WorldWideScience

Sample records for power plant discharge

  1. Coal-fired power plant: airborne routine discharges

    International Nuclear Information System (INIS)

    Zeevaert, T.

    2005-01-01

    The radiological impact from non-nuclear industries is a growing matter of concern to stake holders and regulators. It has been demonstrated that atmospheric discharges from coal-fired power plants can lead to higher dose-impacts to critical groups of the population than nuclear power plants. In Belgium, in the frame of an agreement between electricity producers and national authorities, measures were taken in conventional power plants to restrict airborne discharges of SO 2 , NO x and suspended particles. In the 500 MWe coal-fired power plant of Langerlo, a flue gas purification system was installed, consisting of a denitrification unit and a desulphurization unit, next to the electrostatic dust filter units. These measures have also an important effect on the radioactive atmospheric discharges. The objective of this study was to assess the radiological impact of the airborne releases of the power plant under normal working conditions and in particular the influence of the installation of the flue gas purification system. As a first step, we measured the natural radioactivity content of the coal and the radium content of the fly ash . The quantities of the other radioelements discharged through the chimney, were estimated, assuming the same behaviour as radium, except for the more volatile lead and polonium, which will condense preferably on finer ash particles, against which the electro filters are less effective. (A concentration factor of 4 has been adopted). The radon, present in the coal, is assumed to be discharged completely through the chimney. The atmospheric transport, dispersion and deposition of the discharged radionuclides were modelled, applying the bi-Gaussian plume model IFDM. For the calculations, we used hourly averages of the meteorological observations at Mol over the year 1991. The transfers of the radionuclides from air and soil to the biospheric media, exposing man, were calculated with our biosphere model and the radiological impact to the

  2. Structure design of water discharge surge tank of nuclear power plant

    International Nuclear Information System (INIS)

    Wang Fang; Hou Shuqiang

    2015-01-01

    Drainage is an important function of water discharge surge tank in nuclear power plant. There is little wall and beam inside the water discharge surge tank due to the requirement of major work, which is different from the general structure. Taking water discharge surge tank of nuclear power plant for example, concerned problems are expatiated in the structure scheme of water discharge surge tank, and important structural components are analyzed. Structural analysis model is established by ANSYS finite element analysis. A comprehensive and numerical analysis is performed for different combinations of structural model, and the internal force of structure is extracted. Finally, suggestions for design of similar structure are proposed. (authors)

  3. Aquatic indicator organisms as a tool to monitor discharges from nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Outola, Iisa; Vartti, Vesa-Pekka; Klemola, Seppo [STUK - Radiation and Nuclear Safety Authority, P.O. Box 14, 00881 Helsinki (Finland)

    2014-07-01

    There are four operating nuclear power plant units in Finland at two separate locations. The units started operation during 1977-1980. The surveillance of radioactive substances in the vicinities of the nuclear power plant is carried out under the permanent monitoring programs. Some 1000 samples are taken annually from the surroundings of the power plants to confirm that the discharges from the power plants are within permissible release limits and to monitor the dispersion of discharges in the environment. Aquatic indicator organisms (macro-algae, periphyton, mussels, crustacean, submerged aquatic plants) are included in the monitoring program. The indicator organisms are valuable monitoring objects both in normal and emergency situations because they accumulate effectively and often very rapidly radioactive substances from the medium. Six different species (Periphyton, Fucus vesiculosus, Myriophyllum spicatum, Potamogeton pectinatus, Saduria entomon, Macoma Baltica/Mytilus edulis) are collected regularly. Number of sampling location for each species varies from 1 to 7. Some species are collected continuously, some 1-2 times in a year. In this study we have evaluated the monitoring results for the aquatic indicator organisms for the period of 2005-2010 concerning concentration of discharge nuclides. Our aim was to answer the following questions using the monitoring data from aquatic organisms: 1) Which radionuclides are released to the marine environment and how often do we detect them? 2) How far from the nuclear power plants discharge radionuclides are detected? 3) How concentration of discharge radionuclides has changed with time in aquatic organisms? The number of discharge nuclides detected in the aquatic indicator samples was 11. Most of them were only detected in few samples, but {sup 58}Co, {sup 60}Co, {sup 54}Mn and {sup 110m}Ag were detected more frequently. Most of the observations above detection limits were made within the 5 km distance from the

  4. A Study on infrared tracing and monitoring of thermal discharge from the power plants

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Byung Sun; Hong, Wuk Hee; Kim, Yung Bae; Park, Jang Rae; Choi, Yung An; Park, Yung San [Korea Electric Power Corp. (KEPCO), Taejon (Korea, Republic of). Research Center

    1996-08-01

    Massive discharge of cooling water from the nuclear power plants as well as many thermal power plants would cause serious environmental problems. Hence, the task of predicting cooling water dispersion areas has enormous importance for better environmental management related with the power plant operation. For the last two decades, extensive field survey and dispersion modeling have been mainly applied to predict thermal discharge dispersion areas. In this study, the method of infrared thermal sensing was tested as a possible means of measuring the affected areas of thermal discharge at the thermal power plant sites. Many IR images obtained by using the terrestrial camera, or by using the airborne scanner, or from the Landsat iv satellite were analyzed from the pc with the IDRISI and resource software and further enhanced with other image analysis technologies. The result of study proved this IR imaging technology to be an potentially cost-effective tool for assessment of water-temperature increase caused by the thermal discharge from the power plants, however, further elaboration of procedure was highly requested. (author). 9 refs., 24 figs.

  5. Summary of personnel doses and discharge of radioactivity at Swedish nuclear power plants 1971-1975

    International Nuclear Information System (INIS)

    Malmqvist, L.; Persson, Aa.

    1977-01-01

    The report is a summary of personnel doses and activity discharges from Swedish nuclear power plants during the first five years of electric power production by nuclear plants. The personnel doses for the Sweedish plants are lower than the corresponding values for American plants. The highest Swedish value is o,13 manrem per MWE and year. The discharge of radioactivity to the atmosphere from the Swedish plants has been for below the maximum permissible limits. The discharge of radioactivity to the water recipients was less than 1 % of what is permissible

  6. Comparison of trace metals in intake and discharge waters of power plants using clean techniques

    International Nuclear Information System (INIS)

    Salvito, D.T.; Allen, H.E.

    1995-01-01

    In order to determine the impact to receiving waters of trace metals potentially discharged from a once-through, non-contact cooling water system from a power plant, a study was conducted utilizing clean sampling and analytical techniques for a series of metals. Once-through, non-contact cooling water at power plants is frequently discharged back to the fresh or saline waterbody utilized for its intake water. This water is used to cool plant condensers. Intake and discharge data were collected and evaluated using paired t-tests. Study results indicate that there is no measurable contribution of metals from non-contact cooling water from this power plant

  7. Radiological impact from airborne routine discharges of Coal-Fired power plant

    International Nuclear Information System (INIS)

    Norasalwa Zakaria; Rohyiza Baan; Kathiravale, Sivapalan

    2010-01-01

    Radioactivity exists everywhere in nature. We are exposed to intense and continuous natural radiation coming from the sun, cosmic radiation, telluric radiation and even to the internal radiation of our own body. The fly ash emitted from burning coal for electricity by a power plant carries into the surrounding environment 100 times more radiation than a nuclear power plant producing the same amount of energy. This paper presents the information of studies on the radiological impact from airborne routine discharge of coal-fired power plants. (author)

  8. Power Plant Bromide Discharges and Downstream Drinking Water Systems in Pennsylvania.

    Science.gov (United States)

    Good, Kelly D; VanBriesen, Jeanne M

    2017-10-17

    Coal-fired power plants equipped with wet flue gas desulfurization (FGD) systems have been implicated in increasing bromide levels and subsequent increases in disinfection byproducts at downstream drinking water plants. Bromide was not included as a regulated constituent in the recent steam electric effluent limitations guidelines and standards (ELGs) since the U.S. EPA analysis suggested few drinking water facilities would be affected by bromide discharges from power plants. The present analysis uses a watershed approach to identify Pennsylvania drinking water intakes downstream of wet FGD discharges and to assess the potential for bromide discharge effects. Twenty-two (22) public drinking water systems serving 2.5 million people were identified as being downstream of at least one wet FGD discharge. During mean August conditions (generally low-flow, minimal dilution) in receiving rivers, the median predicted bromide concentrations contributed by wet FGD at Pennsylvania intake locations ranged from 5.2 to 62 μg/L for the Base scenario (including only natural bromide in coal) and from 16 to 190 μg/L for the Bromide Addition scenario (natural plus added bromide for mercury control); ranges depend on bromide loads and receiving stream dilution capacity.

  9. Orange County Littoral Cell CRSMP Wastewater and Power Plant Discharge Structures

    Data.gov (United States)

    California Natural Resource Agency — Graphical depiction of wastewater and power plant discharge pipelines/outlets locations in Southern California.The shapefile was collected by Everest International...

  10. Orange County Littoral Cell CRSMP Wastewater and Power Plant Discharge Structures

    Data.gov (United States)

    California Department of Resources — Graphical depiction of wastewater and power plant discharge pipelines/outlets locations in Southern California.The shapefile was collected by Everest International...

  11. Biological effects from discharge of cooling water from thermal power plants

    International Nuclear Information System (INIS)

    1976-12-01

    Results are reported for a Danish project on biological effects from discharge of cooling water from thermal power plants. The purpose of the project was to provide an up-to-date knowledge of biological effects of cooling water discharge and of organization and evaluation of recipient investigations in planned and established areas. (BP)

  12. Environmental effects of large discharges of cooling water. Experiences from Swedish nuclear power plants

    International Nuclear Information System (INIS)

    Ehlin, Ulf; Lindahl, Sture; Neuman, Erik; Sandstroem, Olof; Svensson, Jonny

    2009-07-01

    Monitoring the environmental effects of cooling water intake and discharge from Swedish nuclear power stations started at the beginning of the 1960s and continues to this day. In parallel with long-term monitoring, research has provided new knowledge and methods to optimise possible discharge locations and design, and given the ability to forecast their environmental effects. Investigations into the environmental effects of cooling-water are a prerequisite for the issuing of power station operating permits by the environmental authorities. Research projects have been carried out by scientists at universities, while the Swedish Environmental Protection Agency, the Swedish Board of Fisheries, and the Swedish Meteorological and Hydrological Institute, SMHI, are responsible for the greater part of the investigations as well as of the research work. The four nuclear power plants dealt with in this report are Oskarshamn, Ringhals, Barsebaeck and Forsmark. They were taken into operation in 1972, 1975, 1975 and 1980 resp. - a total of 12 reactors. After the closure of the Barsebaeck plants in 2005, ten reactors remain in service. The maximum cooling water discharge from the respective stations was 115, 165, 50 and 135 m 3 /s, which is comparable to the mean flow of an average Swedish river - c:a 150 m 3 /s. The report summarizes studies into the consequences of cooling water intake and discharge. Radiological investigations made at the plants are not covered by this review. The strategy for the investigations was elaborated already at the beginning of the 1960s. The investigations were divided into pre-studies, baseline investigations and monitoring of effects. Pre-studies were partly to gather information for the technical planning and design of cooling water intake and outlet constructions, and partly to survey the hydrographic and ecological situation in the area. Baseline investigations were to carefully map the hydrography and ecology in the area and their natural

  13. Evaluating the Thermal Pollution Caused by Wastewaters Discharged from a Chain of Coal-Fired Power Plants along a River

    Directory of Open Access Journals (Sweden)

    Marc A. Rosen

    2015-05-01

    Full Text Available Reliable and safe operation of a coal-fired power plant is strongly linked to freshwater resources, and environmental problems related to water sources and wastewater discharge are challenges for power station operation. In this study, an evaluation on the basis of a wastewater thermal pollution vector is reported for the environmental impact of residual water generated and discharged in the Jiu River during the operation of thermoelectric units of the Rovinari, Turceni and Craiova coal-fired power plants in Romania. Wastewater thermal pollutant vector Plane Projection is applied for assessing the water temperature evolution in the water flow lane created downstream of each power plant wastewater outlet channel. Simulation on the basis of an Electricity of France model, and testing validation of the results for thermoelectric units of 330 MW of these power plants are presented.

  14. Simulation of chlorinated water discharges from power plants on estuaries and rivers

    International Nuclear Information System (INIS)

    Eraslan, A.H.; Lietzke, M.H.; Fischer, S.K.; Kalmaz, E.V.

    1977-01-01

    The fast-transient (tidal-transient) one-dimensional discrete-element chemical transport model and its associated computer code CHMONE were applied to study the effects of chlorinated water discharges from power plants on tidal estuaries and controlled rivers. The mathematical model has the capability to predict simultaneously the hydrodynamic, thermal, and chemical composition of water as one-dimensional time-dependent distributions

  15. Computer simulations of discharges from a lignite power plant complex

    International Nuclear Information System (INIS)

    Koukouliou, V.; Horyna, J.; Perez-Sanchez, D.

    2008-01-01

    This paper describes work carried out within the IAEA EMRAS program NORM working group to test the predictions of three computer models against measured radionuclide concentrations resulting from discharges from a lignite power plant complex. This complex consists of two power plants with a total of five discharge stacks, situated approximately 2-5 kilometres from a city of approximately 10,000 inhabitants. Monthly measurements of mean wind speed and direction, dust loading, and 238 U activities in fallout samples, as well as mean annual values of 232 Th activity in the nearest city sampling sites were available for the study. The models used in the study were Pc-CREAM (a detailed impact assessment model), and COMPLY and CROM (screening models). In applying the models to this scenario it was noted that the meteorological data provided was not ideal for testing, and that a number of assumptions had to be made, particularly for the simpler models. However, taking the gaps and uncertainties in the data into account, the model predictions from PC-CREAM were generally in good agreement with the measured data, and the results from different models were also generally consistent with each other. However, the COMPLY predictions were generally lower than those from PC-CREAM. This is of concern, as the aim of a screening model (COMPLY) is to provide conservative estimates of contaminant concentrations. Further investigation of this problem is required. The general implications of the results for further model development are discussed. (author)

  16. Limitation and control of radioactive liquid discharges at the Tihange power plant

    International Nuclear Information System (INIS)

    Dresse, H.

    1985-01-01

    Regulations on which is based the definition of limits stipulated in the licence are recalled. As american rules apply for the last power plants built in Belgium, the criteria of 10 CFR 50 App. 1 (ALARA) were followed, not only to justify the conception of installations as in U.S., but also to define limits for the yearly discharge of various isotopes. The observed procedure is described, and the limits are indicated, as well as the hypothetical doses which could result for the different classes of critical species to be considered. The author then defined the retained principles for the control and accounting of discharged activity [fr

  17. Zero-discharge wastewater treatment facility for a 900-MWe GCC power plant

    International Nuclear Information System (INIS)

    Rosain, R.M.; Dalan, J.A.

    1992-05-01

    Florida Power and Light desires to examine the prospect of achieving zero liquid discharge from the gasification area of their proposed 900-MW coal gasification-combined cycle (GCC) power plant expansion at the Martin station. This report provides information about the technologies available, cost, and process selection methods, and recommends a preferred system for achieving zero liquid discharge from the gasification block. The recommended system consists of primary clarification and vapor compression evaporation, followed by carbon adsorption post-treatment of the evaporator distillate. Dry solids are produced from the evaporator concentrate with a crystallizer/centrifuge combination. The system recovers 99 percent of the wastewater as pure distillate vater. The predicted capital cost for the 265-gpm system is $12.5 million; the predicted operating costs are $18.60/1000 gallons. Both costs are in 1990 dollars. Promising treatment technologies to examine for future designs are cooling tower treatment and freeze crystallization

  18. Study the dispersion the possible thermal discharges to Juragua nuclear power plant. Preliminary results

    International Nuclear Information System (INIS)

    Munnoz Caravaca, A.; Artega Rodriguez, H.; Diaz Asencio, M.; Cartas Aguila, H.

    1998-01-01

    The present work has as objective to present the results the evaluation to the surface area impact to the waters cooling discharges the Juragua nuclear power plant, by means of hydrodynamic models that described the possible distribution the same ones in the boundary marine means to the location

  19. Influence of thermal discharges on the distribution of macroflora and fauna. Humboldt Bay Nuclear Power Plant, California

    International Nuclear Information System (INIS)

    Adams, J.R.

    1975-01-01

    Populations of benthic and epifaunal macro-organisms living in the area influenced by the thermal discharge of the steam-electric power plant at Humboldt Bay, California, were analyzed in 1971 and 1972 to determine if differences in distribution could be attributed to the effluent. Relicated benthic samples were collected with a Ponar grab at 20 stations in the bay and at 4 stations in the canals leading to and from the power plant. Comparisons of epifaunal plants and animals in a rocky intertidal zone were made at 13 permanent transects spaced at various distances on either side of the discharge. Species richness in the intertidal was positively correlated with increased temperature in 13 percent of the possible combinations of tide level and diversity. Individual species were positively correlated with increased temperatures for 19 percent of the plant comparisons, and for 16.3 percent of the animal comparisons. Comparisons of populations of individual species in the heated intertidal zone with those in a control zone indicated differences in 26.2 percent of the plant surveys, and 23.2 percent of the animal surveys. Differences were positively related to the increased temperature in 90.5 percent of the comparisons. Proportions of eurythermal plants or animals in the heated areas of the intertidal zone did not differ significantly from proportions in other areas in 4 different survey periods. With the possible exception of one species, there was no conclusive evidence that any of the 132 species found in the intertidal area at Humboldt Bay was eliminated from the heated area surrounding the discharge of the power plant

  20. Review of radioactive discharges from nuclear power stations

    International Nuclear Information System (INIS)

    1991-02-01

    HM Inspectorate of Pollution commissioned, with authorising responsibilities in England and Wales, a study into the discharges of radioactive effluents from Nuclear Power Stations. The study considered arisings from nuclear power stations in Europe and the USA and the technologies to treat and control the radioactive discharges. This report is a review of the arisings and concludes that suitable technologies exist, which if applied, could reduce discharges from nuclear power plants in England and Wales in line with the rest of Europe. (author)

  1. Predicting the environmental risks of radioactive discharges from Belgian nuclear power plants.

    Science.gov (United States)

    Vandenhove, H; Sweeck, L; Vives I Batlle, J; Wannijn, J; Van Hees, M; Camps, J; Olyslaegers, G; Miliche, C; Lance, B

    2013-12-01

    An environmental risk assessment (ERA) was performed to evaluate the impact on non-human biota from liquid and atmospheric radioactive discharges by the Belgian Nuclear Power Plants (NPP) of Doel and Tihange. For both sites, characterisation of the source term and wildlife population around the NPPs was provided, whereupon the selection of reference organisms and the general approach taken for the environmental risk assessment was established. A deterministic risk assessment for aquatic and terrestrial ecosystems was performed using the ERICA assessment tool and applying the ERICA screening value of 10 μGy h(-1). The study was performed for the radioactive discharge limits and for the actual releases (maxima and averages over the period 1999-2008 or 2000-2009). It is concluded that the current discharge limits for the Belgian NPPs considered do not result in significant risks to the aquatic and terrestrial environment and that the actual discharges, which are a fraction of the release limits, are unlikely to harm the environment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Determination of 90Sr in waters of discharge of nuclear power plants

    International Nuclear Information System (INIS)

    Campos, J.M.; Equillor, H.E.

    2010-01-01

    The determination of 90 Sr has some problems because it is a pure beta emitter, and despite the specificity of radiochemical techniques used, their full identification is not always easy, especially when detected low activities. In addition, samples water discharge presents a matrix consisting of a series of fission or activation products, beta / gamma emitters, several of which may interfere with the determination of 90 Sr. This paper describes a simple method for the determination of 90 Sr in water of discharge of nuclear power plants, which is based on the purification of 90 Y, which is used in the ARN since 2009 and has yielded good results to the present, as no interferences were detected in the analysis of the decay of 90 Y. (authors) [es

  3. Water resources research program. Volume I. Measurements of physical phenomena related to power plant waste heat discharges: Lake Michigan, 1973--1974

    International Nuclear Information System (INIS)

    Tokar, J.V.; Zivi, S.M.; Frigo, A.A.; Van Loon, L.S.; Frye, D.E.; Tome, C.

    1975-03-01

    Methodology developed for the prediction of the temporal and spatial extent of thermal plumes resulting from heated discharges as a function of environmental and power plant design and operating conditions is described. Plume temperature measurements acquired from the Point Beach and Zion Nuclear Power Plants, both located on Lake Michigan, during the past several years show the effects of two-unit operation at the plant site. The Zion plant, in contrast to the shoreline surface discharge of the Point Beach station, has offshore submerged outfalls. Measuring techniques discussed include: fluorescent dye studies of the magnitude of lateral and vertical turbulent transport in plume dispersal; simultaneous aerial infrared scanning and in situ boat measurements for thermal plume mapping; a study of the dynamic characteristics of heated discharges; and a review of data from a two-year study of nearshore ambient currents at the Point Beach plant. (U.S.)

  4. Predicting the environmental risks of radioactive discharges from Belgian nuclear power plants

    International Nuclear Information System (INIS)

    Vandenhove, H.; Sweeck, L.; Vives i Batlle, J.; Wannijn, J.; Van Hees, M.; Camps, J.; Olyslaegers, G.; Miliche, C.; Lance, B.

    2013-01-01

    An environmental risk assessment (ERA) was performed to evaluate the impact on non-human biota from liquid and atmospheric radioactive discharges by the Belgian Nuclear Power Plants (NPP) of Doel and Tihange. For both sites, characterisation of the source term and wildlife population around the NPPs was provided, whereupon the selection of reference organisms and the general approach taken for the environmental risk assessment was established. A deterministic risk assessment for aquatic and terrestrial ecosystems was performed using the ERICA assessment tool and applying the ERICA screening value of 10 μGy h −1 . The study was performed for the radioactive discharge limits and for the actual releases (maxima and averages over the period 1999–2008 or 2000–2009). It is concluded that the current discharge limits for the Belgian NPPs considered do not result in significant risks to the aquatic and terrestrial environment and that the actual discharges, which are a fraction of the release limits, are unlikely to harm the environment. -- Highlights: • Impact of radioactive discharges by the Belgian NPPs of Doel and Tihange on wildlife was evaluated. • Deterministic risk assessment for aquatic and terrestrial ecosystems performed with the ERICA tool. • NPP discharge limits do not result in significant risks to the aquatic and terrestrial environment. • Actual discharges, a fraction of the release limits, are unlikely to harm the environment

  5. Validation of the kinetic model for predicting the composition of chlorinated water discharged from power plant cooling systems

    International Nuclear Information System (INIS)

    Lietzke, M.H.

    1977-01-01

    The purpose of this report is to present a validation of a previously described kinetic model which was developed to predict the composition of chlorinated fresh water discharged from power plant cooling systems. The model was programmed in two versions: as a stand-alone program and as a part of a unified transport model developed from consistent mathematical models to simulate the dispersion of heated water and radioisotopic and chemical effluents from power plant discharges. The results of testing the model using analytical data taken during operation of the once-through cooling system of the Quad Cities Nuclear Station are described. Calculations are also presented on the Three Mile Island Nuclear Station which uses cooling towers

  6. Discharges to the environment and environmental protection at CEGB power stations

    International Nuclear Information System (INIS)

    Wright, J.K.

    1981-01-01

    The subject is discussed under the headings: introduction (scope of paper will cover the principles, methods and results obtained in environmental protection in relation to atmospheric discharges made routinely during power generation); air pollution control; nuclear power stations (type of discharge, annual discharges, environmental monitoring); fossil fuelled power stations; health effects; trace elements; long range transport and acid rain; future coal fired plant; carbon dioxide. (U.K.)

  7. Influence of cooling water discharges from Kaiga Nuclear Power Plant on aquatic ecology of the Kadra reservoir

    International Nuclear Information System (INIS)

    Ghosh, T.K.; Zargar, S.; Kulkarni, A.V.

    2007-01-01

    The alterations induced in the ambient temperature can lead to wide manifestations in species distribution and community structure. In general, elevated water temperature causes changes in species composition, species dominance, standing crop and productivity of biota including phytoplankton communities in any aquatic ecosystem. Thus warm water discharges from power plants into the receiving water bodies may adversely affect aquatic ecology. In the absence of exhaustive data on the response of aquatic organisms and ecosystems in the tropics to elevated temperatures, the only option is to draw inferences, from the experiences in the subtropical and temperature areas. Since, sufficient data on similar line are not available in tropical environment, present paper delineates certain aspects of aquatic ecology of the Kadra reservoir where cooling water is discharged. The study suggests the heated effluents from Kaiga Nuclear Power plant caused changes in dissolved oxygen and pH of water, heterotrophic bacterial population, sediment biogeochemical cycles related biochemical processes, species composition, species dominance, standing crop and productivity of biota including phytoplankton communities within 500 m from End of Discharge Canal point of Kadra reservoir when two units are running in full capacity. (author)

  8. Preliminary study on acceptability of scope of thermal discharge mixing zone for nuclear power plant

    International Nuclear Information System (INIS)

    Liu Yongye; Yang Yang; Wang Liang; Chen Xiaoqiu; Liu Senlin

    2012-01-01

    Based on the situation that the existing domestic temperature control standards are not performable, the preliminary study on the acceptability of the mixing zone scope of thermal discharge for nuclear power plant was conducted in this paper, taking a coastal power station SNP as a case. The following preliminary conclusions could be drawn from the results of cluster analysis of the SNP site under different results of mathematical modeling and physical model test: 1) The influence intensity of ecological function of the SNP site seawater is small and the scope of thermal discharge mixing zone is acceptable under SNP-1 (Unit 1 and 2) operating condition; 2) the influence intensity of ecological function of the SNP site seawater is small and the scope of thermal discharge mixing zone is acceptable in spring under SNP-1 (Unit 1 and 2) and SNP-2 (Unit 3 and 4) operating condition, while the influence intensity of ecological function of the SNP site seawater is large and the scope of mixing zone is unacceptable in autumn under the same operating condition. (authors)

  9. Development of waste water reuse water system for power plants

    Energy Technology Data Exchange (ETDEWEB)

    Park, K K; Kim, D H; Weon, D Y; Yoon, S W; Song, H R [Korea Electric Power Research Institute, Taejeon (Korea, Republic of)

    1998-12-31

    1. Status of waste water discharge at power plants 2. Present status of waste water reuse at power plants 3. Scheme of waste water reuse at power plants 4. Standardization of optimum system for waste water reuse at power plants 5. Establishment of low cost zero discharge system for waste water 6. Waste water treatment technology of chemical cleaning. (author). 132 figs., 72 tabs.

  10. Development of waste water reuse water system for power plants

    Energy Technology Data Exchange (ETDEWEB)

    Park, K.K.; Kim, D.H.; Weon, D.Y.; Yoon, S.W.; Song, H.R. [Korea Electric Power Research Institute, Taejeon (Korea, Republic of)

    1997-12-31

    1. Status of waste water discharge at power plants 2. Present status of waste water reuse at power plants 3. Scheme of waste water reuse at power plants 4. Standardization of optimum system for waste water reuse at power plants 5. Establishment of low cost zero discharge system for waste water 6. Waste water treatment technology of chemical cleaning. (author). 132 figs., 72 tabs.

  11. Environmental effects of thermal and radioactive discharges from nuclear power plants in the boreal brackish-water conditions of the northern Baltic Sea

    International Nuclear Information System (INIS)

    Ilus, E.

    2009-08-01

    During recent decades, thermal and radioactive discharges from nuclear power plants into the aquatic environment have become the subject of lively debate as an ecological concern. Recently, an increasing demand for facts has appeared in context with the Environmental Impact Assessment procedures that are being in progress for planned new nuclear power units in Finland. The target of this thesis was to summarize the large quantity of results obtained in extensive monitoring programmes and studies carried out in recipient sea areas off the Finnish nuclear power plants at Loviisa and Olkiluoto during more than four decades. Especially in the conditions specific for the northern Baltic Sea, where biota is poor and adapted to relatively low temperatures and to seasonal variation with a cold ice winter and a temperate summer, an increase in temperature may cause increased environmental stress to the organisms. Furthermore, owing to the brackish-water character of the Baltic Sea, many organisms live there near the limit of their physiological tolerance. On the other hand, the low salinity increases the uptake of certain radionuclides by many organisms in comparison with oceanic conditions. The sea areas surrounding the Finnish nuclear power plants differ from each other in many respects (efficiency of water exchange, levels of nutrients and other water quality parameters, water salinity and consequent differences in species composition, abundance and vitality of biota). In addition, there are differences in the discharge quantities and discharge design of the power plants. In this thesis the environmental effects of the two power plants on the water recipients are compared and their relative significance is assessed

  12. Sea water pumping-up power plant system combined with nuclear power plant

    International Nuclear Information System (INIS)

    Ichiki, Tadaharu; Tanaka, Masayuki.

    1991-01-01

    It is difficult to find a site suitable to construction for a sea water pumping-up power plant at a place relatively near the electric power consumption area. Then, a nuclear power plant is set at the sea bottom or the land portion of a sea shore near the power consumption area. A cavity is excavated underground or at the bottom of the sea in the vicinity of the power plant to form a lower pond, and the bottom of the sea, as an upper pond and the lower pond are connected by a water pressure pipe and a water discharge pipe. A pump water turbine is disposed therebetween, to which electric power generator is connected. In addition, an ordinary or emergency cooling facility in the nuclear power plant is constituted such that sea water in the cavity is supplied by a sea water pump. Accordingly, the sea water pumping-up plant system in combination with the nuclear power plant is constituted with no injuring from salts to animals and plants on land in the suburbs of a large city. The cost for facilities for supplying power from a remote power plant to large city areas and power loss are decreased and stable electric power can be supplied. (N.H.)

  13. Thermal pollution of rivers and reservoirs by discharges of heated water from thermal and nuclear power plants

    International Nuclear Information System (INIS)

    Makarov, I.

    1974-12-01

    The problems are discussed of the thermal pollution of rivers and water reservoirs by discharges of heated water from thermal and nuclear power plants. The problems concerned are quantitative and qualitative changes in biocenoses, the disturbance or extinction of flora and fauna, physiological changes in organisms and changes in the hydrochemical regime. (Z.M.)

  14. Works of shifting discharge facilities in construction for adding No.3 and No.4 plants to Oi Nuclear Power Station

    International Nuclear Information System (INIS)

    Matsuoka, Gen-ichi; Yoshida, Atsumu.

    1989-01-01

    At present in Oi Power Station, No.1 and No.2 plants of 1175 MWe output each are in operation, but in order to stabilize electric power supply for a long period, Kansai Electric Power Co., Inc. earnestly advances the construction works for adding No.3 and No.4 plants of each 1180 MWe output PWR. No.3 plant is expected to begin the operation in October, 1991, and No.4 plant in August, 1992. The works for creating the site were started in July, 1985, and the flat land of about 60,000 m 2 and the reclaimed land of about 80,000 m 2 were prepared. Subsequently, the main construction works were started in May, 1987, and the rate of general progress was 21 % in No.3 plant and 2 % in No.4 plant as of the end of October, 1988. Due to the addition of No.3 and No.4 plants, the quantity of condenser cooling water discharge increases to 318 m 3 /s from 150 m 3 /s at present, therefore, the bank having discharge holes is shifted from the present position about 100 m toward sea. As to the problems, the shifting works in flowing water, the method of shifting, the examination on lifting caissons and culverts, the trial construction of chemical anchors and so on were investigated. The execution of the shifting works is reported. (K.I.)

  15. Estimated radiological effects of the normal discharge of radioactivity from nuclear power plants in the Netherlands with a total capacity of 3500 MWe

    International Nuclear Information System (INIS)

    Lugt, G. van der; Wijker, H.; Kema, N.V.

    1977-01-01

    In the Netherlands discussions are going on about the installation of three nuclear power plants, leading with the two existing plants to a total capacity of 3500 MWe. To have an impression of the radiological impact of this program, calculations were carried out concerning the population doses due to the discharge of radioactivity from the plants during normal operation. The discharge via the ventilation stack gives doses due to noble gases, halogens and particulate material. The population dose due to the halogens in the grass-milk-man chain is estimated using the real distribution of grass-land around the reactor sites. It could be concluded that the population dose due to the contamination of crops and fruit is negligeable. A conservative estimation is made for the dose due to the discharge of tritium. The population dose due to the discharge in the cooling water is calculated using the following pathways: drinking water; consumption of fish; consumption of meat from animals fed with fish products. The individual doses caused by the normal discharge of a 1000 MWe plant appeared to be very low, mostly below 1 mrem/year. The population dose is in the order of some tens manrems. The total dose of the 5 nuclear power plants to the dutch population is not more than 70 manrem. Using a linear dose-effect relationship the health effects to the population are estimated and compared with the normal frequency

  16. Cooling water recipients for nuclear power plants

    International Nuclear Information System (INIS)

    Dahl, F.-E.; Saetre, H.J.

    1971-10-01

    The hydrographical and hydrological conditions at 17 prospective nuclear power plant sites in the Oslofjord district are evaluated with respect to their suitability as recipients for thermal discharges from nuclear power plants. No comparative evaluations are made. (JIW)

  17. Study of thermal and hydraulic phenomena going along with the discharge of hot waters from a power generation plant

    International Nuclear Information System (INIS)

    Syrmalenios, Panayotis

    1973-01-01

    This short research thesis aims at taking stock of problems raised by the discharge of high temperature water from a power plant into rivers, lakes and seas from a thermal and hydraulic point of view. The author proposes an overview of ecological, legal, and recirculation problems. He describes the various phenomena going along these discharges at the vicinity of the discharge and far from it. He also proposes an overview of methods used to study these thermal and hydraulic effects: 'in-situ' studies, experimental methods, theoretical methods. Appendices address floating jets and layered flows [fr

  18. Interactions of radionuclides in water, particulates, and oysters in the discharge canal of a nuclear power plant

    International Nuclear Information System (INIS)

    Harrison, F.L.; Wong, K.M.; Heft, R.E.

    1976-01-01

    This study was designed to provide data for dynamic modeling of radioactive pollutants in marine ecosystems adjacent to nuclear power plants. The data are relevant to the dynamics of radionuclide transfer among seawater, suspended particulates, sediments, and biota. Gamma-emitting radionuclides ( 54 Mn, 60 Co, 65 Zn, and 137 Cs) were followed in the water and particulates, as well as in oysters introduced into the discharge canal of the boiling water reactor of the Humboldt Bay Power Plant near Eureka, California. The liquid waste was introduced into the canal at irregular intervals and contained radionuclides at extremely low but variable concentrations. Radionuclides were determined in the oysters, water, and particulates after single releases (over about 6 hr) and over a long series of releases

  19. Importance of benthonic marine flora monitoring in the liquid effluent discharge form Angra-1 Nuclear Power Plant

    International Nuclear Information System (INIS)

    Bloise, G.C.; Araujo Costa, D. de

    1994-01-01

    Angra-1 Nuclear Power Plant use sea water to condenser the steam of the secondary circuit. This water capted from Itaorna bay is chlorined and discharged more heater in Piraquara de Fora small bay. The temperature, chlorinade concentration, marine flora and fauna are monitored frequently with the intend of value the impact caused by this discharge to marine environment. The macroscopic marines algae is very sensible to environment temperature variations, constitutes on of the main rink in the food chain and stay every time attach at the bottom. Because of this facts they are considered an important bio indicators. (author). 5 refs, 2 figs, 2 tabs

  20. Discharges from nuclear power stations

    International Nuclear Information System (INIS)

    1991-02-01

    HM Inspectorate of Pollution commissioned, with authorising responsibilities in England and Wales, a study into the discharges of radioactive effluents from Nuclear Power Stations. The study considered arisings from nuclear power stations in Europe and the USA and the technologies to treat and control the radioactive discharges. This report contains details of the technologies used at many nuclear power stations to treat and control radioactive discharges and gives, where information was available, details of discharges and authorised discharge limits. (author)

  1. Operational control of material release and discharges from nuclear power plant

    International Nuclear Information System (INIS)

    Szabo, I. C.; Ranga, T.; Daroczi, L.; Deme, S.; Kerekes, A.

    2003-01-01

    The operational control of radioactive materials during atmospheric release and aquatic discharge from nuclear power plant is a licensing criterion for NPPs. Originally at the Paks NPP the release control was based on activity limits for four groups of elements. These groups were noble gases, long living radio-aerosols, radioiodine and radiostrontium for atmospheric release and specified activity limit for beta emitters, strontium and tritium for aquatic discharge into Danube. These groups were controlled with proper sampling and/or measuring instrumentation. The limit for atmospheric release was given as a 30-day moving average, for liquid discharges the annual limit was stipulated. The new release and discharge limitation system is based on the environmental dose limitation. The dose constraint for Paks NPP is 90 Sv/year of the critical group for all release pathways and the investigation dose limit is equal to 27 Sv/year. The regulation did not subdivide the dose limit for atmospheric and liquid components but for operational control subdivision of dose limits for atmospheric release and aquatic discharge and shorter time period (one day-one month) seems to be useful. The subdivision can be based on past release data and/or previous activity limits. To satisfy dose below the investigation dose limit there should be a proper operation control level for each separately measured component and pathway belonging to reasonable time interval significantly shorter than one year. The main task of the NPP staff is elaboration of reasonable control levels and reference time intervals for different radionuclide and element groups to be used in operational control. Operational control levels are based on measured daily or monthly release rates. In case of noble gases, aerosols and iodine the daily release rates have several sharp peaks per year. Operational control levels give opportunity to detect these peaks for internal investigation purposes. Investigation release limits

  2. Analysis of adaptability of radioactive liquid effluent discharge under normal condition of inland nuclear power plant

    International Nuclear Information System (INIS)

    Xu Yueping; Zhang Bing; Chen Yang; Zhu Lingqing; Tao Yunliang; Shangguan Zhihong

    2011-01-01

    The discharge of radioactive liquid effluent from inland nuclear power plant under normal operation is an important part to be considered in environmental impact assessment. Requirements of newly revised and upcoming standards GB 6249 and GB 14587 are introduced in this paper. Through an example of an inland NPP siting in the preliminary feasibility study phase, the adaptability to the relevant regulations in the site selection is analyzed. Also, the concerned problems in the design of AP1000 units are addressed. (authors)

  3. Environmental effects of thermal and radioactive discharges from nuclear power plants in the boreal brackish-water conditions of the northern Baltic Sea

    OpenAIRE

    Ilus, Erkki

    2009-01-01

    During recent decades, thermal and radioactive discharges from nuclear power plants into the aquatic environment have become the subject of lively debate as an ecological concern. The target of this thesis was to summarize the large quantity of results obtained in extensive monitoring programmes and studies carried out in recipient sea areas off the Finnish nuclear power plants at Loviisa and Olkiluoto during more than four decades. The Loviisa NPP is located on the coast of the Gulf of Finla...

  4. Seasonal Variations in the Structure of Phytoplankton Communities near Nuclear Power Plants

    International Nuclear Information System (INIS)

    Lee, S.-K.; Choi, H.-C.; Moon, H.-T.

    2015-01-01

    To investigate effects of thermal discharge effluent from nuclear power plants on the surrounding marine environment, especially on the phytoplankton community, environmental data gained by seasonal survey around Hanbit and Hanul nuclear power plants during the periods of 11 years from 1999 to 2009 were analysed. The data used were from environmental survey and assessment around Hanbit and Hanul nuclear power plants of Korea during the period of 11 years from 1999 to 2009. The purposes of this study are (1) to evaluate the effect of operation of nuclear power plants on phytoplankton community, (2) to find out whether the thermal discharge affected negatively phytoplankton community, and (3) to evaluate the difference of thermal discharge influence on phytoplankton community between West and East coastal area, Korea. Through this study, (1) quantitative evaluation of the effect of thermal discharge effluent on marine ecology, especially on abundance and biomass of phytoplankton were performed, (2) found that depending on the season, the effect of thermal discharge effluent from nuclear power plant on the marine environment is not always negative (i.e. warm water may increase or prevent decline of abundance in seasons with low temperature such as winter in Hanbit area), and (3) found that same thermal discharge effluent rate to different marine environments, such as west and east coast of Korea, does not result in same effect on the marine ecosystem. (author)

  5. The use of algae in monitoring discharges of radionuclides. Experiences from the 1992 and 1993 monitoring programmes at the Swedish nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Snoeijs, P. [Uppsala Univ. (Sweden). Dept. of Ecological Botany; Simenstad, P. [Swedish Radiation Protection Inst., Stockholm (Sweden)

    1995-01-01

    All four Swedish nuclear power plants (Forsmark, Oskarshamn, Barsebaeck and Ringhals) use brackish water as coolant (Baltic Sea and Swedish west coast). Radionuclides are discharged together with the cooling water. The gamma spectra of monthly algal samples harvested in 1992 and 1993 close to the discharge points of these power plants were determined within the routine monitoring programmes. The main radionuclides detected in the algal samples were {sup 54}Mn, {sup 58}Co, {sup 60}Co and {sup 137}Cs. Most {sup 137}Cs in the samples from the northern Baltic Sea (Forsmark) still originated from the 1986 Chernobyl accident. Other radionuclides, notably {sup 51}Cr, {sup 65}Zn, {sup 95}Zr, {sup 95}Nb, {sup 110m}Ag, {sup 124}b, {sup 125}Sb and {sup 134}Cs, were regularly detected at s of the sites. Transfer factors from discharge to algae were generally in the order of 0.3-3 Bq kg{sup -1} per MBq discharge. For the major discharged radionuclides, significant linear relationships were in most cases found between discharges and concentrations in algal samples. Differences in transfer factors and regression coefficients were explained by location of the sampling sites and type of radionuclide. It is concluded that algal samples provide useful complements to water and sediment samples in the monitoring programmes since radionuclide concentrations are much higher in algal samples and proportional to the discharges. 21 refs, figs.

  6. Thermal effects on metabolic activities of thermophilic microorganisms from the thermal discharge point of Tuticorin thermal power plant area

    International Nuclear Information System (INIS)

    Muthukkannan, N.; Murugesan, A.G.

    2002-01-01

    Metabolic activities of thermophilic microorganisms isolated from the thermal water discharge point at Tuticorin thermal power station were studied by growing the microorganisms in sterile medium and at various temperature regimes of 25, 35, 45, 55 and 65degC. The optimum temperature for the growth of the bacterium isolated from the thermal power plant station was 45 degC and beyond 65 degC the growth was gradually decreased. The bacteria isolated from open sea water were mesophiles with their growth optimum at 35 degC and microbes inhabiting the thermal discharge area were thermopiles as they were tolerant even at 55 degC. The amylase production, carbohydrate metabolism and lactose fermentation activities were optimum at 45 degC. At 25 degC and beyond 65 degC biochemical activities of the organisms were inhibited to a greater extent. (author)

  7. Disposal of radioactive wastes from Czechoslovak nuclear power plants

    International Nuclear Information System (INIS)

    Neumann, L.

    In gaseous radioactive waste disposal, aerosol particles are filtered and gaseous wastes are discharged in the environment. The filters and filter materials used are stored on solid radioactive waste storage sites in the individual power plants. Liquid radioactive wastes are concentrated and the concentrates are stored. Distillates and low-level radioactive waste water are discharged into the hydrosphere. Solid radioactive wastes are stored without treatment in power plant bunkers. Bituminization and cementation of liquid radioactive wastes are discussed. (H.S.)

