WorldWideScience

Sample records for power sub-terahertz radiations

  1. Response of asymmetric carbon nanotube network devices to sub-terahertz and terahertz radiation

    International Nuclear Information System (INIS)

    Gayduchenko, I.; Kardakova, A.; Voronov, B.; Finkel, M.; Fedorov, G.; Jiménez, D.; Morozov, S.; Presniakov, M.; Goltsman, G.

    2015-01-01

    Demand for efficient terahertz radiation detectors resulted in intensive study of the asymmetric carbon nanostructures as a possible solution for that problem. It was maintained that photothermoelectric effect under certain conditions results in strong response of such devices to terahertz radiation even at room temperature. In this work, we investigate different mechanisms underlying the response of asymmetric carbon nanotube (CNT) based devices to sub-terahertz and terahertz radiation. Our structures are formed with CNT networks instead of individual CNTs so that effects probed are more generic and not caused by peculiarities of an individual nanoscale object. We conclude that the DC voltage response observed in our structures is not only thermal in origin. So called diode-type response caused by asymmetry of the device IV characteristic turns out to be dominant at room temperature. Quantitative analysis provides further routes for the optimization of the device configuration, which may result in appearance of novel terahertz radiation detectors

  2. Manifestation of plasmonic response in the detection of sub-terahertz radiation by graphene-based devices

    Science.gov (United States)

    Gayduchenko, I. A.; Fedorov, G. E.; Moskotin, M. V.; Yagodkin, D. I.; Seliverstov, S. V.; Goltsman, G. N.; Kuntsevich, A. Yu; Rybin, M. G.; Obraztsova, E. D.; Leiman, V. G.; Shur, M. S.; Otsuji, T.; Ryzhii, V. I.

    2018-06-01

    We report on the sub-terahertz (THz) (129–450 GHz) photoresponse of devices based on single layer graphene and graphene nanoribbons with asymmetric source and drain (vanadium and gold) contacts. Vanadium forms a barrier at the graphene interface, while gold forms an Ohmic contact. We find that at low temperatures (77 K) the detector responsivity rises with the increasing frequency of the incident sub-THz radiation. We interpret this result as a manifestation of a plasmonic effect in the devices with the relatively long plasmonic wavelengths. Graphene nanoribbon devices display a similar pattern, albeit with a lower responsivity.

  3. Open Resonator for Summation of Powers in Sub-Terahertz and Terahertz Frequencies

    Science.gov (United States)

    Kuz'michev, I. K.; Yeryomka, V. D.; May, A. V.; Troshchilo, A. S.

    2017-03-01

    Purpose: Study of excitation features for the first higher axialasymmetric type oscillations in an open resonator connected into the waveguide transmission line. Design/methodology/approach: To determine the efficiency of higher oscillation excitation in the resonator by using the highest wave of a rectangular waveguide, the coefficient of the antenna surface utilization is used. The coefficient of reflection from the open resonator is determined by the known method of summation of the partial coefficients of reflection from the resonant system. Findings: The excitation efficiency of the first higher axial asymmetric type TEM10q oscillations in an open resonator connected into the waveguide transmission line, using the TE20 type wave, is considered. The research efforts were made with accounting for the electromagnetic field vector nature. It is shown that for certain sizes of exciting coupler the excitation efficiency of the working excitation is equal to 0.867. Besides, this resonant system has a single frequency response within a wide band of frequencies. Due to this, it can be applied for summation of powers for individual sources of oscillations. Since this resonant system allows separating the matching functions as to the field and coupling, it is possible to provide any prescribed coupling of sources with a resonant volume. For this purpose, one- dimensional diffraction gratings (E-polarization) are used. Conclusions: With the matched excitation of axially asymmetric modes of oscillations the resonant system has an angular and frequency spectrum selection that is of great practical importance for powers summation. By application of one- dimensional diffraction gratings (E-polarization), located in apertures of coupling elements, the active elements can be matched with the resonant volume.

  4. Milliwatt-level output power in the sub-terahertz range generated by photomixing in a GaAs photoconductor

    Science.gov (United States)

    Peytavit, E.; Lepilliet, S.; Hindle, F.; Coinon, C.; Akalin, T.; Ducournau, G.; Mouret, G.; Lampin, J.-F.

    2011-11-01

    It is shown from accurate on-wafer measurement that continuous wave output powers of 1.2 mW at 50 GHz and 0.35 mW at 305 GHz can be generated by photomixing in a low temperature grown GaAs photoconductor using a metallic mirror Fabry-Pérot cavity. The output power is improved by a factor of about 100 as compared to the previous works on GaAs photomixers. A satisfactory agreement between the theory and the experiment is obtained in considering both the contribution of the holes and the electrons to the total photocurrent.

  5. Generation of high-power terahertz radiation by femtosecond-terawatt lasers

    International Nuclear Information System (INIS)

    Nashima, Shigeki; Hosoda, Makoto; Daido, Hiroyuki

    2007-01-01

    We observed electromagnetic waves in the terahertz (THz) frequency range from a Ti foil excited by tabletop terawatt (T-cube) laser pulses. The radiation power was increased drastically with increasing its laser power. We also investigated the polarization characteristics of the sub-terahertz wave. It is found that the polarization of the radiated sub-terahertz waves was parallel to the incident beam plane, which is independent on the pump laser polarization. These results indicate transient electric field to the incident plane is generated by laser-plasma interaction, i.e., laser wake field and coherent plasma wave. (author)

  6. Observation of dynamic interactions between fundamental and second-harmonic modes in a high-power sub-terahertz gyrotron operating in regimes of soft and hard self-excitation.

    Science.gov (United States)

    Saito, Teruo; Tatematsu, Yoshinori; Yamaguchi, Yuusuke; Ikeuchi, Shinji; Ogasawara, Shinya; Yamada, Naoki; Ikeda, Ryosuke; Ogawa, Isamu; Idehara, Toshitaka

    2012-10-12

    Dynamic mode interaction between fundamental and second-harmonic modes has been observed in high-power sub-terahertz gyrotrons [T. Notake et al., Phys. Rev. Lett. 103, 225002 (2009); T. Saito et al. Phys. Plasmas 19, 063106 (2012)]. Interaction takes place between a parasitic fundamental or first-harmonic (FH) mode and an operating second-harmonic (SH) mode, as well as among SH modes. In particular, nonlinear excitation of the parasitic FH mode in the hard self-excitation regime with assistance of a SH mode in the soft self-excitation regime was clearly observed. Moreover, both cases of stable two-mode oscillation and oscillation of the FH mode only were observed. These observations and theoretical analyses of the dynamic behavior of the mode interaction verify the nonlinear hard self-excitation of the FH mode.

  7. Photonic techniques for sub-Terahertz wireless data transmission

    DEFF Research Database (Denmark)

    Tafur Monroy, Idelfonso

    2015-01-01

    Wireless data communication links with capacities beyond 100 Gbit/s will require operating at sub-Terahertz frequencies using a large bandpass bandwidth facing new engineering challenges. We review several implementation aspects by using photonic technologies. © 2015 OSA.......Wireless data communication links with capacities beyond 100 Gbit/s will require operating at sub-Terahertz frequencies using a large bandpass bandwidth facing new engineering challenges. We review several implementation aspects by using photonic technologies. © 2015 OSA....

  8. Highly Resolved Sub-Terahertz Vibrational Spectroscopy of Biological Macromolecules and Bacteria Cells

    Science.gov (United States)

    2016-07-01

    HIGHLY RESOLVED SUB-TERAHERTZ VIBRATIONAL SPECTROSCOPY OF BIOLOGICAL MACROMOLECULES AND BACTERIA CELLS ECBC...SUBTITLE Highly Resolved Sub-Terahertz Vibrational Spectroscopy of Biological Macromolecules and Bacteria Cells 5a. CONTRACT NUMBER W911SR-14-P...22 4.3 Bacteria THz Study

  9. Foreign Object Detection by Sub-Terahertz Quasi-Bessel Beam Imaging

    Directory of Open Access Journals (Sweden)

    Hyang Sook Chun

    2012-12-01

    Full Text Available Food quality monitoring, particularly foreign object detection, has recently become a critical issue for the food industry. In contrast to X-ray imaging, terahertz imaging can provide a safe and ionizing-radiation-free nondestructive inspection method for foreign object sensing. In this work, a quasi-Bessel beam (QBB known to be nondiffracting was generated by a conical dielectric lens to detect foreign objects in food samples. Using numerical evaluation via the finite-difference time-domain (FDTD method, the beam profiles of a QBB were evaluated and compared with the results obtained via analytical calculation and experimental characterization (knife edge method, point scanning method. The FDTD method enables a more precise estimation of the beam profile. Foreign objects in food samples, namely crickets, were then detected with the QBB, which had a deep focus and a high spatial resolution at 210 GHz. Transmitted images using a Gaussian beam obtained with a conventional lens were compared in the sub-terahertz frequency experimentally with those using a QBB generated using an axicon.

  10. Design and simulation of a sub-terahertz folded-waveguide extended interaction oscillator

    Science.gov (United States)

    Liu, Wenxin; Zhang, Zhaochuan; Zhao, Chao; Guo, Xin; Liao, Suying

    2017-06-01

    In this paper, an interesting type of a two-section folded wave-guide (TSFW) slow wave structure (SWS) for the development of sub-Terahertz (sub-THz) extended interaction oscillator (EIO) is proposed. In this sub-THz device, the prebunching electron beam is produced by the TSFW SWS, which results in the enhancement of the output power. To verify this concept, the TSFW for sub-THz EIO is developed, which includes the design, simulation, and some fabrications. A small size of electron optics system (EOS), the TSFW SWS for beam-wave interactions, and the output structure are studied with simulations. Through the codes Egun and Superfish, the EOS is designed and optimized. With a help of CST studio and 3D particle-in-cell (PIC) simulation CHIPIC, the characteristics of beam-wave interaction generated by the TSFW are studied. The results of PIC simulation show that the output power is remarkably enhanced by a factor of 3, which exceeds 200 W at the frequency of 108 GHz. Based on the optimum parameters, the TSFW is manufactured with a high speed numerical mill, and the test transmission characteristic |S21| is 13 dB. At last, the output structure with a pill-box window is optimized, fabricated, integrated, and tested, and the result shows that the voltage standing-wave ratio of the window is about 2.2 at an operating frequency of 108 GHz. This design and simulation can provide an effective method to develop high power THz sources.

  11. Sub-terahertz resonance spectroscopy of biological macromolecules and cells

    Science.gov (United States)

    Globus, Tatiana; Moyer, Aaron; Gelmont, Boris; Khromova, Tatyana; Sizov, Igor; Ferrance, Jerome

    2013-05-01

    Recently we introduced a Sub-THz spectroscopic system for characterizing vibrational resonance features from biological materials. This new, continuous-wave, frequency-domain spectroscopic sensor operates at room temperature between 315 and 480 GHz with spectral resolution of at least 1 GHz and utilizes the source and detector components from Virginia Diode, Inc. In this work we present experimental results and interpretation of spectroscopic signatures from bacterial cells and their biological macromolecule structural components. Transmission and absorption spectra of the bacterial protein thioredoxin, DNA and lyophilized cells of Escherichia coli (E. coli), as well as spores of Bacillus subtillis and B. atrophaeus have been characterized. Experimental results for biomolecules are compared with absorption spectra calculated using molecular dynamics simulation, and confirm the underlying physics for resonance spectroscopy based on interactions between THz radiation and vibrational modes or groups of modes of atomic motions. Such interactions result in multiple intense and narrow specific resonances in transmission/absorption spectra from nano-gram samples with spectral line widths as small as 3 GHz. The results of this study indicate diverse relaxation dynamic mechanisms relevant to sub-THz vibrational spectroscopy, including long-lasting processes. We demonstrate that high sensitivity in resolved specific absorption fingerprints provides conditions for reliable detection, identification and discrimination capability, to the level of strains of the same bacteria, and for monitoring interactions between biomaterials and reagents in near real-time. Additionally, it creates the basis for the development of new types of advanced biological sensors through integrating the developed system with a microfluidic platform for biomaterial samples.

  12. Digitally controlled chirped pulse laser for sub-terahertz-range fiber structure interrogation.

    Science.gov (United States)

    Chen, Zhen; Hefferman, Gerald; Wei, Tao

    2017-03-01

    This Letter reports a sweep velocity-locked laser pulse generator controlled using a digital phase-locked loop (DPLL) circuit. This design is used for the interrogation of sub-terahertz-range fiber structures for sensing applications that require real-time data collection with millimeter-level spatial resolution. A distributed feedback laser was employed to generate chirped laser pulses via injection current modulation. A DPLL circuit was developed to lock the optical frequency sweep velocity. A high-quality linearly chirped laser pulse with a frequency excursion of 117.69 GHz at an optical communication band was demonstrated. The system was further adopted to interrogate a continuously distributed sub-terahertz-range fiber structure (sub-THz-fs) for sensing applications. A strain test was conducted in which the sub-THz-fs showed a linear response to longitudinal strain change with predicted sensitivity. Additionally, temperature testing was conducted in which a heat source was used to generate a temperature distribution along the fiber structure to demonstrate its distributed sensing capability. A Gaussian temperature profile was measured using the described system and tracked in real time, as the heat source was moved.

  13. Computed tomography image using sub-terahertz waves generated from a high-Tc superconducting intrinsic Josephson junction oscillator

    International Nuclear Information System (INIS)

    Kashiwagi, T.; Minami, H.; Kadowaki, K.; Nakade, K.; Saiwai, Y.; Kitamura, T.; Watanabe, C.; Ishida, K.; Sekimoto, S.; Asanuma, K.; Yasui, T.; Shibano, Y.; Tsujimoto, M.; Yamamoto, T.; Marković, B.; Mirković, J.; Klemm, R. A.

    2014-01-01

    A computed tomography (CT) imaging system using monochromatic sub-terahertz coherent electromagnetic waves generated from a device constructed from the intrinsic Josephson junctions in a single crystalline mesa structure of the high-T c superconductor Bi 2 Sr 2 CaCu 2 O 8+δ was developed and tested on three samples: Standing metallic rods supported by styrofoam, a dried plant (heart pea) containing seeds, and a plastic doll inside an egg shell. The images obtained strongly suggest that this CT imaging system may be useful for a variety of practical applications

  14. Self-powered radiation detectors

    International Nuclear Information System (INIS)

    Goldstein, N.P.; Todt, W.H.

    1982-01-01

    A self-powered nuclear radiation detector has an emitter electrode of an alloy of a first major constituent metal having a desired high radiation response, and a second minor constituent which imparts to the alloy a desired thermal or mechanical characteristic without diminishing the desired high radiation response. A gamma responsive self-powered detector is detailed which has an emitter with lead as the major constituent, with the minor constituent selected from aluminum, copper, nickel, platinum, or zinc. (author)

  15. Self-powered radiation detector

    International Nuclear Information System (INIS)

    Playfoot, K.C.; Bauer, R.F.; Goldstein, N.P.

    1980-01-01

    This invention relates to a self powered radiation detector requiring no excitation potential to generate a signal indicating a radiation flux. Such detectors comprise two electrically insulated electrodes, at a distance from each other. These electrodes are made of conducting materials having a different response for neutron and/or gamma ray radiation flux levels, as in nuclear power stations. This elongated detector generates an electric signal in terms of an incident flux of radiations cooperating with coaxial conductors insulated from each other and with different radiation reaction characteristics. The conductor with the greatest reaction to the radiations forms the central emitting electrode and the conductor with the least reaction to the radiations forms a tubular coaxial collecting electrode. The rhodium or cobalt tubular emitting electrode contains a ductile central conducting cable placed along the longitudinal axis of the detector. The latter is in high nickel steel with a low reaction to radiation [fr

  16. Self-powered radiation detector

    International Nuclear Information System (INIS)

    Goldstein, N.P.; Todt, W.H.

    1979-01-01

    Self-powered gamma radiation detector composed of a conducting emitter surrounded by an insulating medium and a conducting tubular collector, the emitter being a hollow tube containing an electrical insulator [fr

  17. Survivable pulse power space radiator

    Science.gov (United States)

    Mims, James; Buden, David; Williams, Kenneth

    1989-01-01

    A thermal radiator system is described for use on an outer space vehicle, which must survive a long period of nonuse and then radiate large amounts of heat for a limited period of time. The radiator includes groups of radiator panels that are pivotally connected in tandem, so that they can be moved to deployed configuration wherein the panels lie largely coplanar, and to a stowed configuration wherein the panels lie in a stack to resist micrometeorite damage. The panels are mounted on a boom which separates a hot power source from a payload. While the panels are stowed, warm fluid passes through their arteries to keep them warm enough to maintain the coolant in a liquid state and avoid embrittlement of material. The panels can be stored in a largely cylindrical shell, with panels progressively further from the boom being of progressively shorter length.

  18. Radiation tolerant power converter controls

    CERN Document Server

    Todd, B; King, Q; Uznanski, S

    2012-01-01

    The Large Hadron Collider (LHC) at the European Organisation for Nuclear Research (CERN) is the world's most powerful particle collider. The LHC has several thousand magnets, both warm and super-conducting, which are supplied with current by power converters. Each converter is controlled by a purpose-built electronic module called a Function Generator Controller (FGC). The FGC allows remote control of the power converter and forms the central part of a closed-loop control system where the power converter voltage is set, based on the converter output current and magnet-circuit characteristics. Some power converters and FGCs are located in areas which are exposed to beam-induced radiation. There are numerous radiation induced effects, some of which lead to a loss of control of the power converter, having a direct impact upon the accelerator's availability. Following the first long shut down (LS1), the LHC will be able to run with higher intensity beams and higher beam energy. This is expected to lead to signifi...

  19. Radiated EMI from power converters

    Directory of Open Access Journals (Sweden)

    Arnautovski-Toševa Vesna

    2005-01-01

    Full Text Available With the continuous increase of switching frequency together with the ongoing trend to higher complexity and functionality, power converters as a part of electronic systems have raised more and more electromagnetic energy pollution to the local system environment. In the same time, stringent demands are imposed on the designers of new circuits that electromagnetic interference (EMI has to be suppressed at its source before it is allowed to propagate into other circuits and systems. In this paper, the authors present a full-wave numerical method for calculation and simulation of electromagnetic field radiated by power converter circuitry. The main objective is to analyze the layout geometry in order to obtain competitive PCB layout that will enable suitably attenuated level of the radiated electric field to safe level. By this it would be possible to ensure reliable operation of the sensitive electronic components in the proximity.

  20. Personnel radiation safety in nuclear power plants

    International Nuclear Information System (INIS)

    Elkert, J.

    1979-05-01

    The principal contributions to the radiation doses of the Swedish power reactor personnel are identified. The possi bilities to reduce these doses are examined. The radiation doses are analyzed according to different personnel categories, specific maintenance operations or inspections and to different radiation activities. Suggestions are given for reducing the radiation doses. (L.E.)

  1. Dual origin of room temperature sub-terahertz photoresponse in graphene field effect transistors

    Science.gov (United States)

    Bandurin, D. A.; Gayduchenko, I.; Cao, Y.; Moskotin, M.; Principi, A.; Grigorieva, I. V.; Goltsman, G.; Fedorov, G.; Svintsov, D.

    2018-04-01

    Graphene is considered as a promising platform for detectors of high-frequency radiation up to the terahertz (THz) range due to its superior electron mobility. Previously, it has been shown that graphene field effect transistors (FETs) exhibit room temperature broadband photoresponse to incoming THz radiation, thanks to the thermoelectric and/or plasma wave rectification. Both effects exhibit similar functional dependences on the gate voltage, and therefore, it was difficult to disentangle these contributions in previous studies. In this letter, we report on combined experimental and theoretical studies of sub-THz response in graphene field-effect transistors analyzed at different temperatures. This temperature-dependent study allowed us to reveal the role of the photo-thermoelectric effect, p-n junction rectification, and plasmonic rectification in the sub-THz photoresponse of graphene FETs.

  2. Computed tomography image using sub-terahertz waves generated from a high-T{sub c} superconducting intrinsic Josephson junction oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Kashiwagi, T., E-mail: kashiwagi@ims.tsukuba.ac.jp; Minami, H.; Kadowaki, K. [Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba (Japan); Division of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8573 (Japan); Nakade, K.; Saiwai, Y.; Kitamura, T.; Watanabe, C.; Ishida, K.; Sekimoto, S.; Asanuma, K.; Yasui, T.; Shibano, Y. [Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba (Japan); Tsujimoto, M. [Department of Electronic Science and Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 (Japan); Yamamoto, T. [Wide Bandgap Materials Group, Optical and Electronic Materials Unit, Environment and Energy Materials Division, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Marković, B. [Faculty of Sciences, University of Montenegro, George Washington Str., 81000 Podgorica (Montenegro); Mirković, J. [Faculty of Science, University of Montenegro, and CETI, Put Radomira Ivanovica, 81000 Podgorica (Montenegro); Klemm, R. A. [Department of Physics, University of Central Florida, 4000 Central Florida Blvd., Orlando, Florida 32816-2385 (United States)

    2014-02-24

    A computed tomography (CT) imaging system using monochromatic sub-terahertz coherent electromagnetic waves generated from a device constructed from the intrinsic Josephson junctions in a single crystalline mesa structure of the high-T{sub c} superconductor Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+δ} was developed and tested on three samples: Standing metallic rods supported by styrofoam, a dried plant (heart pea) containing seeds, and a plastic doll inside an egg shell. The images obtained strongly suggest that this CT imaging system may be useful for a variety of practical applications.

  3. Interferometrically enhanced sub-terahertz picosecond imaging utilizing a miniature collapsing-field-domain source

    Science.gov (United States)

    Vainshtein, Sergey N.; Duan, Guoyong; Mikhnev, Valeri A.; Zemlyakov, Valery E.; Egorkin, Vladimir I.; Kalyuzhnyy, Nikolay A.; Maleev, Nikolai A.; Näpänkangas, Juha; Sequeiros, Roberto Blanco; Kostamovaara, Juha T.

    2018-05-01

    Progress in terahertz spectroscopy and imaging is mostly associated with femtosecond laser-driven systems, while solid-state sources, mainly sub-millimetre integrated circuits, are still in an early development phase. As simple and cost-efficient an emitter as a Gunn oscillator could cause a breakthrough in the field, provided its frequency limitations could be overcome. Proposed here is an application of the recently discovered collapsing field domains effect that permits sub-THz oscillations in sub-micron semiconductor layers thanks to nanometer-scale powerfully ionizing domains arising due to negative differential mobility in extreme fields. This shifts the frequency limit by an order of magnitude relative to the conventional Gunn effect. Our first miniature picosecond pulsed sources cover the 100-200 GHz band and promise milliwatts up to ˜500 GHz. Thanks to the method of interferometrically enhanced time-domain imaging proposed here and the low single-shot jitter of ˜1 ps, our simple imaging system provides sufficient time-domain imaging contrast for fresh-tissue terahertz histology.

  4. The three-dimensional particle-in-cell simulation analysis of cavity of high power subterahertz pulsed gyrotron

    International Nuclear Information System (INIS)

    Ito, Koyu; Jiang, Weihua

    2013-01-01

    High power sub-terahertz pulsed gyrotrons for Collective Thomson Scattering (CTS) diagnostics of fusion plasmas are being developed. The typical target parameters are: output power of 100-200 kW, operation frequency of 300 GHz, and pulsed length > 10 us. In order to support experimental development, numerical simulations were carried out by using Particle-In-Cell (PIC) code MAGIC. The oscillation mode of the electromagnetic radiation was selected as TE_1_5_,_2, for which the beam parameters and cavity dimensions were determined accordingly. The simulation results have showed maximum power of 144 kW at oscillation frequency of 292.80 GHz, with oscillation efficiency of 22.15%. (author)

  5. Power components behavior under nuclear radiations

    International Nuclear Information System (INIS)

    Jaureguy, J.C.; Azais, B.

    1989-01-01

    Many apparatus, either fixed or on-board of vehicles, use power converters. The most common scheme includes chopper with bipolar transistors. In case of nuclear radiations, these equipments may be severely damaged. Depending on the disturbance level, the need for changes in power transistor technology has to be considered or not [fr

  6. Practical applications of radiative wireless power transfer

    NARCIS (Netherlands)

    Pflug, H.; Visser, H.J.; Keyrouz, S.

    2015-01-01

    For practical use of radiative wireless power transfer (WPT), it is necessary to design a system which is able to supply circuits with a dynamic loading characteristic. In this paper we present a practical way to obtain efficiency and dc output power characteristics of a WPT system. An Avago

  7. Self-powered radiation detectors

    International Nuclear Information System (INIS)

    Gillies, Wallace.

    1980-01-01

    This invention aims to create a self fed radiation detector comprising a long central emitter-conductor absorbing the neutrons, wrapped in an insulating material, and a thin collector-conductor placed coaxially around the emitter and the insulation, the emitter being constructed of several stranded cables in a given conducting material so that the detector is flexible enough [fr

  8. Nuclear power and low level radiation hazards

    International Nuclear Information System (INIS)

    Myers, D.K.; Newcombe, H.B.

    1979-03-01

    Even in the future, nuclear power is expected to contribute less than 1/10th of the present total population exposure to man-made radiation. By the best estimates available, the current health risks of nuclear power generation appear to be much less than those associated with the major alternative sources of energy, with the exception of natural gas which is about equally safe. Uncertainties concerning the radiation risks from nuclear power, from medical x-rays and from the effects of reduced ventillation to conserve heat appear to be less than those associated with estimates of risks from the use of coal and various other sources of energy. This is in part because of the large amount of effort devoted to studies of radiation effects. The benefits in terms of current life expectancy associated with any of the conventional or unconventional methods of power production appear to greatly outweigh the associated current health hazards. (author)

  9. Radiation effects on power cables for nuclear power plants

    International Nuclear Information System (INIS)

    Arora, R.; Munshi, P.; Badshah, M.G.Q.

    1988-01-01

    A large number of power and control cables, insulated with organic/polymeric materials, are installed quite near the reactor in nuclear power plants. The reliability of electrical equipment, receiving power through these cables, is critically important for the design and safety of the power stations. The radiation intensity inside the containment varies significantly from one location to another. The extent of material degradation is associated with the local radiation intensity. The cables used in the nuclear environment require several unique properties, the most obvious of these being radiation resistance, fire resistance, and the ability to withstand the loss-of-coolant accident in a nuclear power plant as specified in Institute of Electrical and Electronics Engineers (IEEE) Standard 383. In this study, four specific electrical power cable samples insulated with polyethylene, polyvinyl chloride, ethylene propylene rubber, and silicone rubber were chosen to investigate the effect of radiation in reactor environments on the electrical properties of the samples. Voltage breakdown tests and dielectric loss factor (tan δ) and conductor resistance measurements were carried out on each sample before and after irradiating them to near lifetime doses at ambient temperatures in atmospheric conditions

  10. Measurement of Radiated Power Loss on EAST

    International Nuclear Information System (INIS)

    Duan Yanmin; Hu Liqun; Mao Songtao; Xu Ping; Chen Kaiyun; Lin Shiyao; Zhong Guoqiang; Zhang Jizong; Zhang Ling; Wang Liang

    2011-01-01

    A type of silicon detector known as AXUV (absolute extreme ultraviolet) photodiodes is successfully used to measure the radiated power in EAST. The detector is characterized by compact structure, fast temporal response (<0.5 s) and flat spectral sensitivity in the range from ultra-violet to X-ray. Two 16-channel AXUV arrays are installed in EAST to view the whole poloidal cross-section of plasma. Based on the diagnostic system, typical radiation distributions for both limiter and divertor plasma are obtained and compared. As divertor detachment occurs, the radiation distribution in X-point region is observed to vary distinctly. The total radiation power losses in discharges with different plasma parameters are briefly analyzed.

  11. Radiation streaming in power reactors. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    Lahti, G.P.; Lee, R.R.; Courtney, J.C. (eds.)

    1979-02-01

    Separate abstracts are included for each of the 14 papers given at a special session on Radiation Streaming in Power Reactors held on November 15 at the American Nuclear Society 1978 Winter Meeting in Washington, D.C. The papers describe the methods of calculation, the engineering of shields, and the measurement of radiation environments within the containments of light water power reactors. Comparisons of measured and calculated data are used to determine the accuracy of computer predictions of the radiation environment. Specific computational and measurement techniques are described and evaluated. Emphasis is on radiation streaming in the annular region between the reactor vesel and the primary shield and its resultant environment within the primary containment.

  12. Compact high-power terahertz radiation source

    Directory of Open Access Journals (Sweden)

    G. A. Krafft

    2004-06-01

    Full Text Available In this paper a new type of THz radiation source, based on recirculating an electron beam through a high gradient superconducting radio frequency cavity, and using this beam to drive a standard electromagnetic undulator on the return leg, is discussed. Because the beam is recirculated and not stored, short bunches may be produced that radiate coherently in the undulator, yielding exceptionally high average THz power for relatively low average beam power. Deceleration from the coherent emission, and the detuning it causes, limits the charge-per-bunch possible in such a device.

  13. Ecological radiation protection criteria for nuclear power

    International Nuclear Information System (INIS)

    Kryshev, I.I.

    1993-01-01

    By now a large quantity of radioactive hazards of all sizes and shapes has accumulated in Russia. They include RBMK, VVER, and BN (fast-neutron) nuclear power plants, nuclear fuel processing plants, radioactive waste dumps, ships with nuclear power units, etc. In order to evaluate the radioecological situation correctly, the characteristics of the radioactive contamination must be compiled in these areas with some system of criteria which will provide an acceptable level of ecological safety. Currently health criteria for radiation protection are, which are oriented to man's radiation protection, predominate. Here the concept of a thresholdless linear dose-response dependence, which has been confirmed experimentally only at rather high doses (above 1 Gy), is taken as the theoretical basis for evaluating and normalizing radiation effects. According to one opinion, protecting people against radiation is sufficient to protect other types of organisms, although they are not necessarily of the same species. However, from the viewpoint of ecology, this approach is incorrect, because it does not consider radiation dose differences between man and other living organisms. The article discusses dose-response dependences for various organisms, biological effects of ionizing radiation, and appropriate radiation protection criteria

  14. Nuclear Power and Radiation in Public Acceptance

    International Nuclear Information System (INIS)

    Vastchenko, S. V.

    2002-01-01

    The special knowledge deficiency does not give the possibility to the majority of people to pattern their behaviour in a correct way on radiation problems and to estimate faithfully the possible damage rate to the health of a human being from the different radiation sources effects. Studying of the public opinion in Belarus has shown that one of the results of the Chernobyl NPP accident consequences is inseparability of nuclear and radiation danger in public consciousness. The anonymous questionnaire of the inhabitants living in various Belarus regions has been carried out aiming at definition of a general radiation erudition, as well as revealing the knowledge of the population about the effect of power stations (nuclear and thermal) on the environment and the human being health. Answers on questions connected with power have shown a very poor erudition of population about ecological advantages and drawbacks inherent in thermal and nuclear power plants. The majority of the respondents (about 80%) does not know about the absence of CO 2 discharge and oxygen preservation in the air. The questionnaire analysis shows that people are exclusively frightened with radiation from NPPs, but the rest sources of radiation effect do not cause so anxiety and apprehension. People in Belarus have learnt well that the reason of the majority of the diseases is radiation, so it can be frequently heard not only from mass media, but also at scientific conferences and seminars. Most of medical workers are sure that all diseases are caused by radiation. The deficiency of special knowledge on nuclear technologies in the people majority and availability of a great amount of contradictory and untrue information supplied by mass media result in overestimation of danger from energy objects and underestimation of the increased radiation dose from other sources consequences, for example, under roentgen medical examination and treatment. The investigations carried out will help to arrange

  15. Initial scientific uses of coherent synchrotron radiation inelectron storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Basov, D.N.; Feikes, J.; Fried, D.; Holldack, K.; Hubers, H.W.; Kuske, P.; Martin, M.C.; Pavlov, S.G.; Schade, U.; Singley, E.J.; Wustefeld, G.

    2004-11-23

    The production of stable, high power, coherent synchrotron radiation at sub-terahertz frequency at the electron storage ring BESSY opens a new region in the electromagnetic spectrum to explore physical properties of materials. Just as conventional synchrotron radiation has been a boon to x-ray science, coherent synchrotron radiation may lead to many new innovations and discoveries in THz physics. With this new accelerator-based radiation source we have been able to extend traditional infrared measurements down into the experimentally poorly accessible sub-THz frequency range. The feasibility of using the coherent synchrotron radiation in scientific applications was demonstrated in a series of experiments: We investigated shallow single acceptor transitions in stressed and unstressed Ge:Ga by means of photoconductance measurements below 1 THz. We have directly measured the Josephson plasma resonance in optimally doped Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} for the first time and finally we succeeded to confine the sub-THz radiation for spectral near-field imaging on biological samples such as leaves and human teeth.

  16. New generation low power radiation survey instruments

    International Nuclear Information System (INIS)

    Waechter, D.A.; Bjarke, G.O.; Trujillo, F.; Umbarger, C.J.; Wolf, M.A.

    1984-01-01

    A number of new, ultra-low-powered radiation instruments have recently been developed at Los Alamos. Among these are two instruments which use a novel power source to eliminate costly batteries. The newly developed gamma detecting radiac, nicknamed the Firefly, and the alpha particle detecting instrument, called the Simple Cordless Alpha Monitor, both use recent advances in miniaturization and powersaving electronics to yield devices which are small, rugged, and very power-frugal. The two instruments consume so little power that the need for batteries to run them is eliminated. They are, instead, powered by a charged capacitor which will operate the instruments for an hour or more. Use of a capacitor as a power source eliminates many problems commonly associated with battery-operated instruments, such as having to open the case to change batteries, battery storage life, availability of batteries in the field, and some savings in weight. Both line power and mechanical sources are used to charge the storage capacitors which power the instruments

  17. Radiation exposure in German nuclear power plants

    International Nuclear Information System (INIS)

    Mueller, W.

    1981-01-01

    The individual and collective doses in German nuclear power stations have decreased remarkably since the beginning of the commercial nuclear power production. The paper discusses the influencing factors, that have caused this development and points out areas where improvements are possible in the future. Moreover the interaction between radiation protection practice and the relevant legal regulations is considered. Usually the recording of job related doses is regarded as the most direct access to possible improvements. Concluding, it is therefore demonstrated by some examples how the evaluation of such information has taken effect in practice. (orig.) [de

  18. Radiation control system of nuclear power plants

    International Nuclear Information System (INIS)

    Kapisovsky, V.; Kosa, M.; Melichar, Z.; Moravek, J.; Jancik, O.

    1977-01-01

    The SYRAK system is being developed for in-service radiation control of the V-1 nuclear power plant. Its basic components are an EC 1010 computer, a CAMAC system and communication means. The in-service release of radionuclides is measured by fuel can failure detection, by monitoring rare gases in the coolant, by gamma spectrometric coolant monitoring and by iodine isotopes monitoring in stack disposal. (O.K.)

  19. Radiation emergency preparedness in nuclear power plants

    International Nuclear Information System (INIS)

    Geetha, P.V.; Ramamirtham, B.; Khot, P.

    2008-01-01

    The purpose of planning for radiation emergency response is to ensure adequate preparedness for protection of the plant personnel and members of the public from significant radiation exposures in the unlikely event of an accident. With a number of safety features in the reactor design and sound operating procedures, the probability of a major accident resulting in the releases of large quantities of radioactivity is extremely small. However, as an abundant cautious approach a comprehensive radiation emergency response preparedness is in place in all the nuclear power plants (NPPs). Radiation Emergency in NPPs is broadly categorized into three types; plant emergency, site emergency and off-site emergency. During off site emergency conditions, based on levels of radiation in the environment, Civil Authorities may impose several counter measures such as sheltering, administering prophylaxis (stable iodine for thyroid blocking) and evacuation of people from the affected area. Environmental Survey Laboratory (ESL) carries out environmental survey extensively in the affected sector identified by the meteorological survey laboratory. To handle emergency situations, Emergency Control Centre with all communication facility and Emergency Equipment Centre having radiation measuring instruments and protective equipment are functional at all NPPs. AERB stipulates certain periodicity for conducting the exercises on plant, site and off site emergency. These exercises are conducted and deficiencies corrected for strengthening the emergency preparedness system. In the case of off site emergency exercise, observers are invited from AERB and Crisis Management Group of Department of Atomic Energy (DAE). The emergency exercises conducted by Nuclear Power Plant Sites have been very satisfactory. (author)

  20. Efficient power combiner for THz radiation

    Energy Technology Data Exchange (ETDEWEB)

    Seidfaraji, Hamide, E-mail: hsfaraji@unm.edu; Fuks, Mikhail I.; Christodoulou, Christos; Schamiloglu, Edl [Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM, 87131-0001 (United States)

    2016-08-15

    Most dangerous explosive materials, both toxic and radioactive, contain nitrogen salts with resonant absorption lines in the frequency range 0.3-10 THz. Therefore, there has been growing interest in remotely detecting such materials by observing the spectrum of reflected signals when the suspicious material is interrogated by THz radiation. Practical portable THz sources available today generate only 20–40 mW output power. This power level is too low to interrogate suspicious material from a safe distance, especially if the material is concealed. Hence, there is a need for sources that can provide greater power in the THz spectrum. Generating and extracting high output power from THz sources is complicated and inefficient. The efficiency of vacuum electronic microwave sources is very low when scaled to the THz range and THz sources based on scaling down semiconductor laser sources have low efficiency as well, resulting in the well known “THz gap.” The reason for such low efficiencies for both source types is material losses in the THz band. In this article an efficient power combiner is described that is based on scaling to higher frequencies a microwave combiner that increases the output power in the THz range of interest in simulation studies. The proposed power combiner not only combines the THz power output from several sources, but can also form a Gaussian wavebeam output. A minimum conversion efficiency of 89% with cophased inputs in a lossy copper power combiner and maximum efficiency of 100% in a Perfect Electric Conductor (PEC)-made power combiner were achieved in simulations. Also, it is shown that the TE{sub 01} output mode is a reasonable option for THz applications due to the fact that conductive loss decreases for this mode as frequency increases.

  1. Efficient power combiner for THz radiation

    Directory of Open Access Journals (Sweden)

    Hamide Seidfaraji

    2016-08-01

    Full Text Available Most dangerous explosive materials, both toxic and radioactive, contain nitrogen salts with resonant absorption lines in the frequency range 0.3-10 THz. Therefore, there has been growing interest in remotely detecting such materials by observing the spectrum of reflected signals when the suspicious material is interrogated by THz radiation. Practical portable THz sources available today generate only 20–40 mW output power. This power level is too low to interrogate suspicious material from a safe distance, especially if the material is concealed. Hence, there is a need for sources that can provide greater power in the THz spectrum. Generating and extracting high output power from THz sources is complicated and inefficient. The efficiency of vacuum electronic microwave sources is very low when scaled to the THz range and THz sources based on scaling down semiconductor laser sources have low efficiency as well, resulting in the well known “THz gap.” The reason for such low efficiencies for both source types is material losses in the THz band. In this article an efficient power combiner is described that is based on scaling to higher frequencies a microwave combiner that increases the output power in the THz range of interest in simulation studies. The proposed power combiner not only combines the THz power output from several sources, but can also form a Gaussian wavebeam output. A minimum conversion efficiency of 89% with cophased inputs in a lossy copper power combiner and maximum efficiency of 100% in a Perfect Electric Conductor (PEC-made power combiner were achieved in simulations. Also, it is shown that the TE01 output mode is a reasonable option for THz applications due to the fact that conductive loss decreases for this mode as frequency increases.

  2. Lunar surface fission power supplies: Radiation issues

    International Nuclear Information System (INIS)

    Houts, M.G.; Lee, S.K.

    1994-01-01

    A lunar space fission power supply shield that uses a combination of lunar regolith and materials brought from earth may be optimal for early lunar outposts and bases. This type of shield can be designed such that the fission power supply does not have to be moved from its landing configuration, minimizing handling and required equipment on the lunar surface. Mechanisms for removing heat from the lunar regolith are built into the shield, and can be tested on earth. Regolith activation is greatly reduced compared with a shield that uses only regolith, and it is possible to keep the thermal conditions of the fission power supply close to these seen in free space. For a well designed shield, the additional mass required to be brought fro earth should be less than 1000 kg. Detailed radiation transport calculations confirm the feasibility of such a shield

  3. Lunar surface fission power supplies: Radiation issues

    International Nuclear Information System (INIS)

    Houts, M.G.; Lee, S.K.

    1994-01-01

    A lunar space fission power supply shield that uses a combination of lunar regolith and materials brought from earth may be optimal for early lunar outposts and bases. This type of shield can be designed such that the fission power supply does not have to be moved from its landing configuration, minimizing handling and required equipment on the lunar surface. Mechanisms for removing heat from the lunar regolith are built into the shield, and can be tested on earth. Regolith activation is greatly reduced compared with a shield that uses only regolith, and it is possible to keep the thermal conditions of the fission power supply close to those seen in free space. For a well designed shield, the additional mass required to be brought from earth should be less than 1,000 kg. Detailed radiation transport calculations confirm the feasibility of such a shield

  4. Radiation monitor system for nuclear power plants

    International Nuclear Information System (INIS)

    Wu Bingzhe; Guo Shusheng

    1990-12-01

    The system has 8 kinds of radiation monitors and 2 stage microcomputers designed for processing the data from each monitor, storaging the information, printing out and displaying on the colour CRT. The function of the system includes high-value alarm, warm alarm and failure alarm, so called t hree-level alarms . Two functions of the alarms are the threshold alarm and the tendency alarm, so that this system is an intelligency system. This system has high reliability and very wide range when LOCA accident takes place. It is aseismic and immune to industrial interference. The system can meet IEC-761-1 standard and is of nuclear safety 3rd class. Also the following monitors were designed: 133 Xe monitor, 131 I monitor, low-level liquid monitor and high radiation γ area monitor. The system can meet the requirements of nuclear power plants

  5. Radiation monitoring instrumentation for nuclear power plants

    International Nuclear Information System (INIS)

    Bharath Kumar, M.

    2013-01-01

    Measurement of nucleonic signals is required to control and operate the reactor in a safe and reliable manner. To achieve this, parameters like Neutron flux, other radiation fields, contamination levels, source strength, release thru stack etc. are required to be monitored and controlled. The above are required to be monitored throughout the life of the reactor whether it is operational or in shutdown condition. In addition such monitoring is also required during decommissioning phase of the reactor as needed. To measure these parameters a large number of instruments are used in Nuclear Power Plants (NPP) which includes sensors and electronics for detecting alpha, beta, gamma and neutron radiation with qualification to withstand harsh environment

  6. Radiation safety and protection on the nuclear power plants

    International Nuclear Information System (INIS)

    Nosovskij, A.V.; Bogorad, V.I.; Vasil'chenko, V.N.; Klyuchnikov, A.A.; Litvinskaya, T.V.; Slepchenko, A.Yu.

    2008-01-01

    The main issues of the radiation safety and protection provision on the nuclear power plants are considered in this monograph. The description of the basic sources of the radiation danger on NPPs, the principles, the methods and the means of the safety and radiation monitoring provision are shown. The special attention is paid to the issues of the ionizing radiation regulation

  7. Maximum power flux of auroral kilometric radiation

    International Nuclear Information System (INIS)

    Benson, R.F.; Fainberg, J.

    1991-01-01

    The maximum auroral kilometric radiation (AKR) power flux observed by distant satellites has been increased by more than a factor of 10 from previously reported values. This increase has been achieved by a new data selection criterion and a new analysis of antenna spin modulated signals received by the radio astronomy instrument on ISEE 3. The method relies on selecting AKR events containing signals in the highest-frequency channel (1980, kHz), followed by a careful analysis that effectively increased the instrumental dynamic range by more than 20 dB by making use of the spacecraft antenna gain diagram during a spacecraft rotation. This analysis has allowed the separation of real signals from those created in the receiver by overloading. Many signals having the appearance of AKR harmonic signals were shown to be of spurious origin. During one event, however, real second harmonic AKR signals were detected even though the spacecraft was at a great distance (17 R E ) from Earth. During another event, when the spacecraft was at the orbital distance of the Moon and on the morning side of Earth, the power flux of fundamental AKR was greater than 3 x 10 -13 W m -2 Hz -1 at 360 kHz normalized to a radial distance r of 25 R E assuming the power falls off as r -2 . A comparison of these intense signal levels with the most intense source region values (obtained by ISIS 1 and Viking) suggests that multiple sources were observed by ISEE 3

  8. Radiation protection organization in Guangdong Nuclear Power Station (GNPS)

    International Nuclear Information System (INIS)

    Yang Maochun

    1993-01-01

    The French way of radiation protection management has been adopted by Guangdong Nuclear Power Station (GNPS) but there are some differences. In this paper author describes radiation protection organization in GNPS, special measures having been taken and the present status

  9. Sub-terahertz spectroscopy reveals that proteins influence the properties of water at greater distances than previously detected

    Energy Technology Data Exchange (ETDEWEB)

    Sushko, Oleksandr; Dubrovka, Rostyslav; Donnan, Robert S., E-mail: r.donnan@qmul.ac.uk [School of Electronic Engineering and Computer Science, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom)

    2015-02-07

    The initial purpose of the study is to systematically investigate the solvation properties of different proteins in water solution by terahertz (THz) radiation absorption. Transmission measurements of protein water solutions have been performed using a vector network analyser-driven quasi-optical bench covering the WR-3 waveguide band (0.220–0.325 THz). The following proteins, ranging from low to high molecular weight, were chosen for this study: lysozyme, myoglobin, and bovine serum albumin (BSA). Absorption properties of solutions were studied at different concentrations of proteins ranging from 2 to 100 mg/ml. The concentration-dependent absorption of protein molecules was determined by treating the solution as a two-component model first; then, based on protein absorptivity, the extent of the hydration shell is estimated. Protein molecules are shown to possess a concentration-dependent absorptivity in water solutions. Absorption curves of all three proteins sharply peak towards a dilution-limit that is attributed to the enhanced flexibility of protein and amino acid side chains. An alternative approach to the determination of hydration shell thickness is thereby suggested, based on protein absorptivity. The proposed approach is independent of the absorption of the hydration shell. The derived estimate of hydration shell thickness for each protein supports previous findings that protein-water interaction dynamics extends beyond 2-3 water solvation-layers as predicted by molecular dynamics simulations and other techniques such as NMR, X-ray scattering, and neutron scattering. According to our estimations, the radius of the dynamic hydration shell is 16, 19, and 25 Å, respectively, for lysozyme, myoglobin, and BSA proteins and correlates with the dipole moment of the protein. It is also seen that THz radiation can serve as an initial estimate of the protein hydrophobicity.

  10. Sub-terahertz spectroscopy reveals that proteins influence the properties of water at greater distances than previously detected

    International Nuclear Information System (INIS)

    Sushko, Oleksandr; Dubrovka, Rostyslav; Donnan, Robert S.

    2015-01-01

    The initial purpose of the study is to systematically investigate the solvation properties of different proteins in water solution by terahertz (THz) radiation absorption. Transmission measurements of protein water solutions have been performed using a vector network analyser-driven quasi-optical bench covering the WR-3 waveguide band (0.220–0.325 THz). The following proteins, ranging from low to high molecular weight, were chosen for this study: lysozyme, myoglobin, and bovine serum albumin (BSA). Absorption properties of solutions were studied at different concentrations of proteins ranging from 2 to 100 mg/ml. The concentration-dependent absorption of protein molecules was determined by treating the solution as a two-component model first; then, based on protein absorptivity, the extent of the hydration shell is estimated. Protein molecules are shown to possess a concentration-dependent absorptivity in water solutions. Absorption curves of all three proteins sharply peak towards a dilution-limit that is attributed to the enhanced flexibility of protein and amino acid side chains. An alternative approach to the determination of hydration shell thickness is thereby suggested, based on protein absorptivity. The proposed approach is independent of the absorption of the hydration shell. The derived estimate of hydration shell thickness for each protein supports previous findings that protein-water interaction dynamics extends beyond 2-3 water solvation-layers as predicted by molecular dynamics simulations and other techniques such as NMR, X-ray scattering, and neutron scattering. According to our estimations, the radius of the dynamic hydration shell is 16, 19, and 25 Å, respectively, for lysozyme, myoglobin, and BSA proteins and correlates with the dipole moment of the protein. It is also seen that THz radiation can serve as an initial estimate of the protein hydrophobicity

  11. Parametric variation of radiated power in Aditya Tokamak

    International Nuclear Information System (INIS)

    Tahiliani, Kumudni; Chowdhuri, M.B.; Manchanda, R.

    2017-01-01

    We report the study of parametric variation of radiated power in Aditya Tokamak for ohmic discharges. The radiated power was measured using AXUV diodes that are responsive to radiation in the range 1 eV to 4 keV and are insensitive to the neutral particles (<0.5 keV). Hence only the radiation power loss is measured and charge exchange losses are excluded. The measured radiated power was also used for the estimation of the effective ion charge, Z eff based on the scaling obtained by the regression analysis of the data from multiple Tokamaks. The estimated values were compared with the experimental Z eff values obtained from the visible continuum measurement. We also tested the scaling for modelled radiation power loss. (author)

  12. FEL radiation power available in electron storage rings

    International Nuclear Information System (INIS)

    Miyahara, Yoshikazu

    1994-01-01

    FEL radiation power available in electron storage rings was studied in the small signal regime in considering the increase of the energy spread of the electron beam caused by the FEL interaction and the decrease of the FEL gain with the increase of the energy spread in addition to the radiation damping and the quantum excitation. All these effects were considered separately, and combined with FEL power equations. The radiation power available was expressed explicitly with the parameters of the storage ring, the wiggler and the mirrors. The transient process of FEL lasing is simulated with the power equations. A rough estimation is made of the radiation power available by the FEL at different beam energies, and optimization of FEL parameters for a higher radiation power is discussed. ((orig.))

  13. 47 CFR 22.913 - Effective radiated power limits.

    Science.gov (United States)

    2010-10-01

    ... radiated power (ERP) of transmitters in the Cellular Radiotelephone Service must not exceed the limits in this section. (a) Maximum ERP. In general, the effective radiated power (ERP) of base transmitters and... areas, as those areas are defined in § 22.949, the ERP of base transmitters and cellular repeaters of...

  14. Exploration of a radiation hardening stabilized voltage power supply

    International Nuclear Information System (INIS)

    Xie Zeyuan; Xu Xianguo

    2014-01-01

    This paper mainly introduces the design method of radiation hardening stabilized voltage power supply that makes use of commercial radiation resistant electronic devices and the test results of radiation performance of the power supply and devices are presented in detail. The experiment results show that the hardened power supply can normally work until 1000 Gy (Si) total dose and 1 × 10 14 n/cm 2 neutron radiation, and it doesn't latchup at about 1 × l0 9 Gy (Si)/s gamma transient dose rate. (authors)

  15. Environmental radiation exposure in case of power plant accidents

    International Nuclear Information System (INIS)

    Eder, K.

    1977-01-01

    The paper tries to overcome prejudices concerning radiation effects due to power plant accidents as well as to show the radiation exposure that may be expected near the the patient and to indicate ways and means to avoid or reduce this radiation exposure and to avoid contamination. It is a contribution to better information on radiation accidents and radiolesions in nuclear power plants with the aim of close cooperation between power plants, physicians, and hospitals and of helping to overcome erroneous popular assumptions. (orig./HP) [de

  16. Radiation Monitoring - A Key Element in a Nuclear Power Program

    International Nuclear Information System (INIS)

    Hussein, A.S.; El-dally, T.A.

    2008-01-01

    For a nuclear power plant, radiation is especially of great concern to the public and the environment. Therefore, a radiation monitoring program is becoming a critical importance. This program covers all phases of the nuclear plant including preoperational, normal operation, accident and decommissioning. The fundamental objective of radiation monitoring program is to ensure that the health and safety of public inside and around the plant and to confirm the radiation doses are below the dose limits for workers and the public. This paper summarizes the environmental radiation monitoring program for a nuclear power plant

  17. Guideline on radiation protection requirements for ionizing radiation shielding in nuclear power plants

    International Nuclear Information System (INIS)

    1988-01-01

    The guideline which entered into force on 1 May 1988 stipulates the radiation protection requirements for shielding against ionizing radiation to be met in the design, construction, commissioning, operation, and decommissioning of nuclear power plants

  18. Radiation exposure due to nuclear power

    International Nuclear Information System (INIS)

    This information brochure contains 12 earlier papers of leading experts on the radiation hazard the population incurs during normal operation of nuclear facilities and the radiation-biological fundamentals of the effects of ionizing radio humans. (HP) [de

  19. Basic radiation effects in nuclear power electronics technology

    International Nuclear Information System (INIS)

    Gover, J.E.; Srour, J.R.

    1985-05-01

    An overview is presented of the effects of radiation in microelectronics technology. The approach taken throughout these notes is to review microscopic phenomena associated with radiation effects and to show how these lead to macroscopic effects in semiconductor devices and integrated circuits. Bipolar integrated circuits technology is reviewed in Appendix A. Appendix B gives present and future applications of radiation-tolerant microelectronics in nuclear power applications as well as the radiation tolerance requirements of these applications

  20. Development of lightweight radiators for lunar based power systems

    International Nuclear Information System (INIS)

    Juhasz, A.J.; Bloomfield, H.S.

    1994-05-01

    This report discusses application of a new lightweight carbon-carbon (C-C) space radiator technology developed under the NASA Civil-Space Technology Initiative (CSTI) High Capacity Power Program to a 20 kWe lunar based power system. This system comprises a nuclear (SP-100 derivative) heat source, a Closed Brayton Cycle (CBC) power conversion unit with heat rejection by means of a plane radiator. The new radiator concept is based on a C-C composite heat pipe with integrally woven fins and a thin walled metallic liner for containment of the working fluid. Using measured areal specific mass values (1.5 kg/m2) for flat plate radiators, comparative CBC power system mass and performance calculations show significant advantages if conventional heat pipes for space radiators are replaced by the new C-C heat pipe technology

  1. Solar radiation for Mars power systems

    Science.gov (United States)

    Appelbaum, Joseph; Landis, Geoffrey A.

    1991-01-01

    Detailed information about the solar radiation characteristics on Mars are necessary for effective design of future planned solar energy systems operating on the surface of Mars. A procedure and solar radiation related data from which the diurnally and daily variation of the global, direct (or beam), and diffuse insolation on Mars are calculated, are presented. The radiation data are based on measured optical depth of the Martian atmosphere derived from images taken of the Sun with a special diode on the Viking Lander cameras; and computation based on multiple wavelength and multiple scattering of the solar radiation.

  2. Nuclear power plant radiation: personnel safety aspects

    International Nuclear Information System (INIS)

    Roekmantara, Roestan

    1975-01-01

    Reactor using water as coolant, moderator, and heat transfer can produce a sufficiently great internal and external radiation caused by contamination. The process of contamination and actions that must be taken to avoid radiation workers from receiving more than the maximum permissible dose are presented. (author)

  3. Environmental radiation monitoring system in nuclear power station

    International Nuclear Information System (INIS)

    Matsuoka, Sadazumi; Tadachi, Katsuo; Endo, Mamoru; Yuya, Hiroshi

    1983-01-01

    At the time of the construction of nuclear power stations, prior to their start of operation, the state of environmental radiation must be grasped. After the start of the power stations, based on those data, the system of environmental radiation monitoring is established. Along with the construction of Kashiwazaki-Kariwa Nuclear Power Station, The Tokyo Electric Power Co., Inc. jointly with Fujitsu Ltd. has developed a high-reliability, environmental radiation monitoring system, and adopted ''optical data highways'' using optical fiber cables for communication. It consists of a central monitoring station and 11 telemeter observation points, for collecting both radiation and meteorological data. The data sent to the central station through the highways are then outputted on a monitoring panel. They are analyzed with a central processor, and the results are printed out. (Mori, K.)

  4. Organization of radiation protection in German nuclear power stations

    International Nuclear Information System (INIS)

    1989-01-01

    Using the operating handbooks of the nuclear power stations in West Germany, an examination was carried out of how far the existing organisational structure for radiation protection fulfils the requirements for protection and whether a standardisation of the organisation would provide improvements for the protection of the personnel and for the practicability of the radiation protection organisation. In particular, the parts 'Personnel operating organisation', 'Radiation protection order' and 'Maintenance order' of the operating handbook were evaluated and an audit was made of the radiation protection organisation. In general, the result of the assessment is that the organisation of radiation protection does not contradict the orders, guidelines and regulations in any of the nuclear power stations examined. Corresponding to the possibilities of regulating details of the radiation protection organisation within the undertaking, the target of 'protection of the personnel against radioactive irradiation' is achieved by the various organisation structures which are largely equal to the given example. (orig./HP) [de

  5. Radiator selection for Space Station Solar Dynamic Power Systems

    Science.gov (United States)

    Fleming, Mike; Hoehn, Frank

    A study was conducted to define the best radiator for heat rejection of the Space Station Solar Dynamic Power System. Included in the study were radiators for both the Organic Rankine Cycle and Closed Brayton Cycle heat engines. A number of potential approaches were considered for the Organic Rankine Cycle and a constructable radiator was chosen. Detailed optimizations of this concept were conducted resulting in a baseline for inclusion into the ORC Preliminary Design. A number of approaches were also considered for the CBC radiator. For this application a deployed pumped liquid radiator was selected which was also refined resulting in a baseline for the CBC preliminary design. This paper reports the results and methodology of these studies and describes the preliminary designs of the Space Station Solar Dynamic Power System radiators for both of the candidate heat engine cycles.

  6. Tritium-Powered Radiation Sensor Network

    Science.gov (United States)

    2015-09-01

    Photomultiplier Tube, Scintillator, Geiger counter, Zigbee, Wireless Network, Radiation detector, Dirty Bomb 16. SECURITY CLASSIFICATION OF: 17...operational lifetime of 150 years. Persistent sensing of the environment with vibration and radiation (electromagnetic [ EM ], acoustic, gamma, etc.) in...Transportation E-field electric field EH electron-hole EM electromagnetic GaAs gallium arsenide GPS global positioning system InGaP indium gallium

  7. The computerized radiation control system for the nuclear power plant

    International Nuclear Information System (INIS)

    Hunamoto, H.; Sato, T.; Taniguchi, K.

    1993-01-01

    Major works of Radiation control in nuclear power plant consist of occupational exposure control, radiation monitoring of working areas and surveillance of monitoring equipment, environmental monitoring and so on. Since a large amount of data will be generated from these works, therefore use of high performance computers will be indispensable. The systematization is presently being advanced in The Japan Atomic Power Company from this viewpoint and the project is being realized smoothly. The actual state is introduced

  8. Robustness of radiative mantle plasma power exhaust solutions for ITER

    International Nuclear Information System (INIS)

    Mandrekas, J.; Stacey, W.M.; Kelly, F.A.

    1997-01-01

    The robustness of impurity-seeded radiative mantle solutions for ITER to uncertainties in several physics and operating parameters is examined. The results indicate that ∼ 50--90% of the input power can be radiated from inside the separatrix with Ne, Ar and Kr injection, without significant detriment to the core power balance or collapse of the edge temperature profile, for a wide range of conditions on the impurity pinch velocity, edge temperature pedestal, and plasma density

  9. Methodical recommendations for power unit comprehensive engineering and radiation survey

    International Nuclear Information System (INIS)

    Nosovskij, A.V.

    2000-01-01

    The article describes power unit radiation survey methods developed and applied during conduction of Ch NPP unit I Comprehensive Engineering Radiation Survey. Special requirements for units under decommissioning, main survey principals, criteria for definition of volume and the order of survey for various systems of a NPP Unit are included

  10. Is natural background or radiation from nuclear power plants leukemogenic?

    International Nuclear Information System (INIS)

    Cronkite, E.P.

    1989-01-01

    The objective in this review is to provide some facts about normal hemopoietic cell proliferation relevant to leukemogenesis, physical, chemical, and biological facts about radiation effects with the hope that each person will be able to decide for themselves whether background radiation or emissions from nuclear power plants and facilities significantly add to the spontaneous leukemia incidence. 23 refs., 1 tab

  11. A radiation monitoring system for nuclear power plants

    International Nuclear Information System (INIS)

    Iwai, Masaru; Nakamori, S.; Ikeda, H.; Oda, M.

    1974-01-01

    Safety with respect to radiation is vital factor, particularly in view of the increasing number of nuclear power plants. For this purpose, a radiation monitoring system is provided to perform constant supervision. This article describes the purpose, installation location, specifications and circuitry of a system which is divided into three units: the process monitor, area monitor and off-site monitor. (auth.)

  12. The new law on radiation and nuclear power

    International Nuclear Information System (INIS)

    Niittylae, A.

    1990-01-01

    The Law on Nuclear Energy, which entered into force in 1988, controls the use of nuclear power. The new Law on Radiation is under consideration in the Parliament. The internationally approved main principles on radiation protection are the basis of the law. In the article, these principles and the contents of the law are described

  13. Distributing radiation management system of nuclear power plants

    International Nuclear Information System (INIS)

    Mihoya, Eiichi; Akashi, Michio

    1999-01-01

    The importance of radiation management for nuclear facilities including nuclear power plants has increased as the general public understanding has progressed, and necessary information for management must be processed exactly and quickly. In nuclear power plants, radiation management is performed by each individual operation, and collected information is managed by the system of each operation. The distributing radiation management system has been developed aiming to use a general-purpose LAN and make quick and efficient use of information managed by individual operations. This paper describes the system configuration and functions. (author)

  14. Provision of operational radiation protection services at nuclear power plants

    International Nuclear Information System (INIS)

    1990-01-01

    The purpose of this publication is to provide practical guidance on establishing and maintaining a radiation protection programme for a nuclear power plant that is consistent with the optimization process recommended in the Basic Safety Standards. This publication is written with a view to providing guidance to every person associated with the radiation protection programme for a nuclear power plant and develops the theme that radiation protection requires the commitment of all plant staff, including higher levels of executive management. 12 refs, 2 figs

  15. Radiation losses and global power balance of JT-60 plasmas

    International Nuclear Information System (INIS)

    Nishitani, T.; Itami, K.; Nagashima, K.; Tsuji, S.; Hosogane, N.; Yoshida, H.; Ando, T.; Kubo, H.; Takeuchi, H.

    1990-01-01

    The radiation losses and the global power balance for Ohmic and neutral beam heated plasmas have been investigated in different JT-60 configurations. Discharges with a TiC coated molybdenum wall and with a graphite wall, with limiter, outer and lower X-point configurations have been studied by bolometric measurements, thermocouples and an infrared TV camera. In neutral beam heated outer X-point discharges with a TiC coated molybdenum first wall, the radiation loss of the main plasma was very low (10% of the absorbed power). The radiation loss due to oxygen was dominant in this case. On the contrary, in discharges with TiC coated molybdenum limiters the radiation loss was very high (>60% of the absorbed power). In the discharges with a graphite wall the radiated power from the main plasma was 20-25% for both limiter and lower X-point configurations. In lower X-point discharges the main contributor to the radiation loss was oxygen, whereas in limiter discharges the loss due to carbon was equal to the loss due to oxygen. The radiation loss from the lower X-point divertor increased with increasing electron density of the main plasma. (author). 33 refs, 14 figs, 1 tab

  16. Sound power radiated by sources in diffuse fields

    DEFF Research Database (Denmark)

    Polack, Jean-Dominique

    2000-01-01

    Sound power radiated by sources at low frequency notoriously depends on source position. We sampled the sound field of a rectangular room at 18 microphone and 4 source positions. Average power spectra were extrapolated from the reverberant field, taking into account the frequency dependent...

