WorldWideScience

Sample records for power reactor water

  1. Critical Power Response to Power Oscillations in Boiling Water Reactors

    International Nuclear Information System (INIS)

    Farawila, Yousef M.; Pruitt, Douglas W.

    2003-01-01

    The response of the critical power ratio to boiling water reactor (BWR) power oscillations is essential to the methods and practice of mitigating the effects of unstable density waves. Previous methods for calculating generic critical power response utilized direct time-domain simulations of unstable reactors. In this paper, advances in understanding the nature of the BWR oscillations and critical power phenomena are combined to develop a new method for calculating the critical power response. As the constraint of the reactor state - being at or slightly beyond the instability threshold - is removed, the new method allows the calculation of sensitivities to different operation and design parameters separately, and thus allows tighter safety margins to be used. The sensitivity to flow rate and the resulting oscillation frequency change are given special attention to evaluate the extension of the oscillation 'detect-and-suppress' methods to internal pump plants where the flow rate at natural circulation and oscillation frequency are much lower than jet pump plants

  2. Nuclear power reactors

    International Nuclear Information System (INIS)

    1982-11-01

    After an introduction and general explanation of nuclear power the following reactor types are described: magnox thermal reactor; advanced gas-cooled reactor (AGR); pressurised water reactor (PWR); fast reactors (sodium cooled); boiling water reactor (BWR); CANDU thermal reactor; steam generating heavy water reactor (SGHWR); high temperature reactor (HTR); Leningrad (RMBK) type water-cooled graphite moderated reactor. (U.K.)

  3. Calculations for accidents in water reactors during operation at power

    International Nuclear Information System (INIS)

    Blanc, H.; Dutraive, P.; Fabrega, S.; Millot, J.P.

    1976-07-01

    The behaviour of a water reactor on an accident occurring as the reactor is normally operated at power may be calculated through the computer code detailed in this article. Reactivity accidents, loss of coolant ones and power over-running ones are reviewed. (author)

  4. Natural uranium fueled light water moderated breeding hybrid power reactors

    International Nuclear Information System (INIS)

    Greenspan, E.; Schneider, A.; Misolovin, A.; Gilai, D.; Levin, P.

    The feasibility of fission-fusion hybrid reactors based on breeding light water thermal fission systems is investigated. The emphasis is on fuel-self-sufficient (FSS) hybrid power reactors that are fueled with natural uranium. Other LWHRs considered include FSS-LWHRs that are fueled with spent fuel from LWRs, and LWHRs which are to supplement LWRs to provide a tandem LWR-LWHR power economy that is fuel-self-sufficient

  5. Method of controlling power of a heavy water reactor

    International Nuclear Information System (INIS)

    Masuda, Hiroyuki.

    1975-01-01

    Object: To adjust a level of heavy water in a region of reflection body to control power in a heavy water reactor. Structure: The interior of a core tank filled with heavy water is divided by a partition into a core heavy water region and a reflection body region formed by surrounding the core heavy water region, and a level of heavy water within the reflection body region is adjusted to control power. Preferably, it is desirable to communicate the core heavy water region with the reflection body heavy water region at their lower portion, and gas pressure applied to an upper portion within at least one of said regions is adjusted to adjust the level of heavy water within the reflection body heavy water region. Thereby, the heavy water within the reflection body heavy water region may be introduced into the core region, thus requiring no tank which stores heavy water within the reflection body region. (Kamimura, M.)

  6. Power distribution effects on boiling water reactor stability

    International Nuclear Information System (INIS)

    Damiano, B.; March-Leuba, J.

    1989-01-01

    The work presented in this paper deals with the effects of spatial power distributions on the stability of boiling water reactors (BWRs). It is shown that a conservative power distribution exists for which the stability is minimal. These results are relevant because they imply that bounding stability calculations are possible and, thus, a worst-possible scenario may be defined for a particular BWR geometry. These bounding calculations may, then, be used to determine the maximum expected limit-cycle peak powers

  7. Power control device for heavy water moderated reactor

    International Nuclear Information System (INIS)

    Matsushima, Hidesuke; Masuda, Hiroyuki.

    1978-01-01

    Purpose: To improve self controllability of a nuclear power plant, as well as enable continuous power level control by a controlled flow of moderators in void pipes provided in a reactor core. Constitution: Hollow void pipes are provided in a reactor core to which a heavy water recycle loop for power control, a heavy water recycle pump for power control, a heavy water temperature regulator and a heavy water flow rate control valve for power control are connected in series to constitute a heavy water recycle loop for flowing heavy water moderators. The void ratio in each of the void pipes are calculated by a process computer to determine the flow rate and the temperature for the recycled heavy water. Based on the above calculation result, the heavy water temperature regulator is actuated by way of a temperature setter at the heavy water inlet and the heavy water flow rate is controlled by the actuation of the heavy water flow rate control valve. (Kawakami, Y.)

  8. Heavy-Water Power Reactors. Proceedings Of A Symposium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1968-04-15

    Proceedings of a Symposium organized by the IAEA and held in Vienna, 11-15 September 1967. The timeliness of the meeting was underlined by the large gathering of over 225 participants from 28 countries and three international organizations. Contents: Experience with heavy-water power and experimental reactors and projects (14 papers); New and advanced power reactor designs and concepts (8 papers); Development programmes and thorium cycle (9 papers); Economics and prospects of heavy-water power reactors (7 papers); Physics and fuel management (8 papers); Fuels (5 papers); Safety, control and engineering (6 papers); Panel discussion. Except for one Russian paper, which is published in English, each paper is in its original language (49 English and 8 French) and is preceded by an abstract in English with a second one in the original language if this is not English. Discussions are in English. (author)

  9. Heavy-Water Power Reactors. Proceedings Of A Symposium

    International Nuclear Information System (INIS)

    1968-01-01

    Proceedings of a Symposium organized by the IAEA and held in Vienna, 11-15 September 1967. The timeliness of the meeting was underlined by the large gathering of over 225 participants from 28 countries and three international organizations. Contents: Experience with heavy-water power and experimental reactors and projects (14 papers); New and advanced power reactor designs and concepts (8 papers); Development programmes and thorium cycle (9 papers); Economics and prospects of heavy-water power reactors (7 papers); Physics and fuel management (8 papers); Fuels (5 papers); Safety, control and engineering (6 papers); Panel discussion. Except for one Russian paper, which is published in English, each paper is in its original language (49 English and 8 French) and is preceded by an abstract in English with a second one in the original language if this is not English. Discussions are in English. (author)

  10. Automatic power control for a pressurized water reactor

    International Nuclear Information System (INIS)

    Hah, Yung Joon

    1994-02-01

    During a normal operation of a pressurized water reactor (PWR), the reactivity is controlled by control rods, boron, and the average temperature of the primary coolant. Especially in load follow operation, the reactivity change is induced by changes in power level and effects of xenon concentration. The control of the core power distribution is concerned, mainly, with the axial power distribution which depends on insertion and withdrawal of the control rods resulting in additional reactivity compensation. The utilization of part strength control element assemblies (PSCEAs) is quite appropriate for a control of the power distribution in the case of Yonggwang Nuclear Unit 3 (YGN Unit 3). However, control of the PSCEAs is not automatic, and changes in the boron concentration by dilution/boration are done manually. Thus, manual control of the PSCEAs and the boron concentration require the operator's experience and knowledge for a successful load follow operation. In this thesis, the new concepts have been proposed to adapt for an automatic power control in a PWR. One of the new concepts is the mode K control, another is a fuzzy power control. The system in mode K control implements a heavy-worth bank dedicated to axial shape control, independent of the existing regulating banks. The heavy bank provides a monotonic relationship between its motion and the axial power shape change, which allows automatic control of the axial power distribution. And the mode K enables precise regulation, by using double closed-loop control of the reactor coolant temperature and the axial power difference. Automatic reactor power control permits the nuclear power plant to accommodate the load follow operations, including frequency control, to respond to the grid requirements. The mode K reactor control concepts were tested using simulation responses of a Korean standardized 1000-MWe PWR which is a reference plant for the YGN Unit 3. The simulation results illustrate that the mode K would be

  11. Gravity Scaling of a Power Reactor Water Shield

    International Nuclear Information System (INIS)

    Reid, Robert S.; Pearson, J. Boise

    2008-01-01

    Water based reactor shielding is being considered as an affordable option for potential use on initial lunar surface reactor power systems. Heat dissipation in the shield from nuclear sources must be rejected by an auxillary thermal hydraulic cooling system. The mechanism for transferring heat through the shield is natural convection between the core surface and an array of thermosyphon radiator elements. Natural convection in a 100 kWt lunar surface reactor shield design has been previously evaluated at lower power levels (Pearson, 2006). The current baseline assumes that 5.5 kW are dissipated in the water shield, the preponderance on the core surface, but with some volumetric heating in the naturally circulating water as well. This power is rejected by a radiator located above the shield with a surface temperature of 370 K. A similarity analysis on a water-based reactor shield is presented examining the effect of gravity on free convection between a radiation shield inner vessel and a radiation shield outer vessel boundaries. Two approaches established similarity: 1) direct scaling of Rayleigh number equates gravity-surface heat flux products, 2) temperature difference between the wall and thermal boundary layer held constant on Earth and the Moon. Nussult number for natural convection (laminar and turbulent) is assumed of form Nu = CRa n . These combined results estimate similarity conditions under Earth and Lunar gravities. The influence of reduced gravity on the performance of thermosyphon heat pipes is also examined

  12. Advances in commercial heavy water reactor power stations

    International Nuclear Information System (INIS)

    Brooks, G.L.

    1987-01-01

    Generating stations employing heavy water reactors have now firmly established an enviable record for reliable, economic electricity generation. Their designers recognize, however, that further improvements are both possible and necessary to ensure that this reactor type remains attractively competitive with alternative nuclear power systems and with fossil-fuelled generation plants. This paper outlines planned development thrusts in a number of important areas, viz., capital cost reduction, advanced fuel cycles, safety, capacity factor, life extension, load following, operator aida, and personnel radiation exposure. (author)

  13. Fuzzy power control algorithm for a pressurized water reactor

    International Nuclear Information System (INIS)

    Hah, Y.J.; Lee, B.W.

    1994-01-01

    A fuzzy power control algorithm is presented for automatic reactor power control in a pressurized water reactor (PWR). Automatic power shape control is complicated by the use of control rods with a conventional proportional-integral-differential controller because it is highly coupled with reactivity compensation. Thus, manual shape controls are usually employed even for the limited capability needed for load-following operations including frequency control. In an attempt to achieve automatic power shape control without any design modifications to the core, a fuzzy power control algorithm is proposed. For the fuzzy control, the rule base is formulated based on a multiple-input multiple-output system. The minimum operation rule and the center of area method are implemented for the development of the fuzzy algorithm. The fuzzy power control algorithm has been applied to Yonggwang Nuclear Unit 3. The simulation results show that the fuzzy control can be adapted as a practical control strategy for automatic reactor power control of PWRs during the load-following operations

  14. Potential of light water reactors for future nuclear power plants

    International Nuclear Information System (INIS)

    Gueldner, R.

    2003-01-01

    Energy consumption worldwide is going to increase further in the next few decades. Reliable supplies of electricity can be achieved only by centralized power plant structures. In this scenario, nuclear power plants are going to play a leading role as reliable and competitive plants, also under deregulated market conditions. Today, light water reactors have achieved a leading position, both technically and economically, contributing 85% to worldwide electricity generation in nuclear plants. They will continue to be a proven technology in power generation. In many countries, activities therefore are concentrated on extending the service life of plants beyond a period of forty years. New nuclear generating capacities are expected to be created and added from the end of this decade onward. Most of this capacity will be in light water reactors. The concepts of third-generation reactors will meet all economic and technical safety requirements of the 21st century and will offer considerable potential for further development. Probably some thirty years from now, fourth-generation nuclear power plants will be ready for commercial application. These plants will penetrate especially new sectors of the energy markets. Public acceptance of new nuclear power plants is not a matter of reactor lines, provided that safety requirements are met. The important issue is the management of radioactive waste. The construction of new nuclear power plants in Western Europe and North America mainly hinges on the ability to explain to the public that there is a need for new plants and that nuclear power is fundamental to assuring sustainable development. (orig.)

  15. Power generation versus fuel production in light water hybrid reactors

    International Nuclear Information System (INIS)

    Greenspan, E.

    1977-06-01

    The economic potentials of fissile-fuel-producing light-water hybrid reactors (FFP-LWHR) and of fuel-self-sufficient (FSS) LWHR's are compared. A simple economic model is constructed that gives the capital investment allowed for the hybrid reactor so that the cost of electricity generated in the hybrid based energy system equals the cost of electricity generated in LWR's. The power systems considered are LWR, FSS-LWHR, and FFP-LWHR plus LWR, both with and without plutonium recycling. The economic potential of FFP-LWHR's is found superior to that of FSS-LWHR's. Moreover, LWHR's may compete, economically, with LWR's. Criteria for determining the more economical approach to hybrid fuel or power production are derived for blankets having a linear dependence between F and M. The examples considered favor the power generation rather than fuel production

  16. Operational margin monitoring system for boiling water reactor power plants

    International Nuclear Information System (INIS)

    Fukutomi, S.; Takigawa, Y.

    1992-01-01

    This paper reports on an on-line operational margin monitoring system which has been developed for boiling water reactor power plants to improve safety, reliability, and quality of reactor operation. The system consists of a steady-state core status prediction module, a transient analysis module, a stability analysis module, and an evaluation and guidance module. This system quantitatively evaluates the thermal margin during abnormal transients as well as the stability margin, which cannot be evaluated by direct monitoring of the plant parameters, either for the current operational state or for a predicted operating state that may be brought about by the intended operation. This system also gives operator guidance as to appropriate or alternate operations when the operating state has or will become marginless

  17. SWR 1000: The new boiling water reactor power plant concept

    International Nuclear Information System (INIS)

    Brettschuh, W.

    1999-01-01

    Siemens' Power Generation Group (KWU) is currently developing - on behalf of and in close co-operation with the German nuclear utilities and with support from various European partners - the boiling water reactor SWR 1000. This advanced design concept marks a new era in the successful tradition of boiling water reactor technology in Germany and is aimed, with an electric output of 1000 MW, at assuring competitive power generating costs compared to large-capacity nuclear power plants as well as coal-fired stations, while at the same time meeting the highest of safety standards, including control of a core melt accident. This objective is met by replacing active safety systems with passive safety equipment of diverse design for accident detection and control and by simplifying systems needed for normal plant operation on the basis of past operating experience. A short construction period, flexible fuel cycle lengths of between 12 and 24 months and a high fuel discharge burnup all contribute towards meeting this goal. The design concept fulfils international nuclear regulatory requirements and will reach commercial maturity by the year 2000. (author)

  18. Development Project of Supercritical-water Cooled Power Reactor

    International Nuclear Information System (INIS)

    Kataoka, K.; Shiga, S.; Moriya, K.; Oka, Y.; Yoshida, S.; Takahashi, H.

    2002-01-01

    A Supercritical-water Cooled Power Reactor (SCPR) development project (Feb. 2001- Mar. 2005) is being performed by a joint team consisting of Japanese universities and nuclear venders with a national fund. The main objective of this project is to provide technical information essential to demonstration of SCPR technologies through concentrating three sub-themes: 'plant conceptual design', 'thermohydraulics', and 'material and water chemistry'. The target of the 'plant conceptual design sub-theme' is simplify the whole plant systems compared with the conventional LWRs while achieving high thermal efficiency of more than 40 % without sacrificing the level of safety. Under the 'thermohydraulics sub-theme', heat transfer characteristics of supercritical-water as a coolant of the SCPR are examined experimentally and analytically focusing on 'heat transfer deterioration'. The experiments are being performed using fron-22 for water at a fossil boiler test facility. The experimental results are being incorporated in LWR analytical tools together with an extended steam/R22 table. Under the 'material and water chemistry sub-theme', material candidates for fuel claddings and internals of the SCPR are being screened mainly through mechanical tests, corrosion tests, and simulated irradiation tests under the SCPR condition considering water chemistry. In particular, stress corrosion cracking sensitivity is being investigated as well as uniform corrosion and swelling characteristics. Influences of water chemistry on the corrosion product characteristics are also being examined to find preferable water condition as well as to develop rational water chemistry controlling methods. (authors)

  19. Procedure for operating a heavy water cooled power reactor

    International Nuclear Information System (INIS)

    Rau, P.; Kumpf, H.

    1981-01-01

    Nuclear reactors cooled by heavy water usually have equipment for fuel element exchange during operation, with the primary circuit remaining contained. This fuel element exchange equipment is expensive and complicated in many respects. According to the invention, the heavy water is therefore replaced by light water after a certain time of operation in such way that light water is led in and heavy water is led off. After the replacement, at least a quarter of the fuel elements of the reactor core is exchanged with the reactor pressure vessel being open. Then the light water serving as a shielding is replaced by heavy water, with the reactor pressure vessel being closed. The invention is of interest particularly for high-conversion reactors. (orig.) [de

  20. Supercritical Water Reactor Cycle for Medium Power Applications

    International Nuclear Information System (INIS)

    BD Middleton; J Buongiorno

    2007-01-01

    Scoping studies for a power conversion system based on a direct-cycle supercritical water reactor have been conducted. The electric power range of interest is 5-30 MWe with a design point of 20 MWe. The overall design objective is to develop a system that has minimized physical size and performs satisfactorily over a broad range of operating conditions. The design constraints are as follows: Net cycle thermal efficiency (ge)20%; Steam turbine outlet quality (ge)90%; and Pumping power (le)2500 kW (at nominal conditions). Three basic cycle configurations were analyzed. Listed in order of increased plant complexity, they are: (1) Simple supercritical Rankine cycle; (2) All-supercritical Brayton cycle; and (3) Supercritical Rankine cycle with feedwater preheating. The sensitivity of these three configurations to various parameters, such as reactor exit temperature, reactor pressure, condenser pressure, etc., was assessed. The Thermoflex software package was used for this task. The results are as follows: (a) The simple supercritical Rankine cycle offers the greatest hardware simplification, but its high reactor temperature rise and reactor outlet temperature may pose serious problems from the viewpoint of thermal stresses, stability and materials in the core. (b) The all-supercritical Brayton cycle is not a contender, due to its poor thermal efficiency. (c) The supercritical Rankine cycle with feedwater preheating affords acceptable thermal efficiency with lower reactor temperature rise and outlet temperature. (d) The use of a moisture separator improves the performance of the supercritical Rankine cycle with feedwater preheating and allows for a further reduction of the reactor outlet temperature, thus it was selected for the next step. Preliminary engineering design of the supercritical Rankine cycle with feedwater preheating and moisture separation was performed. All major components including the turbine, feedwater heater, feedwater pump, condenser, condenser pump

  1. Cost analysis of light water reactor power plants

    International Nuclear Information System (INIS)

    Mooz, W.E.

    1978-06-01

    A statistical analysis is presented of the capital costs of light water reactor (LWR) electrical power plants. The objective is twofold: to determine what factors are statistically related to capital costs and to produce a methodology for estimating these costs. The analysis in the study is based on the time and cost data that are available on U.S. nuclear power plants. Out of a total of about 60 operating plants, useful capital-cost data were available on only 39 plants. In addition, construction-time data were available on about 65 plants, and data on completed construction permit applications were available for about 132 plants. The cost data were first systematically adjusted to constant dollars. Then multivariate regression analyses were performed by using independent variables consisting of various physical and locational characteristics of the plants. The dependent variables analyzed were the time required to obtain a construction permit, the construction time, and the capital cost

  2. Feasibility study of self sustaining capability on water cooled thorium reactors for different power reactors

    International Nuclear Information System (INIS)

    Permana, S.; Takaki, N.; Sekimoto, H.

    2007-01-01

    Thorium fuel cycle can maintain the sustainable system of the reactor for self sustaining system for future sustainable development in the world. Some characteristics of thorium cycle show some advantages in relation to higher breeding capability, higher performance of burn-up and more proliferation resistant. Several investigations was performed to improve the breeding capability which is essential for maintaining the fissile sustainability during reactor operation in thermal reactor such as Shippingport reactor and molten salt breeder reactor (MSBR) project. The preliminary study of breeding capability on water cooled thorium reactor has been investigated for various power output. The iterative calculation system is employed by coupling the equilibrium fuel cycle burn-up calculation and cell calculation of PIJ module of SRAC2000. In this calculation, 1238 fission products and 129 heavy nuclides are employed. In the cell calculation, 26 heavy metals and 66 fission products and 1 pseudo FP are employed. The employed nuclear data library was JENDL 3.2. The reactor is fueled by 2 33U-Th Oxide and it has used the light water coolant as moderator. Some characteristics such as conversion ratio and void reactivity coefficient performances are evaluated for the systems. The moderator to fuel ratio (MFR) values and average burnups are studied for survey parameter. The parametric survey for different power outputs are employed from 10 MWt to 3000 MWt for evaluating the some characteristics of core size and leakage effects to the spectra profile, required enrichment, breeding capability, fissile inventory condition, and void reactivity coefficient. Different power outputs are employed in order to evaluate its effect to the required enrichment for criticality, breeding capability, void reactivity and fissile inventory accumulation. The obtained value of the conversion ratios is evaluated by using the equilibrium atom composition. The conversion ratio is employed based on the

  3. Operation and utilization of low power research reactor critical facility for Advanced Heavy Water Reactor (AHWR)

    International Nuclear Information System (INIS)

    De, S.K.; Karhadkar, C.G.

    2017-01-01

    An Advanced Heavy Water Reactor (AHWR) has been designed and developed for maximum power generation from thorium considering large reserves of thorium. The design envisages using 54 pin MOX cluster with different enrichment of "2"3"3U and Pu in Thoria fuel pins. Theoretical models developed to neutron transport and the geometrical details of the reactor including all reactivity devices involve approximations in modelling, resulting in uncertainties. With a view to minimize these uncertainties, a low power research reactor Critical Facility was built in which cold clean fuel can be arranged in a desired and precise geometry. Different experiments conducted in this facility greatly contribute to understand and validate the physics design parameters

  4. Power flattening and reactivity suppression strategies for the Canadian supercritical water reactor concept

    International Nuclear Information System (INIS)

    McDonald, M.; Colton, A.; Pencer, J.

    2015-01-01

    The Canadian supercritical water-cooled reactor (SCWR) is a conceptual heavy water moderated, supercritical light water cooled pressure tube reactor. In contrast to current heavy water power reactors, the Canadian SCWR will be a batch fuelled reactor. Associated with batch fuelling is a large beginning-of-cycle excess reactivity. Furthermore, radial power peaking arising as a consequence of batch refuelling must be mitigated in some way. In this paper, burnable neutron absorber (BNA) added to fuel and absorbing rods inserted into the core are considered for reactivity management and power flattening. A combination of approaches appears adequate to reduce the core radial power peaking, while also providing reactivity suppression. (author)

  5. Remerschen nuclear power station with BBR pressurized water reactor

    International Nuclear Information System (INIS)

    Hoffmann, J.P.

    1975-01-01

    On the basis of many decades of successful cooperation in the electricity supply sector with the German RWE utility, the Grand Duchy of Luxemburg and RWE jointly founded Societe Luxembourgeoise d'Energie Nucleaire S.A. (SENU) in 1974 in which each of the partners holds a fifty percent interest. SENU is responsible for planning, building and operating this nuclear power station. Following an international invitation for bids on the delivery and turnkey construction of a nuclear power station, the consortium of the German companies of Brown, Boveri and Cie. AG (BBC), Babcock - Brown Boveri Reaktor GmbH (BBR) and Hochtief AG (HT) received a letter of intent for the purchase of a 1,300 MW nuclear power station equipped with a pressurized water reactor. The 1,300 MW station of Remerschen will be largely identical with the Muelheim-Kaerlich plant under construction by the same consortium near Coblence on the River Rhine since early 1975. According to present scheduling, the Remerschen nuclear power station could start operation in 1981. (orig.) [de

  6. Modeling and simulation of pressurized water reactor power plant

    International Nuclear Information System (INIS)

    Wang, S.J.

    1983-01-01

    Two kinds of balance of plant (BOP) models of a pressurized water reactor (PWR) system are developed in this work - the detailed BOP model and the simple BOP model. The detailed model is used to simulate the normal operational performance of a whole BOP system. The simple model is used to combine with the NSSS model for a whole plant simulation. The trends of the steady state values of the detailed model are correct and the dynamic responses are reasonable. The simple BOP model approach starts the modelling work from the overall point of view. The response of the normalized turbine power and the feedwater inlet temperature to the steam generator of the simple model are compared with those of the detailed model. Both the steady state values and the dynamic responses are close to those of the detailed model. The simple BOP model is found adequate to represent the main performance of the BOP system. The simple balance of plant model was coupled with a NSSS model for a whole plant simulation. The NSSS model consists of the reactor core model, the steam generator model, and the coolant temperature control system. A closed loop whole plant simulation for an electric load perturbation was performed. The results are plausible. The coupling effect between the NSSS system and the BOP system was analyzed. The feedback of the BOP system has little effect on the steam generator performance, while the performance of the BOP system is strongly affected by the steam flow rate from the NSSS

  7. Materialistic Aspects of Raising Resource of Pressurized Water Reactors for Low-Power Nuclear Plants

    International Nuclear Information System (INIS)

    Parshin, A.M.; Muratov, O.E.

    2005-01-01

    The opportunity of using ships reactors for low-power nuclear plants is considered. Some aspects of working constructional materials on cases of water-water reactors of ships nuclear units are considered. Advantages of raising resource of ships reactors are shown

  8. Guide to power reactors

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1959-07-15

    The IAEA's major first scientific publication is the Directory of Power Reactors now in operation or under construction in various parts of the world. The purpose of the directory is to present important details of various power projects in such a way as to provide a source of easy reference for anyone interested in the development of the peaceful uses of atomic energy, either at the technical or management level. Six pages have been devoted to each reactor the first of which contains general information, reactor physics data and information about the core. The second and third contain sketches of the fuel element or of the fuel element assembly, and of the horizontal and vertical sections of the reactor. On the fourth page information is grouped under the following heads: fuel element, core heat transfer, control, reactor vessel and over-all dimensions, and fluid flow. The fifth page shows a simplified flow diagram, while the sixth provides information on reflector and shielding, containment and turbo generator. Some information has also been given, when available, on cost estimates and operating staff requirements. Remarks and a bibliography constitute the last part of the description of each reactor. Reactor projects included in this directory are pressurized light water cooled power reactors. Boiling light water cooled power reactors, heavy water cooled power reactors, gas cooled power reactors, organic cooled power reactors liquid metal cooled power reactors and liquid metal cooled power reactors

  9. Recent computer applications in boiling water reactor power plants

    International Nuclear Information System (INIS)

    Hiraga, Shoji; Joge, Toshio; Kiyokawa, Kazuhiro; Kato, Kanji; Nigawara, Seiitsu

    1976-01-01

    Process computers in boiling water reactor power plants have won the position of important equipments for the calculation of the core and plant performances and for data logging. Their application technique is growing larger and larger every year. Here, two systems are introduced; plant diagnostic system and computerized control panel. The plant diagnostic system consists of the part processing the signals from a plant, the operation part mainly composed of a computer to diagnose the operating conditions of each system component using input signal, and the result display (CRT or typewriter). The concept on the indications on control panels in nuclear power plants is changing from ''Plant parameters and to be indicated on panel meters as much as possible'' to ''Only the data required for operation are to be indicated.'' Thus the computerized control panel is attracting attention, in which the process computer for processing the operating information and CRT display are introduced. The experimental model of that panel comprises and operator's console and a chief watchmen's console. Its functions are dialogic data access and the automatic selection of preferential information. (Wakatsuki, Y.)

  10. Predicted effect of power uprating on the water chemistry of commercial boiling water reactors

    International Nuclear Information System (INIS)

    Yeh, Tsung-Kuang; Wang, Mei-Ya; Chu, Charles F.; Chang Ching

    2009-01-01

    The approach of power uprating has been adopted by operators of light water reactors in the past few decades in order to increase the power generation efficiency of nuclear reactors. The power uprate strategy is apparently applicable to the three nuclear reactors in Taiwan as well. When choosing among the three types of power uprating, measurement uncertainty, stretch power uprating, and extended power uprating, a deliberate and thorough evaluation is required before a final decision and an optimal selection can be made. One practical way of increasing the reactor power is to deliberately adjust the fuel loading pattern and the control rod pattern and thus to avoid replacing the primary coolant pump with a new one of larger capacity. The power density of the reactor will increase with increasing power, but the mass flow rate in the primary coolant circuit (PCC) of a light water reactor will slightly increase (usually by less than 5 %) or even remain unchanged. Accordingly, an uprated power would induce higher neutron and gamma photon dose rates in the reactor coolant but have a minor or no effect on the mass flow rate of the primary coolant. The radiolysis product concentrations and the electrochemical corrosion potential (ECP) values differ largely in the PCC of a boiling water reactor (BWR). It is very difficult to measure the water chemistry data directly at various locations of an actual reactor. Thus the impact of power uprating on the water chemistry of a BWR operating under hydrogen water chemistry (HWC) can only be theoretically evaluated through computer modelling. In this study, the DEMACE computer code was modified to investigate the impact of power uprating on the water chemistry under a fixed mass flow rate in the primary coolant circuit of a BWR/6 type plant. Simulations were carried out for hydrogen concentrations in feedwater ranging from 0.0 to 2.0 mg . kg -1 and for power levels ranging from 100 % to 120 %. The responses of water chemistry and ECP

  11. Power control of water reactors using nitrogen 16 activity measurements

    International Nuclear Information System (INIS)

    Gariod, R.; Merchie, F.; O'byrne, G.

    1964-01-01

    At the Grenoble Nuclear Research Centre, the open-core swimming pool reactors Melusine (2 MW) and Siloe (15 MW) are controlled at a constant overall power using nitrogen-16 channels. The conventional linear control channels react instantaneously to the rapid power fluctuations, this being necessary for the safety of the reactors, but their power indications are erroneous since they are affected by local deformations of the thermal flux caused by the compensation movements of the control rods. The nitrogen-16 channels on the other hand give an indication of the overall power proportional to the mean fission flux and independent of the rod movements, but their response time is 15 seconds, A constant overall power control is thus possible by a slow correction of the reference signal given by the automatic control governed by thu linear channels by means of a correction term given by the 'N-16' channels: This is done automatically in Melusine and manually in Siloe. (authors) [fr

  12. Current status of nuclear power generation in Japan and directions in water cooled reactor technology development

    International Nuclear Information System (INIS)

    Miwa, T.

    1991-01-01

    Electric power demand aspects and current status of nuclear power generation in Japan are outlined. Although the future plan for nuclear power generation has not been determined yet the Japanese nuclear research centers and institutes are investigating and developing some projects on the next generation of light water reactors and other types of reactors. The paper describes these main activities

  13. Power oscillation and stability in water cooled reactors

    International Nuclear Information System (INIS)

    Por, G.; Kis, G.

    1998-01-01

    Periodic oscillation in measured temperature fluctuation was observed near to surface of a heated rod in certain heat transfer range. The frequency of the peak found in power spectral density of temperature fluctuation and period estimated from the cross correlation function for two axially placed thermocouples change linearly with linear energy (or surface heat) production. It was concluded that a resonance of such surface (inlet) temperature oscillation with the pole of the reactor transfer function can be responsible for power oscillation in BWR and PWR, thus instability is not solely due to reactor transfer function. (author)

  14. Fuel cladding interaction with water coolant in power reactors

    International Nuclear Information System (INIS)

    1985-11-01

    Water coolant chemistry and corrosion processes are important factors in reliable operation of NPP's, as at elevated temperatures water is aggressive towards structural materials. Water regimes for commercial Pressurized Water Reactors and Boiling Water Reactors were developed and proved to be satisfactory. Nevertheless, studies of operation experience continue and an amount of new Research and Development work is being conducted for further improvements of technology and better understanding of the physicochemical nature of those processes. In this report information is presented on the IAEA programme on fuel element cladding interaction with water coolant. Some results of this survey and recommendations made by the group of consultants who participated in this work are given as well as recommendations for continuation of this study. Separate abstracts were prepared for 6 papers of this report

  15. Hydrogen in water-cooled nuclear power reactors

    International Nuclear Information System (INIS)

    1992-01-01

    The Commission of the European Community (CEC) and the International Atomic Energy Agency (IAEA) decided in 1989 to update the state of the art concerning hydrogen in water cooled nuclear power reactors by commissioning a report which would review, all the available information to-date and make recommendations for the future. This joint report was prepared by committees formed by the IAEA and by the CEC. The aim of this report is to review the current understanding on the areas in which the research on hydrogen in LWR is conventionally presented, taking into account the results of the latest reported research developments. The main reactions through which hydrogen is produced are assessed together with their timings. An estimation of the amount of hydrogen produced by each reaction is given, in order to reckon their relative contribution to the hazard. An overview is then given of the state of knowledge of the most important phenomena taking place during its transport from the place of production and the phenomena which control the hydrogen combustion and the consequences of combustion under various conditions. Specific research work is recommended in each sector of the presented phenomena. The last topics reviewed in this report are the hydrogen detection and the prevent/mitigation of pressure and temperature loads on containment structures and structures and safety related equipment caused by hydrogen combustion

  16. Calculations on heavy-water moderated and cooled natural uranium fuelled power reactors

    International Nuclear Information System (INIS)

    Pinedo V, J.L.

    1979-01-01

    One of the codes that the Instituto Nacional de Investigaciones Nucleares (Mexico) has for the nuclear reactors design calculations is the LEOPARD code. This work studies the reliability of this code in reactors design calculations which component materials are the same of the heavy water moderated and cooled, natural uranium fuelled power reactors. (author)

  17. 10 CFR 50.46 - Acceptance criteria for emergency core cooling systems for light-water nuclear power reactors.

    Science.gov (United States)

    2010-01-01

    ... light-water nuclear power reactors. 50.46 Section 50.46 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC... reactors. (a)(1)(i) Each boiling or pressurized light-water nuclear power reactor fueled with uranium oxide... evaluation model. This section does not apply to a nuclear power reactor facility for which the...

  18. Power spectral density measurements with 252Cf for a light water moderated research reactor

    International Nuclear Information System (INIS)

    King, W.T.; Mihalczo, J.T.

    1979-01-01

    A method of determining the reactivity of far subcritical systems from neutron noise power spectral density measurements with 252 Cf has previously been tested in fast reactor critical assemblies: a mockup of the Fast Flux Test Facility reactor and a uranium metal sphere. Calculations indicated that this measurement was feasible for a pressurized water reactor (PWR). In order to evaluate the ability to perform these measurements with moderated reactors which have long prompt neutron lifetimes, measurements were performed with a small plate-type research reactor whose neutron lifetime (57 microseconds) was about a factor of three longer than that of a PWR and approx. 50% longer than that of a boiling water reactor. The results of the first measurements of power spectral densities with 252 Cf for a water moderated reactor are presented

  19. The development of reactor vessel internal heavy forging for 1000 MW pressurized-water reactor nuclear power plant

    International Nuclear Information System (INIS)

    Zhang Zhifeng; Chen Yongbo; Ding Xiuping; Zhang Lingfang

    2012-01-01

    This Paper introduced the development of Reactor Vessel Internal (RVI) heavy forgings for 1000 MW Pressurized Water Reactor (PWR) nuclear power plant, analyzed the manufacture difficulties and technical countermeasures. The testing result of the product indicated that the performance of RVI heavy forgings manufactured by Shanghai Heavy Machinery Plant Ld. (SHMP) is outstanding and entirely satisfy the technical requirements for RVI product. (authors)

  20. Power Excursion Accident Analysis of Research Water Reactor

    International Nuclear Information System (INIS)

    Khaled, S.M.; Doaa, G.M.

    2009-01-01

    A three-dimensional neutronic code POWEX-K has been developed, and it has been coupled with the sub-channel thermal-hydraulic core analysis code SV based on the Single Mass Velocity Model. This forms the integrated neutronic/thermal hydraulics code system POWEX-K/SV for the accident analysis. The Training and Research Reactors at Budapest University of Technology and Economics (BME-Reactor) has been taken as a reference reactor. The cross-section generation procedure based on WIMS. The code uses an implicit difference approach for both the diffusion equations and thermal-hydraulics modules, with reactivity feedback effects due to coolant and fuel temperatures. The code system was applied to analyzing power excursion accidents initiated by ramp reactivity insertion of 1.2 $. The results show that the reactor is inherently safe in case of such accidents i.e. no core melt is expected even if the safety rods do not fall into the core

  1. A design study of high electric power for fast reactor cooled by supercritical light water

    International Nuclear Information System (INIS)

    Koshizuka, Seiichi

    2000-03-01

    In order to evaluate the possibility to achieve high electric power by a fast reactor with supercritical light water, the design study was carried out on a large fast reactor core with high coolant outlet temperature (SCFR-H). Since the reactor coolant circuit uses once-through direct cycle where all feedwater flows through the core to the turbine at supercritical pressure, it is possible to design much simpler and more compact reactor systems and to achieve higher thermal efficiency than those of current light water reactors. The once-through direct cycle system is employed in current fossil-fired power plants. In the present study, three types of core were designed. The first is SCFR-H with blankets cooled by ascending flow, the second is SCFR-H with blankets cooled by descending flow and the third is SCFR-H with high thermal power. Every core was designed to achieve the thermal efficiency over 43%, positive coolant density reactivity coefficient and electric power over 1600 MW. Core characteristics of SCFR-Hs were compared with those of SCLWR-H (electric power: 1212 MW), which is a thermal neutron spectrum reactor cooled and moderated by supercritical light water, with the same diameter of the reactor pressure vessel. It was shown that SCFR-H could increase the electric power about 1.7 times maximally. From the standpoint of the increase of a reactor thermal power, a fast reactor has advantages as compared with a thermal neutron reactor, because it can increase the power density by adopting tight fuel lattices and eliminating the moderator region. Thus, it was concluded that a reactor cooled by supercritical light water could further improve the cost competitiveness by using a fast neutron spectrum and achieving a higher thermal power. (author)

  2. Capital cost: pressurized water reactor plant. Commerical electric power cost studies

    International Nuclear Information System (INIS)

    1977-06-01

    The investment cost study for the 1139-MW(e) pressurized water reactor (PWR) central station power plant consists of two volumes. This volume includes in addition to the foreword and summary, the plant description and the detailed cost estimate

  3. Capital cost: pressurized water reactor plant. Commercial electric power cost studies

    Energy Technology Data Exchange (ETDEWEB)

    1977-06-01

    The investment cost study for the 1139 MW(e) pressurized water reactor (PWR) central station power plant consists of two volumes. This volume contains the drawings, equipment list and site description.

  4. Capital cost: pressurized water reactor plant. Commercial electric power cost studies

    International Nuclear Information System (INIS)

    1977-06-01

    The investment cost study for the 1139 MW(e) pressurized water reactor (PWR) central station power plant consists of two volumes. This volume contains the drawings, equipment list and site description

  5. Design and analysis on super-critical water cooled power reactors

    International Nuclear Information System (INIS)

    Ishiwatari, Yuki

    2005-01-01

    The Super-Critical Water Cooled Power Reactors (SCPR) is cooled by 25 MPa supercritical water of 280degC at reactor inlet and greater than 500degC at reactor outlet and directly connected with turbine/generators with high energy conversion efficiency. This corresponds to the deletion of recirculation system and steam-water separation system of BWR type reactors or of pressurizer and steam generator of PWR type reactors. In addition to the design study of the university of Tokyo, technology development of the SCPR for practical use has started under the collaboration of industry and academia since 2000. Mockup single tube and bundle tests for heat transfer/fluid flow characteristics of the design have been conducted with 3D heat transfer analysis. Materials compatible with coolant conditions for fuel cans and reactor internals are also assessed. Overall evaluation of the reactor concept is under way. (T. Tanaka)

  6. The low-temperature water-water reactor for district heating atomic power plant (DHPP)

    International Nuclear Information System (INIS)

    Skvortsov, S.A.; Sokolov, I.N.; Krauze, L.V.; Nikiporetz, Yu.G.; Philimonov, Yu.V.

    1977-01-01

    The district heating atomic power plant in the article is distinguished by the increased reliability and safety of operation that was provided by the use of following main principles: relatively low parameters of the coolant; the intergral arrangement of equipment and accordingly the minimum branching of the reactor circuit; the natural circulation of coolant of the primary circuit in the steady-state, transient and emergency regimes of reactor operation; the considerable reserves of cold water of the primary circuit in the reactor vessel, providing the emergency cooling; the application of two shells each of which is designed for the total working pressure, the second shell is made of prestressed reinforced concrete that eliminates its brittle failure. (M.S.)

  7. Pressurized water reactor iodine spiking behavior under power transient conditions

    International Nuclear Information System (INIS)

    Ho, J.C.

    1992-01-01

    The most accepted theory explaining the cause of pressurized water reactor iodine spiking is steam formation and condensation in damaged fuel rods. The phase transformation of the primary coolant from water to steam and back again is believed to cause the iodine spiking phenomenon. But due to the complex nature of the phenomenon, a comprehensive model of the behavior has not yet been successfully developed. This paper presents a new model based on an empirical approach, which gives a first-order estimation of the peak iodine spiking magnitude. Based on the proposed iodine spiking model, it is apparent that it is feasible to derive a correlation using the plant operating data base to monitor and control the peak iodine spiking magnitude

  8. Generic environmental impact statement on handling and storage of spent light water power reactor fuel. Appendices

    International Nuclear Information System (INIS)

    1978-03-01

    Detailed appendices are included with the following titles: light water reactor fuel cycle, present practice, model 1000MW(e) coal-fired power plant, increasing fuel storage capacity, spent fuel transshipment, spent fuel generation and storage data (1976-2000), characteristics of nuclear fuel, and ''away-from-reactor'' storage concept

  9. Taiwan Power Company's power distribution analysis and fuel thermal margin verification methods for pressurized water reactors

    International Nuclear Information System (INIS)

    Huang, P.H.

    1995-01-01

    Taiwan Power Company's (TPC's) power distribution analysis and fuel thermal margin verification methods for pressurized water reactors (PWRs) are examined. The TPC and the Institute of Nuclear Energy Research started a joint 5-yr project in 1989 to establish independent capabilities to perform reload design and transient analysis utilizing state-of-the-art computer programs. As part of the effort, these methods were developed to allow TPC to independently perform verifications of the local power density and departure from nucleate boiling design bases, which are required by the reload safety evaluation for the Maanshan PWR plant. The computer codes utilized were extensively validated for the intended applications. Sample calculations were performed for up to six reload cycles of the Maanshan plant, and the results were found to be quite consistent with the vendor's calculational results

  10. The use of ferritic materials in light water reactor power plants

    International Nuclear Information System (INIS)

    Marston, T.V.

    1984-01-01

    This paper reviews the use of ferritic materials in LWR power plant components. The two principal types of LWR systems, the boiling water reactor (BWR) and the pressurized water reactor (PWR) are described. The evolution of the construction materials, including plates and forgings, is presented. The fabrication process for both reactors constructed with plates and forgings are described in detail. Typical mechanical properties of the reactor vessel materials are presented. Finally, one critical issue radiation embrittlement dealing with ferritic materials is discussed. This has been one of the major issues regarding the use of ferritic material in the construction of LWR pressure vessels

  11. Long-term scenarios of power reactors and fuel cycle development and the role of reduced moderation water reactors

    International Nuclear Information System (INIS)

    Sato, Osamu; Tatematsu, Kenji; Tanaka, Yoji

    2000-01-01

    Reduced moderation spectrum reactor is one of water cooled type reactors in future, which is based on the advanced technology of conventional nuclear power plants. The reduced moderation water reactor (RMWR) has various advantages, such as effective utilization of uranium resources, high conversion ratio, high burn-up, long-term cycle operation, and multiple recycle of plutonium. The RMWR is expected to be a substitute of fast breeder reactor (FBR) of which the development encounters with some technical and financial difficulties, and discontinues in many countries. The role of the RMWR on long-term scenarios of power reactor and fuel cycle development in Japan is investigated from the point of view of uranium resource needed. The consumption of natural uranium needed up to the year 2200 is calculated on various assumptions for the following three cases: (1) no breeder reactor; plutonium-thermal cycle in conventional light water reactor, (2) introduction of the FBR, and (3) introduction of the RMWR. The amounts of natural uranium consumption depends largely on the conversion ratio and plutonium quantity needed of a reactor type. The RMWR has a possibility as a substitute technology of the FBR with the improvement of conversion ratio and high burn-up. (Suetake, M.)

  12. Long-term scenarios of power reactors and fuel cycle development and the role of reduced moderation water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Osamu; Tatematsu, Kenji; Tanaka, Yoji [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2000-06-01

    Reduced moderation spectrum reactor is one of water cooled type reactors in future, which is based on the advanced technology of conventional nuclear power plants. The reduced moderation water reactor (RMWR) has various advantages, such as effective utilization of uranium resources, high conversion ratio, high burn-up, long-term cycle operation, and multiple recycle of plutonium. The RMWR is expected to be a substitute of fast breeder reactor (FBR) of which the development encounters with some technical and financial difficulties, and discontinues in many countries. The role of the RMWR on long-term scenarios of power reactor and fuel cycle development in Japan is investigated from the point of view of uranium resource needed. The consumption of natural uranium needed up to the year 2200 is calculated on various assumptions for the following three cases: (1) no breeder reactor; plutonium-thermal cycle in conventional light water reactor, (2) introduction of the FBR, and (3) introduction of the RMWR. The amounts of natural uranium consumption depends largely on the conversion ratio and plutonium quantity needed of a reactor type. The RMWR has a possibility as a substitute technology of the FBR with the improvement of conversion ratio and high burn-up. (Suetake, M.)

  13. Searching for full power control rod patterns in a boiling water reactor using genetic algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Montes, Jose Luis [Departamento Sistemas Nucleares, ININ, Carr. Mexico-Toluca Km. 36.5, Ocoyoacac, Edo. de Mexico (Mexico)]. E-mail: jlmt@nuclear.inin.mx; Ortiz, Juan Jose [Departamento Sistemas Nucleares, ININ, Carr. Mexico-Toluca Km. 36.5, Ocoyoacac, Edo. de Mexico (Mexico)]. E-mail: jjortiz@nuclear.inin.mx; Requena, Ignacio [Departamento Ciencias Computacion e I.A. ETSII, Informatica, Universidad de Granada, C. Daniel Saucedo Aranda s/n. 18071 Granada (Spain)]. E-mail: requena@decsai.ugr.es; Perusquia, Raul [Departamento Sistemas Nucleares, ININ, Carr. Mexico-Toluca Km. 36.5, Ocoyoacac, Edo. de Mexico (Mexico)]. E-mail: rpc@nuclear.inin.mx

    2004-11-01

    One of the most important questions related to both safety and economic aspects in a nuclear power reactor operation, is without any doubt its reactivity control. During normal operation of a boiling water reactor, the reactivity control of its core is strongly determined by control rods patterns efficiency. In this paper, GACRP system is proposed based on the concepts of genetic algorithms for full power control rod patterns search. This system was carried out using LVNPP transition cycle characteristics, being applied too to an equilibrium cycle. Several operation scenarios, including core water flow variation throughout the cycle and different target axial power distributions, are considered. Genetic algorithm fitness function includes reactor security parameters, such as MLHGR, MCPR, reactor k{sub eff} and axial power density.

  14. Steam water cycle chemistry of liquid metal cooled innovative nuclear power reactors

    International Nuclear Information System (INIS)

    Yurmanov, Victor; Lemekhov, Vadim; Smykov, Vladimir

    2012-09-01

    selection of chemistry controls is vital for NPPs with liquid metal cooled reactors. This paper highlights principles and approaches to chemistry controls in steam/water cycles of future NPPs with innovative liquid metal cooled reactors. The recommendations on how to arrange chemistry controls in steam/water cycles of future NPPs with innovative liquid metal cooled reactors are based taking into account: - the experience with operation of fossil power industry; - secondary side water chemistry of lead-bismuth eutectics cooled nuclear reactors at submarines; - steam/water cycles of NPPs with sodium cooled fast breeders BN-350 and BN-600; - secondary water chemistry at conventional NPPs with WER, RBMK and some other reactors. (authors)

  15. Reactor power control device

    International Nuclear Information System (INIS)

    Imaruoka, Hiromitsu.

    1994-01-01

    A high pressure water injection recycling system comprising injection pipelines of a high pressure water injection system and a flow rate control means in communication with a pool of a pressure control chamber is disposed to a feedwater system of a BWR type reactor. In addition, the flow rate control means is controlled by a power control device comprising a scram impossible transient event judging section, a required injection flow rate calculation section for high pressure water injection system and a control signal calculation section. Feed water flow rate to be supplied to the reactor is controlled upon occurrence of a scram impossible transient event of the reactor. The scram impossible transient event is judged based on reactor output signals and scram operation demand signals and injection flow rate is calculated based on a predetermined reactor water level, and condensate storage tank water or pressure control chamber pool water is injected to the reactor. With such procedures, water level can be ensured and power can be suppressed. Further, condensate storage tank water of low enthalpy is introduced to the pressure suppression chamber pool to directly control elevation of water temperature and ensure integrity of the pressure vessel and the reactor container. (N.H.)

  16. IAEA specialists' meeting on power ramping and cycling behaviour of water reactor fuel. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1983-06-01

    At its fourth Annual Meeting, the IAEA International Working Group on Water Reactor Fuel Performance and Technology (IWGFPT) recommended that the Agency should hold a second Specialists' Meeting on 'Power Ramping and Cycling Behaviour of Water Reactor Fuel'. As research activities related to power ramping and cycling of water reactor fuel have been pursued vigorously, it was the objective of this meeting to review and discuss today's State of the Art and current understanding of water reactor fuel behaviour related to this these. Emphasis should be on practical experience and experimental investigations. The meeting was organised in five sessions: Power ramping and power cycling programs in power and and research reactors; Experimental methods; Power ramping and cycling results; Investigations and results of separate effects, especially related to PCI, defect mechanism, mechanical response, fuel design, and specially related to fission gas release; Operational strategies, recommendations and economic implications. The session chairmen, together with the speakers, prepared and presented reports with summary, conclusions and recommendations of the individual sessions. These reports are added to this summary report.

  17. IAEA specialists' meeting on power ramping and cycling behaviour of water reactor fuel. Summary report

    International Nuclear Information System (INIS)

    1983-06-01

    At its fourth Annual Meeting, the IAEA International Working Group on Water Reactor Fuel Performance and Technology (IWGFPT) recommended that the Agency should hold a second Specialists' Meeting on 'Power Ramping and Cycling Behaviour of Water Reactor Fuel'. As research activities related to power ramping and cycling of water reactor fuel have been pursued vigorously, it was the objective of this meeting to review and discuss today's State of the Art and current understanding of water reactor fuel behaviour related to this these. Emphasis should be on practical experience and experimental investigations. The meeting was organised in five sessions: Power ramping and power cycling programs in power and and research reactors; Experimental methods; Power ramping and cycling results; Investigations and results of separate effects, especially related to PCI, defect mechanism, mechanical response, fuel design, and specially related to fission gas release; Operational strategies, recommendations and economic implications. The session chairmen, together with the speakers, prepared and presented reports with summary, conclusions and recommendations of the individual sessions. These reports are added to this summary report

  18. Topics to be covered in safety analysis reports for nuclear power plants with pressurized water reactors or boiling water reactors in the F.R.G

    International Nuclear Information System (INIS)

    Kohler, H.A.G.

    1977-01-01

    This manual aims at defining the standards to be used in Safety Analysis Reports for Nuclear Power Plants with Pressurized Water Reactors or Boiling Water Reactors in the Federal Republic of Germany. The topics to be covered are: Information about the site (geographic situation, settlement, industrial and military facilities, transport and communications, meteorological conditions, geological, hydrological and seismic conditions, radiological background), description of the power plant (building structures, safety vessel, reactor core, cooling system, ventilation systems, steam power plant, electrical facilities, systems for measurement and control), indication of operation (commissioning, operation, safety measures, radiation monitoring, organization), incident analysis (reactivity incidents, loss-of-coolant incidents, external impacts). (HP) [de

  19. Performance of water cooled nuclear power reactor fuels in India – Defects, failures and their mitigation

    International Nuclear Information System (INIS)

    Ganguly, Chaitanyamoy

    2015-01-01

    Water cooled and moderated nuclear power reactors account for more than 95% of the operating reactors in the world today. Light water reactors (LWRs) consisting of pressurized water reactor (PWR), their Russian counterpart namely VVER and boiling water reactor (BWR) will continue to dominate the nuclear power market. Pressurized heavy water reactor (PHWR), also known as CANDU, is the backbone of the nuclear power program in India. Updates on LWR and PHWR fuel performance are being periodically published by IAEA, OECD-NEA and the World Nuclear Association (WNA), highlighting fuel failure rate and the mitigation of fuel defects and failures. These reports clearly indicate that there has been significant improvement in in – pile fuel performance over the years and the present focus is to achieve zero fuel failure in high burn up and high performance fuels. The present paper summarizes the status of PHWR and LWR fuel performance in India, highlighting the manufacturing and the related quality control and inspection steps that are being followed at the PHWR fuel fabrication plant in order to achieve zero manufacturing defect which could contribute to achieving zero in – pile failure rate in operating and upcoming PHWR units in India. (author)

  20. Variation of the effectiveness of hydrogen water chemistry in a boiling water reactor during power coastdown operations

    International Nuclear Information System (INIS)

    Yeh Tsungkuang; Wang Meiya; Chu, Charles F.; Chang Ching

    2009-01-01

    A theoretical model was adapted to evaluate the impact of power coastdown on the water chemistry of a commercial boiling water reactor (BWR) in this work. In principle, the power density of a nuclear reactor upon a power level decrease would immediately be lowered, followed by water chemistry variations due to reduced radiolysis of water and extended coolant residence times in the core and near-core regions. It is currently a common practice for a commercial BWR to adopt hydrogen water chemistry (HWC) for corrosion mitigation. The optimal feedwater hydrogen concentration may be different after a power coastdown is implemented in a BWR. A computer code DEMACE was used in the current study to investigate the impact of various power coastdown levels on major radiolytic species concentrations and electrochemical corrosion potential (ECP) behavior of components in the primary coolant circuit of a domestic reactor operating under either normal water chemistry or HWC. Our analyses indicated that under a rated core flow rate the chemical species concentrations and the ECP did not vary monotonously with decreases in reactor power level at a fixed feedwater hydrogen concentration. In particular, ECP variations basically followed the patterns of hydrogen peroxide in the select regions and exhibited high values at power level of 90% for Reactor X. (author)

  1. Steam-generator tube failures: world experience in water-cooled nuclear power reactors in 1974

    International Nuclear Information System (INIS)

    Hare, M.G.

    1976-01-01

    Steam-generator tube failures were reported at 25 of 59 water-cooled nuclear power reactors surveyed in 1974, compared to 11 of 49 in 1973. A summary is presented of these failures, most of which, where the cause is known, were the result of corrosion. Water chemistry control, inspection and repair procedures, and failure rates are discussed

  2. A potential of boiling water power reactors with a natural circulation of a coolant

    International Nuclear Information System (INIS)

    Osmachkin, V.S.; Sokolov, I.N.

    1998-01-01

    The use of the natural circulation of coolant in the boiling water reactors simplifies a reactor control and facilities the service of the equipment components. The moderated core power loads allows the long fuel burnup, good control ability and large water stock set up the enhancement of safety level. That is considered to be very important for isolated regions or small countries. In the paper a high safety level and effectiveness of BWRs with natural circulation are reviewed. The limitations of flow stability and protection measures are being discussed. Some recent efforts in designing of such reactors are described.(author)

  3. Investigation of the resonant power oscillation in the Halden Boiling Water Reactor by autoregressive modeling

    International Nuclear Information System (INIS)

    Oguma, Ritsuo

    1980-01-01

    In the HBWR (Halden Boiling Water Reactor), there exists a resonant power oscillation with period about 0.04 Hz at power levels higher than about 9.5 MWt. While the resonant oscillation in not so large as to affect the normal reactor operation, it is significant, from the viewpoint of reactor diagnosis, to grasp its characteristics and find the cause. Noise analysis based on the autoregressive (AR) modeling technique has been made to reveal the driving source for this oscillation which led to the suggestion that it is attributed to the dynamic interference of heat exchange process between two parallel-connected steam transformers against the reactor. The present study demonstrates that the method used here is highly effective for tracing back to a noise source inducing the variation of quantities in a system, and also applicable to problems of reactor noise analysis and diagnosis. (author)

  4. Steam-generator tube performance: world experience with water-cooled nuclear power reactors during 1978

    International Nuclear Information System (INIS)

    Tatone, O.S.; Pathania, R.S.

    1980-01-01

    The performance of steam-generator tubes in water-cooled nuclear power reactors during 1978 is reviewed. Tube failures occurred at 31 of the 86 reactors surveyed. The causes of these failures and the procedures designed to deal with them are described. The number of tubes plugged has decreased dramatically in 1978 compared to the previous year. This is attributed to the diligent application of techniques developed through in-plant experience and research and development programs over the past several years

  5. Steam generator tube performance: experience with water-cooled nuclear power reactors during 1977

    International Nuclear Information System (INIS)

    Pathania, R.S.; Tatone, O.S.

    1979-02-01

    The performance of steam generator tubes in water-cooled nuclear power reactors has been reviewed for 1977. Failures were reported in 34 of the 79 reactors surveyed. Causes of these failures and inspection and repair procedures designed to deal with them are presented. Although corrosion remained the leading cause of tube failures, specific mechanisms have been identified and methods of dealing with them developed. These methods are being applied and should lead to a reduction of corrosion failures in future. (author)

  6. Method to operate power reactors with light water cooling

    International Nuclear Information System (INIS)

    Aleite, W.; Bock, H.W.

    1976-01-01

    The invention provides a possibility to 'condition' the fuel of a power plant used in base load operation, i.e. to bring it to such a high power density level that the local excesses arising with the occasional total power changes, remain below the power densities reached in normal operation (conditioning level). (orig./RW) [de

  7. HOMOGENEOUS NUCLEAR POWER REACTOR

    Science.gov (United States)

    King, L.D.P.

    1959-09-01

    A homogeneous nuclear power reactor utilizing forced circulation of the liquid fuel is described. The reactor does not require fuel handling outside of the reactor vessel during any normal operation including complete shutdown to room temperature, the reactor being selfregulating under extreme operating conditions and controlled by the thermal expansion of the liquid fuel. The liquid fuel utilized is a uranium, phosphoric acid, and water solution which requires no gus exhaust system or independent gas recombining system, thereby eliminating the handling of radioiytic gas.

