WorldWideScience

Sample records for power plants control

  1. Control of power plants and power systems. Proceedings

    International Nuclear Information System (INIS)

    Canales-Ruiz, R.

    1996-01-01

    The 88 papers in this volume constitute the proceedings of the International Federation of Automatic Control Symposium held in Mexico in 1995. The broad areas which they cover are: self tuning control; power plant operations; dynamic stability; fuzzy logic applications; power plants modelling; artificial intelligence applications; power plants simulation; voltage control; control of hydro electric units; state estimation; fault diagnosis and monitoring systems; system expansion and operation planning; security assessment; economic dispatch and optimal load flow; adaptive control; distribution; transient stability and preventive control; modelling and control of nuclear plant; knowledge data bases for automatic learning methods applied to power system dynamic security assessment; control of combined cycle units; power control centres. Separate abstracts have been prepared for the three papers relating to nuclear power plants. (UK)

  2. Power control of the Angra-2 Nuclear Power Plant

    International Nuclear Information System (INIS)

    Souza Mendes, J.E. de

    1986-01-01

    The systems for the power control of the Nuclear Power Plant Angra 2 have a high degree of automation so that few operator actions are required during power operation. The power control strategy and the operation principles of the control systems, here presented, make possible a great flexibility of the Plant operation. (Author) [pt

  3. Reactor power control device in BWR power plant

    International Nuclear Information System (INIS)

    Kurosawa, Tsuneo.

    1997-01-01

    The present invention provides a device for controlling reactor power based on a start-up/shut down program in a BWR type reactor, as well as for detecting deviation, if occurs, of the power from the start-up/shut down program, to control a recycling flow rate control system or control rod drive mechanisms. Namely, a power instruction section successively executes the start-up/shut down program and controls the coolant recycling system and the control rod driving mechanisms to control the power. A current state monitoring and calculation section receives a process amount, calculates parameters showing the plant state, compares/monitors them with predetermined values, detecting the deviation, if occurs, of the plant state from the start-up/shut down program, and prevents output of a power increase control signal which leads to power increase. A forecasting and monitoring/calculation section forecasts and calculates the plant state when not yet executed steps of the start-up/shut down program are performed, stops the execution of the start-up/shut down program in the next step in a case of forecasting that the results of the calculation will deviate from the start-up/shut down program. (I.S.)

  4. Control of renewable distributed power plants

    OpenAIRE

    Bullich Massagué, Eduard

    2015-01-01

    The main objective of this master thesis is to design a power plant controller for a photo- voltaic (PV) power plant. In a first stage, the current situation of the status of the electrical grid is analysed. The electrical network structure is moving from a conventional system (with centralized power generation, unidirectional power ows, easy control) to a smart grid system consisting on distributed generation, renewable energies, smart and complex control architecture and ...

  5. Optimal control systems in hydro power plants

    International Nuclear Information System (INIS)

    Babunski, Darko L.

    2012-01-01

    The aim of the research done in this work is focused on obtaining the optimal models of hydro turbine including auxiliary equipment, analysis of governors for hydro power plants and analysis and design of optimal control laws that can be easily applicable in real hydro power plants. The methodology of the research and realization of the set goals consist of the following steps: scope of the models of hydro turbine, and their modification using experimental data; verification of analyzed models and comparison of advantages and disadvantages of analyzed models, with proposal of turbine model for design of control low; analysis of proportional-integral-derivative control with fixed parameters and gain scheduling and nonlinear control; analysis of dynamic characteristics of turbine model including control and comparison of parameters of simulated system with experimental data; design of optimal control of hydro power plant considering proposed cost function and verification of optimal control law with load rejection measured data. The hydro power plant models, including model of power grid are simulated in case of island ing and restoration after breakup and load rejection with consideration of real loading and unloading of hydro power plant. Finally, simulations provide optimal values of control parameters, stability boundaries and results easily applicable to real hydro power plants. (author)

  6. Intelligent distributed control for nuclear power plants

    International Nuclear Information System (INIS)

    Klevans, E.H.

    1992-01-01

    This project was initiated in September 1989 as a three year project to develop and demonstrate Intelligent Distributed Control (IDC) for Nuclear Power Plants. The body of this Third Annual Technical Progress report summarizes the period from September 1991 to October 1992. There were two primary goals of this research project. The first goal was to combine diagnostics and control to achieve a highly automated power plant as described by M.A. Schultz. His philosophy, is to improve public perception of the safety of nuclear power plants by incorporating a high degree of automation where a greatly simplified operator control console minimizes the possibility of human error in power plant operations. To achieve this goal, a hierarchically distributed control system with automated responses to plant upset conditions was pursued in this research. The second goal was to apply this research to develop a prototype demonstration on an actual power plant system, the EBR-2 stem plant. Emphasized in this Third Annual Technical Progress Report is the continuing development of the in-plant intelligent control demonstration for the final project milestone and includes: simulation validation and the initial approach to experiment formulation

  7. Fuzzy logic control of nuclear power plant

    International Nuclear Information System (INIS)

    Yao Liangzhong; Guo Renjun; Ma Changwen

    1996-01-01

    The main advantage of the fuzzy logic control is that the method does not require a detailed mathematical model of the object to be controlled. In this paper, the shortcomings and limitations of the model-based method in nuclear power plant control were presented, the theory of the fuzzy logic control was briefly introduced, and the applications of the fuzzy logic control technology in nuclear power plant controls were surveyed. Finally, the problems to be solved by using the fuzzy logic control in nuclear power plants were discussed

  8. Power control device of an atomic power plant

    International Nuclear Information System (INIS)

    Ootsuka, Shiro; Ito, Takero.

    1980-01-01

    Purpose: To improve the power controllability of an atomic power plant by improving the controllability, response and stability of the recirculation flow rate. Constitution: The power control device comprises a power detector of the reactor, which detects and operates the reactor power from the thermal power, neutron flux or the process quantity controlling the same, and a deviation detector which seeks deviation between the power signal of the power detector and the power set value of the reactor or power station. By use of the power control device constituted in this manner, the core flow rate is regulated by the power signal of the deviation detector thereby to control the power. (Aizawa, K.)

  9. Intelligent distributed control for nuclear power plants

    International Nuclear Information System (INIS)

    Klevans, E.H.

    1993-01-01

    This project was initiated in September 1989 as a three year project to develop and demonstrate Intelligent Distributed Control (IDC) for Nuclear Power Plants. There were two primary goals of this research project. The first goal was to combine diagnostics and control to achieve a highly automated power plant as described by M.A. Schultz. The second goal was to apply this research to develop a prototype demonstration on an actual power plant system, the EBR-2 steam plant. Described in this Final (Third Annual) Technical Progress Report is the accomplishment of the project's final milestone, an in-plant intelligent control experiment conducted on April 1, 1993. The development of the experiment included: simulation validation, experiment formulation and final programming, procedure development and approval, and experimental results. Other third year developments summarized in this report are: (1) a theoretical foundation for Reconfigurable Hybrid Supervisory Control, (2) a steam plant diagnostic system, (3) control console design tools and (4) other advanced and intelligent control

  10. Intelligent distributed control for nuclear power plants

    International Nuclear Information System (INIS)

    Klevans, E.H.; Edwards, R.M.; Ray, A.; Lee, K.Y.; Garcia, H.E.: Chavez, C.M.; Turso, J.A.; BenAbdennour, A.

    1991-01-01

    In September of 1989 work began on the DOE University Program grant DE-FG07-89ER12889. The grant provides support for a three year project to develop and demonstrate Intelligent Distributed Control (IDC) for Nuclear Power Plants. The body of this Second Annual Technical Progress report covers the period from September 1990 to September 1991. It summarizes the second year accomplishments while the appendices provide detailed information presented at conference meetings. These are two primary goals of this research. The first is to combine diagnostics and control to achieve a highly automated power plant as described by M.A. Schultz, a project consultant during the first year of the project. This philosophy, as presented in the first annual technical progress report, is to improve public perception of the safety of nuclear power plants by incorporating a high degree automation where greatly simplified operator control console minimizes the possibility of human error in power plant operations. A hierarchically distributed control system with automated responses to plant upset conditions is the focus of our research to achieve this goal. The second goal is to apply this research to develop a prototype demonstration on an actual power plant system, the EBR-II steam plant

  11. Linguistic control of a nuclear power plant

    International Nuclear Information System (INIS)

    Feeley, J.J.; Johnson, J.C.

    1987-01-01

    A multivariable linguistic controller based on fuzzy set theory is discussed and its application to a pressurized water nuclear power plant control is illustrated by computer simulation. The nonlinear power plant simulation model has nine states, two control inputs, one disturbance input, and two outputs. Although relatively simple, the model captures the essential coupled nonlinear plant dynamics and is convenient to use for control system studies. The use of an adaptive version of the controller is also demonstrated by computer simulation

  12. Operation control device for nuclear power plants

    International Nuclear Information System (INIS)

    Suto, Osamu.

    1982-01-01

    Purpose: To render the controlling functions of a central control console more centralized by constituting the operation controls for a nuclear power plant with computer systems having substantially independent functions such as those of plant monitor controls, reactor monitor management and CRT display and decreasing interactions between each of the systems. Constitution: An input/output device for the input of process data for a nuclear power plant and indication data for a plant control console is connected to a plant supervisory and control computer system and a display computer system, the plant supervisory control computer system and a reactor and management computer system are connected with a CRT display control device, a printer and a CRT display input/output device, and the display computer system is connected with the CRT display control device and the CRT display unit on the central control console, whereby process input can be processed and displayed at high speed. (Yoshino, Y.)

  13. Nuclear power plant control and instrumentation 1982. Proceedings of an international symposium on nuclear power plant control and instrumentation

    International Nuclear Information System (INIS)

    1983-01-01

    Ever increasing demands for nuclear power plant safety and availability imply a need for the introduction of modern measurement and control methods, together with data processing techniques based on the latest advances in electronic components, transducers and computers. Nuclear power plant control and instrumentation is therefore an extremely rapidly developing field. The present symposium, held in Munich, FR Germany, was prepared with the help of the IAEA International Working Group on Nuclear Power Plant Control and Instrumentation and organized in close co-operation with the Gesellschaft fur Reaktorsicherheit, Federal Republic of Germany. A number of developments were highlighted at the Munich symposium: - The increased use of computers can bring clear advantages and this technique is now proven as a tool for supervising and controlling plant operation. Advanced computerized systems for operator support are being developed on a large scale in many countries. The progress in this field is quite obvious, especially in disturbance analysis, safety parameter display, plant operator guidance and plant diagnostics. The new trend of introducing computers and microprocessors in protection systems makes it easy to implement 'defence-in-depth' strategies which give better assurance of correct system responses and also prevent unnecessary reactor trips, thus improving plant availability. The introduction of computerized systems for control of reactor power, reactor water level and reactor pressure as well as for reactor start-up and shut-down could improve the reliability and availability of nuclear power plants. The rapid technical development in the area of control and instrumentation makes it necessary to plan for at least one replacement of obsolete equipment in the course of the 30 years lifetime of a nuclear power plant and retrofitting of currently operating reactors with new control systems. Major design improvements and regulatory requirements also require

  14. Model-Based Power Plant Master Control

    Energy Technology Data Exchange (ETDEWEB)

    Boman, Katarina; Thomas, Jean; Funkquist, Jonas

    2010-08-15

    The main goal of the project has been to evaluate the potential of a coordinated master control for a solid fuel power plant in terms of tracking capability, stability and robustness. The control strategy has been model-based predictive control (MPC) and the plant used in the case study has been the Vattenfall power plant Idbaecken in Nykoeping. A dynamic plant model based on nonlinear physical models was used to imitate the true plant in MATLAB/SIMULINK simulations. The basis for this model was already developed in previous Vattenfall internal projects, along with a simulation model of the existing control implementation with traditional PID controllers. The existing PID control is used as a reference performance, and it has been thoroughly studied and tuned in these previous Vattenfall internal projects. A turbine model was developed with characteristics based on the results of steady-state simulations of the plant using the software EBSILON. Using the derived model as a representative for the actual process, an MPC control strategy was developed using linearization and gain-scheduling. The control signal constraints (rate of change) and constraints on outputs were implemented to comply with plant constraints. After tuning the MPC control parameters, a number of simulation scenarios were performed to compare the MPC strategy with the existing PID control structure. The simulation scenarios also included cases highlighting the robustness properties of the MPC strategy. From the study, the main conclusions are: - The proposed Master MPC controller shows excellent set-point tracking performance even though the plant has strong interactions and non-linearity, and the controls and their rate of change are bounded. - The proposed Master MPC controller is robust, stable in the presence of disturbances and parameter variations. Even though the current study only considered a very small number of the possible disturbances and modelling errors, the considered cases are

  15. Adaptive Neural Network Algorithm for Power Control in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Husam Fayiz, Al Masri

    2017-01-01

    The aim of this paper is to design, test and evaluate a prototype of an adaptive neural network algorithm for the power controlling system of a nuclear power plant. The task of power control in nuclear reactors is one of the fundamental tasks in this field. Therefore, researches are constantly conducted to ameliorate the power reactor control process. Currently, in the Department of Automation in the National Research Nuclear University (NRNU) MEPhI, numerous studies are utilizing various methodologies of artificial intelligence (expert systems, neural networks, fuzzy systems and genetic algorithms) to enhance the performance, safety, efficiency and reliability of nuclear power plants. In particular, a study of an adaptive artificial intelligent power regulator in the control systems of nuclear power reactors is being undertaken to enhance performance and to minimize the output error of the Automatic Power Controller (APC) on the grounds of a multifunctional computer analyzer (simulator) of the Water-Water Energetic Reactor known as Vodo-Vodyanoi Energetichesky Reaktor (VVER) in Russian. In this paper, a block diagram of an adaptive reactor power controller was built on the basis of an intelligent control algorithm. When implementing intelligent neural network principles, it is possible to improve the quality and dynamic of any control system in accordance with the principles of adaptive control. It is common knowledge that an adaptive control system permits adjusting the controller’s parameters according to the transitions in the characteristics of the control object or external disturbances. In this project, it is demonstrated that the propitious options for an automatic power controller in nuclear power plants is a control system constructed on intelligent neural network algorithms. (paper)

  16. Research on control function switch of nuclear power plant control room

    International Nuclear Information System (INIS)

    Mei Shibo; Mao Ting; Cheng Bo; Zhang Gang

    2014-01-01

    The nuclear power plant provides main control room (MCR) to the unit operators for the plant monitoring and control, and provides the remote shutdown station (RSS) as the back-up control room, which is used only when MCR is unavailable. The RSS could be used to monitor and control the plant, bring the plant into shutdown state and remove the residual heat. The command from MCR and RSS is blocked by each other and can not be executed at the same time. The operation mode switch function between MCR and RSS is carried out by MCR/RSS mode switches. The operation mode switch scheme of CPR1000, ERP and AP1000 were compared and researched, and some design bases for new nuclear power plant were submitted in this paper. These design bases could be referred during the design of control function switch for the new nuclear power plants, in order to put forward a more practical, simple, safe and convenient scheme. (authors)

  17. Joint excitation and reactive power control in thermal power plant

    Directory of Open Access Journals (Sweden)

    Dragosavac Jasna

    2013-01-01

    Full Text Available The coordinated voltage and reactive power controller, designed for the thermal power plant, is presented in the paper. A brief explanation of the need for such device is given and justification for commissioning of such equipment is outlined. After short description of the theoretical background of the proposed control design, the achieved features of the commissioned equipment are fully given. Achieved performances are illustrated by recorded reactive power and bus voltage responses after commissioning of the described equipment into the largest thermal power plant in Serbia. As it can be seen in presented records, all design targets are met.

  18. Reactive power control with CHP plants - A demonstration

    DEFF Research Database (Denmark)

    Nyeng, Preben; Østergaard, Jacob; Andersen, Claus A.

    2010-01-01

    power rating of 7.3 MW on two synchronous generators. A closed-loop control is implemented, that remote controls the CHP plant to achieve a certain reactive power flow in a near-by substation. The solution communicates with the grid operator’s existing SCADA system to obtain measurements from...... lines to underground cables has changed the reactive power balance, and third, the TSO has introduced restrictions in the allowed exchange of reactive power between the transmission system and distribution grids (known as the Mvar-arrangement). The demonstration includes a CHP plant with an electric......In this project the potential for ancillary services provision by distributed energy resources is investigated. Specifically, the provision of reactive power control by combined heat and power plants is examined, and the application of the new standard for DER communication systems, IEC 61850...

  19. Computerized control and management at the Temelin nuclear power plant

    International Nuclear Information System (INIS)

    Mitosinka, J.; Korec, J.

    1992-01-01

    The proposed automation of the nuclear power plant control system includes a division of the control system into three hierarchic levels, supplemented with an additional level. These comprise the automated system of control of technological processes, the all-plant control of the power-generating process, the control of backup activities and of technical and economic activities, and top managerial control. The efficiency of the nuclear power plant operation, i.e. attainment of the maximum electricity output with minimum costs while securing the required safety, is the principal criterion in the design of the data model. Listed are tasks that would lend themselves to automation within the automated system of nuclear power plant control, and the basic scheme of their automation as follows from an analysis performed at the Temelin nuclear power plant. (Z.S). 2 figs., 2 refs

  20. Power control strategy of a photovoltaic power plant for microgrid applications

    Energy Technology Data Exchange (ETDEWEB)

    Li, Peng [Ecole Centrale de Lille, Cite Scientifique, Villeneuve d' Ascq (FR). Laboratoire d' Electrotechnique et d' Electronique de Puissance de Lille (L2EP); Ecole Nationale Superieure d' Arts et Metiers, Lille (FR). Laboratoire d' Electrotechnique et d' Electronique de Puissance de Lille (L2EP); Francois, Bruno [Ecole Centrale de Lille, Cite Scientifique, Villeneuve d' Ascq (FR). Laboratoire d' Electrotechnique et d' Electronique de Puissance de Lille (L2EP); Degobert, Philippe [Ecole Nationale Superieure d' Arts et Metiers, Lille (FR). Laboratoire d' Electrotechnique et d' Electronique de Puissance de Lille (L2EP); Robyns, Benoit [Hautes Etudes d' Ingenieur, Lille (FR). Laboratoire d' Electrotechnique et d' Electronique de Puissance de Lille (L2EP)

    2008-07-01

    Photovoltaic power plants operates currently maximal power point tracking (MPPT). For microgrid applications, however, a PV power plant can not operate in the MPPT mode in all conditions. When a microgrid is islanded from the grid with few loads, a limitation of the produced power by PV plants is required and prescribed by the Distribution System Operator. This paper proposes a power control technique integrated into a dynamic model of a PV power plant by using equivalent continuous models of power electronic converters. The power limitation mode of the PV is performed by applying the correct PV terminal voltage, which corresponds to the prescribed power reference. The proposed global model is validated by simulations with the help of Matlab-Simulink trademark. (orig.)

  1. Computer-based control systems of nuclear power plants

    International Nuclear Information System (INIS)

    Kalashnikov, V.K.; Shugam, R.A.; Ol'shevsky, Yu.N.

    1975-01-01

    Computer-based control systems of nuclear power plants may be classified into those using computers for data acquisition only, those using computers for data acquisition and data processing, and those using computers for process control. In the present paper a brief review is given of the functions the systems above mentioned perform, their applications in different nuclear power plants, and some of their characteristics. The trend towards hierarchic systems using control computers with reserves already becomes clear when consideration is made of the control systems applied in the Canadian nuclear power plants that pertain to the first ones equipped with process computers. The control system being now under development for the large Soviet reactors of WWER type will also be based on the use of control computers. That part of the system concerned with controlling the reactor assembly is described in detail

  2. Optimal control of wind power plants

    NARCIS (Netherlands)

    Steinbuch, M.; Boer, de W.W.; Bosgra, O.H.; Peeters, S.A.W.M.; Ploeg, J.

    1988-01-01

    The control system design for a wind power plant is investigated. Both theoverall wind farm control and the individual wind turbine control effect thewind farm dynamic performance.For a wind turbine with a synchronous generator and rectifier/invertersystem a multivariable controller is designed.

  3. Power plant instrumentation and control handbook a guide to thermal power plants

    CERN Document Server

    Basu, Swapan

    2014-01-01

    The book discusses instrumentation and control in modern fossil fuel power plants, with an emphasis on selecting the most appropriate systems subject to constraints engineers have for their projects. It provides all the plant process and design details, including specification sheets and standards currently followed in the plant. Among the unique features of the book are the inclusion of control loop strategies and BMS/FSSS step by step logic, coverage of analytical instruments and technologies for pollution and energy savings, and coverage of the trends toward filed bus systems and integratio

  4. Model-free adaptive control of advanced power plants

    Science.gov (United States)

    Cheng, George Shu-Xing; Mulkey, Steven L.; Wang, Qiang

    2015-08-18

    A novel 3-Input-3-Output (3.times.3) Model-Free Adaptive (MFA) controller with a set of artificial neural networks as part of the controller is introduced. A 3.times.3 MFA control system using the inventive 3.times.3 MFA controller is described to control key process variables including Power, Steam Throttle Pressure, and Steam Temperature of boiler-turbine-generator (BTG) units in conventional and advanced power plants. Those advanced power plants may comprise Once-Through Supercritical (OTSC) Boilers, Circulating Fluidized-Bed (CFB) Boilers, and Once-Through Supercritical Circulating Fluidized-Bed (OTSC CFB) Boilers.

  5. Emergency control centers for nuclear power plants

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    Guidance is provided for the development and implementation of emergency control centers for nuclear power plants, including nuclear plant control room, nuclear plant company headquarters, emergency control center, and nuclear plant alternate emergency control center. Requirements and recommendations are presented for the mission, communications, instrumentation and equipment associated with each type of control center. Decisional aids, manning requirements and resources are also given; the decision aids cover both the accident assessment and protective action areas. Both normal and alternate means of communications are considered. Off-site emergency control centers, although not covered in the strict sense by this standard, are considered in an appendix

  6. Optimal estimation and control in nuclear power plants

    International Nuclear Information System (INIS)

    Purviance, J.E.; Tylee, J.L.

    1982-08-01

    Optimal estimation and control theories offer the potential for more precise control and diagnosis of nuclear power plants. The important element of these theories is that a mathematical plant model is used in conjunction with the actual plant data to optimize some performance criteria. These criteria involve important plant variables and incorporate a sense of the desired plant performance. Several applications of optimal estimation and control to nuclear systems are discussed

  7. Design of power control system using SMES and SVC for fusion power plant

    International Nuclear Information System (INIS)

    Niiyama, K; Yagai, T; Tsuda, M; Hamajima, T

    2008-01-01

    A SMES (Superconducting Magnetic Energy Storage System) system with converter composed of self-commutated valve devices such as GTO and IGBT is available to control active and reactive power simultaneously. A SVC (Static Var Compensators) or STATCOM (Static Synchronous Compensator) is widely employed to reduce reactive power in power plants and substations. Owing to progress of power electronics technology using GTO and IGBT devices, power converters in the SMES system and the SVC can easily control power flow in few milliseconds. Moreover, since the valve devices for the SMES are equivalent to those for the SVC, the device cost must be reduced. In this paper the basic control system combined with the SMES and SVC is designed for large pulsed loads of a nuclear fusion power plant. This combined system largely expands the reactive power control region as well as the active one. The simulation results show that the combined system is effective and prospective for the nuclear fusion power plant

  8. Distributed Low-Complexity Controller for Wind Power Plant in Derated Operation

    DEFF Research Database (Denmark)

    Biegel, Benjamin; Madjidian, Daria; Spudic, Vedrana

    2013-01-01

    We consider a wind power plant of megawatt wind turbines operating in derated mode. When operating in this mode, the wind power plant controller is free to distribute power set-points to the individual turbines, as long as the total power demand is met. In this work, we design a controller...... that exploits this freedom to reduce the fatigue on the turbines in the wind power plant. We show that the controller can be designed in a decentralized manner, such that each wind turbine is equipped with a local low-complexity controller relying only on few measurements and little communication. As a basis...... for the controller design, a linear wind turbine model is constructed and verified in an operational wind power plant of megawatt turbines. Due to limitations of the wind power plant available for tests, it is not possible to implement the developed controller; instead the final distributed controller is evaluated...

  9. Control system security in nuclear power plant

    International Nuclear Information System (INIS)

    Li Jianghai; Huang Xiaojin

    2012-01-01

    The digitalization and networking of control systems in nuclear power plants has brought significant improvements in system control, operation and maintenance. However, the highly digitalized control system also introduces additional security vulnerabilities. Moreover, the replacement of conventional proprietary systems with common protocols, software and devices makes these vulnerabilities easy to be exploited. Through the interaction between control systems and the physical world, security issues in control systems impose high risks on health, safety and environment. These security issues may even cause damages of critical infrastructures and threaten national security. The importance of control system security by reviewing several control system security incidents that happened in nuclear power plants was showed in recent years. Several key difficulties in addressing these security issues were described. Finally, existing researches on control system security and propose several promising research directions were reviewed. (authors)

  10. Position control of a floating nuclear power plant

    International Nuclear Information System (INIS)

    Motohashi, K.; Hamamoto, T.; Sasaki, R.; Kojima, M.

    1993-01-01

    In spite of the increasing demand of electricity in Japan, the sites of nuclear power plants suitable for conventional seismic regulations become severely limited. Under these circumstances, several types of advanced siting technology have been developed. Among them, floating power plants have a great advantage of seismic isolation that leads to the seismic design standardization and factory fabrication. The feasibility studies or preliminary designs of floating power plants enclosed by breakwaters in the shallow sea have been carried out last two decades in U.S. and Japan. On the other hand, there are few investigations on the dynamic behavior of floating power plants in the deep sea. The offshore floating nuclear power plants have an additional advantage in that large breakwaters are not required, although the safety checking is inevitable against wind-induced waves. The tension-leg platforms which have been constructed for oil drilling in the deep sea seem to be a promising offshore siting technology of nuclear power plants. The tension-leg mooring system can considerably restrain the heave and pitch of a floating power plant because of significant stiffness in the vertical direction. Different from seismic effects, wind-induced waves may be predicted in advance by making use of ocean weather forecasts using artificial satellites. According to the wave prediction, the position of the floating plant may be controlled by adjusting the water content in ballast tanks and the length of tension-legs before the expected load arrives. The position control system can reduce the wave force acting on the plant and to avoid the unfavorable response behavior of the plant. In this study a semi-submerged circular cylinder with tension-legs is considered as a mathematical model. The configuration of circular cylinder is effective because the dynamic behavior does not depend on incident wave directions. It is also unique in that it can obtain the closed-form solution of

  11. Monitor and control device in a nuclear power plant

    International Nuclear Information System (INIS)

    Neda, Toshikatsu.

    1980-01-01

    Purpose: To facilitate and ensure monitor and control, as well as improve the operation efficiency and save man power, by render the operation automatic utilizing a process computer and centralizing the monitor and control functions. Constitution: All of the operations from the start up to stop in a nuclear power plant are conducted by way of a monitor and control board. The process data for the nuclear power plant are read into the process computer and displayed on a CRT display. Controls are carried out respectively for the control rod on a control rod panel, for the feedwater rate on a feedwater control panel, for the recycling flow rate on a recycling control panel and for the turbine generator on a turbine control panel. When the operation is conducted by an automatic console, operation signals from the console are imputted into the process computer and the state of the power plant is monitored and automatic operation is carried out based on the operation signals and from signals from each of the panels. (Moriyama, K.)

  12. Influence of in-plant air pollution control measures on power plant and system operation

    International Nuclear Information System (INIS)

    Kurten, H.

    1990-01-01

    The burning of fossil fuels causes the emission of air pollutants which have harmful environmental impact. Consequently many nations have in the last few years established regulations for air pollution control and have initiated the development and deployment of air pollution control systems in power plants. The paper describes the methods used for reducing particulate, SO 2 and NO x emissions, their application as backfit systems and in new plants, the power plant capacity equipped with such systems in the Federal Republic of Germany and abroad and the additional investment and operating costs incurred. It is to be anticipated that advanced power plant designs will produce lower pollutant emissions and less waste at enhanced efficiency levels. A comparison with power generation in nuclear power plants completes the first part of the paper. This paper covers the impact of the above-mentioned air pollution control measures on unit commitment in daily operation

  13. Voltage Control in Wind Power Plants with Doubly Fed Generators

    DEFF Research Database (Denmark)

    Garcia, Jorge Martinez

    In this work, the process of designing a wind power plant composed of; doubly fed induction generators, a static compensator unit, mechanically switched capacitors and on-load tap changer, for voltage control is shown. The selected control structure is based on a decentralized system, since...... supplied by the doubly fed induction generator wind turbines is overcome by installing a reactive power compensator, i.e. a static compensator unit, which is coordinated with the plant control by a specific dispatcher. This dispatcher is set according to the result of the wind power plant load flow....... To release the operation of the converters during steady-state disturbances, mechanically switched capacitors are installed in the wind power plant, which due to their characteristics, they are appropriate for permanent disturbances compensation. The mechanically switched capacitors are controlled to allow...

  14. Nonlinear Fuzzy Model Predictive Control for a PWR Nuclear Power Plant

    Directory of Open Access Journals (Sweden)

    Xiangjie Liu

    2014-01-01

    Full Text Available Reliable power and temperature control in pressurized water reactor (PWR nuclear power plant is necessary to guarantee high efficiency and plant safety. Since the nuclear plants are quite nonlinear, the paper presents nonlinear fuzzy model predictive control (MPC, by incorporating the realistic constraints, to realize the plant optimization. T-S fuzzy modeling on nuclear power plant is utilized to approximate the nonlinear plant, based on which the nonlinear MPC controller is devised via parallel distributed compensation (PDC scheme in order to solve the nonlinear constraint optimization problem. Improved performance compared to the traditional PID controller for a TMI-type PWR is obtained in the simulation.

  15. Minimum critical power ratio control device for nuclear power plants

    International Nuclear Information System (INIS)

    Kurosawa, Tsuneo.

    1991-01-01

    Reactor core flowrate is determined by comparing a minimum critical power ratio calculated based on the status amount of a nuclear power plant and a control value for the minimum critical power ratio that depends on the reactor core flowrate. Further, the minimum critical power ratio and a control value for the minimum critical power ratio that depends on the reactor thermal power are compared to set a reactor thermal power converted to a reactor core flowrate. Deviation between the thus determined reactor core flowrate and the present reactor core flowrate is calculated. When the obtained deviation is lower than a rated value, a reactor core flowrate set signal is generated to a reactor flowrate control means, to control the reactor power by a recycling flowrate control system of the reactor. On the other hand, when the deviation exceeds the determined value, the reactor core flowrate set signal is converted into a reactor thermal power, to control the position of control rods and control the reactor power. Then, monitor and control can be conducted safely and automatically without depending on operator's individual ability over the entire operation range corresponding to load following operation. (N.H.)

  16. Using H∞ to design robust POD controllers for wind power plants

    DEFF Research Database (Denmark)

    Mehmedalic, Jasmin; Knüppel, Thyge; Østergaard, Jacob

    2012-01-01

    Large wind power plants (WPPs) can help to improve small signal stability by increasing the damping of electromechanical modes of oscillation. This can be done by adding a power system oscillation damping (POD) controller to the wind power plants, similar to power system stabilizer (PSS......) controllers on conventional generation. Here two different design methods are evaluated for their suitability in producing a robust power system oscillation damping controller for wind power plants with full-load converter wind turbine generators (WTGs). Controllers are designed using classic PSS design and H......∞ methods and the designed controllers evaluated on both performance and robustness. It is found that the choice of control signal has a large influence on the robustness of the controllers, and the best performance and robustness is found when the converter active power command is used as control signal...

  17. Integrated control centre concepts for CANDU power plants

    International Nuclear Information System (INIS)

    Lupton, L.R.; Davey, E.C.; Lapointe, P.A.; Shah, R.R.

    1990-01-01

    The size and complexity of nuclear power plants has increased significantly in the last 20 years. There is general agreement that plant safety and power production can be enhanced if more operational support systems that are significantly different from the ones based on the more conventional technologies used in plant control rooms. In particular, artificial intelligence and related technologies will play a major role in the development of innovative methods for information processing and presentation. These technologies must be integrated into the overall management and control philosophy of the plant and not be treated as vehicles to implement point solutions. The underlying philosophy behind our approach is discussed in this paper. Operator support systems will integrate into the overall control philosophy by complementing the operator. Four support systems are described; each is a prototype of a system being considered for the CANDU 3 control centre

  18. Integrated control centre concepts for CANDU power plants

    Energy Technology Data Exchange (ETDEWEB)

    Lupton, L. R.; Davey, E. C.; Lapointe, P. A.; Shah, R. R.

    1990-01-15

    The size and complexity of nuclear power plants has increased significantly in the last 20 years. There is general agreement that plant safety and power production can be enhanced if more operational support systems that are significantly different from the ones based on the more conventional technologies used in plant control rooms. In particular, artificial intelligence and related technologies will play a major role in the development of innovative methods for information processing and presentation. These technologies must be integrated into the overall management and control philosophy of the plant and not be treated as vehicles to implement point solutions. The underlying philosophy behind our approach is discussed in this paper. Operator support systems will integrate into the overall control philosophy by complementing the operator. Four support systems are described; each is a prototype of a system being considered for the CANDU 3 control centre.

  19. Environmental radioactive contamination and its control for nuclear power plants

    International Nuclear Information System (INIS)

    Shi Zhongqi; Qu Jingyuan; Cui Yongli

    1998-01-01

    The environmental radioactive releases and exposure to human being due to operation of nuclear power plants in the world and in China, environmental contamination and consequences caused by severe nuclear power plant accidents in the history, control of the radioactive contamination in China, and some nuclear laws on the radioactive contamination control established by international organizations and USA etc. are described according to literature investigation and research. Some problems and comments in radioactive contamination control for nuclear power plants in China are presented. Therefore, perfecting laws and regulations and enhancing surveillances on the contamination control are recommended

  20. Model Predictive Control of Integrated Gasification Combined Cycle Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    B. Wayne Bequette; Priyadarshi Mahapatra

    2010-08-31

    The primary project objectives were to understand how the process design of an integrated gasification combined cycle (IGCC) power plant affects the dynamic operability and controllability of the process. Steady-state and dynamic simulation models were developed to predict the process behavior during typical transients that occur in plant operation. Advanced control strategies were developed to improve the ability of the process to follow changes in the power load demand, and to improve performance during transitions between power levels. Another objective of the proposed work was to educate graduate and undergraduate students in the application of process systems and control to coal technology. Educational materials were developed for use in engineering courses to further broaden this exposure to many students. ASPENTECH software was used to perform steady-state and dynamic simulations of an IGCC power plant. Linear systems analysis techniques were used to assess the steady-state and dynamic operability of the power plant under various plant operating conditions. Model predictive control (MPC) strategies were developed to improve the dynamic operation of the power plants. MATLAB and SIMULINK software were used for systems analysis and control system design, and the SIMULINK functionality in ASPEN DYNAMICS was used to test the control strategies on the simulated process. Project funds were used to support a Ph.D. student to receive education and training in coal technology and the application of modeling and simulation techniques.

  1. Distributed and hierarchical control techniques for large-scale power plant systems

    International Nuclear Information System (INIS)

    Raju, G.V.S.; Kisner, R.A.

    1985-08-01

    In large-scale systems, integrated and coordinated control functions are required to maximize plant availability, to allow maneuverability through various power levels, and to meet externally imposed regulatory limitations. Nuclear power plants are large-scale systems. Prime subsystems are those that contribute directly to the behavior of the plant's ultimate output. The prime subsystems in a nuclear power plant include reactor, primary and intermediate heat transport, steam generator, turbine generator, and feedwater system. This paper describes and discusses the continuous-variable control system developed to supervise prime plant subsystems for optimal control and coordination

  2. Control room systems design for nuclear power plants

    International Nuclear Information System (INIS)

    1995-07-01

    This publication provides a resource for those who are involved in researching, managing, conceptualizing, designing, manufacturing or backfitting power plant control room systems. It will also be useful to those responsible for performing reviews or evaluations of the design and facilities associated with existing power plant control room systems. The ultimate worth of the publication, however, will depend upon how well it can support its users. Readers are invited to provide comments and observations to the IAEA, Division of Nuclear Power. If appropriate, the report will subsequently be re-issued, taking such feedback into account. Refs, figs and tabs

  3. Control room systems design for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    This publication provides a resource for those who are involved in researching, managing, conceptualizing, designing, manufacturing or backfitting power plant control room systems. It will also be useful to those responsible for performing reviews or evaluations of the design and facilities associated with existing power plant control room systems. The ultimate worth of the publication, however, will depend upon how well it can support its users. Readers are invited to provide comments and observations to the IAEA, Division of Nuclear Power. If appropriate, the report will subsequently be re-issued, taking such feedback into account. Refs, figs and tabs.

  4. Nuclear Power Plant Control and Instrumentation in Pakistan

    International Nuclear Information System (INIS)

    Iqleem, J.; Hashmi, J.A.; Siddiqui, Z.H.

    1990-01-01

    Nuclear reactors generate 15% of the world's supply electric power. The substantial growth in world energy demand is inevitably continuing throughout the next century. Nuclear power which has already paid more than enough for itself and its development, will provide increasing share of electricity production both in the developed and developing countries. For Pakistan with limited natural resources such as oil, gas, and fully tapped hydel power, nuclear power is the only viable option. However, things are not simple for developing countries which embark on nuclear power program. A technical infrastructure should be established as it has been shown by the experience of Control and Instrumentation of the Karachi Nuclear Power Plant. The national report describes the program of Pakistan Atomic Energy Commission in (NPP) Computers, Control and Instrumentation for design, construction, operation, and maintenance of nuclear power plants. (author)

  5. Recent control and instrumentation systems for BWR nuclear power plant

    International Nuclear Information System (INIS)

    Fujii, Hiroaki; Higashikawa, Yuichi; Sato, Hideyuki

    1990-01-01

    For the needs of the more stable operation of nuclear power stations, the upgrading of the measurement and control system for BWRs has been promoted by positively introducing remarkably advancing electronic technology. Further, it is aimed at to construct the synthetic digitized measurement and control system for nuclear power stations to heighten the operation reliability in ABWRs. As the first step of the development in the synthetic digitization, the monitoring and control system for radioactive waste treatment was put in practical use for No.5 plant of Kashiwazaki, Kariwa Nuclear Power Station, Tokyo Electric Power Co., Inc. Hitachi Ltd. has promoted the development and the application to actual plants of the measurement and control system for BWRs, in which digital control technology, optical information transmission technology and the operation-supporting technology using a computer were utilized. Hereafter, it is intended to expand the application of digital measurement and control aiming at improving the reliability, operation performance and maintainability. The nuclear power plant control complex with advanced man-machine interface-90 (NUCAMM-90) was developed, and its application to actual plants is planned. (K.I.)

  6. Design of control rooms and ergonomics in power plants

    International Nuclear Information System (INIS)

    Herbst, L.; Hinz, W.

    1981-01-01

    Modern power plant control rooms are characterized by automation of protection and control functions, subdivision according to functions, computer-aided information processing, and ergonomic design. Automation relieves the personnel of stress. Subdivision according to functions permits optimized procedures. Computer-aided information processing results in variable information output tailored to the actual needs. Ergonomic design assures qualified man-machine interaction. Of course, these characteristics will vary between power plants in dependence of unit power, mode of operation, and safety and availability requirements. (orig.) [de

  7. Process control and monitoring system: Thermal Power Plant Gacko

    International Nuclear Information System (INIS)

    Jeremovic, Dragan; Skoko, Maksim; Gjokanovic, Zdravko

    2004-01-01

    DCS Ovation system, manufactured by Westinghouse, USA, is described in this paper. Emphasize on concept of realization and basic characteristic in Thermal Power Plant Gacko is given in this paper. The most important, noticed by now, comparative effects and performances of new monitoring and control system according to classical monitoring and control system of 300 MW units Thermal Power Plant Gacko in Gacko, are given in the conclusion. (Author)

  8. Wind Power Plant Control Optimisation with Incorporation of Wind Turbines and STATCOMs

    DEFF Research Database (Denmark)

    Petersen, Lennart; Kryezi, Fitim; Iov, Florin

    2015-01-01

    This paper addresses a detailed design and tuning of a wind power plant slope voltage control with reactive power contribution of wind turbines and STATCOMS. First, small-signal models of a single wind turbine and the whole wind power plant are developed, being appropriate for voltage control...... assessment. An exemplary wind power plant located in the United Kingdom and the corresponding grid code requirements are used as a base case. The final design and tuning process of the voltage controller results in a guidance, proposed for this particular control architecture. It provides qualitative...... outcomes regarding the impact of system delays, grid conditions and various operating conditions of the wind power plant, with and without incorporation of STATCOMS....

  9. Man-machine considerations in nuclear power plant control room design

    International Nuclear Information System (INIS)

    Tennant, D.V.

    1987-01-01

    Although human factors is a subject that has been around for a number of years, this area of design has only recently become known to the power industry. As power plants have grown in size and complexity, the instrumentation required to control and monitor plant processes has increased tremendously. This has been especially true in nuclear power facilities. Although operators are better trained and qualified, very little consideration has been devoted to man-machine interface and the limitations of human operators. This paper explores the historic aspects and design philosophy associated with nuclear plant control rooms. Current problems and solutions are explored along with the components of a control room review. Finally, a survey of future advances in control room design are offered. This paper is concerned with instrumentation, controls, and displays

  10. Nuclear Power Plant Control and Instrumentation 1989

    International Nuclear Information System (INIS)

    1990-11-01

    The meeting of the International Working Group on Nuclear Power Plant Control and Instrumentation (IWG-NPPCI) was organized in order to summarize operating experience of nuclear power plant control systems, gain a general overview of activities in development of modern control systems and receive recommendations on the further directions and particular measures within the Agency's programme. The meeting was held at the IAEA Headquarters in Vienna and was attended by 21 national delegates and observers from 18 countries. The present volume contains: (1) report on the meeting of the IWG-NPPCI, Vienna, 8-10 May 1989, (2) report of the scientific secretary on the major activities of IAEA during 1987-89 in the NPPCI area, (3) terms of reference International Working Group on NPPCI and (4) reports of the national representatives to the International Working Group on NPPCI. The paper and discussions with practical experience and described actual problems encountered. Emphasis was placed on the technical, industrial and economical aspects of the introduction of modern control systems and on the improvement of plant availability and safety. A separate abstract was prepared for each of the 19 papers presented by members of the International Working Group. Refs, figs and tabs

  11. Control and automation technology in United States nuclear power plants

    International Nuclear Information System (INIS)

    Sun, B.K.H.

    1997-01-01

    The need to use computers for nuclear power plant design, engineering, operation and maintenance has been growing since the inception of commercial nuclear power electricity generation in the 1960s. The needs have intensified in recent years as the demands of safety and reliability, as well as economic competition, have become stronger. The rapid advance of computer hardware and software technology in the last two decades has greatly enlarged the potential of computer applications to plant instrumentation and control of future plants, as well as those needed for operation of existing plants. The traditional role of computers for mathematical calculations and data manipulation has been expanded to automate plant control functions and to enhance human performance and productivity. The major goals of using computers for instrumentation and control of nuclear power plants are (1) to improve safety; (2) to reduce challenges to the power plant; (3) to reduce the cost of operations and maintenance; (4) to enhance power production, and (5) to increase productivity of people. Many functions in nuclear power plants are achieved by a combination of human action and automation. Increasingly, computer-based systems are used to support operations and maintenance personnel in the performance of their tasks. There are many benefits which can accrue from the use of computers but it is important to ensure that the design and implementation of the support system and the human task places the human in the correct role in relation to the machine; that is, in a management position, with the computer serving the human. In addition, consideration must be given to computer system integrity, software validation and verification, consequences of error, etc., to ensure its reliability for nuclear power plant applications. (author). 31 refs

  12. Control and automation technology in United States nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Sun, B K.H. [Sunutech, Inc., Los Altos, CA (United States)

    1997-07-01

    The need to use computers for nuclear power plant design, engineering, operation and maintenance has been growing since the inception of commercial nuclear power electricity generation in the 1960s. The needs have intensified in recent years as the demands of safety and reliability, as well as economic competition, have become stronger. The rapid advance of computer hardware and software technology in the last two decades has greatly enlarged the potential of computer applications to plant instrumentation and control of future plants, as well as those needed for operation of existing plants. The traditional role of computers for mathematical calculations and data manipulation has been expanded to automate plant control functions and to enhance human performance and productivity. The major goals of using computers for instrumentation and control of nuclear power plants are (1) to improve safety; (2) to reduce challenges to the power plant; (3) to reduce the cost of operations and maintenance; (4) to enhance power production, and (5) to increase productivity of people. Many functions in nuclear power plants are achieved by a combination of human action and automation. Increasingly, computer-based systems are used to support operations and maintenance personnel in the performance of their tasks. There are many benefits which can accrue from the use of computers but it is important to ensure that the design and implementation of the support system and the human task places the human in the correct role in relation to the machine; that is, in a management position, with the computer serving the human. In addition, consideration must be given to computer system integrity, software validation and verification, consequences of error, etc., to ensure its reliability for nuclear power plant applications. (author). 31 refs.

  13. Digital control in nuclear power plants

    International Nuclear Information System (INIS)

    Bouzon, B.

    1984-01-01

    This document presents the latest automatic control structures used in the programmable control systems of 13.00 MW nuclear power plants constructed by Electricite de France. The impact of this technological innovation goes beyond a straightforward design modification; in addition to the new range of processes made possible, it permits far-reaching changes in the working method employed at the design office and in the field. (author)

  14. Advanced control room design for nuclear power plants

    International Nuclear Information System (INIS)

    Scarola, K.

    1987-01-01

    The power industry has seen a continuous growth of size and complexity of nuclear power plants. Accompanying these changes have been extensive regulatory requirements resulting in significant construction, operation and maintenance costs. In response to related concerns raised by industry members, Combustion Engineering developed the NUPLEX 80 Advanced Control Room. The goal of NUPLEX 80 TM is to: reduce design and construction costs; increase plant safety and availability through improvements in the man-machine interface; and reduce maintenance costs. This paper provides an overview of the NUPLEX 80 Advanced Control Room and explains how the stated goals are achieved. (author)

  15. Perception of tomorrow's nuclear power plant control rooms

    International Nuclear Information System (INIS)

    Meyer, O.R.

    1986-01-01

    Major development programs are upgrading today's light water reactor nuclear power plant (NPP) control rooms. These programs involve displays, control panel architecture, procedures, staffing, and training, and are supported by analytical efforts to refine the definitions of the dynamics and the functional requirements of NPP operation. These programs demonstrate that the NPP control room is the visible command/control/communications center of the complex man/machine system that operates the plant. These development programs are primarily plant specific, although the owners' groups and the Institute of Nuclear Power Operations (INPO) do provide some standardization. The Idaho National Engineering Laboratory recently completed a project to categorize control room changes and estimate the degree of change. That project, plus related studies, provides the basis for this image of the next generation of NPP control rooms. The next generation of NPP control rooms is envisioned as being dominated by three current trends: (1) application of state-of-the-art computer hardware and software; (2) use of NPP dynamic analyses to provide the basis for the control room man/machine system design; and (3) application of empirical principles of human performance

  16. STUDY OF PLANT-WIDE CONTROL IMPLEMENTATION IN PRODUCTION PROCESS OF GEOTHERMAL POWER PLANT

    Directory of Open Access Journals (Sweden)

    KATHERIN INDRIAWATI

    2017-02-01

    Full Text Available The design of plant-wide control system to optimize electricity production in geothermal power plant is proposed in this research. The objective is to overcome the deficiency due to changes in the characteristics of production well and fluctuation in electricity demand load. The proposed plant-wide control system has two main tasks; to maintain production process at optimum value and to increase efficiency. The pressure in separator and condenser is maintained at the respective set points under electrical load fluctuations in order to ensure optimum efficiency. The control system also reduce the usage of auxialiary electrical power and increase efficiency. The task was performed by controlling inlet cooling water temperatures to the condenser. It was concluded that the proposed control structure was able to increase efficiency and maintain production.

  17. Comparison of two voltage control strategies for a wind power plant

    DEFF Research Database (Denmark)

    Martinez, Jorge; Kjær, Philip C.; Rodriguez, Pedro

    2011-01-01

    plants. This paper addresses the analysis of two different voltage control strategies for a wind power plant, i.e. decentralized and centralized voltage control schemes. The analysis has been performed using the equivalent and simplified transfer functions of the system. Using this representation......Larger percentages of wind power penetration translate to more demanding requirements from grid codes. Recently, voltage support at the point of connection has been introduced by several grid codes from around the world, thus, making it important to analyze this control when applied to wind power......, it is possible to investigate the influence of the plant control gain, short circuit ratio, and time delays on the system stability, as well as the fulfillment of the design requirements. The implemented plant voltage control is based on a slope voltage controller, which calculates the references to be sent...

  18. Reliable control system for nuclear power plant

    International Nuclear Information System (INIS)

    Okamoto, Tetsuo; Miyazaki, Shiro

    1980-01-01

    The System 1100 for nuclear power plants is the measuring and control system which utilizes the features of the System 1100 for electric power market in addition to the results of nuclear instrumentation with EBS-ZN series, and it has the following features. The maintenance and inspection in operation are easy. The construction of control loops is made flexibly by the combination of modules. The construction of multi-variable control system using mainly feed forward control is easy. Such functions as the automatic switching of control modes can be included. The switching of manual and automatic operations is easy, and if some trouble occurred in a module, the manual operation can be made. The aseismatic ability is improved by rigid structure cubicles. Nonflammable materials are used for wires, multi-core cables, paints and printed boards. The anti-noise characteristics are improved, and the reliability is high. The policy of developing the System 1100 for nuclear power plants, the type approval tests on modules and units and the type approval test on the system are described. The items of the system type approval test were standard performance test, earthquake test, noise isolation test, temperature and humidity test, and drift test. The aseismatic cubicle showed good endurance in its vibration test. (Kako, I.)

  19. Introducing Model Predictive Control for Improving Power Plant Portfolio Performance

    DEFF Research Database (Denmark)

    Edlund, Kristian Skjoldborg; Bendtsen, Jan Dimon; Børresen, Simon

    2008-01-01

    This paper introduces a model predictive control (MPC) approach for construction of a controller for balancing the power generation against consumption in a power system. The objective of the controller is to coordinate a portfolio consisting of multiple power plant units in the effort to perform...

  20. Hazard Identification, Risk Assessment and Risk Control (HIRARC Accidents at Power Plant

    Directory of Open Access Journals (Sweden)

    Ahmad Asmalia Che

    2016-01-01

    Full Text Available Power plant had a reputation of being one of the most hazardous workplace environments. Workers in the power plant face many safety risks due to the nature of the job. Although power plants are safer nowadays since the industry has urged the employer to improve their employees’ safety, the employees still stumble upon many hazards thus accidents at workplace. The aim of the present study is to investigate work related accidents at power plants based on HIRARC (Hazard Identification, Risk Assessment and Risk Control process. The data were collected at two coal-fired power plant located in Malaysia. The finding of the study identified hazards and assess risk relate to accidents occurred at the power plants. The finding of the study suggested the possible control measures and corrective actions to reduce or eliminate the risk that can be used by power plant in preventing accidents from occurred

  1. New technology in nuclear power plant instrumentation and control

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    The primary topic of this book is what can be done to improve nuclear power plant operation safety and the economic benefits that can be gained with the utilization of advance instrumentation and control technology. Other topics discussed are the industry's reluctance to accept new designs determining cost effective improvements, and difficulties in meeting regulatory standards with new technology control. The subjects will be useful when considering the area of instrumentation and control for enhancing plant operation and safety. Contents: Advanced Instrumention, Plant Control and Monitoring, Plant Diagnostics and Failure Detection, Human Factors Considerations in Instrumentation and Control, NRC and Industry Perspective on Advanced Instrumentation and Control

  2. Development of model reference adaptive control theory for electric power plant control applications

    Energy Technology Data Exchange (ETDEWEB)

    Mabius, L.E.

    1982-09-15

    The scope of this effort includes the theoretical development of a multi-input, multi-output (MIMO) Model Reference Control (MRC) algorithm, (i.e., model following control law), Model Reference Adaptive Control (MRAC) algorithm and the formulation of a nonlinear model of a typical electric power plant. Previous single-input, single-output MRAC algorithm designs have been generalized to MIMO MRAC designs using the MIMO MRC algorithm. This MRC algorithm, which has been developed using Command Generator Tracker methodologies, represents the steady state behavior (in the adaptive sense) of the MRAC algorithm. The MRC algorithm is a fundamental component in the MRAC design and stability analysis. An enhanced MRC algorithm, which has been developed for systems with more controls than regulated outputs, alleviates the MRC stability constraint of stable plant transmission zeroes. The nonlinear power plant model is based on the Cromby model with the addition of a governor valve management algorithm, turbine dynamics and turbine interactions with extraction flows. An application of the MRC algorithm to a linearization of this model demonstrates its applicability to power plant systems. In particular, the generated power changes at 7% per minute while throttle pressure and temperature, reheat temperature and drum level are held constant with a reasonable level of control. The enhanced algorithm reduces significantly control fluctuations without modifying the output response.

  3. Quality control during construction of power plants

    International Nuclear Information System (INIS)

    Hartstern, R.F.

    1982-01-01

    This paper traces the background and examines the necessity for a program to control quality during the construction phase of a power plant. It also attempts to point out considerations for making these programs cost effective

  4. Changes in control room at Swedish nuclear power plants

    International Nuclear Information System (INIS)

    Kecklund, Lena

    2005-09-01

    The Swedish nuclear power plants were commissioned during a period between 1972 and 1985 and the instrumentation and control equipment are basically from that period. For several years there have been plans made for changes in all the nuclear power plants and to a certain extent the changes in control equipment and monitoring rooms have also been implemented. The object of this project was to make a comprehensive review of the changes in control room design implemented in the Swedish nuclear power plants and to describe how the MTO- (Man-Technology-Organisation) and (Man-Machine-Interface) -issues have been integrated in the process. The survey is intended to give an overall picture of the changes in control room design and man-machine-interface made in the Swedish control rooms, in order to get a deeper knowledge of the change management process and its results as well as of the management of MTO-issues in these projects. The units included in this survey are: Oskarhamn reactor 2 and 3; Ringhals reactor 2, 3 and 4; Forsmark reactor 1, 2 and 3. The Oskarshamn 1 unit has not been included in this report as it has recently undergone an extensive modernisation program as well as a detailed inspection by the SKI (Swedish Nuclear Power Inspectorate). At Ringhals 2 the modernisation work is carried out at present and the unit is also subjected to extensive inspection activities carried out by SKI and is therefore not part of this survey. This report also includes a short description of relevant standards and requirements. Then follows a presentation of the results of the plant survey, presented as case studies for three companies OKG, Ringhals and FKA. Control room changes are summarized as well as the results on specific MTO issues which has been surveyed. In all the power companies there is a joint way of working with projects concerning plant modifications. This process is described for each company separately. In the concluding of the report the strengths and

  5. Control room habitability in Spanish Nuclear Power Plants

    International Nuclear Information System (INIS)

    Mediavilla, F.; Sierra, J. J.

    2007-01-01

    Since the NRC published in 2003 the Generic Letter 2003-01 Control room Habitability and the Regulatory guide 1.197 Demonstrating Control Room Envelope Integrity at Nuclear Power Reactors, where it is emphasized the importance of verifying the control room habitability by means of alternative methods, Spanish Nuclear Power Plants are undertaking the different necessary activities to fulfill the requirements of the regulatory commission. This paper describes the main mechanisms included in NEI 99-03 Nuclear Energy Institute publication Control room Habitability Assessment guidance, to demonstrate and maintain Control room Habitability. In addition, in this article it Ds shown the theoretical principle of the test used to quantify air in-leakage in a control room envelope by using tracer gas techniques. The necessary activities to perform the initial in leakage testing are also put forward. Since 2006 Tecnatom, S. A. has performed the baseline testing in four Spanish Units, all of them with successful results. The rest of the Plants are scheduled to perform the tests during the second half of this year. Finally, this document summarises the more important aspects to be taken into account in the development of control room Habitability Programs, which are expected to ensure the integral maintenance of the Control room Envelope during the life a plant. (Author)

  6. Experience feedback of computerized controlled nuclear power plants

    International Nuclear Information System (INIS)

    Poizat, F.

    2004-01-01

    The N4 step of French PWR-type nuclear power plants is characterized by an instrumentation and control system entirely computerized (operation procedures including normal and accidental operation). Four power plants of this type (Chooz and Civaux sites) of 1450 MWe each were connected to the power grid between August 1996 and December 1999. The achievement of this program make it possible and necessary to carry out an experience feedback about the development, successes and difficulties encountered in order to draw out some lessons for future realizations. This is the aim of this article: 1 - usefulness and difficulties of such an experience feedback: evolution of instrumentation and control systems, necessary cautions; 2 - a successful computerized control: checking of systems operation, advantages, expectations; 3 - efficiency of computerized systems: demonstration of operation safety, profitability; 4 - conclusions and interrogations: system approach instead of 'micro-software' approach, commercial or 'made to measure' products, contract agreement with a supplier, when and how upgrading. (J.S.)