  17. Radiated power measurement with AXUV photodiodes in EAST tokamak

    International Nuclear Information System (INIS)

    Duan Yanmin; Hu Liqun; Du Wei; Mao Songtao; Chen Kaiyun; Zhang Jizhong

    2013-01-01

    The fast bolometer diagnostic system for absolute radiated power measurement on EAST tokamak is introduced, which is based on the absolute extreme ultraviolet (AXUV) photodiodes. The relative calibration of AXUV detectors is carried out using X-ray tube and standard luminance source in order to evaluate the sensitivity degradation caused by cumulative radiation damage during experiments. The calibration result shows a 23% sensitivity decrease in the X-ray range for the detector suffering ∼27000 discharges, but the sensitivity for the visible light changes little. The radiated power measured by AXUV photodiodes is compared with that measured by resistive bolometer. The total radiated power in main plasma deduced from AXUV detector is lower a factor of 1∼4 than that deduced from resistive bolometer. Some typical measurement results are also shown in this article. (author)

  18. Standalone, battery powered radiation monitors for accelerator electronics

    CERN Document Server

    Wijnands, T; Spiezia, G

    2009-01-01

    A technical description of the design of a new type of radiation monitors is given. The key point in the design is the low power consumption inferior to 17 mW in radiation sensing mode and inferior to 0.3 mW in standby mode. The radiation monitors can operate without any external power or signal cabling and measure and store radiation data for a maximum period of 800 days. To read the radiation data, a standard PC can be connected via a USB interface to the device at any time. Only a few seconds are required to read out a single monitor. This makes it possible to survey a large network of monitoring devices in a short period of time, for example during a stop of the accelerator.

  19. Natural radiation focused by power lines: new evidence

    Energy Technology Data Exchange (ETDEWEB)

    Hopwood, Anthony

    1992-11-01

    Scientists searching for a mechanism to explain increases in the incidence of cancer among those living in close proximity to power lines could have been looking in the wrong place. New evidence suggests that instead of trying to find an as yet unproven cellular reaction to the presence of the power-line's magnetic fields, researchers should investigate power lines as concentrators of potentially damaging natural sky radiation. If accepted, a clear link between a known biological cell damage mechanism and power lines will have been established, triggering a reassessment of the independent studies recording statistical increases in cancer incidence around power lines. The evidence stems from recordings showing concentrations of background solar radiation under power lines - a direction of enquiry prompted by a chance observation made during a British Astronomical Association experiment. (Author).

  20. Profiles of radiation power density in WEGA stellarator

    International Nuclear Information System (INIS)

    Zhang, D.; Otte, M.; Giannone, L.

    2005-01-01

    On the WEGA stellarator, a 12 channel bolometer camera has been used to measure the radiation power losses of the plasma, which is heated by ECR at 2.45 GHz with a maximum power of 26 kW. The typical electron temperatures achieved are around 10 eV. The bolometer is of the Au resistor type and is positioned on the mid-plane, viewing the plasma from the low-field side with a spatial resolution of about 6 cm. The viewing angle is opened to poloidally (±47 o ) and covers the whole cross-section. Angular profiles of radiation power density (emissivity) can be achieved using the measured fluxes to the channels, which are given by the integrals along the sight lines. Using Abel inversion with maximum entropy regularisation, radial profiles of emissivity could be obtained. It is found that the angular profile of emissivity depends on the magnetic configuration, the working gas (Ar, He) and the heating scenario. Peaked and hollow emissivity profiles have been obtained by using different types of heating antenna. By changing the magnetic configuration, strong edge radiation has been observed. The largest emissivity values are obtained in the upper SOL range of Ar-discharges. This edge radiation can be reduced by shifting the flux surfaces inwards or by changing their shape at the antenna. The reconstruction of the radial profile of the emissivity was carried out in the case of a peaked angular profile with minimum edge radiation. The total radiation power was estimated by linear extrapolation of the integrated radiation power in the viewing region to the torus volume. It is typically less than 30% of the ECRH input power, but depending on the ECRH input power, again the magnetic configuration, the working gas as well as the absolute field strength on the magnetic axis. Maximum radiation losses have been obtained around 0.6·B0, where B 0 =87.5 mT is the resonant field strength of the ECRH. No evidence for impurities was obtained from spectroscopic measurements, and thus the

  1. Modeling transient radiation effects in power MOSFETS

    International Nuclear Information System (INIS)

    Hoffman, J.R.; Hall, W.E.; Dunn, D.E.

    1987-01-01

    Using standard device specifications and simple assumptions, the transient radiation response of VDMOS MOSFETs can be modeled in a standard circuit analysis program. The device model consists of a body diode, a parasitic bipolar transistor, and elements to simulate high-current reduced breakdown. The attached photocurrent model emulates response to any pulse shape and accounts for bias-dependent depletion regions. The model can be optimized to best fit available test data

  2. A new career path in radiation protection training. Certified power plant shift supervisor. Radiation protection

    International Nuclear Information System (INIS)

    Terbeek, Christoph

    2011-01-01

    Apart from theoretical knowledge, effective day-to-day radiation protection operations also require a certain measure of practical experience. Therefore, the professional degree of 'Certified Radiation Worker', issued by the Chamber of Industry and Commerce (CIC) Aachen, Germany, established at an early stage. In order to provide experienced radiation protection specialists with an attractive career path, POWERTECH TRAINING CENTER e.V., in co-operation with VGB PowerTech. e.V., the Paul Scherrer Institute (Switzerland) and the Swiss Atomic Energy Agency (ENSI), has devised a new power plant shift supervisor training course specialising in radiation protection. The vocational training degree called 'Certified Power Plant Shift Supervisor - Radiation Protection' is awarded after successful completion of the advanced training examination conducted by the CIC in Essen, Germany. (orig.)

  3. New-generation low-power radiation survey instruments

    International Nuclear Information System (INIS)

    Waechter, D.A.; Bjarke, G.O.; Wolf, M.A.; Trujillo, F.; Umbarger, C.J.

    1983-01-01

    A number of new, ultra-low-powered radiation instruments have recently been developed at Los Alamos. Among these are two instruments which use a novel power source to eliminate costly batteries. The newly developed gamma detecting radiac, nicknamed the Firefly, and the alpha particle detecting instrument, called the Simple Cordless Alpha Monitor, both use recent advances in miniaturization and power-saving electronics to yield devices which are small, rugged, and very power-frugal. The two instruments consume so little power that the need for batteries to run them is eliminated. They are, instead, powered by a charged capacitor which will operate the instruments for an hour or more. Both line power and mechanical sources are used to charge the storage capacitors which power the instruments

  4. Two dimensional radiated power diagnostics on Alcator C-Mod

    International Nuclear Information System (INIS)

    Reinke, M. L.; Hutchinson, I. H.

    2008-01-01

    The radiated power diagnostics for the Alcator C-Mod tokamak have been upgraded to measure two dimensional structure of the photon emissivity profile in order to investigate poloidal asymmetries in the core radiation. Commonly utilized unbiased absolute extreme ultraviolet (AXUV) diode arrays view the plasma along five different horizontal planes. The layout of the diagnostic set is shown and the results from calibrations and recent experiments are discussed. Data showing a significant, 30%-40%, inboard/outboard emissivity asymmetry during ELM-free H-mode are presented. The ability to use AXUV diode arrays to measure absolute radiated power is explored by comparing diode and resistive bolometer-based emissivity profiles for highly radiative L-mode plasmas seeded with argon. Emissivity profiles match in the core but disagree radially outward resulting in an underprediction of P rad of nearly 50% by the diodes compared to P rad determined using resistive bolometers.

  5. Two dimensional radiated power diagnostics on Alcator C-Moda)

    Science.gov (United States)

    Reinke, M. L.; Hutchinson, I. H.

    2008-10-01

    The radiated power diagnostics for the Alcator C-Mod tokamak have been upgraded to measure two dimensional structure of the photon emissivity profile in order to investigate poloidal asymmetries in the core radiation. Commonly utilized unbiased absolute extreme ultraviolet (AXUV) diode arrays view the plasma along five different horizontal planes. The layout of the diagnostic set is shown and the results from calibrations and recent experiments are discussed. Data showing a significant, 30%-40%, inboard/outboard emissivity asymmetry during ELM-free H-mode are presented. The ability to use AXUV diode arrays to measure absolute radiated power is explored by comparing diode and resistive bolometer-based emissivity profiles for highly radiative L-mode plasmas seeded with argon. Emissivity profiles match in the core but disagree radially outward resulting in an underprediction of Prad of nearly 50% by the diodes compared to Prad determined using resistive bolometers.

  6. Perspective on radiation from the nuclear power industry

    International Nuclear Information System (INIS)

    Cohen, B.L.

    1990-01-01

    Methods for estimating the risk of radiation induced cancer mortality to members of the public are outlined for each element of the nuclear power industry - reactor accidents, routine releases from nuclear plants, transport, mining and milling of uranium, and escape of buried radioactive waste (high level and low level). The results are compared with mortality risks from the air pollution and chemical carcinogens released into the ground in generating the same amount of electricity by coal burning - the latter are thousands of times larger. Radiation from nuclear power is also 1,000 times smaller than that from radon in homes. The amount of money spent to avert a death from nuclear power radiation is in the billion dollar range, whereas lives could be saved from radon in homes for 0.00001 times that cost. Medical screening and highway safety programs can save lives for a similarly low cost

  7. Performance Enhancement of Power Transistors and Radiation effect

    International Nuclear Information System (INIS)

    Hassn, Th.A.A.

    2012-01-01

    The main objective of this scientific research is studying the characteristic of bipolar junction transistor device and its performance under radiation fields and temperature effect as a control element in many power circuits. In this work we present the results of experimental measurements and analytical simulation of gamma – radiation effects on the electrical characteristics and operation of power transistor types 2N3773, 2N3055(as complementary silicon power transistor are designed for general-purpose switching and amplifier applications), three samples of each type were irradiated by gamma radiation with doses, 1 K rad, 5 K rad, 10 K rad, 30 K rad, and 10 Mrad, the experimental data are utilized to establish an analytical relation between the total absorbed dose of gamma irradiation and corresponding to effective density of generated charge in the internal structure of transistor, the electrical parameters which can be measured to estimate the generated defects in the power transistor are current gain, collector current and collected emitter leakage current , these changes cause the circuit to case proper functioning. Collector current and transconductance of each device are calibrated as a function of irradiated dose. Also the threshold voltage and transistor gain can be affected and also calibrated as a function of dose. A silicon NPN power transistor type 2N3773 intended for general purpose applications, were used in this work. It was designed for medium current and high power circuits. Performance and characteristic were discusses under temperature and gamma radiation doses. Also the internal junction thermal system of the transistor represented in terms of a junction thermal resistance (Rjth). The thermal resistance changed by ΔRjth, due to the external intended, also due to the gamma doses intended. The final result from the model analysis reveals that the emitter-bias configuration is quite stable by resistance ratio RB/RE. Also the current

  8. Calibration of radiation monitors at nuclear power plants

    International Nuclear Information System (INIS)

    Boudreau, L.; Miller, A.D.; Naughton, M.D.

    1994-03-01

    This work was performed to provide guidance to the utilities in the primary and secondary calibration of the radiation monitoring systems (RMS) installed in nuclear power plants. These systems are installed in nuclear power plants to monitor ongoing processes, identify changing radiation fields, predict and limit personnel radiation exposures and measure and control discharge of radioactive materials to the environment. RMS are checked and calibrated on a continuing basis to ensure their precision and accuracy. This report discusses various approaches towards primary and secondary calibrations of the RMS equipment in light of accepted practices at typical power plants and recent interpretations of regulatory guidance. Detailed calibration techniques and overall system responses, trends, and practices are discussed. Industry, utility, and regulatory sources were contacted to create an overall consensus of the most reasonable approaches to optimizing the performance of this equipment

  9. High Power Radiation Tolerant CubeSat Power System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — No vendor has yet to provide a radiation tolerant, high efficiency, small Power Management and Distribution module for the SmallSat and CubeSat market yet. Let alone...

  10. A computerized total-radiation management system for Shikoku Electric Power's Ikata nuclear-power plant

    International Nuclear Information System (INIS)

    Hirao, Toshiyuki; Sakakihara, Tetsuro; Tanabe, Shozo; Kano, Mamoru; Hoshi, Jun-ichi.

    1985-01-01

    This system allows on-line, real-time radiation management at nuclear-power plants. It increases management precision, decreases management workloads, and saves labor in operations that previously required specialized technicians to expend great amounts of time and effort on radiation management at facilities and their environments, environmental radiation evaluation, and control of radioactive waste. The article outlines the already installed system. (author)

  11. Physics contributions to radiation protection in nuclear power plants

    International Nuclear Information System (INIS)

    Krueger, F.W.

    1980-01-01

    Physical research and physical methods can essentially contribute to radiation protection in nuclear power plants. With their aid, properties of radiation sources can be determined, and calculations of radiation shields can be performed. In the present paper, such tasks are analyzed, the state of the art of their solution is evaluated, and trends of further work are shown. Focal points of the present study are the calculation of properties of radiation sources outside the reactor (fission products, activated corrosion products, decontamination facilities for contaminated media), exact and engineering methods for calculating radiation fields also in inhomogeneous shields, and classification of concretes for gamma-ray shielding. Objectives, possibilities, and problems of standardization of such activities are discussed. (author)

  12. Radiation protection in the Czechoslovak nuclear power plants

    International Nuclear Information System (INIS)

    Singer, J.; Koc, J.; Hynek, J.; Trousil, J.

    1987-01-01

    The radiation monitoring by means of the central information system and of autonomous, portable and laboratory devices as well as a brief characteristic of the nuclear power plant radiation fields are described. The new personal dosimetric film and thermoluminescent badges and the method (including the block diagram) for personal dose evaluation are also introduced. Internal contamination monitoring is performed by means of a whole-body counter and excreta sample analysis. Monitoring the influence of effluents from nuclear power plants on environment in Czechoslovakia is based on significant radionuclide measurements in ventilation stacks and in the environment, also by means of the telemetric system, all in connection with mathematical models. (author)

  13. Design aspects of radiation protection for nuclear power plants

    International Nuclear Information System (INIS)

    1985-01-01

    This Safety Guide deals with the provisions to be made in the design of thermal neutron reactor power plants to protect site personnel and the public from undue exposure to ionizing radiation during operational states and accident conditions. The effective radiation protection is a combination of good design, high quality construction and proper operation. The document gives guidance on how to satisfy the objectives contained in Subsection 2.2 and Section 9 of the Code of Practice on Design for Safety of Nuclear Power Plants

  14. Computer simulation of ionizing radiation burnout in power MOSFETs

    International Nuclear Information System (INIS)

    Keshavarz, A.A.; Fischer, T.A.; Dawes, W.R. Jr.; Hawkins, C.F.

    1988-01-01

    The transient response of a power MOSFET device to ionizing radiation was examined using the BAMBI device simulator. The radiation rate threshold for burnout was determined for several different cases. The burnout mechanism was attributed to current-induced avalanche. The effects of the applied drain-source voltage and the base width of the parasitic bipolar device on the threshold level were modeled. It was found that the radiation rate threshold is lower at higher drain-source voltages or narrower bases. 8 refs., 17 figs

  15. Some problems concerning the radiation protection in nuclear power stations

    International Nuclear Information System (INIS)

    Bozoky, L.

    1977-01-01

    The appearance and fast spreading of the nuclear power stations raised new and difficult questions in connection with the theoretical bases of radiation protection. The new standpoint of the International Commission on Radiological Protection is that both the workers at a pile and the inhabitants take less risk because of ionizing radiation than they usually take in everyday life. The maximum dose which can be permitted remained 5 rem/year for those who professionally deal with ionizing radiation and 0.5 rem/year for the groups in special situation. (V.N.)

  16. Focusing of cosmic radiation near power lines. A theoretical approach

    International Nuclear Information System (INIS)

    Skedsmo, A.; Vistnes, A.I.

    1997-02-01

    The purpose of this work was to determine if, and to what extent, cosmic radiation can be focused by power lines. As an alternative to experimental measurements, a computer program was developed for simulation of particle trajectories. Starting from given initial values, the cosmic particles trajectories through the electromagnetic field surrounding power lines were simulated. Particular efforts have been made to choose initial values which represent the actual physical condition of the cosmic radiation at ground level. The results show an average decrease in the particle flux density in an area below a power line and a corresponding increased flux between 12 m and 45 m on either side of the centre of the power line. The average shift in flux density is, however, extremely small (less than 0.1%) and probably not measurable with existing detector technology. 11 refs., 4 figs., 2 tabs

  17. 47 CFR 22.535 - Effective radiated power limits.

    Science.gov (United States)

    2010-10-01

    ... limits. The effective radiated power (ERP) of transmitters operating on the channels listed in § 22.531 must not exceed the limits in this section. (a) Maximum ERP. The ERP must not exceed the applicable limits in this paragraph under any circumstances. Frequency range (MHz) Maximum ERP (Watts) 35-36 600 43...

  18. Measurement of gamma radiation doses in nuclear power plant environment

    International Nuclear Information System (INIS)

    Bochvar, I.A.; Keirim-Markus, I.B.; Sergeeva, N.A.

    1976-01-01

    Considered are the problems of measuring gamma radiation dose values and the dose distribution in the nuclear power plant area with the aim of estimating the extent of their effect on the population. Presented are the dosimeters applied, their distribution throughout the controlled area, time of measurement. The distribution of gamma radiation doses over the controlled area and the dose alteration with the increase of the distance from the release source are shown. The results of measurements are investigated. The conclusion is made that operating nuclear power plants do not cause any increase in the gamma radiation dose over the area. Recommendations for clarifying the techniques for using dose-meters and decreasing measurement errors are given [ru

  19. Radiation burden of population in nuclear power plant siting

    International Nuclear Information System (INIS)

    Navratil, J.

    The significance is discussed of the determination of the radiobiological consequences of normal operation and design basis accidents in nuclear power plant siting. The basic diagram and brief description is given of the programme for calculating the radiation load of the population in the surroundings of the nuclear power plant. The programme consists of two subprogrammes, i.e., the dispersion of radioactive gases (for normal operation and for accidents), the main programme for the determination of biological consequences and one auxiliary programme (the distribution of the population in the surroundings of the power plant). The four most important types of exposure to ionizing radiation are considered, namely inhalation, external irradiation from a cloud, ingestion (water, milk, vegetables), external irradiation from the deposit. (B.S.)

  20. ELBE Center for High-Power Radiation Sources

    Directory of Open Access Journals (Sweden)

    Peter Dr. Michel

    2016-01-01

    Full Text Available In the ELBE Center for High-Power Radiation Sources, the superconducting linear electron accelerator ELBE, serving  two free electron lasers, sources for intense coherent THz radiation, mono-energetic positrons, electrons, γ-rays, a neutron time-of-flight system as well as two synchronized ultra-short pulsed Petawatt laser systems are collocated. The characteristics of these beams make the ELBE center a unique research instrument for a variety of external users in fields ranging from material science over nuclear physics to cancer research, as well as scientists of the Helmholtz-Zentrum Dresden-Rossendorf (HZDR.

  1. Possible radiation injury at Koeberg Nuclear Power Station

    International Nuclear Information System (INIS)

    Van Rensburg, L.C.J.; De Villiers, B.; Van Zyl, C.J.

    1986-01-01

    Any injured patient from Koeberg Nuclear Power Station will be treated in the conventional manner as an acute surgical emergency; this has priority over decontamination. The ideal situation is decontamination at Koeberg before ambulance transferral to the Tygerberg Radiation Casualty Facility, but if this is not possible or complete, decontamination can be accomplished by a trained team in the unit. Teamwork is the essence at the place of injury, during transfer, in the decontamination area, in the operating theatre and during the postoperative phase. No surgical management is appropriate or complete without the very necessary guidance and advice from a physicist and the Advisory Group for Radiation Casualties

  2. New sources of high-power coherent radiation

    International Nuclear Information System (INIS)

    Sprehngl, F.

    1985-01-01

    New sources of high-power coherent radiation in the wavelength range from millimeter to ultraviolet are reviewed. Physical mechanisms underlying concepts of free electrons laser, cyclotron resonance laser and other new radiation sources are described. Free electron lasers and cyclotron resonance lasers are shown to suggest excellent possibilities for solving problems of spectroscopy, plasma heating radar and accelerator technology. Results of experiments with free electron laser in the Compton mode using linear accelerators microtrons and storage rings are given. Trends in further investigations are shown

  3. Very high power THz radiation at Jefferson Lab

    International Nuclear Information System (INIS)

    Carr, G.L.; Martin, Michael C.; McKinney, Wayne R.; Jordan, K.; Neil, George R.; Williams, G.P.

    2002-01-01

    We report the production of high power (20 watts average, ∼;1 Megawatt peak) broadband THz light based on coherent emission from relativistic electrons. We describe the source, presenting theoretical calculations and their experimental verification. For clarity we compare this source with one based on ultrafast laser techniques, and in fact the radiation has qualities closely analogous to that produced by such sources, namely that it is spatially coherent, and comprises short duration pulses with transform-limited spectral content. In contrast to conventional THz radiation, however, the intensity is many orders of magnitude greater due to the relativistic enhancement

  4. Radiation protection during operation of nuclear power plants

    International Nuclear Information System (INIS)

    1983-01-01

    This Guide describes a Radiation Protection Programme for nuclear power plants. It includes: (1) An outline of the basic principles as well as practical aspects of the programme; (2) A description of the responsibilities of the operating organization to establish an effective programme based upon these principles; (3) A description of the administrative and technical measures to establish and implement the programme. This Guide also deals with the operational aspects to be considered by the operating organization in reviewing design in order to facilitate implementation of the Radiation Protection Programme. This Guide covers the requirements for a Radiation Protection Programme for all operational states of the nuclear power plant. It also includes guidelines for handling planned special exposures and for coping with unplanned exposures and contamination of personnel, areas, and equipment. Additional information concerning emergency situations involving releases of radioactive materials is given in Safety Guides 50-SG-O6, ''Preparedness of the Operating Organization (Licensee) for Emergencies at Nuclear Power Plants'', and 50-SG-G6, ''Preparedness of Public Authorities for Emergencies at Nuclear Power Plants''. This Guide covers the principles of dose limitation to site personnel and to the public, but it does not include detailed instructions on the techniques used for the actual measurement and evaluation of the exposures. This Guide does not include detailed instructions on environmental surveys, but it does mention principal steps in environmental monitoring which may be required for confirmation of the acceptability of radioactive discharges

  5. Tetrode bias power supply for Indus-1, synchrotron radiation source

    International Nuclear Information System (INIS)

    Tripathi, A.; Badapanda, M.K.; Tyagi, R.; Upadhyay, R.; Bohrey, A.; Hannurkar, P.R.

    2009-01-01

    An AC regulator based 7 kV, 3 A high voltage DC power supply is designed, fabricated and tested on dummy load for BEL make Tetrode type 15000CX, used in the high power RF amplifier at 31.613 MHz employed with INDUS-1, Synchrotron Radiation Source (SRS). Various protections features like over voltage, under voltage, over current, phase failure and phase reversal are incorporated in this power supply and presented in this paper. As Tetrode amplifier requires various other power supplies in addition to this bias power supply and they are operated in a particular sequence for its healthy operation, suitable interlock arrangements have been incorporated and also presented in this paper. The reliable operation of protection and interlock features incorporated in this power supply has been checked with dummy load under simulated conditions. Three numbers of series limiting inductors, one in each phase, have been incorporated in this power supply to limit fault currents under unfavourable conditions and there by increasing the overall life of this power supply. It will replace existing 7 kV, 3 A HVDC power supply, which is in operation for more than fifteen years with Indus-1 SRS and is likely to be helpful in reducing the down time of Indus-1 SRS. It has better performance features than the existing power supply. The long term voltage stability better than 0.3 % and output ripple less than 0.3 % have been achieved for this Tetrode bias power supply. This power supply is likely to be integrated with INDUS-1 SRS soon. (author)

  6. Relative radiation hazards of coal based and nuclear power plants

    International Nuclear Information System (INIS)

    Mishra, U.C.

    1983-04-01

    Coal, like most materials found in nature, contains trace quantities of naturally occurring radionuclides. However, low concentrations may become important if large quantities of coal are burnt in thermal power plants. Therefore a study was performed to determine the radioactivity in coal, in fly-ash and slag and assess the importance of radioactive emissions from thermal power plants. The results were compared to the radiological impact of nuclear power stations. Based on these data, theoretical estimates for the population living within 80km from power stations indicate that the collective dose commitments of coal-fired plants are one order of magnitude higher than those for BWR-type nuclear plants. Measurements taken in the vicinity of coal-fired plants were comparable to those for nuclear plants, i.e. within the range of variation of natural background radiation in India

  7. Syrinx - a research program for the pulsed power radiation facility

    International Nuclear Information System (INIS)

    Etlicher, B.; Chuvatin, A.S.; Choi, P.

    1996-01-01

    Syrinx is a targeted research program with the objective to study, through practical examples, the fundamentals necessary to define the details of all parts which will be required for a new powerful plasma radiation source. The current level of activities of Syrinx is in the design and construction of a multi-megajoule class IES based pulsed power driver which will use long conduction Plasma Opening Switch technology. The present paper reviews mainly the basic experimental research of the POS a nd Z-pinch accomplished in the framework of Syrinx project. This work has a unique international level of participation, from conceptual designs to particular investigations. (author). 9 figs., 17 refs

  8. Low power consumption and high temperature durability for radiation sensor

    International Nuclear Information System (INIS)

    Matsumoto, Yoshinori; Ueno, Hiroto

    2015-01-01

    Low power consumption and high temperature operation are important in an environmental monitoring system. The power consumption of 3 mW is achieved for the radiation sensor using low voltage operational amplifier and comparator in the signal processing circuit. The leakage reverse current of photodiode causes the charge amplifier saturation over 50degC. High temperature durability was improved by optimizing the circuit configuration and the values of feedback resistance and capacitance in the charge amplifier. The pulse response of the radiation sensor was measured up to 55degC. The custom detection circuit was designed by 0.6 μm CMOS process at 5-V supply voltage. The operation temperature was improved up to 65degC. (author)

  9. Lunar and Martian environmental interactions with nuclear power system radiators

    International Nuclear Information System (INIS)

    Perez-Davis, M.E.; Gaier, J.R.; Katzan, C.M.

    1994-01-01

    In the foreseeable future, NASA space milestones include a permanent manned presence on the Moon and an expedition to the planet Mars. Such steps will require careful consideration of environmental interactions in the selection and design of required power systems. Several environmental constituents may be hazardous to performance integrity. Potential threats common to both the Moon and Mars are low ambient temperatures, wide daily temperature swings, solar flux, and large quantities of dust. The surface of Mars provides the additional challenges of dust storms, winds, and a carbon dioxide atmosphere. In this review, the anticipated environmental interactions with surface power system radiators are described, as well as the impacts of these interactions on radiator durability, which have been identified at NASA Lewis Research Center

  10. Training in radiation protection for personnels in nuclear power plants

    International Nuclear Information System (INIS)

    Constancis, J.; Gauthier, A.

    1980-01-01

    For more than 10 years, in order to meet the wishes of their members, the A.P.A.V.E. associations have organised training courses in personnel radiation protection, as a consequence of their activities in the inspection of ionizing radiation sources in industrial or medical environments. Because of their experience, the A.P.A.V.E. associations were asked to provide for the training of the film personnel likely to work in nuclear power stations, in the field of occupational radiation protection. For the last 3 years, nearly 5,000 people have attended these training sessions. The present report describes the approach, draws the first conclusions and state some considerations on this subject [fr

  11. Variation of Neutron Moderating Power on HDPE by Gamma Radiation

    International Nuclear Information System (INIS)

    Park, Kwang June; Ju, June Sik; Kang, Hee Young; Shin, Hee Sung; Kim, Ho Dong

    2009-01-01

    High density polyethylene (HDPE) is degraded due to a radiation-induced oxidation when it is used as a neutron moderator in a neutron counter for a nuclear material accounting of spent fuels. The HDPE exposed to the gamma-ray emitted from the fission products in a spent nuclear fuel results in a radiation-induced degradation which changes its original molecular structure to others. So a neutron moderating power variation of HDPE, irradiated by a gamma radiation, was investigated in this work. Five HDPE moderator structures were exposed to the gamma radiation emitted from a 60 Co source to a level of 10 5 -10 9 rad to compare their post-irradiation properties. As a result of the neutron measurement test with 5 irradiated HDPE structures and a neutron measuring system, it was confirmed that the neutron moderating power for the 105 rad irradiated HDPE moderator revealed the largest decrease when the un-irradiated pure one was used as a reference. It implies that a neutron moderating power variation of HDPE is not directly proportional to the integrated gamma dose rate. To clarify the cause of these changes, some techniques such as a FTIR, an element analysis and a densitometry were employed. As a result of these analyses, it was confirmed that the molecular structure of the gamma irradiated HDPEs had partially changed to others, and the contents of hydrogen and oxygen had varied during the process of a radiation-induced degradation. The mechanism of these changes cannot be explained in detail at present, and thus need further study

  12. POWER BEAMING LEAKAGE RADIATION AS A SETI OBSERVABLE

    Energy Technology Data Exchange (ETDEWEB)

    Benford, James N. [Microwave Sciences, 1041 Los Arabis Lane, Lafayette, CA 94549 (United States); Benford, Dominic J., E-mail: jimbenford@gmail.com [NASA’s Goddard Space Flight Center, Observational Cosmology Laboratory, Greenbelt, MD 20771 (United States)

    2016-07-10

    The most observable leakage radiation from an advanced civilization may well be from the use of power beaming to transfer energy and accelerate spacecraft. Applications suggested for power beaming involve launching spacecraft to orbit, raising satellites to a higher orbit, and interplanetary concepts involving space-to-space transfers of cargo or passengers. We also quantify beam-driven launch to the outer solar system, interstellar precursors, and ultimately starships. We estimate the principal observable parameters of power beaming leakage. Extraterrestrial civilizations would know their power beams could be observed, and so could put a message on the power beam and broadcast it for our receipt at little additional energy or cost. By observing leakage from power beams we may find a message embedded on the beam. Recent observations of the anomalous star KIC 8462852 by the Allen Telescope Array (ATA) set some limits on extraterrestrial power beaming in that system. We show that most power beaming applications commensurate with those suggested for our solar system would be detectable if using the frequency range monitored by the ATA, and so the lack of detection is a meaningful, if modest, constraint on extraterrestrial power beaming in that system. Until more extensive observations are made, the limited observation time and frequency coverage are not sufficiently broad in frequency and duration to produce firm conclusions. Such beams would be visible over large interstellar distances. This implies a new approach to the SETI search: instead of focusing on narrowband beacon transmissions generated by another civilization, look for more powerful beams with much wider bandwidth. This requires a new approach for their discovery by telescopes on Earth. Further studies of power beaming applications should be performed, potentially broadening the parameter space of the observable features that we have discussed here.

  13. Periodic table as a powerful tool for radiation education

    International Nuclear Information System (INIS)

    Aratani, Michi; Osanai, Yuko; Uchiumi, Fumiko; Tsushima, Kazuko; Kamayachi, Tei; Kudo, Michiko

    2005-01-01

    The periodic tables ordinarily start with an element of atomic number 1, hydrogen. Hydrogen atoms, however, are derived from neutrons by way of β decay. Consequently, neutron should be located at a zero position of atomic number, which corresponds to the left side and above helium. A periodic table, especially with the zero position for neutron, is essential from present view of matter and serves as a powerful tool for radiation education. (author)

  14. Radiation Testing of PICA at the Solar Power Tower

    Science.gov (United States)

    White, Susan

    2010-01-01

    Sandia National Laboratory's Solar Power Tower was used to irradiate specimens of Phenolic Impregnated Carbon Ablator (PICA), in order to evaluate whether this thermal protection system material responded differently to potential shock layer radiative heating than to convective heating. Tests were run at 50, 100 and 150 Watts per square centimeter levels of concentrated solar radiation. Experimental results are presented both from spectral measurements on 1- 10 mm thick specimens of PICA, as well as from in-depth temperature measurements on instrumented thicker test specimens. Both spectral measurements and measured in-depth temperature profiles showed that, although it is a porous, low-density material, PICA does not exhibit problematic transparency to the tested high levels of NIR radiation, for all pragmatic cm-to-inch scale thicknesses. PICA acted as a surface absorber to efficiently absorb the incident visible and near infrared incident radiation in the top 2 millimeter layer in the Solar Power Tower tests up to 150 Watts per square centimeter.

  15. High power beam profile monitor with optical transition radiation

    International Nuclear Information System (INIS)

    Denard, J.C.; Piot, P.; Capek, K.; Feldl, E.

    1997-01-01

    A simple monitor has been built to measure the profile of the high power beam (800 kW) delivered by the CEBAF accelerator at Jefferson Lab. The monitor uses the optical part of the forward transition radiation emitted from a thin carbon foil. The small beam size to be measured, about 100 μm, is challenging not only for the power density involved but also for the resolution the instrument must achieve. An important part of the beam instrumentation community believes the radiation being emitted into a cone of characteristic angle 1/γ is originated from a region of transverse dimension roughly λγ; thus the apparent size of the source of transition radiation would become very large for highly relativistic particles. This monitor measures 100 μm beam sizes that are much smaller than the 3.2 mm λγ limit; it confirms the statement of Rule and Fiorito that optical transition radiation can be used to image small beams at high energy. The present paper describes the instrument and its performance. The authors tested the foil in, up to 180 μA of CW beam without causing noticeable beam loss, even at 800 MeV, the lowest CEBAF energy

  16. Reduction of radiation exposure in Japanese BWR Nuclear Power Plants

    International Nuclear Information System (INIS)

    Morikawa, Yoshitake

    1995-01-01

    The reduction of occupational exposure to radiation during the annual inspection and maintenance outages of Japanese boiling water reactors (BWR) is one of the most important objectives for stable and reliable operation. It was shown that this radiation exposure is caused by radionuclides, such as Co-60, Co-58 and Mn-54 which are produced from the metal elements Co, Ni, and Fe present in the corrosion products of structural materials that had been irradiated by neutrons. Therefore, to reduce radiation sources and exposures in Japanese BWRs, attempts have been reinforced to remove corrosion products and activated corrosion products from the primary coolant system. This paper describes the progress of the application of these measures to Japanese BWRs. Most Japanese BWR-4 and BWR-5 type nuclear power plants started their commercial operations during the 1970s. With the elapse of time during operations, a problem came to the forefront, namely that occupational radiation exposure during plant outages gradually increased, which obstructed the smooth running of inspections and maintenance work. To overcome this problem, extensive studies to derive effective countermeasures for radiation exposure reduction were undertaken, based on the evaluation of the plants operation data

  17. Reduction of radiation exposure in Japanese BWR Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Morikawa, Yoshitake [ISOGO Nuclear Engineering Center, Yokohama (Japan)

    1995-03-01

    The reduction of occupational exposure to radiation during the annual inspection and maintenance outages of Japanese boiling water reactors (BWR) is one of the most important objectives for stable and reliable operation. It was shown that this radiation exposure is caused by radionuclides, such as Co-60, Co-58 and Mn-54 which are produced from the metal elements Co, Ni, and Fe present in the corrosion products of structural materials that had been irradiated by neutrons. Therefore, to reduce radiation sources and exposures in Japanese BWRs, attempts have been reinforced to remove corrosion products and activated corrosion products from the primary coolant system. This paper describes the progress of the application of these measures to Japanese BWRs. Most Japanese BWR-4 and BWR-5 type nuclear power plants started their commercial operations during the 1970s. With the elapse of time during operations, a problem came to the forefront, namely that occupational radiation exposure during plant outages gradually increased, which obstructed the smooth running of inspections and maintenance work. To overcome this problem, extensive studies to derive effective countermeasures for radiation exposure reduction were undertaken, based on the evaluation of the plants operation data.

  18. An adaptive crystal bender for high power synchrotron radiation beams

    International Nuclear Information System (INIS)

    Berman, L.E.; Hastings, J.B.

    1992-01-01

    Perfect crystal monochromators cannot diffract x-rays efficiently, nor transmit the high source brightness available at synchrotron radiation facilities, unless surface strains within the beam footprint are maintained within a few arcseconds. Insertion devices at existing synchrotron sources already produce x-ray power density levels that can induce surface slope errors of several arcseconds on silicon monochromator crystals at room temperature, no matter how well the crystal is cooled. The power density levels that will be produced by insertion devices at the third-generation sources will be as much as a factor of 100 higher still. One method of restoring ideal x-ray diffraction behavior, while coping with high power levels, involves adaptive compensation of the induced thermal strain field. The design and performance, using the X25 hybrid wiggler beam line at the National Synchrotron Light Source (NSLS), of a silicon crystal bender constructed for this purpose are described

  19. Study on Pyroelectric Harvesters Integrating Solar Radiation with Wind Power

    Directory of Open Access Journals (Sweden)

    Chun-Ching Hsiao

    2015-07-01

    Full Text Available Pyroelectric harvesters use temperature fluctuations to generate electrical outputs. Solar radiation and waste heat are rich energy sources that can be harvested. Pyroelectric energy converters offer a novel and direct energy-conversion technology by transforming time-dependent temperatures directly into electricity. Moreover, the great challenge for pyroelectric energy harvesting lies in finding promising temperature variations or an alternating thermal loading in real situations. Hence, in this article, a novel pyroelectric harvester integrating solar radiation with wind power by the pyroelectric effect is proposed. Solar radiation is a thermal source, and wind is a dynamic potential. A disk generator is used for harvesting wind power. A mechanism is considered to convert the rotary energy of the disk generator to drive a shutter for generating temperature variations in pyroelectric cells using a planetary gear system. The optimal period of the pyroelectric cells is 35 s to harvest the stored energy, about 70 μJ, while the rotary velocity of the disk generator is about 31 RPM and the wind speed is about 1 m/s. In this state, the stored energy acquired from the pyroelectric harvester is about 75% more than that from the disk generator. Although the generated energy of the proposed pyroelectric harvester is less than that of the disk generator, the pyroelectric harvester plays a complementary role when the disk generator is inactive in situations of low wind speed.

  20. The Japan Power Demonstration Reactor dismantling project. Radiation control

    International Nuclear Information System (INIS)

    Tomii, Hiroyuki; Seiki, Yoshihiro

    1996-01-01

    In the Japan Power Demonstration Reactor (JPDR) dismantling project, radiation control was performed properly with routine and special monitoring to keep the occupational safety and to collect data necessary for future dismantling of nuclear facilities. This report describes a summary of radiation control in the dismantling activities and some results of parametric analysis on dose equivalent evaluation, and introduces the following knowledge on radiological protection effectiveness of the dismantling systems applied in the project. a) Use of remote dismantling systems was effective in reducing equivalent workplace exposure. b) Utilization of existing facilities as radiation shield or radioactivity containment was effective in reducing workplace exposure, and also in increasing work efficiency. c) Use of underwater cutting systems was useful to minimize air contamination, and to reduce the dose equivalent rate in the working area. d) In the planning of dismantling, it is necessary to optimize the radiation protection by analyzing dismantling work procedures and evaluating radiological features of the dismantling systems applied, including additional work which the systems require brought from such activities. (author)

  1. Miniaturized, low power FGMOSFET radiation sensor and wireless dosimeter system

    KAUST Repository

    Arsalan, Muhammad

    2013-08-27

    A miniaturized floating gate (FG) MOSFET radiation sensor system is disclosed, The sensor preferably comprises a matched pair of sensor and reference FGMOSFETs wherein the sensor FGMOSFET has a larger area floating gate with an extension over a field oxide layer, for accumulation of charge and increased sensitivity. Elimination of a conventional control gate and injector gate reduces capacitance, and increases sensitivity, and allows for fabrication using standard low cost CMOS technology. A sensor system may be provided with integrated signal processing electronics, for monitoring a change in differential channel current I.sub.D, indicative of radiation dose, and an integrated negative bias generator for automatic pre-charging from a low voltage power source. Optionally, the system may be coupled to a wireless transmitter. A compact wireless sensor System on Package solution is presented, suitable for dosimetry for radiotherapy or other biomedical applications.

  2. Miniaturized, low power FGMOSFET radiation sensor and wireless dosimeter system

    KAUST Repository

    Arsalan, Muhammad; Shamim, Atif; Tarr, Nicholas Garry; Roy, Langis

    2013-01-01

    A miniaturized floating gate (FG) MOSFET radiation sensor system is disclosed, The sensor preferably comprises a matched pair of sensor and reference FGMOSFETs wherein the sensor FGMOSFET has a larger area floating gate with an extension over a field oxide layer, for accumulation of charge and increased sensitivity. Elimination of a conventional control gate and injector gate reduces capacitance, and increases sensitivity, and allows for fabrication using standard low cost CMOS technology. A sensor system may be provided with integrated signal processing electronics, for monitoring a change in differential channel current I.sub.D, indicative of radiation dose, and an integrated negative bias generator for automatic pre-charging from a low voltage power source. Optionally, the system may be coupled to a wireless transmitter. A compact wireless sensor System on Package solution is presented, suitable for dosimetry for radiotherapy or other biomedical applications.

  3. Radiation resistance of wide-bandgap semiconductor power transistors

    Energy Technology Data Exchange (ETDEWEB)

    Hazdra, Pavel; Popelka, Stanislav [Department of Microelectronics, Czech Technical University in Prague (Czech Republic)

    2017-04-15

    Radiation resistance of state-of-the-art commercial wide-bandgap power transistors, 1700 V 4H-SiC power MOSFETs and 200 V GaN HEMTs, to the total ionization dose was investigated. Transistors were irradiated with 4.5 MeV electrons with doses up to 2000 kGy. Electrical characteristics and introduced defects were characterized by current-voltage (I-V), capacitance-voltage (C-V), and deep level transient spectroscopy (DLTS) measurements. Results show that already low doses of 4.5 MeV electrons (>1 kGy) cause a significant decrease in threshold voltage of SiC MOSFETs due to embedding of the positive charge into the gate oxide. On the other hand, other parameters like the ON-state resistance are nearly unchanged up to the dose of 20 kGy. At 200 kGy, the threshold voltage returns back close to its original value, however, the ON-state resistance increases and transconductance is lowered. This effect is caused by radiation defects introduced into the low-doped drift region which decrease electron concentration and mobility. GaN HEMTs exhibit significantly higher radiation resistance. They keep within the datasheet specification up to doses of 2000 kGy. Absence of dielectric layer beneath the gate and high concentration of carriers in the two dimensional electron gas channel are the reasons of higher radiation resistance of GaN HEMTs. Their degradation then occurs at much higher doses due to electron mobility degradation. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Calculating the Responses of Self-Powered Radiation Detectors.

    Science.gov (United States)

    Thornton, D. A.

    Available from UMI in association with The British Library. The aim of this research is to review and develop the theoretical understanding of the responses of Self -Powered Radiation Detectors (SPDs) in Pressurized Water Reactors (PWRs). Two very different models are considered. A simple analytic model of the responses of SPDs to neutrons and gamma radiation is presented. It is a development of the work of several previous authors and has been incorporated into a computer program (called GENSPD), the predictions of which have been compared with experimental and theoretical results reported in the literature. Generally, the comparisons show reasonable consistency; where there is poor agreement explanations have been sought and presented. Two major limitations of analytic models have been identified; neglect of current generation in insulators and over-simplified electron transport treatments. Both of these are developed in the current work. A second model based on the Explicit Representation of Radiation Sources and Transport (ERRST) is presented and evaluated for several SPDs in a PWR at beginning of life. The model incorporates simulation of the production and subsequent transport of neutrons, gamma rays and electrons, both internal and external to the detector. Neutron fluxes and fuel power ratings have been evaluated with core physics calculations. Neutron interaction rates in assembly and detector materials have been evaluated in lattice calculations employing deterministic transport and diffusion methods. The transport of the reactor gamma radiation has been calculated with Monte Carlo, adjusted diffusion and point-kernel methods. The electron flux associated with the reactor gamma field as well as the internal charge deposition effects of the transport of photons and electrons have been calculated with coupled Monte Carlo calculations of photon and electron transport. The predicted response of a SPD is evaluated as the sum of contributions from individual

  5. Low-Cost Radiator for Fission Power Thermal Control

    Science.gov (United States)

    Maxwell, Taylor; Tarau, Calin; Anderson, William; Hartenstine, John; Stern, Theodore; Walmsley, Nicholas; Briggs, Maxwell

    2014-01-01

    NASA Glenn Research Center (GRC) is developing fission power system technology for future Lunar surface power applications. The systems are envisioned in the 10 to 100kW(sub e) range and have an anticipated design life of 8 to 15 years with no maintenance. NASA GRC is currently setting up a 55 kW(sub e) non-nuclear system ground test in thermal-vacuum to validate technologies required to transfer reactor heat, convert the heat into electricity, reject waste heat, process the electrical output, and demonstrate overall system performance. Reducing the radiator mass, size, and cost is essential to the success of the program. To meet these goals, Advanced Cooling Technologies, Inc. (ACT) and Vanguard Space Technologies, Inc. (VST) are developing a single facesheet radiator with heat pipes directly bonded to the facesheet. The facesheet material is a graphite fiber reinforced composite (GFRC) and the heat pipes are titanium/water. By directly bonding a single facesheet to the heat pipes, several heavy and expensive components can be eliminated from the traditional radiator design such as, POC(TradeMark) foam saddles, aluminum honeycomb, and a second facesheet. A two-heat pipe radiator prototype, based on the single facesheet direct-bond concept, was fabricated and tested to verify the ability of the direct-bond joint to withstand coefficient of thermal expansion (CTE) induced stresses during thermal cycling. The thermal gradients along the bonds were measured before and after thermal cycle tests to determine if the performance degraded. Overall, the results indicated that the initial uniformity of the adhesive was poor along one of the heat pipes. However, both direct bond joints showed no measureable amount of degradation after being thermally cycled at both moderate and aggressive conditions.

  6. Method of fabricating self-powered nuclear radiation detector assemblies

    International Nuclear Information System (INIS)

    Playfoot, K.; Bauer, R.F.; Sekella, Y.M.

    1982-01-01

    In a method of fabricating a self-powered nuclear radiation detector assembly an emitter electrode wire and signal cable center wire are connected and disposed within the collector electrode tubular sheath with compressible insulating means disposed between the wires and the tubular sheath. The above assembly is reduced in diameter while elongating the tubular sheath and the emitter wire and signal cable wire. The emitter wire is reduced to a predetermined desired diameter, and is trimmed to a predetermined length. An end cap is hermetically sealed to the tubular sheath at the extending end of the emitter with insulating means between the emitter end and the end cap. (author)

  7. Ionizing radiation risks to satellite power systems (SPS) workers

    International Nuclear Information System (INIS)

    1980-11-01

    The radiation risks to the health of workers who will construct and maintain solar power satellites in the space environment were examined. For ionizing radiation, the major concern will be late or delayed health effects, particularly the increased risk of radiation-induced cancer. The estimated lifetime risk for cancer is 0.8 to 5.0 excess deaths per 10,000 workers per rad of exposure. Thus, for example, in 10,000 workers who completed ten missions with an exposure of 40 rem per mission, 320 to 2000 additional deaths in excess of the 1640 deaths from normally occurring cancer, would be expected. These estimates would indicate a 20 to 120% increase in cancer deaths in the worker-population. The wide range in these estimates stems from the choice of the risk-projection model and the dose-response relationsip. The choice between a linear and a linear-quadratic dose-response model may alter the risk estimate by a factor of about two. The method of analysis (e.g., relative vs absolute risk model) can alter the risk estimate by an additional factor of three. Choosing different age and sex distributions can further change the estimate by another factor of up to three. The potential genetic consequences could be of significance, but at the present time, sufficient information on the age and sex distribution of the worker population is lacking for precise estimation of risk. The potential teratogenic consequences resulting from radiation are considered significant. Radiation exposure of a pregnant worker could result in developmental abnormalities

  8. Ionizing radiation risks to satellite power systems (SPS) workers

    Energy Technology Data Exchange (ETDEWEB)

    Lyman, J.T.; Ainsworth, E.J.; Alpen, E.L.; Bond, V.; Curtis, S.B.; Fry, R.J.M.; Jackson, K.L.; Nachtwey, S.; Sondhaus, C.; Tobias, C.A.; Fabrikant, J.I.

    1980-11-01

    The radiation risks to the health of workers who will construct and maintain solar power satellites in the space environment were examined. For ionizing radiation, the major concern will be late or delayed health effects, particularly the increased risk of radiation-induced cancer. The estimated lifetime risk for cancer is 0.8 to 5.0 excess deaths per 10,000 workers per rad of exposure. Thus, for example, in 10,000 workers who completed ten missions with an exposure of 40 rem per mission, 320 to 2000 additional deaths in excess of the 1640 deaths from normally occurring cancer, would be expected. These estimates would indicate a 20 to 120% increase in cancer deaths in the worker-population. The wide range in these estimates stems from the choice of the risk-projection model and the dose-response relationsip. The choice between a linear and a linear-quadratic dose-response model may alter the risk estimate by a factor of about two. The method of analysis (e.g., relative vs absolute risk model) can alter the risk estimate by an additional factor of three. Choosing different age and sex distributions can further change the estimate by another factor of up to three. The potential genetic consequences could be of significance, but at the present time, sufficient information on the age and sex distribution of the worker population is lacking for precise estimation of risk. The potential teratogenic consequences resulting from radiation are considered significant. Radiation exposure of a pregnant worker could result in developmental abnormalities.

  9. Safety and Radiation Protection at Swedish Nuclear Power Plants 2005

    International Nuclear Information System (INIS)

    2006-05-01

    -to-date and documented safety analyses must be prepared and actively be included in both the preventive safety work and in connection with plant modifications. The licensees have implemented design analysis projects for a long period of time and clarified and stringent regulations for safety analyses have entered into force in 2005. As a result, updated safety reports exist for many of the facilities and schedules exist for the supplementary work that remains to be done. SKI's reinforced supervision of Barsebaeck 2 continued until the closure of the reactor on May 31, 2005. In SKI's opinion, BKAB mainly handled the lengthy facility closure in a satisfactory manner. The handling of nuclear waste at the nuclear facilities has mainly functioned well. The same applies to the operation of the Repository for Low and Intermediate-level Operational Waste (SFR-1) and the Central Interim Storage Facility for Spent Nuclear Fuel (CLAB). The overall evaluation of the Swedish Radiation Protection Authority (SSI) is that radiation protection at Swedish nuclear power plants has functioned well in 2005. The total radiation dose to the personnel at Swedish nuclear power plants was 9.2 manSv, which agrees with the average value of the total radiation doses over the last five years (9 manSv). No-one received a radiation dose in excess of the established dose limits and the radiation levels in the facilities are largely unchanged compared with previous years. The radiation doses to the public from the Swedish nuclear power plants continue to be low. SSI considers that continuous work is also needed in the future at the facilities to further reduce radioactive releases by applying the best available technique (BAT) and other measures. The control measurements that SSI is conducting on environmental samples from around the nuclear power facilities as well as on radioactive releases to water show a good agreement with the licensees' own measurements

  10. Safety and Radiation Protection at Swedish Nuclear Power Plants 2005

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-05-15

    other things. Up-to-date and documented safety analyses must be prepared and actively be included in both the preventive safety work and in connection with plant modifications. The licensees have implemented design analysis projects for a long period of time and clarified and stringent regulations for safety analyses have entered into force in 2005. As a result, updated safety reports exist for many of the facilities and schedules exist for the supplementary work that remains to be done. SKI's reinforced supervision of Barsebaeck 2 continued until the closure of the reactor on May 31, 2005. In SKI's opinion, BKAB mainly handled the lengthy facility closure in a satisfactory manner. The handling of nuclear waste at the nuclear facilities has mainly functioned well. The same applies to the operation of the Repository for Low and Intermediate-level Operational Waste (SFR-1) and the Central Interim Storage Facility for Spent Nuclear Fuel (CLAB). The overall evaluation of the Swedish Radiation Protection Authority (SSI) is that radiation protection at Swedish nuclear power plants has functioned well in 2005. The total radiation dose to the personnel at Swedish nuclear power plants was 9.2 manSv, which agrees with the average value of the total radiation doses over the last five years (9 manSv). No-one received a radiation dose in excess of the established dose limits and the radiation levels in the facilities are largely unchanged compared with previous years. The radiation doses to the public from the Swedish nuclear power plants continue to be low. SSI considers that continuous work is also needed in the future at the facilities to further reduce radioactive releases by applying the best available technique (BAT) and other measures. The control measurements that SSI is conducting on environmental samples from around the nuclear power facilities as well as on radioactive releases to water show a good agreement with the licensees' own measurements.

  11. Safety and radiation protection in Indian nuclear power plants

    International Nuclear Information System (INIS)

    Ghadge, S.G.

    2008-01-01

    Full text: Nuclear energy, an important option for electricity generation is environment friendly, technologically proven, economically competitive and associated with the advantages of energy security and diversity. At present, India has an installed nuclear power generation capacity of 4120 M We with 6 more reactors are under construction/ commissioning at 4 sites. Nuclear power program, in India, as of now is primarily based on pressurized heavy water technology and these reactors are designed with safety features, such as, independent and diverse shut down systems, emergency core cooling system, double containment; pressure suppression pool etc. The principles of redundancy, diversity, fail-safe and passive systems are used in the design. The fundamental safety objective is to protect people and the environment from harmful effects of ionizing radiation. In this regard the prime responsibility for safety rests with the organization responsible for facilities and activities that give rise to radiation risks and is achieved by establishing and maintaining the necessary competence, providing adequate training and information, establishing procedures and arrangements to maintain safety under all conditions; verifying appropriate design and the adequate quality of facilities and activities and of their associated equipment; ensuring the safe control of all radioactive material that is used, produced, stored or transported, ensuring the safe control of all radioactive waste that is generated. 'Radiation Protection for Nuclear Facilities', issued by Atomic Energy Regulatory Board (the regulatory authority for NPPs in India) is the basic document for following radiation protection procedures in NPPs. Approved work procedures for all radiation jobs exist. Pre job briefing and post job analysis are carried out. Radiation protection is integrated with plant operation. Radiation levels indicate the performance of several systems. Several measures are adopted in design and

  12. Radiation protection programme at Krsko nuclear power plant

    International Nuclear Information System (INIS)

    Breznik, B.

    1996-01-01

    Krsko NPP, a Westinghouse two-loop PWR of 632 M We power, is in commercial operation since 1982. Reduction of radioactive releases to the environment and the reduction of doses to workers is the basic goal in the plant radiological protection. The radiation protection programme is established to ensure that the radiation exposures to workers and members of the public are minimized according to the As Low As Reasonably Achievable approach and controlled in accordance with international safety standards and Slovenian regulations. The basis for the operational and technical measures has been provided according to the industrial good practice. The effluent control is based on the Standard Radioactive Effluent Technical Specifications, and environmental surveillance is established according to the programme defined by the regulations. The dose constraints and performance indicators are used to assure the effectiveness of the radiation protection programme and provide a convenient follow-up tool. The monitoring programme results of each year show that there is no measurable dose to the public due to radioactive releases. The commitment to the dose burden of any member of a critical group is assessed to be below the dose constraint. Individual and collective doses of the workers are within a range typical for the PWRs of a similar type. (author)

  13. Investigation of Improved Methods in Power Transfer Efficiency for Radiating Near-Field Wireless Power Transfer

    Directory of Open Access Journals (Sweden)

    Hesheng Cheng

    2016-01-01

    Full Text Available A metamaterial-inspired efficient electrically small antenna is proposed, firstly. And then several improving power transfer efficiency (PTE methods for wireless power transfer (WPT systems composed of the proposed antenna in the radiating near-field region are investigated. Method one is using a proposed antenna as a power retriever. This WPT system consisted of three proposed antennas: a transmitter, a receiver, and a retriever. The system is fed by only one power source. At a fixed distance from receiver to transmitter, the distance between the transmitter and the retriever is turned to maximize power transfer from the transmitter to the receiver. Method two is using two proposed antennas as transmitters and one antenna as receiver. The receiver is placed between the two transmitters. In this system, two power sources are used to feed the two transmitters, respectively. By adjusting the phase difference between the two feeding sources, the maximum PTE can be obtained at the optimal phase difference. Using the same configuration as method two, method three, where the maximum PTE can be increased by regulating the voltage (or power ratio of the two feeding sources, is proposed. In addition, we combine the proposed methods to construct another two schemes, which improve the PTE at different extent than classical WPT system.

  14. Safety and Radiation Protection at Swedish Nuclear Power Plants 2004

    International Nuclear Information System (INIS)

    2005-05-01

    higher inspector presence than normal and more stringent reporting requirements. In SKI's opinion, Barsebaeck Kraft AB (BKAB), with the measures that have been implemented, is maintaining safety at the Barsebaeck nuclear power plant. In December, Studsvik Nuclear AB decided to close down the two reactors at Studsvik. Therefore, SKI immediately initiated an intensified supervision of the decommissioning process at the reactors. The handling of nuclear waste at nuclear power plants, including the operation of the Repository for Low and Intermediate-level Operational Waste (SFR-1) and the Central Interim Storage Facility for Spent Nuclear Fuel (CLAB) has largely functioned well for the most part. In 2004, the total radiation dose to the personnel at nuclear power plants was 6.4 manSv, which is lower than in 2003. The average value for the past five years is 9 manSv. The shutdown periods were shorter at a few reactors due to the fact that work progress surpassed expectations. Technical problems and unplanned repair work resulted in a somewhat higher dose than expected at a few reactors. No individual received a radiation dose greater than 20 mSv. The fuel defects that occurred in 2004 did not result in any significant impact on radiation protection. The dose to people living in the vicinity of the nuclear power plants in 2004 was below 1 per cent of the permitted dose. The control measurements that SSI conducts on environmental samples around nuclear power plants and on the radioactive releases to water show a good agreement with the licensees' own measurements

  15. Reliability of high power electron accelerators for radiation processing

    International Nuclear Information System (INIS)

    Zimek, Z.

    2011-01-01

    Accelerators applied for radiation processing are installed in industrial facilities where accelerator availability coefficient should be at the level of 95% to fulfill requirements according to industry standards. Usually the exploitation of electron accelerator reviles the number of short and few long lasting failures. Some technical shortages can be overcome by practical implementation the experience gained in accelerator technology development by different accelerator manufactures. The reliability/availability of high power accelerators for application in flue gas treatment process must be dramatically improved to meet industrial standards. Support of accelerator technology dedicated for environment protection should be provided by governmental and international institutions to overcome accelerator reliability/availability problem and high risk and low direct profit in this particular application. (author)

  16. Occupational radiation exposure at commercial nuclear power reactors, 1978

    International Nuclear Information System (INIS)

    Brooks, B.G.

    1979-11-01

    An updated compilation is presented of occupational radiation exposures at commercial nuclear power reactors for the years 1969 through 1978. Data received from the 64 light water cooled reactors (LWRs) that had completed at least one year of commercial operation as of December 31, 1978 are included. This represents an increase of seven reactors over the number contained in last year's report. The total number of personnel monitored at LWRs during 1978 increased by approximately 12% to 76,121. The number of workers that received measurable doses, however, increased only 8% to 45,978. The total collective dose for 1978 is estimated to be 31,806 man-rems, a small decrease from last year's value of 32,511, which results in the average dose per worker decreasing slightly to 0.69 rems. The average collective dose per reactor also decreased, by approximately 15%, to a value of 497 man-rems

  17. Reliability of high power electron accelerators for radiation processing

    Energy Technology Data Exchange (ETDEWEB)

    Zimek, Z. [Department of Radiation Chemistry and Technology, Institute of Nuclear Chemistry and Technology, Warsaw (Poland)

    2011-07-01

    Accelerators applied for radiation processing are installed in industrial facilities where accelerator availability coefficient should be at the level of 95% to fulfill requirements according to industry standards. Usually the exploitation of electron accelerator reviles the number of short and few long lasting failures. Some technical shortages can be overcome by practical implementation the experience gained in accelerator technology development by different accelerator manufactures. The reliability/availability of high power accelerators for application in flue gas treatment process must be dramatically improved to meet industrial standards. Support of accelerator technology dedicated for environment protection should be provided by governmental and international institutions to overcome accelerator reliability/availability problem and high risk and low direct profit in this particular application. (author)

  18. Present situation of occupational radiation exposure in nuclear power plants

    International Nuclear Information System (INIS)

    Imabori, Akira

    1979-01-01

    The present situation of the radiation exposure of workers, including both employes and subcontractors, in the nuclear power plants in Japan, is presented. Twenty seven nuclear power reactors in operation and under construction are tabulated with the name, the owner, the electric output and the commissioning year of each plant. The results of exposure of the workers in these plants are shown, classifying the dose rate into less than 0.5 rem, 0.5 - 1.5 rem, 1.5 - 2.5 rem, 2.5 - 5 rem and more than 5 rem, and the workers into employes and subcontractors. It is noted that the exposure dose of the subcontractors occupies about 88% of all exposure dose, and the exposure is concentrated during regular inspection period. The exposure dose of about 80% of the workers is less than 0.5 rem, and no one was irradiated more than 5 rem in a year. The total exposure dose, which has especially the tendency of increasing with extended maintenance period and decreasing during plant operation period, shows also the trend of increasing with the lapse of operation years. As for the point of view of whole exposure dose, the value is 0.06 -- 0.43 man-rem/10 6 kWh in 1976 FY. It is considered to be necessary to grasp the total exposure dose of each worker wandering from one plant to another, and the central registration center for the workers in radioactive environment was established in 1978. The whole exposure dose data of each worker are stored in the central computer in this center. This system is highly appreciated in radiation exposure management. The total exposure dose is related to the rate of utilization of nuclear plants, and it is expected to decrease with the decrease of plant outage. (Nakai, Y.)

  19. Efficiency of Synchrotron Radiation from Rotation-powered Pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Kisaka, Shota [Department of Physics and Mathematics, Aoyama Gakuin University, Sagamihara, Kanagawa, 252-5258 (Japan); Tanaka, Shuta J., E-mail: kisaka@phys.aoyama.ac.jp, E-mail: sjtanaka@center.konan-u.ac.jp [Department of Physics, Konan University, Kobe, Hyogo, 658-8501 (Japan)

    2017-03-01

    Synchrotron radiation is widely considered to be the origin of the pulsed non-thermal emissions from rotation-powered pulsars in optical and X-ray bands. In this paper, we study the synchrotron radiation emitted by the created electron and positron pairs in the pulsar magnetosphere to constrain the energy conversion efficiency from the Poynting flux to the particle energy flux. We model two pair creation processes, two-photon collision, which efficiently works in young γ -ray pulsars (≲10{sup 6} year), and magnetic pair creation, which is the dominant process to supply pairs in old pulsars (≳10{sup 6} year). Using the analytical model, we derive the maximum synchrotron luminosity as a function of the energy conversion efficiency. From the comparison with observations, we find that the energy conversion efficiency to the accelerated particles should be an order of unity in the magnetosphere, even though we make a number of the optimistic assumptions to enlarge the synchrotron luminosity. In order to explain the luminosity of the non-thermal X-ray/optical emission from pulsars with low spin-down luminosity L {sub sd} ≲ 10{sup 34} erg s{sup −1}, non-dipole magnetic field components should be dominant at the emission region. For the γ -ray pulsars with L {sub sd} ≲ 10{sup 35} erg s{sup −1}, observed γ -ray to X-ray and optical flux ratios are much higher than the flux ratio between curvature and the synchrotron radiations. We discuss some possibilities such as the coexistence of multiple accelerators in the magnetosphere as suggested from the recent numerical simulation results. The obtained maximum luminosity would be useful to select observational targets in X-ray and optical bands.

  20. Damage-Tolerant, Lightweight, High-Temperature Radiator for Nuclear Powered Spacecraft

    Data.gov (United States)

    National Aeronautics and Space Administration — Game-changing propulsion systems are often enabled by novel designs using advanced materials. Radiator performance dictates power output for nuclear electric...

