Balestra, F.; Chiosso, M.; Gnesi, I.; Grasso, A.; Kotzinian, A.M.; Parsamyan, B.; Sosio, S. [Department of Physics, University of Turin, Turin (Italy); Torino Section of INFN, Turin (Italy); Andrieux, V.; Bedfer, Y.; Boer, M.; Burtin, E.; Capozza, L.; Curiel, Q.; Ferrero, A.; Hose, N. d' ; Kunne, F.; Magnon, A.; Marchand, C.; Neyret, D.; Platchkov, S.; Thibaud, F.; Vandenbroucke, M.; Wollny, H. [CEA IRFU/SPhN Saclay, Gif-sur-Yvette (France); Austregesilo, A.; Bicker, K. [CERN, Geneva 23 (Switzerland); Physik Department, Technische Universitaet Muenchen, Garching (Germany); Badelek, B. [Faculty of Physics, University of Warsaw, Warsaw (Poland); Barth, J.; Bieling, J.; Goertz, S.; Hahne, D.; Klein, F.; Panknin, R.; Pretz, J.; Schmieden, H.; Windmolders, R. [Physikalisches Institut, Universitaet Bonn, Bonn (Germany); Baum, G. [Fakultaet fuer Physik, Universitaet Bielefeld, Bielefeld (Germany); Beck, R.; Bisplinghoff, J.; Eversheim, P.D.; Hinterberger, F.; Jahn, R.; Joosten, R. [Helmholtz-Institut fuer Strahlen- und Kernphysik, Universitaet Bonn, Bonn (Germany); Berlin, A.; Gautheron, F.; Koivuniemi, J.H.; Meyer, W.; Reicherz, G.; Wang, L. [Institut fuer Experimentalphysik, Universitaet Bochum, Bochum (Germany); Bernhard, J.; Harrach, D. von; Jasinski, P.; Kabuss, E.; Nerling, F.; Ostrick, M.; Pochodzalla, J.; Weisrock, T.; Wilfert, M. [Institut fuer Kernphysik, Universitaet Mainz, Mainz (Germany); Bodlak, M.; Finger, M.; Finger, M.; Matousek, J.; Pesek, M. [Faculty of Mathematics and Physics, Charles University in Prague, Prague (Czech Republic); Bordalo, P.; Franco, C.; Nunes, A.S.; Quaresma, M.; Quintans, C.; Ramos, S.; Silva, L.; Stolarski, M. [LIP, Lisbon (Portugal); Bradamante, F. [CERN, Geneva 23 (Switzerland); Department of Physics, University of Trieste, Trieste (Italy); Bressan, A.; Elia, C.; Makke, N.; Martin, A.; Sbrizzai, G.; Schiavon, P. [Trieste Section of INFN, Trieste (Italy); Department of Physics, University of Trieste, Trieste (Italy); Buechele, M.; Fischer, H.; Gorzellik, M.; Guthoerl, T.; Heinsius, F.H.; Herrmann, F.; Joerg, P.; Koenigsmann, K.; Nowak, W.D.; Schill, C.; Schmidt, K.; Schopferer, S.; Sirtl, S.; Szameitat, T.; Ter Wolbeek, J. [Physikalisches Institut, Universitaet Freiburg, Freiburg (Germany); Chung, S.U.; Friedrich, J.M.; Grabmueller, S.; Grube, B.; Haas, F.; Hoeppner, C.; Huber, S.; Ketzer, B.; Kraemer, M.; Nagel, T.; Neubert, S.; Paul, S.; Uhl, S. [Physik Department, Technische Universitaet Muenchen, Garching (Germany); Cicuttin, A.; Crespo, M.L. [Trieste Section of INFN, Trieste (Italy); Abdus Salam ICTP, Trieste (Italy); Dasgupta, S.S.; Sarkar, S.; Sinha, L. [Matrivani Institute of Experimental Research and Education, Calcutta (India); Denisov, O.Yu.; Maggiora, A.; Takekawa, S. [Torino Section of INFN, Turin (Italy); Donskov, S.V.; Filin, A.; Khaustov, G.V.; Khokhlov, Yu.A.; Kolosov, V.N.; Konstantinov, V.F.; Lednev, A.A.; Mikhailov, Yu.V.; Nikolaenko, V.I.; Polyakov, V.A.; Ryabchikov, D.I.; Samoylenko, V.D. [State Scientific Center Institute for High Energy Physics of National Research Center ' ' Kurchatov Institute' ' , Protvino (Russian Federation); Doshita, N.; Hashimoto, R.; Ishimoto, S.; Iwata, T.; Kondo, K.; Matsuda, H.; Michigami, T.; Miyachi, Y.; Suzuki, H. [Yamagata University, Yamagata (Japan); Duic, V. [Department of Physics, University of Trieste, Trieste (Italy); Duennweber, W.; Faessler, M.; Geyer, R.; Schlueter, T.; Uman, I. [Department fuer Physik, Ludwig-Maximilians-Universitaet Muenchen, Munich (Germany); Dziewiecki, M.; Kurjata, R.P.; Marzec, J.; Rychter, A.; Zaremba, K.; Ziembicki, M. [Institute of Radioelectronics, Warsaw University of Technology, Warsaw (Poland); Fresne von Hohenesche, N. du [CERN, Geneva 23 (Switzerland); Institut fuer Kernphysik, Universitaet Mainz, Mainz (Germany); Frolov, V.; Mallot, G.K.; Rocco, E.; Schoenning, K.; Schott, M. [CERN, Geneva 23 (Switzerland); Gerassimov, S.; Konorov, I. [Lebedev Physical Institute, Moscow (Russian Federation); Physik Department, Technische Universitaet Muenchen, Garching (Germany); Horikawa, N. [Nagoya University, Nagoya (Japan); Jary, V.; Kral, Z.; Novy, J.; Virius, M.; Vondra, J. [Czech Technical University in Prague, Prague (Czech Republic); Klimaszewski, K.; Kurek, K.; Sandacz, A.; Sulej, R.; Szabelski, A.; Sznajder, P. [National Centre for Nuclear Research, Warsaw (PL); Panzieri, D. [Torino Section of INFN, Turin (IT); University of Eastern Piedmont, Alessandria (IT); Srnka, A. [Institute of Scientific Instruments, AS CR, Brno (CZ); Sulc, M. [Technical University in Liberec, Liberec (CZ); Zavertyaev, M. [Lebedev Physical Institute, Moscow (RU); Matsuda, T. [University of Miyazaki, Miyazaki (JP); Lichtenstadt, J. [School of Physics and Astronomy, Tel Aviv University, Tel Aviv (IL)

    2014-04-15

    The COMPASS Collaboration at CERN has investigated the reaction π{sup -}γ → π{sup -}π{sup -}π{sup +} embedded in the Primakoff reaction of 190 GeV pions scattering in the Coulomb field of a lead target, π{sup -}Pb → π{sup -}π{sup -}π{sup +} Pb. Exchange of quasi-real photons is selected by isolating the sharp Coulomb peak observed at momentum transfer below 0.001 (GeV/c){sup 2}. Using a partial-wave analysis the amplitudes and relative phases of the a{sub 2}(1320) and π{sub 2}(1670) mesons have been extracted, and the Coulomb and the diffractive contributions have been disentangled. Measuring absolute production cross sections we have determined the radiative width of the a{sub 2}(1320) to be Γ{sub 0}(a{sub 2}(1320) → πγ) = (358 ± 6{sub stat} ± 42{sub syst}) keV. As the first measurement, Γ{sub 0}(π{sub 2}(1670) → πγ) = (181 ± 11{sub stat} ± 27{sub syst}) keV . (BR{sup PDG}{sub f{sub 2π}}/BR{sub f{sub 2π}}) is obtained for the radiative width of the π{sub 2}(1670), where in this analysis the branching ratio BR{sup PDG}{sub f{sub 2π}} = 0.56 has been used. We compare these values to previous measurements and theoretical predictions. (orig.)

  15. Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces

    Energy Technology Data Exchange (ETDEWEB)

    Cong, Longqing; Singh, Ranjan, E-mail: ranjans@ntu.edu.sg [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371 (Singapore); Centre for Disruptive Photonic Technologies, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371 (Singapore); Tan, Siyu [School of Electrical Engineering and Computer Science, Oklahoma State University, Stillwater, Oklahoma 87074 (United States); Key Lab of All Optical Network and Advanced Telecommunication Network of EMC, Institute of Lightwave Technology, Beijing Jiaotong University, Beijing 100044 (China); Yahiaoui, Riad [XLIM, Limoges University, CNRS, UMR 7252, 7 rue Jules Vallès, F-19100 Brive (France); Yan, Fengping [Key Lab of All Optical Network and Advanced Telecommunication Network of EMC, Institute of Lightwave Technology, Beijing Jiaotong University, Beijing 100044 (China); Zhang, Weili [School of Electrical Engineering and Computer Science, Oklahoma State University, Stillwater, Oklahoma 87074 (United States)

    2015-01-19

    Planar metasurfaces and plasmonic resonators have shown great promise for sensing applications across the electromagnetic domain ranging from the microwaves to the optical frequencies. However, these sensors suffer from lower figure of merit and sensitivity due to the radiative and the non-radiative loss channels in the plasmonic metamaterial systems. We demonstrate a metamaterial absorber based ultrasensitive sensing scheme at the terahertz frequencies with significantly enhanced sensitivity and an order of magnitude higher figure of merit compared to planar metasurfaces. Magnetic and electric resonant field enhancement in the impedance matched absorber cavity enables stronger interaction with the dielectric analyte. This finding opens up opportunities for perfect metamaterial absorbers to be applied as efficient sensors in the finger print region of the electromagnetic spectrum with several organic, explosive, and bio-molecules that have unique spectral signature at the terahertz frequencies.

  16. Terahertz imaging using quantum cascade lasers—a review of systems and applications

    International Nuclear Information System (INIS)

    Dean, P; Valavanis, A; Keeley, J; Alhathlool, R; Burnett, A D; Li, L H; Khanna, S P; Indjin, D; Linfield, E H; Davies, A G; Bertling, K; Lim, Y L; Rakić, A D; Taimre, T

    2014-01-01

    The terahertz (THz) frequency quantum cascade laser (QCL) is a compact source of THz radiation offering high power, high spectral purity and moderate tunability. As such, these sources are particularly suited to the application of THz frequency imaging across a range of disciplines, and have motivated significant research interest in this area over the past decade. In this paper we review the technological approaches to THz QCL-based imaging and the key advancements within this field. We discuss in detail a number of imaging approaches targeted to application areas including multiple-frequency transmission and diffuse reflection imaging for the spectral mapping of targets; as well as coherent approaches based on the self-mixing phenomenon in THz QCLs for long-range imaging, three-dimensional imaging, materials analysis, and high-resolution inverse synthetic aperture radar imaging. (paper)

  17. Challenging Aspects of Terahertz Terabit Wireless Communications

    DEFF Research Database (Denmark)

    Yu, Xianbin; Galili, Michael; Jepsen, Peter Uhd

    The increasing demand on fast wireless communications, e.g. huge data file transferring and mobile broadband access, has driven wireless communication systems into a path towards Terabit era. Terahertz (THz) technology is promising due to its unique features, such as unlimited bandwidth available......, in terms of THz generation and link power budget. The THz atmospheric absorption is another critical issue to limit wireless communication range....

  18. Nonequilibrium radiation behind a strong shock wave in CO{sub 2}-N{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Rond, C. [Universite de Provence - IUSTI, 5 rue Enrico Fermi, Marseille 13013 (France)], E-mail: rond@coria.fr; Boubert, P.; Felio, J.-M.; Chikhaoui, A. [Universite de Provence - IUSTI, 5 rue Enrico Fermi, Marseille 13013 (France)

    2007-11-09

    This work presents experiments reproducing plasma re-entry for one trajectory point of a Martian mission. The typical facility to investigate such hypersonic flow is shock tube; here we used the free-piston shock tube TCM2. Measurements of radiative flux behind the shock wave are realized thanks to time-resolved emission spectroscopy which is calibrated in intensity. As CN violet system is the main radiator in near UV-visible range, we have focused our study on its spectrum. Moreover a physical model, based on a multi-temperature kinetic code and a radiative code, for calculation of non equilibrium radiation behind a shock wave is developed for CO{sub 2}-N{sub 2}-Ar mixtures. Comparisons between experiments and calculations show that standard kinetic models (Park, McKenzie) are inefficient to reproduce our experimental results. Therefore we propose new rate coefficients in particular for the dissociation of CO{sub 2}, showing the way towards a better description of the chemistry of the mixture.

  19. Single-crystalline Bi2Sr2CaCu2O8+x detectors for direct detection of microwave radiation

    International Nuclear Information System (INIS)

    Li, M.; Winkler, D.; Yurgens, A.

    2015-01-01

    We test radiation detectors made from single-crystalline Bi 2 Sr 2 CaCu 2 O 8+x flakes put on oxidized Si substrates. The 100-nm-thick flakes are lithographically patterned into 4×12 μm 2 large rectangles embedded in thin-film log-spiral antennas. The SiO 2 layer weakens the thermal link between the flakes and the bath. Two modes of radiation detection have been observed. For a bolometric type of sensors a responsivity of ∼300 V/W and a noise equivalent power of 30 nW/√(Hz) has been deduced at 70 K. Much more sensitive is the non-bolometric device showing characteristics similar to a Golay-type detector while being at least a thousand times faster. Making smaller (sub-μm) structures is expected to significantly improve the performance of these devices and makes them very competitive among other microwave and terahertz detectors

  20. Electric-field tuning of a planar terahertz metamaterial based on strained SrTiO.sub.3./sub. layers

    Czech Academy of Sciences Publication Activity Database

    Kadlec, Christelle; Skoromets, Volodymyr; Kadlec, Filip; Němec, Hynek; Chen, H.T.; Jurka, Vlastimil; Hruška, Karel; Kužel, Petr

    2018-01-01

    Roč. 51, č. 5 (2018), s. 1-5, č. článku 054001. ISSN 0022-3727 R&D Projects: GA ČR(CZ) GA14-25639S Institutional support: RVO:68378271 Keywords : tunable metamaterial * metasurfaces * strontium titanate * epitaxial thin films * terahertz waves Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics , supercond.) Impact factor: 2.588, year: 2016

  1. Electron radiation damages to dicalcium (Ca{sub 2}SiO{sub 4}) and tricalcium (Ca{sub 3}SiO{sub 5}) orthosilicates

    Energy Technology Data Exchange (ETDEWEB)

    Noirfontaine, Marie-Noëlle de; Dunstetter, Frédéric [Laboratoire des Solides Irradiés, UMR CNRS 7642, Ecole Polytechnique, Université Paris-Saclay, F-91128 Palaiseau Cedex (France); Courtial, Mireille [Laboratoire des Solides Irradiés, UMR CNRS 7642, Ecole Polytechnique, Université Paris-Saclay, F-91128 Palaiseau Cedex (France); Université d’Artois, 1230 Rue de l’Université, CS 20819, F-62408 Béthune (France); Signes-Frehel, Marcel [Laboratoire des Solides Irradiés, UMR CNRS 7642, Ecole Polytechnique, Université Paris-Saclay, F-91128 Palaiseau Cedex (France); Wang, Guillaume [Laboratoire Matériaux et Phénomènes Quantiques, UMR CNRS 7162, Université Paris Diderot, F-75205 Paris Cedex 13 (France); Gorse - Pomonti, Dominique [Laboratoire des Solides Irradiés, UMR CNRS 7642, Ecole Polytechnique, Université Paris-Saclay, F-91128 Palaiseau Cedex (France)

    2016-05-01

    Electron radiation damages to dicalcium silicate (Ca{sub 2}SiO{sub 4}) and tricalcium silicate (Ca{sub 3}SiO{sub 5}) are reported for the first time in this paper. With increasing flux, between 2.7 × 10{sup 17} and 2.2 × 10{sup 22} e{sup −} cm{sup −2} s{sup −1}, decomposition into nanodomains of crystalline CaO plus an amorphous silica rich phase is first observed for both silicates, then amorphization at higher flux always for both silicates, and finally hole drilling but only for Ca{sub 3}SiO{sub 5}. These structural modifications are accompanied by a net reduction of Ca content under the electron beam depending on the silicate species. These radiation effects occur for values of flux and dose larger than in previously studied orthosilicates (like olivines), and much larger than in all tectosilicates.

  2. Picosecond Transient Photoconductivity in Functionalized Pentacene Molecular Crystals Probed by Terahertz Pulse Spectroscopy

    Science.gov (United States)

    Hegmann, F. A.; Tykwinski, R. R.; Lui, K. P.; Bullock, J. E.; Anthony, J. E.

    2002-11-01

    We have measured transient photoconductivity in functionalized pentacene molecular crystals using ultrafast optical pump-terahertz probe techniques. The single crystal samples were excited using 800nm, 100fs pulses, and the change in transmission of time-delayed, subpicosecond terahertz pulses was used to probe the photoconducting state over a temperature range from 10 to 300K. A subpicosecond rise in photoconductivity is observed, suggesting that mobile carriers are a primary photoexcitation. At times longer than 4ps, a power-law decay is observed consistent with dispersive transport.

  3. Terahertz spoof surface-plasmon-polariton subwavelength waveguide

    KAUST Repository

    Zhang, Ying; Xu, Yuehong; Tian, Chunxiu; Xu, Quan; Zhang, Xueqian; Li, Yanfeng; Zhang, Xixiang; Han, Jiaguang; Zhang, Weili

    2017-01-01

    Surface plasmon polaritons (SPPs) with the features of subwavelength confinement and strong enhancements have sparked enormous interest. However, in the terahertz regime, due to the perfect conductivities of most metals, it is hard to realize the strong confinement of SPPs, even though the propagation loss could be sufficiently low. One main approach to circumvent this problem is to exploit spoof SPPs, which are expected to exhibit useful subwavelength confinement and relative low propagation loss at terahertz frequencies. Here we report the design, fabrication, and characterization of terahertz spoof SPP waveguides based on corrugated metal surfaces. The various waveguide components, including a straight waveguide, an S-bend waveguide, a Y-splitter, and a directional coupler, were experimentally demonstrated using scanning near-field terahertz microscopy. The proposed waveguide indeed enables propagation, bending, splitting, and coupling of terahertz SPPs and thus paves a new way for the development of flexible and compact plasmonic circuits operating at terahertz frequencies. (C) 2017 Chinese Laser Press

  4. Terahertz spoof surface-plasmon-polariton subwavelength waveguide

    KAUST Repository

    Zhang, Ying

    2017-12-11

    Surface plasmon polaritons (SPPs) with the features of subwavelength confinement and strong enhancements have sparked enormous interest. However, in the terahertz regime, due to the perfect conductivities of most metals, it is hard to realize the strong confinement of SPPs, even though the propagation loss could be sufficiently low. One main approach to circumvent this problem is to exploit spoof SPPs, which are expected to exhibit useful subwavelength confinement and relative low propagation loss at terahertz frequencies. Here we report the design, fabrication, and characterization of terahertz spoof SPP waveguides based on corrugated metal surfaces. The various waveguide components, including a straight waveguide, an S-bend waveguide, a Y-splitter, and a directional coupler, were experimentally demonstrated using scanning near-field terahertz microscopy. The proposed waveguide indeed enables propagation, bending, splitting, and coupling of terahertz SPPs and thus paves a new way for the development of flexible and compact plasmonic circuits operating at terahertz frequencies. (C) 2017 Chinese Laser Press

  5. Optimization of radiation sensors for a passive terahertz video camera for security applications

    NARCIS (Netherlands)

    Zieger, G.J.M.

    2014-01-01

    A passive terahertz video camera allows for fast security screenings from distances of several meters. It avoids irradiation or the impressions of nakedness, which oftentimes cause embarrassment and trepidation of the concerned persons. This work describes the optimization of highly sensitive

  6. Charge transport in TiO.sub.2./sub. films with complex percolation pathways investigated by time-resolved terahertz spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Němec, Hynek; Zajac, Vít; Rychetský, Ivan; Fattakhova-Rohlfing, D.; Mandlmeier, B.; Bein, T.; Mics, Zoltan; Kužel, Petr

    2013-01-01

    Roč. 3, č. 3 (2013), s. 302-313 ISSN 2156-342X R&D Projects: GA ČR GAP204/12/0232; GA ČR GA13-12386S Grant - others:AVČR(CZ) M100101218 Institutional support: RVO:68378271 Keywords : terahertz spectroscopy * charge transport * TiO 2 nanoparticles Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.342, year: 2013

  7. A Tunable Polarization-Dependent Terahertz Metamaterial Absorber Based on Liquid Crystal

    Directory of Open Access Journals (Sweden)

    Guangsheng Deng

    2018-02-01

    Full Text Available In this paper, a tunable polarization-dependent terahertz (THz metamaterial absorber based on liquid crystal (LC is presented. The measurement results show that absorption peak is at 239.5 GHz for a TE-polarized wave and 306.6 GHz for a TM-polarized wave, without exerting the bias voltage on the LC layer. An increase in bias voltage affects the orientation of LC molecules and causes redshifted resonant frequencies. By adjusting the bias voltage from 0 to 10 V, frequency tunabilities of 4.7% and 4.1% for TE- and TM-polarized waves, respectively, were experimentally demonstrated. Surface current and power loss distribution was analyzed to explain the physical mechanism of the absorber, while the absorption dependence on geometrical parameters and incident angles was also studied in detail. According to the obtained results, the proposed absorber is shown here to be capable of achieving tunable polarization-dependent absorption, and to have potential application in terahertz polarization imaging, terahertz sensing, and polarization multiplexing.

  8. A Model Describing Stable Coherent Synchrotron Radiation in Storage Rings

    International Nuclear Information System (INIS)

    Sannibale, F.

    2004-01-01

    We present a model describing high power stable broadband coherent synchrotron radiation (CSR) in the terahertz frequency region in an electron storage ring. The model includes distortion of bunch shape from the synchrotron radiation (SR), which enhances higher frequency coherent emission, and limits to stable emission due to an instability excited by the SR wakefield. It gives a quantitative explanation of several features of the recent observations of CSR at the BESSY II storage ring. We also use this model to optimize the performance of a source for stable CSR emission

  9. A model describing stable coherent synchrotron radiation in storage rings

    International Nuclear Information System (INIS)

    Sannibale, F.; Byrd, J.M.; Loftsdottir, A.; Venturini, M.; Abo-Bakr, M.; Feikes, J.; Holldack, K.; Kuske, P.; Wuestefeld, G.; Huebers, H.-W.; Warnock, R.

    2004-01-01

    We present a model describing high power stable broadband coherent synchrotron radiation (CSR) in the terahertz frequency region in an electron storage ring. The model includes distortion of bunch shape from the synchrotron radiation (SR), which enhances higher frequency coherent emission, and limits to stable emission due to an instability excited by the SR wakefield. It gives a quantitative explanation of several features of the recent observations of CSR at the BESSY II storage ring. We also use this model to optimize the performance of a source for stable CSR emission

  10. Detection of Ionic liquid using terahertz time-domain spectroscopy

    Science.gov (United States)

    Wang, Cuicui; Zhao, Xiaojing; Liu, Shangjian; Zuo, Jian; Zhang, Cunlin

    2018-01-01

    Terahertz (THz, THz+1012Hz) spectroscopy is a far-infrared analytical technology with spectral bands locating between microware and infrared ranges. Being of excellent transmission, non-destruction and high discrimination, this technology has been applied in various fields such as physics, chemistry, nondestructive detection, communication, biomedicine public security. Terahertz spectrum is corresponding with vibration and rotation of liquid molecules, which is suitable to identify and study the liquid molecular dynamics. It is as a powerful spectral detection technology, terahertz time-domain spectroscopy is widely used in solution detection. can enable us to extract the material parameters or dielectric spectrum that show material micro-structure and dynamics by measuring amplitude and phase from coherent terahertz pulses. Ionic liquid exists in most biological tissues, and it is very important for life. It has recently been suggested that near-fired terahertz ionic contrast microscopy can be employed to image subtle changes in ionic concentrations arising from neuronal activity. In this paper, we detected Ionic liquid with different concentrations at room temperature by THz-TDS technique in the range of 0.2-1.5 THz. The liquid cell with a thickness of 0.2mm is made of quartz. The absorption coefficient, refractive index and dielectric function of solutions can be extracted based on THz-TDS. We use an expanded model for fitting the dielectric function based on a combination of a Debye relation for the anions and cations. We find A linear increase of the real and imaginary part of the dielectric function compared with pure water with increasing ion concentrations. A good agreement between the model and the experimental results is obtained. By means of dielectric relaxation process, it was found that the characteristic time of molecular movement and the information related to the liquid molecular structure and movement was obtained.

  11. Terahertz Frequency-Domain Spectroscopy of Low-Pressure Acetonitrile Gas by a Photomixing Terahertz Synthesizer Referenced to Dual Optical Frequency Combs

    Science.gov (United States)

    Hsieh, Yi-Da; Kimura, Hiroto; Hayashi, Kenta; Minamikawa, Takeo; Mizutani, Yasuhiro; Yamamoto, Hirotsugu; Iwata, Tetsuo; Inaba, Hajime; Minoshima, Kaoru; Hindle, Francis; Yasui, Takeshi

    2016-09-01

    A terahertz (THz) frequency synthesizer based on photomixing of two near-infrared lasers with a sub-THz to THz frequency offset is a powerful tool for spectroscopy of polar gas molecules due to its broad spectral coverage; however, its frequency accuracy and resolution are relatively low. To tune the output frequency continuously and widely while maintaining its traceability to a frequency standard, we developed a photomixing THz synthesizer phase-locked to dual optical frequency combs (OFCs). While the phase-locking to dual OFCs ensured continuous tuning within a spectral range of 120 GHz, in addition to the traceability to the frequency standard, use of a broadband uni-traveling carrier photodiode for photomixing enabled the generation of CW-THz radiation within a frequency range from 0.2 to 1.5 THz. We demonstrated THz frequency-domain spectroscopy of gas-phase acetonitrile CH3CN and its isotope CH3 13CN in the frequency range of 0.600-0.720 THz using this THz synthesizer. Their rotational transitions were assigned with a frequency accuracy of 8.42 × 10-8 and a frequency resolution of 520 kHz. Furthermore, the concentration of the CH3CN gas at 20 Pa was determined to be (5.41 ± 0.05) × 1014 molecules/cm3 by curve fitting analysis of the measured absorbance spectrum, and the mixture ratio of the mixed CH3CN/CH3 13CN gas was determined to be 1:2.26 with a gas concentration of 1014-1015 molecules/cm3. The developed THz synthesizer is highly promising for high-precision THz-FDS of low-pressure molecular gases and will enable the qualitative and quantitative analyses of multiple gases.