  7. A modeling and control approach to advanced nuclear power plants with gas turbines

    International Nuclear Information System (INIS)

    Ablay, Günyaz

    2013-01-01

    Highlights: • Load frequency control strategies in nuclear plants are researched. • Nuclear reactor-centered control system may not be suitable for load control. • Local unit controllers improve stability and overall time constant. • Coolant loops in nuclear plants should be controlled locally. - Abstract: Advanced nuclear power plants are currently being proposed with a number of various designs. However, there is a lack of modeling and control strategies to deal with load following operations. This research investigates a possible modeling approach and load following control strategy for gas turbine nuclear power plants in order to provide an assessment way to the concept designs. A load frequency control strategy and average temperature control mechanism are studied to get load following nuclear power plants. The suitability of the control strategies and concept designs are assessed through linear stability analysis methods. Numerical results are presented on an advanced molten salt reactor concept as an example nuclear power plant system to demonstrate the validity and effectiveness of the proposed modeling and load following control strategies

  8. An adaptive control application in a large thermal combined power plant

    International Nuclear Information System (INIS)

    Kocaarslan, Ilhan; Cam, Ertugrul

    2007-01-01

    In this paper, an adaptive controller was applied to a 765 MW large thermal power plant to decrease operating costs, increase quality of generated electricity and satisfy environmental concerns. Since power plants may present several operating problems such as disturbances and severe effects at operating points, design of their controllers needs to be carried out adequately. For these reasons, first, a reduced mathematical model was developed under Computer Aided Analysis and Design Package for Control (CADACS), so that the results of the experimental model have briefly been discussed. Second, conventional PID and adaptive controllers were designed and implemented under the real-time environment of the CADACS software. Additionally, the design of the adaptive model-reference and conventional PID controllers used in the power plant for real-time control were theoretically presented. All processes were realized in real-time. Due to safety restrictions, a direct connection to the sensors and actuators of the plant was not allowed. Instead a coupling to the control system was realized. This offers, in addition, the usage of the supervisory functions of an industrial process computer system. Application of the controllers indicated that the proposed adaptive controller has better performances for rise and settling times of electrical power, and enthalpy outputs than the conventional PID controller does

  9. Control and automation technology in United States nuclear power plants

    International Nuclear Information System (INIS)

    Sun, B.K.H.

    1995-01-01

    The need to use computers for nuclear power plant design, engineering, operation and maintenance has been growing since the inception of commercial nuclear power electricity generation in the 1960s. The needs have intensified in recent years as the demands of safety and reliability, as well as economic competition, have become stronger. The rapid advanced of computer hardware and software technology in the last two decades has greatly enlarged the potential of computer applications to plant instrumentation and control of future plants, as well as those needed for operation of existing plants. The traditional role of computers for mathematical calculations and data manipulation has been expanded to automate plant control functions and to enhance human performance and productivity. The major goals of using computers for instrumentation and control of nuclear power plants are: (1) to improve safety; (2) to reduce challenges to capital investments; (3) to reduce the cost of operations and maintenance; (4) to enhance power production; and (5) to increase productivity of people. Many functions in nuclear power plants are achieved by a combination of human action and automation. Increasingly, computer-based systems are used to support operations and maintenance personnel in the performance of their tasks. There are many benefits which can accrue from the use of computers but it is important to ensure that the design and implementation of the support system, and the human task places the human in the correct role in the relation to the machine; that is, in a management position, with the computer serving the human. In addition, consideration must be given to computer system integrity, software validation and verification, consequences of error, etc., to ensure its reliability for nuclear power plant applications. (author). 31 refs

  10. Reactor instrumentation and control in nuclear power plants in Germany

    International Nuclear Information System (INIS)

    Aleite, W.

    1993-01-01

    The pertinent legislation, guidelines and standards of importance for nuclear power plant construction as well as the relevant committees in Germany are covered. The impact of international developments on the German regulatory scene is mentioned. A series of 15 data sheets on reactor control, followed by 5 data sheets on instrumentation and control in nuclear power plants, which were drawn up for German plants, are compared and commented in some detail. Digitalization of instrumentation and control systems continues apace. To illustrate the results that can be achieved with a digitalized information system, a picture series that documents a plant test of behavior on simulated steam generator tube rupture is elaborately commented. An outlook on backfitting and upgrading applications concludes this paper. (orig.) [de

  11. Development of high-reliability control system for nuclear power plants

    International Nuclear Information System (INIS)

    Asami, K.; Yanai, K.; Hirose, H.; Ito, T.

    1983-01-01

    In Japan, many nuclear power generating plants are in operation and under construction. There is a general awareness of the problems in connection with nuclear power generation and strong emphasis is put on achieving highly reliable operation of nuclear power plants. Hitachi has developed a new high-reliability control system. NURECS-3000 (NUclear Power Plant High-REliability Control System), which is applied to the main control systems, such as the reactor feedwater control system, the reactor recirculation control system and the main turbine control system. The NURECS-3000 system was designed taking into account the fact that there will be failures, but the aim is for the system to continue to function correctly; it is therefore a fault-tolerant system. It has redundant components which can be completely isolated from each other in order to prevent fault propagation. The system has a hierarchical configuration, with a main controller, consisting of a triplex microcomputer system, and sub-loop controllers. Special care was taken to ensure the independence of these subsystems. Since most of the redundant system failures are caused by common-mode failures and the reliability of redundant systems depends on the reliability of the common-mode parts, the aim was to minimize these parts. (author)

  12. Control rooms and man-machine interface in nuclear power plants

    International Nuclear Information System (INIS)

    1990-08-01

    The importance of man-machine interface for ensuring safe and reliable operation of nuclear power plants has always been recognized. Since the early 1970's, the concepts of operator support and human factors have been increasingly used to better define the role of control rooms. In the late 1970's, the lessons learned from experience considerably accelerated the development of recommendations and regulatory requirements governing the resources and data available to operators in nuclear power plant control rooms, and specified the expertise required to assist them in case of need. This document summarizes the steps which have been taken and are being planned around the world to improve the man-machine interface for safe and economic power generation. It intends to present to the reader useful examples on some selected control room design and man-machine interface practices for operation and surveillance of nuclear power plants. 53 refs, 94 figs, 27 tabs

  13. Demonstration of Active Power Controls by Utility-Scale PV Power Plant in an Island Grid: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Gevorgian, Vahan; O' Neill, Barbara

    2017-02-01

    The National Renewable Energy Laboratory (NREL), AES, and the Puerto Rico Electric Power Authority conducted a demonstration project on a utility-scale photovoltaic (PV) plant to test the viability of providing important ancillary services from this facility. As solar generation increases globally, there is a need for innovation and increased operational flexibility. A typical PV power plant consists of multiple power electronic inverters and can contribute to grid stability and reliability through sophisticated 'grid-friendly' controls. In this way, it may mitigate the impact of its variability on the grid and contribute to important system requirements more like traditional generators. In 2015, testing was completed on a 20-MW AES plant in Puerto Rico, and a large amount of test data was produced and analyzed that demonstrates the ability of PV power plants to provide various types of new grid-friendly controls. This data showed how active power controls can leverage PV's value from being simply an intermittent energy resource to providing additional ancillary services for an isolated island grid. Specifically, the tests conducted included PV plant participation in automatic generation control, provision of droop response, and fast frequency response.

  14. Distributed control system for CANDU 9 nuclear power plant

    International Nuclear Information System (INIS)

    Harber, J.E.; Kattan, M.K.; Macbeth, M.J.

    1996-01-01

    Canadian designed CANDU pressurized heavy water nuclear reactors have been world leaders in electrical power generation. The CANDU 9 project is AECL's next reactor design. The CANDU 9 plant monitoring, annunciation, and control functions are implemented in two evolutionary systems; the distributed control system (DCS) and the plant display system (PDS). The CDS implements most of the plant control functions in a single hardware platform. The DCS communicates with the PDS to provide the main operator interface and annunciation capabilities of the previous control computer designs along with human interface enhancements required in a modern control system. (author)

  15. Applications of modern control systems in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Wilhelm, H [Brown, Boveri und Cie A.G., Mannheim (Germany, F.R.). Abt. GK/TE

    1980-10-01

    A new generation of automation and control systems are currently becoming commercially available in the power plant market which, because of their incorporation of microprocessors and bus data transmission systems, represent a major step forward in innovation. The application of these systems meets today's requirements and solutions, for the number of measurements to be performed has increased five or sixfold in the past few years, and the number of drive systems to be controlled has doubled or even tripled. Requirements to be met by process management systems have become vastly more complicated: peak load operation, short startup times, improved communication, and rising safety and reliability requirements, especially in nuclear power plants. Control concepts have been developed for the area relevant to reactor safety and for the whole of the plant, which make full use of the possibilities offered by plant systems. More stringent demands must be met especially in the areas of handling, communication, testing capability, improved function, and flexibility and modular design in the safety sector.

  16. Wind Plant Power Optimization and Control under Uncertainty

    Science.gov (United States)

    Jha, Pankaj; Ulker, Demet; Hutchings, Kyle; Oxley, Gregory

    2017-11-01

    The development of optimized cooperative wind plant control involves the coordinated operation of individual turbines co-located within a wind plant to improve the overall power production. This is typically achieved by manipulating the trajectory and intensity of wake interactions between nearby turbines, thereby reducing wake losses. However, there are various types of uncertainties involved, such as turbulent inflow and microscale and turbine model input parameters. In a recent NREL-Envision collaboration, a controller that performs wake steering was designed and implemented for the Longyuan Rudong offshore wind plant in Jiangsu, China. The Rudong site contains 25 Envision EN136-4 MW turbines, of which a subset was selected for the field test campaign consisting of the front two rows for the northeasterly wind direction. In the first row, a turbine was selected as the reference turbine, providing comparison power data, while another was selected as the controlled turbine. This controlled turbine wakes three different turbines in the second row depending on the wind direction. A yaw misalignment strategy was designed using Envision's GWCFD, a multi-fidelity plant-scale CFD tool based on SOWFA with a generalized actuator disc (GAD) turbine model, which, in turn, was used to tune NREL's FLORIS model used for wake steering and yaw control optimization. The presentation will account for some associated uncertainties, such as those in atmospheric turbulence and wake profile.

  17. Study on reactor power change and ambiguous control of third Qinshan Nuclear Power Plant

    International Nuclear Information System (INIS)

    Wang Gongzhan

    2006-01-01

    The phenomenon of the average power reduction during long term full power operating in Third Qinshan nuclear power plant is analyzed . According to the basic conclusions of reactor power fluctuating derived by probability statistic and calculation the corresponding ambiguous control project is proposed. The operating performance could be achieved by the present controlling project is predicted additionally. (authors)

  18. Dynamic Reactive Power Control in Offshore HVDC Connected Wind Power Plants

    DEFF Research Database (Denmark)

    Sakamuri, Jayachandra N.; Cutululis, Nicolaos Antonio; Rather, Zakir Hussain

    2016-01-01

    This paper presents a coordinated reactive power control for a HVDC connected cluster of offshore wind power plants (WPPs). The reactive power reference for the WPP cluster is estimated by an optimization algorithm aiming at minimum active power losses in the offshore AC Grid. For each optimal......, such as wind turbine (WT) terminal, collector cable, and export cable, on the dynamic voltage profile of the offshore grid is investigated. Furthermore, the dynamic reactive power contribution from WTs from different WPPs of the cluster for such faults has also been studied....... reactive power set point, the OWPP cluster controller generates reactive power references for each WPP which further sends the AC voltage/ reactive power references to the associated WTs based on their available reactive power margin. The impact of faults at different locations in the offshore grid...

  19. Recent digital control and protection retrofits in power plants

    International Nuclear Information System (INIS)

    Fournier, R.D.; Hammer, M.; Smith, J.E.

    1987-01-01

    Digital computers are now being retrofitted to all types of power plants, replacing analog equipment and solving problems such as equipment obsolescence and low reliability. Three diverse examples of retrofits are presented in this paper, representing trends in man/machine interface design at an oil-fired plant, protection system in pressurized heavy-water reactors, and control systems in light water reactors (LWRs). The examples have been chosen to illustrate diverse reasons for the retrofits and the benefits derived. The cases presented report retrofits at Northern States Power's Monticello boiling water reactor, New Brunswick Electric Power Commission's (NBEPC's) Point Lepreau Nuclear Generating Station, and finally NBEPC's oil-fired plant at Courtney Bay

  20. Informatization of items quality control for NI in nuclear power plant

    International Nuclear Information System (INIS)

    Zhang Jiankui; Zang Baiqi

    2010-01-01

    Design ideas, implementation methods and some key techniques for item quality control of NI in nuclear power plant are illustrated in this article according to item quality management mode. The item quality control method can improve the quality of NI, ensure the safety and lower the construction and operation cost of nuclear power plant. (authors)

  1. Model-based Fuel Flow Control for Fossil-fired Power Plants

    DEFF Research Database (Denmark)

    Niemczyk, Piotr

    2010-01-01

    -fired power plants represent the largest reserve of such controllable power sources in several countries. However, their production take-up rates are limited, mainly due to poor fuel flow control. The thesis presents analysis of difficulties and potential improvements in the control of the coal grinding...

  2. Distributed Control Systems in New Nuclear Power Plants

    International Nuclear Information System (INIS)

    Doerfler, Joseph

    2008-01-01

    With the growing demand for energy many countries have expressed interest in constructing new plants over the next 15 to 20 years. These expectations have presented a challenge to the nuclear industry to provide a high volume of construction. A key strategy to meet this challenge is developing an advanced nuclear power plant design that allows for a modular construction, a high level of standardization, passive safety features, reduced number of components, and a short bid-to-build time. In addition, the implementation of the plant control system has evolved as new technologies emerge to support these goals. The purpose of this paper is to discuss the ways that the distributed control and information systems in the new generation of nuclear power plants will differ from those currently in service. The new designs provide opportunities to improve overall performance through the use of bus technology, a video display driven Human System Interface, enhanced diagnostics and improved maintenance features. However, the new technologies must fully address requirements for cyber security and high reliability. This paper will give an overview of new technology, improvements, as well as emerging issues in new plant design. (authors)

  3. Distributed Control Systems in New Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Doerfler, Joseph [Westinghouse Electric Company, 4350 Northern Pike, Monroeville, PA 15146 (United States)

    2008-07-01

    With the growing demand for energy many countries have expressed interest in constructing new plants over the next 15 to 20 years. These expectations have presented a challenge to the nuclear industry to provide a high volume of construction. A key strategy to meet this challenge is developing an advanced nuclear power plant design that allows for a modular construction, a high level of standardization, passive safety features, reduced number of components, and a short bid-to-build time. In addition, the implementation of the plant control system has evolved as new technologies emerge to support these goals. The purpose of this paper is to discuss the ways that the distributed control and information systems in the new generation of nuclear power plants will differ from those currently in service. The new designs provide opportunities to improve overall performance through the use of bus technology, a video display driven Human System Interface, enhanced diagnostics and improved maintenance features. However, the new technologies must fully address requirements for cyber security and high reliability. This paper will give an overview of new technology, improvements, as well as emerging issues in new plant design. (authors)

  4. Mercury controls for coal-fired power plants - status and challenges

    Energy Technology Data Exchange (ETDEWEB)

    Offen, G.; Shick, N.; Chang, R.; Chu, P.; Dene, C.; Rhudy, R. [EPRI, Palo Alto (US)

    2005-05-01

    Although the US Environmental Protection Agency has issued its mercury rule, setting limits for emissions from new power plants and placing an eventual cap on emissions from all plants, mercury control technologies offering sustainable performance and known applicability, impact, and cost are still in the future. Co-operative funding for long-term, full-scale tests of technologies in advanced stages of development, and support for emerging ones, promises to close the gap. The goal is to learn how to tailor control technologies to flue gas environments at individual power plants. In this paper the authors describe the current performance of mercury control technologies and outline the research needed to demonstrate their easiness for commercial deployment. 4 figs.

  5. Condensate treatment and oxygen control in power plants

    International Nuclear Information System (INIS)

    Sakai, Toshiaki; Iida, Kei; Ohashi, Shinichi.

    1997-01-01

    In thermal and nuclear power stations, the steam that operated turbines is cooled and condensed with condensers. The condensate is heated again with boilers, nuclear reactors or steam generators, but if corrosion products or impurities are contained in the condensate, corrosion and scale formation occur in boilers and others. The filtration facility and the desalting facility for condensate are installed to remove impurities, but water quality control is different in thermal, BWR and PWR plants, therefore, the treatment facilities corresponding to respective condensates have been adopted. In order to reduce the amount of clud generation, the treatment of injecting a small quantity of oxygen into condensate has been adopted. In thermal power plants, all volatile treatment is carried out, in which corrosion is prevented by the addition of ammonia and hydrazine to boiler feedwater. The condensate filters of various types and the NH 4 type condensate desalter for thermal power plants are described. In BWR power plants, steam is generated in nuclear reactors, therefore, the addition of chemicals into water is never carried out, and high purity neutral water is used. In PWR power plants, the addition of chemicals to water is done in the primary system, and AVT is adopted in the secondary system. Also the condensate treatment facilities are different for both reactors. (K.I.)

  6. A Robust Multivariable Feedforward/Feedback Controller Design for Integrated Power Control of Boiling Water Reactor Power Plants

    International Nuclear Information System (INIS)

    Shyu, S.-S.; Edwards, Robert M.

    2002-01-01

    In this paper, a methodology for synthesizing a robust multivariable feedforward/feedback control (FF/FBC) strategy is proposed for an integrated control of turbine power, throttle pressure, and reactor water level in a nuclear power plant. In the proposed method, the FBC is synthesized by the robust control approach. The feedforward control, which is generated via nonlinear programming, is added to the robust FBC system to further improve the control performance. The plant uncertainties, including unmodeled dynamics, linearization, and model reduction, are characterized and estimated. The comparisons of simulation responses based on a nonlinear reactor model demonstrate the achievement of the proposed controller with specified performance and endurance under uncertainty. It is also important to note that all input variables are manipulated in an orchestrated manner in response to a single output's setpoint change

  7. Emission Control Technologies for Thermal Power Plants

    Science.gov (United States)

    Nihalani, S. A.; Mishra, Y.; Juremalani, J.

    2018-03-01

    Coal thermal power plants are one of the primary sources of artificial air emissions, particularly in a country like India. Ministry of Environment and Forests has proposed draft regulation for emission standards in coal-fired power plants. This includes significant reduction in sulphur-dioxide, oxides of nitrogen, particulate matter and mercury emissions. The first step is to evaluate the technologies which represent the best selection for each power plant based on its configuration, fuel properties, performance requirements, and other site-specific factors. This paper will describe various technology options including: Flue Gas Desulfurization System, Spray Dryer Absorber (SDA), Circulating Dry Scrubber (CDS), Limestone-based Wet FGD, Low NOX burners, Selective Non Catalytic Reduction, Electrostatic Precipitator, Bag House Dust Collector, all of which have been evaluated and installed extensively to reduce SO2, NOx, PM and other emissions. Each control technology has its advantages and disadvantages. For each of the technologies considered, major features, potential operating and maintenance cost impacts, as well as key factors that contribute to the selection of one technology over another are discussed here.

  8. Safety and security analysis for distributed control system in nuclear power plants

    International Nuclear Information System (INIS)

    Lu Zhigang; Liu Baoxu

    2011-01-01

    The Digital Distributed Control System (DCS) is the core that manages all monitoring and operation tasks in a Nuclear Power Plant (NPP). So, Digital Distributed Control System in Nuclear Power Plant has strict requirements for control and automation device safety and security due to many factors. In this article, factors of safety are analyzed firstly, while placing top priority on reliability, quality of supply and stability have also been carefully considered. In particular, advanced digital and electronic technologies are adopted to maintain sufficient reliability and supervisory capabilities in nuclear power plants. Then, security of networking and information technology have been remarked, several design methodologies considering the security characteristics are suggested. Methods and technologies of this article are being used in testing and evaluation for a real implement of a nuclear power plant in China. (author)

  9. Impact of Wind Power Plants on Voltage Control of Power System

    DEFF Research Database (Denmark)

    Sarkar, Moumita; Altin, Müfit; Hansen, Anca Daniela

    High penetration of renewable energy sources poses numerous challenges on stability and security of power systems. Wind power plants (WPPs) of considerable size when connected to a weak grid by long transmission line results in low short circuit ratio at the point of connection. This may result...... control, during transient voltage dips. Steady-state analysis is performed for stressed system conditions. Results are validated through simulation in a detailed power system model....

  10. Potential utilities of optimal estimation and control in nuclear power plants

    International Nuclear Information System (INIS)

    Tylee, J.L.; Purviance, J.E.

    1983-01-01

    Optimal estimation and control theories offer the potential for more precise control and diagnosis of nuclear power plants. The important element of these theories is that a mathematical plant model is used in conjunction with the actual plant data to optimize some performance criteria. These criteria involve important plant variables and incorporate a sense of the desired plant performance. Several applications of optimal estimation and control to nuclear systems are discussed

  11. Automated systems for control of technological processes at nuclear power plants and their use in putting the plant into operation

    International Nuclear Information System (INIS)

    Majtan, L.

    1987-01-01

    The systems of testing and control of technological processes in WWER-440 units in nuclear power plants which have so far been constructed in Czechoslovakia have been based on the conceptual principles and hardware used in the USSR. For the Mochovce nuclear power plant an automated process control system is to be introduced which proceeds from experiences gained with new Czechoslovak conventional power plants with 200 MW units. The control system consists of two levels: unit control and the control of the whole power plant the unit control consists of the DERIS-900 decentralized control system and the SM 1804 microcomputer and SM 1420 minicomputer based information and control system. A data processing system based on the SM 52/11.M1 minicomputer system will be used for power plant start-up and commissioning. (Z.M.). 2 figs., 4 refs

  12. Autonomous Control of Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Basher, H.

    2003-10-20

    A nuclear reactor is a complex system that requires highly sophisticated controllers to ensure that desired performance and safety can be achieved and maintained during its operations. Higher-demanding operational requirements such as reliability, lower environmental impacts, and improved performance under adverse conditions in nuclear power plants, coupled with the complexity and uncertainty of the models, necessitate the use of an increased level of autonomy in the control methods. In the opinion of many researchers, the tasks involved during nuclear reactor design and operation (e.g., design optimization, transient diagnosis, and core reload optimization) involve important human cognition and decisions that may be more easily achieved with intelligent methods such as expert systems, fuzzy logic, neural networks, and genetic algorithms. Many experts in the field of control systems share the idea that a higher degree of autonomy in control of complex systems such as nuclear plants is more easily achievable through the integration of conventional control systems and the intelligent components. Researchers have investigated the feasibility of the integration of fuzzy logic, neural networks, genetic algorithms, and expert systems with the conventional control methods to achieve higher degrees of autonomy in different aspects of reactor operations such as reactor startup, shutdown in emergency situations, fault detection and diagnosis, nuclear reactor alarm processing and diagnosis, and reactor load-following operations, to name a few. With the advancement of new technologies and computing power, it is feasible to automate most of the nuclear reactor control and operation, which will result in increased safety and economical benefits. This study surveys current status, practices, and recent advances made towards developing autonomous control systems for nuclear reactors.

  13. Autonomous Control of Nuclear Power Plants

    International Nuclear Information System (INIS)

    Basher, H.

    2003-01-01

    A nuclear reactor is a complex system that requires highly sophisticated controllers to ensure that desired performance and safety can be achieved and maintained during its operations. Higher-demanding operational requirements such as reliability, lower environmental impacts, and improved performance under adverse conditions in nuclear power plants, coupled with the complexity and uncertainty of the models, necessitate the use of an increased level of autonomy in the control methods. In the opinion of many researchers, the tasks involved during nuclear reactor design and operation (e.g., design optimization, transient diagnosis, and core reload optimization) involve important human cognition and decisions that may be more easily achieved with intelligent methods such as expert systems, fuzzy logic, neural networks, and genetic algorithms. Many experts in the field of control systems share the idea that a higher degree of autonomy in control of complex systems such as nuclear plants is more easily achievable through the integration of conventional control systems and the intelligent components. Researchers have investigated the feasibility of the integration of fuzzy logic, neural networks, genetic algorithms, and expert systems with the conventional control methods to achieve higher degrees of autonomy in different aspects of reactor operations such as reactor startup, shutdown in emergency situations, fault detection and diagnosis, nuclear reactor alarm processing and diagnosis, and reactor load-following operations, to name a few. With the advancement of new technologies and computing power, it is feasible to automate most of the nuclear reactor control and operation, which will result in increased safety and economical benefits. This study surveys current status, practices, and recent advances made towards developing autonomous control systems for nuclear reactors

  14. 78 FR 38739 - Special Nuclear Material Control and Accounting Systems for Nuclear Power Plants

    Science.gov (United States)

    2013-06-27

    ... Systems for Nuclear Power Plants AGENCY: Nuclear Regulatory Commission. ACTION: Regulatory guide; issuance... Guide (RG) 5.29, ``Special Nuclear Material Control and Accounting Systems for Nuclear Power Plants... material control and accounting. This guide applies to all nuclear power plants. ADDRESSES: Please refer to...

  15. Tangible interfaces for virtual nuclear power plant control desk

    Energy Technology Data Exchange (ETDEWEB)

    Aghina, Mauricio Alves C.; Mol, Antonio Carlos A.; Jorge, Carlos Alexandre F.; Lapa, Celso M.F. [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Nomiya, Diogo [Engenharia Eletrica (UFRJ), Universidade Federal do Rio de Janeiro, RJ (Brazil); Cunha, Gerson G.; Landau, Luiz [Programa de Engenharia Civil (PEC/COPPE/UFRJ), Universidade Federal do Rio de Janeiro, RJ (Brazil)

    2011-07-01

    Due to the high safety requirements for nuclear power plant operation, control desks must be designed in such a way operators can take all the procedures safely, with a good overview of all variable indicators and easy access to actuator controls. Also, operators must see alarms indication in a way they can easily identify any abnormal conditions and bring the NPP back to normal operation. The ergonomics and human factors fields have helped evaluations to improve the design of nuclear power plant control systems. Lately, the use of virtual control desks have helped even more such evaluations, by integrating in one platform both nuclear power plant dynamics simulator with a high visual fidelity control desk proto typing. Operators can interact with these virtual control desks in a similar way as with real ones. Such a virtual control desk has been under development at Instituto de Engenharia Nuclear, IEN/CNEN. This paper reports the latest improvements, with the use of more interaction modes, to turn operation a friendlier task. An automatic speech recognition interface has been implemented as a self-contained system, by accessing directly MS Windows Application Interface, and with online neural network training for spoken commend recognition. Thus, operators can switch among different desk views. Besides this, head tracking interfaces have been integrated with the virtual control desk, to move within desk views according to users head movements. Both marker and markerless-based head tracking interfaces have been implemented. Results are shown and commented. (author)

  16. Tangible interfaces for virtual nuclear power plant control desk

    International Nuclear Information System (INIS)

    Aghina, Mauricio Alves C.; Mol, Antonio Carlos A.; Jorge, Carlos Alexandre F.; Lapa, Celso M.F.; Nomiya, Diogo; Cunha, Gerson G.; Landau, Luiz

    2011-01-01

    Due to the high safety requirements for nuclear power plant operation, control desks must be designed in such a way operators can take all the procedures safely, with a good overview of all variable indicators and easy access to actuator controls. Also, operators must see alarms indication in a way they can easily identify any abnormal conditions and bring the NPP back to normal operation. The ergonomics and human factors fields have helped evaluations to improve the design of nuclear power plant control systems. Lately, the use of virtual control desks have helped even more such evaluations, by integrating in one platform both nuclear power plant dynamics simulator with a high visual fidelity control desk proto typing. Operators can interact with these virtual control desks in a similar way as with real ones. Such a virtual control desk has been under development at Instituto de Engenharia Nuclear, IEN/CNEN. This paper reports the latest improvements, with the use of more interaction modes, to turn operation a friendlier task. An automatic speech recognition interface has been implemented as a self-contained system, by accessing directly MS Windows Application Interface, and with online neural network training for spoken commend recognition. Thus, operators can switch among different desk views. Besides this, head tracking interfaces have been integrated with the virtual control desk, to move within desk views according to users head movements. Both marker and markerless-based head tracking interfaces have been implemented. Results are shown and commented. (author)

  17. A coordinated MIMO control design for a power plant using improved sliding mode controller.

    Science.gov (United States)

    Ataei, Mohammad; Hooshmand, Rahmat-Allah; Samani, Siavash Golmohammadi

    2014-03-01

    For the participation of the steam power plants in regulating the network frequency, boilers and turbines should be co-ordinately controlled in addition to the base load productions. Lack of coordinated control over boiler-turbine may lead to instability; oscillation in producing power and boiler parameters; reduction in the reliability of the unit; and inflicting thermodynamic tension on devices. This paper proposes a boiler-turbine coordinated multivariable control system based on improved sliding mode controller (ISMC). The system controls two main boiler-turbine parameters i.e., the turbine revolution and superheated steam pressure of the boiler output. For this purpose, a comprehensive model of the system including complete and exact description of the subsystems is extracted. The parameters of this model are determined according to our case study that is the 320MW unit of Islam-Abad power plant in Isfahan/Iran. The ISMC method is simulated on the power plant and its performance is compared with the related real PI (proportional-integral) controllers which have been used in this unit. The simulation results show the capability of the proposed controller system in controlling local network frequency and superheated steam pressure in the presence of load variations and disturbances of boiler. © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Applications of modern control systems in nuclear power plants

    International Nuclear Information System (INIS)

    Wilhelm, H.

    1980-01-01

    A new generation of automation and control systems are currently becoming commercially available in the power plant market which, because of their incorporation of microprocessors and bus data transmission systems, represent a major step forward in innovation. The application of these systems meets today's requirements and solutions, for the number of measurements to be performed has increased five or sixfold in the past few years, and the number of drive systems to be controlled has doubled or even tripled. Requirements to be met by process management systems have become vastly more complicated: peak load operation, short startup times, improved communication, and rising safety and reliability requirements, especially in nuclear power plants. Control concepts have been developed for the area relevant to reactor safety and for the whole of the plant, which make full use of the possibilities offered by plant systems. More stringent demands must be met especially in the areas of handling, communication, testing capability, improved function, and flexibility and modular design in the safety sector. (orig.) [de

  19. Implementation considerations for digital control systems in power plants: Final report

    International Nuclear Information System (INIS)

    Shah, S.C.; Lehman, L.L.; Sarchet, M.M.

    1988-09-01

    Conversion of nuclear power plants fron analog to digital control systems will require careful design, testing, and integration of the control algorithms, the software which implements the algorithms, the digital instrumentation, the digital communications network, and analog/digital device interfaces. Digital control systems are more flexible than their analog counterparts, and therefore greater attention must be paid by the customer to all stages of the control system design process. This flexibility also provides the framework for development of significant safety and reliability are inherant aspects of the chosen design processes. Digital control algorithms are capable of improving their performance by on-line self-tuning of the control parameters. It is therefore incumbant on system designers to choose self-tuning algorithms for power plant control. Implementation of these algorithms in software required a careful software design and development process to minimize errors in interpretation of the engineering design and prevent the inclusion of programming errors during software production. Digital control system and communications software must exhibit sufficient ''fault tolerance'' to maintain some level of safe plant operation or execute a safe plant shutdown in the event of both hard equipment failures and the appearance of software design faults. A number of standardized digital communications protocols are available to designers of digital control systems. These standardized digital communications protocols provide reliable fault tolerant communication between all digital elements of the plant control system and can be implemented redundantly to further enhance power plant operational safety. 5 refs., 11 figs., 1 tab

  20. Regulatory control of nuclear power plants

    International Nuclear Information System (INIS)

    2002-01-01

    The purpose of this book is to support IAEA training courses and workshops in the field of regulatory control of nuclear power plants as well as to support the regulatory bodies of Member States in their own training activities. The target group is the professional staff members of nuclear safety regulatory bodies supervising nuclear power plants and having duties and responsibilities in the following regulatory fields: regulatory framework; regulatory organization; regulatory guidance; licensing and licensing documents; assessment of safety; and regulatory inspection and enforcement. Important topics such as regulatory competence and quality of regulatory work as well as emergency preparedness and public communication are also covered. The book also presents the key issues of nuclear safety such as 'defence-in-depth' and safety culture and explains how these should be taken into account in regulatory work, e.g. during safety assessment and regulatory inspection. The book also reflects how nuclear safety has been developed during the years on the basis of operating experience feedback and results of safety research by giving topical examples. The examples cover development of operating procedures and accident management to cope with complicated incidents and severe accidents to stress the importance of regulatory role in nuclear safety research. The main target group is new staff members of regulatory bodies, but the book also offers good examples for more experienced inspectors to be used as comparison and discussion basis in internal workshops organized by the regulatory bodies for refreshing and continuing training. The book was originally compiled on the basis of presentations provided during the two regulatory control training courses in 1997 and 1998. The textbook was reviewed at the beginning of the years 2000 and 2002 by IAEA staff members and consistency with the latest revisions of safety standards have been ensured. The textbook was completed in the

  1. Automated control system for the Temelin nuclear power plant

    International Nuclear Information System (INIS)

    Labik, V.

    1990-01-01

    Instrumentation of the automated control system of the Temelin nuclear power plant in the section of the main production unit and of the major auxiliary equipment is described, the results of testing are reported, and the present status of design activities is assessed. The suitability of application of Czechoslovak automation facilities to the instrumentation of the automated control system of the power plant was confirmed by the Soviet designer and supplier based on favorable results of polygonal testing. Capacity problems in the development of the designs and user software are alleviated by extensive cooperation. It is envisaged that all tasks will be fulfilled as planned. (P.A.). 1 fig., 5 refs

  2. Simulation research on multivariable fuzzy model predictive control of nuclear power plant

    International Nuclear Information System (INIS)

    Su Jie

    2012-01-01

    To improve the dynamic control capabilities of the nuclear power plant, the algorithm of the multivariable nonlinear predictive control based on the fuzzy model was applied in the main parameters control of the nuclear power plant, including control structure and the design of controller in the base of expounding the math model of the turbine and the once-through steam generator. The simulation results show that the respond of the change of the gas turbine speed and the steam pressure under the algorithm of multivariable fuzzy model predictive control is faster than that under the PID control algorithm, and the output value of the gas turbine speed and the steam pressure under the PID control algorithm is 3%-5% more than that under the algorithm of multi-variable fuzzy model predictive control. So it shows that the algorithm of multi-variable fuzzy model predictive control can control the output of the main parameters of the nuclear power plant well and get better control effect. (author)

  3. Nuclear power plant control and instrumentation 1993. Working material

    International Nuclear Information System (INIS)

    1994-01-01

    The regular meeting of the International Working Group on Nuclear Power Plant Control and Instrumentation (IWG-NPPCI) was organized in order to summarize operating experience of nuclear power plant control systems, gain a general overview of activities in development of modern control systems and receive recommendations on the further directions and particular measures within the Agency's programme. The meeting was held at the Merlin-Gerin Headquarters in Paris and was attended by twenty one national delegates and observers from 17 countries. The present volume contains: (1) report on the meeting of the IWG-NPPCI, Paris, 21-22 October 1993, (2) report by the scientific secretary on the major activities of IAEA during 1991-1993 in the NPPCI area, and (3) reports of the national representatives to the International Working Group on NPPCI. The papers and discussions with practical experience and described actual problems encountered. Emphasis was placed on the technical, industrial and economic aspects of the introduction of modern control systems and on the improvement of plant availability and safety. Refs, figs and tabs

  4. Fuzzy control applied to nuclear power plant pressurizer system

    International Nuclear Information System (INIS)

    Oliveira, Mauro V.; Almeida, Jose C.S.

    2011-01-01

    In a pressurized water reactor (PWR) nuclear power plants (NPPs) the pressure control in the primary loop is very important for keeping the reactor in a safety condition and improve the generation process efficiency. The main component responsible for this task is the pressurizer. The pressurizer pressure control system (PPCS) utilizes heaters and spray valves to maintain the pressure within an operating band during steady state conditions, and limits the pressure changes, during transient conditions. Relief and safety valves provide overpressure protection for the reactor coolant system (RCS) to ensure system integrity. Various protective reactor trips are generated if the system parameters exceed safe bounds. Historically, a proportional-integral derivative (PID) controller is used in PWRs to keep the pressure in the set point, during those operation conditions. The purpose of this study has two main goals: first is to develop a pressurizer model based on artificial neural networks (ANNs); second is to develop a fuzzy controller for the PWR pressurizer pressure, and compare its performance with the P controller. Data from a simulator PWR plant was used to test the ANN and the controllers as well. The reference simulator is a Westinghouse 3-loop PWR plant with a total thermal output of 2785 MWth. The simulation results show that the pressurizer ANN model response are in reasonable agreement with the simulated power plant, and the fuzzy controller built in this study has better performance compared to the P controller. (author)

  5. Fuzzy control applied to nuclear power plant pressurizer system

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Mauro V.; Almeida, Jose C.S., E-mail: mvitor@ien.gov.b, E-mail: jcsa@ien.gov.b [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    In a pressurized water reactor (PWR) nuclear power plants (NPPs) the pressure control in the primary loop is very important for keeping the reactor in a safety condition and improve the generation process efficiency. The main component responsible for this task is the pressurizer. The pressurizer pressure control system (PPCS) utilizes heaters and spray valves to maintain the pressure within an operating band during steady state conditions, and limits the pressure changes, during transient conditions. Relief and safety valves provide overpressure protection for the reactor coolant system (RCS) to ensure system integrity. Various protective reactor trips are generated if the system parameters exceed safe bounds. Historically, a proportional-integral derivative (PID) controller is used in PWRs to keep the pressure in the set point, during those operation conditions. The purpose of this study has two main goals: first is to develop a pressurizer model based on artificial neural networks (ANNs); second is to develop a fuzzy controller for the PWR pressurizer pressure, and compare its performance with the P controller. Data from a simulator PWR plant was used to test the ANN and the controllers as well. The reference simulator is a Westinghouse 3-loop PWR plant with a total thermal output of 2785 MWth. The simulation results show that the pressurizer ANN model response are in reasonable agreement with the simulated power plant, and the fuzzy controller built in this study has better performance compared to the P controller. (author)

  6. Backfitting of the nuclear plant V1 power control system

    International Nuclear Information System (INIS)

    Karpeta, C.; Rubek, J.; Stirsky, P.

    1985-01-01

    The paper deals with some aspects of implementation of modifications into the Czechoslovak nuclear plant V1 control system as called for on the basis of experience gained during the first period of the plant operation. Brief description of the plant power control system and its main functions is given. Some deficiencies in the system performance during abnormal conditions are outlined and measures taken to overcome them are presented. (author)

  7. Design and Tuning Methodology of Active Power Controller in Wind Power Plants

    DEFF Research Database (Denmark)

    Ionita, Claudiu; Raducu, Alin George; Iov, Florin

    2017-01-01

    This paper presents a method to design and tune the main controller of a Wind Power Plant (WPP), with focus on the active power and frequency control. The controller requirements are based on the Danish grid codes. The controller functionality is successfully verified using the model and the layout...... of an actual WPP rated at 160 MW, that consists of 80 wind turbines. Two reference dispatch strategies are investigated, equal and proportional. The proportional dispatch is preferred due to better tracking accuracy and robustness. The work described in this article is meant to help WPP developers...

  8. Control room design and human engineering in power plants

    International Nuclear Information System (INIS)

    Herbst, L.; Hinz, W.

    1982-01-01

    The concept for modern plant control rooms is primary influenced by: The automation of protection, binary control and closed loop control functions; organization employing functional areas; computer based information processing; human engineered design. Automation reduces the human work load. Employment of functional areas permits optimization of operational sequences. Computer based information processing makes it possible to output information in accordance with operating requirements. Design based on human engineering principles assures the quality of the interaction between the operator and the equipment. The degree to which these conceptional features play a role in design of power plant control rooms depends on the unit rating, the mode of operation and on the requirements respecting safety and availability of the plant. (orig.)

  9. Malaysian Preparation for Nuclear Power Plant Instrumentation and Control System

    International Nuclear Information System (INIS)

    Mohd Idris Taib; Nurfarhana Ayuni Joha; Kamarudin Sulaiman; Izhar Abu Hussin

    2011-01-01

    Instrumentation and Control System is required in Nuclear Power Plant for their safe and effective operation. The system is combination and integrated from detectors, actuators, analog system as well as digital system. Current design of system definitely follows of electronic as well as computer technology, with strictly follow regulation and guideline from local regulator as well as International Atomic Energy Agency. Commercial Off-The-Shelf products are extensively used with specific nucleonic instrumentation. Malaysian experiences depend on Reactor TRIGA PUSPATI Instrumentation and Control, Power Plant Instrumentation and Control as well as Process Control System. However Malaysians have capabilities to upgrade themself from Electronics, Computers, Electrical and Mechanical based. Proposal is presented for Malaysian preparation. (author)

  10. Coordinated voltage control in offshore HVDC connected cluster of wind power plants

    DEFF Research Database (Denmark)

    Sakamuri, Jayachandra Naidu; Rather, Zakir Hussain; Rimez, Johan

    This paper presents a coordinated voltage control scheme (CVCS) for a cluster of offshore wind power plants connected to a voltage-source converter-based high-voltage direct current system. The primary control point of the proposed voltage control scheme is the introduced Pilot bus, which is having...... by dispatching reactive power references to each wind turbine (WT) in the wind power plant cluster based on their available reactive power margin and network sensitivity-based participation factors, which are derived from the dV/dQ sensitivity of a WT bus w.r.t. the Pilot bus. This method leads...

  11. Regulatory control of maintenance activities in Argentine nuclear power plants

    International Nuclear Information System (INIS)

    Calvo, J.C.; Caruso, G.

    2000-01-01

    The main maintenance objective is to assure that the safety features of structures, components and systems of nuclear power plants are kept as designed. Therefore, there is a direct relationship between safety and maintenance. Owing to the above mentioned, maintenance activities are considered a relevant regulatory issue for the Argentine Nuclear Regulatory Authority (ARN). This paper describes the regulatory control to maintenance activities of Argentine nuclear power plants. It also addresses essential elements for maintenance control, routine inspections, special inspections during planned outages, audits and license conditions and requirements. (author)

  12. Assessment of control rooms of nuclear power plants

    International Nuclear Information System (INIS)

    Norros, L.; Ranta, J.; Wahlstroem, B.

    1983-05-01

    To identify and correct the lacks in control rooms of operating power plants and plants under construction an extensive program has been started in the USA. In Finland as in other countries using nuclear power, the development in the USA particularly with regard to the requirements imposed on nuclear power plants is carefully followed. The changes in these requirements are sooner or later also reflected in the guidelines given by the Finnish authorities. It is therefore important to be able to form a notion of how the new requirements apply to Finnish conditions. Especially it is important to review the latest assessment guidelines for control room implementation (NUREG-0700). Thus we can avoid possible over hasty conclusions. The aim of the analysis of the method and experiments presented in NUREG 0700 report was to create a basis for assessment of the suitability of the method for Finnish control room implementation. The task group has made a general methodical analysis of the method, and partly tried it in assessment of the TVO2 control room. It is obvious that direct conclusions from the American situation are misleading. It can be considered unfeasible to follow the American requirements as such, because they can lead to unwanted results. If the review is limited to control room details, the NRC program (checklist) can be considered successful. It can also be used during planning to observation of small discrepancies. However, we can question the applicability of some requirements. It is, though, more essential that the control room entity has neither in this nor in several other programs been reached or standardized. In spite of the difficulties we should try to reach this most important goal. (author)

  13. Quality control of three main materials for civil construction of nuclear power plant

    International Nuclear Information System (INIS)

    Wang Feng

    2011-01-01

    The construction and operation of nuclear power plant is a systematic engineering. To ensure quality and safety of nuclear power plants, each work from design to operation can have certain impact on the quality and safety of the project. The quality of each related work shall be controlled. Starting from the quality control over raw materials for the civil construction of nuclear power plant, this article mainly analyzes how to control the quality and manage the three main materials of steel, concrete and modular parts in the civil construction. (author)

  14. Choosing Actuators for Automatic Control Systems of Thermal Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Gorbunov, A. I., E-mail: gor@tornado.nsk.ru [JSC “Tornado Modular Systems” (Russian Federation); Serdyukov, O. V. [Siberian Branch of the Russian Academy of Sciences, Institute of Automation and Electrometry (Russian Federation)

    2015-03-15

    Two types of actuators for automatic control systems of thermal power plants are analyzed: (i) pulse-controlled actuator and (ii) analog-controlled actuator with positioning function. The actuators are compared in terms of control circuit, control accuracy, reliability, and cost.

  15. Retrofit of safety and control systems in nuclear power plants

    International Nuclear Information System (INIS)

    Keiper, J.T.; Fassett, G.B.

    1986-01-01

    The modularity, compactness, compatibility, and licensability of the microcontrol system make it a cost-effective approach to obtain the benefits of digital control technology in the retrofit of nuclear power plants. Retrofit of individual loops or complete systems can be scheduled to meet the operational needs of the plant. The existing racks, panels, and cable systems can be utilized to the maximum extent to minimize the installed cost. Future expansion to total plant control or plant management is supported by the network communication module or gateway. The microcontrol module provides benefits now in improved operation, and future benefits in planned, controlled upgrading

  16. Control oriented concentrating solar power (CSP) plant model and its applications

    Science.gov (United States)

    Luo, Qi

    Solar receivers in concentrating solar thermal power plants (CSP) undergo over 10,000 start-ups and shutdowns, and over 25,000 rapid rate of change in temperature on receivers due to cloud transients resulting in performance degradation and material fatigue in their expected lifetime of over 30 years. The research proposes to develop a three-level controller that uses multi-input-multi-output (MIMO) control technology to minimize the effect of these disturbances, improve plant performance, and extend plant life. The controller can be readily installed on any vendor supplied state-of-the-art control hardware. We propose a three-level controller architecture using multi-input-multi-output (MIMO) control for CSP plants that can be implemented on existing plants to improve performance, reliability, and extend the life of the plant. This architecture optimizes the performance on multiple time scalesreactive level (regulation to temperature set points), tactical level (adaptation of temperature set points), and strategic level (trading off fatigue life due to thermal cycling and current production). This controller unique to CSP plants operating at temperatures greater than 550 °C, will make CSPs competitive with conventional power plants and contribute significantly towards the Sunshot goal of 0.06/kWh(e), while responding with agility to both market dynamics and changes in solar irradiance such as due to passing clouds. Moreover, our development of control software with performance guarantees will avoid early stage failures and permit smooth grid integration of the CSP power plants. The proposed controller can be implemented with existing control hardware infrastructure with little or no additional equipment. In the thesis, we demonstrate a dynamics model of CSP, of which different components are modelled with different time scales. We also show a real time control strategy of CSP control oriented model in steady state. Furthermore, we shown different controllers

  17. Chlorination for biofouling control in power plant cooling water system - a review

    International Nuclear Information System (INIS)

    Satpathy, K.K.; Ruth Nithila, S.D.

    2008-01-01

    Fresh water is becoming a rare commodity day by day and thus power plant authorities are turning into sea to make use of the copious amount of seawater available at an economical rate for condenser cooling. Unfortunately, biofouling; the growth and colonization of marine organisms affect the smooth operation of power plant cooling water systems. This is more so, if the plant is located in tropical climate having clean environment, which enhances the variety and density of organisms. Thus, biofouling needs to be controlled for efficient operation of the power plant. Biocide used for biofouling control is decided based on three major criteria viz: it should be economically, operationally and environmentally acceptable to the power plant authorities. Chlorine among others stands out on the top and meets all the above requirements in spite of a few shortcomings. Therefore it is no wonder that still chlorine rules the roost and chlorination remains the most common method of biofouling control in power plant cooling water system all over the world. Although, it is easier said than done, a good amount of R and D work is essential before a precise chlorination regime is put into pragmatic use. This paper discusses in details the chemistry of chlorination such as chlorine demand, chlorine decay, break point chlorination, speciation of chlorine residual and role of temperature and ammonia on chlorination in biofouling control. Moreover, targeted and pulse chlorination are also discussed briefly. (author)

  18. Total quality control: the deming management philosophy applied to nuclear power plants

    International Nuclear Information System (INIS)

    Heising, C.D.; Wetherell, D.L.; Melhem, S.A.; Sato, M.

    1987-01-01

    In recent years, a call has come for the development of inherently safe nuclear reactor systems that cannot have large-scale accidents. In the search for the perfect inherently safe reactor system, some are calling for the institution of computerized automated control of reactors eliminating most human operators from the control room. A different approach to the problem of the control of inherently safe reactors is that both future and present nuclear power plants need to institute total quality control (TQC) to plant operations and management. The Deming management philosophy of TQC has been implemented in a wide range of industries - particularly in Japan and the US. Specific attention is given, however, to TQC implementation in the electric power industry as applied to nuclear plants. The Kansai Electric Power Company and Florida Power and Light Company have recently implemented TQC. Statistical quality control methods have been applied to monitor and control reactor variables (for example, to the steam generator water level important to start-up operations of pressurized water reactors)

  19. Optimization for set-points and robust model predictive control for steam generator in nuclear power plants

    International Nuclear Information System (INIS)

    Osgouee, Ahmad

    2010-01-01

    Full Text: Nuclear power plants will be needed for future energy demands, which are expected to grow at different rates around the world. Lower operating cost is one of the major benefits of nuclear power plants over fossil power plants. Also, the plant availability is a key factor to economic index of a nuclear power plant. The opportunities for building new nuclear power plants around the world will depend on the need for clean energy with zero, or minimal emissions to support healthy communities, supply reliable energy with stable prices, and issues related to global warming and climate change. Compared to other types of power plants, nuclear power plants are preferred for their numerous advantages, including low operating costs, emission free operation with no smog, no acid rain, and no effect on global warming. Economic feasibility of a nuclear power plant requires for smooth and uninterrupted plant operation during electrical power demand variations. The steam generator (SG) in a nuclear power plant plays an important role in cooling of the reactor, balancing energy between reactor and turbine and producing steam for the turbine-generators. SG acts as an additional safety barrier between the nuclear reactor and the outside world also. As a result, control of the water inventory in the SG is very important to ensure continuous cooling of the nuclear reactor core, plant protection and at the same time, to prevent the SG tubes and turbine blades failure. A review of past nuclear power plant operation experiences indicates that unplanned reactor trips due to steam generator level (SGL) control have been significant contributors to plant unavailability. During low power operation, the level control is complicated by the thermal reverse effects known as 'shrink and swell'. Manual operator intervention to the SGL control system at low reactor power and to the unit upset conditions has been identified as an operator response in most nuclear power plants. In spite of

  20. Nuclear power plant control room operator control and monitoring tasks

    International Nuclear Information System (INIS)

    Bovell, C.R.; Beck, M.G.; Carter, R.J.

    1998-01-01

    Oak Ridge National Laboratory is conducting a research project the purpose of which is to develop the technical bases for regulatory review criteria for use in evaluating the safety implications of human factors associated with the use of artificial intelligence and expert systems, and with advanced instrumentation and control (I and C) systems in nuclear power plants (NPP). This report documents the results from Task 8 of that project. The primary objectives of the task was to identify the scope and type of control and monitoring tasks now performed by control-room operators. Another purpose was to address the types of controls and safety systems needed to operate the nuclear plant. The final objective of Task 8 was to identify and categorize the type of information and displays/indicators required to monitor the performance of the control and safety systems. This report also discusses state-of-the-art controls and advanced display devices which will be available for use in control-room retrofits and in control room of future plants. The fundamental types of control and monitoring tasks currently conducted by operators can be divided into four classifications: function monitoring tasks, control manipulation tasks, fault diagnostic tasks, and administrative tasks. There are three general types of controls used in today's NPPs, switches, pushbuttons, and analog controllers. Plant I and C systems include components to achieve a number of safety-related functions: measuring critical plant parameters, controlling critical plant parameters within safety limits, and automatically actuating protective devices if safe limits are exceeded. The types of information monitored by the control-room operators consist of the following parameters: pressure, fluid flow and level, neutron flux, temperature, component status, water chemistry, electrical, and process and area radiation. The basic types of monitoring devices common to nearly all NPP control rooms include: analog meters

  1. Advanced digital computers, controls, and automation technologies for power plants: Proceedings

    International Nuclear Information System (INIS)

    Bhatt, S.C.

    1992-08-01

    This document is a compilation of the papers that were presented at an EPRI workshop on Advances in Computers, Controls, and Automation Technologies for Power Plants. The workshop, sponsored by EPRI's Nuclear Power Division, took place February 1992. It was attended by 157 representatives from electric utilities, equipment manufacturers, engineering consulting organizations, universities, national laboratories, government agencies and international utilities. More than 40% of the attendees were from utilities representing the majority group. There were 30% attendees from equipment manufacturers and the engineering consulting organizations. The participants from government agencies, universities, and national laboratories were about 10% each. The workshop included a keynote address, 35 technical papers, and vendor's equipment demonstrations. The technical papers described the state-of-the-art in the areas of recent utility digital upgrades such as digital feedwater controllers, steam generator level controllers, integrated plant computer systems, computer aided diagnostics, automated testing and surveillance and other applications. A group of technical papers presented the ongoing B ampersand W PWR integrated plant control system prototype developments with the triple redundant advanced digital control system. Several international papers from France, Japan and U.K. presented their programs on advance power plant design and applications. Significant advances in the control and automation technologies such as adaptive controls, self-tuning methods, neural networks and expert systems were presented by developers, universities, and national laboratories. Individual papers are indexed separately

  2. A minimum attention control center for nuclear power plants

    International Nuclear Information System (INIS)

    Meijer, C.H.