  1. Polymers and electromagnetic radiation fundamentals and practical applications

    CERN Document Server

    Schnabel, Wolfram

    2014-01-01

    This first book to cover the interaction of polymers with radiation from the entire electromagnetic spectrum adopts a multidisciplinary approach to bridge polymer chemistry and physics, photochemistry, photophysics and materials science. The text is equally unique in its scope, devoting equal amounts of attention to the three aspects of synthesis, characterization, and applications. The first part deals with the interaction of polymers with non-ionizing radiation in the frequency-range from sub-terahertz via infrared radiation to visible and ultraviolet light, while the second covers interaction with ionizing radiation from the extreme ultraviolet to X-ray photons. The result is a systematic overview of how both types of radiation can be used for different polymerization approaches, spectroscopy methods and lithography techniques. Authored by a world-renowned researcher and teacher with over 40 years of experience in the field, this is a highly practical and authoritative guide.

  2. Occupational radiation exposures at Canadian CANDU nuclear power stations

    International Nuclear Information System (INIS)

    LeSurf, J.E.; Taylor, G.F.

    1982-09-01

    In Canada, methods to reduce the radiation exposure to workers at nuclear power reactors have been studied and implemented since the early days of the CANDU reactor program. Close collaboration between the designers, the operators, and the manufacturers has reduced the total exposure at each station, the dose requirement to operate and maintain each successive station compared with earlier stations, and the average annual exposure per worker. Specific methods developed to achieve dose reduction include water chemistry; corrosion resistant materials; low cobalt materials; decontamination; hot filtration, improved equipment reliability, maintainability, and accessibility; improved shielding design and location; planning of work for low exposure; improved operating and maintenance procedures; removal of tritium from D 2 O systems and work environments; improved protective clothing; on-power refuelling; worker awareness and training; and many other small improvements. The 1981 occupational dose productivity factors for Pickering A and Bruce A nuclear generating stations were respectively 0.43 and 0.2 rem/MW(e).a

  3. Safety and Radiation Protection at Swedish Nuclear Power Plants 2007

    Energy Technology Data Exchange (ETDEWEB)

    2008-07-01

    transparent basis for making decisions in safety matters. During the year it has however become apparent that further improvement measures are necessary. The plant has had a relatively large number of operational disturbances during 2007 which have been analysed in order to implement suitable measures. Modernisation projects follow the time schedules which were decided earlier for implementation in order to comply with the regulations. Some measures are already completed, others are underway, and the programme will continue until 2013. SKI is supervising the progress of the modernisation and the improvements to the physical protection of the plants. Forsmark Kraftgrupp AB has applied for permission to increase the thermal power in reactors Forsmark 1-3. The government hasn't yet granted permission for these power increases. SKI has approved trial operation for Ringhals 1 and Ringhals 3 at the increased power levels during the year. For Ringhals 3 this is the first stage of the planned power increases. Ringhals has also applied to increase the thermal power in Ringhals 4. The government has granted permission for the thermal power increase in Oskarshamn 3. SKI is currently performing a safety review of this application. Oskarshamn have made an application to increase the thermal power in Oskarshamn 2. During 2007 SKI has performed inspections to control how nuclear safeguards are managed by the nuclear power stations. In all 80 inspections have been carried out. Nothing has been found during these inspections to indicate that there are any deficiencies in the nuclear safeguard activities. No serious incidents or accidents have occurred resulting in abnormal radiation exposure of personnel. Radioactive releases from the plants have resulted in calculated doses to the most exposed person in the critical group that are well below the environmental impact goal of 10 microsievert. Forsmark, which in recent years has had recurrent problems with the measurement of airborne

  4. Safety and Radiation Protection at Swedish Nuclear Power Plants 2007

    International Nuclear Information System (INIS)

    2008-01-01

    transparent basis for making decisions in safety matters. During the year it has however become apparent that further improvement measures are necessary. The plant has had a relatively large number of operational disturbances during 2007 which have been analysed in order to implement suitable measures. Modernisation projects follow the time schedules which were decided earlier for implementation in order to comply with the regulations. Some measures are already completed, others are underway, and the programme will continue until 2013. SKI is supervising the progress of the modernisation and the improvements to the physical protection of the plants. Forsmark Kraftgrupp AB has applied for permission to increase the thermal power in reactors Forsmark 1 - 3. The government has not as yet granted permission for these power increases. SKI has approved trial operation for Ringhals 1 and Ringhals 3 at the increased power levels during the year. For Ringhals 3 this is the first stage of the planned power increases. Ringhals has also applied to increase the thermal power in Ringhals 4. The government has granted permission for the thermal power increase in Oskarshamn 3. SKI is currently performing a safety review of this application. Oskarshamn have made an application to increase the thermal power in Oskarshamn 2. During 2007 SKI has performed inspections to control how nuclear safeguards are managed by the nuclear power stations. In all 80 inspections have been carried out. Nothing has been found during these inspections to indicate that there are any deficiencies in the nuclear safeguard activities. No serious incidents or accidents have occurred resulting in abnormal radiation exposure of personnel. Radioactive releases from the plants have resulted in calculated doses to the most exposed person in the critical group that are well below the environmental impact goal of 10 microsievert. Forsmark, which in recent years has had recurrent problems with the measurement of airborne

  5. Space charge dosimeters for extremely low power measurements of radiation in shipping containers

    Science.gov (United States)

    Britton, Jr; Charles, L [Alcoa, TN; Buckner, Mark A [Oak Ridge, TN; Hanson, Gregory R [Clinton, TN; Bryan, William L [Knoxville, TN

    2011-04-26

    Methods and apparatus are described for space charge dosimeters for extremely low power measurements of radiation in shipping containers. A method includes in situ polling a suite of passive integrating ionizing radiation sensors including reading-out dosimetric data from a first passive integrating ionizing radiation sensor and a second passive integrating ionizing radiation sensor, where the first passive integrating ionizing radiation sensor and the second passive integrating ionizing radiation sensor remain situated where the dosimetric data was integrated while reading-out. Another method includes arranging a plurality of ionizing radiation sensors in a spatially dispersed array; determining a relative position of each of the plurality of ionizing radiation sensors to define a volume of interest; collecting ionizing radiation data from at least a subset of the plurality of ionizing radiation sensors; and triggering an alarm condition when a dose level of an ionizing radiation source is calculated to exceed a threshold.

  6. Duties and responsibilities of the Nuclear Power Inspectorate and the National Radiation Protection Institute in connection with nuclear power plants

    International Nuclear Information System (INIS)

    Eckered, T.

    1977-01-01

    The two Swedish bodies competent for the control of nuclear energy are the Swedish Nuclear Power Inspectorate (SKI) and the National Swedish Institute on Radiation Protection (SSI). The duties of both bodies in respect of inspection stem from the provisions of the Atomic Energy Act and the Radiation Protection Act. The procedure to be followed for construction and operation of nuclear power plants is described from the viewpoint of the responsibilities entrusted to SKI and SSI. (NEA) [fr

  7. National conference on radiation safety of nuclear power plants and their environmental impacts

    International Nuclear Information System (INIS)

    Moravek, J.

    1989-01-01

    The first national conference on radiation safety of nuclear power plants and their environmental impacts was held in Tale (CS), 12 to 15 October, 1987 with the participation of 201 Czechoslovak specialists representing central authorities, research institutes, institutions of higher education, power plants in operation and under construction, water management and hygiene inspection and some production sectors, specialists from Hungary, Poland and the GDR. The participants heard 110 papers. The conference agenda comprised keynote papers presented in plenary session and five specialist sessions: 1. Radiation control of discharges and their surroundings. 2. Monitoring and evaluation of the radiation situation in nuclear power plants. 3. Equipment for monitoring the nuclear power plant and its environs. 4. Mathematical modelling and assessment of the nuclear power plant radiation environmental impact. 5. Evaluation of sources and of the transport of radioactive materials inside the power plant and the minimization of the nuclear power plant's environmental impact. (Z.M.)

  8. Measures of radiation protection in the operation of nuclear power plants in the German Democratic Republic

    International Nuclear Information System (INIS)

    Richter, D.; Schreiter, W.

    1975-11-01

    A survey is given on the provisions concerning (a) radiation protection at nuclear power plants in the GDR including the instructions applying within the plant, (b) the organization of radiation protection services, and (c) the measures of radiation protection surveillance inside and outside the plant during operation. (author)

  9. Practice of radiation dose control for tech-modification items in Qinshan Nuclear Power Plant

    International Nuclear Information System (INIS)

    Zhang Yong; Chen Zhongyu; Xu Hongming; Fan Liguang; Jiang Jianqi; Bu Weidong

    2006-01-01

    In order to improve the safety and reliability of nuclear power plant operation, many tech-modifications related to system or equipment have been completed since operation in Qinshan NPP. this paper introduces radiation dose control for mainly tech-modifications items related to radiation, including radiation protection optimization measures and experience in aspects of item planning, program writing, process control, etc. (authors)

  10. A Brief Review of Heavy-Ion Radiation Degradation and Failure of Silicon UMOS Power Transistors

    Directory of Open Access Journals (Sweden)

    Kenneth F. Galloway

    2014-09-01

    Full Text Available Silicon VDMOS power MOSFET technology is being supplanted by UMOS (or trench power MOSFET technology. Designers of spaceborne power electronics systems incorporating this newer power MOSFET technology need to be aware of several unique threats that this technology may encounter in space. Space radiation threats to UMOS power devices include vulnerabilities to SEB, SEGR, and microdose. There have been relatively few studies presented or published on the effects of radiation on this device technology. The S-O-A knowledge of UMOS power device degradation and failure under heavy-ion exposure is reviewed.

  11. Survey of radiation protection, radiation transport, and shielding information needs of the nuclear power industry. Final report

    International Nuclear Information System (INIS)

    Maskewitz, B.F.; Trubey, D.K.; Roussin, R.W.; McGill, B.L.

    1976-04-01

    The Radiation Shielding Information Center (RSIC) is engaged in a program to seek out, organize, and disseminate information in the area of radiation transport, shielding, and radiation protection. This information consists of published literature, nuclear data, and computer codes and advanced analytical techniques required by ERDA, its contractors, and the nuclear power industry to improve radiation analysis and computing capability. Information generated in this effort becomes a part of the RSIC collection and/or data base. The purpose of this report on project 219-1 is to document the results of the survey of information and computer code needs of the nuclear power industry in the area of radiation analysis and protection

  12. Survey of radiation protection, radiation transport, and shielding information needs of the nuclear power industry. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Maskewitz, B.F.; Trubey, D.K.; Roussin, R.W.; McGill, B.L.

    1976-04-01

    The Radiation Shielding Information Center (RSIC) is engaged in a program to seek out, organize, and disseminate information in the area of radiation transport, shielding, and radiation protection. This information consists of published literature, nuclear data, and computer codes and advanced analytical techniques required by ERDA, its contractors, and the nuclear power industry to improve radiation analysis and computing capability. Information generated in this effort becomes a part of the RSIC collection and/or data base. The purpose of this report on project 219-1 is to document the results of the survey of information and computer code needs of the nuclear power industry in the area of radiation analysis and protection.

  13. Radiation safety for the emergency situation of the power plant accident. Radiation safety in society and its education

    International Nuclear Information System (INIS)

    Kosako, Toshiso

    2012-01-01

    Great East Japan Earthquake and Tsunamis, and following Fukushima Daiichi Nuclear Power Accident brought about great impact on society in Japan. Accident analysis of inside reactor was studied by reactor physics or reactor engineering knowledge, while dissipation of a large amount of radioactive materials outside reactor facilities, and radiation and radioactivity effects on people by way of atmosphere, water and soil were dealt with radiation safety or radiation protection. Due to extremely low frequency and experience of an emergency, there occurred a great confusion in the response of electric power company concerned, relevant regulating competent authorities, local government and media, and related scholars and researchers, which caused great anxieties amount affected residents and people. This article described radiation safety in the society and its education. Referring to actual examples, how radiation safety or radiation protection knowledge should be dealt with emergency risk management in the society was discussed as well as problem of education related with nuclear power, radiation and prevention of disaster and fostering of personnel for relevant people. (T. Tanaka)

  14. Temperature and Solar Radiation Effects on Photovoltaic Panel Power

    OpenAIRE

    Karafil, Akif; Ozbay, Harun; Kesler, Metin

    2016-01-01

    Solar energy is converted to electrical energy directly by semi-conductors materials used in Photovoltaic (PV) panels. Although, there has been great advancements in semi-conductor material technology in recent years panel efficiency is very lower. There are many factors affecting the panel efficiency such as tilt angle, shading, dust, solar radiation level, temperature and wiring losses. Among these factors, solar radiation level and temperature are more prominent. The solar radiation level ...

  15. The power of MAIC and the challenges for radiation protection

    International Nuclear Information System (INIS)

    Gellermann, R.

    2016-01-01

    The ''radioactive'' radiation has proved to be a medial usable theme of the anti-nuclear movement in recent decades. This has caused significant political changes in Germany. The article tries to outline a phenomenon that can be described as Medial-Antinuclear Interests Complex (MAIC). The views on radiation and radiation risks propagated by MAIC to the public have demonized the disposal of radioactive waste. This results in situations, which tacitly accept unnecessary risks for the population. A new approach for raising the public awareness in particular regarding long-term safety and radiation protection is possible and necessary.

  16. Substantiation of the radiation monitoring scope in the region of nuclear power plant location

    Energy Technology Data Exchange (ETDEWEB)

    Zykova, A S; Zhakov, Yu A; Yambrovskii, Ya M

    1977-12-01

    To provide radiation safety of the population in the region of nuclear power plant location, it is necessary to define the character and quantity of radiation monitoring. On the basis of radiation monitoring of effluents from operating nuclear power plants it is found that the effluents can be registered at a distance of 5-7 km from the plant. The quantity of sample analysis of the main enviromental objectives must provide an exact definition of the content of radioactive substances produced by radioactive fallouts and effluents from nuclear power plants.

  17. Substantiation of the radiation monitoring scope in the region of nuclear power plant location

    International Nuclear Information System (INIS)

    Zykova, A.S.; Zhakov, Yu.A.; Jambrovskij, Ya.M.

    1977-01-01

    To provide radiation safety of the population in the region of nuclear power plant location, it is necessary to define the character and quantity of radiation monitoring. On the basis of radiation monitoring of flowouts from operating nuclear power plants it is found that the flowouts can be registered at a distance of 5-7 km from the plant. The quantity of sample analysis of the main enviromental objectives must provide an exact definition of the content of radioactive substances produced by radioactive fallouts and flowouts from nuclear power plants

  18. Real-time assessment of radiation burden of the population in the vicinity of nuclear power plants during radiation accidents

    International Nuclear Information System (INIS)

    Stubna, M.

    1986-01-01

    The method is presented of real-time calculation of the radiation situation (dose equivalents) in the environs of a nuclear power plant in case of an accident involving the release of radioactive substances into the atmosphere, this for the potentially most significant exposure paths in the initial and medium stages of the accident. The method allows to take into consideration the time dependence of the rate of radioactive substance release from the nuclear power plant and to assess the development in space and time of the radiation situation in the environs of the nuclear power plant. The use of the method is illustrated by an example of the calculation of the development of the radiation situation for model accidents of a hypothetical PWR with containment. (author)

  19. Calorimeter with capacitance transducer for measurement of SHF radiation power

    International Nuclear Information System (INIS)

    Kiselev, V.A.; Linnik, A.F.; Onishchenko, I.N.; Uskov, V.V.

    2005-01-01

    A calorimeter of simple design for measuring total energy of microwave radiation is described. It operates in the energy range of 0.5 J to 6 kJ; water is used as the absorbing material. A capacitive probe is applied to measure changes in the water volume. The energy absorption factor of electromagnetic radiation in the range of 3-60 GHz is at least 0.9. The calorimeter is insensitive to radiation field nonuniformity over the absorber volume. The calorimeter is intended for measuring the radiation energy of beam plasma generators and generators with dielectric structure. Its design makes it possible to simultaneously measure the radiation energy and monitor the beam current [ru

  20. Radiation Tolerant Low Power Precision Time Source, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The availability of small, low power atomic clocks is now a reality for ground-based and airborne navigation systems. Kernco's Low Power Precision Time Source...

  1. Low Cost Radiator for Fission Power Thermal Control, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA Glenn Research Center (GRC) is developing fission power system technology for future space transportation and surface power applications. The early systems are...

  2. Low Cost Radiator for Fission Power Thermal Control, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA GRC is developing fission power system technology for future space transportation and surface power applications. The early systems are envisioned in the 10 to...

  3. Active control of radiated sound power from a baffled, rectangular panel

    DEFF Research Database (Denmark)

    Mørkholt, Jakob

    1996-01-01

    with an array of eleven microphones in front of the panel, is very close to minimising the actual radiated sound power. Practical experiments where such an array estimate has been minimised using the filtered X LMS algorithm have shown that substantial reductions of radiated sound power can be obtained over......Active control of radiated sound power from a rectangular baffled panel by minimisation of an accurate power estimate, using piezoceramic actuators, has been investigated. Computer simulations have shown that minimising a power estimate obtained by discretised integration of the far field intensity...... a broad frequency range using few piezoceramic actuators, provided that an accurate estimate of the sound power is available for minimisation....

  4. Organisation of radiation protection at Sizewell Nuclear Power Plant in the UK. Report n. 290

    International Nuclear Information System (INIS)

    Crouail, P.; Jeannin, B.; Lefaure, C.; Panisset, L.

    2004-01-01

    This report first describes the organisation and management of radiation protection at Sizewell Nuclear Power Plant (UK): general organisation, organisation of the radiation protection department, goals of radiation protection at plant and corporate levels, measurement of radiation protection performance, presence of health physicists in the plant, national and international comparisons. Then, it addresses the training of workers and radiation protection specialists with respect to radiation protection, the management of zoning and surveillance (action to address the radiation risk and the contamination risk). It describes the relationships of Health physicists with contractors and other workers teams, and the relationships with safety authorities. It indicates the different outages of this organisation: general planning, information sheets, physicists work planning, reviews and meetings. It describes the management of personal dosimetry with radiation work permits and actions aimed at the reduction of doses during various operations. The last part proposes a feedback experience report and evokes the generated database, and addresses events reporting

  5. Low-Power Large-Area Radiation Detector for Space Science Measurements

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this task is to develop a low-power, large-area detectors from SiC, taking advantage of very low thermal noise characteristics and high radiation...

  6. Research on Intense Pulsed Power for Electromagnetic Radiation

    National Research Council Canada - National Science Library

    Collins, Carl

    2001-01-01

    .... Subsequent experiments using tunable x-rays from the synchrotron radiation source, SPring-8 showed that the triggering was initiated by photoionization of an electron from the L-shell surrounding the isomeric nucleus. A fraction of 0.2...

  7. High power radiation guiding systems for laser driven accelerators

    International Nuclear Information System (INIS)

    Cutolo, A.

    1985-01-01

    This paper reviews the main problems encountered in the design of an optical system for transmitting high fluence radiation in a laser driven accelerator. Particular attention is devoted to the analysis of mirror and waveguide systems. (orig.)

  8. Radiation protection and the development of nuclear power plants

    International Nuclear Information System (INIS)

    Bovard, P.; Fitoussi, L.

    1975-01-01

    Radiological hazards are defined. Following a short explanation of the International Commission on Radiation Protection's permissible values of exposure, some indicators are given about the component of natural radioactivity [fr

  9. Experimental determination of radiated internal wave power without pressure field data

    OpenAIRE

    Lee, Frank M.; Paoletti, M. S.; Swinney, Harry L.; Morrison, P. J.

    2014-01-01

    We present a method to determine, using only velocity field data, the time-averaged energy flux $\\left$ and total radiated power $P$ for two-dimensional internal gravity waves. Both $\\left$ and $P$ are determined from expressions involving only a scalar function, the stream function $\\psi$. We test the method using data from a direct numerical simulation for tidal flow of a stratified fluid past a knife edge. The results for the radiated internal wave power given by the stream function method...

  10. The design and qualification of radiation tolerant equipment for the nuclear power industry

    International Nuclear Information System (INIS)

    Sharp, R.; Pater, L.

    1995-01-01

    The nuclear power industry has many demands for equipment tolerant to the damaging effects of radiation. The wide variety of applications, including components handling, tooling, monitoring and communications, means that a systematic evaluation of the effects of radiation on materials and components used for equipment in radioactive facilities is often required. This paper describes the various effects of radiation on equipment, and discusses how to manage them when using and designing equipment. (Author)

  11. A new algorithm to determine the total radiated power at ASDEX upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Gloeggler, Stephan; Bernert, Matthias; Eich, Thomas [Max Planck Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching (Germany); Collaboration: The ASDEX Upgrade Team

    2016-07-01

    Radiation is an essential part of the power balance in a fusion plasma. In future fusion devices about 90% of the power will have to be dissipated, mainly by radiation. For the development of an appropriate operational scenario, information about the absolute level of plasma radiation (P{sub rad,tot}) is crucial. Bolometers are used to measure the radiated power, however, an algorithm is required to derive the absolute power out of many line-integrated measurements. The currently used algorithm (BPD) was developed for the main chamber radiation. It underestimates the divertor radiation as its basic assumptions are not satisfied in this region. Therefore, a new P{sub rad,tot} algorithm is presented. It applies an Abel inversion on the main chamber and uses empirically based assumptions for poloidal asymmetries and the divertor radiation. To benchmark the new algorithm, synthetic emissivity profiles are used. On average, the new Abel inversion based algorithm deviates by only 10% from the nominal synthetic value while BPD is about 25% too low. With both codes time traces of ASDEX Upgrade discharges are calculated. The analysis of these time traces shows that the underestimation of the divertor radiation can have significant consequences on the accuracy of BPD while the new algorithm is shown to be stable.

  12. Monolayer graphene dispersion and radiative cooling for high power LED

    Science.gov (United States)

    Hsiao, Tun-Jen; Eyassu, Tsehaye; Henderson, Kimberly; Kim, Taesam; Lin, Chhiu-Tsu

    2013-10-01

    Molecular fan, a radiative cooling by thin film, has been developed and its application for compact electronic devices has been evaluated. The enhanced surface emissivity and heat dissipation efficiency of the molecular fan coating are shown to correlate with the quantization of lattice modes in active nanomaterials. The highly quantized G and 2D bands in graphene are achieved by our dispersion technique, and then incorporated in an organic-inorganic acrylate emulsion to form a coating assembly on heat sinks (for LED and CPU). This water-based dielectric layer coating has been formulated and applied on metal core printed circuit boards. The heat dissipation efficiency and breakdown voltage are evaluated by a temperature-monitoring system and a high-voltage breakdown tester. The molecular fan coating on heat dissipation units is able to decrease the equilibrium junction temperature by 29.1 ° C, while functioning as a dielectric layer with a high breakdown voltage (>5 kV). The heat dissipation performance of the molecular fan coating applied on LED devices shows that the coated 50 W LED gives an enhanced cooling of 20% at constant light brightness. The schematics of monolayer graphene dispersion, undispersed graphene platelet, and continuous graphene sheet are illustrated and discussed to explain the mechanisms of radiative cooling, radiative/non-radiative, and non-radiative heat re-accumulation.

  13. Monolayer graphene dispersion and radiative cooling for high power LED

    International Nuclear Information System (INIS)

    Hsiao, Tun-Jen; Eyassu, Tsehaye; Henderson, Kimberly; Kim, Taesam; Lin, Chhiu-Tsu

    2013-01-01

    Molecular fan, a radiative cooling by thin film, has been developed and its application for compact electronic devices has been evaluated. The enhanced surface emissivity and heat dissipation efficiency of the molecular fan coating are shown to correlate with the quantization of lattice modes in active nanomaterials. The highly quantized G and 2D bands in graphene are achieved by our dispersion technique, and then incorporated in an organic-inorganic acrylate emulsion to form a coating assembly on heat sinks (for LED and CPU). This water-based dielectric layer coating has been formulated and applied on metal core printed circuit boards. The heat dissipation efficiency and breakdown voltage are evaluated by a temperature-monitoring system and a high-voltage breakdown tester. The molecular fan coating on heat dissipation units is able to decrease the equilibrium junction temperature by 29.1 ° C, while functioning as a dielectric layer with a high breakdown voltage (>5 kV). The heat dissipation performance of the molecular fan coating applied on LED devices shows that the coated 50 W LED gives an enhanced cooling of 20% at constant light brightness. The schematics of monolayer graphene dispersion, undispersed graphene platelet, and continuous graphene sheet are illustrated and discussed to explain the mechanisms of radiative cooling, radiative/non-radiative, and non-radiative heat re-accumulation. (paper)

  14. Relationship between images of risk and anxiety toward radiation. Comparison of radiation from chest X-rays and nuclear power plants

    International Nuclear Information System (INIS)

    Matsui, Yuko

    2003-01-01

    In order to clarify the components of people's images of radiation risk and the determinants for the degree of anxiety about radiation exposure, an investigation was conducted. Two kinds of radiation, from nuclear power plants and during a chest X-ray, which are relatively familiar to people, were focused on. As a result, only a 'dread' factor was common to both radiation types of. Although the degree of anxiety toward both types of radiation showed a positive correlation with the 'dread' image, the anxiety toward X-ray radiation showed a negative correlation with the 'feeling of conquest'. Anxiety toward radiation from nuclear power plants had a negative correlation with 'control by experts'. These results suggest that the words radiation from nuclear power plants' evoke an image of a situation with high radiation exposure, which is beyond the experts' control abilities. (author)

  15. Controlling occupational radiation exposure at operating nuclear power stations

    International Nuclear Information System (INIS)

    Dickson, H.W.; Oakes, T.W.; Shank, K.E.

    1977-01-01

    The historical development of the philosophy of keeping the radiation exposure of workers at light-water reactors as low as reasonably achievable (ALARA) is presented. A review is made of some of the ALARA activities of the Nuclear Regulatory Commission, the Energy Research and Development Administration, and various nuclear installations. Data compiled by the NRC show that routine and special maintenance at light-water reactors accounts for 72 percent of all occupational exposure at these sites. The role that Oak Ridge National Laboratory has taken in ALARA research is presented, with emphasis placed on a study of valve malfunctions at light-water reactors. The valve study indicates a trend toward decreasing valve reliability over the past few years. Finally a cost--benefit analysis of radiation dose reduction is discussed. The rationale for assigning a cost per man-rem based on the radiation exposure level that is encountered is presented

  16. Radiation risk perception by radiation professionals. Survey results just before the radiological accident at the Tokyo Electric Power Company Fukushima Daiichi nuclear power plant

    International Nuclear Information System (INIS)

    Miura, Miwa; Hayashida, Rika; Takao, Hideaki; Matsuda, Naoki; Ono, Koji

    2013-01-01

    From October to December 2010, just before the radiological accident at the Tokyo Electric Power Company Fukushima Daiichi nuclear power plant, 71 radiation professionals belonging to the radiation facilities in Japan were asked what they consider as a 'safe' dose of radiation for themselves, their spouse, parents, children, brothers and friends. Although the 'safe' dose varied widely from less than 1 mSv/y to higher than 100 mSv/y, the average dose was 35.6 mSv/y that was around the middle point between the exposure dose limits for annual average (20 mSv/y) and for any single year (50 mSv/y). Similar results were obtained from another surveys for the members of Japan Radioisotope Association (36.9 mSv/y) and for the Oita Prefectural Hospital (36.8 mSv/y). Among the family members and friends, the minimum average 'safe' dose was 8.5 mSv/y for children, to whom 50% of responders claimed the 'safe' dose less than 1 mSv. Gender, age and specialty of the responder also affected the 'safe' dose. These findings suggest that the perception of radiation risk varies widely and that the legal exposure dose limit derived from the regulatory science may act as an anchor of safety even in radiation professionals. The different level of risk perception for different target groups in radiation professionals appears similar to those in non-professional whole population. The gap between these characteristics of real radiation professionals and the generally accepted picture of radiation professionals might take a part in a state of confusion after the radiological accident. (author)

  17. Acute care of radioactively contaminated or externally radiated personnel at nuclear power plants

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    Practical advice is given concerning the treatment of persons injure at nuclear power plant accidents, in particular accidents resulting in contamination or external radiation of man. The folder is primarily directed to persons responsible for the local plannning and supervision of emergency care at the power plant. (L.E.)

  18. Ethical norms in the use of radiation and nuclear power

    International Nuclear Information System (INIS)

    Oftedal, P.

    1980-01-01

    Ethically satisfactory behavior in work with radiation should be governed by the same basic moral requirements as are our other functions in society. These requirements are condensed into three concepts: honesty, consistency and generosity. Several situations where ethics are involved are discussed as examples. (H.K.)

  19. Parametric influence of powerful radiation on plasma surface

    International Nuclear Information System (INIS)

    Kuklin, V.M.; Panchenko, I.P.; Chernousenko, V.M.

    1989-01-01

    A self-consistent set of equations that describes one-dimensional dynamics to develop the instability of long-wave intensive Langmuir wave is obtained and solved. The parametric instability influence on the character of absorption of the incident radiation energy is elucidated primarily. 40 refs.; 8 figs

  20. Measurement of radio frequency radiation (RFR) power levels from ...

    African Journals Online (AJOL)

    With the upsurge in the number of network providers and the attendant increase in the installation of mast in Nigeria, the environment is being inundated with radiofrequency radiation (RFR). There is, therefore, increasing concern about the health implications of this development. In this study measurements of RFR output ...

  1. Radiation protection and the development of nuclear power

    International Nuclear Information System (INIS)

    Bovard, P.; Fitoussi, L.

    1975-01-01

    Lights are given on the nature and origins of the radioactivity that could be added to the environment on account of human activities in the electronuclear field and information is given on the investigations undertaken in the field of radiation protection to follow the fate of such radioactivity and assess its possible contribution to populations' exposures [fr

  2. Pre operational background radiation monitoring around Kudankulam Nuclear Power Project site - a decade long experience

    International Nuclear Information System (INIS)

    Vijayakumar, B.; George, Thomas; Sundara Rajan, P.; Selvi, B.S.; Balamurugan, M.; Pandit, G.G.; Ravi, P.M.; Tripathi, R.M.

    2014-01-01

    Pre-operational environmental background radiation monitoring around nuclear power plants is very important to understand baseline values existing in the site and also to identify any hot spots of naturally occurring high background radiation areas and their sources. These baseline measurements will act as a benchmark for future comparison after the reactors go into operation. The radiation measurements are continued during the operational phase of the plant and the results are compared to see whether there is any impact of the operation of the plant on the environment. A comprehensive background radiation monitoring plan has been in vogue at site from 2004 to meet this objective. This paper describes the different monitoring strategies adopted around Kudankulam Nuclear Power Project site and throws light on the pre operational background radiation levels in the environment

  3. Radiation effects on electronic equipment: a designers'/users' guide for the nuclear power industry

    International Nuclear Information System (INIS)

    Sharp, R.E.; Garlick, D.R.

    1994-01-01

    The Designers'/Users' Guide to the effects of radiation on electronics is published by the Radiation Testing Service of AEA Technology. The aim of the Guide is to document the available information that we have generated and collected over some ten years whilst operating as a radiation effects and design consultancy to the nuclear power industry. We hope that this will enable workers within the industry better to understand the likely effects of radiation on the system or plant being designed and so minimise the problems that can arise. (Author)

  4. Advanced Radiative Emitters for Radioisotope Thermophotovoltaic Power Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Radioisotope Power Systems (RPS) are critical for future flagship exploration missions in space and on planetary surfaces. Small improvements in the RPS performance,...

  5. Characteristics of radiated power for various TFTR [Tokamak Fusion Test Reactor] regimes

    International Nuclear Information System (INIS)

    Bush, C.E.; Schivell, J.; McNeill, D.H.

    1988-04-01

    Power loss studies were carried out to determine the impurity radiation and energy transport characteristics of various TFTR operation and confinement regimes including L-Mode, detached plasma, co-only neutral beam injection (energetic ion regime), and the enhanced confinement (''supershot'') regime. Combined bolometric, spectroscopic, and infrared photometry measurements provide a picture of impurity behavior and power accounting in TFTR. The purpose of this paper is to make a survey of the various regimes with the aim of determining the radiated power signatures of each. 10 refs., 6 figs., 1 tab

  6. Nuclear Reactor Power Monitoring Using Silicon Carbide Semiconductor Radiation Detectors

    International Nuclear Information System (INIS)

    Thomas Blue; Don Miller

    2008-01-01

    To provide a perspective for our accomplishments, all of the sub-tasks in Task 1 (as they were identified in the proposal) are listed, and a brief description of the subtasks is given. Task 1--Define Generation IV Reactor Power Monitoring Requirements. Task 1.1--The power monitoring requirements for the IRIS and GT-MHR will be evaluated. Parameters considered will include maximum power level uncertainty, response time, etc. Task 1.2--The optimum locations for power monitors will be selected for both the IRIS and GT-MHR. Factors to be considered will include the power monitoring requirements defined in Task 1.1 as well as expected detector sensitivity and the presence of gamma ray background. Task 1.3--Other applications and opportunities offered by SiC power monitors will be evaluated. The prospects for on-line fault identification and diagnosis using pulse height and pulse shape analysis will be explored. The use of miniature SiC detectors to define axial, azimuthal, and radial flux profiles will be investigated

  7. Two-dimensional AXUV-based radiated power density diagnostics on NSTX-U.

    Science.gov (United States)

    Faust, I; Delgado-Aparicio, L; Bell, R E; Tritz, K; Diallo, A; Gerhardt, S P; LeBlanc, B; Kozub, T A; Parker, R R; Stratton, B C

    2014-11-01

    A new set of radiated-power-density diagnostics for the National Spherical Torus Experiment Upgrade (NSTX-U) tokamak have been designed to measure the two-dimensional poloidal structure of the total photon emissivity profile in order to perform power balance, impurity transport, and magnetohydrodynamic studies. Multiple AXUV-diode based pinhole cameras will be installed in the same toroidal angle at various poloidal locations. The local emissivity will be obtained from several types of tomographic reconstructions. The layout and response expected for the new radially viewing poloidal arrays will be shown for different impurity concentrations to characterize the diagnostic sensitivity. The radiated power profile inverted from the array data will also be used for estimates of power losses during transitions from various divertor configurations in NSTX-U. The effect of in-out and top/bottom asymmetries in the core radiation from high-Z impurities will be addressed.

  8. Two-dimensional AXUV-based radiated power density diagnostics on NSTX-Ua)

    Science.gov (United States)

    Faust, I.; Delgado-Aparicio, L.; Bell, R. E.; Tritz, K.; Diallo, A.; Gerhardt, S. P.; LeBlanc, B.; Kozub, T. A.; Parker, R. R.; Stratton, B. C.

    2014-11-01

    A new set of radiated-power-density diagnostics for the National Spherical Torus Experiment Upgrade (NSTX-U) tokamak have been designed to measure the two-dimensional poloidal structure of the total photon emissivity profile in order to perform power balance, impurity transport, and magnetohydrodynamic studies. Multiple AXUV-diode based pinhole cameras will be installed in the same toroidal angle at various poloidal locations. The local emissivity will be obtained from several types of tomographic reconstructions. The layout and response expected for the new radially viewing poloidal arrays will be shown for different impurity concentrations to characterize the diagnostic sensitivity. The radiated power profile inverted from the array data will also be used for estimates of power losses during transitions from various divertor configurations in NSTX-U. The effect of in-out and top/bottom asymmetries in the core radiation from high-Z impurities will be addressed.

  9. Two-dimensional AXUV-based radiated power density diagnostics on NSTX-U

    Energy Technology Data Exchange (ETDEWEB)

    Faust, I.; Parker, R. R. [MIT - Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States); Delgado-Aparicio, L.; Bell, R. E.; Diallo, A.; Gerhardt, S. P.; LeBlanc, B.; Kozub, T. A. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540 (United States); Tritz, K. [The Johns Hopkins University, Baltimore, Maryland 21209 (United States); Stratton, B. C. [MIT - Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States); Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540 (United States)

    2014-11-15

    A new set of radiated-power-density diagnostics for the National Spherical Torus Experiment Upgrade (NSTX-U) tokamak have been designed to measure the two-dimensional poloidal structure of the total photon emissivity profile in order to perform power balance, impurity transport, and magnetohydrodynamic studies. Multiple AXUV-diode based pinhole cameras will be installed in the same toroidal angle at various poloidal locations. The local emissivity will be obtained from several types of tomographic reconstructions. The layout and response expected for the new radially viewing poloidal arrays will be shown for different impurity concentrations to characterize the diagnostic sensitivity. The radiated power profile inverted from the array data will also be used for estimates of power losses during transitions from various divertor configurations in NSTX-U. The effect of in-out and top/bottom asymmetries in the core radiation from high-Z impurities will be addressed.

  10. Two-dimensional AXUV-based radiated power density diagnostics on NSTX-U

    International Nuclear Information System (INIS)

    Faust, I.; Parker, R. R.; Delgado-Aparicio, L.; Bell, R. E.; Diallo, A.; Gerhardt, S. P.; LeBlanc, B.; Kozub, T. A.; Tritz, K.; Stratton, B. C.

    2014-01-01

    A new set of radiated-power-density diagnostics for the National Spherical Torus Experiment Upgrade (NSTX-U) tokamak have been designed to measure the two-dimensional poloidal structure of the total photon emissivity profile in order to perform power balance, impurity transport, and magnetohydrodynamic studies. Multiple AXUV-diode based pinhole cameras will be installed in the same toroidal angle at various poloidal locations. The local emissivity will be obtained from several types of tomographic reconstructions. The layout and response expected for the new radially viewing poloidal arrays will be shown for different impurity concentrations to characterize the diagnostic sensitivity. The radiated power profile inverted from the array data will also be used for estimates of power losses during transitions from various divertor configurations in NSTX-U. The effect of in-out and top/bottom asymmetries in the core radiation from high-Z impurities will be addressed

  11. Trends in radiation protection: possible effects on fusion power plant design

    International Nuclear Information System (INIS)

    Eurajoki, Tapani; Frias, Manuel Pascual; Orlandi, Sergio

    2003-01-01

    Since the design of fusion power plants involves long-term issues, ranging over several decades, it is useful to try to foresee under what kind of regulations the first fusion plants are to be operated. Application of present radiological regulations and practice to a fusion power plant concept is considered. The current design phase of fusion power plants motivates the top-down dose assessment, but it is crucial to aim at bottom-up assessments to ensure radiation doses as low as reasonably achievable. Since several issues, relating both to our knowledge on radiation as well as to the practice of radiation protection, may change in the future, it is necessary to continuously follow the development in the further design of fusion power plants

  12. Klystron bias power supplies for Indus-2 synchrotron radiation source

    International Nuclear Information System (INIS)

    Badapanda, M.K.; Hannurkar, P.R.

    2008-01-01

    The functioning of an alternating current (AC) voltage regulator based high voltage direct current (HVDC) power supplies with better input and output performances has been presented in this paper. The authors have incorporated a 3-phase series limiting inductor, along with detuned passive filter in each power supply, to take care of line harmonics and the input power factor (IPF), which is simple, cost effective, reliable and provides input performance matching that of an equivalent active filter. Such arrangement has special significance for controlled HVDC power supplies supplying to fixed load but operated from widely varying input voltages. It achieves line voltage total harmonic distortion (THD) below 4% and IPF better than 0.97, for 415 V - 30% to 415 V + 10% variations in 3-phase input voltages. A properly designed crowbar, along with suitable limiting elements, is incorporated in each power supply and stringent wire survivability tests were carried out to limit klystron fault energy below 10 Joules. Several simulated waveforms and experiment results are also presented. (author)

  13. An integrated framework for effective reduction of occupational radiation exposure in a nuclear power plant

    International Nuclear Information System (INIS)

    Joo, Hyun Moon; Hak, Soo Kim; Young, Ho Cho; Chang, Sun Kang

    1998-01-01

    For effective reduction of occupational radiation exposure in a nuclear power plant, it is necessary to identify repetitive high radiation jobs during maintenance and refueling operation and comprehensively assess them. An integrated framework for effective reduction of occupational radiation exposure is proposed in this study. The framework consists of three parts; data collection, statistical analysis, and ALARA findings. A PC-based database program, INSTORE, is used for data collection and reduction, and the Rank Sum Method is used in identifying high radiation jobs. As a case study, the data accumulated in Kori Units 3 and 4 have been analyzed. The results of this study show that the radiation job classifications of SG related work have much effect on annual ORE collective dose in Kori Units 3 and 4. As an example of ALARA findings, hence, the improvements for the radiation job classifications of SG related work are summarized

  14. Title Investigation of the influence of various factors on the power of heat exchange by radiation

    Directory of Open Access Journals (Sweden)

    Korolyov Alexander V.

    2017-04-01

    Full Text Available The issue of lack of knowledge of radiation heat transfer process has been repeatedly raised in various studies. Despite the fact that works on study of heat transfer by radiation covers a wide range of different industries, it should be noted the lack of materials on study of heat exchange processes by radiation in a core of a nuclear reactor. In this work, the fuel assemblies of the VVER-1000 reactor were used as the bodies under study. Aim: The aim of the research is to investigate the heat exchange process between heat transfer assemblies and to study of the effect of changing the distance between the fuel assemblies on their power taking into account the inter-radiating of assemblies. Materials and Methods: A general description of the process of heat transfer by radiation. A calculation study of the effect of geometric parameters on heat transfer in the close lattice of the reactor core is performed. The influence of heat transfer by radiation on the temperature change of the fuel assemblies surface of the VVER-1000 reactor at change in the cassette gap is studied. The change in the power of the fuel assemblies relative to the initial power with a change in the cassette gap was studied. Experimental measurements of the temperature at different distances from the radiation source were made with an obstacle in the path of radiation propagation in the form of glass and water of different levels. The heat radiation and convective heat transfer are calculated based on the obtained experimental data. The calculation of thermal radiation power and convective heat transfer based on the obtained experimental data is performed. Results: The calculation results show that in models that determine the temperature of the fuel assemblies in the core of the VVER-1000 reactor, the radiation heat transfer must be taken into account. In this case, the amount of transferred energy is the greater, the smaller the distance between objects. This is observed

  15. Fundamental rights reflected by the legislation regarding radiation and nuclear power

    International Nuclear Information System (INIS)

    Han, Eun Ok; Lee, Jae Seong; Cho, Hong Jea

    2016-01-01

    Despite the visible growth in radiation usage and nuclear power development, the analysis of their relationship with fundamental rights, a subject of public concern regarding issues including the right to health, environmental rights, safety rights, the right to know, the right to development, and the right to life, is currently non-existent. 15-29By examining various fundamental rights in the context of positive laws regarding radiation and nuclear power in an idealistic perspective that guarantees the maximum degree of rights, this paper aims to propose legislative supplements that will lead to improvements in quality of life. In the South Korean Constitution, radiation and nuclear power is a subject incorporating several rights, including at least 12 clauses that are directly related to fundamental rights; these constitutional rights are manifested in the various clauses of the 14 positive laws regarding radiation and nuclear power. The question on the relative importance of each fundamental right as reflected in these positive laws- whether the right to life should be prioritized or considered equal in weight to the right to health, environmental rights, the right to know, and safety rights- requires careful deliberation and is difficult to humanly resolve in the short term. Making policy that expands the usage of radiation and nuclear power while simultaneously preventing their associated risks is an important task for the Republic of Korea, and a proper value judgment is necessary to find a balance in its associated rights

  16. Fundamental rights reflected by the legislation regarding radiation and nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Han, Eun Ok [Korea Academy of Nuclear Safety, Seoul (Korea, Republic of); Lee, Jae Seong [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Cho, Hong Jea [Korea National Defense University, Goyang (Korea, Republic of)

    2016-05-15

    Despite the visible growth in radiation usage and nuclear power development, the analysis of their relationship with fundamental rights, a subject of public concern regarding issues including the right to health, environmental rights, safety rights, the right to know, the right to development, and the right to life, is currently non-existent. 15-29By examining various fundamental rights in the context of positive laws regarding radiation and nuclear power in an idealistic perspective that guarantees the maximum degree of rights, this paper aims to propose legislative supplements that will lead to improvements in quality of life. In the South Korean Constitution, radiation and nuclear power is a subject incorporating several rights, including at least 12 clauses that are directly related to fundamental rights; these constitutional rights are manifested in the various clauses of the 14 positive laws regarding radiation and nuclear power. The question on the relative importance of each fundamental right as reflected in these positive laws- whether the right to life should be prioritized or considered equal in weight to the right to health, environmental rights, the right to know, and safety rights- requires careful deliberation and is difficult to humanly resolve in the short term. Making policy that expands the usage of radiation and nuclear power while simultaneously preventing their associated risks is an important task for the Republic of Korea, and a proper value judgment is necessary to find a balance in its associated rights.

  17. Lightweight Damage Tolerant, High-Temperature Radiators for Nuclear Power and Propulsion

    Science.gov (United States)

    Craven, Paul D.; SanSoucie, Michael P.

    2015-01-01

    NASA is increasingly emphasizing exploration to bodies beyond near-Earth orbit. New propulsion systems and new spacecraft are being built for these missions. As the target bodies get further out from Earth, high energy density systems, e.g., nuclear fusion, for propulsion and power will be advantageous. The mass and size of these systems, including supporting systems such as the heat exchange system, including thermal radiators, will need to be as small as possible. Conventional heat exchange systems are a significant portion of the total thermal management mass and size. Nuclear electric propulsion (NEP) is a promising option for high-speed, in-space travel due to the high energy density of nuclear fission power sources and efficient electric thrusters. Heat from the reactor is converted to power for use in propulsion or for system power. The heat not used in the power conversion is then radiated to space as shown in figure 1. Advanced power conversion technologies will require high operating temperatures and would benefit from lightweight radiator materials. Radiator performance dictates power output for nuclear electric propulsion systems. Pitch-based carbon fiber materials have the potential to offer significant improvements in operating temperature, thermal conductivity, and mass. These properties combine to allow significant decreases in the total mass of the radiators and significant increases in the operating temperature of the fins. A Center-funded project at NASA Marshall Space Flight Center has shown that high thermal conductivity, woven carbon fiber fins with no matrix material, can be used to dissipate waste heat from NEP systems and because of high specific power (kW/kg), will require less mass and possibly less total area than standard metal and composite radiator fins for radiating the same amount of heat. This project uses an innovative approach to reduce the mass and size required for the thermal radiators to the point that in-space NEP and power

  18. Development of a research reactor power measurement system using Cherenkov radiation

    International Nuclear Information System (INIS)

    Salles, Brício M.; Mesquita, Amir Z.

    2017-01-01

    Nuclear research reactors are usually located in open pools, to allow visibility to the core and bluish luminosity of Cherenkov radiation. Usually the thermal power released in these reactors is monitored by chambers that measure the neutron flux, as it is proportional to the power. There are other methods used for power measurement, such as monitoring the core temperature and the energy balance in the heat exchanger. The brightness of Cherenkov's radiation is caused by the emission of visible electromagnetic radiation (in the blue band) by charged particles that pass through an insulating medium (water in nuclear research reactors) at a speed higher than that of light in this medium. This effect was characterized by Pavel Cherenkov, which earned him the Nobel Prize for Physics in 1958. The project's objective is to develop an innovative and alternative method for monitoring the power of nuclear research reactors. It will be performed by analyzing and monitoring the intensity of luminosity generated by Cherenkov radiation in the reactor core. This method will be valid for powers up to 250 kW, since above that value the luminosity saturates, as determined by previous studies. The reactor that will be used to test the method is the TRIGA, located at Nuclear Technology Development Center (CDTN), which currently has a maximum operating power of 250 kW. This project complies with International Atomic Energy Agency (IAEA) recommendations on reactor safety. It will give more redundancy and diversification in this measure and will not interfere with its operation. (author)

  19. Highly radiative plasmas for local transport studies and power and particle handling in reactor regimes

    International Nuclear Information System (INIS)

    Hill, K.W.; Bell, M.G.; Budny, R.

    1999-01-01

    To study the applicability of artificially enhanced impurity radiation for mitigation of the plasma-limiter interaction in reactor regimes, krypton and xenon gases were injected into TFTR supershots and high-l i plasmas. At neutral beam injection (NBI) powers P B ≥ 30 MW, carbon influxes (blooms) were suppressed, leading to improved energy confinement and neutron production in both D and DT plasmas, and the highest DT fusion energy production (7.6 MJ) in a TFTR pulse. Comparisons of the measured radiated power profiles with predictions of the MIST impurity transport code have guided studies of highly-radiative plasmas in ITER. The response of the electron and ion temperatures to greatly increased radiative losses from the electrons was used to study thermal transport mechanisms. (author)

  20. Highly radiative plasmas for local transport studies and power and particle handling in reactor regimes

    International Nuclear Information System (INIS)

    Hill, K.W.; Bell, M.G.; Budny, R.

    2001-01-01

    To study the applicability of artificially enhanced impurity radiation for mitigation of the plasma-limiter interaction in reactor regimes, krypton and xenon gases were injected into TFTR supershots and high-l i plasmas. At neutral beam injection (NBI) powers P B ≤30MW, carbon influxes (blooms) were suppressed, leading to improved energy confinement and neutron production in both D and DT plasmas, and the highest DT fusion energy production (7.6 MJ) in a TFTR pulse. Comparisons of the measured radiated power profiles with predictions of the MIST impurity transport code have guided studies of highly-radiative plasmas in ITER. The response of the electron and ion temperatures to greatly increased radiative losses from the electrons was used to study thermal transport mechanisms. (author)

  1. Highly Radiative Plasmas for Local Transport Studies and Power and Particle Handling in Reactor Regimes

    International Nuclear Information System (INIS)

    Bell, M.G.; Bell, R.E.; Budny, R.; Bush, C.E.; Hill, K.W.

    1998-01-01

    To study the applicability of artificially enhanced impurity radiation for mitigation of the plasma-limiter interaction in reactor regimes, krypton and xenon gases were injected into the Tokamak Fusion Test Reactor (TFTR) supershots and high-l(subscript) plasmas. At neutral beam injection (NBI) powers P(subscript B) greater than or equal to 30 MW, carbon influxes (blooms) were suppressed, leading to improved energy confinement and neutron production in both deuterium (D) and deuterium-tritium (DT) plasmas, and the highest DT fusion energy production (7.6 MJ) in a TFTR pulse. Comparisons of the measured radiated power profiles with predictions of the MIST impurity transport code have guided studies of highly-radiative plasmas in the International Thermonuclear Experimental Reactor (ITER). The response of the electron and ion temperatures to greatly increased radiative losses from the electrons was used to study thermal transport mechanisms

  2. General aspects of nuclear power, radiation and environmental effects. Chapter 3

    International Nuclear Information System (INIS)

    1978-01-01

    A general introduction to the principles of the functioning of a nuclear reactor and of power plants based on the reactor types at present in use, and likely to be used in the near future (PWR,BWR,FBR,HTGR and CANDU) is given. The general principles of a thermonuclear power plant are also briefly presented, and general safety aspects discussed. The physics of ionising radiations is briefly presented and natural and artificial sources of radiation are discussed. The fuel cycle, from mining to reprocessing and waste disposal and transport, is presented. The behaviour and effects of radioactive substances in the biosphere, radiation doses, and biological effects of ionising radiation are discussed. In conclusion there is an appendix in which the main characteristics of a number of elements which have important radioactive isotopes are presented. (JIW)

  3. Environmental radiation monitoring during visits of nuclear powered warships to Australian ports: requirements, arrangements and procedures

    International Nuclear Information System (INIS)

    1988-05-01

    The Commonwealth Government has determined conditions to be met when nuclear powered warships visit Australian ports. These conditions include a requirement that appropriate State/Territory and Commonwealth authorities provide a radiation monitoring program to determine whether any radioactivity has been discharged or accidently released from a nuclear powered warship in port; to determine actual or potential levels of any consequent exposure to radiation of members of the public; and to provide this information within a timescale that allows remedial action to be taken. Part 1 of this document sets out the requirements of a radiation monitoring program capable of meeting these objectives. The fundamental arrangements and procedures for implementing the requirements are presented at Part 2 and provide a basis for the development of fully detailed, port specific, radiation monitoring programs

  4. Numerical simulation and experimental research of the integrated high-power LED radiator

    Science.gov (United States)

    Xiang, J. H.; Zhang, C. L.; Gan, Z. J.; Zhou, C.; Chen, C. G.; Chen, S.

    2017-01-01

    The thermal management has become an urgent problem to be solved with the increasing power and the improving integration of the LED (light emitting diode) chip. In order to eliminate the contact resistance of the radiator, this paper presented an integrated high-power LED radiator based on phase-change heat transfer, which realized the seamless connection between the vapor chamber and the cooling fins. The radiator was optimized by combining the numerical simulation and the experimental research. The effects of the chamber diameter and the parameters of fin on the heat dissipation performance were analyzed. The numerical simulation results were compared with the measured values by experiment. The results showed that the fin thickness, the fin number, the fin height and the chamber diameter were the factors which affected the performance of radiator from primary to secondary.

  5. Non-contacting actuation by radiation powered telemetry system

    International Nuclear Information System (INIS)

    Wang Xiaolin; Zhao Chunnong; Kapitola, Peter; Jacob, John; Ju Li; Blair, David G

    2004-01-01

    In laser interferometer gravitational wave detectors, local control relative to vibration isolated parts of a suspension chain may introduce noise through wires. In this paper we present a feasibility study of a wireless signal transmission method for control systems. A prototype system provides a wireless two-way signal transmission over short distances at more than 800 kbits s -1 . Wireless electric power for the system may be provided using a diode laser and solar cells with up to 33% conversion efficiency

  6. Radiation embrittlement in pressure vessels of power reactors

    International Nuclear Information System (INIS)

    Kempf, Rodolfo; Fortis, Ana M.

    2007-01-01

    It is presented the project to study the effect of lead factors on the mechanical behavior of Reactor Pressure Vessel steels. It is described the facility designed to irradiate Charpy specimens with V notch of SA-508 type 3 steel at power reactor temperature, installed in the RA-1 reactor. The objective is to obtain the fracture behavior of irradiated specimens with different lead factors and to know their dependence with the diffusion of alloy elements. (author) [es

  7. Knowledge of the inhabitants of Belarus on the radiation and power problems

    International Nuclear Information System (INIS)

    Vastchenko, S. V.

    2000-01-01

    The anonymous questionnaire of the inhabitants living in various regions of Belarus and having different age and level of education ha been done. The poll has been carried out aiming at definition of a general radiation erudition, as well as revealing the knowledge of the population about the effect of power stations (nuclear and thermal) on the environment and the health of a human being. The analysis of answers shows that people have a rather vague idea in the sphere considered. The analysis of the questionnaires shows that women are informed worse than men about the problems on radiation subjects. The investigation carried out has shown what problems on nuclear power (and radiation safety) should be given the more serious consideration when working with population, especially with women's audience, in order to raise the level of accepting nuclear power as the necessary source of energy. (author)

  8. Radiation effects and annealing of various power MOSFET applied in satellites

    International Nuclear Information System (INIS)

    Liu Gang; Niu Zhenhong; Gao Song; Chinese Academy of Sciences, Beijing; Yu Xuefeng; Ren Diyuan

    2007-01-01

    Two kinds of Power MOSFET applied in the space have been irradiated and tested, and from the view of the changes of oxide charges and interface states, their total dose radiation responses and characteristics have been analyzed. And the relations between breakdown voltage and threshold voltage in the experiment of total close radiation have been investigated and compared. Results of our experiment have provided foundation for the application of these two type devices in spaceflight system. (authors)

  9. Use of complex electronic equipment within radiative areas of PWR power plants: feability study

    International Nuclear Information System (INIS)

    Fremont, P.; Carquet, M.

    1988-01-01

    EDF has undertaken a study in order to evaluate the technical and economical feasibility of using complex electronic equipment within radiative areas of PWR power plants. This study lies on tests of VLSI components (Random Access Memories) under gamma rays irradiations, which aims are to evaluate the radiation dose that they can withstand and to develop a selection method. 125 rad/h and 16 rad/h tests results are given [fr

  10. INFLUENCE OF THE ORTHOGONALLY POLARIZED BACK REFLECTIONS ON THE POWER AND RADIATION SPECTRUM OF SUPERLUMINESCENT DIODES

    Directory of Open Access Journals (Sweden)

    A. B. Mukhtubayev

    2015-01-01

    Full Text Available We have investigated the back reflections influence on the spectrum for optical radiation source of superluminescent diode type and have provided optimal operating conditions of the radiation source. The feature of the research method is the usage of a fiber polarization controller and an optical mirror coated on the end of an optical fiber. The studies were conducted with two sources of optical radiation: ThorLabs superluminescent diode series S5FC1005SXL and LED module ELED-1550-1-E-9-SM1-FA-CW. It was revealed that at the value of back reflections equal to -13 dB relative to the output power source, a negative impact on power and spectral characteristics of the source with an optical power of 2.3 µW is beginning to appear. It was also confirmed that at the increase of the radiation power by increasing the source pumping current, back reflection influence is exhibiting at a lower level of back reflections. The results obtained need to be considered when designing fiber optic sensors in order to eliminate the effect of back reflections on the sources of optical radiation having been studied in this paper.

  11. Radiation workers of nuclear power stations and a method of regional economic development

    International Nuclear Information System (INIS)

    Nakagawa, Haruo

    2003-01-01

    In Japan, most of the electric power companies depend on radiation works to the external labor, but the employment of radiation works lacks its' stability. From the analysis on the mobility of radiation workers, we can see the stability of employment increases in proportion to the number of reactors. The radiation work is legally classified to harmful in Japan. And many health control systems for radiation workers are applied strictly. If we apply the health records registration system to the health control systems and involve them to the regional health care system, we can get more effective plan for regional economic development. It is therefore, very important to strive for employee controls, radiation controls, health examinations and data control. Furthermore, it is necessary to establish a total data management system that processes numerous amounts of data concerning radiation employees. This paper proposes the need for such a registration system to set up the system within regional medical information systems, and proposes the establishment of a radiation work market on the web using a total data management system. The system will include radiation employee control information service for members who are planning new employment contracts. (author)

  12. Radiation protection training for personnel at light-water-cooled nuclear power plants

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    Section 19.12 Instructions to Workers, of 10 CFR Part 19, Notices, Instructions, and Reports to Workers; Inspections, requires that individuals be given instruction in radiation protection that is commensurate with the potential radiation protection problems they may encounter in restricted areas as defined in para. 19.3(e) of 10 CFR Part 19. Para. 20.1(c) of 10 CFR Part 20, Standards for Protection Against Radiation, states that occupational radiation exposure should be kept as low as is reasonably achievable (ALARA). Appropriate training is an essential aspect of an ALARA program. This guide describes a radiation protection training program consistent with the ALARA objective and acceptable to the NRC staff for meeting the training requirements of 10 CFR Part 19 with respect to individuals that enter restricted areas at nuclear power plants

  13. The computer code system for reactor radiation shielding in design of nuclear power plant

    International Nuclear Information System (INIS)

    Li Chunhuai; Fu Shouxin; Liu Guilian

    1995-01-01

    The computer code system used in reactor radiation shielding design of nuclear power plant includes the source term codes, discrete ordinate transport codes, Monte Carlo and Albedo Monte Carlo codes, kernel integration codes, optimization code, temperature field code, skyshine code, coupling calculation codes and some processing codes for data libraries. This computer code system has more satisfactory variety of codes and complete sets of data library. It is widely used in reactor radiation shielding design and safety analysis of nuclear power plant and other nuclear facilities

  14. Measurement and analysis of the electric field radiation in pulsed power system of linear induction accelerator

    International Nuclear Information System (INIS)

    Cheng Qifeng; Ni Jianping; Meng Cui; Cheng Cheng; Liu Yinong; Li Jin

    2009-01-01

    The close of high voltage switch in pulsed power system of linear induction accelerator often radiates strong transient electric field, which may influence ambient sensitive electric equipment, signals and performance of other instruments, etc. By performing gridded measurement around the Marx generator, the general distribution law and basic characters of electric field radiation are summarized. The current signal of the discharge circuit is also measured, which demonstrates that the current and the radiated electric field both have a resonance frequency about 150 kHz, and contain much higher frequency components. (authors)

  15. High-power beam-based coherently enhanced THz radiation source

    Directory of Open Access Journals (Sweden)

    Yuelin Li (李跃林

    2008-08-01

    Full Text Available We propose a compact Smith-Purcell radiation device that can potentially generate high average power THz radiation with high conversion efficiency. The source is based on a train of short electron bunches from an rf photoemission gun at an energy of a few MeV. Particle tracking simulation and analysis show that, with a beam current of 1 mA, it is feasible to generate hundreds of watts of narrow-band THz radiation at a repetition rate of 1 MHz.

  16. Commonalty initiatives in US nuclear power plants to improve radiation protection culture and worker efficiency

    International Nuclear Information System (INIS)

    Wood, W.; Miller, D.

    2003-01-01

    Many US nuclear power plants have learned that common procedures, policies, instrumentation, tools and work practices achieve improvements to the radiation protection culture. Significant worker efficiency achievements are accomplished especially during refuelling outages. This paper discusses commonalty initiatives currently being implemented at many US Plants to address management challenges presented by deregulation of the US electric industry, reduction in the pool of outage contractors and aging of the experienced radiation worker population. The new INPO 2005 dose goals of 650 person-mSv/year for PWRs and 1200 person-mSv/yr for PWRs will require new approaches to radiation protection management to achieve these challenging goals by 2005. (authors)

  17. ITS Version 3.0: Powerful, user-friendly software for radiation modelling

    International Nuclear Information System (INIS)

    Kensek, R.P.; Halbleib, J.A.; Valdez, G.D.

    1993-01-01

    ITS (the Integrated Tiger Series) is a powerful, but user-friendly, software package permitting state-of-the-art modelling of electron and/or photon radiation effects. The programs provide Monte Carlo solution of linear time-independent coupled electron/photon radiation transport problems, with or without the presence of macroscopic electric and magnetic fields. The ITS system combines operational simplicity and physical accuracy in order to provide experimentalist and theorists alike with a method for the routine but rigorous solution of sophisticated radiation transport problems

  18. Radiation and Environmental Protection Programme for the First Upcoming Nuclear Power Plant in Indonesia

    International Nuclear Information System (INIS)

    Syahrir

    2007-01-01

    Indonesia plans to operate the first nuclear power plant (NPP) by 2016. A radiation and environmental protection arrangement for NPPs is part of the whole safety system which is embedded in every practice involved radiation exposure to workers and members of public. A radiation and environmental protection programme for the NPP should adhere to international standards and mainstream in order to be acceptable to the public and international communities. International Atomic Energy Agency (IAEA) has recommended a radiation protection standard for NPPs as studied in this paper. Focus is given to the operational aspects of radiation protection program and discharge control to the environment. Some documents related to Safety Analysis Reports were used as working examples on its implementation. The study includes the classification of working areas and access control; local rules and supervision of work; work planning and work permits; protective clothing and protective equipment; facilities, shielding and equipment; application of the principle of optimization of protection; and removal or reduction in intensity of sources of radiation. The radiological protection aspects blend together in the whole NPP practices, each individual has his/her own responsibility in association with the radiation protection program implementation. It also present in the whole steps of NPP preparation up to its decommissioning. Promise on safety improvement and significant dose reduction in the recent development in NPP technology should scrutinized so that the option of proven technology as required in commercial power reactor licensing considers this tendency. (author)

  19. NATO Advanced Research Workshop on Terahertz and Mid Infrared Radiation

    CERN Document Server

    Pereira, Mauro F; Terahertz and Mid Infrared Radiation

    2011-01-01

    Terahertz (THz) and Mid-Infrared (MIR) radiation  (TERA-MIR) can be transmitted through nearly any material without causing biological harm. Novel and rapid methods of detection can be created with devices operation in these spectral ranges allowing scanning for weapons, detecting hidden explosives (including plastic landmines), controlling the quality of food and a host of other exciting applications.  This book focuses on mathematical and physical aspects of the field, on unifying these two spectral domains (THz and MIR) with regard to common sources, detectors, materials and applications, and on key interdisciplinary topics. The main THz and MIR source is the quantum cascade laser (QCL). Thus significant attention is paid to the challenge of turning this advanced technology into affordable commercial devices so as to exploit its enormous potential. However other alternatives to THz QCLs are also presented, e.g.  sub-terahertz imaging from avalanching GaAs bipolar transistors, Josephson junctions as THz ...