  12. Thermoelectric power of TTF[Ni(dmit){sub 2}]{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Kaddour, Wafa, E-mail: wafa.kaddour@u-psud.fr [Laboratoire de Physique des Solides, UMR8502-CNRS, Universite Paris-Sud, Bat. 510, Orsay F-91405 (France); Laboratoire de Physique de la Matiere Condensee, Faculte des Sciences de Tunis, Campus Universitaire, 1060 Tunis (Tunisia); Auban-Senzier, Pascale, E-mail: senzier@lps.u-psud.fr [Laboratoire de Physique des Solides, UMR8502-CNRS, Universite Paris-Sud, Bat. 510, Orsay F-91405 (France); Pasquier, Claude, E-mail: pasquier@lps.u-psud.fr [Laboratoire de Physique des Solides, UMR8502-CNRS, Universite Paris-Sud, Bat. 510, Orsay F-91405 (France); Valade, Lydie, E-mail: valade@lcc-toulouse.fr [Laboratoire de Chimie de Coordination, 205 Route de Narbonne, F-31077 Toulouse (France)

    2012-06-01

    The 1D organic salt TTF[Ni(dmit){sub 2}]{sub 2} becomes superconductor with T{sub c}=1.6 K under an applied hydrostatic pressure of 7 kbar. Structural determinations in this system lead us to suspect that superconductivity (SC) coexists with a charge density wave (CDW) instability at low pressure. In order to better understand how SC emerge from a CDW and to revisit the pressure-temperature phase diagram of the TTF[Ni(dmit){sub 2}]{sub 2} we performed transport and thermoelectric power measurements under pressure.

  13. Self-powered radiation detectors

    International Nuclear Information System (INIS)

    Goldstein, N.P.; Todt, W.H.

    1982-01-01

    A self-powered nuclear radiation detector has an emitter electrode of an alloy of a first major constituent metal having a desired high radiation response, and a second minor constituent which imparts to the alloy a desired thermal or mechanical characteristic without diminishing the desired high radiation response. A gamma responsive self-powered detector is detailed which has an emitter with lead as the major constituent, with the minor constituent selected from aluminum, copper, nickel, platinum, or zinc. (author)

  14. Direct Observation of Sub-100 fs Mobile Charge Generation in a Polymer-Fullerene Film

    DEFF Research Database (Denmark)

    Cooke, D. G.; Krebs, Frederik C; Jepsen, Peter Uhd

    2012-01-01

    The formation of mobile charges in a roll-to-roll processed poly-3-hexylthiophene-fullerene bulk heterojunction film is observed directly by using transient terahertz spectroscopy with sub-100 fs temporal resolution. The transient terahertz ac conductivity reveals that 20% of the incident pump...

  15. Anomalous extinction in index-matched terahertz nanogaps

    Science.gov (United States)

    Jeong, Jeeyoon; Kim, Dasom; Park, Hyeong-Ryeol; Kang, Taehee; Lee, Dukhyung; Kim, Sunghwan; Bahk, Young-Mi; Kim, Dai-Sik

    2018-01-01

    Slot-type nanogaps have been widely utilized in transmission geometry because of their advantages of exclusive light funneling and exact quantification of near-field enhancement at the gap. For further application of the nanogaps in electromagnetic interactions with various target materials, complementary studies on both transmission and reflection properties of the nanogaps are necessary. Here, we observe an anomalous extinction of terahertz waves interacting with rectangular ring-shaped sub-30 nm wide gaps. Substrate works as an index matching layer for the nanogaps, leading to a stronger field enhancement and increased nonlinearity at the gap under substrate-side illumination. This effect is expressed in reflection as a larger dip at the resonance, caused by destructive interference of the diffracted field from the gap with the reflected beam from the metal. The resulting extinction at the resonance is larger than 60% of the incident power, even without any absorbing material in the whole nanogap structure. The extinction even decreases in the presence of an absorbing medium on top of the nanogaps, suggesting that transmission and reflection from nanogaps might not necessarily represent the absorption of the whole structure.

  16. Self-powered radiation detector

    International Nuclear Information System (INIS)

    Playfoot, K.C.; Bauer, R.F.; Goldstein, N.P.

    1980-01-01

    This invention relates to a self powered radiation detector requiring no excitation potential to generate a signal indicating a radiation flux. Such detectors comprise two electrically insulated electrodes, at a distance from each other. These electrodes are made of conducting materials having a different response for neutron and/or gamma ray radiation flux levels, as in nuclear power stations. This elongated detector generates an electric signal in terms of an incident flux of radiations cooperating with coaxial conductors insulated from each other and with different radiation reaction characteristics. The conductor with the greatest reaction to the radiations forms the central emitting electrode and the conductor with the least reaction to the radiations forms a tubular coaxial collecting electrode. The rhodium or cobalt tubular emitting electrode contains a ductile central conducting cable placed along the longitudinal axis of the detector. The latter is in high nickel steel with a low reaction to radiation [fr

  17. Enhanced terahertz detection using multiple GaAs HEMTs connected in series

    KAUST Repository

    Elkhatib, Tamer A.; Veksler, Dmitry B.; Salama, Khaled N.; Zhang, Xi-C.; Shur, Michael S.

    2012-01-01

    We report here, for the first time, on enhanced nonresonant detection of terahertz radiation using multiple InGaAs/GaAs high-electron-mobility transistors (HEMTs) connected in series and biased by a direct drain current. A 1.63 THz (184 mum) response is proportional to the number of detecting transistors operating in saturation region at the same gate-source bias voltage. The experimental data are in agreement with the detection mechanism based on the rectification of overdamped plasma waves excited by radiation in channels of devices.

  18. Enhanced terahertz detection using multiple GaAs HEMTs connected in series

    KAUST Repository

    Elkhatib, Tamer A.

    2012-07-28

    We report here, for the first time, on enhanced nonresonant detection of terahertz radiation using multiple InGaAs/GaAs high-electron-mobility transistors (HEMTs) connected in series and biased by a direct drain current. A 1.63 THz (184 mum) response is proportional to the number of detecting transistors operating in saturation region at the same gate-source bias voltage. The experimental data are in agreement with the detection mechanism based on the rectification of overdamped plasma waves excited by radiation in channels of devices.

  19. Miniature field deployable terahertz source

    Science.gov (United States)

    Mayes, Mark G.

    2006-05-01

    Developments in terahertz sources include compacted electron beam systems, optical mixing techniques, and multiplication of microwave frequencies. Although significant advances in THz science have been achieved, efforts continue to obtain source technologies that are more mobile and suitable for field deployment. Strategies in source development have approached generation from either end of the THz spectrum, from up-conversion of high-frequency microwave to down-conversion of optical frequencies. In this paper, we present the design of a THz source which employs an up-conversion method in an assembly that integrates power supply, electronics, and radiative component into a man-portable unit for situations in which a lab system is not feasible. This unit will ultimately evolve into a ruggedized package suitable for use in extreme conditions, e.g. temporary security check points or emergency response teams, in conditions where THz diagnostics are needed with minimal planning or logistical support. In order to meet design goals of reduced size and complexity, the inner workings of the unit ideally would be condensed into a monolithic active element, with ancillary systems, e.g. user interface and power, coupled to the element. To attain these goals, the fundamental component of our design is a THz source and lens array that may be fabricated with either printed circuit board or wafer substrate. To reduce the volume occupied by the source array, the design employs a metamaterial composed of a periodic lattice of resonant elements. Each resonant element is an LC oscillator, or tank circuit, with inductance, capacitance, and center frequency determined by dimensioning and material parameters. The source array and supporting electronics are designed so that the radiative elements are driven in-phase to yield THz radiation with a high degree of partial coherence. Simulation indicates that the spectral width of operation may be controlled by detuning of critical dimensions

  20. Coupled Josephson local oscillator and detector experiments in the terahertz regime

    International Nuclear Information System (INIS)

    Robertazzi, R.P.; Hallen, H.D.; Buhrman, R.A.

    1988-01-01

    Recent coupled Josephson junction experiments in the authors' laboratory have demonstrated that high critical current density tunnel junctions can serve as effective local oscillators at frequencies up to and in excess of the gap sum frequency of the junction, i.e. well above 1 Terahertz for a niobium or niobium compound tunnel junction. While the details of the behavior of such a THz. oscillator were found not to be in accord with the predictions of the accepted theory of the A.C. Josephson effect in the gap region significant radiation could be capacitively coupled from the oscillator junction to an adjacent junction, sufficient for SIS mixer experiments at Terahertz frequencies. Research efforts are now under way to further extend and expand these studies. A high critical current density all NbN tunnel junction system is now under development for Terahertz applications and a new set of coupled Josephson oscillator - SIS detector experiments is being initiated using NbN tunnel junctions. In this paper the authors review the original coupled junction high frequency experiments and report on the recent progress of the current NbN tunnel junction experiments

  1. The influence of high intensity terahertz radiation on mammalian cell adhesion, proliferation and differentiation.

    Science.gov (United States)

    Williams, Rachel; Schofield, Amy; Holder, Gareth; Downes, Joan; Edgar, David; Harrison, Paul; Siggel-King, Michele; Surman, Mark; Dunning, David; Hill, Stephen; Holder, David; Jackson, Frank; Jones, James; McKenzie, Julian; Saveliev, Yuri; Thomsen, Neil; Williams, Peter; Weightman, Peter

    2013-01-21

    Understanding the influence of exposure of biological systems to THz radiation is becoming increasingly important. There is some evidence to suggest that THz radiation can influence important activities within mammalian cells. This study evaluated the influence of the high peak power, low average power THz radiation produced by the ALICE (Daresbury Laboratory, UK) synchrotron source on human epithelial and embryonic stem cells. The cells were maintained under standard tissue culture conditions, during which the THz radiation was delivered directly into the incubator for various exposure times. The influence of the THz radiation on cell morphology, attachment, proliferation and differentiation was evaluated. The study demonstrated that there was no difference in any of these parameters between irradiated and control cell cultures. It is suggested that under these conditions the cells are capable of compensating for any effects caused by exposure to THz radiation with the peak powers levels employed in these studies.

  2. The spectral analysis of fuel oils using terahertz radiation and chemometric methods

    Science.gov (United States)

    Zhan, Honglei; Zhao, Kun; Zhao, Hui; Li, Qian; Zhu, Shouming; Xiao, Lizhi

    2016-10-01

    The combustion characteristics of fuel oils are closely related to both engine efficiency and pollutant emissions, and the analysis of oils and their additives is thus important. These oils and additives have been found to generate distinct responses to terahertz (THz) radiation as the result of various molecular vibrational modes. In the present work, THz spectroscopy was employed to identify a number of oils, including lubricants, gasoline and diesel, with different additives. The identities of dozens of these oils could be readily established using statistical models based on principal component analysis. The THz spectra of gasoline, diesel, sulfur and methyl methacrylate (MMA) were acquired and linear fittings were obtained. By using chemometric methods, including back propagation, artificial neural network and support vector machine techniques, typical concentrations of sulfur in gasoline (ppm-grade) could be detected, together with MMA in diesel below 0.5%. The absorption characteristics of the oil additives were also assessed using 2D correlation spectroscopy, and several hidden absorption peaks were discovered. The technique discussed herein should provide a useful new means of analyzing fuel oils with various additives and impurities in a non-destructive manner and therefore will be of benefit to the field of chemical detection and identification.

  3. The spectral analysis of fuel oils using terahertz radiation and chemometric methods

    International Nuclear Information System (INIS)

    Zhan, Honglei; Zhao, Kun; Xiao, Lizhi; Zhao, Hui; Li, Qian; Zhu, Shouming

    2016-01-01

    The combustion characteristics of fuel oils are closely related to both engine efficiency and pollutant emissions, and the analysis of oils and their additives is thus important. These oils and additives have been found to generate distinct responses to terahertz (THz) radiation as the result of various molecular vibrational modes. In the present work, THz spectroscopy was employed to identify a number of oils, including lubricants, gasoline and diesel, with different additives. The identities of dozens of these oils could be readily established using statistical models based on principal component analysis. The THz spectra of gasoline, diesel, sulfur and methyl methacrylate (MMA) were acquired and linear fittings were obtained. By using chemometric methods, including back propagation, artificial neural network and support vector machine techniques, typical concentrations of sulfur in gasoline (ppm-grade) could be detected, together with MMA in diesel below 0.5%. The absorption characteristics of the oil additives were also assessed using 2D correlation spectroscopy, and several hidden absorption peaks were discovered. The technique discussed herein should provide a useful new means of analyzing fuel oils with various additives and impurities in a non-destructive manner and therefore will be of benefit to the field of chemical detection and identification. (paper)

  4. MCFC power plant with CO{sub 2} separation

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, Noboru [Ishikawajima-Harima Heavy Industries Co., Ltd., Tokyo (Japan)

    1996-12-31

    Fuel cell power plant has been developed for many years with expectation of high system efficiency. In the meantime the gas turbine combined cycle has shown its considerable progress in improving system efficiency. Fuel cell power plant will no longer be attractive unless it exceeds the gas turbine combined cycle at least in the system efficiency. It is said CO{sub 2} separation could improve the efficiency of fuel cell power plant. IHI has developed the CO{sub 2} separator for fuel cell power plant. This study describes that the CO{sub 2} separator can increase the efficiency of the molten carbonate fuel cell (MCFC) power plant by 5% and the expected efficiency reaches 63 % in HHV basis.

  5. A novel analytical method for pharmaceutical polymorphs by terahertz spectroscopy and the optimization of crystal form at the discovery stage.

    Science.gov (United States)

    Ikeda, Yukihiro; Ishihara, Yoko; Moriwaki, Toshiya; Kato, Eiji; Terada, Katsuhide

    2010-01-01

    A novel analytical method for the determination of pharmaceutical polymorphs was developed using terahertz spectroscopy. It was found out that each polymorph of a substance showed a specific terahertz absorption spectrum. In particular, analysis of the second derivative spectrum was enormously beneficial in the discrimination of closely related polymorphs that were difficult to discern by powder X-ray diffractometry. Crystal forms that were obtained by crystallization from various solvents and stored under various conditions were specifically characterized by the second derivative of each terahertz spectrum. Fractional polymorphic transformation for substances stored under stressed conditions was also identified by terahertz spectroscopy during solid-state stability test, but could not be detected by powder X-ray diffractometry. Since polymorphs could be characterized clearly by terahertz spectroscopy, further physicochemical studies could be conducted in a timely manner. The development form of compound examined was determined by the results of comprehensive physicochemical studies that included thermodynamic relationships, as well as chemical and physicochemical stability. In conclusion, terahertz spectroscopy, which has unique power in the elucidation of molecular interaction within a crystal lattice, can play more important role in physicochemical research. Terahertz spectroscopy has a great potential as a tool for polymorphic determination, particularly since the second derivative of the terahertz spectrum possesses high sensitivity for pharmaceutical polymorphs.

  6. 2D numerical comparison between S{sub n} and M{sub 1} radiation transport methods

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Matthias [Instituto de Fusion Nuclear, Universidad Politecnica de Madrid, calle Jose Gutierrez Abascal 2, 28006 Madrid (Spain)], E-mail: matthias@din.upm.es; Garcia-Fernandez, Carlos [Instituto de Fusion Nuclear, Universidad Politecnica de Madrid, calle Jose Gutierrez Abascal 2, 28006 Madrid (Spain)], E-mail: carlos@din.upm.es; Velarde, Pedro [Instituto de Fusion Nuclear, Universidad Politecnica de Madrid, calle Jose Gutierrez Abascal 2, 28006 Madrid (Spain)], E-mail: velarde@din.upm.es

    2009-07-15

    In this article we study the accuracy of the M{sub 1} method to solve some relevant radiation transport problems in 2D. We compare two radiation models (S{sub n} and M{sub 1}) with analytical and numerical tests to highlight the strengths and limitations of each method. These methods give comparable results except when sharp geometry effects are present. We have used these methods in a test that mimics, without fluid motion or electron heat conduction, the cone-target interaction relevant to inertial confinement fusion physics. In this case, we show that S{sub n} and M{sub 1} models agree with a quite good accuracy but shows differences in the temperature profiles and heating times inside the target. These results point out that M{sub 1} is a possible alternative candidate for 3D simulations, where full energy transport methods are extremely computer time consuming.

  7. Radiation processes in glass of Ba(PO/sub 3/)/sub 2/-MgF/sub 2/-LiF system. [Gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Bocharova, T.V.; Karapetyan, G.O.; Khalilev, V.D.

    1984-11-01

    Optical spectra of additional absorption of glasses of Ba(PO/sub 3/)/sub 2/-MgF/sub 2/-LiF system ..gamma..-irradiated up to 10/sup 6/ R dose are presented. It was established that introduction of up to 70 mol% of fluorides into phosphate glass doesn't result in occurrence of AAB (additional absorption band) in spectra, related to color centers similar to F-centers in MgF/sub 2/ and LiF crystals. It was shown that occurring color centers in phosphate matrix form nonelementary AAB in approximately 20,000 cm/sup -1/ spectrum region. The contribution to the total spectrum of additional absorption in visible region is made, besides (PO)/sub 4/-centers, by radiation color centers related with the presence of Mg/sup +2/ ions near PO/sub 4/ tetrahedrons. It was assumed that change of AAB position and intensity with ..gamma..sub(max) approximately 20,000 cm/sup -1/ in fluorophosphate glass with regularly changed composition reflects structural rebuilding of glass network taking place simultaneously with fluoride introduction. The obtained results support the conclusion, that MgF/sub 2/ takes part in formation of structural glass network whereas LiF acts as a component which breaks phosphate chains.

  8. Terahertz (THz) Optical Parameters of Three-Dimensional (3-D) Printing Materials

    Science.gov (United States)

    2017-03-01

    Terahertz (THz), Submillimeter Wave, Imaging 15. NUMBER OF PAGES 16 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT UNCLASSIFIED 18...and imaging has become a topic of research as an optical technique to study these materials because THz radiation can penetrate many visibly opaque...2) Three materials, each tinted with two different colors, were measured. The materials were High Impact polystyrene (HIPS

  9. Superconducting NbN detectors for synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Semenov, Alexei; Richter, Heiko; Huebers, Heinz-Wilhelm [DLR, Instiute of Planetary Research, Berlin (Germany); Ilin, Konstantin; Siegel, Michael [Institute of Micro- and Nanoelectronic Systems, University of Karlsruhe (Germany)

    2009-07-01

    We present development of a special type of hot-electron bolometers that is designed to optimally detect pulsed synchrotron radiation in the terahertz frequency range. The enlarged log-spiral antenna makes it possible to sense the low-frequency part of the spectrum in coherent and non-coherent regime. The device follows the layout of a typical HEB mixer. The radiation is coupled quasioptically with the 6-mm elliptical silicon lens. The bolometer has the noise equivalent power 2 nW per square root Hz and responds to a few picoseconds long radiation pulse with the electric pulse having full width at half maximum of 160 ps. We present results obtained with this type of detector at different synchrotron facilities and discuss possible improvements of the detector performance.

  10. Planar integrated metasurfaces for highly-collimated terahertz quantum cascade lasers

    Science.gov (United States)

    Liang, Guozhen; Dupont, Emmanuel; Fathololoumi, Saeed; Wasilewski, Zbigniew R.; Ban, Dayan; Liang, Hou Kun; Zhang, Ying; Yu, Siu Fung; Li, Lianhe H.; Davies, Alexander Giles; Linfield, Edmund H.; Liu, Hui Chun; Wang, Qi Jie

    2014-01-01

    We report planar integration of tapered terahertz (THz) frequency quantum cascade lasers (QCLs) with metasurface waveguides that are designed to be spoof surface plasmon (SSP) out-couplers by introducing periodically arranged SSP scatterers. The resulting surface-emitting THz beam profile is highly collimated with a divergence as narrow as ~4° × 10°, which indicates a good waveguiding property of the metasurface waveguide. In addition, the low background THz power implies a high coupling efficiency for the THz radiation from the laser cavity to the metasurface structure. Furthermore, since all the structures are in-plane, this scheme provides a promising platform where well-established surface plasmon/metasurface techniques can be employed to engineer the emitted beam of THz QCLs controllably and flexibly. More importantly, an integrated active THz photonic circuit for sensing and communication applications could be constructed by incorporating other optoelectronic devices such as Schottky diode THz mixers, and graphene modulators and photodetectors. PMID:25403796

  11. Assessing skin hydration status in haemodialysis patients using terahertz spectroscopy: a pilot / feasibility study

    Czech Academy of Sciences Publication Activity Database

    Kadlec, Filip; Berta, Milan; Kužel, Petr; Lopot, F.; Polakovič, V.

    2008-01-01

    Roč. 53, č. 24 (2008), 7063-7071 ISSN 0031-9155 R&D Projects: GA MŠk LC512 Institutional research plan: CEZ:AV0Z10100520 Keywords : terahertz radiation * haemodialysis * skin turgor * epidermis Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.784, year: 2008

  12. Terahertz pulse generation from metal nanoparticle ink

    Science.gov (United States)

    Kato, Kosaku; Takano, Keisuke; Tadokoro, Yuzuru; Phan, Thanh Nhat Khoa; Nakajima, Makoto

    2016-11-01

    Terahertz pulse generation from metallic nanostructures irradiated by femtosecond laser pulses is of interest because the conversion efficiency from laser pulses to terahertz waves is increased by the local field enhancement resulting from the plasmon oscillation. In this talk we present our recent study on terahertz generation from metal nanoparticle ink. We baked a silver nanoparticle ink spin-coated onto a glass coverslip in various temperatures. On the surface of the baked ink, bumpy nanostructures are spontaneously formed, and the average size of bumps depends on the baking temperature. These structures are expected to lead to local field enhancement and then large nonlinear polarizations on the surface. The baked ink was irradiated by the output of regeneratively amplified Ti:sapphire femtosecond laser at an incidence angle of 45°. Waveforms of generated terahertz pulses are detected by electro-optical sampling. The generation efficiency was high when the average diameter of bumps was around 100 nm, which is realized when the ink is baked in 205 to 235°C in our setup. One of our next research targets is terahertz wave generation from micro-patterned metallic nanoparticle ink. It is an advantage of the metal nanoparticle ink that by using inkjet printers one can fabricate various patterns with micrometer scales, in which terahertz waves have a resonance. Combination of microstructures made by a printer and nanostructure spontaneously formed in the baking process will provide us terahertz emitters with unique frequency characteristics.

  13. A novel Zeonex based oligoporous-core photonic crystal fiber for polarization preserving terahertz applications

    Science.gov (United States)

    Islam, Md. Saiful; Sultana, Jakeya; Dinovitser, Alex; Ng, Brian W.-H.; Abbott, Derek

    2018-04-01

    A novel waveguide consisting of oligo-porous core photonic crystal fiber (PCF) with a kagome lattice cladding has been designed for highly birefringent and near zero dispersion flattened applications of terahertz waves. The wave guiding properties of the designed PCF including birefringence, dispersion, effective material loss (EML), core power fraction, confinement loss, and modal effective area are investigated using a full vector Finite Element Method (FEM) with Perfectly Matched Layer (PML) absorbing boundary condition. Simulation results demonstrate that an ultra-high birefringence of 0.079, low EML of 0.05 cm-1, higher core power fraction of 44% and negligible confinement loss of 7 . 24 × 10-7 cm-1 can be achieved at 1 THz. Furthermore, for the y-polarization mode a near zero flattened dispersion of 0 . 49 ± 0 . 05 ps/THz/cm is achieved within a broad frequency range of 0.8-1.7 THz. The fabrication of the proposed fiber is feasible using the existing fabrication technology. Due to favorable wave-guiding properties, the proposed fiber has potential for terahertz imaging, sensing and polarization maintaining applications in the terahertz frequency range.

  14. Research on terahertz properties of rat brain tissue sections during dehydration

    Science.gov (United States)

    Cui, Gangqiang; Liang, Jianfeng; Zhao, Hongwei; Zhao, Xianghui; Chang, Chao

    2018-01-01

    Biological tissue sections are always kept in a system purged with dry nitrogen for the measurement of terahertz spectrum. However, the injected nitrogen will cause dehydration of tissue sections, which will affect the accuracy of spectrum measurement. In this paper, terahertz time-domain spectrometer is used to measure the terahertz spectra of rat brain tissue sections during dehydration. The changes of terahertz properties, including terahertz transmittance, refractive index and extinction coefficient during dehydration are also analyzed. The amplitudes of terahertz time-domain spectra increase gradually during the dehydration process. Besides, the terahertz properties show obvious changes during the dehydration process. All the results indicate that the injected dry nitrogen has a significant effect on the terahertz spectra and properties of tissue sections. This study contributes to further research and application of terahertz technology in biomedical field.

  15. Optically Modulated Multiband Terahertz Perfect Absorber

    DEFF Research Database (Denmark)

    Seren, Huseyin R.; Keiser, George R.; Cao, Lingyue

    2014-01-01

    response of resonant metamaterials continues to be a challengingendeavor. Resonant perfect absorbers have flourished as one of the mostpromising metamaterial devices with applications ranging from power har-vesting to terahertz imaging. Here, an optically modulated resonant perfectabsorber is presented....... Utilizing photo-excited free carriers in silicon padsplaced in the capacitive gaps of split ring resonators, a dynamically modu-lated perfect absorber is designed and fabricated to operate in reflection.Large modulation depth (38% and 91%) in two absorption bands (with 97%and 92% peak absorption...

  16. Ab initio study of radiation effects on the Li{sub 4}Ti{sub 5}O{sub 12} electrode used in lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Samin, Adib, E-mail: Samin.2@osu.edu, E-mail: cao.152@osu.edu; Kurth, Michael; Cao, Lei, E-mail: Samin.2@osu.edu, E-mail: cao.152@osu.edu [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, 201 W 19" t" h Avenue, Columbus, Ohio 43210 (United States)

    2015-04-15

    Lithium-ion batteries are currently in wide use owing to their high energy density and enhanced capabilities. Li{sub 4}Ti{sub 5}O{sub 12} is a promising anode material for lithium-ion batteries because of its advantageous properties. Lithium-ion batteries could be exposed to radiation occurring in various conditions such as during outer space exploration and nuclear accidents. In this study, we apply density functional theory to explore the effect of radiation damage on this electrode and, ultimately, on the performance of the battery. It was found that radiation could affect the structural stability of the material. Furthermore, the electrode was shown to undergo a transition from insulator to metal, following the defects due to radiation. In addition, the effect of radiation on the intercalation potential was found to be highly dependent on the nature of the defect induced.

  17. Electro-optic transceivers for terahertz-wave applications

    International Nuclear Information System (INIS)

    Chen, Q.; Tani, M.; Jiang, Zhiping; Zhang, X.-C.