  8. Installation of the Light-Water Breeder Reactor at the Shippingport Atomic Power Station (LWBR Development Program)

    International Nuclear Information System (INIS)

    Massimino, R.J.; Williams, D.A.

    1983-05-01

    This report summarizes the refueling operations performed to install a Light Water Breeder Reactor (LWBR) core into the existing pressurized water reactor vessel at the Shippingport Atomic Power Station. Detailed descriptions of the major installation operations (e.g., primary system preconditioning, fuel installation, pressure boundary seal welding) are included as appendices to this report; these operations are of technical interest to any reactor servicing operation, whether the reactor is a breeder or a conventional light water non-breeder core

  9. Installation of the Light-Water Breeder Reactor at the Shippingport Atomic Power Station (LWBR Development Program)

    Energy Technology Data Exchange (ETDEWEB)

    Massimino, R.J.; Williams, D.A.

    1983-05-01

    This report summarizes the refueling operations performed to install a Light Water Breeder Reactor (LWBR) core into the existing pressurized water reactor vessel at the Shippingport Atomic Power Station. Detailed descriptions of the major installation operations (e.g., primary system preconditioning, fuel installation, pressure boundary seal welding) are included as appendices to this report; these operations are of technical interest to any reactor servicing operation, whether the reactor is a breeder or a conventional light water non-breeder core.

  10. The power control system of the Siemens-KWU nuclear power station of the PWR [pressurized water reactors] type

    International Nuclear Information System (INIS)

    Huber, Horacio

    1989-01-01

    Starting with the first nuclear power plant constructed by Siemens AG of the pressurized light water reactor line (PWR), the Obrigheim Nuclear Power Plant (340 MWe net), until the recently constructed plants of 1300 MWe (named 'Konvoi'), the design of the power control system of the plant was continuously improved and optimized using the experience gained in the operation of the earlier generations of plants. The reactor power control system of the Siemens - KWU nuclear power plants is described. The features of this design and of the Siemens designed heavy water power plants (PHWR) Atucha I and Atucha II are mentioned. Curves showing the behaviour of the controlled variables during load changes obtained from plant tests are also shown. (Author) [es

  11. Power distribution monitoring system in the boiling water cooled reactor core

    International Nuclear Information System (INIS)

    Leshchenko, Yu.I.; Sadulin, V.P.; Semidotskij, I.I.

    1987-01-01

    Consideration is being given to the system of physical power distribution monitoring, used during several years in the VK-50 tank type boiling water cooled reactor. Experiments were conducted to measure the ratios of detector prompt and activation currents, coefficients of detector relative sensitivity with respect to neutrons and effective cross sections of 103 Rh interaction with thermal and epithermal neutrons. Mobile self-powered detectors (SPD) with rhodium emitters are used as the power distribution detectors in the considered system. All detectors move simultaneously with constant rate in channels, located in fuel assembly central tubes, when conducting the measurements. It is concluded on the basis of analyzing the obtained data, that investigated system with calibrated SPD enables to monitor the absolute power distribution in fuel assemblies under conditions of boiling water cooled reactor and is independent of thermal engineering measurements conducted by in core instruments

  12. Development of the fuel-cycle costs in nuclear power stations with light-water reactors

    International Nuclear Information System (INIS)

    Brosch, R.; Moraw, G.; Musil, G.; Schneeberger, M.

    1976-01-01

    The authors investigate the fuel-cycle costs in nuclear power stations with light-water reactors in the Federal Republic of Germany in the years 1966 to 1976. They determine the effect of the price development for the individual components of the nuclear fuel cycle on the fuel-cycle costs averaged over the whole power station life. Here account is taken also of inflation rates and the change in the DM/US $ parity. In addition they give the percentage apportionment of the fuel-cycle costs. The authors show that real fuel-cycle costs for nuclear power stations with light-water reactors in the Federal Republic of Germany have risen by 11% between 1966 and 1976. This contradicts the often repeated reproach that fuel costs in nuclear power stations are rising very steeply and are no longer competitive. (orig.) [de

  13. Feasibility Study of Supercritical Light Water Cooled Fast Reactors for Actinide Burning and Electric Power Production

    Energy Technology Data Exchange (ETDEWEB)

    Mac Donald, Philip Elsworth; Buongiorno, Jacopo; Davis, Cliff Bybee; Weaver, Kevan Dean

    2002-01-01

    The use of supercritical temperature and pressure light water as the coolant in a direct-cycle nuclear reactor offers potential for considerable plant simplification and consequent capital and O&M cost reduction compared with current light water reactor (LWR) designs. Also, given the thermodynamic conditions of the coolant at the core outlet (i.e. temperature and pressure beyond the water critical point), very high thermal efficiencies of the power conversion cycle are possible (i.e. up to 46%). Because no change of phase occurs in the core, the need for steam separators and dryers as well as for BWR-type recirculation pumps is eliminated, which, for a given reactor power, results in a substantially shorter reactor vessel than the current BWRs. Furthermore, in a direct cycle the steam generators are not needed. If a tight fuel rod lattice is adopted, it is possible to significantly reduce the neutron moderation and attain fast neutron energy spectrum conditions. In this project a supercritical water reactor concept with a simple, blanket-free, pancake-shaped core will be developed. This type of core can make use of either fertile or fertile-free fuel and retain the hard spectrum to effectively burn plutonium and minor actinides from LWR spent fuel while efficiently generating electricity.

  14. Methods and technologies for cost reduction in the design of water cooled reactor power plants

    International Nuclear Information System (INIS)

    1991-05-01

    The Specialists Meeting was organized in the framework of the IAEA International Working Group on Advanced Technologies for Water-Cooled Reactors. Its purpose was to provide an international forum for review and discussion on recent results in research and development on different methods and technologies of current and advanced water-cooled reactor power plants, which can lead to reduced investment and operation, maintenance and fuel-cycle costs of the plants. 27 specialists representing 10 countries and the IAEA took part in the meeting. 10 papers were presented. A separate abstract was prepared for each of these papers. Refs, figs and tabs

  15. Steam generator tube failures: experience with water-cooled nuclear power reactors during 1976

    International Nuclear Information System (INIS)

    Tatone, O.S.; Pathania, R.S.

    1978-02-01

    A survey was conducted of experience with steam generator tubes at nuclear power stations during 1976. Failures were reported at 25 out of 68 water-cooled reactors. The causes of these failures and the repair and inspection procedures designed to cope with them are summarized. Examination of the data indicates that corrosion was the major cause of steam generator tube failures. Improvements are needed in steam generator design, condenser integrity and secondary water chemistry control. (author)

  16. Guideline for examination concerning the evaluation of safety in light water power reactor installations

    International Nuclear Information System (INIS)

    1978-01-01

    This guideline was drawn up as the guide for examination when the safety evaluation of nuclear reactors is carried out at the time of approving the installation of light water power reactors. Accordingly in case of the examination of safety, it must be confirmed that the contents of application are in conformity with this guideline. If they are in conformity, it is judged that the safety evaluation of the policy in the basic design of a reactor facility is adequate, and also that the evaluation concerning the separation from the public in surroundings is adequate as the condition of location of the reactor facility. This guideline is concerned with light water power reactors now in use, but the basic concept may be the reference for the examination of the other types of reactors. If such a case occurs that the safety evaluation does not conform to this guideline, it is not excluded when the appropriate reason is clarified. The purpose of safety evaluation, the scope to be evaluated, the selection of the events to be evaluated, the criteria for judgement, the matters taken into consideration at the time of analysis, the concrete events of abnormal transient change and accident in operation, and the concrete events of serious accident and hypothetic accident are stipulated. The explanation and two appendices are attached. (Kako, I.)

  17. Power level effects on thorium-based fuels in pressure-tube heavy water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Bromley, B.P.; Edwards, G.W.R., E-mail: blair.bromley@cnl.ca [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada); Sambavalingam, P. [Univ. of Ontario Inst. of Technology, Oshawa, Ontario (Canada)

    2016-06-15

    Lattice and core physics modeling and calculations have been performed to quantify the impact of power/flux levels on the reactivity and achievable burnup for 35-element fuel bundles made with Pu/Th or U-233/Th. The fissile content in these bundles has been adjusted to produce on the order of 20 MWd/kg burnup in homogeneous cores in a 700 MWe-class pressure-tube heavy water reactor, operating on a once-through thorium cycle. Results demonstrate that the impact of the power/flux level is modest for Pu/Th fuels but significant for U-233/Th fuels. In particular, high power/flux reduces the breeding and burnup potential of U-233/Th fuels. Thus, there may be an incentive to operate reactors with U-233/Th fuels at a lower power density or to develop alternative refueling schemes that will lower the time-average specific power, thereby increasing burnup.(author)

  18. Power level effects on thorium-based fuels in pressure-tube heavy water reactors

    International Nuclear Information System (INIS)

    Bromley, B.P.; Edwards, G.W.R.; Sambavalingam, P.

    2016-01-01

    Lattice and core physics modeling and calculations have been performed to quantify the impact of power/flux levels on the reactivity and achievable burnup for 35-element fuel bundles made with Pu/Th or U-233/Th. The fissile content in these bundles has been adjusted to produce on the order of 20 MWd/kg burnup in homogeneous cores in a 700 MWe-class pressure-tube heavy water reactor, operating on a once-through thorium cycle. Results demonstrate that the impact of the power/flux level is modest for Pu/Th fuels but significant for U-233/Th fuels. In particular, high power/flux reduces the breeding and burnup potential of U-233/Th fuels. Thus, there may be an incentive to operate reactors with U-233/Th fuels at a lower power density or to develop alternative refueling schemes that will lower the time-average specific power, thereby increasing burnup.(author)

  19. EXPERIMENTAL EVALUATION OF THE THERMAL PERFORMANCE OF A WATER SHIELD FOR A SURFACE POWER REACTOR

    International Nuclear Information System (INIS)

    Reid, Robert S.; Pearson, J. Bosie; Stewart, Eric T.

    2007-01-01

    Water based reactor shielding is being investigated for use on initial lunar surface power systems. A water shield may lower overall cost (as compared to development cost for other materials) and simplify operations in the setup and handling. The thermal hydraulic performance of the shield is of significant interest. The mechanism for transferring heat through the shield is natural convection. Natural convection in a 100 kWt lunar surface reactor shield design is evaluated with 2 kW power input to the water in the Water Shield Testbed (WST) at the NASA Marshall Space Flight Center. The experimental data from the WST is used to validate a CFD model. Performance of the water shield on the lunar surface is then predicted with a CFD model anchored to test data. The experiment had a maximum water temperature of 75 C. The CFD model with 1/6-g predicts a maximum water temperature of 88 C with the same heat load and external boundary conditions. This difference in maximum temperature does not greatly affect the structural design of the shield, and demonstrates that it may be possible to use water for a lunar reactor shield.

  20. EXPERIMENTAL EVALUATION OF THE THERMAL PERFORMANCE OF A WATER SHIELD FOR A SURFACE POWER REACTOR

    Energy Technology Data Exchange (ETDEWEB)

    REID, ROBERT S. [Los Alamos National Laboratory; PEARSON, J. BOSIE [Los Alamos National Laboratory; STEWART, ERIC T. [Los Alamos National Laboratory

    2007-01-16

    Water based reactor shielding is being investigated for use on initial lunar surface power systems. A water shield may lower overall cost (as compared to development cost for other materials) and simplify operations in the setup and handling. The thermal hydraulic performance of the shield is of significant interest. The mechanism for transferring heat through the shield is natural convection. Natural convection in a 100 kWt lunar surface reactor shield design is evaluated with 2 kW power input to the water in the Water Shield Testbed (WST) at the NASA Marshall Space Flight Center. The experimental data from the WST is used to validate a CFD model. Performance of the water shield on the lunar surface is then predicted with a CFD model anchored to test data. The experiment had a maximum water temperature of 75 C. The CFD model with 1/6-g predicts a maximum water temperature of 88 C with the same heat load and external boundary conditions. This difference in maximum temperature does not greatly affect the structural design of the shield, and demonstrates that it may be possible to use water for a lunar reactor shield.

  1. Experimental Evaluation of the Thermal Performance of a Water Shield for a Surface Power Reactor

    International Nuclear Information System (INIS)

    Pearson, J. Boise; Stewart, Eric T.; Reid, Robert S.

    2007-01-01

    Water based reactor shielding is being investigated for use on initial lunar surface power systems. A water shield may lower overall cost (as compared to development cost for other materials) and simplify operations in the setup and handling. The thermal hydraulic performance of the shield is of significant interest. The mechanism for transferring heat through the shield is natural convection. Natural convection in a 100 kWt lunar surface reactor shield design is evaluated with 2 kW power input to the water in the Water Shield Testbed (WST) at the NASA Marshall Space Flight Center. The experimental data from the WST is used to validate a CFD model. Performance of the water shield on the lunar surface is then predicted with a CFD model anchored to test data. The experiment had a maximum water temperature of 75 deg. C. The CFD model with 1/6-g predicts a maximum water temperature of 88 deg. C with the same heat load and external boundary conditions. This difference in maximum temperature does not greatly affect the structural design of the shield, and demonstrates that it may be possible to use water for a lunar reactor shield

  2. Siting of light-water reactor power plants in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Kohler, H.A.G.

    1975-01-01

    The nuclear power plant site requirements formulated for environment protection in Germany allow nuclear power plants to be built at any site provided these requirements are duly taken into account in preparing and monitoring the site and in the design of the proposed power plant. After a brief discussion of light water reactor power plant sites, prevailing practice in site planning, site selection criteria, licensing procedure and used criteria, rules and guidelines, this paper reports on some considerations taken into account by the expert advisers and by the licensing authorities and future site planning. (orig.) [de

  3. Indian nuclear power programme with pressurised heavy water reactors

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-09-01

    This compilation is a part of ongoing efforts by Nuclear Power Corporation (NPC) to enable persons: to visit the plants under construction and operation to see for themselves adoption of new and advanced techniques; to have contact with the realities of NPC`s facilities; to familiarize themselves with the regulatory aspects on radiological and environmental protection; and assess for themselves the extent of thrust and importance given to overall safety. figs., tabs.

  4. Risk contribution from low power and shutdown of a pressurized water reactor

    International Nuclear Information System (INIS)

    Chu, T.L.; Pratt, W.T.

    1997-01-01

    During 1989 the Nuclear Regulatory Commission (NRC) initiated an extensive program to carefully examine the potential risks during low power and shutdown operations. Two plants, Surry (a pressurized water reactor) and Grand Gulf (a boiling water reactor), were selected for study by Brookhaven National Laboratory and Sandia National Laboratories, respectively. The program objectives included assessing the risks of severe accidents initiated during plant operational states other than full power operation and comparing estimated core damage frequencies, important accident sequences, and other qualitative and quantitative results with full power accidents as assessed in NUREG-1150. The scope included a Level 3 PRA for traditional internal events and a Level 1 PRA on fire, flooding, and seismically induced core damage sequences. 12 refs., 7 tabs

  5. Analysis of water hammer in control rod drive systems of boiling water reactor nuclear power plants

    International Nuclear Information System (INIS)

    Safwat, H.H.; Arastu, A.H.; Lau, S.

    1983-01-01

    The method of characteristics is applied to analyze water hammer in BWR (Boiling Water Reactor) Control Rod Drive (CRD) Systems following fast opening of scram valves. The modelling of the CRD mechanism is presented. Numerical predictions are compared to experimental data. (author)

  6. Power ramping test in the JMTR for PCI study of water reactor fuel

    International Nuclear Information System (INIS)

    Nakata, H.; Kanbara, M.; Ichikawa, M.

    1984-01-01

    Power ramping test is essential for PCI study of water reactor fuel. Boiling water capsules have been used for the tests in the JMTR. Heat generation of fuel rod in the capsule can be changed by the He-3 power control facility during reactor operation. Four specially designed fuel rods have been ramped to about 41-43 kW/m; two of them have small gaps filled with iodine, the other two are equipped with centerline temperature thermocouple. Fuel rod elongation detector is equipped to each capsule. For the fuel rods with small gap, unique contraction followed by ordinary fuel relaxation behaviour was observed right after the fast ramping. None of them failed. Future programme includes a series of tests of fuel rods irradiated in the high-pressure water loop at the JMTR and a verification test of remedy fuel which allows daily-load-following operation of BWRs. (author)

  7. Robust feedback-linearization control for axial power distribution in pressurized water reactors during load-following operation

    OpenAIRE

    M. Zaidabadi nejad; G.R. Ansarifar

    2018-01-01

    Improved load-following capability is one of the most important technical tasks of a pressurized water reactor. Controlling the nuclear reactor core during load-following operation leads to some difficulties. These difficulties mainly arise from nuclear reactor core limitations in local power peaking: the core is subjected to sharp and large variation of local power density during transients. Axial offset (AO) is the parameter usually used to represent the core power peaking. One of the impor...

  8. Power density effect on feasibility of water cooled thorium breeder reactor

    International Nuclear Information System (INIS)

    Sidik, Permana; Takaki, Naoyuki; Sekimoto, Hiroshi

    2008-01-01

    Breeding is made possible by the high value of neutron regeneration ratio η for 233 U in thermal energy region. The reactor is fueled by 233 U-Th oxide and it has used the light water as moderator. Some characteristics such as spectrum, η value, criticality, breeding performance and number density are evaluated. Several power densities are evaluated in order to analyze its effect to the breeding performance. The η value of fissile 233 U obtains higher value than 2 which may satisfy the breeding capability especially for thermal reactor for all investigated MFR. The increasing enrichment and decreasing conversion ratio are more significant for MFR 233 U enrichment. Number density of 233 Pa decreases significantly with decreasing power density which leads the reactor has better breeding performance because lower capture rate of 233 Pa. (author)

  9. Pressurized water reactor nuclear power plant. Environmental characterization information report

    International Nuclear Information System (INIS)

    1981-01-01

    The typical plant chosen for characterization is a 10000-MWe nameplate rating with wet-natural-draft cooling towers and modern radwaste control and processing equipment. The process, plant operating parameters, resources needed, and the environmental residuals and products associated with the power plant are presented. Annual resource usage and pollutant discharges are shown in English and metric units, assuming an annual plant capacity factor of 70%. In addition to annual quantities, the summary table gives quantities in terms of 10 12 Btu (about 293 million kWh) of electrical energy produced for comparison among energy processes. Supporting information and calculation procedures for the data are given. Thirteen environmental points of interest are discussed individually. Cost information, typical radioactive releases, and use of cooling ponds as an alternative cooling method are discussed in appendixes. A glossary and list of acronyms and abbreviations are provided

  10. Steam generator tube performance: experience with water-cooled nuclear power reactors during 1983 and 1984

    International Nuclear Information System (INIS)

    Tatone, O.S.; Meindl, P.; Taylor, G.F.

    1986-06-01

    A review of the performance of steam generator tubes in water-cooled nuclear power reactors showed that tubes were plugged at 47 (35.6%) of the reactors in 1983 and at 63 (42.6%) of the reactors during 1984. In 1983 and 1984 3291 and 3335 tubes, respectively, were removed from service, about the same as in 1982. The leading causes assigned to tube failure were stress corrosion cracking from the primary side and stress corrosion cracking or intergranular attack from the secondary side. In addition 5668 tubes were repaired for further service by installation of internal sleeves. Most of these were believed to have deteriorated by one of the above mechanisms or by pitting. There is a continuing trend towards high-integrity condenser tube materials at sites cooled by brackish or sea water. 31 refs

  11. Real-time stability monitoring method for boiling water reactor nuclear power plants

    International Nuclear Information System (INIS)

    Fukunishi, K.; Suzuki, S.

    1987-01-01

    A method for real-time stability monitoring is developed for supervising the steady-state operation of a boiling water reactor core. The decay ratio of the reactor power fluctuation is determined by measuring only the output neutron noise. The concept of an inverse system is introduced to identify the dynamic characteristics of the reactor core. The adoption of an adaptive digital filter is useful in real-time identification. A feasibility test that used measured output noise as an indication of reactor power suggests that this method is useful in a real-time stability monitoring system. Using this method, the tedious and difficult work for modeling reactor core dynamics can be reduced. The method employs a simple algorithm that eliminates the need for stochastic computation, thus making the method suitable for real-time computation with a simple microprocessor. In addition, there is no need to disturb the reactor core during operation. Real-time stability monitoring using the proposed algorithm may allow operation under less stable margins

  12. Standard Practice for Design of Surveillance Programs for Light-Water Moderated Nuclear Power Reactor Vessels

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice covers procedures for designing a surveillance program for monitoring the radiation-induced changes in the mechanical properties of ferritic materials in light-water moderated nuclear power reactor vessels. This practice includes the minimum requirements for the design of a surveillance program, selection of vessel material to be included, and the initial schedule for evaluation of materials. 1.2 This practice was developed for all light-water moderated nuclear power reactor vessels for which the predicted maximum fast neutron fluence (E > 1 MeV) at the end of license (EOL) exceeds 1 × 1021 neutrons/m2 (1 × 1017 n/cm2) at the inside surface of the reactor vessel. 1.3 This practice applies only to the planning and design of surveillance programs for reactor vessels designed and built after the effective date of this practice. Previous versions of Practice E185 apply to earlier reactor vessels. 1.4 This practice does not provide specific procedures for monitoring the radiation induced cha...

  13. Mitigation of hydrogen hazards in water cooled power reactors

    International Nuclear Information System (INIS)

    2001-02-01

    Past considerations of hydrogen generated in containment buildings have tended to focus attention on design basis accidents (DBAs) where the extent of the in-core metal-water reaction is limited at low values by the operation of the emergency core cooling systems (ECCS). The radiolysis of water in the core and in the containment sump, together with the possible corrosion of metals and paints in the containment, are all relatively slow processes. Therefore, in DBAs the time scale involved for the generation of hydrogen allows sufficient time for initiation of measures to control the amount of hydrogen in the containment atmosphere and to prevent any burning. Provisions have been made in most plants to keep the local hydrogen concentration below its flammability limit (4% of volume) by means of mixing devices and thermal recombiners. Severe accidents, involving large scale core degradation and possibly even core concrete interactions, raise the possibility of hydrogen release rates greatly exceeding the capacity of conventional DBA hydrogen control measures. The accident at Three Mile Island illustrated the potential of unmitigated hydrogen accumulation to escalate the potential consequences of a severe accident. In a severe accident scenario, local high hydrogen concentrations can be reached in a short time, leading to flammable gas mixtures in containment. Another possibility is that local high steam concentrations will initially create an inert atmosphere and prevent burning for a limited time. While such temporary inerting provides additional time for mixing (dilution) of the hydrogen with containment air, depending on the quantity of hydrogen released, it prevents early intervention by deliberate ignition and sets up conditions for more severe combustion hazards after steam condensation eventually occurs, e.g., by spray initiation or the long term cooling down of the containment atmosphere. As the foregoing example indicates, analysis of the hydrogen threat in

  14. Advanced light water reactor program at ABB-Combustion Engineering Nuclear Power

    International Nuclear Information System (INIS)

    Cahn, H.

    1990-01-01

    To meet the needs of Electric Utilities ordering nuclear power plants in the 1990s, ABB-Combustion Engineering is developing two designs which will meet EPRI consensus requirements and new licensing issues. The System 80 Plus design is an evolutionary pressurized water reactor plant modelled after the successful System 80 design in operation in Palo Verde and under construction in Korea. System Plus is currently under review by the US Nuclear Regulatory Commission with final design approval expected in 1991 and design certification in 1992. The Safe Integral Reactor (SIR) plant is a smaller facility with passive safety features and modular construction intended for design certification in the late 1990s. (author)

  15. Steam generator tube performance: experience with water-cooled nuclear power reactors during 1978

    International Nuclear Information System (INIS)

    Tatone, O.S.; Pathania, R.S.

    1980-02-01

    The performance of steam generator tubes in water-cooled nuclear power reactors has been reviewed for 1978. Tube failures occurred at 31 of the 86 reactors surveyed. Causes of these failures and procedures designed to deal with them are described. A dramatic decrease in the number of tubes plugged was evident in 1978 compared to the previous year. This is attributed to diligent application of techniques developed from in-plant experience and research and development programs over the past several years. (auth)

  16. State-space model predictive control method for core power control in pressurized water reactor nuclear power stations

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guo Xu; Wu, Jie; Zeng, Bifan; Wu, Wangqiang; Ma, Xiao Qian [School of Electric Power, South China University of Technology, Guangzhou (China); Xu, Zhibin [Electric Power Research Institute of Guangdong Power Grid Corporation, Guangzhou (China)

    2017-02-15

    A well-performed core power control to track load changes is crucial in pressurized water reactor (PWR) nuclear power stations. It is challenging to keep the core power stable at the desired value within acceptable error bands for the safety demands of the PWR due to the sensitivity of nuclear reactors. In this paper, a state-space model predictive control (MPC) method was applied to the control of the core power. The model for core power control was based on mathematical models of the reactor core, the MPC model, and quadratic programming (QP). The mathematical models of the reactor core were based on neutron dynamic models, thermal hydraulic models, and reactivity models. The MPC model was presented in state-space model form, and QP was introduced for optimization solution under system constraints. Simulations of the proposed state-space MPC control system in PWR were designed for control performance analysis, and the simulation results manifest the effectiveness and the good performance of the proposed control method for core power control.

  17. Accident sequence analysis for a BWR [Boiling Water Reactor] during low power and shutdown operations

    International Nuclear Information System (INIS)

    Whitehead, D.W.; Hake, T.M.

    1990-01-01

    Most previous Probabilistic Risk Assessments have excluded consideration of accidents initiated in low power and shutdown modes of operation. A study of the risk associated with operation in low power and shutdown is being performed at Sandia National Laboratories for a US Boiling Water Reactor (BWR). This paper describes the proposed methodology for the analysis of the risk associated with the operation of a BWR during low power and shutdown modes and presents preliminary information resulting from the application of the methodology. 2 refs., 2 tabs

  18. Pressurised water reactor operation

    International Nuclear Information System (INIS)

    Birnie, S.; Lamonby, J.K.

    1987-01-01

    The operation of a pressurized water reactor (PWR) is described with respect to the procedure for a unit start-up. The systems details and numerical data are for a four loop PWR station of the design proposed for Sizewell-'B', United Kingdom. A description is given of: the initial conditions, filling the reactor coolant system (RCS), heat-up and pressurisation of the RCS, secondary system preparations, reactor start-up, and reactivity control at power. (UK)

  19. An investigation of decreasing reactor coolant inventory as a mechanism to reduce power during a boiling water reactor anticipated transient without scram

    International Nuclear Information System (INIS)

    Peterson, C.E.; Chexal, V.K.; Gose, G.C.; Hentzen, R.D.; Layman, W.H.

    1985-01-01

    Under certain anticipated transient without scram (ATWS) sequences for a boiling water reactor, it would be desirable to reduce system power, particularly where the primary system has been isolated by closure of all main steam isolation valves and is discharging steam through its safety/relief valve system to the suppression pool. Reducing reactor power increases the time available to shut down the reactor by minimizing the heat dumped to the suppression pool and by helping to keep the suppression pool temperature within limits. Under proposed emergency procedure guidelines for the ATWS event, the reactor water level would be lowered to reduce reactor power. The analyses provide an assessment of the power level that would be attained, assuming the reactor operators were to reduce the the downcomer level down to the top of the active fuel

  20. On-line test of power distribution prediction system for boiling water reactors

    International Nuclear Information System (INIS)

    Nishizawa, Y.; Kiguchi, T.; Kobayashi, S.; Takumi, K.; Tanaka, H.; Tsutsumi, R.; Yokomi, M.

    1982-01-01

    A power distribution prediction system for boiling water reactors has been developed and its on-line performance test has proceeded at an operating commercial reactor. This system predicts the power distribution or thermal margin in advance of control rod operations and core flow rate change. This system consists of an on-line computer system, an operator's console with a color cathode-ray tube, and plant data input devices. The main functions of this system are present power distribution monitoring, power distribution prediction, and power-up trajectory prediction. The calculation method is based on a simplified nuclear thermal-hydraulic calculation, which is combined with a method of model identification to the actual reactor core state. It has been ascertained by the on-line test that the predicted power distribution (readings of traversing in-core probe) agrees with the measured data within 6% root-mean-square. The computing time required for one prediction calculation step is less than or equal to 1.5 min by an HIDIC-80 on-line computer

  1. Reactor power control device

    International Nuclear Information System (INIS)

    Ishii, Yoshihiko; Arita, Setsuo; Miyamoto, Yoshiyuki; Fukazawa, Yukihisa; Ishii, Kazuhiko

    1998-01-01

    The present invention provides a reactor power control device capable of enhancing an operation efficiency while keeping high reliability and safety in a BWR type nuclear power plant. Namely, the device of the present invention comprises (1) a means for inputting a set value of a generator power and a set value of a reactor power, (2) a means for controlling the reactor power to either smaller one of the reactor power corresponding to the set value of the generator power and the set value of the reactor power. With such procedures, even if the nuclear power plant is set so as to operate it to make the reactor power 100%, when the generator power reaches the upper limit, the reactor power is controlled with a preference given to the upper limit value of the generator power. Accordingly, safety and reliability are not deteriorated. The operation efficiency of the plant can be improved. (I.S.)

  2. French experience in operating pressurized water reactor power stations. Ten years' operation of the Ardennes power station

    International Nuclear Information System (INIS)

    Teste du Bailler, A.; Vedrinne, J.F.

    1978-01-01

    In the paper the experience gained over ten years' operation of the Ardennes (Chooz) nuclear power station is summarized from the point of view of monitoring and control equipment. The reactor was the first pressurized water reactor to be installed in France; it is operated jointly by France and Belgium. The equipment, which in many cases consists of prototypes, was developed for industrial use and with the experience that has now been gained it is possible to evaluate its qualities and defects, the constraints which it imposes and the action that has to be taken in the future. (author)

  3. Increased SRP reactor power

    International Nuclear Information System (INIS)

    MacAfee, I.M.

    1983-01-01

    Major changes in the current reactor hydraulic systems could be made to achieve a total of about 1500 MW increase of reactor power for P, K, and C reactors. The changes would be to install new, larger heat exchangers in the reactor buildings to increase heat transfer area about 24%, to increase H 2 O flow about 30% per reactor, to increase D 2 O flow 15 to 18% per reactor, and increase reactor blanket gas pressure from 5 psig to 10 psig. The increased reactor power is possible because of reduced inlet temperature of reactor coolant, increased heat removal capacity, and increased operating pressure (larger margin from boiling). The 23% reactor power increase, after adjustment for increased off-line time for reactor reloading, will provide a 15% increase of production from P, K, and C reactors. Restart of L Reactor would increase SRP production 33%

  4. Normal and compact spent fuel storage in light water reactor power plants

    International Nuclear Information System (INIS)

    Kuenel, R.R.

    1978-01-01

    The compact storage of light water reactor spent fuel is a safe, cheap and reliable contribution towards overcoming the momentarily existing shortage in spent fuel reprocessing. The technical concept is described and physical behaviour discussed. The introduction of compact storage racks in nuclear power plants increases the capacity from 100 to about 240 %. The increase in decay heat is not more than about 14%, the increase in activity inventory and hazard potential does not exceed 20%. In most cases the existing power plant equipment fulfils the new requirements. (author)

  5. Power reactor noise

    International Nuclear Information System (INIS)

    Thie, J.A.

    1981-01-01

    This book concentrates on the different types of noise present in power reactors and how the analysis of this noise can be used as a tool for reactor monitoring and diagnostics. Noise analysis is a growing field that offers advantages such as simplicity, low cost, and natural multivariable interactions. A major advantage, continuous and undisturbed monitoring, supplies a means of obtaining early warnings of possible reactor malfunctions thus preventing further complications by alerting operators to a problem - and aiding in the diagnosis of that problem - before it demands major repairs. Following an introductory chapter, the theoretical basis for the various methods of noise analysis is explained, and full chapters are devoted to the fundamentals of statistics for time-domain analysis and Fourier series and related topics for frequency-domain analysis. General experimental techniques and associated theoretical considerations are reviewed, leading to discussion of practical applications in the latter half of the book. Besides chapters giving examples of neutron noise and acoustical noise, chapters are also devoted to extensive examples from pressurized water reactor and boiling water reactor power plants

  6. Knowledge and abilities catalog for nuclear power plant operators: boiling water reactors

    International Nuclear Information System (INIS)

    1986-09-01

    The Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Boiling-Water Reactors (BWR) (NUREG-1123) provides the basis for the development of content-valid licensing examinations for reactor operators (ROs) and senior reactor operators (SROs). The examinations developed using the BWR Catalog and Examiners' Handbook for Developing Operator Licensing Examinations (NUREG-1121) will cover those topics listed under Title 10, Code of Federal Regulations, Part 55. The BWR Catalog contains approximately 7000 knowledge and ability (K/A) statements for ROs and SROs at boiling water reactors. Each K/A statement has been rated for its importance to the safe operation of the plant in a manner ensuring personnel and public health and safety. The BWR K/A Catalog is organized into five major sections: Plant-wide Generic Knowledge and Ability Statements, Plant Systems grouped by Safety Function, Emergency and Abnormal Plant Evolutions, Components, and Theory. The BWR Catalog represents a modification of the form and content of the K/A Catalog for Nuclear Power Plant Operators: Pressurized Water Reactors (NUREG-1122). First, categories of knowledge and ability statements have been redefined. Second, the scope of the definition of emergency and abnormal plant evolutions has been revised in line with a symptom-based approach. Third, K/As related to the operational applications of theory have been incorporated into the delineations for both plant systems and emergency and abnormal plant evolutions, while K/As pertaining to theory fundamental to plant operation have been delineated in a separate theory section. Finally, the components section has been revised

  7. Super critical water reactors

    International Nuclear Information System (INIS)

    Dumaz, P.; Antoni, O; Arnoux, P.; Bergeron, A; Renault, C.; Rimpault, G.

    2005-01-01

    Water is used as a calori-porter and moderator in the most major nuclear centers which are actually in function. In the pressurized water reactor (PWR) and boiling water reactor (BWR), water is maintained under critical point of water (21 bar, 374 Centigrade) which limits the efficiency of thermodynamic cycle of energy conversion (yield gain of about 33%) Crossing the critical point, one can then use s upercritical water , the obtained pressure and temperature allow a significant yield gains. In addition, the supercritical water offers important properties. Particularly there is no more possible coexistence between vapor and liquid. Therefore, we don't have more boiling problem, one of the phenomena which limits the specific power of PWR and BWR. Since 1950s, the reactor of supercritical water was the subject of studies more or less detailed but neglected. From the early 1990s, this type of conception benefits of some additional interests. Therefore, in the international term G eneration IV , the supercritical water reactors had been considered as one of the big options for study as Generation IV reactors. In the CEA, an active city has engaged from 1930 with the participation to a European program: The HPWR (High Performance Light Water Reactor). In this contest, the R and D studies are focused on the fields of neutrons, thermodynamic and materials. The CEA intends to pursue a limited effort of R and D in this field, in the framework of international cooperation, preferring the study of versions of rapid spectrum. (author)

  8. Nonlinear control for core power of pressurized water nuclear reactors using constant axial offset strategy

    Directory of Open Access Journals (Sweden)

    Gholam Reza Ansarifar

    2015-12-01

    Full Text Available One of the most important operations in nuclear power plants is load following, in which an imbalance of axial power distribution induces xenon oscillations. These oscillations must be maintained within acceptable limits otherwise the nuclear power plant could become unstable. Therefore, bounded xenon oscillation is considered to be a constraint for the load following operation. In this paper, the design of a sliding mode control (SMC, which is a robust nonlinear controller, is presented. SMC is a means to control pressurized water nuclear reactor (PWR power for the load following operation problem in a way that ensures xenon oscillations are kept bounded within acceptable limits. The proposed controller uses constant axial offset (AO strategy to ensure xenon oscillations remain bounded. The constant AO is a robust state constraint for the load following problem. The reactor core is simulated based on the two-point nuclear reactor model with a three delayed neutron groups. The stability analysis is given by means of the Lyapunov approach, thus the control system is guaranteed to be stable within a large range. The employed method is easy to implement in practical applications and moreover, the SMC exhibits the desired dynamic properties during the entire output-tracking process independent of perturbations. Simulation results are presented to demonstrate the effectiveness of the proposed controller in terms of performance, robustness, and stability. Results show that the proposed controller for the load following operation is so effective that the xenon oscillations are kept bounded in the given region.

  9. Indian experience with radionuclide transport, deposition and decontamination in water-cooled nuclear power reactors

    International Nuclear Information System (INIS)

    Narasimhan, S.V.; Das, P.C.; Lawrence, D.A.; Mathur, P.K.; Venkateswarlu, K.S.

    1983-01-01

    The present generation of water-cooled nuclear reactors uses construction materials chosen with utmost care so that minimum corrosion occurs during the life of the reactor. As interaction between the primary coolant and the construction materials is unavoidable, the coolant is chemically treated to achieve maximum compatibility. First measurements of the chemical and radiochemical composition of the crud present on the in-core and out-of-core primary heat transport system surfaces of a pressurized heavy-water-moderated and cooled reactor (PHWR) are given; then experience in India in the development of a low temperature, one-stage decontaminating formulation for chemical decontamination of the radioactive deposits formed on stainless steel surfaces under BWR conditions is discussed. The effect of the magnitude of the transients in parameters such as reactor power, system temperature, dissolved oxygen content in the coolant, etc. on the nature and migration behaviour of primary heat transport system crud in a PHWR is described. Contributions to radioactive sources and insoluble crud from different primary heat transport system materials are identified and correlated with reactor operations in a PHWR. Man-rem problems faced by nuclear reactors, especially during off-line maintenance, stress the need for reducing the deposited radioactive sources from system surfaces which would otherwise be accessible. Laboratory and on-site experimentation was carried out to effect chemical decontamination on the radioactive deposits formed on the stainless steel surfaces under BWR conditions. Both the reducing and oxidizing formulations were subsequently used in a small-scale, in-plant trial in the clean-up system of a BWR. More than 85% of the deposited 60 Co activity was found to have been removed by the oxidizing formulation. Efforts to develop a decontaminating mixture containing a reducing agent with the help of a circulating loop are in progress in the laboratory. (author)

  10. Approximation model of three-dimensional power distribution in boiling water reactor using neural networks

    International Nuclear Information System (INIS)

    Kobayashi, Yoko; Aiyoshi, Eitaro

    2001-01-01

    Fast and accurate prediction of three-dimensional (3D) power distribution is essential in a boiling water reactor (BWR). The prediction method of 3D power distribution in BWR is developed using the neural network. Application of the neural network starts with selecting the learning algorithm. In the proposed method, we use the learning algorithms based on a class of Quasi-Newton optimization techniques called Self-Scaling Variable Metric (SSVM) methods. Prediction studies were done for a core of actual BWR plant with octant symmetry. Compared to classical Quasi-Newton methods, it is shown that the SSVM method reduces the number of iterations in the learning mode. The results of prediction demonstrate that the neural network can predict 3D power distribution of BWR reasonably well. The proposed method will be very useful for BWR loading pattern optimization problems where 3D power distribution for a huge number of loading patterns (LPs) must be performed. (author)

  11. Natural uranium fueled light water moderated breeding hybrid power reactors: a feasibility study

    International Nuclear Information System (INIS)

    Greenspan, E.; Schneider, A.; Misolovin, A.; Gilai, D.; Levin, P.

    1978-06-01

    The first part of the study consists of a thorough investigation of the properties of subcritical thermal lattices for hybrid reactor applications. Light water is found to be the best moderator for (fuel-self-sufficient) FSS hybrid reactors for power generation. Several lattice geometries and compositions of particular promise for LWHRs are identified. Using one of these lattices, fueled with natural uranium, the performance of several concepts of LWHR blankets is investigated, and optimal blanket designs are identified. The effect of blanket coverage efficiency and the feasibility of separating the functions of tritium breeding and of power generation to different blankets are investigated. Optimal iron-water shields for LWHRs are also determined. The performance of generic types of LWHRs is evaluated. The evolution of the blanket properties with burnup is evaluated and fuel management schemes are briefly examined. The feasibility of using the lithium system of the blanket to control the blanket power amplitude and shape is also investigated. A parametric study of the energy balance of LWHR power plants is carried out, and performance parameters expected from LWHRs are estimated. Discussions are given of special features of LWHRs and their fuel cycle

  12. A Robust Multivariable Feedforward/Feedback Controller Design for Integrated Power Control of Boiling Water Reactor Power Plants

    International Nuclear Information System (INIS)

    Shyu, S.-S.; Edwards, Robert M.

    2002-01-01

    In this paper, a methodology for synthesizing a robust multivariable feedforward/feedback control (FF/FBC) strategy is proposed for an integrated control of turbine power, throttle pressure, and reactor water level in a nuclear power plant. In the proposed method, the FBC is synthesized by the robust control approach. The feedforward control, which is generated via nonlinear programming, is added to the robust FBC system to further improve the control performance. The plant uncertainties, including unmodeled dynamics, linearization, and model reduction, are characterized and estimated. The comparisons of simulation responses based on a nonlinear reactor model demonstrate the achievement of the proposed controller with specified performance and endurance under uncertainty. It is also important to note that all input variables are manipulated in an orchestrated manner in response to a single output's setpoint change

  13. Inquiry into the radiological consequences of power uprates at light-water reactors worldwide

    International Nuclear Information System (INIS)

    Bilic Zabric, Tea; Tomic, Bojan; Lundgren, Klas; Sjoeberg, Mats

    2007-05-01

    In Sweden, most of the nuclear power plants are planning power uprates within the next few years. The Dept. of Occupational and Medical Exposures at the Swedish Radiation Protection Agency, SSI, has initiated a research project to investigate the radiological implications of power uprates on light-water reactors throughout the world. The project was divided into three tasks: 1. A compilation of power uprates of light-water reactors worldwide. The compilation contains a technical description in brief of how the power uprates were carried out. 2. An analysis of the radiological consequences at four selected Nuclear Power Plants, which was the main objective of the inquiry. Affects on the radiological and chemical situation due to the changed situation were discussed. 3. Review of technical and organisational factors to be considered in uprate projects to keep exposures ALARA. The project was carried out, starting with the collecting of information on the implemented and planned uprates on reactors internationally. The information was catalogued in accordance with criteria focusing on radiological impact. A detailed analysis followed of four plants selected for uprates chosen according to established criteria, in line with the project requirements. The selected plants were Olkiluoto 1 and 2, Cofrentes, Asco and Tihange. The plants were selected with design and operation conditions close to the Swedish plants. All information was compiled to identify good and bad practices that are impacting on the occupational exposure. Important factors were discussed concerning BWRs and PWRs which affect radiation levels and occupational exposures in general, and especially at power uprates. Conclusions related to each task are in detail presented in a particular chapter of the report. Taking into account the whole project and its main objective the following conclusions are considered to be emphasized: Optimisation of the work processes to limit the duration of the time spent in

  14. Inquiry into the radiological consequences of power uprates at light-water reactors worldwide

    Energy Technology Data Exchange (ETDEWEB)

    Bilic Zabric, Tea; Tomic, Bojan; Lundgren, Klas; Sjoeberg, Mats

    2007-05-15

    In Sweden, most of the nuclear power plants are planning power uprates within the next few years. The Dept. of Occupational and Medical Exposures at the Swedish Radiation Protection Agency, SSI, has initiated a research project to investigate the radiological implications of power uprates on light-water reactors throughout the world. The project was divided into three tasks: 1. A compilation of power uprates of light-water reactors worldwide. The compilation contains a technical description in brief of how the power uprates were carried out. 2. An analysis of the radiological consequences at four selected Nuclear Power Plants, which was the main objective of the inquiry. Affects on the radiological and chemical situation due to the changed situation were discussed. 3. Review of technical and organisational factors to be considered in uprate projects to keep exposures ALARA. The project was carried out, starting with the collecting of information on the implemented and planned uprates on reactors internationally. The information was catalogued in accordance with criteria focusing on radiological impact. A detailed analysis followed of four plants selected for uprates chosen according to established criteria, in line with the project requirements. The selected plants were Olkiluoto 1 and 2, Cofrentes, Asco and Tihange. The plants were selected with design and operation conditions close to the Swedish plants. All information was compiled to identify good and bad practices that are impacting on the occupational exposure. Important factors were discussed concerning BWRs and PWRs which affect radiation levels and occupational exposures in general, and especially at power uprates. Conclusions related to each task are in detail presented in a particular chapter of the report. Taking into account the whole project and its main objective the following conclusions are considered to be emphasized: Optimisation of the work processes to limit the duration of the time spent in

  15. Thorium fuel for light water reactors - reducing proliferation potential of nuclear power fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Galperin, A; Radkowski, A [Ben-Gurion Univ. of the Negev, Beersheba (Israel)

    1996-12-01

    The proliferation potential of the light water reactor fuel cycle may be significantly reduced by utilization of thorium as a fertile component of the nuclear fuel. The main challenge of Th utilization is to design a core and a fuel cycle, which would be proliferation-resistant and economically feasible. This challenge is met by the Radkowsky Thorium Reactor (RTR) concept. So far the concept has been applied to a Russian design of a 1,000 MWe pressurized water reactor, known as a WWER-1000, and designated as VVERT. The following are the main results of the preliminary reference design: * The amount of Pu contained in the RTR spent fuel stockpile is reduced by 80% in comparison with a VVER of a current design. * The isotopic composition of the RTR-Pu greatly increases the probability of pre-initiation and yield degradation of a nuclear explosion. An extremely large Pu-238 content causes correspondingly large heat emission, which would complicate the design of an explosive device based on RTR-Pu. The economic incentive to reprocess and reuse the fissile component of the RTR spent fuel is decreased. The once-through cycle is economically optimal for the RTR core and cycle. To summarize all the items above: the replacement of a standard (U-based) fuel for nuclear reactors of current generation by the RTR fuel will provide an inherent barrier for nuclear weapon proliferation. This inherent barrier, in combination with existing safeguard measures and procedures is adequate to unambiguously disassociate civilian nuclear power from military nuclear power. * The RTR concept is applied to existing power plants to assure its economic feasibility. Reductions in waste disposal requirements, as well as in natural U and fabrication expenses, as compared to a standard WWER fuel, provide approximately 20% reduction in fuel cycle (authors).

  16. Power ramping, cycling and load following behaviour of water reactor fuel

    International Nuclear Information System (INIS)

    1988-05-01

    The present meeting was scheduled by the International Atomic Energy Agency upon proposal of the Members of the International Working Group on Water Reactor Fuel Performance and Technology. Sixty-three participants representing 15 countries and one international organization attended the meeting. Twenty papers were presented during three technical sessions, followed by panel discussions which allowed to formulate the conclusions of the meeting and recommendations to the Agency. The objective of this Technical Committee Meeting is to review the ''State-of-the-Art'', make critical comments and recommendations with the aim of improving fuel reliability and assure integrity of the cladding and core materials when subjected to ramping and cycling sequences. The Meeting was organized in three sessions: Session 1. ''Mechanical Behaviour and Fission Gas Release'' (7 papers); Session 2. ''Power Ramping and Power Cycling Demonstration Programmes in Research Reactors'' (5 papers); Session 3. ''Fuel Behaviour in Power Reactors'' (9 papers). Between the sessions, the session chairmen, together with the speakers, prepared and presented reports with summary, conclusions and recommendations of the individual sessions. These reports are added to this summary report. A separate abstract was prepared for each of these 21 presentations. Refs, figs and tabs

  17. Energy Research Advisory Board, Civilian Nuclear Power Panel: Subpanel 1 report, Light water reactor utilization and improvement: Volume 2

    International Nuclear Information System (INIS)

    1986-10-01

    The Secretary of Energy requested that the Office of Nuclear Energy prepare a strategic national plan that outlines the Department's role in the future development of civilian nuclear power and that the Energy Research Advisory Board establish an ad hoc panel to review and comment on this plan. The Energy Research Advisory Board formed a panel for this review and three subpanels were formed. One subpanel was formed to address the institutional issues surrounding nuclear power, one on research and development for advanced nuclear power plants and a third subpanel on light water reactor utilization and improvement. The subpanel on light water reactors held two meetings at which representatives of the DOE, the NRC, EPRI, industry and academic groups made presentations. This is the report of the subpanel on light water reactor utilization and improvement. This report presents the subpanel's assessment of initiatives which the Department of Energy should undertake in the national interest, to develop and support light water reactor technologies

  18. Safety problems of nuclear power plants with channel-type graphite boiling water reactors

    International Nuclear Information System (INIS)

    Emel'yanov, I.Ya.; Vasilevskij, V.P.; Volkov, V.P.; Gavrilov, P.A.; Kramerov, A.Ya.; Kuznetsov, S.P.; Kunegin, E.P.; Rybakov, N.Z.

    1977-01-01

    Construction of nuclear power plants in a highly populated region near large industrial centres necessitates to pay a special attention to their nuclear and radiation safety. Safety problems of nuclear reactor operation are discussed, in particular, they are: reliable stoppage of fission chain reaction at any emergency cases; reliable core cooling with failure of various equipment; emergency core cooling with breached pipes of a circulating circuit; and prevention of radioactive coolant release outside the nuclear power plant in amount exceeding the values adopted. Channel-type water boiling reactors incorporate specific features requiring a new approach to safety operation of a reactor and a nuclear power plant. These include primarily a rather large steam volume in the coolant circuit, large amount of accumulated heat, void reactivity coefficient. Channel-type reactors characterized by fair neutron balance and flexible fuel cycle, have a series of advantages alleviating the problem of ensuring their safety. The possibility of reliable control over the state of each channel allows to replace failed fuel elements by the new ones, when operating on-load, to increase the number of circulating loops and reduce the diameter of main pipelines, simplifies significantly the problem of channel emergency cooling and localization of a radioactive coolant release from a breached circuit. The concept of channel-type reactors is based on the solution of three main problems. First, plant safety should be assured in emergency switch off of separate units and, if possible, energy conditions should be maintained, this is of particular importance considering the increase in unit power. Second, the system of safety and emergency cooling should eliminate a great many failures of fuel elements in case of potential breaches of any tube in the circulating circuit. Finally, rugged boxes and localizing devices should be provided to exclude damage of structural elements of the nuclear power

  19. Condensation nuclear power plants with water-cooled graphite-moderated channel type reactors and advances in their development

    International Nuclear Information System (INIS)

    Boldyrev, V.M.; Mikhaj, V.I.

    1985-01-01

    Consideration is being given to results of technical and economical investigations of advisability of increasing unit power by elevating steam generating capacity as a result of inserting numerous of stereotype sectional structural elements of the reactor with similar thermodynamic parameters. It is concluded that construction of power units of condensation nuclear power plants with water-cooled graphite-moderated channel type reactors of 2400-3200 MWe and higher unit power capacity represents the real method for sharp growth of efficiency and labour productivity in power industry. It can also provide the required increase of the rate of putting electrogenerating powers into operation

  20. Performance of self-powered neutron detectors in pressurized water reactors

    International Nuclear Information System (INIS)

    Warren, H.D.; Bozarch, D.P.

    1977-01-01

    A typical Babcock and Wilcox pressurized water reactor (PWR) contains 364 rhodium self-powered neutron detectors (SPNDs) and 52 background detectors. The detectors are inserted into the reactor core in 52 dry, multidetector assemblies. Each assembly contains seven SPNDs and one background detector. By mid-1977, eight B and W PWRs, each fitted with SPNDs, were in operation. Many of the SPNDs have operated successfully for more than four years. This paper describes the operational performance of the SPNDs and special tests conducted to improve that performance. Topics included are (1) insulation performance versus neutron dose to the SPND, (2) background signals in the leadwire region of the SPND, and (3) depletion of the SPND emitter versus absorbed neutron dose

  1. Steam generator tube performance: world experience with water-cooled nuclear power reactors during 1979

    International Nuclear Information System (INIS)

    Tatone, O.S.; Pathania, R.S.

    1981-01-01

    The performance of steam generator tubes in water-cooled nuclear power reactors is reviewed for 1979. Tube failures occurred at 38 of the 93 reactors surveyed. The causes of these failures and the procedures designed to deal with them are described. The defect rate, although higher than that in 1978, was still lower than the rates of the two previous years. Methods being employed to detect defects include the increased use of multifrequency eddy-current testing and a trend to full-length inspection of all tubes. To reduce the incidence of tube failure by corrosion, plant operators are turning to full-flow condensate demineralization and more leak-resistant condenser tubes. 10 tables

  2. Data list of nuclear power plants of pressurized-water reactor type in Japan

    International Nuclear Information System (INIS)

    Izumi, Fumio; Harayama, Yasuo

    1981-08-01

    This report has collected and compiled the data concerning performances, equipments and installations for nuclear power plants of the pressurized-water reactor type in Japan. The data used in the report are based on informations that were collected before December in 1980. The report is edited by modifing changes of the data appeared after publication of 1979 edition (JAERI-M 8947), and extending the data-package to cover new plants proposed thereafter. All data have been processed and tabulated with a computer program FREP, which has been developed as an exclusive use of data processing. (author)

  3. Nuclear power plant with boiling water reactor VK-300 for district heating and electricity supply

    International Nuclear Information System (INIS)

    Kuznetsov, Y.N.; Lisitza, F.D.; Romenkov, A.A.; Tokarev, Y.I.

    1998-01-01

    The paper considers specific design features of a pressure vessel boiling water reactor with coolant natural circulation and three-step in-vessel steam separation (at draught tube outlet of the upcomer, within zone of overflow from the upcomer to downcomer and in cyclon-type separators). Design description and analytical study results are presented for the passive core cooling system in the case of loss of preferred power and rupture in primary circuit pipeline. Specific features of a primary containment (safeguard vessel) are given for an underground NPP sited in a rock ground. (author)

  4. Reactor power measuring device

    International Nuclear Information System (INIS)

    Izumi, Mikio; Sano, Yuji; Seki, Eiji; Yoshida, Toshifumi; Ito, Toshiaki.

    1993-01-01

    The present invention provides a self-powered long detector having a sensitivity over the entire length of a reactor core as an entire control rod withdrawal range of a BWR type reactor, and a reactor power measuring device using a gamma ray thermometer which scarcely causes sensitivity degradation. That is, a hollow protection pipe is disposed passing through the reactor core from the outside of a reactor pressure vessel. The self-powered long detectors and the gamma ray thermometers are inserted and installed in the protection pipe. An average reactor power in an axial direction of the reactor relative to a certain position in the horizontal cross section of the reactor core is determined based on the power of the self-powered long detector over the entire length of the reactor core. Since the response of the self-powered detector relative to a local power change is rapid, the output is used as an input signal to a safety protection device of the reactor core. Further, a gamma ray thermometer secured in the reactor and having scarce sensitivity degradation is used instead of an incore travelling neutron monitor used for relative calibration of an existent neutron monitor secured in the reactor. (I.S.)

  5. Systems for controlling the electric power of a boiling water reactor power station

    International Nuclear Information System (INIS)

    Fukunishi, Koyu; Kiyokawa, Kazuhiro.

    1975-01-01

    Object: To achieve automatic increase and decrease of electric output in accordance with a predetermined rate of increase or decrease in output when the power output is raised or lowered. Structure: An electric output signal from an atomic power plant is led to a differentiating circuit through a smoothing circuit to produce a signal for rate of change of time, and an error signal between this signal and a preset signal produced from a circuit for a preset rate of change of output with time is supplied to an analog adjuster through a limiter. In this way, the flow rate in the reactor core is adjusted by a speed controller to obtain an output of a predetermined rate of increase. The difference signal between the electric output signal and a desired value signal is passed through an absolute circuit to a comparator circuit for comparison with a predetermined threshold value setting signal. The output signal of the comparator is used to operate a relay to open the contact so as to prevent an increase or decrease in the output beyond the required level. (Kamimura, M.)

  6. The Influence of RSG-GAS Primary Pump Operation Concerning the Rise Water Level of Reactor Pool in 15 MW Reactor Power

    International Nuclear Information System (INIS)

    Djunaidi

    2004-01-01

    The expansion of air volume in the delay chamber shows in rise water level of reactor pool during the operation. The rises of water level in the reactor pool is not quite from the expansion of air volume in the delay chamber, but some influence the primary pump operation. The purpose evaluated of influence primary pump is to know the influence primary pump power concerning the rise water level during the reactor operation. From the data collection during 15 MW power operation in the last core 42 the influence of primary pump operation concerning the rise water level in the reactor pool is 34.48 % from the total increased after operation during 12 days. (author)

  7. Occupational radiation exposure at light water cooled power reactors. Annual report, 1977

    International Nuclear Information System (INIS)

    Peck, L.J.

    1979-04-01

    This report presents an updated compilation of occupational radiation exposures at commercial light water cooled nuclear power reactors (LWRs) for the years 1969 through 1977. The information contained in this document was derived from reports submitted to the United States Nuclear Regulatory Commission in accordance with requirements of individual plant Technical Specifications, and in accordance with Part 20.407 of Title 10, Chapter 1, Code of Federal Regulations (10 CFR Part 20.407). An additional 4 LWRs completed a full calendar year of commercial operation for the first time in 1977. This report now encompasses data from 57 commercially operating U.S. nuclear power plants. The number of personnel monitored at LWRs increased approximately 10% in 1977, and the average collective dose to personnel (man-rems per reactor-year) increased 14% over the 1976 average. The average number of personnel receiving measurable exposure per reactor increased 11%, and the average exposure per individual in 1977 was 0.8 rem per person

  8. Water chemistry in nuclear power stations with high-temperature reactors with particular reference to the AVR

    International Nuclear Information System (INIS)

    Nieder, R.; Resch, G.