    1986-01-01

    Control Centers for Nuclear Power Plants have characteristically been designed for maximum attention by the operating staffs of these plants. Consequently, the monitoring, control and diagnostics oriented cognitive activities by these staffs, were mostly ''data-driven'' in nature. This paper addresses a control center concept, under development by Combustion Engineering, that promotes a more ''information-driven'' cognitive interaction process between the operator and the plant. The more ''intelligent'' and therefore less attentive nature of such interactive process utilizes computer implemented cognitive engineered algorithms. The underlying structure of these algorithms is based upon the Critical Function/Success Path monitoring principle. The paper highlights a typical implementation of the minimum attention concept for the handling of unfamiliar safety related events. (author)

  3. Evaluation of the control system checkout test at 100% power for Yonggwang Nuclear Power Plant Unit 3

    International Nuclear Information System (INIS)

    Kim, Shin Whan; Lee, Joo Han; Baek, Jong Man; Seo, Jong Tae; Lee, Sang Keun; Kang, In Koo; Ju, Hee Wan; Min, Kyung Soo; Kim, Byung Gon

    1995-01-01

    Control system checkout tests at various powers for Yonggwang Nuclear Power Plant Unit 3(YGN3) were performed to demonstrate the accuracies and proper performances of the control systems of the plant. Tested control systems included the feedwater control system, steam bypass control system, reactor regulation system, control element drive mechanism control system, pressurizer level control system, and pressurizer pressure control system. The measured test data during the control system checkout test at 100% power are evaluated. The test results showed that the control systems of YGN 3 properly control system was simulated by using the LTC code which is the performance analysis code for YGN 3 and 4 design. Comparisons of the predicted results with the measured data confirmed that the feedwater control system controls the steam generator level as designed

  4. Flood control design requirements and flood evaluation methods of inland nuclear power plant

    International Nuclear Information System (INIS)

    Zhang Ailing; Wang Ping; Zhu Jingxing

    2011-01-01

    Effect of flooding is one of the key safety factors and environmental factors in inland nuclear power plant sitting. Up to now, the rule of law and standard systems are established for the selection of nuclear power plant location and flood control requirements in China. In this paper flood control standards of China and other countries are introduced. Several inland nuclear power plants are taken as examples to thoroughly discuss the related flood evaluation methods. The suggestions are also put forward in the paper. (authors)

  5. Advanced Grid-Friendly Controls Demonstration Project for Utility-Scale PV Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Gevorgian, Vahan; O' Neill, Barbara

    2016-01-21

    A typical photovoltaic (PV) power plant consists of multiple power electronic inverters and can contribute to grid stability and reliability through sophisticated 'grid-friendly' controls. The availability and dissemination of actual test data showing the viability of advanced utility-scale PV controls among all industry stakeholders can leverage PV's value from being simply an energy resource to providing additional ancillary services that range from variability smoothing and frequency regulation to power quality. Strategically partnering with a selected utility and/or PV power plant operator is a key condition for a successful demonstration project. The U.S. Department of Energy's (DOE's) Solar Energy Technologies Office selected the National Renewable Energy Laboratory (NREL) to be a principal investigator in a two-year project with goals to (1) identify a potential partner(s), (2) develop a detailed scope of work and test plan for a field project to demonstrate the gird-friendly capabilities of utility-scale PV power plants, (3) facilitate conducting actual demonstration tests, and (4) disseminate test results among industry stakeholders via a joint NREL/DOE publication and participation in relevant technical conferences. The project implementation took place in FY 2014 and FY 2015. In FY14, NREL established collaborations with AES and First Solar Electric, LLC, to conduct demonstration testing on their utility-scale PV power plants in Puerto Rico and Texas, respectively, and developed test plans for each partner. Both Puerto Rico Electric Power Authority and the Electric Reliability Council of Texas expressed interest in this project because of the importance of such advanced controls for the reliable operation of their power systems under high penetration levels of variable renewable generation. During FY15, testing was completed on both plants, and a large amount of test data was produced and analyzed that demonstrates the ability of

  6. Improvement of environmental aspects of thermal power plant operation by advanced control concepts

    Directory of Open Access Journals (Sweden)

    Mikulandrić Robert

    2012-01-01

    Full Text Available The necessity of the reduction of greenhouse gas emissions, as formulated in the Kyoto Protocol, imposes the need for improving environmental aspects of existing thermal power plants operation. Improvements can be reached either by efficiency increment or by implementation of emission reduction measures. Investments in refurbishment of existing plant components or in plant upgrading by flue gas desulphurization, by primary and secondary measures of nitrogen oxides reduction, or by biomass co-firing, are usually accompanied by modernisation of thermal power plant instrumentation and control system including sensors, equipment diagnostics and advanced controls. Impact of advanced control solutions implementation depends on technical characteristics and status of existing instrumentation and control systems as well as on design characteristics and actual conditions of installed plant components. Evaluation of adequacy of implementation of advanced control concepts is especially important in Western Balkan region where thermal power plants portfolio is rather diversified in terms of size, type and commissioning year and where generally poor maintenance and lack of investments in power generation sector resulted in high greenhouse gases emissions and low efficiency of plants in operation. This paper is intended to present possibilities of implementation of advanced control concepts, and particularly those based on artificial intelligence, in selected thermal power plants in order to increase plant efficiency and to lower pollutants emissions and to comply with environmental quality standards prescribed in large combustion plant directive. [Acknowledgements. This paper has been created within WBalkICT - Supporting Common RTD actions in WBCs for developing Low Cost and Low Risk ICT based solutions for TPPs Energy Efficiency increasing, SEE-ERA.NET plus project in cooperation among partners from IPA SA - Romania, University of Zagreb - Croatia and Vinca

  7. Water chemistry control of PWR nuclear power plant

    International Nuclear Information System (INIS)

    Hino, Yuichi; Makino, Ichiro; Yamauchi, Sumio; Fukuda, Fumihito.

    1992-01-01

    In PWR power plants, the primary system taking heat out of nuclear reactors and the secondary system generating steam and driving turbines are completely separated by steam generators, accordingly, by mutually independent water treatment, both systems are to be maintained in the optimal conditions. Namely, primary system is the closed water circulation circuit of simple liquid phase though under high temperature, high pressure condition, therefore, water shows the stable physical and chemical properties, and the minute water treatment for restraining the corrosion of structural materials and reducing radioactivity can be done. Secondary system is similar to the condensate and feedwater system of thermal power plants, and is the circuit for liquid-vapor two-phase transformation, but due to the local concentration of impurities by evaporation, the strict requirement is set for secondary water quality. However, secondary system can be treated in the state without radioactivity, and this is a great merit. The outline, basic concept and execution of primary water quality control, and the outline, concept, control criteria, facilities and execution of secondary water quality control are reported. (K.I.)

  8. Is micro-CHP price controllable under price signal controlled Virtual Power Plants?

    DEFF Research Database (Denmark)

    You, Shi; Træholt, Chresten; Poulsen, Bjarne

    2011-01-01

    As micro-combined heat and power (micro-CHP) systems move towards mass deployment together with other kinds of distributed energy resources (DER), an increasing emphasis has been placed on how to coordinate such a large diversified DER portfolio in an efficient way by the Virtual Power Plant (VPP...... for three different micro-CHP systems to investigate the feasibility of being controlled by price. Such analysis is relevant for both controller designs for micro-CHP systems and VPP related operations. The results indicate that controlling the micro-CHP systems by price is feasible but could result...

  9. Introducing Model Predictive Control for Improving Power Plant Portfolio Performance

    DEFF Research Database (Denmark)

    Edlund, Kristian Skjoldborg; Bendtsen, Jan Dimon; Børresen, Simon

    2008-01-01

    This paper introduces a model predictive control (MPC) approach for construction of a controller for balancing the power generation against consumption in a power system. The objective of the controller is to coordinate a portfolio consisting of multiple power plant units in the effort to perform...... reference tracking and disturbance rejection in an economically optimal way. The performance function is chosen as a mixture of the `1-norm and a linear weighting to model the economics of the system. Simulations show a significant improvement of the performance of the MPC compared to the current...

  10. Nuclear material control systems for nuclear power plants

    International Nuclear Information System (INIS)

    1975-06-01

    Paragraph 70.51(c) of 10 CFR Part 70 requires each licensee who is authorized to possess at any one time special nuclear material in a quantity exceeding one effective kilogram to establish, maintain, and follow written material control and accounting procedures that are sufficient to enable the licensee to account for the special nuclear material in his possession under license. While other paragraphs and sections of Part 70 provide specific requirements for nuclear material control systems for fuel cycle plants, such detailed requirements are not included for nuclear power reactors. This guide identifies elements acceptable to the NRC staff for a nuclear material control system for nuclear power reactors. (U.S.)

  11. Full State Feedback Control for Virtual Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Jay Tillay [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    This report presents an object-oriented implementation of full state feedback control for virtual power plants (VPP). The components of the VPP full state feedback control are (1) objectoriented high-fidelity modeling for all devices in the VPP; (2) Distribution System Distributed Quasi-Dynamic State Estimation (DS-DQSE) that enables full observability of the VPP by augmenting actual measurements with virtual, derived and pseudo measurements and performing the Quasi-Dynamic State Estimation (QSE) in a distributed manner, and (3) automated formulation of the Optimal Power Flow (OPF) in real time using the output of the DS-DQSE, and solving the distributed OPF to provide the optimal control commands to the DERs of the VPP.

  12. The Remotely Controlled Robot System for Nuclear Power Plants

    International Nuclear Information System (INIS)

    Koh, Kwangill; Lee, Gwangnam; Lim, Kyeyoung

    1993-01-01

    The problem of radioactivity has been our major concern. So, it makes the needs of remotely controlled robot system necessary for maintenance and repair services. Up to now, several foreign companies have been contracted for the maintenance of the steam generators of nuclear power plants in Korea, to acquire its own capability of maintaining the steam generators of it impossible for Korea to acquire its own capability of maintaining the steam generators. In case of emergency, it is difficult to take appropriate steps on its own. In order to resolve the above problems, it seems inevitable to develop the robot system for the inspection and repair of steam generator. This project intends to acquire domestic capabilities of maintaining steam generators, so that this advanced skills could be applied to the related areas. As a result, it will save immense money in the future. the purposes of development of the remotely controlled robot system are : to perform the desired tasks at the polluted area without requiring entry of personnel. to closely inspect the steam generator U-tubes at high speed. to inspect the steam generator intelligently and efficiently under the extreme circumstances where radioactivity problem is very severe. to use for the repair of steam generator tube. Considering from the social and technical standpoint, we can say that the development of the remotely controlled robot system for nuclear power plants resulted in great achievements. From the social standpoint, it should be recognized that domestic robot for nuclear power plant was successfully developed and operator was protected against radioactivity. Also, we advanced our skills in the area of mechanical and control system design for an articulated robot. Using the robot controller in hierarchical structure, it was possible to control the robot remotely. In addition, resolver feedback typed A C servo drive was proven to be sturdy in hazardous environment. Now we are confident that our robot will

  13. Controlled procurement for nuclear power plants

    International Nuclear Information System (INIS)

    MacFarlane, I.S.

    1985-01-01

    A method is presented for establishing a controlled materials management system that facilitates materials procurement at nuclear power plants. This method is based on the determination of informational data requirements, appropriate input and approvals, and extent of administrative controls. Implementation of the techniques described herein will ensure that the accuracy of important procurement information is not compromised by unauthorized initial input or changes and/or failure to maintain the information. Needed material can thus be ordered through the materials management system with a high degree of confidence that the correct items are ordered, with minimal internal lead time and minimum delays during the receiving process

  14. From control switches to integrated process control systems. 60 years of power plant control technology; Vom Steuerquittierschalter zum integrierten Prozessleitsystem. 60 Jahre Kraftwerksleittechnik

    Energy Technology Data Exchange (ETDEWEB)

    Pagel, Peter [ABB AG, Mannheim (Germany). Marketing

    2009-07-01

    Power plant control has always been based on the process requirements and on the need to reduce the process cost. Modern power plant control systems also take account of the need for emission reduction. They have developed into integrated navigation platforms with functional confectioning of workstations, focusing on the aspects of functionality, efficiency, ergonomics, plant availability and life cycle cost. The contribution outlines important developments of power plant control technology during the past few decades. (orig.)

  15. Safety implications of computerized process control in nuclear power plants

    International Nuclear Information System (INIS)

    1991-02-01

    Modern nuclear power plants are making increasing use of computerized process control because of the number of potential benefits that accrue. This practice not only applies to new plants but also to those in operation. Here, the replacement of both conventional process control systems and outdated computerized systems is seen to be of benefit. Whilst this contribution is obviously of great importance to the viability of nuclear electricity generation, it must be recognized that there are major safety concerns in taking this route. However, there is the potential for enhancing the safety of nuclear power plants if the full power of microcomputers and the associated electronics is applied correctly through well designed, engineered, installed and maintained systems. It is essential that areas where safety can be improved be identified and that the pitfalls are clearly marked so that they can be avoided. The deliberations of this Technical Committee Meeting are a step on the road to this goal of improved safety through computerized process control. This report also contains the papers presented at the technical committee meeting by participants. A separate abstract was prepared for each of these 15 presentations. Refs, figs and tabs

  16. A novel technology for control of variable speed pumped storage power plant

    Institute of Scientific and Technical Information of China (English)

    Seyed Mohammad Hassan Hosseini; Mohammad Reza Semsar

    2016-01-01

    Variable speed pumped storage machines are used extensively in wind power plant and pumped storage power plant. This paper presents direct torque and flux control (DTFC) of a variable speed pumped storage power plant (VSPSP). By this method both torque and flux have been applied to control the VSPSP. The comparison between VSPSP’s control strategies is studied. At the first, a wind turbine with the capacity 2.2 kW and DTFC control strategies simulated then a 250 MW VSPSP is simulated with all of its parts (including electrical, mechanical, hydraulic and its control system) by MATLAB software. In all of simulations, both converters including two-level voltage source converter (2LVSC) and three-level voltage source converter (3LVSC) are applied. The results of applying 2LVSC and 3LVSC are the rapid dynamic responses with better efficiency, reducing the total harmonic distortion (THD) and ripple of rotor torque and flux.

  17. Occupational dose control in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Viktorsson, C.; Lochard, J.; Benedittini, M.; Baum, J.; Khan, T.A.

    1990-01-01

    Reduction in occupational exposure at nuclear power plants is desirable not only in the interest of the health and safety of plant personnel, but also because it enhances the safety and reliability of the plants. This report summarises the current trends of doses to workers at nuclear power plants and the achievements and developments regarding methods for their reduction

  18. Radiation control system of nuclear power plants

    International Nuclear Information System (INIS)

    Kapisovsky, V.; Kosa, M.; Melichar, Z.; Moravek, J.; Jancik, O.

    1977-01-01

    The SYRAK system is being developed for in-service radiation control of the V-1 nuclear power plant. Its basic components are an EC 1010 computer, a CAMAC system and communication means. The in-service release of radionuclides is measured by fuel can failure detection, by monitoring rare gases in the coolant, by gamma spectrometric coolant monitoring and by iodine isotopes monitoring in stack disposal. (O.K.)

  19. Water quality control method and device for nuclear power plant and nuclear power plant

    International Nuclear Information System (INIS)

    Nagase, Makoto; Asakura, Yamato; Uetake, Naoto; Sawa, Toshio; Uchida, Shunsuke; Takeda, Renzo; Osumi, Katsumi.

    1993-01-01

    In a BWR type nuclear power plant, water quality of coolants is controlled so as to lower deposition rate of Co ions in reactor water on a fuel cladding tube. The water quality control method includes (1) decreasing an iron concentration in feedwater to less than 0.1ppb, (2) adjusting coolants weakly acidic and (3) controlling dissolved oxygen concentration in reactor water to 20ppb. This can decrease 60 Co ion concentration even if 60 Co ion concentration is increased by the change of environment for the operation in future, such as an operation with hydrogen injection and extention of fuel burnup degree. (T.M.)

  20. Control room, emergency control system and local control panels in nuclear power plants

    International Nuclear Information System (INIS)

    1988-01-01

    The requirements on planning and construction of control boards including ergonomic-technical designing are specified in this rule. The specifications put the requirements on the design of place, process and environment of work, which are mentioned in the sections 90 and 91 of the labor-management relations act, into more concrete terms for the safety-relevant control panels as work places in a nuclear power station. The work places at control panels are not considered as video workstations in the sense of the 'Safety Rules for Video Workstations in the Office Sector' published by the General Association of the Industrial Trade Associations. The requirements are based on the operation and information technology realized at present in control panels of stationary nuclear power plants. (orig./HP) [de

  1. Considerations concerning the ergonomics of power plant control rooms

    International Nuclear Information System (INIS)

    Herbst, L.; Hinz, W.

    1981-01-01

    Modern control rooms for the monitoring and control of large power plants have a high degree of automation. However, it is the responsibility of the control room personnel to ensure optimum process control during all operational states. The proper ergonomic design of a control room is one of the prerequisites to ensure that the operators are able to perceive the often large flow of current information and, after processing, to respond properly. (orig.) [de

  2. Human Factors Engineering Incorporated into the Carolina Power and Light company's nuclear power plant control panel modifications

    International Nuclear Information System (INIS)

    Beith, D.M.; Shoemaker, E.M.; Horn, K.; Boush, D.

    1988-01-01

    Maintaining human factors conventions/practices that were established during the Detailed Control Design Review (DCRDR), is difficult if Human Factors Engineering (HFE) is not incorporated into the plant modification process. This paper presents the approach used at Carolina Power and Light's nuclear power plants that has successfully incorporated human factors engineering into their plant modification process. An HFE Design Guide or HFE Specification was developed which is used by the design engineers or plant engineering support groups in the preparation of plant modifications

  3. Information integration in control rooms and technical offices in nuclear power plants. Report prepared within the framework of the International Working Group on Nuclear Power Plant Control and Instrumentation

    International Nuclear Information System (INIS)

    2001-11-01

    The majority of the nuclear power plants in the world were designed 25 to 45 years ago. The information, instrumentation, safety, and control systems in these plant designs were based on analog, relay, and primitive digital technology. Computers that were available when most of the nuclear power plants were built were unsophisticated compared with those currently available. These less powerful machines with limited computational capabilities and memory were used to collect and store information. The main means for obtaining information from the plant were analog meters and strip chart recorders. In many cases these pieces of data had to be integrated and correlated with other data manually, in order to be usable. Procedures and plant information resided on paper only and were frequently hard to find and access in a timely manner. This report provides guidance to help with the integration of information in order to enhance the usability and usefulness of the information. It can also be used to help avoid the pitfalls that can occur when implementing new systems with respect to the information they need and produce. This reports philosophy is based on three important issues that allow the convenient structuring of the problem and to keep all of its important features. The first issue is the process of information systems integration and use. This is achieved by long term planning and the creation of the plant infrastructure plan. The second is to take care of the end users' needs in relation to their abilities. This is realized through analyses of user needs. Third is the design of the human-system interface (HSI), for example to distinguish between types of information for use in the plant control room and in technical offices. The development of this report was initiated by the IAEA International Working Group on Nuclear Power Plant Control and Instrumentation (IWG-NPPCI). It is a logical follow-up to IAEA-TECDOC-1016, Modernization of Instrumentation and Control

  4. Optimizing the roles of man and computer in nuclear power plant control

    International Nuclear Information System (INIS)

    Colley, R.W.; Seeman, S.E.

    1983-10-01

    We are presently participating in a program to optimize the functional man-machine interface for Liquid Metal-Cooled Fast Breeder Reactors. The overall objective of this program is to enhance operational safety; that is, to accommodate plant incidents through optimal integration of man and machine in performing the functions required to safely control a plant during both normal and off-normal conditions. Purpose of this talk is to describe an approach to determine the optimal roles of man and computer in the control of nuclear power plants. Purpose of this session was to get together people that are working in the areas of understanding of how operators control plants, and working on developing new aids for these operators. We were asked to explain how our modeling and approach we're taking will lead us to an optimization of the roles of the man and the computer in the control of nuclear power plants. Our emphasis was to be on the functions required for plant control, and how the attributes of the human operator and the attributes of the computer can be optimally used to enhance operational safety in performing these functions

  5. Quality assurance/quality control, reliability and availability of nuclear power plants

    International Nuclear Information System (INIS)

    Kueffer, K.

    1981-01-01

    In a first part this lectures will present a survey on nuclear power production and plant performance in the Western World and discuss key parameters such as load factors and non-availability. Some main reasons for reliable performance of nuclear power plants are given. The second part of this lecture deals with the question how quality assurance and quality control measures do directly influence plant reliability, availability and, thus, economy. Derived from worldwide experience gained from operating nuclear power plants, it may be concluded that the implementation of an overall quality assurance programme does not only satisfy safety requirements set forth by the nuclear regulatory bodies, but has also a considerable impact on plant reliability and availability. A positive effect on these figures will be achieved if the established quality assurance programme provides for a coordinated approach to all activities affecting quality. It is discussed how the quality of a product should be controlled and what kind of quality assurance measures by performed examples are given to demonstrate that the expenditure for maintenance work on components will decrease if planned and systematic quality assurance actions have been implemented during all procurement stages. (orig./RW)

  6. Experience with digital instrumentation and control systems for CANDU power plant modifications

    International Nuclear Information System (INIS)

    Basu, S.

    1997-01-01

    Over the last years, Ontario Hydro CANDU power plants have gone through many modifications. This includes modification from analog hardwired controls to digital and solid state controls and replacement of the existing digital controls with the latest hardware and software technology. Examples of digital modifications at Bruce A and other CANDU power plants are briefly described and categorized. Most of the I and C technology development has been supported by the CANDU Owners Group (COG) a consortium of Canadian nuclear utilities and the Atomic Energy Canada Limited (AECL). (author)

  7. Experience with digital instrumentation and control systems for CANDU power plant modifications

    Energy Technology Data Exchange (ETDEWEB)

    Basu, S [Ontario Hydro, Toronto, ON (Canada)

    1997-07-01

    Over the last years, Ontario Hydro CANDU power plants have gone through many modifications. This includes modification from analog hardwired controls to digital and solid state controls and replacement of the existing digital controls with the latest hardware and software technology. Examples of digital modifications at Bruce A and other CANDU power plants are briefly described and categorized. Most of the I and C technology development has been supported by the CANDU Owners Group (COG) a consortium of Canadian nuclear utilities and the Atomic Energy Canada Limited (AECL). (author).

  8. Nuclear Power Plant Control and Instrumentation activities in Czechoslovakia

    International Nuclear Information System (INIS)

    Stirsky, P.; Karpeta, C.; Rubek, J.

    1990-01-01

    After giving a survey of the Czechoslovak nuclear power plants a description of I and C systems of the operating plants is presented together with a brief outlook for future developments to be implemented at plants which are under construction. Special attention is paid to the adopted techniques for power distribution investigation and control in the WWER 1000 reactor core in the case of load changes. Basic futures of the in-core measurement systems are outlined. Measures implemented in the I and C systems of the operating units to improve their performance are described. Information on the country's approach to NPP personnel training and training aids usage as well as information on development work in the area of surveillance and monitoring systems completes the paper. (author). 9 refs, 1 tab

  9. A framework for selecting suitable control technologies for nuclear power plant systems

    International Nuclear Information System (INIS)

    Kisner, R.A.

    1992-01-01

    New concepts continue to emerge for controlling systems, subsystems, and components and for monitoring parameters, characteristics, and vital signs in nuclear power plants. The steady stream of new control theories and the evolving state of control software exacerbates the difficulty of selecting the most appropriate control technology for nuclear power plant systems. As plant control room operators increase their reliance on computerized systems, the integration of monitoring, diagnostic, and control functions into a uniform and understandable environment becomes imperative. A systematic framework for comparing and evaluating the overall usefulness of control techniques is needed. This paper describes nine factors that may be used to evaluate alternative control concepts. These factors relate to a control system's potential effectiveness within the context of the overall environment, including both human and machine components. Although not an in-depth study, this paper serves to outline an evaluation framework based on several measures of utility. 32 refs

  10. Intelligent distributed control for nuclear power plants

    International Nuclear Information System (INIS)

    Klevans, E.H.

    1991-01-01

    In September of 1989 work began on the DOE University Program grant DE-FG07-89ER12889. The grant provides support for a three year project to develop and demonstrate Intelligent Distributed Control (IDC) for Nuclear Power Plants. The body of this First Annual Technical Progress report summarizes the first year tasks while the appendices provide detailed information presented at conference meetings. One major addendum report, authored by M.A. Schultz, describes the ultimate goals and projected structure of an automatic distributed control system for EBR-2. The remaining tasks of the project develop specific implementations of various components required to demonstrate the intelligent distributed control concept

  11. Instrumentation and control systems for CANDU-PHW nuclear power plants

    International Nuclear Information System (INIS)

    Lepp, R.M.; Watkins, L.M.

    1982-02-01

    The instrumentation and control of CANDU nuclear power plants takes advantage of modern electronics technology in the extensive computerization of important control and man-machine functions. A description of these functions as well as those of the four Special Safety Systems is provided

  12. Aspects of Wind Power Plant Collector Network Layout and Control Architecture

    DEFF Research Database (Denmark)

    Altin, Müfit; Teodorescu, Remus; Bak-Jensen, Birgitte

    2010-01-01

    ecent developments in wind turbine technology go towards the installation of larger Wind Power Plants (WPPs) both onshore and offshore. As wind power penetration level increases, power system operators are challenged by the penetration impacts to maintain reliability and stability of power system....... Therefore, connection topology and control concepts of large WPPs should be carefully investigated to improve the overall performance of both the WPP and the power systems. This paper aims to present a general overview of the design considerations for the electrical layout of WPPs and the WPP control...... strategy for optimum power generation while fulfilling the power system operators requirements....

  13. New technology for BWR power plant control and instrumentation

    International Nuclear Information System (INIS)

    Takano, Yoshiyuki; Nakamura, Makoto; Murata, Fumio.

    1992-01-01

    Nuclear power plants are facing strong demands for higher reliability and cost-performance in their control and instrumentation systems. To meet these needs, Hitachi is developing advanced control and instrumentation technology by rationalizing the conventional technology in that field. The rationalization is done through the utilization of reliable digital technology and optical transmission technology, and others, which are now commonly used in computer applications. The goal of the development work is to ensure safe, stable operation of the plant facilities and to secure harmony between man and machine. To alleviate the burdens of the operators, the latest electronic devices are being employed to create an advanced man-machine interface, and to promote automatic operation of the plant based upon the automatic operation of individual systems. In addition, the control and instrumentation system, including the safety system, incorporates more and more digital components in order to further enhance the reliability and maintainability of the plant. (author)

  14. Methodology for risk-based configuration control of nuclear power plant operation

    International Nuclear Information System (INIS)

    Valle, Antonio Torres; Oliva, Jose de Jesus Rivero

    2012-01-01

    The hazardous configurations control in Nuclear Power Plants is an application of a previous Probabilistic Safety Analysis (PSA). A more complete option would be the risk monitoring for the online detection of these configurations but expert personnel would be required to deal with the complexities of PSA and risk monitor. The paper presents a simpler but effective approach: a method of configuration control, based on dependencies matrixes. The algorithm is included in a computer code called SECURE A-Z. The configuration control is carried out in a qualitative way, without previous PSA results and not using a Risk Monitor. The simplicity of the method warrants its application to facilities where these tools have not been developed, allowing the detection of hazardous configurations during operation and increasing plant safety. This configuration control system was implemented in the Embalse Nuclear Power Plant in Argentina. The paper shows the application of the algorithm to the analysis of a simplified safety system. (author)

  15. OVERVIEW OF A RECONFIGURABLE SIMULATOR FOR MAIN CONTROL ROOM UPGRADES IN NUCLEAR POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Ronald L. Boring

    2012-10-01

    This paper provides background on a reconfigurable control room simulator for nuclear power plants. The main control rooms in current nuclear power plants feature analog technology that is growing obsolete. The need to upgrade control rooms serves the practical need of maintainability as well as the opportunity to implement newer digital technologies with added functionality. There currently exists no dedicated research simulator for use in human factors design and evaluation activities for nuclear power plant modernization in the U.S. The new research simulator discussed in this paper provides a test bed in which operator performance on new control room concepts can be benchmarked against existing control rooms and in which new technologies can be validated for safety and usability prior to deployment.

  16. Performance assessment of non-self-regulating controllers in a cogeneration power plant

    International Nuclear Information System (INIS)

    Howard, Rachelle; Cooper, Douglas J.

    2009-01-01

    This work details a novel method for assessing the performance of a PI (proportional-integral) feedback controller when the process displays non-self-regulating dynamic behavior. By applying an intuitive process control-based pattern recognition method to the autocorrelation function of the process measurement signal, the controller's disturbance rejection performance can automatically be categorized. Stochastic data collected over days or weeks is analyzed to compute an index descriptive of current controller performance. If the control response has drifted from a user-defined target value, the analysis further provides a guide for tuning adjustments to restore desired performance. Significant aspects of this approach are that no plant disruption or process knowledge is required for evaluation. Classic examples of non-self-regulating behavior include certain liquid level control loops and pressure control loops which are prevalent in cogeneration power plants. In this work, we detail how the performance assessment method was used to improve performance of such controllers in the University of Connecticut's power plant.

  17. The human factors of CRT displays for nuclear power plant control

    International Nuclear Information System (INIS)

    Danchak, M.M.

    1984-01-01

    This chapter attempts to show how the Cathode Ray Tube (CRT) can be used to effectively present information to the operator rather than just data. The capabilities of the human as a sensing and information processing subsystem are discussed with CRT displays in mind. The display system is described in terms of its hardware and functioning. The interface between the two is examined by providing substantive guidelines for the effective design of CRT displays for nuclear power plant control. Alphanumeric displays, graphic displays, and representational displays are treated. The design of CRT displays for nuclear power plant control requires an extensive knowledge of cognitive psychology, computer display systems and the process being controlled

  18. Nuclear power plant control room operators' performance research

    International Nuclear Information System (INIS)

    Gray, L.H.; Haas, P.M.

    1984-01-01

    A research program is being conducted to provide information on the performance of nuclear power plant control room operators when responding to abnormal/emergency events in the plants and in full-scope training simulators. The initial impetus for this program was the need for data to assess proposed design criteria for the choice of manual versus automatic action for accomplishing safety-related functions during design basis accidents. The program also included studies of training simulator capabilities, of procedures and data for specifying and verifying simulator performance, and of methods and applications of task analysis

  19. Nuclear power plant outages

    International Nuclear Information System (INIS)

    1998-01-01

    The Finnish Radiation and Nuclear Safety Authority (STUK) controls nuclear power plant safety in Finland. In addition to controlling the design, construction and operation of nuclear power plants, STUK also controls refuelling and repair outages at the plants. According to section 9 of the Nuclear Energy Act (990/87), it shall be the licence-holder's obligation to ensure the safety of the use of nuclear energy. Requirements applicable to the licence-holder as regards the assurance of outage safety are presented in this guide. STUK's regulatory control activities pertaining to outages are also described

  20. Use of ABB ADVANT Power for large scale instrumentation and controls replacements in nuclear power plants

    International Nuclear Information System (INIS)

    Pucak, J.L.; Brown, E.M.

    1999-01-01

    One of the major issues facing plants planning for life extension is the viability and feasibility of modernization of a plant's existing I and C systems including the safety systems and the control room. This paper discusses the ABB approach to the implementation of large scale Instrumentation and Controls (I and C) modernization. ABB applies a segmented architecture approach using the ADVANT Power control system to meet the numerous constraints of a major I and C upgrade program. The segmented architecture and how it supports implementation of a complete I and C upgrade either in one outage or in a series of outages is presented. ADVANT Power contains standardized industrial control equipment that is designed to support 1E applications as well as turbine and non-1E process control. This equipment forms the basis for the architecture proposed for future new nuclear plant sales as well as large scale retrofits. (author)

  1. Wind power plant system services

    DEFF Research Database (Denmark)

    Basit, Abdul; Altin, Müfit

    Traditionally, conventional power plants have the task to support the power system, by supplying power balancing services. These services are required by the power system operators in order to secure a safe and reliable operation of the power system. However, as in the future the wind power...... is going more and more to replace conventional power plants, the sources of conventional reserve available to the system will be reduced and fewer conventional plants will be available on-line to share the regulation burden. The reliable operation of highly wind power integrated power system might...... then beat risk unless the wind power plants (WPPs) are able to support and participate in power balancing services. The objective of this PhD project is to develop and analyse control strategies which can increase the WPPs capability to provide system services, such as active power balancing control...

  2. Control of Solar Power Plants Connected Grid with Simple Calculation Method on Residential Homes

    Science.gov (United States)

    Kananda, Kiki; Nazir, Refdinal

    2017-12-01

    One of the most compatible renewable energy in all regions to apply is solar energy. Solar power plants can be built connected to existing or stand-alone power grids. In assisting the residential electricity in which there is a power grid, then a small scale solar energy power plants is very appropriate. However, the general constraint of solar energy power plants is still low in terms of efficiency. Therefore, this study will explain how to control the power of solar power plants more optimally, which is expected to reactive power to zero to raise efficiency. This is a continuation of previous research using Newton Rapshon control method. In this study we introduce a simple method by using ordinary mathematical calculations of solar-related equations. In this model, 10 PV modules type of ND T060M1 with a 60 Wp capacity are used. The calculations performed using MATLAB Simulink provide excellent value. For PCC voltage values obtained a stable quantity of approximately 220 V. At a maximum irradiation condition of 1000 W / m2, the reactive power value of Q solar generating system maximum 20.48 Var and maximum active power of 417.5 W. In the condition of lower irradiation, value of reactive power Q almost close to zero 0.77Var. This simple mathematical method can provide excellent quality control power values.

  3. ICT Based Performance Evaluation of Primary Frequency Control Support from Renewable Power Plants in Smart Grids

    Directory of Open Access Journals (Sweden)

    Kamal Shahid

    2018-05-01

    Full Text Available The increased penetration of Renewable Energy Generation (ReGen plants in future power systems poses several challenges to the stability of the entire system. In future green energy rich power systems, the responsibility for providing ancillary services will be shifted from conventional power plants towards ReGen plants, such as wind and photovoltaic power plants. Frequency control support from the Wind Power Plants (WPPs is one of the crucial ancillary services in order to preserve operational stability in case of grid disturbances. Among other requirements, the ability to provide fast frequency control support from ReGen plants will highly depend on the underlying communication infrastructure that allows an exchange of information between different ReGen plants and the control centers. This paper, therefore, focuses on the evaluation of the impact of communication and the related aspects to provide online frequency control support from ReGen (with special focus on WPP. The performance evaluation is based on an aggregated WPP model that is integrated into a generic power system model. This generic power system model is specifically designed to assess the ancillary services in a relatively simple yet relevant environment. Several case studies with different wind speeds at a particular wind-power penetration level and communication scenarios are considered to evaluate the performance of power system frequency response. The article provides the Transmission System Operator (TSO and other communication engineers insights into the importance and various aspects of communication infrastructure for general service coordination between WPPs and specifically primary frequency control coordination from WPPs in future power systems.

  4. Development of Information Processing and the Network System for the Control and Management of Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun Hee; Park, Doo Young; Woo, Joo Hee [Korea Electric Power Research Institute, Taejon (Korea, Republic of); Kwon, Wook Hyun; Park, Jeong Woo; Moon, Hong Joo; Moon, Sang Yong [Seoul National University, Seoul (Korea, Republic of)

    1997-12-31

    It is needed to supervise, control and manage the inter operation of the system that is connected together to achieve good operation and high performance of the power plant. Moreover, the interconnection of the power plant is indispensable and they must be managed together. At present the control management systems that are on operation at power plants are composed of various systems from different companies, and the power plants have their own structure, we have much difficulty in managing communication of the systems. So, this study suggests the standard specification of the communication network for power plants. We have developed the network hardware, the 7 layers UCA, the network application software, the gateway between 3 layers UCA and the 7 layers UCA. Finally, we have developed the interface to Infi`90 which is one of the most popularly used system for power plant control, so that PC can be used for the operation of Infi`90. (author). 82 refs., figs.

  5. Development of Information Processing and the Network System for the Control and Management of Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun Hee; Park, Doo Young; Woo, Joo Hee [Korea Electric Power Research Institute, Taejon (Korea, Republic of); Kwon, Wook Hyun; Park, Jeong Woo; Moon, Hong Joo; Moon, Sang Yong [Seoul National University, Seoul (Korea, Republic of)

    1996-12-31

    It is needed to supervise, control and manage the inter operation of the system that is connected together to achieve good operation and high performance of the power plant. Moreover, the interconnection of the power plant is indispensable and they must be managed together. At present the control management systems that are on operation at power plants are composed of various systems from different companies, and the power plants have their own structure, we have much difficulty in managing communication of the systems. So, this study suggests the standard specification of the communication network for power plants. We have developed the network hardware, the 7 layers UCA, the network application software, the gateway between 3 layers UCA and the 7 layers UCA. Finally, we have developed the interface to Infi`90 which is one of the most popularly used system for power plant control, so that PC can be used for the operation of Infi`90. (author). 82 refs., figs.

  6. Automation technology in power plants

    International Nuclear Information System (INIS)

    Essen, E.R.

    1995-01-01

    In this article a summery of the current architecture of modern process control systems in power plants and future trends have been explained. The further development of process control systems for power plants is influenced both by the developments in component and software technologies as well as the increased requirements of the power plants. The convenient and low cost configuration facilities of new process control systems have now reached a significance which makes it easy for customers to decide to purchase. (A.B.)

  7. Discussion on verification criterion and method of human factors engineering for nuclear power plant controller

    International Nuclear Information System (INIS)

    Yang Hualong; Liu Yanzi; Jia Ming; Huang Weijun

    2014-01-01

    In order to prevent or reduce human error and ensure the safe operation of nuclear power plants, control device should be verified from the perspective of human factors engineering (HFE). The domestic and international human factors engineering guidelines about nuclear power plant controller were considered, the verification criterion and method of human factors engineering for nuclear power plant controller were discussed and the application examples were provided for reference in this paper. The results show that the appropriate verification criterion and method should be selected to ensure the objectivity and accuracy of the conclusion. (authors)

  8. Neural network for adapting nuclear power plant control for wide-range operation

    International Nuclear Information System (INIS)

    Ku, C.C.; Lee, K.Y.; Edwards, R.M.

    1991-01-01

    A new concept of using neural networks has been evaluated for optimal control of a nuclear reactor. The neural network uses the architecture of a standard backpropagation network; however, a new dynamic learning algorithm has been developed to capture the underlying system dynamics. The learning algorithm is based on parameter estimation for dynamic systems. The approach is demonstrated on an optimal reactor temperature controller by adjusting the feedback gains for wide-range operation. Application of optimal control to a reactor has been considered for improving temperature response using a robust fifth-order reactor power controller. Conventional gain scheduling can be employed to extend the range of good performance to accommodate large changes in power where nonlinear characteristics significantly modify the dynamics of the power plant. Gain scheduling is developed based on expected parameter variations, and it may be advantageous to further adapt feedback gains on-line to better match actual plant performance. A neural network approach is used here to adapt the gains to better accommodate plant uncertainties and thereby achieve improved robustness characteristics

  9. The computerized radiation control system for the nuclear power plant

    International Nuclear Information System (INIS)

    Hunamoto, H.; Sato, T.; Taniguchi, K.

    1993-01-01

    Major works of Radiation control in nuclear power plant consist of occupational exposure control, radiation monitoring of working areas and surveillance of monitoring equipment, environmental monitoring and so on. Since a large amount of data will be generated from these works, therefore use of high performance computers will be indispensable. The systematization is presently being advanced in The Japan Atomic Power Company from this viewpoint and the project is being realized smoothly. The actual state is introduced

  10. Quality assurance as a system of management control in nuclear power plants

    International Nuclear Information System (INIS)

    Raisic, N.

    1986-04-01

    Quality assurance is considered as a management control system which the owner of a nuclear power plant has to establish for a nuclear power project for ensuring that a plant is built as designed and that defects are corrected. The building up of such a system should start early enough in project activities and before the plant design and construction, in order to ensure correct performance of all activities related to selection of the site for the nuclear power plant, bid specification and evaluation and procurement of services. The QA is a regulatory requirement, but the prudent plant management would create such a system as part of their total project management systems irrespective of formulation of requirement. In fact regulatory requirement should be considered as the criteria to be used by the regulatory organization for evaluation of licensee's QA system and not as an objective to be reached. In this paper the needs for QA system are justified as part of the development of industrial infrastructure for the nuclear power project. Elements of the system are described such as documented QA programme and organizational structures with defined responsibility and functions of individual organizational units, and with control of information flow across the interfaces. The goals and objectives or the project organizations related to achievement and verification of quality are defined as well as system functions in attaining these objectives. This includes the feedback of information to the management on monitoring of performance in project activities, identifying deficiencies and initiating corrective actions. Domestic participation in the nuclear power plant construction will depend on the ability of local construction and manufacturing organizations to achieve high quality standards of products and services that can affect safety and performance of the nuclear power plant. Introduction of QA systems in project organizations, development of QA programme and

  11. ICT based Performance Evaluation of Primary Frequency Control Support from Renewable Power Plants in Smart Grids

    DEFF Research Database (Denmark)

    Shahid, Kamal; Altin, Müfit; Mikkelsen, Lars Møller

    2018-01-01

    frequency control support from ReGen plants will highly depend on the underlying communication infrastructure that allows an exchange of information between different ReGen plants and the control centers. This paper, therefore, focuses on the impact of communication and the related aspects to provide online...... plants towards ReGen plants, such as wind and photovoltaic power plants. Frequency control support from the Wind Power Plants (WPPs) is one of the crucial ancillary services in order to preserve operational stability in case of grid disturbances. Among other requirements, the ability to provide fast...... wind speeds at a particular wind-power penetration level and communication scenarios are considered to evaluate the performance of power system frequency response. The article provides the Transmission System Operator (TSO) and other communication engineers insights into the importance and various...

  12. Improvement of existing coal fired thermal power plants performance by control systems modifications

    International Nuclear Information System (INIS)

    Mikulandrić, Robert; Lončar, Dražen; Cvetinović, Dejan; Spiridon, Gabriel

    2013-01-01

    This paper presents possibilities of implementation of advanced combustion control concepts in selected Western Balkan thermal power plant, and particularly those based on artificial intelligence as part of primary measures for nitrogen oxide reduction in order to optimise combustion and to increase plant efficiency. Both considered goals comply with environmental quality standards prescribed in large combustion plant directive. Due to specific characterisation of Western Balkan power sector these goals should be reached by low cost and easily implementable solution. Advanced self-learning controller has been developed and the effects of advanced control concept on combustion process have been analysed using artificial neural-network based parameter prediction model

  13. Concept and design of a fully computerized control room for future nuclear power plant

    International Nuclear Information System (INIS)

    Hinz, W.; Kollmannsberger, J.

    1991-01-01

    The development of digital process control equipment and of safety engineering equipment together with the CRT - based information visualization systems is advanced to a state allowing process control of nuclear power plant to be done by these equipments. The systems have been tested in the control room of the fossil-fuel Staudinger reactor station, unit 5, and the computer-assisted PRISCA process information system has been tested in the Konvoi-type nuclear reactor series. These tests serve as a basis for further process control system development by Siemens KWU, to be used in their future nuclear power plants. The advantages of digital process control and CRT-based information display are intended to be used for further optimization of the man-machine interface in nuclear power plant. One important aspect is to give the control room personnel complete insight into the operational processes of the entire plant, and to establish for detail recognition for process monitoring a very close mental link between operators and the system processes. In addition, the control room operator has to be given appropriate means and tools for process monitoring and control, fulfilling the requirements of guaranteeing the plant's availability and safety. These requirements put very high demands on the process monitoring and control equipment. (orig.) [de

  14. Nitrogen oxide control at power plants of the ENEL company (Italy)

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, V.R. (Vserossiiskii Teplotekhnicheskii Institut (Russian Federation))

    1993-03-01

    Analyzes experiences of the ENEL electricity company in Italy in controlling pollutant emission from fossil-fuel power plants. In 1990, the company produced 87% of the country's electricity. Until the year 2000, ENEL plans to increase coal use for power generation by 23.5% and install 9,300 MW of new coal-fired power plant capacity. New European and Italian emission standards require ENEL to reduce NO[sub x] emissions by 30% from 1986 to 1998. NO[sub x] emission values from various fuel-oil and pulverized-coal fired steam generators operated by the company are given. Modifications to existing combustion technologies and equipment installed to lower NO[sub x] content in flue gases at various ENEL power plants are considered. The most promising coal combustion technologies and ongoing research programs are pointed out. 4 refs.

  15. Two-loop controller for maximizing performance of a grid-connected photovoltaic - fuel cell hybrid power plant

    Science.gov (United States)

    Ro, Kyoungsoo

    The study started with the requirement that a photovoltaic (PV) power source should be integrated with other supplementary power sources whether it operates in a stand-alone or grid-connected mode. First, fuel cells for a backup of varying PV power were compared in detail with batteries and were found to have more operational benefits. Next, maximizing performance of a grid-connected PV-fuel cell hybrid system by use of a two-loop controller was discussed. One loop is a neural network controller for maximum power point tracking, which extracts maximum available solar power from PV arrays under varying conditions of insolation, temperature, and system load. A real/reactive power controller (RRPC) is the other loop. The RRPC meets the system's requirement for real and reactive powers by controlling incoming fuel to fuel cell stacks as well as switching control signals to a power conditioning subsystem. The RRPC is able to achieve more versatile control of real/reactive powers than the conventional power sources since the hybrid power plant does not contain any rotating mass. Results of time-domain simulations prove not only effectiveness of the proposed computer models of the two-loop controller, but also their applicability for use in transient stability analysis of the hybrid power plant. Finally, environmental evaluation of the proposed hybrid plant was made in terms of plant's land requirement and lifetime COsb2 emissions, and then compared with that of the conventional fossil-fuel power generating forms.

  16. Fuzzy logic control for improved pressurizer systems in nuclear power plants

    International Nuclear Information System (INIS)

    Brown, Chris; Gabbar, Hossam A.

    2014-01-01

    Highlights: • Improved performance of the pressurizer system in a CANDU nuclear power plant (NPP). • Inventory control for the pressurizer system in NPP. • Compare fuzzy logic with PID in pressurizer system in NPP. • Develop a fuzzy controller to regulate the pressurizer inventory control. • Compare control performance with current proportional controller used at NPP. - Abstract: The pressurizer system in a CANDU nuclear power plant is responsible for maintaining the pressure of the primary heat transport system to ensure the plant is operated within its safe operating envelope. The inventory control for the pressurizer system use a combination of level sensors, feed valves and bleed valves to ensure that there is adequate room in the pressurizer to accommodate any swell or shrinkage in the PHT system. The Darlington Nuclear Generating Station (DNGS) in Ontario, Canada currently uses a proportional controller for the bleed and feed valves to regulate the pressurizer inventory control which can result in large coolant level overshoot along with excessive settling times. The purpose of this paper is to develop a fuzzy controller to regulate the pressurizer inventory control and compare its performance to the current proportional controller used at DNGS. The simulation of the pressurizer inventory control system shows the fuzzy controller performs better than the proportional controller in terms of settling time and overshoot

  17. Toward risk-based control of nuclear power plant configurations

    International Nuclear Information System (INIS)

    Samanta, P.K.; Veseley, W.E.; Kim, I.S.

    1992-01-01

    This paper presents an evaluation of the configuration risks associated with the operation of a nuclear power plant and the approaches to control these risks using risk-based configuration control considerations. In that context, the actual and maximum potential configuration risks at a plant are analyzed and the alternative types criteria for a risk-based configuration control systems are described. The risk-based configuration calculations which are studied here focus on the core-melt frequency impacts from given plant configurations, the configurations which cause large core-melt frequency increases can be identified and controlled. The duration time in which the configuration can exist can then be limited or the core-melt frequency level associated with the configuration can be reduced by various actions. Futhermore, maintenances and tests can be scheduled to avoid the configurations which cause large core-melt frequency increases. Present technical specifications do not control many of these configurations which can cause large core-melt frequency increases but instead focus on many risk-unimportant allowed outage times. Hence, risk-based configuration management can be effectively used to reduce core-melt frequency associated risks at a plant and at the same time can provide flexibility in plant operation. The alternative strategies for controlling the core-melt frequency and other risk contributions include: (1) controlling the increased risk level which is associated with the configuration; (2) controlling the individual configuration risk which is associated with a given duration of a configuration; (3) controlling the time period configuration risk from configurations which occur in a time period. (orig.)

  18. CEGB philosophy and experience with fault-tolerant micro-computer application for power plant controls

    International Nuclear Information System (INIS)

    Clinch, D.A.L.

    1986-01-01

    From the mid-1960s until the late 1970s, automatic modulating control of the main boiler plant on CEGB fossil-fired power stations was largely implemented with hard wired electronic equipment. Mid-way through this period, the CEGB formulated a set of design requirements for this type of equipment; these laid particular emphasis on the fault tolerance of a control system and specified the nature of the interfaces with a control desk and with plant regulators. However, the automatic control of an Advanced Gas Cooled Reactor (AGR) is based upon measured values which are derived by processing a large number of thermocouple signals. This is more readily implemented digitally than with hard-wired equipment. Essential to the operation of an AGR power station is a data processing (DP) computer for monitoring the plant; so the first group of AGR power stations, designed in the 1960s, employed their DP computers for modulating control. Since the late 1970s, automatic modulating control of major plants, for new power stations and for re-fits on established power stations, has been implemented with micro-computers. Wherever practicable, the policy formulated earlier for hard-wired equipment has been retained, particularly in respect of the interfaces. This policy forms the foundation of the fault tolerance of these micro-computer systems

  19. Wireless system controlling of electromagnetic wave distribution in nuclear power plant use

    International Nuclear Information System (INIS)

    Kuroda, Hidehiko; Kume, Naoto; Oshima, Tomomi; Takakura, Kei; Oda, Naotaka; Hasegawa, Takeshi; Odanaka, Shigeru

    2017-01-01

    Recently, wireless technologies have rapidly spread by cellular phones, smartphones and tablet devices. Wireless systems in the nuclear power plant are expected to bring various advantages such as shortening of the inspection time, online monitoring, remote control and cable reduction, etc. However, wireless systems have hardly applied to the nuclear power plant, from the point of security and electromagnetic interference (EMI). We propose a new wireless system controlling automatically electromagnetic wave distribution. In our wireless system, the transmitter / receiver modules automatically measure the wave strength and adjust the power and directivity of the wave, resulting in wireless communication only in target zones, i.e. non-influence to safety-related instruments and non-leakage of information. We will present the algorithm of the electromagnetic wave controlling and experimental results about the proposed system. (author)

  20. Small hydroelectric power plants

    International Nuclear Information System (INIS)

    Helgesen, Boerre

    2002-01-01

    Small hydroelectric power plants are power plants of 1 - 10 MW. For a supplier, this is an unnatural limit. A more natural limit involves compact engine design and simplified control system. The article discusses most of the engine and electrotechnical aspects in the development, construction and operation of such a plant

  1. Coordinated Voltage Control Scheme for VSC-HVDC Connected Wind Power Plants

    DEFF Research Database (Denmark)

    Guo, Yifei; Gao, Houlei; Wu, Qiuwei

    2017-01-01

    This paper proposes a coordinated voltage control scheme based on model predictive control (MPC) for voltage source converter‐based high voltage direct current (VSC‐HVDC) connected wind power plants (WPPs). In the proposed scheme, voltage regulation capabilities of VSC and WTGs are fully utilized...... and optimally coordinated. Two control modes, namely operation optimization mode and corrective mode, are designed to coordinate voltage control and economic operation of the system. In the first mode, the control objective includes the bus voltages, power losses and dynamic Var reserves of wind turbine...

  2. Report on the status of instrumentation and control in Swedish nuclear power plants

    International Nuclear Information System (INIS)

    Stroebeck, E.

    1992-01-01

    Nuclear power plants accounted for 46% of the total electric power production in Sweden in 1990. The availability of the Swedish reactors remains at a very high level. The oldest Swedish nuclear power plant has been in operation for nearly 20 years, and in the next 5 to 10 years a large portion of the NPP electrical equipment has to be replaced. The paper presents an overview of activities on control and instrumentation in the following: Future developments; implementation of computer-based systems; training simulators; nuclear safety research. The operating experience in Swedish nuclear power plants in 1991 is also presented. (author)

  3. Modernization of existing power plants. Progress in automation and process control/observation

    International Nuclear Information System (INIS)

    Hanna, I.

    1996-01-01

    Numerous power plants are now getting on in years, and their owners have to face the question 'New plant or upgrade job ?'. Experience in the past few years has shown that in many cases modernization/upgrading of existing plants is a more favorable option than building a complete new power plant. Advantages like lower capital investment costs and avoidance of licensing risks for new plants constitute important motives for choosing the upgrade option in numerous power plants modernization projects. The defined objective here is to ensure the units' operating capability for another 20 to 25 years, sometimes supplemented by meticulous compliance with current environmental impact legislation. Another cogent argument emerges from automation engineering advances in modern-day control systems which make an effective contribution to meeting upgrading objective like: equipment/material -friendly operation, extended useful lifetime, enhanced plant reliability, enhanced plant availability, improved plant efficiency, optimized staffing levels, enhanced cost-effectiveness, compliance with today's international standards. In this context special attention is paid to the economical aspects and to the increase of plant availability. (author). 6 figs

  4. Design and Tuning of Wind Power Plant Voltage Controller with Embedded Application of Wind Turbines and STATCOMs

    DEFF Research Database (Denmark)

    Petersen, Lennart; Kryezi, Fitim; Iov, Florin

    2017-01-01

    This study addresses a detailed design and tuning of a wind power plant voltage control with reactive power contribution of wind turbines and static synchronous compensators (STATCOMs). First, small-signal models of a single wind turbine and STATCOM are derived by using the state-space approach....... A complete phasor model of the entire wind power plant is constructed, being appropriate for voltage control assessment. An exemplary wind power plant located in the United Kingdom and the corresponding grid code requirements are used as a base case. The final design and tuning process of the voltage...... controller results in a guidance, proposed for this particular control architecture. It provides qualitative outcomes regarding the parametrisation of each individual control loop and how to adjust the voltage controller depending on different grid stiffnesses of the wind power plant connection...

  5. Simulation of control performance under house load transients for nuclear power plant

    International Nuclear Information System (INIS)

    Liao Zhongyue; Wang Yuanlong; Tang Yuyuan; Liu Jiong

    1999-01-01

    The CATIA2 code is used to simulate the extreme normal transients--house load transients of Qinshan Phase II 600 MW nuclear power plant. The simulating results show that all of the reactor main parameters are operating in the allowable ranges, the reactor system is stable, and the control characteristics of the nuclear power plant is satisfactory. They are also good in agreement with Framatome's results

  6. Coordinated control of wind power plants in offshore HVDC grids

    DEFF Research Database (Denmark)

    Sakamuri, Jayachandra N.

    2017-01-01

    power between different countries, and different synchronous areas. It is very likely that they will then be combined with offshore wind power plant (OWPP) connections in the North Sea, transforming it in a multi terminal DC (MTDC) grid and, therefore, in a fully meshed offshore DC grid in near future......During the recent years, there has been a significant penetration of offshore wind power into the power system and this trend is expected to continue in the future. The North Sea in Europe has higher potential for offshore wind power; therefore, the North Seas Countries' Offshore Grid initiative....... However, increased penetration of offshore wind power into the power system poses several challenges to its security. This thesis deals with two main research challenges, (1) Develop, and analyze the coordinated control strategies for AC voltage and reactive power control in the cluster of OWPPs connected...

  7. Optimization of Boiler Control to Improve the Load-following Capability of Power-plant Units

    DEFF Research Database (Denmark)

    Mortensen, J. H.; Mølbak, T.; Andersen, Palle

    The capability to perform fast load changes has been an important issue in the power market, and will become increasingly more so due to the incresing commercialisation of the European power market. An optimizing control system for improving the load-following capability of power-plant units has...... tests on a 265 MW coal-fired power-plant unit reveals that the maximum allowable load gradient that can be imposed on the plant, can be increased from 4 MW/min. to 8 MW/min....

  8. Optimization of Boiler Control to Improve the Load-following Capability of Power-plant Units

    DEFF Research Database (Denmark)

    Mortensen, J. H.; Mølbak, T.; Andersen, Palle

    1998-01-01

    The capability to perform fast load changes has been an important issue in the power market, and will become increasingly more so due to the incresing commercialisation of the European power market. An optimizing control system for improving the load-following capability of power-plant units has...... tests on a 265 MW coal-fired power-plant unit reveals that the maximum allowable load gradient that can be imposed on the plant, can be increased from 4 MW/min. to 8 MW/min....

  9. Hydroelectric Power Plants Dobsina

    International Nuclear Information System (INIS)

    Majercak, V.; Srenkelova, Z.; Kristak, J.G.

    1997-01-01

    In this brochure the Hydroelectric Power Plants Dobsina, (VED), subsidiary of the utility Slovenske Elektrarne, a.s. (Slovak Electric, plc. Bratislava) are presented. VED is mainly aimed at generating peak-load electrical energy and maintenance of operational equipment. Reaching its goals, company is first of all focused on reliability of production, economy and effectiveness, keeping principles of work safety and industry safety standards and also ecology. VED operates eight hydroelectric power plants, from which PVE Ruzin I and PVE Dobsina I are pump storage ones and they are controlled directly by the Slovak Energy Dispatch Centre located in Zilina thought the system LS 3200. Those power plants participate in secondary regulation of electrical network of Slovakia. They are used to compensate balance in reference to foreign electrical networks and they are put into operation independently from VED. Activity of the branch is focused mainly on support of fulfilment of such an important aim as electric network regulation. Beginnings of the subsidiary Hydroelectric Power Plants Dobsina are related to the year of 1948. After commissioning of the pump storage Hydroelectric Power Plants Dobsina in 1953, the plant started to carry out its mission. Since that time the subsidiary has been enlarged by other seven power plants, through which it is fulfilling its missions nowadays. The characteristics of these hydroelectric power plants (The pump-storage power plant Dobsina, Small hydroelectric power plant Dobsina II, Small hydroelectric power plant Rakovec, Small hydroelectric power plant Svedlar, Hydroelectric power plant Domasa, The pump-storage power plant Ruzin, and Small hydroelectric power plant Krompachy) are described in detail. Employees welfare and public relations are presented

  10. NCS--a software for visual modeling and simulation of PWR nuclear power plant control system

    International Nuclear Information System (INIS)

    Cui Zhenhua

    1998-12-01

    The modeling and simulation of nuclear power plant control system has been investigated. Some mathematical models for rapid and accurate simulation are derived, including core models, pressurizer model, steam generator model, etc. Several numerical methods such as Runge-Kutta Method and Treanor Method are adopted to solve the above system models. In order to model the control system conveniently, a block diagram-oriented visual modeling platform is designed. And the Discrete Similarity Method is used to calculate the control system models. A corresponding simulating software, NCS, is developed for researching on the control systems of commercial nuclear power plant. And some satisfactory results are obtained. The research works will be of referential and applying value to design and analysis of nuclear power plant control system

  11. A full scope nuclear power plant simulator for multiple reactor types with virtual control panels

    International Nuclear Information System (INIS)

    Yonezawa, Hisanori; Ueda, Hiroki; Kato, Takahisa

    2017-01-01

    This paper summarizes a full scope nuclear power plant simulator for multiple reactor types with virtual control panels which Toshiba developed and delivered. After the Fukushima DAIICHI nuclear power plants accident, it is required that all the people who are engaged in the design, manufacturing, operation, maintenance, management and regulation for the nuclear power plant should learn the wide and deep knowledge about the nuclear power plant design including the severe accident. For this purpose, the training with a full scope simulator is one of the most suitable ways. However the existing full scope simulators which are consist of the control panels replica of the referenced plants are costly and they are hard to remodel to fit to the real plant of the latest condition. That's why Toshiba developed and delivered the new concept simulator system which covers multiple referenced plants even though they have different design like BWR and PWR. The control panels of the simulator are made by combining 69 large Liquid Crystal Display (LCD) panels with touch screen instead of a control panel replica of referenced plant. The screen size of the each panel is 42 inches and 3 displays are arranged in tandem for one unit and 23 units are connected together. Each panel displays switches, indicators, recorders and lamps with the Computer Graphics (CG) and trainees operate them with touch operations. The simulator includes a BWR and a PWR simulator model, which enable trainees to learn the wide and deep knowledge about the nuclear power plant of BWR and PWR reactor types. (author)

  12. ICT based Performance Evaluation of Primary Frequency Control Support from Renewable Power Plants in Smart Grids

    DEFF Research Database (Denmark)

    Shahid, Kamal; Altin, Müfit; Mikkelsen, Lars Møller

    2018-01-01

    frequency control support from ReGen (with special focus on WPP). The study is conducted with an aggregated WPP model, integrated into a generic power system model, specifically designed to assess the ancillary services in a relatively simple yet relevant environment. Various case studies with different...... plants towards ReGen plants, such as wind and photovoltaic power plants. Frequency control support from the Wind Power Plants (WPPs) is one of the crucial ancillary services in order to preserve operational stability in case of grid disturbances. Among other requirements, the ability to provide fast...... frequency control support from ReGen plants will highly depend on the underlying communication infrastructure that allows an exchange of information between different ReGen plants and the control centers. This paper, therefore, focuses on the impact of communication and the related aspects to provide online...