    2001-01-01

    Because of the reciprocal behavior of the optical rectification and the electro-optic effect in a nonlinear optical crystal, an electro-optic transceiver can alternately transmit pulsed electromagnetic radiation (optical rectification) and detect the return signal (electro-optic effect) in the same crystal. However, the optimal condition of the electro-optic transceiver may be very different from that of the spatially separated emitter and receiver. We present a detailed description of the crystal-orientation dependence of the electro-optic terahertz devices (transmitter, receiver, and transceiver). It is found that for a (110) zinc-blende electro-optical crystal, the efficiency of the electro-optic transceiver will be optimized when the angle between the polarization of the optical pump beam and the crystallographic z axis [0,0,1] is 26 degree. Meanwhile, for a (111) crystal, the angle between the optical beam and the crystallographic direction [-1,-1,2] should be 23 degree. The experimental results from a (110) ZnTe transceiver verify theoretical calculations and demonstrate a direct way to optimize the working efficiency of an electro-optic terahertz transceiver. [copyright] 2001 Optical Society of America

  18. Saturation of the laser-induced narrowband coherent synchrotron radiation process: Experimental observation at a storage ring

    Science.gov (United States)

    Hosaka, M.; Yamamoto, N.; Takashima, Y.; Szwaj, C.; Le Parquier, M.; Evain, C.; Bielawski, S.; Adachi, M.; Zen, H.; Tanikawa, T.; Kimura, S.; Katoh, M.; Shimada, M.; Takahashi, T.

    2013-02-01

    We study the efficiency limitation affecting laser-induced coherent synchrotron radiation (CSR) at high laser power. Experiments are made on the UVSOR-II storage ring in conditions of narrowband terahertz CSR emission. While, at moderate power, CSR power increases quadratically with laser power, a noticeable decrease in efficiency and eventually a decrease in CSR power is observed experimentally at high power. Details of the underlying process are analyzed numerically. As the saturation effect depends almost instantaneously on the laser intensity, the saturation occurs locally in longitudinal space. This has important consequences on the modulation pattern induced on the electron bunch.

  19. Resonating Terahertz Response of Periodic Arrays of Subwavelength Apertures

    KAUST Repository

    D’ Apuzzo, Fausto; Candeloro, Patrizio; Domenici, Fabio; Autore, M.; Di Pietro, Paola; Perucchi, Andrea; Roy, P.; Sennato, Simona; Bordi, Federico; Di Fabrizio, Enzo M.; Lupi, Stefano

    2014-01-01

    Extraordinary optical transmission (EOT) peaks mediated by plasmonic excitations can be observed in a variety of subwavelength patterned metallic surfaces. In this paper, we have fabricated and spectroscopically characterized plasmon devices exhibiting EOT peaks at terahertz (THz) frequencies. These devices, which resonate with intermediate and collective modes of macromolecules, can be used for detection of materials of biological interest and their performances have been experimentally determined by measuring the variation of the EOT frequencies for thin sub-micrometric organic layers deposited onto the device surface.

  20. Resonating Terahertz Response of Periodic Arrays of Subwavelength Apertures

    KAUST Repository

    D’Apuzzo, Fausto

    2014-10-11

    Extraordinary optical transmission (EOT) peaks mediated by plasmonic excitations can be observed in a variety of subwavelength patterned metallic surfaces. In this paper, we have fabricated and spectroscopically characterized plasmon devices exhibiting EOT peaks at terahertz (THz) frequencies. These devices, which resonate with intermediate and collective modes of macromolecules, can be used for detection of materials of biological interest and their performances have been experimentally determined by measuring the variation of the EOT frequencies for thin sub-micrometric organic layers deposited onto the device surface.

  1. Resonant Excitation of Terahertz Surface Plasmons in Subwavelength Metal Holes

    Directory of Open Access Journals (Sweden)

    Weili Zhang

    2007-01-01

    Full Text Available We present a review of experimental studies of resonant excitation of terahertz surface plasmons in two-dimensional arrays of subwavelength metal holes. Resonant transmission efficiency higher than unity was recently achieved when normalized to the area occupied by the holes. The effects of hole shape, hole dimensions, dielectric function of metals, polarization dependence, and array film thickness on resonant terahertz transmission in metal arrays were investigated by the state-of-the-art terahertz time-domain spectroscopy. In particular, extraordinary terahertz transmission was demonstrated in arrays of subwavelength holes made even from Pb, a generally poor metal, and having thickness of only one-third of skin depth. Terahertz surface plasmons have potential applications in terahertz imaging, biosensing, interconnects, and development of integrated plasmonic components for terahertz generation and detection.

  2. Terahertz wave generation in coupled quantum dots

    International Nuclear Information System (INIS)

    Ma Yu-Rong; Guo Shi-Fang; Duan Su-Qing

    2012-01-01

    Based on coupled quantum dots, we present an interesting optical effect in a four-level loop coupled system. Both the two upper levels and the two lower levels are designed to be almost degenerate, which induces a considerable dipole moment. The terahertz wave is obtained from the low-frequency component of the photon emission spectrum. The frequency of the terahertz wave can be controlled by tuning the energy levels via designing the nanostructure appropriately or tuning the driving laser field. A terahertz wave with adjustable frequency and considerable intensity (100 times higher than that of the Rayleigh line) can be obtained. It provides an effective scheme for a terahertz source. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  3. Broadband terahertz spectroscopy: principles, fundamental research and potential for industrial applications

    International Nuclear Information System (INIS)

    Zouaghi, W; Thomson, M D; Rabia, K; Hahn, R; Blank, V; Roskos, H G

    2013-01-01

    Terahertz radiation (also called T-rays) can be employed for spectroscopy and imaging, from the laboratory to industrial applications. In this paper we give an overview of how broadband optoelectronic THz techniques (i.e. using optical lasers to achieve THz generation and detection) can be implemented, and give examples of their unique use in solid-state physics, and in biological and industrial applications. (paper)

  4. Characterization of nanoporous Al{sub 2}O{sub 3}:C for thermoluminescent radiation dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Barros, V.S.M. de [Departamento de Energia Nuclear-UFPE, Rua prof Luiz Freire, 1000, Recife, PE 50740-540 (Brazil)], E-mail: vdbarros@terra.com.br; Khoury, H.J. [Departamento de Energia Nuclear-UFPE, Rua prof Luiz Freire, 1000, Recife, PE 50740-540 (Brazil); Azevedo, W.M. [Departamento de Quimica Fundamental-CCEN Recife, PE 50740-540 (Brazil); Silva, E.F. da [Departamento de Fisica CCEN Recife, PE 50740-540 (Brazil)

    2007-09-21

    Thermoluminescent (TL) {alpha}-Al{sub 2}O{sub 3}:C dosimeters, produced in the form of single crystals, show a high sensitivity to ionizing radiation (about 40-60 times higher than LiF:Mg,Ti). However, the crystal growth requires high temperatures (2050 deg. C) and highly reducing atmospheres. This paper presents the TL response of thin nanoporous Al{sub 2}O{sub 3}:C membranes obtained by electrochemical anodizing of aluminum in organic acid solutions at room temperature. The TL properties of the samples were analyzed as a function of the anodizing voltage in the interval 30-60 V and of the acid concentrations from 0.05 to 0.6 M. The dosimetric response of the samples for {sup 60}Co gamma radiation is linear with dose, and the best response was found for samples anodized at 130 V with 0.10 M acid concentration.

  5. THz radiation in KAERI

    International Nuclear Information System (INIS)

    Jeong, Young Uk; Cha, Hyuk Jin; Ahn, Pildong; Park, Seong Hee; Lee, Byung Cheol

    2006-01-01

    We have developed a high power terahertz (THz) radiation source by using a compact free electron laser (FEL). The FEL operates in the wavelength range of 100 - 1200 μm, which corresponds to 0.3-3 THz. The peak power of the FEL micropulse having 30 ps pulse duration is 1 kW and the pulse energy of the 3-μs-FEL-macropulse is approximately 0.3 mJ. The main application of the FEL is THz imaging and spectroscopy for bio-medical research and THz material study. We could get the transmitted THz imaging of several materials including bugs without being dryed by using the high power THz FEL. THz spectral characteristics of several materials have been studied by the FEL. We hope that the FEL can be upgraded for a practical source of medical and security inspections. (author)

  6. Characterization of radiative properties of Nd{sub 2}O{sub 3} doped phosphate and silicate glasses for solid state laser

    Energy Technology Data Exchange (ETDEWEB)

    Nandi, P., E-mail: pnandi@barc.gov.in; Shukla, R., E-mail: pnandi@barc.gov.in; Goswami, M., E-mail: pnandi@barc.gov.in [Glass and Advanced Materials Division, Bhabha Atomic Research Centre, Mumbai-400085 (India); Sudarsan, V. [Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085 (India)

    2014-04-24

    Nd{sub 2}O{sub 3} doped calcium aluminium phosphate and calcium aluminium silicate glasses prepared to compare their absorption and emission properties. Radiative lifetime of the excited state {sup 4}F{sub 3/2} derived by Judd-Ofelt theory applied to the absorption spectra. Using the photoluminescence spectrometer the steady state emission and relaxation time from excited energy level recorded under green light excitation. Phosphate glass has higher emission cross-section, higher radiative lifetime but less quantum efficiency due to non-radiative quenching through hydroxyl ions compared to silicate glass for Nd{sup 3+}:{sup 4}F{sub 3/2}→{sup 4}I{sub 9/2} emission.

  7. Thermoelectric power measurements in Fe doped La sub 0 sub . sub 6 sub 5 Ca sub 0 sub . sub 3 sub 5 MnO sub 3

    CERN Document Server

    Aslam, A; Zubair, M; Akhtar, M J; Nadeem, M

    2002-01-01

    We report measurements of the thermoelectric power (TEP) on the La sub 0 sub . sub 6 sub 5 Ca sub 0 sub . sub 3 sub 5 Mn sub 1 sub - sub x Fe sub x O sub 3 system for 0.00 <= x <= 0.07. The ferromagnetic and metallic transition temperatures are lowered and the TEP shows an increasingly positive trend with the addition of Fe. We also observe a clear magnetic contribution that manifests itself as a peak in the TEP close to the critical temperature. The activation energies determined from the TEP are seen to be insensitive to the Fe content. The data are interpreted firstly as showing a decrease in the density of active holes, i.e. holes that can participate in the hopping process, with increasing Fe content. Secondly the data suggest the role of magnetic scattering due to the clusters formed by the antiferromagnetically coupled Fe. Abrupt changes in the variation of the TEP are observed at the concentration region x approx 0.04 consistent with the hole density variation and with previously reported transp...

  8. Radiation effects on power cables for nuclear power plants

    International Nuclear Information System (INIS)

    Arora, R.; Munshi, P.; Badshah, M.G.Q.

    1988-01-01

    A large number of power and control cables, insulated with organic/polymeric materials, are installed quite near the reactor in nuclear power plants. The reliability of electrical equipment, receiving power through these cables, is critically important for the design and safety of the power stations. The radiation intensity inside the containment varies significantly from one location to another. The extent of material degradation is associated with the local radiation intensity. The cables used in the nuclear environment require several unique properties, the most obvious of these being radiation resistance, fire resistance, and the ability to withstand the loss-of-coolant accident in a nuclear power plant as specified in Institute of Electrical and Electronics Engineers (IEEE) Standard 383. In this study, four specific electrical power cable samples insulated with polyethylene, polyvinyl chloride, ethylene propylene rubber, and silicone rubber were chosen to investigate the effect of radiation in reactor environments on the electrical properties of the samples. Voltage breakdown tests and dielectric loss factor (tan δ) and conductor resistance measurements were carried out on each sample before and after irradiating them to near lifetime doses at ambient temperatures in atmospheric conditions

  9. Compact four-channel terahertz demultiplexer based on directional coupling photonic crystal

    Science.gov (United States)

    Jiu-Sheng, Li; Han, Liu; Le, Zhang

    2015-09-01

    Electromagnetic polarization conveys valuable information for signal processing. Manipulation of terahertz wavelength demultiplexer exhibits tremendous potential in developing application of terahertz science and technology. We propose an approach to separate efficiently four frequencies terahertz waves based on three cascaded directional coupling two-dimensional photonic crystal waveguides. Both plane wave expansion method and finite-difference time-domain method are used to calculate and analyze the characteristics of the proposed device. The simulation results show that the designed terahertz wavelength demultiplexer can split four different wavelengths of terahertz wave into different propagation directions with high transmittance and low crosstalk. The present device is very compact and the total size is 6.8×10.6 mm2. This enables the terahertz wavelength demultiplexer to be used in terahertz wave system and terahertz wave integrated circuit fields.

  10. A Broadband Metasurface-Based Terahertz Flat-Lens Array

    KAUST Repository

    Wang, Qiu; Zhang, Xueqian; Xu, Yuehong; Tian, Zhen; Gu, Jianqiang; Yue, Weisheng; Zhang, Shuang; Han, Jiaguang; Zhang, Weili; Zhang, Weili

    2015-01-01

    A metasurface-based terahertz flat-lens array is proposed, comprising C-shaped split-ring resonators exhibiting locally engineerable phase discontinuities. Possessing a high numerical aperture, the planar lens array is flexible, robust, and shows excellent focusing characteristics in a broadband terahertz frequency. It could be an important step towards the development of planar terahertz focusing devices for practical applications.

  11. A Broadband Metasurface-Based Terahertz Flat-Lens Array

    KAUST Repository

    Wang, Qiu

    2015-02-12

    A metasurface-based terahertz flat-lens array is proposed, comprising C-shaped split-ring resonators exhibiting locally engineerable phase discontinuities. Possessing a high numerical aperture, the planar lens array is flexible, robust, and shows excellent focusing characteristics in a broadband terahertz frequency. It could be an important step towards the development of planar terahertz focusing devices for practical applications.

  12. Infrared Radiative Properties of Food Materials

    Science.gov (United States)

    Precisely, infrared radiation is electromagnetic radiation whose wavelength is longer than that of visible light, but shorter than that of terahertz radiation and microwaves. The infrared portion of the electromagnetic spectrum spans roughly three orders of magnitude (750 nm to 100 µm) and has been...

  13. Metallic and 3D-printed dielectric helical terahertz waveguides.

    Science.gov (United States)

    Vogt, Dominik Walter; Anthony, Jessienta; Leonhardt, Rainer

    2015-12-28

    We investigate guidance of Terahertz (THz) radiation in metallic and 3D-printed dielectric helical waveguides in the frequency range from 0.2 to 1 THz. Our experimental results obtained from THz time-domain spectroscopy (THz-TDS) measurements are in very good agreement with finite-difference time-domain (FDTD) simulations. We observe single-mode, low loss and low dispersive propagation of THz radiation in metallic helical waveguides over a broad bandwidth. The 3D-printed dielectric helical waveguides have substantially extended the bandwidth of a low loss dielectric tube waveguide as observed from the experimental and simulation results. The high flexibility of the helical design allows an easy incorporation into bench top THz devices.

  14. Active graphene-silicon hybrid diode for terahertz waves.

    Science.gov (United States)

    Li, Quan; Tian, Zhen; Zhang, Xueqian; Singh, Ranjan; Du, Liangliang; Gu, Jianqiang; Han, Jiaguang; Zhang, Weili

    2015-05-11

    Controlling the propagation properties of the terahertz waves in graphene holds great promise in enabling novel technologies for the convergence of electronics and photonics. A diode is a fundamental electronic device that allows the passage of current in just one direction based on the polarity of the applied voltage. With simultaneous optical and electrical excitations, we experimentally demonstrate an active diode for the terahertz waves consisting of a graphene-silicon hybrid film. The diode transmits terahertz waves when biased with a positive voltage while attenuates the wave under a low negative voltage, which can be seen as an analogue of an electronic semiconductor diode. Here, we obtain a large transmission modulation of 83% in the graphene-silicon hybrid film, which exhibits tremendous potential for applications in designing broadband terahertz modulators and switchable terahertz plasmonic and metamaterial devices.

  15. Detection of internal fields in double-metal terahertz resonators

    DEFF Research Database (Denmark)

    Mitrofanov, Oleg; Han, Zhanghua; Ding, Fei

    2017-01-01

    Terahertz (THz) double-metal plasmonic resonators enable enhanced light-matter coupling by exploiting strong field confinement. The double-metal design however restricts access to the internal fields. We propose and demonstrate a method for spatial mapping and spectroscopic analysis of the internal...... electromagnetic fields in double-metal plasmonic resonators. We use the concept of image charges and aperture-type scanning near-field THz time-domain microscopy to probe the fields confined within the closed resonator. The experimental method opens doors to studies of light-matter coupling in deeply sub...

  16. Terahertz spectroscopy of two-dimensional subwavelength plasmonic structures

    Energy Technology Data Exchange (ETDEWEB)

    Azad, Abul K [Los Alamos National Laboratory; Chen, Houtong [Los Alamos National Laboratory; Taylor, Antoinette [Los Alamos National Laboratory; O' Hara, John F [Los Alamos National Laboratory; Han, Jiaguang [OSU; Lu, Xinchao [OSU; Zhang, Weili [OSU

    2009-01-01

    The fascinating properties of plasmonic structures have had significant impact on the development of next generation ultracompact photonic and optoelectronic components. We study two-dimensional plasmonic structures functioning at terahertz frequencies. Resonant terahertz response due to surface plasmons and dipole localized surface plasmons were investigated by the state-of-the-art terahertz time domain spectroscopy (THz-TDS) using both transmission and reflection configurations. Extraordinary terahertz transmission was demonstrated through the subwavelength metallic hole arrays made from good conducting metals as well as poor metals. Metallic arrays m!lde from Pb, generally a poor metal, and having optically thin thicknesses less than one-third of a skin depth also contributed in enhanced THz transmission. A direct transition of a surface plasmon resonance from a photonic crystal minimum was observed in a photo-doped semiconductor array. Electrical controls of the surface plasmon resonances by hybridization of the Schottkey diode between the metallic grating and the semiconductor substrate are investigated as a function of the applied reverse bias. In addition, we have demonstrated photo-induced creation and annihilation of surface plasmons with appropriate semiconductors at room temperature. According to the Fano model, the transmission properties are characterized by two essential contributions: resonant excitation of surface plasmons and nonresonant direct transmission. Such plasmonic structures may find fascinating applications in terahertz imaging, biomedical sensing, subwavelength terahertz spectroscopy, tunable filters, and integrated terahertz devices.

  17. Generation of surface electromagnetic waves in terahertz spectral range by free-electron laser radiation and their refractive index determination

    International Nuclear Information System (INIS)

    Bogomolov, G.D.; Jeong, Uk Young; Zhizhin, G.N.; Nikitin, A.K.; Zavyalov, V.V.; Kazakevich, G.M.; Lee, Byung Cheol

    2005-01-01

    First experiments for observation of surface electromagnetic waves (SEW) in the terahertz spectral range generated on dense aluminum films covering the optical quality glass plates are presented in this paper. Coherent radiation of the new free-electron laser covering the frequency range from 30 to 100cm -1 was used. The interference technique employing SEW propagation in the part of one shoulder of the asymmetric interferometer was applied. From the interference pattern the real part of SEW's effective refractive index ae ' was determined for the two laser emission wavelengths: at λ=150μm-ae ' =1+5x10 -5 , at λ=110μm-ae ' =1+8x10 -4 . High sensitivity of the interference patterns to overlayers made of Ge and Si with thickness of 100nm was demonstrated as well

  18. Dynamic characterization of silicon nanowires using a terahertz optical asymmetric demultiplexer-based pump-probe scheme

    DEFF Research Database (Denmark)

    Ji, Hua; Cleary, C. S.; Dailey, J. M.

    2012-01-01

    Dynamic phase and amplitude all-optical responses of silicon nanowires are characterized using a terahertz optical asymmetric demultiplexer (TOAD) based pump-probe scheme. Ultra-fast recovery is observed for moderate pump powers....

  19. Systems and methods for an integrated electrical sub-system powered by wind energy

    Science.gov (United States)

    Liu, Yan [Ballston Lake, NY; Garces, Luis Jose [Niskayuna, NY

    2008-06-24

    Various embodiments relate to systems and methods related to an integrated electrically-powered sub-system and wind power system including a wind power source, an electrically-powered sub-system coupled to and at least partially powered by the wind power source, the electrically-powered sub-system being coupled to the wind power source through power converters, and a supervisory controller coupled to the wind power source and the electrically-powered sub-system to monitor and manage the integrated electrically-powered sub-system and wind power system.

  20. Design of Integrated Circuits Approaching Terahertz Frequencies

    DEFF Research Database (Denmark)

    Yan, Lei

    In this thesis, monolithic microwave integrated circuits(MMICs) are presented for millimeter-wave and submillimeter-wave or terahertz(THz) applications. Millimeter-wave power generation from solid state devices is not only crucial for the emerging high data rate wireless communications but also...... heterodyne receivers with requirements of room temperature operation, low system complexity, and high sensitivity, monolithic integrated Schottky diode technology is chosen for the implementation of submillimeterwave components. The corresponding subharmonic mixer and multiplier for a THz radiometer system...

  1. High mobility ZnO nanowires for terahertz detection applications

    International Nuclear Information System (INIS)

    Liu, Huiqiang; Peng, Rufang; Chu, Shijin; Chu, Sheng

    2014-01-01

    An oxide nanowire material was utilized for terahertz detection purpose. High quality ZnO nanowires were synthesized and field-effect transistors were fabricated. Electrical transport measurements demonstrated the nanowire with good transfer characteristics and fairly high electron mobility. It is shown that ZnO nanowires can be used as building blocks for the realization of terahertz detectors based on a one-dimensional plasmon detection configuration. Clear terahertz wave (∼0.3 THz) induced photovoltages were obtained at room temperature with varying incidence intensities. Further analysis showed that the terahertz photoresponse is closely related to the high electron mobility of the ZnO nanowire sample, which suggests that oxide nanoelectronics may find useful terahertz applications.

  2. Investigating murals with terahertz reflective tomography

    Science.gov (United States)

    Yuan, Minjie; Sun, Wenfeng; Wang, Xinke; Wang, Sen; Zhang, Qunxi; Ye, Jiasheng; Zhang, Yan

    2015-08-01

    Terahertz time-domain spectroscopy (THz-TDS) imaging technology has been proposed to be used in the non-invasive detection of murals. THz-TDS images provide structural data of the sample that cannot be obtained with other complementary techniques. In this paper, two types of defects hidden in the plaster used to simulate the cases of defects in the murals, have been investigated by the terahertz reflected time domain spectroscopy imaging system. These preset defects include a leaf slice and a slit built in the plaster. With the terahertz reflective tomography, information about defects has been determined involving the thickness from the surface of sample to the built-in defect, the profile and distribution of the defect. With this THz tomography, different defects with the changes of optical thickness and their relative refractive index have been identified. The application of reflective pulsed terahertz imaging has been extended to the defect detection of the murals.

  3. Resonant metallic nanostructures for enhanced terahertz spectroscopy

    KAUST Repository

    Toma, A.; Tuccio, S.; Prato, M.; De Donato, F.; Perucchi, A.; Di Pietro, P.; Marras, S.; Liberale, Carlo; Zaccaria, R. Proietti; De Angelis, F.; Manna, L.; Lupi, S.; Di Fabrizio, Enzo M.; Razzari, L.

    2015-01-01

    We present our recent studies on terahertz resonant dipole nanoantennas. Exploiting the localization and enhancement capabilities of these devices, we introduce an effective method to perform terahertz spectroscopy on an extremely small number

  4. Studies on omnidirectional enhancement of giga-hertz radiation by sub-wavelength plasma modulation

    Science.gov (United States)

    Fanrong, KONG; Qiuyue, NIE; Shu, LIN; Zhibin, WANG; Bowen, LI; Shulei, ZHENG; Binhao, JIANG

    2018-01-01

    The technology of radio frequency (RF) radiation intensification for radio compact antennas based on modulation and enhancement effects of sub-wavelength plasma structures represents an innovative developing strategy. It exhibits important scientific significance and promising potential of broad applications in various areas of national strategic demands, such as electrical information network and microwave communication, detection and control technology. In this paper, laboratory experiments and corresponding analyses have been carried out to investigate the modulation and enhancement technology of sub-wavelength plasma structure on the RF electromagnetic radiation. An application focused sub-wavelength plasma-added intensification up to ∼7 dB higher than the free-space radiation is observed experimentally in giga-hertz (GHz) RF band. The effective radiation enhancement bandwidth covers from 0.85 to 1.17 GHz, while the enhanced electromagnetic signals transmitted by sub-wavelength plasma structures maintain good communication quality. Particularly, differing from the traditional RF electromagnetic radiation enhancement method characterized by focusing the radiation field of antenna in a specific direction, the sub-wavelength plasma-added intensification of the antenna radiation presents an omnidirectional enhancement, which is reported experimentally for the first time. Corresponding performance characteristics and enhancement mechanism analyses are also conducted in this paper. The results have demonstrated the feasibility and promising potential of sub-wavelength plasma modulation in application focused RF communication, and provided the scientific basis for further research and development of sub-wavelength plasma enhanced compact antennas with wide-range requests and good quality for communication.