  8. Simulation of hanging dams downstream of Ossauskoski power plant

    Energy Technology Data Exchange (ETDEWEB)

    Aaltonen, J.; Huokuna, M. [Finnish Environment Inst., Helsinki (Finland); Severinkangas, K.; Talvensaari, M. [Kemijoki Oy, Rovaniemi (Finland)

    2008-07-01

    Sixteen power plants have been constructed along Finland's Kemijoki River for hydroelectric power production. The Ossauskoski facility has recently undergone major renovations and upgrade, making it the sixth largest hydroelectric power plant in Finland, with a new capacity of 124 MW and an annual energy output of 501 GWh. The increase in power output and discharge may cause changes in ice conditions downstream of the power plant. The section of the river is already subjected to frazil ice problems and hanging dam formation. Discharges and adverse effects of frazil ice phenomena are likely to increase due to climate change, resulting in harm for hydropower production and the environment, particularly in flow regulated rivers where winter discharges are higher than natural discharges. As such, a study was launched to investigate a dredge plan suggested by by the electric utility Kemijoki Oy. The project involved mapping the river bed topography to identify the location and extent of hanging dams. A sounding device and ground penetrating radar was used to find the thaw regions in the ice cover. The JJT numerical river ice model was effectively used to study the effect of hanging dams on water levels. However, the ice bridging phenomena was not modelled in a reliable way by the JJT model and will be modelled in the future using the CRISSP2D numerical model. 5 refs., 11 figs.

  9. Experimental investigation on the relationship between sluice caisson shape of tidal power plant and the water discharge capability

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dal Soo; Oh, Sang-Ho; Yi, Jin-Hak; Park, Woo-Sun [Coastal Engineering and Ocean Energy Research Department, Korea Ocean Research and Development Institute, Ansan 426-744 (Korea); Cho, Hyu-Sang; Kim, Duk-Gu; Ahn, Suk-Jin [Technology Research and Development Institute, Hyein E and C Co. Ltd., Seoul 157-861 (Korea); Eom, Hyun-Min [Global Environment System Research Laboratory, National Institute of Meteorological Research/KMA, Seoul 156-720 (Korea)

    2010-10-15

    The change of water discharge capability of the sluice caisson of tidal power plant according to the change of geometrical shape of the sluice caisson was investigated by performing laboratory experiments. The major design parameters that constitute general shape of the sluice caisson were deduced and a total of 32 different shapes of sluice caisson models were subjected to the hydraulic experiments. For every sluice caisson model, the water discharge capability was estimated with five different flow rates and three different water level conditions. The experiments were carried out in an open channel flume with a great care to measure flow rate and water level accurately, which are key physical quantities in estimating the water discharge capability of the sluice caisson models. By analyzing the experimental results, influence of the respective design parameters on the performance of the sluice caisson was examined and the general guidelines to enhance the water discharge capability were suggested. The discharge coefficient of the best sluice caisson model ranged from 2.3 to 3.1 depending on the experimental conditions, which is far higher than the values that were adopted in the past feasibility studies in Korea. (author)

  10. Thermal power plant efficiency enhancement with Ocean Thermal Energy Conversion

    International Nuclear Information System (INIS)

    Soto, Rodrigo; Vergara, Julio

    2014-01-01

    In addition to greenhouse gas emissions, coastal thermal power plants would gain further opposition due to their heat rejection distressing the local ecosystem. Therefore, these plants need to enhance their thermal efficiency while reducing their environmental offense. In this study, a hybrid plant based on the principle of Ocean Thermal Energy Conversion was coupled to a 740 MW coal-fired power plant project located at latitude 28°S where the surface to deepwater temperature difference would not suffice for regular OTEC plants. This paper presents the thermodynamical model to assess the overall efficiency gained by adopting an ammonia Rankine cycle plus a desalinating unit, heated by the power plant condenser discharge and refrigerated by cold deep seawater. The simulation allowed us to optimize a system that would finally enhance the plant power output by 25–37 MW, depending on the season, without added emissions while reducing dramatically the water temperature at discharge and also desalinating up to 5.8 million tons per year. The supplemental equipment was sized and the specific emissions reduction was estimated. We believe that this approach would improve the acceptability of thermal and nuclear power plant projects regardless of the plant location. -- Highlights: • An Ocean Thermal Energy Conversion hybrid plant was designed. • The waste heat of a power plant was delivered as an OTEC heat source. • The effect of size and operating conditions on plant efficiency were studied. • The OTEC implementation in a Chilean thermal power plant was evaluated. • The net efficiency of the thermal power plant was increased by 1.3%

  11. Comparison of the movement and recapture of salmonid fishes tagged at two power plants

    International Nuclear Information System (INIS)

    Romberg, G.P.; Thommes, M.M.

    1974-01-01

    Fish tagging studies were conducted in the vicinity of Point Beach Nuclear Plant and Waukegan Power Plant to determine whether there were any seasonal or site specific differences in the residence behavior of salmonids at thermal discharges. Results showed that there were differences in the abundance and time of peak abundance of trout and salmon at the two power plant discharges. Certain species reacted differently to the two discharges probably as a result of maturity and water temperature. Salmonids did not appear to remain at either discharge for long periods. Direction of migration was affected by stocking location and water temperature

  12. Infrared monitoring of power-plant effluents and heat sinks to optimize plant efficiency

    Science.gov (United States)

    Wurzbach, Richard N.; Seith, David A.

    2000-03-01

    Infrared imaging of the discharge canal and intake pond of the Peach Bottom Atomic Power Station was initiated to confirm a plant staff suspicion that high water intake temperatures were being influenced by recirculation of discharge flow. To minimize the angle of incidence to the water surface, the inspection was made from the top of the cooling towers. Although there was no evidence of recirculation from the plant discharge to the intake pond, two unexpected inputs of thermal energy were discovered during the inspection. A faulty sluice gate and a damaged cross-around pipe could be seen to be dumping thermal energy into the intake pond. The result was increased temperatures at the intake which threatened plant operation, decreased plant efficiency, and resulted in fewer megawatts available to sell to customers during the critical summer months.

  13. Impacts of TMDLs on coal-fired power plants.

    Energy Technology Data Exchange (ETDEWEB)

    Veil, J. A.; Environmental Science Division

    2010-04-30

    The Clean Water Act (CWA) includes as one of its goals restoration and maintenance of the chemical, physical, and biological integrity of the Nation's waters. The CWA established various programs to accomplish that goal. Among the programs is a requirement for states to establish water quality standards that will allow protection of the designated uses assigned to each water body. Once those standards are set, state agencies must sample the water bodies to determine if water quality requirements are being met. For those water bodies that are not achieving the desired water quality, the state agencies are expected to develop total maximum daily loads (TMDLs) that outline the maximum amount of each pollutant that can be discharged to the water body and still maintain acceptable water quality. The total load is then allocated to the existing point and nonpoint sources, with some allocation held in reserve as a margin of safety. Many states have already developed and implemented TMDLs for individual water bodies or regional areas. New and revised TMDLs are anticipated, however, as federal and state regulators continue their examination of water quality across the United States and the need for new or revised standards. This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements its overall research effort by evaluating water issues that could impact power plants. One of the program missions of the DOE's NETL is to develop innovative environmental control technologies that will enable full use of the Nation's vast coal reserves, while at the same time allowing the current fleet of coal-fired power plants to comply with existing and emerging environmental regulations. Some of the parameters for which TMDLs are being developed are components in discharges

  14. Kinetic model for predicting the composition of chlorinated water discharged from power plant cooling systems

    International Nuclear Information System (INIS)

    Lietzke, M.H.

    1977-01-01

    A kinetic model for predicting the composition of chlorinated water discharged from power plant cooling systems has been developed. The model incorporates the most important chemical reactions that are known to occur when chlorine is added to natural fresh waters. The simultaneous differential equations, which describe the rates of these chemical reactions, are solved numerically to give the composition of the water as a function of time. A listing of the computer program is included, along with a description of the input variables. A worked-out example illustrates the application of the program to an actual cooling system. An appendix contains a compilation of the known equilibrium and kinetic data for many of the chemical reactions that might be encountered in chlorinating natural fresh waters

  15. Atomic power plant

    International Nuclear Information System (INIS)

    Kawakami, Hiroto.

    1975-01-01

    Object: To permit decay heat to be reliably removed after reactor shut-down at such instance as occurrence of loss of power by means of an emergency water supply pump. Structure: An atomic power plant having a closed cycle constructed by connecting a vapor generator, a vapor valve, a turbine having a generator, a condenser, and a water supply pump in the mentioned order, and provided with an emergency water supply pump operated when there is a loss of power to the water supply pump, a degasifier pressure holding means for holding the pressure of the degasifier by introducing part of the vapor produced from said vapor generator, and a valve for discharge to atmosphere provided on the downstream side of said vapor generator. (Kamimura, M.)

  16. Impact of thermal power plant discharges on the coastal environment of Tuticorin

    International Nuclear Information System (INIS)

    Palanichamy, S.; Ragumaran, S.; Rajendran, A.

    2002-01-01

    In the present study an attempt is made to delineate the changes in the environmental quality caused due to effluent discharges from Tuticorin thermal power station. Water samples were collected from 19 stations covering three different zones. Plankton and benthic fauna were collected from 5 stations. The data indicated that environmental parameters like DO, pH and nutrients were slightly altered at zone II, while, water temperature was rather higher by about 8 degC above the ambient temperature. Further suspended solids, turbidity values were also found to be higher. The stations located near the hot effluent discharge (zone II) recorded poor plankton diversity and density. Benthic fauna was also found to be affected in the vicinity of the hot effluent discharges. The changes encountered during the study period are discussed in this paper. (author)

  17. Bidding Strategy of Virtual Power Plant with Energy Storage Power Station and Photovoltaic and Wind Power

    Directory of Open Access Journals (Sweden)

    Zhongfu Tan

    2018-01-01

    Full Text Available For the virtual power plants containing energy storage power stations and photovoltaic and wind power, the output of PV and wind power is uncertain and virtual power plants must consider this uncertainty when they participate in the auction in the electricity market. In this context, this paper studies the bidding strategy of the virtual power plant with photovoltaic and wind power. Assuming that the upper and lower limits of the combined output of photovoltaic and wind power are stochastically variable, the fluctuation range of the day-ahead energy market and capacity price is stochastically variable. If the capacity of the storage station is large enough to stabilize the fluctuation of the output of the wind and photovoltaic power, virtual power plants can participate in the electricity market bidding. This paper constructs a robust optimization model of virtual power plant bidding strategy in the electricity market, which considers the cost of charge and discharge of energy storage power station and transmission congestion. The model proposed in this paper is solved by CPLEX; the example results show that the model is reasonable and the method is valid.

  18. Mercury isotope signatures of seawater discharged from a coal-fired power plant equipped with a seawater flue gas desulfurization system.

    Science.gov (United States)

    Lin, Haiying; Peng, Jingji; Yuan, Dongxing; Lu, Bingyan; Lin, Kunning; Huang, Shuyuan

    2016-07-01

    Seawater flue gas desulfurization (SFGD) systems are commonly used to remove acidic SO2 from the flue gas with alkaline seawater in many coastal coal-fired power plants in China. However, large amount of mercury (Hg) originated from coal is also transferred into seawater during the desulfurization (De-SO2) process. This research investigated Hg isotopes in seawater discharged from a coastal plant equipped with a SFGD system for the first time. Suspended particles of inorganic minerals, carbon residuals and sulfides are enriched in heavy Hg isotopes during the De-SO2 process. δ(202)Hg of particulate mercury (PHg) gradually decreased from -0.30‰ to -1.53‰ in study sea area as the distance from the point of discharge increased. The results revealed that physical mixing of contaminated De-SO2 seawater and uncontaminated fresh seawater caused a change in isotopic composition of PHg isotopes in the discharging area; and suggested that both De-SO2 seawater and local background contributed to PHg. The impacted sea area predicted with isotopic tracing technique was much larger than that resulted from a simple comparison of pollutant concentration. It was the first attempt to apply mercury isotopic composition signatures with two-component mixing model to trace the mercury pollution and its influence in seawater. The results could be beneficial to the coal-fired plants with SFGD systems to assess and control Hg pollution in sea area. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Marine-ecosystem analysis for the Kori nuclear power plant

    International Nuclear Information System (INIS)

    Lee, J.H.; Kim, Y.H.

    1979-01-01

    The effects of radioactive effluents and warm water discharged from the plant on aquatic ecosystem is one of the primary considerations in evaluating the impact due to the operation of the nuclear power plant. Biological alteration of aquatic ecosystems may be resulted from radioactive effluents, thermal pollution and chemical releases; there is also the possible synergistic effect, that is, the combination of the above stresses, which may cause an effect greater than that of the sum of the individual effects. This report deals with species diversity and seasonal vegetation of phytoplankton, marine algae and microorganisms, radioactive contamination of marine organisms, and lateral distribution of sea water temperature from discharge point. The present investigation is designed to provide a partial baseline information for environmental safety against Kori nuclear power plant. (author)

  20. Probabilistic Prognosis of Environmental Radioactivity Concentrations due to Radioisotopes Discharged to Water Bodies from Nuclear Power Plants.

    Science.gov (United States)

    Tomás Zerquera, Juan; Mora, Juan C; Robles, Beatriz

    2017-11-15

    Due to their very low values, the complexity of comparing the contribution of nuclear power plants (NPPs) to environmental radioactivity with modeled values is recognized. In order to compare probabilistic prognosis of radioactivity concentrations with environmental measurement values, an exercise was performed using public data of radioactive routine discharges from three representative Spanish nuclear power plants. Specifically, data on liquid discharges from three Spanish NPPs: Almaraz, Vandellós II, and Ascó to three different aquatic bodies (river, lake, and coast) were used. Results modelled using generic conservative models together with Monte Carlo techniques used for uncertainties propagation were compared with values of radioactivity concentrations in the environment measured in the surroundings of these NPPs. Probability distribution functions were inferred for the source term, used as an input to the model to estimate the radioactivity concentrations in the environment due to discharges to the water bodies. Radioactivity concentrations measured in bottom sediments were used in the exercise due to their accumulation properties. Of all the radioisotopes measured in the environmental monitoring programs around the NPPs, only Cs-137, Sr-90, and Co-60 had positive values greater than their respective detection limits. Of those, Sr-90 and Cs-137 are easily measured in the environment, but significant contribution from the radioactive fall-out due to nuclear explosions in the atmosphere exists, and therefore their values cannot be attributed to the NPPs. On the contrary, Co-60 is especially useful as an indicator of the radioactive discharges from NPPs because its presence in the environment can solely be attributed to the impact of the closer nuclear facilities. All the modelled values for Co-60 showed a reasonable correspondence with measured environmental data in all cases, being conservative in two of them. The more conservative predictions obtained with

  1. The effects of power plant passage on zooplankton mortalities: Eight years of study at the Donald C. Cook Nuclear Plant

    International Nuclear Information System (INIS)

    Evans, M.S.; Warren, G.J.; Page, D.I.

    1986-01-01

    Zooplankton mortalities resulting from passage through the Donald C. Cook Nuclear Plant (southeastern Lake Michigan) were studied over an 8-year (1975-1982) period. The power plant operated at a low ΔT ( 0 C) and discharge water temperatures did not exceed 35 0 C (except September 1978). While zooplankton mortalities were significantly greater in discharge than intake waters, differences were small, averaging <3%. There was no evidence of additional delayed effects on zooplankton mortality following plant passage. There was no relationship between zooplankton mortalities and temperature (ΔT, discharge water temperature). Mechanical stresses appeared to be the major cause of zooplankton mortality. The authors hypothesize that fish predation, rather than power plant operation, probably was the major source of zooplankton mortality in inshore waters during much of the year. (author)

  2. Numerical Modeling of Water Thermal Plumes Emitted by Thermal Power Plants

    Directory of Open Access Journals (Sweden)

    Azucena Durán-Colmenares

    2016-10-01

    Full Text Available This work focuses on the study of thermal dispersion of plumes emitted by power plants into the sea. Wastewater discharge from power stations causes impacts that require investigation or monitoring. A study to characterize the physical effects of thermal plumes into the sea is carried out here by numerical modeling and field measurements. The case study is the thermal discharges of the Presidente Adolfo López Mateos Power Plant, located in Veracruz, on the coast of the Gulf of Mexico. This plant is managed by the Federal Electricity Commission of Mexico. The physical effects of such plumes are related to the increase of seawater temperature caused by the hot water discharge of the plant. We focus on the implementation, calibration, and validation of the Delft3D-FLOW model, which solves the shallow-water equations. The numerical simulations consider a critical scenario where meteorological and oceanographic parameters are taken into account to reproduce the proper physical conditions of the environment. The results show a local physical effect of the thermal plumes within the study zone, given the predominant strong winds conditions of the scenario under study.

  3. Treatment of fuel oil contaminated waste water from liquid fuel processing plants associated to thermal power plants or heat and power cogeneration plants

    International Nuclear Information System (INIS)

    Petrescu, S.

    1996-01-01

    According to the statistical data presented in the most important European and world meetings on environmental protection, the oil product amounts which pollute the surface water is estimated to be of about 6 mill. tones yearly out of which 35 %, 10 %, and 1 % come from oil tanks, natural sources, and offshore drilling, respectively, while 54 % reach seas and oceans trough rivers, rains a.o. Among the water consumers and users of Romania, the thermal power plants, belonging to RENEL (Romanian Electricity Authority), are the greatest. A part of the water with modified chemical-physical parameters, used for different technological processes, have to be discharged from the user precinct directly towards natural agents or indirectly through public sewage networks as domestic and industrial waste water. These waste waters need an adequate treatment before discharging as to meet the requirements imposed by the norms and regulations related to environment protection. For this purpose, before discharging, after using, the water must be circulated through the treatment plants designed and operated as to ensure the correction of the inadequate values of the residual water parameters. The paper presents the activities developed in the Institute for Power Studies and Design concerning the environmental protection against pollution produced by the entire power generation circuit, from the design phase up to product supplying. (author). 1 tab., 2 refs

  4. Institutional impediments to using alternative water sources in thermoelectric power plants.

    Energy Technology Data Exchange (ETDEWEB)

    Elcock, D. (Environmental Science Division)

    2011-08-03

    ), and with the local political organizations that can influence decisions regarding the use of the alternative source. Often a plan to use reclaimed water will work only if local politics and power plant goals converge. Even then, lengthy negotiations are often needed for the plans to come to fruition. (3) Regulatory requirements for planning and developing associated infrastructure such as pipelines, storage facilities, and back-up supplies that can require numerous approvals, permits, and public participation, all of which can create delays and increased costs. (4) Permitting requirements that may be difficult to meet, such as load-based discharge limits for wastewater or air emissions limitations for particulate matter (which will be in the mist of cooling towers that use reclaimed water high in dissolved solids). (5) Finding discharge options for cooling tower blowdown of reclaimed water that are acceptable to permitting authorities. Constituents in this wastewater can limit options for discharge. For example, discharge to rivers requires National Pollutant Discharge Elimination System (NPDES) permits whose limits may be difficult to meet, and underground injection can be limited because many potential injection sites have already been claimed for disposal of produced waters from oil and gas wells or waters associated with gas shale extraction. (6) Potential liabilities associated with using alternative sources. A power plant can be liable for damages associated with leaks from reclaimed water conveyance systems or storage areas, or with mine water that has been contaminated by unscrupulous drillers that is subsequently discharged by the power plant. (7) Community concerns that include, but are not limited to, increased saltwater drift on farmers fields; the possibility that the reclaimed water will contaminate local drinking water aquifers; determining the 'best' use of WWTP effluent; and potential health concerns associated with emissions from the

  5. The use of BEACON monitoring in plant power uprates

    International Nuclear Information System (INIS)

    Miller, Wade

    2003-01-01

    BEACON is the core support software technology that provides Utilities with continuous 3-D core power distribution monitoring, operational analysis capability, and operations support capability. BEACON monitoring delivers quantifiable plant margins for both reload design and plant operations improvement. When linked to Plant Power Upratings, BEACON permits an improvement in fuel cycle economics through higher peaking factors, higher power levels and higher discharge burnups. Operational flexibility of Uprated Plants is enhanced through elimination of axial power shape and core power tilt specifications. Also, the number of flux maps for these plants is reduced and local power is monitored continuously, permitting faster power escalation. Integrated 3-D power distribution analysis capabilities provide core designers with historical margin data that permits a reduction in core follow requirements as well as reduced curve book data related scope. Examples of specific Uprated Plant applications will be discussed. In anticipation of future needs of Uprated Plants, plans to integrate the technology of BEACON with COLSS are being executed. Finally, the capability to monitor Crud Induced Power Shift (axial offset) is also planned for incorporation into BEACON in the near future and will be discussed

  6. The discharge of radioactive effluents from the nuclear power programme into western waters of Great Britain

    International Nuclear Information System (INIS)

    Allday, C.

    1977-01-01

    A brief account is presented of the British nuclear power programme and the types of radioactive effluent that arise from the power stations and from the Windscale reprocessing plant. Routes by which these effluents could affect human populations, and radiation dose limits which have been laid down, are discussed. The discharge of permitted amounts of activity into western coastal waters of Great Britain, and the requirements for monitoring the discharges, are described. (U.K.)

  7. Optimization of the monitoring of liquid discharges from the Temelin nuclear power plant

    International Nuclear Information System (INIS)

    Ivanovova, Diana; Hanslik, Eduard

    2009-01-01

    The main goals of the project included (i) examination of the kinetics of wastewater transport from the Temelin NPP to the watercourse (Vltava river) and the kinetics of the contaminants in the watercourse, considering normal monitoring conditions and radiological emergency situations, and (ii) prediction of the transport of contaminants, in particular profiles downstream of the points of wastewater discharge from the plant. Wastewater flow velocity within the NPP and in the Vltava river segment between the Korensko Dam (wastewater release) and Hladna profiles was studied. Tritium that is normally released with wastewater served as the tracer. The results indicated how the tritium flow time patterns depend on the flow rate of the watercourse and on the pathway through which the wastewater is discharged (via the hydroelectric installation at the Korensko Dam, to the weir sluices, and directly to the watercourse). The tritium balance in the wastewater and in the Vltava river was calculated and compared to the released activity data provided by the Temelin plant operator (CEZ Group utility). (orig.)

  8. Geothermal Power Generation Plant

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, Tonya [Oregon Inst. of Technology, Klamath Falls, OR (United States). Geo-Heat Center

    2013-12-01

    Oregon Institute of Technology (OIT) drilled a deep geothermal well on campus (to 5,300 feet deep) which produced 196°F resource as part of the 2008 OIT Congressionally Directed Project. OIT will construct a geothermal power plant (estimated at 1.75 MWe gross output). The plant would provide 50 to 75 percent of the electricity demand on campus. Technical support for construction and operations will be provided by OIT’s Geo-Heat Center. The power plant will be housed adjacent to the existing heat exchange building on the south east corner of campus near the existing geothermal production wells used for heating campus. Cooling water will be supplied from the nearby cold water wells to a cooling tower or air cooling may be used, depending upon the type of plant selected. Using the flow obtained from the deep well, not only can energy be generated from the power plant, but the “waste” water will also be used to supplement space heating on campus. A pipeline will be construction from the well to the heat exchanger building, and then a discharge line will be construction around the east and north side of campus for anticipated use of the “waste” water by facilities in an adjacent sustainable energy park. An injection well will need to be drilled to handle the flow, as the campus existing injection wells are limited in capacity.

  9. High Power laser power conditioning system new discharge circuit research

    CERN Document Server

    Li Yi; Peng Han Sheng; Zhou Pei Zhang; Zheng Wan Guo; Guo Lang Fu; Chen Li Hua; Chen De Hui; Lai Gui You; Luan Yong Ping

    2002-01-01

    The new discharge circuit of power conditioning system for high power laser is studied. The theoretical model of the main discharge circuit is established. The pre-ionization circuit is studied in experiment. In addition, the explosion energy of the new large xenon lamp is successfully measured. The conclusion has been applied to 4 x 2 amplifier system

  10. Monitoring and assessment of radionuclide discharges from Temelín Nuclear Power Plant into the Vltava River (Czech Republic).

    Science.gov (United States)

    Hanslík, Eduard; Ivanovová, Diana; Juranová, Eva; Simonek, Pavel; Jedináková-Krízová, Vĕra

    2009-02-01

    The paper summarizes impacts of the Temelín Nuclear Power Plant (NPP) on the Vltava and Labe River basins. The study is based on the results of long-term monitoring carried out before the plant operation (1989-2000), and subsequently during the plant operation (2001-2005). In the first period, the main objective was to determine background radionuclide levels remaining in the environment after global fallout and due to the Chernobyl accident. A decrease in the concentrations of (90)Sr, (134)Cs and (137)Cs, which was observed before the plant operation, continued also during the subsequent period. Apart from tritium, the results of the observation did not indicate any impacts of the plant on the concentrations of activation and fission products in the hydrosphere. The annual average tritium concentrations in the Vltava River were in agreement with predicted values. The maximum annual average tritium concentration (13.5 Bq L(-1)) was observed in 2004 downstream from the wastewater discharge in the Vltava River at Solenice. Estimated radiation doses for adults due to intakes of river water as drinking water contaminated by tritium are below 0.1 microSv y(-1).

  11. Discharges from a fast reactor reprocessing plant

    International Nuclear Information System (INIS)

    Barnes, D.S.

    1987-01-01

    The purpose of this paper is to assess the environmental impact of the calculated routine discharges from a fast reactor fuel reprocessing plant. These assessments have been carried out during the early stages of an evolving in-depth study which culminated in the design for a European demonstration reprocessing plant (EDRP). This plant would be capable of reprocessing irradiated fuel from a series of European fast reactors. Cost-benefit analysis has then been used to assess whether further reductions in the currently predicted routine discharges would be economically justified

  12. Monitoring of radionuclides in the vicinities of Finnish nuclear power plants in 1999-2001

    International Nuclear Information System (INIS)

    Ikaeheimonen, T.K.; Klemola, S.; Illus, E.; Vartti, V.P.; Mattila, J.

    2006-09-01

    Monitoring of the radioactive substances around Finnish nuclear power plants continued in 1999-2001 in accordance with the regular environmental monitoring programmes. Altogether some 1000 samples are analysed annually from the terrestrial and aquatic environs of the two power plants. Trace amounts of activation products originating from airborne releases from the local power plants were detected in several air and deposition samples. At Loviisa, observations were made in five aerosol samples; at Olkiluoto in three samples during the reporting period. The concentrations were very low, being a few microbequerels per cubic metre. A similar pattern was tenable for the deposition samples, too. No traces of local discharge nuclides were detected in foodstuffs, drinking water or garden products. In mushrooms and wild berries picked from the Loviisa and Olkiluoto areas, only Chernobyl-derived cesium isotopes and natural 40 K were found. Local discharge nuclides were more abundant in the aquatic environment, especially in samples of indicator organisms, sinking matter and sediments. The dominant artificial radionuclides in the vicinity of the power plants were still the caesium isotopes, especially 137 Cs, originating from the Chernobyl accident. In seawater, elevated 3 H concentrations were more frequent at Loviisa, but no traces of other discharge nuclides were detected. In indicator organisms and sinking matter the concentrations of local discharge nuclides were somewhat higher and their distribution range was wider in the sea area off Olkiluoto. Small amounts of 60 Co originating from the local power plant were detected in sediments at a distance of about 15 km from the Olkiluoto NPP. (orig.)

  13. Hydraulic experiment for pollutant discharge characteristics in a Wolseong Nuclear Power Plant Port

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Byung Mo; Min, Byung Li; Park, Ki Hyun; Kim, Sora; Suh, Kyung Suk [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Jung Lyul [Sungkyunkwan University, Seoul (Korea, Republic of)

    2016-06-15

    In this study, the dispersion process of pollutant substances in a port under wave and current environments was evaluated by a hydraulic experiment. Once the contaminants washed ashore into the port of Wolseong nuclear power plant, transport processes of pollutants were investigated by tracking the tracer according to the variations of experimental condition through a hydraulic experiment. Several hydraulic experiments were performed to analyze the pollutant discharge rate of the surface coming from the different coastal environments. From the hydraulic experiment results, the tracer concentration decreased exponentially. These results suggested that, after the tracer was transported to the open sea, a different gradient was shown under different conditions. For the case of a diluted condition, the half-life of flow rate was 2.70, 10.40, and 26.39 days for 30, 20 and 10 rpm in the left-side, respectively. The decrease of the tracer concentration under conditions of 30 rpm was much faster than that under conditions of 10 rpm. For the wave condition, the half-life of flow rate was 4.59 and 15.35 days for the right and left side of the port in a hydraulic scale prototype, respectively.

  14. Power plant cooling systems: trends and challenges

    International Nuclear Information System (INIS)

    Rittenhouse, R.C.

    1979-01-01

    A novel design for an intake and discharge system at the Belle River plant is described followed by a general discussion of water intake screens and porous dikes for screening fish and zooplankton. The intake system for the San Onofre PWR plant is described and the state regulations controlling the use of water for power plants is discussed. The use of sewage effluent as a source of cooling water is mentioned with reference to the Palo Verde plant. Progress in dry cooling and a new wet/dry tower due to be installed at the San Juan plant towards the end of this year, complete the survey

  15. Radiocesium discharge from paddy fields with different initial scrapings for decontamination after the Fukushima Dai-ichi Nuclear Power Plant accident.

    Science.gov (United States)

    Wakahara, Taeko; Onda, Yuich; Kato, Hiroaki; Sakaguchi, Aya; Yoshimura, Kazuya

    2014-11-01

    To explore the behavior of radionuclides released after the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident in March 2011, and the distribution of radiocesium in paddy fields, we monitored radiocesium (Cs) and suspended sediment (SS) discharge from paddy fields. We proposed a rating scale for measuring the effectiveness of surface soil removal. Our experimental plots in paddy fields were located ∼40 km from the FDNPP. Two plots were established: one in a paddy field where surface soil was not removed (the "normally cultivated paddy field") and the second in a paddy field where the top 5-10 cm of soil was removed before cultivation (the "surface-removed paddy field"). The amounts of Cs and SS discharge from the paddy fields were continuously measured from June to August 2011. The Cs soil inventory measured 3 months after the FDNPP accident was approximately 200 kBq m(-2). However, after removing the surface soil, the concentration of Cs-137 decreased to 5 kBq m(-2). SS discharged from the normally cultivated and surface-removed paddy fields after puddling (mixing of soil and water before planting rice) was 11.0 kg and 3.1 kg, respectively, and Cs-137 discharge was 630,000 Bq (1240 Bq m(-2)) and 24,800 Bq (47.8 Bq m(-2)), respectively. The total amount of SS discharge after irrigation (natural rainfall-runoff) was 5.5 kg for the normally cultivated field and 70 kg for the surface-removed field, and the total amounts of Cs-137 discharge were 51,900 Bq (102 Bq m(-2)) and 165,000 Bq (317 Bq m(-2)), respectively. During the irrigation period, discharge from the surface-removed plot showed a twofold greater inflow than that from the normally cultivated plot. Thus, Cs inflow may originate from the upper canal. The topsoil removal process eliminated at least approximately 95% of the Cs-137, but upstream water contaminated with Cs-137 flowed into the paddy field. Therefore, to accurately determine the Cs discharge, it is important to examine Cs inflow from the

  16. Alternative trends in development of thermal power plants

    International Nuclear Information System (INIS)

    Prisyazhniuk, Vitaly A.

    2008-01-01

    Thermal (or fossil fuel) power plants (TPP) are the major polluters of man's environment, discharging into the atmosphere the basic product of carbon fuel combustion, CO 2 . It is this very gas that accounts for the greenhouse effect causing the global climate warm-up on our planet. A natural solution of the problem of reducing carbon dioxide discharge into the atmosphere lies in power saving, thus reducing the amount of the fuel burnt. This approach can be justified from any standpoint, both economically and ecologically. The ideal way of solving the problem would be to completely give up burning carbon-containing fuel, such as coal, petroleum products, and other power resources of organic nature. This work is intended to outline the ways of reducing consumption of fuel by TPP and, consequently, of reducing their discharging into the atmosphere the gases producing the greenhouse effect. One of the ways lies in changing the thermophysical characteristics of the working medium, which becomes possible if we can modify the conventional working medium, that is water, or can use some working medium with quite different thermophysical properties. The article dwells on various technological ways providing for a practical solution of the problem, such as the Kalina cycle; modification of water properties by way of magneto-hydrodynamic resonance (MHD resonance); and employing, in the thermodynamic cycle of Thermal Power Plants, liquids boiling at temperatures which are lower than that of the environment

  17. Radioactive Cs-137 discharge from Headwater Forested Catchment in Fukushima after Fukushima Dai-ichi Nuclear Power Plant Accident

    Science.gov (United States)

    Iwagami, S.; Onda, Y.; Tsujimura, M.; Sakakibara, K.; Konuma, R.

    2015-12-01

    Radiocesium migration from headwater forested catchment is important perception as output from the forest which is also input to the subsequent various land use and downstream rivers after Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident. In this study, Cs-137 concentration of dissolved water, suspended sediment and coarse organic matter such as leaf and branch were monitored. Discharge amount of stream water, suspended sediment and coarse organic matter were measured to investigate the discharge amount of radiocesium and composition of radiocesium discharge form through the headwater stream. Observation were conducted at stream site in four headwater catchments in Yamakiya district, located ~35 km north west of FDNPP from June 2011 (suspended sediment and coarse organic matter: August 2012) to December 2014.The Cs-137 concentration of dissolved water was around 1Bq/l at June 2011. Then declined to 0.1 Bq/l at December 2011. And in December 2014, it declined to 0.01 Bq/l order. Declining trend of Cs-137 concentration in dissolved water was expressed in double exponential model. Also temporary increase was observed in dissolved Cs-137 during the rainfall event. The Cs-137 concentration of suspended sediment and coarse organic matter were 170-49000 Bq/kg and 350-14000 Bq/kg respectably. The Cs-137 concentration of suspended sediment showed good correlation with average deposition density of catchment. The effect of decontamination works appeared in declining of Cs-137 concentration in suspended sediment. Contribution rate of Cs-137 discharge by suspended sediment was 96-99% during a year. Total annual Cs-137 discharge from the catchment were 0.02-0.3% of the deposition.

  18. General Analysis of System Efficiency in Application of Combined Power Plants for Gas-Distribution Station

    Directory of Open Access Journals (Sweden)

    A. D. Kachan

    2004-01-01

    Full Text Available The paper proposes utilization of discharged heat of gas-piston engine (GPE or contact steam-gas plants (SGP with the purpose to heat up gas at gas-distribution stations (GDS of combined power plants with turbine and gas-expansion units. Calculations prove significant economic efficiency of the proposed variant in comparison with the application of ordinary gas- turbine units. Technical and economic calculation is used to determine gas-piston engine or contact steam-gas plant power for specific operational conditions of gas-distribution stations and utilization rate of discharged heat.

  19. A study on the ocean circulation and thermal diffusion near a nuclear power plant

    International Nuclear Information System (INIS)

    Shu, Kyung Suk; Han, Moon Hee; Kim, Eun Han; Hwang, Won Tae

    1994-08-01

    The thermal discharge used with cooling water at nuclear power plant is released to a neighbour sea and it is influenced on marine environment. The thermal discharge released from power plant is mainly transported and diffused by ocean circulation of neighbour sea. So the evaluation for characteristics of ocean circulation around neighbour sea is firstly performed. The purpose of this research is primarily analyzed the thermal diffusion in sea around Yongkwang nuclear power plant. For this viewpoint, fundamental oceanographic data sets are collected and analyzed in Yellow sea, west sea of Korea, sea around Yongkwang. The ocean circulation and the effects of temperature increase by thermal discharge are evaluated using these data. The characteristics of tide is interpreted by the analysis of observed tidal elevation and tidal currents. The characteristics of temperature and salinity is investigated by the long-term observation of Korea Fisheries Research and Development Agency and the short-term observation around Yongkwang. (Author)

  20. Operation of Finnish nuclear power plants

    International Nuclear Information System (INIS)

    Tossavainen, K.

    1992-03-01

    The Finnish nuclear power plant units Loviisa 1 and 2 as well as TVO I and II were in operation for almost the whole third quarter of 1991. Longer interruptions in electricity generation were caused by the annual maintenances of the Loviisa plant units. The load factor average was 81.7 %. In a test conducted during the annual maintenance outage of Loviisa 1 it was detected that the check valve of the discharge line of one pressurized emergency make-up tank did not open sufficiently at the tank's hydrostatic pressure. In connection with a 1988 modification, a too tightly dimensioned bearing had been mounted on the valve's axle rod and the valve had not been duly tested after the operation. The event is classified as Level 1 on the International Nuclear Event Scale. Other events in this quarter which are classified according to the International Nuclear Event Scale are Level Zero (Below Scale). Occupational radiation doses and releases of radioactive material off-site were below authorised limits in this quarter. Only small amounts of radioactive materials originating in nuclear power plants were detected in samples taken in the vicinity of nuclear power plants

  1. Effect of power plant condenser coolant discharge on population density of intertidal bivalve Donax cuneatus (L. 1758)

    International Nuclear Information System (INIS)

    Jahir Hussain, K.; Mohanty, A.K.; Prasad, M.V.R.; Satpathy, K.K.

    2008-01-01

    Impact of thermal discharge from a coastal power station (Madras Atomic Power Station, south-east coast of India) on the spatial variability of Donax cuneatus abundance was assessed to determine the impact boundary. Totally twenty sites were selected both on south and north side of effluents mixing zone in increasing spatial scale. Twelve locations were selected towards south side at a distance from 0 (near mixing point) to 2000 m and eight locations were selected towards north from the effluent mixing zone. The present study was conducted during January 2008. Mean water temperature along the coast ranged from 29.1 ± 0.1 - 31.2 ± 0.1 deg C. Total organic carbon content in the sediment ranged from 0.27 to 0.70%. D. cuneatus population in the swash zone ranged between 1.3 ± 1.5 to 88.3 ± 9.6 m -2 . Meager population of the wedge clam was observed up to 100 m south from mixing point and abundance gradually increased with increasing distance from the mixing zone. Comparatively high abundance was observed from 400 m; the density reached maximum at 1000 m (64.0 ± 3.6 m -2 ). Similar pattern was observed on north side too but less abundance was observed only up to 80m. Maximum abundance was observed (88.3 ± 9.6 m -2 ) at control location located 500 m north of the discharge point. 40 m on either side of discharge point were highly impacted, 80 to 100m towards plume flow (south) were moderately impacted and 80 m north of mixing point also witnessed moderate impact. After 100 m, effluents did not affect the northern side, whereas between 100 to 400 m, south was influenced slightly. Multivariate clustering pattern on the environmental variables of all sampling locations and abundance pattern of D. cuneatus showed similarity. Present investigation unambiguously showed that the abundance pattern of D. cuneatus on the sandy beach of Kalpakkam is not governed by single major factor but is influenced by multiple interacting factors. The population size of the wedge clam

  2. Monitoring of radionuclides in the vicinities of Finnish nuclear power plants in 1995 and 1996

    International Nuclear Information System (INIS)

    Ilus, E.; Ikaeheimonen, T.K.; Klemola, S.

    2002-12-01

    Monitoring radioactive substances around Finnish nuclear power plants continued in 1995 and 1996 in accordance with regular environmental monitoring programmes. Altogether, some 1000 samples are analysed annually from the terrestrial and aquatic environments of the two power plants. Trace amounts of activation products originating from airborne releases from the local power plants were detected in several air and deposition samples. At Loviisa, observations were made in twenty aerosol samples; at Olkiluoto they were made once during the reporting period. The concentrations were very low, from a few microbecquerels to a few tens of microbecquerels per cubic metre. A similar pattern was also tenable for the deposition samples. No traces of local discharge nuclides were detected in foodstuffs, drinking water, or garden products. In mushrooms and wild berries picked from the Loviisa area,only Chernobyl derived cesium isotopes and natural 40 K were found. Local discharge nuclides were more abundant in the aquatic environment, especially in samples of indicator organisms, sinking matter, and sediments. The dominant artificial radionuclides in the vicinity of the power plants were still the cesium isotopes, especially 137 Cs but also 134 Cs, originating from the Chernobyl accident. In seawater, elevated 3H concentrations were more frequent in Loviisa, but no traces of other discharge nuclides were detected. At Olkiluoto, small amounts of activation products were detected in seawater samples taken during the maintenance outages at the power plant. The concentrations of local discharge nuclides in indicator organisms and sinking matter were somewhat higher and their distribution range was wider in the sea area of Olkiluoto. However, the concentrations were so low that they did not increase the radiation burden in the environment. Small amounts of 60 Co originating from the local power plant were detected in sediments at adistance of about 15 km from Olkiluoto. (orig.)

  3. Calibration of radiation monitors at nuclear power plants

    International Nuclear Information System (INIS)

    Boudreau, L.; Miller, A.D.; Naughton, M.D.

    1994-03-01

    This work was performed to provide guidance to the utilities in the primary and secondary calibration of the radiation monitoring systems (RMS) installed in nuclear power plants. These systems are installed in nuclear power plants to monitor ongoing processes, identify changing radiation fields, predict and limit personnel radiation exposures and measure and control discharge of radioactive materials to the environment. RMS are checked and calibrated on a continuing basis to ensure their precision and accuracy. This report discusses various approaches towards primary and secondary calibrations of the RMS equipment in light of accepted practices at typical power plants and recent interpretations of regulatory guidance. Detailed calibration techniques and overall system responses, trends, and practices are discussed. Industry, utility, and regulatory sources were contacted to create an overall consensus of the most reasonable approaches to optimizing the performance of this equipment

  4. Intervention analysis of power plant impact on fish populations

    International Nuclear Information System (INIS)

    Madenjian, C.P.

    1984-01-01

    Intervention analysis was applied to 10 yr (years 1973-1982) of field fish abundance data at the D. C. Cook Nuclear Power Plant, southeastern Lake Michigan. Three log-transformed catch series, comprising monthly observations, were examined for each combination of two species (alewife, Alosa pseudoharenga, or yellow perch, Perca flavescens) and gear (trawl or gill net): catch at the plant discharged transect, catch at the reference transect, and the ratio of plant catch to reference catch. Time series separated by age groups were examined. Based on intervention analysis, no change in the abundance of fish populations could be attributed to plant operation. Additionally, a modification of the intervention analysis technique was applied to investigate trends in abundance at both the plant discharge and reference transects. Significant declines were detected for abundance of alewife adults at both of the transects. Results of the trend analysis support the contention that the alewives have undergone a lakewide decrease in abundance during the 1970s

  5. Nuclear power plants

    International Nuclear Information System (INIS)

    Ushijima, Susumu.

    1984-01-01

    Purpose: To enable to prevent the degradation in the quality of condensated water in a case where sea water leakage should occur in a steam condenser of a BWR type nuclear power plant. Constitution: Increase in the ion concentration in condensated water is detected by an ion concentration detector and the leaking factor of sea water is calculated in a leaking factor calculator. If the sea water leaking factor exceeds a predetermined value, a leak generation signal is sent from a judging device to a reactor power control device to reduce the reactor power. At ehe same tiem, the leak generation signal is also sent to a steam condenser selection and isolation device to interrupt the sea water pump of a specified steam condenser based on the signal from the ion concentration detector, as well as close the inlet and outlet valves while open vent and drain valves to thereby forcively discharge the sea water in the cooling water pipes. This can keep the condensate desalting device from ion breaking and prevent the degradation in the quality of the reactor water. (Horiuchi, T.)

  6. Organohalogens in chlorinated cooling waters discharged from nuclear power stations

    International Nuclear Information System (INIS)

    Bean, R.M.; Mann, D.C.; Neitzel, D.A.