  20. High reliability EPI-base radiation hardened power transistor

    International Nuclear Information System (INIS)

    Clark, L.E.; Saltich, J.L.

    1978-01-01

    A high-voltage power transistor is described which is able to withstand fluences as high as 3 x 10 14 neutrons per square centimeter and still be able to operate satisfactorily. The collector may be made essentially half as thick and twice as heavily doped as normally and its base is made in two regions which together are essentially four times as thick as the normal power transistor base region. The base region has a heavily doped upper region and a lower region intermediate the upper heavily doped region and the collector. The doping in the intermediate region is as close to intrinsic as possible, in any event less than about 3 x 10 15 impurities per cubic centimeter. The second base region has small width in comparison to the first base region, the ratio of the first to the second being at least about 5 to 1. The base region having the upper heavily doped region and the intermediate or lower low doped region contributes to the higher breakdown voltage which the transistor is able to withstand. The high doping of the collector region essentially lowers that portion of the breakdown voltage achieved by the collector region. Accordingly, it is necessary to transfer certain of this breakdown capability to the base region and this is achieved by using the upper region of heavily doped and an intermediate or lower region of low doping

  1. Radiation doses of inhaled ash from the lignite power plants

    International Nuclear Information System (INIS)

    Boshevski, Tome; Pop-Jordanov, Jordan; Chaushevski, Anton

    1997-01-01

    The coal-fired thermal power plants in Macedonia use lignite obtained by surface mining. The lignite contains traces of thorium-232, uranium-238 and uranium-235, which are long-lived natural radioactive isotopes. After lignite combustion, the concentration of these isotopes in the ash is increased. Due to the long life of fossil materials, the decay products are basically grouped in three radioactive chains that are in a semi-steady state, resulting in equal activity of all isotopes from the chain. Among the members of each chain there are α and β emitters followed by γ quanta emitters. The energies of the α and β particles are important for determining the effective dose. The γ quanta provide information about the chain activity and isotope types. Gamma-spectroscopy studies of the ash samples from the power plants in the City of Bitola in Macedonia have confirmed the presence of several radioactive decay products from the uranium and thorium radioactive chains. Using measurements of the radioactivity of the ash in the Bitola region, the total dose from ash inhalation for the population in the Bitola region was calculated and presented in this paper. Also, analysis of the procedure for determining the maximum allowable dose from radioactive contamination of the environment, is described in this paper. (Original)

  2. Radiation Mitigation and Power Optimization Design Tools for Reconfigurable Hardware in Orbit

    Science.gov (United States)

    French, Matthew; Graham, Paul; Wirthlin, Michael; Wang, Li; Larchev, Gregory

    2005-01-01

    The Reconfigurable Hardware in Orbit (RHinO)project is focused on creating a set of design tools that facilitate and automate design techniques for reconfigurable computing in space, using SRAM-based field-programmable-gate-array (FPGA) technology. In the second year of the project, design tools that leverage an established FPGA design environment have been created to visualize and analyze an FPGA circuit for radiation weaknesses and power inefficiencies. For radiation, a single event Upset (SEU) emulator, persistence analysis tool, and a half-latch removal tool for Xilinx/Virtex-II devices have been created. Research is underway on a persistence mitigation tool and multiple bit upsets (MBU) studies. For power, synthesis level dynamic power visualization and analysis tools have been completed. Power optimization tools are under development and preliminary test results are positive.

  3. Future directions in radiation protection in nuclear power plants

    International Nuclear Information System (INIS)

    Lewis, L.

    1987-01-01

    Our visions of the future are often very optimistic and hopeful, representing the best imaginings of the human mind. The authors are inclined to think of the future as filled with new and better things. Some people even visualize the future as a science fiction perfection, but, in reality, it will also contain elements of the past and the present, both good and bad. With respect to radiation protection, a guess would tell us that the future holds the implementation of some version of ICRP-26 in one revision or another of the NRC 10 CFR20 regulations. But many of the technical problems of today may likely be ''solved'' by the public, the politicians, the sociologists and the bureaucrats of the future. For example, two such ''solutions'' may possibly appear in such grotesque forms as drastically lowered allowable annual doses or as engineered facilities for the disposal of low-level radioactive waste above ground on seismic stilts. All of these aspects - the good, the bad, the new, the old, and the indifferent - are all touched upon in this vision of the future

  4. Assessment of nuclear power sources in Czechoslovakia with respect to radiation protection limits

    International Nuclear Information System (INIS)

    Melichar, Z.

    1985-01-01

    The principles are presented which underlie the determination of limits of planned population exposure during normal operation of nuclear installations and of reference levels of exceptional population exposure during nuclear power plant accidents. The introduction is discussed of authorized limits and levels in Czechoslovakia the USSR, CMEA countries and Sweden. An estimate is made of the radiation burden of the population during the development of the Czechoslovak nuclear power programme. (E.S.)

  5. Third harmonic generation of high power far infrared radiation in semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Urban, M [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP)

    1996-04-01

    We investigated the third harmonic generation of high power infrared radiation in doped semiconductors with emphasis on the conversion efficiency. The third harmonic generation effect is based on the nonlinear response of the conduction band electrons in the semiconductor with respect to the electric field of the incident electromagnetic wave. Because this work is directed towards a proposed application in fusion plasma diagnostics, the experimental requirements for the radiation source at the fundamental frequency are roughly given as follows: a wavelength of the radiation at the fundamental frequency in the order of 1 mm and an incident power greater than 1 MW. The most important experiments of this work were performed using the high power far infrared laser of the CRPP. With this laser a new laser line was discovered, which fits exactly the source specifications given above: the wavelength is 676 {mu}m and the maximum power is up to 2 MW. Additional experiments were carried out using a 496 {mu}m laser and a 140 GHz (2.1 mm) gyrotron. The main experimental progress with respect to previous work in this field is, in addition to the use of a very high power laser, the possibility of an absolute calibration of the detectors for the far infrared radiation and the availability of a new type of detector with a very fast response. This detector made it possible to measure the power at the fundamental as well as the third harmonic frequency with full temporal resolution of the fluctuations during the laser pulse. Therefore the power dependence of the third harmonic generation efficiency could be measured directly. The materials investigated were InSb as an example of a narrow gap semiconductor and Si as standard material. The main results are: narrow gap semiconductors indeed have a highly nonlinear electronic response, but the narrow band gap leads at the same time to a low power threshold for internal breakdown, which is due to impact ionization. figs., tabs., refs.

  6. Approach to reducing the effect of bone—coal power station on radiation environment

    Institute of Scientific and Technical Information of China (English)

    NIShi-Ying; GUPei-Long; 等

    2002-01-01

    The effect of two bone-coal power stations(6MWe) on environment was investigated within the scope of the dose contribution caused by various radionucildes in different ways.It is found that the best measures to reduce the effect of bone-coal power station on radiation environment include to select a fine boiler system and a comprehensive utilization of the bone-coal cinder(BCC),soot and ash in the catchers.

  7. Approach to reducing the effect of bone-coal power station on radiation environment

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The effect of two bone-coal power stations (6 MWe) on environment wasinvestigated within the scope of the dose contribution caused by various radionucildes in different ways. It is found that the best measures to reduce the effect of bone-coal power station on radiation environment include to select a fine boiler system and a comprehensive utilization of the bone-coal cinder (BCC), soot and ash in the catchers.

  8. AlGaAs/GaAs photovoltaic converters for high power narrowband radiation

    Energy Technology Data Exchange (ETDEWEB)

    Khvostikov, Vladimir; Kalyuzhnyy, Nikolay; Mintairov, Sergey; Potapovich, Nataliia; Shvarts, Maxim; Sorokina, Svetlana; Andreev, Viacheslav [Ioffe Physical-Technical Institute, 26 Polytechnicheskaya, St. Petersburg, 194021 (Russian Federation); Luque, Antonio [Ioffe Physical-Technical Institute, 26 Polytechnicheskaya, St. Petersburg, 194021, Russia and Instituto de Energia Solar, Universidad Politecnica de Madrid, Madrid (Spain)

    2014-09-26

    AlGaAs/GaAs-based laser power PV converters intended for operation with high-power (up to 100 W/cm{sup 2}) radiation were fabricated by LPE and MOCVD techniques. Monochromatic (λ = 809 nm) conversion efficiency up to 60% was measured at cells with back surface field and low (x = 0.2) Al concentration 'window'. Modules with a voltage of 4 V and the efficiency of 56% were designed and fabricated.

  9. Atmospheric propagation of high power laser radiation at different weather conditions

    OpenAIRE

    Pargmann, Carsten; Hall, Thomas; Duschek, Frank; Handke, Jürgen

    2016-01-01

    Applications based on the propagation of high power laser radiation through the atmosphere are limited in range and effect, due to weather dependent beam wandering, beam deterioration, and scattering processes. Security and defense related application examples are countermeasures against hostile projectiles and the powering of satellites and aircrafts. For an examination of the correlations between weather condition and laser beam characteristics DLR operates at Lampoldshausen a 130 m long fr...

  10. Optimization of radiation protection in nuclear power plants in Italy

    International Nuclear Information System (INIS)

    Benassai, S.; Bramati, L.

    1984-01-01

    There are some reasons to think that actually the cost- benefit analysis cannot be broadly used as optimization procedure in the stage of design for NPP. First of all, an agreement is not yet achieved on the possibility (also with reference to social and political considerations) of assigning a monetary value to the manSv. In addition it is then believed that the feasibility of a cost-benefit analysis, due to the present uncertainties on the various components of the cost (i.e. the costs of health detriment associated with production and installation of protective means and equipments), can perhaps be demonstrated for very simple cases, but not for the NPP as a whole. With regard to this point it is important to note how the input data, often assumed from a cautious standpoint, can dramatically influence the results. Other problems arise from the fact that until now proposed cost-benefit calculations generally refer to routine discharge of radioactive effluents or to shielding related to normal operating conditions, while a major concern is now related to the radiological consequences of accidents. By this way it is important to note also that, also from the economical point of view, the major efforts are concentrated on safety-related systems, in order to reduce the probability of events which can lead on catastrophic consequences. On these bases we prefer to implement optimization procedures in design stage making reference to past experience and to evolution of technology, and to concentrate new efforts on the operating period, when working procedures can produce more effective reduction of radiation exposure. (author)

  11. Radiation and temperature effects on electronic components investigated under the CSTI high capacity power project

    International Nuclear Information System (INIS)

    Schwarze, G.E.; Niedra, J.M.; Frasca, A.J.; Wieserman, W.R.

    1993-01-01

    The effects of nuclear radiation and high temperature environments must be fully known and understood for the electronic components and materials used in both the Power Conditioning and Control subsystem and the reactor Instrumentation and Control subsystem of future high capacity nuclear space power systems. This knowledge is required by the designer of these subsystems in order to develop highly reliable, long-life power systems for future NASA missions. A review and summary of the experimental results obtained for the electronic components and materials investigated under the power management element of the CSTI high capacity power project will be presented in this paper: (1) Neutron, gamma ray, and temperature effects on power semiconductor switches, (2) Temperature and frequency effects on soft magnetic materials; and (3) Temperature effects on rare-earth permanent magnets

  12. Solar Power System Options for the Radiation and Technology Demonstration Spacecraft

    Science.gov (United States)

    Kerslake, Thomas W.; Haraburda, Francis M.; Riehl, John P.

    2000-01-01

    The Radiation and Technology Demonstration (RTD) Mission has the primary objective of demonstrating high-power (10 kilowatts) electric thruster technologies in Earth orbit. This paper discusses the conceptual design of the RTD spacecraft photovoltaic (PV) power system and mission performance analyses. These power system studies assessed multiple options for PV arrays, battery technologies and bus voltage levels. To quantify performance attributes of these power system options, a dedicated Fortran code was developed to predict power system performance and estimate system mass. The low-thrust mission trajectory was analyzed and important Earth orbital environments were modeled. Baseline power system design options are recommended on the basis of performance, mass and risk/complexity. Important findings from parametric studies are discussed and the resulting impacts to the spacecraft design and cost.

  13. Radiation and temperature effects on electronic components investigated under the CSTI High Capacity Power Project

    International Nuclear Information System (INIS)

    Shwarze, G.E.; Wieserman, W.R.

    1994-01-01

    The effects of nuclear radiation and high temperature environments must be fully known and understood for the electronic components and materials used in both the Power Conditioning and Control subsystem and the reactor Instrumentation and Control subsystem of future high capacity nuclear space power systems. This knowledge is required by the designer of these subsystems in order to develop highly reliable, long-life power systems for future NASA missions. A review and summary of the experimental results obtained for the electronic components and materials investigated under the power management element of the CSTI high capacity power project will be presented in this paper: (1) Neutron, gamma ray, and temperature effects on power semiconductor switches, (2) Temperature and frequency effects on soft magnetic materials; and (3) Temperature effects on rare earth permanent magnets

  14. Radiation power profiles and density limit with a divertor in the W7-AS stellarator

    International Nuclear Information System (INIS)

    Giannone, L.; Burhenn, R.; McCormick, K.; Brakel, R.; Feng, Y.; Grigull, P.; Igitkhanov, Y.

    2002-01-01

    The addition of a divertor into the W7-AS stellarator has allowed access to a high density regime where the radiation profiles reach a steady state. In earlier limiter discharges, the plasma suffered a radiative collapse at high densities. In contrast to limiter experiments, where the impurity confinement time measured by Al laser blow-off increased with increasing line integrated density, in divertor discharges, above a density threshold, the impurity confinement time decreased with increasing line integrated density. The observation that the divertor plasma radiates mainly at the plasma edge rather than the plasma centre is a further indication that changes to the impurity transport coefficients at these high densities are the basis for the achievement of steady state discharges in the divertor configuration of W7-AS. The maximum line integrated density reached with a divertor is compared to that reached with a limiter. The previously derived scaling law for the density limit with a limiter shows that the achieved densities do not exceed those predicted when the higher deposited power is taken into account. In a divertor the radiated power is located at the plasma edge and increasing the density, cooling the plasma edge and radiating sufficient power to cause plasma detachment determines the density limit. (author)

  15. Uncertainty and power at low levels of incurred radiation dose

    International Nuclear Information System (INIS)

    Wilson, M; Jackson, D

    2005-01-01

    It is common practice when calculating dose to exposed populations to average the variables that go into the dose calculation (e.g. environmental concentrations, air kerma, consumption rates, occupancy rates). This approach is simple and can be useful where data are obtained over different periods (weekly, monthly, quarterly), where samples may be bulked for some analyses but not others and where gaps in the data are present. However, such an approach does not yield information on the degree of uncertainty around the average dose calculated. An alternative approach is to estimate the dose to each individual and to obtain an average from this data set, which can then also be used to derive a measure of uncertainty around the central dose estimate. In this study, we demonstrate the variability in dose estimates using a hypothetical data set and consider the implications for sample size to achieve fixed confidence or resolving power. We recommend calculating the dose to every individual sampled, in order both to obtain the average dose and to estimate its variability. We argue that it is best practice to obtain information as complete as possible from the available sample of individuals

  16. Estimated population exposure from nuclear power production and other radiation sources

    International Nuclear Information System (INIS)

    Pochin, E.E.

    1976-01-01

    Estimates are given of the total radiation dose from all forms of ionizing radiation resulting from nuclear power reduction. A power consumption of 1kW per head of population, derived entirely from nuclear energy, would increase the average radiation exposure of the whole population from 100mrem per year from natural sources (plus about 40mrem per year from medical procedures and other artificial causes) by about 6mrem per year. The genetically signifificant component of this increase would be about 4mrem per year. Available estimates of harm from radiation would indicate that this would give a risk per year per million of population of about 1 fatal induced malignancy, about the same number of malignancies fully treatable by operation, and, after many generations, about the same number of inherited defects, of greater or less severity, per year. Accidental injuries, particularly in constructional and mining work, would cause an estimated 1 fatality and 50 other accidents annually. Indications are given of the number of fatalities and accidents involved in equal power production by alternative methods, and of the value and limitations of such numerical comparisons in reaching decisions on the development of future power programmes

  17. Occupational radiation exposure at commercial nuclear power reactors and other facilities, 1991

    International Nuclear Information System (INIS)

    Raddatz, C.T.

    1993-07-01

    This report summarizes the occupational radiation exposure information that has been reported to the NRC's Radiation Exposure Information Reporting System (REIRS) by nuclear power facilities and certain other categories of NRC licensees during the years 1969 through 1991. The bulk of the data presented in the report was obtained from annual radiation exposure reports submitted in accordance with the requirements of 10 CFR 20.407 and the technical specifications of nuclear power plants. Data on workers terminating their employment at certain NRC licensed facilities were obtained from reports submitted pursuant to 10 CFR 20.408. The 1991 annual reports submitted by about 436 licensees indicated that approximately 206,732 individuals were monitored, 182,334 of whom were monitored by nuclear power facilities. They incurred an average individual dose of 0.15 rem (cSv) and an average measurable dose of about 0.31 (cSv). Termination radiation exposure reports were analyzed to reveal that about 96,231 individuals completed their employment with one or more of the 436 covered licensees during 1991. Some 68,115 of these individuals terminated from power reactor facilities, and about 7,763 of them were considered to be transient workers who received an average dose of 0.52 rem (cSv)

  18. Ways of reducing radiation exposure in a future nuclear power economy

    International Nuclear Information System (INIS)

    Morgan, K.Z.

    1976-01-01

    The reasons for attempting to reduce radiation exposure in a future nuclear power economy are first discussed. This is followed by a detailed examination of ways for reducing exposures. The entire fuel cycle from uranium mining through fuel reprocessing is covered but special attention is devoted to reactors, fuel and waste shipping and fuel reprocessing

  19. Radiation monitoring for the HTTR rise-to-power test (1) and (2)'

    Energy Technology Data Exchange (ETDEWEB)

    Nakazawa, Takashi; Yoshino, Toshiaki; Yasu, Katsuji; Ashikagaya, Yoshinobu; Kikuchi, Toshiki [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    2001-02-01

    The High Temperature Engineering Test Reactor (HTTR) is the first high temperature gas-cooled research reactor in Japan. This reactor is a helium-gas-cooled and graphite-moderated reactor with a thermal output of 30 MW. The rated operation temperature of the outlet coolant is 850degC. (During high temperature test operation, this reaches 950degC). The first criticality of the HTTR was attained in November 1998. The single loaded, parallel loaded operation with a thermal output of 9 MW (called the HTTR Rise-to-Power Test (1)) was completed between September 16, 1999 and July 8, 2000. The single loaded, parallel loaded continuous operation with a thermal output of 20 MW (called the HTTR Rise-to-Power Test (2)) has also been carried out, but it was shutdown at the halfway stage by a single from the reactor, when the thermal output was 16.5 MW and the reactor outlet coolant temperature was 500degC. This report describes the radiation monitoring carried out during the HTTR Rise-to-Power Tests (1) and (2)'. The data measured by the various radiation monitors is also reported. These data will be used for the estimation of radiation levels (such as the radiation dose equivalent rate, the radioactive concentration in effluents, etc.) for the next HTTR Rise-to-Power Test, and for periodic inspections. (author)

  20. Occupational radiation exposure at commercial nuclear power reactors and other facilities, 1989

    International Nuclear Information System (INIS)

    Raddatz, C.T.

    1992-04-01

    This report summarizes the occupational radiation exposure information that has been reported to the NRC's Radiation Exposure Information Reporting System (REIRS) by nuclear power facilities and certain other categories of NRC 1 licensees during the years 1969 through 1989. The bulk of the data presented in the report was obtained from annual radiation exposure reports submitted in accordance with the requirements of 10 CFR 20.407 and the technical specifications of nuclear power plants. Data on workers terminating their employment at certain NRC 1 licensed facilities were obtained from reports submitted pursuant to 10 CFR 20.408. The 1989 annual reports submitted by about 448 licensees indicated that approximately 216,294 individuals were monitored 111,000 of whom were monitored by nuclear power facilities. They incurred an average individual does of 0.18 rem (cSv) and an average measurable dose of 0.36 (cSv). Termination radiation exposure reports were analyzed to reveal that about 113,535 individuals completed their employment with one or more of the 448 covered licensees during 1989. Some 76,561 of these individuals terminated from power reactor facilities, and about 10, 344 of them were considered to be transient workers who received an average dose of 0.64 rem (cSv)

  1. Occupational radiation exposure at commercial nuclear power reactors and other facilities, 1988

    International Nuclear Information System (INIS)

    Raddatz, C.T.

    1991-07-01

    This report summarizes the occupational radiation exposure information that has been reported to the NRC's Radiation Exposure Information Reporting System (REIRS) by nuclear power facilities and certain other categories of NRC licensees during the years 1969 through 1988. The bulk of the data presented in the report was obtained from annual radiation exposure reports submitted in accordance with the requirements of 10 CFR 20.407 and the technical specifications of nuclear power plants. Data on workers terminating their employment at certain NRC licensed facilities were obtained from reports submitted pursuant to 10 CFR 20.408. The 1988 annual reports submitted by about 429 licensees indicated that approximately 220,048 individuals were monitored, 113,00 of whom were monitored by nuclear power facilities. They incurred an average individual dose of 0.20 rem (cSv) and an average measurable dose of 0.41 (cSv). Termination radiation exposure reports were analyzed to reveal that about 113,072 individuals completed their employment with one or more of the 429 covered licensees during 1988. Some 80,211 of these individuals terminated from power reactor facilities, and about 8,760 of them were considered to be transient workers who received an average dose of 0.27 rem (cSv). 17 refs., 11 figs., 29 tabs

  2. The effects of ionizing radiation on commercial power MOSFETs operated at cryogenic temperatures

    International Nuclear Information System (INIS)

    Johnson, G.H.; Kemp, W.T.; Ackermann, M.R.; Pugh, R.D.; Schrimpf, R.D.; Galloway, K.F.

    1994-01-01

    This is the first report of commercial n- and p-channel power MOSFETs exposed to ionizing radiation while operating in a cryogenic environment. The transistors were exposed to low energy x-rays while placed in a liquid nitrogen-cooled dewar. Results demonstrate significant performance and survivability advantages for space-borne power MOSFETs operated at cryogenic temperatures. The key advantages for low-temperature operation of power MOSFET's in an ionizing radiation environment are: (1) steeper subthreshold current slope before and after irradiation; (2) lower off-state leakage currents before and after irradiation; and (3) larger prerad threshold voltage for n-channel devices. The first two points are also beneficial for devices that are not irradiated, but the advantages are more significant in radiation environments. The third point is only an advantage for commercial devices operated in radiation environments. Results also demonstrate that commercial off-the-shelf power MOSFETs can be used for low-temperature operations in a limited total dose environment (i.e., many space applications)

  3. Modal analysis and nonlinear characterization of an airborne power ultrasonic transducer with rectangular plate radiator.

    Science.gov (United States)

    Andrés, R R; Acosta, V M; Lucas, M; Riera, E

    2018-01-01

    Some industrial processes like particle agglomeration or food dehydration among others can be enhanced by the use of power ultrasonic technologies. These technologies are based on an airborne power ultrasonic transducer (APUT) constituted by a pre-stressed Langevin-type transducer, a mechanical amplifier and an extensive plate radiator. In order to produce the desired effects in industrial processing, the transducer has to vibrate in an extensional mode driving an extensive radiator in the desired flexural mode with high amplitude displacements. Due to the generation of these high amplitude displacements in the radiator surfaces, non-linear effects like frequency shifts, hysteresis or modal interactions, among others, may be produced in the transducer behavior. When any nonlinear effect appears, when applying power, the stability and efficiency of this ultrasonic technology decreases, and the transducer may be damaged depending on the excitation power level and the nature of the nonlinearity. In this paper, an APUT with flat rectangular radiator is presented, as the active part of an innovative system with stepped reflectors. The nonlinear behavior of the APUT has been characterized numerically and experimentally in case of the modal analysis and experimentally in the case of dynamic analysis. According to the results obtained after the experiments, no modal interactions are expected, nor do other nonlinear effects. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Radiated Power and Impurity Concentrations in the EXTRAP-T2R Reversed-Field Pinch

    Science.gov (United States)

    Corre, Y.; Rachlew, E.; Cecconello, M.; Gravestijn, R. M.; Hedqvist, A.; Pégourié, B.; Schunke, B.; Stancalie, V.

    2005-01-01

    A numerical and experimental study of the impurity concentration and radiation in the EXTRAP-T2R device is reported. The experimental setup consists of an 8-chord bolometer system providing the plasma radiated power and a vacuum-ultraviolet spectrometer providing information on the plasma impurity content. The plasma emissivity profile as measured by the bolometric system is peaked in the plasma centre. A one dimensional Onion Skin Collisional-Radiative model (OSCR) has been developed to compute the density and radiation distributions of the main impurities. The observed centrally peaked emissivity profile can be reproduced by OSCR simulations only if finite particle confinement time and charge-exchange processes between plasma impurities and neutral hydrogen are taken into account. The neutral hydrogen density profile is computed with a recycling code. Simulations show that recycling on metal first wall such as in EXTRAP-T2R (stainless steel vacuum vessel and molybdenum limiters) is compatible with a rather high neutral hydrogen density in the plasma centre. Assuming an impurity concentration of 10% for oxygen and 3% for carbon compared with the electron density, the OSCR calculation including lines and continuum emission reproduces about 60% of the total radiated power with a similarly centrally peaked emissivity profile. The centrally peaked emissivity profile is due to low ionisation stages and strongly radiating species in the plasma core, mainly O4+ (Be-like) and C3+ Li-like.

  5. Radiated Power and Impurity Concentrations in the EXTRAP-T2R Reversed-Field Pinch

    International Nuclear Information System (INIS)

    Corre, Y.; Rachlew, E.; Gravestijn, R.M.; Hedqvist, A.; Stancalie, V.

    2005-01-01

    A numerical and experimental study of the impurity concentration and radiation in the EXTRAP-T2R device is reported. The experimental setup consists of an 8-chord bolometer system providing the plasma radiated power and a vacuum ultraviolet spectrometer providing information on the plasma impurity content. The plasma emissivity profile as measured by the bolometric system is peaked in the plasma centre. A one dimensional Onion Skin Collisional-Radiative model (OSCR) has been developed to compute the density and radiation distributions of the main impurities. The observed centrally peaked emissivity profile can be reproduced by OSCR simulations only if finite particle confinement time and charge-exchange processes between plasma impurities and neutral hydrogen are taken into account. The neutral hydrogen density profile is computed with a recycling code. Simulations show that recycling on metal first wall such as in EXTRAP-T2R (stainless steel vacuum vessel and molybdenum limiters) is compatible with a rather high neutral hydrogen density in the plasma centre. Assuming an impurity concentration of 10% for oxygen and 3% for carbon compared with the electron density, the OSCR calculation including lines and continuum emission reproduces about 60% of the total radiated power with a similarly centrally peaked emissivity profile. The centrally peaked emissivity profile is due to low ionisation stages and strongly radiating species in the plasma core, mainly O 4+ (Be-like) and C 3+ (Li-like)

  6. Radiation characteristics of input power from surface wave sustained plasma antenna

    Energy Technology Data Exchange (ETDEWEB)

    Naito, T., E-mail: Naito.Teruki@bc.MitsubishiElectric.co.jp [Advanced Technology R& D Center, Mitsubishi Electric Corporation, Amagasaki, Hyogo 661-8661 (Japan); Yamaura, S. [Information Technology R& D Center, Mitsubishi Electric Corporation, Kamakura, Kanagawa 247-8501 (Japan); Fukuma, Y. [Communication System Center, Mitsubishi Electric Corporation, Amagasaki, Hyogo 661-8661 (Japan); Sakai, O. [Department of Electronic System Engineering, The University of Shiga Prefecture, Hikone, Shiga 522-8533 (Japan)

    2016-09-15

    This paper reports radiation characteristics of input power from a surface wave sustained plasma antenna investigated theoretically and experimentally, especially focusing on the power consumption balance between the plasma generation and the radiation. The plasma antenna is a dielectric tube filled with argon and small amount of mercury, and the structure is a basic quarter wavelength monopole antenna at 2.45 GHz. Microwave power at 2.45 GHz is supplied to the plasma antenna. The input power is partially consumed to sustain the plasma, and the remaining part is radiated as a signal. The relationship between the antenna gain and the input power is obtained by an analytical derivation and numerical simulations. As a result, the antenna gain is kept at low values, and most of the input power is consumed to increase the plasma volume until the tube is filled with the plasma whose electron density is higher than the critical electron density required for sustaining the surface wave. On the other hand, the input power is consumed to increase the electron density after the tube is fully filled with the plasma, and the antenna gain increases with increasing the electron density. The dependence of the antenna gain on the electron density is the same as that of a plasma antenna sustained by a DC glow discharge. These results are confirmed by experimental results of the antenna gain and radiation patterns. The antenna gain of the plasma is a few dB smaller than that of the identical metal antenna. The antenna gain of the plasma antenna is sufficient for the wireless communication, although it is difficult to substitute the plasma antenna for metal antennas completely. The plasma antenna is suitable for applications having high affinity with the plasma characteristics such as low interference and dynamic controllability.

  7. Radiation characteristics of input power from surface wave sustained plasma antenna

    International Nuclear Information System (INIS)

    Naito, T.; Yamaura, S.; Fukuma, Y.; Sakai, O.

    2016-01-01

    This paper reports radiation characteristics of input power from a surface wave sustained plasma antenna investigated theoretically and experimentally, especially focusing on the power consumption balance between the plasma generation and the radiation. The plasma antenna is a dielectric tube filled with argon and small amount of mercury, and the structure is a basic quarter wavelength monopole antenna at 2.45 GHz. Microwave power at 2.45 GHz is supplied to the plasma antenna. The input power is partially consumed to sustain the plasma, and the remaining part is radiated as a signal. The relationship between the antenna gain and the input power is obtained by an analytical derivation and numerical simulations. As a result, the antenna gain is kept at low values, and most of the input power is consumed to increase the plasma volume until the tube is filled with the plasma whose electron density is higher than the critical electron density required for sustaining the surface wave. On the other hand, the input power is consumed to increase the electron density after the tube is fully filled with the plasma, and the antenna gain increases with increasing the electron density. The dependence of the antenna gain on the electron density is the same as that of a plasma antenna sustained by a DC glow discharge. These results are confirmed by experimental results of the antenna gain and radiation patterns. The antenna gain of the plasma is a few dB smaller than that of the identical metal antenna. The antenna gain of the plasma antenna is sufficient for the wireless communication, although it is difficult to substitute the plasma antenna for metal antennas completely. The plasma antenna is suitable for applications having high affinity with the plasma characteristics such as low interference and dynamic controllability.

  8. The regulatory evaluation of radiation protection training programmes at Canadian nuclear power plants

    International Nuclear Information System (INIS)

    Legare, M.; Tennant, D.

    1996-01-01

    The responsibility for providing the necessary assurance that the use of nuclear energy in Canada does not pose undue risk to health, safety, security and the environment is vested with the Atomic Energy Control Board (AECB). This responsibility has led the Operator Certification Division of the AECB to develop methods to obtain assurance that nuclear power plant operations personnel are well trained and adequately competent to perform their duties. The features of the AECB approach to evaluation of training programmes based on a systematic approach to training is described. An overview of the Canadian nuclear power plants' radiation protection qualification levels is given. The developing evaluation process is contributing to the improvement of licensee radiation protection training programmes. This is making possible the transfer of part of the responsibility for licensed personnel radiation protection qualification assessment to the licensees, thus enabling a reduction in the operator certification division formal qualification activities. (author)

  9. Radiation monitoring complete change by an unprecedented nuclear power plant accident

    International Nuclear Information System (INIS)

    Omura, Tomomi

    2011-01-01

    Hydrogen explosion at the Fukushima Daiichi Nuclear Power Station of Tokyo Electric Power Company that was triggered by the tsunami generated from the Great East Japan Earthquake led to a series of disasters up to meltdown and melt-through. A large amount of discharge of radioactive substances to the environment due to the disasters marked a sea change in the situation of radiation monitoring in Japan to date. The Japanese Government took the following actions. (1) Establishment of government-led monitoring system through the setup of the Monitoring Coordination Council, (2) Decision on 'Comprehensive Monitoring Program' that implements unified comprehensive radiation monitoring and publishes the results, and (3) Law establishment for radiation monitoring by stipulating immediate implementation systems and implementation points as well as budgetary backup for this purpose. This paper describes the plans to monitor the environment, public facilities, aquatic environment, agricultural land, food, etc., as well as the future challenges. (O.A.)

  10. Radiation protection aspects of the repair work at Paks Nuclear Power Plant

    International Nuclear Information System (INIS)

    Bujtas, T.; Nenyei, A.

    2006-01-01

    On the Unit 2 at Paks Nuclear Power Plant accident occurred on 10th April 2003. Thirty fuel assemblies damaged in the cleaning tank installed in the Pit No. 1. Due to the accident casing of the fuel elements and uranium-dioxide pellets inside them damaged. The scratched fuel assemblies and nuclear fuel fragments should be removed and safely deposited. In order to restore the operational condition of the Pit No. 1 a lot of complicated activities with radiation hazard should be implemented. These tasks bring up both technical difficulties and serious radiation protection problems, and it is essential to resolve them in order to reduce radiation exposure of the working personnel and to minimize the amount of off-site radioactive releases.There was a serious incident (An INES level 3 event) at Paks Nuclear Power plant in april 10, 2003. (TRA)

  11. Prototypes of Self-Powered Radiation Detectors Employing Intrinsic High-Energy Current (HEC) (POSTPRINT)

    Science.gov (United States)

    2016-01-01

    neutron sensi- tivities of a Pt self - powered detector ,” IEEE Trans. Nucl. Sci. 25, 292–295 (1978). 6T. A. Dellin, R. E. Huddleston, and C. J...Gamma-sensitive self - powered detectors and their use for in-core flux -mapping,” IEEE Trans. Nucl. Sci. 28, 752–757 (1981). 9E. A. Burke and J. Wall...AFCEC-CX-TY-TP-2016-0006 PROTOTYPES OF SELF - POWERED RADIATION DETECTORS EMPLOYING INTRINSIC HIGH-ENERGY CURRENT (HEC) (POSTPRINT) Piotr

  12. Soil radioactivity levels and radiation hazard assessment around a Thermal Power Plant

    International Nuclear Information System (INIS)

    Kumar, Mukesh; Kumar, Pankaj; Sharma, Somdutt; Agrawal, Anshu; Kumar, Rajesh; Prajith, Rama; Sahoo, B.K.

    2016-01-01

    Coal based thermal power plants further enhance the level of radioactivity in the environment, as burning of coal produces fly ash that can be released into the environment containing traces of 238 U, 232 Th and their decay products. Therefore, coal fired power plants are one of the major contributor towards the Technologically Enhanced Natural Radiation (TENR). Keeping this in view, a study of natural radioactivity in the soil of twenty five villages within 5 km radius around the Harduaganj Thermal Power Plant, Aligarh, UP, India is going on under a BRNS major project, to know the radiological implications on general population living around this plant

  13. Systems analysis of radiation safety during dismantling of power-plant equipment at a nuclear power station

    International Nuclear Information System (INIS)

    Bylkin, B.K.; Shpitser, V.Ya.

    1993-01-01

    A systems analysis of the radiation safety makes possible an ad hoc determination of the elements forming the system, as well as the establishment of the characteristics of their interaction with radiation-effect factors. Here the authors will present part of the hierarchical analysis procedure, consisting in general of four separate procedures. The purpose is to investigate and analyze the mean and stable (on the average) indices of radiation safety, within the framework of alternative mathematical models of dismantling the power-plant equipment of a nuclear power station. The following three of the four procedures are discussed: (1) simulated projection, of the processing of radioactive waste; (2) analysis of the redistribution of radionuclides during the industrial cycle of waste treatment; (3) planning the collective dose load during the dismantling operation. Within the framework of the first of these procedures, the solutions to the problem of simulating a waste-treatment operation of maximum efficiency are analyzed. This analysis is based on the use of a data base for the parameters of the installations, assemblies, and equipment, enabling the integration of these in a simulation of a complex automated facility. The results were visualized in an AUTOCAD-10 medium using a graphical data base containing an explanation of the rooms

  14. Development of pilot model of virtual nuclear power plant and its application to radiation management

    International Nuclear Information System (INIS)

    Kang, K. D.; Sin, S. W.

    2002-01-01

    Using Virtual Reality (VR) technique, a real model for radiation controlled area in nuclear power plant was developed and a feasibility study to develop a computational program to estimate radiation dose was performed. For this purpose a pilot model with an dynamic function and bi-directional communication was developed. This model was enhanced from the existing 3-D single-directional communication. In this pilot model, a plant visitor needs a series of security checking process initially. If he(she) enters the controlled area and approaches radiation hazard area, the alarms with warning lamp will be initiated automatically. Throughout the test to connect this model from both domestic and international sites in various time zones it has proven that it showed a sufficient performance. Therefore this model can be applied to broad fields as radiation protection procedures photographic data, on-line dose program

  15. Ultra-Low Power Consuming Direct Radiation Sensors Based on Floating Gate Structures

    Directory of Open Access Journals (Sweden)

    Evgeny Pikhay

    2017-07-01

    Full Text Available In this paper, we report on ultra-low power consuming single poly floating gate direct radiation sensors. The developed devices are intended for total ionizing dose (TID measurements and fabricated in a standard CMOS process flow. Sensor design and operation is discussed in detail. Original array sensors were suggested and fabricated that allowed high statistical significance of the radiation measurements and radiation imaging functions. Single sensors and array sensors were analyzed in combination with the specially developed test structures. This allowed insight into the physics of sensor operations and exclusion of the phenomena related to material degradation under irradiation in the interpretation of the measurement results. Response of the developed sensors to various sources of ionizing radiation (Gamma, X-ray, UV, energetic ions was investigated. The optimal design of sensor for implementation in dosimetry systems was suggested. The roadmap for future improvement of sensor performance is suggested.

  16. Experimental determination of radiated internal wave power without pressure field data

    Science.gov (United States)

    Lee, Frank M.; Paoletti, M. S.; Swinney, Harry L.; Morrison, P. J.

    2014-04-01

    We present a method to determine, using only velocity field data, the time-averaged energy flux left and total radiated power P for two-dimensional internal gravity waves. Both left and P are determined from expressions involving only a scalar function, the stream function ψ. We test the method using data from a direct numerical simulation for tidal flow of a stratified fluid past a knife edge. The results for the radiated internal wave power given by the stream function method agree to within 0.5% with results obtained using pressure and velocity data from the numerical simulation. The results for the radiated power computed from the stream function agree well with power computed from the velocity and pressure if the starting point for the stream function computation is on a solid boundary, but if a boundary point is not available, care must be taken to choose an appropriate starting point. We also test the stream function method by applying it to laboratory data for tidal flow past a knife edge, and the results are found to agree with the direct numerical simulation. The supplementary material includes a Matlab code with a graphical user interface that can be used to compute the energy flux and power from two-dimensional velocity field data.

  17. Scheduled Operation of PV Power Station Considering Solar Radiation Forecast Error

    Science.gov (United States)

    Takayama, Satoshi; Hara, Ryoichi; Kita, Hiroyuki; Ito, Takamitsu; Ueda, Yoshinobu; Saito, Yutaka; Takitani, Katsuyuki; Yamaguchi, Koji

    Massive penetration of photovoltaic generation (PV) power stations may cause some serious impacts on a power system operation due to their volatile and unpredictable output. Growth of uncertainty may require larger operating reserve capacity and regulating capacity. Therefore, in order to utilize a PV power station as an alternative for an existing power plant, improvement in controllability and adjustability of station output become very important factor. Purpose of this paper is to develop the scheduled operation technique using a battery system (NAS battery) and the meteorological forecast. The performance of scheduled operation strongly depends on the accuracy of solar radiation forecast. However, the solar radiation forecast contains error. This paper proposes scheduling method and rescheduling method considering the trend of forecast error. More specifically, the forecast error scenario is modeled by means of the clustering analysis of the past actual forecast error. Validity and effectiveness of the proposed method is ascertained through computational simulations using the actual PV generation data monitored at the Wakkanai PV power station and solar radiation forecast data provided by the Japan Weather Association.

  18. Experimental determination of radiated internal wave power without pressure field data

    International Nuclear Information System (INIS)

    Lee, Frank M.; Morrison, P. J.; Paoletti, M. S.; Swinney, Harry L.

    2014-01-01

    We present a method to determine, using only velocity field data, the time-averaged energy flux (J) and total radiated power P for two-dimensional internal gravity waves. Both (J) and P are determined from expressions involving only a scalar function, the stream function ψ. We test the method using data from a direct numerical simulation for tidal flow of a stratified fluid past a knife edge. The results for the radiated internal wave power given by the stream function method agree to within 0.5% with results obtained using pressure and velocity data from the numerical simulation. The results for the radiated power computed from the stream function agree well with power computed from the velocity and pressure if the starting point for the stream function computation is on a solid boundary, but if a boundary point is not available, care must be taken to choose an appropriate starting point. We also test the stream function method by applying it to laboratory data for tidal flow past a knife edge, and the results are found to agree with the direct numerical simulation. The supplementary material includes a Matlab code with a graphical user interface that can be used to compute the energy flux and power from two-dimensional velocity field data

  19. Characterization of the temporary radiation workforce at US nuclear power plants

    International Nuclear Information System (INIS)

    Cehn, J.I.

    1984-01-01

    The temporary radiation worker is the subject of this recent study by the National Environmental Studies Project. ''Lenny'', an imaginary worker, is actually a composite of the estimated 22,000 radiation workers employed at various times at the 80 nuclear power plants in the U.S. Lenny reports to a trailer on the plant site to check in and spends the next day and a half in a training class that covers radiation safety, federal regulations and exposure limits and plant procedures. He must take and pass a written exam, then he fills out a medical history, indicating whether or not he has received any industrial radiation exposure. After three days of training and ''processing'' he dons a radiation measuring dosimeter and begins work. A key question to this study is whether the temporary employees are getting assigned the dirty work. It has been alleged that temps are used as ''glowboys'' or ''radiation sponges''. The new study finds no basis for this allegation. Data show that permanent plant staff received nearly the same average annual radiation dose as temporary employees

  20. Design and development of Solar Powered Wireless Telemetering System (SPWTS) for Environmental Radiation Monitoring (ERM) of nuclear power plants

    International Nuclear Information System (INIS)

    Mariappan, Bhuvaneswari; Ramachandran, Shanmugalakshmi

    2014-01-01

    Presently, the real time environmental radiation monitoring system installed in the nuclear power plant is based on LAN. Generally data from the surveillance instrument are collected at regular intervals using a lap-top or system/units and taken to the laboratory for downloading the archival data. So a need was felt to design and develop Solar powered Wireless Telemetering System (SPWTS) for Environmental Radiation Monitoring (ERM) of Nuclear Power Plants. SPWTS is used for real-time monitoring and wireless transmission of the on-line data to the Central Control Unit (CCU) to investigate the history of monitored data. Thus, in this paper a wireless mode using Zigbee is proposed, thereby improving scalability, flexibility and continuous radiological surveillance along with data archival facility. The proposed Solar Powered Wireless Telemetering System (SPWTS) comprising of transmitter, intermediate devices and receiver units transmits the ERM data to Central Control Unit (CCU) for storage and display to RADAS unit. In order to meet the coverage distance without data loss, suitable number of repeaters/routers are configured and joined in the network. The entire wireless telemetry system is powered up by solar cells with rechargeable battery backup facility, SPWTS suitable for ERM data transmission module will replace the wired Ethernet environment by wireless mode thereby improving scalability, flexibility and continuous radiological surveillance of the gamma dose monitoring. This module also proposes solutions for wireless transmission of safety related critical data to a remote control unit. Finally, this module promotes interoperability within hierarchical framework by reducing the amount of changes that could be introduced into the existing system. (author)

  1. Development of a research reactor power measurement system using Cherenkov radiation

    Energy Technology Data Exchange (ETDEWEB)

    Salles, Brício M.; Mesquita, Amir Z., E-mail: briciomares@hotmail.com, E-mail: amir@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-11-01

    Nuclear research reactors are usually located in open pools, to allow visibility to the core and bluish luminosity of Cherenkov radiation. Usually the thermal power released in these reactors is monitored by chambers that measure the neutron flux, as it is proportional to the power. There are other methods used for power measurement, such as monitoring the core temperature and the energy balance in the heat exchanger. The brightness of Cherenkov's radiation is caused by the emission of visible electromagnetic radiation (in the blue band) by charged particles that pass through an insulating medium (water in nuclear research reactors) at a speed higher than that of light in this medium. This effect was characterized by Pavel Cherenkov, which earned him the Nobel Prize for Physics in 1958. The project's objective is to develop an innovative and alternative method for monitoring the power of nuclear research reactors. It will be performed by analyzing and monitoring the intensity of luminosity generated by Cherenkov radiation in the reactor core. This method will be valid for powers up to 250 kW, since above that value the luminosity saturates, as determined by previous studies. The reactor that will be used to test the method is the TRIGA, located at Nuclear Technology Development Center (CDTN), which currently has a maximum operating power of 250 kW. This project complies with International Atomic Energy Agency (IAEA) recommendations on reactor safety. It will give more redundancy and diversification in this measure and will not interfere with its operation. (author)

  2. Simulation-based Investigation of Electric Power Generation by Using Gamma Radiation from Spent Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Haneol; Yim, Mansung [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-05-15

    This study investigates the feasibility of using gamma radiation energy from spent nuclear fuels to produce electricity as emergency power source. The proposed electric power system includes electricity generation and storage. Electricity generation was based on conversion of gamma energy to light energy using a scintillator and then to electric energy using a solar cell. Generated electricity was to be stored in a battery as a power source. The efficiency of energy conversion and the extent of the resulting electric power source capability were examined by computer model-based simulation. Main factors which affect to total electric power generated include thermal power of nuclear power plant, average burn-up period for fuel rod, battery charging time, and scintillator thickness. The estimated total power generation and its possible application is discussed. Although the output power increases as scintillator becomes thicker, thick scintillator can be problem because of its high price. There are two ways to solve this problem. The first one is to use thin scintillator to whole fuel assembly area. The second one is to use thick scintillator to limited region. But the current per fuel assembly for the first case for 4000MWth, 72 month burnup is about several to tens of microampere scale, which is too small to charge. Because of this the system is supposed to have thick scintillator system with limited region. Based on the results, the generated electricity is expected to be insufficient to operate the safety injection pumps even at the maximum power output. This may be important for security purposes. Based on the current design, the solar cell efficiency is estimated to be around 1.5-4%. As the efficiency is a strong function of scintillation wavelength, improving the efficiency may be possible by broadening the wavelength through the use of multiple scintillators. Future work will also include validation of the results through experiments, and material reliability

  3. Simulation-based Investigation of Electric Power Generation by Using Gamma Radiation from Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    Lee, Haneol; Yim, Mansung

    2014-01-01

    This study investigates the feasibility of using gamma radiation energy from spent nuclear fuels to produce electricity as emergency power source. The proposed electric power system includes electricity generation and storage. Electricity generation was based on conversion of gamma energy to light energy using a scintillator and then to electric energy using a solar cell. Generated electricity was to be stored in a battery as a power source. The efficiency of energy conversion and the extent of the resulting electric power source capability were examined by computer model-based simulation. Main factors which affect to total electric power generated include thermal power of nuclear power plant, average burn-up period for fuel rod, battery charging time, and scintillator thickness. The estimated total power generation and its possible application is discussed. Although the output power increases as scintillator becomes thicker, thick scintillator can be problem because of its high price. There are two ways to solve this problem. The first one is to use thin scintillator to whole fuel assembly area. The second one is to use thick scintillator to limited region. But the current per fuel assembly for the first case for 4000MWth, 72 month burnup is about several to tens of microampere scale, which is too small to charge. Because of this the system is supposed to have thick scintillator system with limited region. Based on the results, the generated electricity is expected to be insufficient to operate the safety injection pumps even at the maximum power output. This may be important for security purposes. Based on the current design, the solar cell efficiency is estimated to be around 1.5-4%. As the efficiency is a strong function of scintillation wavelength, improving the efficiency may be possible by broadening the wavelength through the use of multiple scintillators. Future work will also include validation of the results through experiments, and material reliability

  4. National Environmental Radiation Warning And Monitoring Network And Proposed Radiation Monitoring Programme For The 1st Nuclear Power Plant Ninth Thuan

    International Nuclear Information System (INIS)

    Vuong Thu Bac

    2011-01-01

    National Environmental Radiation Warning and Monitoring Network has been gradually setting up based on some of legislative documents which have been issued in recent years. Studies and surveys to build an environmental radiation monitoring program for nuclear power plant (NPP) have also been implemented. This paper aims to introduce National Environmental Radiation Warning and Monitoring Network in Vietnam which has been approved by the government, the draft program for environmental radiation monitoring Ninh Thuan NPP and some initial results of research about environmental radiation in the planning area for building first NPP in Vietnam. (author)

  5. Radiation protection aspects in the design of nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2008-01-01

    The IAEA's Statute authorizes the Agency to establish safety standards to protect health and minimize danger to life and property - standards which the IAEA must use in its own operations, and which a State can apply by means of its regulatory provisions for nuclear and radiation safety. A comprehensive body of safety standards under regular review, together with the IAEA's assistance in their application, has become a key element in a global safety regime. In the mid-1990s, a major overhaul of the IAEA's safety standards programme was initiated, with a revised oversight committee structure and a systematic approach to updating the entire corpus of standards. The new standards that have resulted are of a high calibre and reflect best practices in Member States. With the assistance of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its safety standards. Safety standards are only effective, however, if they are properly applied in practice. The IAEA's safety services - which range in scope from engineering safety, operational safety, and radiation, transport and waste safety to regulatory matters and safety culture in organizations - assist Member States in applying the standards and appraise their effectiveness. These safety services enable valuable insights to be shared and continue to urge all Member States to make use of them. Regulating nuclear and radiation safety is a national responsibility, and many Member States have decided to adopt the IAEA's safety standards for use in their national regulations. For the Contracting Parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the conventions. The standards are also applied by designers, manufacturers and operators around the world to enhance nuclear and radiation safety in power generation, medicine, industry, agriculture, research and education

  6. Radiation protection aspects of design for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2005-01-01

    The IAEA's Statute authorizes the Agency to establish safety standards to protect health and minimize danger to life and property - standards which the IAEA must use in its own operations, and which a State can apply by means of its regulatory provisions for nuclear and radiation safety. A comprehensive body of safety standards under regular review, together with the IAEA's assistance in their application, has become a key element in a global safety regime. In the mid-1990s, a major overhaul of the IAEA's safety standards programme was initiated, with a revised oversight committee structure and a systematic approach to updating the entire corpus of standards. The new standards that have resulted are of a high calibre and reflect best practices in Member States. With the assistance of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its safety standards. Safety standards are only effective, however, if they are properly applied in practice. The IAEA's safety services - which range in scope from engineering safety, operational safety, and radiation, transport and waste safety to regulatory matters and safety culture in organizations - assist Member States in applying the standards and appraise their effectiveness. These safety services enable valuable insights to be shared and continue to urge all Member States to make use of them. Regulating nuclear and radiation safety is a national responsibility, and many Member States have decided to adopt the IAEA's safety standards for use in their national regulations. For the Contracting Parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the conventions. The standards are also applied by designers, manufacturers and operators around the world to enhance nuclear and radiation safety in power generation, medicine, industry, agriculture, research and education

  7. Possible standoff detection of ionizing radiation using high-power THz electromagnetic waves

    Science.gov (United States)

    Nusinovich, Gregory S.; Sprangle, Phillip; Romero-Talamas, Carlos A.; Rodgers, John; Pu, Ruifeng; Kashyn, Dmytro G.; Antonsen, Thomas M., Jr.; Granatstein, Victor L.

    2012-06-01

    Recently, a new method of remote detection of concealed radioactive materials was proposed. This method is based on focusing high-power short wavelength electromagnetic radiation in a small volume where the wave electric field exceeds the breakdown threshold. In the presence of free electrons caused by ionizing radiation, in this volume an avalanche discharge can then be initiated. When the wavelength is short enough, the probability of having even one free electron in this small volume in the absence of additional sources of ionization is low. Hence, a high breakdown rate will indicate that in the vicinity of this volume there are some materials causing ionization of air. To prove this concept a 0.67 THz gyrotron delivering 200-300 kW power in 10 microsecond pulses is under development. This method of standoff detection of concealed sources of ionizing radiation requires a wide range of studies, viz., evaluation of possible range, THz power and pulse duration, production of free electrons in air by gamma rays penetrating through container walls, statistical delay time in initiation of the breakdown in the case of low electron density, temporal evolution of plasma structure in the breakdown and scattering of THz radiation from small plasma objects. Most of these issues are discussed in the paper.

  8. Radiation management and health management at the Chernobyl nuclear power plant

    International Nuclear Information System (INIS)

    Okazaki, Ryuji; Kubo, Tatsuhiko; Tateishi, Seiichiro

    2014-01-01

    This paper describes the measures taken by the Chernobyl nuclear power plant since the accident in April 1986 to date, compares them with the situation of the current Fukushima nuclear accident, and introduces the contents of the authors' visit and coverage in October 2013, including the report of radiation damage. At the Chernobyl site, a new sarcophagus is under construction since 2012. The health care of the workers working at the new and old sarcophaguses of the Chernobyl nuclear power plant is carried out at a national level of Ukraine, which is an important management for decommissioning work. Health diagnosis is also applied to the workers in the new sarcophagus, and radiation-related disease is not reported at present. The number of the persons who died from acute radiation exposure diseases after the accident was 28. It was reported that chronic lymphocytic leukemia (CLL) appeared significantly when the radiation exceeded 100 mSv. The workers who wish to work at the Chernobyl nuclear power plant must pass the test and obtain national qualifications, and then they are able to work for the first time. In the check-in medical control, about half of applicants were rejected. Workers who work at the new sarcophagus are subject to comprehensive health management under the Ukrainian law. There were 58 people who reached annual exposure dose limit of 20 mSv or more among 7,529 people, the cause of which may be the work at the areas of high radiation dose. Even in Fukushima, it is important to perform high quality management based on centralized medical examination, and to further analyze the effects of low-dose exposure to radiation. (A.O.)

  9. Measurement of radiation power from the JIPP T-IIU tokamak plasma

    International Nuclear Information System (INIS)

    Ogawa, Isamu.

    1987-04-01

    Characteristics of a pyroelectric detector, a metal-film bolometer and a thermistor are investigated in order to attain high reliability of the bolometric measurement. The spurious signal which appears on a pyroelectric detector is efficiently eliminated by setting a mask close to the detector, which has a function of avoiding the direct incidence of photons on its electrode. This is verified with the consistency of integrated value of the signal. The detector is calibrated with a HeNe laser taking the reflection on the detector surface into account. No temporal change has been seen on the sensitivity of the detector calibrated by this method. We also developed a thin metal-film bolometer with high sensitivity (12.9 Ω/mJ), high time response (3 μs) and well defined thermal characteristics. The calibration of this detector was performed by supplying a bias current through its resistor. We constructed a bolometric system with high time response and high spatial resolution, which consisted of twelve pyroelectric detectors and a metal-film bolometer. The radiation power measured with the pyroelectric detector agrees with that measured with the calibrated metal-film bolometer within 10 %. Spectroscopic and bolometric measurements with spatial and temporal resolution show that large radiation loss brings about the decrease in electron and ion temperatures and plasma energy. Carbon limiters have an effect to suppress the radiation power for ohmic plasma, but are insufficient for ICRF heated plasma. The main contribution to radiation power may be attributed to Fe impurity released from the ICRF antennae, the Faraday shield and vacuum vessel. By making carbonization of the wall and in-vessel components, the Fe impurity is suppressed to a low level (n Fe /n e ∼ 0.04 %) and the radiation power is reduced to P rad /(P OH + P rf ) ∼ 20 % and emissivity throughout the plasma region is reduced. (author)

  10. Variability in effective radiating area and output power of new ultrasound transducers at 3 MHz.

    Science.gov (United States)

    Johns, Lennart D; Straub, Stephen J; Howard, Samuel M

    2007-01-01

    Spatial average intensity (SAI) is often used by clinicians to gauge therapeutic ultrasound dosage, yet SAI measures are not directly regulated by US Food and Drug Administration (FDA) standards. Current FDA guidelines permit a possible 50% to 150% minimum to maximum range of SAI values, potentially contributing to variability in clinical outcomes. To measure clinical values that describe ultrasound transducers and to determine the degree of intramanufacturer and intermanufacturer variability in effective radiating area, power, and SAI when the transducer is functioning at 3 MHz. A descriptive and interferential approach was taken to this quasi-experimental design. Measurement laboratory. Sixty-six 5-cm(2) ultrasound transducers were purchased from 6 different manufacturers. All transducers were calibrated and then assessed using standardized measurement techniques; SAI was normalized to account for variability in effective radiating area, resulting in an nSAI. Effective radiating area, power, and nSAI. All manufacturers with the exception of Omnisound (P = .534) showed a difference between the reported and measured effective radiating area values (P nSAI (P < .05) than all other manufacturers functioning at 3 MHz. Intramanufacturer variability in SAI ranged from 16% to 35%, and intermanufacturer variability ranged from 22% to 61%. Clinicians should consider treatment values of each individual transducer, regardless of the manufacturer. In addition, clinicians should scrutinize the power calibration and recalibration record of the transducer and adjust clinical settings as needed for the desired level of heating. Our data may aid in explaining the reported heating differences among transducers from different manufacturers. Stricter FDA standards regarding effective radiating area and total power are needed, and standards regulating SAI should be established.

  11. Radiation resistance of thin-film solar cells for space photovoltaic power

    Science.gov (United States)

    Woodyard, James R.; Landis, Geoffrey A.

    1991-01-01

    Copper indium diselenide, cadmium telluride, and amorphous silicon alloy solar cells have achieved noteworthy performance and are currently being studied for space power applications. Cadmium sulfide cells had been the subject of much effort but are no longer considered for space applications. A review is presented of what is known about the radiation degradation of thin film solar cells in space. Experimental cadmium telluride and amorphous silicon alloy cells are reviewed. Damage mechanisms and radiation induced defect generation and passivation in the amorphous silicon alloy cell are discussed in detail due to the greater amount of experimental data available.

  12. High-resolution Tangential AXUV Arrays for Radiated Power Density Measurements on NSTX-U

    Energy Technology Data Exchange (ETDEWEB)

    Delgado-Aparicio, L [PPPL; Bell, R E [PPPL; Faust, I [MIT; Tritz, K [The Johns Hopkins University, Baltimore, MD, 21209, USA; Diallo, A [PPPL; Gerhardt, S P [PPPL; Kozub, T A [PPPL; LeBlanc, B P [PPPL; Stratton, B C [PPPL

    2014-07-01

    Precise measurements of the local radiated power density and total radiated power are a matter of the uttermost importance for understanding the onset of impurity-induced instabilities and the study of particle and heat transport. Accounting of power balance is also needed for the understanding the physics of various divertor con gurations for present and future high-power fusion devices. Poloidal asymmetries in the impurity density can result from high Mach numbers and can impact the assessment of their flux-surface-average and hence vary the estimates of P[sub]rad (r, t) and (Z[sub]eff); the latter is used in the calculation of the neoclassical conductivity and the interpretation of non-inductive and inductive current fractions. To this end, the bolometric diagnostic in NSTX-U will be upgraded, enhancing the midplane coverage and radial resolution with two tangential views, and adding a new set of poloidally-viewing arrays to measure the 2D radiation distribution. These systems are designed to contribute to the near- and long-term highest priority research goals for NSTX-U which will integrate non-inductive operation at reduced collisionality, with high-pressure, long energy-confinement-times and a divertor solution with metal walls.

  13. Soft X-ray radiation power characteristics of tungsten wire arrays on Yang accelerator

    International Nuclear Information System (INIS)

    Zhang Siqun; Ouyang Kai; Huang Xianbin; Dan Jiakun; Zhou Rongguo; Yang Liang

    2013-01-01

    A series of experiments were carried out to research the X-ray radiation characteristics of tungsten wire arrays on Yang accelerator. In those experiments, we charged the Marx generator of 60 kV, and the load current of 0.85-1.00 MA, the rise time of 75-90 ns (10%-90%). A soft X-ray scintillator powermeter which responded flatly to 50-1800 eV X-rays was used to measure the power of soft X-ray emitted from implosion plasma. In this paper, we present the measuring results of time-resolved soft X-ray radiation power, and discuss the radiation characteristics of implosion plasma by analyzing the correlations of soft X-ray radiant power and the diameter, length, wire number of the tungsten wire arrays. The optimizing wire array configuration parameters on Yang are as follows: 8 mm array diameter, 15 mm wire length, and 24 wire number. We also present the radiant power difference in radial and axial directions of the wire arrays. (authors)

  14. Optical radiative properties of ablating polymers exposed to high-power arc plasmas

    Science.gov (United States)

    Becerra, Marley; Pettersson, Jonas

    2018-03-01

    The radiative properties of polymers exposed to high-intensity radiation are of importance for the numerical simulation of arc-induced ablation. The paper investigates the optical properties of polymethylmethacrylate PMMA and polyamide PA6 films exposed to high-power arc plasmas, which can cause ablation of the material. A four-flux radiative approximation is first used to estimate absorption and scattering coefficients of the tested materials in the ultraviolet (UV) and in the visible (VIS) ranges from spectrophotometric measurements. The temperature-induced variation of the collimated transmissivity of the polymers is also measured from room temperature to the glass temperature of PMMA and the melting temperature of PA6. Furthermore, band-averaged absorption and scattering coefficients of non-ablating and ablating polymers are estimated from the UV to the short-wavelength infrared (SWIR), covering the range of interest for the simulation of arc-induced ablation. These estimates are obtained from collimated transmissivities measured with an additional in situ photometric system that uses a high-power, transient arc plasma to both illuminate the samples and to induce ablation. It is shown that the increase in the bulk temperature of PA6 leads to a strong reversible increase in collimated transmissivity, significantly reducing the absorption and scattering coefficients of the material. A weaker but opposite effect of temperature on the optical properties is found in PMMA. As a consequence, it is suggested that the absorption coefficient of polymers used for arc-induced ablation estimates should not be taken directly from direct collimated transmissivity measurements at room temperature. The band-averaged radiation measurements also show that the layer of products released by ablation of PMMA produces scattering radiation losses mainly in the VIS-SWIR ranges, which are only a small fraction of the total incident arc radiation. In a similar manner, the ablation layer

  15. Radiation effects in concrete for nuclear power plants – Part I: Quantification of radiation exposure and radiation effects

    International Nuclear Information System (INIS)

    Field, K.G.; Remec, I.; Pape, Y. Le

    2015-01-01

    Highlights: • Neutron and gamma rays fields in concrete biological shield are calculated. • An extensive database on irradiated concrete properties has been collected. • Concrete mechanical properties decrease beyond 1.0 × 10 19 n/cm 2 fluence. • Loss of properties appears correlated with radiation induced-aggregate swelling. • Commercial reactor bio-shield may experience long-term irradiation damage. - Abstract: A large fraction of light water reactor (LWR) construction utilizes concrete, including safety-related structures such as the biological shielding and containment building. Concrete is an inherently complex material, with the properties of concrete structures changing over their lifetime due to the intrinsic nature of concrete and influences from local environment. As concrete structures within LWRs age, the total neutron fluence exposure of the components, in particular the biological shield, can increase to levels where deleterious effects are introduced as a result of neutron irradiation. This work summarizes the current state of the art on irradiated concrete, including a review of the current literature and estimates the total neutron fluence expected in biological shields in typical LWR configurations. It was found a first-order mechanism for loss of mechanical properties of irradiated concrete is due to radiation-induced swelling of aggregates, which leads to volumetric expansion of the concrete. This phenomena is estimated to occur near the end of life of biological shield components in LWRs based on calculations of estimated peak neutron fluence in the shield after 80 years of operation

  16. A radiation monitoring system model for the Laguna Verde nuclear power training simulator

    International Nuclear Information System (INIS)

    Ocampo, M.H.; DeAlbornoz, B.A.