  5. Thermoluminescence and radioluminescence properties of tissue equivalent Cu-doped Li{sub 2}B{sub 4}O{sub 7} for radiation dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Cruz Z, E.; Furetta, C. [UNAM, Instituto de Ciencias Nucleares, Apdo. Postal 70543, 04510 Mexico D. F. (Mexico); Marcazzo, J.; Santiago, M. [Instituto de Fisica Arroyo Seco / UNICEN, Gral. Pinto 399, 7000 Tandil, Buenos Aires (Argentina); Guarneros, C. [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Altamira Km 14.5, 896000 Altamira, Tamaulipas (Mexico); Pacio, M. [Benemerita Universidad Autonoma de Puebla, Instituto de Ciencias, Centro de Investigacion en Dispositivos Semiconductores, Av. 14 Sur, 72570 Puebla, Pue. (Mexico); Palomino, R., E-mail: ecruz@nucleares.unam.mx [Benemerita Universidad Autonoma de Puebla, Facultad de Ciencias Fisico-Matematicas, Av. San Claudio y 18 Sur, 72570 Puebla Pue. (Mexico)

    2015-10-15

    Thermoluminescence (Tl) and radioluminescence (Rl) properties of lithium tetraborate (Li{sub 2}B{sub 4}O{sub 7}) doped with different concentration of copper (0.25, 0.5, 1 wt %) under gamma and beta irradiation has been investigated. The feasibility of using this borate in radiation dosimetry at low doses has been evaluated. Tissue equivalent Li{sub 2}B{sub 4}O{sub 7} was prepared by solid state reaction using mixing stoichiometric compositions of lithium carbonate (Li{sub 2}CO{sub 3}) and boric acid (H{sub 3}BO{sub 3}) and a solution of CuCl{sub 2} as dopant. The glow curve, of the most efficient copper doped borate (Li{sub 2}B{sub 4}O{sub 7}:Cu 0.5 wt %), shows a main stable peak centered at 225 degrees C and a second low temperature peak centered at 80 degrees C. The low temperature peak disappears completely after 24 hours of storage in darkness and at room temperature or after an annealing at 120 degrees C for 10 seconds. The main peak of the Li{sub 2}B{sub 4}O{sub 7}:Cu remains constant. The Tl response of Li{sub 2}B{sub 4}O{sub 7}:Cu shows good linearity in the analyzed dose range. The stability and repeatability of Rl signals of the borate have been studied and the Li{sub 2}B{sub 4}O{sub 7}:Cu (0.5 wt %) shown the higher Rl emission and a stable and repetitive response. Results show that Li{sub 2}B{sub 4}O{sub 7}:Cu has prospects to be used in gamma and beta radiation dosimetry. (Author)

  6. Crystal growth and thermoluminescence response of NaZr{sub 2}(PO{sub 4}){sub 3} at high gamma radiation doses

    Energy Technology Data Exchange (ETDEWEB)

    Ordóñez-Regil, E., E-mail: eduardo.ordonez@inin.gob.mx [Depto. de Química, Gerencia de Ciencias Básicas, Instituto Nacional de Investigaciones Nucleares, AP 18-1027, CP 11801 México D.F. (Mexico); Contreras-Ramírez, A., E-mail: aida.contreras@inin.gob.mx [Depto. de Química, Gerencia de Ciencias Básicas, Instituto Nacional de Investigaciones Nucleares, AP 18-1027, CP 11801 México D.F. (Mexico); Depto. de Tecnología de Materiales, Gerencia de Ciencias Aplicadas, Instituto Nacional de Investigaciones Nucleares, AP 18-1027, CP 11801 México D.F. (Mexico); Facultad de Ciencias, Universidad Autónoma del Estado de México, Unidad Académica el Cerrillo, Piedras Blancas, AP 2-139, CP 50000 Toluca Estado de México (Mexico); Fernández-Valverde, S.M., E-mail: suilma.fernandez@inin.gob.mx [Depto. de Química, Gerencia de Ciencias Básicas, Instituto Nacional de Investigaciones Nucleares, AP 18-1027, CP 11801 México D.F. (Mexico); González-Martínez, P.R., E-mail: pedro.gonzalez@inin.gob.mx [Depto. de Física, Gerencia de Ciencias Básicas, Instituto Nacional de Investigaciones Nucleares, AP 18-1027, CP 11801 México D.F. (Mexico); Carrasco-Ábrego, H., E-mail: hector.carrasco@inin.gob.mx [Depto. Aceleradores, Gerencia de Ciencias Ambientales, Instituto Nacional de Investigaciones Nucleares, AP 18-1027, CP 11801 México D.F. (Mexico)

    2013-11-15

    Graphical abstract: -- Highlights: •NaZr{sub 2}(PO{sub 4}){sub 3} exposed to gamma doses of 10, 30 and 50 MGy. •Gamma radiation produced growth of the crystal size of the NZP. •Morphology changes were reversible by heating. •Linear relationship between the thermoluminescence and the applied gamma dose. •This property could be useful for high-level gamma dosimetry. -- Abstract: This work describes the synthesis and characterization of NaZr{sub 2}(PO{sub 4}){sub 3}. The stability of this material under high doses of gamma radiation was investigated in the range of 10–50 MGy. Samples of unaltered and gamma irradiated NaZr{sub 2}(PO{sub 4}){sub 3} were characterized by X-ray diffraction, infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, and thermoluminescence. The results showed that while functional groups were not affected by the gamma irradiation, morphology changes were observed with increasing doses of gamma irradiation. The morphology of the non-irradiated compound is agglomerated flakes; however, irradiation at 10 MGy splits the flakes inducing the formation of well-defined cubes. Gamma irradiation induced the crystal size of the NaZr{sub 2}(PO{sub 4}){sub 3} to grow. The heat treatment (973 K) of samples irradiated at 50 MGy resulted in the recovery of the original morphology. Furthermore, the thermoluminescence analysis of the irradiated compound is reported.

  7. Amplification of terahertz pulses in gases beyond thermodynamic equilibrium

    Science.gov (United States)

    Schwaab, G. W.; Schroeck, K.; Havenith, M.

    2007-03-01

    In Ebbinghaus [Plasma Sources Sci. Technol. 15, 72 (2006)] we reported terahertz time-domain spectroscopy in a plasma at low pressure, we observed a simultaneous absorption and amplification process within each single rotational transition. Here we show that this observation is a direct consequence of the short interaction time of the pulsed terahertz radiation with the plasma, which is shorter than the average collision time between the molecules. Thus, during the measurement time the molecular states may be considered entangled. Solution of the time-dependent Schrödinger equation yields a linear term that may be neglected for long observation times, large frequencies, or nonentangled states. We determine the restrictions for the observation of this effect and calculate the spectrum of a simple diatomic molecule. Using this model we are able to explain the spectral features showing a change from emission to absorption as observed previously. In addition we find that the amplification and absorption do not follow the typical Lambert-Beer exponential law but an approximate square law.

  8. Scanning Terahertz Heterodyne Imaging Systems

    Science.gov (United States)

    Siegel, Peter; Dengler, Robert

    2007-01-01

    Scanning terahertz heterodyne imaging systems are now at an early stage of development. In a basic scanning terahertz heterodyne imaging system, (see Figure 1) two far-infrared lasers generate beams denoted the local-oscillator (LO) and signal that differ in frequency by an amount, denoted the intermediate frequency (IF), chosen to suit the application. The LO beam is sent directly to a mixer as one of two inputs. The signal beam is focused to a spot on or in the specimen. After transmission through or reflection from the specimen, the beams are focused to a spot on a terahertz mixer, which extracts the IF outputs. The specimen is mounted on a translation stage, by means of which the focal spot is scanned across the specimen to build up an image.

  9. Terahertz Science, Technology, and Communication

    Science.gov (United States)

    Chattopadhyay, Goutam

    2013-01-01

    The term "terahertz" has been ubiquitous in the arena of technology over the past couple of years. New applications are emerging every day which are exploiting the promises of terahertz - its small wavelength; capability of penetrating dust, clouds, and fog; and possibility of having large instantaneous bandwidth for high-speed communication channels. Until very recently, space-based instruments for astrophysics, planetary science, and Earth science missions have been the primary motivator for the development of terahertz sensors, sources, and systems. However, in recent years the emerging areas such as imaging from space platforms, surveillance of person-borne hidden weapons or contraband from a safe stand-off distance and reconnaissance, medical imaging and DNA sequencing, and in the world high speed communications have been the driving force for this area of research.

  10. Aspects of radiative K{sup +}{sub e3} decays

    Energy Technology Data Exchange (ETDEWEB)

    Kubis, B. [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik, Bonn (Germany); Mueller, E.H. [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik, Bonn (Germany); University of Edinburgh, School of Physics, Edinburgh (United Kingdom); Gasser, J.; Schmid, M. [Universitaet Bern, Institut fuer theoretische Physik, Bern (Switzerland)

    2007-04-15

    We re-investigate the radiative charged kaon decay K{sup {+-}}{yields}{pi}{sup 0}e{sup {+-}}{nu}{sub e}{gamma} [K{sub e3{gamma}}{sup {+-}}] in chiral perturbation theory, merging the chiral expansion with Low's theorem. We thoroughly analyze the precision of the predicted branching ratio relative to the non-radiative decay channel. Structure dependent terms and their impact on differential decay distributions are investigated in detail, and the possibility to see effects of the chiral anomaly in this decay channel is emphasized. (orig.)

  11. The effectiveness of electromagnetic terahertz radiation use in the treatment of patients with rapidly progressive periodontitis

    Directory of Open Access Journals (Sweden)

    Zelenova A.V.

    2015-12-01

    Full Text Available The aim: to increase the efficiency of treatment of patients with rapidly progressive periodontitis (RPP using electromagnetic radiation at terahertz frequencies of molecular spectrum of radiation and absorption of nitric oxide 150,176-150,664 GHz. Material and methods. The study involved 50 patients with RPP, which according to the method of therapy were divided into 2 groups: group 1 included patients receiving conventional therapy, group 2 consisted of patients who, along with traditional therapy received EHF-therapy device "Orbit" YAKUL.941526.001. The control group consisted of 20 healthy subjects with intact periodontium. For the non-invasive study of tissue blood flow in the periodontal tissue Doppler ultrasound was used MiniMax-Doppler-Phono. The study of the microvasculature of periodontitis has been conducted. To determine the reactivity of microvascular periodontal tissue reflex functional tests on the indirect effect of the cold were performed. Results. Reductions achieved values of periodontal indices, especially important index PMA, a significant increase in the linear blood flow indices, decreased pulse pressure gradient and the index followed appropriate reduction to their cold test. Conclusion. The proposed complex therapy can accelerate the relief of inflammation in the periodontal tissues of the complex, to improve the elastic properties of blood vessels, reduce their tone and restore microcirculation in periodontal tissues.

  12. Terahertz optoelectronics in graphene

    International Nuclear Information System (INIS)

    Otsuji, Taiichi

    2016-01-01

    Graphene has attracted considerable attention due to its extraordinary carrier transport, optoelectronic, and plasmonic properties originated from its gapless and linear energy spectra enabling various functionalities with extremely high quantum efficiencies that could never be obtained in any existing materials. This paper reviews recent advances in graphene optoelectronics particularly focused on the physics and device functionalities in the terahertz (THz) electromagnetic spectral range. Optical response of graphene is characterized by its optical conductivity and nonequilibrium carrier energy relaxation dynamics, enabling amplification of THz radiation when it is optically or electrically pumped. Current-injection THz lasing has been realized very recently. Graphene plasmon polaritons can greatly enhance the THz light and graphene matter interaction, enabling giant enhancement in detector responsivity as well as amplifier/laser gain. Graphene-based van der Waals heterostructures could give more interesting and energy-efficient functionalities. (author)

  13. Terahertz radiation induces non-thermal structural changes associated with Fröhlich condensation in a protein crystal.

    Science.gov (United States)

    Lundholm, Ida V; Rodilla, Helena; Wahlgren, Weixiao Y; Duelli, Annette; Bourenkov, Gleb; Vukusic, Josip; Friedman, Ran; Stake, Jan; Schneider, Thomas; Katona, Gergely

    2015-09-01

    Whether long-range quantum coherent states could exist in biological systems, and beyond low-temperature regimes where quantum physics is known to be applicable, has been the subject to debate for decades. It was proposed by Fröhlich that vibrational modes within protein molecules can order and condense into a lowest-frequency vibrational mode in a process similar to Bose-Einstein condensation, and thus that macroscopic coherence could potentially be observed in biological systems. Despite the prediction of these so-called Fröhlich condensates almost five decades ago, experimental evidence thereof has been lacking. Here, we present the first experimental observation of Fröhlich condensation in a protein structure. To that end, and to overcome the challenges associated with probing low-frequency molecular vibrations in proteins (which has hampered understanding of their role in proteins' function), we combined terahertz techniques with a highly sensitive X-ray crystallographic method to visualize low-frequency vibrational modes in the protein structure of hen-egg white lysozyme. We found that 0.4 THz electromagnetic radiation induces non-thermal changes in electron density. In particular, we observed a local increase of electron density in a long α-helix motif consistent with a subtle longitudinal compression of the helix. These observed electron density changes occur at a low absorption rate indicating that thermalization of terahertz photons happens on a micro- to milli-second time scale, which is much slower than the expected nanosecond time scale due to damping of delocalized low frequency vibrations. Our analyses show that the micro- to milli-second lifetime of the vibration can only be explained by Fröhlich condensation, a phenomenon predicted almost half a century ago, yet never experimentally confirmed.

  14. High-resolution broadband terahertz spectroscopy via electronic heterodyne detection of photonically generated terahertz frequency comb.

    Science.gov (United States)

    Pavelyev, D G; Skryl, A S; Bakunov, M I

    2014-10-01

    We report an alternative approach to the terahertz frequency-comb spectroscopy (TFCS) based on nonlinear mixing of a photonically generated terahertz pulse train with a continuous wave signal from an electronic synthesizer. A superlattice is used as a nonlinear mixer. Unlike the standard TFCS technique, this approach does not require a complex double-laser system but retains the advantages of TFCS-high spectral resolution and wide bandwidth.

  15. Resonant metallic nanostructures for enhanced terahertz spectroscopy

    KAUST Repository

    Toma, A.

    2015-11-12

    We present our recent studies on terahertz resonant dipole nanoantennas. Exploiting the localization and enhancement capabilities of these devices, we introduce an effective method to perform terahertz spectroscopy on an extremely small number of nano-objects.

  16. Enhanced saturation magnetization of Fe{sub 3}Si nanodot-embedded Fe{sub 80}Si{sub 17}Nb{sub 3} flexible film for efficient wireless power transfer

    Energy Technology Data Exchange (ETDEWEB)

    Pai, Yi-Hao, E-mail: paiyihao@mail.ndhu.edu.tw; Yan, Zih-Yu; Fu, Ping-Hao

    2013-07-15

    An efficient magnetically coupled resonance response is performed using an iron silicide-based nanostructured magnetoelectric material with high saturation magnetization for the wireless charging of battery-powered consumer electronics. With 500 °C annealing, the self-assembled Fe{sub 3}Si nanodots buried in the Fe{sub 80}Si{sub 17}Nb{sub 3} host matrix with (220) lattice spacing of 1.99 Å corresponding to a volume density of 8.96 × 10{sup 16} cm{sup 3}, can be obtained and a maximum saturation magnetization of 244 emu g{sup −1} achieved. The return loss of the antenna will be tuned to match the designed frequency with greater attenuated intensity (−0.39 dB) and a relatively narrow bandwidth (6 kHz) when the Fe{sub 3}Si nanodot-embedded Fe{sub 80}Si{sub 17}Nb{sub 3} sample is placed in a WiTricity system. An efficient wireless power transfer can be created and improved from 47.5% to 97.3%. The associated coil and loop antenna resonators are significantly readjusted to match the power transfer by putting this nanostructured magnetoelectric material in a WiTricity system. - Highlights: • The saturation magnetization is effective enhancement in the presence of Fe{sub 3}Si nanodot buried in the Fe{sub 80}Si{sub 17}Nb{sub 3}. • A saturation magnetization of 244 emu g{sup −1} is proposed for high-efficiency wireless power transfer. • The return loss of the antenna will be tuned to match the designed frequency. • Such a wireless power transfer can be enhanced efficiency up to 97.3%.

  17. The Third International Symposium on Space Terahertz Technology: Symposium proceedings

    Science.gov (United States)

    1992-01-01

    Papers from the symposium are presented that are relevant to the generation, detection, and use of the terahertz spectral region for space astronomy and remote sensing of the Earth's upper atmosphere. The program included thirteen sessions covering a wide variety of topics including solid-state oscillators, power-combining techniques, mixers, harmonic multipliers, antennas and antenna arrays, submillimeter receivers, and measurement techniques.

  18. Radiation damage of UO{sub 2} fuel; Radijaciono ostecenje UO{sub 2} goriva

    Energy Technology Data Exchange (ETDEWEB)

    Stevanovic, M; Sigulinski, F [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1966-11-15

    Radiation damage study of fuel and fuel elements covers: study of radiation damage methods in Sweden; analysis of testing the fuel and fuel elements at the RA reactor; feasibility study of irradiation in the Institute compared to irradiation abroad in respect to the reactor possibilities. Tasks included in this study are relater to testing of irradiated UO{sub 2} and ceramic fuel elements.

  19. Efficient power combiner for THz radiation

    Energy Technology Data Exchange (ETDEWEB)

    Seidfaraji, Hamide, E-mail: hsfaraji@unm.edu; Fuks, Mikhail I.; Christodoulou, Christos; Schamiloglu, Edl [Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM, 87131-0001 (United States)

    2016-08-15

    Most dangerous explosive materials, both toxic and radioactive, contain nitrogen salts with resonant absorption lines in the frequency range 0.3-10 THz. Therefore, there has been growing interest in remotely detecting such materials by observing the spectrum of reflected signals when the suspicious material is interrogated by THz radiation. Practical portable THz sources available today generate only 20–40 mW output power. This power level is too low to interrogate suspicious material from a safe distance, especially if the material is concealed. Hence, there is a need for sources that can provide greater power in the THz spectrum. Generating and extracting high output power from THz sources is complicated and inefficient. The efficiency of vacuum electronic microwave sources is very low when scaled to the THz range and THz sources based on scaling down semiconductor laser sources have low efficiency as well, resulting in the well known “THz gap.” The reason for such low efficiencies for both source types is material losses in the THz band. In this article an efficient power combiner is described that is based on scaling to higher frequencies a microwave combiner that increases the output power in the THz range of interest in simulation studies. The proposed power combiner not only combines the THz power output from several sources, but can also form a Gaussian wavebeam output. A minimum conversion efficiency of 89% with cophased inputs in a lossy copper power combiner and maximum efficiency of 100% in a Perfect Electric Conductor (PEC)-made power combiner were achieved in simulations. Also, it is shown that the TE{sub 01} output mode is a reasonable option for THz applications due to the fact that conductive loss decreases for this mode as frequency increases.

  20. Graphene-based devices in terahertz science and technology

    International Nuclear Information System (INIS)

    Otsuji, T; Boubanga Tombet, S A; Satou, A; Fukidome, H; Suemitsu, M; Ryzhii, V; Sano, E; Popov, V; Ryzhii, M

    2012-01-01

    Graphene is a one-atom-thick planar sheet of a honeycomb carbon crystal. Its gapless and linear energy spectra of electrons and holes lead to nontrivial features such as giant carrier mobility and broadband flat optical response. In this paper, recent advances in graphene-based devices in terahertz science and technology are reviewed. First, the fundamental basis of the optoelectronic properties of graphene is introduced. Second, synthesis and crystallographic characterization of graphene material are described, particularly focused on the authors' original heteroepitaxial graphene-on-silicon technology. Third, nonequilibrium carrier relaxation and recombination dynamics in optically or electrically pumped graphene are described to introduce a possibility of negative-dynamic conductivity in a wide terahertz range. Fourth, recent theoretical advances towards the creation of current-injection graphene terahertz lasers are described. Fifth, the unique terahertz dynamics of the two-dimensional plasmons in graphene are described. Finally, the advantages of graphene devices for terahertz applications are summarized. (topical review)

  1. InGaAs/InP heteroepitaxial Schottky barrier diodes for terahertz applications

    Science.gov (United States)

    Bhapkar, Udayan V.; Li, Yongjun; Mattauch, Robert J.

    1992-01-01

    This paper explores the feasibility of planar, sub-harmonically pumped, anti-parallel InGaAs/InP heteroepitaxial Schottky diodes for terahertz applications. We present calculations of the (I-V) characteristics of such diodes using a numerical model that considers tunneling. We also present noise and conversion loss predictions of diode mixers operated at 500 GHz, and obtained from a multi-port mixer analysis, using the I-V characteristics predicted by our model. Our calculations indicate that InGaAs/InP heteroepitaxial Schottky barrier diodes are expected to have an I-V characteristic with an ideality factor comparable to that of GaAs Schottky diodes. However, the reverse saturation current of InGaAs/InP diodes is expected to be much greater than that of GaAs diodes. These predictions are confirmed by experiment. The mixer analyses predict that sub-harmonically pumped anti-parallel InGaAs/InP diode mixers are expected to offer a 2 dB greater conversion loss and a somewhat higher single sideband noise temperature than their GaAs counterparts. More importantly, the InGaAs/InP devices are predicted to require only one-tenth of the local oscillator power required by similar GaAs diodes.

  2. Terahertz surface plasmon polariton waveguiding with periodic metallic cylinders

    KAUST Repository

    Zhang, Ying; Li, Shaoxian; Xu, Quan; Tian, Chunxiu; Gu, Jianqiang; Li, Yanfeng; Tian, Zhen; Ouyang, Chunmei; Han, Jiaguang; Zhang, Weili

    2017-01-01

    We demonstrated a structure with periodic cylinders arranged bilaterally and a thin dielectric layer covered inside that supports bound modes of surface plasmon polaritons at terahertz frequencies. This structure can confine the surface plasmon polaritons in the lateral direction, and at the same time reduce the field expansion into space. We examined and explored the characteristics of several different structures using scanning near-field terahertz microscopy. The proposed designs pave a novel way to terahertz waveguiding and may have important applications in the development of flexible, wideband and compact photonic circuits operating at terahertz frequencies.

  3. Terahertz surface plasmon polariton waveguiding with periodic metallic cylinders

    KAUST Repository

    Zhang, Ying

    2017-06-15

    We demonstrated a structure with periodic cylinders arranged bilaterally and a thin dielectric layer covered inside that supports bound modes of surface plasmon polaritons at terahertz frequencies. This structure can confine the surface plasmon polaritons in the lateral direction, and at the same time reduce the field expansion into space. We examined and explored the characteristics of several different structures using scanning near-field terahertz microscopy. The proposed designs pave a novel way to terahertz waveguiding and may have important applications in the development of flexible, wideband and compact photonic circuits operating at terahertz frequencies.

  4. Terahertz transmission properties of silicon wafers using continuous-wave terahertz spectroscopy

    Science.gov (United States)

    Kim, Chihoon; Ahn, Jae Sung; Ji, Taeksoo; Eom, Joo Beom

    2017-04-01

    We present the spectral properties of Si wafers using continuous-wave terahertz (CW-THz) spectroscopy. By using a tunable laser source and a fixed distributed-feedback laser diode (DFB-LD), a stably tunable beat source for CW-THz spectroscopy system can be implemented. THz radiation is generated in the frequency range of 100 GHz-800 GHz by photomixing in a photoconductive antenna. We also measured CW-THz waveforms by changing the beat frequency and confirmed repeatability through repeated measurement. We calculated the peaks of the THz frequency by taking fast Fourier transforms (FFTs) of measured THz waveforms. The feasibility of CW-THz spectroscopy is demonstrated by the THz spectra of Si wafers with different resistivities, mobilities, and carrier concentrations. The results show that Si wafers with a lower resistivity absorb more THz waves. Thus, we expect our CW-THz system to have the advantage of being able to perform fast non-destructive analysis.

  5. Terahertz transmission properties of silicon wafers using continuous-wave terahertz spectroscopy

    International Nuclear Information System (INIS)

    Kim, Chihoon; Ahn, Jae Sung; Eom, Joo Beom; Ji, Taeksoo

    2017-01-01

    We present the spectral properties of Si wafers using continuous-wave terahertz (CW-THz) spectroscopy. By using a tunable laser source and a fixed distributed-feedback laser diode (DFB-LD), a stably tunable beat source for CW-THz spectroscopy system can be implemented. THz radiation is generated in the frequency range of 100 GHz–800 GHz by photomixing in a photoconductive antenna. We also measured CW-THz waveforms by changing the beat frequency and confirmed repeatability through repeated measurement. We calculated the peaks of the THz frequency by taking fast Fourier transforms (FFTs) of measured THz waveforms. The feasibility of CW-THz spectroscopy is demonstrated by the THz spectra of Si wafers with different resistivities, mobilities, and carrier concentrations. The results show that Si wafers with a lower resistivity absorb more THz waves. Thus, we expect our CW-THz system to have the advantage of being able to perform fast non-destructive analysis. (paper)

  6. Asymmetric planar terahertz metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Ramjan [Los Alamos National Laboratory; Al - Naib, Ibraheem A. I. [PHILIPPS UNIV; Koch, Martin [PHILIPPS UNIV; Zhang, Weili [OKLAHOMA STATE UNIV

    2010-01-01

    Using terahertz time-domain spectroscopy, we report an experimental observation of three distinct resonances in split ring resonators (SRRs) for both vertical and horizontal electric field polarizations at normal incidence. Breaking the symmetry in SRRs by gradually displacing the capacitive gap from the centre towards the comer of the ring allows for an 85% modulation of the fundamental inductive-capacitive (LC) resonance. Increasing asymmetry leads to the evolution of an otherwise inaccessible high quality factor electric quadrupole resonance that can be exploited for bio-sensing applications in the terahertz region.

  7. Solid-state synthesis of Li{sub 4}Ti{sub 5}O{sub 12} for high power lithium ion battery applications

    Energy Technology Data Exchange (ETDEWEB)

    Han, Seung-Woo [School of Materials Science and Engineering, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Ryu, Ji Heon [Graduate School of Knowledge-Based Technology and Energy, Korea Polytechnic University, Siheung 429-793 (Korea, Republic of); Jeong, Joayoung [Cell Precedence Development Group, Samsung SDI, Yongin 446-577 (Korea, Republic of); Yoon, Dang-Hyok, E-mail: dhyoon@ynu.ac.kr [School of Materials Science and Engineering, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of)

    2013-09-05

    Highlights: •High energy milling using 0.30 and 0.45 mm beads for Li{sub 4}Ti{sub 5}O{sub 12} synthesis. •Synthesis of 162 nm-sized pure Li{sub 4}Ti{sub 5}O{sub 12} by solid-state reaction. •Spray drying using fine starting materials to confer paste tackiness. •High capacity of 174 mAh/g and adequate rate properties for high power LIBs applications. -- Abstract: Li{sub 4}Ti{sub 5}O{sub 12} was synthesized by a solid-state reaction between Li{sub 2}CO{sub 3} and anatase TiO{sub 2} for applications to high power lithium ion batteries. The starting materials underwent 6 h of high energy milling using ZrO{sub 2} beads with two different sizes, 0.30 and 0.45 mm. The smaller ZrO{sub 2} beads resulted in finer starting materials. Spray drying was also performed on the 0.30 mm beads-treated particles to enhance the screen printability of a paste containing this powder. The finer starting materials showed a pure 162 nm-sized Li{sub 4}Ti{sub 5}O{sub 12} due to the decreased diffusion length for a solid-state reaction, whereas the 0.45 mm beads-treated starting materials resulted in a 242 nm-sized Li{sub 4}Ti{sub 5}O{sub 12} phase containing 2 wt.% of rutile TiO{sub 2} that had transformed from the anatase phase during heat treatment at 800 °C for 3 h. The finer Li{sub 4}Ti{sub 5}O{sub 12} showed higher charge capacity and better charge/discharge rates than the coarser particles, which highlights the importance of the primary particle size on the electrochemical properties of Li{sub 4}Ti{sub 5}O{sub 12} for high power applications. The fine Li{sub 4}Ti{sub 5}O{sub 12} particles had a discharge capacity of 174 mAh/g at 0.1 C and capacity retention of 80% at 10.0 C.

  8. High Temperature Terahertz Detectors Realized by a GaN High Electron Mobility Transistor

    Science.gov (United States)

    Hou, H. W.; Liu, Z.; Teng, J. H.; Palacios, T.; Chua, S. J.

    2017-04-01

    In this work, a high temperature THz detector based on a GaN high electron mobility transistor (HEMT) with nano antenna structures was fabricated and demonstrated to be able to work up to 200 °C. The THz responsivity and noise equivalent power (NEP) of the device were characterized at 0.14 THz radiation over a wide temperature range from room temperature to 200 °C. A high responsivity Rv of 15.5 and 2.7 kV/W and a low NEP of 0.58 and 10 pW/Hz0.5 were obtained at room temperature and 200 °C, respectively. The advantages of the GaN HEMT over other types of field effect transistors for high temperature terahertz detection are discussed. The physical mechanisms responsible for the temperature dependence of the responsivity and NEP of the GaN HEMT are also analyzed thoroughly.