    1983-01-01

    For the power plant discharges studied to date, measured concentrations of trihalomethanes are lower than might be expected, particularly in cooling tower water, which can lose THMs to the atmosphere. In the cooling towers, where chlorine was added in higher concentrations and for longer residence times, halogenated phenols can contribute significantly to the total organic halogen content of the discharge. The way in which cooling towers are operated may also influence the production of halogenated phenols because they concentrate the incoming water by a factor of 4 or 5. In addition, the phenols, which act as a substrate for the halogenating agent, are also probably concentrated by the cooling tower operation and may be prevented from being biodegraded by addition of the same biocide that produces the halogenated phenols. 8 references, 4 tables

  7. Modelling the Dynamic Interaction Power System Lamp - Application to High Pressure Mercury Gas Discharge Lamps

    Directory of Open Access Journals (Sweden)

    ZIANE, M.

    2007-11-01

    Full Text Available The aim of this paper is to study the dynamic behaviour of a plant constituted by an electrical power system and a gas discharge lamp, this latter, increasingly used in street lighting, remains a nonlinear load element. Various approaches are used to represent it, one is the approximation of the discharge represented by a hot "channel", which verifies the assumption of local thermodynamic equilibrium [LTE] or the polynomial form of the conductance variation. A calculation procedure, based on "channel" approximation of the high pressure mercury (HPM gas-discharge lamp, is developed to determine the physical and electric magnitudes, which characterize the dynamic behavior of the couple "lamp-electrical power system". The evolution of the lamp properties when principal parameters of the discharge (pressure of mercury, voltage supply, frequency are varying were studied and analyzed. We show the concordance between simulation, calculations and measurements for electric, energetic or irradiative characteristics. The model reproduces well the evolution of properties of the supply when principal parameters of the discharge vary.

  8. Advanced water chemistry management in power plants

    International Nuclear Information System (INIS)

    Regis, V.; Sigon, F.

    1995-01-01

    Advanced water management based on low external impact cycle chemistry technologies and processes, effective on-line water control and monitoring, has been verified to improve water utilization and to reduce plant liquid supply and discharge. Simulations have been performed to optimize system configurations and performances, with reference to a 4 x 320 MWe/once-through boiler/AVT/river cooled power plant, to assess the effectiveness of membrane separation technologies allowing waste water reuse, to enhance water management system design and to compare these solutions on a cost/benefit analysis. 6 refs., 3 figs., 3 tabs

  9. Are combined cycle plants being driven to zero discharge?

    International Nuclear Information System (INIS)

    Sinha, P.K.; Narula, R.G.; Weidinger, G.F.

    1991-01-01

    This paper discusses the water-related environmental issues of siting combined cycle plants, including availability of plant makeup water and wastewater discharge. The need for water treatment equipment for waste minimization, recycle, and/or zero discharge is discussed. The key water-related permit issues and preliminary design commitments are demonstrated via case histories

  10. Modelling the Dynamic Interaction Power System Lamp - Application to High Pressure Mercury Gas Discharge Lamps

    OpenAIRE

    ZIANE, M.; MEDLES, K.; ADJOUDJ, M.; MILOUA, F.; DAMELINCOURT, J. J.; TILMATINE, A.

    2007-01-01

    The aim of this paper is to study the dynamic behaviour of a plant constituted by an electrical power system and a gas discharge lamp, this latter, increasingly used in street lighting, remains a nonlinear load element. Various approaches are used to represent it, one is the approximation of the discharge represented by a hot "channel", which verifies the assumption of local thermodynamic equilibrium [LTE] or the polynomial form of the conductance variation. A calculation procedure, based on ...

  11. Nuclear power plant safety in Brazil

    International Nuclear Information System (INIS)

    Lederman, L.

    1980-01-01

    The Code of Practice for the Safe Operation of Nuclear Power Plants states that: 'In discharging its responsibility for public health and safety, the government should ensure that the operational safety of a nuclear reactor is subject to surveillance by a regulatory body independent of the operating organization'. In Brazil this task is being carried out by the Comissao Nacional de Energia Nuclear in accordance with the best international practice. (orig./RW)

  12. Impact of power plants on aquatic systems: a social perspective

    International Nuclear Information System (INIS)

    Coutant, C.C.

    1975-01-01

    Topics discussed are: aquatic effects of thermal electric power stations; legal aspects of water pollution; EPA provisions for levels of thermal discharges to assure protection and propagation of a balanced, indigenous population of shellfish, fish, and wildlife in a body of water; cost benefit analysis of steam electric power effluents; cooling systems and siting of power plants; simulation modeling of population dynamics; and sociological aspects of water pollution

  13. Hazards from radioactivity of fly ash of Greek coal power plants (CPP)

    International Nuclear Information System (INIS)

    Papastefanou, C.; Charalambous, S.

    1980-01-01

    Fly ash and fine dispersion releases from coal combustion in Greek coal power plants were studied. Concentrations in the fly ash up to 20 pCi/g and 10 pCi/g were measured for 238 U and 226 Ra respectively (not in secular equilibrium). Risk from the fly ash derives from its escape in particulate form or fine dispersion and from its use as a substitute for cement in concrete. The new data indicate that coal power plants discharge relatively larger quantities of radioactive material into the atmosphere than nuclear power plants of comparable size, during normal operation. (H.K.)

  14. Radioactive Effluents from Nuclear Power Plants Annual Report 2007

    International Nuclear Information System (INIS)

    2010-01-01

    This report describes radioactive effluents from commercial nuclear power plants (NPPs) in the United States. This information was reported by the licensees for radioactive discharges that occurred in 2007. The report provides information relevant to the potential impact of NPPs on the environment and on public health.

  15. Radioactive Effluents from Nuclear Power Plants Annual Report 2008

    International Nuclear Information System (INIS)

    2010-01-01

    This report describes radioactive effluents from commercial nuclear power plants (NPPs) in the United States. This information was reported by the licensees for radioactive discharges that occurred in 2008. The report provides information relevant to the potential impact of NPPs on the environment and on public health.

  16. Natural radionuclides in waste water discharged from coal-fired power plants in Serbia.

    Science.gov (United States)

    Janković, Marija M; Todorović, Dragana J; Sarap, Nataša B; Krneta Nikolić, Jelena D; Rajačić, Milica M; Pantelić, Gordana K

    2016-12-01

    Investigation of the natural radioactivity levels in water around power plants, as well as in plants, coal, ash, slag and soil, and to assess the associated radiation hazard is becoming an emerging and interesting topic. This paper is focused on the results of the radioactivity analysis in waste water samples from five coal-fired power plants in Serbia (Nikola Tesla A, Nikola Tesla B, Kolubara, Morava and Kostolac), which were analyzed in the period 2003-2015. River water samples taken upstream and downstream from the power plants, drain water and overflow water were analyzed. In the water samples gamma spectrometry analysis was performed as well as determination of gross alpha and beta activity. Natural radionuclide 40 K was detected by gamma spectrometry, while the concentrations of other radionuclides, 226 Ra, 235 U and 238 U, usually were below the minimum detection activity (MDA). 232 Th and artificial radionuclide 137 Cs were not detected in these samples. Gross alpha and beta activities were determined by the α/β low level proportional counter Thermo Eberline FHT 770 T. In the analyzed samples, gross alpha activity ranged from MDA to 0.47 Bq L - 1 , while the gross beta activity ranged from MDA to 1.55 Bq L - 1 .

  17. National conference on radiation safety of nuclear power plants and their environmental impacts

    International Nuclear Information System (INIS)

    Moravek, J.

    1989-01-01

    The first national conference on radiation safety of nuclear power plants and their environmental impacts was held in Tale (CS), 12 to 15 October, 1987 with the participation of 201 Czechoslovak specialists representing central authorities, research institutes, institutions of higher education, power plants in operation and under construction, water management and hygiene inspection and some production sectors, specialists from Hungary, Poland and the GDR. The participants heard 110 papers. The conference agenda comprised keynote papers presented in plenary session and five specialist sessions: 1. Radiation control of discharges and their surroundings. 2. Monitoring and evaluation of the radiation situation in nuclear power plants. 3. Equipment for monitoring the nuclear power plant and its environs. 4. Mathematical modelling and assessment of the nuclear power plant radiation environmental impact. 5. Evaluation of sources and of the transport of radioactive materials inside the power plant and the minimization of the nuclear power plant's environmental impact. (Z.M.)

  18. Comparison of the effects of nuclear power plants and thermal power plants on the environment

    International Nuclear Information System (INIS)

    Sivintsev, Yu.V.; Teverovskij, E.N.

    1976-01-01

    A comparison of ecological effects produced by a thermal power station (TPS) and a nuclear power plant (NPP) of similar electric capacity has been made. The ecological advantages of NPP over TPS are revealed in analysis of aerosol and gas blow-out and its danger for the environment. From the above data it follows that TPS as compared with NPP of similar electric capacity produces a 100 and 1000 fold higher air pollution effect than the latter. The dose of TPS radiation effect is minimum 500 times higher than that of NPP at normal operation. Large-scale construction of NPP is one of the most perfect means of atmosphere protection against harmful industrial discharges

  19. Cooling water requirements and nuclear power plants

    International Nuclear Information System (INIS)

    Rao, T.S.

    2010-01-01

    Indian nuclear power programme is poised to scuttle the energy crisis of our time by proposing joint ventures for large power plants. Large fossil/nuclear power plants (NPPs) rely upon water for cooling and are therefore located near coastal areas. The amount of water a power station uses and consumes depends on the cooling technology used. Depending on the cooling technology utilized, per megawatt existing NPPs use and consume more water (by a factor of 1.25) than power stations using other fuel sources. In this context the distinction between 'use' and 'consume' of water is important. All power stations do consume some of the water they use; this is generally lost as evaporation. Cooling systems are basically of two types; Closed cycle and Once-through, of the two systems, the closed cycle uses about 2-3% of the water volumes used by the once-through system. Generally, water used for power plant cooling is chemically altered for purposes of extending the useful life of equipment and to ensure efficient operation. The used chemicals effluent will be added to the cooling water discharge. Thus water quality impacts on power plants vary significantly, from one electricity generating technology to another. In light of massive expansion of nuclear power programme there is a need to develop new ecofriendly cooling water technologies. Seawater cooling towers (SCT) could be a viable option for power plants. SCTs can be utilized with the proper selection of materials, coatings and can achieve long service life. Among the concerns raised about the development of a nuclear power industry, the amount of water consumed by nuclear power plants compared with other power stations is of relevance in light of the warming surface seawater temperatures. A 1000 MW power plant uses per day ∼800 ML/MW in once through cooling system; while SCT use 27 ML/MW. With the advent of new marine materials and concrete compositions SCT can be constructed for efficient operation. However, the

  20. Radioactive effluents from nuclear power stations and nuclear fuel reprocessing plants in the European Community. Discharge data 1972-1976 radiological aspects

    International Nuclear Information System (INIS)

    Luykx, F.; Fraser, G.

    1978-04-01

    The report presents the available data on radioactive gaseous and liquid effluents discharged by nuclear power stations and nuclear fuel reprocessing plants in the European Community from 1972 to 1976. Discharges are expressed both in absolute terms and relative to the net production of electricity from the fuel. On the basis of the discharges recorded for 1976 the resulting maximum exposure of members of the population is quantified and compared with the dose limits prescribed by Euratom radiological protection standards and with the exposure resulting from natural radioactivity. It is concluded that there is no case in which a discharge could have given rise to an exposure exceeding the relevant prescribed limit. Not only did the possible maximum exposures incurred by individuals leave an appreciable safety margin relative to that limit but, for the vast majority of installations, they were comparable with or were considerably lower than the geographical and temporal variations in exposures resulting from natural radioactivity. Where environmental levels have been detectable the measured results have of course been used but, with few exceptions, the levels have remained less than the very low limits of detection currently possible. In general, where theoretical models are used to evaluate exposure, they are designed to give conservative results and hence it is likely that the true exposures are even less than those calculated

  1. Plant Design Nuclear Fuel Element Production Capacity Optimization to Support Nuclear Power Plant in Indonesia

    International Nuclear Information System (INIS)

    Bambang Galung Susanto

    2007-01-01

    The optimization production capacity for designing nuclear fuel element fabrication plant in Indonesia to support the nuclear power plant has been done. From calculation and by assuming that nuclear power plant to be built in Indonesia as much as 12 NPP and having capacity each 1000 MW, the optimum capacity for nuclear fuel element fabrication plant is 710 ton UO 2 /year. The optimum capacity production selected, has considered some aspects such as fraction batch (cycle, n = 3), length of cycle (18 months), discharge burn-up value (Bd) 35,000 up 50,000 MWD/ton U, enriched uranium to be used in the NPP (3.22 % to 4.51 %), future market development for fuel element, and the trend of capacity production selected by advances country to built nuclear fuel element fabrication plant type of PWR. (author)

  2. Nuclear power plants

    International Nuclear Information System (INIS)

    1985-01-01

    Data concerning the existing nuclear power plants in the world are presented. The data was retrieved from the SIEN (Nuclear and Energetic Information System) data bank. The information are organized in table forms as follows: nuclear plants, its status and type; installed nuclear power plants by country; nuclear power plants under construction by country; planned nuclear power plants by country; cancelled nuclear power plants by country; shut-down nuclear power plants by country. (E.G.) [pt

  3. Water releasing electric generating device for nuclear power plant

    International Nuclear Information System (INIS)

    Umehara, Toshihiro; Tomohara, Yasutaka; Usui, Yoshihiko.

    1994-01-01

    Warm sea water discharged after being used for cooling in an equipment of a coastal nuclear powder plant is discharged from a water discharge port to a water discharge pit, and a conduit vessel is disposed in front of the water discharge port for receiving overflown warm sea water. The warm sea water taken to the conduit vessel is converted to a fallen flow and charged to a turbine generator under water, and electric power is generated by the water head energy of the fallen flow before it is discharged to the water discharge pit. The conduit vessel incorporates a foam preventing unit having spiral flow channels therein, so that the warm sea water taken to the conduit vessel is flown into the water discharge pit after consuming the water head energy while partially branched and flown downwardly and gives lateral component to the downwarding flowing direction. Then, warm sea water is made calm when it is flown into the water discharge pit and, accordingly, generation of bubbles on the water surface of the water discharge pit is avoided. (N.H.)

  4. LNG plant combined with power plant

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, I; Kikkawa, Y [Chiyoda Chemical Engineering and Construction Co. Ltd., Tokyo (Japan)

    1997-06-01

    The LNG plant consumers a lot of power of natural gas cooling and liquefaction. In some LNG plant location, a rapid growth of electric power demand is expected due to the modernization of area and/or the country. The electric power demand will have a peak in day time and low consumption in night time, while the power demand of the LNG plant is almost constant due to its nature. Combining the LNG plant with power plant will contribute an improvement the thermal efficiency of the power plant by keeping higher average load of the power plant, which will lead to a reduction of electrical power generation cost. The sweet fuel gas to the power plant can be extracted from the LNG plant, which will be favorable from view point of clean air of the area. (Author). 5 figs.

  5. LNG plant combined with power plant

    International Nuclear Information System (INIS)

    Aoki, I.; Kikkawa, Y.

    1997-01-01

    The LNG plant consumers a lot of power of natural gas cooling and liquefaction. In some LNG plant location, a rapid growth of electric power demand is expected due to the modernization of area and/or the country. The electric power demand will have a peak in day time and low consumption in night time, while the power demand of the LNG plant is almost constant due to its nature. Combining the LNG plant with power plant will contribute an improvement the thermal efficiency of the power plant by keeping higher average load of the power plant, which will lead to a reduction of electrical power generation cost. The sweet fuel gas to the power plant can be extracted from the LNG plant, which will be favorable from view point of clean air of the area. (Author). 5 figs

  6. Control strategies of atmospheric mercury emissions from coal-fired power plants in China.

    Science.gov (United States)

    Tian, Hezhong; Wang, Yan; Cheng, Ke; Qu, Yiping; Hao, Jiming; Xue, Zhigang; Chai, Fahe

    2012-05-01

    Atmospheric mercury (Hg) emission from coal is one of the primary sources of anthropogenic discharge and pollution. China is one of the few countries in the world whose coal consumption constitutes about 70% of total primary energy, and over half of coals are burned directly for electricity generation. Atmospheric emissions of Hg and its speciation from coal-fired power plants are of great concern owing to their negative impacts on regional human health and ecosystem risks, as well as long-distance transport. In this paper, recent trends of atmospheric Hg emissions and its species split from coal-fired power plants in China during the period of 2000-2007 are evaluated, by integrating each plant's coal consumption and emission factors, which are classified by different subcategories of boilers, particulate matter (PM) and sulfur dioxide (SO2) control devices. Our results show that the total Hg emissions from coal-fired power plants have begun to decrease from the peak value of 139.19 t in 2005 to 134.55 t in 2007, though coal consumption growing steadily from 1213.8 to 1532.4 Mt, which can be mainly attributed to the co-benefit Hg reduction by electrostatic precipitators/fabric filters (ESPs/FFs) and wet flue gas desulfurization (WFGD), especially the sharp growth in installation of WFGD both in the new and existing power plants since 2005. In the coming 12th five-year-plan, more and more plants will be mandated to install De-NO(x) (nitrogen oxides) systems (mainly selective catalytic reduction [SCR] and selective noncatalytic reduction [SNCR]) for minimizing NO(x) emission, thus the specific Hg emission rate per ton of coal will decline further owing to the much higher co-benefit removal efficiency by the combination of SCR + ESPs/FFs + WFGD systems. Consequently, SCR + ESPs/FFs + WFGD configuration will be the main path to abate Hg discharge from coal-fired power plants in China in the near future. However advanced specific Hg removal technologies are necessary

  7. Mode transition of power dissipation and plasma parameters in an asymmetric capacitive discharge

    International Nuclear Information System (INIS)

    Lee, Soo-Jin; Lee, Hyo-Chang; Bang, Jin-young; Oh, Seung-Ju; Chung, Chin-Wook

    2013-01-01

    Electrical characteristics and plasma parameters were experimentally investigated in asymmetric capacitively coupled plasma with various argon gas pressures. At a low discharge current region, the transferred power to the plasma was proportional to the current, while the transferred power increased proportionally to square of the current at a high discharge current region. The mode transition of power dissipation occurred at the lower discharge current region with the high gas pressure. At the low radio-frequency power or low discharge current, the plasma density increased linearly with the discharge current, while at the high power or high discharge current, the rate of an increase in the plasma density depended on the gas pressures. A transition of the discharge resistance was also found when the mode transition of the power dissipation occurred. These changes in the electrical characteristics and the plasma parameters were mainly caused by the power dissipation mode transition from the plasma bulk to the sheath in the capacitive discharge with the asymmetric electrode, which has extremely high self-bias voltages. - Highlights: • Mode transition of the power dissipation in an asymmetrical capacitive discharge • Evolution of the discharge power, electrode voltage, and discharge impedance • Electron temperature and plasma density on the power dissipation mode transition

  8. Modernization of the WWER 440/230 nuclear power plant environmental protection system

    Energy Technology Data Exchange (ETDEWEB)

    Mikheev, N.V.; Kamenskaya, A.N.; Kulyukhin, S.A.; Novichenko, V.L.; Rumer, I.A. [Russian Academy of Sciences, Institute of Physical Chemistry, Moscow (Russian Federation); Antonov, B.V.; Kornienko, A.G.; Meshkov, V.M.; Rogov, M.F. [Rosenergoatom Concern, Moscow (Russian Federation)

    2001-07-01

    The papers reports a new approach to the problem of increasing environmental protection during severe accidents at WWER 440/230 nuclear power plants. The environmental protection system that we propose has three, not two protection levels, and can be introduced with minor modernization of the equipment available at WWER 440/230 nuclear power plants: 1. a jet-vortex condenser; 2. the sprinkler system; 3. a sorption module. The proposed modernization not only makes it possible to avoid emergency discharge of radioactive air and steam mix into the environment under any accident scenario, but also would substantially contribute to the safety of WWER 440/230 nuclear power plants. (author)

  9. Custom design of a hanging cooling water power generating system applied to a sensitive cooling water discharge weir in a seaside power plant: A challenging energy scheme

    International Nuclear Information System (INIS)

    Tian, Chuan Min; Jaffar, Mohd Narzam; Ramji, Harunal Rejan; Abdullah, Mohammad Omar

    2015-01-01

    In this study, an innovative design of hydro-electricity system was applied to an unconventional site in an attempt to generate electricity from the exhaust cooling water of a coal-fired power plant. Inspired by the idea of micro hydro, present study can be considered new in three aspects: design, resource and site. This system was hung at a cooling water discharge weir, where all sorts of civil work were prohibited and sea water was used as the cooling water. It was designed and fabricated in the university's mechanical workshop and transported to the site for installation. The system was then put into proof run for a three-month period and achieved some success. Due to safety reasons, on-site testing was prohibited by the power plant authority. Hence, most data was acquired from the proof run. The driving system efficiency was tested in the range of 25% and 45% experimentally while modeling results came close to experimental results. Payback period for the system is estimated to be about 4.23 years. Result obtained validates the feasibility of the overall design under the sensitive site application. - Highlights: • Challenging energy scheme via a hanging cooling water power generating system. • Driving system efficiency was tested in the range of 25% and 45%. • Payback period for the system is estimated to be about 4.2 years

  10. Strategies for emission reduction from thermal power plants.

    Science.gov (United States)

    Prisyazhniuk, Vitaly A

    2006-07-01

    Major polluters of man's environment are thermal power stations (TPS) and power plants, which discharge into the atmosphere the basic product of carbon fuel combustion, CO2, which results in a build-up of the greenhouse effect and global warm-up of our planet's climate. This paper is intended to show that the way to attain environmental safety of the TPS and to abide by the decisions of the Kyoto Protocol lies in raising the efficiency of the heat power stations and reducing their fuel consumption by using nonconventional thermal cycles. Certain equations have been derived to define the quantitative interrelationship between the growth of efficiency of the TPS, decrease in fuel consumption and reduction of discharge of dust, fuel combustion gases, and heat into the environment. New ideas and new technological approaches that result in raising the efficiency of the TPS are briefly covered: magneto-hydrodynamic resonance, the Kalina cycle, and utilizing the ambient heat by using, as the working medium, low-boiling substances.

  11. Energy discharge heater power supply

    International Nuclear Information System (INIS)

    Jaskierny, W.

    1992-11-01

    The heater power supply is intended to supply capacitively stored,energy to embedded heater strips in cryo magnets. The amount of energy can be controlled by setting different charge different capacitor values. Two chassis' can be operated in series or interlocks are provided. The charge voltage, number of capacitors pulse can be monitored. There and dual channel has two discharge supplies in one chassis. This report reviews the characteristics of this power supply further

  12. Radioecological studies of activation products released from a nuclear power plant into the marine environment

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, M.; Mattsson, S.; Holm, E.

    1984-01-01

    The Barseback nuclear power plant, located on the Oresund sound between Denmark and Sweden, consists of two boiling water reactors. The release of radionuclides, mainly activation products, is quite low during normal operation. During the summer, when annual overhaul and partial refuelling take place, the discharge is much higher. Samples of seaweeds and crustaceans collected along the coast were analyzed for radionuclides. Seaweeds (Fucus vesiculosus, F. Serratus, Ascophyllum nodosum and Cladophora glomerata) and crustaceans (Idothea and Gammarus) proved to be excellent bioindicators for radioactive corrosion products released from the nuclear power plant into the marine environment. These bioindicators have been used to map the spatial and temporal distribution of the released radioactivity. The activity has been followed up to 150 km from the power plant, and the decrease in activity concentration in the bioindicators with distance can be expressed by a power function. The variation with time of activity concentration reflects the amount of activity discharged from the power plant, with good resolution in time. The bioindicators exhibit different uptake patterns of the radionuclides detected. The crustacean Idothea showed variations in the Co/sup 60/ activity concentration between winter and summer. 9 references, 12 figures, 2 tables.

  13. Monitoring of Radio-nuclides in the Vicinities of Finnish Nuclear Power Plants in 2002-2004

    International Nuclear Information System (INIS)

    Ilus, E.; Klemola, S.; Vartti, V.-P.; Mattila, J.; Ikaeheimonen, T.K.

    2000-03-01

    The monitoring of radioactive substances round Finnish nuclear power plants continued in 2002-2004 in accordance with the regular environmental monitoring programmes. Altogether, some 1000 samples are analysed annually from the terrestrial and aquatic environs of the two power plants. Trace amounts of activation products originating from airborne releases from the local power plants were detected in several air and deposition samples taken from the close vicinities of the power plants. At Loviisa, observations were made in two; at Olkiluoto in three aerosol samples during the reporting period. Except for the naturally occurring beryllium-7, the concentrations of all radionuclides in the air samples were very low; from few microbequerels to few tens of microbequerels per cubic metre. A similar pattern was tenable for the deposition samples as well. The activity concentrations of cobalt-60 of local origin were at their highest 0.3 bequerels per square metre in one sample taken from Loviisa and in one sample taken from Olkiluoto. No traces of local discharge nuclides were detected in foodstuffs, drinking water or garden products. In mushrooms and wild berries picked up in 2004 from the Loviisa area, only Chernobyl-derived caesium isotopes and natural potassium-40 were detected. Local discharge nuclides were more abundant in the aquatic environment, especially in samples of indicator organisms, sinking matter and sediments, which effectively accumulate radioactive substances. Besides tritium originating from local discharges, the most significant artificial radionuclide in the samples taken from the aquatic environs of the power plants was still caesium-137 originating from the Chernobyl accident (potassium-40 is a naturally occurring radionuclide). Elevated tritium concentrations were more frequent in the water samples from Loviisa. In indicator organisms and sinking matter, the observed concentrations of local discharge nuclides were generally somewhat higher and

  14. Partial Discharge Monitoring in Power Transformers Using Low-Cost Piezoelectric Sensors.

    Science.gov (United States)

    Castro, Bruno; Clerice, Guilherme; Ramos, Caio; Andreoli, André; Baptista, Fabricio; Campos, Fernando; Ulson, José

    2016-08-10

    Power transformers are crucial in an electric power system. Failures in transformers can affect the quality and cause interruptions in the power supply. Partial discharges are a phenomenon that can cause failures in the transformers if not properly monitored. Typically, the monitoring requires high-cost corrective maintenance or even interruptions of the power system. Therefore, the development of online non-invasive monitoring systems to detect partial discharges in power transformers has great relevance since it can reduce significant maintenance costs. Although commercial acoustic emission sensors have been used to monitor partial discharges in power transformers, they still represent a significant cost. In order to overcome this drawback, this paper presents a study of the feasibility of low-cost piezoelectric sensors to identify partial discharges in mineral insulating oil of power transformers. The analysis of the feasibility of the proposed low-cost sensor is performed by its comparison with a commercial acoustic emission sensor commonly used to detect partial discharges. The comparison between the responses in the time and frequency domain of both sensors was carried out and the experimental results indicate that the proposed piezoelectric sensors have great potential in the detection of acoustic waves generated by partial discharges in insulation oil, contributing for the popularization of this noninvasive technique.

  15. Partial Discharge Monitoring in Power Transformers Using Low-Cost Piezoelectric Sensors

    Directory of Open Access Journals (Sweden)

    Bruno Castro

    2016-08-01

    Full Text Available Power transformers are crucial in an electric power system. Failures in transformers can affect the quality and cause interruptions in the power supply. Partial discharges are a phenomenon that can cause failures in the transformers if not properly monitored. Typically, the monitoring requires high-cost corrective maintenance or even interruptions of the power system. Therefore, the development of online non-invasive monitoring systems to detect partial discharges in power transformers has great relevance since it can reduce significant maintenance costs. Although commercial acoustic emission sensors have been used to monitor partial discharges in power transformers, they still represent a significant cost. In order to overcome this drawback, this paper presents a study of the feasibility of low-cost piezoelectric sensors to identify partial discharges in mineral insulating oil of power transformers. The analysis of the feasibility of the proposed low-cost sensor is performed by its comparison with a commercial acoustic emission sensor commonly used to detect partial discharges. The comparison between the responses in the time and frequency domain of both sensors was carried out and the experimental results indicate that the proposed piezoelectric sensors have great potential in the detection of acoustic waves generated by partial discharges in insulation oil, contributing for the popularization of this noninvasive technique.

  16. Atmospheric effects of heat release at large power plants

    International Nuclear Information System (INIS)

    Kikuchi, Yukio

    1979-01-01

    In power plants, the thermal efficiency of generating electricity is generally 1/3, the rest 2/3 being carried away by cooling water. To release the heat, there are three alternative methods; i.e. cooling water released into sea, cooling water released into a cooling pond, and cooling of such water with a cooling tower. In the third method, cooling towers are stacks of 10m -- 80m bore, and warm cooling water flowing on the side wall is cooled with atmospheric air. The resultant heated air is discharged as plume from their top. Upon condensation, it becomes visible and then leads to the formation of clouds. In this manner, the weather around the sites of power plants is affected, such as reduction of insolation reaching ground and increase in precipitation. The following matters are described: cooling towers; phenomena and prediction methods of visible plume, cloud formation, increase of precipitation and deposition of drifting waterdrops; and effects of the group of power plants. (J.P.N.)

  17. Are atomic power plants saver than nuclear power plants

    International Nuclear Information System (INIS)

    Roeglin, H.C.

    1977-01-01

    It is rather impossible to establish nuclear power plants against the resistance of the population. To prevail over this resistance, a clarification of the citizens-initiatives motives which led to it will be necessary. This is to say: It is quite impossible for our population to understand what really heappens in nuclear power plants. They cannot identify themselves with nuclear power plants and thus feel very uncomfortable. As the total population feels the same way it is prepared for solidarity with the citizens-initiatives even if they believe in the necessity of nuclear power plants. Only an information-policy making transparent the social-psychological reasons of the population for being against nuclear power plants could be able to prevail over the resistance. More information about the technical procedures is not sufficient at all. (orig.) [de

  18. Transport of radioactive droplet moisture from a source in a nuclear power plant spray pond

    International Nuclear Information System (INIS)

    Elokhin, A.P.

    1995-01-01

    In addition to a change in the microclimate in the region surrounding a nuclear power plant resulting from the emission of vapor form a cooling tower, evaporation of water from the water surface of a cooling pond or a spray pond, in the latter case direct radioactive contamination of the underlying surface around the nuclear power plant can also occur due to discharge of process water (radioactive) into the pond and its transport in the air over a certain distance in the form of droplet moisture. A typical example may be the situation at the Zaporozhe nuclear power plant in 1986 when accidental discharge of process water into the cooling pond occurred. Below we present a solution for the problem of transport of droplet moisture taking into account its evaporation, which may be used to estimate the scale of radioactive contamination of the locality

  19. Integrated systems for power plant cooling and wastewater management

    International Nuclear Information System (INIS)

    Haith, D.A.

    1975-01-01

    The concept of integrated management of energy and water resources, demonstrated in hydropower development, may be applicable to steam-generated power, also. For steam plants water is a means of disposing of a waste product, which is unutilized energy in the form of heat. One framework for the evolution of integrated systems is the consideration of possible technical linkages between power plant cooling and municipal wastewater management. Such linkages include the use of waste heat as a mechanism for enhancing wastewater treatment, the use of treated wastewater as make-up for evaporative cooling structures, and the use of a pond or reservoir for both cooling and waste stabilization. This chapter reports the results of a systematic evaluation of possible integrated systems for power plant cooling and waste water management. Alternatives were analyzed for each of three components of the system--power plant cooling (condenser heat rejection), thermally enhanced waste water treatment, and waste water disposal. Four cooling options considered were evaporative tower, open cycle, spray pond, and cooling pond. Three treatment alternatives considered were barometric condenser-activated sludge, sectionalized condenser-activated sludge, and cooling/stabilization pond. Three disposal alternatives considered were ocean discharge, land application (spray irrigation), and make-up (for evaporative cooling). To facilitate system comparisons, an 1100-MW nuclear power plant was selected. 31 references

  20. Cooling problems of thermal power plants. Physical model studies

    International Nuclear Information System (INIS)

    Neale, L.C.

    1975-01-01

    The Alden Research Laboratories of Worcester Polytechnic Institute has for many years conducted physical model studies, which are normally classified as river or structural hydraulic studies. Since 1952 one aspect of these studies has involved the heated discharge from steam power plants. The early studies on such problems concentrated on improving the thermal efficiency of the system. This was accomplished by minimizing recirculation and by assuring full use of available cold water supplies. With the growing awareness of the impact of thermal power generation on the environment attention has been redirected to reducing the effect of heated discharges on the biology of the receiving body of water. More specifically the efforts of designers and operators of power plants are aimed at meeting or complying with standards established by various governmental agencies. Thus the studies involve developing means of minimizing surface temperatures at an outfall or establishing a local area of higher temperature with limits specified in terms of areas or distances. The physical models used for these studies have varied widely in scope, size, and operating features. These models have covered large areas with both distorted geometric scales and uniform dimensions. Instrumentations has also varied from simple mercury thermometers to computer control and processing of hundreds of thermocouple indicators

  1. First geothermal pilot power plant in Hungary

    Directory of Open Access Journals (Sweden)

    Tóth Anikó

    2007-01-01

    Full Text Available The Hungarian petroleum industry has always participated in the utilization of favourable geothermal conditions in the country. Most of the Hungarian geothermal wells were drilled by the MOL Ltd. as CH prospect holes. Accordingly, the field of geothermics belonged to the petroleum engineering, although marginally. It was therefore a surprise to hear of the decision of MOL Ltd. to build a geothermal power plant of about 2-5 MW. The tender was published in 2004.The site selected for the geothermal project is near the western border of an Hungarian oilfield, close to the Slovenian border. The location of the planned geothermal power plant was chosen after an analysis of suitable wells owned by the MOL Rt. The decision was made on the bases of different reservoir data. The existence of a reservoir of the necessary size, temperature, permeability, productivity and the water chemistry data was proved. The wells provide an enough information to understand the character of the reservoir and will be the production wells used by the planned power plant.The depth of the wells is about 2930 - 3200 m. The Triassic formation is reached at around 2851 m. The production and the reinjection wells are planned. The primary objective of the evaluation is to further learn the nature of the geothermal system. First a one-day discharge test is carried out. If this short-term test is successful, a six-months long-term discharge test will follow. The first period of the test is a transient phenomenon. Within the well test, the wellhead pressure, the flow rate, the outflowing water temperature, the dynamic fluid level, and the chemical components will be measured. The heat transfer around the bore-hole is influenced by the flow rate and the time. For the right appreciation of the measured data, it is very important to analyse the heat transfer processes around the bore-hole. The obtained data from the experiments must be also fitted into the framework of a mathematical

  2. Employing modern power plant simulators in nuclear power plants

    International Nuclear Information System (INIS)

    Niedorf, V.; Storm, J.

    2005-01-01

    At the present state of the art, modern power plant simulators are characterized by new qualitative features, thus enabling operators to use them far beyond the traditional field of training. In its first part, this contribution presents an overview of the requirements to be met by simulators for multivalent uses. In part two, a survey of the uses and perspectives of simulation technology in power plants is presented on the basis of experience accumulated by Rheinmetall Defence Electronics (RDE).Modern simulators are shown to have applications by far exceeding traditional training areas. Modular client - sever systems on standard computers allow inexpensive uses to be designed at several levels, thus minimizing maintenance cost. Complex development and running time environments, like the SEMS developed by RDE, have made power plant simulators the workhorses of power plant engineers in all power plant areas. (orig.)

  3. Virtual Power Plants of Electric Vehicles in Sustainable Smart Electricity Markets

    NARCIS (Netherlands)

    M.T. Kahlen (Micha)

    2017-01-01

    markdownabstractThe batteries of electric vehicles can be used as Virtual Power Plants to balance out frequency deviations in the electricity grid. Carsharing fleet owners have the options to charge an electric vehicle's battery, discharge an electric vehicle's battery, or keep an electric vehicle

  4. Impact of thermal discharge on marine environment - an overview

    International Nuclear Information System (INIS)

    Murugesan, A.G.; Rameshwari, S.; Sukumaran, N.

    2002-01-01

    Thermal pollution has been used to indicate the detrimental effects of heated effluents discharged by power plants and other industries. It denotes the impairment of quality and deterioration of aquatic and terrestrial environment through heated effluent and fly ash. Various industrial plants like thermal, atomic, nuclear, coal fired plants, oil field generators, factories and mills utilize water for cooling purposes. In India, there are about 60 thermal power plants, which produce 30 million tonnes of fly ash every year. The heated effluents from power plants is discharged at a temperature, which is 8-10 degC higher than that of intake marine water. The adverse effect of thermal discharge are visible in microorganism, fish, biotic life and the over all ecosystems. The discharge of heated effluents actually affects the fish respiration, metabolism and other physiological activities of marine organisms, which ultimately leads to death. This could be due to synergism because of toxic chemical such as copper, nickel, chromium and chlorine, which are used to remove slimes in the pipelines. The major waste material from thermal power station is the fly ash that creates enormous pollution problem to air, water and soil environment. Fly ash possess large amounts of lead, cobalt, chromium, cadmium etc. When this fly ash is released out through water carriage system it leads to turbidity, over deposition and flood also. Tuticorin Thermal Power Station (TTPS) has installed five power generation units each of 250 MW capacities. About 1.35 lakhs m 3 /hr water is drawn from the sea, utilized for cooling and then the heated effluent is discharged into the same environment. Therefore, this paper deals with various impacts associated with thermal discharge on marine environment. (author)

  5. Kansas Power Plants

    Data.gov (United States)

    Kansas Data Access and Support Center — The Kansas Power Plants database depicts, as point features, the locations of the various types of power plant locations in Kansas. The locations of the power plants...

  6. Ecological aspects of nuclear power plants in coastal environment

    International Nuclear Information System (INIS)

    Lebreton, P.

    1976-01-01

    A review is presented about ecological effects of giant nuclear Power Plants (ca. 5,000 MWe) on coastal environment. From short to long time, the problems concern the following points of view: - physical: (sitology; necessity of ecological mapping); - mechanical: (the cooling systems. 'Courantology'. Disturbance of marine micro- and macro-organisms); - thermal: (the heated discharges; thermal pollution. Effects on dissolved chemicals and marine organisms. Acquaculture and its limits); - chemical and radiochemical: (synergistic pollutions. Chlorine vs. fouling. Acute or chronic radioactive effluents; concentration by food chains). The conclusions emphasize the necessity of 'pluridisciplinarity' and 'zero-point' definition. Three ecological categories can be distinguished on the basis of water physical turn-over; to this categories correspond various standards and recommandations for management of nuclear Power Plants in coastal zones [fr

  7. Pathways of thirty-seven trace elements through coal-fired power plant

    International Nuclear Information System (INIS)

    Klein, D.H.; Andren, A.W.; Carter, J.A.; Emery, J.F.; Feldman, C.; Fulkerson, W.; Lyon, W.S.; Ogle, J.C.; Talmi, Y.; Van Hook, R.I.; Bolton, N.

    1975-01-01

    Coal, fly ash, slag, and combustion gases from a large cyclone-fed power plant 870 MW(e) were analyzed for a suite of elements. Mass balance calculations show that the sampling and analyses were generally adequate to describe the flows of these elements through the plant. Most Hg, some Se, and probably most Cl and Br were discharged to the atmosphere as gases. As, Cd, Cu, Ga, Mo, Pb, Sb, Se, and Zn were quite concentrated in fly ash compared to the slag, and were more concentrated in the ash discharged through the stack than in that collected by the precipitator. Al, Ba, Ca, Ce, Co, Eu, Fe, Hf, K, La, Mg, Mn, Rb, Sc, Si, Sm, Sr, Ta, Th, and Ti show little preferential partitioning between the slag and the collected or discharged fly ash. Cr, Sc, Na, Ni, U, and V exhibit behavior intermediate between the latter two groups

  8. Hydroelectric Power Plants Dobsina

    International Nuclear Information System (INIS)

    Majercak, V.; Srenkelova, Z.; Kristak, J.G.

    1997-01-01

    In this brochure the Hydroelectric Power Plants Dobsina, (VED), subsidiary of the utility Slovenske Elektrarne, a.s. (Slovak Electric, plc. Bratislava) are presented. VED is mainly aimed at generating peak-load electrical energy and maintenance of operational equipment. Reaching its goals, company is first of all focused on reliability of production, economy and effectiveness, keeping principles of work safety and industry safety standards and also ecology. VED operates eight hydroelectric power plants, from which PVE Ruzin I and PVE Dobsina I are pump storage ones and they are controlled directly by the Slovak Energy Dispatch Centre located in Zilina thought the system LS 3200. Those power plants participate in secondary regulation of electrical network of Slovakia. They are used to compensate balance in reference to foreign electrical networks and they are put into operation independently from VED. Activity of the branch is focused mainly on support of fulfilment of such an important aim as electric network regulation. Beginnings of the subsidiary Hydroelectric Power Plants Dobsina are related to the year of 1948. After commissioning of the pump storage Hydroelectric Power Plants Dobsina in 1953, the plant started to carry out its mission. Since that time the subsidiary has been enlarged by other seven power plants, through which it is fulfilling its missions nowadays. The characteristics of these hydroelectric power plants (The pump-storage power plant Dobsina, Small hydroelectric power plant Dobsina II, Small hydroelectric power plant Rakovec, Small hydroelectric power plant Svedlar, Hydroelectric power plant Domasa, The pump-storage power plant Ruzin, and Small hydroelectric power plant Krompachy) are described in detail. Employees welfare and public relations are presented

  9. Comparative studies between nuclear power plants and hydroelectric power plants

    International Nuclear Information System (INIS)

    Menegassi, J.

    1984-01-01

    This paper shows the quantitative evolution of the power plants in the main countries of the world. The Brazilian situation is analysed, with emphasys in the technical and economical aspects related to power production by hidroelectric or nuclear power plants. The conclusion is that the electricity produced by hidro power plants becomes not economics when is intended to be produced at large distances from the demand centers. (Author) [pt

  10. Monitoring of radionuclides in the vicinities of Finnish nuclear power plants in 1991-1992

    Energy Technology Data Exchange (ETDEWEB)

    Ikaeheimonen, T.K.; Klemola, S.; Ilus, E.; Sjoeblom, K.-L.

    1995-06-01

    Surveillance of radioactive substances around Finnish nuclear power plants continued in 1991-1992 according to regular monitoring programmes, in which about 1000 samples were analysed annually from terrestrial and aquatic environments of the two power plants. Trace amounts of activation products originating from the airborne releases of the local power plants were detected in several air, deposition and soil samples. Discharged nuclides were more abundant in the aquatic environment, especially in samples of indicator organisms, sinking matter and sediments. However, the concentrations were so low that they did not markedly increase the radiation burden in the environment. The dominant artificial radionuclides in the vicinity of the power plants remained the cesium isotopes, {sup 137}Cs and {sup 134}Cs, originating from the Chernobyl accident. (orig.) (21 figs., 40 tabs.).

  11. The agricultural use of heat discharge by nuclear power plants

    International Nuclear Information System (INIS)

    Grauby, A.; Delmas, J.; Foulquier, L.; Guillermin, R.

    1977-01-01

    At a time in which energy savings are of prime importance, it is interesting to be able to offer a technique enabling the use of the heated waters leaving the cooling circuits of electric power plants. Satisfactory and positive results have been obtained by the Environmental Research Service, in the area of open field farming as well as in pisciculture. The use of a network of buried pipes conveying the hot water leads to greater crop yields, off-season scheduling of early and late varieties to benefit from favorable market prices, together with the possibility of adapting priority industrial crops such as soya to our climates [fr

  12. Monitoring of radionuclides in the vicinities of Finnish nuclear power plants in 1993 and 1994

    International Nuclear Information System (INIS)

    Klemola, S.; Ilus, E.; Ikaeheimonen, T.K.