    1976-01-01

    The water-steam cycle of a nuclear power plant with a helium-cooled high-temperature reactor differs in design data significantly and extensively from the corresponding cycles of light-water-cooled nuclear reactors and resembles to a great extent the water-steamcycle of a modern conventional power plant. The radioactive constituents of the water-steam cycle can be satisfactorily removed apart from Tritium by means of a pre-coat filter with powder-resisn, as comprehensive experiments have demonstrated. (orig.) [de

  9. Improving activity transport models for water-cooled nuclear power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Burrill, K.A

    2001-08-01

    Eight current models for describing radioactivity transport and radiation field growth around water-cooled nuclear power reactors have been reviewed and assessed. A frequent failing of the models is the arbitrary nature of the determination of the important processes. Nearly all modelers agree that the kinetics of deposition and release of both dissolved and particulate material must be described. Plant data must be used to guide the selection and development of suitable improved models, with a minimum of empirically-based rate constraints being used. Limiting case modelling based on experimental data is suggested as a way to simplify current models and remove their subjectivity. Improved models must consider the recent change to 'coordinated water chemistry' that appears to produce normal solubility behaviour for dissolved iron throughout the fuel cycle in PWRs, but retrograde solubility remains for dissolved nickel. Profiles are suggested for dissolved iron and nickel concentrations around the heat transport system in CANDU reactors, which operate nominally at constant chemistry, i.e., pH{sub T} constant with time, and which use carbon steel isothermal piping. These diagrams are modified for a CANDU reactor with stainless steel piping, in order to show the changes expected. The significance of these profiles for transport in PWRs is discussed for further model improvement. (author)

  10. Knowledge and abilities catalog for nuclear power plant operators: Boiling water reactors, Revision 1

    International Nuclear Information System (INIS)

    1995-08-01

    The Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Boiling-Water Reactors (BWRs) (NUREG-1123, Revision 1) provides the basis for the development of content-valid licensing examinations for reactor operators (ROs) and senior reactor operators (SROs). The examinations developed using the BWR Catalog along with the Operator Licensing Examiner Standards (NUREG-1021) and the Examiner's Handbook for Developing Operator Licensing Written Examinations (NUREG/BR-0122), will cover the topics listed under Title 10, Code of Federal Regulations, Part 55 (10 CFR 55). The BWR Catalog contains approximately 7,000 knowledge and ability (K/A) statements for ROs and SROs at BWRs. The catalog is organized into six major sections: Organization of the Catalog, Generic Knowledge and Ability Statements, Plant Systems grouped by Safety Functions, Emergency and Abnormal Plant Evolutions, Components, and Theory. Revision 1 to the BWR Catalog represents a modification in form and content of the original catalog. The K/As were linked to their applicable 10 CFR 55 item numbers. SRO level K/As were identified by 10 CFR 55.43 item numbers. The plant-wide generic and system generic K/As were combined in one section with approximately one hundred new K/As. Component Cooling Water and Instrument Air Systems were added to the Systems Section. Finally, High Containment Hydrogen Concentration and Plant Fire On Site evolutions added to the Emergency and Abnormal Plant Evolutions section

  11. CLASSIFICATION OF SYSTEMS FOR PASSIVE AFTERHEAT REMOVAL FROM REACTOR CONTAINMENT OF NUCLEAR POWER PLANT WITH WATER-COOLED POWER REACTOR

    Directory of Open Access Journals (Sweden)

    N. Khaled

    2014-01-01

    Full Text Available A classification on systems for passive afterheat removal from reactor containment has been developed in the paper.  The classification permits to make a detailed analysis of various concepts pertaining to systems for passive afterheat removal from reactor containment of new generation. The paper considers main classification features of the given systems.

  12. Response of pressurized water reactor (PWR) to network power generation demands

    International Nuclear Information System (INIS)

    Schreiner, L.A.

    1991-01-01

    The flexibility of the PWR type reactor in terms of response to the variations of the network power demands, is demonstrated. The factors that affect the transitory flexibility and some design prospects that allow the reactor fits the requirements of the network power demands, are also discussed. (M.J.A.)

  13. Risk contribution from low power and shutdown of a pressurized water reactor

    International Nuclear Information System (INIS)

    Chu, T.L.; Pratt, W.T.

    1997-01-01

    During 1989 the Nuclear Regulatory Commission (NRC) initiated an extensive program to carefully examine the potential risks during low power and shutdown operations. Two plants, Surry (a pressurized water reactor) and Grand Gulf (a boiling water reactor), were selected for study by Brookhaven National Laboratory and Sandia National Laboratories, respectively. The program objectives included assessing the risks of severe accidents initiated during plant operational states other than full power operation and comparing estimated core damage frequencies, important accident sequences, and other qualitative and quantitative results with full power accidents as assessed in NUREG-1150. The scope included a Level 3 PRA for traditional internal events and a Level 1 PRA on fire, flooding, and seismically induced core damage sequences. A phased approach was used in Level 1. In Phase 1 the concept of plant operational states (POSs) was developed to provide a better representation of the plant as it transitions from power to non power operation. This included a coarse screening analysis of all POSs to identify vulnerable plant configurations, to characterize (on a high, medium, or low basis) potential frequencies of core damage accidents, and to provide a foundation for a detailed Phase 2 analysis. In Phase 2, selected POSs from both Grand Gulf and Surry were chosen for detailed analysis. For Grand Gulf, POS 5 (approximately Cold Shutdown as defined by Grand Gulf Technical Specifications) during a refueling outage was selected. For Surry, three POSs representing the time the plant spends in mid loop operation were chosen for analysis. Level 1 and Level 2/3 results from the Surry analyses are presented

  14. Plutonium Recycle Test Reactor (PRTR). Operating Experience and Supporting R and D, Its Application to Heavy-Water Power Reactor Design and Operation

    Energy Technology Data Exchange (ETDEWEB)

    Harty, H. [Battelle Memorial Institute, Pacific Northwest Laboratories, Richland, WA (United States)

    1968-04-15

    Convincing answers to questions about heavy-water, pressure-tube, power reactors, e.g. pressure-tube serviceability, heavy-water management problems, long-term behaviour of special pressure-tube reactor components, and unique operating maintenance problems (compared to light-water reactors) must be based on actual operating experience with that type of reactor. PRTR operating experience and supporting R and D studies, although not always simple extrapolations to power reactors, can be summarized in a context applicable to future heavy-water power reactors, as follows: 1. Pressure-tube life, in a practical case, need not be limited by creep, gross hydriding, corrosion, or mechanical damage. The possibility that growth of a defect (perhaps service-induced) to a size that is critical under certain operating conditions, remains a primary unknown in pressure- tube life extrapolations. A pressure-tube failure in PRTR (combined with gross release of fuel material) proved only slightly more inconvenient, time consuming, and damaging to the reactor proper, than occurred with a gross failure of a fuel element in PRTR. 2. Routine operating losses of heavy water appear tractable in heavy-water-cooled power reactors; losses from low-pressure systems can be insignificant over the life of a plant. Non-routine losses may prove to be the largest component of loss over the life of a plant. 3. The performance of special components in PRTR, e.g. the calandria and shields, has not deteriorated despite being subjected to non-standard operating conditions. The calandria now contains a light-water reflector with single barrier separation from the heavy-water moderator. The carbon steel shields (containing carbon steel shot) show no deterioration based on pressure drop measurements and piping activation immediately outside the shields. The helium pressurization system (for primary coolant pressurization) remains a high maintenance system, and cannot be recommended for power reactors, based

  15. Calibration of RB reactor power

    International Nuclear Information System (INIS)

    Sotic, O.; Markovic, H.; Ninkovic, M.; Strugar, P.; Dimitrijevic, Z.; Takac, S.; Stefanovic, D.; Kocic, A.; Vranic, S.

    1976-09-01

    The first and only calibration of RB reactor power was done in 1962, and the obtained calibration ratio was used irrespective of the lattice pitch and core configuration. Since the RB reactor is being prepared for operation at higher power levels it was indispensable to reexamine the calibration ratio, estimate its dependence on the lattice pitch, critical level of heavy water and thickness of the side reflector. It was necessary to verify the reliability of control and dosimetry instruments, and establish neutron and gamma dose dependence on reactor power. Two series of experiments were done in June 1976. First series was devoted to tests of control and dosimetry instrumentation and measurements of radiation in the RB reactor building dependent on reactor power. Second series covered measurement of thermal and epithermal neuron fluxes in the reactor core and calculation of reactor power. Four different reactor cores were chosen for these experiments. Reactor pitches were 8, 8√2, and 16 cm with 40, 52 and 82 fuel channels containing 2% enriched fuel. Obtained results and analysis of these results are presented in this document with conclusions related to reactor safe operation

  16. Local Fission Gas Release and Swelling in Water Reactor Fuel during Slow Power Transients

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Walker, C.T.; Ray, I.L.F.

    1985-01-01

    Gas release and fuel swelling caused by a power increase in a water reactor fuel (burn-up 2.7–4.5% FIMA) is described. At a bump terminal level of about 400 W/cm (local value) gas release was 25–40%. The formation of gas bubbles on grain boundaries and their degree of interlinkage are the two...... factors that determine the level of fission gas release during a power bump. Release begins when gas bubbles on grain boundaries start o interlink. This occurred at r/r0 ~ 0.75. Release tunnels were fully developed at r/r0 ~ 0.55 with the result that gas release was 60–70% at this position....

  17. A decision support system for maintenance management of a boiling-water reactor power plant

    International Nuclear Information System (INIS)

    Shen, J.H.; Ray, A.; Levin, S.

    1996-01-01

    This article reports the concept and development of a prototype expert system to serve as a decision support tool for maintenance of boiling-water reactor (BWR) nuclear power plants. The code of the expert system makes use of the database derived from the two BWR units operated by the Pennsylvania Power and Light Company in Berwick, Pennsylvania. The operations and maintenance information from a large number of plant equipment and sub-systems that must be available for emergency conditions and in the event of an accident is stored in the database of the expert system. The ultimate goal of this decision support tool is to identify the relevant Technical Specifications and management rules for shutting down any one of the plant sub-systems or removing a component from service to support maintenance. 6 refs., 7 figs

  18. Collector feedwater supply and stability of the power distribution in a pressurized-water reactor

    International Nuclear Information System (INIS)

    Budnikov, V.I.; Kosolapov, S.V.; Kramerov, A.Ya.

    1980-01-01

    It is necessary to determine how the collector feedwater supply affects the disposition of the stability limits and the instability period for the power distribution in such a reactor. The main reason for the fluctuations in feedwater flow rate were shown by additional calculations with the general power regulator switched out to be due to instability on the fundamental in the neutron distribution. The power-level fluctuations are due to oscillation of the feed valve in the level regulator, and consequently to oscillations in the feedwater flow rate. If collector feed is to be employed, it is desirable to improve the response of the pressure control system for the separator drum, because under certain emergency conditions there will be a considerable fall in pressure in the separator drum. The deviation from saturation for the water in the separator drum tube is less in the second method than it is in the first, so the cavitation margin in the principal pumps may be reduced somewhat. Calculations show that this reduction will not occur if the time constant of the turbine synchronizer is about 10 sec. Also, the dynamic characteristics of the nuclear power station in these modes of feedwater supply are appreciably influenced by the parameters of the pressure-control system and the water-level control for the separator drum

  19. Feasibility Study of Supercritical Light Water Cooled Fast Reactors for Actinide Burning and Electric Power Production, 3rd Quarterly Report

    Energy Technology Data Exchange (ETDEWEB)

    Mac Donald, Philip Elsworth

    2002-06-01

    The use of light water at supercritical pressures as the coolant in a nuclear reactor offers the potential for considerable plant simplification and consequent capital and O&M cost reduction compared with current light water reactor (LWR) designs. Also, given the thermodynamic conditions of the coolant at the core outlet (i.e. temperature and pressure beyond the water critical point), very high thermal efficiencies of the power conversion cycle are possible (i.e. up to about 45%). Because no change of phase occurs in the core, the need for steam separators and dryers as well as for BWR-type re-circulation pumps is eliminated, which, for a given reactor power, results in a substantially shorter reactor vessel and smaller containment building than the current BWRs. Furthermore, in a direct cycle the steam generators are not needed.

  20. Steady state thermal hydraulic analysis of a boiling water reactor core, for various power distributions, using computer code THABNA

    International Nuclear Information System (INIS)

    Venkat Raj, V.; Saha, D.

    1976-01-01

    The core of a boiling water reactor may see different power distributions during its operational life. How some of the typical power distributions affect some of the thermal hydraulic parameters such as pressure drop minimum critical heat flux ratio, void distribution etc. has been studied using computer code THABNA. The effect of an increase in the leakage flow has also been analysed. (author)

  1. Technology, safety, and costs of decommissioning a reference pressurized water reactor power station

    International Nuclear Information System (INIS)

    Smith, R.I.; Konzek, G.J.; Kennedy, W.E. Jr.

    1978-05-01

    Safety and cost information was developed for the conceptual decommissioning of a large [1175 MW(e)] pressurized water reactor (PWR) power station. Two approaches to decommissioning, Immediate Dismantlement and Safe Storage with Deferred Dismantlement, were studied to obtain comparisons between costs, occupational radiation doses, potential radiation dose to the public, and other safety impacts. Immediate Dismantlement was estimated to require about six years to complete, including two years of planning and preparation prior to final reactor shutdown, at a cost of $42 million, and accumulated occupational radiation dose, excluding transport operations, of about 1200 man-rem. Preparations for Safe Storage were estimated to require about three years to complete, including 1 1 / 2 years for planning and preparation prior to final reactor shutdown, at a cost of $13 million and an accumulated occupational radiation dose of about 420 man-rem. The cost of continuing care during the Safe Storage period was estimated to be about $80 thousand annually. Accumulated occupational radiation dose during the Safe Storage period was estimated to range from about 10 man-rem for the first 10 years to about 14 man-rem after 30 years or more. The cost of decommissioning by Safe Storage with Deferred Dismantlement was estimated to be slightly higher than Immediate Dismantlement. Cost reductions resulting from reduced volumes of radioactive material for disposal, due to the decay of the radioactive containments during the deferment period, are offset by the accumulated costs of surveillance and maintenance during the Safe Storage period

  2. New approach for control rod position indication system for light water power reactor

    International Nuclear Information System (INIS)

    Bahuguna, Sushil; Dhage, Sangeeta; Nawaj, S.; Salek, C.; Lahiri, S.K.; Marathe, P.P.; Mukhopadhyay, S.; Taly, Y.K.

    2015-01-01

    Control rod position indication system is an important system in a nuclear power plant to monitor and display control rod position in all regimes of reactor operation. A new approach to design a control rod position indication system for sensing absolute position of control rod in Light Water Power Reactor has been undertaken. The proposed system employs an inductive type, hybrid measurement strategy providing both analog position as well as digital zone indication with built-in temperature compensation. The new design approach meets single failure criterion through redundancy in design without sacrificing measurement resolution. It also provides diversity in measurement technique by indirect position sensing based on analysis of drive coil current signature. Prototype development and qualification at room temperature of the control rod position indication system (CRPIS) has been demonstrated. The article presents the design philosophy of control rod position indication system, the new measurement strategy for sensing absolute position of control rod, position estimation algorithm for both direct and indirect sensing and a brief account associated processing electronics. (author)

  3. Reactor power monitoring device

    International Nuclear Information System (INIS)

    Dogen, Ayumi; Ozawa, Michihiro.

    1983-01-01

    Purpose: To significantly improve the working efficiency of a nuclear reactor by reflecting the control rod history effect on thermal variants required for the monitoring of the reactor operation. Constitution: An incore power distribution calculation section reads the incore neutron fluxes detected by neutron detectors disposed in the reactor to calculate the incore power distribution. A burnup degree distribution calculation section calculates the burnup degree distribution in the reactor based on the thus calculated incore power distribution. A control rod history date store device supplied with the burnup degree distribution renews the stored control rod history data based on the present control rod pattern and the burnup degree distribution. Then, thermal variants of the nuclear reactor are calculated based on the thus renewed control rod history data. Since the control rod history effect is reflected on the thermal variants required for the monitoring of the reactor operation, the working efficiency of the nuclear reactor can be improved significantly. (Seki, T.)

  4. An optimized power conversion system concept of the integral, inherently-safe light water reactor

    International Nuclear Information System (INIS)

    Memmott, Matthew J.; Wilding, Paul R.; Petrovic, Bojan

    2017-01-01

    Highlights: • Three power conversion systems (PCS) for the I"2S-LWR are presented. • An optimization analyses was performed to evaluate these PCS alternatives. • The ideal PCS consists of 5 turbines, and obtains an overall efficiency of 35.7%. - Abstract: The integral, inherently safe light water reactor (I"2S-LWR) has been developed to significantly enhance passive safety capabilities while maintaining cost competitiveness relative to the current light water reactor (LWR) fleet. The compact heat exchangers of the I"2S-LWR preclude boiling of the secondary fluid, which decreases the probability of heat exchanger failure, but this requires the addition of a flash drum, which negatively affects the overall plant thermodynamic efficiency. A state of the art Rankine cycle is proposed for the I"2S-LWR to increase the thermodynamic efficiency by utilizing a flash drum with optimized operational parameters. In presenting this option for power conversion in the I"2S-LWR power plant, the key metric used in rating the performance is the overall net thermodynamic efficiency of the cycle. In evaluating the flash-Rankine cycle, three basic industrial concepts are evaluated, one without an intermediate pressure turbine, one with an intermediate turbine and one reheat stream, and one with an intermediate turbine and two reheat streams. For each configuration, a single-path multi-variable optimization is undertaken to maximize the thermal efficiency. The third configuration with an intermediate turbine and 2 reheat streams is the most effective concept, with an optimized efficiency of 35.7%.

  5. Reactor water level control device

    International Nuclear Information System (INIS)

    Hiramatsu, Yohei.

    1980-01-01

    Purpose: To increase the rapid response of the waterlevel control converting a reactor water level signal into a non-linear type, when the water level is near to a set value, to stabilize the water level reducting correlatively the reactor water level variation signal to stabilize greatly from the set value, and increasing the variation signal. Constitution: A main vapor flow quality transmitter detects the vapor flow generated in a reactor and introduced into a turbine. A feed water flow transmitter detects the quantity of a feed water flow from the turbine to the reactor, this detected value is sent to an addition operating apparatus. On the other hand, the power signal of the reactor water level transmitter is sent to the addition operating apparatus through a non-linear water level signal converter. The addition operation apparatus generates a signal for requesting the feed water flow quantity from both signals. Upon this occasion, the reactor water level signal converter makes small the reactor water level variation when the reactor level is close the set value, and when the water level deviates greatly from the set value, the reactor water level variation is made large thereby to improve the rapid response of the reactor coater level control. (Yoshino, Y.)

  6. Expert system for maintenance management of a boiling water reactor power plant

    International Nuclear Information System (INIS)

    Hong Shen; Liou, L.W.; Levine, S.; Ray, A.; Detamore, M.

    1992-01-01

    An expert system code has been developed for the maintenance of two boiling water reactor units in Berwick, Pennsylvania, that are operated by the Pennsylvania Power and Light Company (PP and L). The objective of this expert system code, where the knowledge of experienced operators and engineers is captured and implemented, is to support the decisions regarding which components can be safely and reliably removed from service for maintenance. It can also serve as a query-answering facility for checking the plant system status and for training purposes. The operating and maintenance information of a large number of support systems, which must be available for emergencies and/or in the event of an accident, is stored in the data base of the code. It identifies the relevant technical specifications and management rules for shutting down any one of the systems or removing a component from service to support maintenance. Because of the complexity and time needed to incorporate a large number of systems and their components, the first phase of the expert system develops a prototype code, which includes only the reactor core isolation coolant system, the high-pressure core injection system, the instrument air system, the service water system, and the plant electrical system. The next phase is scheduled to expand the code to include all other systems. This paper summarizes the prototype code and the design concept of the complete expert system code for maintenance management of all plant systems and components

  7. Power reactor noise

    International Nuclear Information System (INIS)

    Thie, J.A.

    1981-01-01

    Noise analysis is a growing field that offers advantages such as simplicity, low cost, and natural multivariable interactions. A major advantage, continuous and undisturbed monitoring, supplies a means of obtaining early warnings of possible reactor malfunctions, thus preventing further complications by alerting opeators to a problem - and aiding in the diagnosis of that problem - before it demands major repairs. Dr. Thie hopes to further, through detailed explanations and over 70 illustrations, the acceptance of the use of noise analysis by the nuclear utility industry. Following an introductory chapter, the theoretical basis for the various methods of noise analysis is explained, and full chapters are devoted to the fundamentals of statistics for time-domain analysis and Fourier series and related topics for frequency-domain analysis. General experimental techniques and associated theoretical considerations are reviewed, leading to discussions of practical applications in the latter half of the book. Besides chapters giving examples of neutron noise and acoustical noise, chapters are also devoted to extensive examples from pressurized water reactor and boiling water reactor power plants

  8. 77 FR 3009 - Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Advanced Boiling Water Reactors

    Science.gov (United States)

    2012-01-20

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0010] Knowledge and Abilities Catalog for Nuclear Power... comment a draft NUREG, NUREG-2104, Revision 0, ``Knowledge and Abilities Catalog for Nuclear Power Plant... developed using this Catalog along with the Operator Licensing Examination Standards for Power Reactors...

  9. Safety of nuclear power reactors

    International Nuclear Information System (INIS)

    MacPherson, H.G.

    1982-01-01

    Safety is the major public issue to be resolved or accommodated if nuclear power is to have a future. Probabilistic Risk Analysis (PRA) of accidental releases of low-level radiation, the spread and activity of radiation in populated areas, and the impacts on public health from exposure evolved from the earlier Rasmussen Reactor Safety Study. Applications of the PRA technique have identified design peculiarities in specific reactors, thus increasing reactor safety and establishing a quide for evaluating reactor regulations. The Nuclear Regulatory Commission and reactor vendors must share with utilities the responsibility for reactor safety in the US and for providing reasonable assurance to the public. This entails persuasive public education and information that with safety a top priority, changes now being made in light water reactor hardware and operations will be adequate. 17 references, 2 figures, 2 tables

  10. Tokamak experimental power reactor

    International Nuclear Information System (INIS)

    Stacey, W.M. Jr.; Abdou, M.A.; Brooks, J.N.

    1978-01-01

    A tokamak experimental power reactor has been designed that is capable of producing net electric power over a wide range of possible operating conditions. A net production of 81 MW of electricity is expected from the design reference conditions that assume a value of 0.07 for beta-toroidal, a maximum toroidal magnetic field of 9 T and a thermal conversion efficiency of 30%. Impurity control is achieved through the use of a low-Z first wall coating. This approach allows a burn time of 60 seconds without the incorporation of a divertor. The system is cooled by a dual pressurized water/steam system that could potentially provide thermal efficiencies as high as 39%. The first surface facing the plasma is a low-Z coated water cooled panel that is attached to a 20 cm thick blanket module. The vacuum boundary is removed a total of 22 cm from the plasma, thereby minimizing the amount of radiation damage in this vital component. Consideration is given in the design to the possible use of the EPR as a materials test reactor. It is estimated that the total system could be built for less than 550 million dollars

  11. Thermal-hydraulic R and D infrastructure for water cooled reactors of the Indian nuclear power program

    International Nuclear Information System (INIS)

    Vijayan, P.K.; Jain, V.; Saha, D.; Sinha, R.K.

    2009-01-01

    R and D has been the critical ingredient of Indian Nuclear Power Program from the very inception. Approach to R and D infrastructure has been closely associated with the three-stage nuclear power program that was crafted on the basis of available resources and technology in the short-term and energy security in the long-term. Early R and D efforts were directed at technologies relevant to Pressurized Heavy Water Reactors (PHWRs) which are currently the mainstay of Indian nuclear power program. Lately, the R and D program has been steered towards the design and development of advanced and innovative reactors with the twin objective of utilization of abundant thorium and to meet the future challenges to nuclear power such as enhanced safety and reliability, better economy, proliferation resistance etc. Advanced Heavy Water Reactor (AHWR) is an Indian innovative reactor currently being developed to realize the above objectives. Extensive R and D infrastructure has been created to validate the system design and various passive concepts being incorporated in the AHWR. This paper provides a brief review of R and D infrastructure that has been developed at Bhabha Atomic Research Centre for thermal-hydraulic investigations for water-cooled reactors of Indian nuclear power program. (author)

  12. Worldwide assessment of steam-generator problems in pressurized-water-reactor nuclear power plants

    International Nuclear Information System (INIS)

    Woo, H.H.; Lu, S.C.

    1981-01-01

    Objective is to assess the reliability of steam generators of pressurized water reactor (PWR) power plants in the United States and abroad. The assessment is based on operation experience of both domestic and foreign PWR plants. The approach taken is to collect and review papers and reports available from the literature as well as information obtained by contacting research institutes both here and abroad. This report presents the results of the assessment. It contains a general background of PWR plant operations, plant types, and materials used in PWR plants. A review of the worldwide distribution of PWR plants is also given. The report describes in detail the degradation problems discovered in PWR steam generators: their causes, their impacts on the performance of steam generators, and the actions to mitigate and avoid them. One chapter is devoted to operating experience of PWR steam generators in foreign countries. Another discusses the improvements in future steam generator design

  13. Regulation of nuclear power: the case of the light water reactor

    International Nuclear Information System (INIS)

    Rolph, E.

    1977-06-01

    This report is one of a series of documents that trace the history of the development and commercialization of the light water reactor in the expectation that a better appreciation of the development and commercialization process of this complex technology could be instructive in understanding the regulatory and economic obstacles currently slowing diffusion of that technology and the problems that may be encountered in similar large-scale, high-technology development projects. This regulatory history of the Atomic Energy Commission chronicles the significant events between 1954, when the AEC was given responsibility for regulating nuclear power plants, and 1974, when the AEC was absorbed by the Energy Research and Development Administration and the Nuclear Regulatory Commission. It identifies the origins of regulatory problems that have arisen during the period and describes how the AEC dealt with them. The history is based, for the most part, on primary source documents: hearings, news reports, and AEC documents

  14. LWR [Light Water Reactor] power plant simulations using the AD10 and AD100 systems

    International Nuclear Information System (INIS)

    Wulff, W.; Cheng, H.S.; Chien, C.J.; Jang, J.Y.; Lin, H.C.; Mallen, A.N.; Wang, S.J.

    1989-01-01

    Boiling (BWR) and Pressurized (PWR) Water Reactor Power Plants are being simulated at BNL with the AD10 and AD100 Peripheral Processor Systems. The AD10 system has been used for BWR simulations since 1984 for safety analyses, emergency training and optimization studies. BWR simulation capabilities have been implemented recently on the AD100 system and PWR simulation capabilities are currently being developed under the auspices of international cooperation. Modeling and simulation methods are presented with emphasis on the simulation of the Nuclear Steam Supply System. Results are presented for BWR simulation and performance characteristics are compared of the AD10 and AD100 systems. It will be shown that the AD100 simulates two times faster than two AD10 processors operating in parallel and that the computing capacity of one AD100 (with FMU processor) is twice as large as that of two AD10 processors. 9 refs., 5 figs., 1 tab

  15. Surveillance tests for light-water cooled nuclear power reactor vessels in IMEF

    International Nuclear Information System (INIS)

    Choo, Yong-Sun; Ahn, Sang-Bok; Park, Dae-Gyu; Jung, Yang-Hong; Yoo, Byung-Ok; Oh, Wan-Ho; Baik, Seung-Je; Koo, Dae-Seo; Lee, Key-Soon

    1999-01-01

    The surveillance tests for light-water cooled nuclear power reactor vessels were established to monitor the radiation-induced changes in the mechanical properties of ferritic materials in the beltline according to US NRC 10 CFR 50 App. G, US NRC RG1.99-rev.2, ASTM E185-82 and E185-94 in Irradiated Materials Examination Facility(IMEF). The surveillance capsule was transported from NPPs pool sites to KAERI IMEF by using a shipping cask. The capsule was cut and dismantled by capsule cutting machine and milling machine in M2 hot cell. Charpy tests and tension tests were performed in M5a and M5b hot cells respectively. Especially the EPMA located at hot lab was used to analyze the Ni and Cu wt% composition of base metal and weld for predicting the adjusted reference temperature(ART). The established process and test results were summarized in this paper. (author)

  16. Technology, safety and costs of decommissioning a reference boiling water reactor power station: Comparison of two decommissioning cost estimates developed for the same commercial nuclear reactor power station

    International Nuclear Information System (INIS)

    Konzek, G.J.; Smith, R.I.

    1990-12-01

    This study presents the results of a comparison of a previous decommissioning cost study by Pacific Northwest Laboratory (PNL) and a recent decommissioning cost study of TLG Engineering, Inc., for the same commercial nuclear power reactor station. The purpose of this comparative analysis on the same plant is to determine the reasons why subsequent estimates for similar plants by others were significantly higher in cost and external occupational radiation exposure (ORE) than the PNL study. The primary purpose of the original study by PNL (NUREG/CR-0672) was to provide information on the available technology, the safety considerations, and the probable costs and ORE for the decommissioning of a large boiling water reactor (BWR) power station at the end of its operating life. This information was intended for use as background data and bases in the modification of existing regulations and in the development of new regulations pertaining to decommissioning activities. It was also intended for use by utilities in planning for the decommissioning of their nuclear power stations. The TLG study, initiated in 1987 and completed in 1989, was for the same plant, Washington Public Supply System's Unit 2 (WNP-2), that PNL used as its reference plant in its 1980 decommissioning study. Areas of agreement and disagreement are identified, and reasons for the areas of disagreement are discussed. 31 refs., 3 figs., 22 tabs

  17. Reactor water level control device

    International Nuclear Information System (INIS)

    Utagawa, Kazuyuki.

    1993-01-01

    A device of the present invention can effectively control fluctuation of a reactor water level upon power change by reactor core flow rate control operation. That is, (1) a feedback control section calculates a feedwater flow rate control amount based on a deviation between a set value of a reactor water level and a reactor water level signal. (2) a feed forward control section forecasts steam flow rate change based on a reactor core flow rate signal or a signal determining the reactor core flow rate, to calculate a feedwater flow rate control amount which off sets the steam flow rate change. Then, the sum of the output signal from the process (1) and the output signal from the process (2) is determined as a final feedwater flow rate control signal. With such procedures, it is possible to forecast the steam flow rate change accompanying the reactor core flow rate control operation, thereby enabling to conduct preceding feedwater flow rate control operation which off sets the reactor water level fluctuation based on the steam flow rate change. Further, a reactor water level deviated from the forecast can be controlled by feedback control. Accordingly, reactor water level fluctuation upon power exchange due to the reactor core flow rate control operation can rapidly be suppressed. (I.S.)

  18. Reactor power control device

    International Nuclear Information System (INIS)

    Doi, Kazuyori.

    1981-01-01

    Purpose: To automatically control the BWR type reactor power by simple and short-time searching the load pattern nearest to the required pattern at a nuclear power plant side. Constitution: The reactor power is automatically regulated by periodical modifying of coefficients fitting to a reactor core model, according as a required load pattern. When a load requirement pattern is given, a simulator estimates the total power change and the axial power distribution change from a xenon density change output calculated by a xenon dynamic characteristic estimating device, and a load pattern capable of being realized is searched. The amount to be recirculated is controlled on the basis of the load patteren thus searched, and the operation of the BWR type reactor is automatically controlled at the side of the nuclear power plant. (Kamimura, M.)

  19. Reactor water chemistry control

    International Nuclear Information System (INIS)

    Kundu, A.K.

    2010-01-01

    Tarapur Atomic Power Station - 1 and 2 (TAPS) is a twin unit Boiling Water Reactors (BWRs) built in 1960's and operating presently at 160MWe. TAPS -1 and 2 are one of the vintage reactors operating in the world and belongs to earlier generation of BWRs has completed 40 years of successful, commercial and safe operation. In 1980s, both the reactors were de-rated from 660MWth to 530MWth due to leaks in the Secondary Steam Generators (SSGs). In BWR the feed water acts as the primary coolant which dissipates the fission heat and thermalises the fast neutrons generated in the core due to nuclear fission reaction and under goes boiling in the Reactor Pressure Vessel (RPV) to produce steam. Under the high reactor temperature and pressure, RPV and the primary system materials are highly susceptible to corrosion. In order to avoid local concentration of the chemicals in the RPV of BWR, chemical additives are not recommended for corrosion prevention of the system materials. So to prevent corrosion of the RPV and the primary system materials, corrosion resistant materials like stainless steel (of grade SS304, SS304L and SS316LN) is used as the structural material for most of the primary system components. In case of feed water system, main pipe lines are of carbon steel and the heater shell materials are of carbon steel lined with SS whereas the feed water heater tubes are of SS-304. In addition to the choice of materials, another equally important factor for corrosion prevention and corrosion mitigation of the system materials is maintaining highly pure water quality and strict water chemistry regime for both the feed water and the primary coolant, during operation and shutdown of the reactor. This also helps in controlled migration of corrosion product to and from the reactor core and to reduce radiation field build up across the primary system materials. Experience in this field over four decades added to the incorporation of modern techniques in detection of low

  20. Reactor power distribution monitor

    International Nuclear Information System (INIS)

    Hoizumi, Atsushi.

    1986-01-01

    Purpose: To grasp the margin for the limit value of the power distribution peaking factor inside the reactor under operation by using the reactor power distribution monitor. Constitution: The monitor is composed of the 'constant' file, (to store in-reactor power distributions obtained from analysis), TIP and thermocouple, lateral output distribution calibrating apparatus, axial output distribution synthesizer and peaking factor synthesizer. The lateral output distribution calibrating apparatus is used to make calibration by comparing the power distribution obtained from the thermocouples to the power distribution obtained from the TIP, and then to provide the power distribution lateral peaking factors. The axial output distribution synthesizer provides the power distribution axial peaking factors in accordance with the signals from the out-pile neutron flux detector. These axial and lateral power peaking factors are synthesized with high precision in the three-dimensional format and can be monitored at any time. (Kamimura, M.)

  1. Reactor power control system

    International Nuclear Information System (INIS)

    Tomisawa, Teruaki.

    1981-01-01

    Purpose: To restore reactor-power condition in a minimum time after a termination of turbine bypass by reducing the throttling of the reactor power at the time of load-failure as low as possible. Constitution: The transient change of the internal pressure of condenser is continuously monitored. When a turbine is bypassed, a speed-control-command signal for a coolant recirculating pump is generated according as the internal pressure of the condenser. When the signal relating to the internal pressure of the condenser indicates insufficient power, a reactor-control-rod-drive signal is generated. (J.P.N.)

  2. Power reactors operational diagnosis

    International Nuclear Information System (INIS)

    Dach, K.; Pecinka, L.

    1976-01-01

    The definition of reactor operational diagnostics is presented and the fundamental trends of research are determined. The possible sources of power reactor malfunctions, the methods of defect detection, the data evaluation and the analysis of the results are discussed in detail. In view of scarcity of a theoretical basis and of insufficient in-core instrumentation, operational diagnostics cannot be as yet incorporated in a computer-aided reactor control system. (author)

  3. Method of 16N generation for test of radiation controlled channels at nuclear power stations with water-cooled reactors

    International Nuclear Information System (INIS)

    Khryachkov, V.A.; Bondarenko, I.P.; Dvornikov, P.A.; Zhuravlev, B.V.; Kovtun, S.N.; Khromyleva, T.A.; Pavlov, A.V.; Roshchin, N.G.

    2012-01-01

    The preferences of nuclear reaction use for radiation control channels test in water-cooled power reactors have been analyzed in the paper. The new measurements for more accurate determination of reaction cross section energy dependence have been carried out. A set of new methods for background reducing and improvement of events determination reliability has also been developed [ru

  4. Critical experiments supporting close proximity water storage of power reactor fuel. Technical progress report, July 1, 1978-September 30, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, M.N.; Hoovler, G.S.; Eng, R.L.; Welfare, F.G.

    1978-11-01

    Experimental measurements are being taken on critical configurations of clusters of fuel rods mocking up LWR-type fuel elements in close proximity water storage. The results will serve to benchmark the computer codes used in designing nuclear power reactor fuel storage racks. KENO calculations of Cores I to VI are within two standard deviations of the measured k/sub eff/ values.

  5. Next generation light water reactors

    International Nuclear Information System (INIS)

    Omoto, Akira

    1992-01-01

    In the countries where the new order of nuclear reactors has ceased, the development of the light water reactors of new type has been discussed, aiming at the revival of nuclear power. Also in Japan, since it is expected that light water reactors continue to be the main power reactor for long period, the technology of light water reactors of next generation has been discussed. For the development of nuclear power, extremely long lead time is required. The light water reactors of next generation now in consideration will continue to be operated till the middle of the next century, therefore, they must take in advance sufficiently the needs of the age. The improvement of the way men and the facilities should be, the simple design, the flexibility to the trend of fuel cycle and so on are required for the light water reactors of next generation. The trend of the development of next generation light water reactors is discussed. The construction of an ABWR was started in September, 1991, as No. 6 plant in Kashiwazaki Kariwa Power Station. (K.I.)

  6. Occupational radiation dose statistics from light-water power reactors operating in Western Europe

    International Nuclear Information System (INIS)

    Brookes, I.R.; Eng, T.

    1987-01-01

    Since the early days of nuclear power, collective and individual doses for people engaged in the maintenance and operation of nuclear power plants have been published by regulatory authorities. In 1979 a small working party whose members were drawn from Member States operating light-water reactors (LWRs) in the European Community was convened. The working party decided that only by collection of data under a unified scheme would it ever be possible to properly compare plant performance and for this reason a questionnaire was drawn up which attempted to elicit the maximum of information with the minimum inconvenience to the plant staff. Another decision made by the working party was to broaden the data base from 'European Community LWRs' to 'West European LWRs' to try to take advantage of the considerable experience being built up in Sweden, in Finland and in Switzerland. All the data available to the Commission up to the end of 1984 are presented and commented on. The deductions are not exhaustive but are believed to represent the limits of what could sensibly be done with the data available. Results are presented separately for BWR and PWR but no other subdivision, say by country or maker, is made. Where interpretation can be enhanced by graphical presentation, this is done. In general, doses for each job category are expressed in various ways to reveal and afford comparisons

  7. WATER BOILER REACTOR

    Science.gov (United States)

    King, L.D.P.

    1960-11-22

    As its name implies, this reactor utilizes an aqueous solution of a fissionable element salt, and is also conventional in that it contains a heat exchanger cooling coil immersed in the fuel. Its novelty lies in the utilization of a cylindrical reactor vessel to provide a critical region having a large and constant interface with a supernatant vapor region, and the use of a hollow sleeve coolant member suspended from the cover assembly in coaxial relation with the reactor vessel. Cool water is circulated inside this hollow coolant member, and a gap between its outer wall and the reactor vessel is used to carry off radiolytic gases for recombination in an external catalyst chamber. The central passage of the coolant member defines a reflux condenser passage into which the externally recombined gases are returned and condensed. The large and constant interface between fuel solution and vapor region prevents the formation of large bubbles and minimizes the amount of fuel salt carried off by water vapor, thus making possible higher flux densities, specific powers and power densities.

  8. Steam generator tube performance. Experience with water-cooled nuclear power reactors during 1985

    International Nuclear Information System (INIS)

    Tatone, O.S.; Tapping, R.L.

    1988-12-01

    The performance of steam generator tubes at water-cooled reactors during 1985 has been reviewed. Seventy-three of 168 reactors in the survey experienced tube degradation sufficient for the tubes to be plugged. The number of tubes plugged was 6837 or 0.28% of those in service. The leading cause of tube failure was stress corrosion cracking from the primary side. Stress corrosion cracking or intergranular attack from the secondary side and pitting were also major causes of tube failure. Unlike most previous years, fretting was a substantial problem at some reactors. Overall, corrosion continued to account for more than 80% of the defects. 20 refs

  9. Technology, safety and costs of decommissioning a Reference Boiling Water Reactor Power Station. Main report. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

    1980-06-01

    Technology, safety and cost information is given for the conceptual decommissioning of a large (1100MWe) boiling water reactor (BWR) power station. Three approaches to decommissioning, immediate dismantlement, safe storage with deferred dismantlement and entombment, were studied to obtain comparisons between costs, occupational radiation doses, potential dose to the public and other safety impacts. It also shows the sensitivity of decommissioning safety and costs to the power rating of a BWR in the range of 200 to 1100 MWe.

  10. Reactor power control device

    International Nuclear Information System (INIS)

    Kobayashi, Akira.

    1980-01-01

    Purpose: To prevent misoperation in a control system for the adjustment of core coolant flow rate, and the increase in the neutron flux density caused from the misoperation in BWR type reactors. Constitution: In a reactor power control system adapted to control the reactor power by the adjustment of core flow rate, average neutron flux signals of a reactor core, entire core flow rate signals and operation state signals for coolant recycling system are inputted to a microcomputer. The outputs from the computer are sent to a recycling MG set speed controller to control the reactor core flow rate. The computer calculates the change ratio with time in the average neutron flux signals, correlation between the average neutron flux signals and the entire core flow rate signals, change ratio with time in the operation state signals for the coolant recycling system and the like and judges the abnormality in the coolant recycling system based on the calculated results. (Ikeda, J.)

  11. Several perspectives on water-chemical cycles for nuclear power stations equipped with type VVER and RBMK reactors

    International Nuclear Information System (INIS)

    Mamet, A.P.; Mamet, V.A.; Pashevich, V.I.; Nazarenko, P.N.

    1982-01-01

    Water-chemical cycles for loops I and II of VVER reactors are discussed. These cycles are mixed ammonia-sodium with a variable concentration of boric acid and ammonia hydrazine with a pH factor of 9.1 +/- 0.1. New water-chemical cycles are considered for use in both existing and new nuclear power plants. Application of these new water-chemical cycles showed produce a significant improvement in operating conditions of nuclear power plants. Upon accumulation of sufficient operating experience with these cycles, it should be possible to raise the issue of revising applicable standard documentation

  12. Advanced light-water reactors

    International Nuclear Information System (INIS)

    Golay, M.W.; Todreas, N.E.

    1990-01-01

    Environmental concerns, economics and the earth's finite store of fossil fuels argue for a resuscitation of nuclear power. The authors think improved light-water reactors incorporating passive safety features can be both safe and profitable, but only if attention is paid to economics, effective management and rigorous training methods. The experience of nearly four decades has winnowed out designs for four basic types of reactor: the heavy-water reactor (HWR), the gas-cooled rector (GCR), the liquid-metal-cooled reactor (LMR) and the light-water reactor (LWR). Each design is briefly described before the paper discusses the passive safety features of the AP-600 rector, so-called because it employs an advanced pressurized water design and generates 600 MW of power

  13. Accident sequences evaluation using SFATs for low power and shutdown operation of pressurized heavy water reactors

    International Nuclear Information System (INIS)

    Kim, Chansoo; Chung, Chang-Hyun; Yang, Huichang

    2004-01-01

    To maintain the level of defense-in-depth safety of Pressurized Heavy Water Reactor (PHWR) during LP/SD operation, the qualitative risk evaluation methods such as Safety Function Assessment Trees (SFATs) are required. Therefore SFATs are suggested to assess and manage the PHWR safety in LP/SD. Before this study, safety functions of PHWR were classified into 7 groups; Reactivity Control, Core Cooling, Secondary Heat Removal, Primary Heat Transport Inventory, Essential Electrical Power, Cooling Water, and Containment Integrity. The SFATs for PHWR LP/SD operations were developed along with the Plant Outage Status (POS) variation, and totally 38 SFATs were developed for Wolsung Unit 2. For the verification of SFATs logics developed, top 5 accident sequences those contribute the CDF of PHWR were selected, and plant safety status were evaluated for those accident sequences. Accident sequences such as DCC-4 (Dual Control Computer Failure), CL4-16 (Total Loss of Class IV Power), and FWPV-11 (Loss of Feedwater Supply to SG due to Failure of Pumps/Values) were included. In this research the evaluation of plant safety status by accident sequences using SFATs and the verification of the SFATs were performed. Through the verification of SFAT logics, the enhancements to the internal logics of the SFATs were made, and the dependencies between safety systems and support systems were considered. It is expected the defense-in-depth evaluation model of PHW just as SFATs can be utilized in the configuration risk management program (CRMP) development and improve technical specifications development for Korean PHWRs. (author)

  14. The Optimization of power reactor control system

    International Nuclear Information System (INIS)

    Danupoyo, S.D.

    1997-01-01

    A power reactor is an important part in nuclear powered electrical plant systems. Success in controlling the power reactor will establish safety of the whole power plant systems. Until now, the power reactor has been controlled by a classical control system that was designed based on output feedback method. To meet the safety requirements that are now more restricted, the recently used power reactor control system should be modified. this paper describes a power reactor control system that is designed based on a state feedback method optimized with LQG (Linear-quadrature-gaussian) method and equipped with a state estimator. A pressurized-water type reactor has been used as the model. by using a point kinetics method with one group delayed neutrons. the result of simulation testing shows that the optimized control system can control the power reactor more effective and efficient than the classical control system

  15. Knowledges and abilities catalog for nuclear power plant operators: pressurized water reactors

    International Nuclear Information System (INIS)

    1985-07-01

    This document catalogs roughly 5300 knowledges and abilities of reactor operators and senior reactor operators. It results from a reanalysis of much larger job-task analysis data base compiled by the Institute of Nuclear Power Operations (INPO). Knowledges and abilities are cataloged for 45 major power plant systems and 38 emergency evolutions, grouped according to 11 fundamental safety functions (e.g., reactivity control and reactor coolant system inventory control). With appropriate sampling from this catalog, operator licensing examinations having content validity can be developed. A structured sampling procedure for this catalog is under development by the Nuclear Regulatory Commission (NRC) and will be published as a companion document, ''Examiners' Handbook for Developing Operator Licensing Examinations'' (NUREG-1121). The examinations developed by using the catalog and handbook will cover those topics listed under Title 10, Code of Federal Regulations, Part 55

  16. Technical limits on performance reserves and life expectancy in nuclear power stations with light water reactors

    International Nuclear Information System (INIS)

    Wanner, R.; Brosi, S.; Duijvestijn, G.

    1990-01-01

    The safety margin (i.e. the difference between the loads equipment can take and those actually imposed on components) in a reactor pressure vessel is a major factor in the life expectancy of a nuclear power station. This safety margin is reduced considerably by reductions in the toughness of equipment caused by neutron irradiation and growth of cracks. Once the minimum safety margin is infringed, the nuclear power station is at the end of its working life. 13 figs., 11 refs

  17. An evaluation of light water breeder reactor system (LWBR) as an alternative for nuclear power generation in Brazil

    International Nuclear Information System (INIS)

    Sauer, I.L.

    1981-01-01

    The LWBR system as an alternative for nuclear power generation in Brazil, was technically and economically evaluated. The LWBR system has been characterized comparatively with the Pressurized Water Reactors through technological and investment cost analysis and through the analysis of the processes and unit costs of the fuel cycle stages. The characteristics of the LWBR system in comparison to the PWR system, with respect to utilization and cumulative consumption of uranium and thorium resources, fuel cycle processes and associated costs have been determined for possible alternatives of nuclear power participation in the Brazilian hidro-thermal electricity generating system. The analysis concluded that the LWBR system does not represent an attractive alternative for nuclear power generation in Brazil and even has no potential to compete with conventional Pressurized Water Reactors. (Author) [pt

  18. Operating US power reactors

    International Nuclear Information System (INIS)

    Silver, E.G.

    1988-01-01

    This update, which appears regularly in each issue of Nuclear Safety, surveys the operations of those power reactors in the US which have been issued operating licenses. Table 1 shows the number of such reactors and their net capacities as of September 30, 1987, the end of the three-month period covered in this report. Table 2 lists the unit capacity and forced outage rate for each licensed reactor for each of the three months (July, August, and September 1987) covered in this report and the cumulative values of these parameters since the beginning of commercial operation. In addition to the tabular data, this article discusses other significant occurrences and developments that affected licensed US power reactors during this reporting period. Status changes at Braidwood Unit 1, Nine Mile Point 2, and Beaver Valley 2 are discussed. Other occurrences discussed are: retraining of control-room operators at Peach Bottom; a request for 25% power for Shoreham, problems at Fermi 2 which delayed the request to go to 75% power; the results of a safety study of the N Reactor at Hanford; a proposed merger of Pacific Gas and Electric with Sacramento Municipal Utility District which would result in the decommissioning of Rancho Seco; the ordered shutdown of Oyster Creek; a minor radioactivity release caused by a steam generator tube rupture at North Anna 1; and 13 fines levied by the NRC on reactor licensees

  19. Onsite nondestructive examination techniques for irradiated water-cooled power reactor fuel

    International Nuclear Information System (INIS)

    1981-03-01

    The International Atomic Energy Agency, in response to the recommendations from several Member States, has prepared this Guidebook on Onsite Non-Destructive Techniques for Irradiated Water-Cooled Power Reactor Fuel with the assistance of a number of experts and organizations in this field. During the preparation of this report it became evident that a comparison between different techniques is a most difficult task and depends on a number of factors related to fuel design, plant characteristics and operating conditions. Consequently the emphasis of the report is on the survey of different techniques presently available. It is also to be noted that because the degree of development for any given technique varies significantly among organizations, it is understood that the report should not be used as consensus standard of the minimum capabilities for each class of techniques, nor does it give recommendations in the regulatory sense. Furthermore, the inclusion of some commercial pieces of equipment, services and other products are for illustrative purposes only and neither implies any preference by the Agency nor can the Agency be liable for any material presented in the report

  20. Hydrogen behaviour and mitigation in water-cooled nuclear power reactors

    International Nuclear Information System (INIS)

    Della Loggia, E.

    1992-01-01

    The Commission of the European Communities (CEC) and the International Atomic Energy Agency (IAEA), within the framework of their safety research activities, initiated and arranged a series of specialist meetings and research contracts on hydrogen behaviour and control. The result of this work is summarized in a report jointly prepared by the two international organizations entitled 'Hydrogen in water-cooled nuclear power reactors'. Independently, the Kurchatov Atomic Energy Institute organized a workshop on the hydrogen issue in Sukhumi, USSR, with CEC and IAEA cooperation. Commonly expressed views have emerged and recommendations were formulated to organize the subsequent seminar/workshop concentrating mainly on the most recent research and analytical projects and findings related to the hydrogen behaviour, and-most importantly-on the practical approaches and engineering solutions to the hydrogen control and mitigation. The seminar/workshop, therefore, addressed the 'theory and practice' aspects of the hydrogen issue. The workshop was structured in the following sessions: combustible gas production; hydrogen distribution; combustion phenomena; combustion effects and threats; and detection and migration

  1. Light water reactor safety

    CERN Document Server

    Pershagen, B

    2013-01-01

    This book describes the principles and practices of reactor safety as applied to the design, regulation and operation of light water reactors, combining a historical approach with an up-to-date account of the safety, technology and operating experience of both pressurized water reactors and boiling water reactors. The introductory chapters set out the basic facts upon which the safety of light water reactors depend. The central section is devoted to the methods and results of safety analysis. The accidents at Three Mile Island and Chernobyl are reviewed and their implications for light wate

  2. Design characteristics for pressurized water small modular nuclear power reactors with focus on safety

    Energy Technology Data Exchange (ETDEWEB)

    Kani, Iraj Mahmoudzadeh [Tehran Univ. (Iran, Islamic Republic of). Civil Faculty; Zandieh, Mehdi [Tehran Univ. (Iran, Islamic Republic of). Civil Faculty; International Univ. of Imam Khomeini (Iran, Islamic Republic of). Architecture Faculty; Abadi, Saeed Kheirollahi Hossein [International Univ. of Imam Khomeini (Iran, Islamic Republic of). Architecture Faculty

    2016-05-15

    Small Modular Reactors (SMRs) are a technology, attracting attention. Light water SMR possess an upgraded design case and emphasize the significance of integral models. Beside of these advantages, SMRs has faced numerous challenges, e.g. licensing, cost/investment, safety and security observation, social and environmental issues in building new plants.

  3. Method and apparatus for suppressing water-solid overpressurization of coolant in nuclear reactor power apparatus

    International Nuclear Information System (INIS)

    Aanstad, O.J.; Sklencar, A.M.

    1983-01-01

    A reactor-coolant relief valve is opened for increase in mass influx if the rate of change of coolant pressure exceeds a setpoint during a predetermined interval, if, during this interval, the coolant temperature is less than a setpoint and if the level of the fluid in the pressurizer is above a predetermined setpoint (water-solid state). (author)

  4. Compact power reactor

    International Nuclear Information System (INIS)

    Wetch, J.R.; Dieckamp, H.M.; Wilson, L.A.

    1978-01-01

    There is disclosed a small compact nuclear reactor operating in the epithermal neutron energy range for supplying power at remote locations, as for a satellite. The core contains fuel moderator elements of Zr hydride with 7 w/o of 93% enriched uranium alloy. The core has a radial beryllium reflector and is cooled by liquid metal coolant such as NaK. The reactor is controlled and shut down by moving portions of the reflector

  5. Molten fuel-coolant interactions resulting from power transients in aluminium plate/water moderated reactors

    International Nuclear Information System (INIS)

    Storr, G.J.

    1989-08-01

    The behaviour of two reactors SL1 and SPERT D12, which underwent fast nuclear power transients prior to core destruction by a molten fuel-coolant interaction (MFCI) has been analysed and the results compared with measured data. The calculated spatial melt distribution and the mechanical work done during the events leads to high (∼ 250 kJ/kg) conversion efficiencies for this type of interaction when compared with molten drop experiments. A simple model for the steam explosion, using static thermodynamic properties of high temperature and pressure steam is used to calculate the dynamics of the reactors following the MFCI. 26 refs., 5 figs., 5 tabs

  6. Power reactor design trends

    International Nuclear Information System (INIS)

    Hogan, W.J.

    1985-01-01

    Cascade and Pulse Star represent new trends in ICF power reactor design that have emerged in the last few years. The most recent embodiments of these two concepts, and that of the HYLIFE design with which they will compare them, are shown. All three reactors depend upon protecting structural elements from neutrons, x rays and debris by injecting massive amounts of shielding material inside the reaction chamber. However, Cascade and Pulse Star introduce new ideas to improve the economics, safety, and environmental impact of ICF reactors. They also pose different development issues and thus represent technological alternatives to HYLIFE

  7. Evaluation of fuel fabrication and the back end of the fuel cycle for light-water- and heavy-water-cooled nuclear power reactors

    International Nuclear Information System (INIS)

    Carter, W.L.; Olsen, A.R.

    1979-06-01

    The classification of water-cooled nuclear reactors offers a number of fuel cycles that present inherently low risk of weapons proliferation while making power available to the international community. Eight fuel cycles in light water reactor (LWR), heavy water reactor (HWR), and the spectral shift controlled reactor (SSCR) systems have been proposed to promote these objectives in the International Fuel Cycle Evaluation (INFCE) program. Each was examined in an effort to provide technical and economic data to INFCE on fuel fabrication, refabrication, and reprocessing for an initial comparison of alternate cycles. The fuel cycles include three once-through cycles that require only fresh fuel fabrication, shipping, and spent fuel storage; four cycles that utilize denatured uranium--thorium and require all recycle operations; and one cycle that considers the LWR--HWR tandem operation requiring refabrication but no reprocessing

  8. Evaluation of fuel fabrication and the back end of the fuel cycle for light-water- and heavy-water-cooled nuclear power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Carter, W.L.; Olsen, A.R.

    1979-06-01

    The classification of water-cooled nuclear reactors offers a number of fuel cycles that present inherently low risk of weapons proliferation while making power available to the international community. Eight fuel cycles in light water reactor (LWR), heavy water reactor (HWR), and the spectral shift controlled reactor (SSCR) systems have been proposed to promote these objectives in the International Fuel Cycle Evaluation (INFCE) program. Each was examined in an effort to provide technical and economic data to INFCE on fuel fabrication, refabrication, and reprocessing for an initial comparison of alternate cycles. The fuel cycles include three once-through cycles that require only fresh fuel fabrication, shipping, and spent fuel storage; four cycles that utilize denatured uranium--thorium and require all recycle operations; and one cycle that considers the LWR--HWR tandem operation requiring refabrication but no reprocessing.

  9. Advanced boiling water reactor

    International Nuclear Information System (INIS)

    Nishimura, N.; Nakai, H.; Ross, M.A.

    1999-01-01

    In the Boiling Water Reactor (BWR) system, steam generated within the nuclear boiler is sent directly to the main turbine. This direct cycle steam delivery system enables the BWR to have a compact power generation building design. Another feature of the BWR is the inherent safety that results from the negative reactivity coefficient of the steam void in the core. Based on the significant construction and operation experience accumulated on the BWR throughout the world, the ABWR was developed to further improve the BWR characteristics and to achieve higher performance goals. The ABWR adopted 'First of a Kind' type technologies to achieve the desired performance improvements. The Reactor Internal Pump (RIP), Fine Motion Control Rod Drive (FMCRD), Reinforced Concrete Containment Vessel (RCCV), three full divisions of Emergency Core Cooling System (ECCS), integrated digital Instrumentation and Control (I and C), and a high thermal efficiency main steam turbine system were developed and introduced into the ABWR. (author)

  10. Nuclear power plant control room task analysis. Pilot study for pressurized water reactors

    International Nuclear Information System (INIS)

    Barks, D.B.; Kozinsky, E.J.; Eckel, S.

    1982-05-01

    The purposes of this nuclear plant task analysis pilot study: to demonstrate the use of task analysis techniques on selected abnormal or emergency operation events in a nuclear power plant; to evaluate the use of simulator data obtained from an automated Performance Measurement System to supplement and validate data obtained by traditional task analysis methods; and to demonstrate sample applications of task analysis data to address questions pertinent to nuclear power plant operational safety: control room layout, staffing and training requirements, operating procedures, interpersonal communications, and job performance aids. Five data sources were investigated to provide information for a task analysis. These sources were (1) written operating procedures (event-based); (2) interviews with subject matter experts (the control room operators); (3) videotapes of the control room operators (senior reactor operators and reactor operators) while responding to each event in a simulator; (4) walk-/talk-throughs conducted by control room operators for each event; and (5) simulator data from the PMS

  11. Technology, safety and costs of decommissioning a reference pressurized water reactor power station. Classification of decommissioning wastes. Addendum 3

    International Nuclear Information System (INIS)

    Murphy, E.S.

    1984-09-01

    The radioactive wastes expected to result from decommissioning of the reference pressurized water reactor power station are reviewed and classified in accordance with 10 CFR 61. The 17,885 cubic meters of waste from DECON are classified as follows: Class A, 98.0%; Class B, 1.2%; Class C, 0.1%. About 0.7% (133 cubic meters) of the waste would be generally unacceptable for disposal using near-surface disposal methods

  12. Behaviour of a pressurized-water reactor nuclear power plant during loss-of-coolant accident

    International Nuclear Information System (INIS)

    Adam, E.; Carl, H.; Kubis, K.

    1979-01-01

    Starting from the foundation of the design basis accident in a PWR-type nuclear power plant - Loss of Coolant Accident -the actual status of the processes to be expected in the reactor are described. Operating behaviour of the heat removal system and efficiency of the safety systems are evaluated. Final considerations are concerned with the overall behaviour of the plant under such conditions. Probable failures, shut down times and possibilities of repair are estimated. (author)

  13. Reactor water injection facility

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Kazuhiro; Kinoshita, Shoichiro

    1997-05-02

    A steam turbine and an electric generator are connected by way of a speed convertor. The speed convertor is controlled so that the number of rotation of the electric generator is constant irrespective of the speed change of the steam turbine. A shaft coupler is disposed between the turbine and the electric generator or between the turbine and a water injection pump. With such a constitution, the steam turbine and the electric generator are connected by way of the speed convertor, and since the number of revolution of the electric generator is controlled to be constant, the change of the number of rotation of the turbine can be controlled irrespective of the change of the number of rotation of the electric generator. Accordingly, the flow rate of the injection water from the water injection pump to a reactor pressure vessel can be controlled freely thereby enabling to supply stable electric power. (T.M.)