    1988-01-01

    A model for the Radiation Monitoring System of the Laguna Verde Boiling Water Reactor training simulator is presented. This model comprises enough definitions to assure interactions with the processes related, directly or indirectly, with the transport of radioisotopes. It is capable of following a dynamic behavior of the plant so an operator could be trained to become aware of nuclear radiation hazards. The model is composed of three parts: the electronics for the Process and Area Radiation Monitoring System; a lumped parameter transport model for the most representative radioisotopes; and the interactions with the modeled processes as well as with process not being simulated. The first part represents the radiation monitor controls in the vertical board panels of the nuclear station. The second part allows the carrying of nuclear isotopes between processes. The third part defines the way that the process interacts with the electronics at the point of release to environment or the point of detection. Each part of the model has been tested individually, and the transport model has been incorporated as a part of each process required to simulate nuclear radiation. The model parameters has been calculated using typical BWR nuclear radiation data, and Laguna Verde heat balance data at 100% design power. However, tunning will be necessary once the Simulator is integrated and tested. The tunning allows each detecting channel to behave as expected

  17. Radiation exposure control of nuclear power plant personnel in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Mehl, J.

    1980-01-01

    The analysis of exposure records of all persons engaged in radiation work at nuclear power plants of the Federal Republic of Germany has shown that annual collective doses increase rapidly with time. The annual gross electrical energy generated from nuclear power also increases rapidly with time, corresponding to about 11% of the total gross electrical energy produced in 1977/78. Therefore, it is obvious that there is an increase of both the risk and the benefit from nuclear power production. Whether in the course of time the situation develops more towards the risk or the benefit side is learned from the history of the annual ratio of the collective dose per gross electrical energy generated. This ratio shows a significant decrease since 1972. The decrease is due to the experience gained from operation of the first-generation plants, which led to several administrative measures aimed at an improved control of the collective doses of power plant personnel in the Federal Republic of Germany. The administrative measures include, among others, the introduction of the following requirements: (a) Everyone who applies for a nuclear power plant construction licence has to provide evidence that, in the design of the plant, full use is made of the experience gained from plants in operation with respect to reduction of collective doses of the power plant personnel. (b) Everyone who engages his employees on radiation work within operations for which an operation licence is required, but which is held by others, requires a special 'contractor licence'. (c) Every person engaged in radiation work on the basis of a contractor licence must carry a special exposure record book which is registered by the competent national authority. (author)

  18. Third harmonic generation of high power far infrared radiation in semiconductors

    International Nuclear Information System (INIS)

    Urban, M.

    1996-04-01

    In this work we investigated the third harmonic generation of high power infrared radiation in doped semiconductors with emphasis on the conversion efficiency. The third harmonic generation effect is based on the nonlinear response of the conduction band electrons in the semiconductor with respect to the electric field of the incident electromagnetic wave. Because this work is directed towards a proposed application in fusion plasma diagnostics, the experimental requirements for the radiation source at the fundamental frequency are roughly given as follows: a wavelength of the radiation at the fundamental frequency in the order of 1 mm and an incident power greater than 1 MW. The most important experiments of this work were performed using the high power far infrared laser of the CRPP. With this laser a new laser line was discovered, which fits exactly the source specifications given above: the wavelength is 676 μm and the maximum power is up to 2 MW. Additional experiments were carried out using a 496 μm laser and a 140 GHz (2.1 mm) gyrotron. The main experimental progress with respect to previous work in this field is, in addition to the use of a very high power laser, the possibility of an absolute calibration of the detectors for the far infrared radiation and the availability of a new type of detector with a very fast response. This detector made it possible to measure the power at the fundamental as well as the third harmonic frequency with full temporal resolution of the fluctuations during the laser pulse. Therefore the power dependence of the third harmonic generation efficiency could be measured directly. The materials investigated were InSb as an example of a narrow gap semiconductor and Si as standard material. The main results are: narrow gap semiconductors indeed have a highly nonlinear electronic response, but the narrow band gap leads at the same time to a low power threshold for internal breakdown, which is due to impact ionization. (author) figs

  19. Radiation Vulcanization of Natural Rubber Latex (RVNRL): A Potential Material for Nuclear Power Plant Gloves

    International Nuclear Information System (INIS)

    Pairu Ibrahim; Wan Manshol Wan Zain; Keong, C.C.; Mohd Noorwadi Mat Lazim

    2011-01-01

    Radiation vulcanization of natural rubber latex has great potential for the production of nuclear power plant gloves due to its low ash and mineral content. And this is in-line with the role played by Malaysian Nuclear Agency as Technical Supporting Organization for Nuclear Power Program. This paper discussed the evaluation done to determine ash content in RVNRL and SVNRL films. Both samples were prepared using casting technique and the properties were compared. Films prepared from raw latex without any vulcanizing agent were regarded as a control. (author)

  20. High-intensity power-resolved radiation imaging of an operational nuclear reactor.

    Science.gov (United States)

    Beaumont, Jonathan S; Mellor, Matthew P; Villa, Mario; Joyce, Malcolm J

    2015-10-09

    Knowledge of the neutron distribution in a nuclear reactor is necessary to ensure the safe and efficient burnup of reactor fuel. Currently these measurements are performed by in-core systems in what are extremely hostile environments and in most reactor accident scenarios it is likely that these systems would be damaged. Here we present a compact and portable radiation imaging system with the ability to image high-intensity fast-neutron and gamma-ray fields simultaneously. This system has been deployed to image radiation fields emitted during the operation of a TRIGA test reactor allowing a spatial visualization of the internal reactor conditions to be obtained. The imaged flux in each case is found to scale linearly with reactor power indicating that this method may be used for power-resolved reactor monitoring and for the assay of ongoing nuclear criticalities in damaged nuclear reactors.

  1. Radiation resistance of cable insulation and jacket materials for nuclear power plants

    International Nuclear Information System (INIS)

    Morita, Minoru; Kon, Shuji; Nishikawa, Ichiro

    1978-01-01

    The cables for use in nuclear power plants are required to satisfy the specific environmental resistance and excellent flame resistance as stipulated in IEEE Std. 383. The materials to be used to cables intended for this specific purpose of use must therefore be strictly tested so as to evaluate their flame resistance in addition to compliance with various environmental requirements, such as heat resistance, water-vapor resistance, and radiation resistance. This paper describes general information on radiation resistance and deterioration of various high-molecular materials, suggests the direction of efforts to be made to improve their properties including flame resistance of various rubber and plastic materials for cables to be used in nuclear power plants, and indicates the performance characteristics of such materials. (author)

  2. On the electromagnetic fields, Poynting vector, and peak power radiated by lightning return strokes

    Science.gov (United States)

    Krider, E. P.

    1992-01-01

    The initial radiation fields, Poynting vector, and total electromagnetic power that a vertical return stroke radiates into the upper half space have been computed when the speed of the stroke, nu, is a significant fraction of the speed of light, c, assuming that at large distances and early times the source is an infinitesimal dipole. The initial current is also assumed to satisfy the transmission-line model with a constant nu and to be perpendicular to an infinite, perfectly conducting ground. The effect of a large nu is to increase the radiation fields by a factor of (1-beta-sq cos-sq theta) exp -1, where beta = nu/c and theta is measured from the vertical, and the Poynting vector by a factor of (1-beta-sq cos-sq theta) exp -2.

  3. Organic Materials Ionizing Radiation Susceptibility for the Outer Planet/Solar Probe Radioisotope Power Source

    Science.gov (United States)

    Golliher, Eric L.; Pepper, Stephen V.

    2001-01-01

    The Department of Energy is considering the current Stirling Technology Corporation 55 We Stirling Technology Demonstration Convertor as a baseline option for an advanced radioisotope power source for the Outer Planets/Solar Probe project of Jet Propulsion Laboratory and other missions. However, since the Technology Demonstration Convertor contains organic materials chosen without any special consideration of flight readiness, and without any consideration of the extremely high radiation environment of Europa, a preliminary investigation was performed to address the radiation susceptibility of the current organic materials used in the Technology Demonstration Convertor. This report documents the results of the investigation. The results of the investigation show that candidate replacement materials have been identified to be acceptable in the harsh Europa radiation environment.

  4. Low power radiofrequency electromagnetic radiation for the treatment of pain due to osteoarthritis of the knee

    Directory of Open Access Journals (Sweden)

    U. Santosuosso

    2011-09-01

    Full Text Available Different techniques have been used in some rheumatic diseases to induce a therapeutic effect by heating deep tissues. These techniques are commonly known as ‘thermotherapy’ (1-4. It should be observed that adequate heating of deep tissues cannot be obtained by conduction or convection of heat because the skin and subcutaneous fat are good thermal insulators and because heating is reduced by blood flow in superficial vessels. Heating of deep tissues can instead be obtained by conversion of other forms of energy into heat. Conversion heat is generated by different types of radiations absorbed by deep tissues: when radiation interacts with tissues, some energy is converted into heat. High power radiofrequency electromagnetic radiation (RF, which produces strong thermal energy, has been widely applied in medicine for ablative procedures (5-7.

  5. Current scaling of radiated power for 40-mm diameter single wire arrays on Z

    Science.gov (United States)

    Nash, T. J.; Cuneo, M. E.; Spielman, R. B.; Chandler, G. A.; Leeper, R. J.; Seaman, J. F.; McGurn, J.; Lazier, S.; Torres, J.; Jobe, D.; Gilliland, T.; Nielsen, D.; Hawn, R.; Bailey, J. E.; Lake, P.; Carlson, A. L.; Seamen, H.; Moore, T.; Smelser, R.; Pyle, J.; Wagoner, T. C.; LePell, P. D.; Deeney, C.; Douglas, M. R.; McDaniel, D.; Struve, K.; Mazarakis, M.; Stygar, W. A.

    2004-11-01

    In order to estimate the radiated power that can be expected from the next-generation Z-pinch driver such as ZR at 28 MA, current-scaling experiments have been conducted on the 20 MA driver Z. We report on the current scaling of single 40 mm diameter tungsten 240 wire arrays with a fixed 110 ns implosion time. The wire diameter is decreased in proportion to the load current. Reducing the charge voltage on the Marx banks reduces the load current. On one shot, firing only three of the four levels of the Z machine further reduced the load current. The radiated energy scaled as the current squared as expected but the radiated power scaled as the current to the 3.52±0.42 power due to increased x-ray pulse width at lower current. As the current is reduced, the rise time of the x-ray pulse increases and at the lowest current value of 10.4 MA, a shoulder appears on the leading edge of the x-ray pulse. In order to determine the nature of the plasma producing the leading edge of the x-ray pulse at low currents further shots were taken with an on-axis aperture to view on-axis precursor plasma. This aperture appeared to perturb the pinch in a favorable manner such that with the aperture in place there was no leading edge to the x-ray pulses at lower currents and the radiated power scaled as the current squared ±0.75. For a full-current shot we will present x-ray images that show precursor plasma emitting on-axis 77 ns before the main x-ray burst.

  6. IAEA activities to improve occupational radiation protection in nuclear power plants in Central and Eastern Europe

    International Nuclear Information System (INIS)

    Gustafsson, M.; Webb, G.A.M.; )

    1998-01-01

    The following aspects are highlighted: developing standards, ISOE (Information System on Occupational Exposure), providing assistance, and intercomparisons. By means of these coordinated efforts, the IAEA aims at improving occupational radiation protection in nuclear power plants in Central and Eastern Europe. The objective is not only transfer of knowledge and technology but also encouraging cooperation between health physicists in those countries as well as with health physicists in Western countries. (P.A.)

  7. Current scaling of axially radiated power in dynamic hohlraums and dynamic hohlraum load design for ZR

    International Nuclear Information System (INIS)

    Mock, Raymond Cecil; Nash, Thomas J.; Sanford, Thomas W. L.

    2007-01-01

    We present designs for dynamic hohlraum z-pinch loads on the 28 MA, 140 ns driver ZR. The scaling of axially radiated power with current in dynamic hohlraums is reviewed. With adequate stability on ZR this scaling indicates that 30 TW of axially radiated power should be possible. The performance of the dynamic hohlraum load on the 20 MA, 100 ns driver Z is extensively reviewed. The baseline z-pinch load on Z is a nested tungsten wire array imploding onto on-axis foam. Data from a variety of x-ray diagnostics fielded on Z are presented. These diagnostics include x-ray diodes, bolometers, fast x-ray imaging cameras, and crystal spectrometers. Analysis of these data indicates that the peak dynamic radiation temperature on Z is between 250 and 300 eV from a diameter less than 1 mm. Radiation from the dynamic hohlraum itself or from a radiatively driven pellet within the dynamic hohlraum has been used to probe a variety of matter associated with the dynamic hohlraum: the tungsten z-pinch itself, tungsten sliding across the end-on apertures, a titanium foil over the end aperture, and a silicon aerogel end cap. Data showing the existence of asymmetry in radiation emanating from the two ends of the dynamic hohlraum is presented, along with data showing load configurations that mitigate this asymmetry. 1D simulations of the dynamic hohlraum implosion are presented and compared to experimental data. The simulations provide insight into the dynamic hohlraum behavior but are not necessarily a reliable design tool because of the inherently 3D behavior of the imploding nested tungsten wire arrays

  8. Ionizing radiation risks to Satellite Power Systems (SPS) workers in space

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-01

    A reference Satellite Power System (SPS) has been designed by NASA and its contractors for the purposes of evaluating the concept and carrying out assessments of the various consequences of development, including those on the health of the space workers. The Department of Energy has responsibility for directing various assessments. Present planning calls for the SPS workers to move from Earth to a low earth orbit (LEO) at an altitude of 500 kilometers; to travel by a transfer ellipse (TE) trajectory to a geosynchronous orbit (GEO) at an altitude of 36,000 kilometers; and to remain in GEO orbit for about 90 percent of the total time aloft. The radiation risks to the health of workers who will construct and maintain solar power satellites in the space environment are studied. The charge to the committee was: (a) to evaluate the radiation environment estimated for the Reference System which could represent a hazard; (b) to assess the possible somatic and genetic radiation hazards; and (c) to estimate the risks to the health of SPS workers due to space radiation exposure, and to make recommendations based on these conclusions. Details are presented. (WHK)

  9. Exploratory study of the radiation-protection training programs in nuclear power plants

    International Nuclear Information System (INIS)

    Fields, C.D.

    1982-06-01

    The objective of the study was to examine current radiation training programs at a sample of utilities operating nuclear reactors and to evaluate employee information on radiation health. The study addressed three elements: (1) employee perceptions and understanding of ionizing radiation; (2) utility trainers-their background, training, and problems; (3) the content, materials, and conduct of training programs; (4) program uniformity and completeness. These areas were examined through visits to utilities, surveys, and employee interviews. The programs reviewed were developed by utility personnel who have backgrounds, for the most part, in health physics but who may have little formal training in adult education. This orientation, coupled with the inherent nature of the subject, has produced training programs that appear to be too technical to achieve the educational job intended. The average nuclear power plant worker does not have the level of sophistication needed to understand some of the information. It became apparent that nuclear power plant workers have concerns that do not necessarily reflect those of the scientific community. Many of these result from misunderstandings about radiation. Unfortunately, the training programs do not always address these unfounded but very real fears

  10. Status of the Development of Low Cost Radiator for Surface Fission Power - II

    Science.gov (United States)

    Tarau, Calin; Maxwell, Taylor; Anderson, William G.; Wagner, Corey; Wrosch, Matthew; Briggs, Maxwell H.

    2016-01-01

    NASA Glenn Research Center (GRC) is developing fission power system technology for future Lunar and Martian surface power applications. The systems are envisioned in the 10 to 100kWe range and have an anticipated design life of 8 to 15 years with no maintenance. NASA GRC is currently setting up a 55 kWe non-nuclear system ground test in thermal-vacuum to validate technologies required to transfer reactor heat, convert the heat into electricity, reject waste heat, process the electrical output, and demonstrate overall system performance. The paper reports on the development of the heat pipe radiator to reject the waste heat from the Stirling convertors. Reducing the radiator mass, size, and cost is essential to the success of the program. To meet these goals, Advanced Cooling Technologies, Inc. (ACT) and Vanguard Space Technologies, Inc. (VST) are developing a single facesheet radiator with heat pipes directly bonded to the facesheet. The facesheet material is a graphite fiber reinforced composite (GFRC) and the heat pipes are titanium/water Variable Conductance Heat Pipes (VCHPs). By directly bonding a single facesheet to the heat pipes, several heavy and expensive components can be eliminated from the traditional radiator design such as, POCO"TM" foam saddles, aluminum honeycomb, and a second facesheet. As mentioned in previous papers by the authors, the final design of the waste heat radiator is described as being modular with independent GFRC panels for each heat pipe. The present paper reports on test results for a single radiator module as well as a radiator cluster consisting of eight integral modules. These tests were carried out in both ambient and vacuum conditions. While the vacuum testing of the single radiator module was performed in the ACT's vacuum chamber, the vacuum testing of the eight heat pipe radiator cluster took place in NASA GRC's vacuum chamber to accommodate the larger size of the cluster. The results for both articles show good agreement

  11. Radiation monitoring using manned helicopter around the nuclear power station in the fiscal year 2015 (Contract research)

    International Nuclear Information System (INIS)

    Sanada, Yukihisa; Munakata, Masahiro; Mori, Airi; Ishizaki, Azusa; Shimada, Kazumasa; Hirouchi, Jun; Urabe, Yoshimi; Nakanishi, Chika; Yamada, Tsutomu; Iwai, Takeyuki; Matsunaga, Yuki; Toyoda, Masayuki; Tobita, Shinichiro; Nishizawa, Yukiyasu; Ishida, Mutsushi; Sato, Yoshiharu; Sasaki, Miyuki; Hirayama, Hirokatsu; Takamura, Yoshihide; Nishihara, Katsuya; Imura, Mitsuo; Miyamoto, Kenji; Kudo, Tamotsu; Nakayama, Shinichi

    2016-10-01

    By the nuclear disaster of Fukushima Daiichi Nuclear Power Station (FDNPS), Tokyo Electric Power Company (TEPCO), caused by the East Japan earthquake and the following tsunami occurred on March 11, 2011, a large amount of radioactive materials was released from the NPS. After the nuclear disaster, airborne radiation monitoring using manned helicopter was conducted around FDNPS. In addition, background dose rate monitoring was conducted around the Sendai Nuclear Power Station. These results of the aerial radiation monitoring using the manned helicopter in the fiscal 2015 were summarized in the report. In addition, we developed the discrimination technique of the Rn-progenies and the evaluation of radiation attenuation by snow. (author)

  12. Radiation exposure by radio-iodine release of the planned nuclear power plant Wyhl

    Energy Technology Data Exchange (ETDEWEB)

    Bleck-Neuhaus, J

    1981-01-01

    The radioecology of iodine-131 in the off-air of a nuclear power plant is subject to investigation of the critical exposure pathway air - pasture ground - cow - milk. According to the findings on the factors influencing the radiation exposure of man presented in scientific publication we have to deviate today from static equilibrium models. Such models can no longer satisfy at the present state of the art. The viewing of the short-term time behaviour of the radioecological parameter that is imperative with iodine-131 shows that the conventional calculation, chiefly with mean values of many years, does not satisfy the requirements to replace the calculation of the radiation exposure at the most unfavourable points of exposure demanded by the Radiation Protection Ordinance. This report proves that in a number of possible events under normal operating conditions the radiation exposure is far more important and the limiting dose rates are unmistakably exceeded. If favourable conditions coincide it can in fact be expected that the radiation exposure by radio iodine remains below the limiting close rate.

  13. Optimized tokamak power exhaust with double radiative feedback in ASDEX Upgrade

    Science.gov (United States)

    Kallenbach, A.; Bernert, M.; Eich, T.; Fuchs, J. C.; Giannone, L.; Herrmann, A.; Schweinzer, J.; Treutterer, W.; the ASDEX Upgrade Team

    2012-12-01

    A double radiative feedback technique has been developed on the ASDEX Upgrade tokamak for optimization of power exhaust with a standard vertical target divertor. The main chamber radiation is measured in real time by a subset of three foil bolometer channels and controlled by argon injection in the outer midplane. The target heat flux is in addition controlled by nitrogen injection in the divertor private flux region using either a thermoelectric sensor or the scaled divertor radiation obtained by a bolometer channel in the outer divertor. No negative interference of the two radiation controllers has been observed so far. The combination of main chamber and divertor radiative cooling extends the operational space of a standard divertor configuration towards high values of P/R. Pheat/R = 14 MW m-1 has been achieved so far with nitrogen seeding alone as well as with combined N + Ar injection, with the time-averaged divertor peak heat flux below 5 MW m-2. Good plasma performance can be maintained under these conditions, namely H98(y,2) = 1 and βN = 3.

  14. Communication activity for residents to understand radiation after the accident of Fukushima Daiichi Nuclear Power Station

    International Nuclear Information System (INIS)

    Itabashi, Kiyoshi; Tagawa, Akihiro; Sugiyama, Kenji; Yamamoto, Tomoyo

    2015-01-01

    'Question-and-Answer Session on Radiation and Health' ('Kotaeru-kai' in Japanese) has started in July 2011 in Fukushima Prefecture, which was influenced by the accident of Fukushima Daiichi Nuclear Power Station following the Great East Japan Earthquake and Tsunami on 11 March 2011. The purpose of the Session is to have mainly parents and teachers (kindergartens, schools etc.) understand correctly about radiation and its influence on health. At the requests of the teachers in Fukushima Prefecture, about 4 staff members made a team, and visited Fukushima. The members of the team were selected from 500 JAEA staffs nominated beforehand. The members explained about radiation and its influence on health by using illustrations and metaphors. After the lecture, they answered the questions asked in advance at schools. Also they answered the questions asked in the Session. In the Session, the members placed much value on the communication with participants. Until the end of December 2014, the Question-and-Answer Sessions on Radiation and Health have been held 241 times for about twenty thousand participants. According to 7,613 participants' questionnaires, which were collected from July 2011 to the end of 2012, it seems that participants were able to understand well about radiation and its influence on health. Besides parents and teachers, some of the junior high schools requested to explain for students. JAEA will continue this communication activity in order to meet these expectations and requirements. (author)

  15. Commercial power silicon devices as possible routine dosimeters for radiation processing

    International Nuclear Information System (INIS)

    Fuochi, P.G.; Lavalle, M.; Gombia, E.; Mosca, R.; Kovacs, A.V.; Hargittai, P.; Vitanza, A.; Patti, A.

    2001-01-01

    The use of silicon devices as possible radiation dosimeters has been investigated in this study. A bipolar power transistor in TO126 plastic packaging has been selected. Irradiations, with doses in the range from 50 Gy up to 5 kGy, have been performed at room temperature using different radiation sources ( 60 Co g source, 2.5, 4 and 12 MeV electron accelerators). Few irradiations with g rays were also done at different temperatures. A physical parameter, T, related to the charge carrier lifetime, has been found to change as a function of irradiation dose. This change is radiation energy dependent. Long term stability of the electron irradiated transistors has been checked by means of a reliability test ('high temperature reverse bias', HTRB) at 150 deg. C for 1000 h. Deep level transient spectroscopy (DLTS) measurements have been performed on the irradiated devices to identify the recombination centres introduced by the radiation treatment. The results obtained confirm that these transistors could be used as routine radiation dosimeters in a certain dose range. More work needs to be done particularly with g rays in the low dose region (50-200 Gy) and with low energy electrons. (author)

  16. Generating high-power short terahertz electromagnetic pulses with a multifoil radiator.

    Science.gov (United States)

    Vinokurov, Nikolay A; Jeong, Young Uk

    2013-02-08

    We describe a multifoil cone radiator capable of generating high-field short terahertz pulses using short electron bunches. Round flat conducting foil plates with successively decreasing radii are stacked, forming a truncated cone with the z axis. The gaps between the foil plates are equal and filled with some dielectric (or vacuum). A short relativistic electron bunch propagates along the z axis. At sufficiently high particle energy, the energy losses and multiple scattering do not change the bunch shape significantly. When passing by each gap between the foil plates, the electron bunch emits some energy into the gap. Then, the radiation pulses propagate radially outward. For transverse electromagnetic waves with a longitudinal (along the z axis) electric field and an azimuthal magnetic field, there is no dispersion in these radial lines; therefore, the radiation pulses conserve their shapes (time dependence). At the outer surface of the cone, we have synchronous circular radiators. Their radiation field forms a conical wave. Ultrashort terahertz pulses with gigawatt-level peak power can be generated with this device.

  17. Compression and radiation of high-power short rf pulses. II. A novel antenna array design with combined compressor/radiator elements

    KAUST Repository

    Sirenko, Kostyantyn

    2011-01-01

    The paper discusses the radiation of compressed high power short RF pulses using two different types of antennas: (i) A simple monopole antenna and (ii) a novel array design, where each of the elements is constructed by combining a compressor and a radiator. The studies on the monopole antenna demonstrate the possibility of a high power short RF pulse\\'s efficient radiation even using simple antennas. The studies on the novel array design demonstrate that a reduced size array with lower pulse distortion and power decay can be constructed by assembling the array from elements each of which integrates a compressor and a radiator. This design idea can be used with any type of antenna array; in this work it is applied to a phased array.

  18. Final report on effects of environmental radiation of Kori nuclear power plant on human population

    International Nuclear Information System (INIS)

    Kim, Y.J.; Kim, J.B.; Chung, K.H.; Lee, K.S.; Kim, S.R.; Yang, S.Y.

    1980-01-01

    In order to clarify and protect the effects of environmental radiation according to the operation of Kori nuclear power plant on the human population, the base line survey for the human monitoring, human life habits, expected individual exposure dose, frequencies of chromosomal aberration, gene frequencies and karyotypes in amphibia, fauna, and radiation sensitivities in microorganisms which have been living around the power plant site were carried out. Kilchonri population which took for the human monitoring lie within a 2 km distance from the power plant site. Human monitoring, house and food characteristics, individual experience of x-ray exposures, human chromosome analysis and fauna were surveyed and expressed in numerical tables. Chromosome number obtained from the amphibia which were collected around the power plant area was as follows: Kaloula borealis 2N=30, Rana amurensis 2N=26, Rana dybouskii 2N=24, Rana rugosa 2N=26, Rana nigromaculata 2N=26, Rana plancyi 2N=26, Bombina orientalis 2N=24, Hyla arborea 2N=24, Bufo stejnegeri 2N=22, Bufo bufo 2N=22. (author)

  19. Environmental radioactivity and radiation exposure by radioactive emissions of coal-fired power plants

    International Nuclear Information System (INIS)

    Jacobi, W.

    1981-03-01

    On the basis of measurements of the radioactive emissions of a 300 MW coal-fired power plant and of a 600 MW lignite-fired power plant the expected activity increase in air and soil in the environment of both plants is estimated and compared with the normal, natural activity level. Due to these emissions it results for the point of maximum immission a committed effective dose equivalent per GW x a of about 0.2 mrem = 0.002 mSv for the coal-fired plant and of about 0.04 mrem = 0.0004 mSv for the lignite-fired plant. This dose is caused to nearly equal parts by inhalation, ingestion and external γ-radiation. The normalized effective dose equivalent in the environment of the modern coal-fired power plant is in the same order of magnitude like that of a modern pressurized water reactor. The total, collective effective dose equivalent commitment by the annual radioactive emissions of coal-fired power plants in the F.R.Germany is estimated to 2000-6000 Man x rem = 20-60 Man x Sv. This corresponds to a mean per caput-dose in the population of the F.R.Germany of about 0.03-0.1 mrem = 0.0003-0.001 mSv; this is about 0.02-0.06% of the mean normal natural radiation exposure of the population. (orig.) [de

  20. The emergency medical programs of japan and foreign countries for radiation accidents in nuclear power stations

    International Nuclear Information System (INIS)

    Aoki, Yoshiro

    1994-01-01

    In our country, the medical emergency programs for the people living near nuclear power stations are well organized, however, preparation of medical staffs who are well trained is considered to be not sufficient. In the USA, on call 24 hours response to a radiological emergency is provided and funded by Department of Energy(DOE) or electric companies. Especially, REAC/TS is a part of DOE response network, in which there are provided well-trained physicians, nurses, health physicists, coordinators and support personnels. In United Kingdom, National Radiological Protection Board(NRPB) is responsible to a radiological emergency program. Each nuclear power station has its own emergency program consisting of a team of physicians, nurses and health physicists. In France, French Atomic Energy Commission (CEA) is a responsible agency for a radiological emergency program. On call 24 hours response to a radiological emergency is provided in Fontenay-aux Roses Institute and Curie Institute. Curie Institute also responds to radiological emergencies in other countries at the request of WHO. In Germany(West Germany), compulsory assurance system covers a radiological emergency program and a radiological protection. There are seven centers in West Germany, in which well-trained medical staffs are provided against radiological injuries. In this report, I tried to propose a new concept about emergency medical programs for nuclear power station accidents in Japan. I think it is a very urgent theme to provide on call 24 hours radiological emergency program, in which patients suffered from acute radiation sickness with internal contamination or contaminated radiation burns will be treated without any trouble. We have to make our best efforts to complete basic or clinical research about radiation injuries including bone marrow transplantation, radioprotectors, chelating agents and radiation burns etc. (J.P.N.)

  1. Reporting nuclear power plant operation to the Finnish Centre for Radiation and Nuclear Safety

    International Nuclear Information System (INIS)

    1997-01-01

    The Finnish Centre for Radiation and Nuclear safety (STUK) is the authority in Finland responsible for controlling the safety of the use of nuclear energy. The control includes, among other things, inspection of documents, reports and other clarification submitted to the STUK, and also independent safety analyses and inspections at the plant site. The guide presents what reports and notifications of the operation of the nuclear facilities are required and how they shall be submitted to the STUK. The guide does not cover reports to be submitted on nuclear material safeguards addressed in the guide YVL 6.10. Guide YVL 6.11 presents reporting related to the physical protection of nuclear power plants. Monitoring and reporting of occupational exposure at nuclear power plants is presented in the guide YVL 7.10 and reporting on radiological control in the environment of nuclear power plants in the guide YVL 7.8

  2. Filter and window assemblies for high power insertion device synchrotron radiation sources

    International Nuclear Information System (INIS)

    Khounsary, A.M.; Viccaro, P.J.; Kuzay, T.M.

    1992-01-01

    The powerful beams of x-ray radiation generated by insertion devices at high power synchrotron facilities deposit substantial amounts of localized heat in the front end and optical components that they intercept. X-ray beams from undulator sources, in particular, are confined to very narrow solid angles and therefore impose very high absorbed heat fluxes. This paper is devoted to a detailed study of the design of windows for the Advanced Photon Source undulators and wigglers, emphasizing alternative design concepts, material considerations, and cooling techniques necessary for handling the high heat load of the insertion devices. Various designs are thermally and structurally analyzed by numerically simulating full-power operating conditions. This analysis also has relevance to the design and development of other beam line components which are subjected to the high heat loads of insertion devices

  3. Development of a methodology for the evaluation of radiation protection performance and management in nuclear power plants

    International Nuclear Information System (INIS)

    Schieber, Caroline; Bataille, Celine; Cordier, Gerard; Delabre, Herve; Jeannin, Bernard

    2008-01-01

    This paper describes a specific methodology adopted by Electricite de France to perform the evaluation of radiation protection performance and management within its 19 nuclear power plants. The results obtained in 2007 are summed up. (author)

  4. Radiation protection for repairs of reactor's internals at the 2nd Unit of the Nuclear Power Plant Temelin

    International Nuclear Information System (INIS)

    Zapletal, P.; Konop, R.; Koc, J.; Kvasnicka, O.; Hort, M.

    2011-01-01

    This presentation describes the process and extent of repairs of the 2 nd unit of the Nuclear power plant Temelin during the shutdown of the reactor. All works were optimized in terms of radiation protection of workers.

  5. Analysis and Evaluation of a Vapor-Chamber Fin-Tube Radiator for High-Power Rankine Cycles

    National Research Council Canada - National Science Library

    Haller, Henry

    1965-01-01

    An analytical investigation of a flat, direct- condensing fin-tube radiator employing segmented vapor-chamber fins as a means of improving heat rejection was performed A for illustrative high-power...

  6. A knowledge on environmental radiation monitoring about the influence from Fukushima Dai-ichi Nuclear Power accident

    International Nuclear Information System (INIS)

    Yoshioka, Mitsuo; Terakawa, Kazuyoshi; Kasai, Toshihiro

    2012-01-01

    A large amount of radioactive substances were released in the atmosphere and contaminated a large area across Japan due to the accident at Fukushima Daiichi Nuclear Power Plant of Tokyo Electric Power Company triggered by Great East Japan Earthquake and tsunami on May 11th 2011. At Fukui University of Technology, monitoring of air radiation (gamma ray) and radiation in environmental samples in Fukui prefecture and some areas of Fukushima prefecture were conducted in order to study the influence of radiation and radioactivity on the citizens as well as the perception of this study results by the citizens. Also, in order to study the dependency of the radiation influence on the distance from the accident location, radiation monitoring of fallouts (air-borne dust, rainwater, sediment mud, and so on) was conducted. In this article, the knowledge obtained on environmental radiation monitoring was summarized and reported. Especially, slightly modified dose-level evaluation for internal exposure was reported. (S.K.)

  7. Radiation-induced off-state leakage current in commercial power MOSFETs

    International Nuclear Information System (INIS)

    Dodd, Paul Emerson; Shaneyfelt, Marty Ray; Draper, Bruce Leroy; Felix, James Andrew; Schwank, James Ralph; Dalton, Scott Matthew

    2005-01-01

    The total dose hardness of several commercial power MOSFET technologies is examined. After exposure to 20 krad(SiO 2 ) most of the n- and p-channel devices examined in this work show substantial (2 to 6 orders of magnitude) increases in off-state leakage current. For the n-channel devices, the increase in radiation-induced leakage current follows standard behavior for moderately thick gate oxides, i.e., the increase in leakage current is dominated by large negative threshold voltage shifts, which cause the transistor to be partially on even when no bias is applied to the gate electrode. N-channel devices biased during irradiation show a significantly larger leakage current increase than grounded devices. The increase in leakage current for the p-channel devices, however, was unexpected. For the p-channel devices, it is shown using electrical characterization and simulation that the radiation-induced leakage current increase is related to an increase in the reverse bias leakage characteristics of the gated diode which is formed by the drain epitaxial layer and the body. This mechanism does not significantly contribute to radiation-induced leakage current in typical p-channel MOS transistors. The p-channel leakage current increase is nearly identical for both biased and grounded irradiations and therefore has serious implications for long duration missions since even devices which are usually powered off could show significant degradation and potentially fail.

  8. Power reactor services provided by the Penn State Radiation Science and Engineering Center

    International Nuclear Information System (INIS)

    Voth, M.H.; Jester, W.A.

    1993-01-01

    The power reactor industry emerged from extensive research and development performed at nonpower reactors (NPRs). As the industry matures, NPRs continue to support and enhance power reactor technology. With the closure of many government and private industry NPRS, there is an increasing call for the 33 universities with operating research reactors to provide the needed services. The Penn State Radiation Science and Engineering Center (RSEC) includes a 1-MW pool-type pulsing TRIGA reactor, a neutron beam laboratory with real-time neutron radiography equipment, hot cells with master-slave manipulators for remote handling of radioactive materials, a gamma-ray irradiation pool, a low-level radiation monitoring laboratory, and extensive equipment for radiation monitoring, dosimetry, and material properties determination. While equipment is heavily utilized in the instructional and academic research programs, significant time remains available for service work. Cost recovery for service work generates income for personnel, equipment maintenance, and facility improvements. With decreasing federal and state funding for educational programs, it is increasingly important that facilities be fully utilized to generate supplementary revenue. The following are examples of such work performed at the RSEC

  9. Radiation monitoring handbook for visits by nuclear powered warships to Australian ports

    International Nuclear Information System (INIS)

    Woods, D.A.

    1995-09-01

    The purpose of this handbook is to detail the Radiation Monitoring (RMG) roles and procedures, and to provide technical and background information useful to RMG personnel. It has been written on the assumption that all members of the RMG have had appropriate radiation safety (Health Physics) training. Separate standing procedures, for both routine and emergency activities, are required for each port. These are incorporated in Port Safety Plans and specify the routine monitoring requirements for individual berths or anchorages and the procedures to be followed after indication of a reactor accident to a nuclear powered warship. A Visit Operation Order, issued for each Nuclear Powered warships (NPW) visit, presents information specific to that visit. Routine monitoring is performed to confirm normal conditions. The objectives of emergency radiation monitoring are: to provide early detection of a reactor accident of sufficient severity to possibly cause a major release of fission products to the environment; to determine the nature and extent of any fission product release; to provide information to assist in evaluating the accident; to assess the need and extent of required countermeasures; and to determine when the release has terminated and when affected areas have returned to normal

  10. Radiation monitoring handbook for visits by nuclear powered warships to Australian ports

    Energy Technology Data Exchange (ETDEWEB)

    Woods, D.A

    1995-09-01

    The purpose of this handbook is to detail the Radiation Monitoring (RMG) roles and procedures, and to provide technical and background information useful to RMG personnel. It has been written on the assumption that all members of the RMG have had appropriate radiation safety (Health Physics) training. Separate standing procedures, for both routine and emergency activities, are required for each port. These are incorporated in Port Safety Plans and specify the routine monitoring requirements for individual berths or anchorages and the procedures to be followed after indication of a reactor accident to a nuclear powered warship. A Visit Operation Order, issued for each Nuclear Powered warships (NPW) visit, presents information specific to that visit. Routine monitoring is performed to confirm normal conditions. The objectives of emergency radiation monitoring are: to provide early detection of a reactor accident of sufficient severity to possibly cause a major release of fission products to the environment; to determine the nature and extent of any fission product release; to provide information to assist in evaluating the accident; to assess the need and extent of required countermeasures; and to determine when the release has terminated and when affected areas have returned to normal Prepared on behalf of the Visiting Ship Panel (Nuclear), Department of Defence; 11 refs., 11 tabs., 21 figs.

  11. Materials-of-Construction Radiation Sensitivity for a Fission Surface Power Convertor

    Science.gov (United States)

    Bowman, Cheryl L.; Geng, Steven M.; Niedra, Janis M.; Sayir, Ali; Shin, Eugene E.; Sutter, James K.; Thieme, Lanny G.

    2007-01-01

    A fission reactor combined with a free-piston Stirling convertor is one of many credible approaches for producing electrical power in space applications. This study assumes dual-opposed free-piston Stirling engines/linear alternators that will operate nominally at 825 K hot-end and 425 K cold-end temperatures. The baseline design options, temperature profiles, and materials of construction discussed here are based on historical designs as well as modern convertors operating at lower power levels. This notional design indicates convertors primarily made of metallic components that experience minimal change in mechanical properties for fast neutron fluences less than 10(sup 20) neutrons per square centimeter. However, these radiation effects can impact the magnetic and electrical properties of metals at much lower fluences than are crucial for mechanical property integrity. Moreover, a variety of polymeric materials are also used in common free-piston Stirling designs for bonding, seals, lubrication, insulation and others. Polymers can be affected adversely by radiation doses as low as 10(sup 5) - 10(sup 10) rad. Additionally, the absorbing dose rate, radiation hardness, and the resulting effect (either hardening or softening) varies depending on the nature of the particular polymer. The classes of polymers currently used in convertor fabrication are discussed along possible substitution options. Thus, the materials of construction of prototypic Stirling convertor engines have been considered and the component materials susceptible to damage at the lowest neutron fluences have been identified.

  12. A questionnaire survey about public's image of radiation after the Fukushima Dacha Nuclear Power Plant accident

    International Nuclear Information System (INIS)

    Okazaki, Ryuji; Ootsuyama, Akira; Kubo, Tatsuhiko; Abe, Toshiaki

    2012-01-01

    A questionnaire survey about the public's image of radiation was performed after the Fukushima Daiichi nuclear power plant (FDNPP) accident. The survey was taken by general citizens (200 and 1,640 in Fukushima and 52 outside of Fukushima) and doctors (63 in Fukushima and 1,942 outside of Fukushima (53 in Oita, 44 in Sagamihara and 1,845 in Kitakyushu) in and outside of Fukushima and second year medical students in the University of Occupational and Environmental Health, Japan. The questionnaire surveys were performed during lectures about radiation. The response rates were 86% for the general citizens in Fukushima, 91% for the general citizens outside of Fukushima, 86% for doctors in Fukushima, 85% and 86% for doctors in Sagamihara and Oita, respectively. The questionnaire surveys were sent to clinics and hospitals in Fukushima where the general citizens answered with a response rate of 50%. When the questionnaire surveys were sent to clinics and hospitals in Kitakyushu, doctors answered, with a response rate of 17%. The percentages of anxiety about future radiation effects after the FDNPP accident were the highest among the general citizens (71.6% in Fukushima and 40.4% outside of Fukushima), in the middle among the doctors (30.2% in Fukushima and 26.2% outside of Fukushima) and the lowest among the medical students (12.2%). The doctors in Fukushima and the medical students were anxious about food and soil pollution. The general citizens and the detectors outside of Fukushima were anxious about health problems and food and soil pollution. We concluded that a high level of education about radiation decreased the anxiety about the radiation effects. It is important to spread knowledge about radiation. (author)

  13. Radiation safety practice at nuclear power stations and estimation of dose burdens to the USSR general public in the context of the country's nuclear power development plans

    International Nuclear Information System (INIS)

    Vorob'ev, E.I.; Il'in, L.A.; Turovskij, V.D.; Buldakov, L.A.; Lusev, N.G.; Pavlovskij, O.A.; Parkhomenko, G.M.

    1983-01-01

    The paper sets forth the main features of the State system of health protection for staff and the general public, and likewise the essentials of environmental protection. The principles of standardizing radiation factors are given for power station personnel and for the general public, together with the main provisions of the health Standards and Rules for radiation protection at present valid in the USSR. Data are quoted on the radiation situation at nuclear power stations and on the size of releases of radioactive aerosols and liquid effluents to the environment. The paper pays particular attention to analyses of the radiation situation in districts where nuclear power stations are situated and also to the type and scope of monitoring of radioactive environmental contamination. An analysis of the coefficients achieved with Soviet pressurized water (WWER), high-power channel-type (RBMK) and fast (BN) reactors currently in large-scale use shows that in terms both of release levels of radioactive substances and of the dose burdens to staff and general public these reactors are comparable with the best foreign nuclear power installations. Values actually measured and values calculated for the basic parameters of the radiation situation in areas of the USSR where nuclear power stations are situated confirm the safety of these facilities as regards the health of the general public and the extremely low levels of their effects on the environment. In conclusion, the paper quotes estimates of the collective effective dose equivalent to the USSR population expected to result from implementation of the country's nuclear power programme up to the year 2000. Radiation safety problems associated with nuclear power production which still require solution are enumerated. (author)

  14. Power spectral density and scaling exponent of high frequency global solar radiation sequences

    Science.gov (United States)

    Calif, Rudy; Schmitt, François G.; Huang, Yongxiang

    2013-04-01

    The part of the solar power production from photovlotaïcs systems is constantly increasing in the electric grids. Solar energy converter devices such as photovoltaic cells are very sensitive to instantaneous solar radiation fluctuations. Thus rapid variation of solar radiation due to changes in the local meteorological condition can induce large amplitude fluctuations of the produced electrical power and reduce the overall efficiency of the system. When large amount of photovoltaic electricity is send into a weak or small electricity network such as island network, the electric grid security can be in jeopardy due to these power fluctuations. The integration of this energy in the electrical network remains a major challenge, due to the high variability of solar radiation in time and space. To palliate these difficulties, it is essential to identify the characteristic of these fluctuations in order to anticipate the eventuality of power shortage or power surge. The objective of this study is to present an approach based on Empirical Mode Decomposition (EMD) and Hilbert-Huang Transform (HHT) to highlight the scaling properties of global solar irradiance data G(t). The scale of invariance is detected on this dataset using the Empirical Mode Decomposition in association with arbitrary-order Hilbert spectral analysis, a generalization of (HHT) or Hilbert Spectral Analysis (HSA). The first step is the EMD, consists in decomposing the normalized global solar radiation data G'(t) into several Intrinsic Mode Functions (IMF) Ci(t) without giving an a priori basis. Consequently, the normalized original solar radiation sequence G'(t) can be written as a sum of Ci(t) with a residual rn. From all IMF modes, a joint PDF P(f,A) of locally and instantaneous frequency f and amplitude A, is estimated. To characterize the scaling behavior in amplitude-frequency space, an arbitrary-order Hilbert marginal spectrum is defined to: Iq(f) = 0 P (f,A)A dA (1) with q × 0 In case of scale

  15. Peak radiated power measurement of the DOE Mark II container tag with integrated ST-676 sensor radio frequency identification device.

    Energy Technology Data Exchange (ETDEWEB)

    Jursich, Mark

    2010-04-01

    The total peak radiated power of the Department of Energy Mark II container tag was measured in the electromagnetic reverberation chamber facility at Sandia National Laboratories. The tag's radio frequency content was also evaluated for possible emissions outside the intentional transmit frequency band. No spurious emissions of any significance were found, and the radiated power conformed to the manufacturer's specifications.

  16. Radiation protection actions at Swedish nuclear power plants 1994-2002 and some reflections about the near future

    International Nuclear Information System (INIS)

    Erixon, Stig; Godaas, Tommy; Hofvander, Peter; Lund, Ingmar; Malmqvist, Lars; Thimgren, Ingela; Oelander-Guer, Hanna

    2003-12-01

    This report provides a summary of radiation protection experiences over the years 1994-2002 in the Swedish nuclear power industry. Actions to reduce radiation levels in reactor systems, occupational exposure results and some reflections about the near future are presented

  17. Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators

    Science.gov (United States)

    Bernardi, Michael P.; Dupré, Olivier; Blandre, Etienne; Chapuis, Pierre-Olivier; Vaillon, Rodolphe; Francoeur, Mathieu

    2015-01-01

    The impacts of radiative, electrical and thermal losses on the performances of nanoscale-gap thermophotovoltaic (nano-TPV) power generators consisting of a gallium antimonide cell paired with a broadband tungsten and a radiatively-optimized Drude radiator are analyzed. Results reveal that surface mode mediated nano-TPV power generation with the Drude radiator outperforms the tungsten radiator, dominated by frustrated modes, only for a vacuum gap thickness of 10 nm and if both electrical and thermal losses are neglected. The key limiting factors for the Drude- and tungsten-based devices are respectively the recombination of electron-hole pairs at the cell surface and thermalization of radiation with energy larger than the cell absorption bandgap. A design guideline is also proposed where a high energy cutoff above which radiation has a net negative effect on nano-TPV power output due to thermal losses is determined. It is shown that the power output of a tungsten-based device increases by 6.5% while the cell temperature decreases by 30 K when applying a high energy cutoff at 1.45 eV. This work demonstrates that design and optimization of nano-TPV devices must account for radiative, electrical and thermal losses. PMID:26112658

  18. Radiation risk after Fukushima Nuclear Power Station accident and recognition of society

    International Nuclear Information System (INIS)

    Yamashita, Shunichi

    2017-01-01

    In the Fukushima Nuclear Power Station accident, the confusion caused by inconsistency of risk assessment among scientists cast new challenges for communication between science and society. In response to the way of crisis communication in the future, the Japan Society for the Promotion of Science (JSPS) is required to extract specific subjects and to make efforts to solve them. The Committee for 'Radiation Risk and Crisis Communication' had been set up in the Leading R and D Committee of JSPS over three years since October 2013. This paper introduced the outline of the Committee for 'Radiation Risk and Crisis Communication,' with a focus on the activity system of three subcommittees, activity guidelines and contents of each subcommittee, and the outcomes of activities of each subcommittee. The themes of the subcommittees are as follows. The subcommittee 1 is to collect, analyze, and organize information on the effects of radiation based on the latest findings, the subcommittee 2 is to study the formation of consensus within the scientific community as well as information disclosure methods, and the subcommittee 3 is to survey and study the information disclosure means of radiation measurement results under crisis situation. (A.O.)

  19. Radiation effects at a high power accelerator and applications to advanced energy sources

    International Nuclear Information System (INIS)

    Sommer, W.F.; Garner, F.A.; Brown, R.D.; Wechsler, M.S.

    1989-01-01

    Many materials are exposed to atom-displacing radiation at high-power accelerators such as the Los Alamos Meson Physics Facility (LAMPF). Beam current densities in the 800-MeV proton beam vary from 12.5 mA cm -2 (8 x 10 16 p/cm 2 s) on graphite targets to 20-μA cm -2 (1.3 x 10 14 p/cm 2 s) on metal-alloy windows. High-level radiation damage results from these particle fluxes. As a consequence of secondary-particle generation in targets and windows and low-level beam losses that lead to particle interactions with structural material, various components are exposed to low-level proton fluxes, gamma radiation, and neutron fluxes of 10 6 --10 10 n/cm 2 s. These include vacuum seals and vacuum chambers of stainless steel and aluminum alloys, solid-state devices for control, diagnostic, and data acquisition electronics, closed-loop cooling-water systems, and insulators. Properties of these materials are degraded by the radiation exposure. Studies of LAMPF and other accelerators, however, have produced solutions to materials problems, allowing the machines to operate for acceptable times without failure. Nevertheless, additional improvements are being investigated in order to further improve operational reliability and safety. 25 refs., 3 figs., 3 tabs

  20. Radiation

    International Nuclear Information System (INIS)

    2013-01-01

    The chapter one presents the composition of matter and atomic theory; matter structure; transitions; origin of radiation; radioactivity; nuclear radiation; interactions in decay processes; radiation produced by the interaction of radiation with matter

  1. THz calorimetry : An absolute power meter for TeraHertz radiation and the absorptivity of the Herschel Space Observatory telescope mirror coating

    NARCIS (Netherlands)

    Klaassen, T.O.; Hovenier, J.N.; Fischer, J.; Jakob, G.; Poglitsch, A.; Sternberg, O.

    2004-01-01

    A new calorimetric absolute power meter has been developed for THz radiation. This broad band THz power meter measures average power at ambient temperature and pressure, does not use a window, and is insensitive to polarization and time structure of THz radiation. The operation of the power meter is

  2. Robust, Radiation Tolerant Command and Data Handling and Power System Electronics for SmallSats

    Science.gov (United States)

    Nguyen, Hanson Cao; Fraction, James

    2018-01-01

    In today's budgetary environment, there is significant interest within the National Aeronautics and Space Administration (NASA) to enable small robotic science missions that can be executed faster and cheaper than previous larger missions. To help achieve this, focus has shifted from using exclusively radiation-tolerant or radiation-hardened parts to using more commercial-off-the-shelf (COTS) components for NASA small satellite missions that can last at least one year in orbit. However, there are some portions of a spacecraft's avionics, such as the Command and Data Handling (C&DH) subsystem and the Power System Electronics (PSE) that need to have a higher level of reliability that goes beyond what is attainable with currently available COTS parts. While there are a number of COTS components that can withstand a total ionizing dose (TID) of tens or hundreds of kilorads, there is still a great deal of concern about tolerance to and mitigation of single-event effects (SEE).

  3. Report of investigation on the radiation leak of the atomic powered ship 'Mutsu'

    International Nuclear Information System (INIS)

    1975-01-01

    Radiation leak of the atomic powered ship Mutsu was investigated. The radiation leak from the reactor shield was caused at the time of the test run, and serious social and political problem was raised. The phenomena is the streaming of neutron and caused by the technical lack of designing. There were, however, many cause of this technical lack. The organization for construction of the ship Mutsu was politically incomplete, the system of the organization was changed frequently, and then it was very hard to call together qualified engineers. Check of the design and the mock-up test were incomplete, and improvements of design in the course of construction was not made. Responsibilities of the persons in charge were not clear. Contract concerning the shield was defective. This report proposes improvement on the above mentioned problem. (Kato, T.)

  4. Development of automated equipment for reduction of personnel radiation exposure in nuclear power plants

    International Nuclear Information System (INIS)

    Ogushi, Akira; Fujii, Masaaki; Mizuno, Katsuhiro.

    1976-01-01

    Described are a mobile remote inspection system and an automatic analyzer for radioactive nuclides in reactor coolant now being developed as a means of reducing personnel radiation exposure in nuclear power plants. In the mobile remote inspection system ''TELEPAT'', a self-propelled vehicle equipped with a thermometer, accelerometer, microphone, ionization chamber, etc. is remote operated from the main control room to inspect the equipment in the reactor building. The automatic analyzer for radioactive nuclides in reactor coolant automates the series of operations ranging from sampling of reactor coolant to measurement of radioactivity and analyses of measured data, with a view to saving labor in radioactivity analysis work while reducing exposure of personnel to radiation. (auth.)

  5. Radiation and Thermal Cycling Effects on EPC1001 Gallium Nitride Power Transistors

    Science.gov (United States)

    Patterson, Richard L.; Scheick, Leif Z.; Lauenstein, Jean M.; Casey, Megan C.; Hammoud, Ahmad

    2012-01-01

    Electronics designed for use in NASA space missions are required to work efficiently and reliably under harsh environment conditions. These include radiation, extreme temperatures, and thermal cycling, to name a few. Information pertaining to performance of electronic parts and systems under hostile environments is very scarce, especially for new devices. Such data is very critical so that proper design is implemented in order to ensure mission success and to mitigate risks associated with exposure of on-board systems to the operational environment. In this work, newly-developed enhancement-mode field effect transistors (FET) based on gallium nitride (GaN) technology were exposed to various particles of ionizing radiation and to long-term thermal cycling over a wide temperature range. Data obtained on control (un-irradiated) and irradiated samples of these power transistors are presented and the results are discussed.

  6. Knowledge on radiation dose-rate for risk communication on nuclear power plants

    International Nuclear Information System (INIS)

    Sugiyama, Ken-ichiro

    2013-01-01

    The sense of anxiety on radiation after Fukushima Dai-ichi accident has not disappeared because of the nightmare scenario on radiation cultivated through the Cold War era starting at the atomic bomb dropping at Hiroshima and Nagasaki. In the present paper, from the viewpoint of establishing the social acceptance of nuclear power plants as well as new reasonable regulation, biological defense in depth (production of anti-oxidants, DNA repair, cell death/apoptosis, and immune defense mechanisms) found in a few decades are presented in comparison with the linear no-threshold (LNT) model for the induction of cancer in the range up to 100 mSv (as single or annual doses) applied for the present regulation. (author)

  7. Large signal S-parameters: modeling and radiation effects in microwave power transistors

    International Nuclear Information System (INIS)

    Graham, E.D. Jr.; Chaffin, R.J.; Gwyn, C.W.

    1973-01-01

    Microwave power transistors are usually characterized by measuring the source and load impedances, efficiency, and power output at a specified frequency and bias condition in a tuned circuit. These measurements provide limited data for circuit design and yield essentially no information concerning broadbanding possibilities. Recently, a method using large signal S-parameters has been developed which provides a rapid and repeatable means for measuring microwave power transistor parameters. These large signal S-parameters have been successfully used to design rf power amplifiers. Attempts at modeling rf power transistors have in the past been restricted to a modified Ebers-Moll procedure with numerous adjustable model parameters. The modified Ebers-Moll model is further complicated by inclusion of package parasitics. In the present paper an exact one-dimensional device analysis code has been used to model the performance of the transistor chip. This code has been integrated into the SCEPTRE circuit analysis code such that chip, package and circuit performance can be coupled together in the analysis. Using []his computational tool, rf transistor performance has been examined with particular attention given to the theoretical validity of large-signal S-parameters and the effects of nuclear radiation on device parameters. (auth)

  8. Power Generation from a Radiative Thermal Source Using a Large-Area Infrared Rectenna

    Science.gov (United States)

    Shank, Joshua; Kadlec, Emil A.; Jarecki, Robert L.; Starbuck, Andrew; Howell, Stephen; Peters, David W.; Davids, Paul S.

    2018-05-01

    Electrical power generation from a moderate-temperature thermal source by means of direct conversion of infrared radiation is important and highly desirable for energy harvesting from waste heat and micropower applications. Here, we demonstrate direct rectified power generation from an unbiased large-area nanoantenna-coupled tunnel diode rectifier called a rectenna. Using a vacuum radiometric measurement technique with irradiation from a temperature-stabilized thermal source, a generated power density of 8 nW /cm2 is observed at a source temperature of 450 °C for the unbiased rectenna across an optimized load resistance. The optimized load resistance for the peak power generation for each temperature coincides with the tunnel diode resistance at zero bias and corresponds to the impedance matching condition for a rectifying antenna. Current-voltage measurements of a thermally illuminated large-area rectenna show current zero crossing shifts into the second quadrant indicating rectification. Photon-assisted tunneling in the unbiased rectenna is modeled as the mechanism for the large short-circuit photocurrents observed where the photon energy serves as an effective bias across the tunnel junction. The measured current and voltage across the load resistor as a function of the thermal source temperature represents direct current electrical power generation.

  9. Conversion from HST ACS and STIS auroral counts into brightness, precipitated power and radiated power for H2 giant planets

    Science.gov (United States)

    Gustin, J.; Bonfond, B.; Grodent, D.; Gerard, J. C.

    2012-09-01

    The STIS and ACS instruments onboard HST are widely used to study the giant planet's aurora. Several assumptions have to be made to convert the instrumental counts into meaningful physical values (type and bandwidth of the filters, definition of the physical units, etc…), but these may significantly differ from one author to another, which makes it difficult to compare the auroral characteristics published in different studies. We present a method to convert the counts obtained in representative ACS and STIS imaging modes / filters used by the auroral scientific community to brightness, precipitated power and radiated power in the ultraviolet (700- 1800 Å). Since hydrocarbon absorption may considerably affect the observed auroral emission, the conversion factors are determined for several attenuation levels. Several properties of the auroral emission have been determined: the fraction of the H2 emission shortward and longward of the HLy-a line is 50.3 % and 49.7 % respectively, the contribution of HLy-a to the total unabsorbed auroral signal has been set to 9.1 % and an input of 1 mW m-2 produces 10 kR of H2 in the Lyman and Werner bands. A first application sets the order of magnitude of Saturn's auroral characteristics in the total UV bandwidth to a brightness of 10 kR and an emitted power of ~2.8 GW. A second application uses published brighnesses of Europa's footprint to determine the current density associated with the Europa auroral spot: 0.21 and 0.045 μA m-2 assuming no hydrocarbon absorption and a color ratio of 2, respectively.

  10. A self-powered thin-film radiation detector using intrinsic high-energy current

    Energy Technology Data Exchange (ETDEWEB)

    Zygmanski, Piotr, E-mail: pzygmanski@LROC.HARVARD.EDU, E-mail: Erno-Sajo@uml.edu [Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115 (United States); Sajo, Erno, E-mail: pzygmanski@LROC.HARVARD.EDU, E-mail: Erno-Sajo@uml.edu [Department of Physics and Applied Physics, Medical Physics Program, University of Massachusetts Lowell, Lowell, Massachusetts 01854 (United States)

    2016-01-15

    Purpose: The authors introduce a radiation detection method that relies on high-energy current (HEC) formed by secondary charged particles in the detector material, which induces conduction current in an external readout circuit. Direct energy conversion of the incident radiation powers the signal formation without the need for external bias voltage or amplification. The detector the authors consider is a thin-film multilayer device, composed of alternating disparate electrically conductive and insulating layers. The optimal design of HEC detectors consists of microscopic or nanoscopic structures. Methods: Theoretical and computational developments are presented to illustrate the salient properties of the HEC detector and to demonstrate its feasibility. In this work, the authors examine single-sandwiched and periodic layers of Cu and Al, and Au and Al, ranging in thickness from 100 nm to 300 μm and separated by similarly sized dielectric gaps, exposed to 120 kVp x-ray beam (half-value thickness of 4.1 mm of Al). The energy deposition characteristics and the high-energy current were determined using radiation transport computations. Results: The authors found that in a dual-layer configuration, the signal is in the measurable range. For a defined total detector thickness in a multilayer structure, the signal sharply increases with decreasing thickness of the high-Z conductive layers. This paper focuses on the computational results while a companion paper reports the experimental findings. Conclusions: Significant advantages of the device are that it does not require external power supply and amplification to create a measurable signal; it can be made in any size and geometry, including very thin (sub-millimeter to submicron) flexible curvilinear forms, and it is inexpensive. Potential applications include medical dosimetry (both in vivo and external), radiation protection, and other settings where one or more of the above qualities are desired.

  11. Issues behind Radiation management of workers at Fukushima Nuclear Power Plant of Tokyo Electric Power Company. From the viewpoint of radiation exposure of the ocular lens and the biological effects to the lens

    International Nuclear Information System (INIS)

    Hayashida, Toshiyuki; Sasaki, Hiroshi; Hatsusaka, Natsuko; Hamada, Nobuyuki; Tatsuzaki, Hideo; Akahane, Keiichi; Yokoyama, Sumi

    2017-01-01

    In March 2011, the accident occurred at the Fukushima Daiichi Nuclear Power Plant of Tokyo Electric Power Company. During recovery from critical situations, the radiation dose for some emergency workers exceeded the effective dose limit recommended for an emergency situation. A month after the accident, the International Commission on Radiological Protection issued a statement on tissue reactions recommending significant reduction of the equivalent dose limit to the lens of the eye. Many radiation workers will need to be involved in treatment of water contaminated with radionuclides, fuel debris retrieval, and decommissioning of reactors for a long period of time. Thus, the optimized radiation control in the fields, exposure reduction, prevention of tissue reactions, and reduction of stochastic risks for workers becomes necessary. This paper discusses issues in relation to radiation protection of the ocular lens in such recovery workers, from the viewpoint of radiation exposure of workers, its management, manifestations and mechanisms of the lens effects. (author)

  12. Sizewell nuclear power station: investigation of radiation exposure pathways from liquid effluents. Local habits survey 1981

    International Nuclear Information System (INIS)

    Leonard, D.R.P.; Smith, B.D.

    1982-01-01

    A habits and consumption survey to review radiation exposure pathways due to liquid effluents released from the CEGB Sizewell site is described. It is relevant to both the Sizewell A and proposed Sizewell B nuclear power stations. The main objectives are to provide input data to a radiological assessment by means of identifying critical groups and to provide data for guidance in a review of environmental monitoring programmes. The way in which data for the different pathways should be combined in order to aid the subsequent radiological assessment is discussed. Recommendations are made for adjustments to the present monitoring programmes. (U.K.)

  13. Optimum power of radiation dose in X ray television systems of flaw inspection in industry

    International Nuclear Information System (INIS)

    Denbnovetskii, S.V.; Troitskii, V.A.; Belyi, N.G.; Grom, V.S.; Kuz'micheva, N.V.; Leshchishin, A.V.; Mikhailov, V.N.; Shutenko, O.V.