    1998-08-01

    Monitoring of radioactive substances around Finnish nuclear power plants continued in 1993-1994 in accordance with the regular programmes. Some 1000 samples are analysed annually from the terrestrial and aquatic environments of the two power plant sites. Trace amounts of activation products originating from airborne releases from the local power plants were detected in several air, deposition and soil samples. Discharged nuclides were more abundant in the aquatic environment, especially in samples of indicator organisms, sinking matter and sediments. However, the concentrations were so low that they did not significantly increase the radiation burden in the environment. The dominant artificial radionuclides in the vicinity of the power plants remained the cesium isotopes, especially 137 Cs but also 134 Cs, originating from the Chernobyl accident. (orig.)

  13. Angra-1 NPP thermal influence on liquid effluent discharge zone

    International Nuclear Information System (INIS)

    Costa, Daniel de Araujo

    1996-01-01

    The Angra I Nuclear Power Plant makes use of sea-water to condense the steam generated in its secondary circuit. This water, collected from Itaorna bay, is then chlorinated and discharged, with higher temperature, in the Piraquara de Fora bay. Aiming the study of the marine ecosystem, submitted to the effects of the Nuclear Power Plant discharge water, the temperature, residual chlorine, flora and fauna are periodically monitored. Being sensitive to temperature variations and to chemical products, macroscopic algae are also bio-accumulators and primary producers, because of this, they are considered the main link in the food chain and therefore important bio-indicator. This paper shows the variation of species from the brown algae near the discharge of Angra I Nuclear Power Plant. (author)

  14. Nuclear power plant in the Oslofjord district

    International Nuclear Information System (INIS)

    Moshagen, H.; Kjeldsen, P.; Tesaker, E.

    1972-01-01

    Calculations of the spreading of cooling water effluent from a nuclear power plant in the waters adjacent to prospective sites in the Oslofjord district are made on the basis of the available hydrological data. Such data has been primarily that presented in reports 1-4 in the report series 'Nuclear power plant in the Oslofjord district'. In addition data from the Laboratory's previous investigations at Slagentangen and meteorological data from Norsk Institutt for Luftforskning for release points Brenntangen, Son, Langangsfjorden, Ormefjorden, Vardeaasen and Slagentangen have been used. The calculations are concentrated on trapping in layers, current effects on horizontal spreading and heat transfer through the surface. The results are presented partly as tables showing to what extent the cooling water breaks through to the surface with deeply submerged discharge and use of a diffuser, partly as diagrams showing layer zones and salinity, and partly as temperature rise curves drawn on maps of the various recipient areas. (JIW)

  15. Investigation of hydrological and pollution problems with nuclear power plants

    International Nuclear Information System (INIS)

    Nilsen, G.

    1974-12-01

    The results of a number of investigations designed to form a basis for the prediction of the effects of the thermal effluents from a nuclear power plant on the marine environment, which have been carried out in the Oslofjord district in the period 1973-1974 are reported. The effects of temperature increases on the predominantly arctic fauna of the deep water zones and the increase of green algae at the expense of brown algae form the main aspects. The decomposition in sediments and deep water, with evolution of hypoxic conditions is also discussed, as is hydrochemistry. Finally a brief evaluation of the suitability of the areas investigated as recipients of thermal discharges from nuclear power plants is presented. (JIW)

  16. Fiscal 1980 Sunshine Project research report. Development of hydrothermal power plant (Development of binary cycle power plant). Supplement. Research on plant technology; 1980 nendo nessui riyo hatsuden plant no kaihatsu seika hokokusho. Binary cycle hatsuden palnt no kaihatsu bessatsu (plant gijutsu kenkyu chosa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-03-01

    Research was made on new geothermal power plant technologies such as downhole pump and dual boiler for development of the 10MW class binary cycle power plant using geothermal energy. In heat cycle calculation of dual boilers, the cycle performance of a subcritical multi-stage evaporation cycle with R-114 heat medium was obtained through cycle calculation, heat conduction calculation and profitability calculation. The calculation result suggested possible considerable reduction of heat loss due to heat exchange at a preheater and evaporator, and considerable reduction of discharge loss of hot water by such multi-stage evaporation cycle. In American, every geothermal binary cycle power plant adopts pressurized heat exchange between hot water and heat medium by using downhole pumps, and pressurized reinjection of hot water into the ground. Since downhole pump itself not yet satisfies its requirements enough, it is said that Department of Energy is now under consideration on the future R and D. (NEDO)

  17. Detection of radionuclides originating from a nuclear power plant in sewage sludge

    International Nuclear Information System (INIS)

    Puhakainen, M.; Suomela, M.

    1999-01-01

    Sewage sludge is a sensitive indicator of radionuclides entering the environment. Radionuclides originating in nuclear power stations have been detected in sludge found at wastewater treatment plants in communities near the power plants (NPP). The main contributor is the radionuclide discharges of the NPPs into the atmosphere, but workers may transmit small amounts through their clothes or skin, or from internal contamination. The purpose of the present investigation was to determine the amounts of radionuclides in sewage sludge and to obtain information on transport of the radionuclides from the NPPs to the wastewater treatment plants. Under normal operating conditions and during annual maintenance and refuelling outages at the Loviisa and Olkiluoto NPPs, sewage sludge samples were taken at wastewater treatment plants in communities located in the vicinity of the plants. With the exception of 131 I, the most significant activities in discharges into the air from the Loviisa NPP were due to 110 mAg. The latter was also noted most frequently in the sewage sludge at the wastewater treatment plant in the town of Loviisa about 10 km from the Loviisa pressurised water reactor (PWR) NPP. The other nuclides probably originating from the Loviisa NPP were 51 Cr, 54 Mn, 58 Co, 59 Fe, 60 Co, 110 mAg and 124 Sb. In the wastewater treatment plant in the town of Rauma, about 10 km from the Olkiluoto boiling water reactor (BWR) NPP, the only nuclides possibly origination from the NPP were 54 Mn, 58 Co and 60 Co. In the wastewater treatment plant, the variation in concentration of 60 Co in sludge did not correlate with the activities measured in precipitation. The occurrence of the nuclide in the treatment plant did not correlate over time with the amounts of discharge from the NPP. This suggests that at least some of the activity was transported to the wastewater treatment plant via routes other than precipitation. Small amounts may be transported within NPP workers to sewage

  18. Reliability of microcircuits in nuclear power plants

    International Nuclear Information System (INIS)

    Cross, P.M.; Taplin, R.C.

    1986-06-01

    The reliability problems associated with modernizing control systems in nuclear power plants, particularly by using new technology microcircuits, are discussed and twelve problem areas identified. These are: new technology introduction; variability in manufacture; derating necessities; distributed systems; use of redundancy; electrostatic discharge damage; electromagnetic interference; nuclear radiation; thermal effects; contamination, including humidity; mechanical effects, including vibration; and testing. Recommendations for the AECB are given in each area. Guidelines are given for the design, procurement, installation, operation and maintenance stages of use. Recommendations for further work are given

  19. Chemistry in power plants 2010. Lectures

    International Nuclear Information System (INIS)

    2010-01-01

    This year's conference starts with the analytical control of lubricating and hydraulic oil in turbine machines as well as with sampling and analysis in the water steam cycle. Other papers are dealing with the analysis of film-forming amines, the transformation of data from the water steam cycle into information for action, the improvement of water steam cycle chemistry in cyclic operation and finally the environmental application of closed loop recycling methods avoiding the discharge of waste water. Furthermore items of nuclear power plant chemistry as well as of flue gas cleaning and coal analysis are presented in two sections. [de

  20. Discharge Characteristics of Series Surface/Packed-Bed Discharge Reactor Diven by Bipolar Pulsed Power

    International Nuclear Information System (INIS)

    Hu Jian; Jiang Nan; Li Jie; Shang Kefeng; Lu Na; Wu Yan; Mizuno Akira

    2016-01-01

    The discharge characteristics of the series surface/packed-bed discharge (SSPBD) reactor driven by bipolar pulse power were systemically investigated in this study. In order to evaluate the advantages of the SSPBD reactor, it was compared with traditional surface discharge (SD) reactor and packed-bed discharge (PBD) reactor in terms of the discharge voltage, discharge current, and ozone formation. The SSPBD reactor exhibited a faster rising time and lower tail voltage than the SD and PBD reactors. The distribution of the active species generated in different discharge regions of the SSPBD reactor was analyzed by optical emission spectra and ozone analysis. It was found that the packed-bed discharge region (3.5 mg/L), rather than the surface discharge region (1.3 mg/L) in the SSPBD reactor played a more important role in ozone generation. The optical emission spectroscopy analysis indicated that more intense peaks of the active species (e.g. N2 and OI) in the optical emission spectra were observed in the packed-bed region. (paper)

  1. Radiation protection during operation of nuclear power plants

    International Nuclear Information System (INIS)

    1983-01-01

    This Guide describes a Radiation Protection Programme for nuclear power plants. It includes: (1) An outline of the basic principles as well as practical aspects of the programme; (2) A description of the responsibilities of the operating organization to establish an effective programme based upon these principles; (3) A description of the administrative and technical measures to establish and implement the programme. This Guide also deals with the operational aspects to be considered by the operating organization in reviewing design in order to facilitate implementation of the Radiation Protection Programme. This Guide covers the requirements for a Radiation Protection Programme for all operational states of the nuclear power plant. It also includes guidelines for handling planned special exposures and for coping with unplanned exposures and contamination of personnel, areas, and equipment. Additional information concerning emergency situations involving releases of radioactive materials is given in Safety Guides 50-SG-O6, ''Preparedness of the Operating Organization (Licensee) for Emergencies at Nuclear Power Plants'', and 50-SG-G6, ''Preparedness of Public Authorities for Emergencies at Nuclear Power Plants''. This Guide covers the principles of dose limitation to site personnel and to the public, but it does not include detailed instructions on the techniques used for the actual measurement and evaluation of the exposures. This Guide does not include detailed instructions on environmental surveys, but it does mention principal steps in environmental monitoring which may be required for confirmation of the acceptability of radioactive discharges

  2. All solid state pulsed power system for water discharge

    OpenAIRE

    Sakugawa, Takashi; Yamaguchi, Takahiro; Yamamoto, Kunihiro; Kiyan, Tsuyoshi; Namihira, Takao; Katsuki, Sunao; Akiyama, Hidenori; サクガワ, タカシ; ヤマグチ, タカヒロ; ヤマモト, クニヒロ; キヤン, ツヨシ; ナミヒラ, タカオ; カツキ, スナオ; アキヤマ, ヒデノリ; 佐久川, 貴志

    2005-01-01

    Pulsed power has been used to produce non-thermal plasmas in gases that generate a high electric field at the tip of streamer discharges, where high energy electrons, free radicals, and ozone are produced. Recently, all solid state pulsed power generators, which are operated with high repetition rate, long lifetime and high reliability, have been developed for industrial applications, such as high repetition rate pulsed gas lasers, high energy density plasma (EUV sources) and water discharges...

  3. Technical Feasibility Study of Thermal Energy Storage Integration into the Conventional Power Plant Cycle

    Directory of Open Access Journals (Sweden)

    Jacek D. Wojcik

    2017-02-01

    Full Text Available The current load balance in the grid is managed mainly through peaking fossil-fuelled power plants that respond passively to the load changes. Intermittency, which comes from renewable energy sources, imposes additional requirements for even more flexible and faster responses from conventional power plants. A major challenge is to keep conventional generation running closest to the design condition with higher load factors and to avoid switching off periods if possible. Thermal energy storage (TES integration into the power plant process cycle is considered as a possible solution for this issue. In this article, a technical feasibility study of TES integration into a 375-MW subcritical oil-fired conventional power plant is presented. Retrofitting is considered in order to avoid major changes in the power plant process cycle. The concept is tested based on the complete power plant model implemented in the ProTRAX software environment. Steam and water parameters are assessed for different TES integration scenarios as a function of the plant load level. The best candidate points for heat extraction in the TES charging and discharging processes are evaluated. The results demonstrate that the integration of TES with power plant cycle is feasible and provide a provisional guidance for the design of the TES system that will result in the minimal influence on the power plant cycle.

  4. Plant for the delivery of long-distance steam combined with a nuclear power plant

    International Nuclear Information System (INIS)

    Schueller, K.H.

    1976-01-01

    It is proposed that long-distance steam should not be directly discharged in order to avoid each posibility of spreading radioactively contaminated steam. As a heat transmitter, a surface heat exchanger should be chosen, the heating steam of the nuclear power station heating pressurized water whose pressure is higher then that of the heating steam. Long-distance steam generation then results from expanding the pressurized water. The plant is described in detail. (UWI) [de

  5. Monitoring of radionuclides in the vicinities of Finnish nuclear power plants in 1993 and 1994

    Energy Technology Data Exchange (ETDEWEB)

    Klemola, S.; Ilus, E.; Ikaeheimonen, T.K

    1998-08-01

    Monitoring of radioactive substances around Finnish nuclear power plants continued in 1993-1994 in accordance with the regular programmes. Some 1000 samples are analysed annually from the terrestrial and aquatic environments of the two power plant sites. Trace amounts of activation products originating from airborne releases from the local power plants were detected in several air, deposition and soil samples. Discharged nuclides were more abundant in the aquatic environment, especially in samples of indicator organisms, sinking matter and sediments. However, the concentrations were so low that they did not significantly increase the radiation burden in the environment. The dominant artificial radionuclides in the vicinity of the power plants remained the cesium isotopes, especially {sup 137}Cs but also {sup 134}Cs, originating from the Chernobyl accident. (orig.) 14 refs.

  6. Potential of Micro Hydroelectric Generator Embedded at 30,000 PE Effluent Discharge of Sewerage Treatment Plant

    Science.gov (United States)

    Che Munaaim, M. A.; Razali, N.; Ayob, A.; Hamidin, N.; Othuman Mydin, M. A.

    2018-03-01

    A micro hydroelectric generator is an energy conversion approach to generate electricity from potential (motion) energy to an electrical energy. In this research, it is desired to be implemented by using a micro hydroelectric generator which is desired to be embedded at the continuous flow of effluent discharge point of domestic sewerage treatment plant (STP). This research evaluates the potential of electricity generation from micro hydroelectric generator attached to 30,000 PE sewerage treatment plant. The power output obtained from calculation of electrical power conversion is used to identify the possibility of this system and its ability to provide electrical energy, which can minimize the cost of electric bill especially for the pumping system. The overview of this system on the practical application with the consideration of payback period is summarized. The ultimate aim of the whole application is to have a self-ecosystem electrical power generated for the internal use of STP by using its own flowing water in supporting the sustainable engineering towards renewable energy and energy efficient approach. The results shows that the output power obtained is lower than expected output power (12 kW) and fall beyond of the range of a micro hydro power (5kW - 100kW) since it is only generating 1.58 kW energy by calculation. It is also observed that the estimated payback period is longer which i.e 7 years to recoup the return of investment. A range of head from 4.5 m and above for the case where the flow shall at least have maintained at 0.05 m3/s in the selected plant in order to achieved a feasible power output. In conclusion, wastewater treatment process involves the flowing water (potential energy) especially at the effluent discharge point of STP is possibly harvested for electricity generation by embedding the micro hydroelectric generator. However, the selection of STP needs to have minimum 4.5 meter head with 0.05 m3/s of continuously flowing water to make

  7. Potential of Micro Hydroelectric Generator Embedded at 30,000 PE Effluent Discharge of Sewerage Treatment Plant

    Directory of Open Access Journals (Sweden)

    Che Munaaim M.A.

    2018-01-01

    Full Text Available A micro hydroelectric generator is an energy conversion approach to generate electricity from potential (motion energy to an electrical energy. In this research, it is desired to be implemented by using a micro hydroelectric generator which is desired to be embedded at the continuous flow of effluent discharge point of domestic sewerage treatment plant (STP. This research evaluates the potential of electricity generation from micro hydroelectric generator attached to 30,000 PE sewerage treatment plant. The power output obtained from calculation of electrical power conversion is used to identify the possibility of this system and its ability to provide electrical energy, which can minimize the cost of electric bill especially for the pumping system. The overview of this system on the practical application with the consideration of payback period is summarized. The ultimate aim of the whole application is to have a self-ecosystem electrical power generated for the internal use of STP by using its own flowing water in supporting the sustainable engineering towards renewable energy and energy efficient approach. The results shows that the output power obtained is lower than expected output power (12 kW and fall beyond of the range of a micro hydro power (5kW - 100kW since it is only generating 1.58 kW energy by calculation. It is also observed that the estimated payback period is longer which i.e 7 years to recoup the return of investment. A range of head from 4.5 m and above for the case where the flow shall at least have maintained at 0.05 m3/s in the selected plant in order to achieved a feasible power output. In conclusion, wastewater treatment process involves the flowing water (potential energy especially at the effluent discharge point of STP is possibly harvested for electricity generation by embedding the micro hydroelectric generator. However, the selection of STP needs to have minimum 4.5 meter head with 0.05 m3/s of continuously flowing

  8. Thermal effluents from nuclear power plant influences species distribution and thermal tolerance of fishes in reservoirs

    International Nuclear Information System (INIS)

    Pal, A.K.; Das, T.; Dalvi, R.S.; Bagchi, S.; Manush, S.M.; Ayyappan, S.; Chandrachoodan, P.P.; Apte, S.K.; Ravi, P.M.

    2007-01-01

    During electricity generation water bodies like reservoir act as a heat sink for thermal effluent discharges from nuclear power plant. We hypothesized that the fish fauna gets distributed according to their temperature preference in the thermal gradient. In a simulated environment using critical thermal methodology (CTM), we assessed thermal tolerance and metabolic profile of fishes (Puntius filamentosus, Parluciosoma daniconius, Ompok malabaricus, Mastacembelus armatus, Labeo calbasu, Horabragrus brachysoma, Etroplus suratensis, Danio aequipinnatus and Gonoproktopterus curmuca) collected from Kadra reservoir in Karnataka state. Results of CTM tests agrees with the species abundance as per the temperature gradient formed in the reservoir due to thermal effluent discharge. E. suratensis and H. brachysoma) appear to be adapted to high temperature (with high CTMax and CTMin values) and are in abundance at point of thermal discharge. Similarly, P. daniconius, appear to be adapted to cold (low CTM values) is in abundance in lower stretches of Kadra reservoir. Overall results indicate that discharge form nuclear power plant influences the species biodiversity in enclosed water bodies. (author)

  9. Investigation on discharge characteristics of a coaxial dielectric barrier discharge reactor driven by AC and ns power sources

    Science.gov (United States)

    Qian, WANG; Feng, LIU; Chuanrun, MIAO; Bing, YAN; Zhi, FANG

    2018-03-01

    A coaxial dielectric barrier discharge (DBD) reactor with double layer dielectric barriers has been developed for exhaust gas treatment and excited either by AC power or nanosecond (ns) pulse to generate atmospheric pressure plasma. The comparative study on the discharge characteristics of the discharge uniformity, power deposition, energy efficiency, and operation temperature between AC and ns pulsed coaxial DBD is carried out in terms of optical and electrical characteristics and operation temperature for optimizing the coaxial DBD reactor performance. The voltages across the air gap and dielectric layer and the conduction and displacement currents are extracted from the applied voltages and measured currents of AC and ns pulsed coaxial DBDs for the calculation of the power depositions and energy efficiencies through an equivalent electrical model. The discharge uniformity and operating temperature of the coaxial DBD reactor are monitored and analyzed by optical images and infrared camera. A heat conduction model is used to calculate the temperature of the internal quartz tube. It is found that the ns pulsed coaxial DBD has a much higher instantaneous power deposition in plasma, a lower total power consumption, and a higher energy efficiency compared with that excited by AC power and is more homogeneous and stable. The temperature of the outside wall of the AC and ns pulse excited coaxial DBD reaches 158 °C and 64.3 °C after 900 s operation, respectively. The experimental results on the comparison of the discharge characteristics of coaxial DBDs excited by different powers are significant for understanding of the mechanism of DBDs, reducing energy loss, and optimizing the performance of coaxial DBD in industrial applications.

  10. Evaluating bio environmental effects of Bushehr Nuclear Power Plant on water and aquatic organism of Persian Gulf

    International Nuclear Information System (INIS)

    Ayatti, F.

    2000-01-01

    The operation of nuclear power plants is always subjected to emission of some radioactive materials in the form of gaseous, liquids and solids in the environment. The heat from condenser coolant discharged to the sea can have some adverse effects on biological systems as thermal pollution. In this project, the radiation and thermal effects on Bushehr Nuclear Power Plants on aquatic animals in Persian Gulf were studied. The mathematical models for atmospheric dispersion of pollutant and pathways of radioactive materials from air to sea water and from sea to animals and human bodies were considered. some environmental samples from Persian Gulf were measured for radioactivity using high-purity Ge/Li detectors and Gamma-spectroscopy. The results indicates that the erection of B usher Nuclear Power Plants and its operation in the normal operation can have no adverse effects on environment, and also its thermal pollution is of no importance due to low area for coolant discharges

  11. Less power plants

    International Nuclear Information System (INIS)

    TASR

    2003-01-01

    In the Slovak Republic the number of company power plants decreased as against 2001 by two sources. In present time only 35 companies have their own power plants. The companies Slovnaft, Kappa Sturovo, Slovensky hodvab Senica, Matador Puchov, Maytex Liptovsky MikuIas, Kovohuty Krompachy, Chemko Strazske and some Slovak sugar factories belong to the largest company power plants in force of distributing companies. Installed output of present 35 company sources is 531 MW. The largest of separate power plants as Paroplynovy cyklus Bratislava (218 MW) and VD Zilina (72 MW) belong to independent sources. Total installed output of Slovak sources was 8306 MW in the end of last year

  12. Cold shock to aquatic organisms: guidance for power-plant siting, design, and operation

    International Nuclear Information System (INIS)

    Coutant, C.C.

    1977-01-01

    Problems of cold-shock damages to aquatic organisms have arisen at some condenser cooling-water discharges of thermal power stations when the warm-water releases have suddenly terminated. The basis for such damage lies in the exposure of resident organisms to a rapid decrease in temperature and a sustained exposure to low temperature that induces abnormal behavioral or physiological performance and often leads to death. Although some spectacular fish kills from cold shock have occurred, the present knowledge of the hydraulic and biological processes involved can provide guidance for the siting, design, and operation of power-plant cooling systems to minimize the likelihood of significant cold-shock effects. Preventing cold-shock damages is one consideration in minimizing overall environmental impacts of power-plant cooling and in balancing plant costs with environmental benefits

  13. Radiation exposure potential from coal-fired power plants in Romania

    International Nuclear Information System (INIS)

    Botezatu, E.; Grecea, C.; Botezatu, G.; Capitanu, O.; Peic, T.; Sandor, G.

    1996-01-01

    In the investigated power plants they burn brown coal, lignite and/or mixture of different kinds of coal: brown coal, lignite, pit coal, pitch coal, bituminous coal. The activity concentrations measured in the coal samples varied over two orders of magnitude. The natural radionuclide concentrations in fly ash are significantly higher than the corresponding Concentrations in the coal. The normalized discharged activities for the investigated power plants are much higher than those estimated in the UNSCEAR 1988 Report for typical old and modern plants. Firstly, accounting for this is the low ash retention efficiency of the particulate control devices of power stations, especially for the older ones, and secondly, the high ash content of the coal: 26-60%. The low quality of coal leads to the higher coal consumption; thus the combustion of up to 20.109 Kg of coal is required to produce 1 Gwa of electrical energy. As a result, the activities of radon-222 and of radon-220 released per Gwa have been assessed at 25 to 770 GBq. (author)

  14. Water-Related Power Plant Curtailments: An Overview of Incidents and Contributing Factors

    Energy Technology Data Exchange (ETDEWEB)

    McCall, James [National Renewable Energy Lab. (NREL), Golden, CO (United States); Macknick, Jordan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Macknick, Jordan [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-12-01

    Water temperatures and water availability can affect the reliable operations of power plants in the United States. Data on water-related impacts on the energy sector are not consolidated and are reported by multiple agencies. This study provides an overview of historical incidents where water resources have affected power plant operations, discusses the various data sources providing information, and creates a publicly available and open access database that contains consolidated information about water-related power plant curtailment and shut-down incidents. Power plants can be affected by water resources if incoming water temperatures are too high, water discharge temperatures are too high, or if there is not enough water available to operate. Changes in climate have the potential to exacerbate uncertainty over water resource availability and temperature. Power plant impacts from water resources include curtailment of generation, plant shut-downs, and requests for regulatory variances. In addition, many power plants have developed adaptation approaches to reducing the potential risks of water-related issues by investing in new technologies or developing and implementing plans to undertake during droughts or heatwaves. This study identifies 42 incidents of water-related power plant issues from 2000-2015, drawing from a variety of different datasets. These incidents occur throughout the U.S., and affect coal and nuclear plants that use once-through, recirculating, and pond cooling systems. In addition, water temperature violations reported to the Environmental Protection Agency are also considered, with 35 temperature violations noted from 2012-2015. In addition to providing some background information on incidents, this effort has also created an open access database on the Open Energy Information platform that contains information about water-related power plant issues that can be updated by users.

  15. B, As, and F contamination of river water due to wastewater discharge of the Yangbajing geothermal power plant, Tibet, China

    Science.gov (United States)

    Guo, Qinghai; Wang, Yanxin; Liu, Wei

    2008-11-01

    Thermal waters from the Yangbajing geothermal field, Tibet, contain high concentrations of B, As, and F, up to 119, 5.7 and 19.6 mg/L, respectively. In this paper, the distribution of B, As, and F in the aquatic environment at Yangbajing was surveyed. The results show that most river water samples collected downstream of the Zangbo River have comparatively higher concentrations of B, As, and F (up to 3.82, 0.27 and 1.85 mg/L, respectively), indicating that the wastewater discharge of the geothermal power plant at Yangbajing has resulted in B, As, and F contamination in the river. Although the concentrations of B, As, and F of the Zangbo river waters decline downstream of the wastewater discharge site due to dilution effect and sorption onto bottom sediments, the sample from the conjunction of the Zangbo River and the Yangbajing River has higher contents of B, As, and F as compared with their predicted values obtained using our regression analysis models. The differences between actual and calculated contents of B, As, and F can be attributed to the contribution from upstream of the Yangbajing River. Water quality deterioration of the river has induced health problems among dwellers living in and downstream of Yangbajing. Effective measures, such as decontamination of wastewater and reinjection into the geothermal field, should be taken to protect the environment at Yangbajing.

  16. Discharge Characteristics of Series Surface/Packed-Bed Discharge Reactor Diven by Bipolar Pulsed Power

    Science.gov (United States)

    Hu, Jian; Jiang, Nan; Li, Jie; Shang, Kefeng; Lu, Na; Wu, Yan; Mizuno, Akira

    2016-03-01

    The discharge characteristics of the series surface/packed-bed discharge (SSPBD) reactor driven by bipolar pulse power were systemically investigated in this study. In order to evaluate the advantages of the SSPBD reactor, it was compared with traditional surface discharge (SD) reactor and packed-bed discharge (PBD) reactor in terms of the discharge voltage, discharge current, and ozone formation. The SSPBD reactor exhibited a faster rising time and lower tail voltage than the SD and PBD reactors. The distribution of the active species generated in different discharge regions of the SSPBD reactor was analyzed by optical emission spectra and ozone analysis. It was found that the packed-bed discharge region (3.5 mg/L), rather than the surface discharge region (1.3 mg/L) in the SSPBD reactor played a more important role in ozone generation. The optical emission spectroscopy analysis indicated that more intense peaks of the active species (e.g. N2 and OI) in the optical emission spectra were observed in the packed-bed region. supported by National Natural Science Foundation of China (No. 51177007), the Joint Funds of National Natural Science Foundation of China (No. U1462105), and Dalian University of Technology Fundamental Research Fund of China (No. DUT15RC(3)030)

  17. Nuclear power plants

    International Nuclear Information System (INIS)

    Margulova, T.Ch.

    1976-01-01

    The textbook focuses on the technology and the operating characteristics of nuclear power plants equiped with pressurized water or boiling water reactors, which are in operation all over the world at present. The following topics are dealt with in relation to the complete plant and to economics: distribution and consumption of electric and thermal energy, types and equipment of nuclear power plants, chemical processes and material balance, economical characteristics concerning heat and energy, regenerative preheating of feed water, degassing and condenser systems, water supply, evaporators, district heating systems, steam generating systems and turbines, coolant loops and pipes, plant siting, ventilation and decontamination systems, reactor operation and management, heat transfer including its calculation, design of reactor buildings, and nuclear power plants with gas or sodium cooled reactors. Numerous technical data of modern Soviet nuclear power plants are included. The book is of interest to graduate and post-graduate students in the field of nuclear engineering as well as to nuclear engineers

  18. Effect of liquid waste discharges from steam generating facilities

    Energy Technology Data Exchange (ETDEWEB)

    McGuire, H.E. Jr.

    1977-09-01

    This report contains a summary of the effects of liquid waste discharges from steam electric generating facilities on the environment. Also included is a simplified model for use in approximately determining the effects of these discharges. Four basic fuels are used in steam electric power plants: three fossil fuels--coal, natural gas, and oil; and uranium--presently the basic fuel of nuclear power. Coal and uranium are expected to be the major fuels in future years. The following power plant effluents are considered: heat, chlorine, copper, total dissolved solids, suspended solids, pH, oil and grease, iron, zinc, chrome, phosphorus, and trace radionuclides.

  19. Effect of liquid waste discharges from steam generating facilities

    International Nuclear Information System (INIS)

    McGuire, H.E. Jr.

    1977-09-01

    This report contains a summary of the effects of liquid waste discharges from steam electric generating facilities on the environment. Also included is a simplified model for use in approximately determining the effects of these discharges. Four basic fuels are used in steam electric power plants: three fossil fuels--coal, natural gas, and oil; and uranium--presently the basic fuel of nuclear power. Coal and uranium are expected to be the major fuels in future years. The following power plant effluents are considered: heat, chlorine, copper, total dissolved solids, suspended solids, pH, oil and grease, iron, zinc, chrome, phosphorus, and trace radionuclides

  20. Accident prevention in power plants

    International Nuclear Information System (INIS)

    Steyrer, H.

    Large thermal power plants are insured to a great extent at the Industrial Injuries Insurance Institute of Instrument and Electric Engineering. Approximately 4800 employees are registered. The accident frequency according to an evaluation over 12 months lies around 79.8 per year and 1000 employees in fossil-fired power plants, around 34.1 per year and 1000 employees in nuclear power plants, as in nuclear power plants coal handling and ash removal are excluded. Injuries due to radiation were not registered. The crucial points of accidents are mechanical injuries received on solid, sharp-edged and pointed objects (fossil-fired power plants 28.6%, nuclear power plants 41.5%), stumbling, twisting or slipping (fossil-fired power plants 21.8%, nuclear power plants 19.5%) and injuries due to moving machine parts (only nuclear power plants 12.2%). However, accidents due to burns or scalds obtain with 4.2% and less a lower portion than expected. The accident statistics can explain this fact in a way that the typical power plant accident does not exist. (orig./GL) [de

  1. Marine ecosystem analysis for Kori nuclear power plant

    International Nuclear Information System (INIS)

    Lee, C.H.; Kim, Y.H.; Cho, T.S.

    1980-01-01

    The effect of both radioactive and thermal effluents discharged from the plant on aquatic ecosystem is one of the primary concerns in evaluating the environmental impact due to the operation of the nuclear power plant. Biological alteration of aquatic ecosystems may be resulted from radioactive effluents, thermal pollution and chemical releases. There is also another possible synergistic effect, that is, the combination of the above stresses, which may cause an impact severer than that of the sum of the individual impact. This report deals with species diversity and seasonal variations of those numbers of phytoplankton, marine algae and microorganisms, and distribution of radioactivity of marine organisms, as well as those data pertaining to sea water analysis. The present survey is designed to provide a partial baseline information for environmental impact assessment of Kori nuclear plant unit no. 1. (author)

  2. Monitoring of radioactive discharges from nuclear power plants

    International Nuclear Information System (INIS)

    Winkelmann, I.; Becker, D.E.; Ruehle, H.

    1994-01-01

    The system of measurement of gaseous and liquid releases from NPP's into the environment in Germany is described. The emissions are continuously monitored by the operators according to uniform regulations and reported to the authorities. The quality of the measurements is assured by officially commissioned experts in accordance with the federal rule. The operators' measurements are supplemented by remote monitoring system operated by the state authorities. The measured discharges are the basis for calculation of the radiation exposure of the public. 5 tabs., 10 refs. (orig.)

  3. Investigation on the dynamic behaviour of a parabolic trough power plant during strongly cloudy days

    International Nuclear Information System (INIS)

    Al-Maliki, Wisam Abed Kattea; Alobaid, Falah; Starkloff, Ralf; Kez, Vitali; Epple, Bernd

    2016-01-01

    Highlights: • A detailed dynamic model of a parabolic trough solar thermal power plant is done. • Simulated results are compared to the experimental data from the real power plant. • Discrepancy between model result and real data is caused by operation strategy. • The model strategy increased the operating hours of power plant by around 2.5–3 h. - Abstract: The objective of this study is the development of a full scale dynamic model of a parabolic trough power plant with a thermal storage system, operated by the Actividades de Construcción y Servicios Group in Spain. The model includes solar field, thermal storage system and the power block and describes the heat transfer fluid and steam/water paths in detail. The parabolic trough power plant is modelled using Advanced Process Simulation Software (APROS). To validate the model, the numerical results are compared to the measured data, obtained from “Andasol II” during strongly cloudy periods in the summer days. The comparisons show a qualitative agreement between the dynamic simulation model and the measurements. The results confirm that the thermal storage enables the parabolic trough power plant to provide a constant power rate when the storage energy discharge is available, despite significant oscillations in the solar radiation.

  4. Almost twenty years' search of transuranium isotopes in effluents discharged to air from nuclear power plants with VVER reactors.

    Science.gov (United States)

    Hölgye, Z; Filgas, R

    2006-04-01

    Airborne effluents of 5 stacks (stacks 1-5) of three nuclear power plants, with 9 pressurized water reactors VVER of 4,520 MWe total power, were searched for transuranium isotopes in different time periods. The search started in 1985. The subject of this work is a presentation of discharge data for the period of 1998-2003 and a final evaluation. It was found that 238Pu, 239,240Pu, 241Am, 242Cm, and 244Cm can be present in airborne effluents. Transuranium isotope contents in most of the quarterly effluent samples from stacks 2, 4 and 5 were not measurable. Transuranium isotopes were present in the effluents from stack l during all 9 years of the study and from stack 3 since the 3rd quarter of 1996 as a result of a defect in the fuel cladding. A relatively high increase of transuranium isotopes in effluents from stack 3 occurred in the 3rd quarter of 1999, and a smaller increase occurred in the 3rd quarter of 2003. In each instance 242Cm prevailed in the transuranium isotope mixtures. 238Pu/239,240Pu, 241Am/239,240Pu, 242Cm/239,240Pu, and 244Cm/239,240Pu ratios in fuel for different burn-up were calculated, and comparison of these ratios in fuel and effluents was performed.

  5. Off-shore nuclear power plant

    International Nuclear Information System (INIS)

    Nakanishi, T.

    1980-01-01

    In order to avoid losses of energy and seawater pollution an off-shore nuclear power plant is coupled with a power plant which utilizes the temperature difference between seawater and hot reactor cooling water. According to the invention the power plant has a working media loop which is separated from the nuclear power plant. The apparative equipment and the operational characteristics of the power plant are the subject of the patent. (UWI) [de

  6. Solar thermal power plants

    International Nuclear Information System (INIS)

    Schnatbaum, L.

    2009-01-01

    The solar thermal power plant technology, the opportunities it presents and the developments in the market are outlined. The focus is on the technology of parabolic trough power plants, a proven technology for solar power generation on a large scale. In a parabolic trough power plant, trough-shaped mirrors concentrate the solar irradiation onto a pipe in the focal line of the collector. The thermal energy thus generated is used for electricity generation in a steam turbine. Parabolic trough plants can be combined with thermal storage and fossil or biomass fired heat exchangers to generate electricity even when the sun is not shining. Solar Millennium AG in Erlangen has developed the first power plant of this kind in Europe. After two years of construction the plant started operation in Southern Spain in 2008. This one and its sister projects are important steps leading the way for the whole market. The paper also covers the technological challenges, the key components used and the research and development activities concerning this technology. Solar thermal power plants are ideal for covering peak and medium loads in power grids. In hybrid operation they can also cover base-load. The Solar Chimney power plant, another striking technology for the conversion of solar into electric energy, is described briefly. The paper concludes with a look at the future - the import of solar energy from the deserts of North Africa to central Europe. (author)

  7. Power plant cycle chemistry - a currently neglected power plant chemistry discipline

    International Nuclear Information System (INIS)

    Bursik, A.

    2005-01-01

    Power plant cycle chemistry seems to be a stepchild at both utilities and universities and research organizations. It is felt that other power plant chemistry disciplines are more important. The last International Power Cycle Chemistry Conference in Prague may be cited as an example. A critical review of the papers presented at this conference seems to confirm the above-mentioned statements. This situation is very unsatisfactory and has led to an increasing number of component failures and instances of damage to major cycle components. Optimization of cycle chemistry in fossil power plants undoubtedly results in clear benefits and savings with respect to operating costs. It should be kept in mind that many seemingly important chemistry-related issues lose their importance during forced outages of units practicing faulty plant cycle chemistry. (orig.)

  8. Alternative off-site power supply improves nuclear power plant safety

    International Nuclear Information System (INIS)

    Gjorgiev, Blaže; Volkanovski, Andrija; Kančev, Duško; Čepin, Marko

    2014-01-01

    Highlights: • Additional power supply for mitigation of the station blackout event in NPP is used. • A hydro power plant is considered as an off-site alternative power supply. • An upgrade of the probabilistic safety assessment from its traditional use is made. • The obtained results show improvement of nuclear power plant safety. - Abstract: A reliable power system is important for safe operation of the nuclear power plants. The station blackout event is of great importance for nuclear power plant safety. This event is caused by the loss of all alternating current power supply to the safety and non-safety buses of the nuclear power plant. In this study an independent electrical connection between a pumped-storage hydro power plant and a nuclear power plant is assumed as a standpoint for safety and reliability analysis. The pumped-storage hydro power plant is considered as an alternative power supply. The connection with conventional accumulation type of hydro power plant is analysed in addition. The objective of this paper is to investigate the improvement of nuclear power plant safety resulting from the consideration of the alternative power supplies. The safety of the nuclear power plant is analysed through the core damage frequency, a risk measure assess by the probabilistic safety assessment. The presented method upgrades the probabilistic safety assessment from its common traditional use in sense that it considers non-plant sited systems. The obtained results show significant decrease of the core damage frequency, indicating improvement of nuclear safety if hydro power plant is introduced as an alternative off-site power source

  9. Control of power plants and power systems. Proceedings

    International Nuclear Information System (INIS)

    Canales-Ruiz, R.

    1996-01-01

    The 88 papers in this volume constitute the proceedings of the International Federation of Automatic Control Symposium held in Mexico in 1995. The broad areas which they cover are: self tuning control; power plant operations; dynamic stability; fuzzy logic applications; power plants modelling; artificial intelligence applications; power plants simulation; voltage control; control of hydro electric units; state estimation; fault diagnosis and monitoring systems; system expansion and operation planning; security assessment; economic dispatch and optimal load flow; adaptive control; distribution; transient stability and preventive control; modelling and control of nuclear plant; knowledge data bases for automatic learning methods applied to power system dynamic security assessment; control of combined cycle units; power control centres. Separate abstracts have been prepared for the three papers relating to nuclear power plants. (UK)

  10. Study of Heating and Fusion Power Production in ITER Discharges

    International Nuclear Information System (INIS)

    Rafiq, T.; Kritz, A. H.; Bateman, G.; Kessel, C.; McCune, D. C.; Budny, R. V.; Pankin, A. Y.

    2011-01-01

    ITER simulations, in which the temperatures, toroidal angular frequency and currents are evolved, are carried out using the PTRANSP code starting with initial profiles and boundary conditions obtained from TSC code studies. The dependence of heat deposition and current drive on ICRF frequency, number of poloidal modes, beam orientation, number of Monte Carlo particles and ECRH launch angles is studied in order to examine various possibilities and contingencies for ITER steady state and hybrid discharges. For the hybrid discharges, the fusion power production and fusion Q, computed using the Multi-Mode MMM v7.1 anomalous transport model, are compared with those predicted using the GLF23 model. The simulations of the hybrid scenario indicate that the fusion power production at 1000 sec will be approximately 500 MW corresponding to a fusion Q = 10.0. The discharge scenarios simulated aid in understanding the conditions for optimizing fusion power production and in examining measures of plasma performance.

  11. The main methods of solving the problem of radioactive waste management from nuclear power stations and spent fuel reprocessing plants in the USSR

    International Nuclear Information System (INIS)

    1978-09-01

    The main directions of solving the problem of radioactive waste management from nuclear power stations and radiochemical plants, the aspects of gaseous waste management, liquid HLW storage in vessels and the problems of heat removal during storage of vitrified HLW in surface storages are considered. The main problems arising during fine decontamination of gaseous discharges from nuclear power stations and reprocessing plants are discussed. The migration of fission products in the environment and technical aspects of their capture from gaseous discharges are also considered

  12. Estimation of radiation exposure associated with inert gas radionuclides discharged to the environment by the nuclear power industry

    International Nuclear Information System (INIS)

    Bryant, P.M.; Jones, J.A.

    1973-05-01

    Several fission product isotopes of krypton and xenon are formed during operation of nuclear power stations, while other radioactive inert gases, notably isotopes of argon and nitrogen, are produced as neutron activation products. With the exception of 85 Kr these radionuclides are short-lived, and the containment and hold-up arrangements in different reactor systems influence the composition of the inert gas mixtures discharged to the environment. Cooling of irradiated fuel before chemical reprocessing reduces very substantially the amounts of the short-lived krypton and xenon isotopes available for discharge at reprocessing plants, but almost all the 85 Kr formed in the fuel is currently discharged to atmosphere from these plants. Estimates are made of the radiation exposure of the public associated with these discharges to atmosphere taking into account the type of radiation emitted, radioactive half-life and the local, regional and world-wide populations concerned. Such estimates are often based on simple models in which activity is assumed to be distributed in a semi-infinite cloud. The model used in this assessment takes into account the finite cloud near the point of its discharge and its behaviour when dispersion in the atmosphere is affected by the presence of buildings. This is particularly important in the case of discharges from those reactors which do not have high stacks. The model also provides in detail for the continued world-wide circulation of the longer-lived 85 Kr. (author)

  13. Atmospheric discharges from nuclear facilities during decommissioning: German experiences

    Energy Technology Data Exchange (ETDEWEB)

    Braun, H.; Goertz, R.; Weil, L.

    1997-08-01

    In Germany, a substantial amount of experience is available with planning, licensing and realization of decommissioning projects. In total, a number of 18 nuclear power plants including prototype facilities as well as 6 research reactors and 3 fuel cycle facilities have been shut down finally and are at different stages of decommissioning. Only recently the final {open_quotes}green field{close_quotes} stage of the Niederaichbach Nuclear Power Plant total dismantlement project has been achieved. From the regulatory point of view, a survey of the decommissioning experience in Germany is presented highlighting the aspects of production and retention of airborne radioactivity. Nuclear air cleaning technology, discharge limits prescribed in licences and actual discharges are presented. As compared to operation, the composition of the discharged radioactivity is different as well as the off-gas discharge rate. In practically all cases, there is no significant amount of short-lived radionuclides. The discussion further includes lessons learned, for example inadvertent discharges of radionuclides expected not to be in the plants inventory. It is demonstrated that, as for operation of nuclear power plants, the limits prescribed in the Ordinance on Radiological Protection can be met using existing air cleaning technology, Optimization of protection results in public exposures substantially below the limits. In the frame of the regulatory investigation programme a study has been conducted to assess the airborne radioactivity created during certain decommissioning activities like decontamination, segmentation and handling of contaminated or activated parts. The essential results of this study are presented, which are supposed to support planning for decommissioning, for LWRs, Co-60 and Cs-137 are expected to be the dominant radionuclides in airborne discharges. 18 refs., 2 figs., 1 tab.