  13. Reactor power control systems in nuclear power plants

    International Nuclear Information System (INIS)

    Nakajima, Kazuo.

    1980-01-01

    Purpose: To enable power control by automatic control rod operation based on the calculated amounts of operation for the control rods determined depending on a power set value from reactor operators or on power variation amounts from other devices. Constitution: When an operator designates an automatic selection by way of a control rod operation panel, automatic signals are applied to a manual-automatic switching circuit and the mode judging circuit of a rod pattern control device. Then, mode signals such as for single operation, load setting, load following and the like produced by the operator are judged in a circuit, wherein a control rod pattern operation circuit calculates the designation for the control rods and the operation amounts for the control rods depending on the designated modes and automatic control is conducted for the control rods by a rod position control circuit, a rod drive control device and the like connected at a rod position monitor device. The reactor power is thus controlled automatically to reduce the operator's labours. The automatic power control can also be conducted in the same manner by the amount of power variations applied to the device from the external device. (Yoshino, Y.)

  14. The main features of control and operation of steam turbines at nuclear power plants

    International Nuclear Information System (INIS)

    Czinkoczky, B.

    1981-01-01

    The output and speed control of steam turbines at nuclear power plants as well as the combination of both controls are reviewed and evaluated. At the same time the tasks of unit control at nuclear power plants, the control of steady main steam pressure and medium pressure of primary circuit, further the connection of reactor and turbine controls and the self-controlling properties of pressurized water reactor are dealt with. Hydraulic and electro-hydraulic speed control, the connection of cach-up dampers and speed control and the application of electro-hydraulic signal converters are discussed. The accomplishment of protection is also described. (author)

  15. Reconfigurable control of a power plant deaerator using learning automata

    International Nuclear Information System (INIS)

    Garcia, H.E.; Ray, A.; Edwards, R.M.

    1991-01-01

    A deaerating feedwater heater, equipped with a water level controller and a pressure controller, has been chosen to investigate the feasibility of a reconfigurable control scheme for power plants by incorporating the concept of learning automata. In this paper simulation results based on a model of the Experimental Breeder Reactor (EBR-II) at the Argonne National Laboratory site in Idaho are presented to demonstrate the efficacy of the reconfigurable control scheme

  16. Smart — STATCOM control strategy implementation in wind power plants

    DEFF Research Database (Denmark)

    Sintamarean, Nicolae Christian; Cantarellas, Antoni Mir; Miranda, H.

    2012-01-01

    High penetration of wind energy into the grid may introduce stability and power quality problems due to the fluctuating nature of the wind and the increasing complexity of the power system. By implementing advanced functionalities in power converters, it is possible to improve the performance...... of the wind farm and also to provide grid support, as it is required by the grid codes. One of the main compliance difficulties that can be found in such power plants are related to reactive power compensation and to keep the harmonics content between the allowed limits, even if the power of the WPP...... converters is increasing. This paper deals with an advanced control strategy design of a three-level converter performing STATCOM and Active Filter functionalities. The proposed system is called Smart-STATCOM since it has the capability of self-controlling reactive power and harmonic voltages at the same...

  17. LEITTEC '96. Digitization of instrumentation and control in nuclear power plants

    International Nuclear Information System (INIS)

    Bauer, K.G.

    1997-01-01

    The nuclear power plants in operation in Germany have been commissioned in the years from 1968 until 1988. Their control and safety systems likewise correspond to the electronic technology available then, as e.g. discrete semi-conductor technology. The high reliability of those systems contributed a major share to the excellent operating results achieved by German nuclear power plants. However, aging of existing systems as well as spare part availability and integration of older and more recent hardware generations now are posing specific problems. Intensive work has been devoted to the retrofitting of existing systems and integration of computer-assisted control systems as well as conversion to programmable systems in order to achieve a basis permitting economically justifiable operation, acceptable also from the angle of hardware and software inspection requirements, so that the German Atomforum thought that these activities and the underlying problems would make a suitable topic for a conference. There were about 150 experts attending the one-day meeting for intensive discussion and exchange of information. The proceedings volume contains 11 of the conference papers and provides an overview of the current status and expected developments in the field of digitization of instrumentation and control in nuclear power plants.(orig./CB) [de

  18. Development and Evaluation of cooperative control system for an HVDC transmission system connected with an isolated BWR power plant

    International Nuclear Information System (INIS)

    Horiuchi, Susumu; Hara, Tsukusi; Matori, Iwao; Hirayama, Kaiichirou.

    1987-01-01

    In the cooperative control system developed for an HVDC transmission system connected with an isolated BWR power plant, the equilibrium state between power plant output and DC transmission power is examined by way of the detection of the generator frequency. And, thereby start-up and shutdown of the DC system and controlling of the transmission power are made, so that the signal transmission with the power plant becomes unnecessary, enabling the easy cooperative operation. In order to investigate validity of this control system, various digital simulation and simulator test with the control system were carried out. In this way, behavior of the power plant and stability of the DC transmission system were evaluated in the connection to the DC system at power plant start-up, follow of the transmission power in change of the power plant output and in various system failures. (Mori, K.)

  19. Ancillary Frequency Control of Direct Drive Full-Scale Converter Based Wind Power Plants

    DEFF Research Database (Denmark)

    Hu, Weihao; Su, Chi; Fang, Jiakun

    2013-01-01

    This paper presents a simulation model of a wind power plant based on a MW-level variable speed wind turbine with a full-scale back-to-back power converter developed in the simulation tool of DIgSILENT Power Factory. Three different kinds of ancillary frequency control strategies, namely inertia...... control strategies are effective means for providing ancillary frequency control of variable speed wind turbines with full-scale back-to-back power converters....... emulation, primary frequency control and secondary frequency control, are proposed in order to improve the frequency stability of power systems. The modified IEEE 39-bus test system with a large-scale wind power penetration is chosen as the studied power system. Simulation results show that the proposed...

  20. Control room design and human engineering in power plants

    International Nuclear Information System (INIS)

    Herbst, L.; Hinz, W.

    1981-01-01

    Automation reduces the human work load. Employment of functional areas permits optimization of operational sequences. Computer based information processing makes it possible to output information in accordance with operating requirements. Design based on human engineering principles assures the quality of the interaction between the operator and the equipment. The degree to which these conceptional features play a role in design of power plant control rooms depends on the unit rating, the mode of operation and on the requirements respecting safety and availability of the plant. (orig./RW)

  1. Power plant chemical technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    17 contributions covering topies of fossil fuel combustion, flue gas cleaning, power plant materials, corrosion, water/steam cycle chemistry, monitoring and control were presented at the annual meeting devoted to Power Plant Chemical Technology 1996 at Kolding (Denmark) 4-6 September 1996. (EG)

  2. Modelling of wind power plant controller, wind speed time series, aggregation and sample results

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela; Altin, Müfit; Cutululis, Nicolaos Antonio

    This report describes the modelling of a wind power plant (WPP) including its controller. Several ancillary services like inertial response (IR), power oscillation damping (POD) and synchronising power (SP) are implemented. The focus in this document is on the performance of the WPP output...... and not the impact of the WPP on the power system. By means of simulation tests, the capability of the implemented wind power plant model to deliver ancillary services is investigated....

  3. Development of a coordinated control system for BWR nuclear power plant and HVDC transmission system

    International Nuclear Information System (INIS)

    Ishikawa, M.; Hara, T.; Hirayama, K.; Sekiya, K.

    1986-01-01

    The combined use of dc and ac transmissions or so-called hybrid transmission was under study, employing both dc and ac systems to enable stable transmission of 10,000 MW of electric power generated by the BWR nuclear plant, scheduled to be built about 800 km away from the center of the load. It was thus necessary to develop a hybrid power transmission control system, the hybrid power transmission system consisting of a high voltage dc transmission system (HVDC) and an ultrahigh ac transmission system (UHVAC). It was also necessary to develop a control system for HVDC transmission which protects the BWR nuclear power plant from being influenced by any change in transmission mode that occurs as a result of faults on the UHVAC side when the entire power of the BWR plant is being sent by the HVDC transmission. This paper clarifies the requirements for the HVDC system control during hybrid transmission and also during dc transmission. The control method that satisfies these requirements was studied to develop a control algorithm

  4. Design and Analysis of a Slope Voltage Control for a DFIG Wind Power Plant

    DEFF Research Database (Denmark)

    Martínez, J.; Kjær, P. C.; Rodriguez, Pedro

    2012-01-01

    This paper addresses a detailed design of a wind power plant and turbine slope voltage control in the presence of communication delays for a wide short-circuit ratio range operation. The implemented voltage control scheme is based upon the secondary voltage control concept, which offers fast...... of connection with the grid. The performance has been tested using PSCAD/EMTDC program. The plant layout used in the simulations is based on an installed wind power plant, composed of 23 doubly fed generator wind turbines. The resulting performance is evaluated using a compilation of grid code voltage control...... response to grid disturbances, despite the communication delays, i.e., this concept is based on a primary voltage control, located in the wind turbine, which follows an external voltage reference sent by a central controller, called secondary voltage control, which is controlling the voltage at the point...

  5. Changes in control room at Swedish nuclear power plants; Kontrollrumsfoeraendringar vid svenska kaernkraftverk

    Energy Technology Data Exchange (ETDEWEB)

    Kecklund, Lena [MTO Psykologi, Huddinge (Sweden)

    2005-09-15

    The Swedish nuclear power plants were commissioned during a period between 1972 and 1985 and the instrumentation and control equipment are basically from that period. For several years there have been plans made for changes in all the nuclear power plants and to a certain extent the changes in control equipment and monitoring rooms have also been implemented. The object of this project was to make a comprehensive review of the changes in control room design implemented in the Swedish nuclear power plants and to describe how the MTO- (Man-Technology-Organisation) and (Man-Machine-Interface) -issues have been integrated in the process. The survey is intended to give an overall picture of the changes in control room design and man-machine-interface made in the Swedish control rooms, in order to get a deeper knowledge of the change management process and its results as well as of the management of MTO-issues in these projects. The units included in this survey are: Oskarhamn reactor 2 and 3; Ringhals reactor 2, 3 and 4; Forsmark reactor 1, 2 and 3. The Oskarshamn 1 unit has not been included in this report as it has recently undergone an extensive modernisation program as well as a detailed inspection by the SKI (Swedish Nuclear Power Inspectorate). At Ringhals 2 the modernisation work is carried out at present and the unit is also subjected to extensive inspection activities carried out by SKI and is therefore not part of this survey. This report also includes a short description of relevant standards and requirements. Then follows a presentation of the results of the plant survey, presented as case studies for three companies OKG, Ringhals and FKA. Control room changes are summarized as well as the results on specific MTO issues which has been surveyed. In all the power companies there is a joint way of working with projects concerning plant modifications. This process is described for each company separately. In the concluding of the report the strengths and

  6. Increasing flexibility of coal power plant by control system modifications

    Directory of Open Access Journals (Sweden)

    Marušić Ante

    2016-01-01

    Full Text Available Expanding implementation of intermittent renewable energy sources has already started to change the role of thermal power plants in energy systems across Europe. Traditionally base load plants are now forced to operate as peaking plants. A familiar transition in upcoming years is expected in Croatia and coal power plant operators are preparing accordingly. To evaluate cycling capabilities and control system operation for flexible operation of selected 210 MW coal plant, series of tests with different load gradients were performed and results were thoroughly analyzed. Two possible “bottlenecks” are identified, thermal stress in superheater header, and achievable ramping rate considering operational limitations of coal feeders, firing system and evaporator dynamics. Several unexpected readings were observed, usually caused by malfunctioning sensors and equipment, resulting in unexpected oscillations of superheated steam temperature. Based on superheater geometry and experimental data, maximal steam temperature gradient during ramping was evaluated. Since thermal stress was well inside the safety margins, the simulation model of the whole boiler was used to evaluate achievable ramping on electric side.

  7. Balancing the roles of humans and machines in power plant control

    International Nuclear Information System (INIS)

    Lipsett, J.J.

    1989-05-01

    A number of factors are leading to a re-examination of the balance between the roles of the operators and the machine in controlling nuclear power plants. Some of these factors are: the advent of new and advanced computer technologies; increased plant complexity, placing heavy workloads and stress on the control room operator; and increasing concerns about the role of human reliability in industrial mishaps. In light of the changing control aspects, we examine the meaning of automation, we discuss a proposed model of the control process, the concept of control within a few defined reactor states, a decision-making sequence; and we identify some possible problem areas in implementing new control technologies. Significant benefits should come from the new control methods and these opportunities should be exploited as soon as prudence allows, taking great care that the safety of the plants is improved

  8. Power Oscillation Damping from VSC-HVDC Connected Offshore Wind Power Plants

    DEFF Research Database (Denmark)

    Zeni, Lorenzo; Eriksson, Robert; Goumalatsos, Spyridon

    2016-01-01

    The implementation of power oscillation damping service on offshore wind power plants connected to onshore grids by voltage-source-converter-based high voltage direct current transmission is discussed. Novel design guidelines for damping controllers on voltage-source converters and wind power plant...... regarding real wind power plants are discussed: 1) robustness against control/communication delays; 2) limitations due to mechanical resonances in wind turbine generators; 3) actual capability of wind power plants to provide damping without curtailing production; and 4) power-ramp rate limiters....... controllers are derived, using phasor diagrams and a test network model and are then verified on a generic power system model. The effect of voltage regulators is analyzed, which is important for selecting the most robust damping strategy. Furthermore, other often disregarded practical implementation aspects...

  9. Nuclear power plant operator licensing

    International Nuclear Information System (INIS)

    1997-01-01

    The guide applies to the nuclear power plant operator licensing procedure referred to the section 128 of the Finnish Nuclear Energy Degree. The licensing procedure applies to shift supervisors and those operators of the shift teams of nuclear power plant units who manipulate the controls of nuclear power plants systems in the main control room. The qualification requirements presented in the guide also apply to nuclear safety engineers who work in the main control room and provide support to the shift supervisors, operation engineers who are the immediate superiors of shift supervisors, heads of the operational planning units and simulator instructors. The operator licensing procedure for other nuclear facilities are decided case by case. The requirements for the basic education, work experience and the initial, refresher and complementary training of nuclear power plant operating personnel are presented in the YVL guide 1.7. (2 refs.)

  10. Analysis on nuclear power plant control room system design and improvement based on human factor engineering

    International Nuclear Information System (INIS)

    Gao Feng; Liu Yanzi; Sun Yongbin

    2014-01-01

    The design of nuclear power plant control room system is a process of improvement with the implementation of human factor engineering theory and guidance. The method of implementation human factor engineering principles into the nuclear power plant control room system design and improvement was discussed in this paper. It is recommended that comprehensive address should be done from control room system function, human machine interface, digital procedure, control room layout and environment design based on the human factor engineering theory and experience. The main issues which should be paid more attention during the control room system design and improvement also were addressed in this paper, and then advices and notices for the design and improvement of the nuclear power plant control room system were afforded. (authors)

  11. GUIDANCE FOR NUCLEAR POWER PLANT CONTROL ROOM AND HUMAN-SYSTEM INTERFACE MODERNIZATION

    International Nuclear Information System (INIS)

    Naser, J.; Morris, G.

    2004-01-01

    Several nuclear power plants in the United States are starting instrumentation and control (I and C) modernization programs using digital equipment to address obsolescence issues and the need to improve plant performance while maintaining high levels of safety. As an integral part of the I and C modernization program at a nuclear power plant, the control room and other human-system interfaces (HSIs) are also being modernized. To support safe and effective operation, it is critical to plan, design, implement, train for, operate, and maintain the control room and HSI changes to take advantage of human cognitive processing abilities. A project, jointly funded by the Electric Power Research Institute (EPRI) and the United States Department of Energy (DOE) under the Nuclear Energy Plant Optimization (NEPO) Program, is developing guidance for specifying and designing control rooms, remote shut-down panels, HSIs etc. The guidance is intended for application by utilities and suppliers of control room and HSI modernization. The guidance will facilitate specification, design, implementation, operations, maintenance, training, and licensing activities. This guidance will be used to reduce the likelihood of human errors and licensing risk, to gain maximum benefit of implemented technology, and to increase performance. The guidance is of five types. The first is planning guidance to help a utility develop its plant-specific control room operating concepts, its plant-specific endpoint vision for the control room, its migration path to achieve that endpoint vision, and its regulatory, licensing, and human factors program plans. The second is process guidance for general HSI design and integration, human factors engineering analyses, verification and validation, in-service monitoring processes, etc. The third is detailed human factors engineering guidance for control room and HSI technical areas. The fourth is guidance for licensing. The fifth is guidance for special topics

  12. Large screen mimic display design research for advanced main control room in nuclear power plant

    International Nuclear Information System (INIS)

    Zheng Mingguang; Yang Yanhua; Xu Jijun; Zhang Qinshun; Ning Zhonghe

    2002-01-01

    Firstly the evolution of mimic diagrams or displays used in the main control room of nuclear power plant was introduced. The active functions of mimic diagrams were analyzed on the release of operator psychological burden and pressure, the assistance of operator for the information searching, status understanding, manual actuation, correct decision making as well as the safe and reliable operation of the nuclear power plant. The importance and necessity to use the (large screen) mimic diagrams in advanced main control room of nuclear power plant, the design principle, design details and verification measures of large screen mimic display are also described

  13. Nuclear power. Volume 1. Nuclear power plant design

    International Nuclear Information System (INIS)

    Pedersen, E.S.

    1978-01-01

    NUCLEAR POWER PLANT DESIGN is intended to be used as a working reference book for management, engineers and designers, and as a graduate-level text for engineering students. The book is designed to combine theory with practical nuclear power engineering and design experience, and to give the reader an up-to-date view of the status of nuclear power and a basic understanding of how nuclear power plants function. Volume 1 contains the following chapters; (1) nuclear reactor theory; (2) nuclear reactor design; (3) types of nuclear power plants; (4) licensing requirements; (5) shielding and personnel exposure; (6) containment and structural design; (7) main steam and turbine cycles; (8) plant electrical system; (9) plant instrumentation and control systems; (10) radioactive waste disposal (waste management) and (11) conclusion

  14. I and C upgrading at nuclear power plants

    International Nuclear Information System (INIS)

    Tamiri, A.

    2003-01-01

    Continuing the operation of existing nuclear power plants will help reduce the number of new base-load nuclear and fossil power plants that need to be built. Old nuclear power plants in Canada are operating with analog instrumentation and control systems. For a number of reasons, such as changes and improvements in the applicable standards and design, maintenance problems due to the lack of spares, technical obsolescence, the need to increase power production, availability, reliability and safety, and in order to reduce operation and maintenance costs, instrumentation and control upgrading at nuclear power plants in a cost effective manner should be considered the greatest priority. Failures of instrumentation and control (I and C) due to aging and obsolescence issues may have an immediate negative impact on plant reliability and availability and also affect long-term plant performance and safety. In today's competitive marketplace, power plants are under pressure to cut spending on maintenance while reducing the risk of equipment failure that could cause unplanned outage. To improve plant safety and availability, old nuclear power plants will require investment in new technologies that can improve the performance and reduce the costs of generation by addressing the long term reliability of systems by up-grading to modem digital instrumentation and control and optimization opportunities. Boiler drum level control at nuclear power plants is critical for both plant protection and equipment safety and applies equality to high and low levels of water within the boiler drum. Plant outage studies at Pickering Nuclear have identified boiler drum level control and feed water control systems as major contributors to plant unavailability. Ways to improve transient and steady state response, upgrading existing poor analog control systems for boiler level and feed-water control systems at Pickering Nuclear, with enhanced and robust controller will be discussed in this paper

  15. Analysis of power ramp rate and minimum power controllability of the MMS model for a plant dynamics analysis of a Prototype SFR

    International Nuclear Information System (INIS)

    Kim, Eui Kwang; Kim, Dehee; Joo, Hyungkook; Lee, Taeho

    2014-01-01

    A full plant dynamic model was developed for a prototype SFR using the Modular Modeling System (MMS). It includes the modeling of various subsystems such as the neutronics, primary and intermediate sodium systems of the NSSS, steam and water systems of the BOP, BOP controls, and the supervisory plant controls. The NSSS model is subdivided into component models, such as a Core, IHXs, Pumps, SGs, and the rest of the NSSS loop model. The BOP model is subdivided into a steam subsystem, feedwater subsystem, and preheater subsystem. Plant transient tests were performed to study the operational considerations. It includes varying the power ramp rate and studying the controllability at minimum power. Plant transient tests were performed to study operational considerations by using the MMS model for a prototype SFR. It includes varying the power ramp rate, studying the controllability at the minimum power set point. At a power ramp rate of higher than 2%, the steam temperature has a large deviation from the target. As the power set point decreases, the PHTS hot leg temperature and steam temperature tend to have higher deviations. After further refinement of the MMS model, it can be useful for developing the plant operation logics of the prototype SFR

  16. Nuclear power plant V-1

    International Nuclear Information System (INIS)

    1998-01-01

    The nuclear power plant Bohunice V -1 is briefly described. This NPP consists from two reactor units. Their main time characteristics are (Reactor Unit 1, Reactor Unit 2): beginning of construction - 24 April 1972; first controlled reactor power - 27 November 1978, 15 March 1980; connection to the grid - 17 December 1978, 26 March 1980; commercial operation - 1 April 1980, 7 January 1981. This leaflet contains: NPP V-1 construction; Major technological equipment (Primary circuit: Nuclear reactor [WWER 440 V230 type reactor];Steam generator; Reactor Coolant Pumps; Primary Circuit Auxiliary Systems. Secondary circuit: Turbine generators, Nuclear power plant electrical equipment; power plant control) and technical data

  17. Damping of Low Frequency Power System Oscillations with Wind Power Plants

    DEFF Research Database (Denmark)

    Adamczyk, Andrzej Grzegorz

    of wind power plants on power system low frequency oscillations and identify methods and limitations for potential contribution to the damping of such oscillations. Consequently, the first part of the studies focuses on how the increased penetration of wind power into power systems affects their natural...... oscillatory performance. To do so, at first a generic test grid displaying a complex inter-area oscillation pattern is introduced. After the evaluation of the test grid oscillatory profile for various wind power penetration scenarios, it is concluded that full-converter based wind power plant dynamics do......-synchronous power source. The main body of the work is devoted to the damping control design for wind power plants with focus on the impact of such control on the plant operation. It can be expected that the referred impact is directly proportional to the control effort, which for power processing devices should...

  18. Nuclear power plant monitoring and control system software: verification and validation

    International Nuclear Information System (INIS)

    Kaneda, M.; Niki, K.; Shibata, K.

    1986-01-01

    The design philosophy, configuration, and production of process computer system software used for the monitoring and control of nuclear power plants are presented in detail. To achieve a very complex software system that not only has excellent performance, high reliability, and full fail safe protection, but also is easy to produce, verify, and validate, and has flexibility for future modifications, we developed the following software production system to support safe operation of nuclear power stations. The fundamental design philosophy of our monitoring and control system software is the complete separation of program logic from the data base. The logic section is highly standardized and applicable to a wide range of power generation plant computer application systems. The plant-unique properties and characteristics are all described in the data base. This separation of logic and data base has a dramatic effect on the reliability and productivity of the software system. One of the main features of the data base system is the use of easy-to-learn, easy-to-use, problem-oriented language that enables non-programmers to build up the data base using simple fill-in-the-blank type tables. The generation of these tables is fully automated, and the full set of online table editing utility software, which runs on the target plant process computer, has proven very effective in incorporation of changes and modifications at the site. (author)

  19. Verification and validation of software related to nuclear power plant instrumentation and control

    International Nuclear Information System (INIS)

    1999-01-01

    This report is produced in response to a recommendation of the IAEA International Working Group on Nuclear Power Plant Control and Instrumentation. The report has objectives of providing practical guidance on the methods available for verification of the software and validation of computer based systems, and on how and when these methods can be effectively applied. It is meant for those who are in any way involved with the development, implementation, maintenance and use of software and computer based instrumentation and control systems in nuclear power plants. The report is intended to be used by designers, software producers, reviewers, verification and validation teams, assessors, plant operators and licensers of computer based systems

  20. Advanced power plant materials, design and technology

    Energy Technology Data Exchange (ETDEWEB)

    Roddy, D. (ed.) [Newcastle University (United Kingdom). Sir Joseph Swan Institute

    2010-07-01

    The book is a comprehensive reference on the state of the art of gas-fired and coal-fired power plants, their major components and performance improvement options. Selected chapters are: Integrated gasification combined cycle (IGCC) power plant design and technology by Y. Zhu, and H. C. Frey; Improving thermal cycle efficiency in advanced power plants: water and steam chemistry and materials performance by B. Dooley; Advanced carbon dioxide (CO{sub 2}) gas separation membrane development for power plants by A. Basile, F. Gallucci, and P. Morrone; Advanced flue gas cleaning systems for sulphur oxides (SOx), nitrogen oxides (NOx) and mercury emissions control in power plants by S. Miller and B.G. Miller; Advanced flue gas dedusting systems and filters for ash and particulate emissions control in power plants by B.G. Miller; Advanced sensors for combustion monitoring in power plants: towards smart high-density sensor networks by M. Yu and A.K. Gupta; Advanced monitoring and process control technology for coal-fired power plants by Y. Yan; Low-rank coal properties, upgrading and utilisation for improving the fuel flexibility of advanced power plants by T. Dlouhy; Development and integration of underground coal gasification (UCG) for improving the environmental impact of advanced power plants by M. Green; Development and application of carbon dioxide (CO{sub 2}) storage for improving the environmental impact of advanced power plants by B. McPherson; and Advanced technologies for syngas and hydrogen (H{sub 2}) production from fossil-fuel feedstocks in power plants by P. Chiesa.

  1. Cooperative control scheme for an HVDC system connected to an isolated BWR nuclear power plant

    International Nuclear Information System (INIS)

    Sakurai, T.; Goto, K.; Kawai, T.; Matori, I.; Nakao, T.; Watanabe, A.

    1983-01-01

    This paper describes a cooperative control system to achieve stable operation of an isolated BWR nuclear plant linked to an HVDC system. In the proposed control system, under normal conditions the power plant is controlled according to the generating power reference and the generator frequency deviation is adjusted by converter power control. Such frequency control is also effective in the case of AC-DC system faults. In addition to the frequency control, an overload control is provided with the HVDC system, where the DC transmission power in the sound poles is increased due to a fault detection signal from the faulty pole. Effects of the above mentioned control systems were studied using digital dynamic programs. The sets of simulation results confirmed that in the case of a DC single pole fault, the plant is able to continue operation without any use of the turbine speed control units even for a restarting failure in the faulty pole. In case of a DC two pole fault, the plant is able to continue operation, being assisted by turbine speed control units when restarting in the faulty poles succeeds. In case of an AC three-line to ground fault near the AC terminal of the converter at the sending or receiving end, the system is able to continue stable operation, being supplemented by the turbine control unit when the faulty section of the AC system is isolated by a main or back-up relaying system

  2. Effect of special features of nuclear power plants

    International Nuclear Information System (INIS)

    Scharf, H.

    1986-01-01

    Special features of nuclear power plants are reported with the Muelheim-Kaerlich pressurized water reactor as the reference plant. This nuclear reactor uses 'Once Through Steam Generators (OTSG)' with 'Integrated Economizer' to provide the turbine with superheated steam. The implementation of OTSG allows to operate the plant with constant steam pressure over the entire power range, and with constant main coolant temperature over a power range from 15% power to 100% power. Control of the plant during power operation is provided by the 'Integrated Control System', which simultaneously sends signals to the plant's subsystems reactor, OTSG, and turbine to get optimum response of the plant during power transients. The characteristics of this 'Integrated Control System' and its different modes of operation are presented. (orig./GL)

  3. NPAR approach to controlling aging in nuclear power plants

    International Nuclear Information System (INIS)

    Christensen, J.A.

    1990-01-01

    Aging degradation in nuclear power plants must be controlled to prevent safety margins from declining below limits provided in plant design bases. The NPAR Program and other aging-related programs conducted under the auspices of the Nuclear Regulatory Commission (NRC) Office of Research are developing needed technical guidance for control of aging. Results from these programs, together with relevant information developed by industry and elsewhere, are implemented through various ongoing NRC and industry programs and initiatives as well as by means of conventional regulatory instruments. The aging control process central to these efforts consists of three key elements: (1) selection of components, systems, and structures (CSS) in which aging must be controlled, (2) understanding of the mechanisms and rates of degradation in these CSS, and (3) managing degradation through effective surveillance and maintenance. These elements are addressed in Good Practices Guidance that integrates information developed under NPAR and other studies of aging into a systems-oriented format that tracks directly with the safety analysis reports

  4. Distributed control and data processing system with a centralized database for a BWR power plant

    International Nuclear Information System (INIS)

    Fujii, K.; Neda, T.; Kawamura, A.; Monta, K.; Satoh, K.

    1980-01-01

    Recent digital techniques based on changes in electronics and computer technologies have realized a very wide scale of computer application to BWR Power Plant control and instrumentation. Multifarious computers, from micro to mega, are introduced separately. And to get better control and instrumentation system performance, hierarchical computer complex system architecture has been developed. This paper addresses the hierarchical computer complex system architecture which enables more efficient introduction of computer systems to a Nuclear Power Plant. Distributed control and processing systems, which are the components of the hierarchical computer complex, are described in some detail, and the database for the hierarchical computer complex is also discussed. The hierarchical computer complex system has been developed and is now in the detailed design stage for actual power plant application. (auth)

  5. Optimal sampling period of the digital control system for the nuclear power plant steam generator water level control

    International Nuclear Information System (INIS)

    Hur, Woo Sung; Seong, Poong Hyun

    1995-01-01

    A great effort has been made to improve the nuclear plant control system by use of digital technologies and a long term schedule for the control system upgrade has been prepared with an aim to implementation in the next generation nuclear plants. In case of digital control system, it is important to decide the sampling period for analysis and design of the system, because the performance and the stability of a digital control system depend on the value of the sampling period of the digital control system. There is, however, currently no systematic method used universally for determining the sampling period of the digital control system. Generally, a traditional way to select the sampling frequency is to use 20 to 30 times the bandwidth of the analog control system which has the same system configuration and parameters as the digital one. In this paper, a new method to select the sampling period is suggested which takes into account of the performance as well as the stability of the digital control system. By use of the Irving's model steam generator, the optimal sampling period of an assumptive digital control system for steam generator level control is estimated and is actually verified in the digital control simulation system for Kori-2 nuclear power plant steam generator level control. Consequently, we conclude the optimal sampling period of the digital control system for Kori-2 nuclear power plant steam generator level control is 1 second for all power ranges. 7 figs., 3 tabs., 8 refs. (Author)

  6. Nuclear power plant control and instrumentation activities in Argentina during 1989-1991

    International Nuclear Information System (INIS)

    Lorenzetti, J.R.

    1992-01-01

    A brief resume of the activities in the different areas of control and instrumentation is included. As there was a delay in the construction of the new power plant most of the effort were dedicated to the plants that they are in operation. It has been added instrumentation to have better information in the control room and to check new variables of the plant according with the experience learned from the operation. It was dedicated special strength in the areas of training simulators and in service inspection. (author)

  7. Nuclear power and heating plant control rooms. I

    International Nuclear Information System (INIS)

    Malaniuk, B.

    1983-01-01

    The questions are discussed of memory capacity, vigilance, speed of data processing, decision-making quality and other demands placed on operators of nuclear power and heating plants. On the example of the accident at the Three Mile Island-2 nuclear power plant, the instants are shown when failure of the human factor owing to a stress situation resulted in the accident not being coped with in time. It is therefore necessary to place high demands on the choice of operators and to devote equal attention to the human factor as to the safety of the technical equipment of the power plant. (J.B.)

  8. Instrumentation and control systems important to safety in nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2005-01-01

    This Safety Guide was prepared under the IAEA programme for establishing safety standards for nuclear power plants. It supplements Safety Standards Series No. NS-R-1: Safety of Nuclear Power Plants: Design (the Requirements for Design), which establishes the design requirements for ensuring the safety of nuclear power plants. This Safety Guide describes how the requirements should be met for instrumentation and control (I and C) systems important to safety. This publication is a revision and combination of two previous Safety Guides: Safety Series Nos 50-SG-D3 and 50-SG-D8, which are superseded by this new Safety Guide. The revision takes account of developments in I and C systems important to safety since the earlier Safety Guides were published in 1980 and 1984, respectively. The objective of this Safety Guide is to provide guidance on the design of I and C systems important to safety in nuclear power plants, including all I and C components, from the sensors allocated to the mechanical systems to the actuated equipment, operator interfaces and auxiliary equipment. This Safety Guide deals mainly with design requirements for those I and C systems that are important to safety. It expands on paragraphs of Ref in the area of I and C systems important to safety. This publication is intended for use primarily by designers of nuclear power plants and also by owners and/or operators and regulators of nuclear power plants. This Safety Guide provides general guidance on I and C systems important to safety which is broadly applicable to many nuclear power plants. More detailed requirements and limitations for safe operation specific to a particular plant type should be established as part of the design process. The present guidance is focused on the design principles for systems important to safety that warrant particular attention, and should be applied to both the design of new I and C systems and the modernization of existing systems. Guidance is provided on how design

  9. Evaluation of digital fault-tolerant architectures for nuclear power plant control systems

    International Nuclear Information System (INIS)

    Battle, R.E.

    1990-01-01

    This paper reports on four fault-tolerant architectures that were evaluated for their potential reliability in service as control systems of nuclear power plants. The reliability analyses showed that human- and software-related common cause failures and single points of failure in the output modules are dominant contributors to system unreliability. The four architectures are triple-modular-redundant, both synchronous and asynchronous, and also dual synchronous and asynchronous. The evaluation includes a review of design features, an analysis of the importance of coverage, and reliability analyses of fault-tolerant systems. Reliability analyses based on data from several industries that have fault-tolerant controllers were used to estimate the mean-time-between-failures of fault-tolerant controllers and to predict those failure modes that may be important in nuclear power plants

  10. Consideration of Command and Control Performance during Accident Management Process at the Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Nisrene M. [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Kim, Sok Chul [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2015-10-15

    The accident at the Fukushima Daiichi nuclear power plants shifted the nuclear safety paradigm from risk management to on-site management capability during a severe accident. The kernel of on-site management capability during an accident at a nuclear power plant is situation awareness and agility of command and control. However, little consideration has been given to accident management. After the events of September 11, 2001 and the catastrophic Fukushima nuclear disaster, agility of command and control has emerged as a significant element for effective and efficient accident management, with many studies emphasizing accident management strategies, particularly man-machine interface, which is considered a key role in ensuring nuclear power plant safety during severe accident conditions. This paper proposes a conceptual model for evaluating command and control performance during the accident management process at a nuclear power plant. Communication and information processing while responding to an accident is one of the key issues needed to mitigate the accident. This model will give guidelines for accurate and fast communication response during accident conditions.

  11. Dynamics and control of nuclear power plants

    International Nuclear Information System (INIS)

    Tomsic, M.; Mavko, B.; Aleksic, U.; Stritar, A.; Adrinek, R.

    1977-01-01

    A mathematical model of the power plant with a pressurized water reactor has been prepared and tested. The model is intended for a schematic simulator based on a digital computer. The results of the simulation run for various normal transients are in good agreement with literature data. Equipment for computer control of the experimental reactor TRIGA has been completed. The equipment includes two microcomputers and associated interface circuits. Presently, only data logging is performed. The analyses of random signals on the TRIGA reactor have been continued. Measurements of neutron flux, fuel temperature and cooling water duct have been performed

  12. Design and simplification of Adaptive Neuro-Fuzzy Inference Controllers for power plants

    Energy Technology Data Exchange (ETDEWEB)

    Alturki, F.A.; Abdennour, A. [King Saud University, Riyadh (Saudi Arabia). Electrical Engineering Dept.

    1999-10-01

    This article presents the design of an Adaptive Neuro-Fuzzy Inference Controller (ANFIC) for a 160 MW power plant. The space of operating conditions of the plant is partitioned into five regions. For each of the regions, an optimal controller is designed to meet a set of design objectives. The resulting five linear controllers are used to train the ANFIC. To enhance the applicability of the control system, a new algorithm that reduces the fuzzy rules to the most essential ones is also presented. This algorithm offers substantial savings in computation time while maintaining the performance and robustness of the original controller. (author)

  13. A Statistical Method for Aggregated Wind Power Plants to Provide Secondary Frequency Control

    DEFF Research Database (Denmark)

    Hu, Junjie; Ziras, Charalampos; Bindner, Henrik W.

    2017-01-01

    curtailment for aggregated wind power plants providing secondary frequency control (SFC) to the power system. By using historical SFC signals and wind speed data, we calculate metrics for the reserve provision error as a function of the scheduled wind power. We show that wind curtailment can be significantly......The increasing penetration of wind power brings significant challenges to power system operators due to the wind’s inherent uncertainty and variability. Traditionally, power plants and more recently demand response have been used to balance the power system. However, the use of wind power...... as a balancing-power source has also been investigated, especially for wind power dominated power systems such as Denmark. The main drawback is that wind power must be curtailed by setting a lower operating point, in order to offer upward regulation. We propose a statistical approach to reduce wind power...

  14. Dynamic cost control information system for nuclear power plant construction

    International Nuclear Information System (INIS)

    Wang Yongqing; Liu Wei

    1998-01-01

    The authors first introduce the cost control functions of some overseas popular project management software at present and the specific ways of cost control of nuclear power plant construction in China. Then the authors stress the necessity of cost and schedule control integration and present the concept of dynamic cost control, the design scheme of dynamic cost control information system and the data structure modeling. Based on the above, the authors can develop the system which has the functions of dynamic estimate, cash flow management and cost optimization for nuclear engineering

  15. Probabilistic safety assessment for instrumentation and control systems in nuclear power plants: an overview

    International Nuclear Information System (INIS)

    Lu, Lixuan; Jiang, Jin

    2004-01-01

    Deregulation in the electricity market has resulted in a number of challenges in the nuclear power industry. Nuclear power plants must find innovative ways to remain competitive by reducing operating costs without jeopardizing safety. Instrumentation and Control (I and C) systems not only play important roles in plant operation, but also in reducing the cost of power generation while maintaining and/or enhancing safety. Therefore, it is extremely important that I and C systems are managed efficiently and economically. With the increasing use of digital technologies, new methods are needed to solve problems associated with various aspects of digital I and C systems. Probabilistic Safety Assessment (PSA) has proved to be an effective method for safety analysis and risk-based decisions, even though challenges are still present. This paper provides an overview of PSA applications in three areas of digital I and C systems in nuclear power plants. These areas are Graded Quality Assurance, Surveillance Testing, and Instrumentation and Control System Design. In addition, PSA application in the regulation of nuclear power plants that adopt digital I and C systems is also investigated. (author)

  16. Nuclear power plant control room task analysis. Pilot study for pressurized water reactors

    International Nuclear Information System (INIS)

    Barks, D.B.; Kozinsky, E.J.; Eckel, S.

    1982-05-01

    The purposes of this nuclear plant task analysis pilot study: to demonstrate the use of task analysis techniques on selected abnormal or emergency operation events in a nuclear power plant; to evaluate the use of simulator data obtained from an automated Performance Measurement System to supplement and validate data obtained by traditional task analysis methods; and to demonstrate sample applications of task analysis data to address questions pertinent to nuclear power plant operational safety: control room layout, staffing and training requirements, operating procedures, interpersonal communications, and job performance aids. Five data sources were investigated to provide information for a task analysis. These sources were (1) written operating procedures (event-based); (2) interviews with subject matter experts (the control room operators); (3) videotapes of the control room operators (senior reactor operators and reactor operators) while responding to each event in a simulator; (4) walk-/talk-throughs conducted by control room operators for each event; and (5) simulator data from the PMS

  17. Fact sheet on nuclear power plant instrumentation and control technologies

    International Nuclear Information System (INIS)

    2006-01-01

    Nuclear power plants (NPPs) are facing challenges in several instrumentation and control (I and C) areas with ageing and obsolete components and equipment. With license renewals and power uprates, the long-term operation and maintenance of obsolete I and C systems may not be a cost-effective and reliable option. The effort needed to maintain or increase the reliability and useful life of existing I and C systems may be greater in the long run than modernizing I and C systems or replacing them completely with new digital systems. The increased functionality of the new I and C systems can also open up new possibilities to better support the operation and maintenance activities in the plant. The IAEA recognizes the importance of the profound role the I and C systems play in the reliable, safe, efficient, and cost-effective operations of NPPs by supporting the activities of the Department of Nuclear Energy's Technical Working Group on Nuclear Power Plant Control and Instrumentation (TWG-NPPCI). The group was established in March 1970. Its membership currently includes thirty Member States and three international organizations. The most recent meeting of the TWG-NPPCI was held in May 2005 in Vienna. The meeting report is available at http://www.iaea.org/OurWork/ST/NE/NENP/twg_nppc.html. The next meeting of the TWGNPPCI will be the 21st meeting of the advisory body, and it will be held in May 2007

  18. Human factors in nuclear power plants

    International Nuclear Information System (INIS)

    Pack, R.W.

    1978-01-01

    The Electric Power Research Institute has started research in human factors in nuclear power plants. One project, completed in March 1977, reviewed human factors problems in operating power plants and produced a report evaluating those problems. A second project developed computer programs for evaluating operator performance on training simulators. A third project is developing and evaluating control-room design approaches. A fourth project is reviewing human factors problems associated with power-plant maintainability and instrumentation and control technician activities. Human factors engineering is an interdisciplinary specialty concerned with influencing the design of equipment systems, facilities, and operational environments to promote safe, efficient, and reliable operator performance. The Electric Power Research Institute (EPRI) has undertaken four projects studying the application of human factors engineering principles to nuclear power plants. (author)

  19. Implementing digital instrumentation and control systems in the modernization of nuclear power plants

    International Nuclear Information System (INIS)

    2009-01-01

    The IAEA encourages greater use of good engineering and management practices by Member States. In particular, it supports activities such as nuclear power plant (NPP) performance improvement, plant life management, training, power uprating, operational license renewal and the modernization of instrumentation and control (I and C) systems of NPPs in Member States. The subject of implementing digital I and C systems in nuclear power plants was suggested by the Technical Working Group on Nuclear Power Plant Control and Instrumentation (TWG-NPPCI) in 2003. It was then approved by the IAEA and included in the programmes for 2006-2008. As the current worldwide fleet of nuclear power plants continues ageing, the need for improvements to maintain or enhance plant safety and reliability is increasing. Upgrading NPP I and C systems is one of the possible approaches to achieving this improvement, and in many cases upgrades are a necessary activity for obsolescence management. I and C upgrades at operating plants require the use of digital I and C equipment. While modernizing I and C systems is a significant undertaking, it is an effective means to enhance plant safety and system functionality, manage obsolescence, and mitigate the increasing failure liability of ageing analog systems. Many of the planning and implementation tasks of a digital I and C upgrade project described here are also relevant to new plant design and construction since all equipment in new plants will be digital. This publication explains a process for planning and conducting an I and C modernization project. Numerous issues and areas requiring special consideration are identified, and recommendations on how to integrate the licensing authority into the process are made. To complement this report, a second publication is planned which will illustrate many of the aspects described here through experience based descriptions of I and C projects and lessons learned from those activities. It is upon these

  20. Strategy for improving instrumentation and control in operating nuclear power plants

    International Nuclear Information System (INIS)

    Abad Bassols, L.; Nino Perote, R.

    1996-01-01

    There are three basic reasons why nuclear power plants need to systematically upgrade their instrumentation and control equipment: Obsolete instrumentation and lack spares Little capacity of flexibility for extension Possibility of attaining better systems integration and improving systems-operations interface This article shows how to approach these issues using the following strategies: Use of distributed control systems and PLCs for control, signalling, command, communications, etc, in both nuclear and conventional applications Upgrading of process instrumentation equipment, sensors, transmitters, etc Upgrading of alarm-signalling systems In each group of equipment items consideration should be given to: Aspects regarding manufacturers-suppliers Effects on design, adaptation and documentation of operating plants Effects on the training and handling skills of operation and maintenance staff Strategy for incorporating the new system into the Plant with minimum impact on operation (Author)

  1. Prediction of lacking control power in power plants using statistical models

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Mataji, B.; Stoustrup, Jakob

    2007-01-01

    Prediction of the performance of plants like power plants is of interest, since the plant operator can use these predictions to optimize the plant production. In this paper the focus is addressed on a special case where a combination of high coal moisture content and a high load limits the possible...... plant load, meaning that the requested plant load cannot be met. The available models are in this case uncertain. Instead statistical methods are used to predict upper and lower uncertainty bounds on the prediction. Two different methods are used. The first relies on statistics of recent prediction...... errors; the second uses operating point depending statistics of prediction errors. Using these methods on the previous mentioned case, it can be concluded that the second method can be used to predict the power plant performance, while the first method has problems predicting the uncertain performance...

  2. Robust control of speed and temperature in a power plant gas turbine.

    Science.gov (United States)

    Najimi, Ebrahim; Ramezani, Mohammad Hossein

    2012-03-01

    In this paper, an H(∞) robust controller has been designed for an identified model of MONTAZER GHAEM power plant gas turbine (GE9001E). In design phase, a linear model (ARX model) which is obtained using real data has been applied. Since the turbine has been used in a combined cycle power plant, its speed and also the exhaust gas temperature should be adjusted simultaneously by controlling fuel signals and compressor inlet guide vane (IGV) position. Considering the limitations on the system inputs, the aim of the control is to maintain the turbine speed and the exhaust gas temperature within desired interval under uncertainties and load demand disturbances. Simulation results of applying the proposed robust controller on the nonlinear model of the system (NARX model), fairly fulfilled the predefined aims. Simulations also show the improvement in the performance compared to MPC and PID controllers for the same conditions. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Training of power plant operating personnel

    International Nuclear Information System (INIS)

    Kraftwerksschule, E.V.

    1986-01-01

    In Germany, professional training of power plant operating personnel became an important issue in the fifties, when power plant parameters as well as complexity of instrumentation and control increased considerably. Working Groups of VGB Technische Vereiningung der Grosskraftwerketreiber e.v. (Association of Large Power Plant Operators) developed a professional career for power plant operating personnel and defined pre-requisites, scope and objectives of training. In 1957 the German utilities founded KRAFTWERKSSCHULE E.V. (kws) as a school for theoretical training and for guidance of practical training in the power plants. KWS is a non-profit organisation and independent of authorities. Today KWS has 127 members in Germany and in 6 other countries. The objectives of KWS include the training of: -Kraftwerker (control room operators; - Kraftwerksmesiter (shift supervisors); and - shift engineers; according the guidelines of the VGB

  4. Strategies to control zebra mussel fouling at Kewaunee Nuclear Power Plant

    International Nuclear Information System (INIS)

    Schwartz, D.; Kasper, J.R.; Pisani, W.

    1992-01-01

    The zebra mussel, Dreissena polymorpha, is currently infesting the Great Lakes. First discovered in Lake St. Clair, it is now widespread in Lakes Erie and Ontario. The initial efforts relating to zebra mussel control at Wisconsin Public Service Corporation's (WPSC) Kewaunee Nuclear Power Plant (KNPP) precipitated from the Nuclear Regulatory Commission's (NRC) Generic Letter 89-13 regarding fouling of service water (SW) systems at nuclear power plants. In the summer of 1990, Stone and Webster Engineering Corporation (Stone and Webster) was contracted to perform an evaluation of known problems within the SW system. The purposes of the study were to evaluate the actual and potential magnitude of these problems, to evaluate corrective actions to resolve the problems, and to prepare recommendations which would adequately address the issues. Two of the recommendations of this study were to continue a zebra mussel monitoring program which WPSC had already implemented and to evaluate various biocide injection programs should one be required for zebra mussel control. The concern of utilities operating power stations which use waters infested with zebra mussels as their source of cooling and/or makeup water is that mussels (both adults and veligers) will enter plant water systems and foul piping and heat exchangers. This type of fouling can restrict flow through piping, process equipment, and heat exchangers. This type of fouling can restrict flow through piping, process equipment, and heat exchangers, thereby increasing head losses and reducing heat transfer capabilities. The greatest concern in that fouling of this type is within safety-related piping and equipment that are components of service water systems at nuclear power plants

  5. Reactor power control device

    International Nuclear Information System (INIS)

    Ishii, Yoshihiko; Arita, Setsuo; Miyamoto, Yoshiyuki; Fukazawa, Yukihisa; Ishii, Kazuhiko

    1998-01-01

    The present invention provides a reactor power control device capable of enhancing an operation efficiency while keeping high reliability and safety in a BWR type nuclear power plant. Namely, the device of the present invention comprises (1) a means for inputting a set value of a generator power and a set value of a reactor power, (2) a means for controlling the reactor power to either smaller one of the reactor power corresponding to the set value of the generator power and the set value of the reactor power. With such procedures, even if the nuclear power plant is set so as to operate it to make the reactor power 100%, when the generator power reaches the upper limit, the reactor power is controlled with a preference given to the upper limit value of the generator power. Accordingly, safety and reliability are not deteriorated. The operation efficiency of the plant can be improved. (I.S.)

  6. Vibration control and monitoring in nuclear power plants

    International Nuclear Information System (INIS)

    Theodor, P.

    1989-01-01

    Nuclear Power Plants are operated with a computer system support. The computer system for a nuclear power plant is designed to reliably monitor plant parameters and perform a series of operations and calculations designed to allow increased plant operation efficiency. Rotating machinery surveillance methods for the recognition of damage are particularly important in Nuclear Power Plants. Deviation of the vibration behavior from normal conditions is an indicator of the development of incipient faults and can be reliably recognized by the use of vibration monitoring systems. Machinery Condition Monitoring is defined as a method or methods of surveillance designed to recognize changes from a norm and is also a warning or it initiates an automatic shutdown when the changes exceed limiting values or safety limits. This paper reports that it is important to distinguish between surveillance and diagnostics. Whereas the former is necessary for protection, the latter is not generally required until it becomes necessary to identify the source of a known anomaly

  7. Predictors of operator performance at a simulated nuclear power plant control task

    International Nuclear Information System (INIS)

    Spettell, C.M.

    1986-01-01

    Male undergraduates participated in two experiments as operators of a simple dynamic nuclear power plant simulated on a personal computer. Their task involved monitoring the temperature and power output of the plant and controlling the flow of coolants and the position of the control rods to ensure that the plant operated at the desired temperature and output levels. Quality of performance was defined as the operator's ability to minimize the deviations in temperature and output from optimal values during the trials. Operator inputs and the status of all plant variables were recorded on-line every two seconds. Based on a review of human factors engineering and psychological literature, a number of personality, background, and process variables were measured and correlated with operator performance. Results of both experiments indicated that the strongest predictors of operator performance were the rate, magnitude, and accuracy of operator inputs. Input rate and magnitude were negatively related to overall performance; input accuracy was positively related to performance. These process variables and overall performance were relatively stable across trials of varying difficulty

  8. Communications involving the control room of a nuclear power plant

    International Nuclear Information System (INIS)

    MacGregor, J.; Cunningham, B.; Safayeni, F.; Duimering, R.

    1992-04-01

    This study investigated communications within the operations component of a nuclear power plant, with a primary emphasis on control room communications. A structured interview technique was developed following preliminary interviews at the plant, and pretested at AECB headquarters. Patterns were identified from questions asked on communications links, work relationships, miscommunications, procedures, instrumentation and responses to problems. The study was an exploratory one, conducted under a limited budget, to provide background information and to identify areas for further investigation. The report offers recommendations about areas for further research

  9. New pressure control method of mixed gas in a combined cycle power plant of a steel mill

    Science.gov (United States)

    Xie, Yudong; Wang, Yong

    2017-08-01

    The enterprise production concept is changing with the development of society. A steel mill requires a combined-cycle power plant, which consists of both a gas turbine and steam turbine. It can recycle energy from the gases that are emitted from coke ovens and blast furnaces during steel production. This plant can decrease the overall energy consumption of the steel mill and reduce pollution to our living environment. To develop a combined-cycle power plant, the pressure in the mixed-gas transmission system must be controlled in the range of 2.30-2.40 MPa. The particularity of the combined-cycle power plant poses a challenge to conventional controllers. In this paper, a composite control method based on the Smith predictor and cascade control was proposed for the pressure control of the mixed gases. This method has a concise structure and can be easily implemented in actual industrial fields. The experiment has been conducted to validate the proposed control method. The experiment illustrates that the proposed method can suppress various disturbances in the gas transmission control system and sustain the pressure of the gas at the desired level, which helps to avoid abnormal shutdowns in the combined-cycle power plant.

  10. Optimization of Boiler Control for Improvement of Load Following Capabilities of Existing Power Plants

    DEFF Research Database (Denmark)

    Mortensen, J. H.; Mølbak, T.; Pedersen, Tom Søndergaard

    1997-01-01

    An An optimizing control system for improving the load following capabilities of power plant units has been developed. The system is implemented as a complement producing additive control signals to the existing boiler control system, a concept which has various practical advantages in terms...... of implementation and commissioning. The optimizing control system takes into account the multivariable and nonlinear characteristics of the boiler process as a gain-scheduled LQG-controller is utilized. Simulation results indicate that a reduction of steam temperature deviations of about 75% can be obtained.......optimizing control system for improving the load following capabilities of power plant units has been developed. The system is implemented as a complement producing additive control signals to the existing boiler control system, a concept which has various practical advantages in terms of implementation...

  11. Probabilistic safety assessment- a tool for configuration control of nuclear power plants

    International Nuclear Information System (INIS)

    Vijaya, A.K.; Guptan, Rajee; Mohan, Nalini; Ghadge, S.G.; Bajaj, S.S.

    2006-01-01

    A comprehensive configuration control programme implies a sophisticated set of risk related measures to manage and control concurrent unavailabilities of components, the possibility of functional alternative components, the outage times of the unavailable components and the frequency of critical configurations. These measures are implemented through operational and maintenance activities such as maintenance and test scheduling and scheduling of operational realignments. An appropriate risk based configuration control programme would enable plant personnel to maintain the risk level of the nuclear power plant within an acceptable range during all the operational regimes. Use of plant specific PSA to support configuration control makes it risk based. The PSA can help to identify the measures needed according to the situation to reduce risk to acceptable level. The main benefit of establishing a risk based configuration control programme is the reduction of risk peaks and the control of cumulative or average risk. It helps to ensure that as far as possible, the plant does not enter the critical, high risk situations and other risk significant configurations are avoided A plant specific PSA along with a 'Risk Monitor' can be used as an efficient tool for Configuration Control. (author)

  12. Control and data processing systems in UK nuclear power plant and nuclear facilities

    International Nuclear Information System (INIS)

    Baldwin, J.A.; Wall, D.N.

    1997-01-01

    This note identifies some of the data processing and control systems in UK nuclear power plant, with emphasis on direct digital control systems and sequence control. A brief indication is also given of some of the associated research activities on control systems and software. (author). 2 figs

  13. Control and data processing systems in UK nuclear power plant and nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, J A; Wall, D N [AEA Technology, Winfrith, Dorchester (United Kingdom)

    1997-07-01

    This note identifies some of the data processing and control systems in UK nuclear power plant, with emphasis on direct digital control systems and sequence control. A brief indication is also given of some of the associated research activities on control systems and software. (author). 2 figs.