    1990-01-01

    The authors present the experimental dose characteristics of a x ray television system based on x ray vidicons with the diameter of the working field of 900 mm which operate in the continuous and pulsed conditions with the longer time of cumulation of radiation images on the target of the x ray vidicon. For each type of the inspected material, its thickness, and cumulation time, the dose characteristics were used to determine the optimum power of the exposure dose ensuring the maximum signal/noise ratio and detectability of the defects at the output of the system. (author)

  14. Cost-effectiveness considerations in reducing occupational radiation exposure in nuclear power plants

    International Nuclear Information System (INIS)

    Lochard, J.; Maccia, C.; Pages, P.

    1983-01-01

    This article outlines a method of applying the as-low-as-reasonably-achievable principle to occupational radiation exposures in nuclear power stations. A set of protective actions already taken at French pressurized-water reactors now in operation were selected, and their cost and effectiveness were assessed, allowing for the possible interdependence of protection and energy-production objectives. The usefulness of such quantitative evaluation is discussed with regard to the problem of using monetary values of the man-sievert in optimization procedures

  15. The formation of ozone and UV radiation from high-power pulsed electric discharges

    Science.gov (United States)

    Piskarev, I. M.; Ushkanov, V. A.; Selemir, V. D.; Spirov, G. M.; Malevannaya Pikar', I. A.; Zuimach, E. A.

    2008-09-01

    High-power electric discharges with pulse energies of from 0.15 J to 4 kJ were studied. The yields of UV photons and ozone were found to be approximately equal, which led us to conclude that discharge conditions under which UV radiation and ozone fully destroyed each other were possible. If ozone formation was suppressed, as when a negative volume charge was created in the spark gap region, the flux of UV photons reached 3 × 1023 photons/(cm2 s).

  16. Training in radiation protection of workers at Electricite de France nuclear power plants

    International Nuclear Information System (INIS)

    Aye, Louis

    1980-01-01

    The safety of workers and the population is a major concern of the nuclear industry. In order to carry out its programme of PWR power plants, Electricite de France has largely developed the training in radiation protection of its personnel. Operation workers now represent some 5000 persons; they first receive a formation organized at the national level consisting in training courses, which are completed and continued on the spot. The training makes a wide use of audiovisuals; it is checked by tests and leads to better qualification. Close coordination is sought with outside competent organizations [fr

  17. Assessment of environmental radiation hazards from the Koeberg nuclear power station

    International Nuclear Information System (INIS)

    Basson, J.K.

    1980-01-01

    Escom's decision to build the 2 x 922 MW (e) Koeberg nuclear power station on the coastal Duynefontein site, 28 km north of Cape Town is explained. After describing the internationally accepted basis of radiation protection, the philosophy of nuclear-installation licensing, as applied by the AEB Licensing Branch, is outlined. Pre-operational environmental investigations that have provided acceptable release rates of radioactive effluent to the sea and the atmosphere are discussed. Accidental releases are described and the sound basis of such studies is compared with normal industrial undertakings [af

  18. Test and Evaluation of Fiber Optic Sensors for High-Radiation Space Nuclear Power Applications

    International Nuclear Information System (INIS)

    Klemer, Daniel; Fielder, Robert S.; Stinson-Bagby, Kelly L.

    2004-01-01

    Fiber optic sensors can be used to measure a number of parameters, including temperature, strain, pressure and flow, for instrumentation and control of space nuclear power systems. In the past, this technology has often been rejected for use in such a high-radiation environment based on early experiments that revealed a number of degradation phenomena, including radiation-induced fiber attenuation, or 'graying', and Fiber Bragg Grating (FBG) fading and wavelength shift. However, this paper reports the results of recent experimental testing that demonstrates readability of fiber optic sensors to extremely high levels of neutron and gamma radiation. Both distributed Fiber Bragg Grating (FBG) sensors and single-point Extrinsic Fabry Perot Interferometer (EFPI) sensors were continuously monitored over a 2-month period, during which they were exposed to combined neutron and gamma radiation in both in-core and ex-core positions within a nuclear reactor. Total exposure reached approximately 2 x 10 19 cm -2 fast neutron (E > 1 MeV) fluence and 8.7 x 10 8 Gy gamma for in-core sensors. FBG sensors were interrogated using a standard Luna Innovations FBG measurement system, which is based on optical frequency-domain reflectometer (OFDR) technology. Approximately 74% of the 19 FBG sensors located at the core centerline in the in-core position exhibited sufficient signal-to-noise ratio (SNR) to remain readable even after receiving the maximum dose. EFPI sensors were spectrally interrogated using a broadband probe source operating in the 830 nm wavelength region. While these single-point sensors failed early in the test, important additional fiber spectral transmission data was collected, which indicates that interrogation of EFPI sensors in alternate wavelength regions may allow significant improvement in sensor longevity for operation in high-radiation environments. This work was funded through a Small Business Innovative Research (SBIR) contract with the Nasa Glenn Research

  19. Aerial radiation monitoring around the Fukushima Dai-ichi Nuclear Power Plant using an unmanned helicopter.

    Science.gov (United States)

    Sanada, Yukihisa; Torii, Tatsuo

    2015-01-01

    The Great East Japan Earthquake on March 11, 2011 generated a series of large tsunami that seriously damaged the Fukushima Dai-ichi Nuclear Power Plant (FDNPP), which resulted in the release of radioactive materials into the environment. To provide further details regarding the distribution of air dose rate and the distribution of radioactive cesium ((134)Cs and (137)Cs) deposition on the ground within a radius of approximately 5 km from the nuclear power plant, we carried out measurements using an unmanned helicopter equipped with a radiation detection system. The distribution of the air dose rate at a height of 1 m above the ground and the radioactive cesium deposition on the ground was calculated. Accordingly, the footprint of radioactive plumes that extended from the FDNPP was illustrated. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Very Low-Power Consumption Analog Pulse Processing ASIC for Semiconductor Radiation Detectors

    International Nuclear Information System (INIS)

    Wessendorf, K.O.; Lund, J.C.; Brunett, B.A.; Laguna, G.R.; Clements, J.W.

    1999-01-01

    We describe a very-low power consumption circuit for processing the pulses from a semiconductor radiation detector. The circuit was designed for use with a cadmium zinc telluride (CZT) detector for unattended monitoring of stored nuclear materials. The device is intended to be battery powered and operate at low duty-cycles over a long period of time. This system will provide adequate performance for medium resolution gamma-ray pulse-height spectroscopy applications. The circuit incorporates the functions of a charge sensitive preamplifier, shaping amplifier, and peak sample and hold circuit. An application specific integrated circuit (ASIC) version of the design has been designed, built and tested. With the exception of the input field effect transistor (FET), the circuit is constructed using bipolar components. In this paper the design philosophy and measured performance characteristics of the circuit are described

  1. Radiation protection of population under normal operation conditions of nuclear power plants

    International Nuclear Information System (INIS)

    Kunz, Eh.; Shvets, I.

    1976-01-01

    Evolution of shielding is defined in short; approaches suggested for applying in radiation protection or being used are evaluated and classified. Modern views analysis of a risk of biological irradiation consequences in public approaches to health protection in connection with the technical progress side by side with provision of separate persons protection requires attentin to the nuclear power plants protection optimization. Protection optimization suggests the analysis of separate components of technology and protection systems, used materials and constructive solutions, maintenance rules and operating load with respect to environmental discharge of radioactive products. It is expedient to carry out similtaneously the similar analysis with respect to the nuclear power plant personnel irradiation, as separate measures can affect both personnel and population irradiation [ru

  2. Mirror and grating surface figure requirements for grazing incidence synchrotron radiation beamlines: Power loading effects

    Energy Technology Data Exchange (ETDEWEB)

    Hulbert, S.L.; Sharma, S.

    1987-01-01

    At present, grazing incidence mirrors are used almost exclusively as the first optical element in VUV and soft x-ray synchrotron radiation beamlines. The performance of these mirrors is determined by thermal and mechanical stress-induced figure errors as well as by figure errors remaining from the grinding and polishing process. With the advent of VUV and soft x-ray undulators and wigglers has come a new set of thermal stress problems related to both the magnitude and the spatial distribution of power from these devices. In many cases the power load on the entrance slits and gratings in these beamlines is no longer negligible. The dependence of thermally-induced front-end mirror figure errors on various storage ring and insertion device parameters (especially those at the National Synchrotron Light Source) and the effects of these figure errors on two classes of soft x-ray beamlines are presented.

  3. Heavy density concrete for nuclear radiation shielding and power stations: [Part]2

    International Nuclear Information System (INIS)

    Singha Roy, P.K.

    1987-01-01

    This article is the second part of the paper entitled 'Heavy density concrete for nuclear radiation shielding and power stations'. In this part, some of the important properties of heavy density concrete are discussed. They include density, water retentivity, air content, permeability with special reference to concrete mixes used in India's nuclear power reactors. All these properties are affected to various extents by heating. Indian shield concrete is rarely subjected to temperatures above 60degC during its life, because of thermal shield protection. During placement, the maximum anticipated rise in temperature due to heat of hydration is restricted to around 45degC by chilling, if necessary to reduce shrinkage stresses and cracks. (M.G.B.)

  4. History of measures taken to reduce radiation exposure at Hamaoka Nuclear Power Station

    International Nuclear Information System (INIS)

    Kondou, Masashi; Takagi, Nobuyuki; Yabushita, Kazuo; Dekijima, Makoto

    2009-01-01

    Hamaoka Nuclear Power Station currently has five reactors, Units 1 to 5. Units 1 and 2 halted commercial operation in January 2009 and are now being prepared for decommissioning. Units 3 to 5 are operating at the rated thermal output with the gross electrical output of 3504 MWe. Hamaoka Nuclear Power Station has been operating for about 30 years since Unit 1 started up in 1976. Various measures have been taken to control water chemistry: for controlling SCC in the core internals and structural materials, hydrogen injection and noble metal injection were implemented; and to reduce radiation exposure for workers, condensate filter demineralizers were added, hollow fiber filters and pleated filters were installed in the condensate cleanup system, and zinc injection was performed. This paper describes measures taken at Hamaoka to reduce exposure in terms of water chemistry and techniques to monitor ion impurities in the reactor water. (author)

  5. Program THEK energy production units of average power and using thermal conversion of solar radiation

    Science.gov (United States)

    1978-01-01

    General studies undertaken by the C.N.R.S. in the field of solar power plants have generated the problem of building energy production units in the medium range of electrical power, in the order of 100 kW. Among the possible solutions, the principle of the use of distributed heliothermal converters has been selected as being, with the current status of things, the most advantageous solution. This principle consists of obtaining the conversion of concentrated radiation into heat by using a series of heliothermal conversion modules scattered over the ground; the produced heat is collected by a heat-carrying fluid circulating inside a thermal loop leading to a device for both regulation and storage.

  6. Single-Event Gate Rupture in Power MOSFETs: A New Radiation Hardness Assurance Approach

    Science.gov (United States)

    Lauenstein, Jean-Marie

    2011-01-01

    Almost every space mission uses vertical power metal-semiconductor-oxide field-effect transistors (MOSFETs) in its power-supply circuitry. These devices can fail catastrophically due to single-event gate rupture (SEGR) when exposed to energetic heavy ions. To reduce SEGR failure risk, the off-state operating voltages of the devices are derated based upon radiation tests at heavy-ion accelerator facilities. Testing is very expensive. Even so, data from these tests provide only a limited guide to on-orbit performance. In this work, a device simulation-based method is developed to measure the response to strikes from heavy ions unavailable at accelerator facilities but posing potential risk on orbit. This work is the first to show that the present derating factor, which was established from non-radiation reliability concerns, is appropriate to reduce on-orbit SEGR failure risk when applied to data acquired from ions with appropriate penetration range. A second important outcome of this study is the demonstration of the capability and usefulness of this simulation technique for augmenting SEGR data from accelerator beam facilities. The mechanisms of SEGR are two-fold: the gate oxide is weakened by the passage of the ion through it, and the charge ionized along the ion track in the silicon transiently increases the oxide electric field. Most hardness assurance methodologies consider the latter mechanism only. This work demonstrates through experiment and simulation that the gate oxide response should not be neglected. In addition, the premise that the temporary weakening of the oxide due to the ion interaction with it, as opposed to due to the transient oxide field generated from within the silicon, is validated. Based upon these findings, a new approach to radiation hardness assurance for SEGR in power MOSFETs is defined to reduce SEGR risk in space flight projects. Finally, the potential impact of accumulated dose over the course of a space mission on SEGR

  7. Measurement of the energy and power radiated by a pulsed blackbody x-ray source

    International Nuclear Information System (INIS)

    Chandler, Gordon Andrew; McDaniel, Dillon Heirman; Jorgenson, Roy E.; Warne, Larry Kevin; Dropinski, Steven Clark; Hanson, Donald L.; Johnson, William Arthur; York, Mathew William; Lewis, D.F.; Korde, R.; Haslett, C.L.; Wall, D.L.; Ruggles, Laurence E.; Ramirez, L.E.; Stygar, William A.; Porter, John Larry Jr.; McKenney, John Lee; Bryce, Edwin Anthony; Cuneo, Michael Edward; Torres, Jose A.; Mills, Jerry Alan; Leeper, Ramon Joe; McGurn, John Stephen; Fehl, David Lee; Spielman, R. B.; Pyle, John H.; Mazarakis, Michael Gerrassimos; Ives III, Harry Crockett; Seamen, Johann F.; Simpson, Walter W.

    2006-01-01

    We have developed a diagnostic system that measures the spectrally integrated (i.e. the total) energy and power radiated by a pulsed blackbody x-ray source. The total-energy-and-power (TEP) diagnostic system is optimized for blackbody temperatures between 50 and 350 eV. The system can view apertured sources that radiate energies and powers as high as 2 MJ and 200 TW, respectively, and has been successfully tested at 0.84 MJ and 73 TW on the Z pulsed-power accelerator. The TEP system consists of two pinhole arrays, two silicon-diode detectors, and two thin-film nickel bolometers. Each of the two pinhole arrays is paired with a single silicon diode. Each array consists of a 38 x 38 square array of 10-(micro)m-diameter pinholes in a 50-(micro)m-thick tantalum plate. The arrays achromatically attenuate the x-ray flux by a factor of ∼1800. The use of such arrays for the attenuation of soft x rays was first proposed by Turner and co-workers [Rev. Sci. Instrum. 70, 656 (1999)RSINAK0034-674810.1063/1.1149385]. The attenuated flux from each array illuminates its associated diode; the diode's output current is recorded by a data-acquisition system with 0.6-ns time resolution. The arrays and diodes are located 19 and 24 m from the source, respectively. Because the diodes are designed to have an approximately flat spectral sensitivity, the output current from each diode is proportional to the x-ray power. The nickel bolometers are fielded at a slightly different angle from the array-diode combinations, and view (without pinhole attenuation) the same x-ray source. The bolometers measure the total x-ray energy radiated by the source and--on every shot--provide an in situ calibration of the array-diode combinations. Two array-diode pairs and two bolometers are fielded to reduce random uncertainties. An analytic model (which accounts for pinhole-diffraction effects) of the sensitivity of an array-diode combination is presented

  8. An analysis of the radiation field characteristics for extremity dose assessment during maintenance periods at nuclear power plants in Korea

    International Nuclear Information System (INIS)

    Kim, H. G.; Kong, T. Y.

    2012-01-01

    Workers who maintain the water chambers of steam generators during maintenance periods in nuclear power plants (NPPs) have a higher likelihood of high radiation exposure, even if they are exposed for a short period of time. In particular, it is expected that the hands of workers would receive the highest radiation exposure as a consequence of hand contact with radioactive materials. In this study, a characteristic analysis of inhomogeneous radiation fields for contact operations was conducted using thermoluminescent dosemeters for the whole body and extremities during maintenance periods at Korean NPPs. It was observed that inhomogeneous radiation fields for contact operations at NPPs were dominated by high-energy photons. (authors)

  9. The state of radioactive waste management and of personnel radiation exposure in nuclear power generating facilities in fiscal 1983

    International Nuclear Information System (INIS)

    1985-01-01

    (1) The state of radioactive waste management in nuclear power generating facilities: In the nuclear power stations, the released quantities of radioactive gaseous and liquid wastes are all below the control objective levels. For the respective nuclear power stations, the released quantities of radioactive gaseous and liquid wastes in fiscal 1983 and the objective levels are given in table. And, the quantities of solid wastes taken into storage and the cumulative amounts are given. For reference, the results each year since fiscal 1974 are shown. (2) The state of personnel radiation exposure in nuclear power generating facilities: In the nuclear power stations, the personnel radiation exposures are all below the permissible levels. The dose distribution etc. in the respective nuclear power stations are given in table. For reference, the results each year since fiscal 1974 are shown. (Mori, K.)

  10. Cancer mortality risk of nuclear power workers due to the exposure of ionising radiation in Germany

    International Nuclear Information System (INIS)

    Fehringer, F.; Seitz, G.; Hammer, G.P.; Blettner, M.

    2006-01-01

    A cohort study of German nuclear power workers was set up to investigate overall and cancer mortality risk related to a chronic exposure to ionising radiation of low-level dose. The German study was performed as a part of an international study carried out by the International Agency for Research on Cancer (IARC), Lyon. First results of the international study have been published recently [1]. German data are not yet included in this analysis. The German cohort consists of 4844 employees from 10 nuclear power plants. All persons who worked in these nuclear power plants in 1991 or started employment between 1991 und 1997 are included (except for employees of one plant, whose observation period started in 1992). These persons accumulated about 31,000 person years. Overall, 68 deaths were observed in the observation period between 1.1.1991-31.12.1997. Standardized mortality ratios (SMR) were computed for all causes of death, all cancers, cardiovascular diseases, external causes, and all other causes. Overall, a strong healthy worker effect was observed (SMR=0.52 [95% CI: 0.41;0.67]). No increase in total cancer mortality was seen (SMR=0.85 [95% CI: 0.53;1.30]). However, numbers are too small for stable risk estimates and further effort is under way to complete the cohort in terms of power plants and to extend the follow-up until 2005. (authors)

  11. Ultrasound power measurements of HITU transducer with a more stable radiation force balance

    Energy Technology Data Exchange (ETDEWEB)

    Karaboece, B; Sadiko' lu, E; Bilgic, E, E-mail: baki.karaboce@ume.tubitak.gov.t [Tuebitak Ulusal Metroloji Enstituesue (UME), P.K. 54 41470 Gebze-Kocaeli (Turkey)

    2011-02-01

    A new radiation force balance (RFB) system was established at Turkish National Metrology Institute (UME) Ultrasonics Laboratory for High intensity therapeutic ultrasound (HITU) power measurements. The new system is highly stable at high power levels up to 500 Watts. The measurement system consists of a Plexiglas cylindrical balance arm, target mounting scale disks, conical reflecting and absorbing targets, adjustment nuts, and a hanging wire. Both of the two sides of balance were mounted similar size and weight targets. The equilibrium of the balance arm can be adjusted with nuts on screws located at both sides of the balance arm. Transducer was mounted to bottom of water tank. Absorbers in the bottom and the near walls of the tank were used for reflecting target case. Ultrasound power was applied to one scale of the balance where the reflecting/absorbing target was mounted and corresponding force was measured on the other scale of balance where was connected to a balance with a thin wire while the thin rest standing on a support. Ultrasound power of two HITU transducers at frequencies 0.93 MHz, 1.1 MHz and 3.3 MHz were measured with conventional and new system, the values were compared and uncertainty components were assessed in this paper.

  12. Effects of environmental radiation of Kori nuclear power plant on the human population

    International Nuclear Information System (INIS)

    Kim, Y.J.

    1979-01-01

    In order to clarify and protect the effects of environmental radiation according to the operation of Kori nuclear power plant on human population, the base line survey for the human monitoring, the fauna of land nocturnal insects, and the karyotypes of amphibian species which have been living around the power plant site were carried out. ''Kilchunri'' population which took for the human monitoring lie within a 2km distance from power plant site. Human monitoring, house and food characteristics, individual experience of X-ray exposures, human chromosome analysis and fauna of nocturnal land insects were surveyed and expressed in numerical tables. Chromosome number obtained from the amphibia which were collected around the power plant area was as follows; Kaloula borealis 2N=30, Rana amurensis 2N=26, Rana dybouskii 2N=24, Rana rugosa 2N=26, Rana migromaculata 2N=26, Rana plancyi 2N=26, Bombina orientalis 2N=24, Hyla arborea 2N=24, Bufo stejnegeri 2N=22, and Bufo bufo 2N=22. (author)

  13. Pyroelectric detector study and realization measuring the plasma radiated power in a tokamak

    International Nuclear Information System (INIS)

    Simonet, F.

    1981-10-01

    The study of a additional heating method and the perfection of impurities rate control and reduction means are presently actively investigated. Petula experiment must demonstrate heating efficiency by high frequency oscillating electromagnetic fields. Impurities will probably dissipate an important part of the ohmic power and electromagnetic power left in plasma. In this report, experimental device is described, which has been realized, and introduced in the tokamak, to measure precisely the energy losses by radiation in the ionized medium. In a first part, tokomak Petula is presented and it is shown how different chemical species can introduce numerously in the discharge gas. In a second part, plasma cooling by photon and fast neutron strong emission is stressed on. In a third part, the measuring device is explained; the detector part is a pyroelectric crystal. In a fourth and last part, results are discussed, insisting on the signal temporal evolution and on the value of the following ratio: power lost by plasma towards the walls/ohmic power left in plasma [fr

  14. Cancer mortality risk of nuclear power workers due to the exposure of ionising radiation in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Fehringer, F.; Seitz, G. [Berufsgenossenschaft der Feinmechanik und Elektrotechnik, Koln (Germany); Hammer, G.P.; Blettner, M. [Johannes Gutenberg-Universitat Mainz, Institut fur Medizinische Biometrie, Epidemiologie und Informatik des Klinikums (Germany)

    2006-07-01

    A cohort study of German nuclear power workers was set up to investigate overall and cancer mortality risk related to a chronic exposure to ionising radiation of low-level dose. The German study was performed as a part of an international study carried out by the International Agency for Research on Cancer (IARC), Lyon. First results of the international study have been published recently [1]. German data are not yet included in this analysis. The German cohort consists of 4844 employees from 10 nuclear power plants. All persons who worked in these nuclear power plants in 1991 or started employment between 1991 und 1997 are included (except for employees of one plant, whose observation period started in 1992). These persons accumulated about 31,000 person years. Overall, 68 deaths were observed in the observation period between 1.1.1991-31.12.1997. Standardized mortality ratios (SMR) were computed for all causes of death, all cancers, cardiovascular diseases, external causes, and all other causes. Overall, a strong healthy worker effect was observed (SMR=0.52 [95% CI: 0.41;0.67]). No increase in total cancer mortality was seen (SMR=0.85 [95% CI: 0.53;1.30]). However, numbers are too small for stable risk estimates and further effort is under way to complete the cohort in terms of power plants and to extend the follow-up until 2005. (authors)

  15. Ultra low power CMOS-based sensor for on-body radiation dose measurements

    KAUST Repository

    Arsalan, Muhammad

    2012-03-01

    For the first time, a dosimeter employing two floating gate radiation field effect transistors (FGRADFET) and operating at mere 0.1 V is presented. The novel dosimeter requires no power during irradiation and consumes only 1 μ Wduring readout. Besides the low power operation, structural changes at the device level have enhanced the sensitivity of the dosimeter considerably as compared to previous designs. The dosimeter is integrated with a wireless transmitter chip, thus eliminating all unwanted communication and power cables. It has been realized monolithically in DALSA\\'s 0.8 μ m complementary metal-oxide-semiconductor process and characterized with X-ray and γ-ray sources. A maximum sensitivity of 5 mV/rad for X-rays and 1.1 mV/rad for gamma;-rays have been achieved in measurements. Due to its small size, low-power, and wireless operation, the design is highly suitable for miniaturized, wearable, and battery operated dosimeters intended for radiotherapy and space applications. © 2012 IEEE.

  16. Ultrasound power measurements of HITU transducer with a more stable radiation force balance

    International Nuclear Information System (INIS)

    Karaboece, B; Sadiko'lu, E; Bilgic, E

    2011-01-01

    A new radiation force balance (RFB) system was established at Turkish National Metrology Institute (UME) Ultrasonics Laboratory for High intensity therapeutic ultrasound (HITU) power measurements. The new system is highly stable at high power levels up to 500 Watts. The measurement system consists of a Plexiglas cylindrical balance arm, target mounting scale disks, conical reflecting and absorbing targets, adjustment nuts, and a hanging wire. Both of the two sides of balance were mounted similar size and weight targets. The equilibrium of the balance arm can be adjusted with nuts on screws located at both sides of the balance arm. Transducer was mounted to bottom of water tank. Absorbers in the bottom and the near walls of the tank were used for reflecting target case. Ultrasound power was applied to one scale of the balance where the reflecting/absorbing target was mounted and corresponding force was measured on the other scale of balance where was connected to a balance with a thin wire while the thin rest standing on a support. Ultrasound power of two HITU transducers at frequencies 0.93 MHz, 1.1 MHz and 3.3 MHz were measured with conventional and new system, the values were compared and uncertainty components were assessed in this paper.

  17. Ultra low power CMOS-based sensor for on-body radiation dose measurements

    KAUST Repository

    Arsalan, Muhammad; Shamim, Atif; Shams, Maitham; Tarr, Nathan Garry; Roy, Langis

    2012-01-01

    For the first time, a dosimeter employing two floating gate radiation field effect transistors (FGRADFET) and operating at mere 0.1 V is presented. The novel dosimeter requires no power during irradiation and consumes only 1 μ Wduring readout. Besides the low power operation, structural changes at the device level have enhanced the sensitivity of the dosimeter considerably as compared to previous designs. The dosimeter is integrated with a wireless transmitter chip, thus eliminating all unwanted communication and power cables. It has been realized monolithically in DALSA's 0.8 μ m complementary metal-oxide-semiconductor process and characterized with X-ray and γ-ray sources. A maximum sensitivity of 5 mV/rad for X-rays and 1.1 mV/rad for gamma;-rays have been achieved in measurements. Due to its small size, low-power, and wireless operation, the design is highly suitable for miniaturized, wearable, and battery operated dosimeters intended for radiotherapy and space applications. © 2012 IEEE.

  18. Multi-gigabit low-power radiation-tolerant data links and improved data motion in trackers

    International Nuclear Information System (INIS)

    Miller, M; Brewer, F; Wang, D; Magazzu, G

    2014-01-01

    We present a set of links based on data-transmission IP in 130nm designed for rapid integration into ASIC designs. These links are designed for use in very high radiation environments as occur in high energy physics experiments. The designs are additionally low power and small area, easing integration with other electronic systems. These links are well suited to use in tracking detectors. Trackers, due to their close proximity to the collision, are subject to very high levels of radiation, and hence require such radiation hardened electronics. The portfolio of radiation hardened data transmission blocks consists of a 1Gbps serializer/deserializer with a very low power consumption ∼ 1mW for each. A differential transmitter and differential receiver rated at 3GHz, both designed to be much faster than needed, as insurance against radiation damage. Finally, the impact of a prototype low-latency, low-power ( < 60mW total link power) 5Gbps link is considered. Case analysis of the impacts of using lower powered, higher speed blocks in hypothetical trackers is studied, showing power improvements relative to alternative technologies

  19. Proceedings of the 3rd topical meeting on FEL and high power radiation

    International Nuclear Information System (INIS)

    Hiramatsu, Shigenori

    1994-01-01

    The meeting was held on June 10 and 11, 1993, at the National Laboratory for High Energy Physics. This is the joint study meeting with 31st large power microwave-milliwave study meeting. At the meeting, lectures were given on the report of 1st Asia FEL study meeting, infrared free electron laser (FEL) project in JAERI, present state of Free Electron Laser Research Institute Inc., infrared FEL experiment in the Institute of Scientific and Industrial Research, Osaka University, FEL experiment in UVSOR storage ring, NIJI-4 SRFEL, simulation of FEL oscillation in photo-klystron, vacuum UVFEL in PF, beam characteristics of small photon storage ring, micro-cherenkov FEL using field emission array, coherent spontaneous emission and radiation build-up in FEL oscillator, stability of soft X-ray multilayers under exposure to multipole Wigger radiation, long life Zn 2 excimer excited with relativistic electron beam, development of large power klystron in KEK, design of 1 THz gyrotron and first experiment, experiment of relativistic peniotron, experiments of 3rd and 10th cyclotron harmonic peniotron oscillators and others. (K.I.)

  20. Effect of low-power density laser radiation on heatling of open skin wounds in rats

    Energy Technology Data Exchange (ETDEWEB)

    Kana, J.S.; Hutschenreiter, G.; Haina, D.; Waidelich, W.

    1981-03-01

    Researchers performed a study to determine whether laser radation of low-power density would affect the healing of open skin wounds in rats. The wounds were irradiated daily with a helium-neon laser and an argon laser at a constant power density of 45 mW/sq cm. The rate of wound closure was followed by photographing the wounds in a standardized way. The collagen hydroxyproline concentration in the scar tissue was determined on the 18th postoperative day. Helium-neon laser radiation had a statistically significant stimulating effect on collagen synthesis in the wound, with a maximum effect at an energy density of 4 joules/sq cm. The rate of wound closure was enhanced significantly between the third and 12th postoperative days. The argon laser exposure produced a significant increase in collagen concentration both in irradiated and nonirradiated contralateral wounds. However, an acceleration of the healing rate was not registered in this case. The wound contraction up to the fourth day of the experiment was inhibited under helium-neon and argon laser exposure to 20 joules/sq cm. The described effects were not specific for the laser light. There may be a wavelength-selective influence of coherent light on the metabolic and proliferation processes in wound healing, with the associated problem of the possible carcinogenic effects of laser radiation.

  1. Sandwich Core Heat-Pipe Radiator for Power and Propulsion Systems

    Science.gov (United States)

    Gibson, Marc; Sanzi, James; Locci, Ivan

    2013-01-01

    Next-generation heat-pipe radiator technologies are being developed at the NASA Glenn Research Center to provide advancements in heat-rejection systems for space power and propulsion systems. All spacecraft power and propulsion systems require their waste heat to be rejected to space in order to function at their desired design conditions. The thermal efficiency of these heat-rejection systems, balanced with structural requirements, directly affect the total mass of the system. Terrestrially, this technology could be used for thermal control of structural systems. One potential use is radiant heating systems for residential and commercial applications. The thin cross section and efficient heat transportability could easily be applied to flooring and wall structures that could evenly heat large surface areas. Using this heat-pipe technology, the evaporator of the radiators could be heated using any household heat source (electric, gas, etc.), which would vaporize the internal working fluid and carry the heat to the condenser sections (walls and/or floors). The temperature could be easily controlled, providing a comfortable and affordable living environment. Investigating the appropriate materials and working fluids is needed to determine this application's potential success and usage.

  2. Evaluating the radiation environment around a nuclear power station with unmonitored radionuclide release

    International Nuclear Information System (INIS)

    Bondarev, A.A.; Dibobes, I.K.; Pyuskyulan, K.I.

    1986-01-01

    This paper describes the radiation monitoring system at (RMS) at the Armenian nuclear power station; the environmental monitoring program includes measuring the gamma radiation around the station, determining radionuclide contents in air and fallout, and also in surface water and ground water, in water plants and bottom sediments, in soil and plants and also in local agricultural products. The RMS monitors gas-aerosol releases and effluents from the station. The radius of the monitored zone is 25 km. The gamma radiation is measured by IKS dosemeters and SRP-68-01 portable instruments. The air is monitored by six stationary aspriation systems at distances of 1, 5, 6, 11, 14, 15 and 50 km and 28 planchette cells. The RMS records virtually all the mean monthly and mean annual fluctuations in the global background. In seven years of operation at the Armenian station, only Ca 137 and Sr 90 from global fallout together with Be 7 of cosmogenic origin have been observed in air apart from two cases. In 1981, air samples taken with the aspirators and combined over a quarter showed Ce 141, Ce 144, Ru 106, Ru 103, Nb 95 and Zr 95. The concentrations of these are presented

  3. Assessment of environmental gamma radiation levels in the environs of Narora Atomic Power Station (NAPS)

    International Nuclear Information System (INIS)

    Shetty, P.G.; Takale, R.A.; Swarnkar, M.; Sahu, S.K.; Pandit, G.G.; Puranik, V.D.

    2011-01-01

    As a part of the assessment of the environmental impact of the Indian nuclear power programme, radiation surveys are being carried out on continuous basis in the environs of all the nuclear facilities in India using Thermoluminescent Dosimeters. This paper discusses the environmental gamma radiation levels based on the analysis of data generated for year 1989-2009 at twenty-eight locations currently being monitored in and around the environs of NAPS using passive dosimeter. Of these, six are within the exclusion zone (1.6 km) while the remaining twenty two locations are spread over an aerial distance of twenty six km from reactor stack. The annual background gamma levels for NAPS site beyond 1.6 km exclusion zone based on twenty-two monitoring locations are evaluated and seen to be 1.20 ± 0.15 mGy/a. This is comparable with earlier reported pre-operational value 1.24 ± 0.26 mGy/a. From this it can be said that the reactor operations have not contributed to any increase in the gamma radiation levels in the environs of the NAPS region. (author)

  4. Radiation effects in concrete for nuclear power plants, Part II: Perspective from micromechanical modeling

    Energy Technology Data Exchange (ETDEWEB)

    Le Pape, Y., E-mail: lepapeym@ornl.gov; Field, K.G.; Remec, I.

    2015-02-15

    Highlights: • A micromechanical model for irradiated concrete is proposed. • Confrontation with literature data is successful. • Neutron radiation-induced volumetric expansion is a predominant degradation mode. • The nature of the aggregate alters the severity of damage to irradiated concrete. - Abstract: The need to understand and characterize the effects of neutron irradiation on concrete has become urgent because of the possible extension of service life of many nuclear power generating stations. Current knowledge is primarily based on a collection of data obtained in test reactors. These data are inherently difficult to interpret because materials and testing conditions are inconsistent. A micromechanical approach based on the Hashin composite sphere model is presented to derive a first-order separation of the effects of radiation on cement paste and aggregate, and, also, on their interaction. Although the scarcity of available data limits the validation of the model, it appears that, without negating a possible gamma-ray induced effect, the neutron-induced damage and swelling of aggregate plays a predominant role on the overall concrete expansion and the damage of the cement paste. The radiation-induced volumetric expansion (RIVE) effects can also be aided by temperature elevation and shrinkage in the cement paste.

  5. Radiation effects in concrete for nuclear power plants, Part II: Perspective from micromechanical modeling

    International Nuclear Information System (INIS)

    Le Pape, Y.; Field, K.G.; Remec, I.

    2015-01-01

    Highlights: • A micromechanical model for irradiated concrete is proposed. • Confrontation with literature data is successful. • Neutron radiation-induced volumetric expansion is a predominant degradation mode. • The nature of the aggregate alters the severity of damage to irradiated concrete. - Abstract: The need to understand and characterize the effects of neutron irradiation on concrete has become urgent because of the possible extension of service life of many nuclear power generating stations. Current knowledge is primarily based on a collection of data obtained in test reactors. These data are inherently difficult to interpret because materials and testing conditions are inconsistent. A micromechanical approach based on the Hashin composite sphere model is presented to derive a first-order separation of the effects of radiation on cement paste and aggregate, and, also, on their interaction. Although the scarcity of available data limits the validation of the model, it appears that, without negating a possible gamma-ray induced effect, the neutron-induced damage and swelling of aggregate plays a predominant role on the overall concrete expansion and the damage of the cement paste. The radiation-induced volumetric expansion (RIVE) effects can also be aided by temperature elevation and shrinkage in the cement paste

  6. Impact of New Radiation Safety Standards on Licensing Requirements of Nuclear Power Plant

    International Nuclear Information System (INIS)

    Strohal, P.; Subasic, D.; Valcic, I.

    1996-01-01

    As the outcomes of the newly introduced safety philosophies, new and more strict safety design requirements for nuclear installation are expected to be introduced. New in-depth defence measures should be incorporated into the design and operation procedure for a nuclear installation, to compensate for potential failures in protection or safety measures. The new requirements will also apply to licensing of NPP's operation as well as to licensing of nuclear sites, especially for radioactive waste disposal sites. This paper intends to give an overview of possible impacts of new internationally agreed basic safety standards with respect to NPP and related technologies. Recently issued new basic safety standards for radiation protection are introducing some new safety principles which may have essential impact on future licensing requirements regarding nuclear power plants and radioactive waste installations. These new standards recognize exposures under normal conditions ('practices') and intervention conditions. The term interventions describes the human activities that seek to reduce the existing radiation exposure or existing likelihood of incurring exposure which is not part of a controlled practice. The other new development in safety standards is the introduction of so called potential exposure based on the experience gained from a number of radiation accidents. This exposure is not expected to be delivered with certainty but it may result from an accident at a source or owing to an event or sequence of events of a probabilistic nature, including equipment failures and operating errors. (author)

  7. Low-power laser irradiation did not stimulate breast cancer cells following ionizing radiation

    Science.gov (United States)

    Silva, C. R.; Camargo, C. F. M.; Cabral, F. V.; Ribeiro, M. S.

    2016-03-01

    Cancer has become a public health problem worldwide. Radiotherapy may be a treatment to a number of types of cancer, frequently using gamma-radiation with sources such as 137Cs and 60Co, with varying doses, dose rates, and exposure times to obtain a better as a stimulant for cell proliferation and tissue healing process. However, its effects on cancer cells are not yet well elucidated. The purpose of this work was to evaluate the effects of the LPL on breast cancer cultures after ionizing radiation. The breast cancer-MDA-MB-231 cells were gamma irradiated by a 60Co source, with dose of 2.5 Gy. After 24h, cells were submitted to LPL irradiation using a red laser emitting at λ= 660 nm, with output power of 40 mW and exposure time of 30 s and 60 s. The plates were uniformly irradiated, with energy of 1.2 J and 2.4 J, respectively. Cell viability was analyzed using the exclusion method with trypan blue. Our results show that breast cancer cells submitted to LPL after ionizing radiation remained 95 % viable. No statistically significant differences were observed between laser and control untreated cells, (P > 0.05). These findings suggest that LPL did not influenced cancer cells viability.

  8. Nuclear safety and radiation protection report of the Tricastin power plant - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Tricastin nuclear power plant (INB 87 and 88, Saint-Paul-Trois-Chateaux, Drome (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions

  9. Nuclear safety and radiation protection report of the Tricastin power plant - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Tricastin nuclear power plant (INB 87 and 88, Saint-Paul-Trois-Chateaux, Drome (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions

  10. Medical surveillance according to the resolution radiation protection nuclear-power-law in working with ionizing radiation

    International Nuclear Information System (INIS)

    1988-01-01

    The rules with regard to the medical surveillance of persons who, during the execution of their duties, may be exposed to certain amounts of ionizing radiation are treated. After an explanation of the general starting points of the policy with regard to radiation hygiene, two governing tools are reviewed: the set of licences and the radiation hygiene standards. 10 refs.; 1 table

  11. The selection of radiation tolerant electrical/electronic components for gamma radiation environments in the nuclear power industry

    International Nuclear Information System (INIS)

    Garlick, D.R.

    1984-09-01

    This report briefly describes the mechanisms, units and effects of 1 MeV range gamma radiation on electrical/electronic components and materials. Information is tabulated on the gamma radiation tolerance of a wide range of components and materials. A radiation testing service, based at Harwell, is described. Lists of interested manufacturers and organisations are given. (author)

  12. Mortality and career radiation doses for workers at a commercial nuclear power plant: feasibility study

    International Nuclear Information System (INIS)

    Goldsmith, R.; Boice, J.D. Jr.; Hrubec, Z.; Hurwitz, P.E.; Goff, T.E.; Wilson, J.

    1989-01-01

    Career radiation doses for 8,961 male workers at the Calvert Cliffs Nuclear Power Plant (CCNPP) were determined for both utility (n = 4,960) and contractor (n = 4,001) employees. Workers were followed from the time of first employment at CCNPP (including plant construction) to the end of 1984 (mean follow-up = 5.4 y). Plant operation began in 1975. The mean duration of employment was 1.9 y at CCNPP and 3.1 y in the nuclear industry. Career radiation doses were determined from dosimetry records kept by the utility company and the U.S. Nuclear Regulatory Commission (NRC). For all exposed workers, the average career dose was 21 mSv and was higher for contractor (30 mSv) than utility (13 mSv) workers. Career doses were also higher among those employed in the nuclear industry for greater than or equal to 15 y (111 mSv) and among workers classified as health physicists (56 mSv). Cumulative doses of greater than or equal to 50 mSv were received by 12% of the workers; the maximum career dose reported was 470 mSv. The availability of social security numbers for practically all employees facilitated record-linkage methods to determine mortality; 161 deaths were identified. On average the workers experienced mortality from all causes that was 15% less than that of the general population of the U.S., probably due to healthier members of the population being selected for employment. Our investigation demonstrates that historical information is available from which career doses could be constructed and that, in principle, it is feasible to conduct epidemiologic studies of nuclear power plant workers in the U.S. Although difficult, the approach taken could prove useful until such time as a comprehensive registry of U.S. radiation workers is established

  13. PSA response signatures - a powerful new prognostic indicator after radiation for prostate cancer?

    International Nuclear Information System (INIS)

    Denham, James W.; Lamb, David S.; Joseph, David; Matthews, John; Atkinson, Chris; Spry, Nigel A.; Duchesne, Gillian; Ebert, Martin; Steigler, Allison; D'Este, Catherine

    2009-01-01

    Background: We sought to determine whether inter-patient variations in pattern of PSA changes after radiation exist and, if so, are they prognostically significant. Methods: In the Trans-Tasman Radiation Oncology Group (TROG) 96.01 randomized controlled trial, patients with T2b,c,3,4 N0 prostate cancer (PC) were randomised to 0, 3 or 6 months maximal androgen deprivation prior to 66 Gy to the prostate and seminal vesicles (XRT). Patterns of anatomical site of failure were one of the trial endpoints. Serial serum PSA's were mandated at all follow-up visits. Pattern recognition software was developed to characterize PSA response 'signatures' (PRS) after therapy in individual patients. Results: By 2000, 270 eligible patients were randomised to radiation alone. Individual patient PSA values were observed to descend after radiation according to one of two characteristic 'signatures': single exponential (PRS Type 1), non-exponential (PRS Type 2). Compared to PRS Type 1, men with PRS Type 2 (50% of the group) had lower PSA nadir (nPSA) levels (p < .0001), longer doubling times on relapse (p = .006) and significantly lower rates of local (hazard ratio [HR]: 0.47, 95% confidence interval [0.30-0.75], p = .0014) and distant failure (HR: 0.25[0.13-0.46], p < .0001), death due to PC (HR: 0.20[0.10-0.42], p < .0001) and death due to any cause (HR: 0.37 [0.23-0.60], p < .0001). PRS retained its powerful prognostic significance in Cox models that incorporated all key pre-treatment covariates and nPSA. Conclusions: PRS reflect the presence of tumor phenotypes that vary substantially in their clinical behavior and response to XRT. Molecular characterization is now necessary

  14. Conversion of NIR-radiation to Electric Power in a Solar Greenhouse

    Science.gov (United States)

    Sonneveld, P. J.; Swinkels, G. L. A. M.; Bot, G. P. A.; Flamand, G.

    2007-02-01

    The scope of this investigation is the development of a new type of greenhouse with an integrated filter for rejecting near infrared radiation (NIR) and a solar energy delivery system. Cooled greenhouses are an important issue to cope with the combination of high global radiation and high outdoor temperatures. As a first measure, the spectral selective cover material, which prevents the entrance of NIR radiation, is investigated. The special spectral selective reflectivity of these materials has to block up to 50% of the solar energy outside the greenhouse, which will reduce the needed cooling capacity. The second measure is the integration of a solar energy system. When the NIR reflecting coating is designed as a parabolic or circular shaped reflector integrated in the greenhouse, the reflected solar energy of a PV cell in the focus point delivers electric energy. With a ray tracing computer program the geometry of the reflector was optimally designed with respect to the maximum power level. The PV or TPV cells mounted in the focal point require cooling due to the high heat load of the concentrated radiation (concentration factor of 40-80). The properties of different materials, Ge, GaSb, CIS and Si cells were investigated to find the optimal cell for this application. For the second option a tubular collector is placed in the focus of the reflector. The collector contains thermal oil, which is heated up to a temperature of 400°C. This hot oil can be used for heating a Stirling motor or an Organic Rankine Cycle (ORC). The typical efficiencies and economic achievement of these systems including the tube collector are compared with the efficiencies of the TPV cells.

  15. Compression and radiation of high-power short rf pulses. II. A novel antenna array design with combined compressor/radiator elements

    KAUST Repository

    Sirenko, Kostyantyn; Pazynin, Vadim L.; Sirenko, Yu K.; Bagci, Hakan

    2011-01-01

    The paper discusses the radiation of compressed high power short RF pulses using two different types of antennas: (i) A simple monopole antenna and (ii) a novel array design, where each of the elements is constructed by combining a compressor and a

  16. Criteria for siting of nuclear power plants with regard for radiation hazards

    International Nuclear Information System (INIS)

    Shevts, I; Kunz, Eh.

    1976-01-01

    Reviewed are different approaches to a problem of the nuclear power plant construction expediency from the point of view of earlier and remote consequencies of ionizing radiation in the case of accident releases of radioactive products. The method of a risk and benefit comparison is considered the most expedient approach to decide on the nuclear power plant construction as well as to minimize the accident risk. As at present the probabilities of different accident types are not known or there are only approximate estimates, it is necessary to choose a modified approach, but so that it approximates to the main approach, recommended by ICRP. It is assumed, that the requirements can be met by the following design criteria: Limitation of maximum risk separate persons most subjected to irradiation hazard; introduction of dose limits which is not to be exceeded even in the case of maximum permissible desighned accident (MPDA); application of principle of minimizing the accident risk when estimating the engineering protective buildings at least from the point of view of MPDA or those accident types, which probabilities can be estimated; application of a tentative limit of a collective dose in such a way not to exceed the cumulative collective population dose by a collective dose due to MPDA, under normal operation during all the nuclear power plant operating period [ru

  17. Minimal Internal Radiation Exposure in Residents Living South of the Fukushima Daiichi Nuclear Power Plant Disaster.

    Science.gov (United States)

    Akiyama, Junichi; Kato, Shigeaki; Tsubokura, Masaharu; Mori, Jinichi; Tanimoto, Tetsuya; Abe, Koichiro; Sakai, Shuji; Hayano, Ryugo; Tokiwa, Michio; Shimmura, Hiroaki

    2015-01-01

    Following the Fukushima nuclear power plant disaster, assessment of internal radiation exposure was indispensable to predict radiation-related health threats to residents of neighboring areas. Although many evaluations of internal radiation in residents living north and west of the crippled Fukushima nuclear power plant are available, there is little information on residents living in areas south of the plant, which were similarly affected by radio-contamination from the disaster. To assess the internal radio-contamination in residents living in affected areas to the south of the plant or who were evacuated into Iwaki city, a whole body counter (WBC) screening program of internal radio-contamination was performed on visitors to the Jyoban hospital in Iwaki city, which experienced less contamination than southern areas adjacent to the nuclear plant. The study included 9,206 volunteer subjects, of whom 6,446 were schoolchildren aged 4-15 years. Measurements began one year after the incident and were carried out over the course of two years. Early in the screening period only two schoolchildren showed Cs-137 levels that were over the detection limit (250 Bq/body), although their Cs-134 levels were below the detection limit (220 Bq/body). Among the 2,760 adults tested, 35 (1.3%) had detectable internal radio-contamination, but only for Cs-137 (range: 250 Bq/body to 859 Bq/body), and not Cs-134. Of these 35 subjects, nearly all (34/35) showed elevated Cs-137 levels only during the first year of the screening. With the exception of potassium 40, no other radionuclides were detected during the screening period. The maximum annual effective dose calculated from the detected Cs-137 levels was 0.029 and 0.028 mSv/year for the schoolchildren and adults, respectively, which is far below the 1 mSv/year limit set by the government of Japan. Although the data for radiation exposure during the most critical first year after the incident are unavailable due to a lack of systemic

  18. IRSN's viewpoint on the safety and radiation protection of French nuclear power plants in 2007

    International Nuclear Information System (INIS)

    2009-01-01

    This report presents the viewpoint of the IRSN on the safety and radiation protection of EDF's nuclear power plants (NPPs) in operation during 2007. It does not aim to be exhaustive but rather to highlight the points the IRSN considers important for safety. Contributing to maintaining a high level of safety and radiation protection in nuclear facilities in service is one of the seven challenges of the objectives contract signed between the French Government and the IRSN. Safety demands constant vigilance on the part of all the players involved. It is never definitively acquired and must remain a priority and continuously progress, with the plant operator remaining the first entity responsible for the safety of its facility. For the IRSN, part of this mission firstly involves carefully examining and taking into consideration national and international experience feedback, and new scientific knowledge resulting from research. The implementation of improvements, whether technical or organizational or relating to human skills, then comes secondly. This report comprises four sections. In the first section, the IRSN presents the main trends that emerged from its overall review of the safety of the in-service nuclear power plants. The second section addresses the events that have marked the year due to their impact on safety. It also presents a synthesis of the radiation protection events. The third section is devoted to anomalies displaying a generic nature for several power plants. The last section covers the significant changes implemented or scheduled. These are generally modifications or plans of action intended to improve safety performance in the operation or design of the facilities. In spite of sometimes significant disparities in the results between power plants, the IRSN draws the following conclusions from its global review of the year 2007. First of all, no event had serious consequences in the fields of either safety or radioprotection. This good result must

  19. Radiation occupational health interventions offered to radiation workers in response to the complex catastrophic disaster at the Fukushima Daiichi Nuclear Power Plant

    International Nuclear Information System (INIS)

    Shimura, Tsutomu; Yamaguchi, Ichiro; Terada, Hiroshi; Kunugita, Naoki; Okuda, Kengo; Svendsen, E.R.

    2015-01-01

    The Fukushima Daiichi Nuclear Power Plant (NPP) 1 was severely damaged from the chain reaction of the Great East Japan Earthquake and Tsunami on 11 March 2011, and the consequent meltdown and hydrogen gas explosions. This resulted in the worst nuclear accident since the Chernobyl accident of 1986. Just as in the case of Chernobyl, emergency workers were recruited to conduct a wide range of tasks, including disaster response, rescuing activities, NPP containment, and radiation decontamination. This paper describes the types and efficacy of the various occupational health interventions introduced to the Fukushima NPP radiation workers. Such interventions were implemented in order to prevent unnecessary radiation overexposure and associated adverse health effects and work injuries. Less than 1% of all emergency workers were exposed to external radiation of >100 mSv, and to date no death or health adversities from radiation have been reported for those workers. Several occupational health interventions were conducted, including setting of new regulatory exposure limits, improving workers' radiation dosimetry, administration of stable iodine, running an occupational health tracking system, and improving occupational medicine and preventative care. Those interventions were not only vital for preventing unnecessary radiation, but also for managing other general health issues such as mental health, heat illness and infectious disease. Long-term administration of the aforementioned occupational health interventions is essential to ensure the ongoing support and care for these workers, who were put under one of the most severe occupational health risk conditions ever encountered. (author)

  20. Radiation monitoring data on the power-up test of HTTR. Results up to 20 MW operation

    International Nuclear Information System (INIS)

    Ashikagaya, Yoshinobu; Nakazawa, Takashi; Yoshino, Toshiaki; Yasu, Katsuji

    2002-01-01

    The High Temperature Engineering Test Reactor (HTTR) have completed the Power-up test of 9 MW (the single and parallel loaded operation) in the rated operation mode. After that the Power-up test in the rated operation mode and the high-temperature test operation mode with a thermal output of 20 MW (the single and parallel loaded operation) were performed between January 16, 2001 and June 10, 2001. This report describes the radiation monitoring data carried out during the HTTR Power-up test in the rated operation mode and the high-temperature test operation mode with a thermal output of 20 MW. The followings were concluded from these radiation monitoring data. The monitoring of radioactive gaseous effluents and the radiation protection for the works will be easy to do and the exposure dose of the workers will be kept the low level. (author)

  1. Synchrotron radiation imaging is a powerful tool to image brain microvasculature

    International Nuclear Information System (INIS)

    Zhang, Mengqi; Sun, Danni; Xie, Yuanyuan; Xia, Jian; Long, Hongyu; Hu, Kai; Xiao, Bo; Peng, Guanyun

    2014-01-01

    Synchrotron radiation (SR) imaging is a powerful experimental tool for micrometer-scale imaging of microcirculation in vivo. This review discusses recent methodological advances and findings from morphological investigations of cerebral vascular networks during several neurovascular pathologies. In particular, it describes recent developments in SR microangiography for real-time assessment of the brain microvasculature under various pathological conditions in small animal models. It also covers studies that employed SR-based phase-contrast imaging to acquire 3D brain images and provide detailed maps of brain vasculature. In addition, a brief introduction of SR technology and current limitations of SR sources are described in this review. In the near future, SR imaging could transform into a common and informative imaging modality to resolve subtle details of cerebrovascular function

  2. Synchrotron radiation imaging is a powerful tool to image brain microvasculature

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Mengqi; Sun, Danni; Xie, Yuanyuan; Xia, Jian; Long, Hongyu; Hu, Kai; Xiao, Bo, E-mail: csuxiaobo123456@163.com [Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008 (China); Peng, Guanyun [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2014-03-15

    Synchrotron radiation (SR) imaging is a powerful experimental tool for micrometer-scale imaging of microcirculation in vivo. This review discusses recent methodological advances and findings from morphological investigations of cerebral vascular networks during several neurovascular pathologies. In particular, it describes recent developments in SR microangiography for real-time assessment of the brain microvasculature under various pathological conditions in small animal models. It also covers studies that employed SR-based phase-contrast imaging to acquire 3D brain images and provide detailed maps of brain vasculature. In addition, a brief introduction of SR technology and current limitations of SR sources are described in this review. In the near future, SR imaging could transform into a common and informative imaging modality to resolve subtle details of cerebrovascular function.

  3. Dissociation of NH3 and NH2D by high power CO2 laser radiation

    International Nuclear Information System (INIS)

    Jacobs, R.R.

    1976-08-01

    Multiquantum dissociation of polyatomics using intense CO 2 lasers resulting in isotopic enrichment has been demonstrated for several molecules. In this presentation, the possibility of selective dissociation of NH 3 and NH 2 D by high power laser radiation at 10 μm will be considered. Relevant work performed at the Lawrence Livermore Laboratory and elsewhere will be summarized. In this review, attention will be given to four distinct mechanisms that can play varying degrees of importance in such investigations. Discussion will deal with the usefulness of two-resonant-frequency molecular excitation, the role of buffer gases, and the need to monitor the yields into the ground and excited electronic states of the dissociated fragments

  4. Interaction of power pulses of laser radiation with glasses containing implanted metal nanoparticles

    CERN Document Server

    Stepanov, A L; Hole, D E; Bukharaev, A A

    2001-01-01

    The sodium-calcium silicate glasses, implanted by the Ag sup + ions with the energy of 60 keV and the dose of 7 x 10 sup 1 sup 6 cm sup - sup 2 by the ion current flux density of 10 mu A/cm sup 2 , are studied. The ion implantation makes it possible to synthesize in the near-the-surface glass area the composite layer, including the silver nanoparticles. The effect of the powerful pulse excimer laser on the obtained composite layer is investigated. It is established that the laser radiation leads to decrease in the silver nanoparticles size in the implanted layer. However nonuniform distribution of particles by size remains though not so wide as before the irradiation. The experimental results are explained by the effect of glass and metallic particles melting in the nanosecond period of time

  5. A comment on power-law inflation with a dark radiation component

    Energy Technology Data Exchange (ETDEWEB)

    Valentino, Eleonora Di; Bouchet, François R., E-mail: valentin@iap.fr, E-mail: bouchet@iap.fr [Institut d' Astrophysique de Paris (UMR7095: CNRS and UPMC-Sorbonne Universities), F-75014, Paris (France)

    2016-10-01

    Tram et al. 2016 recently pointed out in [1] that power-law inflation in presence of a dark radiation component may relieve the 3.3 σ tension which exists within standard ΛCDM between the determination of the local value of the Hubble constant by Riess et al. (2016) [2] and the value derived from CMB anisotropy data [3] by the Planck collaboration. In this comment, we simply point out that this interesting proposal does not help in solving the σ{sub 8} tension between the Planck data and, e.g., the weak lensing measurements. Moreover, when the latest constraints on the reionization optical depth obtained from Planck HFI data [4] are included in the analysis, the H {sub 0} tension reappears and this scenario looses appeal.

  6. Optimization design of high power ultrasonic circular ring radiator in coupled vibration.

    Science.gov (United States)

    Xu, Long; Lin, Shuyu; Hu, Wenxu

    2011-10-01

    This paper presents a new high power ultrasonic (HPU) radiator, which consists of a transducer, an ultrasonic horn, and a metal circular ring. Both the transducer and horn in longitudinal vibrations are used to drive a metal circular ring in a radial-axial coupled vibration. This coupled vibration cannot only generate ultrasound in both the radial and axial directions, but also focus the ultrasound inside the circular ring. Except for the radial-axial coupled vibration mode, the third longitudinal harmonic vibration mode with relative large vibration amplitude is also detected, which can be used as another operation mode. Overall, the HPU with these two vibration modes should have good potential to be applied in liquid processing, such as sonochemistry, ultrasonic cleaning, and Chinese herbal medicine extraction. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Design concept for radiation hardening of low power and low voltage dynamic memories

    International Nuclear Information System (INIS)

    Schleifer, H.; Ropp, T.V.D.; Reczek, W.

    1995-01-01

    A radiation hard low power, low voltage dynamic memory is obtained by the use of a dummy cell concept. Compared to conventional dummy cell concepts, this concept applies a fully sized dummy cell. By optimizing the dummy cell precharge voltage for 5 V and 3 V operation and the timing of the dummy word-line, the overall soft error rate (SER) of the chip is improved by 2 orders of magnitude. An additional improvement of 1 order of magnitude is possible for 3 V operation by adjusting substrate bias and cell plate voltage. The results are verified by an accelerated SER measurement with a radium 226 source and an additional field soft error study

  8. Radiation risk from the nuclear power installation of space vehicle in case of reentry to the atmosphere

    International Nuclear Information System (INIS)

    Mikheenko, S.G.

    1994-01-01

    Main directions of space using of nuclear power are considered. Nuclear energy has found many applications in space projects. The first application is the use of nuclear energy for the production of electricity in space and the second main application is the use of nuclear power for propulsion purposes in space flight. History of usage nuclear power systems in space technic is shown. Today there are 54 satellites with NPS in space near the Earth. The main principle of radical solution of the problem of radiation safety is based on the accommodation of space objects with nuclear units in orbits, such that the ballistic lifetime is greater than the time necessary for complete decay of the accumulated radioactivity. Radiation safety on various stages of space nuclear systems exploitation is discussed. If Main System Ensuring Radiation Safety is failed, it must operates Reserved System Ensuring Radiation Safety. Concrete development of a booster system for nuclear unit and a system for the reactor destruction in order to ensure aerodynamic destruction of fuel has been realized in satellite of 'Cosmos' series. The investigations on reserved system ensuring radiation safety in Moscow Physical - Engineering Institute are discussed. The results show that we can in principle ensure the radiation safety in accordance to ICRP recommendations. (author)

  9. Effect of Different Solar Radiation Data Sources on the Variation of Techno-Economic Feasibility of PV Power System

    Science.gov (United States)

    Alghoul, M. A.; Ali, Amer; Kannanaikal, F. V.; Amin, N.; Aljaafar, A. A.; Kadhim, Mohammed; Sopian, K.

    2017-11-01

    The aim of this study is to evaluate the variation in techno-economic feasibility of PV power system under different data sources of solar radiation. HOMER simulation tool is used to predict the techno-economic feasibility parameters of PV power system in Baghdad city, Iraq located at (33.3128° N, 44.3615° E) as a case study. Four data sources of solar radiation, different annual capacity shortages percentage (0, 2.5, 5, and 7.5), and wide range of daily load profile (10-100 kWh/day) are implemented. The analyzed parameters of the techno-economic feasibility are COE (/kWh), PV array power capacity (kW), PV electrical production (kWh/year), No. of batteries and battery lifetime (year). The main results of the study revealed the followings: (1) solar radiation from different data sources caused observed to significant variation in the values of the techno-economic feasibility parameters; therefore, careful attention must be paid to ensure the use of an accurate solar input data; (2) Average solar radiation from different data sources can be recommended as a reasonable input data; (3) it is observed that as the size and of PV power system increases, the effect of different data sources of solar radiation increases and causes significant variation in the values of the techno-economic feasibility parameters.

  10. Contrails and their impact on shortwave radiation and photovoltaic power production – a regional model study

    Directory of Open Access Journals (Sweden)

    S. Gruber

    2018-05-01

    Full Text Available A high-resolution regional-scale numerical model was extended by a parameterization that allows for both the generation and the life cycle of contrails and contrail cirrus to be calculated. The life cycle of contrails and contrail cirrus is described by a two-moment cloud microphysical scheme that was extended by a separate contrail ice class for a better representation of the high concentration of small ice crystals that occur in contrails. The basic input data set contains the spatially and temporally highly resolved flight trajectories over Central Europe derived from real-time data. The parameterization provides aircraft-dependent source terms for contrail ice mass and number. A case study was performed to investigate the influence of contrails and contrail cirrus on the shortwave radiative fluxes at the earth's surface. Accounting for contrails produced by aircraft enabled the model to simulate high clouds that were otherwise missing on this day. The effect of these extra clouds was to reduce the incoming shortwave radiation at the surface as well as the production of photovoltaic power by up to 10 %.

  11. High-power laser radiation in atmospheric aerosols: Nonlinear optics of aerodispersed media

    Science.gov (United States)

    Zuev, V. E.; Zemlianov, A. A.; Kopytin, Iu. D.; Kuzikovskii, A. V.

    The bulk of this book contains the results of investigations carried out at the Institute of Atmospheric Optics, Siberian Branch, USSR Academy of Science with the participation of the authors. The microphysical and optical characteristics of atmospheric aerosols are considered, taking into account light scattering by a single aerosol particle, light scattering by a system of particles, the scattering phase matrix, light scattering by clouds and fogs, light scattering by hazes, and scattering phase functions of polydispersed aerosols. Other topics studies are related to low-energy (subexplosive) effects of radiation on individual particles, the formation of clear zones in clouds and fogs due to the vaporization of droplets under regular regimes, self-action of a wave beam in a water aerosol under conditions of regular droplet vaporization, laser beam propagation through an explosively evaporating water-droplet aerosol, the propagation of high-power laser radiation through hazes, the ionization and optical breakdown in aerosol media, and laser monitoring of a turbid atmosphere using nonlinear effects.

  12. Radiation risk in Finland due to the nuclear power plant at Sosnovyj Bor

    International Nuclear Information System (INIS)

    Ilvonen, M.; Rossi, J.; Salonoja, M.

    1994-06-01

    The present study is an application of the long range transport and dose model TRADOS developed jointly by the Finnish Meteorological Institute and Technical Research Centre of Finland. The aim of the study is to assess the radiation risk in Finland due to the nuclear power plant at Sosnovyj Bor near St. Petersburg in Russia. Probabilities of reaching different parts of the country, transport time and time spent over Finland by the trajectories are presented. Also breadth of the radioactive cloud and incidence of rain are estimated. The calculated radiation doses are based on one single hypothetical release, in which all noble gases are released, together with 10 % of easily vaporizing elements and 1 % of others. All results are based on the assumption that the probability of the release is 100 %. The dose pathways calculated are cloud gamma, fallout gamma, inhalation, and ingestion of milk, meat, green vegetables, grain and roots. External dose rates have been calculated. The necessity of countermeasures and the ratio of the avertable dose to the costs are also assessed. (13 refs., 156 figs., 12 tabs.)