  9. Millimeter wave and terahertz wave transmission characteristics in plasma

    International Nuclear Information System (INIS)

    Ma Ping; Qin Long; Chen Weijun; Zhao Qing; Shi Anhua; Huang Jie

    2013-01-01

    An experiment was conducted on the shock tube to explore the transmission characteristics of millimeter wave and terahertz wave in high density plasmas, in order to meet the communication requirement of hypersonic vehicles during blackout. The transmission attenuation curves of millimeter wave and terahertz wave in different electron density and collision frequency were obtained. The experiment was also simulated by auxiliary differential equation finite-difference time-domain (ADE-FDTD) methods. The experimental and numerical results show that the transmission attenuation of terahertz wave in the plasma is smaller than that of millimeter wave under the same conditions. The transmission attenuation of terahertz wave in the plasma is enhanced with the increase of electron density. The terahertz wave is a promising alternative to the electromagnetic wave propagation in high density plasmas. (authors)

  10. Terahertz emission of Bloch oscillators excited by electromagnetic field in lateral semiconductor superlattices

    International Nuclear Information System (INIS)

    Dodin, E.P.; Zharov, A.A.

    2003-01-01

    The effect of the strong high-frequency electromagnetic field on the lateral semiconductor superlattice is considered on the basis of the quasi-classical theory on the electron transport in the self-consistent wave arrangement. It is theoretically identified, that the lateral superlattice in the strong feed-up wave field may emit the terahertz radiation wave trains, which are associated with the periodical excitation of the Bloch oscillations in the superlattice. The conditions, required for the Bloch oscillators radiation observation, are determined. The spectral composition of the radiation, passing through the superlattice, and energy efficiency of multiplying the frequency, related to the Bloch oscillator excitation, are calculated [ru

  11. Prism-coupled Cherenkov phase-matched terahertz wave generation using a DAST crystal.

    Science.gov (United States)

    Suizu, Koji; Shibuya, Takayuki; Uchida, Hirohisa; Kawase, Kodo

    2010-02-15

    Terahertz (THz) wave generation based on nonlinear frequency conversion is a promising method for realizing a tunable monochromatic high-power THz-wave source. Unfortunately, many nonlinear crystals have strong absorption in the THz frequency region. This limits efficient and widely tunable THz-wave generation. The Cherenkov phase-matching method is one of the most promising techniques for overcoming these problems. Here, we propose a prism-coupled Cherenkov phase-matching (PCC-PM) method, in which a prism with a suitable refractive index at THz frequencies is coupled to a nonlinear crystal. This has the following advantages. Many crystals can be used as THz-wave emitters; the phase-matching condition inside the crystal does not have to be observed; the absorption of the crystal does not prevent efficient generation of radiation; and pump sources with arbitrary wavelengths can be employed. Here we demonstrate PCC-PM THz-wave generation using the organic crystal 4-dimethylamino-N-metyl-4-stilbazolium tosylate (DAST) and a Si prism coupler. We obtain THz-wave radiation with tunability of approximately 0.1 to 10 THz and with no deep absorption features resulting from the absorption spectrum of the crystal. The obtained spectra did not depend on the pump wavelength in the range 1300 to 1450 nm. This simple technique shows promise for generating THz radiation using a wide variety of nonlinear crystals.

  12. Polarised two-photon excitation of quantum well excitons for manipulation of optically pumped terahertz lasers

    Energy Technology Data Exchange (ETDEWEB)

    Slavcheva, G., E-mail: gsk23@bath.ac.uk [Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2AZ (United Kingdom); Kavokin, A.V., E-mail: A.Kavokin@soton.ac.uk [School of Physics and Astronomy, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); Spin Optics Laboratory, St. Petersburg State University, 1, Ulyanovskaya 198504 (Russian Federation)

    2014-11-15

    Optical pumping of excited exciton states in a semiconductor quantum well embedded in a microcavity is a tool for realisation of ultra-compact terahertz (THz) lasers based on stimulated optical transition between excited (2p) and ground (1s) exciton state. We show that the probability of two-photon absorption by a 2p-exciton is strongly dependent on the polarisation of both pumping photons. Five-fold variation of the threshold power for terahertz lasing by switching from circular to co-linear pumping is predicted. We identify photon polarisation configurations for achieving maximum THz photon generation quantum efficiency.

  13. Parametric variation of radiated power in Aditya Tokamak

    International Nuclear Information System (INIS)

    Tahiliani, Kumudni; Chowdhuri, M.B.; Manchanda, R.

    2017-01-01

    We report the study of parametric variation of radiated power in Aditya Tokamak for ohmic discharges. The radiated power was measured using AXUV diodes that are responsive to radiation in the range 1 eV to 4 keV and are insensitive to the neutral particles (<0.5 keV). Hence only the radiation power loss is measured and charge exchange losses are excluded. The measured radiated power was also used for the estimation of the effective ion charge, Z eff based on the scaling obtained by the regression analysis of the data from multiple Tokamaks. The estimated values were compared with the experimental Z eff values obtained from the visible continuum measurement. We also tested the scaling for modelled radiation power loss. (author)

  14. Systematic study of terahertz response of SrTiO.sub.3./sub. based heterostructures: Influence of strain, temperature, and electric field

    Czech Academy of Sciences Publication Activity Database

    Skoromets, Volodymyr; Kadlec, Christelle; Drahokoupil, Jan; Schubert, J.; Hlinka, Jiří; Kužel, Petr

    2014-01-01

    Roč. 89, č. 21 (2014), , "214116-1"-"214116-12" ISSN 1098-0121 R&D Projects: GA ČR(CZ) GA14-25639S EU Projects: European Commission(XE) 607521 - NOTEDEV Institutional support: RVO:68378271 Keywords : dielectric response * terahertz spectroscopy * ferroelectrics * thin films * phase transition Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.736, year: 2014 http://journals.aps.org/prb/abstract/10.1103/PhysRevB.89.214116

  15. High Reliability Oscillators for Terahertz Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Terahertz sources based on lower frequency oscillators and amplifiers plus a chain of frequency multipliers are the workhorse technology for NASA's terahertz...

  16. Surface-Emitting Distributed Feedback Terahertz Quantum-Cascade Lasers in Metal-Metal Waveguides

    Science.gov (United States)

    Kumar, Sushil; Williams, Benjamin S.; Qin, Qi; Lee, Alan W. M.; Hu, Qing; Reno, John L.

    2007-01-01

    Single-mode surface-emitting distributed feedback terahertz quantumcascade lasers operating around 2.9 THz are developed in metal-metal waveguides. A combination of techniques including precise control of phase of reflection at the facets, and u e of metal on the sidewalls to eliminate higher-order lateral modes allow robust single-mode operation over a range of approximately 0.35 THz. Single-lobed far-field radiation pattern is obtained using a pi phase-shift in center of the second-order Bragg grating. A grating device operating at 2.93 THz lased up to 149 K in pulsed mode and a temperature tuning of 19 .7 GHz was observed from 5 K to 147 K. The same device lased up to 78 K in continuous-wave (cw) mode emitting more than 6 m W of cw power at 5 K. ln general, maximum temperature of pulsed operation for grating devices was within a few Kelvin of that of multi-mode Fabry-Perot ridge lasers

  17. Silicon junctionless field effect transistors as room temperature terahertz detectors

    Energy Technology Data Exchange (ETDEWEB)

    Marczewski, J., E-mail: jmarcz@ite.waw.pl; Tomaszewski, D.; Zaborowski, M. [Institute of Electron Technology, al. Lotnikow 32/46, 02-668 Warsaw (Poland); Knap, W. [Institute of High Pressure Physics of the Polish Academy of Sciences, ul. Sokolowska 29/37, 01-142 Warsaw (Poland); Laboratory Charles Coulomb, Montpellier University & CNRS, Place E. Bataillon, Montpellier 34095 (France); Zagrajek, P. [Institute of Optoelectronics, Military University of Technology, ul. gen. S. Kaliskiego 2, 00-908 Warsaw (Poland)

    2015-09-14

    Terahertz (THz) radiation detection by junctionless metal-oxide-semiconductor field-effect transistors (JL MOSFETs) was studied and compared with THz detection using conventional MOSFETs. It has been shown that in contrast to the behavior of standard transistors, the junctionless devices have a significant responsivity also in the open channel (low resistance) state. The responsivity for a photolithographically defined JL FET was 70 V/W and the noise equivalent power 460 pW/√Hz. Working in the open channel state may be advantageous for THz wireless and imaging applications because of its low thermal noise and possible high operating speed or large bandwidth. It has been proven that the junctionless MOSFETs can also operate in a zero gate bias mode, which enables simplification of the THz array circuitry. Existing models of THz detection by MOSFETs were considered and it has been demonstrated that the process of detection by these junctionless devices cannot be explained within the framework of the commonly accepted models and therefore requires a new theoretical approach.

  18. Terahertz cyclotron resonance spectroscopy of an AlGaN/GaN heterostructure using a high-field pulsed magnet and an asynchronous optical sampling technique

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, B. F., E-mail: Ben.Spencer@manchester.ac.uk; Smith, W. F.; Hibberd, M. T.; Dawson, P.; Graham, D. M. [School of Physics and Astronomy and the Photon Science Institute, The University of Manchester, Manchester M13 9PL (United Kingdom); Beck, M.; Bartels, A. [Laser Quantum GmbH, Max-Stromeyer-Str. 116, 78467 Konstanz (Germany); Guiney, I.; Humphreys, C. J. [Department of Materials Science and Metallurgy, 27 Charles Babbage Road, University of Cambridge, Cambridge CB3 0FS (United Kingdom)

    2016-05-23

    The effective mass, sheet carrier concentration, and mobility of electrons within a two-dimensional electron gas in an AlGaN/GaN heterostructure were determined using a laboratory-based terahertz cyclotron resonance spectrometer. The ability to perform terahertz cyclotron resonance spectroscopy with magnetic fields of up to 31 T was enabled by combining a high-field pulsed magnet with a modified asynchronous optical sampling terahertz detection scheme. This scheme allowed around 100 transmitted terahertz waveforms to be recorded over the 14 ms magnetic field pulse duration. The sheet density and mobility were measured to be 8.0 × 10{sup 12 }cm{sup −2} and 9000 cm{sup 2} V{sup −1} s{sup −1} at 77 K. The in-plane electron effective mass at the band edge was determined to be 0.228 ± 0.002m{sub 0}.

  19. Compact Tunable Narrowband Terahertz-Wave Source Based on Difference Frequency Generation Pumped by Dual Fiber Lasers in MgO:LiNbO3

    Science.gov (United States)

    Wada, Yoshio; Satoh, Takumi; Higashi, Yasuhiro; Urata, Yoshiharu

    2017-12-01

    We demonstrate a high-average-power, single longitudinal-mode, and tunable terahertz (THz)-wave source based on difference frequency generation (DFG) in a MgO:LiNbO3 (MgO:LN) crystal. The waves for DFG are generated using a pair of Yb-doped pulsed fiber lasers with a master oscillator power fiber amplifier configuration. The average power of the THz-wave output reaches 450 μW at 1.07 THz (280 μm) at a linewidth of 7.2 GHz, and the tunability ranges from 0.35 to 1.07 THz under the pulse repetition frequency of 500 kHz. A short burn-in test of the THz wave is also carried out, and the output power stability is within ± 5% of the averaged power without any active stabilizing technique. The combination of MgO:LN-DFG and stable and robust fiber laser sources is highly promising for the development of high-average-power THz-wave sources, particularly in the high transmission sub-THz region. This approach may enable new applications of THz-wave spectroscopy in imaging and remote sensing.

  20. NaBH{sub 4}/H{sub 2}O{sub 2} fuel cells for air independent power systems

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Nie; Miley, G.H.; Kim, Kyu-Jung [Department of Nuclear Engineering, University of Illinois, 104 S. Wright, Urbana, IL 61801 (United States); Burton, Rodney [Department of Aerospace Engineering, University of Illinois, 104 S. Wright, Urbana, IL 61801 (United States); Huang, Xinyu [Florida Solar Energy Center, 1679 Clearlake Road, Cocoa, FL 32922 (United States)

    2008-12-01

    The performance and characteristics of direct sodium-borohydride/hydrogen-peroxide (NaBH{sub 4}/H{sub 2}O{sub 2}) fuel cells are studied in the context of potential applications for air independent propulsion for outer space and underwater. Due to the existence of ocean (sea) water as a natural heat sink, this new fuel cell technology is best suited for underwater propulsion/power systems for small scale high performance marine vehicles. The characteristics of such a power system are compared to other options, specifically for the underwater scenario. The potential of this fuel cell is demonstrated in laboratory experiments. Power density over 1.5 W cm{sup -2}, at 65 C and ambient pressure, have been achieved with the help of some unique treatments of the fuel cell. One such treatment is an in-situ electroplating technique, which results in electrodes with power density 20-40% higher, than that of the electrodes produced by the ordinary ex-situ electroplating method. This unique process also makes repair or reconditioning of the fuel cell possible and convenient. (author)

  1. Sub-terahertz resonance spectroscopy of biological macromolecules and cells

    Science.gov (United States)

    Globus, Tatiana; Moyer, Aaron; Gelmont, Boris; Khromova, Tatyana; Sizov, Igor; Ferrance, Jerome

    2013-05-01

    Recently we introduced a Sub-THz spectroscopic system for characterizing vibrational resonance features from biological materials. This new, continuous-wave, frequency-domain spectroscopic sensor operates at room temperature between 315 and 480 GHz with spectral resolution of at least 1 GHz and utilizes the source and detector components from Virginia Diode, Inc. In this work we present experimental results and interpretation of spectroscopic signatures from bacterial cells and their biological macromolecule structural components. Transmission and absorption spectra of the bacterial protein thioredoxin, DNA and lyophilized cells of Escherichia coli (E. coli), as well as spores of Bacillus subtillis and B. atrophaeus have been characterized. Experimental results for biomolecules are compared with absorption spectra calculated using molecular dynamics simulation, and confirm the underlying physics for resonance spectroscopy based on interactions between THz radiation and vibrational modes or groups of modes of atomic motions. Such interactions result in multiple intense and narrow specific resonances in transmission/absorption spectra from nano-gram samples with spectral line widths as small as 3 GHz. The results of this study indicate diverse relaxation dynamic mechanisms relevant to sub-THz vibrational spectroscopy, including long-lasting processes. We demonstrate that high sensitivity in resolved specific absorption fingerprints provides conditions for reliable detection, identification and discrimination capability, to the level of strains of the same bacteria, and for monitoring interactions between biomaterials and reagents in near real-time. Additionally, it creates the basis for the development of new types of advanced biological sensors through integrating the developed system with a microfluidic platform for biomaterial samples.

  2. Compact terahertz spectrometer based on disordered rough surfaces

    Science.gov (United States)

    Yang, Tao; Jiang, Bing; Ge, Jia-cheng; Zhu, Yong-yuan; Li, Xing-ao; Huang, Wei

    2018-01-01

    In this paper, a compact spectrometer based on disordered rough surfaces for operation in the terahertz band is presented. The proposed spectrometer consists of three components, which are used for dispersion, modulation and detection respectively. The disordered rough surfaces, which are acted as the dispersion component, are modulated by the modulation component. Different scattering intensities are captured by the detection component with different extent of modulation. With a calibration measurement process, one can reconstruct the spectra of the probe terahertz beam by solving a system of simultaneous linear equations. A Tikhonov regularization approach has been implemented to improve the accuracy of the spectral reconstruction. The reported broadband, compact, high-resolution terahertz spectrometer is well suited for portable terahertz spectroscopy applications.

  3. Terahertz detectors for long wavelength multi-spectral imaging.

    Energy Technology Data Exchange (ETDEWEB)

    Lyo, Sungkwun Kenneth; Wanke, Michael Clement; Reno, John Louis; Shaner, Eric Arthur; Grine, Albert D.

    2007-10-01

    The purpose of this work was to develop a wavelength tunable detector for Terahertz spectroscopy and imaging. Our approach was to utilize plasmons in the channel of a specially designed field-effect transistor called the grating-gate detector. Grating-gate detectors exhibit narrow-linewidth, broad spectral tunability through application of a gate bias, and no angular dependence in their photoresponse. As such, if suitable sensitivity can be attained, they are viable candidates for Terahertz multi-spectral focal plane arrays. When this work began, grating-gate gate detectors, while having many promising characteristics, had a noise-equivalent power (NEP) of only 10{sup -5} W/{radical}Hz. Over the duration of this project, we have obtained a true NEP of 10{sup -8} W/{radical}Hz and a scaled NEP of 10{sup -9}W/{radical}Hz. The ultimate goal for these detectors is to reach a NEP in the 10{sup -9{yields}-10}W/{radical}Hz range; we have not yet seen a roadblock to continued improvement.

  4. Particularities of interaction of CO sub 2 -laser radiation with oxide materials

    CERN Document Server

    Salikhov, T P

    2002-01-01

    The results of experimental investigation of vapor phase influence on the interaction parameters of the infrared laser radiation with oxide materials (Al sub 2 O sub 3 , ZrO sub 2 , CeO sub 2) have been presented. A phenomenon of laser radiation by the samples investigated under laser heating has been experimentally discovered for the first time. This phenomenon connected with forming of the stable vapor shell above the irradiated samples was expressed as a sharp drop in temperature on the heating curve and called as an absorption flash. (author)

  5. FEL radiation power available in electron storage rings

    International Nuclear Information System (INIS)

    Miyahara, Yoshikazu

    1994-01-01

    FEL radiation power available in electron storage rings was studied in the small signal regime in considering the increase of the energy spread of the electron beam caused by the FEL interaction and the decrease of the FEL gain with the increase of the energy spread in addition to the radiation damping and the quantum excitation. All these effects were considered separately, and combined with FEL power equations. The radiation power available was expressed explicitly with the parameters of the storage ring, the wiggler and the mirrors. The transient process of FEL lasing is simulated with the power equations. A rough estimation is made of the radiation power available by the FEL at different beam energies, and optimization of FEL parameters for a higher radiation power is discussed. ((orig.))

  6. Non-destructive Determination of Disintegration Time and Dissolution in Immediate Release Tablets by Terahertz Transmission Measurements.

    Science.gov (United States)

    Markl, Daniel; Sauerwein, Johanna; Goodwin, Daniel J; van den Ban, Sander; Zeitler, J Axel

    2017-05-01

    The aim of this study was to establish the suitability of terahertz (THz) transmission measurements to accurately measure and predict the critical quality attributes of disintegration time and the amount of active pharmaceutical ingredient (API) dissolved after 15, 20 and 25 min for commercial tablets processed at production scale. Samples of 18 batches of biconvex tablets from a production-scale design of experiments study into exploring the design space of a commercial tablet manufacturing process were used. The tablet production involved the process steps of high-shear wet granulation, fluid-bed drying and subsequent compaction. The 18 batches were produced using a 4 factor split plot design to study the effects of process changes on the disintegration time. Non-destructive and contactless terahertz transmission measurements of the whole tablets without prior sample preparation were performed to measure the effective refractive index and absorption coefficient of 6 tablets per batch. The disintegration time (R 2  = 0.86) and API dissolved after 15 min (R 2  = 0.96) linearly correlates with the effective refractive index, n eff , measured at terahertz frequencies. In contrast, no such correlation could be established from conventional hardness measurements. The magnitude of n eff represents the optical density of the sample and thus it reflects both changes in tablet porosity as well as granule density. For the absorption coefficient, α eff , we observed a better correlation with dissolution after 20 min (R 2  = 0.96) and a weaker correlation with disintegration (R 2  = 0.83) compared to n eff . The measurements of n eff and α eff provide promising predictors for the disintegration and dissolution time of tablets. The high penetration power of terahertz radiation makes it possible to sample a significant volume proportion of a tablet without any prior sample preparation. Together with the short measurement time (seconds), the potential to

  7. Terahertz Harmonic Operation of Microwave Fresnel Zone Plate Lens and Antenna: Frequency Filtering and Space Resolution Properties

    Directory of Open Access Journals (Sweden)

    Hristo D. Hristov

    2011-01-01

    Full Text Available This paper examines the binary Fresnel zone plate (FZP lens frequency-harmonic and space-resolution focusing, and its application as a FZP lens antenna. A microwave FZP lens antenna (FZPA radiates both at design (90 GHz and terahertz (THz odd harmonic frequencies. Frequency and space domain antenna operation are studied analytically by use of the vector diffraction integral applied to a realistic printed FZPA. It is found that all harmonic gain peaks are roughly identical in form, bandwidth, and top values. At each harmonic frequency, the FZPA has a beamwidth that closely follows the Rayleigh resolution criterion. If the lens/antenna resolution is of prime importance and the small aperture efficiency is a secondary problem the microwave-design FZP lens antenna can be of great use at much higher terahertz frequencies. Important feature of the microwave FZP lens is its broader-zone construction compared to the equal in resolution terahertz-design FZP lens. Thus, unique and expensive microtechnology for the microwave FZP lens fabrication is not required. High-order harmonic operation of the FZP lens or lens antenna could find space resolution and frequency filtering applications in the terahertz and optical metrology, imaging tomography, short-range communications, spectral analysis, synchrotron facilities, and so on.

  8. Terahertz-frequency dielectric response of liquids

    DEFF Research Database (Denmark)

    Jepsen, Peter Uhd; Møller, Uffe; Cooke, David

    The dielectric response of liquids spans many decades in frequency. The dielectric response of a polar liquid is typically determined by relaxational dynamics of the dipolar moments of the liquid. In contrast, the dielectric response of a nonpolar liquid is determined by much weaker collision......-induced dipole moments. In the polar liquid water the fastest relaxational dynamics is found at terahertz frequencies, just below the first intermolecular vibrational and librational modes. In this presentation we will discuss optical terahertz spectroscopic techniques for measurement of the full dielectric...... function of liquids at terahertz frequencies. We will review the current understanding of the high-frequency dielectric spectrum of water, and discuss the relation between the dielectric spectrum and the thermodynamic properties of certain aqueous solutions....

  9. A comment on power-law inflation with a dark radiation component

    Energy Technology Data Exchange (ETDEWEB)

    Valentino, Eleonora Di; Bouchet, François R., E-mail: valentin@iap.fr, E-mail: bouchet@iap.fr [Institut d' Astrophysique de Paris (UMR7095: CNRS and UPMC-Sorbonne Universities), F-75014, Paris (France)

    2016-10-01

    Tram et al. 2016 recently pointed out in [1] that power-law inflation in presence of a dark radiation component may relieve the 3.3 σ tension which exists within standard ΛCDM between the determination of the local value of the Hubble constant by Riess et al. (2016) [2] and the value derived from CMB anisotropy data [3] by the Planck collaboration. In this comment, we simply point out that this interesting proposal does not help in solving the σ{sub 8} tension between the Planck data and, e.g., the weak lensing measurements. Moreover, when the latest constraints on the reionization optical depth obtained from Planck HFI data [4] are included in the analysis, the H {sub 0} tension reappears and this scenario looses appeal.

  10. Radiation Damage in CaF{sub 2}2 and BaF{sub 2} Investigated by the Channeling Technique

    Energy Technology Data Exchange (ETDEWEB)

    Hellborg, R; Skog, G

    1973-04-15

    The radiation damage in single crystals of CaF{sub 2} and BaF{sub 2} due to room temperature bombardment with 2.0 MeV helium ions has been studied by the channeling technique. Back scattering spectra for the <111> and <110> axial directions were taken after different doses of random irradiation. A slight in crease of the aligned yield with radiation dose has been found for both crystals at doses below 1017 ions/cm2. For CaF{sub 2} at a dose of about 1.4x1017 ions/cm2 a steep increase is found, after which the aligned yield saturates at a high value. Analyses of spectra measured along different aligned directions indicate that the structures of defects in CaF{sub 2} and BaF{sub 2} differ

  11. Excitonic terahertz photoconductivity in intrinsic semiconductor nanowires

    Science.gov (United States)

    Yan, Jie-Yun

    2018-06-01

    Excitonic terahertz photoconductivity in intrinsic semiconductor nanowires is studied. Based on the excitonic theory, the numerical method to calculate the photoconductivity spectrum in the nanowires is developed, which can simulate optical pump terahertz-probe spectroscopy measurements on real nanowires and thereby calculate the typical photoconductivity spectrum. With the help of the energetic structure deduced from the calculated linear absorption spectrum, the numerically observed shift of the resonant peak in the photoconductivity spectrum is found to result from the dominant exciton transition between excited or continuum states to the ground state, and the quantitative analysis is in good agreement with the quantum plasmon model. Besides, the dependence of the photoconductivity on the polarization of the terahertz field is also discussed. The numerical method and supporting theoretical analysis provide a new tool for experimentalists to understand the terahertz photoconductivity in intrinsic semiconductor nanowires at low temperatures or for nanowires subjected to below bandgap photoexcitation, where excitonic effects dominate.

  12. Colossal thermoelectric power in charge ordered lanthanum calcium manganites (La{sub 0.5}Ca{sub 0.5}MnO{sub 3})

    Energy Technology Data Exchange (ETDEWEB)

    Joy, Lija K.; Anantharaman, M. R., E-mail: mraiyer@yahoo.com [Department of Physics, Cochin University of Science and Technology, Cochin 682022 (India); Shanmukharao Samatham, S.; Ganesan, V. [Low temperature division, UGC-DAE Consortium for Scientific Research, Indore (India); Thomas, Senoy [Material Science and Technology Division, National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram–695019 (India); Al-Harthi, Salim [Department of Physics, Sultan Qaboos University, Muscat PC 123, Sultanate of Oman (Oman); Liebig, A.; Albrecht, M. [Institute of Physics, University of Augsburg, Augsburg 86135 (Germany)

    2014-12-07

    Lanthanum calcium manganites (La{sub 0.5}Ca{sub 0.5}MnO{sub 3}) with a composition close to charge ordering, synthesized by high energy ball milling, was found to exhibit colossal thermoelectric power. Thermoelectric power (TEP) data was systematically analyzed by dividing the entire temperature range (5 K–300 K) into three different regimes to explore different scattering mechanisms involved. Mandal's model has been applied to explain TEP data in the region below the Curie temperature (T{sub C}). It has been found that the variation of thermoelectric power with temperature is pronounced when the system enters the charge ordered region at T < 200 K. For temperatures lower than 120 K, due to the co-existence of charge ordered state with a spin-glass state, the variation of thermoelectric power is maximum and exhibited a peak value of −80 mV/K at 58 K. This has been explained by incorporating Kondo properties of the spin-glass along with magnon scattering. FC-ZFC magnetization measurements indicate the existence of a glassy state in the region corresponding to a maximum value of thermoelectric power. Phonon drag contribution instead of spin-glass contribution is taken into account to explain TEP in the region 120 K < T < T{sub C}. Mott's polaronic contribution of charge carriers are considered to interpret TEP in the high temperature region (T > T{sub C}). The optimal Mn{sup 4+}-Mn{sup 3+} concentration in charge ordered La{sub 0.5}Ca{sub 0.5}MnO{sub 3} was examined by X-ray Photoelectron Spectroscopy analysis which confirms the charge ordered nature of this compound.