  14. The role of instrumentation and control systems in power uprating projects for nuclear power plants

    International Nuclear Information System (INIS)

    2008-01-01

    The IAEA's activities in nuclear power plant operating performance and life cycle management are aimed at increasing Member State capabilities in utilizing good engineering and management practices developed and transferred by the IAEA. In particular, the IAEA supports activities focusing on the improvement of nuclear power plant (NPP) performance, plant life management, training, power uprating, operational licence renewal, and the modernization of instrumentation and control (I and C) systems of NPPs in Member States. The subject of the I and C systems' role in power uprating projects in NPPs was suggested by the Technical Working Group on Nuclear Power Plant Control and Instrumentation in 2003. The subject was then approved by the IAEA and included in the programmes for 2004-2007. The increasing importance of power uprating projects can be attributed to the general worldwide tendency to the deregulation of the electricity market. The greater demand for electricity and the available capacity and safety margins, as well as the pressure from several operating NPPs resulted in requests for licence modification to enable operation at a higher power level, beyond the original licence provisions. A number of nuclear utilities have already gone through the uprating process for their nuclear reactors, and many more are planning to go through this modification process. In addition to mechanical and process equipment changes, parts of the electrical and I and C systems and components may also need to be altered to accommodate the new operating conditions and safety limits. This report addresses the role of I and C systems in NPP power uprating projects. The objective of the report is to provide guidance to utilities, safety analysts, regulators and others involved in the preparation, implementation and licensing of power uprating projects, with particular emphasis on the I and C aspects of these projects. As the average age of NPPs is increasing, it is becoming common for

  15. HTGR power plant hot reheat steam pressure control system

    International Nuclear Information System (INIS)

    Braytenbah, A.S.; Jaegtnes, K.O.

    1975-01-01

    A control system for a high temperature gas cooled reactor (HTGR) power plant is disclosed wherein such plant includes a plurality of steam generators. Dual turbine-generators are connected to the common steam headers, a high pressure element of each turbine receiving steam from the main steam header, and an intermediate-low pressure element of each turbine receiving steam from the hot reheat header. Associated with each high pressure element is a bypass line connected between the main steam header and a cold reheat header, which is commonly connected to the high pressure element exhausts. A control system governs the flow of steam through the first and second bypass lines to provide for a desired minimum steam flow through the steam generator reheater sections at times when the total steam flow through the turbines is less than such minimum, and to regulate the hot reheat header steam pressure to improve control of the auxiliary steam turbines and thereby improve control of the reactor coolant gas flow, particularly following a turbine trip. (U.S.)

  16. Concept of electric power output control system for atomic power generation plant utilizing cool energy of stored snow

    International Nuclear Information System (INIS)

    Kamimura, Seiji; Toita, Takayuki

    2003-01-01

    A concept of the SEAGUL system (Snow Enhancing Atomic-power Generation UtiLity) is proposed in this paper. Lowering the temperature of sea water for cooling of atomic-power plant will make a efficiency of power generation better and bring several ten MW additional electric power for 1356 MW class plant. The system concept stands an idea to use huge amount of seasonal storage snow for cooling water temperature control. In a case study for the Kashiwazaki-Kariwa Nuclear Power Station, it is estimated to cool down the sea water of 29degC to 20degC by 80 kt snow for 3 hours in a day would brought 60 MWh electric power per a day. Annually 38.4 Mt of stored snow will bring 1800 MWh electric power. (author)

  17. Adaptive Reactive Power Control of PV Power Plants for Improved Power Transfer Capability under Ultra-Weak Grid Conditions

    DEFF Research Database (Denmark)

    Yang, Dongsheng; Wang, Xiongfei; Liu, Fangcheng

    2018-01-01

    with the unity power factor. Then, considering the reactive power compensation from PV inverters, the minimum SCR in respect to Power Factor (PF) is derived, and the optimized coordination of the active and reactive power is exploited. It is revealed that the power transfer capability of PV power plant under...... of a 200 MW PV power plant demonstrate that the proposed method can ensure the rated power transfer of PV power plant with the SCR of 1.25, provided that the PV inverters are operated with the minimal PF=0.9.......This paper analyzes the power transfer limitation of the PV power plant under the ultra-weak grid condition, i.e., when the Short-Circuit Ratio (SCR) is close to 1. It explicitly identifies that a minimum SCR of 2 is required for the PV power plant to deliver the rated active power when operating...

  18. The Method of Optimization of Hydropower Plant Performance for Use in Group Active Power Controller

    Directory of Open Access Journals (Sweden)

    Glazyrin G.V.

    2017-04-01

    Full Text Available The problem of optimization of hydropower plant performance is considered in this paper. A new method of calculation of optimal load-sharing is proposed. The method is based on application of incremental water flow curves representing relationship between the per unit increase of water flow and active power. The optimal load-sharing is obtained by solving the nonlinear equation governing the balance of total active power and the station power set point with the same specific increase of water flow for all turbines. Unlike traditional optimization techniques, the solution of the equation is obtained without taking into account unit safe operating zones. Instead, if calculated active power of a unit violates the permissible power range, load-sharing is recalculated for the remaining generating units. Thus, optimal load-sharing algorithm suitable for digital control systems is developed. The proposed algorithm is implemented in group active power controller in Novosibirsk hydropower plant. An analysis of operation of group active power controller proves that the application of the proposed method allows obtaining optimal load-sharing at each control step with sufficient precision.

  19. Evaluation of Control and Protection System for Loss of Electrical Power Supply System of Water-Cooling Nuclear Power Plant

    International Nuclear Information System (INIS)

    Suhaemi, Tjipta; Djen Djen; Setyono; Jambiar, Riswan; Rozali, Bang; Setyo P, Dwi; Tjahyono, Hendro

    2000-01-01

    Evaluation of control and protection system for loss of electrical power supply system of water-cooled nuclear power plant has been done. The loss of electrical power supply. The accident covered the loss of external electrical load and loss of ac power to the station auxiliaries. It is analysed by studying and observing the mechanism of electrical power system and mechanism of related control and protection system. The are two condition used in the evaluation i e without turbine trip and with turbine trip. From the evaluation it is concluded that the control and protection system can handled the failure caused by the loss of electrical power system

  20. Instrumentation control system in nuclear power plant

    International Nuclear Information System (INIS)

    Hanai, Koi; Tai, Ichiro.

    1982-01-01

    Purpose: To improve the reliability of instrumentation control system in a nuclear power plant by using an optical fiber cable as a transmission path between a multiplexer and a central control room to thereby eliminate noises resulted from electromagnetic inductions or the likes. Constitution: Signals from neutron detectors are sent by way of ceramic-insulated cables to pre-amplifiers disposed outside of the pressure vessel of a nuclear reactor, converted into voltage pulse signals and then sent by way of coaxial cables to a multiplexer. The multiplexer receives a plurality of voltage pulse signals corresponding to the neutron detectors respectively, converts them into a time-shared electric signal train and sends it to an optical pulse transmitter. The transmitter converts the supplied signals into an optical pulse signal train corresponding to the electric signal train from the multiplexer and sends it by way of an optical fiber cable to an optical pulse receiver disposed in a central control room. (Kawakami, Y.)

  1. Near-term improvements for nuclear power plant control room annunciator systems

    International Nuclear Information System (INIS)

    Rankin, W.L.; Duvernoy, E.G.; Ames, K.R.; Morgenstern, M.H.; Eckenrode, R.J.

    1983-04-01

    This report sets forth a basic design philosophy with its associated functional criteria and design principles for present-day, hard-wired annunciator systems in the control rooms of nuclear power plants. It also presents a variety of annunciator design features that are either necessary for or useful to the implementation of the design philosophy. The information contained in this report is synthesized from an extensive literature review, from inspection and analysis of control room annunciator systems in the nuclear industry and in related industries, and from discussions with a variety of individuals who are knowledgeable about annunciator systems, nuclear plant control rooms, or both. This information should help licensees and license applicants in improving their hard-wired, control room annunciator systems as outlined by NUREG-0700

  2. Wind Power Plant Voltage Control Optimization with Embedded Application of Wind Turbines and Statcom

    DEFF Research Database (Denmark)

    Wu, Qiuwei; Solanas, Jose Ignacio Busca; Zhao, Haoran

    2017-01-01

    Increasing wind power penetration and the size of wind power plants (WPPs) brings challenges to the operation and control of power systems. Most of WPPs are located far from load centers and the short circuit ratio at the point of common coupling (PCC) is low. The fluctuations of wind power...

  3. Optimization of Boiler Control to Improve the Load-following Capability of Power-plant Units

    OpenAIRE

    Mortensen, J. H.; Mølbak, T.; Andersen, Palle; Pedersen, Tom Søndergaard

    1998-01-01

    The capability to perform fast load changes has been an important issue in the power market, and will become increasingly more so due to the incresing commercialisation of the European power market. An optimizing control system for improving the load-following capability of power-plant units has therefore been developed. The system is implemented as a complement, producing control signals to be added to those of the existing boiler control system, a concept which has various practical advanta...

  4. Virtual reality applied in the ergonomic evaluation of nuclear power plant control room

    International Nuclear Information System (INIS)

    Gatto, Leandro Barbosa da Silveira

    2012-01-01

    A nuclear power plant control room is a complex system that controls a nuclear and thermodynamic process used to produce electrical energy. The operators interact with the control room through interfaces that have significant implications to nuclear power plant safety and influence the operator activity. The operator activity presents complexity features and shows a series of mechanisms absents from the human factors guidelines, important to the evaluation and update of control rooms. The ergonomics approach considers the operation strategies, the interaction between the operators, the operator-system interaction, and interaction between operators and support groups. The main objective of this paper is propose the modeling of a nuclear control room, with the support of a game engine core. This tool will be used in the ergonomic evaluation of nuclear control room, generating information and data that will make possible the adequacy of control rooms features to the legal requirements of the regulating agency, assisting the nuclear licensing. (author)

  5. Slovenske elektrarne, a.s., Mochovce Nuclear Power Plant

    International Nuclear Information System (INIS)

    1998-01-01

    In this booklet the uranium atom nucleus fission as well as electricity generation in a nuclear power plant (primary circuit, reactor, reactor pressure vessel, fuel assembly, control rod and reactor power control) are explained. Scheme of electricity generation in nuclear power plant and Cross-section of Mochovce Nuclear Power Plant unit are included. In next part a reactor scram, refuelling of fuel, instrumentation and control system as well as principles of nuclear safety and safety improvements are are described

  6. Verification tests for remote controlled inspection system in nuclear power plants

    International Nuclear Information System (INIS)

    Kohno, Tadaaki

    1986-01-01

    Following the increase of nuclear power plants, the total radiation exposure dose accompanying inspection and maintenance works tended to increase. Japan Power Engineering and Inspection Corp. carried out the verification test of a practical power reactor automatic inspection system from November, 1981, to March, 1986, and in this report, the state of having carried out this verification test is described. The objects of the verification test were the equipment which is urgently required for reducing radiation exposure dose, the possibility of realization of which is high, and which is important for ensuring the safety and reliability of plants, that is, an automatic ultrasonic flaw detector for the welded parts of bend pipes, an automatic disassembling and inspection system for control rod driving mechanism, a fuel automatic inspection system, and automatic decontaminating equipments for steam generator water chambers, primary system crud and radioactive gas in coolant. The results of the verification test of these equipments were judged as satisfactory, therefore, the application to actual plants is possible. (Kako, I.)

  7. Fuzzy Logic Based Controller for a Grid-Connected Solid Oxide Fuel Cell Power Plant.

    Science.gov (United States)

    Chatterjee, Kalyan; Shankar, Ravi; Kumar, Amit

    2014-10-01

    This paper describes a mathematical model of a solid oxide fuel cell (SOFC) power plant integrated in a multimachine power system. The utilization factor of a fuel stack maintains steady state by tuning the fuel valve in the fuel processor at a rate proportional to a current drawn from the fuel stack. A suitable fuzzy logic control is used for the overall system, its objective being controlling the current drawn by the power conditioning unit and meet a desirable output power demand. The proposed control scheme is verified through computer simulations.

  8. Control-oriented modeling of the energy-production of a synchronous generator in a nuclear power plant

    International Nuclear Information System (INIS)

    Fodor, Attila; Magyar, Attila; Hangos, Katalin M.

    2012-01-01

    Nuclear Power Plant (Hungary) is developed in this paper based on first engineering principles that is able to describe the time-varying active and reactive power output of the generator. These generators are required to take part in the reactive power support of the power grid following the demand of a central dispatch center, and also contribute to the frequency control of the grid. The developed model has been verified under the usual controlled operating conditions when the frequency and the active power are controlled. Static and dynamic sensitivity analysis has been applied to determine the model parameters to be estimated. The model parameters have been estimated applying the asynchronous parallel pattern search method using real measured data from the nuclear power plant. The confidence regions in the parameter space have been analyzed by investigating the geometry of the estimation error function. The developed model can serve as a basis for controlling the optimal energy production of the generator using both the active and reactive power components. -- Highlights: ► A dynamic model of a synchronous generator in a Nuclear Power Plant is developed. ► The model has been verified under the usual controlled operating conditions. ► The sensitivity analysis has been applied to determine the model parameters. ► The parameters have been estimated applying the APPS method using measured data. ► The model serves as a basis for controlling the optimal energy production of the generator.

  9. Coordination of baseload power plant group control with static reactive power compensator control

    Directory of Open Access Journals (Sweden)

    Zbigniew Szczerba

    2012-06-01

    Full Text Available Reactive power sources in power system nodes: generators and static reactive power compensators, are controlled by control systems. Generators – by generator node group controllers, compensators – by voltage controllers. The paper presents issues of these control systems’ coordination and proposals for its implementation.

  10. Nuclear Power Plant Control and Instrumentation activities in Finland

    International Nuclear Information System (INIS)

    Haapanen, P.; Wahlstroem, B.

    1990-01-01

    Finland has achieved some remarkable achievements in nuclear power production. Existing four plants have some of the best operating records in the world - high capacity factors, low occupational doses and short refuelling outages. Although public opinion was strongly turned against nuclear power after Chernobyl accident, and no decisions for new nuclear plants can be made before next elections in 1991, the nuclear option is still open. Utility companies are maintaining readiness to start new construction immediately after a positive political decision is made. One important component of the good operation history of the Finnish nuclear power plants is connected to the continuous research, development, modification and upgrading work, which is proceeding in Finland. In the following a short description is given on recent activities related to the I and C-systems of the nuclear power plants. (author). 2 tabs

  11. Strategy and implementation of resources control of key equipments in nuclear power plant

    International Nuclear Information System (INIS)

    Zha Qing

    2014-01-01

    The strategic resources of the construction of nuclear power plant, which include the main equipment of nuclear island, heavy forgings, the bottleneck equipment and strategic materials, is one of the key issues in the construction of nuclear power projects. The control of these strategic resources has become the focus of competition in industry and the major nuclear power groups are willing to fight for this huge advantages. The resource control strategies of key equipment of nuclear power projects are analyzed in this paper. This paper put forward specific measures and methods for the strategic resources control. By the application to a plurality of nuclear power engineering construction projects, these specific measures and methods achieved good results and will be with important guidance and reference for the construction of future nuclear power projects in China. (author)

  12. Evaluation of digital fault-tolerant architectures for nuclear power plant control systems

    International Nuclear Information System (INIS)

    Battle, R.E.

    1990-01-01

    Four fault tolerant architectures were evaluated for their potential reliability in service as control systems of nuclear power plants. The reliability analyses showed that human- and software-related common cause failures and single points of failure in the output modules are dominant contributors to system unreliability. The four architectures are triple-modular-redundant (TMR), both synchronous and asynchronous, and also dual synchronous and asynchronous. The evaluation includes a review of design features, an analysis of the importance of coverage, and reliability analyses of fault tolerant systems. An advantage of fault-tolerant controllers over those not fault tolerant, is that fault-tolerant controllers continue to function after the occurrence of most single hardware faults. However, most fault-tolerant controllers have single hardware components that will cause system failure, almost all controllers have single points of failure in software, and all are subject to common cause failures. Reliability analyses based on data from several industries that have fault-tolerant controllers were used to estimate the mean-time-between-failures of fault-tolerant controllers and to predict those failures modes that may be important in nuclear power plants. 7 refs., 4 tabs

  13. Information presentation in power plant control rooms

    International Nuclear Information System (INIS)

    Kautto, A.

    1984-11-01

    The objective of this study is to support operators' work especially in the control rooms of power plant. The exemplified process is a pressurized water (nuclear) reactor (PWR). The man-process interface is an information system that covers information refining, information presentation, information system handling, and process control. THe emphasis in this study is on the organization and presentation of information and on the alert function that is part of the information system. Another goal is to design the alert function so as to radically reduce the number of alarms during plant shutdown, e.g. during the refuelling or maintenance period and during a disturbance. Further, the experimental validation of CFMS (Critical Function Monitoring System), developed by Combustion Engineering, Inc. in the U.S.A. is described briefly. The validation was made at the Loviisa training simulator in the autumn of 1982. CFMS is a safety-related functional alarm system. The functional decomposition of information has turned out to be successful and it is helpful in designing displays. Preliminary criteria for designing displays, the structure of the information presentation system and the illustration of main interactions are presented. General practical ideas on designing the alert function seem very promising. Preliminary results of the CFMS validation are presented. Further, some ideas are presented on how to carry out the analysis and how to make such validations in the future. A new idea for the evaluation of core safety is presented, based on control theory concepts

  14. Coordinated Voltage Control in Offshore HVDC Connected Cluster of Wind Power Plants

    DEFF Research Database (Denmark)

    Sakamuri, Jayachandra N.; Rather, Zakir Hussain; Rimez, Johan

    2016-01-01

    This paper presents a coordinated voltage control scheme (CVCS) for a cluster of offshore wind power plants (OWPPs) connected to a VSC HVDC system. The primary control point of the proposed voltage control scheme is the introduced Pilot bus, which is having the highest short circuit capacity...... in the offshore AC grid. The developed CVCS comprehends an optimization algorithm, aiming for minimum active power losses in the offshore grid, to generate voltage reference to the Pilot bus. During steady state operation, the Pilot bus voltage is controlled by dispatching reactive power references to each wind...... turbine (WT) in the WPP cluster based on their available reactive power margin and network sensitivity based participation factors, which are derived from the dV/dQ sensitivity of a WT bus w.r.t the Pilot bus. This method leads to minimization of the risk of undesired effects, particularly overvoltage...

  15. Advanced control systems to improve nuclear power plant reliability and efficiency

    International Nuclear Information System (INIS)

    1997-07-01

    The TECDOC is the result of a series of an advisory and consultants meetings held by the IAEA in 1995-1996 in Vienna (March 1995), in Erlangen Germany (December 1995), in Garching, Germany (June 1996) and in Vienna (November 1996). It was prepared with the participation and contributions of experts from Austria, Canada, Finland, France, Germany, the Republic of Korea, Norway, the Russian Federation, the United Kingdom and the United States of America. The publication not only describes advanced control systems for the improvement of nuclear power plant reliability and efficiency, but also provides a road map to guide interested readers to plan and execute an advanced instrumentation and control project. The subjects include: identification of needs and requirements, justification for safety and user acceptance, and the development of an engineering process. The report should be of interest to nuclear power plant staff, I and C system designers and integrators as well as regulators and researchers. Refs, figs, tabs

  16. Advanced control systems to improve nuclear power plant reliability and efficiency

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The TECDOC is the result of a series of an advisory and consultants meetings held by the IAEA in 1995-1996 in Vienna (March 1995), in Erlangen Germany (December 1995), in Garching, Germany (June 1996) and in Vienna (November 1996). It was prepared with the participation and contributions of experts from Austria, Canada, Finland, France, Germany, the Republic of Korea, Norway, the Russian Federation, the United Kingdom and the United States of America. The publication not only describes advanced control systems for the improvement of nuclear power plant reliability and efficiency, but also provides a road map to guide interested readers to plan and execute an advanced instrumentation and control project. The subjects include: identification of needs and requirements, justification for safety and user acceptance, and the development of an engineering process. The report should be of interest to nuclear power plant staff, I and C system designers and integrators as well as regulators and researchers. Refs, figs, tabs.

  17. Corrosion control in electric power plants

    International Nuclear Information System (INIS)

    Syrett, B.C.

    1992-01-01

    This paper reports that corrosion of components in power plants costs the US electric power utility industry billions of dollars each year. Through the Electric Power Research Institute's (EPRI) research and development, several approaches have been developed to reduce these huge costs. They include improved materials selection procedures, coatings, cathodic protection, inhibitors, removal of aggressive species from the environment, and on-line corrosion monitoring. In addition, as part of an on-going technology transfer effort, EPRI is developing databases and expert systems that will help utilities obtain corrosion information and guide them in materials selection and failure analysis

  18. EPRI's nuclear power plant instrumentation and control program and its applicability to advanced reactors

    International Nuclear Information System (INIS)

    Naser, J.; Torok, R.; Wilkinson, D.

    1997-01-01

    I ampersand C systems in nuclear power plants need to be upgraded over the lifetime of the plant in a reliable and cost-effective manner to replace obsolete equipment, to reduce O ampersand M costs, to improve plant performance, and to maintain safety. This applies to operating plants now and will apply to advanced reactors in the future. The major drivers for the replacement of the safety, control, and information systems in nuclear power plants are the obsolescence of the existing hardware and the need for more cost-effective power production. Competition between power producers is dictating more cost-effective power production. The increasing O ampersand M costs to maintain systems experiencing obsolescence problems is counter to the needs for more cost-effective power production and improved competitiveness. This need for increased productivity applies to government facilities as well as commercial plants. Increasing competition will continue to be a major factor in the operation of both operating plants and advanced reactors. It will continue to dictate the need for improved productivity and cost-effectiveness. EPRI and its member nuclear utilities are working together on an industry wide I ampersand C Program to address I ampersand C issues and to develop cost-effective solutions. A majority of the I ampersand C products and demonstrations being developed under this program will benefit advanced reactors in both the design and operational phases of their life cycle as well as it will benefit existing plants. 20 refs

  19. Active current control in wind power plants during grid faults

    DEFF Research Database (Denmark)

    Martinez, Jorge; Kjær, Phillip C.; Rodriguez, Pedro

    2010-01-01

    Modern wind power plants are required and designed to ride through faults in electrical networks, subject to fault clearing. Wind turbine fault current contribution is required from most countries with a high amount of wind power penetration. In order to comply with such grid code requirements......, wind turbines usually have solutions that enable the turbines to control the generation of reactive power during faults. This paper addresses the importance of using an optimal injection of active current during faults in order to fulfil these grid codes. This is of relevant importance for severe...... faults, causing low voltages at the point of common coupling. As a consequence, a new wind turbine current controller for operation during faults is proposed. It is shown that to achieve the maximum transfer of reactive current at the point of common coupling, a strategy for optimal setting of the active...

  20. Control of VSC-HVDC in offshore AC islands with wind power plants: Comparison of two alternatives

    DEFF Research Database (Denmark)

    Zeni, Lorenzo; Hesselbæk, Bo; Sørensen, Poul Ejnar

    2015-01-01

    The subject of this paper is the control of offshore AC collection and export networks behind a voltage source converter based high voltage direct current transmission system. The inertia-less nature of such grids makes the control of voltages and power flows potentially more flexible......, but at the same time more prone to instabilities. Focus in this paper is on a voltage source converter based high voltage direct current connected wind power plant. Two state-of-art controllers for the offshore high voltage direct current converter station are compared, both at no-load and when wind turbine...... converters are producing power and controlled with usual vector current control. Sensitivity analyses help identify critical factors influencing stability. The influence of lumping the wind power plant into one converter is assessed by comparison with the full model. The conclusions identify the preferred...

  1. Development of nuclear power plant online monitoring system using statistical quality control

    International Nuclear Information System (INIS)

    An, Sang Ha

    2006-02-01

    Statistical Quality Control techniques have been applied to many aspects of industrial engineering. An application to nuclear power plant maintenance and control is also presented that can greatly improve plant safety. As a demonstration of such an approach, a specific system is analyzed: the reactor coolant pumps (RCP) and the fouling resistance of heat exchanger. This research uses Shewart X-bar, R charts, Cumulative Sum charts (CUSUM), and Sequential Probability Ratio Test (SPRT) to analyze the process for the state of statistical control. And we made Control Chart Analyzer (CCA) to support these analyses that can make a decision of error in process. The analysis shows that statistical process control methods can be applied as an early warning system capable of identifying significant equipment problems well in advance of traditional control room alarm indicators. Such a system would provide operators with enough time to respond to possible emergency situations and thus improve plant safety and reliability

  2. Use of control room simulators for training of nuclear power plant personnel

    International Nuclear Information System (INIS)

    2004-09-01

    Safety analysis and operational experience consistently indicate that human error is the greatest contributor to the risk of a severe accident in a nuclear power plant. Subsequent to the Three Mile Island accident, major changes were made internationally in reducing the potential for human error through improved procedures, information presentation, and training of operators. The use of full scope simulators in the training of operators is an essential element of these efforts to reduce human error. The operators today spend a large fraction of their time training and retraining on the simulator. As indicated in the IAEA Safety Guide on Recruitment, Qualification and Training of Personnel for Nuclear Power Plants, NS-G-2.8, 2002, representative simulator facilities should be used for training of control room operators and shift supervisors. Simulator training should incorporate normal, abnormal and accident conditions. The ability of the simulator to closely represent the actual conditions and environment that would be experienced in a real situation is critical to the value of the training received. The objective of this report is to provide nuclear power plant (NPP) managers, training centre managers and personnel involved with control room simulator training with practical information they can use to improve the performance of their personnel. While the emphasis in this publication is on simulator training of control room personnel using full scope simulators, information is also provided on how organizations have effectively used control room simulators for training of other NPP personnel, including simulators other than full-scope simulators

  3. Simulation-based biagnostics and control for nuclar power plants

    International Nuclear Information System (INIS)

    Lee, J.C.

    1993-01-01

    Advanced simulation-based diagnostics and control guidance systems for the identification and management of off-normal transient events in nuclear power plants is currently under investigation. To date a great deal of progress has been made in effectively and efficiently combining information obtained through fuzzy pattern recognition and macroscopic mass and energy inventory analysis for use in multiple failure diagnostics. Work has also begun on the unique problem of diagnostics and surveillance methodologies for advanced passively-safe reactors systems utilizing both statistical and fuzzy information. Plans are also being formulated for the development of deterministic optimal control algorithms combined with Monte Carlo incremental learning algorithms to be used for the flexible and efficient control of reactor transients

  4. Robotics for nuclear power plants

    International Nuclear Information System (INIS)

    Nakayama, Ryoichi; Kimura, Motohiko; Abe, Akira

    1993-01-01

    A continuing need exists for automatic or remote-controlled machines or robots which can perform inspection and maintenance tasks in nuclear power plants. Toshiba has developed several types of monofunctional and multi- functional robots for such purposes over the past 20 years, some of which have already been used in actual plants. This paper describes new multifunctional robots for inspection and maintenance. An inspection robot has been applied in an actual plant for two years for performance testing. Maintenance robots for grinding tasks have also been developed, which can be easily teleoperated by the operator using automatic control. These new robots are expected to be applied to actual inspection and maintenance work in nuclear power plants. (author)

  5. National supply of reactivity control rods for Embalse nuclear power plant (CNE)

    International Nuclear Information System (INIS)

    Biondo, C.D.; Carloni, J.G.; Aba, J.A.

    1987-01-01

    The manufacture and supply on industrial scale of reactivity control rods for CNE (Embalse nuclear power plant) were developed by the National Atomic Energy Commission (CNEA) together with the private industry, as part of a program aimed to the substitution of imported supplies used in the operation of power plants by materials manufactured in Argentina. So far, the control rods were imported from Canada. In this work, the different development stages performed by CNEA and CONUAR S.A. are described, leading to the supply of a set of 21 cobalt rods to be included in a reactor of CNE in order to qualify this component. Among the main activities performed, the following stand out: specifications development, particularly those concerning to cobalt cores, evaluation of design documentation and elaboration of bidding conditions and a plan of manufacture and control. According to the results obtained during the service and the post-irradiation measurements, the design will be reviewed in order to undertake new manufacturing plans. (Author)

  6. Developments in operator assistance techniques for nuclear power plant control and operation

    International Nuclear Information System (INIS)

    Poujol, A.; Papin, B.; Beltranda, G.; Soldermann, R.

    1989-01-01

    This paper describes an approach which has been developed in order to improve nuclear power plants control and monitoring in normal and abnormal situations. These developments take full advantage of the trend towards the computerization of control rooms in industrial continuous processes. This research program consists in a thorough exploration of different information processing techniques, ranking from the rather simple visual synthetization of informations on graphic displays to sophisticated Artificial Intelligence (AI) techniques. These techniques are put into application for the solving of man-machine interface problems in the different domains of plant operation

  7. Power Oscillation Damping Controller for Wind Power Plant Utilizing Wind Turbine Inertia as Energy Storage

    DEFF Research Database (Denmark)

    Knüppel, Thyge; Nielsen, Jørgen Nygård; Jensen, Kim Høj

    2011-01-01

    For a wind power plant (WPP) the upper limit for active power output is bounded by the instantaneous wind conditions and therefore a WPP must curtail its power output when system services with active power are delivered. Here, a power oscillation damping controller (POD) for WPPs is presented...... that utilizes the stored kinetic energy in the wind turbine (WT) mechanical system as energy storage from which damping power can be exchanged. This eliminates the need for curtailed active power production. Results are presented using modal analysis and induced torque coefficients (ITC) to depict the torques...... induced on the synchronous generators from the POD. These are supplemented with nonlinear time domain simulations with and without an auxiliary POD for the WPP. The work is based on a nonlinear, dynamic model of the 3.6 MW Siemens Wind Power wind turbine....

  8. Rebirth of a control rod at the Phenix power plant

    International Nuclear Information System (INIS)

    De Carvalho, Corinne; Vignau, Bernard; Masson, Marc

    2007-01-01

    This paper outlines the operations involved in cleaning the control rod for the complementary shutdown system in the Phenix Power Plant, the French sodium-cooled fast reactor. The Phenix reactor is controlled by six control rods and a complementary shutdown system. The latter comprises a control rod and a mechanism maintaining the rod in position by means of an electromagnet. The electromagnet is continuously supplied with power and holds the rod control assembly in position by magnetisation on a plane circular surface made from pure iron. The bearing capacity of the mechanism on the rod was initially 80 daN with a rod weight of 26.3 daN. This deteriorated progressively over time. The bearing surface of the rod and the electromagnet became contaminated with a deposit of sodium oxides and metallic particles, thus creating an air gap. This reached a figure of 36 daN in 2005 and was deemed not to be sufficient to prevent the rod from dropping at the wrong time during reactor operation. The Power Plant thus decided to replace the rod mechanism in the reactor in an initial phase, followed by the control rod itself. As the Phenix Power Plant had no spare control rods left, they initiated a 'salvage' plan, over two stages, for the rod removed from the reactor and placed in the fuel storage drum: - Inspection of the bearing surface of the rod by means of a borescope to check whether the rod could be salvaged, - A cleaning operation on the bearing face and checks on the bearing capacity of the rod. The operation is subject to very stringent requirements: the rod must not be taken out of the sodium to ensure that it can be reused in the reactor. The operation must thus take place in the fuel storage drum where there are no facilities for such an operation and where operating conditions are very hostile: high temperatures (the sodium in the fuel storage drum is at a temperature of 150 deg. C, high dose rate (3 mGy/h on the bearing surface) and the bearing surface is submerged

  9. Towards a Reactive Power Oscillation Damping Controller for Wind Power Plant Based on Full Converter Wind Turbines

    DEFF Research Database (Denmark)

    Knüppel, Thyge; Kumar, Sathess; Thuring, Patrik

    2012-01-01

    In this paper a power oscillation damping controller (POD) based on modulation of reactive power (Q POD) is analyzed where the modular and distributed characteristics of the wind power plant (WPP) are considered. For a Q POD it is essential that the phase of the modulated output is tightly...... contributes to a collective response. This ability is shown with a 150 wind turbine (WT) WPP with all WTs represented, and it is demonstrated that the WPP contributes to the inter-area damping. The work is based on a nonlinear, dynamic model of the 3.6 MW Siemens Wind Power WT....... controlled to achieve a positive damping contribution. It is investigated how a park level voltage, reactive power, and power factor control at different grid strengths interact with the Q POD in terms of a resulting phase shift. A WPP is modular and distributed and a WPP Q POD necessitate that each WT...

  10. Emergency power systems at nuclear power plants

    International Nuclear Information System (INIS)

    1982-01-01

    This Guide applies to nuclear power plants for which the total power supply comprises normal power supply (which is electric) and emergency power supply (which may be electric or a combination of electric and non-electric). In its present form the Guide provides general guidance for all types of emergency power systems (EPS) - electric and non-electric, and specific guidance (see Appendix A) on the design principles and the features of the emergency electric power system (EEPS). Future editions will include a second appendix giving specific guidance on non-electric power systems. Section 3 of this Safety Guide covers information on considerations that should be taken into account relative to the electric grid, the transmission lines, the on-site electrical supply system, and other alternative power sources, in order to provide high overall reliability of the power supply to the EPS. Since the nuclear power plant operator does not usually control off-site facilities, the discussion of methods of improving off-site reliability does not include requirements for facilities not under the operator's control. Sections 4 to 11 of this Guide provide information, recommendations and requirements that would apply to any emergency power system, be it electric or non-electric

  11. Studies on the coordinated operation and autonomous control for multi-modular nuclear power plants

    International Nuclear Information System (INIS)

    Hui Chao; Huang Xiaojin; Wang Jie

    2011-01-01

    The tendency has always been to build ever larger single-modular reactor plants with the objective of benefiting from economies of scale. These plants have compiled admirable safety records. Nevertheless, there is concern that conventional large single reactors have become too complex by reason of placing too much reliance on engineered safeguards. The multi-modular approach offers a solution in that its use of many small reactors in conjunction with several shared turbines permits a simpler core design while, at the same time, at least partially retaining economies of scale by increasing the number of modules. Specific advantages to the multi-modular approach are as follows. First, the small-sized of the reactor core may allow the incorporation of passive safety features such as natural circulation cooling on loss of off-site electricity. Second, the individual modules are to be sized so that components related to nuclear safety can be factory-fabricated. Moreover, once the major components are made, they are to be transported to the site for rapid installation. This construction method is expected to reduce the licensing effort because the modules will be pre-licensed, and only site-specific issues will have to be considered in the final licensing process. At present, related studies show that the multi-modular approach for Generation IV can retain both the inherent safety and good economies of scale. However, the unbalanced load operation of the multi-modular power plant in which each module operates at a different power level and strong coupling between multi modules creates a complex control challenge to safe operation and control. Firstly, this paper summarizes the unbalanced load operation characteristics and challenges faced by operation and control of multi-modular power plant in the dynamic operational characteristics and requirements of coordinated control between multi modules. Secondly, detailed analysis and comparison are given in the integral

  12. National report on nuclear power plant control and instrumentation in Czechoslovakia

    International Nuclear Information System (INIS)

    Stirsky, P.; Karpeta, C.

    1986-01-01

    Research, development and design efforts in the field of nuclear power plant I and C systems in Czechoslovakia have been recently aimed at solving the following problems: setting the parameters of the WWER 440 units control and protection systems and testing them in the power phase of commissioning; design and simulation of the WWER 440 units control system performance under the conditions of steam bleeding for a centralized heat supply system; development of a simulation model of the unit WWER 1000 dynamics for the purpose of I and C systems investigation and design; design of innovated I and C systems for WWER 440 and WWER 1000 units

  13. A study on the optimal replacement periods of digital control computer's components of Wolsung nuclear power plant unit 1

    International Nuclear Information System (INIS)

    Mok, Jin Il; Seong, Poong Hyun

    1993-01-01

    Due to the failure of the instrument and control devices of nuclear power plants caused by aging, nuclear power plants occasionally trip. Even a trip of a single nuclear power plant (NPP) causes an extravagant economical loss and deteriorates public acceptance of nuclear power plants. Therefore, the replacement of the instrument and control devices with proper consideration of the aging effect is necessary in order to prevent the inadvertent trip. In this paper we investigated the optimal replacement periods of the control computer's components of Wolsung nuclear power plant Unit 1. We first derived mathematical models of optimal replacement periods to the digital control computer's components of Wolsung NPP Unit 1 and calculated the optimal replacement periods analytically. We compared the periods with the replacement periods currently used at Wolsung NPP Unit 1. The periods used at Wolsung is not based on mathematical analysis, but on empirical knowledge. As a consequence, the optimal replacement periods analytically obtained and those used in the field show a little difference. (Author)

  14. Dynamic Frequency Response of Wind Power Plants

    DEFF Research Database (Denmark)

    Altin, Müfit

    according to their grid codes. In these scenarios particularly with high wind power penetration cases, conventional power plants (CPPs) such as old thermal power plants are planned to be replaced with wind power plants (WPPs). Consequently, the power system stability will be affected and the control...... to maintain sustainable and reliable operation of the power system for these targets, transmission system operators (TSOs) have revised the grid code requirements. Also, the TSOs are planning the future development of the power system with various wind penetration scenarios to integrate more wind power...... capability of WPPs would be investigated. The objective of this project is to analyze and identify the power system requirements for the synchronizing power support and inertial response control of WPPs in high wind power penetration scenarios. The dynamic frequency response of WPPs is realized...

  15. Cost-effective instrumentation and control upgrades for commercial nuclear power plants surety principles developed at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Rochau, G.E.; Dalton, L.J.

    1998-01-01

    Many nuclear power plants use instrument and control systems based on analog electronics. The state of the art in process control and instrumentation has advanced to use digital electronics and incorporate advanced technology. This technology includes: distributed microprocessors, fiber optics, intelligent systems (neutral networks), and advanced displays. The technology is used to optimize processes and enhance the man-machine interface while maintaining control and safety of the processes. Nuclear power plant operators have been hesitant to install this technology because of the cost and uncertainty in the regulatory process. This technology can be directly applied in an operating nuclear power plant provided a surety principle-based 'administrator' hardware system is included in parallel with the upgrade. Sandia National Laboratories has developed a rigorous approach to High Consequence System Surety (HCSS). This approach addresses the key issues of safety, security, and control while satisfying requirements for reliability and quality. We believe that HCSS principles can be applied to nuclear power plants in a manner that allows the off-the-shelf use of process control instrumentation while maintaining a high level of safety and enhancing the plant performance. We propose that an HCSS Administrator be constructed as a standardized approach to address regulatory issues. Such an administrator would allow a plant control system to be constructed with commercially available, state-to-the-art equipment and be customized to the needs of the individual plant operator. (author)

  16. Concept and structure of instrumentation and control of the Atucha II nuclear power plant

    International Nuclear Information System (INIS)

    Garzon, D.; Roca, J.L.

    1987-01-01

    The general structure of instrumentation and control of Atucha II nuclear power plant as well as the technologies used, are described: concepts of functional decentralization and physical centralization; concept of functional group and functional complex; description of the technologies used (physical support) in the project of plant instrumentation and control; description of the different automation levels on the basis of concepts of control interface, automatism, regulation, group and subgroup controls; principles of signal conditioning; concept of announcement of alarms and state: supervisory computer, description of HAS (Hard wired Alarm System) and CAS (Computer Alarm System); application of the above mentioned structure to the project of another type of plants. (Author)

  17. CANDU 9 nuclear power plant simulator

    International Nuclear Information System (INIS)

    Kattan, M.; MacBeth, M.J.; Lam, K.

    1995-01-01

    Simulators are playing, an important role in the design and operations of CANDU reactors. They are used to analyze operating procedures under standard and upset conditions. The CANDU 9 nuclear power plant simulator is a low fidelity, near full scope capability simulator. It is designed to play an integral part in the design and verification of the control centre mock-up located in the AECL design office. It will also provide CANDU plant process dynamic data to the plant display system (PDS), distributed control system (DCS) and to the mock-up panel devices. The simulator model employs dynamic mathematical models of the various process and control components that make up a nuclear power plant. It provides the flexibility to add, remove or update user supplied component models. A block oriented process input is provided with the simulator. Individual blocks which represent independent algorithms of the model are linked together to generate the required overall plant model. As a design tool the simulator will be used for control strategy development, human factors studies (information access, readability, graphical display design, operability), analysis of overall plant control performance, tuning estimates for major control loops and commissioning strategy development. As a design evaluation tool, the simulator will be used to perform routine and non-routine procedures, practice 'what if' scenarios for operational strategy development, practice malfunction recovery procedures and verify human factors activities. This paper will describe the CANDU 9 plant simulator and demonstrate its implementation and proposed utility as a tool in the control system and control centre design of a CANDU 9 nuclear power plant. (author). 2 figs

  18. Atucha I nuclear power plant transients analysis

    International Nuclear Information System (INIS)

    Castano, J.; Schivo, M.

    1987-01-01

    A program for the transients simulation thermohydraulic calculation without loss of coolant (KWU-ENACE development) to evaluate Atucha I nuclear power plant behaviour is used. The program includes systems simulation and nuclear power plants control bonds with real parameters. The calculation results show a good agreement with the output 'protocol' of various transients of the nuclear power plant, keeping the error, in general, lesser than ± 10% from the variation of the nuclear power plant's state variables. (Author)

  19. Fault-tolerant design of adaptive digital control systems for power plant components

    International Nuclear Information System (INIS)

    Parlos, A.G.; Menon, S.K.

    1992-01-01

    An adaptive controller has been designed for the water level of a Westinghouse type U-tube steam generator, and its operation has been demonstrated in the entire power range via computer simulations. The proposed design exhibits improved performance, at low operating powers, a,s compared to existing controller types. The continuous-time controller design is performed systematically via the Linear Quadratic Gaussian/Loop Transfer Recovery method, followed by gain adaptation allowing controller operation in the entire power range. Digital implementation of the controller is accomplished by a digital redesign which results in matching the digital and continuous-time system and controller states. It is only at this stage of the control system design process that issues such as microprocessor induced quantization effects are taken into account. The use of computer-aided-design software greatly expedites the design cycle, allowing the designer to maximize the controller stability robustness to uncertainties via numerous iterations. This inherent controller robustness can be exploited to tolerate incipient plant faults, such as deteriorating U-tube heat transfer properties, without significant loss of controller performance

  20. Advanced instrumentation and control techniques for nuclear power plants

    International Nuclear Information System (INIS)

    Hayakawa, Hiroyasu; Makino, Maomi

    1989-01-01

    Toshiba has been promoting the development and improvement of control and instrumentation (C and I) systems employing the latest technologies, to fulfill the requirements of nuclear power plants for increased reliability, the upgrading of functions, improved maintainability, and reasonable cost. Such development has been systematically performed based on a schematic view of integrated digital control and instrumentation systems, actively adopting state-of-the-art techniques such as the latest man-machine interfaces, digital and optical multiplexing techniques, and artificial intelligence. In addition, comprehensive feedback has been obtained from the accumulation of operating experience. This paper describes the purpose, contents and status of applications of representative newly-developed systems. (author)

  1. Inventory Control of Spare Parts for Operating Nuclear Power plants

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong-Hyuck; Jang, Se-Jin; Hwang, Eui-Youp; Yoo, Sung-Soo; Yoo, Keun-Bae; Lee, Sang-Guk; Hong, Sung-Yull [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    2006-07-01

    Inventory control of spare parts plays an increasingly important role in operation management. The trade-off is clear: on one hand a large number of spare parts ties up a large amount of capital, while on the other hand too little inventory may result in extremely costly emergency actions. This is why during the last few decades inventory of spare parts control has been the topics of many publications. Recently management systems such as manufacturing resources planning (MRP) and enterprise resource planning (ERP) have been added. However, most of these contributions have similar theoretical background. This means the concepts and techniques are mainly based on mathematical assumptions and modeling inventory of spare parts situations Nuclear utilities in Korea have several problems to manage the optimum level of spare parts though they used MRP System. Because most of items have long lead time and they are imported from United States, Canada, France and so on. In this paper, we will examine the available inventory optimization models which are applicable to nuclear power plant and then select optimum model and assumptions to make inventory of spare parts strategies. Then we develop the computer program to select and determine optimum level of spare parts which should be automatically controlled by KHNP ERP system. The main contribution of this paper is an inventory of spare parts control model development, which can be applied to nuclear power plants in Korea.

  2. Inventory Control of Spare Parts for Operating Nuclear Power plants

    International Nuclear Information System (INIS)

    Park, Jong-Hyuck; Jang, Se-Jin; Hwang, Eui-Youp; Yoo, Sung-Soo; Yoo, Keun-Bae; Lee, Sang-Guk; Hong, Sung-Yull

    2006-01-01

    Inventory control of spare parts plays an increasingly important role in operation management. The trade-off is clear: on one hand a large number of spare parts ties up a large amount of capital, while on the other hand too little inventory may result in extremely costly emergency actions. This is why during the last few decades inventory of spare parts control has been the topics of many publications. Recently management systems such as manufacturing resources planning (MRP) and enterprise resource planning (ERP) have been added. However, most of these contributions have similar theoretical background. This means the concepts and techniques are mainly based on mathematical assumptions and modeling inventory of spare parts situations Nuclear utilities in Korea have several problems to manage the optimum level of spare parts though they used MRP System. Because most of items have long lead time and they are imported from United States, Canada, France and so on. In this paper, we will examine the available inventory optimization models which are applicable to nuclear power plant and then select optimum model and assumptions to make inventory of spare parts strategies. Then we develop the computer program to select and determine optimum level of spare parts which should be automatically controlled by KHNP ERP system. The main contribution of this paper is an inventory of spare parts control model development, which can be applied to nuclear power plants in Korea

  3. Nuclear power plant control and instrumentation activities in Finland

    International Nuclear Information System (INIS)

    Haapanen, P.; Wahlstroem, B.

    1992-01-01

    Finland has remarkable achievements in nuclear power. The existing four plants have some of the best operating records in the world - high capacity factors, low occupational doses and short refuelling outages. Public opinion was strongly turned against nuclear power after Chernobyl accident, and the previous government decided not to allow for the construction of a fifth nuclear unit during its period of reign. The opposition has however slowly been diminishing. According to the latest polls the opinion is almost balanced. Finnish power companies are going to file an application for a decision-in-principle to build a new plant to the new government appointed in April 1991. A readiness to start new construction project immediately after a positive political decision is made has been maintained during the intermediate period. Continuous research, development, modification and upgrading work provide important components of the good operational history of the Finnish nuclear power plants. Efforts have also been devoted to identifying possible new problems arising from the use of distributed digital C and I technology. The following a short description is summarizing recent activities related to the C and I-systems of the nuclear power plants. (author). 3 tab

  4. Nuclear power and heating plants in the electric power system. Part I

    International Nuclear Information System (INIS)

    Kalincik, L.

    1975-01-01

    Procedures used and results obtained in the following works are described: Incorporation of the nuclear power plants in the power system in the long term perspective; physical limitations on the WWER 440 reactor power changes during fuel campaigns; evaluation of the consumption and start-up characteristics of WWER type nuclear power plants (2x440 MWe); evaluation of refuelling campaigns distribution of nuclear power plant units with regard to comprehensive control properties of nuclear power plants; the possibilities are investigated of the utilization of the WWER type reactor for heat supply in Czechoslovakia. (author)

  5. Operational experience of human-friendly control and instrumentation systems for BWR nuclear power plants

    International Nuclear Information System (INIS)

    Makino, M.; Watanabe, T.; Suto, O.; Asahi, R.

    1987-01-01

    In recent BWR nuclear power plants in Japan, an advanced centralized monitoring and control system PODIA (Plant Operation by Displayed Information and Automation), which incorporates many operator aid functions, has been in operation since 1985. Main functions of the PODIA system as a computerized operator aid system are as follows. CRT displays for plant monitoring. Automatic controls and operation guides for plant operation. Stand-by status monitoring for engineered safety features during normal operation. Surveillance test procedure guides for engineered safety features. Integrated alarm display. The effectiveness of these functions have been proved through test and commercial operation. It has been obtained that operators have preferred PODIA much more than conventional monitoring and control systems

  6. Report on the status of instrumentation and control in Swedish nuclear power plants

    International Nuclear Information System (INIS)

    Blomberg, P.E.

    1990-01-01

    During 1988 the twelve nuclear power units in Sweden generated 69 TWh, which was 45% of the total electric power produced in Sweden. The production capacity of the nuclear power plants increased successively by upgrading the units to higher nominal power levels. The paper presents an overview of activities on control and instrumentation in the following: maintenance, renewal of the I and C systems, training. The operational data of Swedish reactor units are presented. (author). 1 tab

  7. Nuclear power plants

    International Nuclear Information System (INIS)

    1985-01-01

    Data concerning the existing nuclear power plants in the world are presented. The data was retrieved from the SIEN (Nuclear and Energetic Information System) data bank. The information are organized in table forms as follows: nuclear plants, its status and type; installed nuclear power plants by country; nuclear power plants under construction by country; planned nuclear power plants by country; cancelled nuclear power plants by country; shut-down nuclear power plants by country. (E.G.) [pt

  8. Simulation technology for power plants

    International Nuclear Information System (INIS)

    Kuwabara, Kazuo; Yanai, Katsuya.

    1988-01-01

    In the simulation of nuclear power stations, there are the simulation for the training of plant operation, the plant simulation for analyzing the operation of an electric power system, the simulation for controlling a core, the simulation for the safety analysis of reactors, the simulation for the design analysis of plants and so on as the typical ones. The outline and the technical features of these simulations are described. With the increase of capacity and complexity of thermal power plants, recently the automation of operation has advanced rapidly. The chance of starting up and stopping plants by operators themselves is few, and the chance of actually experiencing troubles also is few as the reliability of plants improved. In order to maintain the ability of coping with plant abnormality, an operation supporting system is strongly demanded. Operation training simulators and used widely now, and there are the simulators for analysis, those of replica type, those of versatile compact type and so on. The system configuration, modeling techniques, training function and others of the replica type are explained. In hydroelectric plants, the behavior of water in penstocks, the characteristics of water turbines, the speed control system for water turbines and the characteristics of generators become the main subjects of simulation. These are described. (Kako, I.)

  9. Macrofouling control in nuclear power plants

    International Nuclear Information System (INIS)

    Ekis, E.W. Jr.; Keoplin-Gall, S.M.; McCarthy, R.E.

    1991-01-01

    Macrofouling of cooling-water systems is one of the more significant and costly problems encountered in the nuclear power industry. Both marine and freshwater macroinvertebrates can be responsible for losses in plant availability because of plugged intakes and heat transfer equipment. There is a greater diversity of macrofouling organisms in marine waters than in fresh waters. Marine macrofouling organisms include barnacles, mollusks, bryozoans, and hydroids. Barnacles are crustaceans with feathery appendages, which allow them to attach to a variety of surfaces. They are a major cause of severe macrofouling because they can remain attached even after death. The major freshwater macrofouling organisms include the Asiatic Clam (Corbicula fluminea) and the newest freshwater macrofouler, the Zebra Mussel (Dreissena polymorpha). The introduction of the Zebra Mussel into the Great Lakes has created economic and ecological problems that will not easily be solved. The threat of intercontinental dispersal of the Zebra Mussel in America is serious. Research programs have been initiated around the country to develop control methods for this macrofouling problem. The various control methodologies can be classified in the following categories: biological, chemical, physical, and mechanical. Laboratory experiments were performed to evaluate the efficacy of Actibrom against mature Zebra Mussels

  10. Dynamics and control modeling of the closed-cycle gas turbine (GT-HTGR) power plant

    International Nuclear Information System (INIS)

    Bardia, A.

    1980-02-01

    The simulation if presented for the 800-MW(e) two-loop GT-HTGR plant design with the REALY2 transient analysis computer code, and the modeling of control strategies called for by the inherently unique operational requirements of a multiple loop GT-HTGR is described. Plant control of the GT-HTGR is constrained by the nature of its power conversion loops (PCLs) in which the core cooling flow and the turbine flow are directly related and thus changes in flow affect core cooling as well as turbine power. Additionally, the high thermal inertia of the reactor core precludes rapid changes in the temperature of the turbine inlet flow

  11. Application of control computer system TESLA RPP-16 in the Bohunice nuclear power plant

    International Nuclear Information System (INIS)

    Spetko, V.

    1976-01-01

    The reasons are given for the installation of a computer at the A-1 nuclear power plant in Czechoslovakia with regard to applied research. The configuration, placement, and software of the computer system is described. The programmes are written in the SAM and FORTRAN-IV languages. The knowledge acquired in the course of tests and the prospect of the future installation of computer control equipment in the A-1 nuclear power plant are described. (J.P.)

  12. Limitation for performance of jobs in power unit control room of nuclear power plant

    International Nuclear Information System (INIS)

    Janas, D.

    1988-01-01

    The procedure is described for an analysis of the somatic and mental health condition of operating personnel in the unit control room of a nuclear power plant. It was divided into three stages, viz.: (1) determination of adverse and favorable effects of work; (2) the recording of social, psychological, physiological and biochemical changes in the personnel; (3) determination of possibilities of controlling the limit for performance of a job. The analysis showed that the problem is complex and should permanently remain in the centre of attention. (J.B.). 3 refs

  13. Water chemistry control in thermal and nuclear power plants. 9. Nuclear fuel management

    International Nuclear Information System (INIS)

    2008-01-01

    The chemical management of fuels in nuclear power plants aims at maintenance of the soundness of nuclear fuels and at reduction of the radiation exposure of the working employees. With regard to the former, particular attention should be paid to the fabrication process of fuel assembly, mainly for chemical management for fuel cladding tubes together with fuel pellet-clad chemical interactions, and to the outer tubes in the power plants. With regard to the latter, the fabrication process should be carefully controlled to prevent radioactive impurity increase in primary cooling water systems by maintaining cleaning level and decreasing surface contamination. Reactions of zircalloy with water or hydrogen forming ZrH 2 , sintered density of UO 2 pellet controlling water content, pellet-clad interactions, stress corrosion cracking, crud induced fuel failure, behaviors of such fission products as I, Xe, Kr, and Cs in plants are also important to water and chemical management of nuclear fuels. (S. Ohno)

  14. Summary of developments and future projects in nuclear power plant control and instrumentation in the Netherlands

    International Nuclear Information System (INIS)

    Plas, Y. van der

    1990-01-01

    A general view is given on the developments and trends due to instrumentation and control of the two nuclear power plants in the Netherlands around the year 1989. Several projects, under which for classification of systems and components and for emergency operating procedures, are executed in both plants. An OSART mission initiated a project to make possible the periodic test of safety commands during operation. An other large project concerned the replacement of the process presentation system in Nuclear Power Plant Borssele. In the article several other developments due to the application of I and C in existing plants are outlined generally. Since 1974, no new nuclear power plants have been constructed in the Netherlands. (author). 2 figs

  15. Report from the Netherlands [nuclear power plant control and instrumentation

    International Nuclear Information System (INIS)

    Plas, Y. van der

    2007-01-01

    A view is given on status and developments of NPP instrumentation and control related subjects in The Netherlands. Induced by a first periodic safety review NPP Borssele finalised an extensive upgrading programme in summer 1997. An additional optimisation in smaller parts of the I and C was completed in the 1998 outage. A second periodic safety review of Borssele was finished in 2004, concluding the plant applies to the current rules and regulations and to the state of the art. Nevertheless an improvement plan describing technical design and operational modifications by which nuclear safety has almost been finished now. The job was done in the long outage of autumn 2006 in combination with a turbine and turbine control upgrade. The latter led to a nett electric power output increase of around 7%. Also the HFR research reactor in Petten was subjected to an extensive first periodic safety review, leading to a new license. A major part of the resulting modification plan has been implemented now. Realisation of some safety enhancements in Petten are not easy and remained longer than expected in a stage of innovation. The electricity market was subjected to a liberalisation process. Production and transmission of electric energy has been separated. Electricity is produced now in a rather free market and many power plants have been sold to foreign investors. Only the Borssele power plants remained self- reliant in a period with a threat of closing. NPP Dodewaard is in decommissioning since 1997. It has been partially dismantled and entered a preservation period of 40 years. The radioactive waste storage organisation COVRA is further expanded for low radiating waste and also for storage of rest products from the Urenco enrichment facilities. This article concludes with mentioning some topics for IAEA's attention. (author)

  16. Direct energy balance based active disturbance rejection control for coal-fired power plant.

    Science.gov (United States)

    Sun, Li; Hua, Qingsong; Li, Donghai; Pan, Lei; Xue, Yali; Lee, Kwang Y

    2017-09-01

    The conventional direct energy balance (DEB) based PI control can fulfill the fundamental tracking requirements of the coal-fired power plant. However, it is challenging to deal with the cases when the coal quality variation is present. To this end, this paper introduces the active disturbance rejection control (ADRC) to the DEB structure, where the coal quality variation is deemed as a kind of unknown disturbance that can be estimated and mitigated promptly. Firstly, the nonlinearity of a recent power plant model is analyzed based on the gap metric, which provides guidance on how to set the pressure set-point in line with the power demand. Secondly, the approximate decoupling effect of the DEB structure is analyzed based on the relative gain analysis in frequency domain. Finally, the synthesis of the DEB based ADRC control system is carried out based on multi-objective optimization. The optimized ADRC results show that the integrated absolute error (IAE) indices of the tracking performances in both loops can be simultaneously improved, in comparison with the DEB based PI control and H ∞ control system. The regulation performance in the presence of the coal quality variation is significantly improved under the ADRC control scheme. Moreover, the robustness of the proposed strategy is shown comparable with the H ∞ control. Copyright © 2017. Published by Elsevier Ltd.