  14. Thermal band image processing on the warm water discharges of nuclear power plants and the drifting of Echizen-Jellyfishes by using terra/aqua-MODIS data

    International Nuclear Information System (INIS)

    Kato, Yoshinobu; Fujita, Yusuke

    2005-01-01

    At the Awara campus (lat. 36.264degN, long, 136.235degE) of Fukui University of Technology, a Terra/Aqua-MODIS receiving system is operated from September, 2003. This paper deals with the thermal band image processing by using the received MODIS data. In chapter 2, we investigate the image representation of the warm water discharges of nuclear power plants located with Wakasa Bay of Fukui Prefecture. In chapter 3, we describe the image processing of the drifting of Echizen-Jellyfishes. The Echizen-Jellyfish, a kind of big jellyfish, whose scientific name is Nemopilema nomurai Kishinouye, appeared in large quantities in 2003 and did serious damage to the fishery in Japan Sea. (author)

  15. Industrial safety in power plants

    International Nuclear Information System (INIS)

    1987-01-01

    The proceedings of the VGB conference 'Industrial safety in power plants' held in the Gruga-Halle, Essen on January 21 and 22, 1987, contain the papers reporting on: Management responsibility for and legal consequences of industrial safety; VBG 2.0 Industrial Accident Prevention Regulation and the power plant operator; Operational experience gained with wet-type flue gas desulphurization systems; Flue gas desulphurization systems: Industrial-safety-related requirements to be met in planning and operation; the effects of the Hazardous Substances Ordinance on power plant operation; Occupational health aspects of heat-exposed jobs in power plants; Regulations of the Industrial Accident Insurance Associations concerning heat-exposed jobs and industrial medical practice; The new VBG 30 Accident Prevention Regulation 'Nuclear power plants'; Industrial safety in nuclear power plants; safe working on and within containers and confined spaces; Application of respiratory protection equipment in power plants. (HAG) [de

  16. Radiation doses from discharges into the sea at the Oskarshamn nuclear power plants

    International Nuclear Information System (INIS)

    Boge, R.; Nordlinder, S.

    1981-04-01

    Control measurements of the activity discharges and the radioecological concentrations at the Oskarshamn site are reported. The actual discharges were much lower than the allowed maximum discharges. The calculated individual and collective doses are small, and the effect on the recipient is negligible, considering both men and ecosystems. (L.E.)

  17. NUCLEAR POWER PLANT

    Science.gov (United States)

    Carter, J.C.; Armstrong, R.H.; Janicke, M.J.

    1963-05-14

    A nuclear power plant for use in an airless environment or other environment in which cooling is difficult is described. The power plant includes a boiling mercury reactor, a mercury--vapor turbine in direct cycle therewith, and a radiator for condensing mercury vapor. (AEC)

  18. Actual status and future outlook of Fukushima prefecture for accepting power plants

    International Nuclear Information System (INIS)

    Origasa, Yoshiro

    1976-01-01

    The fundamental attitude of Fukushima prefecture to wrestle with nuclear power generation is explained after having described the details of inviting nuclear power plants. The prefecture intends to promote the nuclear power development in cooperation with the government, related cities, towns and villages, and electric power companies, and to develop the Futaba area, the coastal region of Pacific Ocean belonging to the low-developed area, by turning it to the base of nuclear power generation. The prefecture has improved its organization to strengthen to nuclear power administration. The prefecture also has concluded the convention on the security for nuclear power plants with Tokyo Electric Power Co. It takes care of the propagation of knowledge concerning nuclear energy and is endeavoring to provide the accurate and impartial information. The problem in promoting nuclear power generation is nothing but to obtain the consensus of inhabitants for the location of nuclear power plants. Problems on warm water discharge, employment, and of enterprises in the area inroad are to be considered on the basis of the coexistence and coprosperity of local community and power stations. The prefecture needs more powerful public relations on nuclear power, security, and fulfillment of the policy for environmental preservation, and enforcement of environmental assessment, by the government. It also demands that the enterprises complete the system that they can have their own function of the environment control. The abundant related reference are added at the end. (Wakatsuki, Y.)

  19. Implications of electron attachment to highly-excited states in pulsed-power discharges

    International Nuclear Information System (INIS)

    Pinnaduwage, L.A.; Univ. of Tennessee, Knoxville, TN

    1997-01-01

    The author points out the possible implications of electron attachment to highly-excited states of molecules in two pulsed power technologies. One involves the pulsed H 2 discharges used for the generation of H ion beams for magnetic fusion energy and particle accelerators. The other is the power modulated plasma discharges used for material processing

  20. Nuclear power. Volume 1. Nuclear power plant design

    International Nuclear Information System (INIS)

    Pedersen, E.S.

    1978-01-01

    NUCLEAR POWER PLANT DESIGN is intended to be used as a working reference book for management, engineers and designers, and as a graduate-level text for engineering students. The book is designed to combine theory with practical nuclear power engineering and design experience, and to give the reader an up-to-date view of the status of nuclear power and a basic understanding of how nuclear power plants function. Volume 1 contains the following chapters; (1) nuclear reactor theory; (2) nuclear reactor design; (3) types of nuclear power plants; (4) licensing requirements; (5) shielding and personnel exposure; (6) containment and structural design; (7) main steam and turbine cycles; (8) plant electrical system; (9) plant instrumentation and control systems; (10) radioactive waste disposal (waste management) and (11) conclusion

  1. Pressurized water reactor nuclear power plant. Environmental characterization information report

    International Nuclear Information System (INIS)

    1981-01-01

    The typical plant chosen for characterization is a 10000-MWe nameplate rating with wet-natural-draft cooling towers and modern radwaste control and processing equipment. The process, plant operating parameters, resources needed, and the environmental residuals and products associated with the power plant are presented. Annual resource usage and pollutant discharges are shown in English and metric units, assuming an annual plant capacity factor of 70%. In addition to annual quantities, the summary table gives quantities in terms of 10 12 Btu (about 293 million kWh) of electrical energy produced for comparison among energy processes. Supporting information and calculation procedures for the data are given. Thirteen environmental points of interest are discussed individually. Cost information, typical radioactive releases, and use of cooling ponds as an alternative cooling method are discussed in appendixes. A glossary and list of acronyms and abbreviations are provided

  2. Power plants 2010. Lectures

    International Nuclear Information System (INIS)

    2010-01-01

    The proceedings include the following lectures: Facing the challenges - new structures for electricity production. Renewable energies in Europe - chances and challenges. Nuclear outlook in the UK. Sustainable energy for Europe. Requirements of the market and the grid operator at the electricity production companies. Perspectives for the future energy production. Pumped storage plants - status and perspectives. Nuclear power/renewable energies -partners or opponents? New fossil fired power stations in Europe - status and perspectives. Nuclear energy: outlook for new build and lifetime extension in Europe. Biomass in the future European energy market - experiences for dong energy. Meeting the EU 20:20 renewable energy targets: the offshore challenges. DESERTEC: sustainable electricity for Europe, Middle East and North Africa. New power plants in Europe - a challenge for project and quality management. Consideration of safely in new build activities of power plants. Challenges to an integrated development in Maasvlakte, Netherlands. Power enhancement in EnBW power plants. Operational experiences of CCS pilot plants worldwide. Two years of operational experiences with Vattenfall's oxyfuel pilot plant. Pre-conditions for CCS. Storage technologies for a volatile generation. Overview: new generation of gas turbines.

  3. Thermal Pollution Math Model. Volume 1. Thermal Pollution Model Package Verification and Transfer. [environment impact of thermal discharges from power plants

    Science.gov (United States)

    Lee, S. S.; Sengupta, S.

    1980-01-01

    Two three dimensional, time dependent models, one free surface, the other rigid lid, were verified at Anclote Anchorage and Lake Keowee respectively. The first site is a coastal site in northern Florida; the other is a man-made lake in South Carolina. These models describe the dispersion of heated discharges from power plants under the action of ambient conditions. A one dimensional, horizontally-averaged model was also developed and verified at Lake Keowee. The data base consisted of archival in situ measurements and data collected during field missions. The field missions were conducted during winter and summer conditions at each site. Each mission consisted of four infrared scanner flights with supporting ground truth and in situ measurements. At Anclote, special care was taken to characterize the complete tidal cycle. The three dimensional model results compared with IR data for thermal plumes on an average within 1 C root mean square difference. The one dimensional model performed satisfactorily in simulating the 1971-1979 period.

  4. Technical concepts of further improvement of nuclear power plant safety

    International Nuclear Information System (INIS)

    Sochor, R.

    1983-01-01

    The following technical concepts are described which secure the integrity of the containment in case of an accident whose scale exceeds the so-called design basis accident: siting nuclear power plants underground which raises construction costs by 20 - 25%; completing the containment with equipment preventing the outflow of molten corium; completing the containment with emergency pressure space for discharging overpressure - this emergency space is filled with gravel which will trap approximately 50% of fission waste. (Ha)

  5. Development of a powerful discharge in deuterium

    Energy Technology Data Exchange (ETDEWEB)

    Komelkov, V S; Skvortsov, U V; Tserevitinov, S S [Institute of Atomic Energy, Academy of Sciences of the USSR, Moscow (USSR)

    1958-07-01

    The investigations carried out at the Institute of Atomic Energy of the Academy of Sciences of the USSR resulted in the discovery of both neutron and hard X-ray radiation occurring under certain conditions in a powerful pulse discharge in deuterium. In the present work, the investigations in this field were continued with a view to studying these processes at greater currents and higher rates of increase of the current, by minimizing the circuit inductance and the size of the discharge chambers. Studies were made of the current distribution in the chamber, neutron radiation, electrode-metal vapour movement, and the effect of pre-ionization on the initial stages of the process.

  6. The year 2000 power plant

    International Nuclear Information System (INIS)

    Roman, H.T.

    1989-01-01

    Every utility seeks extended service life from its existing power plants before building new ones. It is not easy to justify a new power plant. The licensing and cost of new plants have become uncertain. In response to these conditions, electric utilities are undertaking plant life-extension studies and, in some cases, reconditioning/upgrading old power plants to significantly increase useful service life. Other technologies like robotics and artificial intelligence/expert systems are also being developed to reduce operating and maintenance (O and M) expenses, to remove workers from potentially hazardous environments, and to reduce plant downtime. Together, these steps represent an interim solution, perhaps providing some relief for the next few decades. However, there are serious physical and economic limits to retrofitting new technology into existing power plants. Some old plants will simply be beyond their useful life and require retirement. In nuclear plants, for instance, retrofit may raise important and time-consuming licensing/safety issues. Based on their robotics and artificial intelligence experience, the authors of this article speculate bout the design of the year 2000 power plant - a power plant they feel will naturally incorporate liberal amounts of robotic and artificial intelligence technologies

  7. Design of reactor containment systems for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2008-01-01

    This Safety Guide was prepared under the IAEA programme for safety standards for nuclear power plants. It is a revision of the Safety Guide on Design of the Reactor Containment Systems in Nuclear Power Plants (Safety Series No. 50-Sg-D1) issued in 1985 and supplements the Safety Requirements publication on Safety of Nuclear Power Plants: Design. The present Safety Guide was prepared on the basis of a systematic review of the relevant publications, including the Safety of Nuclear Power Plants: Design, the Safety fundamentals publication on The Safety of Nuclear Installations, Safety Guides, INSAG Reports, a Technical Report and other publications covering the safety of nuclear power plants. 1.2. The confinement of radioactive material in a nuclear plant, including the control of discharges and the minimization of releases, is a fundamental safety function to be ensured in normal operational modes, for anticipated operational occurrences, in design basis accidents and, to the extent practicable, in selected beyond design basis accidents. In accordance with the concept of defence in depth, this fundamental safety function is achieved by means of several barriers and levels of defence. In most designs, the third and fourth levels of defence are achieved mainly by means of a strong structure enveloping the nuclear reactor. This structure is called the 'containment structure' or simply the 'containment'. This definition also applies to double wall containments. 1.3. The containment structure also protects the reactor against external events and provides radiation shielding in operational states and accident conditions. The containment structure and its associated systems with the functions of isolation, energy management, and control of radionuclides and combustible gases are referred to as the containment systems

  8. Design of reactor containment systems for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    This Safety Guide was prepared under the IAEA programme for safety standards for nuclear power plants. It is a revision of the Safety Guide on Design of the Reactor Containment Systems in Nuclear Power Plants (Safety Series No. 50-Sg-D1) issued in 1985 and supplements the Safety Requirements publication on Safety of Nuclear Power Plants: Design. The present Safety Guide was prepared on the basis of a systematic review of the relevant publications, including the Safety of Nuclear Power Plants: Design, the Safety fundamentals publication on The Safety of Nuclear Installations, Safety Guides, INSAG Reports, a Technical Report and other publications covering the safety of nuclear power plants. 1.2. The confinement of radioactive material in a nuclear plant, including the control of discharges and the minimization of releases, is a fundamental safety function to be ensured in normal operational modes, for anticipated operational occurrences, in design basis accidents and, to the extent practicable, in selected beyond design basis accidents. In accordance with the concept of defence in depth, this fundamental safety function is achieved by means of several barriers and levels of defence. In most designs, the third and fourth levels of defence are achieved mainly by means of a strong structure enveloping the nuclear reactor. This structure is called the 'containment structure' or simply the 'containment'. This definition also applies to double wall containments. 1.3. The containment structure also protects the reactor against external events and provides radiation shielding in operational states and accident conditions. The containment structure and its associated systems with the functions of isolation, energy management, and control of radionuclides and combustible gases are referred to as the containment systems

  9. Feedwater system in a nuclear power plant

    International Nuclear Information System (INIS)

    Shimizu, Tadayuki.

    1975-01-01

    Object: To improve the control property of a steam turbine for a feedwater pump and plant operation characteristics where water is supplied at a low rate. Structure: In a nuclear power plant where feedwater pumps of the reactor are driven by a steam turbine, the main feedwater duct on the discharge side of the feedwater pumps is provided with a cut-off valve and is connected parallel with a bypass duct having a pressure compensated flow control valve. With this arrangement, at the time when the rate of feedwater is high the cut-off valve is open so that water supplied from the feedwater pumps driven by the steam turbine is supplied through the main feedwater duct to the reactor while in case when the rate of feedwater is low the flow control valve is opened to let the water be supplied through the bypass duct. (Kamimura, M.)

  10. Measurement of power loss during electric vehicle charging and discharging

    International Nuclear Information System (INIS)

    Apostolaki-Iosifidou, Elpiniki; Codani, Paul; Kempton, Willett

    2017-01-01

    When charging or discharging electric vehicles, power losses occur in the vehicle and the building systems supplying the vehicle. A new use case for electric vehicles, grid services, has recently begun commercial operation. Vehicles capable of such application, called Grid-Integrated Vehicles, may have use cases with charging and discharging summing up to much more energy transfer than the charging only use case, so measuring and reducing electrical losses is even more important. In this study, the authors experimentally measure and analyze the power losses of a Grid-Integrated Vehicle system, via detailed measurement of the building circuits, power feed components, and of sample electric vehicle components. Under the conditions studied, measured total one-way losses vary from 12% to 36%, so understanding loss factors is important to efficient design and use. Predominant losses occur in the power electronics used for AC-DC conversion. The electronics efficiency is lowest at low power transfer and low state-of-charge, and is lower during discharging than charging. Based on these findings, two engineering design approaches are proposed. First, optimal sizing of charging stations is analyzed. Second, a dispatch algorithm for grid services operating at highest efficiency is developed, showing 7.0% to 9.7% less losses than the simple equal dispatch algorithm. - Highlights: • Grid-to-battery-to-grid comprehensive power loss measurement and analysis. • No previous experimental measurements of Grid-Integrated Vehicle system power loss. • Electric vehicle loss analyzed as a factor of state of charge and charging rate. • Power loss in the building components less than 3%. • Largest losses found in Power Electronics (typical round-trip loss 20%).

  11. Radiation protection of population under normal operation conditions of nuclear power plants

    International Nuclear Information System (INIS)

    Kunz, Eh.; Shvets, I.

    1976-01-01

    Evolution of shielding is defined in short; approaches suggested for applying in radiation protection or being used are evaluated and classified. Modern views analysis of a risk of biological irradiation consequences in public approaches to health protection in connection with the technical progress side by side with provision of separate persons protection requires attentin to the nuclear power plants protection optimization. Protection optimization suggests the analysis of separate components of technology and protection systems, used materials and constructive solutions, maintenance rules and operating load with respect to environmental discharge of radioactive products. It is expedient to carry out similtaneously the similar analysis with respect to the nuclear power plant personnel irradiation, as separate measures can affect both personnel and population irradiation [ru

  12. Impacts of thermal and chemical discharges to surface water

    International Nuclear Information System (INIS)

    Stober, Q.J.

    1974-01-01

    Various aspects of thermal and chemical discharges to surface water are outlined. The major impacts of nuclear power plants on aquatic resources are disruption during construction, intake of cooling water, discharge problems, and interactions with other water users. The following topics are included under the heading, assessment of aquatic ecology: identification of flora and fauna; abundance of aquatic organisms; species-environment relationships; and identification of pre-existing environmental stress. The following topics are included under the heading, environmental effects of plant operation: entrapment of fish by cooling water; passage of plankton through cooling system; discharge area and thermal plume; chemical effluents; and plant construction. (U.S.)

  13. 37-Active rods fuel element for Atucha 1 nuclear power plant. Effects of this change in design over the neutronic behavior, decay power and radioactive inventory

    International Nuclear Information System (INIS)

    Villar, Javier E.

    1999-01-01

    The influence of the use of 37-rods fuel element on the behavior of the Atucha 1 nuclear power plant homogeneous core with slightly enriched fuel to 0.85 w % were studied through representative parameters such as average discharge burnup, channel powers, reactivity coefficients, kinetic parameters, radioactive inventory and decay power. In general, the values of mentioned parameters are similar to those corresponding to a core with the 36-rods fuel element actually in use, although it must be emphasized a decrease both in linear power and, in minor degree, in the efficiency of shut-off and control rods and a slight increase in the discharge burnup. The fuel management strategy developed for a core with 36-rods elements can be maintained. (author)

  14. Estimation of environmental external costs between coal fired power plant and nuclear power plant

    International Nuclear Information System (INIS)

    Moon, G. H.; Kim, S. S.

    2000-01-01

    First of all, this study evaluated the impacts on the health and the environment of air pollutants emitted from coal power plant and nuclear power pant, two major electric power generating options in Korea. Then, the environmental external costs of those two options were estimated by transforming the health and environment impact into monetary values. To do this, AIRPACTS and Impacts of Atmospheric Release model developed by IAEA were used. The environmental external cost of Samcheonpo coal power plant was estimated about 25 times as much as that of Younggwang nuclear power plant. This result implies that nuclear power plant is a clean technology compared with coal power plant. This study suggests that the external cost should be reflected in the electric system expansion plan in order to allocate energy resources efficiently and to reduce economic impact stemming from the environmental regulation emerged recently on a global level

  15. Effect of power modulation on properties of pulsed capacitively coupled radiofrequency discharges

    International Nuclear Information System (INIS)

    Samara, V; Bowden, M D; Braithwaite, N St J

    2010-01-01

    We describe measurements of plasma properties of pulsed, low pressure, capacitively coupled discharges operated in argon. The study aims to determine the effect of modulating the radiofrequency power during the discharge part of the pulse cycle. Measurements of local electron density and optical emission were made in capacitively coupled rf discharges generated in a Gaseous Electronics Conference (GEC) reference reactor. Gas pressure was in the range 7-70 Pa, rf power in the range 1-100 W and pulse durations in the range 10 μs-100 ms. The results indicate that the ignition and afterglow decay processes in pulsed discharges can be controlled by modulating the shape of applied radiofrequency pulse.

  16. Organization patterns of PWR power plants

    International Nuclear Information System (INIS)

    Leicman, J.

    1980-01-01

    Organization patterns are shown for the St. Lucia 1, North Anna, Sequoyah, and Beaver Valley nuclear power plants, for a typical PWR power plant in the USA, for the Biblis/RWE-KWU nuclear power plants and for a four-unit nuclear power plant operated by Electricite de France as well as for the Loviisa power plant. Organization patterns are also shown for relatively independent and non-independent nuclear power plants according to IAEA recommendations. (J.P.)

  17. Nuclear power plant siting

    International Nuclear Information System (INIS)

    Sulkiewicz, M.; Navratil, J.

    The construction of a nuclear power plant is conditioned on territorial requirements and is accompanied by the disturbance of the environment, land occupation, population migration, the emission of radioactive wastes, thermal pollution, etc. On the other hand, a nuclear power plant makes possible the introduction of district heating and increases the economic and civilization activity of the population. Due to the construction of a nuclear power plant the set limits of negative impacts must not be exceeded. The locality should be selected such as to reduce the unfavourable effects of the plant and to fully use its benefits. The decision on the siting of the nuclear power plant is preceded by the processing of a number of surveys and a wide range of documentation to which the given criteria are strictly applied. (B.H.)

  18. Characterization of a high-power/current pulsed magnetized arc discharge

    NARCIS (Netherlands)

    Zielinski, J. J.; van der Meiden, H. J.; Morgan, T. W.; D.C. Schram,; De Temmerman, G.

    2012-01-01

    A high-power pulsed magnetized arc discharge has been developed to allow the superimposition of a dc plasma and a high-power plasma impulse with a single plasma source. A capacitor bank (8400 mu F) is parallel-coupled to the current regulated power supply. The current is transiently increased from

  19. Characterization of a high-power/current pulsed magnetized arc discharge

    NARCIS (Netherlands)

    Zielinski, J.J.; Meiden, van der H.J.; Morgan, T.W.; Schram, D.C.; De Temmerman, G.C.

    2012-01-01

    A high-power pulsed magnetized arc discharge has been developed to allow the superimposition of a dc plasma and a high-power plasma impulse with a single plasma source. A capacitor bank (8400 µF) is parallel-coupled to the current regulated power supply. The current is transiently increased from its

  20. Levels of 137Cs and 40K in marine superficial sediments near the Angra Nuclear Power Plant (Angra dos Reis, SE Brazil)

    International Nuclear Information System (INIS)

    Lima Ferreira, Paulo Alves de; Farina Amorim, Lais; Marone Tura, Pedro; Medeiros Zacheo, Valter Andre; Lopes Figueira, Rubens Cesar

    2015-01-01

    This study evaluated the spatial distribution of two environmentally relevant radionuclides, 137 Cs and 40 K, in marine superficial sediments around the Angra Nuclear Power Plant, the only Brazilian nuclear power plant complex, thus establishing a baseline for bottom sediments, given the international importance of environmental monitoring around nuclear facilities. It was observed that these radionuclides are mostly present in the muddy sediments as a result of their stronger association with its fine-grained fraction, and that their lowest levels are located around the liquid effluent discharge of the plant, as a consequence of the prevented deposition of fine sediments due to the strong discharge water flux. The comparison of the 137 Cs activities in the region with other locations in the world showed that the presence of this artificial nuclide is due to the atmospheric fallout from past nuclear tests made during the Cold War, not to the nuclear power plant activities.

  1. Wind power plant system services

    DEFF Research Database (Denmark)

    Basit, Abdul; Altin, Müfit

    Traditionally, conventional power plants have the task to support the power system, by supplying power balancing services. These services are required by the power system operators in order to secure a safe and reliable operation of the power system. However, as in the future the wind power...... is going more and more to replace conventional power plants, the sources of conventional reserve available to the system will be reduced and fewer conventional plants will be available on-line to share the regulation burden. The reliable operation of highly wind power integrated power system might...... then beat risk unless the wind power plants (WPPs) are able to support and participate in power balancing services. The objective of this PhD project is to develop and analyse control strategies which can increase the WPPs capability to provide system services, such as active power balancing control...

  2. The operating organization for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2001-01-01

    This Safety Guide was prepared under the IAEA programme for safety standards for nuclear power plants. The present publication is a revision of the IAEA Safety Guide on Management of Nuclear Power Plants for Safe Operation issued in 1984. It supplements Section 2 of the Safety Requirements publication on Safety of Nuclear Power Plants: Operation. Nuclear power technology is different from the customary technology of power generation from fossil fuel and by hydroelectric means. One major difference between the management of nuclear power plants and that of conventional generating plants is the emphasis that should be placed on nuclear safety, quality assurance, the management of radioactive waste and radiological protection, and the accompanying national regulatory requirements. This Safety Guide highlights the important elements of effective management in relation to these aspects of safety. The attention to be paid to safety requires that the management recognize that personnel involved in the nuclear power programme should understand, respond effectively to, and continuously search for ways to enhance safety in the light of any additional requirements socially and legally demanded of nuclear energy. This will help to ensure that safety policies that result in the safe operation of nuclear power plants are implemented and that margins of safety are always maintained. The structure of the organization, management standards and administrative controls should be such that there is a high degree of assurance that safety policies and decisions are implemented, safety is continuously enhanced and a strong safety culture is promoted and supported. The objective of this publication is to guide Member States in setting up an operating organization which facilitates the safe operation of nuclear power plants to a high level internationally. The second objective is to provide guidance on the most important organizational elements in order to contribute to a strong safety

  3. The operating organization for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2005-01-01

    This Safety Guide was prepared under the IAEA programme for safety standards for nuclear power plants. The present publication is a revision of the IAEA Safety Guide on Management of Nuclear Power Plants for Safe Operation issued in 1984. It supplements Section 2 of the Safety Requirements publication on Safety of Nuclear Power Plants: Operation. Nuclear power technology is different from the customary technology of power generation from fossil fuel and by hydroelectric means. One major difference between the management of nuclear power plants and that of conventional generating plants is the emphasis that should be placed on nuclear safety, quality assurance, the management of radioactive waste and radiological protection, and the accompanying national regulatory requirements. This Safety Guide highlights the important elements of effective management in relation to these aspects of safety. The attention to be paid to safety requires that the management recognize that personnel involved in the nuclear power programme should understand, respond effectively to, and continuously search for ways to enhance safety in the light of any additional requirements socially and legally demanded of nuclear energy. This will help to ensure that safety policies that result in the safe operation of nuclear power plants are implemented and that margins of safety are always maintained. The structure of the organization, management standards and administrative controls should be such that there is a high degree of assurance that safety policies and decisions are implemented, safety is continuously enhanced and a strong safety culture is promoted and supported. The objective of this publication is to guide Member States in setting up an operating organization which facilitates the safe operation of nuclear power plants to a high level internationally. The second objective is to provide guidance on the most important organizational elements in order to contribute to a strong safety

  4. The operating organization for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    This Safety Guide was prepared under the IAEA programme for safety standards for nuclear power plants. The present publication is a revision of the IAEA Safety Guide on Management of Nuclear Power Plants for Safe Operation issued in 1984. It supplements Section 2 of the Safety Requirements publication on Safety of Nuclear Power Plants: Operation. Nuclear power technology is different from the customary technology of power generation from fossil fuel and by hydroelectric means. One major difference between the management of nuclear power plants and that of conventional generating plants is the emphasis that should be placed on nuclear safety, quality assurance, the management of radioactive waste and radiological protection, and the accompanying national regulatory requirements. This Safety Guide highlights the important elements of effective management in relation to these aspects of safety. The attention to be paid to safety requires that the management recognize that personnel involved in the nuclear power programme should understand, respond effectively to, and continuously search for ways to enhance safety in the light of any additional requirements socially and legally demanded of nuclear energy. This will help to ensure that safety policies that result in the safe operation of nuclear power plants are implemented and that margins of safety are always maintained. The structure of the organization, management standards and administrative controls should be such that there is a high degree of assurance that safety policies and decisions are implemented, safety is continuously enhanced and a strong safety culture is promoted and supported. The objective of this publication is to guide Member States in setting up an operating organization which facilitates the safe operation of nuclear power plants to a high level internationally. The second objective is to provide guidance on the most important organizational elements in order to contribute to a strong safety

  5. SWR 1000: The new boiling water reactor power plant concept

    International Nuclear Information System (INIS)

    Brettschuh, W.

    1999-01-01

    Siemens' Power Generation Group (KWU) is currently developing - on behalf of and in close co-operation with the German nuclear utilities and with support from various European partners - the boiling water reactor SWR 1000. This advanced design concept marks a new era in the successful tradition of boiling water reactor technology in Germany and is aimed, with an electric output of 1000 MW, at assuring competitive power generating costs compared to large-capacity nuclear power plants as well as coal-fired stations, while at the same time meeting the highest of safety standards, including control of a core melt accident. This objective is met by replacing active safety systems with passive safety equipment of diverse design for accident detection and control and by simplifying systems needed for normal plant operation on the basis of past operating experience. A short construction period, flexible fuel cycle lengths of between 12 and 24 months and a high fuel discharge burnup all contribute towards meeting this goal. The design concept fulfils international nuclear regulatory requirements and will reach commercial maturity by the year 2000. (author)

  6. Gland system, especially for nuclear power plant circulation pumps

    International Nuclear Information System (INIS)

    Skalicky, A.; Vesely, M.

    1975-01-01

    The invention claims a gland system suitable especially for the circulation pumps of nuclear power plants. The system prevents the release of the radioactive high-pressure cooling liquid in the atmosphere. The gland system consists of at least two mechanical glands arranged in series and of the closed circuit of the cooling high-pressure medium. The respective mechanical glands are linked with by-pass branches and discharge piping. The by-pass branches accommodating control manometers and flowmeters are linked with the storage reservoir with drain pipes provided with stop fittings. (Oy)

  7. Limitation of releases of radioactive effluents for nuclear power plants in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Tolksdorf, P.; Buehling, A.

    1981-01-01

    Empirical values relating to the effluents of nuclear power plants in the Federal Republic of Germany are now available. These values cover a period of several years of operation. The measured emissions of radioactive substances are often very much below the maximum permissible values, based on the dose limits for the environment stipulated in the legal regulations. Extensive technical and administrative measures contribute to the reduction of radioactive effluents. Furthermore, additional possibilities for improvement are mentioned which may lead to a further reduction of radioactive effluents. These are derived from investigations into the release of radioactive substances in nuclear power plants. The licensing procedure in the Federal Republic of Germany in fixing discharge limits is outlined. Proposals are made concerning licence values which may be determined for the radioactive effluents in modern standardized nuclear power plants with light-water reactors. The resulting radiation exposures are quoted for a typical nuclear power plant site. (author)

  8. Monitoring the radioactivity in the secondary systems of a nuclear power plant

    International Nuclear Information System (INIS)

    Labno, L.

    1979-01-01

    The direct water/steam circuit and the waste water and exhaust air systems of a nuclear power plant with boiling water reactor are slightly contaminated with radioactive nuclides during normal operation. In addition some auxiliary and subsidiary systems may show evidence of radioactivity as a result of leakages between the systems. These radioactive substances and those which are discharged to the environment in exhaust air or waste water - although present in quantities far below the admissible limits - still require supervision by a comprehensive activity monitoring system. The article sets out the concept and the technical solution adopted for the activity monitoring system for the secondary section of a nuclear power station. The system is so designed that it provides the information and performs the safety functions important for highly reliable plant operation. Particular importance has been attached to the reliability and dependability of the system, so that incorrect interpretations or reports, such as have been experienced, for example, in the nuclear power plants 'Brunsbuettel' (Federal Republic of Germany) and 'Three Mile Island', near Harrisburg (USA), will not be repeated. (Auth.)

  9. Monitoring of radionuclides in the environs of Finnish nuclear power plants in 1989-1990

    International Nuclear Information System (INIS)

    Ilus, E.; Sjoeblom, K-L.; Klemola, S.; Arvela, H.

    1992-01-01

    Surveillance of radioactive substances around Finnish nuclear power plants continued in 1989-1990 according to the regular monitoring programmes. About 1000 samples were analysed annually from both terrestrial and aquatic environments. The dominant artificial radionuclides in the vicinity of the power plants were still the cesium isotopes, 137 Cs and 134 Cs, originating from the Chernobyl accident. Owing to radioactive decay, other fallout nuclides with shorter half-lives disappeared from the environmental samples during the period in question. Trace amounts of activation products originating from the airborne releases of the local power plants were detected in some air and deposition samples. Discharged nuclides were more abundant in the aquatic environment, especially in samples of indicator organisms and sinking matter collected from the Olkiluoto area in 1990. However, the concentrations were so low that they did not markedly raise the radiation burden in the environment. (orig.)

  10. Images of nuclear power plants

    International Nuclear Information System (INIS)

    Hashiguchi, Katsuhisa; Misumi, Jyuji; Yamada, Akira; Sakurai, Yukihiro; Seki, Fumiyasu; Shinohara, Hirofumi; Misumi, Emiko; Kinjou, Akira; Kubo, Tomonori.

    1995-01-01

    This study was conducted to check and see, using Hayashi's quantification method III, whether or not the respondents differed in their images of a nuclear power plant, depending on their demographic variables particularly occupations. In our simple tabulation, we compared subject groups of nuclear power plant employees with general citizens, nurses and students in terms of their images of a nuclear power plant. The results were that while the nuclear power plant employees were high in their evaluations of facts about a nuclear power plant and in their positive images of a nuclear power plant, general citizens, nurses and students were overwhelmingly high in their negative images of a nuclear power plant. In our analysis on category score by means of the quantification method III, the first correlation axis was the dimension of 'safety'-'danger' and the second correlation axis was the dimension of 'subjectivity'-'objectivity', and that the first quadrant was the area of 'safety-subjectivity', the second quadrant was the area of 'danger-subjectivity', the third quadrant as the area of 'danger-objectivity', and the forth quadrant was the area of 'safety-objectivity'. In our analysis of sample score, 16 occupation groups was compared. As a result, it was found that the 16 occupation groups' images of a nuclear power plant were, in the order of favorableness, (1) section chiefs in charge, maintenance subsection chiefs, maintenance foremen, (2) field leaders from subcontractors, (3) maintenance section members, operation section members, (4) employees of those subcontractors, (5) general citizens, nurses and students. On the 'safety-danger' dimension, nuclear power plant workers on the one hand and general citizens, nurses and students on the other were clearly divided in terms of their images of a nuclear power plant. Nuclear power plant workers were concentrated in the area of 'safety' and general citizens, nurses and students in the area of 'danger'. (J.P.N.)

  11. On nuclear power plant uprating

    International Nuclear Information System (INIS)

    Ho, S. Allen; Bailey, James V.; Maginnis, Stephen T.

    2004-01-01

    Power uprating for commercial nuclear power plants has become increasingly attractive because of pragmatic reasons. It provides quick return on investment and competitive financial benefits, while involving low risks regarding plant safety and public objection. This paper briefly discussed nuclear plant uprating guidelines, scope for design basis analysis and engineering evaluation, and presented the Salem nuclear power plant uprating study for illustration purposes. A cost and benefit evaluation of the Salem power uprating was also included. (author)

  12. Study on in-core fuel management for CNP1500 nuclear power plant

    International Nuclear Information System (INIS)

    Li Dongsheng

    2005-10-01

    CNP1500 is a four-loop PWR nuclear power plant with light water as moderator and coolant. The reactor core is composed of 205 AFA-3GXL fuel assemblies. The active core height at cold is 426.4 cm and equivalent diameter is 347.0 cm. The reactor thermal output is 4250 MW, and average linear power density is 179.5 W/cm. The cycle length of equilibrium cycle core is 470 equivalent full power days. For all cycles, the moderator temperature coefficients at all conditions are negative values, the nuclear enthalpy rise factors F ΔH at hot full power, all control rods out and equilibrium xenon are less than the limit value, the maximum discharge assembly burnup is less 55000 MW·d/tU, and the shutdown margin values at the end of life meet design criteria. The low-leakage core loading reduces radiation damage on pressure vessel and is beneficial to prolong use lifetime of it. The in-core fuel management design scheme and main calculation results for CNP1500 nuclear power plant are presented. (author)

  13. The risk of storing radioactive wastes from nuclear power plants

    International Nuclear Information System (INIS)

    Gruemm, H.

    1976-09-01

    Serious bottle-necks exist in the nuclear fuel cycle and will continue for the next decade. A total of 800 nuclear reactors are now in operation. 153 nuclear power plants represent an installed capacity of 70 GVe. Until 1985 five hundred nuclear power plants will be in operation from which up to this date 53.000 t uranium will have been discharged. Part of this will have to be reprocessed. Associated with the above mentioned amount are 500 t plutonium and 1.500 t highly radioactive wastes. Two risks for the population have to be considered: firstly, the effect of small amounts of radioactive substances released during normal operation of nuclear power plants (the annual dose is about 1 mrem per person). Secondly, the possibility of the release of great amounts of radioactivity during heavy accidents (the probability for which is extremely small). A series of feasible possibilities for conditioning are shown. Firstly, the wastes are packed in substances which are insoluble in water. Secondly, for low and medium wastes these can be mixed with concrete or bitumen and filled into stable containers. Thirdly, the wastes could also be solidified. Fourthly, the wastes could be enclosed in small glass spheres which are embedded in a metal matrix. (H.G.)

  14. Standard criteria for disposal of liquid radioactive wastes from nuclear power plants into surface waters (river systems)

    International Nuclear Information System (INIS)

    Pisarev, V.V.; Tsybizov, I.S.

    1976-01-01

    Radioactive products discharge into natural water streams results in the necessity to regulate nuclear power plant discharges to ensure radiation safety (RS) for population using a river and surrounding river territory. To ensure RS it is necessary to set scientific-founded standards of permissible discharge level of liquid radioactive wastes (LRW) from nuclear power plant assuring observance of hygienic requirements for surface water puring. Volume of permissible LRW discharge into river systems must be set both with provision for concrete physical-geographycal conditions, specficity of utilizing the river and river valley and social-economical peculiarities of crtical population groups. The value of permissible LRW discharge into river systems is determined by three criterion groups: radiological, ecological and hydrological ones. By means of radiological group the internal and external irradiation doses for the whole body and its separate organs are set and RS of population is determined. Ecological criteria include a number of parameters (coefficients of accumulation, distribution and transition) determining quantitative ratios between radioactive element contents in water and separate links of biological chains: soil/water, fish/water, vegetables/water and others. Hydrological criteria determine the degree of waste dilution in rivers, control radioactive contamination of flood-lands areas and in common with ecological criteria determine radionuclide contents in soil and food products. A method of determining average annual values of LRW dilution in river waters is presented [ru

  15. Small hydroelectric power plants

    International Nuclear Information System (INIS)

    Helgesen, Boerre

    2002-01-01

    Small hydroelectric power plants are power plants of 1 - 10 MW. For a supplier, this is an unnatural limit. A more natural limit involves compact engine design and simplified control system. The article discusses most of the engine and electrotechnical aspects in the development, construction and operation of such a plant

  16. The Kuroshio power plant

    CERN Document Server

    Chen, Falin

    2013-01-01

    By outlining a new design or the Kuroshio power plant, new approaches to turbine design, anchorage system planning, deep sea marine engineering and power plant operations and maintenance are explored and suggested. The impact on the local environment, particularly in the face of natural disasters, is also considered to provide a well rounded introduction to plan and build a 30MW pilot power plant. Following a literature review, the six chapters of this book propose a conceptual design by focusing on the plant's core technologies and establish the separate analysis logics for turbine design and

  17. Recent advances in prediction of emission of hazardous air pollutants from coal-fired power plants

    International Nuclear Information System (INIS)

    Senior, C.L.; Helble, J.J.; Sarofim, A.F.

    2000-01-01

    Coal-fired power plants are a primary source of mercury discharge into the atmosphere along with fine particulates containing arsenic, selenium, cadmium, and other hazardous air pollutants. Information regarding the speciation of these toxic metals is necessary to accurately predict their atmospheric transport and fate in the environment. New predictive tools have been developed to allow utilities to better estimate the emissions of toxic metals from coal-fired power plants. These prediction equations are based on fundamental physics and chemistry and can be applied to a wide variety of fuel types and combustion conditions. The models have significantly improved the ability to predict the emissions of air toxic metals in fine particulate and gas-phase mercury. In this study, the models were successfully tested using measured mercury speciation and mass balance information collected from coal-fired power plants

  18. Pilot plant experiments at Wairakei Power Station

    International Nuclear Information System (INIS)

    Brown, Kevin L.; Bacon, Lew G.

    2009-01-01

    In the mid-1990s, several pilot plants were constructed at Wairakei to either improve the operational and economic performance of the power station or to mitigate the environmental effects of discharges to the Waikato River. The results of the following investigations are discussed: (1) fluid flow dynamic effects on silica scaling; (2) production of silica sols of predetermined particle size to evaluate the potential for generating commercial grade silica products; (3) use of 'sulfur oxidising bacteria' for the abatement of dissolved hydrogen sulphide in cooling water; (4) removal of arsenic from separated geothermal water; (5) steam line condensate corrosion; and (6) measurement and modelling of steam scrubbing in Wairakei's long steamlines. (author)

  19. Technical aspects of coupling a 6300 m3/day MSF-RO desalination plant to a PHWR nuclear power plant

    International Nuclear Information System (INIS)

    Verma, R.K.

    1998-01-01

    Presently, eight pressurised Heavy Water Reactors (PHWRs) each of 235 MWe capacity are operational in India. Four more units of similar capacity are expected to be commissioned soon. Work on two units each of 500 MWe capacity is also initiated. Extensive engineering development work has also been carried out in India, both on the MSF process and the membrane process. Based on the experience obtained from the presently operating 425 m 3 /d MSF plant and from the R and D work on the RO process, a 6300 m 3 /d MSF-RO plant (4500 m 3 /d MSF and 1800 m 3 /d RO) has been designed and the work for setting up this plant is undertaken. The steam for the heating duty in the brine heater as well as the steam for the evacuation purpose for the MSF plant is proposed to be obtained from the nuclear plant steam cycle. Sea water feed for the MSF plant as well as for the RO plant will be derived from the sea water discharge system of the nuclear power plant. Provision is made for supply of electrical power also from the power plant. The details of the heating steam supply circuit starting from the steam tapping point on the nuclear plant side to the MSF plant brine heater inlet and the arrangement for the return of condensate to the nuclear plant has been described with component requirement and various technical considerations. All the liquid streams and the steam supplied from the nuclear plant to the desalination plant as well as the product water will be monitored to ensure that there is no radioactive contamination. (author)

  20. Determination of chemical forms of C-14 in liquid discharges from nuclear power plants

    Czech Academy of Sciences Publication Activity Database

    Světlík, Ivo; Fejgl, M.; Povinec, P. P.; Kořínková, Tereza; Tomášková, Lenka; Pospíchal, J.; Kurfiřt, M.; Striegler, R.; Kaufmanová, M.