  13. INSTORE: a PC-based database program for occupational radiation exposure of a nuclear power plant

    International Nuclear Information System (INIS)

    Cho, Yeong Ho; Kang, Chang Sun; Mun, Ju Hyun; Kim, Hak Su

    1998-01-01

    Ensuring occupational radiation exposure (ORE) as low as is reasonably achievable (ALARA) has been one of very important requirements in a nuclear power plant. It is well known that about 70 percent of occupational dose has incurred from maintenance jobs in the outage period. To reduce occupational dose effectively, the high-dose jobs in the outage period should be identified with their dose reduction potentials and methods. In this study, a PC-based ORE database program, INSTORE, is developed to evaluate ORE doses in individual jobs, and the ORE data of Kori units 3 and 4 are assembled to the database. Based on customary job classification, radiation work is classified into 26 main jobs which comprise 61 detailed jobs, and occupational dose are assessed according to each detailed job. As a result, high-dose jobs are identified with dose reduction priority in terms of collective ORE dose. It is recommended that adequate dose reduction methods for these jobs should be prepared to improve their working conditions and procedures. (author)

  14. A low power high speed radiation hard serializer for High Energy Physics experiments

    CERN Document Server

    AUTHOR|(CDS)2080243; Marchioro, Alessandro; Ottavi, Marco

    This Ph.D. thesis focuses on the development and the characterization of novel solutions for electronic systems for high-speed data transmission in extremely high radio-active environment (e.g. high energy physics application). The text proposes two alternative full-custom solutions for a fundamental enabling block for a lowpower serial data transmission system, the serializer. This block will find place in a future transceiver conceived for the future upgraded phase of the Large Hadron Collider, or LHC, at CERN. The first solution proposed, called “triple module redundancy”, is based on hardware redundancy, a well-known solution, to obtain protection against the temporary malfunctioning induced by radiation. In the second case a new architecture, called “code protected”, is proposed. This architecture takes advantage of the error correction code present in the data word to obtain radiation robustness on data and some parts of the control logic and to further reduce the power consumption. A test chip ...

  15. Heavy density concrete for nuclear radiation shielding and power stations: [Part]3

    International Nuclear Information System (INIS)

    Singha Roy, P.K.

    1987-01-01

    This article is the third part of the paper entitled 'Heavy density concrete for nuclear radiation shielding and power stations'. Specific considerations relevant to natural but manufactured heavy aggregates like haematite used in India are briefly discussed. They include water-cement ratio, strength versus water-cement ratio, mix design strength and aggregate grading. Some typical mix proportions in haematite concretes used in India are given. Equipment for heavy density concrete is mentioned. Quality control methods and tests for heavy density concrete are described under the heading: type and chemical composition of the rock, specific gravity and surface absorption of the aggregates, grading of aggregates, cement, batching, mixing, compressive strength, and density. Construction aspects such as form work, placement, vibration, finishing, and temperature control are discussed. Finally it is pointed out that for optimising the design and economy of heavy density concrete, it is necessary to carry out country-wide survey of suitable materials, to study their properties, suitability and effectiveness in shielding radiation. (M.G.B.)

  16. Radiation occupational health interventions offered to radiation workers in response to the complex catastrophic disaster at the Fukushima Daiichi Nuclear Power Plant.

    Science.gov (United States)

    Shimura, Tsutomu; Yamaguchi, Ichiro; Terada, Hiroshi; Okuda, Kengo; Svendsen, Erik Robert; Kunugita, Naoki

    2015-05-01

    The Fukushima Daiichi Nuclear Power Plant (NPP) 1 was severely damaged from the chain reaction of the Great East Japan Earthquake and Tsunami on 11 March 2011, and the consequent meltdown and hydrogen gas explosions. This resulted in the worst nuclear accident since the Chernobyl accident of 1986. Just as in the case of Chernobyl, emergency workers were recruited to conduct a wide range of tasks, including disaster response, rescuing activities, NPP containment, and radiation decontamination. This paper describes the types and efficacy of the various occupational health interventions introduced to the Fukushima NPP radiation workers. Such interventions were implemented in order to prevent unnecessary radiation overexposure and associated adverse health effects and work injuries. Less than 1% of all emergency workers were exposed to external radiation of >100 mSv, and to date no deaths or health adversities from radiation have been reported for those workers. Several occupational health interventions were conducted, including setting of new regulatory exposure limits, improving workers' radiation dosimetry, administration of stable iodine, running an occupational health tracking system, and improving occupational medicine and preventative care. Those interventions were not only vital for preventing unnecessary radiation, but also for managing other general health issues such as mental health, heat illness and infectious diseases. Long-term administration of the aforementioned occupational health interventions is essential to ensure the ongoing support and care for these workers, who were put under one of the most severe occupational health risk conditions ever encountered. © The Author 2014. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  17. Occupational radiation exposure at light water cooled power reactors. Annual report, 1977

    International Nuclear Information System (INIS)

    Peck, L.J.

    1979-04-01

    This report presents an updated compilation of occupational radiation exposures at commercial light water cooled nuclear power reactors (LWRs) for the years 1969 through 1977. The information contained in this document was derived from reports submitted to the United States Nuclear Regulatory Commission in accordance with requirements of individual plant Technical Specifications, and in accordance with Part 20.407 of Title 10, Chapter 1, Code of Federal Regulations (10 CFR Part 20.407). An additional 4 LWRs completed a full calendar year of commercial operation for the first time in 1977. This report now encompasses data from 57 commercially operating U.S. nuclear power plants. The number of personnel monitored at LWRs increased approximately 10% in 1977, and the average collective dose to personnel (man-rems per reactor-year) increased 14% over the 1976 average. The average number of personnel receiving measurable exposure per reactor increased 11%, and the average exposure per individual in 1977 was 0.8 rem per person

  18. Occupational radiation exposure at commercial nuclear power reactors, 1981. Annual report

    International Nuclear Information System (INIS)

    Brooks, B.G.

    1982-11-01

    This report presents an updated compilation of occupational radiation exposures at commercial nuclear power reactors for the years 1969 through 1981. This year's report contains data received from the 70 light water cooled reactors (LWRs) and one high temperature gas cooled reactor that had been declared to be in commercial operation for at least one full year as of December 31, 1981. This represents an increase of two reactors over the number contained in last year's report. The total number of personnel monitored at LWRs in 1981 was 124,504, a slight decrease from that found in 1980. The number of workers that received measurable doses during 1981 was 82,183 which is about 2000 more than that found in 1980. The total collective dose at LWRs for 1981 is estimated to be 54,142 man-rems, which is only about 350 man-rems more than that reported in 1980. The report also presents a summary and some analyses of the exposure data contained in the termination reports that have been submitted by nuclear power licensees to the Commission pursuant to 10 CFR Section 20.408. As of December 31, 1981, personal identification and exposure information had been collected and computerized for some 210,000 of these terminating reactor personnel

  19. Radiation safety and the resurgence of nuclear power in the U.S

    International Nuclear Information System (INIS)

    Harrall, Tom P. Jr.

    2008-01-01

    Today, in the United States, 104 reactors in 31 states produce electricity for one in five homes and businesses. They have achieved record levels of performance, and their safety levels are unmatched in the U.S. industry. They are the largest source of emission-free electricity in the U.S. and are vital in maintaining the stability of the country's electrical grid. This outstanding record of performance of the U.S. commercial nuclear fleet has laid a solid basis for the next generation of nuclear plants. There is growing interest in adding new nuclear capacity in the U.S., with public announcements having been made expressing intentions to prepare applications for up to 33 new nuclear units at 22 sites in the U.S. To date, seven applications have been filed with the U.S. Nuclear Regulatory Commission (NRC) for new nuclear units. Duke Energy is one of the largest electric power companies in the United States. We supply and deliver energy to approximately 4 million U.S. customers. We have approximately 36,000 megawatts of electric generating capacity in the Midwest and the Carolinas, and natural gas distribution services in Ohio and Kentucky. In addition, we have more than 4,000 megawatts of electric generation in Latin America. Duke operates three nuclear stations with a total capacity of just under 7,000 megawatts in North Carolina and South Carolina. These three stations -Catawba, Mc Guire and Oconee- have each received approval from the NRC for extended operations beyond their initial 40-year license term. On December 13, 2007, Duke submitted a construction and operating license (COL) application to the NRC for the William States Lee III Nuclear Station to be built in South Carolina. A partnership between the U.S. nuclear industry, the Nuclear Energy Institute (NEI), the Electric Power Research Institute (EPRI) and the Institute for Nuclear Power Operations (INPO) was formed to influence the regulatory structure, pursue technology improvements and innovations

  20. Low power laser effects in cancer cells and fibroblasts submitted the ionizing radiation

    International Nuclear Information System (INIS)

    Silva, Camila Ramos

    2015-01-01

    Cancer is considered a public health problem worldwide. According to Brazil's the National Cancer Institute (INCA), 576,000 new cases of cancer were estimated for 2015 in Brazil, representing the second leading cause of death. Radiotherapy may be a treatment to several of types of cancer, frequently using ionizing radiation to eradicate or prevent the proliferation of tumor cells. This treatment, however, can lead to death of non-tumor cells around in irradiated tissue. Given this, adjuvant therapies that can minimize the side effects of ionizing radiation are of extremely importance. In this context, low power laser (LPL) may be an alternative to modulate the response of healthy cells to ionizing radiation. In this study, cells of human gingival fibroblasts (FMM1) and breast cancer (MDAMB- 231) were exposed to gamma radiation at doses of 2.5 and 10 Gy. After twenty-four hours, cell were irradiated with LPL ( λ= 660 nm, 40 mW and total area of 0.04 cm²) with energy densities of 30, 60, 90, 120 and 150 J/cm². The cell viability was measured during four days, using the trypan blue technique. The influence of LPL on the cell cycle and on expression of the nuclear antigen of cellular proliferation (PCNA) was evaluated by flow cytometry. The expression of β-Galactosidase was the chosen method to assess cell senescence. Considering our adopted parameters, and focusing on the non-tumor cells, we have observed an increase in: 1) cell viability; 2) cell population in phases S and G 2 /M cell cycle; 3) PCNA expression with decrease in senescence. No alterations were observed in the cell viability, with greater population in phases S and G 2 /M cell cycle, while the number of senescent cells and the expression of PCNA were decreased. Therefore, we have concluded that the LPL promoted effects on both cell lineages, with increased cell viability on FMM1 cells, whether cancer cells maintained a decreased proliferation. (author)

  1. Information relevant to ensuring that occupational radiation exposures at nuclear power stations will be as low as in reasonably achievable

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    Regulations require that all reasonable efforts must be made to maintain exposure to radiation as far below the limits specified in 10 CFR Part 20 as is reasonably achievable. Information is provided relevant to attaining goals and objectives for planning, designing, constructing, operating and decommissioning a light-water-cooled nuclear power station to meet that criterion. Much of the information presented is also applicable to other than light-water-cooled nuclear power stations

  2. Calculating of radiation doses in rutinary unloads of liquid wastes from Laguna Verde nuclear power plant

    International Nuclear Information System (INIS)

    Molina, G.

    1985-01-01

    Utilization of nuclear energy to produce or generate electricity is a growing practice in the world, since it represent an economic and safe option to replace fossil fuels. During operation of nuclear power plants, radioactive materials are produced. A small fraction of these material are released to environment in the form of liquid or gaseous effluents. Estimation of radiation doses causing by effluents release has three purposes. During design phase of a nuclear station it is useful to adapt the wastes treatment systems to acceptable limits. During licensing phase, the regulator organism verifies the design of nuclear station effectuating estimation of doses. Finally, during operation of a nuclear station, before every unload of radioactive effluents, radiation doses should be evaluate in order to fulfill technical specifications, which limit the release of radioactive materials to environment. 1. To perform calculations of individual doses due to liquid radioactive effluents unload in units 1 and 2 of Laguna Verde nuclear power plant (In licensing phase). 2. To perform a parametric study of the effect of unload recirculation over individual dose, since recirculation has two principal effects: thermodynamical effects in nuclear station and radioactivity concentration, the last can affect the fullfilment of dose limits. 3. To perform the calculation of collective doses causes by unloads of liquid effluents within a radius of 80 Kms. of nuclear station caused by unload of liquid radioactive effluents during normal operation of nuclear power plant and does not include doses caused during accident conditions. In Mexico the organism in charge of regulation of peaceful uses of nuclear energy is Comision Nacional de Seguridad Nuclear y Salvaguardias (CNSNS) and for Laguna Verde licensing, the regulations of country who manufactured the reactor was adopted, it is to say United States of America. In Appendix 'C' units used along this work are explained. Unless another

  3. Intermediate Results Of The Program On Realization Of High-Power Soft X-ray Radiation Source Powered From Magneto-Cumulative Generators

    International Nuclear Information System (INIS)

    Selemir, V.D.; Demidov, V.A.; Ermolovich, V.F.; Spirov, G.M.; Repin, P.B.; Pikulin, I.V.; Volkov, A.A.; Orlov, A.P.; Boriskin, A.S.; Tatsenko, O.M.; Markevtsev, I.M.; Moiseenko, A.N.; Kazakov, S.A.; Selyavsky, V.T.; Shapovalov, E.V.; Giterman, B.P.; Vlasov, Yu.V.; Dydykin, P.S.; Ryaslov, E.A.; Kotelnikov, D.V.

    2006-01-01

    In the paper we discuss experiments on wire liner systems powering from helical and disk magneto-cumulative generators with a current from 2...3 MA up to 20 MA at current rise time from 0.3 μs to 1 μs, respectively. At currents level up to 4 MA maximum yield of soft x-ray radiation was more than 100 kJ at plasma pinch temperature of 55 eV. At currents up to 20 MA an expected yield of soft x-ray radiation exceeds 1 MJ

  4. Risk Perception and Anxiety Regarding Radiation after the 2011 Fukushima Nuclear Power Plant Accident: A Systematic Qualitative Review

    Science.gov (United States)

    Lyamzina, Yuliya; Suzuki, Yuriko; Murakami, Michio

    2017-01-01

    The purpose of this study was to provide a review of the publications of the risk perceptions or anxiety regarding radiation among people living in Japan after the 2011 Fukushima nuclear power plant accident. Two database (MEDLINE and PsycINFO) and hand-searched the references in identified publications were searched. For each identified publication, the measurements and time related-change of risk perception and anxiety regarding radiation were summarized. Twenty-four publications were identified. Quantitative measures of risk perception or anxiety were roughly divided into two types: single-item Likert scales that measure anxiety about radiation; and theoretical, or model-based measures. Rates of Fukushima residents with radiation-related anxiety decreased from 2012 to 2015. Factors governing risk perception or radiation-related anxiety were summarized by demographics, disaster-related stressors, trusted information, and radiation-related variables. The effects of risk perception or anxiety regarding radiation were summarized as severe distress, intention to leave employment or not to return home, or other dimensions. This review provides summary of current findings on risk perception or anxiety regarding radiation in Japan after the accident. Further researches are needed about detailed statistical analysis for time-related change and causality among variables. PMID:29077045

  5. Genetic effects in children exposed in prenatal period to ionizing radiation after the Chornobyl nuclear power plant accident.

    Science.gov (United States)

    Stepanova, Ye I; Vdovenko, V Yu; Misharina, Zh A; Kolos, V I; Mischenko, L P

    2016-12-01

    To study the genetic effects in children exposed to radiation in utero as a result of the Chornobyl nuclear power plant accident accounting the total radiation doses and equivalent radiation doses to the red bone marrow. Incidence of minor developmental anomalies was studied in children exposed to radiation in utero (study group) and in the control group (1144 subjects surveyed in total). Cytogenetic tests using the method of differential G-banding of chromosomes were conducted in 60 children of both study and control groups (10-12-year-olds) and repeatedly in 39 adolescents (15-17-year-olds). A direct correlation was found between the number of minor developmental anomalies and fetal dose of radiation, and a reverse one with fetal gestational age at the time of radiation exposure. Incidence of chromosomal damage in somatic cells of 10-12-year-old children exposed prenatally was associated with radiation dose to the red bone marrow. The repeated testing has revealed that an increased level of chromosomal aberrations was preserved in a third of adolescents. The persons exposed to ionizing radiation at prenatal period should be attributed to the group of carcinogenic risk due to persisting increased levels of chromosome damage. This article is a part of a Special Issue entitled "The Chornobyl Nuclear Accident: Thirty Years After".

  6. Risk Perception and Anxiety Regarding Radiation after the 2011 Fukushima Nuclear Power Plant Accident: A Systematic Qualitative Review

    Directory of Open Access Journals (Sweden)

    Yoshitake Takebayashi

    2017-10-01

    Full Text Available The purpose of this study was to provide a review of the publications of the risk perceptions or anxiety regarding radiation among people living in Japan after the 2011 Fukushima nuclear power plant accident. Two database (MEDLINE and PsycINFO and hand-searched the references in identified publications were searched. For each identified publication, the measurements and time related-change of risk perception and anxiety regarding radiation were summarized. Twenty-four publications were identified. Quantitative measures of risk perception or anxiety were roughly divided into two types: single-item Likert scales that measure anxiety about radiation; and theoretical, or model-based measures. Rates of Fukushima residents with radiation-related anxiety decreased from 2012 to 2015. Factors governing risk perception or radiation-related anxiety were summarized by demographics, disaster-related stressors, trusted information, and radiation-related variables. The effects of risk perception or anxiety regarding radiation were summarized as severe distress, intention to leave employment or not to return home, or other dimensions. This review provides summary of current findings on risk perception or anxiety regarding radiation in Japan after the accident. Further researches are needed about detailed statistical analysis for time-related change and causality among variables.

  7. Risk Perception and Anxiety Regarding Radiation after the 2011 Fukushima Nuclear Power Plant Accident: A Systematic Qualitative Review.

    Science.gov (United States)

    Takebayashi, Yoshitake; Lyamzina, Yuliya; Suzuki, Yuriko; Murakami, Michio

    2017-10-27

    The purpose of this study was to provide a review of the publications of the risk perceptions or anxiety regarding radiation among people living in Japan after the 2011 Fukushima nuclear power plant accident. Two database (MEDLINE and PsycINFO) and hand-searched the references in identified publications were searched. For each identified publication, the measurements and time related-change of risk perception and anxiety regarding radiation were summarized. Twenty-four publications were identified. Quantitative measures of risk perception or anxiety were roughly divided into two types: single-item Likert scales that measure anxiety about radiation; and theoretical, or model-based measures. Rates of Fukushima residents with radiation-related anxiety decreased from 2012 to 2015. Factors governing risk perception or radiation-related anxiety were summarized by demographics, disaster-related stressors, trusted information, and radiation-related variables. The effects of risk perception or anxiety regarding radiation were summarized as severe distress, intention to leave employment or not to return home, or other dimensions. This review provides summary of current findings on risk perception or anxiety regarding radiation in Japan after the accident. Further researches are needed about detailed statistical analysis for time-related change and causality among variables.

  8. Recurrent analysis of radiation protection conditions at the nuclear power station

    International Nuclear Information System (INIS)

    1986-01-01

    National Institute of Radiation Protection has cause of the Government Bill 1980/81:90 analysed following viewpoints of radiation protection: - Occupational exposes. - Dose rate trends. - Implemented and planned measures of importance from the viewpoint of radiation protection. - Releases and environmental impact. - Organisation and training in radiation protection. (authors)

  9. Review of problems and methods for radiation risk assessment in the environment of a nuclear power plant

    International Nuclear Information System (INIS)

    Grgic, M.

    1966-01-01

    Radiation impact on the nuclear power plant environment is a very important problem which has to be solved during design and construction. Damage that could be caused by release of radioactive material into the environment should be estimated and the magnitude of nuclear and radiation risk of the power plant should be evaluated. In general the accuracy of estimation is rather poor due to statistical fluctuations of the conditions which influence radioactivity expansion in the environment, especially in the air. Different uncertainties and unresolved problems influence the inaccuracy. Since any real risk should be extremely small compared to potential risk i.e. risk induced by nuclear power plant without any safety measures, even inaccurate estimations are very useful. Method for environmental radiation risk assessment is based on relatively simple models of radiation expansion in the environment and in the air. These models are theoretically solved but they are based on relatively limited number of experimental data. Assessment of the radiation effects on the population health and mortality is an important problem [sl

  10. Analyses of occupational radiation exposure received at Gundremmingen nuclear power station, and its implications on the design of current and future power plants

    International Nuclear Information System (INIS)

    Eickelpasch, N.; Pfeiffer, K.W.; Peter, H.

    1977-01-01

    In 1976, the 250 MW Gundremmingen nuclear power station (KRB) completed its first decade of operation. The accumulated activity built-up due to corrosion products in the primary system, the condition of the plant and the methods of radiation work management determine the occupational exposure. The development and the general features of these three parameters are presented in detail. Job related exposure accounting has proven to be an effective means of radiation management. By this means up to 90% of the total radiation exposure could be traced with an accuracy of about 10 mrem. It is shown that up to 40% of the total exposure originate not from primary work but from associating jobs, e.g. work area preparation and testing efforts. Especially in this field a remarkable reduction of the occupational dose rate can be achieved by precise planning. The ten-year radiation protection history of KRB served as a design basis with the objective to reduce occupational radiation exposure. Examples are given how this influenced not only the design of relevant systems but also their accomodation, arrangement and shielding with regard to maintenance and repair work during reactor outage. Physical separation of the components and valves from the associated actuators, controls and instruments was provided to reduce personnel radiation exposure during plant operation. Provisions were also made to avoid contamination of the building atmosphere and to reduce the release of radioactivity via the ventilation systems

  11. Method of 16N generation for test of radiation controlled channels at nuclear power stations with water-cooled reactors

    International Nuclear Information System (INIS)

    Khryachkov, V.A.; Bondarenko, I.P.; Dvornikov, P.A.; Zhuravlev, B.V.; Kovtun, S.N.; Khromyleva, T.A.; Pavlov, A.V.; Roshchin, N.G.

    2012-01-01

    The preferences of nuclear reaction use for radiation control channels test in water-cooled power reactors have been analyzed in the paper. The new measurements for more accurate determination of reaction cross section energy dependence have been carried out. A set of new methods for background reducing and improvement of events determination reliability has also been developed [ru

  12. Occupational radiation exposure at commercial nuclear power reactors and other facilities, 1990: Twenty-third annual report

    International Nuclear Information System (INIS)

    Raddatz, C.T.

    1993-01-01

    This report summarizes the occupational radiation exposure information that has been reported to the NRC's Radiation Exposure Information Reporting System (REIRS) by nuclear power facilities and certain other categories of NRC licensees during the years 1969 through 1990. The bulk of the data presented in the report was obtained from annual radiation exposure reports submitted in accordance with the requirements of 10 CFR 20.407 and the technical specifications of nuclear power plants. Data on workers terminating their employment at certain NRC licensed facilities were obtained from reports submitted pursuant to 10 CFR 20.408. The 1990 annual reports submitted by about 443 licensees indicated that approximately 214,568 individuals were monitored, 110,204 of whom were monitored by nuclear power facilities. They incurred an average individual dose of 0.19 rem (cSv) and an average measurable dose of about 0.36 (cSv). Termination radiation exposure reports were analyzed to reveal that about 113,361 individuals completed their employment with one or more of the 443 covered licensees during 1990. Some 77,633 of these individuals terminated from power reactor facilities, and about 11,083 of them were considered to be transient workers who received an average dose of 0.67 rem (cSv)

  13. Occupational radiation exposure at commercial nuclear power reactors and other facilities 1992. Twenty-fifth annual report, Volume 14

    International Nuclear Information System (INIS)

    Raddatz, C.T.

    1993-12-01

    This report summarizes the occupational radiation exposure information that has been reported to the NRC's Radiation Exposure Information Reporting System (REIRS) by nuclear power facilities and certain other categories of NRC licensees during the years 1969 through 1992. The bulk of the data presented in the report was obtained from annual radiation exposure reports submitted in accordance with the requirements of 10CFR20.407 and the technical specifications of nuclear power plants. Data on workers terminating their employment at certain NRC licensed facilities were obtained from reports submitted pursuant to 10CFR20.408. The 1992 annual reports submitted by about 364 licensees indicated that approximately 204,365 individuals were monitored, 183,927 of whom were monitored by nuclear power facilities. They incurred an average individual dose of 0.16 rem (cSv) and an average measurable dose of about 0.30 (cSv). Termination radiation exposure reports were analyzed to reveal that about 74,566 individuals completed their employment with one or more of the 364 covered licensees during 1992. Some 71,846 of these individuals terminated from power reactor facilities, and about 9,724 of them were considered to be transient workers who received an average dose of 0.50 rem (cSv)

  14. Occupational radiation exposure at commercial nuclear power reactors and other facilities, 1993. Volume 15, Twenty-six annual report

    International Nuclear Information System (INIS)

    Raddatz, C.T.

    1995-01-01

    This report the occupational radiation exposure information that has been reported to the NRC's Radiation Exposure Information Reporting System (REIRS) by nuclear power facilities and certain other categories of NRC licensees during the years 1969 through 1993. The bulk of the data presented in the report was obtained from annual radiation exposure reports submitted in accordance with the requirements of 10 CFR 20.407 and the technical specifications of nuclear power plants. Data on workers terminating their employment at certain NRC licensed facilities were obtained from reports submitted pursuant to 10 CFR 20.408. The 1993 annual reports submitted by about 360 licensees indicated that approximately 189,711 individuals were monitored, 169,872 of whom were monitored by nuclear power facilities. They incurred an average individual dose of 0.16 rem (cSv) and an average measured dose of about 0.31 (cSv). Termination radiation exposure reports were analyzed to reveal that about 99,749 individuals completed their employment with one or more of the 360 covered licensees during 1993. Some 91,000 of these individuals terminated from power reactor facilities, and about 12,685 of them were considered to be transient workers who received an average dose of 0.49 rem (cSv)

  15. Mathematical Modeling of Optical Radiation Emission as a Function of Welding Power during Gas Shielded Metal Arc Welding.

    Science.gov (United States)

    Bauer, Stefan; Janßen, Marco; Schmitz, Martin; Ott, Günter

    2017-11-01

    Arc welding is accompanied by intense optical radiation emission that can be detrimental not only for the welder himself but also for people working nearby or for passersby. Technological progress advances continuously in the field of joining, so an up-to-date radiation database is necessary. Additionally, many literature irradiance data have been measured for a few welding currents or for parts of the optical spectral region only. Within this paper, a comprehensive study of contemporary metal active gas, metal inert gas, and cold metal transfer welding is presented covering optical radiation emission from 200 up to 2,700 nm by means of (spectro-) radiometric measurements. The investigated welding currents range from 70 to 350 A, reflecting values usually applied in industry. Based upon these new irradiance data, three mathematical models were derived in order to describe optical radiation emission as a function of welding power. The linear, exponential, and sigmoidal emission models depend on the process variant (standard or pulsed) as well as on the welding material (mild and stainless steel, aluminum). In conjunction with the corresponding exposure limit values for incoherent optical radiation maximum permissible exposure durations were calculated as a function of welding power. Typical times are shorter than 1 s for the ultraviolet spectral region and range from 1 to 10 s for visible radiation. For the infrared regime, exposure durations are of the order of minutes to hours. Finally, a validation of the metal active gas emission models was carried out with manual arc welding.

  16. Worker protection, especially protection against radiation during repair work on nuclear power stations in the planning and licensing phases

    International Nuclear Information System (INIS)

    Berg, D.; Kirsch, H.; Knape, H.

    1979-01-01

    The Strahlenschutzverordnung (Regulation for Protection against Radiation) requires that the designers of a nuclear power plant take every possible step in regard to preventive measures for the protection against radiation, in order to keep the radiation exposure to maintenance personnel as low as possible. The guideline concerning preventive measures for radiation protection of maintenance personnel during the design phase of the plant, which has been released by BMI (Federal Ministry of the Interior) requires evidence from the applicant, which describe these preventive measures. These evidences will be presented commonly by the manufacturer and the operator. The operators of nuclear plants have the greatest interest in planning the prevantive measures for the protection against radiation during maintenance work to an optimum, besides the fulfillment of these evidences, due to the fact that they bear the responsibility for the effectiveness of these measures, and that an increased exposure of the personnel to radiation- and/or operational restrictions cannot be excluded at insufficient preventive measures. In order to fulfill above mentioned viewpoints, RWE has developed a strategy, which will be presented in this lecture. All activities which have to be performed during the design and construction phase will be specified. The preventive measures to be performed during the design and construction of nuclear power plants will be persecuted in three parallel and independently from each other proceeded settlement levels: Settlement of the licensing procedure, general settlement of orders, model settlement. (orig./RW) [de

  17. Summary of the Manufacture, Testing and Model Validation of a Full-Scale Radiator for Fission Surface Power Applications

    Science.gov (United States)

    Ellis, David L.; Calder, James; Siamidis, John

    2011-01-01

    A full-scale radiator for a lunar fission surface power application was manufactured by Material innovations, Inc., for the NASA Glenn Research Center. The radiator was designed to reject 6 kWt with an inlet water temperature of 400 K and a water mass flow rate of 0.5 kg/s. While not flight hardware, the radiator incorporated many potential design features and manufacturing techniques for future flight hardware. The radiator was tested at NASA Glenn Research Center for heat rejection performance. The results showed that the radiator design was capable of rejecting over 6 kWt when operating at the design conditions. The actual performance of the radiator as a function of operational manifolds, inlet water temperature and facility sink temperature was compared to the predictive model developed by NASA Glenn Research Center. The results showed excellent agreement with the model with the actual average face sheet temperature being within 1% of the predicted value. The results will be used in the design and production of NASA s next generation fission power heat rejection systems. The NASA Glenn Research Center s Technology Demonstration Unit will be the first project to take advantage of the newly developed manufacturing techniques and analytical models.

  18. State of radioactive waste management is power reactor facilities and state of radiation exposure of workers who engaged in radiation works in fiscal 1993

    International Nuclear Information System (INIS)

    1994-01-01

    This report is the summary of the reports on radiation control and others submitted by those who installed practical power reactor facilities based on the relevant law in fiscal 1993. The amounts of release of radioactive gaseous and liquid wastes were sufficiently smaller than the target value of the yearly release control for attaining the target value of dose that the public around the facilities receive. As to the state of control of radioactive solid waste, the amount of drum generation tended to decrease year by year, and the cumulative amount to be preserved tended to level off. The dose equivalent that the individuals who engaged in radiation works received was smaller than the limit value in all nuclear power stations. The total dose equivalent for those workers in fiscal 1993 was 86.65 man Sv. Hereafter, the automation and remote operation of works, the water quality control for reducing crud and so on will be promoted to reduce radiation exposure. The reference data on the state of control of gaseous, liquid and solid wastes, and the state of control of radiation exposure of workers are attached. (K.I.)

  19. Supervision monitoring for radiation environment around Daya Bay and Lingao nuclear power stations

    International Nuclear Information System (INIS)

    Huang Naiming; Chen Zhidong; Song Haiqing; Deng Fei; Lin Qing; Huang Nairong; Zhou Ruidong; Mo Guanghua; Li Lingjuan; Liu Ying; Li Qiaoqin; Lai Liming; Zhou Xue

    2004-01-01

    This paper systematically introduces the supervision monitoring for radiation environment around the Guangdong Daya Bay and Ling Ao nuclear power station by the Guangdong Environmental Radiation Research and Monitoring Center. It includes the monitoring plan, methods, quality assurance, main results and conclusions. The results show that: (1) The gas discharge have not caused any detectable impacts to the terrestrial and atmospheric environment since their operation; (2) 110m Ag could only be detected in seawater in the West Daya Bay in 1995 and 1997 and in sediments in 1997. The maximum annual average in seawater was 3.1 Bq/m 3 , annual average of 110m Ag in sediments was 1.0 Bq/kg(dry). But it was always detectable in pearl oyster, gulfweed and cuttlefish in the West Daya Bay. The 110m Ag concentrations in halobios were relatively higher in 1994, 1996 and 1997. The maximum concentrations in pearl oyster, gulfweed and cuttlefish were 2.2, 1.7 and 5.8 Bq/kg (fresh) respectively. It has significantly decreased with decreasing discharge from the stations since 1997. (3) 137 Cs could be detected in almost all seawater samples in the West Daya Bay and the concentration were relatively higher from 1994-1998. The maximum annual average was laid in 1995 and it was 4.6 Bq/m 3 . After 1999, its concentration ranged in the background level. The concentrations in other marine samples were extremely low and changed in the range of the background. (4) 3 H in seawater in the West Daya Bay would go up as a pulse soon after 3 H discharge from the station and would go down to the background after 3-5 days. The annual average of monitoring results were between 0.8-3.4 Bq/L

  20. Four-Wave Mixing of Gigawatt Power, Long-Wave Infrared Radiation in Gases and Semiconductors

    Science.gov (United States)

    Pigeon, Jeremy James

    The nonlinear optics of gigawatt power, 10 microm, 3 and 200 ps long pulses propagating in gases and semiconductors has been studied experimentally and numerically. In this work, the development of a high-repetition rate, picosecond, CO2 laser system has enabled experiments using peak intensities in the range of 1-10 GW/cm2, approximately one thousand times greater than previous nonlinear optics experiments in the long-wave infrared (LWIR) spectral region. The first measurements of the nonlinear refractive index of the atomic and molecular gases Kr, Xe, N2, O2 and the air at a wavelength near 10 microm were accomplished by studying the four-wave mixing (FWM) of dual-wavelength, 200 ps CO2 laser pulses. These measurements indicate that the nonlinearities of the diatomic molecules N2, O2 and the air are dominated by the molecular contribution to the nonlinear refractive index. Supercontinuum (SC) generation covering the infrared spectral range, from 2-20 microm, was realized by propagating 3 ps, 10 microm pulses in an approximately 7 cm long, Cr-doped GaAs crystal. Temporal measurements of the SC radiation show that pulse splitting accompanies the generation of such broadband light in GaAs. The propagation of 3 ps, 10 microm pulses in GaAs was studied numerically by solving the Generalized Nonlinear Schrodinger Equation (GNLSE). These simulations, combined with analytic estimates, were used to determine that stimulated Raman scattering combined with a modulational instability caused by the propagation of intense LWIR radiation in the negative group velocity dispersion region of GaAs are responsible for the SC generation process. The multiple FWM of a 106 GHz, 200 ps CO2 laser beat-wave propagating in GaAs was used to generate a broadband FWM spectrum that was compressed by the negative group velocity dispersion of GaAs and NaCl crystals to form trains of high-power, picosecond pulses at a wavelength near 10 microm. Experimental FWM spectra obtained using 165 and 882

  1. Probabilistic siting analysis of nuclear power plants emphasizing atmospheric dispersion of radioactive releases and radiation-induced health effects

    International Nuclear Information System (INIS)

    Savolainen, Ilkka

    1980-01-01

    A presentation is made of probabilistic evaluation schemes for nuclear power plant siting. Effects on health attributable to ionizing radiation are reviewed, for the purpose of assessment of the numbers of the most important health effect cases in light-water reactor accidents. The atmospheric dispersion of radioactive releases from nuclear power plants is discussed, and there is presented an environmental consequence assessment model in which the radioactive releases and atmospheric dispersion of the releases are treated by the application of probabilistic methods. In the model, the environmental effects arising from exposure to radiation are expressed as cumulative probability distributions and expectation values. The probabilistic environmental consequence assessment model has been applied to nuclear power plant site evaluation, including risk-benefit and cost-benefit analyses, and the comparison of various alternative sites. (author)

  2. Statistical study of undulator radiated power by a classical detection system in the mm-wave regime

    Directory of Open Access Journals (Sweden)

    A. Eliran

    2009-05-01

    Full Text Available The statistics of FEL spontaneous emission power detected with a detector integration time much larger than the slippage time has been measured in many previous works at high frequencies. In such cases the quantum (shot noise generated in the detection process is dominant. We have measured spontaneous emission in the Israeli electrostatic accelerator FEL (EA-FEL operating in the mm-wave lengths. In this regime the detector is based on a diode rectifier for which the detector quantum noise is negligible. The measurements were repeated numerous times in order to create a sample space with sufficient data enabling evaluation of the statistical features of the radiated power. The probability density function of the radiated power was found and its moments were calculated. The results of analytical and numerical models are compared to those obtained in experimental measurements.

  3. Lessons learned from Fukushima Daiichi nuclear power plant accident: efficient education items of radiation safety for general public.

    Science.gov (United States)

    Ohno, K; Endo, K

    2015-07-01

    The Fukushima Daiichi nuclear power plant (FNP-1) accident, while as tragic as the tsunami, was a man-made disaster created by the ignorance of the effects of radiation and radioactive materials. Therefore, it is important that all specialists in radiation protection in medicine sympathize with the anxiety of the general public regarding the harmful effects of radiation and advise people accordingly. All questions and answers were collected related to inquiries from the general public that were posted to reliable websites, including those of the government and radiation-related organizations, from March 2011 to November 2012. The questions were summarized and classified by similarity of content. (1) The total number of questions is 372. The content was broadly classified into three categories: inquiries for radiation-related knowledge and about health effects and foods. The questions asked to obtain radiation-related knowledge were the most common, accounting for 38 %. Thirty-six percentage of the questions were related to health effects, and 26 % involved foods, whereas 18 % of the questions were related to children and pregnancy. (2) The change over time was investigated in 290 questions for which the time of inquiry was known. Directly after the earthquake, the questions were primarily from people seeking radiation-related knowledge. Later, questions related to health effects increased. The anxiety experienced by residents following the nuclear accident was caused primarily by insufficient knowledge related to radiation, concerns about health effects and uncertainties about food and water safety. The development of educational materials focusing on such content will be important for risk communication with the general public in countries with nuclear power plants. Physicians and medical physicist should possess the ability to respond to questions such as these and should continue with medical examinations and treatments in a safe and appropriate manner. © The

  4. Effects of radiation and apolipoprotein E on lipid profile among workers of nuclear power plants in Korea

    International Nuclear Information System (INIS)

    Ki-Eun Moon; Mee-Seon Jung; Suk-Hee Sung; Youn-Koun Chang; Il-Keun Park; Yun-Mi Paek; Tae-In Choi; Soo-Geun Kim

    2007-01-01

    Complete text of publication follows. Several studies reported that the radiation was positively related to fatty liver, low HDL cholesterol, and hypertriglyceridemia. Genetic polymorphism affect prevalence of chronic disease by molecular epidemiology studies. Apolipoprotein E is an important genetic determinant of cardiovascular disease (CVD), namely through its influence on lipid metabolism. Thus, we investigated whether radiation and apo E polymorphism, and environmental factors contribute to the lipid profile in workers of nuclear power plants in Korea. DNA was extracted from the whole blood of 6896 study subjects (6357 males and 359 females), and apo E polymorphism was investigated using PCR. Plasma lipid profiles were measured by standardized enzymatic procedures and radiation dose was measured by the thermoluminescence dosemeter (TLD). Environmental factors such as exercise, smoking were measured from health management database of KHNP. Total of 6802 subjects (aged 20-58) were investigated and radiation exposure dose was 168.51±463.94 mSv in the recent 1-year dose and 248.24±559.21 mSv in the total accumulative dose. In addition, Apo E polymorphism was associated with significant differences in total cholesterol, HDL cholesterol, radiation dose, AI but others no significant. The multiple regression model showed that total cholesterol was positively correlated with age, SBP, BMI, AI, fasting glucose. HDL cholesterol was negatively correlated with AI. LDL cholesterol was positively correlated with age, BMI, fasting glucose. And triglyceride was significantly correlated in the BMI, AI, somking dose, vegetables but others no significant. Metabolic syndrome did not show any relation to the others; only age, SBP, DBP, BMI, fasting glucose, HOMA-IR influenced. However, there was no significant association between radiation dose and lipid profile. In conclusion, Apo E and well-known variables such as SBP, BMI were significantly associated with lipid profile level

  5. Lessons learned from Fukushima Daiichi nuclear power plant accident: efficient education items of radiation safety for general public

    International Nuclear Information System (INIS)

    Ohno, K.; Endo, K.

    2015-01-01

    The Fukushima Daiichi nuclear power plant (FNP-1) accident, while as tragic as the tsunami, was a man-made disaster created by the ignorance of the effects of radiation and radioactive materials. Therefore, it is important that all specialists in radiation protection in medicine sympathize with the anxiety of the general public regarding the harmful effects of radiation and advise people accordingly. All questions and answers were collected related to inquiries from the general public that were posted to reliable web sites, including those of the government and radiation-related organizations, from March 2011 to November 2012. The questions were summarized and classified by similarity of content. (1) The total number of questions is 372. The content was broadly classified into three categories: inquiries for radiation-related knowledge and about health effects and foods. The questions asked to obtain radiation-related knowledge were the most common, accounting for 38 %. Thirty-six percentage of the questions were related to health effects, and 26 % involved foods, whereas 18 % of the questions were related to children and pregnancy. (2) The change over time was investigated in 290 questions for which the time of inquiry was known. Directly after the earthquake, the questions were primarily from people seeking radiation-related knowledge. Later, questions related to health effects increased. The anxiety experienced by residents following the nuclear accident was caused primarily by insufficient knowledge related to radiation, concerns about health effects and uncertainties about food and water safety. The development of educational materials focusing on such content will be important for risk communication with the general public in countries with nuclear power plants. Physicians and medical physicist should possess the ability to respond to questions such as these and should continue with medical examinations and treatments in a safe and appropriate manner

  6. Ultrasound-mediated microbubble enhancement of radiation therapy studied using three-dimensional high-frequency power Doppler ultrasound.

    Science.gov (United States)

    Kwok, Sheldon J J; El Kaffas, Ahmed; Lai, Priscilla; Al Mahrouki, Azza; Lee, Justin; Iradji, Sara; Tran, William Tyler; Giles, Anoja; Czarnota, Gregory J

    2013-11-01

    Tumor responses to high-dose (>8 Gy) radiation therapy are tightly connected to endothelial cell death. In the study described here, we investigated whether ultrasound-activated microbubbles can locally enhance tumor response to radiation treatments of 2 and 8 Gy by mechanically perturbing the endothelial lining of tumors. We evaluated vascular changes resulting from combined microbubble and radiation treatments using high-frequency 3-D power Doppler ultrasound in a breast cancer xenograft model. We compared treatment effects and monitored vasculature damage 3 hours, 24 hours and 7 days after treatment delivery. Mice treated with 2 Gy radiation and ultrasound-activated microbubbles exhibited a decrease in vascular index to 48 ± 10% at 24 hours, whereas vascular indices of mice treated with 2 Gy radiation alone or microbubbles alone were relatively unchanged at 95 ± 14% and 78 ± 14%, respectively. These results suggest that ultrasound-activated microbubbles enhance the effects of 2 Gy radiation through a synergistic mechanism, resulting in alterations of tumor blood flow. This novel therapy may potentiate lower radiation doses to preferentially target endothelial cells, thus reducing effects on neighboring normal tissue and increasing the efficacy of cancer treatments. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  7. Production of 165 Dy for radiation synovectomy, in a low-power (slowpoke) nuclear reactor

    International Nuclear Information System (INIS)

    Bridges, C.; Duke, M.J.M.; McQuarrie, S.A.; Wiebe, L.I.

    1998-01-01

    Full text: Severe, debilitating pain accompanies inflammation of the synovial membrane in rheumatoid arthritis. Under certain conditions, radiation synovectomy is an effective alternative to surgery for relief of these symptoms. Radionuclides which decay by the emission of beta particles, or beta plus low yields of gamma/x-rays are indicated for this medical application. Of the radionuclides with appropriate decay emissions, half-life and physical/chemical properties, 165 Dy is a suitable candidate for production in a low-power reactor. Literature methods for production of this radiopharmaceutical usually involve irradiating solid Dy(OH) 3 , which is dissolved in HCl to form DyCl 3 and then re-precipitated under controlled conditions using NaOH, to produce the desired particle size for medical use. A procedure in which most or all of this post-irradiation processing can be eliminated is particularly important when using low neutron flux reactors, in order to avoid reductions in the amount of deliverable radiopharmaceutical. Radiological safety considerations may also necessitate avoiding post-irradiation processing, since low-power reactor facilities usually have no appropriate hot cells for extensive manipulation of highly active samples. Appropriately-sized, pre-formed Dy(OH) 3 particles were produced under a variety of conditions in attempts to produce a stable, sodium-free product that would be suitable for irradiation and use without further processing. Sodium content could be reduced to about 165 Dy production yields and particle characteristics will be presented in support of this concept

  8. Internal radiation dose of KURRI volunteers working at evacuation shelters after TEPCO's Fukushima Daiichi nuclear power plant accident

    International Nuclear Information System (INIS)

    Kurihara, Kouta; Kinashi, Yuko; Okamoto, Kenichi

    2012-01-01

    We report the radiation doses encountered by 59 Kyoto University Research Reactor Institute (KURRI) staff members who had been dispatched to screen refugees for radiation at emergency evacuation sites 45–80 km from the Tokyo Electric Power Co.’s (TEPCO’s) Fukushima Daiichi nuclear power plant. From March 20 to April 30, 2011, 42 members in teams consisting of 2–4 staff members were dispatched 15 times to 7 emergency evacuation sites located 45–80 km from the power plant to examine the radioactive contamination affecting refugees. Continuously, from May 10 to May 23, 2011, 17 members in teams consisting of 2–5 staff members were dispatched 6 times to Fukushima Prefecture to establish the Kyoto University Radiation Mapping (KURAMA) system. Internal burdens of radioactive nuclides were estimated using a whole-body counter consisting of an iron room, NaI (Tl) scintillation detectors, and a digital multichannel analyzer (MCA7600; Seiko EG and G). The calibration of the whole-body counter and the conversion of the measured body burden to the committed effective dose by internal exposure were carried out in accordance with the Nuclear Safety Research Association (NSRA) technical manual. The external radiation dose to each staff member was measured using a personal dosimeter. The first dispatched team showed 1300–1929 Bq of internal radiation activity from cesium (including "1"3"7Cs and "1"3"4Cs) and 48–118 Bq of "1"3"1I. The internal doses of four members of the first team were estimated to be 24–39 μSv. The doses from internal exposure were almost similar to the cumulative external doses for the dispatch period (March 20–22, 2011) when the radiation plumes following the explosions of Units 1 and 3 in TEPCO’s Fukushima Daiichi nuclear plant had diffused around Fukushima City. The external radiation doses of members dispatched after the second team had decreased from one-third to less than one-tenth of the external doses of the first dispatched team

  9. Internal radiation dose of KURRI volunteers working at evacuation shelters after TEPCO's Fukushima Daiichi nuclear power plant accident

    International Nuclear Information System (INIS)

    Kurihara, Kouta; Kinashi, Yuko; Okamoto, Kenichi

    2013-01-01

    We report the radiation doses encountered by 59 Kyoto University Research Reactor Institute (KURRI) staff members who had been dispatched to screen refugees for radiation at emergency evacuation sites 45-80 km from the Tokyo Electric Power Co.'s (TEPCO's) Fukushima Daiichi nuclear power plant. From March 20 to April 30, 2011, 42 members in teams consisting of 2-4 staff members were dispatched 15 times to 7 emergency evacuation sites located 45-80 km from the power plant to examine the radioactive contamination affecting refugees. Continuously, from May 10 to May 23, 2011, 17 members in teams consisting of 2-5 staff members were dispatched 6 times to Fukushima Prefecture to establish the Kyoto University Radiation Mapping (KURAMA) system. Internal burdens of radioactive nuclides were estimated using a whole-body counter consisting of an iron room, NaI (Tl) scintillation detectors, and a digital multichannel analyzer (MCA7600; Seiko EG and G). The calibration of the whole-body counter and the conversion of the measured body burden to the committed effective dose by internal exposure were carried out in accordance with the Nuclear Safety Research Association (NSRA) technical manual. The external radiation dose to each staff member was measured using a personal dosimeter. The first dispatched team showed 1300-1929 Bq of internal radiation activity from cesium (including "1"3"7Cs and "1"3"4Cs) and 48-118 Bq of "1"3"1I. The internal doses of four members of the first team were estimated to be 24-39 μSv. The doses from internal exposure were almost similar to the cumulative external doses for the dispatch period (March 20-22, 2011) when the radiation plumes following the explosions of Units 1 and 3 in TEPCO's Fukushima Daiichi nuclear plant had diffused around Fukushima City. The external radiation doses of members dispatched after the second team had decreased from one-third to less than one-tenth of the external doses of the first dispatched team. The internal

  10. Important radiation accidents in the objects other than nuclear power plants

    International Nuclear Information System (INIS)

    Dabek, W.

    1993-01-01

    The author reports and analyses five very dangerous radiation accidents in the institutions applying accelerators and big isotope radiation sources. Some of them has finished a very heavy injuries of people

  11. Central powering of the largest Lyman-α nebula is revealed by polarized radiation.

    Science.gov (United States)

    Hayes, Matthew; Scarlata, Claudia; Siana, Brian

    2011-08-17

    High-redshift Lyman-α (Lyα) blobs are extended, luminous but rare structures that seem to be associated with the highest peaks in the matter density of the Universe. Their energy output and morphology are similar to those of powerful radio galaxies, but the source of the luminosity is unclear. Some blobs are associated with ultraviolet or infrared bright galaxies, suggesting an extreme starburst event or accretion onto a central black hole. Another possibility is gas that is shock-excited by supernovae. But not all blobs are associated with galaxies, and these ones may instead be heated by gas falling into a dark-matter halo. The polarization of the Lyα emission can in principle distinguish between these options, but a previous attempt to detect this signature returned a null detection. Here we report observations of polarized Lyα from the blob LAB1 (ref. 2). Although the central region shows no measurable polarization, the polarized fraction (P) increases to ∼20 per cent at a radius of 45 kiloparsecs, forming an almost complete polarized ring. The detection of polarized radiation is inconsistent with the in situ production of Lyα photons, and we conclude that they must have been produced in the galaxies hosted within the nebula, and re-scattered by neutral hydrogen.

  12. Characterization of wildfire NOx emissions using MODIS fire radiative power and OMI tropospheric NO2 columns

    Directory of Open Access Journals (Sweden)

    R. C. Cohen

    2011-06-01

    Full Text Available We use observations of fire radiative power (FRP from the Moderate Resolution Imaging Spectroradiometer~(MODIS and tropospheric NO2 column measurements from the Ozone Monitoring Instrument (OMI to derive NO2 wildfire emission coefficients (g MJ−1 for three land types over California and Nevada. Retrieved emission coefficients were 0.279±0.077, 0.342±0.053, and 0.696±0.088 g MJ−1 NO2 for forest, grass and shrub fuels, respectively. These emission coefficients reproduce ratios of emissions with fuel type reported previously using independent methods. However, the magnitude of these coefficients is lower than prior estimates. While it is possible that a negative bias in the OMI NO2 retrieval over regions of active fire emissions is partly responsible, comparison with several other studies of fire emissions using satellite platforms indicates that current emission factors may overestimate the contributions of flaming combustion and underestimate the contributions of smoldering combustion to total fire emissions. Our results indicate that satellite data can provide an extensive characterization of the variability in fire NOx emissions; 67 % of the variability in emissions in this region can be accounted for using an FRP-based parameterization.

  13. Determining radiated sound power of building structures by means of laser Doppler vibrometry

    Science.gov (United States)

    Roozen, N. B.; Labelle, L.; Rychtáriková, M.; Glorieux, C.

    2015-06-01

    This paper introduces a methodology that makes use of laser Doppler vibrometry to assess the acoustic insulation performance of a building element. The sound power radiated by the surface of the element is numerically determined from the vibrational pattern, offering an alternative for classical microphone measurements. Compared to the latter the proposed analysis is not sensitive to room acoustical effects. This allows the proposed methodology to be used at low frequencies, where the standardized microphone based approach suffers from a high uncertainty due to a low acoustic modal density. Standardized measurements as well as laser Doppler vibrometry measurements and computations have been performed on two test panels, a light-weight wall and a gypsum block wall and are compared and discussed in this paper. The proposed methodology offers an adequate solution for the assessment of the acoustic insulation of building elements at low frequencies. This is crucial in the framework of recent proposals of acoustic standards for measurement approaches and single number sound insulation performance ratings to take into account frequencies down to 50 Hz.

  14. Health effects models for nuclear power plant accident consequence analysis: Low LET radiation

    International Nuclear Information System (INIS)

    Evans, J.S.

    1990-01-01

    This report describes dose-response models intended to be used in estimating the radiological health effects of nuclear power plant accidents. Models of early and continuing effects, cancers and thyroid nodules, and genetic effects are provided. Weibull dose-response functions are recommended for evaluating the risks of early and continuing health effects. Three potentially lethal early effects -- the hematopoietic, pulmonary, and gastrointestinal syndromes -- are considered. In addition, models are included for assessing the risks of several nonlethal early and continuing effects -- including prodromal vomiting and diarrhea, hypothyroidism and radiation thyroiditis, skin burns, reproductive effects, and pregnancy losses. Linear and linear-quadratic models are recommended for estimating cancer risks. Parameters are given for analyzing the risks of seven types of cancer in adults -- leukemia, bone, lung, breast, gastrointestinal, thyroid, and ''other.'' The category, ''other'' cancers, is intended to reflect the combined risks of multiple myeloma, lymphoma, and cancers of the bladder, kidney, brain, ovary, uterus and cervix. Models of childhood cancers due to in utero exposure are also developed. For most cancers, both incidence and mortality are addressed. The models of cancer risk are derived largely from information summarized in BEIR III -- with some adjustment to reflect more recent studies. 64 refs., 18 figs., 46 tabs

  15. Occupational radiation exposure at Commercial Nuclear Power reactors 1983. Volume 5. Annual report

    International Nuclear Information System (INIS)

    Brooks, B.G.

    1985-03-01

    This report presents an updated compilation of occupational radiation exposure at commercial nuclear power reactors for the years 1969 through 1983. The summary based on information received from the 75 light-water-cooled reactors (LWRs) and one high temperature gas-cooled reactor (HTGR). The total number of personnel monitored at LWRs in 1983 was 136,700. The number of workers that received measurable doses during 1983 and 85,600 which is about 1000 more than that found in 1982. The total collective dose at LWRs for 1983 is estimated to be 56,500 man-rems (man-cSv), which is about 4000 more man-rems (man-cSv) than that reported in 1982. This resulted in the average annual dose for each worker who received a measurable dose increasing slightly to 0.66 rems (cSv), and the average collective dose per reactor increasing by about 50 man-rems (man-cSv), and the average collective dose per reactor increasing by about 50 man-rems (man-cSv) to a value of 753 man-rems (man-cSv). The collective dose per megawatt of electricity generated by each reactor also increased slightly to an average value of 1.7 man-rems (man-cSv) per megawatt-year. Health implications of these annual occupational doses are discussed

  16. Health effects models for nuclear power plant accident consequence analysis: Low LET radiation

    Energy Technology Data Exchange (ETDEWEB)

    Evans, J.S. (Harvard Univ., Boston, MA (USA). School of Public Health)

    1990-01-01

    This report describes dose-response models intended to be used in estimating the radiological health effects of nuclear power plant accidents. Models of early and continuing effects, cancers and thyroid nodules, and genetic effects are provided. Weibull dose-response functions are recommended for evaluating the risks of early and continuing health effects. Three potentially lethal early effects -- the hematopoietic, pulmonary, and gastrointestinal syndromes -- are considered. In addition, models are included for assessing the risks of several nonlethal early and continuing effects -- including prodromal vomiting and diarrhea, hypothyroidism and radiation thyroiditis, skin burns, reproductive effects, and pregnancy losses. Linear and linear-quadratic models are recommended for estimating cancer risks. Parameters are given for analyzing the risks of seven types of cancer in adults -- leukemia, bone, lung, breast, gastrointestinal, thyroid, and other.'' The category, other'' cancers, is intended to reflect the combined risks of multiple myeloma, lymphoma, and cancers of the bladder, kidney, brain, ovary, uterus and cervix. Models of childhood cancers due to in utero exposure are also developed. For most cancers, both incidence and mortality are addressed. The models of cancer risk are derived largely from information summarized in BEIR III -- with some adjustment to reflect more recent studies. 64 refs., 18 figs., 46 tabs.

  17. Solar Ultraviolet-B Radiation Increases Phenolic Content and Ferric Reducing Antioxidant Power in Avena sativa

    Directory of Open Access Journals (Sweden)

    Christopher T. Ruhland

    2007-06-01

    Full Text Available We examined the influence of solar ultraviolet-B radiation (UV-B; 280-320 nm on the maximum photochemical efficiency of photosystem II (Fv/Fm, bulk-soluble phenolic concentrations, ferric-reducing antioxidant power (FRAP and growth of Avena sativa. Treatments involved placing filters on frames over potted plants that reduced levels of biologically effective UV-B by either 71% (reduced UV-B or by 19% (near-ambient UV-B over the 52 day experiment (04 July - 25 August 2002. Plants growing under near-ambient UV-B had 38% less total biomass than those under reduced UV-B. The reduction in biomass was mainly the result of a 24% lower leaf elongation rate, resulting in shorter leaves and less total leaf area than plants under reduced UV-B. In addition, plants growing under near-ambient UV-B had up to 17% lower Fv/Fm values early in the experiment, and this effect declined with plant age. Concentrations of bulk-soluble phenolics and FRAP values were 17 and 24% higher under near-ambient UV-B than under reduced UV-B, respectively. There was a positive relationship between bulk-soluble phenolic concentrations and FRAP values. There were no UV-B effects on concentrations of carotenoids (carotenes + xanthophylls.

  18. Main results and tasks in studies on radiation safety ensurance when using nuclear power and radiation sources in national economy

    International Nuclear Information System (INIS)

    Semenov, A.P.; Ivanov, V.I.

    1978-01-01

    The basic problems and the results of work in the field of ensuring radiation safety for personnel engaged in work related to the use of nuclear energy and sources of ionizing radiation are discussed. Long standing observation of labour hygiene and health conditions of people engaged at research nuclear reactors have shown that the irradiation levels under normal operating conditions do not exceed the established standards. Radiation conditions in radiological laboratories have been studied. Much attention is given to studies of internal irradiation due to inhalation of radioactive aerosols. New methods and apparatuses have been developed for analysis of aerosols and control of intake of radioactive substances by man. Work has been done to improve the methods of emergency dosimetry and design of individual emergency dosimeters. Investigations have been performed to determine the safety levels in working with rare-metal ores containing naturally occurring radioactive substances and industrial radiochemical processes. It is of interest to study small load doses. Different documents for providing safety in working with sources of ionizing radiation have been developed

  19. Radiation Protection and Radioactive Waste Management in the Operation of Nuclear Power Plants. Safety Guide (Spanish Edition)

    International Nuclear Information System (INIS)

    2010-01-01

    The purpose of this Safety Guide is to provide recommendations to the regulatory body, focused on the operational aspects of radiation protection and radioactive waste management in nuclear power plants, and on how to ensure the fulfilment of the requirements established in the relevant Safety Requirements publications. It will also be useful for senior managers in licensee or contractor organizations who are responsible for establishing and managing programmes for radiation protection and for the management of radioactive waste. This Safety Guide gives general recommendations for the development of radiation protection programmes at nuclear power plants. The issues are then elaborated by defining the main elements of a radiation protection programme. Particular attention is paid to area classification, workplace monitoring and supervision, application of the principle of optimization of protection (also termed the 'as low as reasonably achievable' (ALARA) principle), and facilities and equipment. This Safety Guide covers all the safety related aspects of a programme for the management of radioactive waste at a nuclear power plant. Emphasis is placed on the minimization of waste in terms of both activity and volume. The various steps in predisposal waste management are covered, namely processing (pretreatment, treatment and conditioning), storage and transport. Releases of effluents, the application of authorized limits and reference levels are discussed, together with the main elements of an environmental monitoring programme

  20. Necessity of radiation education suggested from press report during earthquake damage of Kashiwazaki-Kariwa Nuclear Power Station

    International Nuclear Information System (INIS)

    Hamamoto, Kazuko; Narabayashi, Tadashi; Itami, Toshio; Kobayashi, Masahide; Akizuki, Teruo; Onishi, Hidetoshi

    2009-01-01

    Although Kashiwazaki-Kariwa Nuclear Power Station was affected by Chuetsu-Oki earthquake, the important components in the reactor building were hardly damaged, and fundamental nuclear safety was ensured. However, as the mass communication media reported the pictures of the black smoke of fire accident of the transformer, sloshing of the pool, etc. without declaration of 'Safety' by the Central Government or sufficient explanation, the habitants on the site and the Japan's people were put into anxiety and thus, harmful rumor was spread. The people obtain the information from the mass communication media, and they believed all the reports of the mass media. Behind it, there is a fundamental knowledge among them that Radiation = 'dangerous', 'bad for health' and 'awful' = Nuclear Power Generation. This knowledge has been fixed more firmly due to the report of the earthquake damage. In order to escape from this deep-rooted scheme, it is necessary to spread the correct knowledge on the radiation. At this time, the Official Curriculum Guidelines for Junior High School are revised, and the radiation education is started for the first time in 30 years. We analyzed and evaluated the results of the survey performed by Radiation Education Forum, and, simultaneously, we considered the necessity of the radiation education judging from the reports of the mass communication media. (author)

  1. Thermal-hydraulic analysis of the improved TOPAZ-II power system using a heat pipe radiator

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wenwen; Zhang, Dalin, E-mail: dlzhang@mail.xjtu.edu.cn; Tian, Wenxi; Qiu, Suizheng; Su, G.H.

    2016-10-15

    Highlights: • The system thermal-hydraulic model of the improved space thermionic reactor is developed. • The temperature reactivity feedback effects of the moderator, UO2 fuel, electrodes and reflector are considered. • The alkali metal heat pipe radiator is modeled with the two dimensional heat pipe model. • The steady state and the start-up procedure of the system are analyzed. - Abstract: A system analysis code coupled with the heat pipe model is developed to analyze the thermal-hydraulic characteristics of the improved TOPAZ-II reactor power system with a heat pipe radiator. The core thermal-hydraulic model, neutron physics model, and the coolant loop component models (including pump, volume accumulator, pipes and plenums) are established. The designed heat pipe radiator, which replaces the original pumped loop radiator, is also modeled, including two-dimensional heat pipe analysis model, fin model and coolant transport duct model. The system analysis code and the heat pipe model is coupled in the transport duct model. Steady state condition and start-up procedure of the improved TOPAZ-II system are calculated. The results show that the designed radiator can satisfy the waste heat rejection requirement of the improved power system. Meanwhile, the code can be used to obtained the thermal characteristics of the system transients such as the start-up process.

  2. Synchrotron radiation, a powerful tool in research and technological development. Basic principles

    International Nuclear Information System (INIS)

    Jimenez M, J.

    2001-01-01

    The basic principles of synchrotron radiation emission in electron accelerators are presented. The main characteristics of synchrotron radiation, together with the physical principles that describe its interaction with different materials are also discussed. Different areas in which the development of synchrotron radiation has made a major impact are given. (Author)

  3. Effects of low power microwave radiation on biological activity of Collagenase enzyme and growth rate of S. Cerevisiae yeast

    Science.gov (United States)

    Alsuhaim, Hamad S.; Vojisavljevic, Vuk; Pirogova, E.