  17. LNG plant combined with power plant

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, I; Kikkawa, Y [Chiyoda Chemical Engineering and Construction Co. Ltd., Tokyo (Japan)

    1997-06-01

    The LNG plant consumers a lot of power of natural gas cooling and liquefaction. In some LNG plant location, a rapid growth of electric power demand is expected due to the modernization of area and/or the country. The electric power demand will have a peak in day time and low consumption in night time, while the power demand of the LNG plant is almost constant due to its nature. Combining the LNG plant with power plant will contribute an improvement the thermal efficiency of the power plant by keeping higher average load of the power plant, which will lead to a reduction of electrical power generation cost. The sweet fuel gas to the power plant can be extracted from the LNG plant, which will be favorable from view point of clean air of the area. (Author). 5 figs.

  18. LNG plant combined with power plant

    International Nuclear Information System (INIS)

    Aoki, I.; Kikkawa, Y.

    1997-01-01

    The LNG plant consumers a lot of power of natural gas cooling and liquefaction. In some LNG plant location, a rapid growth of electric power demand is expected due to the modernization of area and/or the country. The electric power demand will have a peak in day time and low consumption in night time, while the power demand of the LNG plant is almost constant due to its nature. Combining the LNG plant with power plant will contribute an improvement the thermal efficiency of the power plant by keeping higher average load of the power plant, which will lead to a reduction of electrical power generation cost. The sweet fuel gas to the power plant can be extracted from the LNG plant, which will be favorable from view point of clean air of the area. (Author). 5 figs

  19. Promises in intelligent plant control systems

    International Nuclear Information System (INIS)

    Otaduy, P.J.

    1987-01-01

    The control system is the brain of a power plant. The traditional goal of control systems has been productivity. However, in nuclear power plants the potential for disaster requires safety to be the dominant concern, and the worldwide political climate demands trustworthiness for nuclear power plants. To keep nuclear generation as a viable option for power in the future, trust is the essential critical goal which encompasses all others. In most of today's nuclear plants the control system is a hybrid of analog, digital, and human components that focuses on productivity and operates under the protective umbrella of an independent engineered safety system. Operation of the plant is complex, and frequent challenges to the safety system occur which impact on their trustworthiness. Advances in nuclear reactor design, computer sciences, and control theory, and in related technological areas such as electronics and communications as well as in data storage, retrieval, display, and analysis have opened a promise for control systems with more acceptable human brain-like capabilities to pursue the required goals. This paper elaborates on the promise of futuristic nuclear power plants with intelligent control systems and addresses design requirements and implementation approaches

  20. Uncertainty identification for robust control using a nuclear power plant model

    International Nuclear Information System (INIS)

    Power, M.; Edwards, R.M.

    1995-01-01

    An on-line technique which identifies the uncertainty between a lower order and a higher order nuclear power plant model is presented. The uncertainty identifier produces a hard upper bound in H ∞ on the additive uncertainty. This additive uncertainty description can be used for the design of H infinity or μ-synthesis controllers

  1. Multi-variable systems in nuclear power plant

    International Nuclear Information System (INIS)

    Collins, G.B.; Howell, J.

    1982-01-01

    Nuclear power plant are complex multi-variable dynamically interactive systems which employ many facets of systems and control theory in their analysis and design. Whole plant mathematical models must be developed and validated and in addition to their obvious role in control system synthesis and design, they are also widely used for operational constraint and plant malfunction analysis. The need for and scope of an integrated power plant control system is discussed and, as a specific example, the design of an integrated feedwater regulator is reviewed. The multi-variable frequency response analysis employed in the design is described in detail. (author)

  2. Power system stabilising features from wind power plants augmented with energy storage

    DEFF Research Database (Denmark)

    Tarnowski, Germán C.; Kjær, Philip C; Lærke, Rasmus

    2014-01-01

    This paper describes a wind power plant augmented with energy storage, configured to provide ancillary services (primary reserve, inertial response, power oscillation damping) for enhancement of power system stability. Energy storage can complement wind power plants thus reducing the need for any...... overload or curtailment to allow active power modulation. A 12MW + 1.6MW augmented plant is used for demonstration of representative performance of the particular ancillary service control algorithms...

  3. PILOT-AND FULL-SCALE DEMONSTRATION OF ADVANCED MERCURY CONTROL TECHNOLOGIES FOR LIGNITE-FIRED POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Steven A. Benson; Charlene R. Crocker; Kevin C. Galbreath; Jay R. Gunderson; Michael J. Holmes; Jason D. Laumb; Jill M. Mackenzie; Michelle R. Olderbak; John H. Pavlish; Li Yan; Ye Zhuang

    2005-02-01

    The overall objective of the project was to develop advanced innovative mercury control technologies to reduce mercury emissions by 50%-90% in flue gases typically found in North Dakota lignite-fired power plants at costs from one-half to three-quarters of current estimated costs. Power plants firing North Dakota lignite produce flue gases that contain >85% elemental mercury, which is difficult to collect. The specific objectives were focused on determining the feasibility of the following technologies: Hg oxidation for increased Hg capture in dry scrubbers, incorporation of additives and technologies that enhance Hg sorbent effectiveness in electrostatic precipitators (ESPs) and baghouses, the use of amended silicates in lignite-derived flue gases for Hg capture, and the use of Hg adsorbents within a baghouse. The approach to developing Hg control technologies for North Dakota lignites involved examining the feasibility of the following technologies: Hg capture upstream of an ESP using sorbent enhancement, Hg oxidation and control using dry scrubbers, enhanced oxidation at a full-scale power plant using tire-derived fuel and oxidizing catalysts, and testing of Hg control technologies in the Advanced Hybrid{trademark} filter.

  4. Organic and weed control in water supply reservoirs of power plants

    International Nuclear Information System (INIS)

    Eswaran, M.S.

    2000-01-01

    Aquatic weeds and algal control in water supply reservoirs used for multipurpose use need specific attention, since they pose a lot of problem for the operating plants by affecting (a) the water quality of boiler and feed waters, (b) the performance of DM plants by reducing the efficiency of Anion beds, (c) the performance of Activated Carbon Filters (ACF) and (d) fouling induced corrosion problems in cooling water systems (Heat Exchangers and Piping materials) causing plant outages leading to production losses. The photosynthetic activity of planktonic plants which are growing abundantly in the open reservoir, sustained by the relatively high inorganic phosphate levels shoots up the pH of the reservoir water to very high levels. High pH, Total Dissolved Solids (TDS) and depleted plants can increase corrosion problems affecting plant performance. This paper focuses on the type of weeds prominent in the water supply reservoir at Kalpakkam and the associated problems in the Nuclear Power Plants (NPPs). (author)

  5. Historical development of automation and control of thermal power plants''; Historische Entwicklung der Leittechnik von Dampfkraftwerken

    Energy Technology Data Exchange (ETDEWEB)

    Welfonder, E. [Stuttgart Univ. (DE). Abt. Stromerzeugung und Automatisierungstechnik (IVD); Sterff, J.

    2006-07-01

    Historically early steam power plants were developed to replace muscular power of men and animals and to gain independence from wind and water power. The further development of power plant technology was driven by the demand to meet the fast growing consumption of electric power with a higher degree of efficiency. In the nineteenth century steam power was the key element for industrialisation. Instrumentation and control equipments were the key factors for the safe operation of power generating processes, becoming more and more complex during the twentieth century. The use of control concepts with increasing performance induced the development of adequate instrumentation and control systems. This paper outlines the history of steam power from the beginning to the seventies and focuses on automation concepts, without further regarding details of apparatus und system technology. (orig.)

  6. The application of plant information system on third Qinshan nuclear power plant

    International Nuclear Information System (INIS)

    Liu Wangtian

    2005-01-01

    Plant overall control has been applied in Qinshan Nuclear Power Plant, which enhances the security of plant operation, but it is not enough to improve the technical administration level. In order to integrate the overall information and to improve the technical administration level more. Third Qinshan Nuclear Power Plant applies the plant information system. This thesis introduces the application of plant information system in Third Qinshan Nuclear Power Plant and the effect to the plant after the system is carried into execution, in addition, it does more analysis and exceptions for application of plant information system in the future. (authors)

  7. Dynamic modeling of IGCC power plants

    International Nuclear Information System (INIS)

    Casella, F.; Colonna, P.

    2012-01-01

    Integrated Gasification Combined Cycle (IGCC) power plants are an effective option to reduce emissions and implement carbon-dioxide sequestration. The combination of a very complex fuel-processing plant and a combined cycle power station leads to challenging problems as far as dynamic operation is concerned. Dynamic performance is extremely relevant because recent developments in the electricity market push toward an ever more flexible and varying operation of power plants. A dynamic model of the entire system and models of its sub-systems are indispensable tools in order to perform computer simulations aimed at process and control design. This paper presents the development of the lumped-parameters dynamic model of an entrained-flow gasifier, with special emphasis on the modeling approach. The model is implemented into software by means of the Modelica language and validated by comparison with one set of data related to the steady operation of the gasifier of the Buggenum power station in the Netherlands. Furthermore, in order to demonstrate the potential of the proposed modeling approach and the use of simulation for control design purposes, a complete model of an exemplary IGCC power plant, including its control system, has been developed, by re-using existing models of combined cycle plant components; the results of a load dispatch ramp simulation are presented and shortly discussed. - Highlights: ► The acausal dynamic model of an entrained gasifier has been developed. ► The model can be used to perform system optimization and control studies. ► The model has been validated using field data. ► Model use is illustrated with an example showing the transient of an IGCC plant.

  8. Consistent integrated automation. Optimized power plant control by means of IEC 61850; Durchgaengig automatisieren. Optimierte Kraftwerksleittechnik durch die Norm IEC 61850

    Energy Technology Data Exchange (ETDEWEB)

    Orth, J. [ABB AG, Mannheim (Germany). Geschaeftsbereich Power Generation

    2007-07-01

    Today's power plants are highly automated. All subsystems of large thermal power plants can be controlled from a central control room. The electrical systems are an important part. In future the new standard IEC 61850 will improve the integration of electrical systems into automation of power plants supporting the reduction of operation and maintenance cost. (orig.)

  9. Gradual instrumentation and control upgrades in U.S. nuclear power plants

    International Nuclear Information System (INIS)

    Welk, S.

    1997-01-01

    Since the late 1980s, US nuclear power plants have been struggling with the technical and licensing realities associated with installing digital protection and control systems into existing facilities. The industry, regulators and equipment vendors are finally reaching agreements regarding acceptable practices and requirements. The present paper explains the philosophy for gradual instrumentation and control replacements being pursued and the technical issues being addressed. It also describes some of the future challenges facing the industry. (author)

  10. Gain-Scheduled Control of a Fossil-Fired Power Plant Boiler

    DEFF Research Database (Denmark)

    Hangstrup, M.; Stoustrup, Jakob; Andersen, Palle

    1999-01-01

    -scheduling which interpolates between unstable controllers is not allowed using traditional schemes. The results show that a considerable optimization of the conventional controlled system is obtainable. Also the gain-scheduled optimizing controller is seen to have a superior performance compared to the fixed LTI......In this paper the objective is to optimize the control of a coal fired 250 MW power plant boiler. The conventional control system is supplemented with a multivariable optimizing controller operating in parallel with the conventional control system. Due to the strong dependence of the gains...... and dynamics upon the load, it is beneficial to consider a gain-scheduling control approach. Optimization using complex mu synthesis results in unstable LTI controllers in some operating points of the boiler. A recent gain-scheduling approach allowing for unstable fixed LTI controllers is applied. Gain...

  11. Reactor power control device

    International Nuclear Information System (INIS)

    Doi, Kazuyori.

    1981-01-01

    Purpose: To automatically control the BWR type reactor power by simple and short-time searching the load pattern nearest to the required pattern at a nuclear power plant side. Constitution: The reactor power is automatically regulated by periodical modifying of coefficients fitting to a reactor core model, according as a required load pattern. When a load requirement pattern is given, a simulator estimates the total power change and the axial power distribution change from a xenon density change output calculated by a xenon dynamic characteristic estimating device, and a load pattern capable of being realized is searched. The amount to be recirculated is controlled on the basis of the load patteren thus searched, and the operation of the BWR type reactor is automatically controlled at the side of the nuclear power plant. (Kamimura, M.)

  12. Bivalve fouling of nuclear power plant service-water systems. Volume 2. Current status of biofouling surveillance and control techniques

    International Nuclear Information System (INIS)

    Daling, P.M.; Johnson, K.I.

    1985-03-01

    This report describes the current status of techniques for detection and control of cooling-water system fouling by bivalve mollusks at nuclear power plants. The effectiveness of these techniques is evaluated on the basis of information gathered from a literature review and in interviews with nuclear power plant personnel. Biofouling detection techniques examined in this report include regular maintenance, in-service inspection, and testing. Generally, these methods have been inadequate for detecting biofouling. Recommendations for improving biofouling detection capabilities are presented. Biofouling prevention (or control) methods that are examined in this report include intake screen systems, thermal treatment, preventive maintenance, chemical treatment alternatives, and antifoulant coatings. Recommendations for improving biofouling control methods at operating nuclear power plants are presented. Additional techniques that could be implemented at future power plants or that require further research are also described

  13. Methodology for allocating nuclear power plant control functions to human or automatic control

    International Nuclear Information System (INIS)

    Pulliam, R.; Price, H.E.; Bongarra, J.; Sawyer, C.R.; Kisner, R.A.

    1983-08-01

    This report describes a general method for allocating control functions to man or machine during nuclear power plant (NPP) design, or for evaluating their allocation in an existing design. The research examined some important characeristics of the systems design process, and the results make it clear that allocation of control functions is an intractable problem, one which increases complexity of systems. The method is reported in terms of specific steps which should be taken during early stages of a new system design, and which will lead to an optimal allocation at the functional design level of detail

  14. The reactor power control system based on digital control in nuclear power plant

    International Nuclear Information System (INIS)

    Liu Chong; Zhou Jianliang; Tan Ping

    2010-01-01

    The PLC (Programmable Logical Controller), digital communication and redundant techniques are applied in the rod control and position indication system(namely the reactor power control system) to perform the power control in the 300 MW reactor automatically and integrally in Qinshan Phase I project. This paper introduces the features, digital design methods of hardware of the instrumentation and control system (I and C) in the reactor power control. It is more convenient for the information exchange by human-machine interface (HMI), operation and maintenance, and the system reliability has been greatly improved after the project being reconstructed. (authors)

  15. Control room modernization at Finnish nuclear power plants - Two projects compared

    International Nuclear Information System (INIS)

    Laarni, J.; Norros, L.

    2006-01-01

    The modernization of automation systems and human-machine interfaces is a current issue at both of the two nuclear power plants (i.e., Fortum's Loviisa plant and TVO's Olkiluoto plant) in Finland. Since the plants have been launched in the 1970's or 1980's, technology is in part old-fashioned and needs to be renewed. At Olkiluoto upgrades of the turbine operator systems have already been conducted; at Loviisa the first phase of the modernization project has just started. Basically, there is a question of the complete digitalization of the information streams at the two plants, and transition from a conventional hard-wired or hybrid control room to a screen-based one. The new human-machine interfaces will comprise new technology, such as PC workstations, soft control, touch screens and large-screen overall displays. The modernization of human-system interfaces is carried out in a stepwise manner at both plants. At both plants the main driver has not been the need to renew the user interfaces of the control room, but the need to upgrade the automation systems. In part because of this, there is a lack of a systematic top-down approach in which different aspects of human factors (HF) engineering are considered in relationship to higher level goals. Our aim here is to give an overview description of the control room modernization projects at the two plants and provide a preliminary evaluation of their progress to date. The projects are also compared, for example, in terms of duration, scope and phasing, and who is responsible for the realization of the project. In addition, we also compare experiences from the Finnish projects to experiences from similar projects abroad. The main part of the data used in this study is based on designers' and project members' interviews. (authors)

  16. Advanced Instrumentation and control techniques for nuclear power plants

    International Nuclear Information System (INIS)

    Mori, Nobuyuki; Makino, Maomi; Naito, Norio

    1992-01-01

    Toshiba has been promoting the development of an advanced instrumentation and control system for nuclear power plants to fulfill the requirements for increased reliability, improved functionality and maintainability, and more competitive economic performance. This system integrates state-of-the-art technologies such as those for the latest man-machine interface, digital processing, optical multiplexing signal transmission, human engineering, and artificial intelligence. Such development has been systematically accomplished based on a schematic view of integrated digital control and instrumentation systems, and the development of whole systems has now been completed. This paper describes the purpose, design philosophy, and contents of newly developed systems, then considers the future trends of advanced man-machine systems. (author)

  17. Recent Operating Experience involving Power Electronics Failure in Korea Nuclear Power Plants

    International Nuclear Information System (INIS)

    Lee, Jaedo

    2015-01-01

    Recently, modern power electronics devices for electrical component were steadily increased in electrical systems which used for main power control and protection. To upgrade the system reliability we recommended the redundancy for electrical equipment trip system. The past several years, Korean Nuclear power plants have changed the electrical control and protection systems (Auto Voltage Regulator, Power Protection Relay) for main generator and main power protection relay systems. In this paper we deal with operating experience involving modern solid state power electronics failure in Korean nuclear power plants. One of the failures we will discuss the degraded phenomenon of power electronics device for CEDMCS(Control Element Drive Mechanism Control System). As the result of the failure we concerned about the modification for trip source of main generator excitation systems and others. We present an interesting issue for modern solid state devices (IGBT, Thyristors). (authors)

  18. Transmission and distribution of information in power plants

    International Nuclear Information System (INIS)

    Pinkernell, H.

    1978-01-01

    Operation of modern large-site power plants is no longer imaginable without facilities for automatic control. Brown-Boveri Company has developed a promising control system for power plants called Procontrol k. An essential piece of the system is DATRAS k, a digital bus-oriented data transport system for transmitting and distributing signals in power plants. DATRAS will save a large amount of cables and reduce the constructional effect. It offers opportunities for diagnosis and service and by means of continuous monitoring of all system components it will essentially improve plant availability. (orig.) [de

  19. Isolation valve control device for nuclear power plant

    International Nuclear Information System (INIS)

    Yukinori, Shigeru.

    1990-01-01

    The present invention provides an isolation valve control device for detecting pipeline rupture accidents in a BWR type nuclear power plant at an early stage to close an isolation valve thereby reducing the amout of radioactivity released to the circumstance. That is, isolation valves are disposed in the pipeline for each of the systems in the nuclear power plant and flow ratemeters are disposed to at least two positions in each of the pipelines. If a meaningful difference is shown for the measured values by these flow ratemeters, the isolation valve is closed. In this way, if pipeline rupture such as leak before break (LBB) is caused to a portion of a system pipelines, the measured value from the flow ratemeters at the downstream of the pipeline is lowered. Accordingly, when a meaningful difference is formed between the value of the flow ratematers at the upstream and the downstream, occurrence of pipe rutpture between both of the flow ratemeters can be detected. As a result, the isolation valves of the system can be closed. According to the present invention, it is possible to detect the pipeline rupture at an early stage irrespective of the kind of the systems, diameter of the pipelines and the magnitude of the ruptured area, and the isolation valve can be closed. (I.S.)

  20. Problems of autonomy in coupled double-circuit systems of modern power plant automatic control systems

    International Nuclear Information System (INIS)

    Bilenko, V.A.; Davydov, N.I.

    1979-01-01

    Studied is the problem of autonomy in multicircuit systems of modern power plant automatic control systems; each part of the system has been carried out using the double-circuit scheme. Presented are the problems of neutralization of coupling between separate channels of power plant automatic control system. The conditions of autonomy in coupled double-circuit systems are obtained. The transfer functions of compensation devices are obtained and the variants of their connecting schemes are presented. Analyzed are possible variants of simplification of the coupled system adjustment process by its reduction to the series of consequent steps without using iteration procedures

  1. Residue-based evaluation of the use of wind power plants with full converter wind turbines for power oscillation damping control

    DEFF Research Database (Denmark)

    Morato, Josep; Knüppel, Thyge; Østergaard, Jacob

    2013-01-01

    As wind power plants (WPPs) gradually replace the power production of the conventional generators, many aspects of the power system may be affected, in which the small signal stability is included. Additional control may be needed for wind turbine generators (WTGs) to participate in the power...... oscillation damping. The feasibility of implementing this control needs to be assessed. This paper studies how the damping contribution of a WPP is affected by different operating conditions and its dependence to selected feedback signals. The WPP model used includes individual WTGs to study how internal...

  2. Survey and analysis on environmental and electromagnetic effect on instrumentation and control equipment of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, In Koo; Lee, Dong Young; Cha, Kyung Ho

    2001-03-01

    As the instrumentation and control (I and C) equipment suppliers tend to provide digital components rather than conventional analog type components for instrumentation and control systems of nuclear power plants(NPPs), it is unavoidable to adopt digital equipment for safety I and C systems as well as non-safety systems. However, the full introduction of digital equipment for I and C systems of nuclear power plants raises several concerns which have not been considered in conventional analog I and C equipment. The two major examples of the issues of digital systems are environmental/electromagnetic compatibility (EMC) and software reliability. This report presents the survey and research results on environmental and electromagnetic effect on I and C equipment of nuclear power plants to give a guideline for aging management and design process. Electromagnetic site surveys were conducted to be used as a part of technical basis to demonstrate that I and C systems are compatible with the ambient electromagnetic noise in Korean nuclear power plants.

  3. Digitized operator evaluation system for main control room of nuclear power plant

    International Nuclear Information System (INIS)

    Chen Yu; Yan Shengyuan; Chen Wenlong

    2014-01-01

    In order to evaluate the human-machine system matching relation of main control room in nuclear power plant accurately and efficiently, the expression and parameters of operator human body model were analyzed, and the evaluation required function of digital operator was determined. Based on the secondary development technology, the digital operator evaluation body model was developed. It could choose generation, gender, operation posture, single/eyes horizon, and left/right hand up to the domain according to the needs of specific evaluation, it was used to evaluate whether display information can be visible and equipment can be touch, and it also has key evaluation functions such as workspace and character visibility at the same time. The examples show that this method can complete the evaluation work of human-machine matching relation for main control room of nuclear power plant accurately, efficiently and quickly, and achieve the most optimal human-machine coordination relationship. (authors)

  4. Method for fault diagnosis of digital control systems in nuclear power plant

    International Nuclear Information System (INIS)

    Suzuki, Satoshi; Nagaoka, Yukio; Ohga, Yukiharu; Ito, Tetsuo

    1990-01-01

    This paper presents a method for localizing faulty components of control systems by replaceable parts such as print boards and cables, in a large scale plant like a nuclear power plant. Most of today's control systems form a distributed configuration including many digital controllers interconnected by data communication networks. Usually, to localize the faulty components in nuclear plant control systems, suspected faulty components are narrowed down by executing manual tests to examine whether the objects are normal or abnormal based on design documents and personnel know-how, besides the uses of self-diagnosis functions built into the control systems. In the present method, procedures of various tests including the know-how and checking of self-diagnosis functions are provided as knowledge of tests. The tests to be executed is determined by considering failure probabilities of objects, and easiness and effectiveness of testing. Then, the suspects are narrowed down sequentially based on the test result. In checking feasibility of this diagnosis method for a simulated control system, intended faults are satisfactorily localized. This method is confirmed to be practicable for diagnosis of large scale digital control systems. (author)

  5. Modernizing and Maintaining Instrumentation and Control Systems in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Naser, Joseph; Torok, Raymond; Shankar, Ramesh

    2003-01-01

    Deregulation of the electric utilities has made a major impact on nuclear power plants. To be competitive, more emphasis is being put on cost-effective production of electricity with a more critical look at whether a system should be modernized due to obsolescence, reliability, or productivity concerns. Instrumentation and control (I and C) systems play an important role in reducing the cost of producing electricity while maintaining or enhancing safety. Systems that are well designed, reliable, enhance productivity, and are cost-effective to operate and maintain can reduce the overall costs. Modern technology with its ability to better provide and use real-time information offers an effective platform for modernizing systems. At the same time, new technology brings new challenges and issues, especially for safety systems in nuclear power plants. To increase competitiveness, it is important to take advantage of the opportunities offered by modern technology and to address the new challenges and issues in a cost-effective manner. The Electric Power Research Institute (EPRI) and its member utilities have been working together with other members of the nuclear industry since 1990 to address I and C modernization and maintenance issues. The EPRI I and C Program has developed a life-cycle management approach for I and C systems that involves the optimization of maintenance, monitoring, and capital resources to sustain safety and performance throughout the plant life. Strategic planning methodologies and implementation guidelines addressing digital I and C issues in nuclear power plants have been developed. Work is ongoing in diverse areas to support the design, implementation, and operation of new digital systems. Technology transfer is an integral part of this I and C program

  6. Cost-effective instrumentation and control upgrades for commercial nuclear power plants using surety principles developed at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Rochau, G.E.; Dalton, L.J.

    1997-01-01

    Many nuclear power plants use instrument and control systems based on analog electronics. The state of the art in process control and instrumentation has advanced to use digital electronics and incorporate advanced technology. This technology includes distributed microprocessors, fiber optics, intelligent systems (neural networks), and advanced displays. The technology is used to optimize processes and enhance the man-machine interface while maintaining control and safety of the processes. Nuclear power plant operators have been hesitant to install this technology because of the cost and uncertainty in the regulatory process. This technology can be directly applied in an operating nuclear power plant provided a surety principle-based open-quotes administratorclose quotes hardware system is included in parallel with the upgrade Sandia National Laboratories has developed a rigorous approach to High Consequence System Surety (HCSS). This approach addresses the key issues of safety, security, and control while satisfying requirements for reliability and quality. HCSS principles can be applied to nuclear power plants in a manner that allows the off-the-shelf use of process control instrumentation while maintaining a high level of safety and enhancing the plant performance. We propose that an HCSS administrator be constructed as a standardized approach to address regulatory issues. Such an administrator would allow a plant control system to be constructed with commercially available, state-of-the-art equipment and be customized to the needs of the individual plant operator

  7. Nuclear electric power plants. [Journal, in Russian]. Atomnye elektricheskie stantsii

    Energy Technology Data Exchange (ETDEWEB)

    Voronin, L M [ed.

    1980-01-01

    Separate articles are concerned with experience gained in the planning, exploitation, and adjustment of nuclear power plants with channel reactors. An examination is made of measures to be taken for assuring equipment reliability for nuclear power plants during the planning stage. Also examined is the experience gained in the operation of the pilot plants of the Kursk and Chernobyl' nuclear power plants, and the Bilibin nuclear thermal electric power plant. Considerable attention is given to the reprocessing and disposal of radioactive waste, the quality control of metal ducts in nuclear power plants, and the development of methods and means of controlling technological processes and equipment. The journal is intended for engineering-technical personnel of power plants, power supply administrations, adjustment, repair, and planning organizations.

  8. The control of operational risk in nuclear power plant operations - Some cross-cultural perspectives

    International Nuclear Information System (INIS)

    Suchard, A.; Rochlin, G.

    1992-01-01

    The operation of nuclear power plants requires the management of a complex technology under exacting performance and safety criteria. Organizations operating nuclear power plants are faced with the challenge of simultaneously meeting technical, organizational, and social demands, striving toward perfection in a situation where learning by trial and error can be too costly. In this process, they interact with regulatory bodies who seek to help minimize operational risk by imposing and upholding safety standards. The character of this interaction differs in various countries, as does the larger cultural setting. The study generally pursued the question of how organizations operating complex and demanding technologies adapt to such requirements and circumstances, and how they can succeed in delivering nearly error-free performance. One aspect of this study includes the comparison of organizational and cultural environments for nuclear power plant operations in the US, France, Germany, Sweden, and Switzerland. The research involved in-depth, continuous observations on location and interviews with plant personnel, especially control operators, at one plant in each country

  9. Future power plant control integrates process and substation automation into one system; Zukunftsorientierte Kraftwerksleittechnik vereint Prozess- und Stationsautomatisierung

    Energy Technology Data Exchange (ETDEWEB)

    Orth, J. [ABB AG, Mannheim (Germany). Div. Energietechnik-Systeme

    2007-07-01

    The new IEC 61850 standard has been established for substation control systems. In future, IEC 61850 may also be widely used for electrical systems in power plants. IEC 61850 simplifies the integration of process and substation control systems in power plants by creating one automated system across manufacturers and thus makes a significant contribution to cost efficiency in operation and maintenance. (orig.)

  10. Consequences of modern information display technologies in power plant control rooms. What has changed in control rooms?

    International Nuclear Information System (INIS)

    Kruip, Jochen

    2007-01-01

    Control rooms of power plants have undergone major developments and changes, some of them considerable, over the past few years. The most visible change has been the display of information on a variety of video screens and projectors. The question examined in the article is whether the visible or invisible changes in power plant control rooms have any influence on the training of operators. In a contribution coming from the Simulator Center, this question naturally focuses on simulator training, which is to be discussed in the light of the basic objectives of this type of training. The main duty of the Essen Simulator Center is to offer first training and in-career training to the licensed operators of nuclear power plants. The experience accumulated in nearly thirty years of simulator training has been laid down in the 'Kompendium der Simulatorschulung' (Handbook of Simulator Training). Simulator training, as referred to above, is a major component of all training programs. The two main objectives of simulator training are 'reliability in operation' and 'experience' in handling the new information systems and digital I and C systems. In the future, simulators can also be used for advanced developments and for advance testing and training. (orig.)

  11. Control of nitrogen oxides at thermal power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, V.R.; Hall, R.E.

    1991-01-01

    Reviews reports presented at the International symposium on reduction of NO{sub x} emissions from stationary pollutant sources, held in San Francisco (USA) in March 1989. Topics concentrated on the latest trends in power engineering in the USA and Europe. Reports were dedicated to test results of pilot plant equipment employing the increasingly popular LNB, OFA, Reburn, SNCR, and SCR technologies. The following conclusions are drawn on the basis of the symposium proceedings: The nitric oxide problem may be considered exaggerated in regard to thermal power plants because of errors made during flue gas composition analysis. The combination of new combustion chambers and staged air input with simultaneous redesigning of equipment is most widely employed in the USA (achieving a 50% NO{sub x} reduction with minimum effect on power plant operation and maintenance costs). Economic sense demands that primary methods of NO{sub x} removal be used prior to SCR implementation. The SCR technology reducing NO{sub x} emission by 60-80% with ammonia to less than 5 ppm is the most popular flue gas denitrification method. 15 refs.

  12. Optimization of the main control room habitability system in nuclear power plant

    International Nuclear Information System (INIS)

    Zheng Guanghui; Zhao Xinyan

    2013-01-01

    This article describes the optimization of main control room habitability system in nuclear power plant. It also describes the design shortage in terms of habitability in the main control room. Through modification and optimization, habitable conditions are met for personnel staying in the emergency area of the main control room for a period of time, with an aim to take accident intervention measures smoothly and reduce the accident loss and radioactive contamination as low as possible. (authors)

  13. Monitoring support system for nuclear power plant

    International Nuclear Information System (INIS)

    Higashikawa, Yuichi; Kubota, Rhuji; Tanaka, Keiji; Takano, Yoshiyuki

    1996-01-01

    The nuclear power plants in Japan reach to 49 plants and supply 41.19 million kW in their installed capacities, which is equal to about 31% of total electric power generation and has occupied an important situation as a stable energy supplying source. As an aim to keeping safe operation and working rate of the power plants, various monitoring support systems using computer technology, optical information technology and robot technology each advanced rapidly in recent year have been developed to apply to the actual plants for a plant state monitoring system of operators in normal operation. Furthermore, introduction of the emergent support system supposed on accidental formation of abnormal state of the power plants is also investigated. In this paper, as a monitoring system in the recent nuclear power plants, design of control panel of recent central control room, introduction to its actual plant and monitoring support system in development were described in viewpoints of improvement of human interface, upgrade of sensor and signal processing techniques, and promotion of information service technique. And, trend of research and development of portable miniature detector and emergent monitoring support system are also introduced in a viewpoint of labor saving and upgrade of the operating field. (G.K.)

  14. Technology for controlling emissions from power plants fired with fossil fuel

    Energy Technology Data Exchange (ETDEWEB)

    Slack, A V

    1981-04-01

    Emission control technologies for fossil-fuel-fired power plants are examined. Acid rain, impaired visibility, and health effects of respirable particulates have combined to raise concerns from the local to the regional level. This report discusses advantages, disadvantages, and costs of technologies associated with emissions of sulfur oxides, nitrogen oxides, and particulate matter. Coal, oil and natural gas fuels are discussed. 7 refs.

  15. Chemistry management system for nuclear power plants

    International Nuclear Information System (INIS)

    Nagasawa, Katsumi; Maeda, Katsuji

    1998-01-01

    Recently, the chemistry management in the nuclear power plants has been changing from the problem solution to the predictive diagnosis and maintenance. It is important to maintain the integrity of plant operation by an adequate chemistry control. For these reasons, many plant operation data and chemistry analysis data should be collected and treated effectively to evaluate chemistry condition of the nuclear power plants. When some indications of chemistry anomalies occur, quick and effective root cause evaluation and countermeasures should be required. The chemistry management system has been developed as to provide sophisticate chemistry management in the nuclear power plants. This paper introduces the concept and functions of the chemistry management system for the nuclear power plants. (author)

  16. Recent developments in the field of nuclear power plant control and instrumentation in Hungary

    International Nuclear Information System (INIS)

    Pellionisz, P.

    1992-01-01

    A considerable percentage (32.8% in 1989) of electric energy in Hungary is produced by nuclear power plant Paks. The paper presents an overview of activities on control and instrumentation in the following areas: Control and instrumentation upgrading; training simulators; diagnostic systems. (author). 1 tab

  17. Advanced control and instrumentation systems in nuclear power plants. Design, verification and validation

    International Nuclear Information System (INIS)

    Haapanen, P.

    1995-01-01

    The Technical Committee Meeting on design, verification and validation of advanced control and instrumentation systems in nuclear power plants was held in Espoo, Finland on 20 - 23 June 1994. The meeting was organized by the International Atomic Energy Agency's (IAEA) International Working Group's (IWG) on Nuclear Power Plant Control and Instrumentation (NPPCI) and on Advanced Technologies for Water Cooled Reactors (ATWR). VTT Automation together with Imatran Voima Oy and Teollisuuden Voima Oy responded about the practical arrangements of the meeting. In total 96 participants from 21 countries and the Agency took part in the meeting and 34 full papers and 8 posters were presented. Following topics were covered in the papers: (1) experience with advanced and digital systems, (2) safety and reliability analysis, (3) advanced digital systems under development and implementation, (4) verification and validation methods and practices, (5) future development trends. (orig.)

  18. Coordinated frequency control from offshore wind power plants connected to multi terminal DC system considering wind speed variation

    DEFF Research Database (Denmark)

    Sakamuri, Jayachandra N.; Altin, Müfit; Hansen, Anca Daniela

    2017-01-01

    A coordinated fast primary frequency control scheme from offshore wind power plants (OWPPs) integrated to a three terminal high voltage DC (HVDC) system is proposed in this study. The impact of wind speed variation on the OWPP active power output and thus on the AC grid frequency and DC grid...... the active power support from OWPP with a ramp rate limiter and (iii) An alternative method for the wind turbine overloading considering rotor speed. The effectiveness of the proposed control scheme is demonstrated on a wind power plant integrated into a three terminal HVDC system developed in DIg......SILIENT PowerFactory. The results show that the proposed coordinated frequency control method performs effectively at different wind speeds and minimises the secondary effects on frequency and DC voltage....

  19. Study on comprehensive evaluation model for nuclear power plant control room layout

    International Nuclear Information System (INIS)

    Zhu Yiming; Liu Yuan; Fan Huixian

    2010-01-01

    A comprehensive evaluation model for layout of the main control room of nuclear power plants was proposed. Firstly the design scope and principle for the layout of the main control room were defined based on the standards, and then the index system for the comprehensive evaluation was established. Finally, comprehensive evaluation was carried out for the layout design by applying the fuzzy comprehensive evaluation method in the index system. (authors)

  20. Digital I and C for nuclear power plant

    International Nuclear Information System (INIS)

    Gemst, P. van

    1993-01-01

    A summary is given of the past experience (process I and C, digital controllers, Power Range Monitoring system) and future plans (integrated plant I and C, control room) of ABB Atom for programmable I and C at nuclear power plants. ABB Atom has designed and supplied an appreciable quantity of software based equipment for nuclear power plants. These have been supplied for both new plants as well as for backfitting. The well proven ABB Master system has been used for the supply of I and C equipment for these projects and will continue to be used in the future. (Z.S.) 1 fig

  1. Administrative controls and quality assurance for the operational phase of nuclear power plants

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    This standard provides requirements and recommendations for an adminstrative controls and quality assurance program to help ensure that activities associated with nuclear power plant operation are carried out without undue risk to the health and safety of the public. This standard applies to all activities affecting those functions important to the safety of nuclear power plant structures, systems, and components. Activities included are: design changes, purchasing, fabricating, handling, shipping, storing, cleaning and decontaminating, erecting, installing, inspecting, testing, operating, maintaining, repairing, refueling, modifying and decomissioning. This standard is not specifically intended for application to test, mobile or experimental reactors, nor reactors not subject to U.S. Nuclear Regulatory Commission licensing

  2. Are atomic power plants saver than nuclear power plants

    International Nuclear Information System (INIS)

    Roeglin, H.C.

    1977-01-01

    It is rather impossible to establish nuclear power plants against the resistance of the population. To prevail over this resistance, a clarification of the citizens-initiatives motives which led to it will be necessary. This is to say: It is quite impossible for our population to understand what really heappens in nuclear power plants. They cannot identify themselves with nuclear power plants and thus feel very uncomfortable. As the total population feels the same way it is prepared for solidarity with the citizens-initiatives even if they believe in the necessity of nuclear power plants. Only an information-policy making transparent the social-psychological reasons of the population for being against nuclear power plants could be able to prevail over the resistance. More information about the technical procedures is not sufficient at all. (orig.) [de

  3. Methodology for Assessment of Inertial Response from Wind Power Plants

    DEFF Research Database (Denmark)

    Altin, Müfit; Teodorescu, Remus; Bak-Jensen, Birgitte

    2012-01-01

    High wind power penetration levels result in additional requirements from wind power in order to improve frequency stability. Replacement of conventional power plants with wind power plants reduces the power system inertia due to the wind turbine technology. Consequently, the rate of change...... of frequency and the maximum frequency deviation increase after a disturbance such as generation loss, load increase, etc. Having no inherent inertial response, wind power plants need additional control concepts in order to provide an additional active power following a disturbance. Several control concepts...... have been implemented in the literature, but the assessment of these control concepts with respect to power system requirements has not been specified. In this paper, a methodology to assess the inertial response from wind power plants is proposed. Accordingly, the proposed methodology is applied...

  4. VISIT - Virtual visits to nuclear power plants

    International Nuclear Information System (INIS)

    Mollaret, Jean-Christophe

    2001-01-01

    For more than twenty years, EDFs Communication Division has conducted a policy of opening its generation sites to the general public. Around 300,000 people visit a nuclear power plant every year. However, for the security of persons and the safety of facilities, those parts of the plant situated in controlled areas are not accessible to visitors. For the sake of transparency, EDF has taken an interest in the technologies offered by virtual reality to show the general public what a nuclear power plant is really like, so as to initiate dialogue on nuclear energy, particularly with young people. Visit has been developed with virtual reality technologies. It serves to show the invisible (voyage to the core of fission), the inaccessible and to immerse the visitors in environments which are usually closed to the general public (discovery of the controlled area of a nuclear power plant). Visit is used in Public Information Centres which receive visitors to EDF power plants and during international exhibitions and conferences. Visit allows a virtual tour of the following controlled areas: locker room hot area/cold area, a necessary passage before entering the controlled areas; reactor building; fuel building; waste auxiliary building (liquid, solid and gaseous effluents). It also includes a tour of the rooms or equipment usually accessible to the general public: control room, turbine hall, transformer, air cooling tower

  5. Aging Management Guideline for commercial nuclear power plants: Motor control centers

    International Nuclear Information System (INIS)

    Toman, G.; Gazdzinski, R.; O'Hearn, E.

    1994-02-01

    This Aging Management Guideline (AMG) provides recommended methods for effective detection and mitigation of age-related degradation mechanisms in Boiling Water Reactor (BWR) and Pressurized Water Reactor (PWR) commercial nuclear power plant motor control centers important to license renewal. The intent of this AMG is to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR Part 54. This AMG is presented in a manner that allows personnel responsible for performance analysis and maintenance to compare their plant-specific aging mechanisms (expected or already experienced) and aging management program activities to the more generic results and recommendations presented herein

  6. Virtual Power Plant and Microgrids controller for Energy Management based on optimization techniques

    Directory of Open Access Journals (Sweden)

    Maher G. M. Abdolrasol

    2017-06-01

    Full Text Available This paper discuss virtual power plant (VPP and Microgrid controller for energy management system (EMS based on optimization techniques by using two optimization techniques namely Backtracking search algorithm (BSA and particle swarm optimization algorithm (PSO. The research proposes use of multi Microgrid in the distribution networks to aggregate the power form distribution generation and form it into single Microgrid and let these Microgrid deal directly with the central organizer called virtual power plant. VPP duties are price forecast, demand forecast, weather forecast, production forecast, shedding loads, make intelligent decision and for aggregate & optimizes the data. This huge system has been tested and simulated by using Matlab simulink. These paper shows optimizations of two methods were really significant in the results. But BSA is better than PSO to search for better parameters which could make more power saving as in the results and the discussion.

  7. Training for power plant personnel on hydrogen production and control

    International Nuclear Information System (INIS)

    Dickelman, G.J.

    1982-01-01

    It is the purpose of this paper to address the issue of training for power plant personnel in the area of hydrogen control. The authors experience in the training business indicates that most of the operations and engineering personnel have a very limited awareness of this phenomenon. Topics discussed in this paper include: 1) theory of hydrogen combustion kinetics; 2) incidents involving hydrogen combustion events; 3) normal operations interfacing with hydrogen; 4) accident conditions; and 5) mitigation schemes

  8. Work Analysis of the nuclear power plant control room operators (II): The classes of situation

    International Nuclear Information System (INIS)

    Alengry, P.

    1989-03-01

    This report presents a work analysis of nuclear power plant control room operators focused on the classes of situation they can meet during their job. Each class of situation is first described in terms of the process variables states. We then describe the goals of the operators and the variables they process in each class of situation. We report some of the most representative difficulties encountered by the operators in each class of situation. Finally, we conclude on different topics: the nature of the mental representations, the temporal dimension, the monitoring activity, and the role of the context in the work of controlling a nuclear power plant [fr

  9. Power quality control of an autonomous wind-diesel power system based on hybrid intelligent controller.

    Science.gov (United States)

    Ko, Hee-Sang; Lee, Kwang Y; Kang, Min-Jae; Kim, Ho-Chan

    2008-12-01

    Wind power generation is gaining popularity as the power industry in the world is moving toward more liberalized trade of energy along with public concerns of more environmentally friendly mode of electricity generation. The weakness of wind power generation is its dependence on nature-the power output varies in quite a wide range due to the change of wind speed, which is difficult to model and predict. The excess fluctuation of power output and voltages can influence negatively the quality of electricity in the distribution system connected to the wind power generation plant. In this paper, the authors propose an intelligent adaptive system to control the output of a wind power generation plant to maintain the quality of electricity in the distribution system. The target wind generator is a cost-effective induction generator, while the plant is equipped with a small capacity energy storage based on conventional batteries, heater load for co-generation and braking, and a voltage smoothing device such as a static Var compensator (SVC). Fuzzy logic controller provides a flexible controller covering a wide range of energy/voltage compensation. A neural network inverse model is designed to provide compensating control amount for a system. The system can be optimized to cope with the fluctuating market-based electricity price conditions to lower the cost of electricity consumption or to maximize the power sales opportunities from the wind generation plant.

  10. Possible Power Estimation of Down-Regulated Offshore Wind Power Plants

    DEFF Research Database (Denmark)

    Gögmen, Tuhfe

    The penetration of offshore wind power is continuously increasing in the Northern European grids. To assure safety in the operation of the power system, wind power plants are required to provide ancillary services, including reserve power attained through down-regulating the wind farm from its...... power plant. The developed procedure, the PossPOW algorithm, can also be used in the wind farm control as it yields a real-time wind farm power curve. The modern wind turbines have a possible power signal at the turbine level and the current state of the art is to aggregate those signals to achieve...... the wind farm scale production capacity. However the summation of these individual signals is simply an over-estimation for the wind power plant, due to reduced wake losses during curtailment. The determination of the possible power with the PossPOW algorithm works as follows: firstly the second...

  11. Automation system for operation of nuclear power plant

    International Nuclear Information System (INIS)

    Kinoshita, Mitsuo; Fukuzaki, Koji; Kato, Kanji

    1991-01-01

    The automation system comprises a general monitor control device incorporating a plurality of emergency operation plannings concerning an automatic processing, and judging whether the operation is to be conducted or not depending on the plannings based on the data planed by a plant, a control device for controlling the plant in accordance with the planning when monitor control device judges that the operation should be done due to the emergency operation plannings and an operation planning device aiding the formation of the operation plannings. When the state of the power plant exceeds a normal control region, the reactor power is lowered automatically by so much as a predetermined value or to a predetermined level, to automatically return the plant state to the normal control region. In this way, the plant operation efficiency can be improved. Further, after automatic operation, since operation plannings for recovering original operation plannings are prepared efficiently and recovered operation plannings are started in a short period of time, the operators' burden can be mitigated and power saving can be attained. (N.H.)

  12. Safe operation of power plants. Pt. 1

    International Nuclear Information System (INIS)

    Freymeyer, P.

    1977-01-01

    Electrotechniques were given a dominating role in the construction of nuclear power plants. The operation of power plants - particularly nuclear power plants - is impossible without the use of electrotechnical and control means. Despite of all reserve in the development and despite of the conservative attitude it is necessary to use the newest results of development and to incite the development ot new electronic systems for the solution of these tasks. (orig.) [de

  13. Radiation exposure control of nuclear power plant personnel in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Mehl, J.

    1980-01-01

    The analysis of exposure records of all persons engaged in radiation work at nuclear power plants of the Federal Republic of Germany has shown that annual collective doses increase rapidly with time. The annual gross electrical energy generated from nuclear power also increases rapidly with time, corresponding to about 11% of the total gross electrical energy produced in 1977/78. Therefore, it is obvious that there is an increase of both the risk and the benefit from nuclear power production. Whether in the course of time the situation develops more towards the risk or the benefit side is learned from the history of the annual ratio of the collective dose per gross electrical energy generated. This ratio shows a significant decrease since 1972. The decrease is due to the experience gained from operation of the first-generation plants, which led to several administrative measures aimed at an improved control of the collective doses of power plant personnel in the Federal Republic of Germany. The administrative measures include, among others, the introduction of the following requirements: (a) Everyone who applies for a nuclear power plant construction licence has to provide evidence that, in the design of the plant, full use is made of the experience gained from plants in operation with respect to reduction of collective doses of the power plant personnel. (b) Everyone who engages his employees on radiation work within operations for which an operation licence is required, but which is held by others, requires a special 'contractor licence'. (c) Every person engaged in radiation work on the basis of a contractor licence must carry a special exposure record book which is registered by the competent national authority. (author)

  14. Dynamic Modeling and Plantwide Control of a Hybrid Power and Chemical Plant: An Integrated Gasification Combined Cycle Coupled with a Methanol Plant

    Science.gov (United States)

    Robinson, Patrick J.

    Gasification has been used in industry on a relatively limited scale for many years, but it is emerging as the premier unit operation in the energy and chemical industries. The switch from expensive and insecure petroleum to solid hydrocarbon sources (coal and biomass) is occurring due to the vast amount of domestic solid resources, national security and global warming issues. Gasification (or partial oxidation) is a vital component of "clean coal" technology. Sulfur and nitrogen emissions can be reduced, overall energy efficiency is increased and carbon dioxide recovery and sequestration are facilitated. Gasification units in an electric power generation plant produce a fuel gas for driving combustion turbines. Gasification units in a chemical plant generate synthesis gas, which can be used to produce a wide spectrum of chemical products. Future plants are predicted to be hybrid power/chemical plants with gasification as the key unit operation. The coupling of an Integrated Gasification Combined Cycle (IGCC) with a methanol plant can handle swings in power demand by diverting hydrogen gas from a combustion turbine and synthesis gas from the gasifier to a methanol plant for the production of an easily-stored, hydrogen-consuming liquid product. An additional control degree of freedom is provided with this hybrid plant, fundamentally improving the controllability of the process. The idea is to base-load the gasifier and use the more responsive gas-phase units to handle disturbances. During the summer days, power demand can fluctuate up to 50% over a 12-hour period. The winter provides a different problem where spikes of power demand can go up 15% within the hour. The following dissertation develops a hybrid IGCC / methanol plant model, validates the steady-state results with a National Energy Technical Laboratory study, and tests a proposed control structure to handle these significant disturbances. All modeling was performed in the widely used chemical process

  15. Employing modern power plant simulators in nuclear power plants

    International Nuclear Information System (INIS)

    Niedorf, V.; Storm, J.

    2005-01-01

    At the present state of the art, modern power plant simulators are characterized by new qualitative features, thus enabling operators to use them far beyond the traditional field of training. In its first part, this contribution presents an overview of the requirements to be met by simulators for multivalent uses. In part two, a survey of the uses and perspectives of simulation technology in power plants is presented on the basis of experience accumulated by Rheinmetall Defence Electronics (RDE).Modern simulators are shown to have applications by far exceeding traditional training areas. Modular client - sever systems on standard computers allow inexpensive uses to be designed at several levels, thus minimizing maintenance cost. Complex development and running time environments, like the SEMS developed by RDE, have made power plant simulators the workhorses of power plant engineers in all power plant areas. (orig.)

  16. Fossil fuel power plant combustion control: Research in Italy

    International Nuclear Information System (INIS)

    Pasini, S.; Trebbi, G.

    1991-01-01

    Electric power demand forecasts for Italy to the year 2000 indicate an increase of about 50% which, due to the current moratorium on nuclear energy, should be met entirely by fossil fuel power plants. Now, there is growing public concern about possible negative health impacts due to the air pollution produced through the combustion of fossil fuels. In response to these concerns, ENEL (Italian National Electricity Board) is investing heavily in air pollution abatement technology R ampersand D. The first phase involves the investigation of pollution mechanisms in order to develop suitable mathematical models and diagnostic techniques. The validity of the models is being tested through through measurements made by sophisticated instrumentation placed directly inside the combustion chambers of steam generator systems. These are allowing engineers to develop improved combustion control methods designed to reduce air pollution at source

  17. HTGR gas turbine power plant preliminary design

    International Nuclear Information System (INIS)

    Koutz, S.L.; Krase, J.M.; Meyer, L.

    1973-01-01

    The preliminary reference design of the HTGR gas turbine power plant is presented. Economic and practical problems and incentives related to the development and introduction of this type of power plant are evaluated. The plant features and major components are described, and a discussion of its performance, economics, development, safety, control, and maintenance is presented. 4 references

  18. Modeling of integrated environmental control systems for coal-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, E.S.; Salmento, J.S.; Frey, H.C.; Abu-Baker, A.; Berkenpas, M.

    1991-05-01

    The Integrated Environmental Control Model (IECM) was designed to permit the systematic evaluation of environmental control options for pulverized coal-fired (PC) power plants. Of special interest was the ability to compare the performance and cost of advanced pollution control systems to conventional'' technologies for the control of particulate, SO{sub 2} and NO{sub x}. Of importance also was the ability to consider pre-combustion, combustion and post-combustion control methods employed alone or in combination to meet tough air pollution emission standards. Finally, the ability to conduct probabilistic analyses is a unique capability of the IECM. Key results are characterized as distribution functions rather than as single deterministic values. (VC)

  19. Slovak Electric, plc, Mochovce Nuclear Power Plant

    International Nuclear Information System (INIS)

    1999-01-01

    In this popular scientific brochure a brief description of construction scheme of Bohunice Nuclear Power Plant is presented. Electricity generation in a nuclear power plant is described. Instrumentation and control system as well as nuclear safety principles applied on the NPP are presented

  20. Parameter identification of a BWR nuclear power plant model for use in optimal control

    International Nuclear Information System (INIS)

    Volf, K.

    1976-02-01

    The problem being considered is the modeling of a nuclear power plant for the development of an optimal control system of the plant. Current system identification concepts, combining input/output information with a-priori structural information are employed. Two of the known parameter identification methods i.e., a least squares method and a maximum likelihood technique, are studied as ways of parameter identification from measurement data. A low order state variable stochastic model of a BWR nuclear power plant is presented as an application of this approach. The model consists of a deterministic and a noise part. The deterministic part is formed by simplified modeling of the major plant dynamic phenomena. The moise part models the effects of input random disturbances to the deterministic part and additive measurement noise. Most of the model parameters are assumed to be initially unknown. They are identified using measurement data records. A detailed high order digital computer simulation is used to simulate plant dynamic behaviour since it is not conceivable for experimentation of this kind to be performed on the real nuclear power plant. The identification task consists in adapting the performance of the simple model to the data acquired from this plant simulation ensuring the applicability of the techniques to measurement data acquired directly from the plant. (orig.) [de

  1. Abstract flexibility description for virtual power plant scheduling

    OpenAIRE

    Fröhling, Judith

    2017-01-01

    In the ongoing paradigm shift of the energy market from big power plants to more and more small and decentralized power plants, virtual power plants (VPPs) play an important role. VPPs bundle the capacities of the small and decentralized resources (DER). Planing of VPP operation, that is also called scheduling, relies on the flexibilities of controllable DER in the VPP, e.g., combined heat and power plants (CHPs), heat pumps and batteries. The aim of this thesis is the development of an abstr...

  2. Simulations research of the global predictive control with self-adaptive in the gas turbine of the nuclear power plant

    International Nuclear Information System (INIS)

    Su Jie; Xia Guoqing; Zhang Wei

    2007-01-01

    For further improving the dynamic control capabilities of the gas turbine of the nuclear power plant, this paper puts forward to apply the algorithm of global predictive control with self-adaptive in the rotate speed control of the gas turbine, including control structure and the design of controller in the base of expounding the math model of the gas turbine of the nuclear power plant. the simulation results show that the respond of the change of the gas turbine speed under the control algorithm of global predictive control with self-adaptive is ten second faster than that under the PID control algorithm, and the output value of the gas turbine speed under the PID control algorithm is 1%-2% higher than that under the control slgorithm of global predictive control with self-adaptive. It shows that the algorithm of global predictive control with self-adaptive can better control the output of the speed of the gas turbine of the nuclear power plant and get the better control effect. (authors)

  3. Power system integration of VSC-HVDC connected offshore wind power plants

    DEFF Research Database (Denmark)

    Zeni, Lorenzo; Kjær, Philip Carne

    This report presents an overview of challenges and solutions for the integration into the power system of offshore wind power plants (WPPs) connected to onshore grids through a voltage-source converter based high voltage direct current (VSC-HVDC) transmission system. Aspects that are touched upon...... of the network in the vicinity of the HVDC station and (iii) limiting characteristics of WPPs such as inherent control and communication delays, presence of mechanical resonances at the same frequency as POD and active power ramp-rate limitations. Clustering of wind power plants The proof of concept...... introduction to justify the study, describe the state-of-art and formulate the project’s objectives, the report is essentially divided into three parts, as follows. Control principles of offshore AC networks The control of offshore AC networks relies purely on power electronics, especially if Type 4 wind...

  4. Report on nuclear power plant instrumentation and control in Germany

    International Nuclear Information System (INIS)

    Bastl, W.