  13. Ultra-high Q terahertz whispering-gallery modes in a silicon resonator

    Science.gov (United States)

    Vogt, Dominik Walter; Leonhardt, Rainer

    2018-05-01

    We report on the first experimental demonstration of terahertz (THz) whispering-gallery modes (WGMs) with an ultra-high quality factor of 1.5 × 104 at 0.62 THz. The WGMs are observed in a high resistivity float zone silicon spherical resonator coupled to a sub-wavelength silica waveguide. A detailed analysis of the coherent continuous wave THz spectroscopy measurements combined with a numerical model based on Mie-Debye-Aden-Kerker theory allows us to unambiguously identify the observed higher order radial THz WGMs.

  14. Peculiarities of the coherent spontaneous synchrotron radiation of dense electron bunches

    International Nuclear Information System (INIS)

    Balal, N.; Bratman, V. L.; Savilov, A. V.

    2014-01-01

    In a short section of homogeneous magnetic field, quasi-plane electron bunches from linear accelerators with laser-driven photo-injectors at moderate particle energies can generate strongly directed, very short and powerful terahertz electromagnetic pulses with a broad frequency spectrum. The formulas for radiation fields, their spectra and efficiency of radiation are presented in a very simple analytical form using expressions for the fields of an arbitrary moving charged plane. The self-action and mutual interaction of thin electron layers are estimated. It is shown that the radiation with frequencies of up to (1–3) THz can be effectively generated by electrons with energies (4–6) MeV in a short and relatively weak magnetic field of (4–10) kOe

  15. Peculiarities of the coherent spontaneous synchrotron radiation of dense electron bunches

    Energy Technology Data Exchange (ETDEWEB)

    Balal, N. [Ariel University, Ariel (Israel); Bratman, V. L. [Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod (Russian Federation); Savilov, A. V., E-mail: savilov@appl.sci-nnov.ru [Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod (Russian Federation); Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod (Russian Federation)

    2014-02-15

    In a short section of homogeneous magnetic field, quasi-plane electron bunches from linear accelerators with laser-driven photo-injectors at moderate particle energies can generate strongly directed, very short and powerful terahertz electromagnetic pulses with a broad frequency spectrum. The formulas for radiation fields, their spectra and efficiency of radiation are presented in a very simple analytical form using expressions for the fields of an arbitrary moving charged plane. The self-action and mutual interaction of thin electron layers are estimated. It is shown that the radiation with frequencies of up to (1–3) THz can be effectively generated by electrons with energies (4–6) MeV in a short and relatively weak magnetic field of (4–10) kOe.

  16. Non-thermal effects of 94 GHz radiation on bacterial metabolism

    Science.gov (United States)

    Raitt, Brittany J.

    Bacillus subtilis, Escherichia coli, Staphylococcus aureus, and Klebsiella pneumoniae were used to investigate the non-thermal effects of terahertz (THz) radiation exposure on bacterial cells. The THz source used was a 94 GHz (0.94 THz) Millitech Gunn Diode Oscillator with a power density of 1.3 mW/cm2. The cultures were placed in the middle sixty wells of two 96-well microplates, one serving as the experimental plate and one serving as a control. The experimental plate was placed on the radiation source for either two, eighteen, or twenty-four hours and the metabolism of the cells was measured in a spectrophotometer using the tetrazolium dye XTT. The results showed no consistent significant differences in either the growth rates or the metabolism of any of the bacterial species at this frequency and power density.

  17. Rayleigh scattering of Moessbauer radiation in superionic conductor RbAg/sub 4/I/sub 5/

    Energy Technology Data Exchange (ETDEWEB)

    Ovanesyan, N.S.; Goffman, V.G.; Sokolov, V.B.; Tkachev, V.V. (AN SSSR, Chernogolovka. Otdelenie Inst. Khimicheskoj Fiziki)

    1984-04-01

    The dynamical properties of RbAg/sub 4/I/sub 5/ has been investiaated by Rayleigh scattering of Moessbauer radiation (RSMR) with wave-length lambda = 0.86 A. The character of Ag/sup +/ ion oscillatory motion and diffusion in RbAg/sub 4/I/sub 5/ depending on temperature including the phase transitions region is studied. It is shown that in the superionic crystal RbAg/sub 4/I/sub 5/ the diffusion process is strongly correlated, i.e. a great number of initial and final states at diffusion jumps coincide. The observed broadening can be less than the expected one by value orders. Diffusion correlation can strongly reduce the activation barrier and lead to anomalously high ionic conduction.

  18. Terahertz Imaging of Three-Dimensional Dehydrated Breast Cancer Tumors

    Science.gov (United States)

    Bowman, Tyler; Wu, Yuhao; Gauch, John; Campbell, Lucas K.; El-Shenawee, Magda

    2017-06-01

    This work presents the application of terahertz imaging to three-dimensional formalin-fixed, paraffin-embedded human breast cancer tumors. The results demonstrate the capability of terahertz for in-depth scanning to produce cross section images without the need to slice the tumor. Samples of tumors excised from women diagnosed with infiltrating ductal carcinoma and lobular carcinoma are investigated using a pulsed terahertz time domain imaging system. A time of flight estimation is used to obtain vertical and horizontal cross section images of tumor tissues embedded in paraffin block. Strong agreement is shown comparing the terahertz images obtained by electronically scanning the tumor in-depth in comparison with histopathology images. The detection of cancer tissue inside the block is found to be accurate to depths over 1 mm. Image processing techniques are applied to provide improved contrast and automation of the obtained terahertz images. In particular, unsharp masking and edge detection methods are found to be most effective for three-dimensional block imaging.

  19. Study on spectral features of terahertz wave propagating in the air

    Science.gov (United States)

    Kang, Shengwu

    2018-03-01

    Now, Terahertz technology has been widely used in many fields, which is mainly related to imaging detection. While the frequency range of the terahertz-wave is located between microwave and visible light, whether the existing visible light principle is applicable to terahertz-wave should be studied again. Through experiment, we measure the terahertz-wave field amplitude distribution on the receiving plane perpendicular to the direction of propagation in the air and picture out the energy distribution curve; derive an energy decay formula of terahertz wave based on the results; design a terahertz wavelength apparatus using the F-P interferometer theory; test the wavelength between 1 and 3 THz from the SIFIR-50THz laser of American Corehent company; finally analyze the related factors affecting the measurement precision including the beam incident angle, mechanical vibration, temperature fluctuation and the refractive index fluctuation.

  20. Ultrabroadband terahertz source and beamline based on coherent transition radiation

    Directory of Open Access Journals (Sweden)

    S. Casalbuoni

    2009-03-01

    Full Text Available Coherent transition radiation (CTR in the THz regime is an important diagnostic tool for analyzing the temporal structure of the ultrashort electron bunches needed in ultraviolet and x-ray free-electron lasers. It is also a powerful source of such radiation, covering an exceptionally broad frequency range from about 200 GHz to 100 THz. At the soft x-ray free-electron laser FLASH we have installed a beam transport channel for transition radiation (TR with the intention to guide a large fraction of the radiation to a laboratory outside the accelerator tunnel. The radiation is produced on a screen inside the ultrahigh vacuum beam pipe of the linac, coupled out through a diamond window and transported to the laboratory through an evacuated tube equipped with five focusing and four plane mirrors. The design of the beamline has been based on a thorough analysis of the generation of TR on metallic screens of limited size. The optical propagation of the radiation has been computed taking into account the effects of near-field (Fresnel diffraction. The theoretical description of the TR source is presented in the first part of the paper, while the design principles and the technical layout of the beamline are described in the second part. First experimental results demonstrate that the CTR beamline covers the specified frequency range and preserves the narrow time structure of CTR pulses emitted by short electron bunches.

  1. Optically pumped terahertz sources

    Institute of Scientific and Technical Information of China (English)

    ZHONG Kai; SHI Wei; XU DeGang; LIU PengXiang; WANG YuYe; MEI JiaLin; YAN Chao; FU ShiJie; YAO JianQuan

    2017-01-01

    High-power terahertz (THz) generation in the frequency range of0.1-10 THz has been a fast-developing research area ever since the beginning of the THz boom two decades ago,enabling new technological breakthroughs in spectroscopy,communication,imaging,etc.By using optical (laser) pumping methods with near-or mid-infrared (IR) lasers,flexible and practical THz sources covering the whole THz range can be realized to overcome the shortage of electronic THz sources and now they are playing important roles in THz science and technology.This paper overviews various optically pumped THz sources,including femtosecond laser based ultrafast broadband THz generation,monochromatic widely tunable THz generation,single-mode on-chip THz source from photomixing,and the traditional powerful THz gas lasers.Full descriptions from basic principles to the latest progress are presented and their advantages and disadvantages are discussed as well.It is expected that this review gives a comprehensive reference to researchers in this area and additionally helps newcomers to quickly gain understanding of optically pumped THz sources.

  2. Milestone report: The simulation of radiation driven gas diffusion in UO<sub>2sub> at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Michael William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kuganathan, Navaratnarajah [Imperial College, London (United Kingdom); Burr, Patrick A [Univ. of New South Wales (Australia); Rushton, Michael J. [Imperial College, London (United Kingdom); Grimes, Robin W [Imperial College, London (United Kingdom); Turbull, James Anthony [Independent Consultant (United Kingdom); Stanek, Christopher Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Andersson, Anders David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-10-24

    Below 1000 K it is thought that fission gas diffusion in nuclear fuel during irradiation occurs through atomic mixing due to radiation damage. This is an important process for nuclear reactor performance as it affects fission gas release, particularly from the periphery of the pellet where such temperatures are normal. Here we present a molecular dynamics study of Xe and Kr diffusion due to irradiation. Thermal spikes and cascades have been used to study the electronic stopping and ballistic phases of damage, respectively. Our results predict that O and Kr exhibit the greatest diffusivity and U the least, while Xe lies in between. It is concluded that the ballistic phase does not sufficiently account for the experimentally observed diffusion. Preliminary thermal spike calculations indicate that the electronic stopping phase generates greater fission gas displacement than the ballistic phase, although further calculation must be carried out to confirm this. A good description of the system by the empirical potentials is important over the very wide temperatures induced during thermal spike and damage cascade simulations. This has motivated the development of a parameter set for gas-actinide and gas-oxygen interactions that is complementary for use with a recent many-body potential set. A comprehensive set of density functional theory (DFT) calculations were used to study Xe and Kr incorporation at a number of sites in CeO<sub>2sub>, ThO<sub>2sub>, UO<sub>2sub> and PuO<sub>2sub>. These structures were used to fit a potential, which was used to generate molecular dynamics (MD) configurations incorporating Xe and Kr at 300 K, 1500 K, 3000 K and 5000 K. Subsequent matching to the forces predicted by DFT for these MD configurations was used to refine the potential set. This fitting approach ensured weighted fitting to configurations that are thermodynamically significant over a broad temperature range, while avoiding computationally expensive DFT-MD calculations

  3. LDRD final report on continuous wave intersubband terahertz sources.

    Energy Technology Data Exchange (ETDEWEB)

    Samora, Sally; Mangan, Michael A.; Foltynowicz, Robert J.; Young, Erik W.; Fuller, Charles T.; Stephenson, Larry L.; Reno, John Louis; Wanke, Michael Clement; Hudgens, James J.

    2005-02-01

    There is a general lack of compact electromagnetic radiation sources between 1 and 10 terahertz (THz). This a challenging spectral region lying between optical devices at high frequencies and electronic devices at low frequencies. While technologically very underdeveloped the THz region has the promise to be of significant technological importance, yet demonstrating its relevance has proven difficult due to the immaturity of the area. While the last decade has seen much experimental work in ultra-short pulsed terahertz sources, many applications will require continuous wave (cw) sources, which are just beginning to demonstrate adequate performance for application use. In this project, we proposed examination of two potential THz sources based on intersubband semiconductor transitions, which were as yet unproven. In particular we wished to explore quantum cascade lasers based sources and electronic based harmonic generators. Shortly after the beginning of the project, we shifted our emphasis to the quantum cascade lasers due to two events; the publication of the first THz quantum cascade laser by another group thereby proving feasibility, and the temporary shut down of the UC Santa Barbara free-electron lasers which were to be used as the pump source for the harmonic generation. The development efforts focused on two separate cascade laser thrusts. The ultimate goal of the first thrust was for a quantum cascade laser to simultaneously emit two mid-infrared frequencies differing by a few THz and to use these to pump a non-linear optical material to generate THz radiation via parametric interactions in a specifically engineered intersubband transition. While the final goal was not realized by the end of the project, many of the completed steps leading to the goal will be described in the report. The second thrust was to develop direct THz QC lasers operating at terahertz frequencies. This is simpler than a mixing approach, and has now been demonstrated by a few groups

  4. Carrier dynamics in silicon nanowires studied using optical-pump terahertz-probe spectroscopy

    Science.gov (United States)

    Beaudoin, Alexandre; Salem, Bassem; Baron, Thierry; Gentile, Pascal; Morris, Denis

    2014-03-01

    The advance of non-contact measurements involving pulsed terahertz radiation presents great interests for characterizing electrical properties of a large ensemble of nanowires. In this work, N-doped and undoped silicon nanowires (SiNWs) grown by chemical vapour deposition (CVD) on quartz substrate were characterized using optical-pump terahertz probe (OPTP) transmission experiments. Our results show that defects and ionized impurities introduced by N-doping the CVD-grown SiNWs tend to reduce the photoexcited carrier lifetime and degrade their conductivity properties. Capture mechanisms by the surface trap states play a key role on the photocarrier dynamics in theses small diameters' (~100 nm) SiNWs and the doping level is found to alter this dynamics. We propose convincing capture and recombination scenarios that explain our OPTP measurements. Fits of our photoconductivity data curves, from 0.5 to 2 THz, using a Drude-plasmon conductivity model allow determining photocarrier mobility values of 190 and 70 cm2/V .s, for the undoped and N-doped NWs samples, respectively.

  5. Terahertz electron cyclotron maser interactions with an axis-encircling electron beam

    Science.gov (United States)

    Li, G. D.; Kao, S. H.; Chang, P. C.; Chu, K. R.

    2015-04-01

    To generate terahertz radiation via the electron cyclotron maser instability, harmonic interactions are essential in order to reduce the required magnetic field to a practical value. Also, high-order mode operation is required to avoid excessive Ohmic losses. The weaker harmonic interaction and mode competition associated with an over-moded structure present challenging problems to overcome. The axis-encircling electron beam is a well-known recipe for both problems. It strengthens the harmonic interaction, as well as minimizing the competing modes. Here, we examine these advantages through a broad data base obtained for a low-power, step-tunable, gyrotron oscillator. Linear results indicate far more higher-harmonic modes can be excited with an axis-encircling electron beam than with an off-axis electron beam. However, multi-mode, time-dependent simulations reveal an intrinsic tendency for a higher-harmonic mode to switch over to a lower-harmonic mode at a high beam current or upon a rapid current rise. Methods are presented to identify the narrow windows in the parameter space for stable harmonic interactions.

  6. Terahertz electron cyclotron maser interactions with an axis-encircling electron beam

    International Nuclear Information System (INIS)

    Li, G. D.; Kao, S. H.; Chang, P. C.; Chu, K. R.

    2015-01-01

    To generate terahertz radiation via the electron cyclotron maser instability, harmonic interactions are essential in order to reduce the required magnetic field to a practical value. Also, high-order mode operation is required to avoid excessive Ohmic losses. The weaker harmonic interaction and mode competition associated with an over-moded structure present challenging problems to overcome. The axis-encircling electron beam is a well-known recipe for both problems. It strengthens the harmonic interaction, as well as minimizing the competing modes. Here, we examine these advantages through a broad data base obtained for a low-power, step-tunable, gyrotron oscillator. Linear results indicate far more higher-harmonic modes can be excited with an axis-encircling electron beam than with an off-axis electron beam. However, multi-mode, time-dependent simulations reveal an intrinsic tendency for a higher-harmonic mode to switch over to a lower-harmonic mode at a high beam current or upon a rapid current rise. Methods are presented to identify the narrow windows in the parameter space for stable harmonic interactions

  7. Metamaterial-Enhanced Nonlinear Terahertz Spectroscopy

    Directory of Open Access Journals (Sweden)

    Zhang X.

    2013-03-01

    Full Text Available We demonstrate large nonlinear terahertz responses in the gaps of metamaterial split ring resonators in several materials and use nonlinear THz transmission and THz-pump/THz-probe spectroscopy to study the nonlinear responses and dynamics. We use the field enhancement in the SRR gaps to initiate high-field phenomena at lower incident fields. In vanadium dioxide, we drive the insulator-to-metal phase transition with high-field THz radiation. The film conductivity increases by over two orders of magnitude and the phase transition occurs on a several picosecond timescale. In gallium arsenide, we observe high-field transport phenomena, including mobility saturation and impact ionization. The carrier density increases by up to ten orders of magnitude at high fields. At the highest fields, we demonstrate THz-induced damage in both vanadium dioxide and gallium arsenide.

  8. Analysis of the frequency response of a TeO{sub 2} slow shear wave acousto-optic cell exposed to radiation

    Energy Technology Data Exchange (ETDEWEB)

    Erteza, I.A.

    1995-04-01

    Radiation testing of photonic components is not new, however component level testing to date has not completely addressed quantities which are important to system behavior. One characteristic that is of particular importance for optical processing systems is the frequency response. In this report, we present the analysis of data from an experiment designed to provide a preliminary understanding of the effects of radiation on the frequency response of acousto-optic devices. The goal of the analysis is to describe possible physical mechanisms responsible for the radiation effects and to discuss the effects on signal processing functionality. The experiment discussed in this report was designed by Sandia National Laboratories and performed by Sandia and Phillips Laboratory personnel at White Sands Missile Range (WSMR). In the experiment, a TeO{sub 2} slow shear wave acousto-optic cell was exposed to radiation from the WSMR linear accelerator. The TeO{sub 2} cell was placed in an experimental configuration which allowed swept frequency diffracted power measurements to be taken during radiation exposure and recovery. A series of exposures was performed. Each exposure consisted of between 1 to 800, 1{mu}sec radiation pulses (yielding exposures of 2.25 kRad(Si) to 913 kRad(Si)), followed by recovery time. At low total and cumulative doses, the bandshape of the frequency response (i.e. diffracted power vs. frequency) remained almost identical during and after radiation. At the higher exposures, however, the amplitude and width of the frequency response changed as the radiation continued, but returned to the original shape slowly after the radiation stopped and recovery proceeded. It is interesting to note that the location of the Bragg degeneracy does not change significantly with radiation. In this report, we discuss these effects from the perspective of anisotropic Bragg diffraction and momentum mismatch, and we discuss the effect on the signal processing functionality.

  9. Radiation tolerant power converter controls

    CERN Document Server

    Todd, B; King, Q; Uznanski, S

    2012-01-01

    The Large Hadron Collider (LHC) at the European Organisation for Nuclear Research (CERN) is the world's most powerful particle collider. The LHC has several thousand magnets, both warm and super-conducting, which are supplied with current by power converters. Each converter is controlled by a purpose-built electronic module called a Function Generator Controller (FGC). The FGC allows remote control of the power converter and forms the central part of a closed-loop control system where the power converter voltage is set, based on the converter output current and magnet-circuit characteristics. Some power converters and FGCs are located in areas which are exposed to beam-induced radiation. There are numerous radiation induced effects, some of which lead to a loss of control of the power converter, having a direct impact upon the accelerator's availability. Following the first long shut down (LS1), the LHC will be able to run with higher intensity beams and higher beam energy. This is expected to lead to signifi...

  10. Discrimination of genetically modified sugar beets based on terahertz spectroscopy

    Science.gov (United States)

    Chen, Tao; Li, Zhi; Yin, Xianhua; Hu, Fangrong; Hu, Cong

    2016-01-01

    The objective of this paper was to apply terahertz (THz) spectroscopy combined with chemometrics techniques for discrimination of genetically modified (GM) and non-GM sugar beets. In this paper, the THz spectra of 84 sugar beet samples (36 GM sugar beets and 48 non-GM ones) were obtained by using terahertz time-domain spectroscopy (THz-TDS) system in the frequency range from 0.2 to 1.2 THz. Three chemometrics methods, principal component analysis (PCA), discriminant analysis (DA) and discriminant partial least squares (DPLS), were employed to classify sugar beet samples into two groups: genetically modified organisms (GMOs) and non-GMOs. The DPLS method yielded the best classification result, and the percentages of successful classification for GM and non-GM sugar beets were both 100%. Results of the present study demonstrate the usefulness of THz spectroscopy together with chemometrics methods as a powerful tool to distinguish GM and non-GM sugar beets.

  11. Millimeter-Wave/Terahertz Circuits and Systems for Wireless Communication

    OpenAIRE

    Thyagarajan, Siva Viswanathan

    2014-01-01

    The ubiquitous use of electronic devices has led to an explosive increase in the amount of data transfer across the globe. Several applications such as media sharing, cloud computing, Internet of things (IoT), big-data applications demand high performance interconnects to achieve high data rate communication. The mm-wave/terahertz band offers several gigahertz of spectrum for high data rate communication applications. This thesis explores millimeter-wave/terahertz circuits and terahertz syste...

  12. Terahertz imaging of Landau levels in HgTe-based topological insulators

    Energy Technology Data Exchange (ETDEWEB)

    Kadykov, Aleksandr M.; Krishtopenko, Sergey S. [Laboratoire Charles Coulomb (L2C), UMR 5221 CNRS–Université de Montpellier, Montpellier (France); Institute for Physics of Microstructures, Russian Academy of Sciences, GSP-105, 603950 Nizhny Novgorod (Russian Federation); Torres, Jeremie [Institut d' Electronique et des Systèmes (IES), UMR 5214 CNRS–Université de Montpellier, Montpellier (France); Consejo, Christophe; Ruffenach, Sandra; Marcinkiewicz, Michal; But, Dmytro; Teppe, Frederic, E-mail: frederic.teppe@umontpellier.fr [Laboratoire Charles Coulomb (L2C), UMR 5221 CNRS–Université de Montpellier, Montpellier (France); Knap, Wojciech [Laboratoire Charles Coulomb (L2C), UMR 5221 CNRS–Université de Montpellier, Montpellier (France); Institute of High Pressure Institute Physics, Polish Academy of Sciences, 01-447 Warsaw (Poland); Morozov, Sergey V.; Gavrilenko, Vladimir I. [Institute for Physics of Microstructures, Russian Academy of Sciences, GSP-105, 603950 Nizhny Novgorod (Russian Federation); Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod (Russian Federation); Mikhailov, Nikolai N. [Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, pr. Akademika Lavrent' eva 13, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, 630090 Novosibirsk (Russian Federation); Dvoretsky, Sergey A. [Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, pr. Akademika Lavrent' eva 13, 630090 Novosibirsk (Russian Federation)

    2016-06-27

    We report on sub-terahertz photoconductivity under the magnetic field of a two dimensional topological insulator based on HgTe quantum wells. We perform a detailed visualization of Landau levels by means of photoconductivity measured at different gate voltages. This technique allows one to determine a critical magnetic field, corresponding to topological phase transition from inverted to normal band structure, even in almost gapless samples. The comparison with realistic calculations of Landau levels reveals a smaller role of bulk inversion asymmetry in HgTe quantum wells than it was assumed previously.

  13. Terahertz oscillations in an In{sub 0.53}Ga{sub 0.47}As submicron planar Gunn diode

    Energy Technology Data Exchange (ETDEWEB)

    Khalid, Ata, E-mail: ata.khalid@glasgow.ac.uk; Thoms, S.; Macintyre, D.; Li, C.; Steer, M. J.; Papageorgiou, V.; Thayne, I. G.; Cumming, D. R. S. [School of Engineering, University of Glasgow, Glasgow G12 8LT (United Kingdom); Dunn, G. M.; Macpherson, R. F.; Stephen, A. [School of Engineering and Physical Sciences, University of Aberdeen, Aberdeen AB24 SFX (United Kingdom); Kuball, M.; Montes Bajo, M. [H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue BS8 1TL (United Kingdom); Oxley, C. H.; Glover, J. [Electronic Engineering Department, Faculty of Technology, De Montfort University, Leicester LE1 9BH (United Kingdom)

    2014-03-21

    The length of the transit region of a Gunn diode determines the natural frequency at which it operates in fundamental mode—the shorter the device, the higher the frequency of operation. The long-held view on Gunn diode design is that for a functioning device the minimum length of the transit region is about 1.5 μm, limiting the devices to fundamental mode operation at frequencies of roughly 60 GHz. Study of these devices by more advanced Monte Carlo techniques that simulate the ballistic transport and electron-phonon interactions that govern device behaviour, offers a new lower bound of 0.5 μm, which is already being approached by the experimental evidence that has shown planar and vertical devices exhibiting Gunn operation at 600 nm and 700 nm, respectively. The paper presents results of the first ever THz submicron planar Gunn diode fabricated in In{sub 0.53}Ga{sub 0.47}As on an InP substrate, operating at a fundamental frequency above 300 GHz. Experimentally measured rf power of 28 μW was obtained from a 600 nm long × 120 μm wide device. At this new length, operation in fundamental mode at much higher frequencies becomes possible—the Monte Carlo model used predicts power output at frequencies over 300 GHz.

  14. Miniaturized, low power FGMOSFET radiation sensor and wireless dosimeter system

    KAUST Repository

    Arsalan, Muhammad; Shamim, Atif; Tarr, Nicholas Garry; Roy, Langis

    2013-01-01

    A miniaturized floating gate (FG) MOSFET radiation sensor system is disclosed, The sensor preferably comprises a matched pair of sensor and reference FGMOSFETs wherein the sensor FGMOSFET has a larger area floating gate with an extension over a field oxide layer, for accumulation of charge and increased sensitivity. Elimination of a conventional control gate and injector gate reduces capacitance, and increases sensitivity, and allows for fabrication using standard low cost CMOS technology. A sensor system may be provided with integrated signal processing electronics, for monitoring a change in differential channel current I.sub.D, indicative of radiation dose, and an integrated negative bias generator for automatic pre-charging from a low voltage power source. Optionally, the system may be coupled to a wireless transmitter. A compact wireless sensor System on Package solution is presented, suitable for dosimetry for radiotherapy or other biomedical applications.