    2017-01-01

    Roč. 177, OCT (2017), s. 256-260 ISSN 0265-931X Institutional support: RVO:61389005 Keywords : analytical routines * dissolved organic forms of C-14 (DIC) * dissolved inorganic forms of C-14 (DOC) * Nuclear power plant (NPP) * liquid releases Subject RIV: DL - Nuclear Waste, Radioactive Pollution ; Quality OBOR OECD: Environment al sciences (social aspects to be 5.7) Impact factor: 2.310, year: 2016

  1. Economics of hybrid photovoltaic power plants

    Energy Technology Data Exchange (ETDEWEB)

    Breyer, Christian

    2012-08-16

    The global power supply stability is faced to several severe and fundamental threats, in particular steadily increasing power demand, diminishing and degrading fossil and nuclear energy resources, very harmful greenhouse gas emissions, significant energy injustice and a structurally misbalanced ecological footprint. Photovoltaic (PV) power systems are analysed in various aspects focusing on economic and technical considerations of supplemental and substitutional power supply to the constraint conventional power system. To infer the most relevant system approach for PV power plants several solar resources available for PV systems are compared. By combining the different solar resources and respective economics, two major PV systems are identified to be very competitive in almost all regions in the world. The experience curve concept is used as a key technique for the development of scenario assumptions on economic projections for the decade of the 2010s. Main drivers for cost reductions in PV systems are learning and production growth rate, thus several relevant aspects are discussed such as research and development investments, technical PV market potential, different PV technologies and the energetic sustainability of PV. Three major market segments for PV systems are identified: off-grid PV solutions, decentralised small scale on-grid PV systems (several kWp) and large scale PV power plants (tens of MWp). Mainly by application of 'grid-parity' and 'fuel-parity' concepts per country, local market and conventional power plant basis, the global economic market potential for all major PV system segments is derived. PV power plant hybridization potential of all relevant power technologies and the global power plant structure are analyzed regarding technical, economical and geographical feasibility. Key success criteria for hybrid PV power plants are discussed and comprehensively analysed for all adequate power plant technologies, i.e. oil, gas and coal fired power

  2. Economics of hybrid photovoltaic power plants

    Energy Technology Data Exchange (ETDEWEB)

    Breyer, Christian

    2012-08-16

    The global power supply stability is faced to several severe and fundamental threats, in particular steadily increasing power demand, diminishing and degrading fossil and nuclear energy resources, very harmful greenhouse gas emissions, significant energy injustice and a structurally misbalanced ecological footprint. Photovoltaic (PV) power systems are analysed in various aspects focusing on economic and technical considerations of supplemental and substitutional power supply to the constraint conventional power system. To infer the most relevant system approach for PV power plants several solar resources available for PV systems are compared. By combining the different solar resources and respective economics, two major PV systems are identified to be very competitive in almost all regions in the world. The experience curve concept is used as a key technique for the development of scenario assumptions on economic projections for the decade of the 2010s. Main drivers for cost reductions in PV systems are learning and production growth rate, thus several relevant aspects are discussed such as research and development investments, technical PV market potential, different PV technologies and the energetic sustainability of PV. Three major market segments for PV systems are identified: off-grid PV solutions, decentralised small scale on-grid PV systems (several kWp) and large scale PV power plants (tens of MWp). Mainly by application of 'grid-parity' and 'fuel-parity' concepts per country, local market and conventional power plant basis, the global economic market potential for all major PV system segments is derived. PV power plant hybridization potential of all relevant power technologies and the global power plant structure are analyzed regarding technical, economical and geographical feasibility. Key success criteria for hybrid PV power plants are discussed and comprehensively analysed for all adequate power plant technologies, i.e. oil, gas and

  3. Plant life management optimized utilization of existing nuclear power plants

    International Nuclear Information System (INIS)

    Watzinger, H.; Erve, M.

    1999-01-01

    For safe, reliable and economical nuclear power generation it is of central importance to understand, analyze and manage aging-related phenomena and to apply this information in the systematic utilization and as-necessary extension of the service life of components and systems. An operator's overall approach to aging and plant life management which also improves performance characteristics can help to optimize plant operating economy. In view of the deregulation of the power generation industry with its increased competition, nuclear power plants must today also increasingly provide for or maintain a high level of plant availability and low power generating costs. This is a difficult challenge even for the newest, most modern plants, and as plants age they can only remain competitive if a plant operator adopts a strategic approach which takes into account the various aging-related effects on a plant-wide basis. The significance of aging and plant life management for nuclear power plants becomes apparent when looking at their age: By the year 2000 roughly fifty of the world's 434 commercial nuclear power plants will have been in operation for thirty years or more. According to the International Atomic Energy Agency, as many as 110 plants will have reached the thirty-year service mark by the year 2005. In many countries human society does not push the construction of new nuclear power plants and presumably will not change mind within the next ten years. New construction licenses cannot be expected so that for economical and ecological reasons existing plants have to be operated unchallengeably. On the other hand the deregulation of the power production market is asking just now for analysis of plant life time to operate the plants at a high technical and economical level until new nuclear power plants can be licensed and constructed. (author)

  4. The reliability evaluation of reclaimed water reused in power plant project

    Science.gov (United States)

    Yang, Jie; Jia, Ru-sheng; Gao, Yu-lan; Wang, Wan-fen; Cao, Peng-qiang

    2017-12-01

    The reuse of reclaimed water has become one of the important measures to solve the shortage of water resources in many cities, But there is no unified way to evaluate the engineering. Concerning this issue, it took Wanneng power plant project in Huai city as a example, analyzed the reliability of wastewater reuse from the aspects of quality in reclaimed water, water quality of sewage plant, the present sewage quantity in the city and forecast of reclaimed water yield, in particular, it was necessary to make a correction to the actual operation flow rate of the sewage plant. the results showed that on the context of the fluctuation of inlet water quality, the outlet water quality of sewage treatment plants is basically stable, and it can meet the requirement of circulating cooling water, but suspended solids(SS) and total hardness in boiler water exceed the limit, and some advanced treatment should be carried out. In addition, the total sewage discharge will reach 13.91×104m3/d and 14.21×104m3/d respectively in the two planning level years of the project. They are greater than the normal collection capacity of the sewage system which is 12.0×104 m3/d, and the reclaimed water yield can reach 10.74×104m3/d, which is greater than the actual needed quantity 8.25×104m3/d of the power plant, so the wastewater reuse of this sewage plant are feasible and reliable to the power plant in view of engineering.

  5. Technologically enhanced natural radioactivity around the coal fired power plant

    International Nuclear Information System (INIS)

    Kovac, J.; Marovic, G.

    1997-01-01

    In some situations the exposure to natural radiation sources is enhanced as a result to technological developments. Burning of coal is one source of enhanced radiation exposure to naturally occurring elements, particularly radium, thorium and uranium. Most of the radioactive substances are concentrated in the ash and slag, which are heavy and drop to the bottom of a furnace. Lighter fly ash is carried up the chimney and into the atmosphere. The bottom ash and slag are usually deposited in a waste pile, from where some activity may leach into aquifers or be dispersed by wind.The main pathways through which the populations living around coal fired power plants are exposed to enhanced levels of natural radionuclides are inhalation and ingestion of the activity discharged into the Exosphere. For this reason, extensive investigations have been under way for several years in the coal fired power plant in Croatia, which uses an anthracite coal with a higher than usual uranium content. (authors)

  6. Training device for nuclear power plant operators

    International Nuclear Information System (INIS)

    Schoessow, G. J.

    1985-01-01

    A simulated nuclear energy power plant system with visible internal working components comprising a reactor adapted to contain a liquid with heating elements submerged in the liquid and capable of heating the liquid to an elevated temperature, a steam generator containing water and a heat exchanger means to receive the liquid at an elevated temperature, transform the water to steam, and return the spent liquid to the reactor; a steam turbine receiving high energy steam to drive the turbine and discharging low energy steam to a condenser where the low energy steam is condensed to water which is returned to the steam generator; an electric generator driven by the turbine; indicating means to identify the physical status of the reactor and its contents; and manual and automatic controls to selectively establish normal or abnormal operating conditions in the reactor, steam generator, pressurizer, turbine, electric generator, condenser, and pumps; and to be selectively adjusted to bring the reactor to acceptable operating condition after being placed in an abnormal operation. This device is particularly useful as an education device in demonstrating nuclear reactor operations and in training operating personnel for nuclear reactor systems and also as a device for conducting research on various safety systems to improve the safety of nuclear power plants

  7. Some power uprate issues in nuclear power plants

    International Nuclear Information System (INIS)

    Tipping, Philip

    2008-01-01

    Issues and themes concerned with nuclear power plant uprating are examined. Attention is brought to the fact that many candidate nuclear power plants for uprating have anyway been operated below their rated power for a significant part of their operating life. The key issues remain safety and reliability in operation at all times, irrespective of the nuclear power plant's chronological or design age or power rating. The effects of power uprates are discussed in terms of material aspects and expected demands on the systems, structures and components. The impact on operation and maintenance methods is indicated in terms of changes to the ageing surveillance programmes. Attention is brought to the necessity checking or revising operator actions after power up-rating has been implemented

  8. Offshore atomic power plants

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    Various merits of offshore atomic power plants are illustrated, and their systems are assessed. The planning of the offshore atomic power plants in USA is reviewed, and the construction costs of the offshore plant in Japan were estimated. Air pollution problem may be solved by the offshore atomic power plants remarkably. Deep water at low temperature may be advantageously used as cooling water for condensers. Marine resources may be bred by building artificial habitats and by providing spring-up equipments. In the case of floating plants, the plant design can be standardized so that the construction costs may be reduced. The offshore plants can be classified into three systems, namely artificial island system, floating system and sea bottom-based system. The island system may be realized with the present level of civil engineering, but requires the development of technology for the resistance of base against earthquake and its calculation means. The floating system may be constructed with conventional power plant engineering and shipbuilding engineering, but the aseismatic stability of breakwater may be a problem to be solved. Deep water floating system and deep water submerging system are conceivable, but its realization may be difficult. The sea bottom-based system with large caissons can be realized by the present civil engineering, but the construction of the caissons, stability against earthquake and resistance to waves may be problems to be solved. The technical prediction and assessment of new plant sites for nuclear power plants have been reported by Science and Technology Agency in 1974. The construction costs of an offshore plant has been estimated by the Ministry of International Trade and Industry to be yen71,026/kW as of 1985. (Iwakiri, K.)

  9. Results of fuel management at Embalse nuclear power plant. Analysis of performance at other plants

    International Nuclear Information System (INIS)

    Paz, A.O. de; Moreno, C.A.; Vinez, J.C.

    1987-01-01

    The operating experience of fuel management at the Embalse nuclear power plant from new core to the present situation (approximately 937 days at full power) is described. The average core burnup is about 4000 MW d/t U and the monthly averaged discharge burnup about 7800 MW d/t U. The neutron flux distribution is calculated by means of program PUMA-C, which is periodically checked by comparison between calculated and measured values of 102 vanadium detectors. A comparison of the performance of other reactors type CANDU 600 (Point Lepreau, Gentilly 2, Wolsung) from the point of view of fuel strategy is also presented. The data to perform the comparison were obtained by means of the CANDU system of information exchange between users (COG). (Author)

  10. Benchmarking Nuclear Power Plants

    International Nuclear Information System (INIS)

    Jakic, I.

    2016-01-01

    One of the main tasks an owner have is to keep its business competitive on the market while delivering its product. Being owner of nuclear power plant bear the same (or even more complex and stern) responsibility due to safety risks and costs. In the past, nuclear power plant managements could (partly) ignore profit or it was simply expected and to some degree assured through the various regulatory processes governing electricity rate design. It is obvious now that, with the deregulation, utility privatization and competitive electricity market, key measure of success used at nuclear power plants must include traditional metrics of successful business (return on investment, earnings and revenue generation) as well as those of plant performance, safety and reliability. In order to analyze business performance of (specific) nuclear power plant, benchmarking, as one of the well-established concept and usual method was used. Domain was conservatively designed, with well-adjusted framework, but results have still limited application due to many differences, gaps and uncertainties. (author).

  11. Hybrid combined cycle power plant

    International Nuclear Information System (INIS)

    Veszely, K.

    2002-01-01

    In case of re-powering the existing pressurised water nuclear power plants by the proposed HCCPP solution, we can increase the electricity output and efficiency significantly. If we convert a traditional nuclear power plant unit to a HCCPP solution, we can achieve a 3.2-5.5 times increase in electricity output and the achievable gross efficiency falls between 46.8-52% and above, depending on the applied solution. These figures emphasise that we should rethink our power plant technologies and we have to explore a great variety of HCCPP solutions. This may give a new direction in the development of nuclear reactors and power plants as well.(author)

  12. Elecnuc. Nuclear power plants in the world

    International Nuclear Information System (INIS)

    2003-01-01

    This 2003 version of Elecnuc contents information, data and charts on the nuclear power plants in the world and general information on the national perspectives concerning the electric power industry. The following topics are presented: 2002 highlights; characteristics of main reactor types and on order; map of the French nuclear power plants; the worldwide status of nuclear power plants on 2002/12/3; units distributed by countries; nuclear power plants connected to the Grid by reactor type groups; nuclear power plants under construction; capacity of the nuclear power plants on the grid; first electric generations supplied by a nuclear unit; electrical generation from nuclear plants by country at the end 2002; performance indicator of french PWR units; trends of the generation indicator worldwide from 1960 to 2002; 2002 cumulative Load Factor by owners; nuclear power plants connected to the grid by countries; status of license renewal applications in Usa; nuclear power plants under construction; Shutdown nuclear power plants; exported nuclear power plants by type; exported nuclear power plants by countries; nuclear power plants under construction or order; steam generator replacements; recycling of Plutonium in LWR; projects of MOX fuel use in reactors; electricity needs of Germany, Belgium, Spain, Finland, United Kingdom; electricity indicators of the five countries. (A.L.B.)

  13. The IGBT as an element of switch discharge with a linear mode use in capacitor discharge power converters

    CERN Document Server

    Cravero, J M

    1998-01-01

    This paper presents an unusual use of IGBT (Insulated Gate Bipolar Transistor) modules in capacitor discharge power supplies to achieve different current pulse shapes. The new power converters are described with an emphasis on the use of the IGBT as a discharge switch or in a linear mode. The difficulties involved in implementing IGBTs in these modes are analysed. IGBT voltage and gate commands are reviewed for these different modes and the control system that is necessary to regulate the magnet current is described. Finally, the future is envisaged with the new trends in this direction.

  14. Selection and impedance based model of a lithium ion battery technology for integration with virtual power plant

    DEFF Research Database (Denmark)

    Swierczynski, Maciej Jozef; Stroe, Daniel Ioan; Stan, Ana-Irina

    2013-01-01

    is to integrate lithium-ion batteries into virtual power plants; thus, the power system stability and the energy quality can be increased. The selection of the best lithium-ion battery candidate for integration with wind power plants is a key aspect for the economic feasibility of the virtual power plant...... investment. This paper presents a methodology for selection, between three candidates, of a Li-ion battery which offers long cycle lifetime at partial charge/discharge (required by many grid support applications) while providing a low cost per cycle also. For the selected Li-ion battery an impedance......-based diagnostic tool for lifetime estimation was developed and verified. This diagnostic tool can be extended into an impedance-based lifetime model that will be able to predict the remaining useful lifetime of Li-ion batteries for specific grid support applications....

  15. Power generation by nuclear power plants

    International Nuclear Information System (INIS)

    Bacher, P.

    2004-01-01

    Nuclear power plays an important role in the world, European (33%) and French (75%) power generation. This article aims at presenting in a synthetic way the main reactor types with their respective advantages with respect to the objectives foreseen (power generation, resources valorization, waste management). It makes a fast review of 50 years of nuclear development, thanks to which the nuclear industry has become one of the safest and less environmentally harmful industry which allows to produce low cost electricity: 1 - simplified description of a nuclear power generation plant: nuclear reactor, heat transfer system, power generation system, interface with the power distribution grid; 2 - first historical developments of nuclear power; 3 - industrial development and experience feedback (1965-1995): water reactors (PWR, BWR, Candu), RBMK, fast neutron reactors, high temperature demonstration reactors, costs of industrial reactors; 4 - service life of nuclear power plants and replacement: technical, regulatory and economical lifetime, problems linked with the replacement; 5 - conclusion. (J.S.)

  16. Utilization of water power in the Hochsauerland District. Possibilities of utilizing water power plants while deriving profits for tourism. Wasserkraftnutzung im Hochsauerlandkreis. Moeglichkeiten zur Inwertsetzung der Wasserkraftanlagen im Rahmen einer touristischen Route

    Energy Technology Data Exchange (ETDEWEB)

    Peyrer, U.

    1994-01-01

    The idea of utilizing water power plants while driving profits for tourism intends to promote regional tourism and support the district at the same time. Since both precipitation and discharge conditions and the Hochsauerland relief provide favorable conditions for water power utilization, one finds various water wheel uses, i.e. corn mills or saw mills, water wheels for the metal-working industry, and hammer mills. This volume contains a comprehensive documentation of the water power plants in the Hochsauerland District. (BWI)

  17. Research tokamak system with multi-mode discharges using inverter power supply

    International Nuclear Information System (INIS)

    Kojima, Hiroki; Kobayashi, Masahiro; Takagi, Makoto; Takamura, Shuichi; Tashiro, Kenji

    1999-01-01

    In Current Sustaining Tokamak in Nagoya university (CSTN)-IV research tokamak system using a compact 40kHz pulse width modulation (PWM) inverter power supply, which is controlled through LabVIEW program, we construct a new tokamak discharge system with multi-mode including a stable alternating current discharge and a high-repetition high-duty one. These discharge modes can be operated continuously for as long as 60sec. The continuous discharge with long duration is able to simulate the important physical and chemical processes of long time discharges in fusion devices, in which the heat load to the wall and the particle balance in the plasma-wall system are crucial topics in order to realize a long pulse fusion reactor, like ITER. Employing ergodic divertor (ED) is one of tools to control the particle balance and the heat load to the wall. In addition, we installed another inverter power supply to generate a rotating magnetic perturbation for dynamic ergodic divertor (DED) with the appropriate measurement system so that we may carry out experiments on heat and particle control with DED at long time operation. (author)

  18. Nuclear Power Plants in the World

    International Nuclear Information System (INIS)

    2000-01-01

    The Japan Atomic Industrial Forum (JAIF) used every year to summarize a trend survey on the private nuclear power plants in the world in a shape of the 'Developmental trends on nuclear power plants in the world'. In this report, some data at the end of 1999 was made up on bases of answers on questionnaires from 72 electric companies in 31 nations and regions in the world by JAIF. This report is comprised of 19 items, and contains generating capacity of the plants; current status of Japan; trends of generating capacity of operating the plants, the plant orders and generating capacity of the plants; world nuclear capacity by reactor type; location of the plants; the plants in the world; and so forth. And, it also has some survey results on the 'Liberalization of electric power markets and nuclear power generation' such as some 70% of respondents in nuclear power for future option, gas-thermal power seen as power source with most to gain from liberalization, merits on nuclear power generation (environmental considerations and supply stability), most commonly voiced concern about new plant orders in poor economy, and so forth. (G.K.)

  19. Phytoplankton abundance and productivity in the vicinity of an operating power plant

    International Nuclear Information System (INIS)

    Poornima, E.H.; Rajadurai, M.; Venugopalan, V.P.; Narasimhan, S.V.; Rao, V.N.R.

    2007-01-01

    The impact of power plant operation on the abundance and productivity of phytoplankton was monitored over a period of fifteen months. Field studies showed that in spite of the consistent reduction in phytoplankton biomass and productivity at the Outfall where the heated effluent is discharged, stations close to the mixing point did not show any significant change in phytoplankton biomass or productivity. This suggested that at the Mixing point, mixing of the heated effluents with the ambient seawater was rapid and very extensive, ensuring recovery of phytoplankton biomass and their productivity potential. Field studies during low-dose, shock-dose and no-chlorination suggested that chlorination caused greater damage to phytoplankton chlorophyll than temperature. Laboratory experiments revealed that diatom growth was not much influenced by passage through the condenser cooling system and they were able to grow between 28 deg C and 40 deg C. Short term experiments indicated that chemical stress due to chlorination might be more important than temperature in reducing phytoplankton biomass and productivity. Combined treatment of temperature and chlorine showed little synergistic effect. The data suggest that formulation of condenser discharge criteria of power plants must consider the relative effects of both the stress factors viz., temperature and chlorine. (author)

  20. Levels of {sup 137}Cs and {sup 40}K in marine superficial sediments near the Angra Nuclear Power Plant (Angra dos Reis, SE Brazil)

    Energy Technology Data Exchange (ETDEWEB)

    Lima Ferreira, Paulo Alves de; Farina Amorim, Lais; Marone Tura, Pedro; Medeiros Zacheo, Valter Andre; Lopes Figueira, Rubens Cesar [Universidade de Sao Paulo (IO-USP), SP (Brazil). Inst. Oceanografico

    2015-07-01

    This study evaluated the spatial distribution of two environmentally relevant radionuclides, {sup 137}Cs and {sup 40}K, in marine superficial sediments around the Angra Nuclear Power Plant, the only Brazilian nuclear power plant complex, thus establishing a baseline for bottom sediments, given the international importance of environmental monitoring around nuclear facilities. It was observed that these radionuclides are mostly present in the muddy sediments as a result of their stronger association with its fine-grained fraction, and that their lowest levels are located around the liquid effluent discharge of the plant, as a consequence of the prevented deposition of fine sediments due to the strong discharge water flux. The comparison of the {sup 137}Cs activities in the region with other locations in the world showed that the presence of this artificial nuclide is due to the atmospheric fallout from past nuclear tests made during the Cold War, not to the nuclear power plant activities.

  1. Perspectives of nuclear power plants

    International Nuclear Information System (INIS)

    Vajda, Gy.

    2001-01-01

    In several countries the construction of nuclear power plants has been stopped, and in some counties several plants have been decommissioned or are planned to. Therefore, the question arises: have nuclear power plants any future? According to the author, the question should be reformulated: can mankind survive without nuclear power? To examine this challenge, the global power demand and its trends are analyzed. According to the results, traditional energy sources cannot be adequate to supply power. Therefore, a reconsideration of nuclear power should be imminent. The economic, environmental attractions are discussed as opposite to the lack of social support. (R.P.)

  2. Problems of power plant capital demands

    International Nuclear Information System (INIS)

    Slechta, V.; Bohal, L.

    1986-01-01

    The problems are discussed of requirements for investment for power plants in Czechoslovakia. Since the construction was finished of coal-burning 110 MW power plants with six power units, specific capital cost has steadily been growing. The growth amounts to 6 to 8% per year while the principle has been observed that specific capital cost decreases with increased unit power. Attention is paid to the cost of the subcontractors of the building and technological parts of a power plant and to the development of productivity of labour. A comparison is tabulated of cost for coal-burning power plants with 100 MW and 200 MW units and for nuclear power plants with WWER-440 reactors. Steps are suggested leading to a reduction of the capital cost of nuclear power plants. It is stated that should not these steps be taken, the envisaged development of nuclear power would be unbearable for the Czechoslovak national economy. (Z.M.). 8 tabs., 3 refs

  3. Nuclear power plant diagnostic system

    International Nuclear Information System (INIS)

    Prokop, K.; Volavy, J.

    1982-01-01

    Basic information is presented on diagnostic systems used at nuclear power plants with PWR reactors. They include systems used at the Novovoronezh nuclear power plant in the USSR, at the Nord power plant in the GDR, the system developed at the Hungarian VEIKI institute, the system used at the V-1 nuclear power plant at Jaslovske Bohunice in Czechoslovakia and systems of the Rockwell International company used in US nuclear power plants. These diagnostic systems are basically founded on monitoring vibrations and noise, loose parts, pressure pulsations, neutron noise, coolant leaks and acoustic emissions. The Rockwell International system represents a complex unit whose advantage is the on-line evaluation of signals which gives certain instructions for the given situation directly to the operator. The other described systems process signals using similar methods. Digitized signals only serve off-line computer analyses. (Z.M.)

  4. Next Generation Geothermal Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Brugman, John; Hattar, Mai; Nichols, Kenneth; Esaki, Yuri

    1995-09-01

    A number of current and prospective power plant concepts were investigated to evaluate their potential to serve as the basis of the next generation geothermal power plant (NGGPP). The NGGPP has been envisaged as a power plant that would be more cost competitive (than current geothermal power plants) with fossil fuel power plants, would efficiently use resources and mitigate the risk of reservoir under-performance, and minimize or eliminate emission of pollutants and consumption of surface and ground water. Power plant concepts were analyzed using resource characteristics at ten different geothermal sites located in the western United States. Concepts were developed into viable power plant processes, capital costs were estimated and levelized busbar costs determined. Thus, the study results should be considered as useful indicators of the commercial viability of the various power plants concepts that were investigated. Broadly, the different power plant concepts that were analyzed in this study fall into the following categories: commercial binary and flash plants, advanced binary plants, advanced flash plants, flash/binary hybrid plants, and fossil/geothed hybrid plants. Commercial binary plants were evaluated using commercial isobutane as a working fluid; both air-cooling and water-cooling were considered. Advanced binary concepts included cycles using synchronous turbine-generators, cycles with metastable expansion, and cycles utilizing mixtures as working fluids. Dual flash steam plants were used as the model for the commercial flash cycle. The following advanced flash concepts were examined: dual flash with rotary separator turbine, dual flash with steam reheater, dual flash with hot water turbine, and subatmospheric flash. Both dual flash and binary cycles were combined with other cycles to develop a number of hybrid cycles: dual flash binary bottoming cycle, dual flash backpressure turbine binary cycle, dual flash gas turbine cycle, and binary gas turbine

  5. Power plant chemical technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    17 contributions covering topies of fossil fuel combustion, flue gas cleaning, power plant materials, corrosion, water/steam cycle chemistry, monitoring and control were presented at the annual meeting devoted to Power Plant Chemical Technology 1996 at Kolding (Denmark) 4-6 September 1996. (EG)

  6. Nuclear power plants in populated areas

    International Nuclear Information System (INIS)

    Wachsmann, F.

    1973-01-01

    The article first deals with the permanently increasing demand for electical power. Considering the ever growing energy demand which can no longer be covered by conventional power plants, it has become necessary to set up nuclear power plants of larger range. The author presents in a survey the basic function of nuclear power plants as well as the resulting risks and safety measures. The author concludes that according to present knowledge there is no more need to erect nuclear power plants outside densely populated urban areas but there is now the possibility of erecting nuclear power plants in densely populated areas. (orig./LH) [de

  7. Nuclear power plant decommissioning

    International Nuclear Information System (INIS)

    Yaziz Yunus

    1986-01-01

    A number of issues have to be taken into account before the introduction of any nuclear power plant in any country. These issues include reactor safety (site and operational), waste disposal and, lastly, the decommissioning of the reactor inself. Because of the radioactive nature of the components, nuclear power plants require a different approach to decommission compared to other plants. Until recently, issues on reactor safety and waste disposal were the main topics discussed. As for reactor decommissioning, the debates have been academic until now. Although reactors have operated for 25 years, decommissioning of retired reactors has simply not been fully planned. But the Shippingport Atomic Power Plant in Pennysylvania, the first large scale power reactor to be retired, is now being decommissioned. The work has rekindled the debate in the light of reality. Outside the United States, decommissioning is also being confronted on a new plane. (author)

  8. Safety assessment and verification for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    This Safety Guide was prepared under the IAEA programme for safety standards for nuclear power plants. The present publication is a revision of the IAEA Safety Guide on Management of Nuclear Power Plants for Safe Operation issued in 1984. It supplements Section 2 of the Safety Requirements publication on Safety of Nuclear Power Plants: Operation. Nuclear power technology is different from the customary technology of power generation from fossil fuel and by hydroelectric means. One major difference between the management of nuclear power plants and that of conventional generating plants is the emphasis that should be placed on nuclear safety, quality assurance, the management of radioactive waste and radiological protection, and the accompanying national regulatory requirements. This Safety Guide highlights the important elements of effective management in relation to these aspects of safety. The attention to be paid to safety requires that the management recognize that personnel involved in the nuclear power programme should understand, respond effectively to, and continuously search for ways to enhance safety in the light of any additional requirements socially and legally demanded of nuclear energy. This will help to ensure that safety policies that result in the safe operation of nuclear power plants are implemented and that margins of safety are always maintained. The structure of the organization, management standards and administrative controls should be such that there is a high degree of assurance that safety policies and decisions are implemented, safety is continuously enhanced and a strong safety culture is promoted and supported. The objective of this publication is to guide Member States in setting up an operating organization which facilitates the safe operation of nuclear power plants to a high level internationally. The second objective is to provide guidance on the most important organizational elements in order to contribute to a strong safety

  9. Safety assessment and verification for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2005-01-01

    This Safety Guide was prepared under the IAEA programme for safety standards for nuclear power plants. The present publication is a revision of the IAEA Safety Guide on Management of Nuclear Power Plants for Safe Operation issued in 1984. It supplements Section 2 of the Safety Requirements publication on Safety of Nuclear Power Plants: Operation. Nuclear power technology is different from the customary technology of power generation from fossil fuel and by hydroelectric means. One major difference between the management of nuclear power plants and that of conventional generating plants is the emphasis that should be placed on nuclear safety, quality assurance, the management of radioactive waste and radiological protection, and the accompanying national regulatory requirements. This Safety Guide highlights the important elements of effective management in relation to these aspects of safety. The attention to be paid to safety requires that the management recognize that personnel involved in the nuclear power programme should understand, respond effectively to, and continuously search for ways to enhance safety in the light of any additional requirements socially and legally demanded of nuclear energy. This will help to ensure that safety policies that result in the safe operation of nuclear power plants are implemented and that margins of safety are always maintained. The structure of the organization, management standards and administrative controls should be such that there is a high degree of assurance that safety policies and decisions are implemented, safety is continuously enhanced and a strong safety culture is promoted and supported. The objective of this publication is to guide Member States in setting up an operating organization which facilitates the safe operation of nuclear power plants to a high level internationally. The second objective is to provide guidance on the most important organizational elements in order to contribute to a strong safety

  10. The end of cheap electric power from nuclear power plants. 2. ed.

    International Nuclear Information System (INIS)

    Franke, J.; Viefhues, D.

    1984-04-01

    The economic efficiency of a nuclear power plant is compared with that of a coal-fired power plant of the same size. A technical and economic computer model was developed which took account of the power plant and all its units as well as the fuel cycle (including intermediate storage and reprocessing). It was found that future nuclear power plants will be inferior to coal-fired power plants in all economic respects. Further, there was no load range in which the cost of electric power generation was more favourable in nuclear power plants than in coal-fired power plants. (orig./HSCH) [de

  11. Theoretical Investigation For The Effect of Fuel Quality on Gas Turbine Power Plants

    Science.gov (United States)

    AbdulRazzak khudair, Omar; Alwan Abass, Khetam; Saadi Abed, Noor; Hussain Ali, Khalid; AbdulAziz, Saad; Chlaib Shaboot, Ali

    2018-05-01

    Gas turbine engine power generation is declined dramatically because of the reduction in thermodynamic parameters as a work of turbine, compressor ratio, compressor work, and air mass flow rate and fuel consumption. There are two main objectives of this work, the first is related with the effect of fuel kinds and their quality on the operation of fuel flow divider and its performance specifically gear pump displacement and fuel flow rate to the combustion chambers of gas power plant. AL-DORA gas turbine power plant 35MW was chosen to predict these effects on its performance MATLAB Software program is used to perform thermodynamic calculations. Fuel distribution stage before the process of combustion and as a result of the kind and its quality, chemical reaction will occur between the fuel and the parts of the gear system of each pump of the flow divider, which causes the erosion of the internal pump wall and the teeth of the gear system, thus hampering the pump operation in terms of fuel discharge. The discharge of fuel form the eight external gates of flow divider is decreased and varied when going to the combustion chambers, so that, flow divider does not give reliable mass flow rate due to absence of accurate pressure in each of eight exit pipes. The second objective deals with the stage of fuel combustion process inside the combustion chamber. A comparative study based upon performance parameters, such as specific fuel consumption for gas and gasoil and power generation. Fuel poor quality causes incomplete combustion and increased its consumption, so that combustion products are interacted with the surface of the turbine blades, causing the erosion and create surface roughness of the blade and disruption of gas flow. As a result of this situation, turbulence flow of these gases will increase causing the separation of gas boundary layers over the suction surface of the blade. Therefore the amount of extracted gas will decrease causing retreat work done by

  12. Financing of nuclear power plant using resources of power generation

    International Nuclear Information System (INIS)

    Slechta, V.; Milackova, H.

    1987-01-01

    It is proved that during the lifetime of a power plant, financial resources are produced from depreciation and from the profit for the delivered electrical power in an amount allowing to meet the cost of construction, interests of credits, the corporation taxes, and the means usable by the utility for simple reproduction of the power plant, additional investment, or for the ultimate decommissioning of the nuclear power plant. The considerations are simplified to 1 MW of installed capacity of a WWER-440 nuclear power plant. The breakdown is shown of the profit and the depreciation over the power plant lifetime, the resources of regular payments of credit instalments for the construction and the method of its calculation, and the income for the state budget and for the utility during the plant liofetime. (J.B.). 5 tabs., 5 refs

  13. Nuclear Power Plants (Rev.)

    Energy Technology Data Exchange (ETDEWEB)

    Lyerly, Ray L.; Mitchell III, Walter [Southern Nuclear Engineering, Inc.

    1973-01-01

    Projected energy requirements for the future suggest that we must employ atomic energy to generate electric power or face depletion of our fossil-fuel resources—coal, oil, and gas. In short, both conservation and economic considerations will require us to use nuclear energy to generate the electricity that supports our civilization. Until we reach the time when nuclear power plants are as common as fossil-fueled or hydroelectric plants, many people will wonder how the nuclear plants work, how much they cost, where they are located, and what kinds of reactors they use. The purpose of this booklet is to answer these questions. In doing so, it will consider only central station plants, which are those that provide electric power for established utility systems.

  14. 76 FR 1469 - Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2...

    Science.gov (United States)

    2011-01-10

    ... Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2 Environmental Assessment... Plant, LLC, the licensee, for operation of the Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2... Impact Statement for License Renewal of Nuclear Plants, Calvert Cliffs Nuclear Power Plant (NUREG-1437...

  15. BWR type nuclear power plant

    International Nuclear Information System (INIS)

    Matsumoto, Kosuke.

    1991-01-01

    In a BWR type nuclear power plant in which reactor water in a reactor pressure vessel can be drained to a waste processing system by way of reactor recycling pipeways and remaining heat removal system pipeways, a pressurized air supply device is disposed for supplying air for pressurizing reactor water to the inside of the reactor pressure vessel by way of an upper head. With such a constitution, since the pressurized air sent from the pressurized air supply device above the reactor pressure vessel for the reactor water discharging pressure upon draining, the water draining pressure is increased compared with a conventional case and, accordingly, the amount of drained water is not reduced even in the latter half of draining. Accordingly, the draining efficiency can be improved and only a relatively short period of time is required till the completion of the draining, which can improve safety and save labors. (T.M.)

  16. Nuclear power plants in post-war thought

    International Nuclear Information System (INIS)

    Toya, Hiroshi

    2015-01-01

    This paper overviews how nuclear power plants have been talked about in the post-war thought. Science and technology sometimes significantly change the thinking way of humans, and nuclear power generation is an extreme technology. This paper overviews how nuclear power plants and humans are correlated. The following three points are discussed as the major issues of contemporary thought over nuclear power plants. First, on the danger of nuclear power plants, the risk of destructive power that nuclear energy has, and the danger of unreasoning development in science and technology civilization are discussed. Second, on the ethics issues surrounding nuclear power plants, the ethics that are based on unbalanced power relations, and democratic responsibility ethics based on discussion ethics are discussed. Third, on the issues of nuclear power plants and imagination, the limitations of democratic discussion surrounding nuclear power plants, the formation of imagination commensurate with the destructive power of nuclear power plants, and the formation of imagination that can represent the distant future are discussed. (A.O.)

  17. Benthos of a coastal power station thermal discharge canal

    Energy Technology Data Exchange (ETDEWEB)

    Bamber, R.N.; Spencer, J.F.

    1984-08-01

    Kingsnorth Power Station, on the river Medway Estuary, Kent, discharges cooling water into a canal comprising a 4 km creek system. A comprehensive investigation of the sublittoral benthic fauna of the discharge system was undertaken from January 1979 to September 1981. The macrofauna is significantly suppressed at sites along the discharge canal, representing a community with half the number of species comprising dense populations of a few dominant opportunistic species tolerant of thermal stress (e.g. Tubificoides, Cauleriella) and not those characteristic of organic pollution stress communities. The latter are regular summer immigrants in the creek, but persist only in low numbers if at all in the winter (e.g. Polydora ciliata). This suppression is the result of an approximately 10/sup 0/C temperature front between the heated discharge water and ambient estuarine water, passing over the sea bed with the ebbing and flooding tide four times each day. 39 references, 11 figures, 3 tables.

  18. Hybrid wind-power-distillation plant

    Directory of Open Access Journals (Sweden)

    Ninić Neven

    2012-01-01

    Full Text Available This paper reports and elaborates on the idea of a solar distiller and an offshore wind power plant operating together. The subject under discussion is a single-stage solar distillation plant with vaporization, using adiabatic expansion in the gravitational field inside a wind power plant supporting column. This scheme divides investment costs for electric power and distillate production. In the region of the Adriatic Sea, all electric power produced could be “converted” to hydrogen using less than 10% of the distillate produced.

  19. Materials Integrity Analysis for Application of Hyper Duplex Stainless Steels to Korean Nuclear Power Plants

    International Nuclear Information System (INIS)

    Chang, Hyun Young; Park, Heung Bae; Park, Yong Soo; Kim, Soon Tae; Kim, Young Sik; Kim, Kwang Tae; Jhang, Yoon Young

    2010-01-01

    Hyper duplex stainless steels have been developed in Korea for the purpose of application to the seawater system of Korean nuclear power plants. This system supplies seawater to cooling water heat exchanger tubes, related pipes and chlorine injection system. In normal operation, seawater is supplied to heat exchanger through the exit of circulating water pump headers, and the heat exchanged sea water is extracted to the discharge pipes in circulating water system connected to the circulating water discharge lines. The high flow velocity of some part of seawater system in nuclear power plants accelerates damages of components. Therefore, high strength and high corrosion resistant steels need to be applied for this environment. Hyper duplex stainless steel (27Cr-7.0Ni-2.5Mo-3.2W-0.35N) has been newly developed in Korea and is being improved for applying to nuclear power plants. In this study, the physical and mechanical properties and corrosion resistance of newly developed materials are quantitatively evaluated in comparative to commercial stainless steels in other countries. The properties of weld and HAZ (heat affected zone) are analyzed and the best compositions are suggested. The optimum conditions in welding process are derived for ensuring the volume fraction of ferrite(α) and austenite(γ) in HAZ and controlling weld cracks. For applying these materials to the seawater heat exchanger, CCT and CPT in weldments are measured. As a result of all experiments, it was found that the newly developed hyper duplex stainless steel WREMBA has higher corrosion resistance and mechanical properties than those of super austenitic stainless steels including welded area. It is expected to be a promising material for seawater systems of Korean nuclear power plants

  20. Power plants 2009. Lectures

    International Nuclear Information System (INIS)

    2009-01-01

    Within the Annual Conference 2009 of the VGB PowerTech e.V. (Essen, Federal Republic of Germany) from 23rd to 25th May, 2009, in Lyon (France) the following lectures were held: (1) Electricity demand, consequences of the financial and economic crisis - Current overview 2020 for the EU-27 (Hans ten Berge); (2) Status and perspectives of the electricity generation mix in France (Bernard Dupraz); (3) European electricity grid - status and perspective (Dominique Maillard); (4) Technologies and acceptance in the European energy market (Gordon MacKerran); (5) EPR construction in Finland, China, France, (Claude Jaouen); (6) EPR Flamanville 3: A project on the path towards nuclear revival (Jacques Alary); (7) Worldwide nuclear Revival and acceptance (Luc Geraets); (8) An overview on the status of final disposal of radioactive wastes worldwide (Piet Zuidema); (9) Who needs pumped storage plants? PSP are partner to grid stability and renewable energies (Hans-Christoph Funke); (10) Sustainable use of water resources to generate electricity safely and efficiently (Patrick Tourasse); (11) The growth strategy of RWE Innogy - Role of RES in RWE strategy (Fritz Vahrenholt); (12) Solar technologies towards grid parity - key factors and timeframe (G. Gigliucci); (13) Overview on CCS technologies and results of Vattenfalls oxyfuel pilot plant (Philippe Paelinck); (14) Development perspectives of lignite-based IGCC-plants with CCS (Dietmar Keller); (15) Post combustion capture plants - concept and plant integration (Wolfgang Schreier); (16) CCS fossil power generation in a carbon constraint world (Daniel Hofmann); (17) CEZ group strategy in Central and South Eastern Europe (Jan Zizka); (18) Strategy and projects of DONG Energy (Jens Erik Pedersen); (19) E.ON coal-based power generation of the future - The highly efficient power plant and downstream separation of carbon dioxide (Gerhard Seibel); (20) Final sage of first supercritical 460 MW e l. CFB Boiler construction - firs

  1. Construction of a new hydro power plant at Albbruck-Dogern; Neubau des Wehrkraftwerkes Albbruck-Dogern

    Energy Technology Data Exchange (ETDEWEB)

    Schlageter, G. [Rheinkraftwerk Albbruck-Dogern AG, Albbruck (Germany)

    2006-07-01

    After expiration of the authorization in 2003 the German and the Swiss authorities issued a new operating licence for another 70 years. This new licence first of all allows RADAG to continue operation of the existing power plant. At the same time, however, it requires the company to commission a new plant by the end of 2009 (latest by 2012), which will increase the present day output for more than 15%. The new licence provides an increase of turbine water flow from currently 1100 m{sup 3}/s up to 1400 m{sup 3}/s. The additional power plant will have one large Kaplan turbine (bulb-type), with an installed total power of 24 MW, having a runner diameter of about 6 meters. Using to days head at the existing weir, which is about 8,75 meters, the turbine will discharge up to 300 m{sup 3}/s. The total project costs of the additional plant amount to about 55 Mio. Euro (price level 2002). The civil works will start at the end of 2006. (orig.)

  2. Chemistry in power plants 2011

    International Nuclear Information System (INIS)

    2011-01-01

    Within the VGB Powertech conference from 25th to 27th October, 2011, in Munich (Federal Republic of Germany), the following lectures and poster contributions were presented: (1) The revised VGB standard for water-steam-cycle Chemistry; (2) Switchover from neutral operation to oxygen treatment at the power station Stuttgart-Muenster of EnBW Kraftwerke AG; (3) Steam contamination with degradation products of organic matters present in the feedwater of the Lanxess-Rubber cogeneration plant; (4) Laboratory scale on-line noble metal deposition experiments simulating BWR plant conditions; (5) Building a new demin installation for the power plant EPZ in Borssele; (6) Replacement of the cooling tower installations in the nuclear power plant Goesgen-Daenien AG; (7) Aging of IEX resins in demin plants - Cost optimisation by adaptation of regenerants; (8) The largest DOW trademark EDI System at a combined cycled plant in Europe; (9) Upgrading river Main water to boiler feed water - Experiences with ultrafiltration; (10) Experiences with treatment of the water-steam-cycle in the RDF power plant Nehlsen Stavenhagen with film-forming amines; (11) Comparative modelling of the bubbles thermal collapse and cavitations for estimation of bubbles collapse influence; (12) Overcoming the steam quality - issues from an HRSG for the production of process steam; (13) Legionella - new requirements for power plant operation; (14) How the right chemistry in the FGD helps to improve the removal in the waste water treatment plant; (15) High efficiency filtration in dry/semi-dry FGD plants; (16) Expanding the variety of renewable fuels in the biomass power plant Timelkam using the chemical input control; (17) Corrosion, operating experiences and process improvements to increase the availability and operating time of the biomass power plant Timelkam; (18) The influence of temperature on the measurement of the conductivity of highly diluted solutions; (19) A multiparameter instrumentation approach

  3. Thermal power plant design and operation

    CERN Document Server

    Sarkar, Dipak

    2015-01-01

    Thermal Power Plant: Design and Operation deals with various aspects of a thermal power plant, providing a new dimension to the subject, with focus on operating practices and troubleshooting, as well as technology and design. Its author has a 40-long association with thermal power plants in design as well as field engineering, sharing his experience with professional engineers under various training capacities, such as training programs for graduate engineers and operating personnel. Thermal Power Plant presents practical content on coal-, gas-, oil-, peat- and biomass-fueled thermal power

  4. Small-scale power plant potential in Finland

    International Nuclear Information System (INIS)

    Helynen, S.