  14. Draft report on compilation of generic safety issues for light water reactor nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    A generally accepted approach to characterizing the safety concerns in nuclear power plants is to express them as safety issues which need to be resolved. When such safety issues are applicable to a generation of plants of a particular design or to a family of plants of similar design, they are termed generic safety issues. Examples of generic safety issues are those related to reactor vessel embrittlement, control rod insertion reliability or strainer clogging. The safety issues compiled in this document are based on broad international experience. This compilation is one element in the framework of IAEA activities to assist Member States in reassessing the safety of operating nuclear power plants. Refs.

  15. Draft report on compilation of generic safety issues for light water reactor nuclear power plants

    International Nuclear Information System (INIS)

    1997-07-01

    A generally accepted approach to characterizing the safety concerns in nuclear power plants is to express them as safety issues which need to be resolved. When such safety issues are applicable to a generation of plants of a particular design or to a family of plants of similar design, they are termed generic safety issues. Examples of generic safety issues are those related to reactor vessel embrittlement, control rod insertion reliability or strainer clogging. The safety issues compiled in this document are based on broad international experience. This compilation is one element in the framework of IAEA activities to assist Member States in reassessing the safety of operating nuclear power plants. Refs

  16. Reactor power distribution monitor

    International Nuclear Information System (INIS)

    Sekimizu, Koichi

    1980-01-01

    Purpose: To improve the performance and secure the safety of a nuclear reactor by rapidly computing and display the power density in the nuclear reactor by using a plurality of processors. Constitution: Plant data for a nuclear reactor containing the measured values from a local power monitor LPRM are sent and recorded in a magnetic disc. They are also sent to a core performance computer in which burn-up degree distribution and the like are computed, and the results are sent and recorded in the magnetic disc. A central processors loads programs to each of the processors and applies data recorded in the magnetic disc to each of the processors. Each of the processors computes the corresponding power distribution in four fuel assemblies surrounding the LPRM string by the above information. The central processor compiles the computation results and displays them on a display. In this way, power distribution in the fuel assemblies can rapidly be computed to thereby secure the improvement of the performance and safety of the reactor. (Seki, T.)

  17. Nuclear power reactor safety

    International Nuclear Information System (INIS)

    Pon, G.A.

    1976-10-01

    This report is based on the Atomic Energy of Canada Limited submission to the Royal Commission on Electric Power Planning on the safety of CANDU reactors. It discusses normal operating conditions, postulated accident conditions, and safety systems. The release of radioactivity under normal and accident conditions is compared to the limits set by the Atomic Energy Control Regulations. (author)

  18. Benefit of the use of rare earths for the control of light water power reactors

    International Nuclear Information System (INIS)

    Mathelot, P.

    1959-01-01

    After having given an overview of the various technical or economic drawbacks of different materials used to control the operation of light water nuclear reactors, the author indicates the benefit of using rare earths for this purpose: high capture cross sections, high and large resonances, and longer lifetime. After a table indicating nuclear characteristics of control materials and of recommended materials, the authors describe how the values for the recommended materials issues are theoretically obtained

  19. Economic simplified boiling water reactor (ESBWR) response to an extended station blackout/ loss of all AC power

    International Nuclear Information System (INIS)

    Barrett, A.J.; Marquino, W.

    2013-01-01

    U.S. federal regulations require light water cooled nuclear power plants to cope with Station Blackout for a predetermined amount of time based on design factors for the plant. U.S. regulations define Station Blackout (SBO) as a loss of the offsite electric power system concurrent with turbine trip and unavailability of the onsite emergency AC power system. According to U.S. regulations, typically the coping period for an SBO is 4 hours and can be as long as 16 hours for currently operating BWR plants. Being able to cope with an SBO and loss of all AC power is required by international regulators as well. The U.S. licensing basis for the ESBWR is a coping period of 72 hours for an SBO based on U.S. NRC requirements for passive safety plants. In the event of an extended SBO (viz., greater than 72 hours), the ESBWR response shows that the design is able to cope with the event for at least 7 days without AC electrical power or operator action. ESBWR is a Generation III+ reactor design with an array of passive safety systems. The ESBWR primary success path for mitigation of an SBO event is the Isolation Condenser System (ICS). The ICS is a passive, closed loop, safety system that initiates automatically on a loss of power. Upon Station Blackout or loss of all AC power, the ICS begins removing decay heat from the Reactor Pressure Vessel (RPV) by (i) condensing the steam into water in heat exchangers located in pools of water above the containment, and (ii) transferring the decay heat to the atmosphere. The condensed water is then returned by gravity to cool the reactor again. The ICS alone is capable of maintaining the ESBWR in a safe shutdown condition after an SBO for an extended period. The fuel remains covered throughout the SBO event. The ICS is able to remove decay heat from the RPV for at least 7 days and maintains the reactor in a safe shutdown condition. The water level in the RPV remains well above the top of active fuel for the duration of the SBO event

  20. TU Electric reactor physics model verification: Power reactor benchmark

    International Nuclear Information System (INIS)

    Willingham, C.E.; Killgore, M.R.

    1988-01-01

    Power reactor benchmark calculations using the advanced code package CASMO-3/SIMULATE-3 have been performed for six cycles of Prairie Island Unit 1. The reload fuel designs for the selected cycles included gadolinia as a burnable absorber, natural uranium axial blankets and increased water-to-fuel ratio. The calculated results for both startup reactor physics tests (boron endpoints, control rod worths, and isothermal temperature coefficients) and full power depletion results were compared to measured plant data. These comparisons show that the TU Electric reactor physics models accurately predict important measured parameters for power reactors

  1. Light-water nuclear reactors

    International Nuclear Information System (INIS)

    Drevon, G.

    1983-01-01

    This work gives basic information on light-water reactors which is advanced enough for the reader to become familiar with the essential objectives and aspects of their design, their operation and their insertion in the industrial, economic and human environment. In view of the capital role of electric energy in the modern economy a significant place is given to electron-nuclear power stations, particularly those of the type adopted for the French programme. The work includes sixteen chapters. The first chapter relates the history and presents the various applications of light water reactors. The second refers to the general elementary knowledge of reactor physics. The third chapter deals with the high power light-water nuclear power station and thereby introduces the ensuing chapters which, up to and including chapter 13, are devoted to the components and the various aspects of the operation of power stations, in particular safety and the relationship with the environment. Chapter 14 provides information on the reactors adapted to applications other than the generation of electricity on an industrial scale. Chapter 15 shows the extent of the industrial effort devoted to light-water reactors and chapter 16 indicates the paths along which the present work is preparing the future of these reactors. The various chapters have been written to allow for separate consultation. An index of the main technical terms and a bibliography complete the work [fr

  2. A heuristic application of critical power ratio to pressurized water reactor core design

    International Nuclear Information System (INIS)

    Ahn, Seung Hoon; Jeun, Gyoo Dong

    2002-01-01

    The approach for evaluating the critical heat flux (CHF) margin using the departure from nucleate boiling ratio (DNBR) concept has been widely applied to PWR core design, while DNBR in this approach does not indicate appropriately the CHF margin in terms of the attainable power margin-to-CHF against a reactor core condition. The CHF power margin must be calculated by increasing power until the minimum DNBR reaches a DNBR limit. The Critical Power Ratio (CPR), defined as the ratio of the predicted CHF power to the operating power, is considered more reasonable for indicating the CHF margin and can be calculated by a CPR correlation based on the heat balance of a test bundle. This approach yields directly the CHF power margin, but the calculated CPR must be corrected to compensate for many local effects of the actual core, which are not considered in the CHF test and analysis. In this paper, correction of the calculated CPR is made so that it may become equal to the DNB overpower margin. Exemplary calculations showed that the correction tends to be increased as power distribution is more distorted, but are not unduly large

  3. Thermal and stability considerations for a supercritical water-cooled fast reactor during power-raising phase of plant startup

    International Nuclear Information System (INIS)

    Cai, Jiejin; Ishiwatari, Yuki; Oka, Yoshiaki; Ikejiri, Satoshi

    2009-01-01

    This paper describes thermal analyses and linear stability analyses of the Supercritical Water-cooled Fast Reactor with 'two-path' flow scheme during the power-raising phase of plant startup. For thermal consideration, the same criterion of the maximum cladding surface temperature (MCST) as applied to the normal operating condition is used. For thermal-hydraulic stability consideration, the decay ratio of 0.5 is applied, which is taken from BWRs. Firstly, we calculated the flow rate distribution among the parallel flow paths from the reactor vessel inlet nozzles to the mixing plenum below the core using a system analysis code. The parallel flow paths consist of the seed fuel assemblies cooled by downward flow, the blanket fuel assemblies cooled by downward flow and the downcomer. Then, the MCSTs are estimated for various reactor powers and feedwater flow rates with system analyses. The decay ratios are estimated with linear stability analyses. The available range of the reactor power and feedwater flow rate to satisfy the thermal and stability criteria is obtained. (author)

  4. International conference on opportunities and challenges for water cooled reactors in the 21. century. PowerPoint presentations

    International Nuclear Information System (INIS)

    2009-01-01

    Water Cooled Reactors have been the keystone of the nuclear industry in the 20th Century. As we move into the 21st Century and face new challenges such as the threat of climate change or the large growth in world energy demand, nuclear energy has been singled out as one of the sources that could substantially and sustainably contribute to power the world. As the nuclear community worldwide looks into the future with the development of advanced and innovative reactor designs and fuel cycles, it becomes important to explore the role Water Cooled Reactors (WCRs) will play in this future. To support the future role of WCRs, substantial design and development programmes are underway in a number of Member States to incorporate additional technology improvements into advanced nuclear power plants (NPPs) designs. One of the key features of advanced nuclear reactor designs is their improved safety due to a reduction in the probability and consequences of accidents and to an increase in the operator time allowed to better assess and properly react to abnormal events. A systematic approach and the experience of many years of successful operation have allowed designers to focus their design efforts and develop safer, more efficient and more reliable designs, and to optimize plant availability and cost through improved maintenance programs and simpler operation and inspection practices. Because many of these advanced WCR designs will be built in countries with no previous nuclear experience, it is also important to establish a forum to facilitate the exchange of information on the infrastructure and technical issues associated with the sustainable deployment of advanced nuclear reactors and its application for the optimization of maintenance of operating nuclear power plants. This international conference seeks to be all-inclusive, bringing together the policy, economic and technical decision-makers and the stakeholders in the nuclear industry such as operators, suppliers

  5. Development of an automated system of nuclear materials accounting for nuclear power stations with water-cooled, water-moderated reactors

    International Nuclear Information System (INIS)

    Babaev, N.S.

    1981-06-01

    The results of work carried out under IAEA Contract No. 2336/RB are described (subject: an automated system of nuclear materials accounting for nuclear power stations with water-cooled, water-moderated (VVER) reactors). The basic principles of an accounting system for this type of nuclear power plant are outlined. The general structure and individual units of the information computer program used to achieve automated accounting are described and instructions are given on the use of the program. A detailed example of its application (on a simulated nuclear power plant) is examined

  6. Investigating heavy water zero power reactors with a new core configuration based on experiment and calculation results

    Energy Technology Data Exchange (ETDEWEB)

    Nasrazadani, Zahra; Salimi, Raana; Askari, Afrooz; Khorsandi, Jamshid; Mirvakili, Mohammad; Mashayekh, Mohammad [Reactor Research School, Nuclear Science and Technology Research Institute, Atomic Energy Organization of Iran, Esfahan (Iran, Islamic Republic of)

    2017-02-15

    The heavy water zero power reactor (HWZPR), which is a critical assembly with a maximum power of 100 W, can be used in different lattice pitches. The last change of core configuration was from a lattice pitch of 18-20 cm. Based on regulations, prior to the first operation of the reactor, a new core was simulated with MCNP (Monte Carlo N-Particle)-4C and WIMS (Winfrith Improved Multigroup Scheme)-CITATON codes. To investigate the criticality of this core, the effective multiplication factor (Keff) versus heavy water level, and the critical water level were calculated. Then, for safety considerations, the reactivity worth of D2O, the reactivity worth of safety and control rods, and temperature reactivity coefficients for the fuel and the moderator, were calculated. The results show that the relevant criteria in the safety analysis report were satisfied in the new core. Therefore, with the permission of the reactor safety committee, the first criticality operation was conducted, and important physical parameters were measured experimentally. The results were compared with the corresponding values in the original core.

  7. Water simulation of sodium reactors

    International Nuclear Information System (INIS)

    Grewal, S.S.; Gluekler, E.L.

    1981-01-01

    The thermal hydraulic simulation of a large sodium reactor by a scaled water model is examined. The Richardson Number, friction coefficient and the Peclet Number can be closely matched with the water system at full power and the similarity is retained for buoyancy driven flows. The simulation of thermal-hydraulic conditions in a reactor vessel provided by a scaled water experiment is better than that by a scaled sodium test. Results from a correctly scaled water test can be tentatively extrapolated to a full size sodium system

  8. A novel nuclear combined power and cooling system integrating high temperature gas-cooled reactor with ammonia–water cycle

    International Nuclear Information System (INIS)

    Luo, Chending; Zhao, Fuqiang; Zhang, Na

    2014-01-01

    Highlights: • We propose a novel nuclear ammonia–water power and cooling cogeneration system. • The high temperature reactor is inherently safe, with exhaust heat fully recovered. • The thermal performances are improved compared with nuclear combined cycle. • The base case attains an energy efficiency of 69.9% and exergy efficiency of 72.5%. • Energy conservation and emission reduction are achieved in this cogeneration way. - Abstract: A nuclear ammonia–water power and refrigeration cogeneration system (NAPR) has been proposed and analyzed in this paper. It consists of a closed high temperature gas-cooled reactor (HTGR) topping Brayton cycle and a modified ammonia water power/refrigeration combined bottoming cycle (APR). The HTGR is an inherently safe reactor, and thus could be stable, flexible and suitable for various energy supply situation, and its exhaust heat is fully recovered by the mixture of ammonia and water in the bottoming cycle. To reduce exergy losses and enhance outputs, the ammonia concentrations of the bottoming cycle working fluid are optimized in both power and refrigeration processes. With the HTGR of 200 MW thermal capacity and 900 °C/70 bar reactor-core-outlet helium, the system achieves 88.8 MW net electrical output and 9.27 MW refrigeration capacity, and also attains an energy efficiency of 69.9% and exergy efficiency of 72.5%, which are higher by 5.3%-points and 2.6%-points as compared with the nuclear combined cycle (NCC, like a conventional gas/steam power-only combined cycle while the topping cycle is a closed HTGR Brayton cycle) with the same nuclear energy input. Compared with conventional separate power and refrigeration generation systems, the fossil fuel saving (based on CH 4 ) and CO 2 emission reduction of base-case NAPR could reach ∼9.66 × 10 4 t/y and ∼26.6 × 10 4 t/y, respectively. The system integration accomplishes the safe and high-efficiency utilization of nuclear energy by power and refrigeration

  9. Design of a proteus lattice representative of a burnt and fresh fuel interface at power conditions in light water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hursin, M.; Perret, G. [Paul Scherrer Institut (PSI), 5232 Villigen (Switzerland)

    2012-07-01

    The research program LIFE (Large-scale Irradiated Fuel Experiment) between PSI and Swissnuclear has been started in 2006 to study the interaction between large sets of burnt and fresh fuel pins in conditions representative of power light water reactors. Reactor physics parameters such as flux ratios and reaction rate distributions ({sup 235}U and {sup 238}U fissions and {sup 238}U capture) are calculated to estimate an appropriate arrangement of burnt and fresh fuel pins within the central element of the test zone of the zero-power research reactor PROTEUS. The arrangement should minimize the number of burnt fuel pins to ease fuel handling and reduce costs, whilst guaranteeing that the neutron spectrum in both burnt and fresh fuel regions and at their interface is representative of a large uniform array of burnt and fresh pins in the same moderation conditions. First results are encouraging, showing that the burnt/fresh fuel interface is well represented with a 6 x 6 bundle of burnt pins. The second part of the project involves the use of TSUNAMI, CASMO-4E and DAKOTA to perform parametric and optimization studies on the PROTEUS lattice by varying its pitch (P) and fraction of D{sub 2}O in moderator (F{sub D2O}) to be as representative as possible of a power light water reactor core at hot full power conditions at beginning of cycle (BOC). The parameters P and F{sub D2O} that best represent a PWR at BOC are 1.36 cm and 5% respectively. (authors)

  10. Modeling of boron control during power transients in a pressurized water reactor

    International Nuclear Information System (INIS)

    Mathieu, P.; Distexhe, E.

    1986-01-01

    Accurate control instructions in a reactor control aid computer are included in order to realize the boron makeup throughput, which is required to obtain the boron concentration in the primary coolant loop, predicted by a neutronic code. A modeling of the transfer function between the makeup and the primary loop is proposed. The chemical and volumetric control system, the pressurizer, and the primary loop are modeled as instantaneous diffusion cells. The pipes are modeled as time lag lines. The model provides the unstationary boron distributions in the different elements of the setup. A numerical code is developed to calculate the time evolutions of the makeup throughput during power transients

  11. Use of controlled thermonuclear reactor fusion power for the production of synthetic methanol fuel from air and water

    International Nuclear Information System (INIS)

    Steinberg, M.; Vi Duong Dang.

    1975-04-01

    Methanol synthesis from carbon dioxide, water and nuclear fusion energy is extensively investigated. The entire system is analyzed from the point of view of process design and economic evaluation of various processes. The main potential advantage of a fusion reactor (CTR) for this purpose is that it provides a large source of low cost environmentally acceptable electric power based on an abundant fuel source. Carbon dioxide is obtained by extraction from the atomsphere or from sea water. Hydrogen is obtained by electrolysis of water. Methanol is synthesized by the catalytic reaction of carbon dioxide and hydrogen. The water electrolysis and methanol synthesis units are considered to be technically and commercially available. The benefit of using air or sea water as a source of carbon dioxide is to provide an essentially unlimited renewable and environmentally acceptabe source of hydrocarbon fuel. Extraction of carbon dioxide from the atmosphere also allows a high degree of freedom in plant siting. (U.S.)

  12. Reactor power monitoring device

    International Nuclear Information System (INIS)

    Kono, Shigehiro.

    1990-01-01

    Among a plurality of power monitoring programs in a reactor power monitoring device, rapid response is required for a scram judging program for the power judging processing of scram signals. Therefore, the scram judging program is stored independently from other power monitoring programs, applied with a priority order, and executed in parallel with other programs, to output scram signals when the detected data exceeds a predetermined value. As a result, the capacity required for the scram judging program is reduced and the processing can be conducted in a short period of time. In addition, since high priority is applied to the scram judging program which is divided into a small capacity, it is executed at higher frequency than other programs when they are executed in parallel. That is, since the entire processings for the power monitoring program are repeated in a short cycle, the response speed of the scram signals required for high responsivity can be increased. (N.H.)

  13. Power reactor pressure vessel benchmarks

    International Nuclear Information System (INIS)

    Rahn, F.J.

    1978-01-01

    A review is given of the current status of experimental and calculational benchmarks for use in understanding the radiation embrittlement effects in the pressure vessels of operating light water power reactors. The requirements of such benchmarks for application to pressure vessel dosimetry are stated. Recent developments in active and passive neutron detectors sensitive in the ranges of importance to embrittlement studies are summarized and recommendations for improvements in the benchmark are made. (author)

  14. In-core power sharing and fuel requirement study for a decommissioning Boiling Water Reactor using the linear reactivity model

    International Nuclear Information System (INIS)

    Chen, Chung-Yuan; Tung, Wu-Hsiung; Yaur, Shung-Jung; Kuo, Weng-Sheng

    2014-01-01

    Highlights: • Linear reactivity model (LRM) was modified and applied to Boiling Water Reactor. • The power sharing and fuel requirement study of the last cycle and two cycles before decommissioning was implemented. • The loading pattern design concept for the cycles before decommissioning is carried out. - Abstract: A study of in-core power sharing and fuel requirement for a decommissioning BWR (Boiling Water Reactor) was carried out using the linear reactivity model (LRM). The power sharing of each fuel batch was taken as an independent variable, and the related parameters were set and modified to simulate actual cases. Optimizations of the last cycle and two cycles before decommissioning were both implemented; in the last-one-cycle optimization, a single cycle optimization was carried out with different upper limits of fuel batch power, whereas, in the two-cycle optimization, two cycles were optimized with different cycle lengths, along with two different optimization approaches which are the simultaneous optimization of two cycles (MO) and two successive single-cycle optimizations (SO). The results of the last-one-cycle optimization show that it is better to increase the fresh fuel power and decrease the thrice-burnt fuel power as much as possible. It also shows that relaxing the power limit is good to the fresh fuel requirement which will be reduced under lower power limit. On the other hand, the results of the last-two-cycle (cycle N-1 and N) optimization show that the MO is better than SO, and the power of fresh fuel batch should be decreased in cycle N-1 to save its energy for the next cycle. The results of the single-cycle optimization are found to be the same as that in cycle N of the multi-cycle optimization. Besides that, under the same total energy requirement of two cycles, a long-short distribution of cycle length design can save more fresh fuel

  15. Solid State Track Recorder fission rate measurements in low power light water reactor pressure vessel mockups

    International Nuclear Information System (INIS)

    Ruddy, F.H.; Roberts, J.H.; Kellogg, L.S.

    1985-01-01

    The results of extensive SSTR measurements made at the Pool Critical Assembly (PCA) facility at Oak Ridge National Laboratory have been reported previously. Measurements were made at key locations in PCA which is an idealized mockup of the water gap, thermal shield, pressure vessel geometry of a light water reactor. Recently, additional SSTR fission rate measurements have been carried out for 237-Np, 238-U, and 235-U in key locations in the NESTOR Shielding and Dosimetry Improvement Program (NESDIP) mockup facility located at Winfrith, England. NESDIP is a replica of the PCA facility, and comparisons will be made between PCA and NESDIP measurements. The results of measurements made at the engineering mockup at the VENUS critical assembly at CEN/SCK, Mol, Belgium will also be reported. Measurements were made at selected radial and azimuthal locations in VENUS, which models the in-core and near-core regions of a pressurized water reactor. Comparisons of absolute SSTR fission rates with absolute fission rates made with the Mol miniature fission chamber will be reported. Absolute fission rate comparisons have also been made between the NBS fission chamber, radiometric fission foils, and SSTRs, and these results will be summarized

  16. Reactor power control method and device

    International Nuclear Information System (INIS)

    Fushimi, Atsushi; Ishii, Yoshihiko; Miyamoto, Yoshiyuki; Ishii, Kazuhiko; Kiyoharu, Norihiko; Aizawa, Yuko.

    1997-01-01

    The present invention provides a method and a device suitable to rise the temperature and increase the pressure of the reactor to an aimed pressure in accordance with an aimed value for a reactor water temperature changing rate in the course of rising temperature and increasing pressure of the reactor upon start up of a BWR type power plant. Namely, neutron fluxes in the reactor and the temperature of reactor water are detected respectively. The maximum value among the detected values for the neutron fluxes is detected. The reactor water temperature changing rate is calculated based on the detected values of the reactor water temperature, from which the maximum value of the reactor water temperature changing rate is detected. An aimed value for the neutron flux is calculated in accordance with both detected maximum values and the aimed value of the reactor water temperature changing rate. The position of control rods is adjusted in accordance with the aimed value for the calculated neutron flux. Then, an aimed value for the neutron flux for realizing the aimed value for the reactor water temperature changing rate can be obtained accurately with no influence of the sensitivity of the detected values of the neutron fluxes and the time delay of the reactor water temperature changing rate. (I.S.)

  17. A study of thermal-hydraulic requirements for increasing the power rates for natural-circulation boiling water reactors

    International Nuclear Information System (INIS)

    Yasuo, A.; Inada, F.; Hidaka, M.

    1992-01-01

    In this paper, the feasibility of higher power rates for natural-circulation boiling water reactors (BWRs) is studied with the objective of examining the flexibility of the plant power rate in constructing such plants to cope with the increasing demand for electricity. By applying existing one-dimensional design codes, the riser heights necessary to meet two major thermal-hydraulic requirements, i.e., critical power and core stability, are systematically calculated. Several restrictions on the maximum diameter and height of the pressure vessel are also considered because these restrictions could make construction impossible or drastically increase the construction costs. A very simple map of the dominant parameters for higher power rates is obtained. It is concluded that natural-circulation BWRs of >1000 MW (electric) will be feasible within the restrictions considered here

  18. The Swr 1000: a nuclear power plant concept with boiling water reactor for maximum safety and economy of operation

    International Nuclear Information System (INIS)

    Brettschuh, W.

    2001-01-01

    The SWR 1000 is a design concept for a light water reactor nuclear power plant that meets all requirements regarding plant safety, economic efficiency and environ-mental friendliness. As a result of the plant's safety concept, the occurrence of core damage can, for all practical intents and purposes, be ruled out. If a core melt accident should nevertheless occur, the molten core can be retained inside the RPV, thus ensuring that all consequences of such an accident remain restricted to the plant itself. The power generating costs of the SWR 1000 are lower than with those of coal-fired and combined-cycle power plants. Power generation using nuclear energy does not release carbon dioxide to the environment, thus meeting the need for sustainable protection of our global climate. (author)

  19. Experiences on reduction of reactor water silica and fresh resin leaching organics for Kuo-Sheng Nuclear Power Plant

    International Nuclear Information System (INIS)

    Wen, T-J.; Wang, C-H.

    2010-01-01

    The silica level in reactor water of Kuo-Sheng nuclear power plants has been slowly increased from 200 ppb to the high level above 500 ppb in recent years. The results obtained from steam/liquid mass balance calculation indicated that an increase of reactor water silica was mainly caused by continuing equilibrium leakage from deep bed condensate demineralizers, where the ion exchange zone was periodically disturbed by resin backwashing - scrubbing operation. The fastest and the most effective way to reduce the silica inventory in reactor system is to operate by continuously precoating of two sets of the reactor water clean up filter demineralizers to a lower effluent silica end point, and perhaps as frequently as three or four days. Leaching organic contaminants into feed water from the ion exchange resin becomes a key greater problem of current concern for the stable water quality promotion of condensate demineralizer. The presence of those impurities have practically been difficult to analyze by simple quality testing of the resin, and may result in as much as a hundred fold increase in chloride and sulfate in reactor water. As resin displacement with high leachable TOC, a repeated continuous soaking and effectively rinsing is required so that steady state TOC content less than 150 ppb should be achieved in an acceptably short period of time before put in-service. It is clear that cation resin containing high leachables generates high level of sulfates and sometimes also gives unexpected level of chlorides. The current TOC limits in condensate demineralizer effluent with 0.1 ppb become a significant experience to maintain reactor water soluble impurity in low levels. New resin should be subjected to TOC quality control testing prior to acceptance especially when first placed into service. TOC and organic chloride leachables for as-received virgin cation resin that are to be used in condensate polisher should be limited to be less than 100 mg-TOC and 0.5 mg-Cl per

  20. Steam generator tube failures: world experience in water-cooled nuclear power reactors in 1975

    International Nuclear Information System (INIS)

    Hare, M.G.

    1976-11-01

    Steam generator tube failures were reported in 22 out of 62 water-cooled nuclear power plants surveyed in 1975. This was less than in 1974, and the number of the tubes affected was noticeably less. This report summarizes these failures, most of which were due to corrosion. Secondary-water chemistry control, procedures for inspection and repair, tube materials, and failure rates are discussed. (author)

  1. Introduction to the neutron kinetics of nuclear power reactors

    CERN Document Server

    Tyror, J G; Grant, P J

    2013-01-01

    An Introduction to the Neutron Kinetics of Nuclear Power Reactors introduces the reader to the neutron kinetics of nuclear power reactors. Topics covered include the neutron physics of reactor kinetics, feedback effects, water-moderated reactors, fast reactors, and methods of plant control. The reactor transients following faults are also discussed, along with the use of computers in the study of power reactor kinetics. This book is comprised of eight chapters and begins with an overview of the reactor physics characteristics of a nuclear power reactor and their influence on system design and

  2. Reactors of different types in the world nuclear power

    International Nuclear Information System (INIS)

    Simonov, K.V.

    1991-01-01

    The status of the world nuclear power is briefly reviewed. It is noted that PWR reactors have decisive significance in the world power. The second place is related to gas-cooled graphite-moderated reactors. Channel-type heavy water moderated reactors are relatively important. Nuclear power future is associated with fast liquid-metal cooled breeder reactors

  3. Supercritical Water Reactors

    International Nuclear Information System (INIS)

    Bouchter, J.C.; Dufour, P.; Guidez, J.; Latge, C.; Renault, C.; Rimpault, G.

    2014-01-01

    The supercritical water reactor (SCWR) is one of the 6 concepts selected for the 4. generation of nuclear reactors. SCWR is a new concept, it is an attempt to optimize boiling water reactors by using the main advantages of supercritical water: only liquid phase and a high calorific capacity. The SCWR requires very high temperatures (over 375 C degrees) and very high pressures (over 22.1 MPa) to operate which allows a high conversion yield (44% instead of 33% for a PWR). Low volumes of coolant are necessary which makes the neutron spectrum shift towards higher energies and it is then possible to consider fast reactors operating with supercritical water. The main drawbacks of supercritical water is the necessity to use very high pressures which has important constraints on the reactor design, its physical properties (density, calorific capacity) that vary strongly with temperatures and pressures and its very high corrosiveness. The feasibility of the concept is not yet assured in terms of adequate materials that resist to corrosion, reactor stability, reactor safety, and reactor behaviour in accidental situations. (A.C.)

  4. Use mobile pumps and liquid chilling water units to provide chilled water for nuclear reactor during nuclear power plant accident

    International Nuclear Information System (INIS)

    Zhang Guobin; Feng Jiaxuan

    2012-01-01

    From the nuclear accident in Japan Fuksuhima in March this year, despite a shut down of the reactor, the residue heat inside the reactor was not able to remove due to the failure of the cooling system and it finally caused the catastrophe. It was observed that when the failure of the cooling system after an earthquake of magnitude 9 and a tsunami of 28 meters height, the containment vessel for the reactor core was still able to maintain its integrity in the first 24 hours before the first explosion was happened. A backup emergency heat removal system for nuclear power plants using mo- bile pumps and liquid chilling units has been proposed 20 years ago by Cheung [Ref. 1]. Due to the fact that there are more than 400 nuclear power plants around the world and 10% of them are located in earthquake active zone, together with the aging of some of the power plants which were built more than 30 years ago, the risk of another nuclear accident becomes high. An emergency safety measure has to be designed in order to deal with the unforeseen scenario. This re- port re-visits the proposal again; to re-design to the suit the need and to integrate with the current situation of the nuclear industry. (authors)

  5. Nuclear power reactor physics

    International Nuclear Information System (INIS)

    Barjon, Robert

    1975-01-01

    The purpose of this book is to explain the physical working conditions of nuclear reactors for the benefit of non-specialized engineers and engineering students. One of the leading ideas of this course is to distinguish between two fundamentally different concepts: - a science which could be called neutrodynamics (as distinct from neutron physics which covers the knowledge of the neutron considered as an elementary particle and the study of its interactions with nuclei); the aim of this science is to study the interaction of the neutron gas with real material media; the introduction will however be restricted to its simplified expression, the theory and equation of diffusion; - a special application: reactor physics, which is introduced when the diffusing and absorbing material medium is also multiplying. For this reason the chapter on fission is used to introduce this section. In practice the section on reactor physics is much longer than that devoted to neutrodynamics and it is developed in what seemed to be the most relevant direction: nuclear power reactors. Every effort was made to meet the following three requirements: to define the physical bases of neutron interaction with different materials, to give a correct mathematical treatment within the limit of necessary simplifying hypotheses clearly explained; to propose, whenever possible, numerical applications in order to fix orders of magnitude [fr

  6. Reactor power control device

    International Nuclear Information System (INIS)

    Watanabe, Mitsutaka

    1997-01-01

    Hardware of an analog nuclear instrumentation system is reformed, a function generator is added to a setting calculation circuit of the nuclear instrumentation system, and each of setting lines of the nuclear instrumentation system is set in parallel with an upper limit curve in an operation region defined by a second order or third order equation. Upon transient change of abnormal power elevation during operation, scram signals are generated by power change in the same state as 100% rated operation due to elevation of reactor thermal power. Since the operation limit value relative to transient change due to power elevation can be made substantially equal with the same as that upon rated operation, the operation limit value for partial power operation state can be kept substantially the same level as that upon rated operation. When transition change caused by abnormal control rod withdrawal occurs during operation, a control rod withdrawal inhibition signal can ensure the power elevation width equal with that upon rated power operation, and since the withdrawal inhibition signal is generated in substantially the same withdrawing state, the operation limit value relative to a partial power operation state can be kept at the same level as that during rated operation. (N.H.)

  7. Passive residual energy utilization system in thermal cycles on water-cooled power reactors

    International Nuclear Information System (INIS)

    Placco, Guilherme M.; Guimaraes, Lamartine N.F.; Santos, Rubens S. dos

    2013-01-01

    This work presents a concept of a residual energy utilization in nuclear plants thermal cycles. After taking notice of the causes of the Fukushima nuclear plant accident, an idea arose to adapt a passive thermal circuit as part of the ECCS (Emergency Core Cooling System). One of the research topics of IEAv (Institute for Advanced Studies), as part of the heat conversion of a space nuclear power system is a passive multi fluid turbine. One of the main characteristics of this device is its passive capability of staying inert and be brought to power at moments notice. During the first experiments and testing of this passive device, it became clear that any small amount of gas flow would generate power. Given that in the first stages of the Fukushima accident and even during the whole event there was plenty availability of steam flow that would be the proper condition to make the proposed system to work. This system starts in case of failure of the ECCS, including loss of site power, loss of diesel generators and loss of the battery power. This system does not requires electricity to run and will work with bleed steam. It will generate enough power to supply the plant safety system avoiding overheating of the reactor core produced by the decay heat. This passive system uses a modified Tesla type turbine. With the tests conducted until now, it is possible to ensure that the operation of this new turbine in a thermal cycle is very satisfactory and it performs as expected. (author)

  8. Assessment of the thorium fuel cycle in power reactors

    International Nuclear Information System (INIS)

    Kasten, P.R.; Homan, F.J.; Allen, E.J.

    1977-01-01

    A study was conducted at Oak Ridge National Laboratory to evaluate the role of thorium fuel cycles in power reactors. Three thermal reactor systems were considered: Light Water Reactors (LWRs); High-Temperature Gas-Cooled Reactors (HTGRs); and Heavy Water Reactors (HWRs) of the Canadian Deuterium Uranium Reactor (CANDU) type; most of the effort was on these systems. A summary comparing thorium and uranium fuel cycles in Fast Breeder Reactors (FBRs) was also compiled

  9. Neutron dosimetry at nuclear power plants with light water reactors (LWR)

    International Nuclear Information System (INIS)

    Hofmann, B.; Schwarz, W.; Burgkhardt, B.; Piesch, E.

    1989-02-01

    During nuclear start-up of the Muelheim-Kaerlich nuclear power plant in 1986 the neutron radiation fields in the primary and auxiliary component rooms of the containment were investigated using the Single Sphere Albedo Technique and additional measurement techniques. For personnel monitoring albedo neutron dosemeters were used consisting of thermoluminescent detectors and track etch detectors combined with boron converters. Results: (1) The neutron radiation fields reach dose rate values up to 1000 mSv/h at the sleeves of the reactor coolant pipes, in the refuelling pool and the reactor cavity sump. The neutron component varies between 10% in the steam generator rooms up to 92% in the refuelling pool. (2) The mean value of the effective neutron energy at the different locations was found to be about 100 keV. Thermal neutrons contribute with about 10% to the area dose. (3) By direct intercomparisons and different evaluation methods of the Single Sphere Albedo Dosemeter it was shown, that rem-counters used within routine monitoring in the mixed radiation fields of the LWR overestimate the neutron dose rate only insignificantly (+20%) and are therefore usable for practical radiation protection work. (4) The sensitivity of albedo neutron dosemeters allows the detection of neutrons above 10 μSv. The contribution of neutrons to the total personnel dose was 25% in maximum. For the evaluation of albedo detectors a constant calibration factor can be applied. (orig./HP) [de

  10. Database structure and file layout of Nuclear Power Plant Database. Database for design information on Light Water Reactors in Japan

    International Nuclear Information System (INIS)

    Yamamoto, Nobuo; Izumi, Fumio.

    1995-12-01

    The Nuclear Power Plant Database (PPD) has been developed at the Japan Atomic Energy Research Institute (JAERI) to provide plant design information on domestic Light Water Reactors (LWRs) to be used for nuclear safety research and so forth. This database can run on the main frame computer in the JAERI Tokai Establishment. The PPD contains the information on the plant design concepts, the numbers, capacities, materials, structures and types of equipment and components, etc, based on the safety analysis reports of the domestic LWRs. This report describes the details of the PPD focusing on the database structure and layout of data files so that the users can utilize it efficiently. (author)

  11. Verification of the CASMO-3/SIMULATE-3 pin power accuracy by comparison with operating boiling water reactor measurements

    International Nuclear Information System (INIS)

    Uegata, T.; Saji, E.; Tanaka, H.

    1993-01-01

    Intranodal pin power distributions calculated by the CASMO-3/SIMULATE-3 code have been compared with pin gamma scan measurements. These data were obtained from the depleted core of an operating boiling water reactor (BWR), which is more complicated than a pressurized water reactor to calculate because of the existence of coolant void distributions and cruciform control blades. Furthermore, measured bundles include mixed-oxide (MOX) bundles in which steep thermal flux gradients occur. Both UO 2 and MOX bundles have been calculated in the same manner based on the standard CASMO-3/SIMULATE-3 methods. The total pin power root-mean-square (rms) error is 2.7%, which includes measurement error, from an 896-point comparison. There is no obvious dependency on axial elevations (void fractions) and no significant difference between fuel types (UO 2 or MOX), although the errors in a peripheral bundle, which is less important from the standpoint of core design, are somewhat larger than those in the internal bundles. If the peripheral bundle is excluded, the total rms error is reduced to 2.2%. From these results, it is concluded that excellent agreement has been obtained between the calculations and measurements and that the calculational capability of CASMO-3/SIMULATE-3 for the intranodal pin power distribution is quite satisfactory and useful for BWR core design

  12. Suggestion on the safety classification of spent fuel dry storage in China’s pressurized water reactor nuclear power plant

    Science.gov (United States)

    Liu, Ting; Qu, Yunhuan; Meng, De; Zhang, Qiaoer; Lu, Xinhua

    2018-01-01

    China’s spent fuel storage in the pressurized water reactors(PWR) is stored with wet storage way. With the rapid development of nuclear power industry, China’s NPPs(NPPs) will not be able to meet the problem of the production of spent fuel. Currently the world’s major nuclear power countries use dry storage as a way of spent fuel storage, so in recent years, China study on additional spent fuel dry storage system mainly. Part of the PWR NPP is ready to apply for additional spent fuel dry storage system. It also need to safety classificate to spent fuel dry storage facilities in PWR, but there is no standard for safety classification of spent fuel dry storage facilities in China. Because the storage facilities of the spent fuel dry storage are not part of the NPP, the classification standard of China’s NPPs is not applicable. This paper proposes the safety classification suggestion of the spent fuel dry storage for China’s PWR NPP, through to the study on China’s safety classification principles of PWR NPP in “Classification for the items of pressurized water reactor nuclear power plants (GB/T 17569-2013)”, and safety classification about spent fuel dry storage system in NUREG/CR - 6407 in the United States.

  13. Survey of Regulations Applicable to the Finned Containment in Korean Nuclear Power Plant for Light Water Reactor

    International Nuclear Information System (INIS)

    Noh, Hyung Gyun; Kang, Hie Chan

    2016-01-01

    In severe accident, the molten corium would discharge into the reactor cavity and interact with water and concrete of cavity. Molten corium includes non-oxidation metals such as Zr, Fe and Cr. These metal species reacted with water emit hydrogen gas. In addition to this, a mount of steam can be emitted to the containment such as steam line break accident. As a result, steam and hydrogen gas can pressurize containment over the design pressure and threaten its integrity. For this reasons, a concept equipped with finned on the containment building was proposed for coping with prolonged accident. Finned containment can enhance heat transfer to the ambient, and the building itself is working as a heat sink. Multiple metal fins and metal rod are penetrated into containment wall, and the rods are working as an additional path of heat removal. To be accepted in the nuclear power plants, this configuration should satisfy the requirement of heat removal and follow all regulations related with containment also. For applying to Korean nuclear power plants, the finned containment should follow all regulations specialized in Korea such as Nuclear regulatory criteria for light water reactor and Guidelines of nuclear safety examination for light water reactor. A concept of containment as a passive cooling system has been proposed. Furthermore, the new containment concept can be applied on the real containment which satisfies the various regulations. Finned containment would be expected positive effects on heat removal from the containment. If the fins are properly welded to the liner, finned containment could satisfy the leak tightness and prevention of external influences. Finned containment could be favorable to protect external impact like aircraft crash because of the additional structural integrity by the fins

  14. Survey of Regulations Applicable to the Finned Containment in Korean Nuclear Power Plant for Light Water Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Hyung Gyun [Pohang University, Pohang (Korea, Republic of); Kang, Hie Chan [Kunsan University, Gunsan (Korea, Republic of)

    2016-05-15

    In severe accident, the molten corium would discharge into the reactor cavity and interact with water and concrete of cavity. Molten corium includes non-oxidation metals such as Zr, Fe and Cr. These metal species reacted with water emit hydrogen gas. In addition to this, a mount of steam can be emitted to the containment such as steam line break accident. As a result, steam and hydrogen gas can pressurize containment over the design pressure and threaten its integrity. For this reasons, a concept equipped with finned on the containment building was proposed for coping with prolonged accident. Finned containment can enhance heat transfer to the ambient, and the building itself is working as a heat sink. Multiple metal fins and metal rod are penetrated into containment wall, and the rods are working as an additional path of heat removal. To be accepted in the nuclear power plants, this configuration should satisfy the requirement of heat removal and follow all regulations related with containment also. For applying to Korean nuclear power plants, the finned containment should follow all regulations specialized in Korea such as Nuclear regulatory criteria for light water reactor and Guidelines of nuclear safety examination for light water reactor. A concept of containment as a passive cooling system has been proposed. Furthermore, the new containment concept can be applied on the real containment which satisfies the various regulations. Finned containment would be expected positive effects on heat removal from the containment. If the fins are properly welded to the liner, finned containment could satisfy the leak tightness and prevention of external influences. Finned containment could be favorable to protect external impact like aircraft crash because of the additional structural integrity by the fins.

  15. STUDY OF WATER HAMMERS IN THE FILLING OF THE SYSTEM OF PRESSURE COMPENSATION IN THE WATER-COOLED AND WATER-MODERATED POWER REACTORS

    Directory of Open Access Journals (Sweden)

    A. V. Korolyev

    2017-01-01

    Full Text Available The research presented in the article conforms to the severe accident that took place at the Three Mail Island nuclear power plant in the USA. The research is focused on improving the reliability of the pressure compensator that is an important equipment of the primary circuit. In order to simulate such a situation, the stand has been developed to simulate the design of the pressurizer of the PWR-440 reactor, in particular an elliptical shape of the upper lid which has a steam outlet pipe at the top of the construction that creates conditions for occurrence of such water hammers. For the experiments, an installation has been created that makes it possible to measure and record the water hammering that occur when the tanks are filled. Measurement of the amplitude of the water hammering was carried out by a specially developed piezoelectric sensor, and the registration – by a light-beam oscilloscope. The technique of carrying out the experiment is described and the results of an experimental study of the water hammers arising when the vessels are completely filled are presented. Quantitative data were obtained on the amplitudes of the hydraulic impacts depending on the rate of filling of the vessel and the diameter of the outlet, the maximum pressure of the hydraulic shock was 7–9 atm. Comparison of calculated and experimental data has been performed. The allowable discrepancy is explained by the calculated value of the system stiffness coefficient, which did not take into account the presence of welded seams in the tank that imparts the system with additional rigidity. The calculated relationships are obtained, that make it possible to estimate the amplitudes of the water hammers through the acceleration of the water level in front of the outlet from a vessel with an elliptical bottom. The possibility of a water hammer in the pressure compensator is demonstrated by experiment and by theoretical calculations. Based on the experimental data, a

  16. Reactor water sampling device

    International Nuclear Information System (INIS)

    Sakamaki, Kazuo.

    1992-01-01

    The present invention concerns a reactor water sampling device for sampling reactor water in an in-core monitor (neutron measuring tube) housing in a BWR type reactor. The upper end portion of a drain pipe of the reactor water sampling device is attached detachably to an in-core monitor flange. A push-up rod is inserted in the drain pipe vertically movably. A sampling vessel and a vacuum pump are connected to the lower end of the drain pipe. A vacuum pump is operated to depressurize the inside of the device and move the push-up rod upwardly. Reactor water in the in-core monitor housing flows between the drain pipe and the push-up rod and flows into the sampling vessel. With such a constitution, reactor water in the in-core monitor housing can be sampled rapidly with neither opening the lid of the reactor pressure vessel nor being in contact with air. Accordingly, operator's exposure dose can be reduced. (I.N.)

  17. Peak power and heavy water production from electrolytic H2 and O2 using CANDU reactors

    International Nuclear Information System (INIS)

    Hammerli, M.; Stevens, W.H.; Bradley, W.J.; Butler, J.P.

    1976-04-01

    A combined energy storage - heavy water production system is presented. Off-peak nuclear energy is stored in the form of electrolytic H 2 (and O 2 ) from which a large fraction of the deuterium has been transferred to water in an H 2 /H 2 O deuterium exchange catalytic column. The main features and advantages of the combined electrolysis -catalytic exchange D 2 O process are discussed. Significant quantities of D 2 O could be produced economically at reasonable peak to base power cost ratios. Thirty to forty percent of the primary electric energy should be available for peak energy via either gas-steam turbines or fuel cells. (author)

  18. Exxon nuclear power distribution control for pressurized water reactors: Phase II

    International Nuclear Information System (INIS)

    Holm, J.S.; Burnside, R.J.

    1978-01-01

    The power distribution control procedure, denoted PDC-II, described in this report enables nuclear plants to manage core power distributions such that Technical Specification Limits on F/sub Q//sup T/ are not violated during normal operation and limits on MDNBR are not violated during steady-state, load-follow, and anticipated transients. The PDC-II data base described provides the means for predicting the maximum F/sub Q//sup T/(z) distribution anticipated during operation under the PDC-II procedure taking into account the incore measured equilibrium power distribution data for the reactor in question. A comparison of this distribution with the Technical Specification limit curve determines whether the Technical Specification limit can be protected by PDC-II procedure. If such protection can be confirmed for a given operating cycle interval, APDMS monitoring is not necessary over this interval and the excore monitored constant axial offset limits will protect the Technical Specification F/sub Q//sup T/ limits. This document describes the maximum possible variation in F/sub Q//sup T/(z) which can occur during operation when following the PDC-II procedures. This bounding variation in F/sub Q//sup T/(z) is referred to as V(z). This V(z) distribution represents the maximun variation in F/sub Q//sup T/(z) when the axial offset is maintained within the range defined in this report [+- 5% at full power condition

  19. General design and main problems of a gas-heavy-water power reactor contained in a pressure vessel

    International Nuclear Information System (INIS)

    Roche, R.; Gaudez, J.C.

    1964-01-01

    In the framework of research carried out on a CO 2 -cooled power reactor moderated by heavy water, the so-called 'pressure vessel' solution involves the total integration of the core, of the primary circuit (exchanges and blowers) and of the fuel handling machine inside a single, strong, sealed vessel made of pre-stressed concrete. A vertical design has been chosen: the handling 'attic' is placed above the core, the exchanges being underneath. This solution makes it possible to standardize the type of reactor which is moderated by heavy-water or graphite and cooled by a downward stream of carbon dioxide gas; it has certain advantages and disadvantages with respect to the pressure tube solution and these are considered in detail in this report. Extrapolation presents in particular.problems due specifically to the heavy water (for example its cooling,its purification, the balancing of the pressures of the heavy water and of the gas, the assembling of the internal structures, the height of the attic, etc. (authors) [fr

  20. Identification and evaluation of facilitation techniques for decommissioning light water power reactors

    International Nuclear Information System (INIS)

    LaGuardia, T.S.; Risley, J.F.

    1986-06-01

    This report describes a study sponsored by the US Nuclear Regulatory Commission to identify practical techniques to facilitate the decommissioning of nuclear power generating facilities. The objective of these ''facilitation techniques'' is to reduce the radioactive exposures and/or volumes of waste generated during the decommissioning process. The report presents the possible facilitation techniques identified during the study and discusses the corresponding facilitation of the decommissioning process. Techniques are categorized by their applicability of being implemented during the three stages of power reactor life: design/construction, operation, or decommissioning. Detailed cost-benefit analyses were performed for each technique to determine the anticipated exposure and/or radioactive waste reduction; the estimated costs for implementing each technique were then calculated. Finally, these techniques were ranked by their effectiveness in facilitating the decommissioning process. This study is a part of the Nuclear Regulatory Commission's evaluation of decommissioning policy and its modification of regulations pertaining to the decommissioning process. The findings can be used by the utilities in the planning and establishment of activities to ensure that all objectives of decommissioning will be achieved

  1. Nuclear reactor power supply

    International Nuclear Information System (INIS)

    Cook, B.M.

    1982-01-01

    The redundant signals from the sensor assemblies measuring the process parameters of a nuclear reactor power supply are transmitted each in its turn to a protection system which operates to actuate the protection apparatus for signals indicating off-process conditions. Each sensor assembly includes a number of like sensors measuring the same parameters. The sets of process signals derived from the sensor assemblies are each in its turn transmitted from the protection system to the control system which impresses control signals on the reactor or its components to counteract the tendency for conditions to drift off-normal status requiring operation of the protection system. A parameter signal selector is interposed between the protection system and the control system. This selector prevents a parameter signal of a set of signals, which differs from the other parameters signals of the set by more than twice the allowable variation of the sensors which produce the set, from passing to the control system. The selectors include a pair of signal selection units, one unit sending selected process signals to primary control channels and the other sending selected process signals to back-up control channels. Test signals are periodically impressed by a test unit on a selected pair of a selected unit and control channels. When test signals are so impressed the selected control channel is disabled from transmitting control signals to the reactor and/or its associated components. This arrangement eliminates the possibility that a single component failure which may be spurious will cause an inadvertent trip of the reactor during test

  2. Nuclear power reactor technology

    International Nuclear Information System (INIS)

    1978-09-01

    Risoe National Laboratory was established more than twenty years ago with research and development of nuclear reactor technology as its main objective. The Laboratory has by now accumulated many years of experience in a number of areas vital to nuclear reactor technology. The work and experience of, and services offered by the Laboratory within the following fields are described: Health physics site supervision; Treatment of low and medium level radioactive waste; Core performance evaluation; Transient analysis; Accident analysis; Fuel management; Fuel element design, fabrication and performance evaluation; Non-destructive testing of nuclear fuel; Theoretical and experimental structural analysis; Reliability analysis; Site evaluation. Environmental risk and hazard calculation; Review and analysis of safety documentation. Risoe has already given much assistance to the authorities, utilities and industries in such fields, carrying out work on both light and heavy water reactors. The Laboratory now offers its services to others as a consultant, in education and training of staff, in planning, in qualitative and quantitative analysis, and for the development and specification of fabrication techniques. (author)

  3. Reactor technology: power conversion systems and reactor operation and maintenance

    International Nuclear Information System (INIS)

    Powell, J.R.

    1977-01-01

    The use of advanced fuels permits the use of coolants (organic, high pressure helium) that result in power conversion systems with good thermal efficiency and relatively low cost. Water coolant would significantly reduce thermal efficiency, while lithium and salt coolants, which have been proposed for DT reactors, will have comparable power conversion efficiencies, but will probably be significantly more expensive. Helium cooled blankets with direct gas turbine power conversion cycles can also be used with DT reactors, but activation problems will be more severe, and the portion of blanket power in the metallic structure will probably not be available for the direct cycle, because of temperature limitations. A very important potential advantage of advanced fuel reactors over DT fusion reactors is the possibility of easier blanket maintenance and reduced down time for replacement. If unexpected leaks occur, in most cases the leaking circuit can be shut off and a redundant cooling curcuit will take over the thermal load. With the D-He 3 reactor, it appears practical to do this while the reactor is operating, as long as the leak is small enough not to shut down the reactor. Redundancy for Cat-D reactors has not been explored in detail, but appears feasible in principle. The idea of mobile units operating in the reactor chamber for service and maintenance of radioactive elements is explored

  4. Reduction of releases of radioactive effluents from light-water-power-reactors in Japan

    International Nuclear Information System (INIS)

    Yoshida, Y.; Itakura, T.; Kanai, T.

    1977-01-01

    Japan Atomic Energy Commission established the dose objectives to the population around the light-water-reactors in May, 1975, based on the ''ALAP'' concept. These values are respectively, 5 mrems per year for total body and 15 mrems per year for thyroid of an individual in the critical group in the environs, due to both gaseous and liquid effluents from LWRs in one site. The present paper describes the implications of the dose objective values, control measures which have been adopted to reduce releases of radioactive materials and related technical developments in Japan. The main control measures for reduction of radioactive gaseous effluents are an installation of a charcoal gas holdup system for decay of noble gases and a supply of clean steam for the gland seal of a turbine in BWR, and a storage tank system allowing decay of noble gases in PWR. For liquid effluents are taken measures to re-use them as the primary coolant. Consequently, the amounts of radioactivity released to the environment from any LWR during normal operation have been maintained under the level to meet the above dose objective values. For research reactors, reduction of release of effluents has also been carried out in a similar way to LWRs. In order to establish the techniques applicable for further reduction, studies are being made on the control measures to reduce leakage of radioiodine, an apparatus for removal of krypton, the treatment of laundry waste and measures to remove the crud in the primary coolant. Presentation is also made on the energy-integrated gas monitor for gaseous effluent and systems of measuring γ dose from radioactive cloud descriminating from natural background, which have been developed for effective monitoring thus reduced environmental dose

  5. Qualification of the Taiwan Power Company's pressurized water reactor physics methods using CASMO-4/SIMULATE-3

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Hsien-Chuan, E-mail: linsc@iner.org.tw [Nuclear Engineering Division, Institute of Nuclear Energy Research, 1000, Wenhua Rd., Jiaan Village, Longtan Township, Taoyuan County 32546, Taiwan (China); Yaur, Shung-Jung; Lin, Tzung-Yi; Kuo, Weng-Sheng; Shiue, Jin-Yih; Huang, Yu-Lung [Nuclear Engineering Division, Institute of Nuclear Energy Research, 1000, Wenhua Rd., Jiaan Village, Longtan Township, Taoyuan County 32546, Taiwan (China)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Studsvik's core management system (CMS) was applied to Taiwan Power Company's pressurized water reactor. Black-Right-Pointing-Pointer Advanced calculation model of shutdown cooling, B-10 depletion and integrated pin exposure were introduced. Black-Right-Pointing-Pointer Core characteristic parameters such as boron letdown, low power physics test (LPPT) predictions, and reaction rate were validated to measurement data. Black-Right-Pointing-Pointer The uncertainty of each item was quantified. - Abstract: This paper presents the validation of Studsvik core management system (CMS) for application to the Maanshan units 1 and 2 reactor core physics analysis (Huang and Yang, 1994). The methodology was validated by demonstrating the ability to obtain accurate and reliable results for various conditions and applications. Core characteristic parameters such as boron letdown, low power physics test (LPPT) predictions, and reaction rate were validated. Analytical results have been compared to measured data and reliability factors of the method have been quantified.

  6. NRC review of Electric Power Research Institute's Advanced Light Water Reactor Utility Requirements Document - Evolutionary plant designs, Chapter 1, Project No. 669

    International Nuclear Information System (INIS)

    1992-08-01

    The staff of the US Nuclear Regulatory Commission has prepared Volume 2 (Parts 1 and 2) of a safety evaluation report (SER), ''NRC Review of Electric Power Research Institute's Advanced Light Water Reactor Utility Requirements Document -- Evolutionary Plant Designs,'' to document the results of its review of the Electric Power Research Institute's ''Advanced Light Water Reactor Utility Requirements Document.'' This SER gives the results of the staff's review of Volume II of the Requirements Document for evolutionary plant designs, which consists of 13 chapters and contains utility design requirements for an evolutionary nuclear power plant (approximately 1300 megawatts-electric)

  7. NRC review of Electric Power Research Institute's Advanced Light Water Reactor Utility Requirements Document - Evolutionary plant designs, Chapters 2--13, Project No. 669

    International Nuclear Information System (INIS)

    1992-08-01

    The staff of the US Nuclear Regulatory Commission has prepared Volume 2 (Parts 1 and 2) of a safety evaluation report (SER), ''NRC Review of Electric Power Research Institute's Advanced Light Water Reactor Utility Requirements Document -- Evolutionary Plant Designs,'' to document the results of its review of the Electric Power Research Institute's ''Advanced Light Water Reactor Utility Requirements Document.'' This SER gives the results of the staff's review of Volume II of the Requirements Document for evolutionary plant designs, which consists of 13 chapters and contains utility design requirements for an evolutionary nuclear power plant (approximately 1300 megawatts-electric)

  8. Method of operating heavy water moderated reactors

    International Nuclear Information System (INIS)

    Masuda, Hiroyuki.

    1980-01-01

    Purpose: To enable stabilized reactor control, and improve the working rate and the safety of the reactor by removing liquid poison in heavy water while maintaining the power level constant to thereby render the void coefficient of the coolants negative in the low power operation. Method: The operation device for a heavy water moderated reactor comprises a power detector for the reactor, a void coefficient calculator for coolants, control rods inserted into the reactor, a poison regulator for dissolving poisons into or removing them out of heavy water and a device for removing the poisons by the poison regulator device while maintaining the predetermined power level or inserting the control rods by the signals from the power detector and the void coefficient calculator in the high temperature stand-by conditions of the reactor. Then, the heavy water moderated reactor is operated so that liquid poisons in the heavy water are eliminated in the high temperature stand-by condition prior to the start for the power up while maintaining the power level constant and the plurality of control rods are inserted into the reactor core and the void coefficient of the coolants is rendered negative in the low power operation. (Seki, T.)