    2013-12-01

    Recently, microwave radiation, a type/subset of non-ionizing electromagnetic radiation (EMR) has been widely used in industry, medicine, as well as food technology and mobile communication. Use of mobile phones is rapidly growing. Four years from now, 5.1 billion people will be mobile phone users around the globe - almost 1 billion more mobile users than the 4.3 billion people worldwide using them now. Consequently, exposure to weak radiofrequency/microwave radiation generated by these devices is markedly increasing. Accordingly, public concern about potential hazards on human health is mounting [1]. Thermal effects of radiofrequency/microwave radiation are very well-known and extensively studied. Of particular interest are non-thermal effects of microwave exposures on biological systems. Nonthermal effects are described as changes in cellular metabolism caused by both resonance absorption and induced EMR and are often accompanied by a specific biological response. Non-thermal biological effects are measurable changes in biological systems that may or may not be associated with adverse health effects. In this study we studied non-thermal effects of low power microwave exposures on kinetics of L-lactate dehydrogenase enzyme and growth rate of yeast Saccharomyces Cerevisiae strains type II. The selected model systems were continuously exposed to microwave radiation at the frequency of 968MHz and power of 10dBm using the designed and constructed (custom made) Transverse Electro-Magnetic (TEM) cell [2]. The findings reveal that microwave radiation at 968MHz and power of 10dBm inhibits L-lactate dehydrogenase enzyme activity by 26% and increases significantly (15%) the proliferation rate of yeast cells.

  4. Investigation of the vapour-plasma plume in the welding of titanium by high-power ytterbium fibre laser radiation

    Energy Technology Data Exchange (ETDEWEB)

    Bykovskiy, D P; Petrovskii, V N; Uspenskiy, S A [National Research Nuclear University ' MEPhI' (Russian Federation)

    2015-03-31

    The vapour-plasma plume produced in the welding of 6-mm thick VT-23 titanium alloy plates by ytterbium fibre laser radiation of up to 10 kW power is studied in the protective Ar gas medium. High-speed video filming of the vapour-plasma plume is used to visualise the processes occurring during laser welding. The coefficient of inverse bremsstrahlung by the welding plasma plume is calculated from the data of the spectrometric study. (interaction of laser radiation with matter)

  5. Taking SiC Power Devices to the Final Frontier: Addressing Challenges of the Space Radiation Environment

    Science.gov (United States)

    Lauenstein, Jean-Marie; Casey, Megan

    2017-01-01

    Silicon carbide power device technology has the potential to enable a new generation of aerospace power systems that demand high efficiency, rapid switching, and reduced mass and volume in order to expand space-based capabilities. For this potential to be realized, SiC devices must be capable of withstanding the harsh space radiation environment. Commercial SiC components exhibit high tolerance to total ionizing dose but to date, have not performed well under exposure to heavy ion radiation representative of the on-orbit galactic cosmic rays. Insertion of SiC power device technology into space applications to achieve breakthrough performance gains will require intentional development of components hardened to the effects of these highly-energetic heavy ions. This work presents heavy-ion test data obtained by the authors over the past several years for discrete SiC power MOSFETs, JFETs, and diodes in order to increase the body of knowledge and understanding that will facilitate hardening of this technology to space radiation effects. Specifically, heavy-ion irradiation data taken under different bias, temperature, and ion beam conditions is presented for devices from different manufacturers, and the emerging patterns discussed.

  6. Influence of radiation effects on man during breakdowns at nuclear power plants

    International Nuclear Information System (INIS)

    Chernyak, S.I.; Zhilyaev, E.G.; Alferov, A.P.

    1992-01-01

    One of the most essential radiation factors during accidents at NPPs is gamma-radiation from radioactive clouds and radiation-contaminated land (RCL) what is demonstrated by the Chernobyl NPP accident. Beta-radiation from contaminated medium objects is of essential importance during some months after the accident. Internal irradiation is linked with prolonged retention of radionuclides in the body. Evaluation of the situation caused by the NPP accident is based on the analysis of affecting radiation factors and it makes it possible to plan necessary measures for limiting after effects of such influence

  7. Bipolarization of Risk Perception about the Health Effects of Radiation in Residents after the Accident at Fukushima Nuclear Power Plant.

    Directory of Open Access Journals (Sweden)

    Makiko Orita

    Full Text Available The late health effects of low-dose rate radiation exposure are still a serious public concern in the Fukushima area even four years after the accident at Fukushima Daiichi Nuclear Power Plant (FNPP. To clarify the factors associated with residents' risk perception of radiation exposure and consequent health effects, we conducted a survey among residents of Kawauchi village in May and June 2014, which is located within 30 km of FNPP. 85 of 285 residents (29.8% answered that acute radiation syndrome might develop in residents after the accident, 154 (54.0% residents responded that they had anxieties about the health effects of radiation on children, and 140 (49.1% residents indicated that they had anxieties about the health effects of radiation on offspring. Furthermore, 107 (37.5% residents answered that they had concerns about health effects that would appear in the general population simply by living in an environment with a 0.23 μSv per hour ambient dose for one year, 149 (52.2% residents reported that they were reluctant to eat locally produced foods, and 164 (57.5% residents believed that adverse health effects would occur in the general population by eating 100 Bq per kg of mushrooms every day for one year. The present study shows that a marked bipolarization of the risk perception about the health effects of radiation among residents could have a major impact on social well-being after the accident at FNPP.

  8. Bipolarization of Risk Perception about the Health Effects of Radiation in Residents after the Accident at Fukushima Nuclear Power Plant.

    Science.gov (United States)

    Orita, Makiko; Hayashida, Naomi; Nakayama, Yumi; Shinkawa, Tetsuko; Urata, Hideko; Fukushima, Yoshiko; Endo, Yuuko; Yamashita, Shunichi; Takamura, Noboru

    2015-01-01

    The late health effects of low-dose rate radiation exposure are still a serious public concern in the Fukushima area even four years after the accident at Fukushima Daiichi Nuclear Power Plant (FNPP). To clarify the factors associated with residents' risk perception of radiation exposure and consequent health effects, we conducted a survey among residents of Kawauchi village in May and June 2014, which is located within 30 km of FNPP. 85 of 285 residents (29.8%) answered that acute radiation syndrome might develop in residents after the accident, 154 (54.0%) residents responded that they had anxieties about the health effects of radiation on children, and 140 (49.1%) residents indicated that they had anxieties about the health effects of radiation on offspring. Furthermore, 107 (37.5%) residents answered that they had concerns about health effects that would appear in the general population simply by living in an environment with a 0.23 μSv per hour ambient dose for one year, 149 (52.2%) residents reported that they were reluctant to eat locally produced foods, and 164 (57.5%) residents believed that adverse health effects would occur in the general population by eating 100 Bq per kg of mushrooms every day for one year. The present study shows that a marked bipolarization of the risk perception about the health effects of radiation among residents could have a major impact on social well-being after the accident at FNPP.

  9. Comparative study of radiological impact of nuclear power plant and coal-fired power plant: estimation of radiation dose to public from nuclear power plant and coal-fired power plant generation

    International Nuclear Information System (INIS)

    Umbara, Heru; Yatim, Sofyan

    1998-01-01

    Radiation impact assessment of Nuclear Power Plant and Coal-Fired Power Plant in Muria Penninsula was carried out. The computation of radionuclide releases to the atmosphere subjects to gaussian plume model, on the other hand, the radionuclide transfer model between environmental compartment (pathway) follow concentration factor methods. Both models are compiled in GENII-The Hanford Environmental Radiation Dosimetry Software System, which is used in the assessment. Most of all input data for GENII package are site specific, such as meteorological data, stack flow, stack height, population, local consumption except the transfer factor data are taken from the GENII package. The results show that during operation of NPP the maximal exposed individual received annual effective dose 150 nSv at 300 -700 m from the site toward east otherwise in operation of CPP the maximal exposed individual received annual effective dose 410 nSv in the same distance and direction. Both results of the maximal exposed individual received annual effective dose about 0,003 % and 0,008 % of whole body annual dose limit for members of public for NPP and CPP. (author)

  10. The state of radioactive waste management and personnel radiation exposure in commercial nuclear power plants in fiscal 1981

    International Nuclear Information System (INIS)

    1982-01-01

    Radioactive waste management: The owners of commercial nuclear power plants are obligated to control the release of gaseous and liquid radioactive wastes below the objective release levels, and to store solid wastes in containers on the site. As for the former, the released (radioactive) quantity in fiscal 1981 (from April, 1981, to March, 1982,) together with the objective levels are given for respective nuclear power stations; and as for the latter, the stored quantity and also the cumulative quantity up to the year are given. Radiation exposure: The owners of commercial nuclear power plants are obligated to control the personnel exposure below the permissible level. The personnel exposure dose in fiscal 1981 is given for respective nuclear power station. (Mori, K.)

  11. Situation of the radioactive waste management and the employee radiation exposure in commercial power generation reactor facilities in fiscal 1980

    International Nuclear Information System (INIS)

    1981-01-01

    (1) Situation of the radioactive waste management in commercial power generating reactor facilities: The owners of power generation reactor facilities are obligated not to exceed the target dose around the sites by law in the radioactive waste management. The release of radioactive gaseous and liquid wastes and the storage of radioactive solid wastes in respective reactor facilities in fiscal 1980 are presented in tables (for the former, the data since 1971 are also given). The release control values were satisfied in all the facilities. (2) Situation of employe radiation exposure in commercial power generating reactor facilities: The owners of power generation reactor facilities are obligated not to exceed the permissible exposure doses by law. The Employe exposure doses in respective reactor facilities in fiscal 1980 are given in tables. All exposure doses were below the permissible levels. (J.P.N.)

  12. Evolution of radiation protection of overall decommissioning and Dismantling of a Nuclear Power Plants

    International Nuclear Information System (INIS)

    Ortiz, M. T.; Ondaro, M.; Irun, I.; Just, J.

    2000-01-01

    From the point of view of Radiological Protection, the overall Decommissioning and Dismantling (D and D) Plan of a Nuclear Power Plant cannot be considered in isolation without considering the evolution of the radiological characteristics of the installation and the site itself from previous, during and final states. This experience of D and D is the first in Spain and in other European countries due to several aspects: 1) the reference reactor technology, 2) total grass power, and 3) management of a great amount of materials to be released. Three decommissioning alternatives were studied: Indefinite maintenance in shutdown state, Stage 1. Stage 2 for the defuelled reactor vessel and contents, with decontamination of most of the rest of the site. Immediate dismantling to Stage 3. Stage 2 was the alternative selected with the release of 80% of the site, keeping the remaining 20% of the site as a regulated area, housing the reactor vessel in a new structure and removing the radioactive waste. The above, along with the fact that this is a specific type of natural uranium-graphite-gas plant (NUGG) and that ownership of the facility has been transferred for dismantling (from HIFRENSA to ENRESA), implies a series of preliminary considerations that, for the purposes of this article, are compiled in the following aspects: a) Preliminary phase prior to transfer, b) Preparatory phase, and c) Dismantling phase. This paper describes aspects under the D and D experiences at CN-V1 NPP, now in progress, from the point of view of the radiological aspects in relation with the continuous updating of the source term. Operative Radiological nuclide vectors, applicable in the Radiation Protection tasks, are also commented to prevent and evaluate several risks during the execution of the works. Finally, there is a description of the results obtained from the work performed to decay the three actual nuclide vectors, to evaluate and obtain activity calculations for the release of the

  13. Occupational radiation exposure at commercial nuclear power reactors and other facilities 1986

    International Nuclear Information System (INIS)

    Brooks, B.G.; Hagemeyer, D.

    1989-08-01

    This report summarizes the occupational exposure data that are maintained in the US Nuclear Regulatory Commission's Radiation Exposure Information and Reporting System (REIRS). The bulk of the information contained in the report was extracted from the 1986 annual statistical reports submitted by six of the seven categories of NRC licensees subject to the reporting requirements of 10 CFR section 20.407. Since there are no geologic repositories for high level waste currently licensed, only six categories will be considered in this report. These six categories of licensees also submit personal identification and exposure information for terminating employees pursuant to 10 CFR section 20.408, and some analysis of this ''termination'' data is also presented in this report. Annual report for 1986 were received from a total of 482 NRC licensees, 101 of whom were licensed nuclear power reactors. Compilations of the 482 reports indicated that some 227,652 individuals were monitored, 116,241 of whom received a measurable dose (Table 3.1). The collective dose incurred by these individuals was calculated to be 46,366 person-rems (person-cSv) which represents a decrease of 23% from the 1985 value. The number of workers receiving a measurable dose increased while the collective dose decreased slightly, causing the average measurable dose to decrease from 0.43 rem (cSv) to 0.40 rem (cSv). About 13% of the monitored individuals were found to have received doses greater than 0.50 rem (cSv), which is about the same as the value for 1985. 16 refs., 11 figs., 26 tabs

  14. Contamination of occupational radiation exposure in nuclear power plants with pressurized water reactors

    International Nuclear Information System (INIS)

    Schneider, Sebastian; Bruhn, Gerd; Artmann, Andreas; Sentuc, Florence-Nathalie; Tiessen, Olga

    2017-12-01

    In the precursor project of this study a simulation procedure was developed, consisting of a 3D-CAD model, a mathematical method for coordinate transformation, the software MicroShield and an empiric job model, to calculate the occupational exposure for definable jobs at the primary circuit. It was validated for inspection and maintenance jobs at PWRs of the second and third KWU/Siemens generation. With that the aptitude of this tool for prognosis of radiation exposure was demonstrated. Adhering contaminations within the primary circuit are considered as relevant sources, whereas activated core-near components are neglected. In this study, the model was extended by PWR of the so-called Convoy generation, which differ from older plants in the material composition and consequently in the relevant nuclide vectors. With information from a visit at a nuclear power plant and conversation with the staff, the model could be adjusted appropriately. The radionuclide Cobalt-60 is indeed less important compared to older plant-types, but it is still the dominant nuclide in facilities of the fourth KWU/Siemens generation, so that it is used as reference nuclide. Due to the contemporary planned final shut-down of the three Convoy plants (besides other), dismantling work was set into focus of simulation. Simulation was conducted and results compared for Convoy plants and for plants of the older generations two and three. Furthermore, by comparative simulations the question was answered if full system decontamination in Convoy plants before dismantling lead to benefits that justify this measure. The determined dose saving during unmounting works at the steam generators caused by the decontamination is remarkable. An abdication of decontamination at this location would lead to doses much higher than the occupational job dose during steam generator dismantling in a decontaminated generation 2 facility.

  15. Quantitative Evaluation of MODIS Fire Radiative Power Measurement for Global Smoke Emissions Assessment

    Science.gov (United States)

    Ichoku, Charles; Ellison, Luke

    2011-01-01

    Satellite remote sensing is providing us tremendous opportunities to measure the fire radiative energy (FRE) release rate or power (FRP) from open biomass burning, which affects many vegetated regions of the world on a seasonal basis. Knowledge of the biomass burning characteristics and emission source strengths of different (particulate and gaseous) smoke constituents is one of the principal ingredients upon which the assessment, modeling, and forecasting of their distribution and impacts depend. This knowledge can be gained through accurate measurement of FRP, which has been shown to have a direct relationship with the rates of biomass consumption and emissions of major smoke constituents. Over the last decade or so, FRP has been routinely measured from space by both the MODIS sensors aboard the polar orbiting Terra and Aqua satellites, and the SEVIRI sensor aboard the Meteosat Second Generation (MSG) geostationary satellite. During the last few years, FRP has steadily gained increasing recognition as an important parameter for facilitating the development of various scientific studies and applications relating to the quantitative characterization of biomass burning and their emissions. To establish the scientific integrity of the FRP as a stable quantity that can be measured consistently across a variety of sensors and platforms, with the potential of being utilized to develop a unified long-term climate data record of fire activity and impacts, it needs to be thoroughly evaluated, calibrated, and validated. Therefore, we are conducting a detailed analysis of the FRP products from MODIS to evaluate the uncertainties associated with them, such as those due to the effects of satellite variable observation geometry and other factors, in order to establish their error budget for use in diverse scientific research and applications. In this presentation, we will show recent results of the MODIS FRP uncertainty analysis and error mitigation solutions, and demonstrate

  16. Radiation physics of high power spallation targets. State of the art simulation methods and experiments, the 'European Spallation Source' (ESS)

    International Nuclear Information System (INIS)

    Filges, D.; Cloth, P.; Neef, R.D.; Schaal, H.

    1998-01-01

    Particle transport and nuclear interactions of planned high power spallation targets with GeV proton beams can be simulated using widely developed Monte Carlo transport methods. This includes available high energy radiation transport codes and systems for low energy, earlier developed for reactor physics and fusion technology. Monte Carlo simulation codes and applied methods are discussed. The capabilities of the world-wide existing state-of-the-art computer code systems are demonstrated. Results of computational studies for the 'European Spallation Source' (ESS) mercury high power target station are given. The needs for spallation related data and planned experiments are shown. (author)

  17. Hybrid radiation background monitoring in operational control and forecasting of environmental contamination by nuclear power station discharges

    International Nuclear Information System (INIS)

    Ermeev, I.S.; Eremenko, V.A.; Makarov, Y.A.; Matueev, V.V.; Zhernov, V.S.

    1986-01-01

    Rapid developments in nuclear power have stimulated research on monitoring and forecasting environmental radiation pollution (ERP), and in particular the amounts, compositions, and distributions of radionuclides in the environment. A conceptual model is presented for hybrid environmental radiation pollution monitoring. When there is an emergency, the model operates in a fashion most closely corresponding to the actual meteorological conditions, and the ERP data given by the model enable one to distinguish changes due to the man-made component from random fluctuations in the natural background. The measurement system in general includes mobile and stationary data-acquisition facilities linked by wire or radio to the central point. The system also accumulates and stores data on the radiation environment, which are edited on the basis of radioactive, chemical, and other transformations. The purpose of hybrid monitoring is ultimately to analyze trends in order to detect elevated discharges and thus to output data to the regional monitoring system

  18. The Formation of a Power Multi-Pulse Extreme Ultraviolet Radiation in the Pulse Plasma Diode of Low Pressure

    Directory of Open Access Journals (Sweden)

    Ievgeniia V. Borgun

    2013-01-01

    Full Text Available In this paper results are presented on experimental studies of the temporal characteristics of spike extreme ultraviolet (EUV radiation in the spectral range of 12.2 ÷ 15.8 nm from the anode region of high-current (I = 40 kA pulsed discharges in tin vapor. It is observed that the intense multi-spike radiation in this range arises at an inductive stage of the discharge. It has been shown that the radiation spikes correlate with the sharp increase of active resistance and of pumped power, due to plasma heating by an electron beam, formed in the double layer of charged particles. It has been observed that for large number of spikes the conversion efficiency of pumped energy into radiationat double layer formation is essentially higher in comparison with collisional heating.

  19. ALARA-based strengthening of radiation protection in a high dose rate nuclear power plant: A practical overview

    International Nuclear Information System (INIS)

    Lips, Marcel

    2008-01-01

    In the first years of operation the dose rates at Goesgen nuclear power plant increased more strongly than expected. Co-60 has been the main radiation contributor from the beginning. As an immediate step, investigations were initiated to find and remove unknown cobalt sources. System modifications and optimization in water chemistry were carried out to reduce material and activity transport within the primary system. As a result the dose rates were stabilized after a couple of years -unfortunately on a high level. To reduce the dose rate levels and the occupational radiation exposure, further long term measures were implemented. System decontamination and source replacement were considered as well as the implementation of enhanced shielding procedures and a more source oriented chemistry. As a result the dose rates have reduced significantly and the occupational radiation exposure has been decreased by more than a factor of 2 over the last two decades. The reduction of the mean individual dose turned out even better and was cut by a factor of 5. On terms of plant and personal safety, Goesgen nuclear power plant decided to improve radiation protection using a smooth step by step action plan and has been very successful with it. Currently the technical possibilities have been developed to a high standard. Further improvements will be selective only. In future the focus will be set to personal behavior and human performance, using enhanced target settings, briefings, debriefings, experience feedback and (international) experience exchange. Nevertheless it will be essential to avoid unnecessary administrative and counterproductive short term hurdles. Strengthening of radiation protection is and will be a long term and continuous process. Goesgen nuclear power plant will continue to introduce further actions one by one. (author)

  20. Effects of nuclear radiation on a high-reliability silicon power diode. 4: Analysis of reverse bias characteristics

    Science.gov (United States)

    Been, J. F.

    1973-01-01

    The effects of nuclear radiation on the reverse bias electrical characteristics of one hundred silicon power diodes were investigated. On a percentage basis, the changes in reverse currents were large but, due to very low initial values, this electrical characteristic was not the limiting factor in use of these diodes. These changes were interpreted in terms of decreasing minority carrier lifetimes as related to generation-recombination currents. The magnitudes of reverse voltage breakdown were unaffected by irradiation.

  1. The cosmic microwave background radiation power spectrum as a random bit generator for symmetric- and asymmetric-key cryptography.

    Science.gov (United States)

    Lee, Jeffrey S; Cleaver, Gerald B

    2017-10-01

    In this note, the Cosmic Microwave Background (CMB) Radiation is shown to be capable of functioning as a Random Bit Generator, and constitutes an effectively infinite supply of truly random one-time pad values of arbitrary length. It is further argued that the CMB power spectrum potentially conforms to the FIPS 140-2 standard. Additionally, its applicability to the generation of a (n × n) random key matrix for a Vernam cipher is established.

  2. Power line harmonic radiation observed by the DEMETER spacecraft at 50/60Hz and low harmonics

    Czech Academy of Sciences Publication Activity Database

    Němec, F.; Parrot, M.; Santolík, Ondřej

    2015-01-01

    Roč. 120, č. 10 (2015), s. 8954-8967 ISSN 2169-9380 R&D Projects: GA ČR(CZ) GA14-31899S; GA MŠk LH12231 Institutional support: RVO:68378289 Keywords : PLHR * power line harmonic radiation * DEMETER Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.318, year: 2015 http://onlinelibrary.wiley.com/doi/10.1002/2015JA021682/full

  3. Low-power millimeter wave radiations do not alter stress-sensitive gene expression of chaperone proteins.

    Science.gov (United States)

    Zhadobov, M; Sauleau, R; Le Coq, L; Debure, L; Thouroude, D; Michel, D; Le Dréan, Y

    2007-04-01

    This article reports experimental results on the influence of low-power millimeter wave (MMW) radiation at 60 GHz on a set of stress-sensitive gene expression of molecular chaperones, namely clusterin (CLU) and HSP70, in a human brain cell line. Selection of the exposure frequency is determined by its near-future applications for the new broadband civil wireless communication systems including wireless local area networks (WLAN) for domestic and professional uses. Frequencies around 60 GHz are strongly attenuated in the earth's atmosphere and such radiations represent a new environmental factor. An exposure system operating in V-band (50-75 GHz) was developed for cell exposure. U-251 MG glial cell line was sham-exposed or exposed to MMW radiation for different durations (1-33 h) and two different power densities (5.4 microW/cm(2) or 0.54 mW/cm(2)). As gene expression is a multiple-step process, we analyzed chaperone proteins induction at different levels. First, using luciferase reporter gene, we investigated potential effect of MMWs on the activation of transcription factors (TFs) and gene promoter activity. Next, using RT-PCR and Western blot assays, we verified whether MMW exposure could alter RNA accumulation, translation, or protein stability. Experimental data demonstrated the absence of significant modifications in gene transcription, mRNA, and protein amount for the considered stress-sensitive genes for the exposure durations and power densities investigated. The main results of this study suggest that low-power 60 GHz radiation does not modify stress-sensitive gene expression of chaperone proteins. (c) 2006 Wiley-Liss, Inc.

  4. IRSN's Position on Safety and Radiation Protection at Nuclear Power Plants in France, 2012

    International Nuclear Information System (INIS)

    2014-01-01

    After working a year to consolidate the data, the annual report on the radiation protection and safety of nuclear power plants in France gives the IRSN's independent point of view on all progress and problems concerning safety and radiation protection encountered in the French nuclear power plant fleet in 2012. The first part of the report presents the main trends that emerge from IRSN's overall assessment of the radiation protection and safety performance of currently operating nuclear power plants for the year 2012. The year 2012 has witnessed an increase in the total number of significant events. However, IRSN notes the absence in 2012 of incidents with a potentially significant impact on nuclear power plant safety, the surrounding environment or nearby communities in a context of large-scale personnel renewal. This increase can mainly be explained by EDF's implementation of an improved nonconformance detection and handling procedure which led to the identification, in 2012, of various non-conformances presumably present for several years but previously undetected. With regard to radiation protection, IRSN notes that the effective dose received by the majority of exposed workers over a period of 12 consecutive months is below the annual public radiation dose limit. Faults may occur with nuclear power plant equipment or reactor monitoring systems. Given the standardisation of EDF nuclear power plant reactors, such faults may affect an entire reactor series or even the entire reactor fleet. A few examples deemed particularly significant by IRSN are presented in the second part of this report. French nuclear reactors are subject to modifications throughout their operating lives, particularly with a view to ensuring continuous safety improvement, this is the subject of the third part of the report. Most of these modifications are the result of studies conducted within the framework of ten-yearly safety reviews, leading to the definition and

  5. Synthesis of functional materials by radiation and qualification testing of organic materials in nuclear power plant

    International Nuclear Information System (INIS)

    Nho, Young Chang; Kim, Ki Yup; Kang, Phil Hyun and others; Jun, Hong Jae; Suh, Dong Hak; Lee, Young Moo; Min, Byung Kak; Bae, You Han

    2003-05-01

    The radiation crosslinking and grafting can be easily adjusted and is easily reproducible by controlling the radiation dose. These studies aim to develop new biomaterials such as covering for burns and wound, and controlled release of drug. A radiation technology was used to develop PTC materials useful in devices that limit electric fault currents. Radiation-curing of fiber-matrix composites is a promising application. There are a number of advantages to radiation curing of composites, compared with conventional thermal processing. Radiation curing at ambient temperature allows tighter control of part dimensions, and elimination of internal stresses which otherwise occur on cooling and which reduce material strength. These studies involved radiation curing of epoxy resins with various fibers and filler for structural application for aerospace and sport goods. The chain scission is the basis of other radiation treatments aimed at enhancing processing characteristics of polymers. These studies aim to make PTFE powder from PTFE scrap using the radiation degradation which allows incorporation of the material into coatings, inks etc. Low density polyethylene, crosslinked polyethylene, ethylene propylene rubber, and acrylonitrile butadiene rubber as cable insulating, seathing and sealing materials were irradiated for the accelerated ageing tests. Degradation was investigated by measuring dielectric analysis, thermogravimetric analysis, and dynamic mechanical analysis. Dielectric tanδ, storage modulus and loss modulus were increased with irradiation doses. However, decomposition temperature decreased with irradiation doses

  6. The Fukushima Daiichi Nuclear Power Plant accident and school bullying of affected children and adolescents: the need for continuous radiation education.

    Science.gov (United States)

    Sawano, Toyoaki; Nishikawa, Yoshitaka; Ozaki, Akihiko; Leppold, Claire; Tsubokura, Masaharu

    2018-04-09

    The health threats of radiation-release incidents are diverse and long term. In addition to direct radiation effects, it is imperative to manage the indirect effects of radiation such as stigma, prejudice and broader mental health impacts. Six years after the Fukushima Daiichi Nuclear Power Plant accident of March 2011, bullying caused by stigma and prejudice toward evacuees, including children, has become a social problem in Japan. This phenomenon may be associated with the fact that knowledge about radiation has still not reached the general public, and to a potential lack of motivation among Japanese citizens to learn about radiation and bullying. Continuous and sustained education regarding radiation is warranted in order to enhance the general knowledge level about the effects of radiation in Japan after the Fukushima Daiichi Nuclear Power Plant accident, and this education will become an important reference for education after future nuclear disasters.

  7. Radiations

    International Nuclear Information System (INIS)

    Pujol Mora, J.

    1999-01-01

    The exposition to ionizing radiations is a constant fact in the life of the human being and its utilization as diagnostic and therapeutic method is generalized. However, it is notorious how as years go on, the fear to the ionizing radiation seems to persist too, and this fact is not limited to the common individual, but to the technical personnel and professional personnel that labors with them same. (S. Grainger) [es

  8. Radiation

    International Nuclear Information System (INIS)

    Davidson, J.H.

    1986-01-01

    The basic facts about radiation are explained, along with some simple and natural ways of combating its ill-effects, based on ancient healing wisdom as well as the latest biochemical and technological research. Details are also given of the diet that saved thousands of lives in Nagasaki after the Atomic bomb attack. Special comment is made on the use of radiation for food processing. (U.K.)

  9. 2009 assessment of radiation safety in the Swedish nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, Lennart

    2009-04-15

    The overall conclusion is that the radiation safety, nuclear safety, the physical protection including nuclear safeguards and radiation protection, in the Swedish nuclear power plants has been maintained at an acceptable level. Large investment programmes are being carried out to comply with the requirements imposed by the authority regarding modernisation. Management systems and internal audits have developed in a positive direction. 2008 has been an eventful year in many respects. The nuclear industry is in a very intensive period. Modernisations are under way, aimed at improving safety, and measures are being taken to strengthen the physical protection in order to make forced entry to the plants more difficult. In addition, preparations are in progress to increase the thermal power in most of the reactors. Four events have occurred in 2008 that required SSM's permission to restart the plant (Category 1, SSMFS 2008:1). One event occurred in each of Oskarshamn 1 and 3, Forsmark 3 and Ringhals 2. The events in Oskarshamn 3 and Forsmark 3 were the result of broken control rod shafts. In Oskarshamn 1 a perturbation was caused by lightening, and in Ringhals 2 the event was due to deficiencies in the auxiliary feedwater capacity. Five events have been classified and reported as level 1 on the International Nuclear Events Scale (INES). In all 14 scrams have occurred. This is a higher frequency than the reactors have set as their goal. During the year SSM has carried out five incident-related (RASK) inspections in order to collect information relating to how the licensees have responded to the events and which measures have been taken to prevent a recurrence. None of the events have led to threats to the safety of the surroundings. However several events have been classified at a higher level than has been normal in recent years. Modernisation is being carried out in the form of large projects lasting for several years. The work is either carried out during extended

  10. Theoretical and experimental investigation of the Z pinch plasma as a source of power pulse of soft X radiation for generation of shock waves in condensed targets

    International Nuclear Information System (INIS)

    Grabovskij, E.V.; Smirnov, V.P.; Zakharov, S.V.; Vorob'ev, O.Yu.; Dyabilin, K.S.; Lebedev, M.E.; Fortov, V.E.; Frolov, A.A.

    1996-01-01

    Paper presents the results of theoretical analysis of processes occurring in Z-pinch plasma under conditions initiating a powerful pulse of soft X-radiation. The main attention is focused on double liner circuit designs. Estimations of power of radiation and spectrum are studied. The results are used to simulate processes occurring at generation of shock waves under the effect of soft X-radiation on the target. Experiments to generate shock waves with up to 3 Mbar amplitude pressure in lead under the effect of soft X-radiation were conducted using Angara-5 plant. 24 refs., 9 figs

  11. Calculation of the output power in self-amplified spontaneous radiation using scaling of power with number of simulation particles

    International Nuclear Information System (INIS)

    Yu, L.H.

    1998-01-01

    Recent advances in self-amplified spontaneous emission (SASE) experiments stimulate interest in quantitative comparison of measurements with theory. In this paper we show that the widely used simulation code TDA3D, developed by Tran and Wurtele [Comput. Phys. Commun. 54, 263 (1989)] even though a single frequency code, can be used to determine the output power in the SASE process with excellent approximation in the exponential growth regime. The method applies when the gain is not very high, which is a special advantage, because when the gain is not very high, the analytical calculation is particularly difficult since the exponential growing term does not dominate. The analysis utilizes a scaling relation between the output power and the number of simulation particles in the code TDA3D: left-angle P right-angle=N λ ' /N λ left-angle P ' right-angle, where left-angle P right-angle is the output power and N λ is the line density of the electrons, while left-angle P ' right-angle is the calculated output power using a line density N λ ' of the number of simulation particles in the code TDA3D. Because of the scaling property, the number of simulation particles can be taken to be many orders of magnitude less than the actual experiment. Comparison of our results with experiment yields new insight into the SASE process. copyright 1998 The American Physical Society

  12. Radiation

    International Nuclear Information System (INIS)

    Winther, J.F.; Ulbak, K.; Dreyer, L.; Pukkala, E.; Oesterlind, A.

    1997-01-01

    Exposure to solar and ionizing radiation increases the risk for cancer in humans. Some 5% of solar radiation is within the ultraviolet spectrum and may cause both malignant melanoma and non-melanocytic skin cancer; the latter is regarded as a benign disease and is accordingly not included in our estimation of avoidable cancers. Under the assumption that the rate of occurrence of malignant melanoma of the buttocks of both men and women and of the scalp of women would apply to all parts of the body in people completely unexposed to solar radiation, it was estimated that approximately 95% of all malignant melanomas arising in the Nordic populations around the year 2000 will be due to exposure to natural ultraviolet radiation, equivalent to an annual number of about 4700 cases, with 2100 in men and 2600 in women, or some 4% of all cancers notified. Exposure to ionizing radiation in the Nordic countries occurs at an average effective dose per capita per year of about 3 mSv (Iceland, 1.1 mSv) from natural sources, and about 1 mSv from man-made sources. While the natural sources are primarily radon in indoor air, natural radionuclides in food, cosmic radiation and gamma radiation from soil and building materials, the man-made sources are dominated by the diagnostic and therapeutic use of ionizing radiation. On the basis of measured levels of radon in Nordic dwellings and associated risk estimates for lung cancer derived from well-conducted epidemiological studies, we estimated that about 180 cases of lung cancer (1% of all lung cancer cases) per year could be avoided in the Nordic countries around the year 2000 if indoor exposure to radon were eliminated, and that an additional 720 cases (6%) could be avoided annually if either radon or tobacco smoking were eliminated. Similarly, it was estimated that the exposure of the Nordic populations to natural sources of ionizing radiation other than radon and to medical sources will each give rise to an annual total of 2120

  13. Radiation Exposure and Thyroid Cancer Risk After the Fukushima Nuclear Power Plant Accident in Comparison with the Chernobyl Accident.

    Science.gov (United States)

    Yamashita, S; Takamura, N; Ohtsuru, A; Suzuki, S

    2016-09-01

    The actual implementation of the epidemiological study on human health risk from low dose and low-dose rate radiation exposure and the comprehensive long-term radiation health effects survey are important especially after radiological and nuclear accidents because of public fear and concern about the long-term health effects of low-dose radiation exposure have increased considerably. Since the Great East Japan earthquake and the Fukushima Daiichi Nuclear Power Plant accident in Japan, Fukushima Prefecture has started the Fukushima Health Management Survey Project for the purpose of long-term health care administration and medical early diagnosis/treatment for the prefectural residents. Especially on a basis of the lessons learned from the Chernobyl accident, both thyroid examination and mental health care are critically important irrespective of the level of radiation exposure. There are considerable differences between Chernobyl and Fukushima regarding radiation dose to the public, and it is very difficult to estimate retrospectively internal exposure dose from the short-lived radioactive iodines. Therefore, the necessity of thyroid ultrasound examination in Fukushima and the intermediate results of this survey targeting children will be reviewed and discussed in order to avoid any misunderstanding or misinterpretation of the high detection rate of childhood thyroid cancer. © World Health Organisation 2016. All rights reserved. The World Health Organization has granted Oxford University Press permission for the reproduction of this article.

  14. Radiation Exposure and Thyroid Cancer Risk After the Fukushima Nuclear Power Plant Accident in Comparison with the Chernobyl Accident

    International Nuclear Information System (INIS)

    Yamashita, S.; Takamura, N.; Ohtsuru, A.; Suzuki, S.

    2016-01-01

    The actual implementation of the epidemiological study on human health risk from low dose and low-dose rate radiation exposure and the comprehensive long-term radiation health effects survey are important especially after radiological and nuclear accidents because of public fear and concern about the long-term health effects of low-dose radiation exposure have increased considerably. Since the Great East Japan earthquake and the Fukushima Daiichi Nuclear Power Plant accident in Japan, Fukushima Prefecture has started the Fukushima Health Management Survey Project for the purpose of long-term health care administration and medical early diagnosis/treatment for the prefectural residents. Especially on a basis of the lessons learned from the Chernobyl accident, both thyroid examination and mental health care are critically important irrespective of the level of radiation exposure. There are considerable differences between Chernobyl and Fukushima regarding radiation dose to the public, and it is very difficult to estimate retrospectively internal exposure dose from the short-lived radioactive iodines. Therefore, the necessity of thyroid ultrasound examination in Fukushima and the intermediate results of this survey targeting children will be reviewed and discussed in order to avoid any misunderstanding or misinterpretation of the high detection rate of childhood thyroid cancer. (authors)

  15. Power Difference in Spectrum of Sound Radiation before and after Break of Phantom by Piezoelectric Extracorporeal Shock Wave Lithotriptor

    Science.gov (United States)

    Kanai, Hiroshi; Jang, Yun-Seok; Chubachi, Noriyoshi; Tanahashi, Yoshikatsu

    1994-05-01

    This paper investigates the difference in the spectrum of sound radiated before and after the break of a phantom at a focal point of the piezoelectric extracorporeal shock wave lithotriptor (ESWL) in order to identify the break time or to examine whether a calculus exists exactly at the focal point or not. From the preliminary experiments using a piece of chalk as a phantom of a calculus to measure the sound radiated when impact is applied to the chalk by an impact hammer, it is found that the bending vibration component of the vibration is exhibited in the spectrum of sound. However, for small-sized chalk shorter than 3 cm, the peak frequency of the bending vibration is higher than 20 kHz. From the experiments using a piezoeletric ESWL, it is found that there is clear difference in the power spectra among the sound radiated before the break, that radiated just after the break in the breaking process, and that radiated when the chalk does not exist at the focal point of the ESWL. These characteristics will be effective for the examination of the existence of the calculus at the focal point.

  16. A review of cancer mortality data of radiation workers of Nuclear Power Plant, Paks, Hungary, in the light the international radiation epidemiology study

    International Nuclear Information System (INIS)

    Turai, I.; Kerekes, A.; Otos, M.; Veress, K.

    2007-01-01

    Complete text of publication follows. Objective: To give a review of cancer mortality data among Hungarian radiation workers in nuclear industry in comparison with the results of the international nuclear workers' study prevailing the size of the study group of all former studies. Methods: Retrospective cohort study including 598,068 workers of 154 nuclear establishments in 15 countries (AUS, BEL, CAN, FIN, FRA, GER, HUN, JAP, LIT, ROK, SLK, SPA, SWE, UK, USA) coordinated by the International Agency for Research on Cancer (IARC, Lyon, France). The national study was extended for an additional 4-year period. Results: In the international study 407,391 persons in 13 years of average employment received 19.4 mSv mean cumulative dose, while in the national study 3322 radiation workers of Nuclear Power Plant (NPP) Paks, Hungary, in 14 years of follow-up period accumulated in average 5.13 mSv, only. There were 5233 cancer deaths registered in the international study, associated with an estimated ERR of 0.97 per Sv. Thus, 19.4 mSv recorded cumulative dose can explain 1 to 2% of cancer death cases. In radiation workers of NPP, Paks, during the period of 1985-1998 there were 40 cancer deaths observed against the expected 58.8 cases. In a further four year period (1999-2002) 29 cancer death cases were identified vs. the expected 65.5 cases. The SMR for the cancer death cases registered in recent and former radiation workers of NPP, Paks in the 18-year follow-up period is 56%. The SMR from all causes was even lower, 40% only. Conclusions: In the international study the mean accumulated radiation dose received by nuclear workers in 13 years is below of the recent annual dose limit (20 mSv/yr of the effective dose). The average value for the whole of radiation workers in 15 countries is almost 4-times higher of that registered in Hungary. The 'healthy worker effect' in the nuclear industry, and particularly in Hungary has been proven, once again. Nevertheless, the results

  17. Radiation conditions is the region of Rovenskaya nuclear power plant construction

    International Nuclear Information System (INIS)

    Konstantinov, Yu.O.; Teplykh, A.A.; Kataev, V.T.; Dikaya, E.Ya.; Lisachenko, Eh.P.; Ponikarov, V.I.

    1978-01-01

    With a view to optimizing the monitoring of radiation conditions in the vicinity of NPP, an area extending 15-20 km around the construction site of the Rovenskaya atomic energy plant was surveyed. The level of natural gamma-radiation, contents of 90 Sr and 137 Cs in environmental objects, and doses of radiation received by the population from incorporated 137 Cs was studied. It was found that while the average natural gamma-radiation background was relatively low, local levels of the gamma background varied strongly with the type of soil and the pattern of housing systems in the human settlements concerned. The contents of 90 Sr and 137 Cs were also found to fluctuate considerably with the sampling site. 137 Cs was relatively high in cow's milk and in members of the community. The results obtained will be taken into account in the radiation monitoring program

  18. General approaches to the reconstruction of radiation monitoring systems at the nuclear power plants

    International Nuclear Information System (INIS)

    Nosovskij, A.V.; Garin, E.V.; Istomin, N.I.; Perminov, V.G.

    1998-01-01

    The article deals with the issue of the Chernobyl NPP radiation monitoring systems and equipment to make them meet the latest safety requirements and take into account the radiation situation at the ChNPP site after the accident of 1986. The descriptions of the existing radiation monitoring systems are given. The appropriate modifications in the systems structure as the initial (first) stage in establishing a new radiation monitoring system (RMS) based on the NPP general radiation safety principles are proposed. It is noted that reconstruction shall include the number of technical means important for arranging the informational and analytical system in addition to the existing one without any violations in its features. Later, the system shall be extended due to the technological functions extension. 7 refs., 4 figs

  19. Exposed persons at the Chernobyl Atomic Power Station accident: acute radiation effects

    International Nuclear Information System (INIS)

    Gus'kova, A.K.; Baranov, A.E.; Barabanova, A.V.

    1987-01-01

    Observation made over 115 patients with acute radiation sickness due to exposure external γ- and β-rays confirmed high efficiency of the earlier proposed principles of prognostication of the degree of severity by clinical manifestations of the primary disease response and those of separate syndromes, using the methods of hematological and cytogenetic analyses. Out of 115 victims, 56 persons had radiation burns (RB), 17 intestinal syndrome (IS), 80 - oropharengeal syndrome (ORS), 7 - interstitial radiation pneumonitis (IRP). In thanatogenesis, of prime importance were: RB (more than 40% of the body surface) - 19 persons and IRP - 7 persons. A severe course of intestinal and oropharengeal syndromes was combined with other fatal manifestations of radiation injury. Early isolation of patients (2-4 stages), selective decontamination of the intestine, prescription of a wide spectrum antibiotics, antimycotic and antiviral drugs, as well as γ-globulin could practically remove the risk of the development of fatal infectious complications during a medullary andtransitory forms of radiation sickness

  20. Advances in Nuclear Power Plant Water Chemistry in Reducing Radiation Exposure

    International Nuclear Information System (INIS)

    Febrianto

    2005-01-01

    Water quality in light water reactor in Pressurized Water Reactor as well as in Boiling Water Reactor has being gradually improved since the beginning, to reduce corrosion risk and radiation exposure level. Corrosion problem which occurred to both type of reactors can reduce the plants availability, increase the operation and maintenance cost and increase the radiation exposure. Corrosion and radiation exposure risk in both reactor rare different. BWR type reactor has more experiences in corrosion problem because at the type of reactor lets water to boil in the core, while at PWR type reactor, water is kept not to boil. The BWR reactor has also higher radiation exposure rather than the PWR one. Many collaborative efforts of plants manufacturers and plant operator utilities have been done to reduce the radiation exposure level and corrosion risk. (author)

  1. Radiation and High Temperature Tolerant GaN Power Electronics, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Power electronic components with high operating voltages are desirable in NASA Power Management and Distribution (PMAD) systems since they can lead to reduced mass...

  2. Visits to Australia by nuclear powered or armed vessels: contingency planning for the accidental release of ionizing radiation

    International Nuclear Information System (INIS)

    1989-01-01

    The report refers to the adequacy of current contingency planning by the Australian Federal and Senate authorities to deal with the accidental release of ionizating radiation from visiting nuclear powered or armed vessels in Australian waters and ports. Much of the material was obtained in response to questions put in writing by the Senate Standing Committee to the Department of Defence, ANSTO and others. In addition, the report contains relevant information from Commonwealth documents as well as the Committee findings and recommendations. Issues considered include: types of visiting nuclear powered vessels, accident likelihood and consequences, differences between naval and land-based reactors, safety records. The persons or organizations who made submissions or appeared in all public hearings are listed in the appendixes, along with all visits to Australian ports by nuclear powered warships from 1976 to 1988

  3. Control of occupational radiation exposures in TVA nuclear power plants - design and operating philosophy

    International Nuclear Information System (INIS)

    Belvin, E.A.; Lyon, M.; Beasley, E.G. Jr.; Zobel, W.; Stone, G.F.

    1976-01-01

    TVA has some 21,000 MWe of nuclear generation in various phases of design, construction, or operation. When Browns Ferry was designed in the late 1960's, there were no guidelines available regarding implant radiation control features, so TVA relied on good engineering and health physics judgement in developing its design and operating criteria for radiation protection. After two years of operation at Browns Ferry, the authors experience shows that their design criteria were in most cases adequate or more than adequate. However, several areas present continuing problems relative to radiation and contamination control. In view of the recent NRC ALARA guidelines, they have instituted a program to ensure that the ALARA concept is made an integral part of their design and operating plans. Administrative documents were issued giving management support to the ALARA concept. A 4-member management audit team consisting of representatives from their design, operating, and radiation protection groups was established to review the effectiveness of radiation protection design features and operating activities on a plant-by-plant basis. Reports and recommendations from these audits are sent to top-level management staff. Their goal is to maintain an audit-appraisal system consisting of in-plant awareness of radiation and contamination conditions, assessment of trends in occupational radiation exposures, and feedback to their designers regarding problems encountered during operation and maintenance activities

  4. Radiation control aspects of the civil construction for a high power free electron laser (FEL) facility

    International Nuclear Information System (INIS)

    Dunn, T.; Neil, G.; Stapleton, G.

    1996-01-01

    The paper discusses some of the assumptions and methods employed for the control of ionizing radiation in the specifications for the civil construction of a planned free electron laser facility based on a 200 MeV, 5 mA superconducting recirculation electron accelerator. Consideration is given firstly to the way in which the underlying building configuration and siting aspects were optimized on the basis of the early assumptions of beam loss and radiation goals. The various design requirements for radiation protection are then considered, and how they were folded into an aesthetically pleasing and functional building

  5. PHYSICAL DESIGN OF CHANGE OF POWER INFLUENCE IS ON WORKPLACES TAKING INTO ACCOUNT HIGH TEMPERATURE RADIATION

    Directory of Open Access Journals (Sweden)

    BELIKOV A. S.

    2017-04-01

    Full Text Available Purpose. Development of the degree of control methods for hazard exposure of workers to special divisions of large-scale emergencies and industrial accidents under the influence of excess heat radiation. The operational security solutions vital activity of special divisions of workers in extreme situations with high thermal radiation. Method. Construction of thermal fields and the establishment of dependencies change of infrared radiation on the location of jobs, the type of radiation source and the spectrum of the radiation sources. Results. In order to solve the problems of thermal protection of work places, actual data of measurement of thermal radiation at all workplaces is required. Such studies, for example, at an open window of a thermal furnace at a distance of 1.5-2 m are obviously dangerous and, most importantly, the reliability of the data is reduced because of the decrease in the productivity of measurements in extreme conditions of work. In order to determine the intensity of irradiation of the heat flow, it is necessary to perform a significant number of intermediate calculations or use several graphs or nomograms, which makes these calculations labor-intensive and not convenient for practical use. An attempt was made to summarize the results of research carried out in this direction, to improve working conditions, to significantly reduce the number of variables and to use existing instruments more efficiently during measurements. Based on the theoretical studies of thermal radiation at workplaces, it was established that with great accuracy it is possible to determine the distance to the source of thermal radiation from the point of measurement, the angle at which the source of thermal radiation is visible; in this case, the measurement point may be located at a distance safe for the researcher as we put the basis for the development of an experimental installation for the study of thermal radiation at workplaces. Scientific

  6. Analog and Power Microelectronics to Higher Radiation Levels and Lower Temperatures

    Data.gov (United States)

    National Aeronautics and Space Administration — A study was done to examine low-temperature effects and radiation damage properties of bipolar integrated circuits. Anticipated benefits: useful in missions with...

  7. Risks associated with low level ionizing radiation (with special reference to nuclear power workers)

    International Nuclear Information System (INIS)

    1989-01-01

    This document describes a project to use epidemiological studies of workers in the nuclear industry to estimate the cancer risk associated with low-dose chronic exposure to ionizing radiation. The project aims both to improve the basis for radiation risk assessment and to test the validity of currently used models for the extrapolation of radiation risk. This report focusses on the former aim, and summarizes discussions at two meetings held in June 1988. One of these was a small working group consisting mainly of epidemiologists who had carried out studies of nuclear workers; the other included nominees of the nuclear industries of eleven countries as well as epidemiologists and radiation physicists and biologists. As a result of the meetings, efforts are underway to pool existing data and a feasibility study is addressing the possibility of an international collaborative study of unstudied groups of nuclear workers

  8. Specialized medical sections for the treatment of radiation injuries from accidents in nuclear power plants

    International Nuclear Information System (INIS)

    Deanovic, Z.; Boranic, M.; Vitale, B.

    1980-01-01

    Presented is the organization of the final, highly specialized treatment (diagnostic and therapeutic) of persons that have been severely injured in a radiation or nuclear accident. In this organizational scheme, the leading idea was to group and establish suitable medical sections for the acceptance, diagnosic work-up, and treatment of radiation casualties, around a strong medical center in which the different specialists would be available

  9. The enhancement of natural radiation dosage by coal-fired power generation in the United Kingdom

    International Nuclear Information System (INIS)

    Corbett, J.O.

    1980-02-01

    The total fuel cycle of electricity generation from coal is assessed as a source of enhanced exposure to natural radiation. The various routes by which such exposure can arise are discussed and the consequent individual and collective radiation doses in the United Kingdom are estimated on the basis of a critical review of published data augmented by the results of recent, hitherto unpublished work within the CEGB. Further work is in progress to clarify particular areas of uncertainty that have been identified. (author)

  10. Occupational dose reduction at nuclear power plants: Annotated bibliography of selected readings in radiation protection and ALARA. Volume 8

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, S.G.; Khan, T.A.; Xie, J.W. [Brookhaven National Lab., Upton, NY (United States)

    1995-05-01

    The ALARA Center at Brookhaven National Laboratory publishes a series of bibliographies of selected readings in radiation protection and ALARA in a continuing effort to collect and disseminate information on radiation dose reduction at nuclear power plants. This volume 8 of the series. The abstracts in this bibliography were selected form proceedings of technical meetings and conference journals, research reports, and searches of the Energy Science and Technology database of the US Department of Energy. The subject material of these abstracts relates to the many aspects of radiation protection and dose reduction, and ranges form use of robotics, to operational health physics, to water chemistry. Material on the design, planning, and management of nuclear power stations is included, as well as information on decommissioning and safe storage efforts. Volume 8 contains 232 abstracts, an author index, and a subject index. The author index is specific for this volume. The subject index is cumulative and lists all abstract numbers from volumes 1 to 8. The numbers in boldface indicate the abstracts in this volume; the numbers not in boldface represent abstracts in previous volumes.

  11. Occupational dose reduction at nuclear power plants: Annotated bibliography of selected readings in radiation protection and ALARA

    International Nuclear Information System (INIS)

    Kaurin, D.G.; Khan, T.A.; Sullivan, S.G.; Baum, J.W.

    1993-07-01

    The ALARA Center at Brookhaven National Laboratory publishes a series of bibliographies of selected readings in radiation protection and ALARA in the continuing effort to collect and disseminate information on radiation dose reduction at nuclear power plants. This is volume 7 of the series. The abstracts in this bibliography were selected from proceedings of technical meetings and conferences, journals, research reports, and searches of the Energy Science and Technology database of the US Department of Energy. The subject material of these abstracts relates to radiation protection and dose reduction, and ranges from use of robotics to operational health physics, to water chemistry. Material on the design, planning, and management of nuclear power stations is included, as well as information on decommissioning and safe storage efforts. Volume 7 contains 293 abstract, an author index, and a subject index. The author index is specific for this volume. The subject index is cumulative and lists all abstract numbers from volumes 1 to 7. The numbers in boldface indicate the abstracts in this volume; the numbers not in boldface represent abstracts in previous volumes

  12. Occupational dose reduction at nuclear power plants: Annotated bibliography of selected readings in radiation protection and ALARA. Volume 7

    Energy Technology Data Exchange (ETDEWEB)

    Kaurin, D.G.; Khan, T.A.; Sullivan, S.G.; Baum, J.W. [Brookhaven National Lab., Upton, NY (United States)

    1993-07-01

    The ALARA Center at Brookhaven National Laboratory publishes a series of bibliographies of selected readings in radiation protection and ALARA in the continuing effort to collect and disseminate information on radiation dose reduction at nuclear power plants. This is volume 7 of the series. The abstracts in this bibliography were selected from proceedings of technical meetings and conferences, journals, research reports, and searches of the Energy Science and Technology database of the US Department of Energy. The subject material of these abstracts relates to radiation protection and dose reduction, and ranges from use of robotics to operational health physics, to water chemistry. Material on the design, planning, and management of nuclear power stations is included, as well as information on decommissioning and safe storage efforts. Volume 7 contains 293 abstract, an author index, and a subject index. The author index is specific for this volume. The subject index is cumulative and lists all abstract numbers from volumes 1 to 7. The numbers in boldface indicate the abstracts in this volume; the numbers not in boldface represent abstracts in previous volumes.

  13. Occupational dose reduction at nuclear power plants: Annotated bibliography of selected readings in radiation protection and ALARA. Volume 8

    International Nuclear Information System (INIS)

    Sullivan, S.G.; Khan, T.A.; Xie, J.W.

    1995-05-01

    The ALARA Center at Brookhaven National Laboratory publishes a series of bibliographies of selected readings in radiation protection and ALARA in a continuing effort to collect and disseminate information on radiation dose reduction at nuclear power plants. This volume 8 of the series. The abstracts in this bibliography were selected form proceedings of technical meetings and conference journals, research reports, and searches of the Energy Science and Technology database of the US Department of Energy. The subject material of these abstracts relates to the many aspects of radiation protection and dose reduction, and ranges form use of robotics, to operational health physics, to water chemistry. Material on the design, planning, and management of nuclear power stations is included, as well as information on decommissioning and safe storage efforts. Volume 8 contains 232 abstracts, an author index, and a subject index. The author index is specific for this volume. The subject index is cumulative and lists all abstract numbers from volumes 1 to 8. The numbers in boldface indicate the abstracts in this volume; the numbers not in boldface represent abstracts in previous volumes

  14. A review of the probabilistic safety assessment of the Radiation Monitor Calibration Laboratory of the Almirante Alvaro Alberto Power Plant

    International Nuclear Information System (INIS)

    Gomes, Erica Cupertino

    2005-03-01

    The main purpose of this work is to update the PSA study of the Radiation Monitor Calibration Laboratory of the Almirante Alvaro Alberto Power Station taking into account new information. It is considered in this study an evaluation of the human reliability analysis in the calibration procedure of the radiation monitors, and for such the THERP modeling is used, as well as the use of the Bayesian approach for the calculation of the equipment failure probabilities used by the operators. Some accident scenarios of external origin were incorporated for evaluating their importance for an accident that might expose a worker to gamma radiation. A catastrophic failure is analyzed in the diesel generators 3 and 4, whose building is nearby the laboratory, as well as the route of change and the transportation of the steam generator of the nuclear power plant since the laboratory is located in the plant controlled area. Although more accidents scenarios are considered in this work, a conservative approach was not used and thus a smaller radiological risk was obtained. (author)

  15. Radiation exposure of the population from 222Rn and other natural radionuclides around Mochovce nuclear power plant, Slovakia

    International Nuclear Information System (INIS)

    Bulko, Martin; Holy, Karol; Mullerova, Monika; Bohm, Radoslav; Pohronska, Zofia; Hola, Olga

    2017-01-01

    In this article, the effective dose to the population from natural sources of ionizing radiation in the vicinity of Mochovce nuclear power plant in Slovakia is presented. All major contributions to the effective dose were taken into account, including the contributions from gamma radiation of soil and rocks, cosmic radiation, and indoor and outdoor radon and thoron. On the basis of recent indoor radon measurements in Slovak cities and publicly available data about radon concentration in the soil air, a roughly linear relationship was found between these variables. Consequently, the annual effective dose from indoor radon and thoron was conservatively estimated. For the area of interest, a map of conservatively estimated potential effective doses was created. For the villages in the vicinity of Mochovce, the conservatively estimated effective dose to the population from natural sources ranged from 5.4 to 14.6 mSv, which is four orders of magnitude higher than the contribution of radioactive discharges from Mochovce nuclear power plant. (authors)

  16. Biological effects of neutron radiation and their implications for the nuclear power industry

    International Nuclear Information System (INIS)

    Dennis, J.A.

    1983-01-01

    Stimulated biophysical theories of the action of radiation on the cells of mammalian tissues, research on the effects of neutrons has been interpreted as implying that neutron radiation is about 60 times more effective than gamma radiation for the induction of tumours in rodents and for shortening their lives. This contrasts with the assumption made for protection purposes that it is only about ten times as effective. However, the same experiments can be interpreted also as implying that gamma radiation at the dose rates encountered in the workplace is five to ten times less effective than is generally assumed. Taken together these observations suggest that the real risks to humans from neutrons are comparable with the assumed risks from X- and gamma radiation. Further data are required to confirm these observations and their interpretation, and in the short term there is no need to change the current practices of radiological protection as regards neutron radiation. Nevertheless, it might be wise for long-term planning purposes to anticipate a reduction in the maximum permissible fluences of neutrons by a factor of about 3. (author)

  17. Suggestions of radiation protection instruments in ships used for transporting spent fuel elements from nuclear power plants to central stores and further to fuel reprocessing plants

    International Nuclear Information System (INIS)

    Warenmo, G.

    1979-01-01

    Some radiation protection measures are necessary in ships which will be used for transporting spent fuel elements from nuclear power plants to central stores and further to fuel reprocessing plants in order to protect the crew from unnecessarily high radiation doses and to ensure that not allowable values occur. Such measures are discussed in this report as well as suitable radiation protection instruments for such ships. (E.R.)

  18. Lessoning of radiation exposure. Radiation effect on humans and points to be noticed learned by Fukushima nuclear power plant accident

    International Nuclear Information System (INIS)

    Omori, Koichi

    2013-01-01

    Described are the process of medical measures taken along with the time after the Accident in the title (Mar. 12, 2011) and the present state (June, 2013) of Fukushima. The author at first presents the fundamental knowledge of radiation like unit, natural/medical doses, and the scale of the Accident compared with Chernobyl Accident (1986) involving observed diseases like thyroid cancer. On the day before the Accident, the Earthquake and Tsunami attacked Fukushima, and the University Hospital built up an anti-disaster medical headquarter. Until 15th, the hospital accepted about 500 persons for their contamination survey and subsequent de-contamination, then played a role for relaying 1,300 patients to other facilities and accepted 125 hospitalizations, during which communication by phone had been scarcely available, leading to complication and confusion. The radioisotope subjected to be noted was radioiodine earlier and then radiocesium. Emergent medical supports were conducted for various evacuation areas involving 20-30 km zone from the Plant by pediatric and infection teams with joint doctors from Thailand. The University had been defined to be the secondary emergent, expertized medical facility since 2001 and began to conduct the long-term project Fukushima Health Management Survey after the Accident for the fundamental and detailed studies of residents. The secondary facility at the emergency was inevitably the center of medicare as the primary hospitals were mostly in the radiological evacuation area and tertiary ones located afar. The University Hospital is now revising the formal manual for medical response to exposure. In Fukushima City, 60 km distant from the Plant, the ambient dose is about 0.5 mc-Sv and external exposure dose is lowering to 2-4 mSv/y. Decrease of medical staff like doctors and nurses is significant in the prefecture. (T.T.)

  19. Estimation of soft X-ray and EUV transition radiation power emitted from the MIRRORCLE-type tabletop synchrotron.

    Science.gov (United States)

    Toyosugi, N; Yamada, H; Minkov, D; Morita, M; Yamaguchi, T; Imai, S

    2007-03-01

    The tabletop synchrotron light sources MIRRORCLE-6X and MIRRORCLE-20SX, operating at electron energies E(el) = 6 MeV and E(el) = 20 MeV, respectively, can emit powerful transition radiation (TR) in the extreme ultraviolet (EUV) and the soft X-ray regions. To clarify the applicability of these soft X-ray and EUV sources, the total TR power has been determined. A TR experiment was performed using a 385 nm-thick Al foil target in MIRRORCLE-6X. The angular distribution of the emitted power was measured using a detector assembly based on an NE102 scintillator, an optical bundle and a photomultiplier. The maximal measured total TR power for MIRRORCLE-6X is P(max) approximately equal 2.95 mW at full power operation. Introduction of an analytical expression for the lifetime of the electron beam allows calculation of the emitted TR power by a tabletop synchrotron light source. Using the above measurement result, and the theoretically determined ratio between the TR power for MIRRORCLE-6X and MIRRORCLE-20SX, the total TR power for MIRRORCLE-20SX can be obtained. The one-foil TR target thickness is optimized for the 20 MeV electron energy. P(max) approximately equal 810 mW for MIRRORCLE-20SX is obtained with a single foil of 240 nm-thick Be target. The emitted bremsstrahlung is negligible with respect to the emitted TR for optimized TR targets. From a theoretically known TR spectrum it is concluded that MIRRORCLE-20SX can emit 150 mW of photons with E > 500 eV, which makes it applicable as a source for performing X-ray lithography. The average wavelength, \\overline\\lambda = 13.6 nm, of the TR emission of MIRRORCLE-20SX, with a 200 nm Al target, could provide of the order of 1 W EUV.

  20. Specification and qualification of fire detectors used in very high radiation rooms at the Angra-2 nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Sá, Luís Gustavo S.; Oliveira, Alisson S. de; Donorato, Fernando da S.; Oliveira, Marcos Vinicius M. de, E-mail: luisg@eletronuclear.gov.br, E-mail: alison@eletronuclear.gov.br, E-mail: donora@eletronuclear.gov.br, E-mail: marcoso@eletronuclear.gov.br [Eletrobrás Termonuclear S.A. (ELETRONUCLEAR), Angra dos Reis, RJ (Brazil). Departamento GDD.O

    2017-07-01

    During the Operation cycle 11 of the Angra-2 Nuclear Power Plant, faults were observed in the optical and ionic fire detectors models installed in very high radiation rooms (pump reactor rooms and sump containment). It was observed that these models were already obsolete and no available for purchase. In addition, as during the operation cycle these rooms are not accessible for maintenance because of the high dose rates, corrective measures only were taken at Outage 2P11 where all detectors were replaced by the new neural fire detector model. This high-tech model was not sufficiently resistant to the high dose rates of the environment rooms and starts to fail in the beginning of the cycle 11. Thereafter, a specific engineering work was developed in partnership with IPEN - Institute of Energy and Nuclear Research to specify and qualify a new model compatible with the electronic Central of the Fire Detection System and Alarm and at the same time resistant to radiation. The fire detectors were subjected to a known gamma radiation rate at the laboratory facilities of IPEN through the gamma irradiation equipment with cobalt radiation source. In this way, it was possible to determine its useful life comparing the total dose absorbed for detector failure and the environmental dose where it was installed in Angra-2. The current approved model was installed during Outage 2P13, and until now, no spurious alarms or failure were observed during the current cycle. (author)