  15. Miniaturized, low power FGMOSFET radiation sensor and wireless dosimeter system

    KAUST Repository

    Arsalan, Muhammad

    2013-08-27

    A miniaturized floating gate (FG) MOSFET radiation sensor system is disclosed, The sensor preferably comprises a matched pair of sensor and reference FGMOSFETs wherein the sensor FGMOSFET has a larger area floating gate with an extension over a field oxide layer, for accumulation of charge and increased sensitivity. Elimination of a conventional control gate and injector gate reduces capacitance, and increases sensitivity, and allows for fabrication using standard low cost CMOS technology. A sensor system may be provided with integrated signal processing electronics, for monitoring a change in differential channel current I.sub.D, indicative of radiation dose, and an integrated negative bias generator for automatic pre-charging from a low voltage power source. Optionally, the system may be coupled to a wireless transmitter. A compact wireless sensor System on Package solution is presented, suitable for dosimetry for radiotherapy or other biomedical applications.

  16. Polarization-dependent thin-film wire-grid reflectarray for terahertz waves

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Tiaoming [School of Electrical and Electronic Engineering, The University of Adelaide, Adelaide, South Australia 5005 (Australia); School of Information Science and Engineering, Lanzhou University, Lanzhou 730000 (China); Upadhyay, Aditi; Bhaskaran, Madhu; Sriram, Sharath [Functional Materials and Microsystems Research Group, RMIT University, Melbourne, Victoria 3001 (Australia); Withayachumnankul, Withawat [School of Electrical and Electronic Engineering, The University of Adelaide, Adelaide, South Australia 5005 (Australia); Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1-S9-3, Ookayama, Meguro-ku, Tokyo 152-8552 (Japan); Headland, Daniel; Abbott, Derek; Fumeaux, Christophe, E-mail: cfumeaux@eleceng.adelaide.edu.au [School of Electrical and Electronic Engineering, The University of Adelaide, Adelaide, South Australia 5005 (Australia)

    2015-07-20

    A thin-film polarization-dependent reflectarray based on patterned metallic wire grids is realized at 1 THz. Unlike conventional reflectarrays with resonant elements and a solid metal ground, parallel narrow metal strips with uniform spacing are employed in this design to construct both the radiation elements and the ground plane. For each radiation element, a certain number of thin strips with an identical length are grouped to effectively form a patch resonator with equivalent performance. The ground plane is made of continuous metallic strips, similar to conventional wire-grid polarizers. The structure can deflect incident waves with the polarization parallel to the strips into a designed direction and transmit the orthogonal polarization component. Measured radiation patterns show reasonable deflection efficiency and high polarization discrimination. Utilizing this flexible device approach, similar reflectarray designs can be realized for conformal mounting onto surfaces of cylindrical or spherical devices for terahertz imaging and communications.

  17. Fabrication of photonic amorphous diamonds for terahertz-wave applications

    Energy Technology Data Exchange (ETDEWEB)

    Komiyama, Yuichiro; Abe, Hiroyuki; Kamimura, Yasushi; Edagawa, Keiichi, E-mail: edagawa@iis.u-tokyo.ac.jp [Institute of Industrial Science, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8505 (Japan)

    2016-05-09

    A recently proposed photonic bandgap material, named “photonic amorphous diamond” (PAD), was fabricated in a terahertz regime, and its terahertz-wave propagation properties were investigated. The PAD structure was fabricated from acrylic resin mixed with alumina powder, using laser lithographic, micro-additive manufacturing technique. After fabrication, the resulting structure was dewaxed and sintered. The formation of a photonic bandgap at around 0.45 THz was demonstrated by terahertz time-domain spectroscopy. Reflecting the disordered nature of the random network structure, diffusive terahertz-wave propagation was observed in the passbands; the scattering mean-free path decreased as the frequency approached the band edge. The mean-free paths evaluated at the band edges were close to the Ioffe-Regel threshold value for wave localization.

  18. Ultrabroadband terahertz conductivity of Si nanocrystal films

    DEFF Research Database (Denmark)

    Cooke, D. G.; Meldrum, A.; Jepsen, P. Uhd

    2012-01-01

    The terahertz conductivity of silicon nanoparticles embedded in glass with varying density is studied with ultra-broadband terahertz spectroscopy on picosecond time scales following fs optical excitation. The transition from relatively isolated charge carriers to densities which allow inter...... the applicability of this simple model to the conductivity of nanoparticle ensembles over the entire THz spectral window....

  19. Mn{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} nanoparticles with high intrinsic loss power for hyperthermia therapy

    Energy Technology Data Exchange (ETDEWEB)

    Phong, P.T., E-mail: phamthanhphong@tdt.edu.vn [Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City (Viet Nam); Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City (Viet Nam); Nam, P.H., E-mail: namph.ims@gmail.com [Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Ha Noi City (Viet Nam); Manh, D.H. [Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Ha Noi City (Viet Nam); Lee, In-Ja, E-mail: lij@dongguk.ac.kr [Department of Advanced Materials Chemistry, Dongguk University-Gyeongju, Dongdae-ro 123, Gyeongju-Si, Gyeongbuk 38066 (Korea, Republic of)

    2017-07-01

    Highlights: • Mn{sub 0.5}Zn{sub 0.5}FeO{sub 4} nanoparticles were synthesized using a hydrothermal method. • The coercivity at different temperatures was studied using the mixed coercivity model. • A superspin glass from strong interactions. • High intrinsic loss power was found to be comparable to that of ferrite and some commercial ferrofluids. - Abstract: Nanosized mixed ferrite Mn{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} with crystalline size ∼15 nm has been prepared by hydrothermal route. XRD patterns confirm that the crystallites have single phase cubic spinel structure. The dynamic scaling analysis on the frequency dependence of spin glass-like transition temperature well explains the model of a transition at finite temperature. The analysis gives critical exponent and parameters as: zν = 10.48, T{sub 0} = 190 K, f{sub 0} = 5.38 × 10{sup 10} and this confirms the occurrence of spin glass-like transition in Mn{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} particles. The saturation magnetization and the coercivity change with temperature. The effective magnetic anisotropy constant of sample was calculated using the law of approach to saturation. The coercivity at different temperatures was deduced using the mixed coercivity model. The calculated coercivity results are in a good agreement with the experimental ones. The magnetic heating ability of Mn{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} magnetic fluid was studied with an induction heating system. The calculated intrinsic loss power (ILP) was 3.75 g nHm{sup 2}/kg. This study indicates that the resulting Mn{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} nanoparticles are promising materials in magnetic hyperthermia.

  20. Radiation dose rates from UF{sub 6} cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Friend, P.J. [Urenco, Capenhurst (United Kingdom)

    1991-12-31

    This paper describes the results of many studies, both theoretical and experimental, which have been carried out by Urenco over the last 15 years into radiation dose rates from uranium hexafluoride (UF{sub 6}) cylinders. The contents of the cylinder, its history, and the geometry all affect the radiation dose rate. These factors are all examined in detail. Actual and predicted dose rates are compared with levels permitted by IAEA transport regulations.

  1. Analysis and design of terahertz antennas based on plasmonic resonant graphene sheets

    International Nuclear Information System (INIS)

    Tamagnone, M.; Gómez-Díaz, J. S.; Perruisseau-Carrier, J.; Mosig, J. R.

    2012-01-01

    Resonant graphene antennas used as true interfaces between terahertz (THz) space waves and a source/detector are presented. It is shown that in addition to the high miniaturization related to the plasmonic nature of the resonance, graphene-based THz antenna favorably compare with typical metal implementations in terms of return loss and radiation efficiency. Graphene antennas will contribute to the development of miniature, efficient, and potentially transparent all-graphene THz transceivers for emerging communication and sensing application.

  2. Gamma radiation/H{sub 2}O{sub 2} treatment of a nonylphenol ethoxylates: Degradation, cytotoxicity, and mutagenicity evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Munawar, E-mail: bosalvee@yahoo.com [National Center of Excellence in Physical Chemistry, University of Peshawar, Peshawar-25120 (Pakistan); Bhatti, Ijaz Ahmad [Department of Chemistry, University of Agriculture, Faisalabad-38040 (Pakistan)

    2015-12-15

    Highlights: • Nonylphenol ethoxylates undergone gamma ray/H{sub 2}O{sub 2} treatment. • Treatment efficiency was evaluated on the basis of degradation and toxicity reduction. • A significant reductions in COD and TOC were achieved. • Radiolytic by-products were low carbon carboxylic acids. • AOP reduced the cytotoxicity and mutagenicity considerably. - Abstract: Gamma radiation/H{sub 2}O{sub 2} treatment of nonylphenol polyethoxylates (NPEO) was performed and treatment effect was evaluated on the basis of degradation, chemical oxygen demand (COD) and total organic carbon (TOC), and toxicity reduction efficiencies. The radiolytic by-products were determined by Fourier Transform Infrared Spectroscopy (FTIR), High-Performance Liquid Chromatography (HPLC), and Gas Chromatography–Mass Spectrometry (GC–MS) techniques. Low mass carboxylic acids, aldehyde, ketone, and acetic acid were identified as the by-products of the NPEO degradation. NPEO sample irradiated to the absorbed dose of 15 kGy/4.58% H{sub 2}O{sub 2} showed more than 90% degradation. Allium cepa (A. cepa), brine shrimp, heamolytic tests were used for cytotoxicity study, while mutagenicity was evaluated through Ames test (TA98 and TA100 strains) of treated and un-treated NPEO. The reductions in COD and TOC were greater than 70% and 50%, respectively. Gamma radiation/H{sub 2}O{sub 2} treatment revealed a considerable reduction in cytotoxicity and mutagenicity. A. cepa, heamolytic and shrimp assays showed cytotoxicity reduction up to 68.65%, 77%, and 94%, respectively. The mutagenicity reduced up to 62%, 74%, and 79% (TA98) and 68%, 78%, and 82% (TA100), respectively of NPEO-6, NPEO-9, and NPEO-30 irradiated to the absorbed dose of 15 kGy/4.58% H{sub 2}O{sub 2}. NPEO-6 detoxified more efficiently versus NPEO-9 and NPEO-30 and results showed that Gamma radiation/H{sub 2}O{sub 2} treatment has the potential to mineralize and detoxify NPEO.

  3. Efficiency of Synchrotron Radiation from Rotation-powered Pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Kisaka, Shota [Department of Physics and Mathematics, Aoyama Gakuin University, Sagamihara, Kanagawa, 252-5258 (Japan); Tanaka, Shuta J., E-mail: kisaka@phys.aoyama.ac.jp, E-mail: sjtanaka@center.konan-u.ac.jp [Department of Physics, Konan University, Kobe, Hyogo, 658-8501 (Japan)

    2017-03-01

    Synchrotron radiation is widely considered to be the origin of the pulsed non-thermal emissions from rotation-powered pulsars in optical and X-ray bands. In this paper, we study the synchrotron radiation emitted by the created electron and positron pairs in the pulsar magnetosphere to constrain the energy conversion efficiency from the Poynting flux to the particle energy flux. We model two pair creation processes, two-photon collision, which efficiently works in young γ -ray pulsars (≲10{sup 6} year), and magnetic pair creation, which is the dominant process to supply pairs in old pulsars (≳10{sup 6} year). Using the analytical model, we derive the maximum synchrotron luminosity as a function of the energy conversion efficiency. From the comparison with observations, we find that the energy conversion efficiency to the accelerated particles should be an order of unity in the magnetosphere, even though we make a number of the optimistic assumptions to enlarge the synchrotron luminosity. In order to explain the luminosity of the non-thermal X-ray/optical emission from pulsars with low spin-down luminosity L {sub sd} ≲ 10{sup 34} erg s{sup −1}, non-dipole magnetic field components should be dominant at the emission region. For the γ -ray pulsars with L {sub sd} ≲ 10{sup 35} erg s{sup −1}, observed γ -ray to X-ray and optical flux ratios are much higher than the flux ratio between curvature and the synchrotron radiations. We discuss some possibilities such as the coexistence of multiple accelerators in the magnetosphere as suggested from the recent numerical simulation results. The obtained maximum luminosity would be useful to select observational targets in X-ray and optical bands.

  4. Electro-optic measurement of terahertz pulse energy distribution

    NARCIS (Netherlands)

    Sun, J.H.; Gallacher, J.G.; Brussaard, G.J.H.; Lemos, N.; Issac, R.; Huang, Z.X.; Dias, J.M.; Jaroszynski, D.A.

    2009-01-01

    An accurate and direct measurement of the energy distribution of a low repetition rate terahertz electromagnetic pulse is challenging because of the lack of sensitive detectors in this spectral range. In this paper, we show how the total energy and energy density distribution of a terahertz

  5. Geologic CO<sub>2sub> Sequestration Potential of 42 California Power Plant Sites: A Status Report to WESTCARB

    Energy Technology Data Exchange (ETDEWEB)

    Myers, Katherine B.L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wagoner, J. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2011-06-15

    Forty-two California natural gas combined-cycle (NGCC) power plant sites were evaluated for geologic carbon dioxide (CO<sub>2sub>) sequestration potential. The following data were collected in order to gauge the sequestration potential of each power plant site: nearest potential CO<sub>2sub> sink, proximity to oil or gas fi elds, subsurface geology, surface expression of nearby faults, and subsurface water. The data for each site were compiled into a one-page, standalone profi le to serve as a quick reference for future decision-makers. A subset of these data was compiled into a summary table for easy comparison of all 42 sites. Decision-makers will consider the geologic CO<sub>2sub> sequestration potential of each power plant in concert with its CO<sub>2sub> capture potential and will select the most suitable sites for a future carbon capture and storage project. Once the most promising sites are selected, Lawrence Livermore National Laboratory (LLNL) will conduct additional geologic research in order to construct a detailed 3D geologic model for those sites.

  6. The enhancement of thermoelectric power and scattering of carriers in Bi{sub 2{minus}x}Sn{sub x}Te{sub 3} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kulbachinskii, V A; Negishi, H; Sasaki, M; Giman, Y; Inoue, M

    1997-07-01

    Thermoelectric power, electrical resistivity, and Hall effect of p-type Bi{sub 2{minus}x}Sn{sub x}Te{sub 3} (0 < x < 0.03) singlecrystals have been measured in the temperature range 4.2--300K. By doping of Sn atoms into the host Bi{sub 2}Te{sub 3} lattice, the enhancement in the thermoelectric power is observed in the intermediate temperature range 30--150K for x {le} 0,0075. The activation type behavior of Hall coefficient and resistivity are found which corresponds to the Sn-induced impurity band located above the second lower valence band.

  7. PBG based terahertz antenna for aerospace applications

    CERN Document Server

    Choudhury, Balamati; Jha, Rakesh Mohan

    2016-01-01

    This book focuses on high-gain antennas in the terahertz spectrum and their optimization. The terahertz spectrum is an unallocated EM spectrum, which is being explored for a number of applications, especially to meet increasing demands of high data rates for wireless space communications. Space communication systems using the terahertz spectrum can resolve the problems of limited bandwidth of present wireless communications without radio-frequency interference. This book describes design of such high-gain antennas and their performance enhancement using photonic band gap (PBG) substrates. Further, optimization of antenna models using evolutionary algorithm based computational engine has been included. The optimized high-performance compact antenna may be used for various wireless applications, such as inter-orbital communications and on-vehicle satellite communications.

  8. High-average-power UV generation at 266 and 355 nm in β-BaB/sub 2/O/sub 4/

    International Nuclear Information System (INIS)

    Liu, K.C.; Rhoades, M.

    1987-01-01

    UV light has been generated previously by harmonic conversion from Nd:YAG lasers using the nonlinear crystals KD*P and ADP. Most of the previous studies have employed lasers with high peak power due to the low-harmonic-conversion efficiency of these crystals and also low average power due to the phase mismatch caused by temperature detuning resulting from UV absorption. A new nonlinear crystal β-BaB/sub 2/O/sub 4/ has recently been reported which provides for the possibility of overcoming the aforementioned problems. The authors utilized β-BaB/sub 2/O/sub 4/ to frequency triple and frequency quadruple a high-repetition-rate cw-pumped Nd:YAG laser and achieved up to 1-W average power with Gaussian spatial distribution at 266 and 355 nm. β-BaB/sub 2/O/sub 4/ has demonstrated its advantages for high-average-power UV generation. Its major drawback is a low-angular-acceptance bandwidth which requires a high-quality fundamental pump beam

  9. Resonant Dipole Nanoantenna Arrays for Enhanced Terahertz Spectroscopy

    KAUST Repository

    Toma, A.

    2015-08-04

    Our recent studies on dipole nanoantenna arrays resonating in the terahertz frequency range (0.1 – 10 THz) will be presented. The main near- and far-field properties of these nanostructures will be shown and their application in enhanced terahertz spectroscopy of tiny quantities of nanomaterials will be discussed.

  10. Characterization of terahertz waves on foreign materials of composite materials

    Science.gov (United States)

    Im, Kwang-Hee; Kim, Sun-Kyu; Chiou, Chien-Ping; Jung, Jong-An

    2018-04-01

    Carbon-fiber reinforced plastics (CFRP) are widely utilized due to their comparatively high performance in engineering structures. It is well understood that a nondestructive technique would be very beneficial. A new terahertz radiation has been recognized for its importance in technological applications. Recently, T-ray (terahertz ray) advances in technology and instrumentation have provided a probing field on the electromagnetic spectrum. In carbon composites, the penetration characterization of T-ray waves was fundamentally investigated in order to measure the painting thickness. Also, another study dealt with THz scan images of honeycomb sandwich composite panels using a refractive index (n), an absorption coefficient (α), the electrical conductivity of glass fiber embedded epoxy matrix composites, and carbon fiber reinforced plastics (CFRP) skin. For experiments, a method of detecting FRP composites with impact damage is presented, which utilizes aluminum wires intertwined with woven carbon fibers as they are inserted into the surface of the CFRP honeycomb sandwich panels. Intensive characterization of T-ray for the nondestructive evaluation (NDE) of carbon composite reinforced plastics (CFRP) composites is discussed in relation to the E-field influence with CFRP composite laminates.

  11. Terahertz applications in cultural heritage: case studies

    Science.gov (United States)

    Giovannacci, D.; Martos-Levif, D.; Walker, G. C.; Menu, M.; Detalle, V.

    2013-11-01

    Terahertz (THz) spectroscopy and imaging is a non-destructive, non-contact, non-invasive technology emerging as a tool for the analysis of cultural heritage. THz Time Domain Spectroscopy (TDS) techniques have the ability to retrieve information from different layers within a stratified sample, that enable the identification of hidden sub-layers in the case of paints and mural paintings. In this paper, we present the THz TDS2 system developed in the European Commission's 7th Framework Program project CHARISMA [grant agreement no. 228330]. Bespoke single processing algorithms; including a deconvolution algorithm can be deployed to increase the resolution and the global performance of the system. The potential and impact of this work is demonstrated through two case studies of mural paintings, where the capability to reveal the stratigraphy of the artworks is demonstrated.

  12. Geometrical scaling and modal decay rates in periodic arrays of deeply subwavelength Terahertz resonators

    International Nuclear Information System (INIS)

    Isić, Goran; Gajić, Radoš

    2014-01-01

    It is well known that due to the high conductivity of noble metals at terahertz frequencies and scalability of macroscopic Maxwell equations, a geometrical downscaling of a terahertz resonator results in the linear upscaling of its resonance frequency. However, the scaling laws of modal decay rates, important for the resonator excitation efficiency, are much less known. Here, we investigate the extent to which the scale-invariance of decay rates is violated due to the finite conductivity of the metal. We find that the resonance quality factor or the excitation efficiency may be substantially affected by scaling and show that this happens as a result of the scale-dependence of the metal absorption rate, while the radiative decay and the dielectric cavity absorption rates are approximately scale-invariant. In particular, we find that by downscaling overcoupled resonators, their excitation efficiency increases, while the opposite happens with undercoupled resonators

  13. Self-powered radiation detector

    International Nuclear Information System (INIS)

    Goldstein, N.P.; Todt, W.H.

    1979-01-01

    Self-powered gamma radiation detector composed of a conducting emitter surrounded by an insulating medium and a conducting tubular collector, the emitter being a hollow tube containing an electrical insulator [fr

  14. Experimental demonstration of trapping waves with terahertz metamaterial absorbers on flexible polyimide films

    Science.gov (United States)

    Wang, Wei; Liu, Jinsong; Wang, Kejia

    2016-02-01

    We present the design, numerical simulations and experimental measurements of an asymmetric cross terahertz metamaterial absorber (MPA) on ultra-flexible polyimide film. The perfect metamaterial absorber composed of two structured metallic layers separated with a polyimide film with a total thickness of functional layers much smaller than the operational wavelength. Two distinct absorption peaks are found at resonance frequencies of 0.439THz and 0.759 THz with resonance amplitude of near unity, which are in good agreement with the simulation results. The sample is also measured by a THz-TDS imaging system to illustrate the absorption characterization. The scanning images show that the sample could act as a perfect absorber at specific resonance frequencies while a perfect reflector at off resonance frequencies. To illustrate the physical mechanism behind these spectral responses, the distribution of the power loss and surface current are also presented. The result shows that the incident wave is trapped and absorbed by the polyimide dielectric layer at different vicinities of the proposed asymmetric cross MPA for the two absorption peaks. Furthermore, the index sensing performance of the structure is also investigated, and the calculated sensitivity is 90GHz/RIU for f1 mode and 154.7GHz/RIU for f2 mode, indicating that the higher frequency resonance absorption peak has better potential applications in sensing and detection. The ultra-flexible, low cost, high intensity dual band terahertz absorbers may pave the way for designing various terahertz functional devices, such as ultrasensitive terahertz sensors, spatial light modulators and filters.

  15. Terahertz Generation in an Electrically Biased Optical Fiber: A Theoretical Investigation

    Directory of Open Access Journals (Sweden)

    Montasir Qasymeh

    2012-01-01

    Full Text Available We propose and theoretically investigate a novel approach for generating terahertz (THz radiation in a standard single-mode fiber. The optical fiber is mediated by an electrostatic field, which induces an effective second-order nonlinear susceptibility via the Kerr effect. The THz generation is based on difference frequency generation (DFG. A dispersive fiber Bragg grating (FBG is utilized to phase match the two interacting optical carriers. A ring resonator is utilized to boost the optical intensities in the biased optical fiber. A mathematical model is developed which is supported by a numerical analysis and simulations. It is shown that a wide spectrum of a tunable THz radiation can be generated, providing a proper design of the FBG and the optical carriers.

  16. Time-domain electric field enhancement on micrometer scale in coupled split ring resonator upon terahertz radiation

    DEFF Research Database (Denmark)

    Lange, Simon Lehnskov; Iwaszczuk, Krzysztof; Hoffmann, Matthias

    2016-01-01

    We present here a novel design for a coupled split ring resonator antenna optimized for time-domain electric field enhancement in the 0.1 to 1 terahertz (THz) range. The antenna is designed to be sensitive to the incident field polarization and seeks to avoid metal damage due to electron bombardm...

  17. The influence of radiation-induced defects on thermoluminescence and optically stimulated luminescence of α-Al{sub 2}O{sub 3}:C

    Energy Technology Data Exchange (ETDEWEB)

    Nyirenda, A.N., E-mail: anyirenda@gmail.com; Chithambo, M.L.

    2017-04-15

    It is known that when α-Al{sub 2}O{sub 3}:C is exposed to excessive amounts of ionising radiation, defects are induced within its matrix. We report the influence of radiation-induced defects on the thermoluminescence (TL) and optically stimulated luminescence (OSL) measured from α-Al{sub 2}O{sub 3}:C after irradiation to 1000 Gy. These radiation-induced defects are thermally unstable in the region 450–650 °C and result in TL peaks in this range when the TL is measured at 1 °C/s. Heating a sample to 700 °C obliterates the radiation-induced defects, that is, the TL peaks corresponding to the radiation induced defects are no longer observed in the subsequent TL measurements when moderate irradiation doses below 10 Gy are used. The charge traps associated with these radiation-induced defects are more stable than the dosimetric trap when the sample is exposed to either sunlight or 470-nm blue light from LEDs. TL glow curves measured following the defect-inducing irradiation produce a dosimetric peak that is broader and positioned at a higher temperature than observed in glow curves obtained before the heavy irradiation. In addition, sample sensitization/desensitization occurs due to the presence of these radiation-induced defects. Furthermore, both the activation energy and the kinetic order of the dosimetric peak evaluated when the radiation-induced defects are present in the sample are significantly lower in value than those obtained when these defects are absent. The radiation-induced defects also affect the shape and total light sum of the OSL signal as well as the position and width of the resultant residual phototransferred thermoluminescence main peak.

  18. An effective way to reduce water absorption to terahertz

    Science.gov (United States)

    Wu, Yaxiong; Su, Bo; He, Jingsuo; Zhang, Cong; Zhang, Hongfei; Zhang, Shengbo; Zhang, Cunlin

    2018-01-01

    Since many vibrations and rotational levels of biomolecules fall within the THz band, THz spectroscopy can be used to identify biological samples. In addition, most biomolecules need to maintain their biological activity in a liquid environment, but water as polar substance has strong absorption to the THz wave. Thus, it is difficult to detect the sample information in aqueous solution using THz wave. In order to prevent the information of biological samples were masked in the solution, many research methods were used to explore how to reduce the water absorption of terahertz. In this paper, we have developed a real-time chemical methodology through transmission Terahertz time-domain spectroscopy (THz-TDS) system. The material of Zeonor 1020r is used as substrate and cover plate, and PDMS as channel interlayer. The transmission of the empty microfluidic chip is more than 80% in the range of 0.2-2.6 THz by THz-TDS system. Then, experiments were carried out using chips, which were filled with different volumes of 1, 2- propanediol, and it has been proved that the microfluidic chip could reduce the water absorption of terahertz. Finally, in order to further explore the reduction of terahertz to water absorption, we inject different concentrations of electrolyte to the chip. The results show that with the addition of different electrolytes, terahertz transmission line has evident changes. It can be taken into account that the electrolyte has different effects about the hydrogen bonds in the aqueous solution. Some of them can promote water molecules clusters, while others destroy them. Based on the basis of microfluidic chip, the discovery of this phenomenon can provide a way that reduces water absorption of terahertz. This work has laid a solid foundation for the subsequent study in reducing water absorption of terahertz.

  19. Electromagnetic radiation from strong Langmuir turbulence

    International Nuclear Information System (INIS)

    Akimoto, K.; Rowland, H.L.; Papadopoulos, K.

    1988-01-01

    A series of computer simulations is reported showing the generation of electromagnetic radiation by strong Langmuir turbulence. The simulations were carried out with a fully electromagnetic 2 1/2 -dimensional fluid code. The radiation process takes place in two stages that reflect the evolution of the electrostatic turbulence. During the first stage while the electrostatic turbulence is evolving from an initial linear wave packet into a planar soliton, the radiation is primarily at ω/sub e/. During the second stage when transverse instabilities lead to the collapse and dissipation of the solitons, 2ω/sub e/ and ω/sub e/ radiation are comparable, and 3ω/sub e/ is also present. The radiation power at ω = 2ω/sub e/ is in good agreement with theoretical predictions for electromagnetic emissions by collapsing solitons

  20. Terahertz Absorption by Cellulose: Application to Ancient Paper Artifacts

    Science.gov (United States)

    Peccianti, M.; Fastampa, R.; Mosca Conte, A.; Pulci, O.; Violante, C.; Łojewska, J.; Clerici, M.; Morandotti, R.; Missori, M.