  9. Thorium in heavy water reactors

    International Nuclear Information System (INIS)

    Andersson, G.

    1984-12-01

    Advanced heavy water reactors can provide energy on a global scale beyond the foreseeable future. Their economic and safety features are promising: 1. The theoretical feasibility of the Self Sufficient Equilibrium Thorium (SSET) concept is confirmed by new calculations. Calculations show that the adjuster rod geometry used in natural uranium CANDU reactors is adequate also for SSET if the absorption in the rods is graded. 2. New fuel bundle designs can permit substantially higher power output from a CANDU reactor. The capital cost for fuel, heavy water and mechanical equipment can thereby be greatly reduced. Progress is possible with the traditional fuel material oxide, but the use of thorium metal gives much larger effects. 3. A promising long range possibility is to use pressure tanks instead of pressure tubes. Heat removal from the core is facilitated. Negative temperature and void coefficients provide inherent safety features. Refuelling under power is no longer needed if control by moderator displacement is used. Reduced quality demand on the fuel permits lower fuel costs. The neutron economy is improved by the absence of pressure and clandria tubes and also by the use of radial and axial blankets. A modular seed blanket design can reduce the Pa losses. The experience from construction of tank designs is good e.g. AAgesta, Attucha. It is now also possible to utilize technology from LWR reactors and the implementation of advanced heavy water reactors would thus be easier than HTR or LMFBR systems. (Author)

  10. Operational power reactor health physics

    International Nuclear Information System (INIS)

    Watson, B.A.

    1987-01-01

    Operational Health Physics can be comprised of a multitude of organizations, both corporate and at the plant sites. The following discussion centers around Baltimore Gas and Electric's (BG and E) Calvert Cliffs Nuclear Power Plant, located in Lusby, Maryland. Calvert Cliffs is a twin Combustion Engineering 825 MWe pressurized water reactor site with Unit I having a General electric turbine-generator and Unit II having a Westinghouse turbine-generator. Having just completed each Unit's ten-year Inservice Inspection and Refueling Outge, a total of 20 reactor years operating health physics experience have been accumulated at Calvert Cliffs. Because BG and E has only one nuclear site most health physics functions are performed at the plant site. This is also true for the other BG and E nuclear related organizations, such as Engineering and Quality Assurance. Utilities with multiple plant sites have corporate health physics entity usually providing oversight to the various plant programs

  11. Power reactors in member states

    International Nuclear Information System (INIS)

    1975-01-01

    This is the first issue of a periodical computer-based listing of civilian nuclear power reactors in the Member States of the IAEA, presenting the situation as of 1 April 1975. It is intended as a replacement for the Agency's previous annual publication of ''Power and Research Reactors in Member States''. In the new format, the listing contains more information about power reactors in operation, under construction, planned and shut down. As far as possible all the basic design data relating to reactors in operation have been included. In future these data will be included also for other power reactors, so that the publication will serve to give a clear picture of the technical progress achieved. Test and research reactors and critical facilities are no longer listed. Of interest to nuclear power planners, nuclear system designers, nuclear plant operators and interested professional engineers and scientists

  12. Physical protection of power reactors

    International Nuclear Information System (INIS)

    Darby, J.L.

    1979-01-01

    Sandia Laboratories has applied a systematic approach to designing physical protection systems for nuclear facilities to commercial light-water reactor power plants. A number of candidate physical protection systems were developed and evaluated. Focus is placed on the design of access control subsystems at each of three plant layers: the protected area perimeter, building surfaces, and vital areas. Access control refers to barriers, detectors, and entry control devices and procedures used to keep unauthorized personnel and contraband out of the plant, and to control authorized entry into vital areas within the plant

  13. Feasibility Study of Supercritical Light Water Cooled Fast Reactors for Actinide Burning and Electric Power Production Progress Report for Year 1, Quarter 2 (January - March 2002)

    Energy Technology Data Exchange (ETDEWEB)

    Mac Donald, Philip Elsworth; Buongiorno, Jacopo; Davis, Cliff Bybee; Weaver, Kevan Dean

    2002-03-01

    The use of light water at supercritical pressures as the coolant in a nuclear reactor offers the potential for considerable plant simplification and consequent capital and O&M cost reduction compared with current light water reactor (LWR) designs. Also, given the thermodynamic conditions of the coolant at the core outlet (i.e. temperature and pressure beyond the water critical point), very high thermal efficiencies of the power conversion cycle are possible (i.e. up to about 45%). Because no change of phase occurs in the core, the need for steam separators and dryers as well as for BWR-type re-circulation pumps is eliminated, which, for a given reactor power, results in a substantially shorter reactor vessel and smaller containment building than the current BWRs. Furthermore, in a direct cycle the steam generators are not needed.

  14. Knowledge and abilities catalog for nuclear power plant operators: Pressurized water reactors. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    This document provides the basis for the development of content-valid licensing examinations for reactor operators and senior reactor operators. The examinations developed using the PWR catalog will cover those topics listed under Title 10, (ode of Federal Regulations Part 55. The PWR catalog contains approximately 5100 knowledge and ability (K/A) statements for reactor operators and senior reactor operators. The catalog is organized into six major sections: Catalog Organization; Generic Knowledge and Abilities; Plant Systems; Emergency and Abnormal Plant Evolutions; Components and Theory.

  15. Knowledge and abilities catalog for nuclear power plant operators: Pressurized water reactors. Revision 1

    International Nuclear Information System (INIS)

    1995-08-01

    This document provides the basis for the development of content-valid licensing examinations for reactor operators and senior reactor operators. The examinations developed using the PWR catalog will cover those topics listed under Title 10, (ode of Federal Regulations Part 55. The PWR catalog contains approximately 5100 knowledge and ability (K/A) statements for reactor operators and senior reactor operators. The catalog is organized into six major sections: Catalog Organization; Generic Knowledge and Abilities; Plant Systems; Emergency and Abnormal Plant Evolutions; Components and Theory

  16. Influence of the loop design of the feedwater- and steam quality in a power plant with pressurized water reactor

    International Nuclear Information System (INIS)

    Bennert, J.; Becher, L.

    1977-01-01

    At nuclear power plants with pressurized water reactors, condensate occurs on the high pressure part of the water-steam circuit, caused by the operation with low steam parameters. The behaviour of the electrolytes which entered into the circuit (solubility, distribution in water and/or steam) shows that these electrolytes (salts) are to be found mainly in the condensate. The insinuated electrolytes are reconcentrated during the common arrangements with 'Small Circuit' - consisting of steam generator, high pressure turbine, water separator, feedwater vessel, and have a negative influence on the feedwater - boiler water - and the steam quality. Remedy is possible by modified arrangements, during which these electrolyte-containing condensates will be treated and traced back into the main circuit. Nevertheless that the efficiency decrease is insignificant and additional efforts are necessary, a change over to these arrangements is recommendable, due to the fact that the feedwater quality, the boiler water quality, the steam quality in front of the turbine, and finally also the operational safety, as well as the availability will be improved. (orig.) [de

  17. Fast reactors in nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Kazachkovskii, O

    1981-02-01

    The possible applications are discussed of fast reactor nuclear power plants. Basic differences are explained in fast and thermal reactors, mainly with a view to nuclear fuel utilization. Discussed in more detail are the problems of nuclear fuel reproduction and the nost important technical problems of fast reactors. Flow charts are shown of heat transfer for fast reactors BN-350 (loop design) and BN-600 (integral coolant circuit design). Main specifications are given for demonstration and power fast reactors in operation, under construction and in project-stage.

  18. Tokamak reactor startup power

    International Nuclear Information System (INIS)

    Weldon, D.M.; Murray, J.G.

    1983-01-01

    Tokamak startup with ohmic heating (OH)-induced voltages requires rather large voltages and power supplies. On present machines, with no radiofrequency (rf)-assist provisions, hundreds of volts have been specified for their designs. With the addition of electron cyclotron resonant heating (ECRH) assist, the design requirements have been lowered. To obtain information on the cost and complexity associated with this ECRH-assisted, OH-pulsed startup voltage for ignition-type machines, a trade-off study was completed. The Fusion Engineering Device (FED) configuration was selected as a model because information was available on the structure. The data obtained are applicable to all tokamaks of this general size and complexity, such as the Engineering Test Reactor

  19. To the analysis of reactor noise in boiling water reactors

    International Nuclear Information System (INIS)

    Seifritz, W.

    1972-01-01

    The paper contains some basic thoughts on the problem of neutron flux oscillations in power reactors. The advantages of self-powered detectors and their function are explained. In addition, noise measurements of the boiling water reactors at Lingen and Holden are described, and the possibilities of an employment of vanadium detectors for the analysis of reactor noise are discussed. The final pages of the paper contain a complete list of the author's publications in the field of reactor noise analysis. (RW/AK) [de

  20. Guide to the safety design examination about light water reactor facilities for power generation

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    This guide was compiled to evaluate the validity of the design policy when the safety design is examined at the time of the application for approval of the installation of nuclear reactors. About 7 years has elapsed since the existing guide was established, and the more appropriate guide to evaluate the safety should be made on the basis of the knowledge and experience accumulated thereafter. The range of application of this guide is limited to the above described evaluation, and it is not intended as the general standard for the design of nuclear reactors. First, the definition of the words used in this guide is given. Then, the guide to the safety examination is described about the general matters of reactor facilities, nuclear reactors and the measuring and controlling system, reactor-stopping system, reactivity-controlling system and safety protection system, reactor-cooling system, reactor containment vessels, fuel handling and waste treatment system. Several matters which require attention in the application of this guide or the clarification of the significance and interpretation of the guide itself were found, therefore the explanation about them was added at the end of this guide. (Kako, I.)

  1. Tendencies in operating power reactors

    International Nuclear Information System (INIS)

    Brinckmann, H.F.

    1987-01-01

    A survey is given about new tendencies in operating power reactors. In order to meet the high demands for control and monitoring of power reactors modern procedures are applicated such as the incore-neutron flux detection by means of electron emission detectors and multi-component activation probes, the noise diagnostics as well as high-efficient automation systems

  2. Production of synthetic methanol from air and water using controlled thermonuclear reactor power

    International Nuclear Information System (INIS)

    Dang, V.D.; Steinberg, M.

    1977-01-01

    Energy requirement and process development of methanol production from air and water using controlled thermonuclear fusion power was discussed in Part 1 (Steinberg et al., Energy conversion;17:97(1977)). This second part presents an economic analysis of the nine processes presented for obtaining carbon dioxide recovery from the atmosphere or the sea for methanol production. It is found that the most economical process of obtaining carbon dioxide is by stripping from sea water. The process of absorption/stripping by dilute potassium carbonate solution is found to be the most economical for the extraction of carbon dioxide from air at atmospheric pressure. The total energy required for methanol synthesis from these sources of carbon dioxide is 3.90 kWh(e)/lb methanol of which 90% is used for generation of hydrogen. The process which consumes the greatest amount of energy is the absorption/stripping of air by water at high pressure and amounts to 13.2 kWh(e)/lb methanol. With nuclear fusion power plants of 1000to 9000 MW(e), it is found that the cost of methanol using the extraction of carbon dioxide from air with dilute potassium carbonate solution is estimated to be in the range between Pound1.73 and Pound2.90/MMB.t.u. (energy equivalent - 1974 cost) for plant capacities of 21 400 to 193 000 bbl/day methanol. This methanol cost is competitive with gasoline in the range of 19 approximately equal to 33c/gallon. For the process of stripping of carbon dioxide from sea water, the cost is found to lie in the range of Pound1.65 to Pound2.71/MMB.t.u. (energy equivalent) for plant capacities of 21 700 to 195 000 bbl/day methanol which is competitive with gasoline in the range of 18 approximately equal to 30 c/gallon. Projection of methanol demand in the year 2020 is presented based on both its conventional use as chemicals and as a liquid fuel substituting for oil and gas. (author)

  3. Tokamak experimental power reactor

    International Nuclear Information System (INIS)

    Stacey, W.M. Jr.; Abdou, M.A.; Bertoncini, P.J.

    1976-01-01

    A conceptual design has been developed for a tokamak Experimental Power Reactor to operate at net electrical power conditions with a plant capacity factor of 50 percent for 10 yr. The EPR operates in a pulsed mode at a frequency of approximately 1/min, with approximately 75 percent duty cycle, is capable of producing approximately 72 MWe and requires 42 MWe. The annual tritium consumption is 16 kg. The EPR vacuum chamber is 6.25 m in major radius and 2.4 m in minor radius, is constructed of 2 cm thick stainless steel, and has 2 cm thick detachable, beryllium-coated coolant panels mounted on the interior. A 0.28 m stainless steel blanket and a shield ranging from 0.6 to 1.0 m surround the vacuum vessel. The coolant is H 2 O. Sixteen niobium-titanium superconducting toroidal field coils provide a field of 10 T at the coil and 4.47 T at the plasma. Superconducting ohmic heating and equilibrium field coils provide 135 V-s to drive the plasma current. Plasma heating is accomplished by 12 neutral beam injectors which provide 60 MW. The energy transfer and storage system consists of a central superconducting storage ring, a homopolar energy storage unit, and a variety of inductor-convertors

  4. Study of a criticality accident involving fuel rods and water outside a power reactor

    International Nuclear Information System (INIS)

    Beloeil, L.

    2000-01-01

    It is possible to imagine highly unlikely but numerous accidental situations where fuel rods come into contact with water under conditions close to atmospheric values. This work is devoted to modelling and simulation of first instants of the power excursion that may result from such configurations. We show that void effect is a preponderant feedback for most severe accidents. The formation of a vapour film around the rods is put forward and confirmed with the help of experimental transients using electrical heating. We propose then a vapour/liquid flow model able to reproduce void fraction evolution. The vapour film is treated as a compressible medium. Conservation balance equations are solved on a moving mesh with a two-dimensional scheme and boundary conditions taking notice of interfacial phenomena and axial escape possibility. Movements of the liquid phase are modelled through a non-stationary integral equation and a dissipative term suited to the particular geometry of this flow. The penetration of energy into the liquid is also calculated. Thus, the coupling of aerodynamic and hydrodynamic modules gives results in excellent agreement with experiments. Next, neutronic phenomena into the fuel pellet, their feedback effects and the distribution of power through the rod are numerically translated. For each developed module, validation tests are provided. Then, it is possible to simulate the first seconds of the whole criticality accident. Even if this calculation tool is only a way of study as a first approach, performed simulations are proving coherent with reported data on recorded accidents. (author)

  5. Generic safety issues for nuclear power plants with pressurized heavy water reactors and measures for their resolution

    International Nuclear Information System (INIS)

    2007-06-01

    be used in reassessing the safety of individual operating plants. In 1998, the IAEA completed IAEA-TECDOC-1044 entitled Generic Safety Issues for Nuclear Power Plants with Light Water Reactors and Measures Taken for their Resolution and established the associated LWRGSIDB database (Computer Manual Series No. 13). The present compilation, which is based on broad international experience, is an extension of this work to cover pressurized heavy water reactors (PHWRs). As in the case of LWRs, it is one element in the framework of IAEA activities to assist Member States in reassessing the safety of operating nuclear power plants. It addresses generic safety issues identified in nuclear power plants using PHWRs. In most cases, the measures taken or planned to resolve these issues are also identified. The work on this report was initiated by the Senior Regulators of Countries Operating CANDU-Type Nuclear Power Plants at one of their annual meetings. It was carried out within the framework of the IAEA's programme on National Regulatory Infrastructure for Nuclear Installation Safety and serves to enhance regulatory effectiveness through the exchange of safety related information

  6. High temperature on-line monitoring of water chemistry and corrosion control in water cooled power reactors. Report of a co-ordinated research project 1995-1999

    International Nuclear Information System (INIS)

    2002-07-01

    This report documents the results of the Co-ordinated Research Project (CRP) on High Temperature On-line Monitoring of Water Chemistry and Corrosion in Water Cooled Power Reactors (1995-1999). This report attempts to provide both an overview of the state of the art with regard to on-line monitoring of water chemistry and corrosion in operating reactors, and technical details of the important contributions made by programme participants to the development and qualification of new monitoring techniques. The WACOL CRP is a follow-up to the WACOLIN (Investigations on Water Chemistry Control and Coolant Interaction with Fuel and Primary Circuit Materials in Water Cooled Power Reactors) CRP conducted by the IAEA from 1986 to 1991. The WACOLIN CRP, which described chemistry, corrosion and activity-transport aspects, clearly showed the influence of water chemistry on corrosion of both fuel and reactor primary-circuit components, as well as on radiation fields. It was concluded that there was a fundamental need to monitor water-chemistry parameters in real time, reliably and accurately. The objectives of the WACOL CRP were to establish recommendations for the development, qualification and plant implementation of methods and equipment for on-line monitoring of water chemistry and corrosion. Chief investigators from 18 organizations representing 15 countries provided a variety of contributions aimed at introducing proven monitoring techniques into plants on a regular basis and filling the gaps between plant operator needs and available monitoring techniques. The CRP firmly demonstrated that in situ monitoring is able to provide additional and valuable information to plant operators, e.g. ECP, high temperature pH and conductivity. Such data can be obtained promptly, i.e. in real time and with a high degree of accuracy. Reliable techniques and sensor devices are available which enable plant operators to obtain additional information on the response of structural materials in

  7. Detailed description of an SSAC at the facility level for light water moderated (off-load refueled) power reactor facilities

    International Nuclear Information System (INIS)

    Jones, R.J.

    1985-03-01

    This report is intended to provide the technical details of an effective State Systems of Accounting for and Control of Nuclear Material (SSAC) which Member States may use, if they wish, to establish and maintain their SSACs. It is expected that systems designed along the lines described would be effective in meeting the objectives of both national and international systems for nuclear material accounting and control. This document accordingly provides a detailed description of a system for the accounting for and control of nuclear material in an off-load refueled light water moderated power reactor facility which can be used by a facility operator to establish his own system to comply with a national system for nuclear material accounting and control and to facilitate application of IAEA safeguards. The scope of this document is limited to descriptions of the following elements: (1) Nuclear Material Measurements; (2) Measurement Quality; (3) Records and Reports; (4) Physical Inventory Taking; (5) Material Balance Closing

  8. Pulsed power supply and coaxial reactor applied to E. coli elimination in water by pulsed dielectric barrier discharge

    Energy Technology Data Exchange (ETDEWEB)

    Quiroz V, V. E.; Lopez C, R.; Rodriguez M, B. G.; Pena E, R.; Mercado C, A.; Valencia A, R.; Hernandez A, A. N.; Barocio, S. R.; Munoz C, A. E. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); De la Piedad B, A., E-mail: regulo.lopez@inin.gob.mx [Instituto Tecnologico de Toluca, Av. Tecnologico s/n, Ex-Rancho La Virgen, 52140 Metepec, Estado de Mexico (Mexico)

    2013-07-01

    The design and instrumentation intended for ATTC8739 Escherichia coli (E. coli) bacteria elimination in water, based on non thermal plasma generation at room pressure have been carried out by means of dielectric pulsed discharges. The latter have been produced by a power supply capable of providing voltages up to the order of 45 kV, 1-500 {mu}s pulse widths and variable frequencies between 100 Hz to 2000 Hz. This supply feeds a coaxial discharge reactor of the simple dielectric barrier type. The adequate operation of the system has been tested with the elimination of E. coli at 10{sup 4} and 10{sup 6} bacteria/ml concentrations, leading to reductions up to 85.3% and 95.1%, respectively, during the first 30 min of treatment. (Author)

  9. Water cooled nuclear reactor

    International Nuclear Information System (INIS)

    1975-01-01

    A description is given of a cooling water intake collector for a nuclear reactor. It includes multiple sub-collectors extending out in a generally parallel manner to each other, each one having a first end and a second one separated along their length, and multiple water outlets for connecting each one to a corresponding pressure tube of the reactor. A first end tube and a second one connect the sub-collector tubes together to their first and second ends respectively. It also includes multiple collector tubes extending transversely by crossing over the sub-collector tubes and separated from each other in the direction of these tubes. Each collector tubes has a water intake for connecting to a water pump and multiple connecting tubes separated over its length and connecting each one to the corresponding sub-collector [fr

  10. Advances in light water reactor technologies

    CERN Document Server

    Saito, Takehiko; Ishiwatari, Yuki; Oka, Yoshiaki

    2010-01-01

    ""Advances in Light Water Reactor Technologies"" focuses on the design and analysis of advanced nuclear power reactors. This volume provides readers with thorough descriptions of the general characteristics of various advanced light water reactors currently being developed worldwide. Safety, design, development and maintenance of these reactors is the main focus, with key technologies like full MOX core design, next-generation digital I&C systems and seismic design and evaluation described at length. This book is ideal for researchers and engineers working in nuclear power that are interested

  11. Development of a standard for calculation and measurement of the moderator temperature coefficient of reactivity in water-moderated power reactors

    International Nuclear Information System (INIS)

    Mosteller, R.D.; Hall, R.A.; Lancaster, D.B.; Young, E.H.; Gavin, P.H.; Robertson, S.T.

    1998-01-01

    The contents of ANS 19.11, the standard for ''Calculation and Measurement of the Moderator Temperature Coefficient of Reactivity in Water-Moderated Power Reactors,'' are described. The standard addresses the calculation of the moderator temperature coefficient (MTC) both at standby conditions and at power. In addition, it describes several methods for the measurement of the at-power MTC and assesses their relative advantages and disadvantages. Finally, it specifies a minimum set of documentation requirements for compliance with the standard

  12. Chemistry in water reactors

    International Nuclear Information System (INIS)

    Hermansson, H.P.; Norring, K.

    1994-01-01

    The international conference Chemistry in Water Reactors was arranged in Nice 24-27/04/1994 by the French Nuclear Energy Society. Examples of technical program areas were primary chemistry, operational experience, fundamental studies and new technology. Furthermore there were sessions about radiation field build-up, hydrogen chemistry, electro-chemistry, condensate polishing, decontamination and chemical cleaning. The conference gave the impression that there are some areas that are going to be more important than others during the next few years to come. Cladding integrity: Professor Ishigure from Japan emphasized that cladding integrity is a subject of great concern, especially with respect to waterside corrosion, deposition and release of crud. Chemistry control: The control of the iron/nickel concentration quotient seems to be not as important as previously considered. The future operation of a nuclear power plant is going to require a better control of the water chemistry than achievable today. One example of this is solubility control via regulation in BWR. Trends in USA: means an increasing use of hydrogen, minimization of SCC/IASCC, minimization of radiation fields by thorough chemistry control, guarding fuel integrity by minimization of cladding corrosion and minimization of flow assisted corrosion. Stellite replacement: The search for replacement materials will continue. Secondary side crevice chemistry: Modeling and practical studies are required to increase knowledge about the crevice chemistry and how it develops under plant operation conditions. Inhibitors: Inhibitors for IGSCC and IGA as well for the primary- (zinc) as for the secondary side (Ti) should be studied. The effects and mode of operation of the inhibitors should be documented. Chemical cleaning: of heat transfer surfaces will be an important subject. Prophylactic cleaning at regular intervals could be one mode of operation

  13. 10 CFR Appendix J to Part 50 - Primary Reactor Containment Leakage Testing for Water-Cooled Power Reactors

    Science.gov (United States)

    2010-01-01

    ..., piping penetrations fitted with expansion bellows, and electrical penetrations fitted with flexible metal... work. Such structural deterioration and corrective actions taken shall be included in the summary... request, at the nuclear power plant. The summary report shall include a schematic arrangement of the...

  14. The 'practical elimination' approach of accident situations for water-cooled nuclear power reactors 2017

    International Nuclear Information System (INIS)

    2017-01-01

    The implementation of the defence in depth principle and current regulations have lead applicants to define provisions to prevent accidents, including severe accidents, and to limit their consequences should they occur. However, while defining the design orientations for a new water-cooled power reactor, applicants shall use the 'practical elimination' approach for severe accident situations (in the reactor core or the spent fuel pool) potentially leading to large early radiological releases, where it appears impossible to define realistic and demonstrable provisions to limit their consequences according to current knowledge and the techniques available at the time. The use of this approach should be discussed between the applicant and the safety authority at the design orientations stage; the authority will specify on a case-by-case basis the conditions for its approval. In order to 'practically eliminate' a situation, the designer shall first examine the possibility for making it physically impossible. Where physical impossibility cannot be achieved, provisions shall be implemented to justify with a high degree of confidence that the situation is extremely unlikely. Situations likely to be 'practically eliminated' are diverse (massive and rapid reactivity insertion accidents, explosions, containment bypasses, etc.); the justification of 'practical elimination' can only be assessed on a case-by-case basis, using deterministic considerations complemented by a probabilistic analysis. The assessment relies on the reactor physical characteristics as well as on the robustness and reliability of the lines of defence implemented to prevent the situation to be 'practically eliminated'. The implemented provisions shall be subject to strong design, manufacturing and operation requirements; considerations related to human factors and hazards shall also be taken into account. This document is an orientation text which defines

  15. A nuclear power reactor

    International Nuclear Information System (INIS)

    Borrman, B.E.; Broden, P.; Lundin, N.

    1979-12-01

    The invention consists of shock absorbing support beams fastened to the underside of the reactor tank lid of a BWR type reactor, whose purpose is to provide support to the steam separator and dryer unit against accelerations due to earthquakes, without causing undue thermal stresses in the unit due to differential expansion. (J.I.W.)

  16. Introduction to nuclear power reactors and their health physics systems

    International Nuclear Information System (INIS)

    Brtis, J.S.

    1982-01-01

    This paper provides an introduction to: (1) the major systems of Boiling Water Reactors (BWR's) and Pressurized Water Reactors (PWR's), (2) the production and distribution of radiation sources in BWR's and PWR's, (3) the regulatory and functional requirements for nuclear power reactor design from a health physics standpoint, (4) the health physics systems provided to meet such requirements, and (5) a bibliography of documents germane to power reactor health physics design

  17. Generic safety issues for nuclear power plants with light water reactors and measures taken for their resolution

    International Nuclear Information System (INIS)

    1998-09-01

    The IAEA Conference on 'The Safety of Nuclear Power: Strategy for the Future' in 1991 was a milestone in nuclear safety. Two of the important items addressed by this conference were ensuring and enhancing safety of operating plants and treatment of nuclear power plants built to earlier safety standards. A number of publications related to these two items issued subsequent to this conference were: A Common Basis for Judging the Safety of Nuclear Power Plants Built to Earlier Standards, INSAG-9 (1995), the IAEA Safety Guide 50-SG-O12, periodic Safety Review of Operational Nuclear Power Plants (1994) and an IAEA publication on the Safety Evaluation of Operating Nuclear Power Plants Built to Earlier Standards - A Common Basis for Judgement (1997). Some of the findings of the 1991 Conference have not yet been fully addressed. An IAEA Symposium on reviewing the Safety of Existing Nuclear Power Plants in 1996 showed that there is an urgent need for operating organizations and national authorities to review operating nuclear power plants which do not meet the high safety levels of the vast majority of plants and to undertake improvements with assistance from the international community if required. Safety reviews of operating nuclear power plants take on added importance in the context of the Convention on Nuclear safety and its implementation. The purpose of this TECDOC compilation based on broad international experience, is to assist the Member States in the reassessment of operating plants by providing a list of generic safety issues identified in nuclear power plants together with measures taken to resolve these issues. These safety issues are generic in nature with regard to light water reactors and the measures for their resolution are for use as a reference for the safety reassessment of operating plants. The TECDOC covers issues thought to be significant to Member States based on consensus process. It provides an introduction to the use of generic safety issues for

  18. Nuclear power station with a water-cooled reactor pressure vessel

    International Nuclear Information System (INIS)

    Hoffmann, R.; Brunner, G.; Jost, N.

    1987-01-01

    Nuclear radiation produces radiolysis gases, which are undesirable for corrosion and oxyhydrogen gas reasons. To limit the proportion of this radiolysis gas, the invention provides that catalytic surfaces should be introduced into the primary circuit, to produce recombination of hydrogen and oxygen. These surfaces can be accommodated in the upper part of the reactor pressure vessel. The live steam screen can also have a catalytic surface. (orig./HP) [de

  19. Reactor theory and power reactors. 1. Calculational methods for reactors. 2. Reactor kinetics

    International Nuclear Information System (INIS)

    Henry, A.F.

    1980-01-01

    Various methods for calculation of neutron flux in power reactors are discussed. Some mathematical models used to describe transients in nuclear reactors and techniques for the reactor kinetics' relevant equations solution are also presented

  20. The pressurized water reactor

    International Nuclear Information System (INIS)

    Gallagher, J.L.

    1987-01-01

    Pressurized water reactor technology has reached a maturity that has engendered a new surge of innovation, which in turn, has led to significant advances in the technology. These advances, characterized by bold thinking but conservative execution, are resulting in nuclear plant designs which offer significant performance and safety improvements. This paper describes the innovations which are being designed into mainstream PWR technology as well as the desings which are resulting from such innovations. (author)

  1. The Swedish Zero Power Reactor R0

    Energy Technology Data Exchange (ETDEWEB)

    Landergaard, Olof; Cavallin, Kaj; Jonsson, Georg

    1961-05-15

    The reactor R0 is a critical facility built for heavy water and natural uranium or fuel of low enrichment,, The first criticality was achieved September 25, 1959. During a first period of more than two years the R0 will be operated as a bare reactor in order to simplify interpretation of results. The reactor tank is 3. 2 m high and 2. 25 m in diameter. The fuel suspension system is quite flexible in order to facilitate fuel exchange and lattice variations. The temperature of the water can be varied between about 10 and 90 C by means of a heater and a cooler placed in the external circulating system. The instrumentation of the reactor has to meet the safety requirements not only during operation but also during rearrangements of the core in the shut-down state. Therefore, the shut-down state is always defined by a certain low 'safe' moderator level in the reactor tank. A number of safety rods are normally kept above the moderator ready for action. For manual or automatic control of the reactor power a specially designed piston pump is needed, by which the moderator level is varied. The pump speed is controlled from the reactor power error by means of a Ward-Leonard system. Moderator level measurement is made by means of a water gauge with an accuracy of {+-} 0. 1 mm.

  2. The Swedish Zero Power Reactor R0

    International Nuclear Information System (INIS)

    Landergaard, Olof; Cavallin, Kaj; Jonsson, Georg

    1961-05-01

    The reactor R0 is a critical facility built for heavy water and natural uranium or fuel of low enrichment,, The first criticality was achieved September 25, 1959. During a first period of more than two years the R0 will be operated as a bare reactor in order to simplify interpretation of results. The reactor tank is 3. 2 m high and 2. 25 m in diameter. The fuel suspension system is quite flexible in order to facilitate fuel exchange and lattice variations. The temperature of the water can be varied between about 10 and 90 C by means of a heater and a cooler placed in the external circulating system. The instrumentation of the reactor has to meet the safety requirements not only during operation but also during rearrangements of the core in the shut-down state. Therefore, the shut-down state is always defined by a certain low 'safe' moderator level in the reactor tank. A number of safety rods are normally kept above the moderator ready for action. For manual or automatic control of the reactor power a specially designed piston pump is needed, by which the moderator level is varied. The pump speed is controlled from the reactor power error by means of a Ward-Leonard system. Moderator level measurement is made by means of a water gauge with an accuracy of ± 0. 1 mm

  3. Fractals in Power Reactor Noise

    International Nuclear Information System (INIS)

    Aguilar Martinez, O.

    1994-01-01

    In this work the non- lineal dynamic problem of power reactor is analyzed using classic concepts of fractal analysis as: attractors, Hausdorff-Besikovics dimension, phase space, etc. A new non-linear problem is also analyzed: the discrimination of chaotic signals from random neutron noise signals and processing for diagnosis purposes. The advantages of a fractal analysis approach in the power reactor noise are commented in details

  4. Rationalizing of construction engineering of nuclear power plants with pressurized water reactors

    International Nuclear Information System (INIS)

    Schmidt, S.

    1977-01-01

    Construction of large power plants requires further reduction of construction efforts and the construction period. A new constructional and technological solution has been developed with the steel-cell composite structure applied in the Greifswald nuclear power plant 'Bruno Leuschner' for the first time. Principles of design, fabrication, transport, and mounting are described. The benefits of the method are indicated. (author)

  5. Criteria for safety-related nuclear-power-plant operator actions: 1982 pressurized-water-reactor (PWR) simulator exercises

    International Nuclear Information System (INIS)

    Crowe, D.S.; Beare, A.N.; Kozinsky, E.J.; Haas, P.M.

    1983-06-01

    The primary objective of the Safety-Related Operator Action (SROA) Program at Oak Ridge National Laboratory is to provide a data base to support development of criteria for safety-related actions by nuclear power plant operators. When compared to field data collected on similar events, a base of operator performance data developed from the simulator experiments can then be used to establish safety-related operator action design evaluation criteria, evaluate the effects of performance shaping factors, and support safety/risk assessment analyses. This report presents data obtained from refresher training exercises conducted in a pressurized water reactor (PWR) power plant control room simulator. The 14 exercises were performed by 24 teams of licensed operators from one utility, and operator performance was recorded by an automatic Performance Measurement System. Data tapes were analyzed to extract operator response times (RTs) and error rate information. Demographic and subjective data were collected by means of brief questionnaires and analyzed in an attempt to evaluate the effects of selected performance shaping factors on operator performance

  6. Role of non destructive techniques for monitoring structural integrity of primary circuit of pressurized water reactor nuclear power plant

    International Nuclear Information System (INIS)

    Sharma, P.K.; Sreenivas, P.

    2015-01-01

    The safety of nuclear installations is ensured by assessing status of primary equipment for performing the intended function reliably and maintaining the integrity of pressure boundaries. The pressure boundary materials undergo material degradation during the plant operation. Pressure boundary materials are subjected to operating stresses and material degradation that results in material properties changes, discontinuities initiation and increase in size of existing discontinuities. Pre-Service Inspection (PSI) is performed to generate reference base line data of initial condition of the pressure boundary. In-Service Inspections (ISI) are performed periodically to confirm integrity of pressure boundaries through comparison with respect to base line data. The non destructive techniques are deployed considering nature of the discontinuities expected to be generated through operating conditions and degradation mechanisms. The paper is prepared considering Pressurized Water Reactor (PWR) Nuclear Power Plant. The paper describes the degradation mechanisms observed in the PWR nuclear power plants and salient aspect of PSI and ISI and considerations in selecting non destructive testing. The paper also emphasises on application of acoustic emission (AE) based condition monitoring systems that can supplement in-service inspections for detecting and locating discontinuities in pressure boundaries. Criticality of flaws can be quantitatively evaluated by determining their size through in-service inspection. Challenges anticipated in deployment of AE based monitoring system and solutions to cater those challenges are also discussed. (author)

  7. Steam-generator tube failures: world experience in water-cooled nuclear power reactors during 1972

    International Nuclear Information System (INIS)

    Stevens-Guille, P.D.

    1975-01-01

    During 1972, approximately one in three operating reactors with steam generators incurred tube failures, predominantly near the tube sheet and in the bend region. Various forms of corrosion were the most frequent cause of failure. Eddy-current inspection was the preferred method for locating and investigating the cause of failure. Extensive use was made of both mechanical and explosive plugs for repair. As a class, steam generators with Monel 400 tubes had the lowest failure rates, and those with Inconel 600 tubes had the highest. (U.S.)

  8. Power reactors in Member States. 1978 edition

    International Nuclear Information System (INIS)

    1978-01-01

    The computer-based reactor listing gives information on reactor core characteristics and plant systems for all power reactors in operation under construction and planned. The following two tables are included to give a general picture of the overall situation: Reactor types and net electrical power; Reactor units and net electrical power by country and cumulated by year

  9. Functional systems of a pressurized water reactor

    International Nuclear Information System (INIS)

    Heinzel, V.

    1982-01-01

    The main topics, discussed in the present paper, are: - Principle design of the reactor coolant system - reactor pressure vessel with internals - containment design - residual heat removal and emergency cooling systems - nuclear component cooling systems - emergency feed water systems - plant electric power supply system. (orig./RW)

  10. Power reactor information system (PRIS)

    International Nuclear Information System (INIS)

    1989-06-01

    Since the very beginning of commercial operation of nuclear power plants, the nuclear power industry worldwide has accumulated more than 5000 reactor years of experience. The IAEA has been collecting Operating Experience data for Nuclear Power Plants since 1970 which were computerized in 1980. The Agency has undertaken to make Power Reactor Information System (PRIS) available on-line to its Member States. The aim of this publication is to provide the users of PRIS from their terminals with description of data base and communication systems and to show the methods of accessing the data

  11. Technology, safety and costs of decommissioning a reference boiling water reactor power station. Volume 1. Main report. Technical report, September 1977-October 1979

    International Nuclear Information System (INIS)

    Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

    1980-06-01

    Technology, safety and cost information is given for the conceptual decommissioning of a large (1100MWe) boiling water reactor (BWR) power station. Three approaches to decommissioning, immediate dismantlement, safe storage with deferred dismantlement and entombment, were studied to obtain comparisons between costs, occupational radiation doses, potential dose to the public and other safety impacts. It also shows the sensitivity of decommissioning safety and costs to the power rating of a BWR in the range of 200 to 1100 MWE

  12. Technology, safety and costs of decommissioning a reference boiling water reactor power station. Volume 1. Main report. Technical report, September 1977-October 1979

    Energy Technology Data Exchange (ETDEWEB)

    Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

    1980-06-01

    Technology, safety and cost information is given for the conceptual decommissioning of a large (1100MWe) boiling water reactor (BWR) power station. Three approaches to decommissioning, immediate dismantlement, safe storage with deferred dismantlement and entombment, were studied to obtain comparisons between costs, occupational radiation doses, potential dose to the public and other safety impacts. It also shows the sensitivity of decommissioning safety and costs to the power rating of a BWR in the range of 200 to 1100 MWE.

  13. Results of research and development for nuclear power plants with WWER-1000 type light water reactors

    International Nuclear Information System (INIS)

    1984-01-01

    The conference met in three sessions: 1. Project designing and construction of nuclear power plants; 2. Materials, technologies and applied mechanics; 3. Physics, thermal physics and control. The proceedings contains 82 papers of which only two have not been inputted in INIS. The final resolutions of session 1 related to the reduction of capital costs for newly built units, processing of project documentation, the introduction of step motors manufactured in Czechoslovakia, in-service diagnostics of nuclear power plants, etc. The final recommendations of session 2 dealt with the centralization of the management of research into the reliability, safety and residual life of nuclear installations, with radiation stability of weld metals, repairs of nuclear power plants by patch welding, with welding in nuclear power plants and stress calculations using mathematical methods. Session 3 centred on questions of the safety, reliability and economy of nuclear power plant operation. It was recommended to make a comparison of the results of theoretical calculations with experiments, to concentrate on the automation of measurement, to extend international division of labour and cooperation of CMEA countries, to extend publishing activities in the field of thermal physics, etc. General recommendations were related to the conception of the construction of nuclear power plants in Czechoslovakia, the implementation of original scientific, research and development work, to the question of personnel for nuclear research, the experimental base of the Czechoslovak nuclear programme and to planning and management of technical development. (E.S.)

  14. Corrosion control in CANDU nuclear power reactors

    International Nuclear Information System (INIS)

    Lesurf, J.E.

    1974-01-01

    Corrosion control in CANDU reactors which use pressurized heavy water (PHW) and boiling light water (BLW) coolants is discussed. Discussions are included on pressure tubes, primary water chemistry, fuel sheath oxidation and hydriding, and crud transport. It is noted that corrosion has not been a significant problem in CANDU nuclear power reactors which is a tribute to design, material selection, and chemistry control. This is particularly notable at the Pickering Nuclear Generating Station which will have four CANDU-PHW reactors of 540 MWe each. The net capacity factor for Pickering-I from first full power (May 1971) to March 1972 was 79.5 percent, and for Pickering II (first full power November 1971) to March 1972 was 83.5 percent. Pickering III has just reached full power operation (May 1972) and Pickering IV is still under construction. Gentilly CANDU-BLW reached full power operation in May 1972 after extensive commissioning tests at lower power levels with no major corrosion or chemistry problems appearing. Experience and operating data confirm that the value of careful attention to all aspects of corrosion control and augur well for future CANDU reactors. (U.S.)

  15. Water Power Research | Water Power | NREL

    Science.gov (United States)

    Water Power Research Water Power Research NREL conducts water power research; develops design tools ; and evaluates, validates, and supports the demonstration of innovative water power technologies. Photo of a buoy designed around the oscillating water column principle wherein the turbine captures the

  16. Light water reactor safety research project

    International Nuclear Information System (INIS)

    Markoczy, G.; Aksan, S.N.; Behringer, K.; Prodan, M.; Stierli, F.; Ullrich, G.

    1980-07-01

    The research and development activities for the safety of Light Water Power Reactors carried out 1979 at the Swiss Federal Institute for Reactor Research are described. Considerations concerning the necessity, objectives and size of the Safety Research Project are presented, followed by a detailed discussion of the activities in the five tasks of the program, covering fracture mechanics and nondestructive testing, thermal-hydraulics, reactor noise analysis and pressure vessel steel surveillance. (Auth.)

  17. Safety of next generation power reactors

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    This book is organized under the following headings: Future needs of utilities regulators, government, and other energy users, PRA and reliability, LMR concepts, LWR design, Advanced reactor technology, What the industry can deliver: advanced LWRs, High temperature gas-cooled reactors, LMR whole-core experiments, Advanced LWR concepts, LWR technology, Forum: public perceptions, What the industry can deliver: LMRs and HTGRs, Criteria and licensing, LMR modeling, Light water reactor thermal-hydraulics, LMR technology, Working together to revitalize nuclear power, Appendix A, luncheon address, Appendix B, banquet address

  18. Power oscillations in BWR reactors

    International Nuclear Information System (INIS)

    Espinosa P, G.

    2002-01-01

    One of the main problems in the operation of BWR type reactors is the instability in power that these could present. One type of oscillations and that is the objective of this work is the named density wave, which is attributed to the thermohydraulic processes that take place in the reactor core. From the beginnings of the development of BWR reactors, the stability of these has been an important aspect in their design, due to its possible consequences on the fuel integrity. The reactor core operates in two phase flow conditions and it is observed that under certain power and flow conditions, power instabilities appear. Studying this type of phenomena is complex, due to that a reactor core is constituted approximately by 27,000 fuel bars with different distributions of power and flow. The phenomena that cause the instability in BWR reactors continue being matter of scientific study. In the literature mainly in nuclear subject, it can be observed that exist different methods and approximations for studying this type of phenomena, nevertheless, their results are focused to establish safety limits in the reactor operation, instead of studying in depth of the knowledge about. Also in this line sense of the reactor data analysis, the oscillations characteristic frequencies are obtained for trying to establish if the power is growing or decreasing. In addition to that before mentioned in this paper it is presented a rigorous study applying the volumetric average method, for obtaining the vacuum waves propagation velocities and its possible connection with the power oscillations. (Author)

  19. Reactor Safety Commission Code of Practice for Pressurized Water Reactors

    International Nuclear Information System (INIS)

    1990-01-01

    The Reactor Safety Commission of the Federal German Republic has summarized in the form of Official Guidelines the safety requirements which, in the Commission's view, have to be met in the design, construction and operation of a nuclear power station equipped with a pressurized water reactor. The Third Edition of the RSK Guidelines for pressurized water reactors dated 14.10.81. is a revised and expanded version of the Second Edition dated 24.1.79. The Reactor Safety Commission will with effect from October 1981 use these Guidelines in consultations on the siting of and safety concept for the installation approval of future pressurized water reactors and will assess these nuclear power stations during their erection in the light of these Guidelines. They have not however been immediately conceived for the adaptation of existing nuclear power stations, whether under construction or in operation. The scope of application of these Guidelines to such nuclear power stations will have to be examined for each individual case. The main aim of the Guidelines is to simplify the consultation process within the reactor Safety Commission and to provide early advice on the safety requirements considered necessary by the Commission. (author)

  20. Pressurised water reactor. A critique of the Government's nuclear power programme

    Energy Technology Data Exchange (ETDEWEB)

    Flood, M; Chudleigh, R; Conroy, C

    1981-01-01

    The subject is covered in sections, entitled: energy forecasts - their decline and fall (Department of Energy; electricity supply industry; the writing on the wall); nuclear economics - how the dream dissolved (Britain's programme - off to a bad start; the government's programme -a catastrophe about to be repeated; the cost of a British PWR; a new choice - nuclear power versus insulation); PWR safety - the unresolvable problem (one in a million (query); fundamental weaknesses; consequences of an accident; unresolved safety problems; the select committee's findings); a new energy strategy - catering for our needs (energy efficiency; district heating/combined heat and power; solar heating; liquid fuels; the international context); conclusions.

  1. Pressurized-water reactors

    International Nuclear Information System (INIS)

    Bush, S.H.

    1983-03-01

    An overview of the pressurized-water reactor (PWR) pressure boundary problems is presented. Specifically exempted will be discussions of problems with pumps, valves and steam generators on the basis that they will be covered in other papers. Pressure boundary reliability is examined in the context of real or perceived problems occurring over the past 5 to 6 years since the last IAEA Reliability Symposium. Issues explicitly covered will include the status of the pressurized thermal-shock problem, reliability of inservice inspections with emphasis on examination of the region immediately under the reactor pressure vessel (RPV) cladding, history of piping failures with emphasis on failure modes and mechanisms. Since nondestructive examination is the topic of one session, discussion will be limited to results rather than techniques

  2. Minimizing the power peaking factor of fuel lattices using factors of group for boiling water reactors

    International Nuclear Information System (INIS)

    Guzman, J. R.; Longoria, L. C.; De la Cruz, E.; Arredondo, C.

    2010-10-01

    A method to design the distribution and composition of nuclear fuel for the array of fuel rods in a lattice for BWRs is presented in this work. The aim of the method is to minimize the power peaking factor until an adequate value is reached. Also, this method uses a few calculations of lattice. The method is based on the classification of the fuel rods in two groups: the group of fuel rods with the higher power level (group pow ), and the other group of fuel rods (no-group pow ). The enrichment of 235 U of each fuel rod of the group pow is multiplied by a factor called group fissile factor (f group ), and the enrichment of 235 U of each fuel rod of the no-group pow is multiplied by a factor called no-group fissile factor (f no-group ). These factors are fitted so that the power peaking factor is minimized. The importance of the method with the use of these two factors is applied to the design of a fuel lattice for BWRs as the Laguna Verde nuclear power plant. The calculations of lattice are made by means of the Helios code. (Author)

  3. Power Reactor Information System (PRIS)

    International Nuclear Information System (INIS)

    Spiegelberg, R.

    1992-01-01

    The IAEA has been collecting Operating Experience data for Nuclear Power Plants of the IAEA Member States since 1970. In order to facilitate an analysis of nuclear power plant performance as well as to produce relevant publications, all previously collected data supplied from the questionnaires were computerized in 1980 and the Power Reactor Information System was implemented. PRIS currently contains production records for the years up to and including 1990 and about 98% of the reactors-years operating experience in the world is contained in PRIS. (orig.)

  4. Nuclear analysis and performance of the Light Water Breeder Reactor (LWBR) core power operation at Shippingport

    International Nuclear Information System (INIS)

    Hecker, H.C.

    1984-04-01

    This report presents the nuclear analysis and discusses the performance of the LWBR core at Shippingport during power operation from initial startup through end-of-life at 28,730 EFPH. Core follow depletion calculations confirmed that the reactivity bias and power distributions were well within the uncertainty allowances used in the design and safety analysis of LWBR. The magnitude of the core follow reactivity bias has shown that the calculational models used can predict the behavior of U 233 -Th systems with closely spaced fuel rod lattices and movable fuel. In addition, the calculated final fissile loading is sufficiently greater than the initial fissile inventory that the measurements to be performed for proof-of-breeding evaluations are expected to confirm that breeding has occurred

  5. Management of radioactive waste in nuclear power: handling of irradiated graphite from water-cooled graphite reactors

    International Nuclear Information System (INIS)

    Anfimov, S.S.

    2000-01-01

    As a result of decommissioning of water-cooled graphite-moderated reactors, a large amount of rad-waste in the form of graphite stack fragments is generated (on average 1500-2000 tons per reactor). That is why it is essentially important, although complex from the technical point of view, to develop advanced technologies based on up-to-date remotely-controlled systems for unmanned dismantling of the graphite stack containing highly-active long-lived radionuclides and for conditioning of irradiated graphite (IG) for the purposes of transportation and subsequent long term and ecologically safe storage either on NPP sites or in special-purpose geological repositories. The main characteristics critical for radiation and nuclear hazards of the graphite stack are as follows: the graphite stack is contaminated with nuclear fuel that has gotten there as a result of the accidents; the graphite mass is 992 tons, total activity -6?104 Ci (at the time of unit shutdown); the fuel mass in the reactor stack amounts to 100-140 kg, as estimated by IPPE and RDIPE, respectively; γ-radiation dose rate in the stack cells varies from 4 to 4300 R/h, with the prevailing values being in the range from 50 to 100 R/h. In this paper the traditional methods of rad-waste handling as bituminization technology, cementing technology are discussed. In terms of IG handling technology two lines were identified: long-term storage of conditioned IG and IG disposal by means of incineration. The specific cost of graphite immobilization in a radiation-resistant polymeric matrix amounts to -2600 USD per 1 t of graphite, whereas the specific cost of immobilization in slag-stone containers with an inorganic binder (cement) is -1400 USD per 1 t of graphite. On the other hand, volume of conditioned IG rad-waste subject for disposal, if obtained by means of the first technology, is 2-2.5 times less than the volume of rad-waste generated by means of the second technology. It can be concluded from the above that

  6. Internal exposure monitoring of personnel of a nuclear power plant with pressurized-water reactors

    International Nuclear Information System (INIS)

    Krueger, F.W.; Poulheim, K.F.; Rueger, G.; Schreiter, W.D.

    1982-01-01

    In the GDR a programme for monitoring the internal radiation exposure of personnel has been established in the Bruno Leuschner Nuclear Power Plant, Greifswald, which allows one to estimate the effective dose equivalent in the way recommended by the ICRP. The measuring equipment used, and the methods of calibration and of evaluation of results are described. At present about 400 persons are monthly monitored with a thorax monitor in the nuclear power plant. If an investigation level - corresponding to an effective dose equivalent of 0.3mSv/month - is exceeded, a more exact measurement is made in the whole-body counter at the National Board for Nuclear Safety and Radiation Protection of the GDR. In addition, a selected group of 50 persons is measured twice yearly in the whole-body counter. The measurements show the high effectiveness of the protective measures against radionuclide intake by workers in the nuclear power plant, resulting in a contribution of less than 1% to the collective dose of the personnel. A correlation has been found between external and internal exposure indicating that, in general, there will be a higher intake only under conditions resulting also in higher external exposures. The highest individual values of internal exposure found are below 0.5mSv/month and thus within the range of the lower detection limit of dosimeter films used for monitoring the external exposure. (author)

  7. Power generation costs for alternate reactor fuel cycles

    International Nuclear Information System (INIS)

    Smolen, G.R.; Delene, J.G.

    1980-09-01

    The total electric generating costs at the power plant busbar are estimated for various nuclear reactor fuel cycles which may be considered for power generation in the future. The reactor systems include pressurized water reactors (PWR), heavy-water reactors (HWR), high-temperature gas cooled reactors (HTGR), liquid-metal fast breeder reactors (LMFBR), light-water pre-breeder and breeder reactors (LWPR, LWBR), and a fast mixed spectrum reactor (FMSR). Fuel cycles include once-through, uranium-only recycle, and full recycle of the uranium and plutonium in the spent fuel assemblies. The U 3 O 8 price for economic transition from once-through LWR fuel cycles to both PWR recycle and LMFBR systems is estimated. Electric power generation costs were determined both for a reference set of unit cost parameters and for a range of uncertainty in these parameters. In addition, cost sensitivity parameters are provided so that independent estimations can be made for alternate cost assumptions

  8. Advances in heavy water reactors

    International Nuclear Information System (INIS)

    1994-03-01

    The current IAEA programme in advanced nuclear power technology promotes technical information exchange between Member States with major development programmes. The Technical Committee Meeting (TCM) on Advances in Heavy Water Reactors was organized by the IAEA in the framework of the activities of the International Working Group on Advanced Technologies for Water Cooled Reactors (IWGATWR) and hosted by the Atomic Energy of Canada Limited. Sixty-five participants from nine countries (Canada, Czech Republic, India, German, Japan, Republic of Korea, Pakistan, Romania and USA) and the IAEA attended the TCM. Thirty-four papers were presented and discussed in five sessions. A separate abstract was prepared for each of these papers. All recommendations which were addressed by the participants of the Technical Committee meeting to the IWGATWR have been submitted to the 5th IWGATWR meeting in September 1993. They were reviewed and used as input for the preparation of the IAEA programme in the area of advanced water cooled reactors. This TCM was mainly oriented towards advances in HWRs and on projects which are now in the design process and under discussion. Refs, figs and tabs

  9. Management of radioactive waste in nuclear power: handling of irradiated graphite from water-cooled graphite reactors

    International Nuclear Information System (INIS)

    Anfimov, S.S.

    2001-01-01

    In this paper an radioactive waste processing of graphite from graphite moderated nuclear reactors at its decommissioning is discussed. Methods of processing of irradiated graphite are presented. It can be concluded that advanced methods for graphite radioactive waste handling are available nowadays. Implementation of these methods will allow to enhance environmental safety of nuclear power that will benefit its progress in the future

  10. Power-level regulation and simulation of nonlinear pressurized water reactor core with xenon oscillation using H-infinity loop shaping control

    Directory of Open Access Journals (Sweden)

    Li Gang

    2016-01-01

    Full Text Available This investigation is to solve the power-level control issue of a nonlinear pressurized water reactor core with xenon oscillations. A nonlinear pressurized water reactor core is modeled using the lumped parameter method, and a linear model of the core is then obtained through the small perturbation linearization way. The H∞loop shapingcontrolis utilized to design a robust controller of the linearized core model.The calculated H∞loop shaping controller is applied to the nonlinear core model. The nonlinear core model and the H∞ loop shaping controller build the nonlinear core power-level H∞loop shaping control system.Finally, the nonlinear core power-level H∞loop shaping control system is simulatedconsidering two typical load processes that are a step load maneuver and a ramp load maneuver, and simulation results show that the nonlinear control system is effective.

  11. Conceptual design of a high temperature water-cooled divertor for a fusion power reactor

    International Nuclear Information System (INIS)

    Giancarli, L.; Bonal, J.P.; Puma, A. Li; Michel, B.; Sardain, P.; Salavy, J.F.

    2005-01-01

    This paper presents the conceptual design of a water-cooled divertor target using EUROFER as structural material, water coolant pressure and outlet temperature, respectively, of 15.5 MPa and 325 o C, and W-alloy monoblocks as armour. Assuming an advanced interface, formed by a thermal barrier in the pipe front part and a compliance layer between W and steel, this concept is able to withstand an incident surface heat flux of 15 MW/m 2 . Both thermal barrier and compliance layer are made of carbon-based materials. The main issues are the manufacturing process of the steel/W interface, and the behaviour under irradiation of graphite materials

  12. Conceptual design of a high temperature water-cooled divertor for a fusion power reactor

    Energy Technology Data Exchange (ETDEWEB)

    Giancarli, L. [CEA Saclay, Direction de l' Energie Nucleaire, F-91191 Gif-sur-Yvette (France)]. E-mail: luciano.giancarli@cea.fr; Bonal, J.P. [CEA Saclay, Direction de l' Energie Nucleaire, F-91191 Gif-sur-Yvette (France); Puma, A. Li [CEA Saclay, Direction de l' Energie Nucleaire, F-91191 Gif-sur-Yvette (France); Michel, B. [CEA Cadarache, Direction de l' Energie Nucleaire, F-13108 St. Paul-les-Durances (France); Sardain, P. [EFDA Close Support Unit, Boltzmannstr. 2, D-85748 Garching (Germany); Salavy, J.F. [CEA Saclay, Direction de l' Energie Nucleaire, F-91191 Gif-sur-Yvette (France)

    2005-11-15

    This paper presents the conceptual design of a water-cooled divertor target using EUROFER as structural material, water coolant pressure and outlet temperature, respectively, of 15.5 MPa and 325 {sup o}C, and W-alloy monoblocks as armour. Assuming an advanced interface, formed by a thermal barrier in the pipe front part and a compliance layer between W and steel, this concept is able to withstand an incident surface heat flux of 15 MW/m{sup 2}. Both thermal barrier and compliance layer are made of carbon-based materials. The main issues are the manufacturing process of the steel/W interface, and the behaviour under irradiation of graphite materials.

  13. Suboptimal control of pressurized water reactor power plant using approximate model-following method

    International Nuclear Information System (INIS)

    Tsuji, Masashi; Ogawa, Yuichi

    1987-01-01

    We attempted to develop an effective control system that can successfully manage the nuclear steam supply (NSS) system of a PWR power plant in an operational mode requiring relatively small variations of power. A procedure is proposed for synthesizing control system that is a simple, yet practiced, suboptimal control system. The suboptimal control system is designed in two steps; application of the optimal control theory, based on the linear state-feedback control and the use of an approximate model-following method. This procedure can appreciably reduce the complexity of the structure of the controller by accepting a slight deviation from the optimality and by the use of the output-feedback control. This eliminates the engineering difficulty caused by an incompletely state-feedback that is sometimes encountered in practical applications of the optimal state-feedback control theory to complex large-scale dynamical systems. Digital simulations and graphical studies based on the Bode-diagram demonstrate the effectiveness of the suboptimal control, and the applicability of the proposed design method as well. (author)

  14. Revision of the second basic plans of power reactor development in Power Reactor and Nuclear Fuel Development Corporation

    International Nuclear Information System (INIS)

    1978-01-01

    Revision of the second basic plans concerning power reactor development in PNC (Power Reactor and Nuclear Fuel Development Corporation) is presented. (1) Fast breeder reactors: As for the experimental fast breeder reactor, after reaching the criticality, the power is raised to 50 MW thermal output within fiscal 1978. The prototype fast breeder reactor is intended for the electric output of 200 MW -- 300 MW, using mixed plutonium/uranium oxide fuel. Along the above lines, research and development will be carried out on reactor physics, sodium technology, machinery and parts, nuclear fuel, etc. (2) Advanced thermal reactor: The prototype advanced thermal reactor, with initial fuel primarily of slightly enriched uranium and heavy water moderation and boiling water cooling, of 165 MW electric output, is brought to its normal operation by the end of fiscal 1978. Along the above lines, research and development will be carried out on reactor physics, machinery and parts, nuclear fuel, etc. (Mori, K

  15. Light Water Reactor Sustainability Program: Computer-based procedure for field activities: results from three evaluations at nuclear power plants

    International Nuclear Information System (INIS)

    2014-01-01

    Nearly all activities that involve human interaction with the systems of a nuclear power plant are guided by procedures. The paper-based procedures (PBPs) currently used by industry have a demonstrated history of ensuring safety; however, improving procedure use could yield tremendous savings in increased efficiency and safety. One potential way to improve procedure-based activities is through the use of computer-based procedures (CBPs). Computer-based procedures provide the opportunity to incorporate context driven job aids, such as drawings, photos, just-in-time training, etc into CBP system. One obvious advantage of this capability is reducing the time spent tracking down the applicable documentation. Additionally, human performance tools can be integrated in the CBP system in such way that helps the worker focus on the task rather than the tools. Some tools can be completely incorporated into the CBP system, such as pre-job briefs, placekeeping, correct component verification, and peer checks. Other tools can be partly integrated in a fashion that reduces the time and labor required, such as concurrent and independent verification. Another benefit of CBPs compared to PBPs is dynamic procedure presentation. PBPs are static documents which limits the degree to which the information presented can be tailored to the task and conditions when the procedure is executed. The CBP system could be configured to display only the relevant steps based on operating mode, plant status, and the task at hand. A dynamic presentation of the procedure (also known as context-sensitive procedures) will guide the user down the path of relevant steps based on the current conditions. This feature will reduce the user's workload and inherently reduce the risk of incorrectly marking a step as not applicable and the risk of incorrectly performing a step that should be marked as not applicable. As part of the Department of Energy's (DOE) Light Water Reactors Sustainability Program

  16. An improved model to simulate pressurized water reactor iodine spiking behavior under power transient conditions

    International Nuclear Information System (INIS)

    Ho, J.C.