    1992-01-01

    The paper describes the status of the NPP control and instrumentation in Germany. The general technology underlying most aspects of NPP C and I in Germany has not altered since the last progress report although there has been many improvements in detail. Since the beginning of 1990 the GRS carried out the safety investigations of NPPs in East Germany. The USSR as the vendor of the plants and France were also involved in the project. The following fields are briefly described: Status of nuclear power in Germany; training simulators; backfitting of computers and information systems; operator support/new control rooms. (author). 6 refs, 1 tab

  5. Babcock & Wilcox technologies for power plant stack emissions control

    Energy Technology Data Exchange (ETDEWEB)

    Polster, M.; Nolan, P.S.; Batyko, R.J. [Babcock & Wilcox, Barberton, OH (United States)

    1994-12-31

    The current status of sulfur dioxide control in power plants is reviewed with particular emphasis on proven, commercial technologies. This paper begins with a detailed review of Babcock & Wilcox commercial wet flue gas desulfurization (FGD) systems. This is followed by a brief discussion of B&W dry FGD technologies, as well as recent full-scale and pilot-scale demonstration projects which focus on lower capital cost alternatives to conventional FGD systems. A comparison of the economics of several of these processes is also presented. Finally, technology selections resulting from recent acid rain legislation in various countries are reviewed.

  6. Optimal replacement and inspection periods of safety and control boards in Wolsung nuclear power plant unit 1

    International Nuclear Information System (INIS)

    Mok, Jin Il

    1993-02-01

    In nuclear power plants, the safety and control systems are important for operating and maintaining safety of nuclear power plants. Due to the failure of the instrument and control devices of nuclear power plants caused by aging, nuclear power plants occasionally trip. Since the start of first commercial operation of Kori nuclear power plant (NPP) unit 1, the trips caused by instrument and control systems account for 28% of total trips of NPPs in Korea. Even a single trip of a nuclear power plant causes an extravagant economical loss and deteriorates public acceptance of nuclear power plants. Therefore, the replacement of the instrument and control devices with proper consideration of the aging effect is necessary in order to prevent the inadvertent trip. In this work we investigated the optimal replacement periods of the digital control computer's (DCC) and the programmable digital comparator's (PDC) electronic circuit boards of Wolsung nuclear power plant Unit 1. We first derived mathematical models which calculate optimal replacement periods for electronic circuit boards of digital control computer (DCC) and for those of the programmable digital comparator (PDC) in Wolsung NPP unit 1. And we analytically obtained the optimal replacement periods of electronic circuit boards by using these models. We compared these periods with the replacement periods currently used at Wolsung NPP Unit. The periods used at Wolsung is not based on mathematical analysis, but on empirical knowledge. As a consequence, the optimal replacement periods analytically obtained for the electronic circuit boards of DCC and those used in the field shown small difference : the optimal replacement periods analytically obtained for the electronic circuit boards of PDC are shorter than those used in the field in general. The engineered safeguards of Wolsung nuclear power plant unit 1 contains redundant systems of 2-out-of-3 logic which are not operating under normal conditions but they are called

  7. Experience in connecting the power generating units of thermal power plants to automatic secondary frequency regulation within the united power system of Russia

    International Nuclear Information System (INIS)

    Zhukov, A. V.; Komarov, A. N.; Safronov, A. N.; Barsukov, I. V.

    2009-01-01

    The principles of central control of the power generating units of thermal power plants by automatic secondary frequency and active power overcurrent regulation systems, and the algorithms for interactions between automatic power control systems for the power production units in thermal power plants and centralized systems for automatic frequency and power regulation, are discussed. The order of switching the power generating units of thermal power plants over to control by a centralized system for automatic frequency and power regulation and by the Central Coordinating System for automatic frequency and power regulation is presented. The results of full-scale system tests of the control of power generating units of the Kirishskaya, Stavropol, and Perm GRES (State Regional Electric Power Plants) by the Central Coordinating System for automatic frequency and power regulation at the United Power System of Russia on September 23-25, 2008, are reported.

  8. Tricon hardware controller implementation of CANDU nuclear power plant shutdown system

    International Nuclear Information System (INIS)

    Zahedi, P.

    2007-01-01

    This paper introduces the implementation of logic functions associated with the shutdown systems of CANDU nuclear power plants. The experimental aspects of this work include development of control program embedded in shutdown systems of CANDU based NPPs. A physical test environment is designed to simulate the measurements of in-core flux detector (ICFD) and ion chamber (I/C) signals. The programmable logic used in this experimentation provides Triple Modular Redundant (TMR) architecture as well as a voting mechanism used upon execution of control program on each independent channel. (author)

  9. Optimization criteria for control and instrumentation systems in nuclear power plants

    International Nuclear Information System (INIS)

    Gonzalez, A.J.

    1978-01-01

    The system of dose limitation recently recommended by the International Commission on Radiation Protection includes, as a base for deciding what is reasonably achievable in dose reduction, the optimization of radioprotection systems. This paper, after compiling relevant points in the new system, discusses the application of optimization to control and instrumentation of radioprotection systems in nuclear power plants. Furthermore, an extension of the optimization criterion to nuclear safety systems is also presented and its application to control and instrumentation is discussed; systems including majority logics are particularly scrutinized. Finally, eventual regulatory implications are described. (author)

  10. Improvement on reliability of control system in power plant

    International Nuclear Information System (INIS)

    Taguchi, S.; Mizumoto, T.; Hirose, Y.; Kashiwai, J.; Takami, I.; Shono, M.; Roji, Y.; Kizaki, S.

    1985-01-01

    Studies made of Japanese PWR operating experiences have revealed that failures in the control system are the primary causes of unscheduled shutdowns. An attempt has, therefore, been made to improve the reliability of the control system in order to raise the plant reliability. The following are the procedures applied to solve the issue; study of operating experiences, fault tree analysis and failure mode and effects analysis. Improvement measures are developed for the control system whose failure threatens to cause the plant trip during the plant life. These systems are the main feedwater control system, rod control system, pressurizer control system and main steam control system in the primary control system. As a result, the plant unavailability is expected to be reduced significantly by applying the improvements. The improvements are applied to the plants under construction and the operating plants in co-operation with utilities and vendors. (author)

  11. Configuration management of plant modifications for nuclear power plants

    International Nuclear Information System (INIS)

    Ritsch, W.J.

    1987-01-01

    Due to the increasing complexity of nuclear power plant operation, regulatory pressure, and the large numbers of people required to operate and support the stations, the control of plant modifications at these plants needs to be expanded and improved. The aerospace and defense industries, as well as the owners or operators of large energy projects have established configuration management programs (CMPs) to control plant design changes. These programs are composed of well-defined functions for identifying, evaluating, recording, tracking, issuing, and documenting the established baseline conditions, as well as required changes to these baseline conditions. The purpose of this paper is to describe a recommended CMP for plant modifications consisting of a computerized data base installed on the utility's computer to provide a central storage of plant design and operations data necessary to control the following activities as they are affected by plant design changes: training; record management; operations; maintenance; health physics; planning/scheduling; procurement/inventory control; outage management (including modifications); and emergency response

  12. Los Alamos Nuclear Plant Analyzer: an interactive power-plant simulation program

    International Nuclear Information System (INIS)

    Steinke, R.; Booker, C.; Giguere, P.; Liles, D.R.; Mahaffy, J.H.; Turner, M.R.

    1984-01-01

    The Nuclear Plant Analyzer (NPA) is a computer-software interface for executing the TRAC or RELAP5 power-plant systems codes. The NPA is designed to use advanced supercomputers, long-distance data communications, and a remote workstation terminal with interactive computer graphics to analyze power-plant thermal-hydraulic behavior. The NPA interface simplifies the running of these codes through automated procedures and dialog interaction. User understanding of simulated-plant behavior is enhanced through graphics displays of calculational results. These results are displayed concurrently with the calculation. The user has the capability to override the plant's modeled control system with hardware-adjustment commands. This gives the NPA the utility of a simulator, and at the same time, the accuracy of an advanced, best-estimate, power-plant systems code for plant operation and safety analysis

  13. Nuclear Plant Analyzer: an interactive TRAC/RELAP Power-Plant Simulation Program

    International Nuclear Information System (INIS)

    Steinke, R.; Booker, C.; Giguere, P.; Liles, D.; Mahaffy, J.; Turner, M.; Wiley, R.

    1984-01-01

    The Nuclear Plant Analyzer (NPA) is a computer-software interface for executing the TRAC or RELAP5 power-plant systems codes. The NPA is designed to use advanced supercomputers, long-distance data communications, and a remote workstation terminal with interactive computer graphics to analyze power-plant thermal-hydraulic behavior. The NPA interface simplifies the running of these codes through automated procedures and dialog interaction. User understanding of simulated-plant behavior is enhanced through graphics displays of calculational results. These results are displayed concurrently with the calculation. The user has the capability to override the plant's modeled control system with hardware adjustment commands. This gives the NPA the utility of a simulator, and at the same time, the accuracy of an advanced, best-estimate, power-plant systems code for plant operation and safety analysis

  14. Fossil power plant automation

    International Nuclear Information System (INIS)

    Divakaruni, S.M.; Touchton, G.

    1991-01-01

    This paper elaborates on issues facing the utilities industry and seeks to address how new computer-based control and automation technologies resulting from recent microprocessor evolution, can improve fossil plant operations and maintenance. This in turn can assist utilities to emerge stronger from the challenges ahead. Many presentations at the first ISA/EPRI co-sponsored conference are targeted towards improving the use of computer and control systems in the fossil and nuclear power plants and we believe this to be the right forum to share our ideas

  15. Negative sequence current control in wind power plants with VSC-HVDC connection

    DEFF Research Database (Denmark)

    Chaudhary, Sanjay; Teodorescu, Remus; Rodriguez, Pedro

    2012-01-01

    Large offshore wind power plants may have multi-MW wind turbine generators (WTG) equipped with full-scale converters (FSC) and voltage source converter (VSC) based high voltaage direct-current (HVDC) transmission for grid connection. The power electronic converters in theWTG-FSC and the VSC......-HVDC allow fast current control in the offshore grid. This paper presents a method of controlling the negative sequence current injection into the offshore grid from the VSC-HVDC as well as WTG-FSCs. This would minimize the power oscillations and hence reduce the dc voltage overshoots in the VSC-HVDC system...... as well as in the WTG-FSCs; especially when the offshore grid is unbalanced due to asymmetric faults. The formulation for negative sequence current injection is mathematically derived and then implemented in electromagnetic transients (EMT) simulation model. The simulated results show that the negative...

  16. Kansas Power Plants

    Data.gov (United States)

    Kansas Data Access and Support Center — The Kansas Power Plants database depicts, as point features, the locations of the various types of power plant locations in Kansas. The locations of the power plants...

  17. Plant computer system in nuclear power station

    International Nuclear Information System (INIS)

    Kato, Shinji; Fukuchi, Hiroshi

    1991-01-01

    In nuclear power stations, centrally concentrated monitoring system has been adopted, and in central control rooms, large quantity of information and operational equipments concentrate, therefore, those become the important place of communication between plants and operators. Further recently, due to the increase of the unit capacity, the strengthening of safety, the problems of man-machine interface and so on, it has become important to concentrate information, to automate machinery and equipment and to simplify them for improving the operational environment, reliability and so on. On the relation of nuclear power stations and computer system, to which attention has been paid recently as the man-machine interface, the example in Tsuruga Power Station, Japan Atomic Power Co. is shown. No.2 plant in the Tsuruga Power Station is a PWR plant with 1160 MWe output, which is a home built standardized plant, accordingly the computer system adopted here is explained. The fundamental concept of the central control board, the process computer system, the design policy, basic system configuration, reliability and maintenance, CRT display, and the computer system for No.1 BWR 357 MW plant are reported. (K.I.)

  18. Control strategies of atmospheric mercury emissions from coal-fired power plants in China.

    Science.gov (United States)

    Tian, Hezhong; Wang, Yan; Cheng, Ke; Qu, Yiping; Hao, Jiming; Xue, Zhigang; Chai, Fahe

    2012-05-01

    Atmospheric mercury (Hg) emission from coal is one of the primary sources of anthropogenic discharge and pollution. China is one of the few countries in the world whose coal consumption constitutes about 70% of total primary energy, and over half of coals are burned directly for electricity generation. Atmospheric emissions of Hg and its speciation from coal-fired power plants are of great concern owing to their negative impacts on regional human health and ecosystem risks, as well as long-distance transport. In this paper, recent trends of atmospheric Hg emissions and its species split from coal-fired power plants in China during the period of 2000-2007 are evaluated, by integrating each plant's coal consumption and emission factors, which are classified by different subcategories of boilers, particulate matter (PM) and sulfur dioxide (SO2) control devices. Our results show that the total Hg emissions from coal-fired power plants have begun to decrease from the peak value of 139.19 t in 2005 to 134.55 t in 2007, though coal consumption growing steadily from 1213.8 to 1532.4 Mt, which can be mainly attributed to the co-benefit Hg reduction by electrostatic precipitators/fabric filters (ESPs/FFs) and wet flue gas desulfurization (WFGD), especially the sharp growth in installation of WFGD both in the new and existing power plants since 2005. In the coming 12th five-year-plan, more and more plants will be mandated to install De-NO(x) (nitrogen oxides) systems (mainly selective catalytic reduction [SCR] and selective noncatalytic reduction [SNCR]) for minimizing NO(x) emission, thus the specific Hg emission rate per ton of coal will decline further owing to the much higher co-benefit removal efficiency by the combination of SCR + ESPs/FFs + WFGD systems. Consequently, SCR + ESPs/FFs + WFGD configuration will be the main path to abate Hg discharge from coal-fired power plants in China in the near future. However advanced specific Hg removal technologies are necessary

  19. Training simulator for nuclear power plant reactor control model and method

    International Nuclear Information System (INIS)

    Czerbuejewski, F.R.

    1975-01-01

    A description is given of a method and system for the real-time dynamic simulation of a nuclear power plant for training purposes, wherein a control console has a plurality of manual and automatic remote control devices for operating simulated control rods and has indicating devices for monitoring the physical operation of a simulated reactor. Digital computer means are connected to the control console to calculate data values for operating the monitoring devices in accordance with the control devices. The simulation of the reactor control rod mechanism is disclosed whereby the digital computer means operates the rod position monitoring devices in a real-time that is a fraction of the computer time steps and simulates the quick response of a control rod remote control lever together with the delayed response upon a change of direction

  20. Simulation of a PWR power plant for process control and diagnosis

    International Nuclear Information System (INIS)

    Ravnsbjerg Nielsen, F.

    1991-12-01

    A computer model of a simplified pressurized nuclear power plant is developed with aim at studies concerning process control, diagnosis and decision making. The model includes the traditional PWR plant components, primary circuit with reactor, pressurizer and steam generator, steam circuit with steam line, turbine and condenser, interconnected with pumps, valves and controllers. The model can be used for calculation of transients for both normal operation and incidents such as turbine trip, loss of feedwater, run down of pumps or various valve failures. The computer model is not directed to any specific existing plant. For convenience and alleviation in implementation the physical description of many components are simplified to an extent where the qualitative behavior of the system is not violated. For computer memory economy a variety of thermodynamical functions for water and steam have been approximated with analytical expressions based on table values. The model is implemented in the C language and has been run on both the IBM PC and the SUN workstation. (au) 8 tabs., 25 ills., 10 refs

  1. Quality assurance and control in constructing the Dukovany nuclear power plant

    International Nuclear Information System (INIS)

    Lujka, T.

    1986-01-01

    A quality control and assurance department was established on the Dukovany nuclear power plant site as a unit independent of the production divisions of the plant. Its responsibility consists in testing activities including the development of testing techniques and cooperation in the compilation of specifications and binding technological regulations. The department consists of five sections. The concrete laying laboratory has a staff of 7 and concentrates on testing the quality of concrete mixes and their components in the central concrete production plant. The materials testing centre with a staff of 5 provides testing of steel and special structures and oversees the laying of heavy and very heavy concretes. A separate unit for the testing of surface finish of building structures is staffed with 4 people. The section of technological checks of building and assembly work with a staff of 4 is responsible for the quality of work in the main production unit zone but also of the other buildings on the site. Two people staff the unit for checking and filing the quality control documents for selected components. (Z.M.)

  2. Computerized information system of the Mochovce nuclear power plant

    International Nuclear Information System (INIS)

    Holik, V.

    1986-01-01

    The computer-based information system for the Mochovce nuclear power plant has a hierarchic structure which incorporates SM 1804 microcomputers and SM 1420 minicomputers. With regard to operation it is divided into two levels: the information system at the level of power plant units and the information system t the level of the whole power plant. The information system of a unit provides the collection of information on the technological equipment of each unit for the operative control of the unit and documentation on unit operation. Each unit has its own independent computer information system. The actual nucleus of each unit information system consists of two computer complexes based on SM 1420 twin computers, mutually substitutional. The power plant level information system provides the processing and output of information for personnel in the central control room of the power plant and for other managerial staff. It uses preprocessed information from the unit information systems and direct information from non-unit installations and from dosimetric control rooms of the power plant units. This information system is also based on a computer complex with two SM 1420 computers. (Z.M.)

  3. Development of robots for nuclear power plants

    International Nuclear Information System (INIS)

    Sasaki, Masayoshi

    1982-01-01

    In nuclear power plants, the reduction of maintenance time, the reduction of radiation exposure and man-power saving are increasingly required. To achieve these purposes, various remote-controlled devices, such as robots in a broad sense, have been earnestly developed. Of these, three machines for replacing, four devices for inspection, two systems for cleaning, and two equipment for processing are tabulated in this paper. Typical eight machines or equipment are briefly introduced, mainly describing their features or characteristics. Those are: a remotely handling machine for control rod drive mechanism, an automatic refueling machine, an automatic ultrasonic flaw detection system replacing for a manually operated testing system for the welded parts of primary cooling system, an automatic cask washing machine for decontamination, a floor-type remote inspection vehicle for various devices operating inside power plants, a monorail-type remote inspection vehicle for inspection in spaces where floor space is short, and a remote-controlled automatic pipe welding machine for welding operations in a radioactive environment such as replacing the piping of primary cooling system. Most of these devices serves for radiation exposure reduction at the same time. Existing nuclear power plant design assumes direct manual maintenance, which limits the introduction of robots. Future nuclear power plants should be designed on the assumption of automatic remote-controlled tools and devices being used in maintenance work. (Wakatsuki, Y.)

  4. Modernization of the feedwater heaters control level of the Almaraz I Nuclear Power Plant by OVATION system

    International Nuclear Information System (INIS)

    Madronal Rodriguez, E.; Cabrero Munoz, J. E.

    2010-01-01

    As a result of the process of technological renovation of the heaters system and the power increase project, Almaraz Nuclear Power Plant has made several design changes in the feedwater heaters system. Within these changes, the old heaters control loops are replaced because the new power will increase the heaters drainage caudal. This modernization is carried out using the OVATION control system.

  5. Information technology impact on nuclear power plant documentation. Report prepared within the framework of the International Working Group on Nuclear Power Plant Control and Instrumentation

    International Nuclear Information System (INIS)

    2002-04-01

    As the majority of the nuclear power plants (NPPs) in the world were designed and constructed about twenty to forty years ago, these older power plants may have shortcomings in documentation on construction, commissioning, operations, maintenance, or decommissioning. Therefore, facility documentation does not always reflect actual plant status after years of plant operation, modification, and maintenance. To deal with these shortcomings, computer and information technologies that provide sophisticated and modern design tools as well as information processing and storage facilities can offer dramatic innovation from paper-centric documentation towards data-centric documentation. This report addresses all aspects of documentation associated with various life-cycle phases of NPPs and the information technology (IT) that are relevant to the documentation process. It also provides a guide for planning, designing, and executing an IT documentation project. Examples are given to demonstrate successful implementations at plants. Finally, it discusses the issues related to the application of the IT in NPPs and the trends for applications of the IT at NPPs as well as the technology itself. It is recognized that this can also improve configuration management. reliability of data, quality of personnel work, and ultimately plant performance reliability and safety. The aspects of using the IT for NPP documentation are closely related to configuration management at NPPs. The report consists of nine sections, a reference section, and five additional appendices. The development of this report which was initiated by the IAEA International Working Group on Nuclear Power Plant Control and Instrumentation (IWG-NPPCI). It is the result of a series of consultants meetings held by the IAEA in Vienna (October 1999, November 2000). It was prepared with the participation and contributions of experts from Canada, Germany, Norway, Sweden, and the United States of America. In addition, a

  6. Information technology impact on nuclear power plant documentation. Report prepared within the framework of the International Working Group on Nuclear Power Plant Control and Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-04-01

    As the majority of the nuclear power plants (NPPs) in the world were designed and constructed about twenty to forty years ago, these older power plants may have shortcomings in documentation on construction, commissioning, operations, maintenance, or decommissioning. Therefore, facility documentation does not always reflect actual plant status after years of plant operation, modification, and maintenance. To deal with these shortcomings, computer and information technologies that provide sophisticated and modern design tools as well as information processing and storage facilities can offer dramatic innovation from paper-centric documentation towards data-centric documentation. This report addresses all aspects of documentation associated with various life-cycle phases of NPPs and the information technology (IT) that are relevant to the documentation process. It also provides a guide for planning, designing, and executing an IT documentation project. Examples are given to demonstrate successful implementations at plants. Finally, it discusses the issues related to the application of the IT in NPPs and the trends for applications of the IT at NPPs as well as the technology itself. It is recognized that this can also improve configuration management. reliability of data, quality of personnel work, and ultimately plant performance reliability and safety. The aspects of using the IT for NPP documentation are closely related to configuration management at NPPs. The report consists of nine sections, a reference section, and five additional appendices. The development of this report which was initiated by the IAEA International Working Group on Nuclear Power Plant Control and Instrumentation (IWG-NPPCI). It is the result of a series of consultants meetings held by the IAEA in Vienna (October 1999, November 2000). It was prepared with the participation and contributions of experts from Canada, Germany, Norway, Sweden, and the United States of America. In addition, a

  7. IAEA technical meeting on integrating analog and digital instrumentation and control systems in hybrid main control rooms at nuclear power plants. Book of abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    The majority of instrumentation and control (I and C) equipment in nuclear power plants in the world was designed 30 to over 45 years ago with analog and relay components, and in some cases rudimentary digital technology. Today, most of these plants continue to operate with a substantial amount of this original I and C equipment that is or soon will be obsolete. Much of this equipment is approaching or exceeding its life expectancy, resulting in increasing maintenance efforts to sustain acceptable system performance. Decreasing availability of replacement parts, and the accelerating deterioration of the infrastructure of manufacturers that support analog technology, accentuate the obsolescence problems and cause operation and maintenance (O and M) cost increases. Refurbishments and license extensions mean that a plant must be supported longer, which will increase the obsolescence issues. In addition, the older technology limits the possibilities for adding new beneficial capabilities to the plant systems and interfaces. New technology provides the opportunity to improve plant performance, human system interface (HSI) functionality, and reliability; to enhance operator performance and reliability, and to address difficulties in finding young professionals with education and experience with older analog technology. Finally, there may be changes in regulatory requirements that could necessitate modernization activities. Modernization of I and C systems and components, using digital equipment to address these obsolescence issues and the need to improve plant performance (e.g., increase power output capacity, reliability, and availability) while maintaining high levels of safety, is a current major issue for nuclear power plants throughout the world. A number of nuclear power utilities are committing to major modernization programs. The need for this modernization will accelerate as plants age, obsolescence issues increase, plants receive license renewals, and features

  8. Performance-based evaluation of graphic displays for nuclear-power-plant control rooms

    International Nuclear Information System (INIS)

    Petersen, R.J.; Banks, W.W.; Gertman, D.I.

    1982-01-01

    This paper reports several methodologies for evaluating the perceptual and perceptual/decision making aspects of displays used in the control rooms of nuclear power plants. This NRC funded study focuses upon the Safety Parameter Display System (SPDS) and relates the utility of the display to objective performance and preference measures obtained in experimental conditions. The first condition is a traditional laboratory setting where classical experimental methodologies can be employed. The second condition is an interactive control room simulation where the operator's performance is assessed while he/she operates the simulator. The third condition is a rating scale designed to assess operator preferences and opinions regarding a variety of display formats. The goal of this study is the development of a cost-efficient display evaluation methodology which correlates highly with the operator's ability to control a plant

  9. Biofouling of power-plant service systems by Corbicula

    International Nuclear Information System (INIS)

    Page, T.L.; Neitzel, D.A.; Simmons, M.A.; Hayes, P.F.

    1983-08-01

    Corbicula sp. foul the service water systems at nuclear power plants because the environment within these systems is compatible with the ecological requirements of the species. To reduce Corbicula fouling, components of service water systems and operating procedures that enhance the potential for fouling need to be identified. Factors important in mediating biofouling of service water systems appear to be screening potential, minimum and maximum velocities and the operational procedures employed during power plant biofoulant control and downtime. These conclusions are based on the results of a categorical model we used to correlate information from power plants with that on Corbicula life history. Power plant parameters in the model include temperature, dissolved oxygen concentration, screen and strainer size, maximum and minimum velocities, and elements of the biofouling control procedures. Parameters for Corbicula include tolerances to temperature, dissolved oxygen, biofouling control chemicals, velocity preferences, and optimal temperatures for each life stage and behavior. 13 references, 5 figures

  10. Operator support system for nuclear power plants

    International Nuclear Information System (INIS)

    Mori, Nobuyuki; Tai, Ichiro; Sudo, Osamu; Naito, Norio.

    1987-01-01

    The nuclear power generation in Japan maintains the high capacity factor, and its proportion taken in the total generated electric power exceeded 1/4, thus it has become the indispensable energy source. Recently moreover, the nuclear power plants which are harmonious with operators and easy to operate are demanded. For realizing this, the technical development such as the heightening of operation watching performance, the adoption of automation, and the improvement of various man-machine systems for reducing the burden of operators has been advanced by utilizing electronic techniques. In this paper, the trend of the man-machine systems in nuclear power plants, the positioning of operation support system, the support in the aspects of information, action and knowledge, the example of a new central control board, the operation support system using a computer, an operation support expert system and the problems hereafter are described. As the development of the man-machine system in nuclear power plants, the upgrading from a present new central control board system PODIA through A-PODIA, in which the operational function to deal with various phenomena arising in plants and safety control function are added, to 1-PODIA, in which knowledge engineering technology is adopted, is expected. (Kako, I.)

  11. Methods for the computerized control of nuclear power plants for improved safety, quality, and productivity

    International Nuclear Information System (INIS)

    Heising, C.D.

    1988-12-01

    The purpose of this research project was to translate the Total Quality Control (TQC) management system to the operation of nuclear power plants. This work began on September 30, 1986 and continued through December 30, 1988 at an original funding level of $251,000. Four graduate research assistants were employed during the two year project period, with all four completing master's level degree theses or projects. In addition, several papers were presented at technical conferences regarding this work. Currently, one paper has been accepted for publication in the journal of Operations Research, and two more papers are currently being written for submission in the near future. The project also received favorable publicity at the university and elsewhere. The major findings of this work was that, indeed, the Japanese management system of Total Quality Control (TQC) may be applied to nuclear power plant operation to achieve enhanced safety and increased efficiency. Two utilities are already heavily engaged in implementing TQC at their nuclear power plants: the Kansai Electric Company of Osaka, Japan and the Florida Power and Light Company of Miami, Florida. We have documented in detail the progress of these utilities in their attempts to implement TQC, as well as highlighting ''success stories'' of TQC implementation in other industries

  12. Potential human factors deficiencies in the design of local control stations and operator interfaces in nuclear power plants

    International Nuclear Information System (INIS)

    Hartley, C.S.; Levy, I.S.; Fecht, B.A.

    1984-04-01

    The Pacific Northwest Laboratory has completed a project to identify human factors deficiencies in safety-significant control stations outside the control room of a nuclear power plant and to determine whether NUREG-0700, Guidelines for Control Room Design Reviews, would be sufficient for reviewing those local control stations (LCSs). The project accomplished this task by first, reviewing existing data pertaining to human factors deficiencies in LCSs involved in significant safety actions; second, surveying LCSs environments and design features at several operating nuclear power plants; and third, assessing the results of that survey relative to the contents of NUREG-0700

  13. Comparative studies between nuclear power plants and hydroelectric power plants

    International Nuclear Information System (INIS)

    Menegassi, J.

    1984-01-01

    This paper shows the quantitative evolution of the power plants in the main countries of the world. The Brazilian situation is analysed, with emphasys in the technical and economical aspects related to power production by hidroelectric or nuclear power plants. The conclusion is that the electricity produced by hidro power plants becomes not economics when is intended to be produced at large distances from the demand centers. (Author) [pt

  14. Power plant process computer

    International Nuclear Information System (INIS)

    Koch, R.

    1982-01-01

    The concept of instrumentation and control in nuclear power plants incorporates the use of process computers for tasks which are on-line in respect to real-time requirements but not closed-loop in respect to closed-loop control. The general scope of tasks is: - alarm annunciation on CRT's - data logging - data recording for post trip reviews and plant behaviour analysis - nuclear data computation - graphic displays. Process computers are used additionally for dedicated tasks such as the aeroball measuring system, the turbine stress evaluator. Further applications are personal dose supervision and access monitoring. (orig.)

  15. Operational, control and protective system transient analyses of the closed-cycle GT-HTGR power plant

    International Nuclear Information System (INIS)

    Openshaw, F.L.; Chan, T.W.

    1980-07-01

    This paper presents a description of the analyses of the control/protective system preliminary designs for the gas turbine high-temperature gas-cooled reactor (GT-HTGR) power plant. The control system is designed to regulate reactor power, control electric load and turbine speed, control the temperature of the helium delivered to the turbines, and control thermal transients experienced by the system components. In addition, it provides the required control programming for startup, shutdown, load ramp, and other expected operations. The control system also handles conditions imposed on the system during upset and emergency conditions such as loop trip, reactor trip, or electrical load rejection

  16. Modifications to nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    This Safety Guide was prepared under the IAEA's programme for safety standards for nuclear power plants. It supplements Section 7 of the Safety Requirements publication on Safety of Nuclear Power Plants: Operation, which establishes the safety requirements for the modification of nuclear power plants. Reasons for carrying out modifications to nuclear power plants may include: (1) maintaining or strengthening existing safety provisions and thus maintaining consistency with or improving on the current design. (2) recovering from plant faults. (3) improving the thermal performance or increasing the power rating of the plant. (4) increasing the maintainability of the plant, reducing the radiation exposure of personnel or reducing the costs of plant maintenance. And (5) extending the design life of the plant. Most modifications, made on the basis of operating experience, are intended to improve on the design or to improve operational performance and flexibility. Some are rendered necessary by new regulatory requirements, ageing of the plant or obsolescence of equipment. However, the benefits of regularly updating the plant design can be jeopardized if modifications are not kept under rigorous control throughout the lifetime of the plant. The need to reduce costs and improve efficiency, in combination with changes to the structure of the electricity generation sector of the economy in many countries, has led many companies to make changes in the structure of the operating organization for nuclear power plants. Whatever the reason for such organizational changes, consideration should be given to the effects of those changes with the aim of ensuring that they would have no impacts that would compromise the safety of the plant. The objective of this Safety Guide is to provide guidance and recommendations on controlling activities relating to modifications at nuclear power plants in order to reduce risk and to ensure that the configuration of the plant is at all times under

  17. Modifications to nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2007-01-01

    This Safety Guide was prepared under the IAEA's programme for safety standards for nuclear power plants. It supplements Section 7 of the Safety Requirements publication on Safety of Nuclear Power Plants: Operation, which establishes the safety requirements for the modification of nuclear power plants. Reasons for carrying out modifications to nuclear power plants may include: (1) maintaining or strengthening existing safety provisions and thus maintaining consistency with or improving on the current design. (2) recovering from plant faults. (3) improving the thermal performance or increasing the power rating of the plant. (4) increasing the maintainability of the plant, reducing the radiation exposure of personnel or reducing the costs of plant maintenance. And (5) extending the design life of the plant. Most modifications, made on the basis of operating experience, are intended to improve on the design or to improve operational performance and flexibility. Some are rendered necessary by new regulatory requirements, ageing of the plant or obsolescence of equipment. However, the benefits of regularly updating the plant design can be jeopardized if modifications are not kept under rigorous control throughout the lifetime of the plant. The need to reduce costs and improve efficiency, in combination with changes to the structure of the electricity generation sector of the economy in many countries, has led many companies to make changes in the structure of the operating organization for nuclear power plants. Whatever the reason for such organizational changes, consideration should be given to the effects of those changes with the aim of ensuring that they would have no impacts that would compromise the safety of the plant. The objective of this Safety Guide is to provide guidance and recommendations on controlling activities relating to modifications at nuclear power plants in order to reduce risk and to ensure that the configuration of the plant is at all times under

  18. Activities at the electric power research institute to support the modernization of instrumentation and control systems in nuclear power plants in the United States of America

    International Nuclear Information System (INIS)

    Naser, J.

    1998-01-01

    Most nuclear power plants in the United States are operating with a vast majority of their original analog instrumentation and control (I and C) equipment. Many of the I and C systems in the plants need to be modernized in a reliable and cost-effective manner to replace obsolete equipment, to reduce operating and maintenance (O and M) costs, to improve plant performance, and to maintain safety. The major drivers for the replacement of the safety, control, and information systems in nuclear power plants are the obsolescence of the existing hardware and the need for more cost-effective power production. Competition between power producers is dictating the need for more cost-effective power production. The increasing O and M costs to maintain systems experiencing obsolescence problems is counter to the needs for more cost-effective power production and improved competitiveness. Modern technology, especially digital systems, offers improved functionality, performance, and reliability; solutions to obsolescence of equipment; reduction in O and M costs, and the potential to enhance safety. Digital I and C systems with their inherent advantages will be implemented only if reliable and cost-effective implementation and licensing acceptance is achieved and if the modernized system supports reduced power production costs. Increasing competition will continue to be a major factor in the operation of nuclear power plants. I will continue to dictate the need for improved productivity and cost-effectiveness. EPRI and its members utilities are working together on an industry-wide Instrumentation and Control Program to address I and C issues and to develop cost-effective solutions. (author)

  19. Scada Systems – Control, Supervision and Data Acquisition for the Power Plants Settled on a Stream (Part 2

    Directory of Open Access Journals (Sweden)

    Cosmin Ursoniu

    2015-09-01

    Full Text Available Scada (supervisory control and data acquisition is a complex system that supervises and controls an industrial process and performs several functions. A human machine interface will also be presented and how the process in a power plant is controlled and supervised through it by the operator. The main screen will be described (which is a global view of the hydro unit and what the operator can see and what he can press to control the power plants process also a few more screens will be presented for auxiliary installations and it will be described what the operator can see and what he can do to control the installation.

  20. Scada Systems – Control, Supervision and Data Acquisition for the Power Plants Settled on a Stream (Part 1

    Directory of Open Access Journals (Sweden)

    Cosmin Ursoniu

    2015-09-01

    Full Text Available Scada (supervisory control and data acquisition is a complex system that supervises and control an industrial process and performs several functions. A human machine interface will also be presented and how the process in a power plant is controlled and supervised through it by the operator. The main screen will be described (which is a global view of the hydro unit and what the operator can see and what he can press to control the power plants process also a few more screens will be presented for auxiliary installations and it will be described what the operator can see and what he can do to control the installation.

  1. Nuclear power plant in whose backyard

    International Nuclear Information System (INIS)

    Cooper, W.

    1981-01-01

    The authority to regulate the nuclear power industry resides largely with the federal government. But states have the responsibility to protect the health and safety of their citizens and to regulate land use within their borders. The siting of nuclear power plants can engender conflicts between these jurisdictions that are usually resolved in the courts. Most state challenges to federal control of nuclear power have been struck down or severely weakened by the preemption doctrine contained in the supremacy clause of Article VI of the Constitution, which provides for the preemption of federal law over state law in the event of direct conflict. The existing avenues for state control over siting and operation of nuclear power plants can be greatly strengthened while avoiding direct conflict with federal jurisdiction

  2. Sea water pumping-up power plant system combined with nuclear power plant

    International Nuclear Information System (INIS)

    Ichiki, Tadaharu; Tanaka, Masayuki.

    1991-01-01

    It is difficult to find a site suitable to construction for a sea water pumping-up power plant at a place relatively near the electric power consumption area. Then, a nuclear power plant is set at the sea bottom or the land portion of a sea shore near the power consumption area. A cavity is excavated underground or at the bottom of the sea in the vicinity of the power plant to form a lower pond, and the bottom of the sea, as an upper pond and the lower pond are connected by a water pressure pipe and a water discharge pipe. A pump water turbine is disposed therebetween, to which electric power generator is connected. In addition, an ordinary or emergency cooling facility in the nuclear power plant is constituted such that sea water in the cavity is supplied by a sea water pump. Accordingly, the sea water pumping-up plant system in combination with the nuclear power plant is constituted with no injuring from salts to animals and plants on land in the suburbs of a large city. The cost for facilities for supplying power from a remote power plant to large city areas and power loss are decreased and stable electric power can be supplied. (N.H.)

  3. A performance improvement program applied to the Perry Nuclear Power Plant instrumentation and control section

    International Nuclear Information System (INIS)

    Anderson, G.R.

    1987-01-01

    The management at Cleveland Electric Illuminating Company sought to avoid problems typically encountered in the start-up of new nuclear generating units. In response to early indications that such problems may have been developing at their Perry Nuclear Power Plant, several performance improvement initiatives were undertaken. One of these initiatives was a performance improvement evaluation (PIE) for the instrumentation and control (IandC) section at Perry. The IandC PIE, which used a method designed to be adaptable to other disciplines as well, had important results that are applicable to other nuclear power plants

  4. Survey of networked control systems and their potential applications in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kadri, A. [Univ. of Western Ontario, Dept. of Electrical and Computer Engineering, London, Ontario (Canada)]. E-mail: akadri@uwo.ca

    2006-07-01

    This paper provides an overview of networked control systems (NCSs) and their industrial applications. Most widely used NCSs based on fieldbus technologies; namely, ControlNet, Profibus (DP/PA), and Foundation Fieldbus have been discussed. The objectives and benefits of using such networks are presented and factors influencing their design and implementation are examined. Then, some of the special requirements in controlling nuclear power plant (NPP) have been considered. The potential of applying networked control systems in such installations has been discussed. Finally, the concept of wireless networked control systems is also described. (author)

  5. MODELING OF OPERATION MODES OF SHIP POWER PLANT OF COMBINED PROPULSION COMPLEX WITH CONTROL SYSTEM BASED ON ELECTRONIC CONTROLLERS

    Directory of Open Access Journals (Sweden)

    E. A. Yushkov

    2016-12-01

    Full Text Available Purpose. Designing of diagrams to optimize mathematic model of the ship power plant (SPP combined propulsion complexes (CPC for decreasing operational loss and increasing fuel efficiency with simultaneous load limiting on medium revolutions diesel generator (MRDG by criterion reducing of wear and increasing operation time between repairs. Methodology. After analyzing of ship power plant modes of CPC proposed diagrams to optimize mathematic model of the above mentioned complex. The model based on using of electronic controllers in automatic regulation and control systems for diesel and thruster which allow to actualize more complicated control algorithm with viewpoint of increasing working efficiency of ship power plant at normal and emergency modes. Results. Determined suitability of comparative computer modeling in MatLab Simulink for building of imitation model objects based on it block diagrams and mathematic descriptions. Actualized diagrams to optimize mathematic model of the ship’s power plant (SPP combined propulsion complexes (CPC with Azipod system in MatLab Simulink software package Ships_CPC for decreasing operational loss and increasing fuel efficiency with simultaneous load limiting on medium revolutions diesel generator (MRDG by criterion reducing of wear and increasing operation time between repairs. The function blocks of proposed complex are the main structural units which allow to investigate it normal and emergency modes. Originality. This model represents a set of functional blocks of the components SPP CPC, built on the principle of «input-output». For example, the function boxes outputs of PID-regulators of MRDG depends from set excitation voltage and rotating frequency that in turn depends from power-station load and respond that is a ship moving or dynamically positioning, and come on input (inputs of thruster rotating frequency PID-regulator models. Practical value. The results of researches planned to use in

  6. A Pilot Study Investigating the Effects of Advanced Nuclear Power Plant Control Room Technologies: Methods and Qualitative Results

    Energy Technology Data Exchange (ETDEWEB)

    BLanc, Katya Le [Idaho National Lab. (INL), Idaho Falls, ID (United States); Powers, David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Joe, Jeffrey [Idaho National Lab. (INL), Idaho Falls, ID (United States); Spielman, Zachary [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rice, Brandon [Idaho National Lab. (INL), Idaho Falls, ID (United States); Fitzgerald, Kirk [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-08-01

    Control room modernization is an important part of life extension for the existing light water reactor fleet. None of the 99 currently operating commercial nuclear power plants in the U.S. has completed a full-scale control room modernization to date. Nuclear power plant main control rooms for the existing commercial reactor fleet remain significantly analog, with only limited digital modernizations. Upgrades in the U.S. do not achieve the full potential of newer technologies that might otherwise enhance plant and operator performance. The goal of the control room upgrade benefits research is to identify previously overlooked benefits of modernization, identify candidate technologies that may facilitate such benefits, and demonstrate these technologies through human factors research. This report describes a pilot study to test upgrades to the Human Systems Simulation Laboratory at INL.

  7. Nuclear power plant V-2

    International Nuclear Information System (INIS)

    1998-01-01

    The nuclear power plant Bohunice V -2 is briefly described. This NPP consists from two reactor units. Their main time characteristics are (Reactor Unit 1, Reactor Unit 2): beginning of construction - December 1976; first controlled reactor power - 7 August 1984, 2 August 1985; connection to the grid - 20 August 1984, 9 August 1985; commercial operation - 14 February 1985, 18 December 1985. This leaflet contains: NPP V-2 construction; Major technological equipment [WWER 440 V230 type reactor; Nuclear Power plant operation safety (Safety barriers; Safety systems [Active safety systems, Passive safety systems]); Centralized heat supply system; Scheme of Bohunice V-2 NPP and technical data

  8. Interactions of Corbicula sp. with power plants

    International Nuclear Information System (INIS)

    Mattice, J.S.

    1977-01-01

    There are three perspectives with which to view the interaction of Corbicula and power plants: as a fouling agent; as an important part of the natural ecosystem; and as a potential species for use in waste heat aquaculture. The first two of these interactions are essentially negative in character, since they involve avoidance of impacts either of Corbicula on power plant operation or of power plant operation on Corbicula. Condenser fouling by these claims has been controlled by mechanical means or by continuous chlorination. Our data support the potential for using heated water to control fouling and a model for determining required thermal dosing is presented. Preliminary data also indicate potential for control by combining simultaneous short-term exposure to hot water and chlorine. The third of the interactions is essentially positive in character. The use of thermal effluents in Corbicula aquaculture systems is proposed

  9. Aging management of instrumentation and control sensors in nuclear power plants

    International Nuclear Information System (INIS)

    Hashemian, H.M.

    2010-01-01

    Pressure to improve plant efficiency and maximize safety and the increasing age of existing NPPs are forcing the global nuclear power industry to confront the challenges of aging - caused by stressors such as temperature, humidity, radiation, electricity, and vibration - in key instrument and control (I and C) components like pressure transmitters, temperature sensors, neutron detectors, and cables. Traditional aging management methods, such as equipment replacement, required the process to be shut down. Recent aging management technologies, collectively known as online monitoring (OLM), enable plants to monitor the condition and aging of their installed I and C while the plant is operating. Developed through R and D initiatives worldwide, such OLM techniques include low- and high-frequency methods that use existing sensors, such as noise analysis; methods based on test or diagnostic sensors, such as for vibration-measuring accelerometers; and methods, such as the power interrupt (PI) test, based on active measurements made by injecting a test signal into the component under test. A review of these aging management methods, their effectiveness, and their interrelation provides a foundation for understanding the next stage in the evolution of OLM: truly integrated hybrid OLM systems capable of robust condition monitoring in both novel and familiar operating conditions.

  10. Operation of Finnish nuclear power plants

    International Nuclear Information System (INIS)

    Tossavainen, K.

    1990-03-01

    In the Quarterly Reports on the operation of the Finnish nuclear power plants such incidents and observations are described relating to nuclear and radiation safety which the regulatory body, the Finnish Centre for Radiation and Nuclear Safety, considers safety-related. During the third quarter of 1989 the Finnish nuclear power plant units Loviisa 1 and 2 and TVO I and II were in commercial operation for most of the time. Nuclear electricity accounted for 39.0% of the total Finnish electricity production in this quarter. The load factor average of the nuclear power plant units was 78.9%. At Loviisa 1, two holes were found in the feedwater distributor of one steam generator. Corresponding wall thinning corrosion was also detected in the walls of two other distributors. The holes were found on the feedwater distributor upper surface in the joint of the secondary circuit feedwater pipe. One hole was about 20 mm x 50 mm in size and the other was a pit hole ca 5 mm in diameter. Metal power had entered the primary circuit at TVO I. This was observed during a post-scram plant start-up. Several control rod drive units had become jammed so tight that control rod withdrawal failed. Metal powder did not hamper reactor scram under the prevailing circumstances because the drive units are prone to jamming only after a control rod is almost fully inserted and because the forces which insert a control rod by various means (electrical, hydraulic) are 6-8 fold compared with the withdrawing force

  11. HVDC transmission from nuclear power plant

    International Nuclear Information System (INIS)

    Yoshida, Yukio; Takenaka, Kiyoshi; Ichikawa, Takemi; Ueda, Kiyotaka; Machida, Takehiko

    1979-01-01

    The HVDC transmission directly from nuclear power plants is one of the patterns of long distance and large capacity HVDC transmission systems. In this report, the double pole, two-circuit HVDC transmission from a BWR nuclear power plant is considered, and the dynamic response characteristics due to the faults in dc line and ac line of inverter side are analyzed, to clarify the dynamic characteristics of the BWR nuclear power plant and dc system due to system faults and the effects of dc power control to prevent reactor scram. (1) In the instantaneous earthing fault of one dc line, the reactor is not scrammed by start-up within 0.8 sec. (2) When the earthing fault continues, power transmission drops to 75% by suspending the faulty pole, and the reactor is scrammed. (3) In the instantaneous ground fault of 2 dc lines, the reactor is not scrammed if the faulty dc lines are started up within 0.4 sec. (4) In the existing control of dc lines, the reactor is scrammed when the ac voltage at an ac-dc connection point largely drops due to ac failure. (J.P.N.)

  12. A virtual power plant model for time-driven power flow calculations

    Directory of Open Access Journals (Sweden)

    Gerardo Guerra

    2017-11-01

    Full Text Available This paper presents the implementation of a custom-made virtual power plant model in OpenDSS. The goal is to develop a model adequate for time-driven power flow calculations in distribution systems. The virtual power plant is modeled as the aggregation of renewable generation and energy storage connected to the distribution system through an inverter. The implemented operation mode allows the virtual power plant to act as a single dispatchable generation unit. The case studies presented in the paper demonstrate that the model behaves according to the specified control algorithm and show how it can be incorporated into the solution scheme of a general parallel genetic algorithm in order to obtain the optimal day-ahead dispatch. Simulation results exhibit a clear benefit from the deployment of a virtual power plant when compared to distributed generation based only on renewable intermittent generation.

  13. Improvement of chemical control in the water-steam cycle of thermal power plants

    International Nuclear Information System (INIS)

    Rajakovic-Ognjanovic, Vladana N.; Zivojinovic, Dragana Z.; Grgur, Branimir N.; Rajakovic, Ljubinka V.

    2011-01-01

    A more effective chemical control in the water-steam cycle (WSC) of thermal power plants (TPP) is proposed in this paper. Minimization of corrosion effects by the production of ultra pure water and its strict control is the basis of all the investigated processes. The research involved the analysis of water samples in the WSC through key water quality parameters and by the most convenient analytical tools. The necessity for the stricter chemical control is demonstrated through a concrete example of the TPP Nikola Tesla, Serbia. After a thorough analysis of the chemical control system of the WSC, diagnostic and control parameters were chosen for continuous systematic measurements. Sodium and chloride ions were recognized as the ions which indicate the corrosion potential of the water and give insight into the proper production and maintenance of water within the WSC. Chemical transformations of crucial corrosion elements, iron and silica, were considered and related to their quantitative values. - Research highlights: → The more effective chemical control in the water-steam cycle of thermal power plant Nikola Tesla, Serbia. → In chemical control the diagnostic and control parameters were optimized and introduced for the systematic measurements in the water-steam cycle. → Sodium and chloride ions were recognized as ions which indicate corrosion potential of water and give insight to proper function of production and maintenance of water within water-team cycle. → Chemical transformations of crucial corrosion elements, iron and silica are considered and related with their quantitative values.

  14. Development of a test bed for operator aid and advanced control concepts in nuclear power plants

    International Nuclear Information System (INIS)

    Turinsky, P.J.; Doster, J.M.; Kim, K.D.; Al-Chalabi, R.M.; Khedro, T.; Sues, R.H.; Yacout, A.M.

    1990-01-01

    A great amount of research and development is currently under way in the utilization of artificial intelligence (AI), expert system, and control theory advances in nuclear power plants as a basis for operator aids and automatic control systems. This activity requires access to the measured dynamic responses of the plant to malfunction, operator- or automatic-control-initiated actions. This can be achieved by either simulating plant behavior or by using an actual plant. The advantage of utilizing an actual plant versus a simulator is that the true behavior is assured of both the power generation system and instrumentation. Clearly, the disadvantages of using an actual plant are availability due to licensing, economic, and risk constraints and inability to address accident conditions. In this work the authors have decided to employ a functional one-ninth scale model of a pressurized water reactor (PWR). The scaled PWR (SPWR) facility is a two-loop representation of a Westinghouse PWR utilizing freon as the working fluid and electric heater rods for the core. The heater rods are driven by a neutron kinetics model accounting for measured thermal core conditions. A control valve in the main steam line takes the place of the turbine generator. A range of normal operating and accident situations can be addressed. The SPWR comes close to offering all the advantages of both a simulator and an actual physical plant in regard to research and development on AI, expert system, and control theory applications. The SPWR is being employed in the development of an expert-system-based operator aid system. The current status of this project is described

  15. Dynamic modeling, simulation and control design of an advanced micro-hydro power plant for distributed generation applications

    Energy Technology Data Exchange (ETDEWEB)

    Marquez, J.L. [Instituto de Energia Electrica, Universidad Nacional de San Juan, Av. Libertador San Martin Oeste 1109, J5400ARL San Juan (Argentina); Molina, M.G. [CONICET, Instituto de Energia Electrica, Universidad Nacional de San Juan, Av. Libertador San Martin Oeste 1109, J5400ARL San Juan (Argentina); Pacas, J.M. [Institut fuer Leistungselektronik und Elektrische Antriebe, Universitaet Siegen, Fachbereich 12 Hoelderlinstr 3, D 57068 Siegen (Germany)

    2010-06-15

    A small-scale hydropower station is usually a run-of-river plant that uses a fixed speed drive with mechanical regulation of the turbine water flow rate for controlling the active power generation. This design enables to reach high efficiency over a wide range of water flows but using a complex operating mechanism, which is in consequence expensive and tend to be more affordable for large systems. This paper proposes an advanced structure of a micro-hydro power plant (MHPP) based on a smaller, lighter, more robust and more efficient higher-speed turbine. The suggested design is much simpler and eliminates all mechanical adjustments through a novel electronic power conditioning system for connection to the electric grid. In this way, it allows obtaining higher reliability and lower cost of the power plant. A full detailed model of the MHPP is derived and a new three-level control scheme is designed. The dynamic performance of the proposed MHPP is validated through digital simulations and employing a small-scale experimental set-up. (author)

  16. Impact of digital information and control system platform selection on nuclear power generating plant operating costs

    International Nuclear Information System (INIS)

    Bogard, T.; Radomski, S.; Sterdis, B.; Marta, H.; Bond, V.; Richardson, J.; Ramon, G.; Edvinsson, H.

    1998-01-01

    Information is presented on the benefits of a well-planned information and control systems (I and CS) replacement approach for aging nuclear power generating plants' I and CS. Replacement of an aging I and CS is accompanied by increases in plant profitability. Implementing a structured I and CS replacement with current technology allows improved plant electrical production in parallel with reduced I and CS operations and maintenance cost. Qualitative, quantitative, and enterprise management methods for cost benefit justification are shown to justify a comprehensive approach to I and CS replacement. In addition to the advantages of standard I and CS technologies, examples of new I and CS technologies are shown to add substantial cost benefit justification for I and CS replacements. Focus is upon I and CS replacements at nuclear power plants, however the information is applicable to other types of power generating facilities. (author)

  17. Research and engineering application of coordinated instrumentation control and protection technology between reactor and steam turbine generator on nuclear power plant

    International Nuclear Information System (INIS)

    Sun Xingdong

    2014-01-01

    The coordinated instrumentation control and protection technology between reactor and steam turbine generator (TG) usually is very significant and complicated for a new construction of nuclear power plant, because it carries the safety, economy and availability of nuclear power plant. Based on successful practice of a nuclear power plant, the experience on interface design and hardware architecture of coordinated instrumentation control and protection technology between reactor and steam turbine generator was abstracted and researched. In this paper, the key points and engineering experience were introduced to give the helpful instructions for the new project. (author)

  18. Operating of Small Wind Power Plants with Induction Generators

    Directory of Open Access Journals (Sweden)

    Jakub Nevrala

    2008-01-01

    Full Text Available This paper describes different systems of small wind power plants with induction generators used in the Czech Republic. Problems of wind power plants running with induction generators are solved within partial target of the research project MSM 6198910007. For small wind power plants is used induction motor as a generator. Parameters of the name plate of motor must be resolved for generator running on measuring base. These generators are running as a separately working generators or generators connected to the power grid. Methods of control these systems as a separately working, directly connecting to power grid, control by frequency converter and wiring by synchronous cascade are confronted on the measuring base too.

  19. Monitoring of surge tanks in hydroelectric power plants using fuzzy control; Ueberwachung von Wasserschloessern in Wasserkraftwerken mit Fuzzy-Control

    Energy Technology Data Exchange (ETDEWEB)

    Lin, J.C.

    2000-07-01

    Surge tanks are used to reduce pressure variations caused by fluid transients in high-head hydroelectric power plants. Occasionally load increases have to be limited to prevent the surge tank from draining due to excessive demands of flow. A control concept based on fuzzy logic was developed for governing the load changes of hydroelectric power plants. In order to achieve an optimal control behaviour and simultaneously to avoid the draining of surge tanks, the speed of load increases is automatically adjusted by a fuzzy conclusion depending on the height and the gradient of the water level in the surge tank, the reservoir level and the sum of load increases. The hydroelectric power plant Achensee of Tiroler Wasserkraftwerke AG in Austria is taken as an example to demonstrate the characteristics of the control concept. In comparison with a conventional control concept, the operation of load increases using the fuzzy concept proves to be more flexible and unrestricted. (orig.) [German] Ein Wasserschloss dient zur Verminderung von Druckschwankungen im Wasserfuehrungssystem von Hochdruckanlagen. Gelegentlich muss man die Lastaufnahme so beschraenken, dass das Wasserschloss nicht durch uebermaessige Wasserentnahme leerlaeuft. Fuer die Leistungsregelung eines Wasserkraftwerks wurde ein Konzept entwickelt, das auf der Fuzzy-Control in Verbindung mit der klassischen Regelung beruht. Um ein optimales Regelverhalten zu erhalten und gleichzeitig das Leerlaufen des Wasserschlosses zu vermeiden, wird die Geschwindigkeit der Lastaufnahme in Abhaengigkeit von der Hoehenkote und dem Gradienten des Wasserschlosspegels, dem Pegel des Oberwassers und der Groesse der geforderten Lasterhoehung automatisch eingestellt. Die Untersuchung erfolgt am Beispiel des Achenseekraftwerkes der Tiroler Wasserkraftwerke AG, Oesterreich. Im Vergleich mit einer konventionellen Regelung ergibt sich mit dem Fuzzy-Konzept eine flexiblere und freizuegigere Lastaufnahme. (orig.)

  20. The Optimization of power reactor control system

    International Nuclear Information System (INIS)

    Danupoyo, S.D.

    1997-01-01

    A power reactor is an important part in nuclear powered electrical plant systems. Success in controlling the power reactor will establish safety of the whole power plant systems. Until now, the power reactor has been controlled by a classical control system that was designed based on output feedback method. To meet the safety requirements that are now more restricted, the recently used power reactor control system should be modified. this paper describes a power reactor control system that is designed based on a state feedback method optimized with LQG (Linear-quadrature-gaussian) method and equipped with a state estimator. A pressurized-water type reactor has been used as the model. by using a point kinetics method with one group delayed neutrons. the result of simulation testing shows that the optimized control system can control the power reactor more effective and efficient than the classical control system

  1. Observations of ozone formation in power plant plumes and implications for ozone control strategies

    Energy Technology Data Exchange (ETDEWEB)

    Ryerson, T.B.; Trainer, M.; Holloway, J.S.; Parrish, D.D.; Huey, L.G.; Sueper, D.T.; Frost, G.J.; Donnelly, S.G.; Schauffler, S.; Atlas, E.L.; Kuster, W.C.; Goldan, P.D.; Huebler, G.; Meagher, J.F.; Fehsenfeld, F.C. [NOAA, Boulder, CO (USA). Aeronomy Lab.