    2017-06-01

    Artifacts made of cellulose, such as ancient documents, pose a significant experimental challenge in the terahertz transmission spectra interpretation due to their small optical thickness. In this paper, we describe a method to recover the complex refractive index of cellulose fibers from the terahertz transmission data obtained on single freely standing paper sheets in the (0.2-3.5)-THz range. By using our technique, we eliminate Fabry-Perot effects and recover the absorption coefficient of the cellulose fibers. The obtained terahertz absorption spectra are explained in terms of absorption peaks of the cellulose crystalline phase superimposed to a background contribution due to a disordered hydrogen-bond network. The comparison between the experimental spectra with terahertz vibrational properties simulated by density-functional-theory calculations confirms this interpretation. In addition, evident changes in the terahertz absorption spectra are produced by natural and artificial aging on paper samples, whose final stage is characterized by a spectral profile with only two peaks at about 2.1 and 3.1 THz. These results can be used to provide a quantitative assessment of the state of preservation of cellulose artifacts.

  1. Graphene on nanoscale gratings for the generation of terahertz Smith-Purcell radiation

    International Nuclear Information System (INIS)

    Tantiwanichapan, Khwanchai; Wang, Xuanye; Swan, Anna K.; Paiella, Roberto

    2014-01-01

    Generation of THz radiation based on the Smith-Purcell effect in graphene is investigated numerically. The specific device geometry considered involves an electrically biased single-layer sheet of graphene deposited on a periodic array of holes in a solid substrate. Rigorous electrodynamic simulations combined with a basic model of charge transport are presented, showing that technologically significant output power levels can be obtained at geometrically tunable THz frequencies. These results suggest that graphene is a uniquely suited materials platform for the demonstration of THz electron-beam radiation mechanisms in compact solid-state systems

  2. A nonlinear analysis of the terahertz serpentine waveguide traveling-wave amplifier

    International Nuclear Information System (INIS)

    Li, Ke; Cao, Miaomiao; Liu, Wenxin; Wang, Yong

    2015-01-01

    A nonlinear model for the numerical simulation of terahertz serpentine waveguide traveling-wave tube (SW-TWT) is described. In this model, the electromagnetic wave transmission in the SW is represented as an infinite set of space harmonics to interact with an electron beam. Analytical expressions for axial electric fields in axisymmetric interaction gaps of SW-TWTs are derived and compared with the results from CST simulation. The continuous beam is treated as discrete macro-particles with different initial phases. The beam-tunnel field equations, space-charge field equations, and motion equations are combined to solve the beam-wave interaction. The influence of backward wave and relativistic effect is also considered in the series of equations. The nonlinear model is used to design a 340 GHz SW-TWT. Several favorable comparisons of model predictions with results from a 3-D Particle-in-cell simulation code CHIPIC are presented, in which the output power versus beam voltage and interaction periods are illustrated. The relative error of the predicted output power is less than 15% in the 3 dB bandwidth and the relative error of the saturated length is less than 8%.The results show that the 1-D nonlinear analysis model is appropriate to solve the terahertz SW-TWT operation characteristics

  3. Time-resolved terahertz spectroscopy of semiconductor nanostructures

    DEFF Research Database (Denmark)

    Porte, Henrik

    This thesis describes time-resolved terahertz spectroscopy measurements on various semiconductor nanostructures. The aim is to study the carrier dynamics in these nanostructures on a picosecond timescale. In a typical experiment carriers are excited with a visible or near-infrared pulse and by me......This thesis describes time-resolved terahertz spectroscopy measurements on various semiconductor nanostructures. The aim is to study the carrier dynamics in these nanostructures on a picosecond timescale. In a typical experiment carriers are excited with a visible or near-infrared pulse...... and by measuring the transmission of a terahertz probe pulse, the photoconductivity of the excited sample can be obtained. By changing the relative arrival time at the sample between the pump and the probe pulse, the photoconductivity dynamics can be studied on a picosecond timescale. The rst studied semiconductor...

  4. Effects of TiO{sub 2} and Co{sub 2}O{sub 3} combination additions on the elemental distribution and electromagnetic properties of Mn–Zn power ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Yang, W.D.; Wang, Y.G., E-mail: yingang.wang@nuaa.edu.cn

    2015-06-15

    The effects of TiO{sub 2} and Co{sub 2}O{sub 3} combination additions on the elemental distribution and electromagnetic properties of Mn–Zn power ferrites are investigated. TiO{sub 2} addition can promote Co{sub 2}O{sub 3} transfer from grain boundaries to the bulk of the grains. The temperature at which the highest initial permeability μ{sub i} and the lowest power losses P{sub L} appear shifts to low temperature range with the increase of Co{sub 2}O{sub 3} content. Compared with the reference sample without TiO{sub 2} and Co{sub 2}O{sub 3} addition, the microstructure and electromagnetic properties of Mn–Zn power ferrites can be considerably improved with suitable amounts of TiO{sub 2} and Co{sub 2}O{sub 3} combination additions. At the peak temperature, the sample with the 0.1 wt% TiO{sub 2} and 0.08 wt% Co{sub 2}O{sub 3} additions has an increase of 15.8% in μ{sub i} to 3951, and a decrease of 22.9% in P{sub L} to 286 kW/m{sup 3}. The saturation magnetic induction B{sub s} and electrical resistivity ρ at 25 °C reach the highest values of 532 mT and 8.12 Ω m, respectively. - Highlights: • TiO{sub 2} addition can promote Co{sub 2}O{sub 3} transfer from grain boundaries to the bulk of grains. • The Co{sup 2+} ion addition has a compensation for the effect of Ti{sup 4+}on the Mn–Zn ferrites. • The combination of TiO{sub 2} and Co{sub 2}O{sub 3} additions insures stabilization of crystal lattice. • The lowest power loss P{sub L} as 286 kW/m{sup 3} is relatively lower than reported now.

  5. Corrosion Behavior of Steels in Supercritical CO<sub>2sub> for Power Cycle Applications

    Energy Technology Data Exchange (ETDEWEB)

    Repukaiti, Richard [National Energy Technology Lab. (NETL), Albany, OR (United States); Oregon State Univ., Corvallis, OR (United States); Teeter, Lucas [National Energy Technology Lab. (NETL), Albany, OR (United States); Oregon State Univ., Corvallis, OR (United States); Ziomek-Moroz, Margaret [National Energy Technology Lab. (NETL), Albany, OR (United States); Dogan, Omer [National Energy Technology Lab. (NETL), Albany, OR (United States); Tucker, Julie [Oregon State Univ., Corvallis, OR (United States)

    2017-07-07

    In order to understand issues with corrosion of heat exchanger materials in direct supercritical carbon dioxide (sCO<sub>2sub>) power cycles, a series of autoclave exposure experiments and electrochemical experiments have been conducted. Corrosion behaviors of 347H stainless steel and P91 martensitic-ferrtic steel in sCO<sub>2sub> environment have been compared. In autoclave exposure tests performed at 50°C- 245°C and 80 bar. Mass change measurements, surface characterization, and corrosion product analysis have been conducted to understand the corrosion behavior of steels in sCO<sub>2sub> containing H<sub>2sub>O and O<sub>2sub>. Electrochemical tests performed at room temperature and 50°C, a simulation environment of water condensation phase with dissolved CO<sub>2sub> was prepared to evaluate the corrosion resistance of materials. From both types of experiments, generally 347H showed higher corrosion resistance than P91.

  6. Quenching the scintillation in CF{sub 4} Cherenkov gas radiator

    Energy Technology Data Exchange (ETDEWEB)

    Blake, T. [Department of Physics, University of Warwick, Coventry (United Kingdom); D' Ambrosio, C. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Easo, S. [STFC Rutherford Appleton Laboratory, Didcot (United Kingdom); European Organization for Nuclear Research (CERN), Geneva (Switzerland); Eisenhardt, S. [School of Physics and Astronomy, University of Edinburgh, Edinburgh (United Kingdom); Fitzpatrick, C. [Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne (Switzerland); Forty, R.; Frei, C. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Gibson, V. [Cavendish Laboratory, University of Cambridge, Cambridge (United Kingdom); Gys, T. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Harnew, N.; Hunt, P. [Department of Physics, University of Oxford, Oxford (United Kingdom); Jones, C.R. [Cavendish Laboratory, University of Cambridge, Cambridge (United Kingdom); Lambert, R.W. [Nikhef National Institute for Subatomic Physics and VU University Amsterdam, Amsterdam (Netherlands); Matteuzzi, C. [Sezione INFN di Milano Bicocca, Milano (Italy); Muheim, F. [School of Physics and Astronomy, University of Edinburgh, Edinburgh (United Kingdom); Papanestis, A., E-mail: antonis.papanestis@stfc.ac.uk [STFC Rutherford Appleton Laboratory, Didcot (United Kingdom); European Organization for Nuclear Research (CERN), Geneva (Switzerland); Perego, D.L. [Sezione INFN di Milano Bicocca, Milano (Italy); Università di Milano Bicocca, Milano (Italy); Piedigrossi, D. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Plackett, R. [Imperial College London, London (United Kingdom); Powell, A. [Department of Physics, University of Oxford, Oxford (United Kingdom); and others

    2015-08-11

    CF{sub 4} is used as a Cherenkov gas radiator in one of the Ring Imaging Cherenkov detectors at the LHCb experiment at the CERN Large Hadron Collider. CF{sub 4} is well known to have a high scintillation photon yield in the near and far VUV, UV and in the visible wavelength range. A large flux of scintillation photons in our photon detection acceptance between 200 and 800 nm could compromise the particle identification efficiency. We will show that this scintillation photon emission system can be effectively quenched, consistent with radiationless transitions, with no significant impact on the photons resulting from Cherenkov radiation.

  7. Terahertz thickness measurements for real industrial applications: from automotive paints to aerospace industry (Conference Presentation)

    Science.gov (United States)

    Krimi, Soufiene; Beigang, René

    2017-02-01

    In this contribution, we present a highly accurate approach for real-time thickness measurements of multilayered coatings using terahertz time domain spectroscopy in reflection geometry. The proposed approach combines the benefits of a model-based material parameters extraction method to calibrate the specimen under test, a generalized modeling method to simulate the terahertz radiation behavior within arbitrary thin films, and the robustness of a powerful evolutionary optimization algorithm to increase the sensitivity and the precision of the minimum thickness measurement limit. Furthermore, a novel self-calibration model is introduced, which takes into consideration the real industrial challenges such as the effect of wet-on-wet spray in the car painting process and the influence of the spraying conditions and the sintering process on ceramic thermal barrier coatings (TBCs) in aircraft industry. In addition, the developed approach enables for some applications the simultaneous determination of the complex refractive index and the coating thickness. Hence, a pre-calibration of the specimen under test is not required for such cases. Due to the high robustness of the self-calibration method and the genetic optimization algorithms, the approach has been successfully applied to resolve individual layer thicknesses within multi-layered coated samples down to less than 10 µm. The regression method can be applied in time-domain, frequency-domain or in both the time and frequency-domain simultaneously. The data evaluation uses general-purpose computing on graphics processing units and thanks to the developed highly parallelized algorithm lasts less than 300 ms. Thus, industrial requirements for fast thickness measurements with an "every-second-cycle" can be fulfilled.

  8. Extraordinary wavelength reduction in terahertz graphene-cladded photonic crystal slabs

    Science.gov (United States)

    Williamson, Ian A. D.; Mousavi, S. Hossein; Wang, Zheng

    2016-01-01

    Photonic crystal slabs have been widely used in nanophotonics for light confinement, dispersion engineering, nonlinearity enhancement, and other unusual effects arising from their structural periodicity. Sub-micron device sizes and mode volumes are routine for silicon-based photonic crystal slabs, however spectrally they are limited to operate in the near infrared. Here, we show that two single-layer graphene sheets allow silicon photonic crystal slabs with submicron periodicity to operate in the terahertz regime, with an extreme 100× wavelength reduction from graphene’s large kinetic inductance. The atomically thin graphene further leads to excellent out-of-plane confinement, and consequently photonic-crystal-slab band structures that closely resemble those of ideal two-dimensional photonic crystals, with broad band gaps even when the slab thickness approaches zero. The overall photonic band structure not only scales with the graphene Fermi level, but more importantly scales to lower frequencies with reduced slab thickness. Just like ideal 2D photonic crystals, graphene-cladded photonic crystal slabs confine light along line defects, forming waveguides with the propagation lengths on the order of tens of lattice constants. The proposed structure opens up the possibility to dramatically reduce the size of terahertz photonic systems by orders of magnitude. PMID:27143314

  9. A Tunable Eight-Wavelength Terahertz Modulator Based on Photonic Crystals

    Science.gov (United States)

    Ji, K.; Chen, H.; Zhou, W.; Zhuang, Y.; Wang, J.

    2017-11-01

    We propose a tunable eight-wavelength terahertz modulator based on a structure of triple triangular lattice photonic crystals by using photonic crystals in the terahertz regime. The triple triangular lattice was formed by nesting circular, square, and triangular dielectric cylinders. Three square point defects were introduced into the perfect photonic crystal to produce eight defect modes. GaAs was used as the point defects to realize tunability. We used a structure with a reflecting barrier to achieve modulation at high transmission rate. The insertion loss and extinction ratio were 0.122 and 38.54 dB, respectively. The modulation rate was 0.788 dB. The performance of the eightwavelength terahertz modulator showed great potential for use in future terahertz communication systems.

  10. Environmental radiation monitoring system in nuclear power station

    International Nuclear Information System (INIS)

    Matsuoka, Sadazumi; Tadachi, Katsuo; Endo, Mamoru; Yuya, Hiroshi

    1983-01-01

    At the time of the construction of nuclear power stations, prior to their start of operation, the state of environmental radiation must be grasped. After the start of the power stations, based on those data, the system of environmental radiation monitoring is established. Along with the construction of Kashiwazaki-Kariwa Nuclear Power Station, The Tokyo Electric Power Co., Inc. jointly with Fujitsu Ltd. has developed a high-reliability, environmental radiation monitoring system, and adopted ''optical data highways'' using optical fiber cables for communication. It consists of a central monitoring station and 11 telemeter observation points, for collecting both radiation and meteorological data. The data sent to the central station through the highways are then outputted on a monitoring panel. They are analyzed with a central processor, and the results are printed out. (Mori, K.)

  11. Development of the high-power THz spectroscopy and imaging systems on the basis of an S-band compact electron LINAC

    International Nuclear Information System (INIS)

    Kuroda, R.; Taira, Y.; Tanaka, M.; Toyokawa, H.; Yamada, K.; Kumaki, M.; Tachibana, M.; Sakaue, K.; Washio, M.

    2014-01-01

    The high-power terahertz time-domain spectroscopy (THz-TDS) and imaging systems have been developed on the basis of an S-band compact electron linac at AIST. Such high-power THz source is strongly expected for inspection of dangerous materials in the homeland security field. The high-power THz radiations are generated in two methods with the high-brightness ultra-short electron bunch. One is THz coherent synchrotron radiation (THz-CSR) for THz imaging applications. The other is THz coherent transition radiation (THz-CTR) for the THz spectroscopy. The THz-CTR time-domain spectroscopy (TDS) has been constructed with the EO sampling method and demonstrated in freq. range between 0.1-2 THz. The absorption measurements of drug samples have been successfully performed in atmosphere. In this symposium, we will describe details of the THz-CTR-TDS and imaging experiments and a future plan of the THz applications. (author)

  12. Swept-frequency feedback interferometry using terahertz frequency QCLs: a method for imaging and materials analysis.

    Science.gov (United States)

    Rakić, Aleksandar D; Taimre, Thomas; Bertling, Karl; Lim, Yah Leng; Dean, Paul; Indjin, Dragan; Ikonić, Zoran; Harrison, Paul; Valavanis, Alexander; Khanna, Suraj P; Lachab, Mohammad; Wilson, Stephen J; Linfield, Edmund H; Davies, A Giles

    2013-09-23

    The terahertz (THz) frequency quantum cascade laser (QCL) is a compact source of high-power radiation with a narrow intrinsic linewidth. As such, THz QCLs are extremely promising sources for applications including high-resolution spectroscopy, heterodyne detection, and coherent imaging. We exploit the remarkable phase-stability of THz QCLs to create a coherent swept-frequency delayed self-homodyning method for both imaging and materials analysis, using laser feedback interferometry. Using our scheme we obtain amplitude-like and phase-like images with minimal signal processing. We determine the physical relationship between the operating parameters of the laser under feedback and the complex refractive index of the target and demonstrate that this coherent detection method enables extraction of complex refractive indices with high accuracy. This establishes an ultimately compact and easy-to-implement THz imaging and materials analysis system, in which the local oscillator, mixer, and detector are all combined into a single laser.

  13. Tritium release kinetics of Li{sub 2}O with radiation defects

    Energy Technology Data Exchange (ETDEWEB)

    Grishmanov, V; Tanaka, Satoru [Tokyo Univ. (Japan). Faculty of Engineering

    1998-03-01

    The study of an influence of radiation defects on tritium release behavior from polycrystalline Li{sub 2}O was performed by the in-pile and out-of-pile tritium release experiments. The samples were pre-irradiated by accelerated electrons to various absorbed doses up to 140 MGy and then exposed to the fluence of 10{sup 17} thermal neutrons/m{sup 2}. The radiation defects introduced by electron irradiation in Li{sub 2}O cause the retention of tritium. The linear temperature increase of the electron-irradiated samples disclosed two tritium release peaks: first starts at {approx}600 K with the maximum at {approx}800 K and second appears at {approx}950 K with the maximum at {approx}1200 K. It is thought that the tritium release at high temperatures (> 950 K) is due to the thermal decomposition of LiT. In order to further investigated the formation of lithium hydrides, the diffuse-reflectance Fourier transform infrared (FTIR) absorption spectroscopy was applied. The Li{sub 2}O powder was irradiated by electron accelerator under D{sub 2} containing atmosphere (N{sub 2} + 10% D{sub 2}). An absorption band specific to the Li{sub 2}O was observed at 668 cm{sup -1} and attributed to the Li-D stretching vibration. (author)

  14. Terahertz Computed Tomography of NASA Thermal Protection System Materials

    Science.gov (United States)

    Roth, D. J.; Reyes-Rodriguez, S.; Zimdars, D. A.; Rauser, R. W.; Ussery, W. W.

    2011-01-01

    A terahertz axial computed tomography system has been developed that uses time domain measurements in order to form cross-sectional image slices and three-dimensional volume renderings of terahertz-transparent materials. The system can inspect samples as large as 0.0283 cubic meters (1 cubic foot) with no safety concerns as for x-ray computed tomography. In this study, the system is evaluated for its ability to detect and characterize flat bottom holes, drilled holes, and embedded voids in foam materials utilized as thermal protection on the external fuel tanks for the Space Shuttle. X-ray micro-computed tomography was also performed on the samples to compare against the terahertz computed tomography results and better define embedded voids. Limits of detectability based on depth and size for the samples used in this study are loosely defined. Image sharpness and morphology characterization ability for terahertz computed tomography are qualitatively described.

  15. Sub-Saharan hydroelectric power development potential

    International Nuclear Information System (INIS)

    Lazenby, J.B.C.

    1991-01-01

    Though evidencing a power demand which is amongst the lowest in the world, the sub-Saharan regions of Africa are blessed with an enormous hydroelectric power resource potential, which, if suitably developed and tapped, may become a source of economic electric energy for Europe. With the aid of numerous statistical supply and demand data, this paper surveys the marketing potential of this energy source in Africa. The analysis of future development prospects is carried out with reference to the local socio-economic framework

  16. Spatial Terahertz Modulator

    Science.gov (United States)

    Xie, Zhenwei; Wang, Xinke; Ye, Jiasheng; Feng, Shengfei; Sun, Wenfeng; Akalin, Tahsin; Zhang, Yan

    2013-11-01

    Terahertz (THz) technology is a developing and promising candidate for biological imaging, security inspection and communications, due to the low photon energy, the high transparency and the broad band properties of the THz radiation. However, a major encountered bottleneck is lack of efficient devices to manipulate the THz wave, especially to modulate the THz wave front. A wave front modulator should allow the optical or electrical control of the spatial transmission (or reflection) of an input THz wave and hence the ability to encode the information in a wave front. Here we propose a spatial THz modulator (STM) to dynamically control the THz wave front with photo-generated carriers. A computer generated THz hologram is projected onto a silicon wafer by a conventional spatial light modulator (SLM). The corresponding photo-generated carrier spatial distribution will be induced, which forms an amplitude hologram to modulate the wave front of the input THz beam. Some special intensity patterns and vortex beams are generated by using this method. This all-optical controllable STM is structure free, high resolution and broadband. It is expected to be widely used in future THz imaging and communication systems.

  17. Modulation of radiation-induced apoptosis and G{sub 2}/M block in murine T-lymphoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Palayoor, S.T.; Macklis, R.M.; Bump, E.A.; Coleman, C.N. [Harvard Medical School, Boston, MA (United States)

    1995-03-01

    Radiation-induced apoptosis in lymphocyte-derived cell lines is characterized by endonucleolytic cleavage of cellular DNA within hours after radiation exposure. We have studied this phenomenon qualitatively (DNA gel electrophoresis) and quantitatively (diphenylamine reagent assay) in murine EL4 T-lymphoma cells exposed to {sup 137}Cs {gamma} irradiation. Fragmentation was discernible within 18-24 h after exposure. It increased with time and dose and reached a plateau after 8 Gy of {gamma} radiation. We studied the effect of several pharmacological agents on the radiation-induced G{sub 2}/M block and DNA fragmentation. The agents which reduced the radiation-induced G{sub 2}/M-phase arrest (caffeine, theobromine, theophylline and 2-aminopurine) enhanced the degree of DNA fragmentation at 24 h. In contrast, the agents which sustained the radiation-induced G{sub 2}/M-phase arrest (TPA, DBcAMP, IBMX and 3-aminobenzamide) inhibited the DNA fragmentation at 24 h. These studies on EL4 lymphoma cells are consistent with the hypothesis that cells with radiation-induced genetic damage are eliminated by apoptosis subsequent to a G{sub 2}/M block. Furthermore, it may be possible to modulate the process of radiation-induced apoptosis in lymphoma cells with pharmacological agents that modify the radiation-induced G{sub 2}/M block, and to use this effect in the treatment of patients with malignant disease. 59 refs., 7 figs.

  18. Fiber MOPA based tunable source for terahertz spectroscopy

    International Nuclear Information System (INIS)

    Malinowski, A; Lin, D; Alam, S U; Zhang, Z; Ibsen, M; Richardson, D J; Young, J; Wright, P; Ozanyan, K; Stringer, M; Miles, R E

    2012-01-01

    We have developed a terahertz spectrometer based on difference frequency generation of beams from an ytterbium fiber master oscillator power amplifier (MOPA) system. The spectrometer has a resolution of ∼ 2 GHz. It can be tuned rapidly over several hundred GHz, and a wider frequency range can be covered (0.7–2.5 THz demonstrated) by swapping in alternate seed lasers and adjusting the alignment of the beams into the difference frequency generation (DFG) crystal. The system was constructed entirely from commercially available fiber and fiber components. We present some demonstration data on water vapor absorption lines

  19. Sub-terahertz spectroscopy reveals that proteins influence the properties of water at greater distances than previously detected

    Energy Technology Data Exchange (ETDEWEB)

    Sushko, Oleksandr; Dubrovka, Rostyslav; Donnan, Robert S., E-mail: r.donnan@qmul.ac.uk [School of Electronic Engineering and Computer Science, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom)

    2015-02-07

    The initial purpose of the study is to systematically investigate the solvation properties of different proteins in water solution by terahertz (THz) radiation absorption. Transmission measurements of protein water solutions have been performed using a vector network analyser-driven quasi-optical bench covering the WR-3 waveguide band (0.220–0.325 THz). The following proteins, ranging from low to high molecular weight, were chosen for this study: lysozyme, myoglobin, and bovine serum albumin (BSA). Absorption properties of solutions were studied at different concentrations of proteins ranging from 2 to 100 mg/ml. The concentration-dependent absorption of protein molecules was determined by treating the solution as a two-component model first; then, based on protein absorptivity, the extent of the hydration shell is estimated. Protein molecules are shown to possess a concentration-dependent absorptivity in water solutions. Absorption curves of all three proteins sharply peak towards a dilution-limit that is attributed to the enhanced flexibility of protein and amino acid side chains. An alternative approach to the determination of hydration shell thickness is thereby suggested, based on protein absorptivity. The proposed approach is independent of the absorption of the hydration shell. The derived estimate of hydration shell thickness for each protein supports previous findings that protein-water interaction dynamics extends beyond 2-3 water solvation-layers as predicted by molecular dynamics simulations and other techniques such as NMR, X-ray scattering, and neutron scattering. According to our estimations, the radius of the dynamic hydration shell is 16, 19, and 25 Å, respectively, for lysozyme, myoglobin, and BSA proteins and correlates with the dipole moment of the protein. It is also seen that THz radiation can serve as an initial estimate of the protein hydrophobicity.

  20. Sub-terahertz spectroscopy reveals that proteins influence the properties of water at greater distances than previously detected

    International Nuclear Information System (INIS)

    Sushko, Oleksandr; Dubrovka, Rostyslav; Donnan, Robert S.

    2015-01-01

    The initial purpose of the study is to systematically investigate the solvation properties of different proteins in water solution by terahertz (THz) radiation absorption. Transmission measurements of protein water solutions have been performed using a vector network analyser-driven quasi-optical bench covering the WR-3 waveguide band (0.220–0.325 THz). The following proteins, ranging from low to high molecular weight, were chosen for this study: lysozyme, myoglobin, and bovine serum albumin (BSA). Absorption properties of solutions were studied at different concentrations of proteins ranging from 2 to 100 mg/ml. The concentration-dependent absorption of protein molecules was determined by treating the solution as a two-component model first; then, based on protein absorptivity, the extent of the hydration shell is estimated. Protein molecules are shown to possess a concentration-dependent absorptivity in water solutions. Absorption curves of all three proteins sharply peak towards a dilution-limit that is attributed to the enhanced flexibility of protein and amino acid side chains. An alternative approach to the determination of hydration shell thickness is thereby suggested, based on protein absorptivity. The proposed approach is independent of the absorption of the hydration shell. The derived estimate of hydration shell thickness for each protein supports previous findings that protein-water interaction dynamics extends beyond 2-3 water solvation-layers as predicted by molecular dynamics simulations and other techniques such as NMR, X-ray scattering, and neutron scattering. According to our estimations, the radius of the dynamic hydration shell is 16, 19, and 25 Å, respectively, for lysozyme, myoglobin, and BSA proteins and correlates with the dipole moment of the protein. It is also seen that THz radiation can serve as an initial estimate of the protein hydrophobicity