    2004-01-01

    Among those theories to interpret the PWR iodine spiking behaviors, the most accepted concept is based on steam formation and condensation in damaged fuel rods. Due to the complex nature of the phenomenon, a comprehensive model of the iodine behavior has not yet been successfully developed. In 1992 a new empirical model was introduced to establish a correlation with the operating parameters. The comparison results of the predicted iodine-131 equivalent activity value with the operating radiochemistry database was off by 23%. This paper presents an improved model. Although it is still an empirical model which also gives a first order estimation of the peak iodine spiking magnitude, the deviation between prediction and measurement was reduced to ∼7%. It is believed that this improved model can be used for better prediction and control of the iodine spiking magnitude resulted from failed fuel rods during power transients or plant shutdown. (author)

  17. Pressurized water reactors: the EPR project

    International Nuclear Information System (INIS)

    Py, J.P.; Yvon, M.

    2007-01-01

    EPR (originally 'European pressurized water reactor', and now 'evolutionary power reactor') is a model of reactor initially jointly developed by French and German engineers which fulfills the particular safety specifications of both countries but also the European utility requirements jointly elaborated by the main European power companies under the initiative of Electricite de France (EdF). Today, two EPR-based reactors are under development: one is under construction in Finland and the other, Flamanville 3 (France), received its creation permit decree on April 10, 2007. This article presents, first, the main objectives of the EPR, and then, describes the Flamanville 3 reactor: reactor type and general conditions, core and conditions of operation, primary and secondary circuits with their components, main auxiliary and recovery systems, man-machine interface and instrumentation and control system, confinement and serious accidents, arrangement of buildings. (J.S.)

  18. Management of radioactive wastes at power reactor sites in India

    International Nuclear Information System (INIS)

    Amalraj, R.V.; Balu, K.

    Indian nuclear power programme, at the present stage, is based on natural uranium fuelled heavy water moderated CANDU type reactors except for the first nuclear power station consisting of two units of enriched uranium fuelled, light water moderated, BWR type of reactors. Some of the salient aspects of radioactive waste management at power reactor sites in India are discussed. Brief reviews are presented on treatment of wastes, their disposal and environmental aspects. Indian experience in power reactor waste management is also summarised identifying some of the areas needing further work. (auth.)

  19. Nuclear power plant life management processes: Guidelines and practices for heavy water reactors. Report prepared within the framework of the Technical Working Groups on Advanced Technologies for Heavy Water Reactors and on Life Management of Nuclear Power Plants

    International Nuclear Information System (INIS)

    2006-06-01

    The time is right to address nuclear power plant life management and ageing management issues in terms of processes and refurbishments for long term operation and license renewal aspects of heavy water reactors (HWRs) because some HWRs are close to the design life. In general, HWR nuclear power plant (NPP) owners would like to keep their NPPs in service as long as they can be operated safely and economically. This involves the consideration of a number of factors, such as the material condition of the plant, comparison with current safety standards, the socio-political climate and asset management/ business planning considerations. This TECDOC deals with organizational and managerial means to implement effective plan life management (PLiM) into existing plant in operating HWR NPPs. This TECDOC discusses the current trend of PLiM observed in NPPs to date and an overview of PLiM programmes and considerations. This includes key objectives of such programs, regulatory considerations, an overall integrated approach, organizational and technology infrastructure considerations, importance of effective plant data management and finally, human issues related to ageing and finally integration of PLiM with economic planning. Also general approach to HWR PLiM, including the key PLiM processes, life assessment for critical structures and components, conditions assessment of structures and components and obsolescence is mentioned. Technical aspects are described on component specific technology considerations for condition assessment, example of a proactive ageing management programme, and Ontario power generation experiences in appendices. Also country reports from Argentina, Canada, India, the Republic of Korea and Romania are attached in the annex to share practices and experiences to PLiM programme. This TECDOC is primarily addressed to both the management (decision makers) and technical staff (engineers and scientists) of NPP owners/operators and technical support

  20. Current status and development of heat exchangers for boiling water reactor nuclear power plant

    International Nuclear Information System (INIS)

    Uchiyama, Yoshio; Nishioka, Shuji; Ito, Shizuo

    1975-01-01

    More efficient and reliable operation is required for BWR heat exchangers because of nuclear plant safety and other reasons. Heat exchangers are classified into two categories of systems, the system for normal operation and the system for emergency operation. The present state and future improvement of heat exchangers are described in view of heat transfer performance, material selection, structural design, vibration, and so on. When noncondensing gas exists in vapour, heat transfer performance deteriorates, so that the heat transfer characteristics should be corrected by the adaption of venting the non condensing gas from the system. Heat transfer tubes should have high corrosion resistance to working fluid as well as high thermal conductivity, strength and economy. From that point of view, 30% cupro-nickel tubes will be replaced with 10% cupro-nickel tubes or titanium tubes though some technical development is necessary. These heat exchangers are now designed according to the MITI criteria for the technology concerning nuclear and thermal power generation, ASME Boiler and Pressure Vessel Code Sec. III and some other criteria. Most of heat transfer tube failures are caused from the tube vibration induced by working fluid flow, so that the vibration test and analysis were performed on U-tube elements. Some correction was obtained for design and fabrication techniques. (Iwase, T.)

  1. Contamination of occupational radiation exposure in nuclear power plants with pressurized water reactors

    International Nuclear Information System (INIS)

    Schneider, Sebastian; Bruhn, Gerd; Artmann, Andreas; Sentuc, Florence-Nathalie; Tiessen, Olga

    2017-12-01

    In the precursor project of this study a simulation procedure was developed, consisting of a 3D-CAD model, a mathematical method for coordinate transformation, the software MicroShield and an empiric job model, to calculate the occupational exposure for definable jobs at the primary circuit. It was validated for inspection and maintenance jobs at PWRs of the second and third KWU/Siemens generation. With that the aptitude of this tool for prognosis of radiation exposure was demonstrated. Adhering contaminations within the primary circuit are considered as relevant sources, whereas activated core-near components are neglected. In this study, the model was extended by PWR of the so-called Convoy generation, which differ from older plants in the material composition and consequently in the relevant nuclide vectors. With information from a visit at a nuclear power plant and conversation with the staff, the model could be adjusted appropriately. The radionuclide Cobalt-60 is indeed less important compared to older plant-types, but it is still the dominant nuclide in facilities of the fourth KWU/Siemens generation, so that it is used as reference nuclide. Due to the contemporary planned final shut-down of the three Convoy plants (besides other), dismantling work was set into focus of simulation. Simulation was conducted and results compared for Convoy plants and for plants of the older generations two and three. Furthermore, by comparative simulations the question was answered if full system decontamination in Convoy plants before dismantling lead to benefits that justify this measure. The determined dose saving during unmounting works at the steam generators caused by the decontamination is remarkable. An abdication of decontamination at this location would lead to doses much higher than the occupational job dose during steam generator dismantling in a decontaminated generation 2 facility.

  2. Cascade ICF power reactor

    International Nuclear Information System (INIS)

    Hogan, W.J.; Pitts, J.H.

    1986-01-01

    The double-cone-shaped Cascade reaction chamber rotates at 50 rpm to keep a blanket of ceramic granules in place against the wall as they slide from the poles to the exit slots at the equator. The 1 m-thick blanket consists of layers of carbon, beryllium oxide, and lithium aluminate granules about 1 mm in diameter. The x rays and debris are stopped in the carbon granules; the neutrons are multiplied and moderated in the BeO and breed tritium in the LiAlO 2 . The chamber wall is made up of SiO tiles held in compression by a network of composite SiC/Al tendons. Cascade operates at a 5 Hz pulse rate with 300 MJ in each pulse. The temperature in the blanket reaches 1600 K on the inner surface and 1350 K at the outer edge. The granules are automatically thrown into three separate vacuum heat exchangers where they give up their energy to high pressure helium. The helium is used in a Brayton cycle to obtain a thermal-to-electric conversion efficiency of 55%. Studies have been done on neutron activation, debris recovery, vaporization and recondensation of blanket material, tritium control and recovery, fire safety, and cost. These studies indicate that Cascade appears to be a promising ICF reactor candidate from all standpoints. At the 1000 MWe size, electricity could be made for about the same cost as in a future fission reactor

  3. Nuclear reactor power control device

    International Nuclear Information System (INIS)

    Koshi, Yuji; Sakata, Akira; Karatsu, Hiroyuki.

    1987-01-01

    Purpose: To control abrupt changes in neutron fluxes by feeding back a correction signal obtained from a deviation between neutron fluxes and heat fluxes for changing the reactor core flow rate to a recycling flow rate control system upon abrupt power change of a nuclear reactor. Constitution: In addition to important systems, that is, a reactor pressure control system and a recycling control system in the power control device of a BWR type power plant, a control circuit for feeding back a deviation between neutron fluxes and heat fluxes to a recycling flow rate control system is disposed. In the suppression circuit, a deviation signal is prepared in an adder from neutron flux and heat flux signals obtained through a primary delay filter. The deviation signal is passed through a dead band and an advance/delay filter into a correction signal, which is adapted to be fed back to the recycling flow rate control system. As a result, the reactor power control can be conducted smoothly and it is possible to effectively suppress the abrupt change or over shoot of the neutron fluxes and abrupt power change. (Kamimura, M.)

  4. New lineup of light water reactors

    International Nuclear Information System (INIS)

    Okamura, Kiyoshi; Oshima, Koichiro; Kitsukawa, Keisuke

    2007-01-01

    Toshiba is promoting technical studies for upcoming nuclear power plants based on its large accumulation of experience in boiling water reactor (BWR) design, manufacturing, construction, and maintenance. Our goal is to achieve higher reliability, lower life-cycle costs, and better competitiveness for nuclear power plants compared with other energy sources. In addition, we are developing a new light water reactor (LWR) lineup featuring the safest and most economical LWRs in the world as next-generation reactors almost at new construction and replacement in the Japanese and international markets expected to start from the 2020s. We are committed not only to developing BWRs with the world's highest performance but also to participating in the pressurized water reactor (PWR) market, taking advantage of the synergistic effect of both Toshiba's and Westinghouse's experience. (author)

  5. Boiling water reactor

    International Nuclear Information System (INIS)

    Matsumoto, Tomoyuki; Inoue, Kotaro; Ishida, Masayoshi.

    1975-01-01

    Object: To connect a feedwater pipe to a recycling pipe line, the recycling pipe line being made smaller in diameter, thereby minimizing loss of coolant resulting from rupture of the pipe and improving safety against trouble of coolant loss. Structure: A feedwater pipe is directly connected to a recycling pipe line before a booster pump, and a mixture of recycling water and feedwater is increased in pressure by the booster pump, after which it is introduced into a jet pump in the form of water for driving the jet pump to suck surrounding water causing it to be flown into the core. In accordance with the abovementioned structure, since the flow of feedwater can be used as a part of water for driving the jet pump, the flow within the recycling pipe line may be decreased so that the recycling pipe line can be made smaller in diameter to reduce the flow of coolant in the reactor, which flows out when the pipe is ruptured. (Furukawa, Y.)

  6. Cascade: a high-efficiency ICF power reactor

    International Nuclear Information System (INIS)

    Pitts, J.H.

    1985-01-01

    Cascade attains a net power-plant efficiency of 49% and its cost is competitive with high-temperature gas-cooled reactor, pressurized-water reactor, and coal-fired power plants. The Cascade reactor and blanket are made of ceramic materials and activation is 6 times less than that of the MARS Tandem Mirror Reactor operating at comparable power. Hands-on maintenance of the heat exchangers is possible one day after shutdown. Essentially all tritium is recovered in the vacuum system, with the remainder recovered from the helium power conversion loop. Tritium leakage external to the vacuum system and power conversion loop is only 0.03 Ci/d

  7. Power control system in BWR type reactors

    International Nuclear Information System (INIS)

    Nishizawa, Yasuo.

    1980-01-01

    Purpose: To control the reactor power so that the power distribution can satisfy the limiting conditions, by regulating the reactor core flow rate while monitoring the power distribution in the reactor core of a BWR type reactor. Constitution: A power distribution monitor determines the power distribution for the entire reactor core based on the data for neutron flux, reactor core thermal power, reactor core flow rate and control rod pattern from the reactor and calculates the linear power density distribution. A power up ratio computing device computes the current linear power density increase ratio. An aimed power up ratio is determined by converting the electrical power up ratio transferred from a load demand input device into the reactor core thermal power up ratio. The present reactor core thermal power up ratio is subtracted from the limiting power up ratio and the difference is sent to an operation amount indicator and the reactor core flow rate is changed in a reactor core flow rate regulator, by which the reactor power is controlled. (Moriyama, K.)

  8. Reliability of reactor plant water cleanup pumps

    International Nuclear Information System (INIS)

    Pearson, J.L.

    1979-01-01

    Carolina Power and Light Company's Brunswick 2 nuclear plant experienced a high reactor water cleanup pump-failure rate until inlet temperature and flow were reduced and mechanical modifications were implemented. Failures have been zero for about one year, and water cleanup efficiency has increased

  9. Low power unattended defense reactor

    International Nuclear Information System (INIS)

    Kirchner, W.L.; Meier, K.L.

    1984-01-01

    A small, low power, passive, nuclear reactor electric power supply has been designed for unattended defense applications. Through innovative utilization of existing proven technologies and components, a highly reliable, ''walk-away safe'' design has been obtained. Operating at a thermal power level of 200 kWt, the reactor uses low enrichment uranium fuel in a graphite block core to generate heat that is transferred through heat pipes to a thermoelectric (TE) converter. Waste heat is removed from the TEs by circulation of ambient air. Because such a power supply offers the promise of minimal operation and maintenance (OandM) costs as well as no fuel logistics, it is particularly attractive for remote, unattended applications such as the North Warning System

  10. Low power unattended defense reactor

    International Nuclear Information System (INIS)

    Kirchner, W.L.; Meier, K.L.

    1984-01-01

    A small, low power, passive, nuclear reactor electric power supply has been designed for unattended defense applications. Through innovative utilization of existing proven technologies and components, a highly reliable, walk-away safe design has been obtained. Operating at a thermal power level of 200 kWt, the reactor uses low enrichment uranium fuel in a graphite block core to generate heat that is transferred through heat pipes to a thermoelectric (TE) converter. Waste heat is removed from the TEs by circulation of ambient air. Because such a power supply offers the promise of minimal operation and maintenance (O and M) costs as well as no fuel logistics, it is particularly attractive for remote, unattended applications such as the North Warning System

  11. Power Reactor Embrittlement Data Base

    International Nuclear Information System (INIS)

    Kam, F.B.K.; Stallmann, F.W.; Wang, J.A.

    1990-01-01

    Regulatory and research evaluations of embrittlement predication models and of pressure vessel integrity can be greatly expedited by the use of a well-designed, computerized data base. The Power Reactor Embrittlement Data Base (PR-EDB) is such a comprehensive collection of data for US commercial nuclear reactors. The Nuclear Regulatory Commission (NRC) has provided financial support, and the Electric Power Research Institute (EPRI) has provided technical assistance in the quality assurance (QA) of the data to establish an industry-wide data base that will be maintained and updated on a long-term basis. Successful applications of the data base to several of NRC's evaluations have received favorable response and support for its continuation. The future direction of the data base has been designed to include the test reactor and other types of data of interest to the regulators and the researchers. 1 ref

  12. Power reactor core safety research

    International Nuclear Information System (INIS)

    Rim, C.S.; Kim, W.C.; Shon, D.S.; Kim, J.

    1981-01-01

    As a part of nuclear safety research program, a project was launched to develop a model to predict fuel failure, to produce the data required for the localizaton of fuel design and fabrication technology, to establish safety limits for regulation of nuclear power plants and to develop reactor operation method to minimize fuel failure through the study of fuel failure mechanisms. During 1980, the first year of this project, various fuel failure mechanisms were analyzed, an experimental method for out-of-pile tests to study the stress corrosion cracking (SCC) behaviour of Zircaloy cladding underiodine environment was established, and characteristics of PWR and CANDU Zircaloy specimens were examined. Also developed during 1980 were the methods and correlations to evaluate fuel failures in the reactor core based on operating data from power reactors

  13. Final Generic Environmental Impact Statement. Handling and storage of spent light water power reactor fuel. Volume 2. Appendices

    International Nuclear Information System (INIS)

    1979-08-01

    This volume contains the following appendices: LWR fuel cycle, handling and storage of spent fuel, termination case considerations (use of coal-fired power plants to replace nuclear plants), increasing fuel storage capacity, spent fuel transshipment, spent fuel generation and storage data, characteristics of nuclear fuel, away-from-reactor storage concept, spent fuel storage requirements for higher projected nuclear generating capacity, and physical protection requirements and hypothetical sabotage events in a spent fuel storage facility

  14. Power Reactor Thoria Reprocessing Facility (PRTRF), Trombay

    International Nuclear Information System (INIS)

    Dhami, P.S; Yadav, J.S; Agarwal, K.

    2017-01-01

    Exploitation of the abundant thorium resources to meet sustained energy demand forms the basis of the Indian nuclear energy programme. To gain reprocessing experience in thorium fuel cycle, thoria was irradiated in research reactor CIRUS in early sixties. Later in eighties, thoria bundles were used for initial flux flattening in some of the pressurized heavy water reactors (PHWRs). The research reactor irradiated thoria contained small content (∼ 2-3ppm) of "2"3"2U in "2"3"3U product, which did not pose any significant radiological problems during processing in Uranium Thorium Separation Facility (UTSF), Trombay. Thoria irradiated in PHWRs on discharge contained (∼ 0.5-1.5% "2"3"3U with significant "2"3"2U content (100-500 ppm) requiring special radiological attention. Based on the experience from UTSF, a new facility viz. Power Reactor Thoria Reprocessing Facility (PRTRF), Trombay was built which was hot commissioned in the year 2015

  15. The control of emissions from nuclear power reactors in Canada

    International Nuclear Information System (INIS)

    Gorman, D.J.; Neil, B.C.J.; Chatterjee, R.M.

    1988-01-01

    Nuclear power reactors in Canada are of the CANDU pressurised heavy water design. These are located in the provinces of Ontario, Quebec, and New Brunswick. Most of the nuclear generating capacity is in the province of Ontario which has 16 commissioned reactors with a total capacity of 11,500 MWe. There are four reactors under construction with an additional capacity of 3400 MWe. Nuclear power currently accounts for approximately 50% of the electrical power generation of Ontario. Regulation of the reactors is a Federal Government responsibility administered by the Atomic Energy Control Board (AECB) which licenses the reactors and sets occupational and public dose limits

  16. Experimental power reactor

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    The following five topics are discussed using figures and diagrams: (1) energy storage and transfer program, (2) thermomechanical analysis, (3) a steam dual-cycle power conversion system for the EPR, (4) EPR tritium facility scoping studies, and (5) vacuum systems

  17. Reactor performance calculations for water reactors

    International Nuclear Information System (INIS)

    Hicks, D.

    1970-04-01

    The principles of nuclear, thermal and hydraulic performance calculations for water cooled reactors are discussed. The principles are illustrated by describing their implementation in the UKAEA PATRIARCH scheme of computer codes. This material was originally delivered as a course of lectures at the Technical University of Helsinki in Summer of 1969.

  18. Dynamics of a BWR with inclusion of boiling nonlinearity, clad temperature and void-dependent core power removal: Stability and bifurcation characteristics of advanced heavy water reactor (AHWR)

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Dinkar, E-mail: dinkar@iitk.ac.in [Nuclear Engineering and Technology Program, Indian Institute of Technology Kanpur, Kanpur 208 016 (India); Kalra, Manjeet Singh, E-mail: drmanjeet.singh@dituniversity.edu.in [DIT University, Dehradun 248 009 (India); Wahi, Pankaj, E-mail: wahi@iitk.ac.in [Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208 016 (India)

    2016-11-15

    Highlights: • Simplified models with inclusion of the clad temperature are considered. • Boiling nonlinearity and core power removal have been modeled. • Method of multiple time scales has been used for nonlinear analysis to get the nature and amplitude of oscillations. • Incorporation of modeling complexities enhances the stability of system. • We find that reactors with higher nominal power are more desirable from the point of view of global stability. - Abstract: We study the effect of including boiling nonlinearity, clad temperature and void-dependent power removal from the primary loop in the mathematical modeling of a boiling water reactor (BWR) on its dynamic characteristics. The advanced heavy water reactor (AHWR) is taken as a case study. Towards this end, we have analyzed two different simplified models with different handling of the clad temperature. Each of these models has the necessary modifications pertaining to boiling nonlinearity and power removal from the primary loop. These simplified models incorporate the neutronics and thermal–hydraulic coupling. The effect of successive changes in the modeling assumptions on the linear stability of the reactor has been studied and we find that incorporation of each of these complexities in the model increases the stable operating region of the reactor. Further, the method of multiple time scales (MMTS) is exploited to carry out the nonlinear analysis with a view to predict the bifurcation characteristics of the reactor. Both subcritical and supercritical Hopf bifurcations are present in each model depending on the choice of operating parameters. These analytical observations from MMTS have been verified against numerical simulations. A parametric study on the effect of changing the nominal reactor power on the regions in the parametric space of void coefficient of reactivity and fuel temperature coefficient of reactivity with sub- and super-critical Hopf bifurcations has been performed for all

  19. Cobalt-60 production in CANDU power reactors

    International Nuclear Information System (INIS)

    Malkoske, G.R.; Norton, J.L.; Slack, J.

    2002-01-01

    MDS Nordion has been supplying cobalt-60 sources to industry for industrial and medical purposes since 1946. These cobalt-60 sources are used in many market and product segments, but are primarily used to sterilize single-use medical products including; surgical kits, gloves, gowns, drapes, and cotton swabs. Other applications include sanitization of cosmetics, microbial reduction of pharmaceutical raw materials, and food irradiation. The technology for producing the cobalt-60 isotope was developed by MDS Nordion and Atomic Energy of Canada Limited (AECL) almost 55 years ago using research reactors at the AECL Chalk River Laboratories in Ontario, Canada. The first cobalt-60 source produced for medical applications was manufactured by MDS Nordion and used in cancer therapy. The benefits of cobalt-60 as applied to medical product manufacturing, were quickly realized and the demand for this radioisotope quickly grew. The same technology for producing cobalt-60 in research reactors was then designed and packaged such that it could be conveniently transferred to a utility/power reactor. In the early 1970's, in co-operation with Ontario Power Generation (formerly Ontario Hydro), bulk cobalt-60 production for industrial irradiation applications was initiated in the four Pickering A CANDU reactors. As the demand and acceptance of sterilization of medical products grew, MDS Nordion expanded its bulk supply by installing the proprietary Canadian technology for producing cobalt-60 in additional CANDU reactors. CANDU is unique among the power reactors of the world, being heavy water moderated and fuelled with natural uranium. They are also designed and supplied with stainless steel adjusters, the primary function of which is to shape the neutron flux to optimize reactor power and fuel bum-up, and to provide excess reactivity needed to overcome xenon-135 poisoning following a reduction of power. The reactor is designed to develop full power output with all of the adjuster

  20. Radiation streaming in power reactors. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    Lahti, G.P.; Lee, R.R.; Courtney, J.C. (eds.)

    1979-02-01

    Separate abstracts are included for each of the 14 papers given at a special session on Radiation Streaming in Power Reactors held on November 15 at the American Nuclear Society 1978 Winter Meeting in Washington, D.C. The papers describe the methods of calculation, the engineering of shields, and the measurement of radiation environments within the containments of light water power reactors. Comparisons of measured and calculated data are used to determine the accuracy of computer predictions of the radiation environment. Specific computational and measurement techniques are described and evaluated. Emphasis is on radiation streaming in the annular region between the reactor vesel and the primary shield and its resultant environment within the primary containment.

  1. Pressurized water reactor flow arrangement

    International Nuclear Information System (INIS)

    Gibbons, J.F.; Knapp, R.W.

    1980-01-01

    A flow path is provided for cooling the control rods of a pressurized water reactor. According to this scheme, a small amount of cooling water enters the control rod guide tubes from the top and passes downwards through the tubes before rejoining the main coolant flow and passing through the reactor core. (LL)

  2. Reactor power peaking information display

    International Nuclear Information System (INIS)

    Book, T.L.; Kochendarfer, R.A.

    1986-01-01

    This patent describes a system for monitoring operating conditions within a nuclear reactor. The system consists of a method for measuring the operating parameters within the nuclear reactor, including the position of axial power shaping rods and regulating control rod. It also includes a method for determining from the operating parameters the operating limits before a power peaking condition exists within the nuclear reactor, and a method for displaying the operating limits which consists of a visual display permitting the continuous monitoring of the operating conditions within the nuclear reactor as a graph of the shaping rod position vs the regulating rod position having a permissible area and a restricted area. The permissible area is further divided into a recommended operating area for steady state operation and a cursor located on the graph to indicate the present operating condition of the nuclear reactor to allow an operator to view any need for corrective action based on the movement of the cursor out of the recommended operating area and to take any corrective transient action within the permissible area

  3. Reactor power region measuring device

    International Nuclear Information System (INIS)

    Kashiwa, Takao.

    1996-01-01

    The device of the present invention can rapidly detect abnormality of a local power region monitor (LPRM) even at a low power region caused such as upon start-up of a BWR type reactor. Namely, the present invention comprises (1) an LPRM detector for measuring neutron fluxes in the reactor, (2) a gamma thermo detector for calibrating the sensitivity of the LPRM detector, (3) a comparison circuit for comparing the detected values of the detectors (1) and (2), and (4) an alarm circuit for outputting an alarm when the comparative difference of the output of the circuit (3) exceeds a predetermined value. Signals of an alarm for a lower limit of the LPRM detector have been issued continuously upon start-up and shut down of the reactor since neutron fluxes in the reactor are reduced. However, the gamma thermo detector is always secured in the inside of the reactor different from a travelling-type incore probe monitor (TIP) disposed so far for the same purpose. Accordingly, the alarm generated upon usual start-up can be eliminated by comparing the detected values of the detector (2) and abnormality of the detector (1) can be rapidly detected by judging the abnormality of the comparative difference. (I.S.)

  4. To question of NPP power reactor choice for Kazakhstan

    International Nuclear Information System (INIS)

    Batyrbekov, G.A.; Makhanov, Y.M.; Reznikova, R.A.; Sidorenco, A.V.

    2004-01-01

    Full text: The requirements to NPP power reactors that will be under construction in Kazakhstan are proved and given in the report. A comparative analysis of the most advanced projects of power reactors with light and heavy water under pressure of large, medium and low power is carried out. Different reactors have been considered as follows: 1. Reactors with high-power (700 MW(el) and up) such as EPR, French - German reactor; CANDU-9, Canadian heavy-water reactor; System 80+, developed by ABB Combustion Engineering company, USA; KNGR, Korean reactor of the next generation; APWR, Japanese advanced reactor; WWER-1000 (V-392) - development of Atomenergoproect /Gydropress, Russian Federation; EP 1000, European passive reactor. 2. Reactors with medium power (300 MW (el) - 700 MW (el): AP-600, passive PWR of the Westinghouse company; CANDU-6, Canadian heavy-water reactor; AC-600, Chinese passive PWR; WWER-640, Russian passive reactor; MS-600 Japanese reactor of Mitsubishi Company; KSNP-600, South Korean reactor. 3. Reactors with low power (a few MW(el)- 300 MW(el)): IRIS, reactor of IV generation, developed by the International Corporation of 13 organizations from 7 countries, SMART, South Korean integrated reactor; CAREM, Argentina integrated reactor; MRX, Japanese integrated reactor; 'UNITERM', Russian NPP with integrated reactor, development of NIKIET; AHEC-80, Russian NPP, developed by OKBM. A comparison of the projects of the above-mentioned power reactors was carried out with respect to 15 criteria of nuclear, radiating, ecological safety and economic competitiveness, developed especially for this case. Data on a condition and prospects of power production and power consumption, stations and networks in Kazakhstan necessary for the choice of projects of NPP reactors for Kazakhstan are given. According to the data a balance of power production and power consumption as a whole in the country was received at the level of 59 milliard kw/h. However, strong dis balance

  5. To question of NPP power reactor choice for Kazakhstan

    International Nuclear Information System (INIS)

    Batyrbekov, G.A.; Makhanov, Y.M.; Reznikova, R.A.; Sidorenco, A.V.

    2004-01-01

    The requirements to NPP power reactors that will be under construction in Kazakhstan are proved and given in the report. A comparative analysis of the most advanced projects of power reactors with light and heavy water under pressure of large, medium and low power is carried out. Different reactors have been considered as follows: 1. Reactors with high-power (700 MW(el) and up) such as EPR, French - German reactor; CANDU-9, Canadian heavy-water reactor; System 80+, developed by ABB Combustion Engineering company, USA; KNGR, Korean reactor of the next generation; APWR, Japanese advanced reactor; WWER-1000 (V-392) - development of Atomenergoproect /Gydropress, Russian Federation; EP 1000, European passive reactor. 2. Reactors with medium power (300 MW (el) - 700 MW (el): AP-600, passive PWR of the Westinghouse company; CANDU-6, Canadian heavy-water reactor; AC-600, Chinese passive PWR; WWER-640, Russian passive reactor; MS-600 Japanese reactor of Mitsubishi Company; KSNP-600, South Korean reactor. 3. Reactors with low power (a few MW(el)- 300 MW(el)): IRIS, reactor of IV generation, developed by the International Corporation of 13 organizations from 7 countries, SMART, South Korean integrated reactor; CAREM, Argentina integrated reactor; MRX, Japanese integrated reactor; 'UNITERM', Russian NPP with integrated reactor, development of NIKIET; AHEC-80, Russian NPP, developed by OKBM. A comparison of the projects of the above-mentioned power reactors was carried out with respect to 15 criteria of nuclear, radiating, ecological safety and economic competitiveness, developed especially for this case. Data on a condition and prospects of power production and power consumption, stations and networks in Kazakhstan necessary for the choice of projects of NPP reactors for Kazakhstan are given. According to the data a balance of power production and power consumption as a whole in the country was received at the level of 59 milliard kw/h. However, strong dis balance in the

  6. The IAEA power reactor information system - PRIS

    International Nuclear Information System (INIS)

    Laue, H.J.; Qureshi, A.; Skjoeldebrand, R.; White, D.

    1983-01-01

    The IAEA Power Reactor Information System, PRIS, is based on a collection of basic design data and operating experience data which the IAEA started in 1970. PRIS is used for annual publications on 'Power Reactors in Member States', 'Operating Experience with Nuclear Power Stations in Member States', which gives annual operating information for individual plants, and a 'Performance Analysis Report' summarizing each year's and earlier experience. Since 1973 information has been collected in a systematic manner on significant plant outages (= more than 10 full power hours). There is now information on more than 10,000 outages in the system which permits some conclusions to be drawn both in regard to individual plants and to categories of plants on the significance of different outage reasons and different types of equipment failures. PRIS has not been intended to be a component reliability information system as an international data collection must stop short of the level of detail which would be needed for that purpose. The objectives of PRIS have been to provide a factual background for assumptions on parameters which are essential for economic evaluations and for systems operation planning (load factor and availability). The outage information does, however, lend itself to conclusions about generic problems in different categories of plants and it can be used by an individual operator to find other plants where information about particular problems can be obtained. It would also now be possible to use PRIS for setting availability goals based on experience and not only on theoretical design considerations. The paper demonstrates the conclusions which can be drawn from 662 reactor years of operation of light and heavy water pressurized reactors and 390 reactor years of boiling water reactors and, in particular, the role that the main heat removal system and its components have played in the equipment failure category

  7. Channel type reactors with supercritical water coolant. Russian experience

    International Nuclear Information System (INIS)

    Kuznetsov, Y.N.; Gabaraev, B.A.

    2003-01-01

    Transition to coolant of supercritical parameters allows for principle engineering-andeconomic characteristics of light-water nuclear power reactors to be substantially enhanced. Russian experience in development of channel-type reactors with supercritical water coolant has demonstrated advantages and practical feasibility of such reactors. (author)

  8. Parameter Identification with the Random Perturbation Particle Swarm Optimization Method and Sensitivity Analysis of an Advanced Pressurized Water Reactor Nuclear Power Plant Model for Power Systems

    Directory of Open Access Journals (Sweden)

    Li Wang

    2017-02-01

    Full Text Available The ability to obtain appropriate parameters for an advanced pressurized water reactor (PWR unit model is of great significance for power system analysis. The attributes of that ability include the following: nonlinear relationships, long transition time, intercoupled parameters and difficult obtainment from practical test, posed complexity and difficult parameter identification. In this paper, a model and a parameter identification method for the PWR primary loop system were investigated. A parameter identification process was proposed, using a particle swarm optimization (PSO algorithm that is based on random perturbation (RP-PSO. The identification process included model variable initialization based on the differential equations of each sub-module and program setting method, parameter obtainment through sub-module identification in the Matlab/Simulink Software (Math Works Inc., Natick, MA, USA as well as adaptation analysis for an integrated model. A lot of parameter identification work was carried out, the results of which verified the effectiveness of the method. It was found that the change of some parameters, like the fuel temperature and coolant temperature feedback coefficients, changed the model gain, of which the trajectory sensitivities were not zero. Thus, obtaining their appropriate values had significant effects on the simulation results. The trajectory sensitivities of some parameters in the core neutron dynamic module were interrelated, causing the parameters to be difficult to identify. The model parameter sensitivity could be different, which would be influenced by the model input conditions, reflecting the parameter identifiability difficulty degree for various input conditions.

  9. Study of deposited crud composition on fuel surfaces in the environment of hydrogen water chemistry (HWC) of a Boiling Water Reactor at Chinshan Nuclear Power Plant

    International Nuclear Information System (INIS)

    Tsai, Tsuey-Lin; Lin, Tzung-Yi; Su, Te-Yen; Wen, Tung-Jen; Men, Lee-Chung

    2012-09-01

    This paper aimed at the characterization of metallic composition and surface analysis on the crud of fuel rods for unit-1 of BWR-4 at Nuclear Power Plant. The inductively coupled plasma- atomic emission spectroscopy (ICPAES) and the gamma spectrometry were carried out to analyze the corrosion product distributions and to determine the elemental compositions along the fuel rod under conditions of hydrogen water chemistry (HWC) switched from normal water chemistry (NWC) of reactor coolant in this study. Most of the crud consisted of the flakes and irregular shapes via SEM morphology. The loosely adherent oxide layer was mostly composed of hematite (α- Fe 2 O 3 ) with amorphous iron oxides by XRD results. The average deposited amounts of crud was the order of 0.5 mg/cm 2 , indicating that the fuel surface of this plant under HWC environment appeared to be one with the lower crud deposition in terms of low iron level of feedwater. It also showed no significant difference in comparison with NWC condition. (authors)

  10. Study on Reactor Performance of Online Power Monitoring in PUSPATI TRIGA Reactor (RTP)

    International Nuclear Information System (INIS)

    Zareen Khan Abdul Jalil Khan; Ridzuan Abdul Mutalib; Mohd Sabri Minhat

    2014-01-01

    The Reactor TRIGA PUSPATI (RTP) at Malaysia Nuclear Agency is a TRIGA Mark II type reactor and pool type cooled by natural circulation of light water. This paper describe on reactor performance of online power monitoring based on various parameter of reactor such as log power, linear power, period, Fuel and coolant temperature and reactivity parameter with using neutronic and other instrumentation system of reactor. Methodology of online power estimation and monitoring is to evaluate and analysis of reactor power which is important of reactor safety and control. Neutronic instrumentation system will use to estimate power measurement, differential of log and linear power and period during reactor operation .This study also focus on noise fluctuation from fission chamber during reactor operation .This work will present result of online power monitoring from RTP which indicated the safety parameter identification and initiate safety action on crossing the threshold set point trip. Conclude that optimization of online power monitoring will improved the reactor control and safety parameter of reactor during operation. (author)

  11. Technology, safety and costs of decommissioning a reference boiling water reactor power station. Volume 2. Appendices. Technical report, September 1977-October 1979

    International Nuclear Information System (INIS)

    Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

    1980-06-01

    Technology, safety and cost information is given for the conceptual decommissioning of a large (1100MWe) boiling water reactor (BWR) power station. Three approaches to decommissioning, immediate dismantlement, safe storage with deferred dismantlement and entombment, were studied to obtain comparisons between costs, occupational radiation doses, potential dose to the public and other safety impacts. It also shows the sensitivity of decommissioning safety and costs to the power rating of a BWR in the range of 200 to 1100 MWE. This volume contains the appendices

  12. Construction of a model of the process of accumulation of radionuclides of corrosion products on the equipment in nuclear power plants with boiling-water reactors

    International Nuclear Information System (INIS)

    Tevlin, S.A.

    1985-01-01

    This paper addresses the problem of corrosion of the structural materials of the reactor loop. This problem can be solved by constructing physical models of the process of accumulation of radionuclides on the equipment at nuclear power plants and by constructing the analytical apparatus for describing them. These models are presented here, and allow the analyzing of the effect of separate states and thermophysical factors, determination of the basic factors, and the ability to foresee in timely fashion the water state and structural measures required to lower the rate of growth and to decrease the amount of radionuclides deposited on the equipment in the nuclear power plant

  13. Technology, safety and costs of decommissioning a reference boiling water reactor power station. Volume 2. Appendices. Technical report, September 1977-October 1979

    Energy Technology Data Exchange (ETDEWEB)

    Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

    1980-06-01

    Technology, safety and cost information is given for the conceptual decommissioning of a large (1100MWe) boiling water reactor (BWR) power station. Three approaches to decommissioning, immediate dismantlement, safe storage with deferred dismantlement and entombment, were studied to obtain comparisons between costs, occupational radiation doses, potential dose to the public and other safety impacts. It also shows the sensitivity of decommissioning safety and costs to the power rating of a BWR in the range of 200 to 1100 MWE. This volume contains the appendices.

  14. Final Generic Environmental Impact Statement. Handling and storage of spent light water power reactor fuel. Volume 1. Executive summary and text

    International Nuclear Information System (INIS)

    1979-08-01

    The Generic Environmental Impact Statement on spent fuel storage was prepared by the Nuclear Regulatory Commission staff in response to a directive from the Commissioners published in the Federal Register, September 16, 1975 (40 FR 42801). The Commission directed the staff to analyze alternatives for the handling and storage of spent light water power reactor fuel with particular emphasis on developing long range policy. Accordingly, the scope of this statement examines alternative methods of spent fuel storage as well as the possible restriction or termination of the generation of spent fuel through nuclear power plant shutdown. Volume 1 includes the executive summary and the text

  15. Source driven breeding thermal power reactors

    International Nuclear Information System (INIS)

    Greenspan, E.; Ben-Gurion Univ. of the Negev, Beersheba

    1978-03-01

    The feasibility of fusion devices operating in the semi-catalyzed deuterium (SCD) mode and of high energy proton accelerators to provide the neutron sources for driving subcritical breeding light water power reactors is assessed. The assessment is done by studying the energy balance of the resulting source driven light water reactors (SDLWR) and comparing it with the energy balance of the reference light water hybrid reactors (LWHR) driven by a D-T neutron source (DT-LWHR). The conditions the non-DT neutron sources should satisfy in order to make the SDLWR viable power reactors are identified. It is found that in order for a SCD-LWHR to have the same overall efficiency as a DT-LWHR, the fusion energy gain of the SCD device should be at least one half that the DT device. The efficienct of ADLWRs using uranium targets is comparable with that of DT-LWHRs having a fusion energy gain of unity. Advantages and disadvantages of the DT-LWHR, SCD-LWHR and ADLWR are discussed. (aurthor)

  16. Surveillance of nuclear power reactors

    International Nuclear Information System (INIS)

    Marini, J.

    1983-01-01

    Surveillance of nuclear power reactors is now a necessity imposed by such regulatory documents as USNRC Regulatory Guide 1.133. In addition to regulatory requirements, however, nuclear reactor surveillance offers plant operators significant economic advantages insofar as a single day's outage is very costly. The economic worth of a reactor surveillance system can be stated in terms of the improved plant availability provided through its capability to detect incidents before they occur and cause serious damage. Furthermore, the TMI accident has demonstrated the need for monitoring certain components to provide operators with clear information on their functional status. In response to the above considerations, Framatome has developed a line of products which includes: pressure vessel leakage detection systems, loose part detection systems, component vibration monitoring systems, and, crack detection and monitoring systems. Some of the surveillance systems developed by Framatome are described in this paper

  17. Physics of pressurized water reactors

    International Nuclear Information System (INIS)

    Gruen, A.

    1980-01-01

    The objective of this lecture is to demonstrate typical problems and solutions encountered in the design and operation of PWR power plants. The examples selected for illustration refer to PWR's of KWU design and to results of KWU design methods. In order to understand the physics of a power reactor it is necessary to have some knowledge of the structure and design of the power plant system of which the reactor is a part. It is therefore assumed that the reader is familiar with the design of the more important components and systems of a PWR, such as fuel assemblies, control assemblies, core lay-out, reactor coolant system, instrumentation. (author)

  18. Source driven breeding thermal power reactors

    International Nuclear Information System (INIS)

    Greenspan, E.; Schneider, A.; Misulovin, A.; Gilai, D.; Levin, P.; Ben-Gurion Univ. of the Negev, Beersheba

    1978-03-01

    Improvements in the performance of fission power reactors made possible by designing them subcritical driven by D-T neutron sources are investigated. Light-water thermal systems are found to be most promising, neutronically and energetically, for the source driven mode of operation. The range of performance characteristics expected from breeding Light Water Hybrid Reactors (LWHR) is defined. Several promising types of LWHR blankets are identified. Options opened for the nuclear energy strategy by four types of the LWHRs are examined, and the potential contribution of these LWHRs to the nuclear energy economy are discussed. The power systems based on these LWHRs are found to enable a high utilization of the energy content of the uranium resources in all forms available - including depleted uranium and spent fuel from LWRs, while being free from the need for uranium enrichment and plutonium separation capabilities. (author)

  19. How power is generated in a nuclear reactor

    International Nuclear Information System (INIS)

    Swaminathan, V.

    1978-01-01

    Power generation by nuclear fission as a result of chain reaction caused by neutrons interacting with fissile material such as 235 U, 233 U and 239 Pu is explained. Electric power production by reactor is schematically illustrated. Materials used in thermal reactor and breeder reactor are compared. Fuel reprocessing and disposal of radioactive waste coming from reprocessing plant is briefly described. Nuclear activities in India are reviewed. Four heavy water plants and two power reactors are under construction and will be operative in the near future. Two power reactors are already in operation. Nuclear Fuel Complex at Hyderabad supplies fuel element to the reactors. Fuel reprocessing and waste management facility has been set up at Tarapur. Bhabha Atomic Research Centre at Bombay and Reactor Research Centre at Kalpakkam near Madras are engaged in applied and basic research in nuclear science and engineering. (B.G.W.)

  20. Status of advanced technology and design for water cooled reactors: Light water reactors

    International Nuclear Information System (INIS)

    1988-10-01

    Water reactors represent a high level of performance and safety. They are mature technology and they will undoubtedly continue to be the main stream of nuclear power. There are substantial technological development programmes in Member States for further improving the technology and for the development of new concepts in water reactors. Therefore the establishment of an international forum for the exchange of information and stimulation of international co-operation in this field has emerged. In 1987 the IAEA established the International Working Group on Advanced Technologies for Water-Cooled Reactors (IWGATWR). Within the framework of IWGATWR the IAEA Technical Report on Status of Advanced Technology and Design for Water Cooled Reactors, Part I: Light Water Reactors and Part II: Heavy Water Reactors has been undertaken to document the major current activities and different trends of technological improvements and developments for future water reactors. Part I of the report dealing with LWRs has now been prepared and is based mainly on submissions from Member States. It is hoped that this part of the report, containing the status of advanced light water reactor design and technology of the year 1987 and early 1988 will be useful for disseminating information to Agency Member States and for stimulating international cooperation in this subject area. 93 refs, figs and tabs

  1. Tandem mirror reactor power balance studies

    International Nuclear Information System (INIS)

    Gorker, G.E.; Perkins, L.J.

    1985-01-01

    A tandem mirror reactor (TMR) power plant balance model has been developed and is now being used as a computer aid for performing parametric studies. End-cell power injection into the plasma and the physics thermal Q are used to determine the fusion power. About 80% of the fusion power is transferred by high-energy neutrons to the blanket modules and structures. The other 20% of the fusion power in the high-energy alpha particles is used to heat the deuterium-tritium (D-T) plasma. Most of the plasma-ionized particles transfer their energy to the halo dumps and direct converters. The plant efficiency is calculated for three different system cycles: (1) the pressurized water/saturated steam cycle; (2) the superheated steam cycle; and (3) the more complex superheat/reheat cycle. There is a signficiant improvement in plant efficiency as the electrical power multiplication factor and steam cycle efficiency increases

  2. NRC review of Electric Power Research Institute's advanced light water reactor utility requirements document. Passive plant designs, chapter 1, project number 669

    International Nuclear Information System (INIS)

    1994-08-01

    The Electric Power Research Institute (EPRI) is preparing a compendium of technical requirements, referred to as the open-quotes Advanced Light Water Reactor [ALWR] Utility Requirements Documentclose quotes, that is acceptable to the design of an ALWR power plant. When completed, this document is intended to be a comprehensive statement of utility requirements for the design, construction, and performance of an ALWR power plant for the 1990s and beyond. The Requirements Document consists of three volumes. Volume 1, open-quotes ALWR Policy and Summary of Top-Tier Requirementsclose quotes, is a management-level synopsis of the Requirements Document, including the design objectives and philosophy, the overall physical configuration and features of a future nuclear plant design, and the steps necessary to take the proposed ALWR design criteria beyond the conceptual design state to a completed, functioning power plant. Volume II consists of 13 chapters and contains utility design requirements for an evolutionary nuclear power plant [approximately 1350 megawatts-electric (MWe)]. Volume III contains utility design requirements for nuclear plants for which passive features will be used in their designs (approximately 600 MWe). In April 1992, the staff of the Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission, issued Volume 1 and Volume 2 (Parts 1 and 2) of its safety evaluation report (SER) to document the results of its review of Volumes 1 and 2 of the Requirements Document. Volume 1, open-quotes NRC Review of Electric Power Research Institute's Advanced Light Water Reactor Utility Requirements Document - Program Summaryclose quotes, provided a discussion of the overall purpose and scope of the Requirements Document, the background of the staff's review, the review approach used by the staff, and a summary of the policy and technical issues raised by the staff during its review

  3. NRC review of Electric Power Research Institute's advanced light water reactor utility requirements document. Passive plant designs, chapters 2-13, project number 669

    International Nuclear Information System (INIS)

    1994-08-01

    The Electric Power Research Institute (EPRI) is preparing a compendium of technical requirements, referred to as the open-quotes Advanced Light Water Reactor [ALWR] Utility Requirements Documentclose quotes, that is acceptable to the design of an ALWR power plant. When completed, this document is intended to be a comprehensive statement of utility requirements for the design, construction, and performance of an ALWR power plant for the 1990s and beyond. The Requirements Document consists of three volumes. Volume I, open-quotes ALWR Policy and Summary of Top-Tier Requirementsclose quotes, is a management-level synopsis of the Requirements Document, including the design objectives and philosophy, the overall physical configuration and features of a future nuclear plant design, and the steps necessary to take the proposed ALWR design criteria beyond the conceptual design state to a completed, functioning power plant. Volume II consists of 13 chapters and contains utility design requirements for an evolutionary nuclear power plant [approximately 1350 megawatts-electric (MWe)]. Volume III contains utility design requirements for nuclear plants for which passive features will be used in their designs (approximately 600 MWe). In April 1992, the staff of the Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission, issued Volume 1 and Volume 2 (Parts 1 and 2) of its safety evaluation report (SER) to document the results of its review of Volumes 1 and 2 of the Requirements Document. Volume 1, open-quotes NRC Review of Electric Power Research Institute's Advanced Light Water Reactor Utility Requirements Document - Program Summaryclose quotes, provided a discussion of the overall purpose and scope of the Requirements Document, the background of the staff's review, the review approach used by the staff, and a summary of the policy and technical issues raised by the staff during its review

  4. SBWR: A simplified boiling water reactor

    International Nuclear Information System (INIS)

    Duncan, J.D.; Sawyer, C.D.; Lagache, M.P.

    1987-01-01

    An advanced light water reactor concept is being developed for possible application in the 1990's. The concept, known as SBWR is a boiling water reactor which uses natural circulation to provide flow to the reactor core. In an emergency, a gravity driven core cooling system is used. The reactor is depressurized and water from an elevated suppression pool flows by gravity to the reactor vessel to keep the reactor core covered. The concept also features a passive containment cooling system in which water flows by gravity to cool the suppression pool wall. No operator action is required for a period of at least three days. Use of these and other passive systems allows the elimination of emergency diesel generators, core cooling pumps and heat removal pumps which is expected to simplify the plant design, reduce costs and simplify licensing. The concept is being developed by General Electric, Bechtel and the Massachusetts Institute of Technology supported by the Electric Power Research Institute and the United States Department of Energy in the United States. In Japan, The Japan Atomic Power Company has a great interest in this concept

  5. Materials for advanced water cooled reactors

    International Nuclear Information System (INIS)

    1992-09-01

    The current IAEA programme in advanced nuclear power technology promotes technical information exchange between Member States with major development programmes. The International Working Group on Advanced Technologies for Water Cooled Reactors recommended to organize a Technical Committee Meeting for the purpose of providing an international forum for technical specialists to review and discuss aspects regarding development trends in material application for advanced water cooled reactors. The experience gained from the operation of current water cooled reactors, and results from related research and development programmes, should be the basis for future improvements of material properties and applications. This meeting enabled specialists to exchange knowledge about structural materials application in the nuclear island for the next generation of nuclear power plants. Refs, figs, tabs

  6. technical guidelines for the design and construction of the next generation of nuclear power plants with pressurized water reactors

    International Nuclear Information System (INIS)

    2009-01-01

    These technical guidelines present the opinion of the French 'Groupe Permanent charge des Reacteurs nucleaires' (GPR) concerning the safety philosophy and approach as well as the general safety requirements to be applied for the design and construction of the next generation of nuclear power plants of the PWR (pressurized water reactor) type, assuming the construction of the first units of this generation would start at the beginning of the 21. century. These technical guidelines are based on common work of the French Institut de Protection et de Surete Nucleaire (IPSN) and of the German Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS). Moreover, these technical guidelines were extensively discussed with members of the German Reaktor Sicherheitskommission (RSK) until the end of 1998 and further with German experts. The context of these technical guidelines must be clearly understood. Faced with the current situation of nuclear energy in the world, the various nuclear steam supply system designers are developing new products, all of them claiming their intention of obtaining a higher safety level, by various ways. GPR believes that, for the operation of a new series of nuclear power plants at the beginning of the next century, the adequate way is to derive the design of these plants in an 'evolutionary' way from the design of existing plants, taking into account the operating experience and the in-depth studies conducted for such plants. Nevertheless, introduction of innovative features must also be considered in the frame of the design of the new generation of plants, especially in preventing and mitigating severe accidents. GPR underlines here that a significant improvement of the safety of the next generation of nuclear power plants at the design stage is necessary, compared to existing plants. If the search for improvement is a permanent concern in the field of safety, the necessity of a significant step at the design stage clearly derives from better

  7. Technical update on pressure suppression type containments in use in U.S. light water reactor nuclear power plants

    International Nuclear Information System (INIS)

    1978-07-01

    In 1972, Dr. S. H. Hanauer (Technical Advisor to the NRC's Executive Director for Operations) wrote a memorandum that raised several questions on the viability of pressure suppression containment concepts. The concerns raised by Dr. Hanauer have recently become the subject of considerable discussion by several members of the U.S. Congress and public. The report provides a response to these expressed concerns and a status summary for various technical matters that relate to the safety of pressure suppression type containments for light water cooled reactor plants

  8. Nonlinear dynamics of boiling water reactors

    International Nuclear Information System (INIS)

    March-Leuba, J.; Cacuci, D.G.; Perez, R.B.

    1983-01-01

    Recent stability tests in Boiling Water Reactors (BWRs) have indicated that these reactors can exhibit the special nonlinear behavior of following a closed trajectory called limit cycle. The existence of a limit cycle corresponds to an oscillation of fixed amplitude and period. During these tests, such oscillations had their amplitudes limited to about +- 15% of the operating power. Since limit cycles are fairly insensitive to parameter variations, it is possible to operate a BWR under conditions that sustain a limit cycle (of fixed amplitude and period) over a finite range of reactor parameters

  9. The heavy water reactors

    International Nuclear Information System (INIS)

    Brudermueller, G.

    1976-01-01

    This is a survey of the development so far of this reactor line which is in operation all over the world in various types (e.g. BHWR, PHWR). MZFR and the CANDU-type reactors are discussed in more detail. (UA) [de

  10. Nuclear reactor in deep water

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    Events during October 1980, when the Indian Point 2 nuclear reactor was flooded by almost 500 000 litres of water from the Hudson river, are traced and the jumble of human errors and equipment failures chronicled. Possible damage which could result from the reactor getting wet and from thermal shock are considered. (U.K.)

  11. Layout of the safety analysis report for nuclear power plants with pressurized water reactor or boiling water reactor in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Albrecht, E.

    1980-01-01

    For a licence according to paragraph 7 of the Atomic Energy Act to construct and operate a nuclear power plant, the applicant has to submit a safety analysis report, which must describe the site, the plant, all hazards in connection with the plant and the proposed safety precautions. For the structure and the content of a safety analysis report, a first guideline was published in 1959. Only a few safety analysis reports were prepared nearly strictly according to this guideline. In 1976 a second guideline was published for a standard safety analysis report. The lecture deals with the guidelines. A survey over the structure and content of the German safety analysis reports will be given. The experience gained by the new safety analysis reports will be discussed. (orig.)

  12. State space modeling of reactor core in a pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ashaari, A.; Ahmad, T.; M, Wan Munirah W. [Department of Mathematical Science, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Shamsuddin, Mustaffa [Institute of Ibnu Sina, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Abdullah, M. Adib [Swinburne University of Technology, Faculty of Engineering, Computing and Science, Jalan Simpang Tiga, 93350 Kuching, Sarawak (Malaysia)

    2014-07-10

    The power control system of a nuclear reactor is the key system that ensures a safe operation for a nuclear power plant. However, a mathematical model of a nuclear power plant is in the form of nonlinear process and time dependent that give very hard to be described. One of the important components of a Pressurized Water Reactor is the Reactor core. The aim of this study is to analyze the performance of power produced from a reactor core using temperature of the moderator as an input. Mathematical representation of the state space model of the reactor core control system is presented and analyzed in this paper. The data and parameters are taken from a real time VVER-type Pressurized Water Reactor and will be verified using Matlab and Simulink. Based on the simulation conducted, the results show that the temperature of the moderator plays an important role in determining the power of reactor core.

  13. Power reactors in Member States. 1979 edition

    International Nuclear Information System (INIS)

    1979-01-01

    This is the fifth issue of a periodic computer-based listing of nuclear power reactors, presenting the situation as of 1 May 1979. The basic design data for all reactors in operation, under construction, planned and shut down have been included. The following two tables are included to give a general picture of the overall situation: Table I: Reactor types and net electrical power. Table II: Reactor units and net electrical powered by country cummulated by year

  14. Computerized reactor power regulation with logarithmic controller

    International Nuclear Information System (INIS)

    Gossanyi, A.; Vegh, E.

    1982-11-01

    A computerized reactor control system has been operating at a 5 MW WWR-SM research reactor in the Central Research Institute for Physics, Budapest, for some years. This paper describes the power controller used in the SPC operating mode of the system, which operates in a 5-decade wide power range with +-0.5% accuracy. The structure of the controller easily limits the minimal reactor period and produces a reactor transient with constant period if the power demand changes. (author)

  15. Fundamentals of pressurized water reactors

    International Nuclear Information System (INIS)

    Murray, L.

    1982-01-01

    In many countries, the pressurized water reactor (PWR) is the most widely used, even though it requires enrichment of the uranium to about 3% in U-235 and the moderator-coolant must be maintained at a high pressure, about 2200 pounds per square inch. Our objective in this series of seven lectures is to describe the design and operating characteristics of the PWR system, discuss the reactor physics methods used to evaluate performance, examine the way fuel is consumed and produced, study the instrumentation system, review the physics measurements made during initial startup of the reactor, and outline the administrative aspects of starting up a reactor and operating it safely and effectively

  16. Effect of Burnable Absorbers on Inert Matrix Fuel Performance and Transuranic Burnup in a Low Power Density Light-Water Reactor

    Directory of Open Access Journals (Sweden)

    Geoff Recktenwald

    2013-04-01

    Full Text Available Zirconium dioxide has received particular attention as a fuel matrix because of its ability to form a solid solution with transuranic elements, natural radiation stability and desirable mechanical properties. However, zirconium dioxide has a lower coefficient of thermal conductivity than uranium dioxide and this presents an obstacle to the deployment of these fuels in commercial reactors. Here we show that axial doping of a zirconium dioxide based fuel with erbium reduces power peaking and fuel temperature. Full core simulations of a modified AP1000 core were done using MCNPX 2.7.0. The inert matrix fuel contained 15 w/o transuranics at its beginning of life and constituted 28% of the assemblies in the core. Axial doping reduced power peaking at startup by more than ~23% in the axial direction and reduced the peak to average power within the core from 1.80 to 1.44. The core was able to remain critical between refueling while running at a simulated 2000 MWth on an 18 month refueling cycle. The results show that the reactor would maintain negative core average reactivity and void coefficients during operation. This type of fuel cycle would reduce the overall production of transuranics in a pressurized water reactor by 86%.