    1993-01-01

    The presentation discusses the small-scale power plant potential in Finland. The study of the potential is limited to W-scale power plants producing both electric power and heat using solid fuels. The basic power plant dimensioning and electric power load determination is based on traditional boiler and gas turbine technology. The possible sites for power plants are communities using district heating, and industrialized sites needing process steam or heat. In 1990 70 % (17 TWh) of district heat was produced by gas turbines. Ten communities have an own back-pressure power plant, and 40 communities buy heat from industrial plants, owing back-pressure power generation. Additionally about 40 communes buy district heat from companies, owned by power companies and industry. Estimates of small-scale power plant potential has been made plant wise on the basis of district heat loads and industrial heat needs. The scale of the plants has been limited to scale 3 MWe or more. The choosing of the fuel depends on the local conditions. The cheapest indigenous fuels in many communes are industrial wood wastes, and both milled and sod peat. The potential of steam technology based small-scale power plants has been estimated to be about 50 plants in 1992/1993, the total power of which is 220-260 MW. The largest estimate is base situation, in which there would be energy cooperation between the communes and industry. The fuel used by the power plants would be about 5.4-6.6 TWh/a corresponding to 270-330 million FIM/a. The total investment costs of the plants would be about 2.0 billion FIM. The plants would employ about 250 persons, and the fuel supply (wood or peat) about 100 persons

  5. Thermal Power Plant Performance Analysis

    CERN Document Server

    2012-01-01

    The analysis of the reliability and availability of power plants is frequently based on simple indexes that do not take into account the criticality of some failures used for availability analysis. This criticality should be evaluated based on concepts of reliability which consider the effect of a component failure on the performance of the entire plant. System reliability analysis tools provide a root-cause analysis leading to the improvement of the plant maintenance plan.   Taking in view that the power plant performance can be evaluated not only based on  thermodynamic related indexes, such as heat-rate, Thermal Power Plant Performance Analysis focuses on the presentation of reliability-based tools used to define performance of complex systems and introduces the basic concepts of reliability, maintainability and risk analysis aiming at their application as tools for power plant performance improvement, including: ·         selection of critical equipment and components, ·         defini...

  6. Reproduction of the flow-power map of the Laguna Verde power plant

    International Nuclear Information System (INIS)

    Amador G, R.; Gonzalez M, V.M.

    1993-01-01

    The National Commission of Nuclear Safety and Safeguards (CNSNS) requires to have calculation tools which allows it to make analysis independent of the behavior of the reactor core of Laguna Verde nuclear power plant (CNLV) with the purpose to support the evaluation and discharge activities of the fuel recharges licensing. The software package Fms (Fuel Management System) allows to carry out an analysis of the core of the BWR type reactors along the operation cycle to detect possible anomalies and/or helping in the fuel management. In this work it is reproduced the flow-power for the CNLV using the Presto code of the Fms software package. The comparison of results with the map used by the operators of CNLV shows good agreement between them. Another exercise carried out was the changes study that the axial and radial power outlines undergo as well as the thermohydraulic parameters (LHGR, APLHGR, CPR) when moving a control rod. The obtained results show that is had the experience to effect analysis of the reactor behavior using the Presto-Fms code therefore the study of the rest of the software package for the obtention of nuclear parameters used in this code is recommended. (Author)

  7. Power control of the Angra-2 Nuclear Power Plant

    International Nuclear Information System (INIS)

    Souza Mendes, J.E. de

    1986-01-01

    The systems for the power control of the Nuclear Power Plant Angra 2 have a high degree of automation so that few operator actions are required during power operation. The power control strategy and the operation principles of the control systems, here presented, make possible a great flexibility of the Plant operation. (Author) [pt

  8. Organizing nuclear power plant operation

    International Nuclear Information System (INIS)

    Adams, H.W.; Rekittke, K.

    1987-01-01

    With the preliminary culmination in the convoy plants of the high standard of engineered safeguards in German nuclear power plants developed over the past twenty years, the interest of operators has now increasingly turned to problems which had not been in the focus of attention before. One of these problems is the organization of nuclear power plant operation. In order to enlarge the basis of knowledge, which is documented also in the rules published by the Kerntechnischer Ausschuss (Nuclear Technology Committee), the German Federal Minister of the Interior has commissioned a study of the organizational structures of nuclear power plants. The findings of that study are covered in the article. Two representative nuclear power plants in the Federal Republic of Germany were selected for the study, one of them a single-unit plant run by an independent operating company in the form of a private company under German law (GmbH), the other a dual-unit plant operated as a dependent unit of a utility. The two enterprises have different structures of organization. (orig.) [de

  9. Advanced power plant materials, design and technology

    Energy Technology Data Exchange (ETDEWEB)

    Roddy, D. (ed.) [Newcastle University (United Kingdom). Sir Joseph Swan Institute

    2010-07-01

    The book is a comprehensive reference on the state of the art of gas-fired and coal-fired power plants, their major components and performance improvement options. Selected chapters are: Integrated gasification combined cycle (IGCC) power plant design and technology by Y. Zhu, and H. C. Frey; Improving thermal cycle efficiency in advanced power plants: water and steam chemistry and materials performance by B. Dooley; Advanced carbon dioxide (CO{sub 2}) gas separation membrane development for power plants by A. Basile, F. Gallucci, and P. Morrone; Advanced flue gas cleaning systems for sulphur oxides (SOx), nitrogen oxides (NOx) and mercury emissions control in power plants by S. Miller and B.G. Miller; Advanced flue gas dedusting systems and filters for ash and particulate emissions control in power plants by B.G. Miller; Advanced sensors for combustion monitoring in power plants: towards smart high-density sensor networks by M. Yu and A.K. Gupta; Advanced monitoring and process control technology for coal-fired power plants by Y. Yan; Low-rank coal properties, upgrading and utilisation for improving the fuel flexibility of advanced power plants by T. Dlouhy; Development and integration of underground coal gasification (UCG) for improving the environmental impact of advanced power plants by M. Green; Development and application of carbon dioxide (CO{sub 2}) storage for improving the environmental impact of advanced power plants by B. McPherson; and Advanced technologies for syngas and hydrogen (H{sub 2}) production from fossil-fuel feedstocks in power plants by P. Chiesa.

  10. Comparison of balance of tritium activity in waste water from nuclear power plants and at selected monitoring sites in the Vltava River, Elbe River and Jihlava (Dyje) River catchments in the Czech Republic.

    Science.gov (United States)

    Hanslík, Eduard; Marešová, Diana; Juranová, Eva; Sedlářová, Barbora

    2017-12-01

    During the routine operation, nuclear power plants discharge waste water containing a certain amount of radioactivity, whose main component is the artificial radionuclide tritium. The amounts of tritium released into the environment are kept within the legal requirements, which minimize the noxious effects of radioactivity, but the activity concentration is well measurable in surface water of the recipient. This study compares amount of tritium activity in waste water from nuclear power plants and the tritium activity detected at selected relevant sites of surface water quality monitoring. The situation is assessed in the catchment of the Vltava and Elbe Rivers, affected by the Temelín Nuclear Power Plant as well as in the Jihlava River catchment (the Danube River catchment respectively), where the waste water of the Dukovany Nuclear Power Plant is discharged. The results show a good agreement of the amount of released tritium stated by the power plant operator and the tritium amount detected in the surface water and highlighted the importance of a robust independent monitoring of tritium discharged from a nuclear power plant which could be carried out by water management authorities. The outputs of independent monitoring allow validating the values reported by a polluter and expand opportunities of using tritium as e.g. tracer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Power spectrum of electrical discharges seen on Earth and at Saturn

    International Nuclear Information System (INIS)

    Warwick, J.W.

    1989-01-01

    The author presents a method for deriving the radio spectrum of electrical discharges from the properties of the time series of charges crossing the discharge gap. This result is applied to the observed spectra of both terrestrial lightning and Saturn electrical discharge(s) (SED). SED occurrence and power density are shown to have subtle, yet important, differences from these observables as they have been described in the last 5 years. It is demonstrated that throughout the episode of Voyager 1's (V1) closest approach to Saturn, SED probably occurred continuously in frequency upward at least from the upper limit of Saturn kilometric radiation at about 800 kHz. This is so despite the fact that in the dynamic spectra a strip in time and frequency in which SED do not occur extends in frequency from 1.3 MHz up to the oft-discussed lower limit of SED in the leading edge of the episode of closest approach. The greater power in SED that occurred after V1 closest approach is emphasized: it is shown to be consistent with the lower frequency of the maximum in their power spectra. The variable gap length factor is also invoked to explain the variable frequency cutoff in the range 5-15 MHz of the episodes before closest approach. The SED source moved along a single arc defining both preencounter and postencounter events. The discharge gap lengths were a continuous function of position along this arc, with the shortest gaps lying about 5 degree west (as seen from the spacecraft) of the noon meridian of Saturn and the longest gaps lying on the nightside of the planet

  12. Elecnuc. Nuclear power plants in the world

    International Nuclear Information System (INIS)

    1998-01-01

    This small booklet summarizes in tables all the numerical data relative to the nuclear power plants worldwide. These data come from the French CEA/DSE/SEE Elecnuc database. The following aspects are reviewed: 1997 highlights; main characteristics of the reactor types in operation, under construction or on order; map of the French nuclear power plants; worldwide status of nuclear power plants at the end of 1997; nuclear power plants in operation, under construction and on order; capacity of nuclear power plants in operation; net and gross capacity of nuclear power plants on the grid and in commercial operation; forecasts; first power generation of nuclear origin per country, achieved or expected; performance indicator of PWR units in France; worldwide trend of the power generation indicator; nuclear power plants in operation, under construction, on order, planned, cancelled, shutdown, and exported; planning of steam generators replacement; MOX fuel program for plutonium recycling. (J.S.)

  13. Cooling towers of nuclear power plants

    International Nuclear Information System (INIS)

    Mikyska, L.

    1986-01-01

    The specifications are given of cooling towers of foreign nuclear power plants and a comparison is made with specifications of cooling towers with natural draught in Czechoslovak nuclear power plants. Shortcomings are pointed out in the design of cooling towers of Czechoslovak nuclear power plants which have been derived from conventional power plant design. The main differences are in the adjustment of the towers for winter operation and in the designed spray intensity. The comparison of selected parameters is expressed graphically. (J.B.)

  14. Nuclear Power Plants. Revised.

    Science.gov (United States)

    Lyerly, Ray L.; Mitchell, Walter, III

    This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. Among the topics discussed are: Why Use Nuclear Power?; From Atoms to Electricity; Reactor Types; Typical Plant Design Features; The Cost of Nuclear Power; Plants in the United States; Developments in Foreign…

  15. Nuclear power plants and the environment

    Energy Technology Data Exchange (ETDEWEB)

    Barabas, K [Ceskoslovenska Komise pro Atomovou Energii, Prague

    1978-05-01

    The environmental impacts are compared of conventional coal-fired and oil-fired power plants and of nuclear power plants. The values are compared of SO/sub 2/, NO/sub 2/, ash and soot emissions with /sup 133/Xe and /sup 85/Kr fission products release and the requirement for air for diluting these emissions in the atmosphere is assessed. Also compared are thermal pollution from an oil-fired power plant and from PWR and fast reactor power plants. The conclusion is arrived at that nuclear energy can solve the problem of increasing demand for electric and heat power while reducing negative environmental impacts.

  16. Nuclear power plants and the environment

    International Nuclear Information System (INIS)

    Barabas, K.

    1978-01-01

    The environmental impacts are compared of conventional coal-fired and oil-fired power plants and of nuclear power plants. The values are compared of SO 2 , NO 2 , ash and soot emmisions with 133 Xe and 85 Kr fission products release and the requirement for air for diluting these emissions in the atmosphere is assessed. Also compared are thermal pollution from an oil-fired power plant and from PWR and fast reactor power plants. The conclusion is arrived at that nuclear energy can solve the problem of increasing demand for electric and heat power while reducing negative environmental impacts. (O.K.)

  17. HVDC transmission from nuclear power plant

    International Nuclear Information System (INIS)

    Yoshida, Yukio; Takenaka, Kiyoshi; Taniguchi, Haruto; Ueda, Kiyotaka

    1980-01-01

    HVDC transmission directly from a nuclear power plant is expected as one of the bulk power transmission systems from distant power generating area. Successively from the analysis of HVDC transmission from BWR-type nuclear power plant, this report discusses dynamic response characteristics of HVDC transmission (double poles, two circuits) from PWR type nuclear power plant due to dc-line faults (DC-1LG, 2LG) and ac-line faults (3LG) near inverter station. (author)

  18. Postirradiation examination of Kori-1 nuclear power plant fuels

    International Nuclear Information System (INIS)

    Ro, S.G.; Kim, E.K.; Lee, K.S.; Min, D.K.

    1994-01-01

    Full size fuels discharged from Kori-1 PWR nuclear power plant have been subjected to postirradiation examination. The fuels under investigation were irradiated for one- to four-reactor cycles. Nondestructive examination and dismantling of the fuel assemblies have been conducted in the pool of the postirradiation examination facility (PIEF) of Korea Atomic Energy Research Institue. Subsequently nondestructive and destructive examinations of fuel rods have been performed in the hot cells of the PIEF. An evaluation of fuel burnup behaviors was based on the postirradiation examination data and the nominal design values. The results did not show any evidence of abnormalities in the fuel integrity. (orig.)

  19. Postirradiation examination of Kori-1 nuclear power plant fuels

    Science.gov (United States)

    Seung-Gy, Ro; Eun-Ka, Kim; Key-Soon, Lee; Duck-Kee, Min

    1994-05-01

    Full size fuels discharged from Kori-1 PWR nuclear power plant have been subjected to postirradiation examination. The fuels under investigation were irradiated for one- to four-reactor cycles. Nondestructive examination and dismantling of the fuel assemblies have been conducted in the pool of the postirradiation examination facility (PIEF) of Korea Atomic Energy Research Institute. Subsequently nondestructive and destructive examinations of fuel rods have been performed in the hot cells of the PIEF. An evaluation of fuel burnup behaviors was based on the postirradiation examination data and the nominal design values. The results did not show any evidence of abnormalities in the fuel integrity.

  20. Reliability analysis of meteorological data registered during nuclear power plant normal operation

    International Nuclear Information System (INIS)

    Amado, V.; Ulke, A.; Marino, B.; Thomas, L.

    2011-01-01

    The atmosphere is the environment in which gaseous radioactive discharges from nuclear power plants are transported. It is therefore essential to have reliable meteorological information to characterize the dispersion and feed evaluation models and radiological environmental impact during normal operation of the plant as well as accidental releases. In this way it is possible to determine the effects on the environment and in humans. The basic data needed to represent adequately the local weather include air temperature, wind speed and direction, rainfall, humidity and pressure. On the other hand, specific data consistent with the used model is required to determine the turbulence, for instance, radiation, cloud cover and vertical temperature gradient. It is important that the recorded data are representative of the local meteorology. This requires, first, properly placed instruments, that should be kept in operation and undergoing maintenance on a regular basis. Second, but equally substantial, a thorough analysis of its reliability must be performed prior to storage and/or data processing. In this paper we present the main criteria to consider choosing the location of a meteorological tower in the area of a nuclear power plant and propose a methodology for assessing the reliability of recorded data. The methodology was developed from the analysis of meteorological data registered in nuclear power plants in Argentina. (authors) [es

  1. How much is too little to detect impacts? A case study of a nuclear power plant.

    Science.gov (United States)

    Mayer-Pinto, Mariana; Ignacio, Barbara L; Széchy, Maria T M; Viana, Mariana S; Curbelo-Fernandez, Maria P; Lavrado, Helena P; Junqueira, Andrea O R; Vilanova, Eduardo; Silva, Sérgio H G

    2012-01-01

    Several approaches have been proposed to assess impacts on natural assemblages. Ideally, the potentially impacted site and multiple reference sites are sampled through time, before and after the impact. Often, however, the lack of information regarding the potential overall impact, the lack of knowledge about the environment in many regions worldwide, budgets constraints and the increasing dimensions of human activities compromise the reliability of the impact assessment. We evaluated the impact, if any, and its extent of a nuclear power plant effluent on sessile epibiota assemblages using a suitable and feasible sampling design with no 'before' data and budget and logistic constraints. Assemblages were sampled at multiple times and at increasing distances from the point of the discharge of the effluent. There was a clear and localized effect of the power plant effluent (up to 100 m from the point of the discharge). However, depending on the time of the year, the impact reaches up to 600 m. We found a significantly lower richness of taxa in the Effluent site when compared to other sites. Furthermore, at all times, the variability of assemblages near the discharge was also smaller than in other sites. Although the sampling design used here (in particular the number of replicates) did not allow an unambiguously evaluation of the full extent of the impact in relation to its intensity and temporal variability, the multiple temporal and spatial scales used allowed the detection of some differences in the intensity of the impact, depending on the time of sampling. Our findings greatly contribute to increase the knowledge on the effects of multiple stressors caused by the effluent of a power plant and also have important implications for management strategies and conservation ecology, in general.

  2. Operating experience feedback on lose of offsite power supply for nuclear power plant

    International Nuclear Information System (INIS)

    Jiao Feng; Hou Qinmai; Che Shuwei

    2013-01-01

    The function of the service power system of a nuclear power plant is to provide safe and reliable power supply for the nuclear power plant facilities. The safety of nuclear power plant power supply is essential for nuclear safety. The serious accident of Fukushima Daiichi nuclear power plant occurred due to loss of service power and the ultimate heat sink. The service power system has two independent offsite power supplies as working power and auxiliary power. This article collected events of loss of offsite power supply in operating nuclear power plants at home and abroad, and analyzed the plant status and cause of loss of offsite power supply events, and proposed improvement measures for dealing with loss of offsite power supply. (authors)

  3. Elecnuc. Nuclear power plants in the world

    International Nuclear Information System (INIS)

    2005-01-01

    This 2005 edition of the Elecnuc booklet summarizes in tables all numerical data relative to the nuclear power plants worldwide. These data come from the PRIS database managed by the IAEA. The following aspects are reviewed: 2004 highlights; main characteristics of reactor types; map of the French nuclear power plants on 2005/01/01; worldwide status of nuclear power plants at the end of 2004; units distributed by countries; nuclear power plants connected to the grid by reactor-type group; nuclear power plants under construction on 2004; evolution of nuclear power plant capacities connected to the grid; first electric generations supplied by a nuclear unit; electrical generation from nuclear power plants by country at the end 2004; performance indicator of PWR units in France; trend of the generation indicator worldwide; 2004 load factor by owners; units connected to the grid by countries at 12/31/2004; status of licence renewal applications in USA; nuclear power plants under construction at 12/31/2004; shutdown reactors; exported nuclear capacity in net MWe; exported and national nuclear capacity connected to the grid; exported nuclear power plants under construction or order; exported and national nuclear capacity under construction or order; recycling of plutonium in LWR; Mox licence plant projects; Appendix - historical development; acronyms, glossary

  4. Report on countermeasure to plant life management of the nuclear power plants at three electric power companies

    International Nuclear Information System (INIS)

    1999-01-01

    Three nuclear power reactors of the Fukushima-1 nuclear power plant, the Mihama-1 power plant and the Tsuruga-1 power plant were investigated according to the estimation plan shown in the Fundamental Concept on Plant Life Management of Agency of Natural Resources and Energy, Ministry of International Trade and Industry on April, 1996. Their reports contained the technical evaluation against, the responsive items to and the future examinations of the plant life management. In special, in the responsive items, some items to be added to the present maintenance process and some technical developmental problems are described in details and concretely. (G.K.)

  5. Elecnuc. Nuclear power plants in the world

    International Nuclear Information System (INIS)

    2000-01-01

    This small booklet summarizes in tables all the numerical data relative to the nuclear power plants worldwide. These data come from the French CEA/DSE/SEE Elecnuc database. The following aspects are reviewed: 1999 highlights; main characteristics of the reactor types in operation, under construction or on order; map of the French nuclear power plants; worldwide status of nuclear power plants at the end of 1999; nuclear power plants in operation, under construction and on order; capacity of nuclear power plants in operation; net and gross capacity of nuclear power plants on the grid and in commercial operation; grid connection forecasts; world electric power market; electronuclear owners and share holders in EU, capacity and load factor; first power generation of nuclear origin per country, achieved or expected; performance indicator of PWR units in France; worldwide trend of the power generation indicator; 1999 gross load factor by operator; nuclear power plants in operation, under construction, on order, planned, cancelled, shutdown, and exported; planning of steam generators replacement; MOX fuel program for plutonium recycling. (J.S.)

  6. Automation technology in power plants

    International Nuclear Information System (INIS)

    Essen, E.R.

    1995-01-01

    In this article a summery of the current architecture of modern process control systems in power plants and future trends have been explained. The further development of process control systems for power plants is influenced both by the developments in component and software technologies as well as the increased requirements of the power plants. The convenient and low cost configuration facilities of new process control systems have now reached a significance which makes it easy for customers to decide to purchase. (A.B.)

  7. Discharges and impacts from la Hague plant: history and recent achievements

    International Nuclear Information System (INIS)

    Kalimbadjian, J.; Rincel, X.

    1998-01-01

    Industrial reprocessing at La Hague was started in 1966. During 30 years. the annual rate of production gradually increased, up to more than 1,600 tons. Simultaneously, considerable innovative design and technology was introduced at all steps of the process, including effluent treatment and waste management. The characteristics of reprocessed fuel elements also changed. from low burn-up metallic fuel to high burn-up oxides. Reflecting all those evolutions, the plant discharges to the atmosphere and to the sea have shown significant variations in quantity and in composition. The complete history of liquid and gaseous releases displays a broad spectrum of situations, as to the relative weight of each radionuclide. However, the level of discharge has always remained significantly lower than the authorized limits. whatever radionuclide. Moreover, discharges to the sea have continuously decreased for 10 years, in spite of fast rising rate of production. As to the total radiological impact of discharges. it was permanently maintained well within the acceptable level of 0.15 mSv/year for the reference groups of neighbouring population, as decided for the level of authorizations. Since 1988, several actions have been decided in order to minimize the present and future impacts: improved liquid effluent treatment, extended recycling of liquid effluents towards vitrification, supplementary filtration of gaseous effluents for iodine scavenging. As a result, the plant will be able to maintain the overall impact from all discharges at less than the present acceptable level, in spite of projected wider domain of operations: - modified grades of reprocessed fuel, - decommissioning operations; - treatment of older waste stocks. (author)

  8. Comparison between Different Power Sources for Emergency Power Supply at Nuclear Power Plants

    International Nuclear Information System (INIS)

    Lenasson, Magnus

    2015-01-01

    Currently the Swedish nuclear power plants are using diesel generator sets and to some extent gas turbines as their emergency AC power sources and batteries as their emergency DC power sources. In the laws governing Swedish nuclear activity, no specific power sources are prescribed. On the other hand, diversification of safety functions should be considered, as well as simplicity and reliability in the safety systems. So far the choices of emergency power sources have been similar between different power plants, and therefore this project investigated a number of alternative power sources and if they are suitable for use as emergency power on nuclear power plants. The goals of the project were to: - Define the parameters that are essential for rending a power source suitable for use at a nuclear power plant. - Present the characteristics of a number of power sources regarding the defined parameters. - Compile the suitability of the different power sources. - Make implementation suggestions for the less conventional of the investigated power sources. (unconventional in the investigated application) 10 different power sources in total have been investigated and to various degrees deemed suitable Out of the 10 power sources, diesel generators, batteries and to some extent gas turbines are seen as conventional technology at the nuclear power plants. In relation to them the other power sources have been assessed regarding diversification gains, foremost with regards to external events. The power sources with the largest diversification gains are: Internal steam turbine, Hydro power, Thermoelectric generators. The work should first and foremost put focus on the fact that under the right circumstances there are power sources that can complement conventional power sources and yield substantial diversification gains. This paper is a shortened version of the report 'Comparison between different power sources for emergency power supply at nuclear power plants'. The

  9. Materials integrity analysis for application of POSCO developed STS to Korean Nuclear Power Plants

    International Nuclear Information System (INIS)

    Hyun-Young, Ch.; Tae-Eun, J.; Young-Sik, K.

    2009-01-01

    Full text of publication follows: POSCO has developed duplex stainless steel (S32750) and hyper super duplex stainless steels for the purpose of using them in the secondary circulation cooling water system in Korean nuclear power plants. This system supplies seawater to cooling water heat exchanger tubes, related pipes and chlorine injection system. In normal operation, seawater is supplied to heat exchanger through the exit of circulation pump headers and the heat exchanged sea water is extracted to the discharge pipes in circulation cooling water system connected to the circulation water discharge lines. The flow velocity of circulation cooling water system in nuclear power plants is high and damages of components from corrosion are severe. Therefore, this environment makes requiring of using high strength and high corrosion resistant steels. Hyper duplex stainless steel (27Cr-7.0Ni-2.5Mo-3.2W-0.35N) has been newly developed in Korea and is being improved for applying to nuclear power plants. In this study, the physical and mechanical properties and corrosion resistance of currently producing stainless steels and newly developed materials are qualitatively evaluated in comparative to commercial stainless steels in other countries. The properties of weld are analyzed and the best compositions of welding rod are suggested. The optimum weld condition is derived for ensuring HAZ phase ratios and controlling weld cracks. For applying these materials to the seawater heat exchanger, CCT and CPT in weldments are measured using mock-up tube testers that are newly designed for this study. Coupons of candidate materials are introduced in the real system and corrosion resistance of them are analyzed. As results of all experiments, the current CCT and CPT criteria in Korean nuclear power plants are reviewed, and the more actual and strengthened criteria will be suggested. The real scale components made of newly developed hyper super duplex stainless steel will be applied to

  10. Power control strategy of a photovoltaic power plant for microgrid applications

    Energy Technology Data Exchange (ETDEWEB)

    Li, Peng [Ecole Centrale de Lille, Cite Scientifique, Villeneuve d' Ascq (FR). Laboratoire d' Electrotechnique et d' Electronique de Puissance de Lille (L2EP); Ecole Nationale Superieure d' Arts et Metiers, Lille (FR). Laboratoire d' Electrotechnique et d' Electronique de Puissance de Lille (L2EP); Francois, Bruno [Ecole Centrale de Lille, Cite Scientifique, Villeneuve d' Ascq (FR). Laboratoire d' Electrotechnique et d' Electronique de Puissance de Lille (L2EP); Degobert, Philippe [Ecole Nationale Superieure d' Arts et Metiers, Lille (FR). Laboratoire d' Electrotechnique et d' Electronique de Puissance de Lille (L2EP); Robyns, Benoit [Hautes Etudes d' Ingenieur, Lille (FR). Laboratoire d' Electrotechnique et d' Electronique de Puissance de Lille (L2EP)

    2008-07-01

    Photovoltaic power plants operates currently maximal power point tracking (MPPT). For microgrid applications, however, a PV power plant can not operate in the MPPT mode in all conditions. When a microgrid is islanded from the grid with few loads, a limitation of the produced power by PV plants is required and prescribed by the Distribution System Operator. This paper proposes a power control technique integrated into a dynamic model of a PV power plant by using equivalent continuous models of power electronic converters. The power limitation mode of the PV is performed by applying the correct PV terminal voltage, which corresponds to the prescribed power reference. The proposed global model is validated by simulations with the help of Matlab-Simulink trademark. (orig.)

  11. A nuclear power plant status monitor

    International Nuclear Information System (INIS)

    Chu, B.B.; Conradi, L.L.; Weinzimmer, F.

    1986-01-01

    Power plant operation requires decisions that can affect both the availability of the plant and its compliance with operating guidelines. Taking equipment out of service may affect the ability of the plant to produce power at a certain power level and may also affect the status of the plant with regard to technical specifications. Keeping the plant at a high as possible production level and remaining in compliance with the limiting conditions for operation (LCOs) can dictate a variety of plant operation and maintenance actions and responses. Required actions and responses depend on the actual operational status of a nuclear plant and its attendant systems, trains, and components which is a dynamic situation. This paper discusses an Electric Power Research Institute (EPRI) Research Project, RP 2508, the objective of which is to combine the key features of plant information management systems with systems reliability analysis techniques in order to assist nuclear power plant personnel to perform their functions more efficiently and effectively. An overview of the EPRI Research Project is provided along with a detailed discussion of the design and operation of the PSM portion of the project

  12. Cooperation of nuclear, thermal and hydroelectric power plants in the power system

    International Nuclear Information System (INIS)

    1984-01-01

    The conference heard 36 papers of which 23 were incorporated in INIS. The subjects discussed were: the development of power industry in Czechoslovakia, methods of statistical analysis of data regarding nuclear power plant operation, the incorporation of WWER nuclear power plants in the power supply system, the standardization of nuclear power plants, the service life of components, use of nuclear energy sources, performance of the reactor accident protection system, the use of nuclear power and heating plants in Hungary, risk analysis, optimization of nuclear power plants, accidents caused by leakage of the primary and secondary circuit. (J.P.)

  13. Summary of nuclear power plant construction

    International Nuclear Information System (INIS)

    Tamura, Saburo

    1973-01-01

    Various conditions for the construction of nuclear power plants in Japan without natural resources were investigated. Expansion of the sites of plants, change of reactor vessels, standardization of nuclear power plants, possiblity of the reduction of construction period, approaching of nuclear power plants to consuming cities, and group construction were studied. Evaluation points were safety and economy. Previous sites of nuclear power plants were mostly on plane ground or cut and enlarge sites. Proposals for underground or offshore plants have been made. The underground plants were made at several places in Europe, and the ocean plant is now approved in U.S.A. as a plant on a man-made island. Vessels for containing nuclear reactors are the last barriers to the leakage of radioactive substance. At the initial period, the vessels were made of steel, which were surrounded by shielding material. Those were dry well type containers. Then, vessel type changed to pressure-suppression type wet containers. Now, it tends to concrete (PC or RC) type containers. There is the policy on the standardization of nuclear power plants by U.S.A.E.C. in recent remarkable activity. The merit and effect of the standardization were studied, and are presented in this paper. Cost of the construction of nuclear power plants is expensive, and interest of money is large. Then, the reduction of construction period is an important problem. The situations of plants approaching to consuming cities in various countries were studied. Idea of group construction is described. (Kato, T.)

  14. Nuclear power plant

    International Nuclear Information System (INIS)

    Orlov, V.V.; Rineisky, A.A.

    1975-01-01

    The invention is aimed at designing a nuclear power plant with a heat transfer system which permits an accelerated fuel regeneration maintaining relatively high initial steam values and efficiency of the steam power circuit. In case of a plant with three circuits the secondary cooling circuit includes a steam generator with preheater, evaporator, steam superheater and intermediate steam superheater. At the heat supply side the latter is connected with its inlet to the outlet of the evaporator and with its outlet to the low-temperature side of the secondary circuit

  15. The accident at the Chernobyl' nuclear power plant and its consequences

    International Nuclear Information System (INIS)

    1986-08-01

    The material is taken from the conclusions of the Government Commission on the causes of the accident at the fourth unit of the Chernobyl' nuclear power plant and was prepared by a team of experts appointed by the USSR State Committee on the Utilization of Atomic Energy. It contains general material describing the accident, its causes, the action taken to contain the accident and to alleviate its consequences, the radioactive contamination and health of the population and some recommendations for improving nuclear power safety. 7 annexes are devoted to the following topics: water-graphite channel reactors and operating experience with RBMK reactors, design of the reactor plant, elimination of the consequences of the accident and decontamination, estimate of the amount, composition and dynamics of the discharge of radioactive substances from the damaged reactor, atmospheric transport and radioactive contamination of the atmosphere and of the ground, expert evaluation and prediction of the radioecological state of the environment in the area of the radiation plume from the Chernobyl' nuclear power station, medical-biological problems. A separate abstract was prepared for each of these annexes. The slides presented at the post-accident review meeting are grouped in two separate volumes

  16. 75 FR 66802 - Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2...

    Science.gov (United States)

    2010-10-29

    ... Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2; Notice of Withdrawal of...) has granted the request of Calvert Cliffs Nuclear Power Plant, LLC, the licensee, to withdraw its... for the Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2, located in Calvert County, MD. The...

  17. VGB Congress 'Power Plants 2006'

    International Nuclear Information System (INIS)

    Anon.

    2006-01-01

    The VGB Congress 'Power Plants' took place in Dresden, 27 th to 29 th September 2006 under the auspices of the Federal Minister for Economics and Technology, Michael Glos. The motto of this year's Congress was 'Future becomes Reality - Investments in New Power Plants'. More than 1,200 participants from Germany and abroad attended the plenary and technical lectures on the topics 'Market and Competition' as well as 'Technology, Operation and Environment' for information and discussion. Special papers were dealing with further issues like 'Generation Market in Europe', 'Clean Power Technology Platform', French policy for new power plants as well as potentials and technology of renewables. (orig.)

  18. Nuclear power plant V-1

    International Nuclear Information System (INIS)

    1998-01-01

    The nuclear power plant Bohunice V -1 is briefly described. This NPP consists from two reactor units. Their main time characteristics are (Reactor Unit 1, Reactor Unit 2): beginning of construction - 24 April 1972; first controlled reactor power - 27 November 1978, 15 March 1980; connection to the grid - 17 December 1978, 26 March 1980; commercial operation - 1 April 1980, 7 January 1981. This leaflet contains: NPP V-1 construction; Major technological equipment (Primary circuit: Nuclear reactor [WWER 440 V230 type reactor];Steam generator; Reactor Coolant Pumps; Primary Circuit Auxiliary Systems. Secondary circuit: Turbine generators, Nuclear power plant electrical equipment; power plant control) and technical data

  19. Virtual power plant mid-term dispatch optimization

    International Nuclear Information System (INIS)

    Pandžić, Hrvoje; Kuzle, Igor; Capuder, Tomislav

    2013-01-01

    Highlights: ► Mid-term virtual power plant dispatching. ► Linear modeling. ► Mixed-integer linear programming applied to mid-term dispatch scheduling. ► Operation profit maximization combining bilateral contracts and the day-ahead market. -- Abstract: Wind power plants incur practically zero marginal costs during their operation. However, variable and uncertain nature of wind results in significant problems when trying to satisfy the contracted quantities of delivered electricity. For this reason, wind power plants and other non-dispatchable power sources are combined with dispatchable power sources forming a virtual power plant. This paper considers a weekly self-scheduling of a virtual power plant composed of intermittent renewable sources, storage system and a conventional power plant. On the one hand, the virtual power plant needs to fulfill its long-term bilateral contracts, while, on the other hand, it acts in the market trying to maximize its overall profit. The optimal dispatch problem is formulated as a mixed-integer linear programming model which maximizes the weekly virtual power plant profit subject to the long-term bilateral contracts and technical constraints. The self-scheduling procedure is based on stochastic programming. The uncertainty of the wind power and solar power generation is settled by using pumped hydro storage in order to provide flexible operation, as well as by having a conventional power plant as a backup. The efficiency of the proposed model is rendered through a realistic case study and analysis of the results is provided. Additionally, the impact of different storage capacities and turbine/pump capacities of pumped storage are analyzed.

  20. Quick discharge circuit for pacer nuclear power supply

    International Nuclear Information System (INIS)

    Chen, C.Y.

    1975-01-01

    A quick discharge circuit for a pacer's nuclear power supply is described. A pacer capable of implantation within the body of a patient and capable of being powered by at least one nuclear battery is disclosed. Voltage from a single nuclear battery is increased by a factor of about 25 to 30 in order to provide a voltage level adequate to power pacer circuitry. A restartable DC--DC converter is used for this purpose. But if the converter malfunctions the load voltage must be reduced below a certain level for the converter to be automatically restarted. The present invention relates to means for reducing the time from converter malfunction to resumption of converter operation in order to reduce the corresponding inoperative pacer time period. (U.S.)

  1. Evaluation of utility monitoring and preoperational hydrothermal modeling at three nuclear power plant sites

    International Nuclear Information System (INIS)

    Marmer, G.J.; Policastro, A.J.

    1977-01-01

    This paper evaluates the preoperational hydrothermal modeling and operational monitoring carried out by utilities as three nuclear-power-plant sites using once-through cooling. Our work was part of a larger study to assess the environmental impact of operating plants for the Nuclear Regulatory Commission (NRC) and the suitability of the NRC Environmental Technical Specifications (Tech Specs) as set up for these plants. The study revealed that the plume mappings at the Kewaunee, Zion, and Quad Cities sites were generally satisfactory in terms of delineating plume size and other characteristics. Unfortunately, monitoring was not carried out during the most critical periods when largest plume size would be expected. At Kewaunee and Zion, preoperational predictions using analytical models were found to be rather poor. At Kewaunee (surface discharge), the Pritchard Model underestimated plume size in the near field, but grossly overestimated the plume's far-field extent. Moreover, lake-level variations affected plume dispersion, yet were not considered in preoperational predictions. At Zion (submerged discharge) the Pritchard Model was successful only in special, simple cases (single-unit operation, no stratification, no reversing currents, no recirculation). Due to neglect of the above-mentioned phenomena, the model underpredicted plume size. At Quad Cities (submerged discharge), the undistorted laboratory model predicted plume dispersion for low river flows. These low flow predictions appear to be reasonable extrapolations of the field data acquired at higher flows

  2. Nuclear power plants maintenance

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    Nuclear power plants maintenance now appears as an important factor contributing to the competitivity of nuclea energy. The articles published in this issue describe the way maintenance has been organized in France and how it led to an actual industrial activity developing and providing products and services. An information note about Georges Besse uranium enrichment plant (Eurodif) recalls that maintenance has become a main data not only for power plants but for all nuclear industry installations. (The second part of this dossier will be published in the next issue: vol. 1 January-February 1989) [fr

  3. Nuclear power plant outages

    International Nuclear Information System (INIS)

    1998-01-01

    The Finnish Radiation and Nuclear Safety Authority (STUK) controls nuclear power plant safety in Finland. In addition to controlling the design, construction and operation of nuclear power plants, STUK also controls refuelling and repair outages at the plants. According to section 9 of the Nuclear Energy Act (990/87), it shall be the licence-holder's obligation to ensure the safety of the use of nuclear energy. Requirements applicable to the licence-holder as regards the assurance of outage safety are presented in this guide. STUK's regulatory control activities pertaining to outages are also described

  4. Physical and financial virtual power plants

    International Nuclear Information System (INIS)

    Willems, Bert

    2005-01-01

    Regulators in Belgium and the Netherlands use different mechanisms to mitigate generation market power. In Belgium, antitrust authorities oblige the incumbent to sell financial Virtual Power Plants, while in the Netherlands regulators have been discussing the use of physical Virtual Power Plants. This paper uses a numerical game theoretic model to simulate the behavior of the generation firms and to compare the effects of both systems on the market power of the generators. It shows that financial Virtual Power Plants are better for society. (Author)

  5. Policy Brief: Enhancing water-use efficiency of thermal power plants in India: need for mandatory water audits

    Energy Technology Data Exchange (ETDEWEB)

    Batra, R.K. (ed.)

    2012-12-15

    This policy brief discusses the challenges of water availability and opportunity to improve the water use efficiency in industries specially the thermal power plants. It presents TERI’s experience from comprehensive water audits conducted for thermal power plants in India. The findings indicate that there is a significant scope for saving water in the waste water discharge, cooling towers, ash handling systems, and the township water supply. Interventions like recycling wastewater, curbing leakages, increasing CoC (Cycles of concentration) in cooling towers, using dry ash handling etc., can significantly reduce the specific water consumption in power plants. However, the first step towards this is undertaking regular water audits. The policy brief highlights the need of mandatory water audits necessary to understand the current water use and losses as well as identify opportunities for water conservation, reduction in specific water consumption, and an overall improvement in water use efficiency in industries.

  6. Training of power plant operating personnel

    International Nuclear Information System (INIS)

    Kraftwerksschule, E.V.

    1986-01-01

    In Germany, professional training of power plant operating personnel became an important issue in the fifties, when power plant parameters as well as complexity of instrumentation and control increased considerably. Working Groups of VGB Technische Vereiningung der Grosskraftwerketreiber e.v. (Association of Large Power Plant Operators) developed a professional career for power plant operating personnel and defined pre-requisites, scope and objectives of training. In 1957 the German utilities founded KRAFTWERKSSCHULE E.V. (kws) as a school for theoretical training and for guidance of practical training in the power plants. KWS is a non-profit organisation and independent of authorities. Today KWS has 127 members in Germany and in 6 other countries. The objectives of KWS include the training of: -Kraftwerker (control room operators; - Kraftwerksmesiter (shift supervisors); and - shift engineers; according the guidelines of the VGB

  7. Human factors in nuclear power plants

    International Nuclear Information System (INIS)

    Pack, R.W.

    1978-01-01

    The Electric Power Research Institute has started research in human factors in nuclear power plants. One project, completed in March 1977, reviewed human factors problems in operating power plants and produced a report evaluating those problems. A second project developed computer programs for evaluating operator performance on training simulators. A third project is developing and evaluating control-room design approaches. A fourth project is reviewing human factors problems associated with power-plant maintainability and instrumentation and control technician activities. Human factors engineering is an interdisciplinary specialty concerned with influencing the design of equipment systems, facilities, and operational environments to promote safe, efficient, and reliable operator performance. The Electric Power Research Institute (EPRI) has undertaken four projects studying the application of human factors engineering principles to nuclear power plants. (author)

  8. Simulation of the fluctuations of hydraulic pressure in thermal power plants; Simulacion de golpe de ariete en centrales termicas

    Energy Technology Data Exchange (ETDEWEB)

    Calzada Mazeres, P. de la [INITEC (Spain)

    1995-07-01

    In this study the different equipments of the circulation waste system in thermal power plants are modellized (refrigeration water from the condenser). The purpose is to analyze the transient generated when the pump trip is produced at different shutting times of discharge valve. (Author)

  9. TOSHIBA CAE system for nuclear power plant

    International Nuclear Information System (INIS)

    Machiba, Hiroshi; Sasaki, Norio

    1990-01-01

    TOSHIBA aims to secure safety, increase reliability and improve efficiency through the engineering for nuclear power plant using Computer Aided Engineering (CAE). TOSHIBA CAE system for nuclear power plant consists of numbers of sub-systems which had been integrated centering around the Nuclear Power Plant Engineering Data Base (PDBMS) and covers all stage of engineering for nuclear power plant from project management, design, manufacturing, construction to operating plant service and preventive maintenance as it were 'Plant Life-Cycle CAE System'. In recent years, TOSHIBA has been devoting to extend the system for integrated intelligent CAE system with state-of-the-art computer technologies such as computer graphics and artificial intelligence. This paper shows the outline of CAE system for nuclear power plant in TOSHIBA. (author)

  10. Effect of nuclear power on CO₂ emission from power plant sector in Iran.

    Science.gov (United States)

    Kargari, Nargess; Mastouri, Reza

    2011-01-01

    It is predicted that demand for electricity in Islamic Republic of Iran will continue to increase dramatically in the future due to the rapid pace of economic development leading to construction of new power plants. At the present time, most of electricity is generated by burning fossil fuels which result in emission of great deal of pollutants and greenhouse gases (GHG) such as SO₂, NOx, and CO₂. The power industry is the largest contributor to these emissions. Due to minimal emission of GHG by renewable and nuclear power plants, they are most suitable replacements for the fossil-fueled power plants. However, the nuclear power plants are more suitable than renewable power plants in providing baseload electricity. The Bushehr Nuclear Power Plant, the only nuclear power plant of Iran, is expected to start operation in 2010. This paper attempts to interpret the role of Bushehr nuclear power plant (BNPP) in CO₂ emission trend of power plant sector in Iran. In order to calculate CO₂ emissions from power plants, National CO₂ coefficients have been used. The National CO₂ emission coefficients are according to different fuels (natural gas, fuels gas, fuel oil). By operating Bushehr Nuclear Power Plant in 2010, nominal capacity of electricity generation in Iran will increase by about 1,000 MW, which increases the electricity generation by almost 7,000 MWh/year (it is calculated according to availability factor and nominal capacity of BNPP). Bushehr Nuclear Power Plant will decrease the CO₂ emission in Iran power sector, by about 3% in 2010.