    2001-04-27

    Data taken in aircraft transects of emissions plumes from rural US coal-fired power plants were used to confirm and quantify the nonlinear dependence of tropospheric ozone formation on plume NOx (NO plus NO{sub 2}) concentration, which is determined by plant NOx emission rate and atmospheric dispersion. The ambient availability of reactive volatile organic compounds, principally biogenic isoprene, was also found to modular ozone production rate and yield in these rural plumes. Differences of a factor of 2 or greater in plume ozone formation rates and yields as a function of NOx and volatile organic compound concentrations were consistently observed. These large differences suggest that consideration of power plant NOx emission rates and geographic locations in current and future US ozone control strategies could substantially enhance the efficacy of NOx reductions from these sources. 18 refs., 4 figs.

  2. Wind power integration into the automatic generation control of power systems with large-scale wind power

    DEFF Research Database (Denmark)

    Basit, Abdul; Hansen, Anca Daniela; Altin, Müfit

    2014-01-01

    Transmission system operators have an increased interest in the active participation of wind power plants (WPP) in the power balance control of power systems with large wind power penetration. The emphasis in this study is on the integration of WPPs into the automatic generation control (AGC......) of the power system. The present paper proposes a coordinated control strategy for the AGC between combined heat and power plants (CHPs) and WPPs to enhance the security and the reliability of a power system operation in the case of a large wind power penetration. The proposed strategy, described...... and exemplified for the future Danish power system, takes the hour-ahead regulating power plan for generation and power exchange with neighbouring power systems into account. The performance of the proposed strategy for coordinated secondary control is assessed and discussed by means of simulations for different...

  3. Practice of radiation dose control for tech-modification items in Qinshan Nuclear Power Plant

    International Nuclear Information System (INIS)

    Zhang Yong; Chen Zhongyu; Xu Hongming; Fan Liguang; Jiang Jianqi; Bu Weidong

    2006-01-01

    In order to improve the safety and reliability of nuclear power plant operation, many tech-modifications related to system or equipment have been completed since operation in Qinshan NPP. this paper introduces radiation dose control for mainly tech-modifications items related to radiation, including radiation protection optimization measures and experience in aspects of item planning, program writing, process control, etc. (authors)

  4. Modelling and controlling hydropower plants

    CERN Document Server

    Munoz-Hernandez, German Ardul; Jones, Dewi Ieuan

    2013-01-01

    Hydroelectric power stations are a major source of electricity around the world; understanding their dynamics is crucial to achieving good performance.  Modelling and Controlling Hydropower Plants discusses practical and well-documented cases of modelling and controlling hydropower station modelling and control, focussing on a pumped storage scheme based in Dinorwig, North Wales.  Single-input-single-output and multiple-input-multiple-output models, which cover the linear and nonlinear characteristics of pump-storage hydroelectric power stations, are reviewed. The most important dynamic features are discussed, and the verification of these models by hardware in the loop simulation is described. To show how the performance of a pump-storage hydroelectric power station can be improved, classical and modern controllers are applied to simulated models of the Dinorwig power plant. These include PID, fuzzy approximation, feed-forward and model-based predictive control with linear and hybrid prediction models. Mod...

  5. Review of safety related control room function research based on experience from nuclear power plants in Finland

    International Nuclear Information System (INIS)

    Juslin, K.; Wahlstroem, B.; Rinttilae, E.

    1985-01-01

    A comprehensive human engineering research programme was established in the second half of the 1970's at the Technical Research Centre of Finland (VTT). The research is performed in cooperation with the utility companies Imatran Voima Oy (IVO) and Teollisuuden Voima Oy (TVO) and includes topics such as Handling of alarm information, Disturbance analysis systems, Assessment of control rooms and Validation of safety parameter display systems. Reference is also made to the Finnish contribution to the OECD Halden Reactor Project (Halden) and the Nordic Liaison Committee for Atomic Energy (NKA) research projects. In this paper feasible realization alternatives of safety related control room functions are discussed on the basis of experience from the nuclear power plants in Finland, which at present are equipped with extensive process computer systems. A proposal for future power plant information systems is described. It is intended that this proposal will serve as the basis for future computer systems at nuclear power plants in Finland. (author)

  6. Study on control method of the actuators accepting commands from different classifications in nuclear power plant

    International Nuclear Information System (INIS)

    Tang Lixue; Zhang Nan; Fan Jin; Li Liang

    2015-01-01

    The distributed control system has become the main control system for the nuclear power plant, consisting of 1E and non-1E parts. Because the safety actuators accept commands from different safety classifications, this is a difficulty of controlling those actuators in nuclear power plant. This article discusses about the control method for safety actuators accepting commands from different classifications. Firstly, one control method adopted in new nuclear power projects is introduced. Then based on this, an optimized method is raised. The new method mainly concludes two points than the adopted method: 1. The concept 'local control mode' is introduced into the signal priority logic modules, and the priority logic module turns into local mode for the non-1E control system once it accepts safety signal; 2. The 'remote control mode' is added into the module of the safety actuator in the non-1E control system, and this can make the non-1E control system abandon controlling the safety actuator when the relevant priority logic module accept the safety signal. Based on verifying the correctness of modified scheme, comparisons between the fore-and-aft schemes are provided to summary the merits of the optimized method. It is concluded that optimized scheme is better in the aspects of reliability, safety and economy. (authors)

  7. Authorization of nuclear power plant control room personnel: Methods and practices with emphasis on the use of simulators

    International Nuclear Information System (INIS)

    2006-07-01

    In 2002 the IAEA published a revision to Safety Guide NS-G-2.8, Recruitment, Qualification and Training of Personnel for Nuclear Power Plants. This Safety Guide provides recommendations on the authorization of designated personnel who have a direct impact on nuclear safety. The IAEA Technical Working Group on Training and Qualification of Nuclear Power Plant Personnel recommended that an additional report be prepared that provided information on the practices in Member States on the use of simulators in the authorization of control room staff. This publication has been prepared in response to that recommendation. In gathering information for the report, Member States were asked to: respond to a survey on the use of simulators and the involvement of regulatory body in operator authorization; and to complete a questionnaire on their practices in authorizing control room staff. Safety analysis and operating experience consistently indicate that human error is a major contributor to nuclear power plant (NPP) accident risk. With the recent world wide emphasis and implementation of full scope simulators for nuclear power plant personnel training, operators spend a large portion of their training time on simulators. As described in the foreword to IAEA-TECDOC-1411, Use of Control Room Simulators for Training of Nuclear Power Plant Personnel, simulators provide operators an opportunity to learn and practice the abilities that are required in accident and infrequently used plant evolutions. Because of their fidelity, full scope simulators are now used by most Member States in the authorization examinations of control room personnel. This situation is becoming more common as more plants acquire modern full scope plant referenced simulators. This publication provides information and examples based upon experience in a variety of Member States. The body of the report provides general information that represents the practices of the Member States that contributed to the

  8. Hydroelectric power plants may influence profit of company

    International Nuclear Information System (INIS)

    Regula, E.

    2006-01-01

    In this interview with divisional manager of the Division of control of operation of hydroelectric power plants of the Slovenske elektrarne, a.s. Mr. Milan Chudy is published. The effectiveness and its optimisation in hydroelectric power plants of the Slovenske elektrarne, a.s. are discussed

  9. Operator training simulator for nuclear power plant

    International Nuclear Information System (INIS)

    Shiozuka, Hiromi

    1977-01-01

    In nuclear power plants, training of the operators is important. In Japan, presently there are two training centers, one is BWR operation training center at Okuma-cho, Fukushima Prefecture, and another the nuclear power generation training center in Tsuruga City, Fukui Prefecture, where the operators of PWR nuclear power plants are trained. This report describes the BWR operation training center briefly. Operation of a nuclear power plant is divided into three stages of start-up, steady state operation, and shut down. Start-up is divided into the cold-state start-up after the shut down for prolonged period due to periodical inspection or others and the hot-state start-up from stand-by condition after the shut down for a short time. In the cold-state start-up, the correction of reactivity change and the heating-up control to avoid excessive thermal stress to the primary system components are important. The BWR operation training center offers the next three courses, namely beginner's course, retraining course and specific training course. The training period is 12 weeks and the number of trainees is eight/course in the beginner's course. The simulator was manufactured by modeling No. 3 plant of Fukushima First Nuclear Power Station, Tokyo Electric Power Co. The simulator is composed of the mimic central control panel and the digital computer. The software system comprises the monitor to supervise the whole program execution, the logic model simulating the plant interlock system and the dynamic model simulating the plant physical phenomena. (Wakatsuki, Y.)

  10. Expert systems with fuzzy logic for intelligent diagnosis and control of nuclear power plants

    International Nuclear Information System (INIS)

    Abdelhai, M.I.; Upadhyaya, B.R.

    1990-01-01

    A model-based production-rule analysis system was developed for the tracking and diagnosis of the condition of a reactor coolant system (RCS) using a fuzzy logic algorithm. Since nuclear power plants are large and complex systems, it is natural that vagueness, uncertainty, and imprecision are introduced to such systems. Even in fully automated power plants, the critical diagnostic and control changes must be made by operators who usually express their diagnostic and control strategies linguistically as sets of heuristic decision rules. Therefore, additional imprecisions are introduced into the systems because of the imprecise nature of such qualitative strategies when they are converted into quantitative rules. Such problems, in which the source of imprecision is the absence of sharply defined criteria of class membership, could be dealt with using fuzzy set theory. Hence, a fuzzy logic algorithm could be initiated to implement a known heuristic whenever the given information is vague and qualitative, and it will allow operators to introduce certain linguistic assertions and commands to diagnose and control the system

  11. Distributed control and instrumentation systems for future nuclear power plants

    International Nuclear Information System (INIS)

    Yan, G.; L'Archeveque, J.V.R.

    1976-01-01

    The centralized dual computer system philosophy has evolved as the key concept underlying the highly successful application of direct digital control in CANDU power reactors. After more than a decade, this basis philosophy bears re-examination in the light of advances in system concepts--notably distributed architectures. A number of related experimental programs, all aimed at exploring the prospects of applying distributed systems in Canadian nuclear power plants are discussed. It was realized from the outset that the successful application of distributed systems depends on the availability of a highly reliable, high capacity, low cost communications medium. Accordingly, an experimental facility has been established and experiments have been defined to address such problem areas as interprocess communications, distributed data base design and man/machine interfaces. The design of a first application to be installed at the NRU/NRX research reactors is progressing well

  12. Chemistry in power plants 2011

    International Nuclear Information System (INIS)

    2011-01-01

    Within the VGB Powertech conference from 25th to 27th October, 2011, in Munich (Federal Republic of Germany), the following lectures and poster contributions were presented: (1) The revised VGB standard for water-steam-cycle Chemistry; (2) Switchover from neutral operation to oxygen treatment at the power station Stuttgart-Muenster of EnBW Kraftwerke AG; (3) Steam contamination with degradation products of organic matters present in the feedwater of the Lanxess-Rubber cogeneration plant; (4) Laboratory scale on-line noble metal deposition experiments simulating BWR plant conditions; (5) Building a new demin installation for the power plant EPZ in Borssele; (6) Replacement of the cooling tower installations in the nuclear power plant Goesgen-Daenien AG; (7) Aging of IEX resins in demin plants - Cost optimisation by adaptation of regenerants; (8) The largest DOW trademark EDI System at a combined cycled plant in Europe; (9) Upgrading river Main water to boiler feed water - Experiences with ultrafiltration; (10) Experiences with treatment of the water-steam-cycle in the RDF power plant Nehlsen Stavenhagen with film-forming amines; (11) Comparative modelling of the bubbles thermal collapse and cavitations for estimation of bubbles collapse influence; (12) Overcoming the steam quality - issues from an HRSG for the production of process steam; (13) Legionella - new requirements for power plant operation; (14) How the right chemistry in the FGD helps to improve the removal in the waste water treatment plant; (15) High efficiency filtration in dry/semi-dry FGD plants; (16) Expanding the variety of renewable fuels in the biomass power plant Timelkam using the chemical input control; (17) Corrosion, operating experiences and process improvements to increase the availability and operating time of the biomass power plant Timelkam; (18) The influence of temperature on the measurement of the conductivity of highly diluted solutions; (19) A multiparameter instrumentation approach

  13. Hybrid wind power balance control strategy using thermal power, hydro power and flow batteries

    OpenAIRE

    Gelažanskas, Linas; Baranauskas, Audrius; Gamage, Kelum A.A.; Ažubalis, Mindaugas

    2016-01-01

    The increased number of renewable power plants pose threat to power system balance. Their intermittent nature makes it very difficult to predict power output, thus either additional reserve power plants or new storage and control technologies are required. Traditional spinning reserve cannot fully compensate sudden changes in renewable energy power generation. Using new storage technologies such as flow batteries, it is feasible to balance the variations in power and voltage within very short...

  14. Releasable Kinetic Energy-Based Inertial Control of a DFIG Wind Power Plant

    DEFF Research Database (Denmark)

    Lee, Jinsik; Muljadi, Eduard; Sørensen, Poul Ejnar

    2016-01-01

    Wind turbine generators (WTGs) in a wind power plant (WPP) contain different levels of releasable kinetic energy (KE) because of the wake effects. This paper proposes a releasable KE-based inertial control scheme for a doubly fed induction generator (DFIG) WPP that differentiates the contributions....... The proposed scheme adjusts the two loop gains in a DFIG controller depending on its rotor speed so that a DFIG operating at a higher rotor speed releases more KE. The performance of the proposed scheme was investigated under various wind conditions. The results clearly indicate that the proposed scheme...

  15. VAr reserve concept applied to a wind power plant

    DEFF Research Database (Denmark)

    Martinez, Jorge; Kjær, Philip C.; Rodriguez, Pedro

    2011-01-01

    to wind power plants. This paper proposes two different VAr reserve control strategies for a wind power plant. The amount of dynamic VAr available most of the operation time, makes the wind power plant (WPP) a good candidate to include a VAr reserve management system. Two different ways of implementing...... a VAr management system are proposed and analyzed. Such a reactive power reserve may be provided by the wind power plant since the amount of reactive power installed for most active power working points exceeds the demand required by the grid operator. Basically, this overrated reactive power capacity...... is a consequence of sizing wind turbine facilities for maximum active power level. The reactive power losses, due to active power transportation inside the plant (normally two transformers), and P-Q wind turbine characteristics define the P-Q reserve chart. By utilizing the intrinsic overrated reactive power...

  16. Suboptimal control of pressurized water reactor power plant using approximate model-following method

    International Nuclear Information System (INIS)

    Tsuji, Masashi; Ogawa, Yuichi

    1987-01-01

    We attempted to develop an effective control system that can successfully manage the nuclear steam supply (NSS) system of a PWR power plant in an operational mode requiring relatively small variations of power. A procedure is proposed for synthesizing control system that is a simple, yet practiced, suboptimal control system. The suboptimal control system is designed in two steps; application of the optimal control theory, based on the linear state-feedback control and the use of an approximate model-following method. This procedure can appreciably reduce the complexity of the structure of the controller by accepting a slight deviation from the optimality and by the use of the output-feedback control. This eliminates the engineering difficulty caused by an incompletely state-feedback that is sometimes encountered in practical applications of the optimal state-feedback control theory to complex large-scale dynamical systems. Digital simulations and graphical studies based on the Bode-diagram demonstrate the effectiveness of the suboptimal control, and the applicability of the proposed design method as well. (author)

  17. Pollution control technologies applied to coal-fired power plant operation

    Directory of Open Access Journals (Sweden)

    Maciej Rozpondek

    2009-09-01

    Full Text Available Burning of fossil fuels is the major source of energy in today's global economy with over one-third of the world's powergeneration derived from coal combustion. Although coal has been a reliable, abundant, and relatively inexpensive fuel source for mostof the 20th century, its future in electric power generation is under increasing pressure as environmental regulations become morestringent worldwide. Current pollution control technologies for combustion exhaust gas generally treat the release of regulatedpollutants: sulfur dioxide, nitrogen oxides and particulate matter as three separate problems instead of as parts of one problem. Newand improved technologies have greatly reduced the emissions produced per ton of burning coal. The term “Clean Coal CombustionTechnology” applies generically to a range of technologies designed to greatly reduce the emissions from coal-fired power plants.The wet methods of desulfurization at present are the widest applied technology in professional energetics. This method is economicand gives good final results but a future for clean technologies is the biomass. Power from biomass is a proven commercial optionof the electricity generation in the World. An increasing number of power marketers are starting to offer environmentally friendlyelectricity, including biomass power, in response to the consumer demand and regulatory requirements.

  18. Future-oriented computerized information system for power plant process control in a pilot project at Philippsburg nuclear power plant

    International Nuclear Information System (INIS)

    Woehrle, G.; Kraft, M.

    1988-01-01

    The motivation for the pilot project at Philippsburg nuclear power plant resulted from the Three Mile Island accident in 1979. The primary task embraces an efficient computer-aided reduction of information when a fault occurs based on a process engineering analysis of the information accrued. Accompanying this are a consolidation and evaluation of the information available in the control room. In this pilot project the new tasks of status monitoring, information reduction and operationalcontrol have been realized for the first time using a computer-aided process information system. In addition to the existing control computer, an information computer with approximately 1200 analogue and about 10000 binary signals has been installed. The installation of the system was completed in 1984 and in the meantime initial operational experience has become available. (orig.) [de

  19. Operation of Finnish nuclear power plants

    International Nuclear Information System (INIS)

    Tossavainen, K.

    1990-12-01

    During the second quarter of 1990 the Finnish nuclear plant units Loviisa 1 and 2 and TVO and II were in commercial operation for most of the time. The feedwater pipe rupture at Loviisa 1 and the resulting inspections and repairs at both Loviisa plant units brought about an outage the overall duration of which was 32 days. The annual maintenance outages of the TVO plant units were arranged during the report period and their combined duration was 31.5 days. Nuclear electricity accounted for 35.3% of the total Finnish electricity production during this quarter. The load factor average of the nuclear power plant units was 83.0%. Three events occurred during the report period which are classified as Level 1 on the International Nuclear Event Scale: feedwater pipe rupture at Loviisa 1, control rod withdrawal at TVO I in a test during an outage when the hydraulic scram system was rendered inoperable and erroneous fuel bundle transfers during control rod drives maintenance at TVO II. Other events during this quarter are classified as Level Zero (Below Scale) on the International Nuclear Event Scale. Occupational radiation doses and external releases of radioactivity were considerably below authorised limits. Only small amounts of nuclides originating in nuclear power plants were detected in samples taken in the vicinity of nuclear power plants

  20. Complementary Power Control for Doubly Fed Induction Generator-Based Tidal Stream Turbine Generation Plants

    Directory of Open Access Journals (Sweden)

    Khaoula Ghefiri

    2017-06-01

    Full Text Available The latest forecasts on the upcoming effects of climate change are leading to a change in the worldwide power production model, with governments promoting clean and renewable energies, as is the case of tidal energy. Nevertheless, it is still necessary to improve the efficiency and lower the costs of the involved processes in order to achieve a Levelized Cost of Energy (LCoE that allows these devices to be commercially competitive. In this context, this paper presents a novel complementary control strategy aimed to maximize the output power of a Tidal Stream Turbine (TST composed of a hydrodynamic turbine, a Doubly-Fed Induction Generator (DFIG and a back-to-back power converter. In particular, a global control scheme that supervises the switching between the two operation modes is developed and implemented. When the tidal speed is low enough, the plant operates in variable speed mode, where the system is regulated so that the turbo-generator module works in maximum power extraction mode for each given tidal velocity. For this purpose, the proposed back-to-back converter makes use of the field-oriented control in both the rotor side and grid side converters, so that a maximum power point tracking-based rotational speed control is applied in the Rotor Side Converter (RSC to obtain the maximum power output. Analogously, when the system operates in power limitation mode, a pitch angle control is used to limit the power captured in the case of high tidal speeds. Both control schemes are then coordinated within a novel complementary control strategy. The results show an excellent performance of the system, affording maximum power extraction regardless of the tidal stream input.

  1. DCS cabinet power loss analysis for CPR1000 nuclear power plant

    International Nuclear Information System (INIS)

    Zhou Liang; Zhao Yanfeng; Sun Yongbin

    2014-01-01

    The DCS overall structure of CRP1000 nuclear power plant was introduced. Based on the RPC, the signal interface character and signal processing mechanism on the key root were analyzed. By the power loss analyzing of RPC, the RPC loss power may lead reactor trip signal from anticipated transient without scram (ATWS) system. The results indicate that it is necessary to search DCS cabinet power loss analysis. Optimizing and assigning the main water flow signals can avoid trigger reactor trip signal by mistake. The DCS cabinet power loss analysis can optimize the I and C (instrumentation and control) design and increase the nuclear plant's reliability. (authors)

  2. Feedwater control system in nuclear power plants

    International Nuclear Information System (INIS)

    Masuyama, Hideo.

    1981-01-01

    Purpose: To enable switching operation for feedwater systems in a short time and with no fluctuations in the reactor water level by increasing or decreasing the flow rate in the feedwater systems during automatic operation by the amount of the fluctuations in the flow rate in the feedwater system during manual operation. Constitution: In a BWR type nuclear power plant having a plurality of feedwater systems to a nuclear reactor, a feedwater control system is constituted with a reactor water level controller, a M/A switcher for switching either of automatic flow rate demand signals or manual flow rate set signals from the reactor level controller to apply flow rate demand signals for each of the feedwater systems, a calculation device for calculating the flow rate set signals in the feedwater systems during manual operation and an adder for subtracting the flow rate set signals in the manual feedwater system calculated in the calculating device from the automatic flow rate demand signals for the feedwater systems during automatic operation. This enables rapid switching for the feedwater systems with no fluctuations in the reactor water level by increasing or decreasing the flow rate in the feedwater systems during automatic operation by the amount of fluctuations in the flow rate in the feedwater systems during manual operation and compensating the effects in upon manual and automatic switching by the M/A switcher. (Seki, T.)

  3. Next Generation Geothermal Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Brugman, John; Hattar, Mai; Nichols, Kenneth; Esaki, Yuri

    1995-09-01

    cycle. Results of this study indicate that dual flash type plants are preferred at resources with temperatures above 400 F. Closed loop (binary type) plants are preferred at resources with temperatures below 400 F. A rotary separator turbine upstream of a dual flash plant can be beneficial at Salton Sea, the hottest resource, or at high temperature resources where there is a significant variance in wellhead pressures from well to well. Full scale demonstration is required to verify cost and performance. Hot water turbines that recover energy from the spent brine in a dual flash cycle improve that cycle's brine efficiency. Prototype field tests of this technology have established its technical feasibility. If natural gas prices remain low, a combustion turbine/binary hybrid is an economic option for the lowest temperature sites. The use of mixed fluids appear to be an attractive low risk option. The synchronous turbine option as prepared by Barber-Nichols is attractive but requires a pilot test to prove cost and performance. Dual flash binary bottoming cycles appear promising provided that scaling of the brine/working fluid exchangers is controllable. Metastable expansion, reheater, Subatmospheric flash, dual flash backpressure turbine, and hot dry rock concepts do not seem to offer any cost advantage over the baseline technologies. If implemented, the next generation geothermal power plant concept may improve brine utilization but is unlikely to reduce the cost of power generation by much more than 10%. Colder resources will benefit more from the development of a next generation geothermal power plant than will hotter resources. All values presented in this study for plant cost and for busbar cost of power are relative numbers intended to allow an objective and meaningful comparison of technologies. The goal of this study is to assess various technologies on an common basis and, secondarily, to give an approximate idea of the current costs of the technologies at

  4. Mathematical models of power plant units with once-through steam generators

    International Nuclear Information System (INIS)

    Hofmeister, W.; Kantner, A.

    1977-01-01

    An optimization of effective control functions with the current complex control loop structures and control algorithms is practically not possible. Therefore computer models are required which may be optimized with the process and plant data known before start-up of thermal power plants. The application of process computers allows additional predictions on the control-dynamic behavior of a thermal power plant unit. (TK) [de

  5. Integrating environmental control for coal plant efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, M

    1986-01-01

    As emission control requirements for power plants have grown more stringent, utilities have added new environmental protection technology. As environmental controls have been added one after another, plant designers have rarely had the opportunity to integrate these components with each other and the balance of the plant. Consequently they often cost more to build and operate and can reduce power plant efficiency and availability. With the aim of lowering the cost of environmental systems, a design approach known as integrated environmental control (IEC) has emerged. This is based on the premise that environmental controls can function most economically if they are designed integrally with other power generation equipment. EPRI has established an IEC progam to develop integrated design strategies and evaluate their net worth to utilities. Various aspects of this program are described. (3 refs.)

  6. Atmospheric emissions from power plant cooling towers

    International Nuclear Information System (INIS)

    Micheletti, W.

    2006-01-01

    Power plant recirculated cooling systems (cooling towers) are not typically thought of as potential sources of air pollution. However, atmospheric emissions can be important considerations that may influence cooling tower design and operation. This paper discusses relevant U.S. environmental regulations for potential atmospheric pollutants from power plant cooling towers, and various methods for estimating and controlling these emissions. (orig.)

  7. Simulation of Digital Control Computer of Nuclear Power Plant Based on Virtual Machine Technology

    International Nuclear Information System (INIS)

    Hou, Xue Yan; Li, Shu; Li, Qing

    2011-01-01

    Based on analyzing DCC (Digital Control Computer) instruction sets, memory map, display controllers and I/O system, virtual machine of DCC (abbr. VM DCC) has been developed. The executive and control programs, same as running on NPP (Nuclear Power Plant) unit's DCC, can run on the VM DCC smoothly and get same control results. Dual VM DCC system has been successfully applied in NPP FSS(Full Scope Simulator) training. It not only improves FSS's fidelity but also makes maintaining easier

  8. Integrated operation and management system for a 700MW combined cycle power plant

    Energy Technology Data Exchange (ETDEWEB)

    Shiroumaru, I. (Yanai Power Plant Construction Office, Chugoku Electric Power Co., Inc., 1575-5 Yanai-Miyamoto-Shiohama, Yanai-shi, Yamaguchi-ken (JP)); Iwamiya, T. (Omika Works, Hitachi, Ltd., 5-2-1 Omika-cho, Hitachi-shi, Ibaraki-ken (JP)); Fukai, M. (Hitachi Works, Hitachi, Ltd., 3-1-1 Saiwai-cho, Hitachi-shi, Ibaraki-ken (JP))

    1992-03-01

    Yanai Power Plant of the Chugoku Electric Power Co., Inc. (Yamaguchi Pref., Japan) is in the process of constructing a 1400MW state-of-the-art combined cycle power plant. The first phase, a 350MW power plant, started operation on a commercial basis in November, 1990. This power plant has achieved high efficiency and high operability, major features of a combined cycle power plant. The integrated operation and management system of the power plant takes care of operation, maintenance, control of general business, etc., and was built using the latest computer and digital control and communication technologies. This paper reports that it is expected that this system will enhance efficient operation and management for the power plant.

  9. Considerations on safety against seismic excitations in the project of reactor auxiliary building and control building in nuclear power plants

    International Nuclear Information System (INIS)

    Santos, S.H.C.; Castro Monteiro, I. de

    1986-01-01

    The seismic requests to be considered in the project of main buildings of a nuclear power plant are discussed. The models for global seismic analysis of nuclear power plant structures, as well as models for global strength distribution are presented. The models for analysing reactor auxiliary building and control building, which together with the reactor building and turbine building form the main energy generation complex in a nuclear power plant, are described. (M.C.K.) [pt

  10. Load control on nuclear power station

    International Nuclear Information System (INIS)

    Hattori, Takuya; Tsukuda, Yoshiaki.

    1988-01-01

    Power generation control is required for the nuclear power plants to meet electric power demand. In BWRs, power generation control can be achieved by arranging the coolant flow rate and control rod operation. In PWRs, power generation can be regulated by the control rods automatically controled with the steam valves. As a result of the experiments, it is confirmed that the operational function is normal, and safety of reactor components, pressure vessel and fuel elments are assured. (Katagiri, S)

  11. Ways to Improve Russian Coal-Fired Power Plants

    International Nuclear Information System (INIS)

    Tumanovskii, A. G.; Olkhovsky, G. G.

    2015-01-01

    Coal is an important fuel for the electric power industry of Russia, especially in Ural and the eastern part of the country. It is fired in boilers of large (200 – 800 MW) condensing power units and in many cogeneration power plants with units rated at 50 – 180 MW. Many coal-fired power plants have been operated for more than 40 – 50 years. Though serviceable, their equipment is obsolete and does not comply with the current efficiency, environmental, staffing, and availability standards. It is urgent to retrofit and upgrade such power plants using advanced equipment, engineering and business ideas. Russian power-plant engineering companies have designed such advanced power units and their equipment such as boilers, turbines, auxiliaries, process and environmental control systems similar to those produced by the world’s leading manufacturers. Their performance and ways of implementation are discussed

  12. Ways to Improve Russian Coal-Fired Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Tumanovskii, A. G., E-mail: vti@vti.ru; Olkhovsky, G. G. [JSC “All-Russia Thermal Engineering Institute,” (Russian Federation)

    2015-07-15

    Coal is an important fuel for the electric power industry of Russia, especially in Ural and the eastern part of the country. It is fired in boilers of large (200 – 800 MW) condensing power units and in many cogeneration power plants with units rated at 50 – 180 MW. Many coal-fired power plants have been operated for more than 40 – 50 years. Though serviceable, their equipment is obsolete and does not comply with the current efficiency, environmental, staffing, and availability standards. It is urgent to retrofit and upgrade such power plants using advanced equipment, engineering and business ideas. Russian power-plant engineering companies have designed such advanced power units and their equipment such as boilers, turbines, auxiliaries, process and environmental control systems similar to those produced by the world’s leading manufacturers. Their performance and ways of implementation are discussed.

  13. FRAMEWORK AND APPLICATION FOR MODELING CONTROL ROOM CREW PERFORMANCE AT NUCLEAR POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Ronald L Boring; David I Gertman; Tuan Q Tran; Brian F Gore

    2008-09-01

    This paper summarizes an emerging project regarding the utilization of high-fidelity MIDAS simulations for visualizing and modeling control room crew performance at nuclear power plants. The key envisioned uses for MIDAS-based control room simulations are: (i) the estimation of human error associated with advanced control room equipment and configurations, (ii) the investigative determination of contributory cognitive factors for risk significant scenarios involving control room operating crews, and (iii) the certification of reduced staffing levels in advanced control rooms. It is proposed that MIDAS serves as a key component for the effective modeling of cognition, elements of situation awareness, and risk associated with human performance in next generation control rooms.

  14. FRAMEWORK AND APPLICATION FOR MODELING CONTROL ROOM CREW PERFORMANCE AT NUCLEAR POWER PLANTS

    International Nuclear Information System (INIS)

    Ronald L Boring; David I Gertman; Tuan Q Tran; Brian F Gore

    2008-01-01

    This paper summarizes an emerging project regarding the utilization of high-fidelity MIDAS simulations for visualizing and modeling control room crew performance at nuclear power plants. The key envisioned uses for MIDAS-based control room simulations are: (1) the estimation of human error associated with advanced control room equipment and configurations, (2) the investigative determination of contributory cognitive factors for risk significant scenarios involving control room operating crews, and (3) the certification of reduced staffing levels in advanced control rooms. It is proposed that MIDAS serves as a key component for the effective modeling of cognition, elements of situation awareness, and risk associated with human performance in next generation control rooms

  15. Multilevel interfaces for power plant control rooms I: An integrative review

    International Nuclear Information System (INIS)

    Vicente, K.J.

    1992-01-01

    Events that are unfamiliar to operators and that have not been anticipated by designers pose the greatest threat to system safety in nuclear power plants. The abstraction hierarchy has been proposed as a representation framework that can be adopted to design interfaces that support operators in dealing with these unanticipated events. This multilevel representation format represents a plant in terms of both physical and functional constraints. This article reviews, for the first time, the work that has been done in academia, industry, and research laboratories on multilevel interfaces based on the abstraction hierarchy. The review indicates that there are many degrees of freedom in designing an interface based on the abstraction hierarchy but that very little systematic work has been done in evaluating how best to deal with those degrees of freedom. As a result, there is very little defensible guidance to provide designers. As a first step in overcoming this barrier, a companion paper uses the results of the review presented here to develop a preliminary design space for multilevel interfaces based on the abstraction hierarchy. This space serves several worthwhile purposes relevant not only to research but also to design and regulation as well. Consequently this complementary set of papers should be of interest to researchers, designers, and regulators concerned with nuclear power-plant control rooms. 53 refs., 8 figs

  16. Design of coordinated controller in nuclear power plant based on digital instrument and control technology

    International Nuclear Information System (INIS)

    Cheng Shouyu; Peng Minjun; Liu Xinkai; Zhao Qiang; Deng Xiangxin

    2014-01-01

    Nuclear power plant (NPP) is a multi-input and multi-output, no-linear and time-varying complex system. The conventional PID controller is usually used in NPP control system which is based on analog instrument. The system parameters are easy to overshoot and the response time is longer in the control mode of the conventional PID. In order to improve this condition, a new coordinated control strategy which is based on expert system and the original controllers in the digital instrument and control technology was presented. In order to verify and validate it, the proposed coordinated control technology was tested by the full-scope real-time simulation system. The results prove that using digital instrument and control technology to achieve coordinated controller is feasible, the coordinated controller can effectively improve the dynamic operating characteristics of the system, and the coordinated controller is superior to the conventional PID controller in control performance. (authors)

  17. Less power plants

    International Nuclear Information System (INIS)

    TASR

    2003-01-01

    In the Slovak Republic the number of company power plants decreased as against 2001 by two sources. In present time only 35 companies have their own power plants. The companies Slovnaft, Kappa Sturovo, Slovensky hodvab Senica, Matador Puchov, Maytex Liptovsky MikuIas, Kovohuty Krompachy, Chemko Strazske and some Slovak sugar factories belong to the largest company power plants in force of distributing companies. Installed output of present 35 company sources is 531 MW. The largest of separate power plants as Paroplynovy cyklus Bratislava (218 MW) and VD Zilina (72 MW) belong to independent sources. Total installed output of Slovak sources was 8306 MW in the end of last year

  18. Multilevel flow modeling of Monju Nuclear Power Plant

    DEFF Research Database (Denmark)

    Lind, Morten; Yoshikawa, Hidekazu; Jørgensen, Sten Bay

    2011-01-01

    Multilevel Flow Modeling is a method for modeling complex processes on multiple levels of means-end and part-whole abstraction. The modeling method has been applied on a wide range of processes including power plants, chemical engineering plants and power systems. The modeling method is supported...... with reasoning tools for fault diagnosis and control and is proposed to be used as a central knowledge base giving integrated support in diagnosis and maintenance tasks. Recent developments of MFM include the introduction of concepts for representation of control functions and the relations between plant...... functions and structure. The paper will describe how MFM can be used to represent the goals and functions of the Japanese Monju Nuclear Power Plant. A detailed explanation will be given of the model describing the relations between levels of goal, function and structural. Furthermore, it will be explained...

  19. Study on quality control measures of static casting main pipe in PWR nuclear power plant

    International Nuclear Information System (INIS)

    Jiang Zhenbiao; Li Guanying; Liu Zhicheng

    2013-01-01

    This study analyzes the main reasons which impact the quality of primary pipe static casting elbows in PWR-M310 nuclear power plant. The quality control measures are developed from the election and inspection of material, improving sand production and casting process, improving lean management of personnel. The static casting defects of primary pipe elbows for Fuqing Unit 1 and 2 were down to less than 50% of the former project. The quality of static casting for the primary pipe elbows was significantly improved. Moreover, the implementation saves human resources and financing to repair casting defects, and also helps to win the delivery schedule. The quality control measures are good reference for improving primary pipe casting process. This study provides valuable experience for further study of improving the quality of static casting for the primary pipe of PWR nuclear power plant. (authors)

  20. Electromagnetic compatibility for the control and command equipments in nuclear power plants

    International Nuclear Information System (INIS)

    Buisson, J.

    1985-06-01

    Different kinds of electrical interference produce some disturbance on electronic sub-assemblies used to assume the control and the command of nuclear reactors. Following interferences are described: power supply lines perturbations, potential difference between grounding connections, electromagnetic fields. A method is described for testing the EMC of different equipments. The advantages of this method are: no destructive method, usable for testing equipment ''in situ'' in operating conditions on nuclear power plant, usable for testing equipment before operating conditions (acceptance test), level of the testing signals similar to the electrical interference level induced by the electromagnetic environment in normal operating conditions, no particular equipment and installation for test are required [fr

  1. Cyber security issues imposed on nuclear power plants

    International Nuclear Information System (INIS)

    Kim, Do-Yeon

    2014-01-01

    Highlights: • Provide history of cyber attacks targeting at nuclear facilities. • Provide cyber security issues imposed on nuclear power plants. • Provide possible countermeasures for protecting nuclear power plants. - Abstract: With the introduction of new technology based on the increasing digitalization of control systems, the potential of cyber attacks has escalated into a serious threat for nuclear facilities, resulting in the advent of the Stuxnet. In this regard, the nuclear industry needs to consider several cyber security issues imposed on nuclear power plants, including regulatory guidelines and standards for cyber security, the possibility of Stuxnet-inherited malware attacks in the future, and countermeasures for protecting nuclear power plants against possible cyber attacks

  2. Progress of nuclear safety for symbiosis and sustainability advanced digital instrumentation, control and information systems for nuclear power plants

    CERN Document Server

    Yoshikawa, Hidekazu

    2014-01-01

    This book introduces advanced methods of computational and information systems allowing readers to better understand the state-of-the-art design and implementation technology needed to maintain and enhance the safe operation of nuclear power plants. The subjects dealt with in the book are (i) Full digital instrumentation and control systems and human?machine interface technologies (ii) Risk? monitoring methods for large and? complex? plants (iii) Condition monitors for plant components (iv) Virtual and augmented reality for nuclear power plants and (v) Software reliability verification and val

  3. Information needs in nuclear power plants during low power operation modes

    Energy Technology Data Exchange (ETDEWEB)

    Tommila, Teemu; Fantoni, Paolo F.; Zander, Ralf M.

    1998-02-01

    During the past few years an increasing attention has been paid to the safety of shutdown and refuelling operations. It has turned out that the risks during shutdown may be comparable to the risks of power operation. The goal of this report is to identify information requirements related to low power operating modes of nuclear power plants. These include, for example, warm and cold shutdowns, refuelling and maintenance, as well as related state transitions such as start-up and shut-down. The focus of the report is on planned refuelling outages and the role of the control room in managing the outage activities. As a starting point, the basic terminology and characteristics of low power operation are discussed. The current situation at nuclear power plants and some recent developments in information technology are reviewed. End-users' requirements and enabling technologies are combined in order to identify the opportunities for new information technology tools in low power operation. The required features of process control systems and maintenance information systems are described. Common plant modelling techniques, open software architectures and functional structuring of the process control system are suggested to be the key issues in the long-term development of operator support systems. On a shorter time scale, new tools solving limited practical problems should be developed and evaluated. This would provide a basis for the features needed for low power operation, including for example, outage planning, on-line risk monitoring, management of outage tasks, adaptive alarm handling, computerised procedures and task-oriented human interfaces. (author)

  4. STAR Power, an Interactive Educational Fusion CD with a Dynamic, Shaped Tokamak Power Plant Simulator

    Science.gov (United States)

    Leuer, J. A.; Lee, R. L.; Kellman, A. G.; Chapman Nutt, G. C., Jr.; Holley, G.; Larsen, T. A.

    2000-10-01

    We describe an interactive, educational fusion adventure game developed within our fusion education program. The theme of the adventure is start-up of a state-of-the-art fusion power plant. To gain access to the power plant control room, the student must complete several education modules, including topics on building an atom, fusion reactions, charged particle motion in electric and magnetic fields, and building a power plant. Review questions, a fusion video, library material and glossary provide additional resources. In the control room the student must start-up a complex, dynamic fusion power plant. The simulation model contains primary elements of a tokamak based device, including a magnetic shaper capable of producing limited and diverted elongated plasmas. A zero dimensional plasma model based on ITER scaling and containing rate based conservation equations provides dynamic feedback through major control parameters such as toroidal field, fueling rate and heating. The game is available for use on PC and Mac. computers. Copies will be available at the conference.

  5. Multi-region fuzzy logic controller with local PID controllers for U-tube steam generator in nuclear power plant

    Directory of Open Access Journals (Sweden)

    Puchalski Bartosz

    2015-12-01

    Full Text Available In the paper, analysis of multi-region fuzzy logic controller with local PID controllers for steam generator of pressurized water reactor (PWR working in wide range of thermal power changes is presented. The U-tube steam generator has a nonlinear dynamics depending on thermal power transferred from coolant of the primary loop of the PWR plant. Control of water level in the steam generator conducted by a traditional PID controller which is designed for nominal power level of the nuclear reactor operates insufficiently well in wide range of operational conditions, especially at the low thermal power level. Thus the steam generator is often controlled manually by operators. Incorrect water level in the steam generator may lead to accidental shutdown of the nuclear reactor and consequently financial losses. In the paper a comparison of proposed multi region fuzzy logic controller and traditional PID controllers designed only for nominal condition is presented. The gains of the local PID controllers have been derived by solving appropriate optimization tasks with the cost function in a form of integrated squared error (ISE criterion. In both cases, a model of steam generator which is readily available in literature was used for control algorithms synthesis purposes. The proposed multi-region fuzzy logic controller and traditional PID controller were subjected to broad-based simulation tests in rapid prototyping software - Matlab/Simulink. These tests proved the advantage of multi-region fuzzy logic controller with local PID controllers over its traditional counterpart.

  6. Commentary on nuclear power plant control room habitability - including a review of related LERs (1981-1983)

    International Nuclear Information System (INIS)

    Moeller, D.W.; Kotra, J.P.

    1985-01-01

    A review of Licensee Event Reports filed by the operator of commercial nuclear power plants from 1981 through 1983 has revealed that approximately 3% pertain to systems that maintain or monitor control room habitability. Dominant contributors were deficiencies in normal and emergency trains of heating, ventilation, air conditioning and air cleaning systems (45%), deficiencies in atmospheric monitors for toxic and radioactive substances (27%) and deficiencies in fire protection systems (13%). To correct the situation revealed by these analyses and by information provided from other sources, it is recommended that the NRC incorporate into its program plan the development of information that anticipates the conditions within a control room during emergencies, and that criteria for habitability within the control room be better defined. In addition, it is suggested than an improved protocol for testing control room air-related systems be developed, that the required thickness and number of layers of charcoal adsorption beds for control room air cleaning systems be re-evaluated, and that steps be taken to improve the quality of heating, ventilating, air conditioning and air cleaning components. It is also recommended that greater emphasis be placed on maintaining nuclear power plant control rooms in a habitable condition during emergencies so that the operators can remain there and safely shut down the plant, in contrast to placing reliance on the use of remote shutdown panels or auxiliary control facilities

  7. Experiences in simulating and testing coordinated voltage control provided by multiple wind power plants

    Energy Technology Data Exchange (ETDEWEB)

    Arlaban, T.; Alonso, O.; Ortiz, D. [Acciona Windpower S.A. (Spain); Peiro, J.; Rivas, R. [Red Electrica de Espana SAU (Spain); Quinonez-Varela, G.; Lorenzo, P. [Acciona Energia S.A. (Spain)

    2011-07-01

    This document presents some field tests performed in a transmission system node in order to check the adequacy of voltage control performance by multiple wind power plants, with an overall capacity of 395 MW. It briefly explains the Spanish TSO motivation towards new voltage control requirements and the necessity of performing such tests in order to set the most convenient voltage control parameters and to verify the stable operation. It presents how different the voltage control capability between modern wind turbines (DFIG) and older ones (SCIG) specifically retrofitted for voltage control is. (orig.)

  8. The power control system of the Siemens-KWU nuclear power station of the PWR [pressurized water reactors] type

    International Nuclear Information System (INIS)

    Huber, Horacio

    1989-01-01

    Starting with the first nuclear power plant constructed by Siemens AG of the pressurized light water reactor line (PWR), the Obrigheim Nuclear Power Plant (340 MWe net), until the recently constructed plants of 1300 MWe (named 'Konvoi'), the design of the power control system of the plant was continuously improved and optimized using the experience gained in the operation of the earlier generations of plants. The reactor power control system of the Siemens - KWU nuclear power plants is described. The features of this design and of the Siemens designed heavy water power plants (PHWR) Atucha I and Atucha II are mentioned. Curves showing the behaviour of the controlled variables during load changes obtained from plant tests are also shown. (Author) [es

  9. Simulation of Digital Control Computer of Nuclear Power Plant Based on Virtual Machine Technology

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Xue Yan; Li, Shu; Li, Qing [China Nuclear Power Operation Technology Co., Wuhan (China)

    2011-08-15

    Based on analyzing DCC (Digital Control Computer) instruction sets, memory map, display controllers and I/O system, virtual machine of DCC (abbr. VM DCC) has been developed. The executive and control programs, same as running on NPP (Nuclear Power Plant) unit's DCC, can run on the VM DCC smoothly and get same control results. Dual VM DCC system has been successfully applied in NPP FSS(Full Scope Simulator) training. It not only improves FSS's fidelity but also makes maintaining easier.

  10. Experience in designing the automatic nuclear power plant control system

    International Nuclear Information System (INIS)

    Sedov, V.K.; Busygin, B.F.; Eliseeva, O.V.; Mikhajlov, V.A.

    1981-01-01

    The integrated automatic control system (ACS) is designed at the Novovoronezh NPP (NVNPP). It comprises automatic technological control of all the five power un+ts and the plant in the whole (ACST) and automatic organizational-economic production control system (ACSP). The NVNPP ACS is designed as a two-level system. The two M-4030 and M-4030-1 computers are the technical base of the upper layer while a set of block NPP (computer-M-60 and M-700 for unit 5; M-60 and SM-2 for units 1-4) of the lower level. Block diagram of the NVNPP ACS, flowsheet of NVNPP ACS technical means and external communications of the control centre are described. The NVNPP ACS is supposed to be put into operation by stages. It is noted that design and introduction of the typical NPP ACS at the NVNPP permits to maximally reduce in the future the period of developing automatic control systems at nly introduced units and NPPs with the WWER reactors [ru

  11. Role and position of Nuclear Power Plants Research Institute in nuclear power industry

    International Nuclear Information System (INIS)

    Metke, E.

    1984-01-01

    The Nuclear Power Plants Research Institute carries out applied and experimental research of the operating states of nuclear power plants, of new methods of surveillance and diagnosis of technical equipment, it prepares training of personnel, carries out tests, engineering and technical consultancy and the research of automated control systems. The main research programme of the Institute is the rationalization of raising the safety and operating reliability of WWER nuclear power plants. The Institute is also concerned with quality assurance of selected equipment of nuclear power plants and assembly works, with radioactive waste disposal and the decommissioning of nuclear power plants as well as with the preparation and implementation of the nuclear power plant start-up. The Research Institute is developing various types of equipment, such as equipment for the decontamination of the primary part of the steam generator, a continuous analyzer of chloride levels in water, a gas monitoring instrument, etc. The prospects are listed of the Research Institute and its cooperation with other CMEA member countries. (M.D.)

  12. Maintenance management of emergency power supply equipment (uninterruptible power supply) in Tokai reprocessing plant

    International Nuclear Information System (INIS)

    Nishida, Kyosuke; Hiyama, Hisao; Shibata, Satomi; Iwasaki, Shogo; Inami, Shinichi

    2009-01-01

    Uninterruptible power supply systems are installed in the Tokai reprocessing plant in preparation for the emergency case that the commercial power supply is stopped by an accidental or intentional interruption in the supply of electricity. The uninterruptible power supply system particularly provides a temporary power source to the important devices for the radiation control of nuclear critical monitoring in the plant. Thus, the system is potentially important and essential for nuclear plants. The paper reports the current activities such as regular inspections, replacement of parts and system update, to maintain the function of uninterruptible power supply systems. (author)

  13. Handbook for replacement of process control systems in thermal power plants; Handbok - Utbytesbehov i kontrollsystem foer vaermekraftverk

    Energy Technology Data Exchange (ETDEWEB)

    Tuszynski, J. [Sydkraft Konsult AB, Malmoe (Sweden); Eriksson, Tage [Vattenfall Energisystem AB, Stockholm (Sweden)

    1996-12-01

    Modernization of control equipment in more complex power plants, such as thermal power plants, requires special attention due to the almost complete change-over to new computerised technology. The introduction of new technology gives rise to great changes in both the process control systems and in operation and maintenance routines. The change-over to computerised technology also causes lack of spare parts and service for older equipment. The older technology becomes obsolete due to the great advantages that comes with new technology. Therefore, the lifetime of control equipment is not only coupled to traditional ageing and wear, such as oxidation and fatigue of material, but also to the fact that the old equipment is getting out of date. It becomes more and more common that this out-of-date factor, rather than ageing, sets the limit for the useful life of the equipment. The Handbook for replacement of process control systems in thermal power plants is thought to be a first help for engineers and managers who has the responsibility for process control modernization. The Handbook points out the factors that determines the service life of the control equipment. It also suggests what information is required in order to take a decision on modernization. The Handbook at its present form constitutes a first approach that leaves room for an extension later on. Any request to expand the Handbook should be put forward to Vaermeforsk or its partners

  14. Demonstration of Essential Reliability Services by a 300-MW Solar Photovoltaic Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Loutan, Clyde; Klauer, Peter; Chowdhury, Sirajul; Hall, Stephen; Morjaria, Mahesh; Chadliev, Vladimir; Milam, Nick; Milan, Christopher; Gevorgian, Vahan

    2017-03-24

    The California Independent System Operator (CAISO), First Solar, and the National Renewable Energy Laboratory (NREL) conducted a demonstration project on a large utility-scale photovoltaic (PV) power plant in California to test its ability to provide essential ancillary services to the electric grid. With increasing shares of solar- and wind-generated energy on the electric grid, traditional generation resources equipped with automatic governor control (AGC) and automatic voltage regulation controls -- specifically, fossil thermal -- are being displaced. The deployment of utility-scale, grid-friendly PV power plants that incorporate advanced capabilities to support grid stability and reliability is essential for the large-scale integration of PV generation into the electric power grid, among other technical requirements. A typical PV power plant consists of multiple power electronic inverters and can contribute to grid stability and reliability through sophisticated 'grid-friendly' controls. In this way, PV power plants can be used to mitigate the impact of variability on the grid, a role typically reserved for conventional generators. In August 2016, testing was completed on First Solar's 300-MW PV power plant, and a large amount of test data was produced and analyzed that demonstrates the ability of PV power plants to use grid-friendly controls to provide essential reliability services. These data showed how the development of advanced power controls can enable PV to become a provider of a wide range of grid services, including spinning reserves, load following, voltage support, ramping, frequency response, variability smoothing, and frequency regulation to power quality. Specifically, the tests conducted included various forms of active power control such as AGC and frequency regulation; droop response; and reactive power, voltage, and power factor controls. This project demonstrated that advanced power electronics and solar generation can be

  15. Adaptive reactive power control of PV power plants for improved power transfer capability under ultra-weak grid conditions

    DEFF Research Database (Denmark)

    Yang, Dongsheng; Wang, Xiongfei; Liu, Fangcheng

    2017-01-01

    The Photovoltaic (PV) power plants are usually deployed in remote areas with the high solar irradiance, and their power transfer capabilities can be greatly limited by the large impedance of long-distance transmission lines. This paper investigates first the power transfer limit of the PV power p...

  16. Direct FuelCell/Turbine Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Hossein Ghezel-Ayagh

    2008-09-30

    This report summarizes the progress made in development of Direct FuelCell/Turbine (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T system employs an indirectly heated Turbine Generator to supplement fuel cell generated power. The concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, minimal emissions, reduced carbon dioxide release to the environment, simplicity in design, direct reforming internal to the fuel cell, and potential cost competitiveness with existing combined cycle power plants. Proof-of-concept tests using a sub-MW-class DFC/T power plant at FuelCell Energy's (FCE) Danbury facility were conducted to validate the feasibility of the concept and to measure its potential for electric power production. A 400 kW-class power plant test facility was designed and retrofitted to conduct the tests. The initial series of tests involved integration of a full-size (250 kW) Direct FuelCell stack with a 30 kW Capstone microturbine. The operational aspects of the hybrid system in relation to the integration of the microturbine with the fuel cell, process flow and thermal balances, and control strategies for power cycling of the system, were investigated. A subsequent series of tests included operation of the sub-MW Direct FuelCell/Turbine power plant with a Capstone C60 microturbine. The C60 microturbine extended the range of operation of the hybrid power plant to higher current densities (higher power) than achieved in initial tests using the 30kW microturbine. The proof-of-concept test results confirmed the stability and controllability of operating a fullsize (250 kW) fuel cell stack in combination with a microturbine. Thermal management of the system was confirmed and power plant operation, using the microturbine as the only source of fresh air supply

  17. 1985 seminar on power plant digital control and fault-tolerant microcomputers: proceedings

    International Nuclear Information System (INIS)

    Divakaruni, S.M.

    1986-09-01

    An EPRI Seminar to address Power Plant Digital Controls and Fault-Tolerant Microcomputers Technology was hosted by Arizona Public Service Company in Phoenix, Arizona on April 9-12, 1986. The attendees represented a broad spectrum of US and foreign utilities, architect and consulting firms, and NSSS and computer system hardware vendors. These proceedings contain the text of the formal presentations as well as the papers and slides used during the short courses offered

  18. Operation of Finnish nuclear power plants

    International Nuclear Information System (INIS)

    Tossavainen, K.

    1993-12-01

    Quarterly reports on the operation of Finnish nuclear power plants describe events and observations related to nuclear and radiation safety which the Finnish Centre for Radiation and Nuclear Safety considers safety significant. Safety-enhancing plant modifications and general matters relating to the use of nuclear energy are also reported. A summary of the radiation safety of plant personnel and the environment, and tabulated data on the plants' production and their load factors are also given. At the Loviisa 1 plant unit one of two specially-backed AC busbars was lost during the second quarter of 1993. A ca. 30 minute voltage break caused malfunctions in the plant unit's electrical equipment and rendered inoperable certain components important to safety. The event is rated on the International Nuclear Event Scale (INES) at level 1. In inspections carried out at TVO II during the annual maintenance outage, the number of cracks detected in control rod structural material was higher than usual. When cracks occur, part of boron carbide, the power regulating medium in control rods, may wash into the reactor water and control rod shutdown capability may be impaired. The event is rated on the INES at level 1. Other events in the second quarter of 1993 had no bearing on nuclear or radiation safety. (4 figs., 5 tabs.)

  19. Manual on quality assurance for installation and commissioning of instrumentation, control and electrical equipment in nuclear power plants

    International Nuclear Information System (INIS)

    1989-01-01

    The present Manual on Quality Assurance (QA) for Installation and Commissioning of Instrumentation, Control and Electrical (ICE) Equipment of Nuclear Power Plants contains supporting material and illustrative examples for implementing basic requirements of the quality assurance programme in procurement, receiving, installation and commissioning of this equipment. The Manual on Quality Assurance for Installation and Commissioning of ICE Equipment is designed to supplement and be consistent with the Guidebook as well as with the IAEA Code and Safety Guides on Quality Assurance. It is intended for the use of managerial staff and QA personnel of nuclear power plant owners or the organizations respectively responsible for the legal, technical, administrative and financial aspects of a nuclear power plant. The information provided in the Manual will also be useful to the inspection staff of the regulatory organization in the planning and performance of regulatory inspections at nuclear power plants

  20. Nuclear power plants

    International Nuclear Information System (INIS)

    Margulova, T.Ch.

    1976-01-01

    The textbook focuses on the technology and the operating characteristics of nuclear power plants equiped with pressurized water or boiling water reactors, which are in operation all over the world at present. The following topics are dealt with in relation to the complete plant and to economics: distribution and consumption of electric and thermal energy, types and equipment of nuclear power plants, chemical processes and material balance, economical characteristics concerning heat and energy, regenerative preheating of feed water, degassing and condenser systems, water supply, evaporators, district heating systems, steam generating systems and turbines, coolant loops and pipes, plant siting, ventilation and decontamination systems, reactor operation and management, heat transfer including its calculation, design of reactor buildings, and nuclear power plants with gas or sodium cooled reactors. Numerous technical data of modern Soviet nuclear power plants are included. The book is of interest to graduate and post-graduate students in the field of nuclear engineering as well as to nuclear engineers