  17. Tritium issues in commercial pressurized water reactors

    International Nuclear Information System (INIS)

    Jones, G.

    2008-01-01

    Tritium has become an important radionuclide in commercial Pressurized Water Reactors because of its mobility and tendency to concentrate in plant systems as tritiated water during the recycling of reactor coolant. Small quantities of tritium are released in routine regulated effluents as liquid water and as water vapor. Tritium has become a focus of attention at commercial nuclear power plants in recent years due to inadvertent, low-level, chronic releases arising from routine maintenance operations and from component failures. Tritium has been observed in groundwater in the vicinity of stations. The nuclear industry has undertaken strong proactive corrective measures to prevent recurrence, and continues to eliminate emission sources through its singular focus on public safety and environmental stewardship. This paper will discuss: production mechanisms for tritium, transport mechanisms from the reactor through plant, systems to the environment, examples of routine effluent releases, offsite doses, basic groundwater transport and geological issues, and recent nuclear industry environmental and legal ramifications. (authors)

  18. Reactor water quality degradation suppressing method upon reactor start up

    International Nuclear Information System (INIS)

    Maeda, Katsuharu.

    1993-01-01

    Preceding to reactor start-up, vacuum degree in a condenser is increased, and after the vacuum degree has been increased sufficiently, a desalting tower is inserted. Then, water feed to the reactor is started and the reactor is operated so that water is supplied gradually. Thus, dissolved oxygen in the feedwater and condensates is kept low and an entire organic carbon leaching rate from resins in the condensate desalting tower is reduced. Further, since feedwater is gradually supplied after the start-up, the entire organic carbon brought into the reactor is decomposed by heat and radiation and efficiently removed by a reactor coolant cleanup system. As a result, corrosion of stainless steel or the like is suppressed, as well as integrity of fuels can be maintained. Further, degradation of water quality can be suppressed effectively not by additionally putting the condensate desalting towers to in-service in accordance with the increase of the feedwater flow rate accompanying the power up but by previously putting the condensate desalting towers to in-service. (N.H.)

  19. Utility requirements for advanced light water reactors

    International Nuclear Information System (INIS)

    Machiels, A.; Gray, S.; Mulford, T.; Rodwell, E.

    1996-01-01

    The nuclear energy industry is actively engaged in developing advanced light water reactor (ALWR) designs for the next century. The new designs take advantage of the thousands of reactor-years of experience that have been accumulated by operating over 400 plants worldwide. The EPRI effort began in the early 1980's, when a survey of utility executives was conducted to determine their prerequisites for ordering nuclear power plants. The results were clear: new plants had to be simpler and safer, and have greater design margins, i.e., be more forgiving. The utility executives also supported making improvements to the established light water reactor technology, rather than trying to develop new reactor concepts. Finally, they wanted the option to build mid-size plants (∼600 MWe) in addition to full-size plants of more than 1200 MWe. 4 refs

  20. Safety aspects of pressurised water reactors

    International Nuclear Information System (INIS)

    1985-01-01

    This submission to the Health and Safety Executive has been prepared by the Institution of Professional Civil Servants (IPCS) as a contribution to the debate on safety aspects associated with Pressurized Water Reactors (PWRs). Although supporting an energy policy which includes the development of nuclear power, assurances are sought on a number of safety issues if it is decided that this should be generated by a PWR-type reactor. These issues are listed. In particular the following are mentioned: the wider publication of design information, the use of elastic-plastic fracture mechanics as the basis for determining pressure vessel integrity, the failure rate of steam generating units, water coolant quality control, greater investigation of two-phase flow accident conditions, the components of the reactor cooling system and training of reactor personnel in the understanding of LOCA effects. (U.K.)

  1. Pressurized water reactor systems

    International Nuclear Information System (INIS)

    Meyer, P.J.

    1975-01-01

    Design and mode of operation of the main PWR components are described: reactor core, pressure vessel and internals, cooling systems with pumps and steam generators, ancillary systems, and waste processing. (TK) [de

  2. Nuclear power/water pumping-up composite power plant

    International Nuclear Information System (INIS)

    Okamura, Kiyoshi.

    1995-01-01

    In a nuclear power/water pumping-up composite power plant, a reversible pump for pumping-up power generation connected to a steam turbine is connected to an upper water reservoir and a lower water reservoir. A pumping-up steam turbine for driving the turbine power generator, a hydraulic pump for driving water power generator by water flowing from the upper water reservoir and a steam turbine for driving the pumping-up pump by steams from a nuclear reactor are disposed. When power demand is small during night, the steam turbine is rotated by steams of the reactor, to pump up the water in the lower water reservoir to the upper water reservoir by the reversible pump. Upon peak of power demand during day time, power is generated by the steams of the reactor, as well as the reversible pump is rotated by the flowing water from the upper water reservoir to conduct hydraulic power generation. Alternatively, hydraulic power generation is conducted by flowing water from the upper reservoir. Since the number of energy conversion steps in the combination of nuclear power generation and pumping-up power generation is reduced, energy loss is reduced and utilization efficiency can be improved. (N.H.)

  3. TRIGA research reactors with higher power density

    International Nuclear Information System (INIS)

    Whittemore, W.L.

    1994-01-01

    The recent trend in new or upgraded research reactors is to higher power densities (hence higher neutron flux levels) but not necessarily to higher power levels. The TRIGA LEU fuel with burnable poison is available in small diameter fuel rods capable of high power per rod (≅48 kW/rod) with acceptable peak fuel temperatures. The performance of a 10-MW research reactor with a compact core of hexagonal TRIGA fuel clusters has been calculated in detail. With its light water coolant, beryllium and D 2 O reflector regions, this reactor can provide in-core experiments with thermal fluxes in excess of 3 x 10 14 n/cm 2 ·s and fast fluxes (>0.1 MeV) of 2 x 10 14 n/cm 2 ·s. The core centerline thermal neutron flux in the D 2 O reflector is about 2 x 10 14 n/cm 2 ·s and the average core power density is about 230 kW/liter. Using other TRIGA fuel developed for 25-MW test reactors but arranged in hexagonal arrays, power densities in excess of 300 kW/liter are readily available. A core with TRIGA fuel operating at 15-MW and generating such a power density is capable of producing thermal neutron fluxes in a D 2 O reflector of 3 x 10 14 n/cm 2 ·s. A beryllium-filled central region of the core can further enhance the core leakage and hence the neutron flux in the reflector. (author)

  4. Power Reactor Embrittlement Data Base

    International Nuclear Information System (INIS)

    Kam, F.B.K.; Stallmann, F.W.; Wang, J.A.

    1990-01-01

    Regulatory and research evaluations of embrittlement prediction models and of vessel integrity under load can be greatly expedited by the use of a well designed, computerized embrittlement data base. The Power Reactor Embrittlement Data Base (PR-EDB) is a comprehensive collection of data from surveillance reports and other published reports of commercial nuclear reactors. The uses of the data base require that as many different data as available are collected from as many sources as possible with complete references and that subsets of relevant data can be easily retrieved and processed. The objectives of this NRC-sponsored program are the following: (1) to compile and to verify the quality of the PR-EDB; (2) to provide user-friendly software to access and process the data; (3) to explore or confirm embrittlement prediction models; and (4) to interact with standards organizations to provide the technical bases for voluntary consensus standards that can be used in regulatory guides, standard review plans, and codes. To achieve these goals, the data base architecture was designed after much discussion and planning with prospective users, namely, material scientists and members of the research staff. The current compilation of the PR-EDB (Version 1) contains results from surveillance capsule reports of 78 reactors with 381 data points for 110 different irradiated base materials and 161 data points for 79 different welds. Results from heat-affected zone materials are also listed. The time and effort required to process and evaluate different types of data in the PR-EDB have been drastically reduced from previous data bases. The Electric Power Research Institute (EPRI), reactor vendors, and utilities are in the process of providing back-up quality assurance checks of PR-EDB and will be supplementing the data base with additional data and documentation

  5. Simulation of decreasing reactor power level with BWR simulator

    International Nuclear Information System (INIS)

    Suwoto; Zuhair; Rivai, Abu Khalid

    2002-01-01

    Study on characteristic of BWR using Desktop PC Based Simulator Program was analysed. This simulator is more efficient and cheaper for analyzing of characteristic and dynamic respond than full scope simulator for decreasing power level of BW. Dynamic responses of BWR reactor was investigated during the power level reduction from 100% FP (Full Power) which is 3926 MWth to 0% FP with 25% steps and 1 % FP/sec rate. The overall results for core flow rate, reactor steam flow, feed-water flow and turbine-generator power show tendency proportional to reduction of reactor power. This results show that reactor power control in BWR could be done by control of re-circulation flow that alter the density of water used as coolant and moderator. Decreasing the re-circulation flow rate will decrease void density which has negative reactivity and also affect the position of control rods

  6. Reactor power reduction system and method

    International Nuclear Information System (INIS)

    Bruno, S.J.; Dunn, S.A.; Raber, M.

    1978-01-01

    A method of operating a nuclear power reactor is disclosed which enables an accelerated power reduction of the reactor without completely shutting the reactor down. The method includes monitoring the incidents which, upon their occurrence, would require an accelerated power reduction in order to maintain the reactor in a safe operation mode; calculating the power reduction required on the occurrence of such an incident; determining a control rod insertion sequence for the normal operation of the reactor, said sequence being chosen to optimize reactor power capability; selecting the number of control rods necessary to respond to the accelerated power reduction demand, said selection being made according to a priority determined by said control rod insertion sequence; and inserting said selected control rods into the reactor core. 11 claims, 13 figures

  7. Integrated plant safety assessment. Systematic Evaluation Program. La Crosse Boiling Water Reactor. Dairyland Power Cooperative, Docket No. 50-409. Final report

    International Nuclear Information System (INIS)

    1983-06-01

    The Systematic Evaluation Program was initiated in February 1977 by the US Nuclear Regulatory Commission to review the designs of older operating nuclear reactor plants to confirm and document their safety. The review provides (1) an assessment of how these plants compare with current licensing safety requirements relating to selected issues, (2) a basis for deciding on how these differences should be resolved in an integrated plant review, and (3) a documented evaluation of plant safety. This report documents the review of the La Crosse Boiling Water Reactor, operated by Dairyland Power Cooperative. The La Crosse plant is one of 10 plants reviewed under Phase II of this program. This report indicates how 137 topics selected for review under Phase I of the program were addressed. Equipment and procedural changes have been identified as a result of the review

  8. Integrated plant safety assessment: Systematic Evaluation Program. LaCrosse Boiling Water Reactor, Dairyland Power Cooperative, Docket No. 50-409

    International Nuclear Information System (INIS)

    1983-04-01

    The Systematic Evaluation Program was initiated in February 1977 by the US Nuclear Regulatory Commission to review the designs of older operating nuclear reactor plants to confirm and document their safety. The review provides: (1) an assessment of how these plants compare with current licensing safety requirements relating to selected issues, (2) a basis for deciding on how these differences should be resolved in an integrated plant review, and (3) a documented evaluation of plant safety. This report documents the review of the La Crosse Boiling Water Reactor, operated by Dairyland Power Cooperative. The La Crosse plant is one of 10 plants reviewed under Phase II of this program. This report indicates how 137 topics selected for review under Phase I of the program were addresed. Equipment and procedural changes have been identified as a result of the review

  9. Automatic determination of pressurized water reactor core loading patterns which maximize end-of-cycle reactivity within power peaking and burnup constraints

    International Nuclear Information System (INIS)

    Hobson, G.H.

    1985-01-01

    An automated procedure for determining the optimal core loading pattern for a pressurized water reactor which maximizes end-of-cycle k/sub eff/ while satisfying constraints on power peaking and discharge burnup has been developed. The optimization algorithm combines a two energy group, two-dimensional coarse-mesh finite difference diffusion theory neutronics model to simulate core conditions, a perturbation theory approach to determine reactivity, flux, power and burnup changes as a function of assembly shuffling, and Monte Carlo integer programming to select the optimal loading pattern solution. The core examined was a typical Cycle 2 reload with no burnable poisons. Results indicate that the core loading pattern that maximizes end-of-cycle k/sub eff/ results in a 5.4% decrease in fuel cycle costs compared with the core loading pattern that minimizes the maximum relative radial power peak

  10. Relative power density distribution calculations of the Kori unit 1 pressurized water reactor with full-scope explicit modeling of monte carlo simulation

    International Nuclear Information System (INIS)

    Kim, J. O.; Kim, J. K.

    1997-01-01

    Relative power density distributions of the Kori unit 1 pressurized water reactor calculated by Monte Carlo modeling with the MCNP code. The Kori unit 1 core is modeled on a three-dimensional representation of the one-eighth of the reactor in-vessel component with reflective boundaries at 0 and 45 degrees. The axial core model is based on half core symmetry and is divided into four axial segments. Fission reaction density in each rod is calculated by following 100 cycles with 5,000 test neutrons in each cycle after starting with a localized neutron source and ten noncontributing settle cycles. Relative assembly power distributions are calculated from fission reaction densities of rods in assembly. After 100 cycle calculations, the system coverages to a κ value of 1.00039 ≥ 0.00084. Relative assembly power distribution is nearly the same with that of the Kori unit 1 FSAR. Applicability of the full-scope Monte Carlo simulation in the power distribution calculation is examined by the relative root mean square error of 2.159%. (author)

  11. Feasible reactor power cutback logic development for an integral reactor

    International Nuclear Information System (INIS)

    Han, Soon-Kyoo; Lee, Chung-Chan; Choi, Suhn; Kang, Han-Ok

    2013-01-01

    Major features of integral reactors that have been developed around the world recently are simplified operating systems and passive safety systems. Even though highly simplified control system and very reliable components are utilized in the integral reactor, the possibility of major component malfunction cannot be ruled out. So, feasible reactor power cutback logic is required to cope with the malfunction of components without inducing reactor trip. Simplified reactor power cutback logic has been developed on the basis of the real component data and operational parameters of plant in this study. Due to the relatively high rod worth of the integral reactor the control rod assembly drop method which had been adapted for large nuclear power plants was not desirable for reactor power cutback of the integral reactor. Instead another method, the control rod assembly control logic of reactor regulating system controls the control rod assembly movements, was chosen as an alternative. Sensitivity analyses and feasibility evaluations were performed for the selected method by varying the control rod assembly driving speed. In the results, sensitivity study showed that the performance goal of reactor power cutback system could be achieved with the limited range of control rod assembly driving speed. (orig.)

  12. Nuclear reactor power supply system

    International Nuclear Information System (INIS)

    Cook, B.M.

    1982-01-01

    The redundant signals from the sensor assemblies measuring the process parameters of a nuclear reactor power supply are transmitted each in its turn to a protection system which operates to actuate the protection apparatus for signals indicating off-process conditions. Each sensor assembly includes a number of like sensors measuring the same parameters. The sets of process signals derived from the sensor assemblies are each in its turn transmitted from the protection system to the control system which impresses control signals on the reactor or its components to counteract the tendency for conditions to drift off-normal status requiring operation of the protection system. A parameter signal selector prevents a parameter signal which differs from the other parameter signals of the set by more than twice the allowable variation from passing to the control system. Test signals are periodically impressed by a test unit on a selected pair of a selection unit and control channels. This arrangement eliminates the possibility that a single component failure which may be spurious will cause an inadvertent trip of the reactor during test. (author)

  13. Nuclear power plant with several reactors

    Energy Technology Data Exchange (ETDEWEB)

    Grishanin, E I; Ilyunin, V G; Kuznetsov, I A; Murogov, V M; Shmelev, A N

    1972-05-10

    A design of a nuclear power plant suggested involves several reactors consequently transmitting heat to a gaseous coolant in the joint thermodynamical circuit. In order to increase the power and the rate of fuel reproduction the low temperature section of the thermodynamical circuit involves a fast nuclear reactor, whereas a thermal nuclear reactor is employed in the high temperature section of the circuit for intermediate heating and for over-heating of the working body. Between the fast nuclear and the thermal nuclear reactors there is a turbine providing for the necessary ratio between pressures in the reactors. Each reactor may employ its own coolant.

  14. High performance light water reactor

    International Nuclear Information System (INIS)

    Squarer, D.; Schulenberg, T.; Struwe, D.; Oka, Y.; Bittermann, D.; Aksan, N.; Maraczy, C.; Kyrki-Rajamaeki, R.; Souyri, A.; Dumaz, P.

    2003-01-01

    The objective of the high performance light water reactor (HPLWR) project is to assess the merit and economic feasibility of a high efficiency LWR operating at thermodynamically supercritical regime. An efficiency of approximately 44% is expected. To accomplish this objective, a highly qualified team of European research institutes and industrial partners together with the University of Tokyo is assessing the major issues pertaining to a new reactor concept, under the co-sponsorship of the European Commission. The assessment has emphasized the recent advancement achieved in this area by Japan. Additionally, it accounts for advanced European reactor design requirements, recent improvements, practical design aspects, availability of plant components and the availability of high temperature materials. The final objective of this project is to reach a conclusion on the potential of the HPLWR to help sustain the nuclear option, by supplying competitively priced electricity, as well as to continue the nuclear competence in LWR technology. The following is a brief summary of the main project achievements:-A state-of-the-art review of supercritical water-cooled reactors has been performed for the HPLWR project.-Extensive studies have been performed in the last 10 years by the University of Tokyo. Therefore, a 'reference design', developed by the University of Tokyo, was selected in order to assess the available technological tools (i.e. computer codes, analyses, advanced materials, water chemistry, etc.). Design data and results of the analysis were supplied by the University of Tokyo. A benchmark problem, based on the 'reference design' was defined for neutronics calculations and several partners of the HPLWR project carried out independent analyses. The results of these analyses, which in addition help to 'calibrate' the codes, have guided the assessment of the core and the design of an improved HPLWR fuel assembly. Preliminary selection was made for the HPLWR scale

  15. The effect of heavy water reactors and liquid fuel reactors on the long-term development of nuclear energy

    International Nuclear Information System (INIS)

    Brand, P.; Wiechers, W.K.

    1974-01-01

    The effects of the rates at which various combinations of power reactor types are installed on the long-range (to the year 2040) uranium and plutonium inventory requirements are examined. Consideration is given to light water reactors, fast breeder reactors, high temperature gas-cooled reactors, heavy water reactors, and thermal breeder reactors, in various combinations, and assuming alternatively a 3% and a 5% growth in energy demand

  16. Program of RA reactor start-up to nominal power

    International Nuclear Information System (INIS)

    1959-01-01

    The zero start-up program is followed by the program of RA reactor start-up to nominal power. This program is described in detail and includes the following measurements: radiation characteristics at the exit of the channels; gamma and fast neutron dose distribution in the reactor; influence of absorbers on the reactivity; temperature effect; absolute flux and calibration of ionization chambers; xenon effect; thermal and hydraulics; dosimetry around the reactor; neutron flux in the reactor core and in the reactor hall; heavy water level; thermal characteristics after shutdown. A list of measuring devices and instrumentation is included with the detailed action plan and list of responsible staff members

  17. Nuclear reactor instrumentation power monitor

    International Nuclear Information System (INIS)

    Suzuki, Shigeru.

    1989-01-01

    The present invention concerns a nuclear reactor instrumentation power monitor that can be used in, for example, BWR type nuclear power plants. Signals from multi-channel detectors disposed on field units are converted respectively by LPRM signal circuits. Then, the converted signals are further converted by a multiplexer into digital signals and transmitted as serial data to a central monitor unit. The thus transmitted serial data are converted into parallel data in the signal processing section of the central monitor unit. Then, LPRM signals are taken out from each of channel detectors to conduct mathematical processing such as trip judgment or averaging. Accordingly, the field unit and the central monitor unit can be connected by way of only one data transmission cable thereby enabling to reduce the number of cables. Further, since the data are transmitted on digital form, it less undergoes effect of noises. (I.S.)

  18. Ultrasonic level and temperature sensor for power reactor applications

    International Nuclear Information System (INIS)

    Dress, W.B.; Miller, G.N.

    1983-01-01

    An ultrasonic waveguide employing torsional and extensional acoustic waves has been developed for use as a level and temperature sensor in pressurized and boiling water nuclear power reactors. Features of the device include continuous measurement of level, density, and temperature producing a real-time profile of these parameters along a chosen path through the reactor vessel

  19. Heavy water moderated gas-cooled reactors

    International Nuclear Information System (INIS)

    Bailly du Bois, B.; Bernard, J.L.; Naudet, R.; Roche, R.

    1964-01-01

    France has based its main effort for the production of nuclear energy on natural Uranium Graphite-moderated gas-cooled reactors, and has a long term programme for fast reactors, but this country is also engaged in the development of heavy water moderated gas-cooled reactors which appear to present the best middle term prospects. The economy of these reactors, as in the case of Graphite, arises from the use of natural or very slightly enriched Uranium; heavy water can take the best advantages of this fuel cycle and moreover offers considerable development potential because of better reactor performances. A prototype plant EL 4 (70 MW) is under construction and is described in detail in another paper. The present one deals with the programme devoted to the development of this reactor type in France. Reasons for selecting this reactor type are given in the first part: advantages and difficulties are underlined. After reviewing the main technological problems and the Research and Development carried out, results already obtained and points still to be confirmed are reported. The construction of EL 4 is an important step of this programme: it will be a significant demonstration of reactor performances and will afford many experimentation opportunities. Now the design of large power reactors is to be considered. Extension and improvements of the mechanical structures used for EL 4 are under study, as well as alternative concepts. The paper gives some data for a large reactor in the present state of technology, as a result from optimization studies. Technical improvements, especially in the field of materials could lead to even more interesting performances. Some prospects are mentioned for the long run. Investment costs and fuel cycles are discussed in the last part. (authors) [fr

  20. ULTRA SCWR+: Practical advanced water reactor concepts

    International Nuclear Information System (INIS)

    Duffey, Romney; Khartabil, Hussam; Kuran, Sermet; Zhou, Tracy; Pioro, Igor

    2008-01-01

    Modern thermal power plants now utilize supercritical steam cycles with thermal efficiencies of over 45%. Recent developments have lead to Ultra-SuperCritical (USC) systems, which adopt reheat turbines that can attain efficiencies of over 50%. Because these turbines are already developed, demonstrated and deployed worldwide, and use existing and traditional steam cycle technology, the simplest nuclear advance is to utilize these proven thermal cycle conditions by coupling this turbine type to a reactor. This development direction is fundamentally counter to the usual approach of adopting high-temperature gas-cooled (helium-cooled) reactor cycles, for which turbines have yet to be demonstrated on commercial scale unlike the supercritical steam turbines. The ULTRA (Ultra-supercritical Light water Thermal ReActor) SCWR+ concept adopts the fundamental design approach of matching a water and steam-cooled reactor to the ultra-supercritical steam cycle, adopting the existing and planned thermal power plant turbines. The HP and IP sections are fed with conditions of 25 MPa/625degC and 7 MPa/700degC, respectively, to achieve operating plant thermal efficiencies in excess of 50%, with a direct turbine cycle. By using such low-pressure reheated steam, this concept also adopts technology that was explored and used many years ago in existing water reactors, with the potential to produce large quantities of low cost heat, which can be used for other industrial and district processes. Pressure-Tube (PT) reactors are suitable for adoption of this design approach and, in addition, have other advantages that will significantly improve water-cooled reactor technology. These additional advantages include enhanced safety and improved resource utilization and proliferation resistance. This paper describes the PT-SCWR+ concept and its potential enhancements. (author)

  1. Calibration of RB reactor power; Kalibrisanje snage reaktora RB

    Energy Technology Data Exchange (ETDEWEB)

    Sotic, O; Markovic, H; Ninkovic, M; Strugar, P; Dimitrijevic, Z; Takac, S; Stefanovic, D; Kocic, A; Vranic, S [Boris Kidric Institute of Nuclear Sciences Vinca, Beograd (Yugoslavia)

    1976-09-15

    The first and only calibration of RB reactor power was done in 1962, and the obtained calibration ratio was used irrespective of the lattice pitch and core configuration. Since the RB reactor is being prepared for operation at higher power levels it was indispensable to reexamine the calibration ratio, estimate its dependence on the lattice pitch, critical level of heavy water and thickness of the side reflector. It was necessary to verify the reliability of control and dosimetry instruments, and establish neutron and gamma dose dependence on reactor power. Two series of experiments were done in June 1976. First series was devoted to tests of control and dosimetry instrumentation and measurements of radiation in the RB reactor building dependent on reactor power. Second series covered measurement of thermal and epithermal neuron fluxes in the reactor core and calculation of reactor power. Four different reactor cores were chosen for these experiments. Reactor pitches were 8, 8{radical}2, and 16 cm with 40, 52 and 82 fuel channels containing 2% enriched fuel. Obtained results and analysis of these results are presented in this document with conclusions related to reactor safe operation.

  2. Fundamentals of boiling water reactor (BWR)

    International Nuclear Information System (INIS)

    Bozzola, S.

    1982-01-01

    These lectures on fundamentals of BWR reactor physics are a synthesis of known and established concepts. These lectures are intended to be a comprehensive (even though descriptive in nature) presentation, which would give the basis for a fair understanding of power operation, fuel cycle and safety aspects of the boiling water reactor. The fundamentals of BWR reactor physics are oriented to design and operation. In the first lecture general description of BWR is presented, with emphasis on the reactor physics aspects. A survey of methods applied in fuel and core design and operation is presented in the second lecture in order to indicate the main features of the calculational tools. The third and fourth lectures are devoted to review of BWR design bases, reactivity requirements, reactivity and power control, fuel loading patterns. Moreover, operating limits are reviewed, as the actual limits during power operation and constraints for reactor physics analyses (design and operation). The basic elements of core management are also presented. The constraints on control rod movements during the achieving of criticality and low power operation are illustrated in the fifth lecture. Some considerations on plant transient analyses are also presented in the fifth lecture, in order to show the impact between core and fuel performance and plant/system performance. The last (sixth) lecture is devoted to the open vessel testing during the startup of a commercial BWR. A control rod calibration is also illustrated. (author)

  3. Some particular aspects of control in nuclear power reactors

    International Nuclear Information System (INIS)

    Vathaire, F. de; Vernier, Ph.; Pascouet, A.

    1964-01-01

    This paper reviews the experience acquired in France on the question, of reactor safety. Since a special paper is being presented on reactors of the graphite gas type, the safety of the other types studied in France is discussed here: - heavy water-gas reactors, - fast neutron reactors, - water research reactors of the swimming-pool and tank types. The safety rules peculiar to the different types are explained, with emphasis on their influence on the reactor designs and on the power limits they impose. The corresponding safety studies are presented, particular stress being placed on the original work developed in these fields. Special mention is made of the experimental systems constructed for these studies: the reactor CABRI, pile loop for depressurization tests, loops outside the pile, mock-ups etc. (authors) [fr

  4. Reactor power control method upon accidents of electrical power system

    International Nuclear Information System (INIS)

    Hirose, Masao.

    1983-01-01

    Purpose: To enable to continue the operation of a BWR type reactor by avoiding the scram while suppressing the reactor power, just after the external disturbance such as earth-trouble in power-transmission network. Method: Steep power drop of an electrical generator is to be detected not only by a current-type power-load-unbalance relay but also with a power-type power-load-unbalance-relay. If steep power-drop was detected by the latter relay, a previously selected control rod is rapidly inserted into the reactor. In this way, in the case where there is a possibility of the reactor scram, the scram can be avoided by suppressing the reactor power, thus the reactor operation can be continued. (Kamimura, M.)

  5. Heat exchangers in heavy water reactor systems

    International Nuclear Information System (INIS)

    Mehta, S.K.

    1988-01-01

    Important features of some major heat exchange components of pressurized heavy water reactors and DHRUVA research reactor are presented. Design considerations and nuclear service classifications are discussed

  6. The next generation of power reactors - safety characteristics

    International Nuclear Information System (INIS)

    Modro, S.M.

    1995-01-01

    The next generation of commercial nuclear power reactors is characterized by a new approach to achieving reliability of their safety systems. In contrast to current generation reactors, these designs apply passive safety features that rely on gravity-driven transfer processes or stored energy, such as gas-pressurized accumulators or electric batteries. This paper discusses the passive safety system of the AP600 and Simplified Boiling Water Reactor (SBWR) designs

  7. BN-1200 Reactor Power Unit Design Development

    International Nuclear Information System (INIS)

    Vasilyev, B.A.; Shepelev, S.F.; Ashirmetov, M.R.; Poplavsky, V.M.

    2013-01-01

    Main goals of BN-1200 design: • Develop a reliable new generation reactor plant for the commercial power unit with fast reactor to implement the first-priority objectives in changing over to closed nuclear fuel cycle; • Improve technical and economic indices of BN reactor power unit to the level of those of Russian VVER of equal power; • Enhance the safety up to the level of the requirements for the 4th generation RP

  8. Penn State advanced light water reactor concept

    International Nuclear Information System (INIS)

    Borkowski, J.A.; Smith, K.A.; Edwards, R.M.; Robinson, G.E.; Schultz, M.A.; Klevans, E.H.

    1987-01-01

    The accident at Three Mile Island heightened concerns over the safety of nuclear power. In response to these concerns, a research group at the Pennsylvania State University (Penn State) undertook the conceptual design of an advanced light water reactor (ALWR) under sponsorship of the US Dept. of Energy (DOE). The design builds on the literally hundreds of years worth of experience with light water reactor technology. The concept is a reconfigured pressurized water reactor (PWR) with the capability of being shut down to a safe condition simply by removing all ac power, both off-site and on-site. Using additional passively activated heat sinks and replacing the pressurizer with a pressurizing pump system, the concept essentially eliminates the concerns of core damage associated with a total station blackout. Evaluation of the Penn State ALWR concept has been conducted using the EPRI Modular Modeling System (MMS). Results show that a superior response to normal operating transients can be achieved in comparison to the response with a conventional PWR pressurizer. The DOE-sponsored Penn State ALWR concept has evolved into a significant reconfiguration of a PWR leading to enhanced safety characteristics. The reconfiguration has touched a number of areas in overall plant design including a shutdown turbine in the secondary system, additional passively activated heat sinks, a unique primary side pressurizing concept, a low pressure cleanup system, reactor building layout, and a low power density core design

  9. Technical feasibility and costs of the retention of radionuclides during accidents in nuclear power plants demonstrated by the example of a pressurized water reactor

    International Nuclear Information System (INIS)

    Braun, H.; Grigull, R.; Lahner, K.; Gutowski, H.; Weber, J.

    1985-01-01

    The maximum allowable radiation doses during accidents in nuclear power plants, i.e., 5 rem whole-body dose and 15 rem thyroid dose, have been laid down in the German Radiation Protection Act. In order to ensure that these limits are not exceeded for all exposure paths including the ingestion path or, if possible, to remain far below them, the Federal Ministry of the Interior has initiated a study on the effectiveness and cost of additional safety features for reducing the release of activity and the dose exposure during accidents in nuclear power plants. Detailed investigations were carried out for the following three radiologically representative types of accidents: break of a reactor coolant line, break of an instrument line in one of the outer ring rooms, and break of a main stream line outside the containment. The technical basis of the study was a BBR-type nuclear power plant with pressurized water reactor and once-through steam generator. I-131 was chosen for determining the activity release as this is the critical nuclide for the ingestion path. Altogether 33 feasible technical measures were investigated and their potential improvement was assessed

  10. Neutron measurements at nuclear power reactors [55

    CERN Document Server

    Scherpelz, R I

    2002-01-01

    Staff from the Pacific Northwest National Laboratory (operated by Battelle Memorial Institute), have performed neutron measurements at a number of commercial nuclear power plants in the United States. Neutron radiation fields at light water reactor (LWR) power plants are typically characterized by low-energy distributions due to the presence of large amounts of scattering material such as water and concrete. These low-energy distributions make it difficult to accurately monitor personnel exposures, since most survey meters and dosimeters are calibrated to higher-energy fields such as those produced by bare or D sub 2 O-moderated sup 2 sup 5 sup 2 Cf sources. Commercial plants typically use thermoluminescent dosimeters in an albedo configuration for personnel dosimetry and survey meters based on a thermal-neutron detector inside a cylindrical or spherical moderator for dose rate assessment, so their methods of routine monitoring are highly dependent on the energy of the neutron fields. Battelle has participate...

  11. Power supply trip control for nuclear reactor

    International Nuclear Information System (INIS)

    Hager, R.E.; Gutman, Jerzy.

    1987-01-01

    A control system for a trip coil in a switchgear mechanism controls the supply of electrical power to a process control device and ensures de-energization of the trip coil shortly after the trip coil is energized. The trip coil is energized not by an independent dc source as in prior art, but from rectified power from a step down transformer supplied from the switchgear output side. The transformer feeds a rectifier which is connected to the trip coil via a trip activation device. The output of the rectifier can be monitored using an optical converter to determine the ability of the control system to activate the trip coil and the condition of the power supplied to the process control device. The control device may be a rod positioner in a pressurised water nuclear reactor. (author)

  12. The nuclear reactor strategy between fast breeder reactors and advanced pressurized water reactors

    International Nuclear Information System (INIS)

    Seifritz, W.

    1983-01-01

    A nuclear reactor strategy between fast breeder reactors (FBRs) and advanced pressurized water reactors (APWRs) is being studied. The principal idea of this strategy is that the discharged plutonium from light water reactors (LWRs) provides the inventories of the FBRs and the high-converter APWRs, whereby the LWRs are installed according to the derivative of a logistical S curve. Special emphasis is given to the dynamics of reaching an asymptotic symbiosis between FBRs and APWRs. The main conclusion is that if a symbiotic APWR-FBR family with an asymptotic total power level in the terawatt range is to exist in about half a century from now, we need a large number of FBRs already in an early phase

  13. Power reactor embrittlement data base

    International Nuclear Information System (INIS)

    Kam, F.B.K.; Stallmann, F.W.; Wang, J.A.

    1989-01-01

    Regulatory and research evaluations of embrittlement prediction models and of vessel integrity under load can be greatly expedited by the use of a well-designed, computerized embrittlement data base. The Power Reactor Embrittlement Data Base (PR-EDB) is a comprehensive collection of data from surveillance reports and other published reports of commercial nuclear reactors. The uses of the data base require that as many different data as available are collected from as many sources as possible with complete references and that subsets of relevant data can be easily retrieved and processed. The objectives of this NRC-sponsored program are the following: to compile and to verify the quality of the PR-EDB; to provide user-friendly software to access and process the data; to explore or confirm embrittlement prediction models; and to interact with standards organizations to provide the technical bases for voluntary consensus standards that can be used in regulatory guides, standard review plans, and codes. 9 figs

  14. Performance indicators for power reactors

    International Nuclear Information System (INIS)

    Gillies, C.; White, M.

    1995-11-01

    A review of Canadian and worldwide performance indicator definitions and data was performed to identify a set of indicators that could be used for comparison of performance among nuclear power plants. The results of this review are to be used as input to an AECB team developing a consistent set of performance indicators for measuring Canadian power reactor safety performance. To support the identification of performance indicators, a set of criteria was developed to assess the effectiveness of each indicator for meaningful comparison of performance information. The project identified a recommended set of performance indicators that could be used by AECB staff to compare the performance of Canadian nuclear power plants among themselves, and with international performance. The basis for selection of the recommended set and exclusion of others is provided. This report provides definitions and calculation methods for each recommended performance indicator. In addition, a spreadsheet has been developed for comparison and trending for the recommended set of indicators. Example trend graphs are included to demonstrate the use of the spreadsheet. (author). 50 refs., 11 tabs., 3 figs

  15. Coolant mixing in pressurized water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hoehne, T; Grunwald, G

    1998-10-01

    The behavior of PWRs during cold water or boron dilution transients is strongly influenced by the distribution of coolant temperature and boron concentration at the core inlet. This distribution is the needed input to 3-dimensional neutron kinetics to calculate the power distribution in the core. It mainly depends on how the plugs of cold or unborated water formed in a single loop are mixed in the downcomer and in the lower plenum. To simulate such mixture phenomena requires the application of 3-dimensional CFD (computational fluid dynamics) codes. The results of the simulation have to be validated against mixture experiments at scaled facilities. Therefore, in the framework of a research project funded by BMBF, the institute creates a 1:5 mixture facility representing first the geometry of a German pressurized water reactor and later the European Pressurized Water Reactor (EPR) geometry. The calculations are based on the CFD Code CFX-4. (orig.)

  16. Power reactor noise studies and applications

    Energy Technology Data Exchange (ETDEWEB)

    Arzhanov, V

    2002-03-01

    The present thesis deals with the neutron noise arising in power reactor systems. Generally, it can be divided into two major parts: first, neutron noise diagnostics, or more specifically, novel methods and algorithms to monitor nuclear industrial reactors; and second, contributions to neutron noise theory as applied to power reactor systems. Neutron noise diagnostics is presented by two topics. The first one is a theoretical study on the possibility to use a newly proposed current-flux (C/F) detector in Pressurised Water Reactors (PWR) for the localisation of anomalies. The second topic concerns various methods to detect guide tube impacting in Boiling Water Reactors (BWR). The significance of these problems comes from the operational experience. The thesis describes a novel method to localise vibrating control rods in a PWR by using only one C/F detector. Another novel method, based on wavelet analysis, is put forward to detect impacting guide tubes in a BWR. Neutron noise theory is developed for both Accelerator Driven Systems (ADS) and traditional reactors. By design the accelerator-driven systems would operate in a subcritical mode with a strong external source. This calls for a revision of many concepts and methods that have been developed for traditional reactors and also it poses a number of new problems. As for the latter, the thesis investigates the space-dependent neutron noise caused by a fluctuating source. It is shown that the frequency-dependent spatial behaviour exhibits some new properties that are different from those known in traditional critical systems. On the other hand, various reactor physics approximations (point kinetic, adiabatic etc.) have not been defined yet for the subcritical systems. In this respect the thesis presents a systematic formulation of the above mentioned approximations as well as investigations of their properties. Another important problem in neutron noise theory is the treatment of moving boundaries. In this case one

  17. Power reactor noise studies and applications

    International Nuclear Information System (INIS)

    Arzhanov, V.

    2002-03-01

    The present thesis deals with the neutron noise arising in power reactor systems. Generally, it can be divided into two major parts: first, neutron noise diagnostics, or more specifically, novel methods and algorithms to monitor nuclear industrial reactors; and second, contributions to neutron noise theory as applied to power reactor systems. Neutron noise diagnostics is presented by two topics. The first one is a theoretical study on the possibility to use a newly proposed current-flux (C/F) detector in Pressurised Water Reactors (PWR) for the localisation of anomalies. The second topic concerns various methods to detect guide tube impacting in Boiling Water Reactors (BWR). The significance of these problems comes from the operational experience. The thesis describes a novel method to localise vibrating control rods in a PWR by using only one C/F detector. Another novel method, based on wavelet analysis, is put forward to detect impacting guide tubes in a BWR. Neutron noise theory is developed for both Accelerator Driven Systems (ADS) and traditional reactors. By design the accelerator-driven systems would operate in a subcritical mode with a strong external source. This calls for a revision of many concepts and methods that have been developed for traditional reactors and also it poses a number of new problems. As for the latter, the thesis investigates the space-dependent neutron noise caused by a fluctuating source. It is shown that the frequency-dependent spatial behaviour exhibits some new properties that are different from those known in traditional critical systems. On the other hand, various reactor physics approximations (point kinetic, adiabatic etc.) have not been defined yet for the subcritical systems. In this respect the thesis presents a systematic formulation of the above mentioned approximations as well as investigations of their properties. Another important problem in neutron noise theory is the treatment of moving boundaries. In this case one

  18. Graphite-water steam-generating reactor in the USSR

    Energy Technology Data Exchange (ETDEWEB)

    Dollezhal, N A [AN SSSR, Moscow

    1981-10-01

    One of the types of power reactor used in the USSR is the graphite-water steam-generating reactor RBMK. This produces saturated steam at a pressure of 7MPa. Reactors giving 1GWe each have been installed at the Leningrad, Kursk, Chernobyl and other power stations. Further stations using reactors of this type are being built. A description is given of the fuel element design, and of the layout of the plant. The main characteristics of RBMK reactors using fuel of rated and higher enrichment are listed.

  19. Transmutation of actinides in power reactors.

    Science.gov (United States)

    Bergelson, B R; Gerasimov, A S; Tikhomirov, G V

    2005-01-01

    Power reactors can be used for partial short-term transmutation of radwaste. This transmutation is beneficial in terms of subsequent storage conditions for spent fuel in long-term storage facilities. CANDU-type reactors can transmute the main minor actinides from two or three reactors of the VVER-1000 type. A VVER-1000-type reactor can operate in a self-service mode with transmutation of its own actinides.

  20. Method of operating a water-cooled nuclear reactor

    International Nuclear Information System (INIS)

    Lysell, G.

    1975-01-01

    When operating a water-cooled nuclear reactor, in which the fuel rods consist of zirconium alloy tubes containing an oxidic nuclear fuel, stress corrosion in the tubes can be reduced or avoided if the power of the reactor is temporarily increased so much that the thermal expansion of the nuclear fuel produces a flow of the material in the tube. After that temporary power increase the power output is reduced to the normal power

  1. Power controlling method for BWR type reactors

    International Nuclear Information System (INIS)

    Yoshida, Kenji.

    1983-01-01

    Purpose: To enable reactor operation exactly following after an aimed curve in the high power resuming and maintaining period without failures in cladding tubes. Method: Upon recovery of the reactor power to a high power level after changing the reactor power from the high power to the low power level, control rod is operated under such conditions that the linear power density after operation of the control rod does not exceed the PC envelope in the low power period, and the core flow rate is coordinated to the control rod operation. The linear power density can be suppressed within an allowable linear power density by the above operation during high power resuming and maintaining period and, as the result, PCI failures can be prevented. (Kamimura, M.)

  2. European supercritical water cooled reactor

    International Nuclear Information System (INIS)

    Schulenberg, T.; Starflinger, J.; Marsault, P.; Bittermann, D.; Maraczy, C.; Laurien, E.; Lycklama a Nijeholt, J.A.; Anglart, H.; Andreani, M.; Ruzickova, M.; Toivonen, A.

    2011-01-01

    Highlights: → The HPLWR reactor design is an example of a supercritical water cooled reactor. → Cladding material tests have started but materials are not yet satisfactory. → Numerical heat transfer predictions are promising but need further validation. → The research project is most suited for nuclear education and training. - Abstract: The High Performance Light Water Reactor (HPLWR), how the European Supercritical Water Cooled Reactor is called, is a pressure vessel type reactor operated with supercritical water at 25 MPa feedwater pressure and 500 o C average core outlet temperature. It is designed and analyzed by a European consortium of 10 partners and 3 active supporters from 8 Euratom member states in the second phase of the HPLWR project. Most emphasis has been laid on a core with a thermal neutron spectrum, consisting of small fuel assemblies in boxes with 40 fuel pins each and a central water box to improve the neutron moderation despite the low coolant density. Peak cladding temperatures of the fuel rods have been minimized by heating up the coolant in three steps with intermediate coolant mixing. The containment design with its safety and residual heat removal systems is based on the latest boiling water reactor concept, but with different passive high pressure coolant injection systems to cause a forced convection through the core. The design concept of the steam cycle is indicating the envisaged efficiency increase to around 44%. Moreover, it provides the constraints to design the components of the balance of the plant. The project is accompanied by numerical studies of heat transfer of supercritical water in fuel assemblies and by material tests of candidate cladding alloys, performed by the consortium and supported by additional tests of the Joint Research Centre of the European Commission. Besides the scientific and technical progress, the HPLWR project turned out to be most successful in training the young generation of nuclear engineers

  3. The heavy water accountancy for research reactors in JAERI

    International Nuclear Information System (INIS)

    Yoshijima, Tetsuo; Tanaka, Sumitoshi; Nemoto, Denjirou

    1998-11-01

    The three research reactors have been operated by the Department of Research Reactor and used about 41 tons heavy water as coolant, moderator and reflector of research reactors. The JRR-2 is a tank type research reactor of 10MW in thermal power and its is used as moderator, coolant and reflector about 16 tons heavy water. The JRR-3M is a light water cooled and moderated pool type research reactor with a thermal power of 20MW and its is used as reflector about 7.3 tons heavy water. In the JRR-4, which is a light water cooled swimming pool type research reactor with the maximum thermal power of 3.5MW, about 1 ton heavy water is used to supply fully thermalized neutrons with a neutron beam experiment of facility. The heavy water was imported from U.S.A., CANADA and Norway. Parts of heavy water is internationally controlled materials, therefore management of heavy water is necessary for materials accountancy. This report described the change of heavy water inventories in each research reactors, law and regulations for accounting of heavy water in JAERI. (author)

  4. Inherently safe light water reactors

    International Nuclear Information System (INIS)

    Ise, Takeharu

    1987-01-01

    Today's large nuclear power reactors of world-wise use have been designed based on the philosophy. It seems that recent less electricity demand rates, higher capital cost and the TMI accident let us acknowledge relative small and simplified nuclear plants with safer features, and that Chernobyl accident in 1983 underlines the needs of intrinsic and passive safety characteristics. In such background, several inherently safe reactor concepts have been presented abroad and domestically. First describing 'Can inherently safe reactors be designed,' then I introduce representative reactor concepts of inherently safe LWRs advocated abroad so far. All of these innovative reactors employ intrinsic and passive features in their design, as follows: (1) PIUS, an acronym for Process Inherent Ultimate Safety, or an integral PWR with passive heat sink and passive shutdown mechanism, advocated by ASEA-ATOM of Sweden. (2) MAP(Minimum Attention Plant), or a self-pressurized, natural circulation integral PWR, promoted by CE Inc. of the U.S. (3) TPS(TRIGA Power System), or a compact PWR with passive heat sink and inherent fuel characteristics of large prompt temperature coefficient, prompted by GA Technologies Inc. of the U.S. (4) PIUS-BWR, or an inherently safe BWR employing passively actuated fluid valves, in competition with PIUS, prompted by ORNL of the U.S. Then, I will describe the domestic trends in Japan and the innovative inherently safe LWRs presented domestically so far. (author)

  5. Electrochemistry of Water-Cooled Nuclear Reactors

    International Nuclear Information System (INIS)

    Dgiby Macdonald; Mirna Urquidi-Macdonald; John Mahaffy; Amit Jain Han Sang Kim; Vishisht Gupta; Jonathan Pitt

    2006-01-01

    This project developed a comprehensive mathematical and simulation model for calculating thermal hydraulic, electrochemical, and corrosion parameters, viz. temperature, fluid flow velocity, pH, corrosion potential, hydrogen injection, oxygen contamination, stress corrosion cracking, crack growth rate, and other important quantities in the coolant circuits of water-cooled nuclear power plants, including both Boiling Water Reactors (BWRs) and Pressurized Water Reactors (PWRs). The model is being used to assess the three major operational problems in Pressurized Water Reactors (PWR), which include mass transport, activity transport, and the axial offset anomaly, and provide a powerful tool for predicting the accumulation of SCC damage in BWR primary coolant circuits as a function of operating history. Another achievement of the project is the development of a simulation tool to serve both as a training tool for plant operators and as an engineering test-bed to evaluate new equipment and operating strategies (normal operation, cold shut down and others). The development and implementation of the model allows us to estimate the activity transport or ''radiation fields'' around the primary loop and the vessel, as a function of the operating parameters and the water chemistry

  6. The pressurised water reactor

    International Nuclear Information System (INIS)

    Flood, M.; Chudleigh, R.; Conroy, C.

    1981-01-01

    The subject is covered in sections, entitled: energy forecasts - their decline and fall (Department of Energy; electricity supply industry; the writing on the wall); nuclear economics - how the dream dissolved (Britain's programme - off to a bad start; the government's programme -a catastrophe about to be repeated; the cost of a British PWR; a new choice - nuclear power versus insulation); PWR safety - the unresolvable problem (one in a million (query); fundamental weaknesses; consequences of an accident; unresolved safety problems; the select committee's findings); a new energy strategy - catering for our needs (energy efficiency; district heating/combined heat and power; solar heating; liquid fuels; the international context); conclusions. (U.K.)

  7. Hydrogen water chemistry for boiling water reactors

    International Nuclear Information System (INIS)

    Cowan, R.L.; Cowan, R.L.; Kass, J.N.; Law, R.J.

    1985-01-01

    Hydrogen Water Chemistry (HWC) is now a practical countermeasure for intergranular stress corrosion cracking (IGSCC) susceptibility of reactor structural materials in Boiling Water Reactors (BWRs). The concept, which involves adding hydrogen to the feedwater to suppress the formation of oxidizing species in the reactor, has been extensively studied in both the laboratory and in several operating plants. The Dresden-2 Unit of Commonwealth Edison Company has completed operation for one full 18-month fuel cycle under HWC conditions. The specifications, procedures, equipment, instrumentation and surveillance programs needed for commercial application of the technology are available now. This paper provides a review of the benefits to be obtained, the side affects, and the special operational considerations needed for commercial implementation of HWC. Technological and management ''Lessons Learned'' from work conducted to date are also described

  8. Power generator in BWR type reactors

    International Nuclear Information System (INIS)

    Yoshida, Kenji.

    1984-01-01

    Purpose: To enable to perform stable and dynamic conditioning operation for nuclear fuels in BWR type reactors. Constitution: The conditioning operation for the nuclear fuels is performed by varying the reactor core thermal power in a predetermined pattern by changing the predetermined power changing pattern of generator power, the rising rate of the reactor core thermal power and the upper limit for the rising power of the reactor core thermal power are calculated and the power pattern for the generator is corrected by a power conditioning device such that the upper limit for the thermal power rising rate and the upper limit for the thermal power rising rate are at the predetermined levels. Thus, when the relation between the reactor core thermal power and the generator electrical power is fluctuated, the fluctuation is detected based on the variation in the thermal power rising rate and the limit value for the thermal power rising rate, and the correction is made to the generator power changing pattern so that these values take the predetermined values to thereby perform the stable conditioning operation for the nuclear fuels. (Moriyama, K.)

  9. Status of advanced small pressurized water reactors

    International Nuclear Information System (INIS)

    Chen Peipei; Zhou Yun

    2012-01-01

    In order to expand the nuclear power in energy and desalination, increase competitiveness in global nuclear power market, many developed countries with strong nuclear energy technology have realized the importance of Small Modular Reactor (SMR) and initiated heavy R and D programs in SMR. The Advanced Small Pressurized Water Reactor (ASPWR) is characterized by great advantages in safety and economy and can be used in remote power grid and replace mid/small size fossil plant economically. This paper reviews the history and current status of SMR and ASPWR, and also discusses the design concept, safety features and other advantages of ASPWR. The purpose of this paper is to provide an overall review of ASPWR technology in western countries, and to promote the R and D in ASPWR in China. (authors)

  10. Boiling water reactor fuel bundle

    International Nuclear Information System (INIS)

    Weitzberg, A.

    1986-01-01

    A method is described of compensating, without the use of control rods or burnable poisons for power shaping, for reduced moderation of neutrons in an uppermost section of the active core of a boiling water nuclear reactor containing a plurality of elongated fuel rods vertically oriented therein, the fuel rods having nuclear fuel therein, the fuel rods being cooled by water pressurized such that boiling thereof occurs. The method consists of: replacing all of the nuclear fuel in a portion of only the upper half of first predetermined ones of the fuel rods with a solid moderator material of zirconium hydride so that the fuel and the moderator material are axially distributed in the predetermined ones of the fuel rods in an asymmetrical manner relative to a plane through the axial midpoint of each rod and perpendicular to the axis of the rod; placing the moderator material in the first predetermined ones of the fuel rods in respective sealed internal cladding tubes, which are separate from respective external cladding tubes of the first predetermined ones of the fuel rods, to prevent interaction between the moderator material and the external cladding tube of each of the first predetermined ones of the fuel rods; and wherein the number of the first predetermined ones of the fuel rods is at least thirty, and further comprising the steps of: replacing with the moderator material all of the fuel in the upper quarter of each of the at least thirty rods; and also replacing with the moderator material all of the fuel in the adjacent lower quarter of at least sixteen of the at least thirty rods

  11. Impacts on power reactor health physics programs

    International Nuclear Information System (INIS)

    Meyer, B.A.

    1991-01-01

    The impacts on power reactor health physics programs form implementing the revised 10 CFR Part 20 will be extensive and costly. Every policy, program, procedure and training lesson plan involving health physics will require changes and the subsequent retraining of personnel. At each power reactor facility, hundreds of procedures and thousands of people will be affected by these changes. Every area of a power reactor health physics program will be affected. These areas include; ALARA, Respiratory Protection, Exposure Control, Job Coverage, Dosimetry, Radwaste, Effluent Accountability, Emergency Planning and Radiation Worker Training. This paper presents how power reactor facilities will go about making these changes and gives possible examples of some of these changes and their impact on each area of power reactor health physics program

  12. Fast reactors: potential for power

    International Nuclear Information System (INIS)

    1983-02-01

    The subject is discussed as follows: basic facts about conventional and fast reactors; uranium economy; plutonium and fast reactors; cooling systems; sodium coolant; safety engineering; handling and recycling plutonium; safeguards; development of fast reactors in Britain and abroad; future progress. (U.K.)

  13. Production of synthetic methanol from air and water using controlled thermonuclear reactor power. 2. Capital investment and production costs

    Energy Technology Data Exchange (ETDEWEB)

    Dang, V D; Steinberg, M [Brookhaven National Lab., Upton, N.Y. (USA)

    1977-01-01

    Energy requirement and process development of methanol production from air and water using controlled thermonuclear fusion power was discussed in Part 1 (Steinberg et al., Energy conversion;17:97(1977)). This second part presents an economic analysis of the nine processes presented for obtaining carbon dioxide recovery from the atmosphere or the sea for methanol production. It is found that the most economical process of obtaining carbon dioxide is by stripping from sea water. The process of absorption/stripping by dilute potassium carbonate solution is found to be the most economical for the extraction of carbon dioxide from air at atmospheric pressure. The total energy required for methanol synthesis from these sources of carbon dioxide is 3.90 kWh(e)/lb methanol of which 90% is used for generation of hydrogen. The process which consumes the greatest amount of energy is the absorption/stripping of air by water at high pressure and amounts to 13.2 kWh(e)/lb methanol. With nuclear fusion power plants of 1000to 9000 MW(e), it is found that the cost of methanol using the extraction of carbon dioxide from air with dilute potassium carbonate solution is estimated to be in the range between Pound1.73 and Pound2.90/MMB.t.u. (energy equivalent - 1974 cost) for plant capacities of 21 400 to 193 000 bbl/day methanol. This methanol cost is competitive with gasoline in the range of 19 approximately equal to 33c/gallon. For the process of stripping of carbon dioxide from sea water, the cost is found to lie in the range of Pound1.65 to Pound2.71/MMB.t.u. (energy equivalent) for plant capacities of 21 700 to 195 000 bbl/day methanol which is competitive with gasoline in the range of 18 approximately equal to 30 c/gallon. Projection of methanol demand in the year 2020 is presented based on both its conventional use as chemicals and as a liquid fuel substituting for oil and gas.

  14. The security management of spent filter cartridge in Qinshan phase 3 (heavy water reactor) nuclear power plant

    International Nuclear Information System (INIS)

    Xue Dahai

    2005-01-01

    Qinshan phase 3 nuclear power plant is the first CANDU plant that China fetched in from Canada, and both two units operate under well condition up to now. The radioactive wastes produced during the unit operation mainly include technical waste, spent resin, and spent filter cartridge. The spent filter cartridge is one important part both in the volume and radioactivity of the radioactive waste, and it is the important content of radioactive waste management. Different from PWR, part of high radioactive spent filter in CANDU unit comes from heavy water system such as moderator system. It has to be dried through blowing before replaced from the system. But this working procedure result the filtrate dreg become flexible, and it can bring on the risk of internal or external exposure. It is very important to pay high attention to control the contamination spread during spent filter inside transfer. (authors)

  15. General description of advanced heavy water reactor

    International Nuclear Information System (INIS)

    Kakodkar, A.; Sinha, R.K.; Dhawan, M.L.

    1999-01-01

    Advanced Heavy Water Reactor is a boiling light water cooled, heavy water moderated and vertical pressure tube type reactor with its design optimised for utilisation of thorium for power generation. The core consists of (Th-U 233 )O 2 and (Th-Pu)O 2 fuel with a discharge burn up of 20,000 MWd/Te. This reactor incorporates several features to simplify the design, which eliminate certain systems and components. AHWR design is also optimised for easy replaceability of coolant channels, facilitation of in-service inspection and maintenance and ease of erection. The AHWR design also incorporates several passive systems for performing safety-related functions in the event of an accident. In case of LOCA, emergency coolant is injected through 4 accumulators of 260 m 3 capacity directly into the core. Gravity driven water pool of capacity 6000 m 3 serves to cool the core for 3 days without operator's intervention. Core submergence, passive containment isolation and passive containment cooling are the added features in AHWR. The paper describes the various process systems, core and fuel design, primary components and safety concepts of AHWR. Plant layout and technical data are also presented. The conceptual design of the reactor has been completed, and the detailed design and development is scheduled for completion in the year 2002. (author)

  16. Characteristics of self-powered neutron detectors used in power reactors

    International Nuclear Information System (INIS)

    Todt, William H. Sr.

    1998-01-01

    Self-powered neutron detectors have been used effectively as in-core flux monitors for over twenty-five years in nuclear power reactors worldwide. This paper describes the basic properties of these radiation sensors including their nuclear, electrical and mechanical characteristics. Recommendations are given for the proper choice of the self-powered detector emitter to provide the proper response time and radiation sensitivity desired for use in an effective in-core radiation monitoring system. Examples are shown of specific self-powered detector designs, which are being effectively, used in in-core instrumentation systems for pressurized water, heavy water and graphite moderated light water reactors. Also examples are shown of the mechanical configurations of in-core assemblies of self-powered detectors combined with in-core thermocouples presently used in pressurized water and heavy water reactors worldwide. (author)

  17. Reactor water spontaneous circulation structure in reactor pressure vessel

    International Nuclear Information System (INIS)

    Takahashi, Kazumi

    1998-01-01

    The gap between the inner wall of a reactor pressure vessel of a BWR type reactor and a reactor core shroud forms a down comer in which reactor water flows downwardly. A feedwater jacket to which feedwater at low temperature is supplied is disposed at the outer circumference of the pressure vessel just below a gas/water separator. The reactor water at the outer circumferential portion just below the air/water separator is cooled by the feedwater jacket, and the feedwater after cooling is supplied to the feedwater entrance disposed below the feedwater jacket by way of a feedwater introduction line to supply the feedwater to the lower portion of the down comer. This can cool the reactor water in the down comer to increase the reactor water density in the down comer thereby forming strong downward flows and promote the recycling of the reactor water as a whole. With such procedures, the reactor water can be recycled stably only by the difference of the specific gravity of the reactor water without using an internal pump. In addition, the increase of the height of the pressure vessel can be suppressed. (I.N.)

  18. The European pressurized water reactor

    International Nuclear Information System (INIS)

    Leny, J.C.

    1993-01-01

    The present state of development of the European Pressurized Water Reactor (EPR) is outlined. During the so-called harmonization phase, the French and German utilities drew up their common requirements and evaluated the reactor concept developed until then with respect to these requirements. A main result of the harmonization phase was the issue, in September 1993, of the 'EPR Conceptual Safety Feature Review File' to be jointly assessed by the safety authorities in France and Germany. The safety objectives to be met by the EPR are specified in the second part of the paper, and some details of the primary and secondary side safety systems are given. (orig.) [de

  19. Thermionic reactors for space nuclear power

    Science.gov (United States)

    Homeyer, W. G.; Merrill, M. H.; Holland, J. W.; Fisher, C. R.; Allen, D. T.

    1985-01-01

    Thermionic reactor designs for a variety of space power applications spanning the range from 5 kWe to 3 MWe are described. In all of these reactors, nuclear heat is converted directly to electrical energy in thermionic fuel elements (TFEs). A circulating reactor coolant carries heat from the core of TFEs directly to a heat rejection radiator system. The recent design of a thermionic reactor to meet the SP-100 requirements is emphasized. Design studies of reactors at other power levels show that the same TFE can be used over a broad range in power, and that design modifications can extend the range to many megawatts. The design of the SP-100 TFE is similar to that of TFEs operated successfully in test reactors, but with design improvements to extend the operating lifetime to seven years.

  20. Automatic determination of pressurized water reactor core loading patterns that maximize beginning-of-cycle reactivity within power-peaking and burnup constraints

    International Nuclear Information System (INIS)

    Hobson, G.H.; Turinsky, P.J.

    1986-01-01

    Computational capability has been developed to automatically determine a good estimate of the core loading pattern, which minimizes fuel cycle costs for a pressurized water reactor (PWR). Equating fuel cycle cost minimization with core reactivity maximization, the objective is to determine the loading pattern that maximizes core reactivity while satisfying power peaking, discharge burnup, and other constraints. The method utilizes a two-dimensional, coarse-mesh, finite difference scheme to evaluate core reactivity and fluxes for an initial reference loading pattern. First-order perturbation theory is applied to determine the effects of assembly shuffling on reactivity, power distribution, end-of-cycle burnup. Monte Carlo integer programming is then used to determine a near-optimal loading pattern within a range of loading patterns near the reference pattern. The process then repeats with the new loading pattern as the reference loading pattern and terminates when no better loading pattern can be determined. The process was applied with both reactivity maximization and radial power-peaking minimization as objectives. Results on a typical large PWR indicate that the cost of obtaining an 8% improvement in radial power-peaking margin is ≅2% in fuel cycle costs, for the reload core loaded without burnable poisons that was studied

  1. Status of control assembly materials in Indian water reactors

    International Nuclear Information System (INIS)

    Date, V.G.; Kulkarni, P.G.

    2000-01-01

    India's present operating water cooled power reactors comprise boiling water reactors of Tarapur Atomic Power Station (TAPS) and pressurized heavy water reactors (PHWRs) at Kota (RAPS), Kalpakkam (MAPS), Narora (NAPS) and Kakrapara (KAPS). Boiling water reactors of TAPS use boron carbide control blades for control of power as well as for shut down (scram). PHWRs use boron steel and cobalt absorber rods for power control and Cd sandwiched shut off rods (primary shut down system) and liquid poison rods (secondary shut down system) for shut down. In TAPS, Gadolinium rods (burnable poison rods) are also incorporated in fuel assembly for flux flattening. Boron carbide control blades and Gadolinium rods for TAPS, cobalt absorber rods and shut down assemblies for PHWRs are fabricated indigenously. Considerable development work was carried out for evolving material specifications, component and assembly drawings, and fabrication processes. Details of various control and shut off assemblies being fabricated currently are highlighted in the paper. (author)

  2. Brief summary of water reactor fuel activities in China

    Energy Technology Data Exchange (ETDEWEB)

    Zhongyue, Zhang [China Inst. of Atomic Energy (CIAE), Beijing (China)

    1997-12-01

    The presentation briefly reviews the water reactor fuel activities in China describing: nuclear power development program and growth forecast; fuel performance;fuel performance code improvement; research and development plans. 1 ref., 3 figs, 2 tabs.

  3. Instrumentation and control strategies for an integral pressurized water reactor

    Directory of Open Access Journals (Sweden)

    Belle R. Upadhyaya

    2015-03-01

    Full Text Available Several vendors have recently been actively pursuing the development of integral pressurized water reactors (iPWRs that range in power levels from small to large reactors. Integral reactors have the features of minimum vessel penetrations, passive heat removal after reactor shutdown, and modular construction that allow fast plant integration and a secure fuel cycle. The features of an integral reactor limit the options for placing control and safety system instruments. The development of instrumentation and control (I&C strategies for a large 1,000 MWe iPWR is described. Reactor system modeling—which includes reactor core dynamics, primary heat exchanger, and the steam flashing drum—is an important part of I&C development and validation, and thereby consolidates the overall implementation for a large iPWR. The results of simulation models, control development, and instrumentation features illustrate the systematic approach that is applicable to integral light water reactors.

  4. Operating Experience in Nuclear Power Plants with Boiling-Water Reactors; Experience acquise dans l'exploitation des reacteurs a eau bouillante; Opyt ehkspluatatsii kipyashchago reaktora; Experiencia adquirida con la explotacion de reactores de agua hirviente

    Energy Technology Data Exchange (ETDEWEB)

    Ascherl, R. J. [General Electric Company, San Jose, CA (United States)

    1963-10-15

    Asignificant amount of operating experience has now been accumulated by boiling-water-reactor power plants. By the end of 1962, over 2200 million kWh of electricity have been generated by three plants operating on utility.system - Dresden Nuclear Power Station, Commonwealth Edison Company, Morris, Illinois; Vallecitos Atomic Power Plant, Pacific Gas and Electric Company and General Electric Company, Pleasanton, California; and Kahl Nuclear Power Station, Rheinisch Westfaelisches Elektrizitaetswerk and Bayernwerk, Kahl-am-Main, West Germany. Boiling-water-reactor power-plant performance, under routine electric-utility operating conditions, has been excellent. Reactor and plant availability and capacity factor provide a sound basis for anticipation of continuing reliable performance from boiling-water-reactor power stations. During 1963, four additional boiling-water-reactor plants will begin power operation: Big Rock Point Nuclear Plant, Consumers Power Company, Charlevoix, Michigan; Humboldt Bay Plant Nuclear Unit, Pacific Gas and Electric Company, Eureka, California; Garigliano Nuclear Power Station, Societa Elettronucleare Nazionale, Scauri, Italy; and Japan Power Demonstration Reactor, Japan Atomic Energy Research Institute, Tokai Mura, Japan. The start-up and initial operation of these plants confirms the expectation of reliable performance established by Dresden, Kahl, and Vallecitos. Performance records of Dresden, Kahl and Vallecitos have clearly proved the stability and safety of boiling-water reactors. Additionally, radiation levels within the plant and in the environs have been significantly below limits established by operating licences. Simplicity and ease of operation of boiling-water reactors has been confirmed. Load following characteristics of the Dresden dual-cycle boiling-water reactor have been excellent. Major and minor maintenance and repair work can be accomplished by ordinary craft unions, and without undue hardship or time limits caused by

  5. A simplified, coarse-mesh, three-dimensional diffusion scheme for calculating the gross power distribution in a boiling water reactor

    International Nuclear Information System (INIS)

    Borresen, S.

    1995-01-01

    A simplified, finite-difference diffusion scheme for a three-dimensional calculation of the gross power distribution in the core of a boiling water reactor (BWR) is presented. Results obtained in a series of one- and two-dimensional test cases indicate that this method may be of sufficient accuracy and simplicity for implementation in BWR-simulator computer programs. Computer requirements are very modest; thus, only 3N memory locations are required for in-core treatment of the inner iteration in the solution of a problem with N mesh points. The mesh width may be chosen equal to the fuel assembly pitch. Input data are in the form of conventional 2-group diffusion parameters. It is concluded that the method presented has definite advantages in comparison with the nodal coupling method. (author)

  6. Method and device for controlling reactor power

    International Nuclear Information System (INIS)

    Oohashi, Masahisa; Masuda, Hiroyuki.

    1982-01-01

    Purpose: To enable load following-up operation of a reactor adapted to perform power conditioning by the control of the liquid poison density in the core and by the control rods. Constitution: In a case where the reactor power is repeatedly changed in a reactor having a liquid poison density control device and control rods, the time period for the power control is divided depending on the magnitude of the change with time in the reactivity and the optimum values are set for the injection and removal amount of the liquid poison within the divided period. Then, most parts of the control required for the power change are alloted to the liquid poison that gives no effect on the power distribution while minimizing the movement of the control rods, whereby the power change in the reactor as in the case of the load following-up operation can be practiced with ease. (Kawakami, Y.)

  7. Safety and licensing for small and medium power reactors

    International Nuclear Information System (INIS)

    Trauger, D.B.

    1987-01-01

    Proposed new concepts for small and medium power reactors differ substantially from traditional Light Water Reactors (LWRs). Although designers have a large base of experience in safety and licensing, much of it is not relevant to new concepts. It can be a disadvantage if regulators apply LWR rules directly. A fresh start is appropriate. The extensive interactions between industry, regulators, and the public complicates but may enhance safety. It is basic to recognize the features that distinguish nuclear energy safety from that for other industries. These features include: nuclear reactivity, fission product radiation, and radioactive decay heat. Small and medium power reactors offer potential advantages over LWRs, particularly for reactivity and decay heat

  8. An aqueous lithium salt blanket option for fusion power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, D.; Varsamis, G. (Rensselaer Polytechnic Inst., Troy, NY (USA). Dept. of Nuclear Engineering and Engineering Physics); Deutsch, L.; Rathke, J. (Grumman Corp., Bethpage, NY (USA). Advanced Energy Systems); Gierszewski, P. (Canadian Fusion Fuels Technology Project (CFFTP), Mississauga, ON (Canada))

    1989-04-01

    An aqueous lithium salt blanket (ALSB) concept is proposed which could be the basis for either a power reactor blanket or a test module in an engineering test reactor. The design is based on an austenitic stainless steel structure, a beryllium multiplier, and a salt breeder concentration of about 32 g LiNO/sub 3/ per 100 cm/sup 3/ of H/sub 2/O. To limit tritium release rates, the salt breeder solution is separated from the water coolant circuit. The overall tritium system cost for a 2400 MW (fusion power) reactor is estimated to be 180 million Dollar US87 installed. (orig.).

  9. Decay Power Calculation for Safety Analysis of Innovative Reactor Systems

    Energy Technology Data Exchange (ETDEWEB)

    Shwageraus, E.; Fridman, E. [Department of Nuclear Engineering, Ben-Gurion University of the Negev Beer-Sheva 84105 (Israel)

    2008-07-01

    In this work, we verified the decay heat calculation capabilities of BGCore computer code system developed recently at Ben-Gurion University. Decay power was calculated for a typical UO{sub 2} fuel in Pressurized Water Reactor environment using BGCore code and using procedure prescribed by the ANS/ANSI-2005 standard. Very good agreement between the two methods was obtained. Once BGCore calculation capabilities were verified, we calculated decay power as a function of time after shutdown for various reactors with innovative fuels, for which no standard procedure is currently available. Notable differences were observed for decay power of the advanced reactors as compared with conventional UO{sub 2} LWR. The observed differences suggest that the design of new reactors safety systems must be based on corresponding decay power curves for each individual case in order to assure the desired performance of such systems. (authors)

  10. Decay Power Calculation for Safety Analysis of Innovative Reactor Systems

    International Nuclear Information System (INIS)

    Shwageraus, E.; Fridman, E.

    2008-01-01

    In this work, we verified the decay heat calculation capabilities of BGCore computer code system developed recently at Ben-Gurion University. Decay power was calculated for a typical UO 2 fuel in Pressurized Water Reactor environment using BGCore code and using procedure prescribed by the ANS/ANSI-2005 standard. Very good agreement between the two methods was obtained. Once BGCore calculation capabilities were verified, we calculated decay power as a function of time after shutdown for various reactors with innovative fuels, for which no standard procedure is currently available. Notable differences were observed for decay power of the advanced reactors as compared with conventional UO 2 LWR. The observed differences suggest that the design of new reactors safety systems must be based on corresponding decay power curves for each individual case in order to assure the desired performance of such systems. (authors)

  11. A review of the UKAEA interest in heavy water reactors

    International Nuclear Information System (INIS)

    Symes, R.J.

    1983-01-01

    The chapter commences with a brief account of the history of heavy water production and then begins the story of the British use of this moderator in power reactors. This is equated with the introduction and development of the tube reactor as a distinct and important form of reactor construction in contrast with the perhaps better known vessel design that has tended to dominate reactor engineering to date. The account thus includes a succession of reactor designs including the gas and steam cooled heavy water systems in addition to the steam-generating heavy water reactor. The SGHWR was demonstrated by the construction of a substantial prototype, which continues in operation as a flexible and reliable electricity-generating plant. It was also, for a time, identified as the system to be used for Britain's third reactor programme. Today the successful Canadian CANDU power reactors represent the only penetration of heavy water reactor technology into large scale electricity generation. The range of research and experimental reactors using heavy water in their cores is reviewed. (author)

  12. Nuclear power reactors of new generation

    International Nuclear Information System (INIS)

    Ponomarev-Stepnoi, N.N.; Slesarev, I.S.

    1988-01-01

    The paper presents discussions on the following topics: fuel supply for nuclear power; expansion of the sphere of nuclear power applications, such as district heating; comparative estimates of power reactor efficiencies; safety philosophy of advanced nuclear plants, including passive protection and inherent safety concepts; nuclear power unit of enhanced safety for the new generation of nuclear power plants. The emphasis is that designers of new generation reactors face a complicated but technically solvable task of developing highly safe, efficient, and economical nuclear power sources having a wide sphere of application

  13. The safety of light water reactors

    International Nuclear Information System (INIS)

    Pershagen, B.

    1986-04-01

    The book describes the principles and practices of reactor safety as applied to the design, regulation and operation of both pressurized water reactors and boiling water reactors. The central part of the book is devoted to methods and results of safety analysis. Some significant events are described, notably the Three Mile Island accident. The book concludes with a chapter on the PIUS principle of inherent reactor safety as applied to the SECURE type of reactor developed in Sweden. (G.B.)

  14. Pressurized water reactor inspection procedures

    International Nuclear Information System (INIS)

    Heinrich, D.; Mueller, G.; Otte, H.J.; Roth, W.

    1998-01-01

    Inspections of the reactor pressure vessels of pressurized water reactors (PWR) so far used to be carried out with different central mast manipulators. For technical reasons, parallel inspections of two manipulators alongside work on the refueling cavity, so as to reduce the time spent on the critical path in a revision outage, are not possible. Efforts made to minimize the inspection time required with one manipulator have been successful, but their effects are limited. Major reductions in inspection time can be achieved only if inspections are run with two manipulators in parallel. The decentralized manipulator built by GEC Alsthom Energie and so far emmployed in boiling water reactors in the USA, Spain, Switzerland and Japan allows two systems to be used in parallel, thus reducing the time required for standard inspection of a pressure vessel from some six days to three days. These savings of approximately three days are made possible without any compromises in terms of positioning by rail-bound systems. During inspection, the reactor refueling cavity is available for other revision work without any restrictions. The manipulator can be used equally well for inspecting standard PWR, PWR with a thermal shield, for inspecting the land between in-core instrumentation nozzles, BWR with and without jet pumps (complementary inspection), and for inspecting core support shrouds. (orig.) [de

  15. Design study of ship based nuclear power reactor

    International Nuclear Information System (INIS)

    Su'ud, Zaki; Fitriyani, Dian

    2002-01-01

    Preliminary design study of ship based nuclear power reactors has been performed. In this study the results of thermohydraulics analysis is presented especially related to behaviour of ship motion in the sea. The reactors are basically lead-bismuth cooled fast power reactors using nitride fuels to enhance neutronics and safety performance. Some design modification are performed for feasibility of operation under sea wave movement. The system use loop type with relatively large coolant pipe above reactor core. The reactors does not use IHX, so that the heat from primary coolant system directly transferred to water-steam loop through steam generator. The reactors are capable to be operated in difference power level during night and noon. The reactors however can also be used totally or partially to produce clean water through desalination of sea water. Due to the influence of sea wave movement the analysis have to be performed in three dimensional analysis. The computation time for this analysis is speeded up using Parallel Virtual Machine (PVM) Based multi processor system

  16. Outline of advanced boiling water reactor

    International Nuclear Information System (INIS)

    Yoshio Matsuo

    1987-01-01

    The ABWR (Advanced Boiling Water Reactor) is based on construction and operational experience in Japan, USA and Europe. It was developed jointly by the BWR supplieres, General Electric, Hitachi, and Toshiba, as the next generation BWR for Japan. The Tokyo Electric Power Co. provided leadership and guidance in developing the ABWR, and in combination with five other Japanese electric power companies. The major objectives in developing the ABWR are: 1. Enhanced plant operability, maneuverability and daily load-following capability; 2. Increased plant safety and operating margins; 3. Improved plant availability and capacity factor; 4. Reduced occupational radiation exposure; 5. Reduced radwaste volume, and 6. Reduced plant capital and operating costs. (Liu)

  17. Pressurized Water Reactors (PWR) and Boiling Water Reactors (BWR) are compared

    International Nuclear Information System (INIS)

    Greneche, D.

    2014-01-01

    This article compares the 2 types of light water reactors that are used to produce electricity: the Pressurized Water Reactor (PWR) and the Boiling Water Reactor (BWR). Historically the BWR concept was developed after the PWR concept. Today 80% of light water reactors operating in the world are of PWR-type. This comparison is comprehensive and detailed. First the main technical features are reviewed and compared: reactor architecture, core and fuel design, reactivity control, reactor vessel, cooling systems and reactor containment. Secondly, various aspects concerning reactor operations like reactor control, fuel management, maintenance, inspections, radiation protection, waste generation and reactor reliability are presented and compared for both reactors. As for the issue of safety, it is highlighted that the accidental situations are too different for the 2 reactors to be compared. The main features of reactor safety are explained for both reactors

  18. Development of light water reactors and subjects for hereafter

    International Nuclear Information System (INIS)

    Murao, Yoshio

    1995-01-01

    As for light water reactors, the structure is relatively simple, and the power plants of large capacity can be realized easily, therefore, they have been used for long period as main nuclear reactors. During that period, the accumulation of experiences on the design, manufacture, operation, maintenance and regulation of light water has become enormous, and in Japan, the social base for maintaining and developing light water reactor technologies has been prepared sufficiently. If the nuclear power generation using seawater uranium is considered, the utilization of uranium for light water reactor technologies can become the method of producing the own energy for Japan. As the factors that threaten the social base of light water reactor technologies, there are a the lowering of the desire to promote light water reactors, the effect of secular deterioration, the price rise of uranium resources, the effect of plutonium accumulation, the effect of the circumstances in developing countries and the sure recruiting of engineers. The construction and the principle of working of light water reactors and the development of light water reactors hereafter, for example, the improvement on small scale and the addition of new technology resulting in cost reduction and the lowering of the quality requirement for engineers, the improvement of core design, the countermeasures by design to serious accidents and others are described. (K.I.)

  19. Power supplyer for reactor coolant recycling pump

    International Nuclear Information System (INIS)

    Nara, Hiroshi; Okinaka, Yo.

    1991-01-01

    The present invention concerns a variable voltage/variable frequency static power source (static power source) used as a power source for a coolants recycling pump motor of a nuclear power plant. That is, during lower power operation such as start up or shutdown in which stoppage of the power source gives less effect to a reactor core, power is supplied from a power system, a main power generator connected thereto or a high voltage bus in the plant or a common high voltage bus to the static power source. However, during rated power operation, power is supplied from the output of an axially power generator connected with a main power generator having an extremely great inertia moment to the static power device. With such a constitution, the static power device is not stopped by the lowering of the voltage due to a thunderbolt falling accident or the like to a power-distribution line suddenly occurred in the power system. Accordingly, reactor core flowrate is free from rapid decrease caused by the reduction of rotation speed of the recycling pump. Accordingly, disadvantgages upon operation control in the reactor core is not caused. (I.S.)

  20. Small size modular fast reactors in large scale nuclear power

    International Nuclear Information System (INIS)

    Zrodnikov, A.V.; Toshinsky, G.I.; Komlev, O.G.; Dragunov, U.G.; Stepanov, V.S.; Klimov, N.N.; Kopytov, I.I.; Krushelnitsky, V.N.

    2005-01-01

    The report presents an innovative nuclear power technology (NPT) based on usage of modular type fast reactors (FR) (SVBR-75/100) with heavy liquid metal coolant (HLMC) i. e. eutectic lead-bismuth alloy mastered for Russian nuclear submarines' (NS) reactors. Use of this NPT makes it possible to eliminate a conflict between safety and economic requirements peculiar to the traditional reactors. Physical features of FRs, an integral design of the reactor and its small power (100 MWe), as well as natural properties of lead-bismuth coolant assured realization of the inherent safety properties. This made it possible to eliminate a lot of safety systems necessary for the reactor installations (RI) of operating NPPs and to design the modular NPP which technical and economical parameters are competitive not only with those of the NPP based on light water reactors (LWR) but with those of the steam-gas electric power plant. Multipurpose usage of transportable reactor modules SVBR-75/100 of entirely factory manufacture assures their production in large quantities that reduces their fabrication costs. The proposed NPT provides economically expedient change over to the closed nuclear fuel cycle (NFC). When the uranium-plutonium fuel is used, the breeding ratio is over one. Use of proposed NPT makes it possible to considerably increase the investment attractiveness of nuclear power (NP) with fast neutron reactors even today at low costs of natural uranium. (authors)

  1. Water cooled reactor technology: Safety research abstracts no. 1

    International Nuclear Information System (INIS)

    1990-01-01

    The Commission of the European Communities, the International Atomic Energy Agency and the Nuclear Energy Agency of the OECD publish these Nuclear Safety Research Abstracts within the framework of their efforts to enhance the safety of nuclear power plants and to promote the exchange of research information. The abstracts are of nuclear safety related research projects for: pressurized light water cooled and moderated reactors (PWRs); boiling light water cooled and moderated reactors (BWRs); light water cooled and graphite moderated reactors (LWGRs); pressurized heavy water cooled and moderated reactors (PHWRs); gas cooled graphite moderated reactors (GCRs). Abstracts of nuclear safety research projects for fast breeder reactors are published independently by the Nuclear Energy Agency of the OECD and are not included in this joint publication. The intention of the collaborating international organizations is to publish such a document biannually. Work has been undertaken to develop a common computerized system with on-line access to the stored information

  2. Safety studies concerning nuclear power reactors

    International Nuclear Information System (INIS)

    Bailly, Jean; Pelce, Jacques

    1980-01-01

    The safety of nuclear installations poses different technical problems, whether concerning pressurized water reactors or fast reactors. But investigating methods are closely related and concern, on the one hand, the behavior of shields placed between fuel and outside and, on the other, analysis of accidents. The article is therefore in two parts based on the same plan. Concerning light water reactors, the programme of studies undertaken in France accounts for the research carried out in countries where collaboration agreements exist. Concerning fast reactors, France has the initiative of their studies owing to her technical advance, which explains the great importance of the programmes under way [fr

  3. Small and medium power reactors 1987

    International Nuclear Information System (INIS)

    1987-12-01

    This TECDOC follows the publication of TECDOC-347 Small and Medium Power Reactors Project Initiation Study - Phase I published in 1985 and TECDOC-376 Small and Medium Power Reactors 1985 published in 1986. It is mainly intended for decision makers in Developing Member States interested in embarking on a nuclear power programme. It consists of two parts: 1) Guidelines for the Introduction of Small and Medium Power Reactors in Developing Countries. These Guidelines were established during the Advisory Group Meeting held in Vienna from 11 to 15 May 1987. Their purpose is to review key aspects relating to the introduction of Small and Medium Power Reactors in developing countries; 2) Up-dated Information on SMPR Concepts Contributed by Supplier Industries. According to the recommendations of the Second Technical Committee Meeting on SMPRs held in Vienna in March 1985, this part contains the up-dated information formerly published in Annex I of the above mentioned TECDOC-347. Figs

  4. Small and medium power reactors 1987

    Science.gov (United States)

    1987-12-01

    This TECDOC follows the publication of TECDOC-347: Small and Medium Power Reactors (SMPR) Project Initiation Study, Phase 1, published in 1985 and TECDOC-376: Small and Medium Power Reactors 1985 published in 1986. It is mainly intended for decision makers in Developing Member States interested in embarking on a nuclear power program. It consists of two parts: (1) guidelines for the introduction of small and medium power reactors in developing countries. These Guidelines were established during the Advisory Group Meeting held in Vienna from 11 to 15 May 1987. Their purpose is to review key aspects relating to the introduction of small and medium power reactors in developing countries; (2) up-dated information on SMPR Concepts Contributed by Supplier Industries. According to the recommendations of the Second Technical Committee Meeting on SMPRs held in Vienna in March 1985, this part contains the up-dated information formerly published in Annex 1 of the above mentioned TECDOC-347.

  5. Reactor core cooling device for nuclear power plant

    International Nuclear Information System (INIS)

    Tsuda, Masahiko.

    1992-01-01

    The present invention concerns a reactor core cooling facility upon rupture of pipelines in a BWR type nuclear power plant. That is, when rupture of pipelines should occur in the reactor container, an releasing safety valve operates instantly and then a depressurization valve operates to depressurize the inside of a reactor pressure vessel. Further, an injection valve of cooling water injection pipelines is opened and cooling water is injected to cool the reactor core from the time when the pressure is lowered to a level capable of injecting water to the pressure vessel by the static water head of a pool water as a water source. Further, steams released from the pressure vessel and steams in the pressure vessel are condensed in a high pressure/low pressure emergency condensation device and the inside of the reactor container is depressurized and cooled. When the reactor is isolated, since the steams in the pressure vessel are condensed in the state that the steam supply valve and the return valve of a steam supply pipelines are opened and a vent valve is closed, the reactor can be maintained safely. (I.S.)

  6. Management of Spent Nuclear Fuel from Nuclear Power Plant Reactor

    International Nuclear Information System (INIS)

    Wati, Nurokhim

    2008-01-01

    Management of spent nuclear fuel from Nuclear Power Plant (NPP) reactor had been studied to anticipate program of NPP operation in Indonesia. In this paper the quantity of generated spent nuclear fuel (SNF) is predicted based on the national electrical demand, power grade and type of reactor. Data was estimated using Pressurized Water Reactor (PWR) NPP type 1.000 MWe and the SNF management overview base on the experiences of some countries that have NPP. There are four strategy nuclear fuel cycle which can be developed i.e: direct disposal, reprocessing, DUPlC (Direct Use of Spent PWR Fuel In Candu) and wait and see. There are four alternative for SNF management i.e : storage at the reactor building (AR), away from reactor (AFR) using wet centralized storage, dry centralized storage AFR and prepare for reprocessing facility. For the Indonesian case, centralized facility of the wet type is recommended for PWR or BWR spent fuel. (author)

  7. Multiple microprocessor based nuclear reactor power monitor

    International Nuclear Information System (INIS)

    Lewis, P.S.; Ethridge, C.D.

    1979-01-01

    The reactor power monitor is a portable multiple-microprocessor controlled data acquisition device being built for the International Atomic Energy Association. Its function is to measure and record the hourly integrated operating thermal power level of a nuclear reactor for the purpose of detecting unannounced plutonium production. The monitor consists of a 3 He proportional neutron detector, a write-only cassette tape drive and control electronics based on two INTEL 8748 microprocessors. The reactor power monitor operates from house power supplied by the plant operator, but has eight hours of battery backup to cover power interruptions. Both the hourly power levels and any line power interruptions are recorded on tape and in memory. Intermediate dumps from the memory to a data terminal or strip chart recorder can be performed without interrupting data collection

  8. Power distribution forecasting device for reactors

    International Nuclear Information System (INIS)

    Tsukii, Makoto

    1981-01-01

    Purpose: To save expensive calculations on the forecasting of reactor power distribution. Constitution: Core status (CSD) such as entire coolant flow rate, pressures in the reactor, temperatures at the outlet and inlet and positions for control rods are inputted into a power distribution calculation device to calculate the power distribution based on physical models intermittently. Further, present power distribution is calculated based on in-core neutron flux measured values and CSD in a process control computer. Further, the ratio of the calculation results of the latter to those of the former is calculated, stored and inputted into a correction device to correct the forecast power distribution obtained by the power distribution calculation device. This enables to forecast the power distribution with excellent responsivity in the reactor site. (Furukawa, Y.)

  9. Pumps for German pressurized water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Dernedde, R.

    1984-01-01

    The article describes the development of a selection of pumps which are used in the primary coolant system and the high-pressure safety injection system and feed water system during the past 2 decades. The modifications were caused by the step-wise increasing power output of the plants from 300 MW up to 1300 MW. Additional important influences were given be the increased requirements for quality assurance and final-documentation. The good operating results of the delivered pumps proved that the reliability is independent of the volume of the software-package. The outlook expects that consolidation will be followed by additional steps for the order processing of components for the convoy pumps. KW: main coolant pump; primary system; boiler feed pump; reactor pump; secondary system; barrel insert pump; pressure water reactor; convoy pump; state of the art.

  10. Passive systems for light water reactors

    International Nuclear Information System (INIS)

    Adinolfi, R.; Noviello, L.

    1990-01-01

    The paper reviews the most original concepts that have been considered in Italy for the back-fitting of the nuclear power plants in order to reduce the probability and the importance of the release to the environment in case of a core melt. With reference either to BWR or PWR, passive concepts have been considered for back-fitting in the following areas: pump seals damage prevention and ECCS passive operation; reactor passive depressurization; molten reactor core passive cooling; metal containment passive water cooling through a water tank located at high level; containment isolation improvement through a sealing system; containment leaks control and limitation of environmental release. In addition some considerations will be made on the protection against external events introduced from the beginning on the PUN design either on building and equipment lay-out either on structure design. (author). 5 figs

  11. Power distribution monitor in a nuclear reactor

    International Nuclear Information System (INIS)

    Uematsu, Hitoshi

    1983-01-01

    Purpose: To enable accurate monitoring for the reactor power distribution within a short time in a case where abnormality occurs in in-core neutron monitors or in a case where the reactor core state changes after the calibration for the neutron monitors. Constitution: The power distribution monitor comprises a power distribution calculator adapted to be inputted counted values from a reactor core present state data instruments and calculate the neutron flux distribution in the reactor core and the power distribution based on previously incorporated physical models, an RCF calculator adapted to be inputted with the counted values from the in-core neutron monitors and the neutron flux distribution and the power distribution calculated in the power distribution calculator and compensate the counted errors included in the counted values form the in-core neutron monitors and the calculation errors included in the power distribution calculated in the power distribution calculator to thereby calculate the power distribution within the reactor core, and an input/output device for the input of the data required for said power distribution calculator and the display for the calculation result calculated in the RCF calculator. (Ikeda, J.)

  12. Power conditioning system for a nuclear reactor

    International Nuclear Information System (INIS)

    Higashigawa, Yuichi; Joge, Toshio.

    1981-01-01

    Purpose: To provide a power conditioning system for a BWR type reactor which has a function to be automatically operated within a range that the relationship between the heat power of the reactor and the electric power of an electric generator does not lose the safety of fuel by eliminating the unnecessary fluctuation of the power of the reactor. Constitution: A load request error signal fed from a conventional turbine control system to recirculation flow regulator is eliminated, and a reactor power conditioning system is newly provided, to which an electric generator power signal, a reactor average power area monitor signal and a load request signal are inputted. Thus, the load request signal is compared directly with the electric power of the electric generator, the recirculation flow rate is controlled by the compared result, and whether the correlation between the heat power of the reqctor and the electric power of the generator satisfies the correlation determined to prove the safety of fuel or not is checked. If this correlation is satisfied, the recirculation flow rate is merely automatically controlled. (Yoshino, Y.)

  13. An exergoeconomic investigation of waste heat recovery from the Gas Turbine-Modular Helium Reactor (GT-MHR) employing an ammonia–water power/cooling cycle

    International Nuclear Information System (INIS)

    Zare, V.; Mahmoudi, S.M.S.; Yari, M.

    2013-01-01

    A detailed exergoeconomic analysis is performed for a combined cycle in which the waste heat from the Gas Turbine-Modular Helium Reactor (GT-MHR) is recovered by an ammonia–water power/cooling cogeneration system. Parametric investigations are conducted to evaluate the effects of decision variables on the performances of the GT-MHR and combined cycles. The performances of these cycles are then optimized from the viewpoints of first law, second law and exergoeconomics. It is found that, combining the GT-MHR with ammonia–water cycle not only enhances the first and second law efficiencies of the GT-MHR, but also it improves the cycle performance from the exergoeconomic perspective. The results show that, when the optimization is based on the exergoeconomics, the unit cost of products is reduced by 5.4% in combining the two mentioned cycles. This is achieved with a just about 1% increase in total investment cost rate since the helium mass flow in the combined cycle is lower than that in the GT-MHR alone. - Highlights: • Application of exergetic cost theory to the combined GT-MHR/ammonia–water cycle. • Enhanced exergoeconomic performance for the combined cycle compared to the GT-MHR. • Comparable investment costs for the combined cycle and the GT-MHR alone

  14. Requirements for light water reactors

    International Nuclear Information System (INIS)

    Hedin, F.

    2009-01-01

    The EUR (European Utilities Requirements) is an organization founded in 1991 whose aim was to write down the European specifications and requirements for the future reactors of third generation. EUR gathers most of the nuclear power producers of Europe. The EUR document has been built on the large and varied experience of EUR members and can be used to elaborate invitations to tender for nuclear projects. 4000 requirements only for the nuclear part of the plant are listed, among which we have: -) the probability of core meltdown for a reactor must be less than 10 -6 per year, -) the service life of every component that is not replaceable must be 60 years, -) the capacity of the spent fuel pool must be sufficient to store 10-15 years of production without clearing out. The EUR document is both open and complete: every topic has been considered, it does not favor any type of reactor but can ban any technology that is too risky or has an unfavourable feedback experience. The assessment of the conformity with the EUR document of 7 reactor projects (BWR 90/, EPR, EP1000, SWR1000, ABWR, AP1000 and VVER-AES-92) has already be made. (A.C.)

  15. Nuclear power reactors: reactor safety and military and civil defence

    International Nuclear Information System (INIS)

    Hvinden, T.

    1976-01-01

    The formation of fission products and plutonium in reactors is briefly described, followed by a short general discussion of reactor safety. The interaction of reactor safety and radioactive release considerations with military and civil defence is thereafter discussed. Reactors and other nuclear plants are factors which must be taken into account in the defence of the district around the site, and as potential targets of both conventional and guerilla attacks and sabotage, requiring special defence. The radiological hazards arising from serious damage to a power reactor by conventional weapons are briefly discussed, and the benefits of underground siting evaluated. Finally the author discusses the significance of the IAEA safeguards work as a preventive factor. (JIW)

  16. Identification of fast power reactivity effect in nuclear power reactor

    International Nuclear Information System (INIS)

    Efanov, A.I.; Kaminskas, V.A.; Lavrukhin, V.S.; Rimidis, A.P.; Yanitskene, D.Yu.

    1987-01-01

    A nuclear power reactor is an object of control with distributed parameters, characteristics of which vary during operation time. At the same time the reactor as the object of control has internal feedback circuits, which are formed as a result of the effects of fuel parameters and a coolant (pressure, temperature, steam content) on the reactor breeding properties. The problem of internal feedback circuit identification in a nuclear power reactor is considered. Conditions for a point reactor identification are obtained and algorithms of parametric identification are constructed. Examples of identification of fast power reactivity effect for the RBMK-1000 reactor are given. Results of experimental testing have shown that the developed method of fast power reactivity effect identification permits according to the data of normal operation to construct adaptive models for the point nuclear reactor, designed for its behaviour prediction in stationary and transition operational conditions. Therefore, the models considered can be used for creating control systems of nuclear power reactor thermal capacity (of RBMK type reactor, in particular) which can be adapted to the change in the internal feedback circuit characteristics

  17. MODERATOR ELEMENTS FOR UNIFORM POWER NUCLEAR REACTOR

    Science.gov (United States)

    Balent, R.

    1963-03-12

    This patent describes a method of obtaining a flatter flux and more uniform power generation across the core of a nuclear reactor. The method comprises using moderator elements having differing moderating strength. The elements have an increasing amount of the better moderating material as a function of radial and/or axial distance from the reactor core center. (AEC)

  18. A nuclear power reactor concept for Brazil

    International Nuclear Information System (INIS)

    Sefidvash, F.

    1980-01-01

    For the purpose of developing an independent national nuclear technology and effective manner of transferring such a technology, as well as developing a modern reactor, a new nuclear power reactor concept is proposed which is considered as a suitable and viable project for Brazil to support its development and finally construct its prototype as an indigeneous venture. (Author) [pt

  19. New advanced small and medium nuclear power reactors: possible nuclear power plants for Australia

    International Nuclear Information System (INIS)

    Dussol, R.J.

    2003-01-01

    In recent years interest has increased in small and medium sized nuclear power reactors for generating electricity and process heat. This interest has been driven by a desire to reduce capital costs, construction times and interest during construction, service remote sites and ease integration into small grids. The IAEA has recommended that the term 'small' be applied to reactors with a net electrical output less than 300 MWe and the term 'medium' to 300-700 MWe. A large amount of experience has been gained over 50 years in the design, construction and operation of small and medium nuclear power reactors. Historically, 100% of commercial reactors were in these categories in 1951-1960, reducing to 21% in 1991-2000. The technologies involved include pressurised water reactors, boiling water reactors, high temperature gas-cooled reactors, liquid metal reactors and molten salt reactors. Details will be provided of two of the most promising new designs, the South African Pebble Bed Modular Reactor (PBMR) of about 110 MWe, and the IRIS (International Reactor Innovative and Secure) reactor of about 335 MWe. Their construction costs are estimated to be about US$l,000/kWe with a generating cost for the PBMR of about US1.6c/kWh. These costs are lower than estimated for the latest designs of large reactors such as the European Pressurised Reactor (EPR) designed for 1,600 MWe for use in Europe in the next decade. It is concluded that a small or medium nuclear power reactor system built in modules to follow an increasing demand could be attractive for generating low cost electricity in many Australian states and reduce problems arising from air pollution and greenhouse gas emissions from burning fossil fuels

  20. LIGHT WATER MODERATED NEUTRONIC REACTOR

    Science.gov (United States)

    Christy, R.F.; Weinberg, A.M.

    1957-09-17

    A uranium fuel reactor designed to utilize light water as a moderator is described. The reactor core is in a tank at the bottom of a substantially cylindrical cross-section pit, the core being supported by an apertured grid member and comprised of hexagonal tubes each containing a pluralily of fuel rods held in a geometrical arrangement between end caps of the tubes. The end caps are apertured to permit passage of the coolant water through the tubes and the fuel elements are aluminum clad to prevent corrosion. The tubes are hexagonally arranged in the center of the tank providing an amulus between the core and tank wall which is filled with water to serve as a reflector. In use, the entire pit and tank are filled with water in which is circulated during operation by coming in at the bottom of the tank, passing upwardly through the grid member and fuel tubes and carried off near the top of the pit, thereby picking up the heat generated by the fuel elements during the fission thereof. With this particular design the light water coolant can also be used as the moderator when the uranium is enriched by fissionable isotope to an abundance of U/sup 235/ between 0.78% and 2%.

  1. Auxiliary equipment for cooling water in a reactor

    International Nuclear Information System (INIS)

    Konno, Yasuhiro; Sakairi, Toshiaki.

    1975-01-01

    Object: To effectively make use of pressure energy of reactor water, which has heretofore been discarded, to enable supply of emergency power supply of high reliability and to prevent spreading of environmental contamination. Structure: Sea water pumped by a sea water supply pump is fed to a heat exchanger. Reactor water carried through piping on the side to be cooled is removed in heat by the heat exchanger to be cooled and returned, and then again returned to the reactor. On the other hand, sea water heated by the heat exchanger is fed to a water wheel to drive the water wheel, after which it is discharged into a discharging path. A generator may be directly connected to the water wheel to use the electricity generated by the generator as the emergency power source. (Kamimura, M.)

  2. 10 CFR 50.60 - Acceptance criteria for fracture prevention measures for lightwater nuclear power reactors for...

    Science.gov (United States)

    2010-01-01

    ... lightwater nuclear power reactors for normal operation. 50.60 Section 50.60 Energy NUCLEAR REGULATORY... lightwater nuclear power reactors for normal operation. (a) Except as provided in paragraph (b) of this section, all light-water nuclear power reactors, other than reactor facilities for which the...

  3. Safety considerations concerning light water reactors in Sweden

    International Nuclear Information System (INIS)

    Nilsson, T.

    1977-01-01

    In 1975 the Swedish Nuclear Power Inspectorate was commissioned by the Government to perform a Reactor Safety Study concerning commercial light water reactors. The study will contain an account of: - rules and regulations for reactor designs; - operation experience of the Swedish nuclear power plants with international comparisons; - the development of reactor designs during the last 10 years; - demands and conditions for inspection and inspection methods; - nuclear power plant operation organization; - training of operators; and - the results of research into nuclear safety. The study is scheduled for completion by July 1st, 1977, however, this paper gives a summary of the results of the Reactor Safety Study already available. The paper contains detailed statistics concerning safety related occurrences and reactor scrams in Sweden from July 1st, 1974 until the beginning of 1977

  4. SEISMIC DESIGN CRITERIA FOR NUCLEAR POWER REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, R. A.

    1963-10-15

    The nature of nuclear power reactors demands an exceptionally high degree of seismic integrity. Considerations involved in defining earthquake resistance requirements are discussed. Examples of seismic design criteria and applications of the spectrum technique are described. (auth)

  5. Status of the advanced boiling water reactor and simplified boiling water reactor

    International Nuclear Information System (INIS)

    Smith, P.F.

    1992-01-01

    This paper reports that the excess of U.S. electrical generating capacity which has existed for the past 15 years is coming to an end as we enter the 1990s. Environmental and energy security issues associated with fossil fuels are kindling renewed interest in the nuclear option. The importance of these issues are underscored by the National Energy Strategy (NES) which calls for actions which are designed to ensure that the nuclear power option is available to utilities. Utilities, utility associations, and nuclear suppliers, under the leadership of the Nuclear Power Oversight Committee (NPOC), have jointly developed a 14 point strategic plan aimed at establishing a predictable regulatory environment, standardized and pre-licensed Advanced Light Water Reactor (ALWR) nuclear plants, resolving the long-term waste management issue, and other enabling conditions. GE is participating in this national effort and GE's family of advanced nuclear power plants feature two new reactor designs, developed on a common technology base, aimed at providing a new generation of nuclear plants to provide safe, clean, economical electricity to the world's utilities in the 1990s and beyond. Together, the large-size (1300 MWe) Advanced Boiling Water Reactor (ABWR) and the small-size (600 MWe) Simplified Boiling Water Reactor (SBWR) are innovative, near-term candidates for expanding electrical generating capacity in the U.S. and worldwide. Both possess the features necessary to do so safely, reliably, and economically

  6. Nuclear power plant conference 2010 (NPC 2010): International conference on water chemistry of nuclear reactor systems and 8th International radiolysis, electrochemistry and materials performance workshop

    International Nuclear Information System (INIS)

    2010-01-01

    The Nuclear Plant Chemistry Conference was held in Quebec City, Quebec, Canada on October 3-7, 2010. It was hosted by the Canadian Nuclear Society and was held in Canada for the first time. This international event hosted over 300 attendees, two thirds from outside of Canada, mostly from Europe and and Far East. The conference is formally known as the International Conference on Water Chemistry of Nuclear Reactor Systems and is the 15th of a series that began in 1977 in Bournemouth, UK. The conference focussed on the latest developments in the science and technology of water chemistry control in nuclear reactor systems. Utility scientists, engineers and operations people met their counterparts from research institutes, service organizations and universities to address the challenges of chemistry control and degradation management of their complex and costly plants for the many decades that they are expected to operate. Following the four day conference, the 8th International Radiolysis, Electrochemistry and Materials Performance Workshop was held as associated, but otherwise free-standing event on Friday, October 8, 2010. It was also well attended and the primary focus was the effect of radiation on corrosion. When asked about the importance of chemistry in operating nuclear power plants, the primary organizers summarized it in the following statement: 'Once a nuclear plant is in operation, chemistry improvement is the only way to increase the longevity of the plant and its equipment'. The organisers of the 2010 Workshop and the NPC 2010 conference decided that these two events would be held consecutively, as previous, but for the first time the organization and registration would be shared, which proved to be a winning combination by the attendance.

  7. Control of operational transients in power reactors - Methodology

    International Nuclear Information System (INIS)

    Vukovic, D.

    1983-01-01

    By introducing the nuclear power stations in the electric power system, questions of their possibilities to satisfy system's demand arise. Control of operational transients (temperature and Xe 135 ) in power reactors by determining the optimal control rod strategy is given. Ti optimize the Xe 135 transients, the Pantryagin theorem of optimal processes is applied. For solving three dimensional, two-group diffusion equations the heterogeneous Feinberg-Galanin method with axial flux harmonics is adopted. An application of this formalism to three-dimensional, finite cylindrical pressurised water reactor radially reflected is presented. (author)

  8. Low power reactor for remote applications

    International Nuclear Information System (INIS)

    Meier, K.L.; Palmer, R.G.; Kirchner, W.L.

    1985-01-01

    A compact, low power reactor is being designed to provide electric power for remote, unattended applications. Because of the high fuel and maintenance costs for conventional power sources such as diesel generators, a reactor power supply appears especially attractive for remote and inaccessible locations. Operating at a thermal power level of 135 kWt, the power supply achieves a gross electrical output of 25 kWe from an organic Rankine cycle (ORC) engine. By intentional selection of design features stressing inherent safety, operation in an unattended mode is possible with minimal risk to the environment. Reliability is achieved through the use of components representing existing, proven technology. Low enrichment uranium particle fuel, in graphite core blocks, cooled by heat pipes coupled to an ORC converter insures long-term, virtually maintenance free, operation of this reactor for remote applications. 10 refs., 7 figs., 3 tabs

  9. MIT research reactor. Power uprate and utilization

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Lin-Wen [Nuclear Reactor Laboratory, Massachusetts Inst. of Technology, Cambridge, MA (United States)

    2012-03-15

    The MIT Research Reactor (MITR) is a university research reactor located on MIT campus. and has a long history in supporting research and education. Recent accomplishments include a 20% power rate to 6 MW and expanding advanced materials fuel testing program. Another important ongoing initiative is the conversion to high density low enrichment uranium (LEU) monolithic U-Mo fuel, which will consist of a new fuel element design and power increase to 7 MW. (author)

  10. Effect of water impurities on stress corrosion cracking in a boiling water reactor

    International Nuclear Information System (INIS)

    Ljungbery, L.G.; Cubicciotti, D

    1985-01-01

    A series of stress corrosion tests, including corrosion potential and water chemistry measurements, has been performed in the Swedish Ringhals-1 boiling water reactor. Tests have been run under reactor start-up and reactor power operation with normal reactor water conditions and with alternate water chemistry in which hydrogen is added to the feedwater to suppress stress corrosion cracking. During one alternate water chemistry test, there was significant intergranular corrosion cracking of sensitized stainless specimens. It is shown that nitrate and sulfate, arising from an accidental resin intrusion, are likely causes. Nitrate increases the oxidizing power of the water, and sulfate enhances cracking under oxidizing conditions. During another test under start-up conditions, enhanced transgranular stress corrosion cracking in low alloy steels and possibly initiation of cracking in a nickel base alloy was observed as a result of resin intrusion into the reactor water. The intrusion produced acid and sulfate, which are believed to enhance hydrogen cracking conditions

  11. Feed water control device in a reactor

    International Nuclear Information System (INIS)

    Okutani, Tetsuro.

    1984-01-01

    Purpose: To prevent substantial fluctuations of the water level in a nuclear reactor and always keep a constant standard level under any operation condition. Constitution: When the causes for fluctuating the reactor water level is resulted, a certain amount of correction signal is added to a level deviation signal for the difference between the reactor standard level and the actual reactor water level to control the flow rate of the feed water pump depending on the addition signal. If reactor scram should occur, for instance, a level correction signal changing stepwise depending on a scram signal is outputted and added to the level deviation signal. As the result, the flow rate of feed water sent into the reactor just after the scram is increased, whereby the lowering in the reactor water level upon scram can be decreased as compared with the case where no such level compensation signal is inputted. (Kamimura, M.)

  12. Good practices in heavy water reactor operation

    International Nuclear Information System (INIS)

    2010-06-01

    The value and importance of organizations in the nuclear industry engaged in the collection and analysis of operating experience and best practices has been clearly identified in various IAEA publications and exercises. Both facility safety and operational efficiency can benefit from such information sharing. Such sharing also benefits organizations engaged in the development of new nuclear power plants, as it provides information to assist in optimizing designs to deliver improved safety and power generation performance. In cooperation with Atomic Energy of Canada, Ltd, the IAEA organized the workshop on best practices in Heavy Water Reactor Operation in Toronto, Canada from 16 to 19 September 2008, to assist interested Member States in sharing best practices and to provide a forum for the exchange of information among participating nuclear professionals. This workshop was organized under Technical Cooperation Project INT/4/141, on Status and Prospects of Development for and Applications of Innovative Reactor Concepts for Developing Countries. The workshop participants were experts actively engaged in various aspects of heavy water reactor operation. Participants presented information on activities and practices deemed by them to be best practices in a particular area for consideration by the workshop participants. Presentations by the participants covered a broad range of operational practices, including regulatory aspects, the reduction of occupational dose, performance improvements, and reducing operating and maintenance costs. This publication summarizes the material presented at the workshop, and includes session summaries prepared by the chair of each session and papers submitted by the presenters

  13. Water treatment process for nuclear reactors

    International Nuclear Information System (INIS)

    Marwan, M.A.; Khattab, M.S.; Hanna, A.N.

    1992-01-01

    Water treatment for purification is very important in reactor cooling systems as well as in many industrial applications. Since impurities in water are main source of problems, it is necessary to achieve and maintain high purity of water before utilization in reactor cooling systems. The present work investigate water treatment process for nuclear reactor utilization. Analysis of output water chemistry proved that demineralizing process is an appropriate method. Extensive experiments were conducted to determine economical concentration of the regenerates to obtain the optimum quantity of pure water which reached to 15 cubic meter instead of 10 cubic-meter per regeneration. Running cost is consequently decreased by about 30 %. output water chemistry agree with the recommended specifications for reactor utilization. The radionuclides produced in the primary cooling water due to reactor operation are determined. It is found that 70% of radioactive contaminants are retained by purification through resin of reactor filter. Decontamination factor and filter efficiency are also determined.5 fig., 3 tab

  14. Preliminary nuclear power reactor technology qualitative assessment for Malaysia

    International Nuclear Information System (INIS)

    Shamsul Amri Sulaiman

    2011-01-01

    Since the worlds first nuclear reactor major breakthrough in December 02, 1942, the nuclear power industry has undergone tremendous development and evolution for more than half a century. After surpassing moratorium of nuclear power plant construction caused by catastrophic accidents at Three-mile island (1979) and Chernobyl (1986), today, nuclear energy is back on the policy agendas of many countries, both developed and developing, signaling nuclear revival or nuclear renaissance. Selection of suitable nuclear power technology has thus been subjected to primary attention. This short paper attempts to draw preliminary technology assessment for the first nuclear power reactor technology for Malaysia. Methodology employed is qualitative analysis collating recent finding of tnb-kepco preliminary feasibility study for nuclear power program in peninsular malaysia and other published presentations and/or papers by multiple experts. The results suggested that pressurized water reactor (PWR) is the prevailing technology in terms of numbers and plant performances, and while the commercialization of generation IV reactors is remote (e.g. Not until 2030), generation III/ III+ NPP models are commercially available on the market today. Five (5) major steps involved in reactor technology selection were introduced with a focus on introducing important aspects of selection criteria. Three (3) categories for the of reactor technology selection were used for the cursory evaluation. The outcome of these analyses shall lead to deeper and full analyses of the recommended reactor technologies for a comprehensive feasibility study in the near future. Recommendations for reactor technology option were also provided for both strategic and technical recommendations. The paper shall also implore the best way to select systematically the first civilian nuclear power reactor. (Author)

  15. Gaseous fuel reactors for power systems

    International Nuclear Information System (INIS)

    Helmick, H.H.; Schwenk, F.C.

    1978-01-01

    The Los Alamos Scientific Laboratory is participating in a NASA-sponsored program to demonstrate the feasibility of a gaseous uranium fueled reactor. The work is aimed at acquiring experimental and theoretical information for the design of a prototype plasma core reactor which will test heat removal by optical radiation. The basic goal of this work is for space applications, however, other NASA-sponsored work suggests several attractive applications to help meet earth-bound energy needs. Such potential benefits are small critical mass, on-site fuel processing, high fuel burnup, low fission fragment inventory in reactor core, high temperature for process heat, optical radiation for photochemistry and space power transmission, and high temperature for advanced propulsion systems. Low power reactor experiments using uranium hexafluoride gas as fuel demonstrated performance in accordance with reactor physics predictions. The final phase of experimental activity now in progress is the fabrication and testing of a buffer gas vortex confinement system

  16. reactor power control using fuzzy logic

    International Nuclear Information System (INIS)

    Ahmed, A.E.E.

    2001-01-01

    power stabilization is a critical issue in nuclear reactors. convention pd- controller is currently used in egypt second testing research reactor (ETRR-2). two fuzzy controllers are proposed to control the reactor power of ETRR-2 reactor. the design of the first one is based on a set of linguistic rules that were adopted from the human operators experience. after off-line fuzzy computations, the controller is a lookup table, and thus, real time controller is achieved. comparing this f lc response with the pd-controller response, which already exists in the system, through studying the expected transients during the normal operation of ETRR-2 reactor, the simulation results show that, fl s has the better response, the second controller is adaptive fuzzy controller, which is proposed to deal with system non-linearity . The simulation results show that the proposed adaptive fuzzy controller gives a better integral square error (i se) index than the existing conventional od controller

  17. Reactor Power Meter type SG-8

    Energy Technology Data Exchange (ETDEWEB)

    Glowacki, S W

    1981-01-01

    The report describes the principle and electronic circuits of the Reactor Power Meter type SG-8. The gamma radiation caused by the activity of the reactor first cooling circuit affectes the ionization chamber being the detector of the instrument. The output detector signal direct current is converted into the frequency of electric pulses by means of the current-to-frequency converter. The output converter frequency is measured by the digital frequency meter: the number of measured digits in time unit is proportional to the reactor power.

  18. Beyond the light water reactor

    International Nuclear Information System (INIS)

    Nero, A.V. Jr.

    1980-01-01

    One of the strong interests in examining alternative nuclear fuel cycles is to search for schemes that are more efficient than LWRs in their use of uranium, but that do not carry the additional proliferation hazard associated with widespread plutonium utilization. One possibility is to improve the uranium efficiency of current reactor types by other means than recycling. A second possibility, offering greater potential for improvement, is to utilize thorium-uranium fuel cycles in which uranium-233 is denatured by the addition of uranium-238, making enrichment necessary to yield weapons-usable material. The bulk of the reactor's fuel material would be thorium-232, so that most of the fissile material produced would be uranium-233. It is important to recognize that these two possibilities - once through improvements and denatured thorium-uranium - could be introduced sequentially in reactor types that are currently in use. Fuel cycles may change over time, but it is equally significant from the point of view of non-proliferation that they will also vary from place to place and, most importantly, from country to country. The author argues that alternative nuclear power systems and a slower growth may affect the diversion of nuclear materials to weapons. A real question, though, is whether we have time to explore the possibilities. It has become apparent that predictions made of the growth rate for nuclear power were too high. The 1000 large power plants the US was to have by the year 2000 have been reduced to fewer than 300. This reduces the pressure, resulting from our limited uranium resources, to push the LMFBR. Extra time gives us a chance to examine the possibilities

  19. The low-power low-pressure flow resonance in a natural circulation cooled boiling water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, T.H.J.J. van der; Stekelenburg, A.J.C. [Delft Univ. of Technology (Netherlands)

    1995-09-01

    The last few years the possibility of flow resonances during the start-up phase of natural circulation cooled BWRs has been put forward by several authors. The present paper reports on actual oscillations observed at the Dodewaard reactor, the world`s only operating BWR cooled by natural circulation. In addition, results of a parameter study performed by means of a simple theoretical model are presented. The influence of relevant parameters on the resonance characteristics, being the decay ratio and the resonance frequency, is investigated and explained.

  20. Core design concepts for high performance light water reactors

    International Nuclear Information System (INIS)

    Schulenberg, T.; Starflinger, J.

    2007-01-01

    Light water reactors operated under supercritical pressure conditions have been selected as one of the promising future reactor concepts to be studied by the Generation IV International Forum. Whereas the steam cycle of such reactors can be derived from modern fossil fired power plants, the reactor itself, and in particular the reactor core, still need to be developed. Different core design concepts shall be described here to outline the strategy. A first option for near future applications is a pressurized water reactor with 380 .deg. C core exit temperature, having a closed primary loop and achieving 2% pts. higher net efficiency and 24% higher specific turbine power than latest pressurized water reactors. More efficiency and turbine power can be gained from core exit temperatures around 500 .deg. C, which require a multi step heat up process in the core with intermediate coolant mixing, achieving up to 44% net efficiency. The paper summarizes different core and assembly design approaches which have been studied recently for such High Performance Light Water Reactors