  11. TAPCHAN Wave Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    1983-10-01

    The Tapered Channel Wave Power Plant (TAPCHAN) is based on a new method for wave energy conversion. The principle of operation can be explained by dividing the system into the following four sub-systems: Firstly, a collector which is designed to concentrate the water energy and optimize collection efficiency for a range of frequencies and directions. Secondly, the energy converter, in which the energy of the collected waves is transformed into potential energy in an on-shore water reservoir. This is the unique part of the power plant. It consists of a gradually narrowing channel with wall heights equal to the filling level of the reservoir (typical heights 3-7 m). The waves enter the wide end of the channel and as they propagate down the narrowing channel, the wave height is amplified until the wavecrests spill over the walls. Thirdly, a reservoir which provides a stable water supply for the turbines. Finally, the hydroelectric power plant, where well established techniques are used for the generation of electric power. The water turbine driving the electric generator is of a low head type, such as a Kaplan or a tubular turbine. It must be designed for salt water operation and should have good regulation capabilities. Power plants based on the principle described, are now offered on a commercial basis.

  12. Ecological investigation of Hudson River macrozooplankton in the vicinity of a nuclear power plant

    International Nuclear Information System (INIS)

    Ginn, T.C.

    1977-01-01

    Studies were conducted on selected Hudson River macrozooplankton species to determine temporal and spatial distributions and responses to power plant operation. Distinguishing morphological and habitat characteristics were determined for the three gammarid amphipods (Gammarus daiberi, G. tigrinus, and G. fasciatus) occurring in the Hudson River. The oedicerotid amphipod Monoculodes edwardsi and the mysid Neomysis americana, in addition to the gammarid amphipods, displayed characteristic diel and seasonal abundances which affect their potential availability for power plant entrainment. The selected macrozooplankton species were utilized in temperature and chlorine bioassays in order to predict responses to cooling water entrainment. Although amphipods (Gammarus spp. and M. edwardsi) survived typical Indian Point cooling water temperatures, N. americana had high mortalities during a 30-minute, 8.3 0 C ΔT at 25 0 C ambient temperature. The bioassay results were substantiated by generally high survivals of entrained amphipods at the Indian Point plant. Neomysis americana were more heat sensitive, as indicated in bioassays, with average entrainment mortalities ranging from 30 to 60 percent during the summer. All species examined had higher immediate and latent mortalities during plant condenser chlorination. The ability of Gammarus to survive condenser passage and exposure to the Indian Point thermal discharge plume indicates that power plant operation on the lower Hudson River Estuary has no adverse impact on local gammarid amphipod populations. Entrained N. americana experience considerable mortalities; however, the impact on Atlantic Coast populations is minimized by the limited exposure of the population fringe to the Indian Point power plant

  13. Plant life management and maintenance technologies for nuclear power plants

    International Nuclear Information System (INIS)

    Ikegami, Tsukasa; Aoki, Masataka; Shimura, Takao; Kaimori, Kimihiro; Koike, Masahiro

    2001-01-01

    Nuclear power generation occupying an important position for energy source in Japan and supplying about one third of total electric power usage is now required for further upgrading of its economics under regulation relaxation of electric power business. And, under execution retardation of its new planning plant, it becomes important to operate the already established plants for longer term and to secure their stability. Therefore, technical development in response to the plant life elongation is promoted under cooperation of the Ministry of Economics and Industries, electric power companies, literate, and plant manufacturers. Under such conditions, the Hitachi, Ltd. has progressed some technical developments on check inspection, repairs and maintenance for succession of the already established nuclear power plants for longer term under securing of their safety and reliability. And in future, by proposing the check inspection and maintenance program combined with these technologies, it is planned to exert promotion of maintenance program with minimum total cost from a viewpoint of its plant life. Here were described on technologies exerted in the Hitachi, Ltd. such as construction of plant maintenance program in response to plant life elongation agreeing with actual condition of each plant, yearly change mechanism grasping, life evaluation on instruments and materials necessary for maintenance, adequate check inspection, repairs and exchange, and so forth. (G.K.)

  14. Stormwater Pollution Prevention Plan for the TA-03-22 Power and Steam Plant, Los Alamos National Laboratory, Revision 3, January 2018

    Energy Technology Data Exchange (ETDEWEB)

    Burgin, Jillian Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-02-01

    This Storm Water Pollution Prevention Plan (SWPPP) was developed in accordance with the provisions of the Clean Water Act (33 U.S.C. §§1251 et seq., as amended), and the Multi-Sector General Permit for Storm Water Discharges Associated with Industrial Activity (U.S. EPA, June 2015) issued by the U.S. Environmental Protection Agency (EPA) for the National Pollutant Discharge Elimination System (NPDES) and using the industry specific permit requirements for Sector O-Steam Electric Generating Facilities as a guide. This SWPPP applies to discharges of stormwater from the operational areas of the TA-03-22 Power and Steam Plant at Los Alamos National Laboratory. Los Alamos National Laboratory (also referred to as LANL or the “Laboratory”) is owned by the Department of Energy (DOE), and is operated by Los Alamos National Security, LLC (LANS). Throughout this document, the term “facility” refers to the TA-03-22 Power and Steam Plant and associated areas. The current permit expires at midnight on June 4, 2020.

  15. Wind power plant

    Energy Technology Data Exchange (ETDEWEB)

    Kling, A

    1977-01-13

    The wind power plant described has at least one rotor which is coupled to an electricity generator. The systems are fixed to a suspended body so that it is possible to set up the wind power plant at greater height where one can expect stronger and more uniform winds. The anchoring on the ground or on a floating body is done by mooring cables which can simultaneously have the function of an electric cable. The whole system can be steered by fins. The rotor system itself consists of at least one pair of contrarotating, momentum balanced rotors.

  16. Distribution of tritium in water vapour and precipitation around Wolsung nuclear power plant.

    Science.gov (United States)

    Chae, Jung-Seok; Lee, Sang-Kuk; Kim, Yongjae; Lee, Jung-Min; Cho, Heung-Joon; Cho, Yong-Woo; Yun, Ju-Yong

    2011-07-01

    The distribution of tritium in water vapour and precipitation with discharge of tritiated water vapour and meteorological factors was studied around the Wolsung nuclear power plant (NPP) site during the period 2004-2008. The tritium concentrations in atmospheric water vapour and precipitation had a temporal variation with relatively high values in the early summer. Spatial distribution of tritium concentrations was affected by various factors such as distance from the NPP site, wind direction, tritium discharge into the atmosphere and atmospheric dispersion factor. The annual mean concentrations of atmospheric HTO and precipitation were correlated with the amount of gaseous tritium released from the Wolsung NPP. The tritium concentrations in precipitation decrease exponentially with an increase of the distance from the Wolsung NPP site.

  17. Reliability of emergency ac power systems at nuclear power plants

    International Nuclear Information System (INIS)

    Battle, R.E.; Campbell, D.J.

    1983-07-01

    Reliability of emergency onsite ac power systems at nuclear power plants has been questioned within the Nuclear Regulatory Commission (NRC) because of the number of diesel generator failures reported by nuclear plant licensees and the reactor core damage that could result from diesel failure during an emergency. This report contains the results of a reliability analysis of the onsite ac power system, and it uses the results of a separate analysis of offsite power systems to calculate the expected frequency of station blackout. Included is a design and operating experience review. Eighteen plants representative of typical onsite ac power systems and ten generic designs were selected to be modeled by fault trees. Operating experience data were collected from the NRC files and from nuclear plant licensee responses to a questionnaire sent out for this project

  18. Nuclear power plant operator licensing

    International Nuclear Information System (INIS)

    1997-01-01

    The guide applies to the nuclear power plant operator licensing procedure referred to the section 128 of the Finnish Nuclear Energy Degree. The licensing procedure applies to shift supervisors and those operators of the shift teams of nuclear power plant units who manipulate the controls of nuclear power plants systems in the main control room. The qualification requirements presented in the guide also apply to nuclear safety engineers who work in the main control room and provide support to the shift supervisors, operation engineers who are the immediate superiors of shift supervisors, heads of the operational planning units and simulator instructors. The operator licensing procedure for other nuclear facilities are decided case by case. The requirements for the basic education, work experience and the initial, refresher and complementary training of nuclear power plant operating personnel are presented in the YVL guide 1.7. (2 refs.)

  19. Nuclear Power Plants in the World

    International Nuclear Information System (INIS)

    2003-01-01

    The Japan Atomic Industrial Forum (JAIF) used every year to summarize a trend survey on the private nuclear power plants in the world in a shape of the 'Nuclear power plants in the world'. In this report, some data at the end of 2002 was made up on bases of answers on questionnaires from 65 electric power companies and other nuclear organizations in 28 countries and regions around the world by JAIF. This report is comprised of 19 items, and contains generating capacity of the plants; current status of Japan; trends of generating capacity of operating the plants, the plant orders and generating capacity of the plants; world nuclear capacity by reactor type; status of MOX use in the world; location of the plants; the plants in the world; directory of the plants; nuclear fuel cycle facilities; and so forth. (J.P.N.)

  20. Atmospheric discharge and dispersion of radionuclides during the Fukushima Dai-ichi Nuclear Power Plant accident. Part I: Source term estimation and local-scale atmospheric dispersion in early phase of the accident

    International Nuclear Information System (INIS)

    Katata, Genki; Ota, Masakazu; Terada, Hiroaki; Chino, Masamichi; Nagai, Haruyasu

    2012-01-01

    The atmospheric release of 131 I and 137 Cs in the early phase of the Fukushima Dai-ichi Nuclear Power Plant (FNPP1) accident from March 12 to 14, 2011 was estimated by combining environmental data with atmospheric dispersion simulations under the assumption of a unit release rate (1 Bq h −1 ). For the simulation, WSPEEDI-II computer-based nuclear emergency response system was used. Major releases of 131 I (>10 15 Bq h −1 ) were estimated when air dose rates increased in FNPP1 during the afternoon on March 12 after the hydrogen explosion of Unit 1 and late at night on March 14. The high-concentration plumes discharged during these periods flowed to the northwest and south–southwest directions of FNPP1, respectively. These plumes caused a large amount of dry deposition on the ground surface along their routes. Overall, the spatial pattern of 137 Cs and the increases in the air dose rates observed at the monitoring posts around FNPP1 were reproduced by WSPEEDI-II using estimated release rates. The simulation indicated that air dose rates significantly increased in the south–southwest region of FNPP1 by dry deposition of the high-concentration plume discharged from the night of March 14 to the morning of March 15. - Highlights: ► Source term during the Fukushima Dai-ichi Nuclear Power Plant accident was estimated. ► Atmospheric dispersion simulation was carried out for estimation. ► Major releases were estimated in the afternoon on March 12 and the night on March 14. ► Air dose rate increased due to dry deposition during the night of March 14.

  1. Royal Decree-Law 12/1982 of 27 August regulating State intervention in the Lemoniz nuclear power plant

    International Nuclear Information System (INIS)

    1982-01-01

    This Royal Decree-Law sets out the conditions of intervention by the State in the achievement of the Lemoniz nuclear power plant with a view to accelerating the work. It sets up an Intervention Council responsible for directing the work which is empowered to take the necessary measures for discharging its duties. (NEA) [fr

  2. White syndrome on massive corals: A case study in Paiton power plant, East Java

    Science.gov (United States)

    Muzaki, Farid Kamal; Saptarini, Dian; Riznawati, Aida Efrini

    2017-06-01

    As a stenothermal organism, coral easily affected by high-temperature cooling water discharged by a power plant into surrounding waters; which may lead to a rapid spread and transmission of coral disease, including White Syndrome. This study aimed to measure the prevalence of WS on massive corals in Paiton Power Plant waters. Research was conductedduring May 2015 at three observation stations; west and east side of water discharge canal (DB and DT) and water intake canal (WI). Observed parameters including ambient environmental variables (sea surface and bottom temperature, salinity, dissolved oxygen/DO, pH, and visibility); the cover of life corals (percent and genera composition) and prevalence of coral disease at 5 m depth. One-way ANOVA (analysis of variance, p=0.05) was performed to test the difference of coral disease prevalence from different observation stations. As the results, Coral coverage percentage in WI (85.75%), DB (60.75%), and DT (40.8%). Prevalence of WS in DB was highest (40.49±2.12% in DB, 13.53±11.5% in DT and 6.44±3.6 %, respectively). It can be assumed that prevalence of White Syndrome in those locations may be correlated to temperature which highest average temperature occurred in DB stations.

  3. Risks in the operation of hydroelectric power plants and nuclear power in Brazil

    International Nuclear Information System (INIS)

    Goldemberg, J.

    1986-01-01

    A comparison between the utilization of electrical energy generated by hydroelectric power plant and nuclear power plant is made. The risks from nuclear installations and the environmental effects of hydroelectric power plants and nuclear power plants are presented. (E.G.) [pt

  4. Guidance for emergency planning in nuclear power plants

    International Nuclear Information System (INIS)

    Magnusson, Tommy; Ekdahl, Maria

    2008-06-01

    Ringhals has been a model for this study, but the purpose has been to make the report applicable at all nuclear power plants in Sweden. The work has been done in close co-operation with the Swedish nuclear power plants and Rescue Services in the nuclear power municipalities Oesthammar, Oskarshamn, and Varberg. The internal fire brigade at the nuclear power plants has also been involved. A document will also be published as a further guidance at efforts of the type fires, which are mentioned in the enclosed document. After a fire in a switchgear room in 2005 the need of making the existing effort planning more effective at nuclear power plants was observed. The idea with the planning is to plan the effort in order to give the operational and emergency staff a good and actual support to come to a decision and to start the mission without delay. The risk information is showed by planning layouts, symbols and drawings as basis, give risk information and effort information. The effort information shows outer arrangements, manual action points, fire installations, passive fire safety etc. The risk information is shown by risk symbols. Their purpose is to give a fast overview of the existing risks. Reactor safety effects is the ruling influence if an effort has to be done in order to secure safety for a third person. In order to make an effort in an area personal risks for rescue staff, such as electricity risks, radiological risks, chemicals and gas bottles with compressed gases, has to be eliminated. For complicated missions detailed instructions are needed in order to handle specific risks. In a group discussion different people with pertinent knowledge has to value which problematic efforts need detailed instruction. Missions that have to be analyzed in a work group as above are: fire may affect the reactor safety, fire that may threaten the structural integrity, chemical discharge with big consequence on environment/third person and handling of gas system (compressed

  5. Nuclear power plant operating experience, 1976

    International Nuclear Information System (INIS)

    1977-11-01

    This report is the third in a series of reports issued annually that summarize the operating experience of U.S. nuclear power plants in commercial operation. Power generation statistics, plant outages, reportable occurrences, fuel element performance, occupational radiation exposure and radioactive effluents for each plant are presented. Summary highlights of these areas are discussed. The report includes 1976 data from 55 plants--23 boiling water reactor plants and 32 pressurized water reactor plants

  6. The operation of nuclear power plants

    International Nuclear Information System (INIS)

    Brosche, D.

    1992-01-01

    The duties to be performed in managing the operation of a nuclear power plant are highly diverse, as will be explained in this contribution by the examples of the Grafenrheinfeld Nuclear Power Station. The excellent safety record and the high availabilities of German nuclear power plants demonstrate that their operators have adopted the right approaches. Systematic evaluation of the operating experience accumulated inhouse and in other plants is of great significance in removing weak spots and improving operation. The manifold and complex activities in the structure of organization and of activities in a nuclear power plant require a high degree of division of labor. (orig.) [de

  7. Treatment of radioactive contaminated water in nuclear power plants

    International Nuclear Information System (INIS)

    1978-12-01

    This rule is to be applied to the design, construction, and operation of facilities for treatment of water contaminated with radioactive material in stationary nuclear power plants with LWRs and HTRs. According to the requirements of the rule these facilities are to be designed, constructed, and operated in such a way that a) uncontrolled discharge of water contaminated with radioactive material is avoided, b) the activity discharged with water is as low as possible, c) water contaminated with radioactive material will not reach the ground, d) the radiation exposure as a consequence of direct radiation, contamination, and inhalation of the persons occupied in the facilities is as low as possible and as a maximum corresponds to the values laid down in the radiation protection regulation or to the values of the operating license. This rule is not to be applied to facilities for coolant and storage pit clean-up as well as facilities for the treatment of concentrates produced during the contamination of the water. (orig./HP) [de

  8. State waste discharge permit application: 200 Area Treated Effluent Disposal Facility (Project W-049H)

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    As part of the original Hanford Federal Facility Agreement and Concent Order negotiations, US DOE, US EPA and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground to the Hanford Site are subject to permitting in the State Waste Discharge Permit Program (SWDP). This document constitutes the SWDP Application for the 200 Area TEDF stream which includes the following streams discharged into the area: Plutonium Finishing Plant waste water; 222-S laboratory Complex waste water; T Plant waste water; 284-W Power Plant waste water; PUREX chemical Sewer; B Plant chemical sewer, process condensate, steam condensate; 242-A-81 Water Services waste water.

  9. State waste discharge permit application: 200 Area Treated Effluent Disposal Facility (Project W-049H)

    International Nuclear Information System (INIS)

    1994-08-01

    As part of the original Hanford Federal Facility Agreement and Concent Order negotiations, US DOE, US EPA and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground to the Hanford Site are subject to permitting in the State Waste Discharge Permit Program (SWDP). This document constitutes the SWDP Application for the 200 Area TEDF stream which includes the following streams discharged into the area: Plutonium Finishing Plant waste water; 222-S laboratory Complex waste water; T Plant waste water; 284-W Power Plant waste water; PUREX chemical Sewer; B Plant chemical sewer, process condensate, steam condensate; 242-A-81 Water Services waste water

  10. Direct FuelCell/Turbine Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Hossein Ghezel-Ayagh

    2008-09-30

    This report summarizes the progress made in development of Direct FuelCell/Turbine (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T system employs an indirectly heated Turbine Generator to supplement fuel cell generated power. The concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, minimal emissions, reduced carbon dioxide release to the environment, simplicity in design, direct reforming internal to the fuel cell, and potential cost competitiveness with existing combined cycle power plants. Proof-of-concept tests using a sub-MW-class DFC/T power plant at FuelCell Energy's (FCE) Danbury facility were conducted to validate the feasibility of the concept and to measure its potential for electric power production. A 400 kW-class power plant test facility was designed and retrofitted to conduct the tests. The initial series of tests involved integration of a full-size (250 kW) Direct FuelCell stack with a 30 kW Capstone microturbine. The operational aspects of the hybrid system in relation to the integration of the microturbine with the fuel cell, process flow and thermal balances, and control strategies for power cycling of the system, were investigated. A subsequent series of tests included operation of the sub-MW Direct FuelCell/Turbine power plant with a Capstone C60 microturbine. The C60 microturbine extended the range of operation of the hybrid power plant to higher current densities (higher power) than achieved in initial tests using the 30kW microturbine. The proof-of-concept test results confirmed the stability and controllability of operating a fullsize (250 kW) fuel cell stack in combination with a microturbine. Thermal management of the system was confirmed and power plant operation, using the microturbine as the only source of fresh air supply

  11. Pulsed discharges produced by high-power surface waves

    Science.gov (United States)

    Böhle, A.; Ivanov, O.; Kolisko, A.; Kortshagen, U.; Schlüter, H.; Vikharev, A.

    1996-02-01

    The mechanisms of the ionization front advance in surface-wave-produced discharges are investigated using two experimental set-ups. The high-power surface waves are excited in a 3 cm wavelength band by a surfaguide and a novel type of launcher (an E-plane junction). The ionization front velocity of the surface wave is measured for a wide range of gas pressures, incident microwave power and initial pre-ionization. The experimental results are compared with theoretical ones based on three different models. The comparison between theory and experiment allows one to suggest a new interpretation of the ionization front's advance. The ionization front velocity is determined by a breakdown wave or an ionization wave in the electric field of a high-power surface wave in the zone near the ionization front.

  12. Power plant asset market evaluations: Forecasting the costs of power production

    Energy Technology Data Exchange (ETDEWEB)

    Lefton, S A; Grunsrud, G P [Aptech Engineering Services, Inc., Sunnyvale, CA (United States)

    1999-12-31

    This presentation discusses the process of evaluating and valuing power plants for sale. It describes a method to forecast the future costs at a power plant using a portion of the past fixed costs, variable energy costs, and most importantly the variable cycling-related wear-and-tear costs. The presentation then discusses how to best determine market share, expected revenues, and then to forecast plant future costs based on future expected unit cycling operations. The presentation concludes with a section on recommendations to power plant buyers or sellers on how to manage the power plant asset and how to increase its market value. (orig.) 4 refs.

  13. Power plant asset market evaluations: Forecasting the costs of power production

    Energy Technology Data Exchange (ETDEWEB)

    Lefton, S.A.; Grunsrud, G.P. [Aptech Engineering Services, Inc., Sunnyvale, CA (United States)

    1998-12-31

    This presentation discusses the process of evaluating and valuing power plants for sale. It describes a method to forecast the future costs at a power plant using a portion of the past fixed costs, variable energy costs, and most importantly the variable cycling-related wear-and-tear costs. The presentation then discusses how to best determine market share, expected revenues, and then to forecast plant future costs based on future expected unit cycling operations. The presentation concludes with a section on recommendations to power plant buyers or sellers on how to manage the power plant asset and how to increase its market value. (orig.) 4 refs.

  14. Power plant asset market evaluations: Forecasting the costs of power production

    International Nuclear Information System (INIS)

    Lefton, S.A.; Grunsrud, G.P.

    1998-01-01

    This presentation discusses the process of evaluating and valuing power plants for sale. It describes a method to forecast the future costs at a power plant using a portion of the past fixed costs, variable energy costs, and most importantly the variable cycling-related wear-and-tear costs. The presentation then discusses how to best determine market share, expected revenues, and then to forecast plant future costs based on future expected unit cycling operations. The presentation concludes with a section on recommendations to power plant buyers or sellers on how to manage the power plant asset and how to increase its market value. (orig.) 4 refs

  15. Damping of Low Frequency Power System Oscillations with Wind Power Plants

    DEFF Research Database (Denmark)

    Adamczyk, Andrzej Grzegorz

    of wind power plants on power system low frequency oscillations and identify methods and limitations for potential contribution to the damping of such oscillations. Consequently, the first part of the studies focuses on how the increased penetration of wind power into power systems affects their natural...... oscillatory performance. To do so, at first a generic test grid displaying a complex inter-area oscillation pattern is introduced. After the evaluation of the test grid oscillatory profile for various wind power penetration scenarios, it is concluded that full-converter based wind power plant dynamics do......-synchronous power source. The main body of the work is devoted to the damping control design for wind power plants with focus on the impact of such control on the plant operation. It can be expected that the referred impact is directly proportional to the control effort, which for power processing devices should...

  16. Thermodynamic optimization of power plants

    NARCIS (Netherlands)

    Haseli, Y.

    2011-01-01

    Thermodynamic Optimization of Power Plants aims to establish and illustrate comparative multi-criteria optimization of various models and configurations of power plants. It intends to show what optimization objectives one may define on the basis of the thermodynamic laws, and how they can be applied

  17. Nuclear power and heating plants in the electric power system. Part I

    International Nuclear Information System (INIS)

    Kalincik, L.

    1975-01-01

    Procedures used and results obtained in the following works are described: Incorporation of the nuclear power plants in the power system in the long term perspective; physical limitations on the WWER 440 reactor power changes during fuel campaigns; evaluation of the consumption and start-up characteristics of WWER type nuclear power plants (2x440 MWe); evaluation of refuelling campaigns distribution of nuclear power plant units with regard to comprehensive control properties of nuclear power plants; the possibilities are investigated of the utilization of the WWER type reactor for heat supply in Czechoslovakia. (author)

  18. Reliability of the emergency AC power system at nuclear power plants

    International Nuclear Information System (INIS)

    Battle, R.E.; Campbell, D.J.; Baranowsky, P.W.

    1983-01-01

    The reliability of the emergency ac power systems typical of most nuclear power plants was estimated, and the cost and increase in reliability for several improvements were estimated. Fault trees were constructed based on a detailed design review of the emergency ac power systems of 18 nuclear plants. The failure probabilities used in the fault trees were calculated from extensive historical data collected from Licensee Event Reports (LERs) and from operating experience information obtained from nuclear plant licensees. No one or two improvements can be made at all plants to significantly increase the industry-average emergency ac power system reliability; rather the most beneficial improvements are varied and plant specific. Improvements in reliability and the associated costs are estimated using plant specific designs and failure probabilities

  19. Design and testing of 45 kV, 50 kHz pulse power supply for dielectric barrier discharges

    Science.gov (United States)

    Sharma, Surender Kumar; Shyam, Anurag

    2016-10-01

    The design, construction, and testing of high frequency, high voltage pulse power supply are reported. The purpose of the power supply is to generate dielectric barrier discharges for industrial applications. The power supply is compact and has the advantage of low cost, over current protection, and convenient control for voltage and frequency selection. The power supply can generate high voltage pulses of up to 45 kV at the repetitive frequency range of 1 kHz-50 kHz with 1.2 kW input power. The output current of the power supply is limited to 500 mA. The pulse rise time and fall time are less than 2 μs and the pulse width is 2 μs. The power supply is short circuit proof and can withstand variable plasma load conditions. The power supply mainly consists of a half bridge series resonant converter to charge an intermediate capacitor, which discharges through a step-up transformer at high frequency to generate high voltage pulses. Semiconductor switches and amorphous cores are used for power modulation at higher frequencies. The power supply is tested with quartz tube dielectric barrier discharge load and worked stably. The design details and the performance of the power supply on no load and dielectric barrier discharge load are presented.

  20. Romanian achievement in hydro-power plants

    International Nuclear Information System (INIS)

    Cardu, M.; Bara, T.

    1998-01-01

    This paper briefly deals with the achievements relating to Hydro-electric Power Plants within the process of development of the National Power System in Romania. Also presented is the Romanian industry contribution to hydro-electrical power plant equipment manufacturing. (author)

  1. Power Oscillation Damping from VSC-HVDC Connected Offshore Wind Power Plants

    DEFF Research Database (Denmark)

    Zeni, Lorenzo; Eriksson, Robert; Goumalatsos, Spyridon

    2016-01-01

    The implementation of power oscillation damping service on offshore wind power plants connected to onshore grids by voltage-source-converter-based high voltage direct current transmission is discussed. Novel design guidelines for damping controllers on voltage-source converters and wind power plant...... regarding real wind power plants are discussed: 1) robustness against control/communication delays; 2) limitations due to mechanical resonances in wind turbine generators; 3) actual capability of wind power plants to provide damping without curtailing production; and 4) power-ramp rate limiters....... controllers are derived, using phasor diagrams and a test network model and are then verified on a generic power system model. The effect of voltage regulators is analyzed, which is important for selecting the most robust damping strategy. Furthermore, other often disregarded practical implementation aspects...

  2. Countermeasure to plant life management of the nuclear power plants out of Japan

    International Nuclear Information System (INIS)

    1999-01-01

    Some investigations on countermeasure to plant life management of the nuclear power plants were begun since beginning of 1990s under cooperation with Ministry of International Trade and Industry and all electric power companies under consideration of recent state on abroad and at concept of preventive conservation implementation against the plant life management. As a result, the Tokyo Electric Power Company, the Kansai Electric Power Company and the Japan Atomic Power Company settled each program on countermeasure to plant life management of the Fukushima-1 Power Plant, the Mihama-1 Power Plant and the Tsuruga-1 Power Plant, respectively, which were reported to the Atomic Energy Safety Commission to issue on February, 1999, after deliberation in the Adviser Group of Ministry of International Trade and Industry. Such investigations on countermeasure to the plant life management are also conducted out of Japan in parallel to those in Japan, which contain programs reflecting states of operation and maintenance of nuclear power plants and atmosphere around atomic energy in each country. Here were described on some present states of the countermeasures to plant life management in U.S.A., France, Germany, Sweden, England and so forth. (G.K.)

  3. Partial discharge testing of in-situ power cable accessories

    Energy Technology Data Exchange (ETDEWEB)

    Orban, H. E.

    2002-07-01

    An overview of commercially available diagnostic methods for in-situ power cable accessories is given and relevant field experiences with these diagnostics are described. The discussion includes both PILC and polymeric insulated cables. Two major types of degradation are most frequently involved in cable systems. One is an overall condition caused by chemical aging and /or water treeing. Diagnostics for this type of aging include dissipation factor (loss angle), harmonic analysis, return voltage, isothermal relaxation current, dielectric response, or dc leakage current. The second type of degradation is discrete or incremental; condition assessment utilizes dissipation factor measurements or partial discharge (PD) level measurements. The focus in this paper is on PD diagnostics, especially off-line methods such as the 60 Hz test, the combined AC and VLF diagnostic, and the oscillating wave test system test. Among on-line diagnostics, ultrasonic detection of partial discharge and measurement of partial discharge by installing direct, capacitive or inductive couplers near cable accessories, are described. Overall, partial discharge detection and location in cable accessories is considered inadequate, since interpretation of results is difficult due to the number of variables involved. 28 refs., 1 tab.

  4. Emergency power systems at nuclear power plants

    International Nuclear Information System (INIS)

    1982-01-01

    This Guide applies to nuclear power plants for which the total power supply comprises normal power supply (which is electric) and emergency power supply (which may be electric or a combination of electric and non-electric). In its present form the Guide provides general guidance for all types of emergency power systems (EPS) - electric and non-electric, and specific guidance (see Appendix A) on the design principles and the features of the emergency electric power system (EEPS). Future editions will include a second appendix giving specific guidance on non-electric power systems. Section 3 of this Safety Guide covers information on considerations that should be taken into account relative to the electric grid, the transmission lines, the on-site electrical supply system, and other alternative power sources, in order to provide high overall reliability of the power supply to the EPS. Since the nuclear power plant operator does not usually control off-site facilities, the discussion of methods of improving off-site reliability does not include requirements for facilities not under the operator's control. Sections 4 to 11 of this Guide provide information, recommendations and requirements that would apply to any emergency power system, be it electric or non-electric

  5. Calculation of risk-based detection limits for radionuclides in the liquid effluents from Korean nuclear power plants

    International Nuclear Information System (INIS)

    Cheong, Jae Hak

    2017-01-01

    In order to review if present detection limits of radionuclides in liquid effluent from nuclear power plants are effective enough to warrant compliance with regulatory discharge limits, a risk-based approach is developed to derive a new detection limit for each radionuclide based on radiological criteria. Equations and adjustment factors are also proposed to discriminate the validity of the detection limits for multiple radionuclides in the liquid effluent with or without consideration of the nuclide composition. From case studies to three nuclear power plants in Korea with actual operation data from 2006 to 2015, the present detection limits have turned out to be effective for Hanul Unit 1 but may not be sensitive enough for Kori Unit 1 (8 out of 14 radionuclides) and Wolsong Unit 1 (9 out of 42 radionuclides). However, it is shown that the present detection limits for the latter two nuclear power plants can be justified, if credit is given to the radionuclide composition. Otherwise, consideration should be given to adjustment of the present detection limits. The risk-based approach of this study can be used to determine the validity of established detection limits of a specific nuclear power plant. (author)

  6. Nuclear power plants in the world

    International Nuclear Information System (INIS)

    2008-01-01

    The Japan Atomic Industrial Forum, Inc. (JAIF) used every year to summarize a trend survey on the private nuclear power plants in the world in a shape of the 'Nuclear power plants in the world'. In this report, some data at the end of 2007/2008 was made up on bases of answers on questionnaires from electric power companies and other nuclear organizations around the world by JAIF. This report is comprised of 18 items, and contains generating capacity of the plants; effect of the Niigata-ken chuetsu-oki earthquake; current status of Japan; trends of generating capacity of operating the plants, the plant orders and generating capacity of the plants; world nuclear capacity by reactor type; status of MOX use in the world; location of the plants; the plants in the world; directory of the plants; nuclear fuel cycle facilities, and so forth. (J.P.N.)

  7. Nuclear Power Plants in the World

    International Nuclear Information System (INIS)

    2004-01-01

    The Japan Atomic Industrial Forum, Inc. (JAIF) used every year to summarize a trend survey on the private nuclear power plants in the world in a shape of the 'Nuclear power plants in the world'. In this report, some data at the end of 2003 was made up on bases of answers on questionnaires from 81 electric power companies and other nuclear organizations in 33 countries and regions around the world by JAIF. This report is comprised of 19 items, and contains generating capacity of the plants; current status of Japan; trends of generating capacity of operating the plants, the plant orders and generating capacity of the plants; world nuclear capacity by reactor type; status of MOX use in the world; location of the plants; the plants in the world; directory of the plants; nuclear fuel cycle facilities; and so forth. (J.P.N.)

  8. Possible Power Estimation of Down-Regulated Offshore Wind Power Plants

    DEFF Research Database (Denmark)

    Gögmen, Tuhfe

    The penetration of offshore wind power is continuously increasing in the Northern European grids. To assure safety in the operation of the power system, wind power plants are required to provide ancillary services, including reserve power attained through down-regulating the wind farm from its...... power plant. The developed procedure, the PossPOW algorithm, can also be used in the wind farm control as it yields a real-time wind farm power curve. The modern wind turbines have a possible power signal at the turbine level and the current state of the art is to aggregate those signals to achieve...... the wind farm scale production capacity. However the summation of these individual signals is simply an over-estimation for the wind power plant, due to reduced wake losses during curtailment. The determination of the possible power with the PossPOW algorithm works as follows: firstly the second...

  9. Elecnuc. Nuclear power plants worldwide

    International Nuclear Information System (INIS)

    1998-01-01

    This small folder presents a digest of some useful information concerning the nuclear power plants worldwide and the situation of nuclear industry at the end of 1997: power production of nuclear origin, distribution of reactor types, number of installed units, evolution and prediction of reactor orders, connections to the grid and decommissioning, worldwide development of nuclear power, evolution of power production of nuclear origin, the installed power per reactor type, market shares and exports of the main nuclear engineering companies, power plants constructions and orders situation, evolution of reactors performances during the last 10 years, know-how and development of nuclear safety, the remarkable facts of 1997, the future of nuclear power and the energy policy trends. (J.S.)

  10. 4. Nuclear power plant component failures

    International Nuclear Information System (INIS)

    1990-01-01

    Nuclear power plant component failures are dealt with in relation to reliability in nuclear power engineering. The topics treated include classification of failures, analysis of their causes and impacts, nuclear power plant failure data acquisition and processing, interdependent failures, and human factor reliability in nuclear power engineering. (P.A.). 8 figs., 7 tabs., 23 refs

  11. Nuclear plant refurbishment calls for patience. [Construction of radioactive effluent plant

    Energy Technology Data Exchange (ETDEWEB)

    Henly, Anna

    1989-08-01

    All nuclear power plants produce a small quantity of liquid effluent from wash hand basins, showers and surface drains on the site. The effluent is termed low-level radioactive waste and under the 'Radioactive Substances Act' can be discharged into estuaries or the sea. Before a controlled discharge can be made the effluent has to be chemically treated and have any radioactive particulate matter removed. The replacing of the radioactive effluent plant at the Berkeley nuclear power station in the United Kingdom is described, with particular reference to the vigorous safety standards and quality assurance programme operated by the Central Electricity Generating Board. (author).

  12. Outline of construction planning on No. 2 Reactor of the Shika Nuclear Power Plant

    International Nuclear Information System (INIS)

    Nakagawa, Tetsuro; Kadoki, Shuichi; Kubo, Tetsuji

    1999-01-01

    The Hokuriku Electric Co., Ltd. carries out the expansion of the Shika Nuclear Power Plant No.2 (ABWR) to start its in March 2006. It is situated in north neighboring side of No. 1 reactor under operation at present, and its main buildings are planned to position a reactor building at mountain side and a turbine building at sea side as well as those in the No. 1 reactor. And, cooling water for steam condenser was taken in from an intake opening built at north side of the lifting space situated at the front of the power plant, and discharged into seawater from a flashing opening positioned about 600 m offing. Here were described on outline of main civil engineering such as base excavation engineering, concrete caisson production, oceanic establishment engineering, and facility for steam condenser, and characteristics of the engineering. (G.K.)

  13. Man and nuclear power plants

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    According to the Inst. fuer Unfallforschung/TUeV Rheinland, Koeln, the interpretation of empirical data gained from the operation of nuclear power plants at home and abroad during the period 1967-1975 has shown that about 38% of all reactor accidents were caused by human failures. These occured either during the design and construction, the commissioning, the reconditioning or the operation of the plants. This very fact stresses human responsibility for the safety of nuclear power plants, in spite of those plants being automated to a high degree and devices. (orig.) [de

  14. Reactor power control device in BWR power plant

    International Nuclear Information System (INIS)

    Kurosawa, Tsuneo.

    1997-01-01

    The present invention provides a device for controlling reactor power based on a start-up/shut down program in a BWR type reactor, as well as for detecting deviation, if occurs, of the power from the start-up/shut down program, to control a recycling flow rate control system or control rod drive mechanisms. Namely, a power instruction section successively executes the start-up/shut down program and controls the coolant recycling system and the control rod driving mechanisms to control the power. A current state monitoring and calculation section receives a process amount, calculates parameters showing the plant state, compares/monitors them with predetermined values, detecting the deviation, if occurs, of the plant state from the start-up/shut down program, and prevents output of a power increase control signal which leads to power increase. A forecasting and monitoring/calculation section forecasts and calculates the plant state when not yet executed steps of the start-up/shut down program are performed, stops the execution of the start-up/shut down program in the next step in a case of forecasting that the results of the calculation will deviate from the start-up/shut down program. (I.S.)

  15. International power plant business

    Energy Technology Data Exchange (ETDEWEB)

    Grohe, R.

    1986-03-03

    At the Brown Boveri press seminar 'Energy' in Baden-Baden Rainer Grohe, member of the Brown Boveri board, Mannheim, gave a survey of the activities on the international power plant market in recent years. He showed the vacuities which must be taken into account in this sector today. The drastic escalation of demands on power plant suppliers has lead not to a reduction of protagonists but to an increase. (orig.).

  16. Ecological impacts and damage - comparison of selected components for nuclear and conventional power plants (example of Mochovce nuclear power plant)

    International Nuclear Information System (INIS)

    Bucek, M.

    1984-01-01

    A comparison is given of ecological damage for the nuclear power plant in Mochovce and a conventional power plant with the same power. Ecological effects and damage are divided into three groups: comparable damage, ecological damage caused only by conventional power plants and ecological damage caused only by nuclear power plants. In the first group the factors compared are land requisition, consumption of utility water and air consumption. In the second group are enumerated losses of crops (cereals, sugar beet, potatoes, oleaginous plants) and losses caused by increased disease rate owing to polluted environment by conventional power plants. In the third group health hazards are assessed linked with ionizing radiation. Also considered are vent stack escapes. (E.S.)

  17. Space nuclear reactor power plants

    International Nuclear Information System (INIS)

    Buden, D.; Ranken, W.A.; Koenig, D.R.

    1980-01-01

    Requirements for electrical and propulsion power for space are expected to increase dramatically in the 1980s. Nuclear power is probably the only source for some deep space missions and a major competitor for many orbital missions, especially those at geosynchronous orbit. Because of the potential requirements, a technology program on space nuclear power plant components has been initiated by the Department of Energy. The missions that are foreseen, the current power plant concept, the technology program plan, and early key results are described

  18. Methodology for Scaling Fusion Power Plant Availability

    International Nuclear Information System (INIS)

    Waganer, Lester M.

    2011-01-01

    Normally in the U.S. fusion power plant conceptual design studies, the development of the plant availability and the plant capital and operating costs makes the implicit assumption that the plant is a 10th of a kind fusion power plant. This is in keeping with the DOE guidelines published in the 1970s, the PNL report1, 'Fusion Reactor Design Studies - Standard Accounts for Cost Estimates. This assumption specifically defines the level of the industry and technology maturity and eliminates the need to define the necessary research and development efforts and costs to construct a one of a kind or the first of a kind power plant. It also assumes all the 'teething' problems have been solved and the plant can operate in the manner intended. The plant availability analysis assumes all maintenance actions have been refined and optimized by the operation of the prior nine or so plants. The actions are defined to be as quick and efficient as possible. This study will present a methodology to enable estimation of the availability of the one of a kind (one OAK) plant or first of a kind (1st OAK) plant. To clarify, one of the OAK facilities might be the pilot plant or the demo plant that is prototypical of the next generation power plant, but it is not a full-scale fusion power plant with all fully validated 'mature' subsystems. The first OAK facility is truly the first commercial plant of a common design that represents the next generation plant design. However, its subsystems, maintenance equipment and procedures will continue to be refined to achieve the goals for the 10th OAK power plant.

  19. Dispatchable Solar Power Plant Project

    Energy Technology Data Exchange (ETDEWEB)

    Price, Henry [Solar Dynamics LLC, Broomfield, CO (United States)

    2018-01-31

    As penetration of intermittent renewable power increases, grid operators must manage greater variability in the supply and demand on the grid. One result is that utilities are planning to build many new natural gas peaking power plants that provide added flexibility needed for grid management. This report discusses the development of a dispatchable solar power (DSP) plant that can be used in place of natural gas peakers. Specifically, a new molten-salt tower (MST) plant has been developed that is designed to allow much more flexible operation than typically considered in concentrating solar power plants. As a result, this plant can provide most of the capacity and ancillary benefits of a conventional natural gas peaker plant but without the carbon emissions. The DSP system presented was designed to meet the specific needs of the Arizona Public Service (APS) utility 2017 peaking capacity request for proposals (RFP). The goal of the effort was to design a MST peaker plant that had the operational capabilities required to meet the peaking requirements of the utility and be cost competitive with the natural gas alternative. The effort also addresses many perceived barriers facing the commercial deployment of MST technology in the US today. These include MST project development issues such as permitting, avian impacts, visual impacts of tower CSP projects, project schedule, and water consumption. The DSP plant design is based on considerable analyses using sophisticated solar system design tools and in-depth preliminary engineering design. The resulting DSP plant design uses a 250 MW steam power cycle, with solar field designed to fit on a square mile plot of land that has a design point thermal rating of 400 MWt. The DSP plant has an annual capacity factor of about 16% tailored to deliver greater than 90% capacity during the critical Arizona summer afternoon peak. The table below compares the All-In energy cost and capacity payment of conventional combustion turbines

  20. Atucha I nuclear power plant transients analysis

    International Nuclear Information System (INIS)

    Castano, J.; Schivo, M.

    1987-01-01

    A program for the transients simulation thermohydraulic calculation without loss of coolant (KWU-ENACE development) to evaluate Atucha I nuclear power plant behaviour is used. The program includes systems simulation and nuclear power plants control bonds with real parameters. The calculation results show a good agreement with the output 'protocol' of various transients of the nuclear power plant, keeping the error, in general, lesser than ± 10% from the variation of the nuclear power plant's state variables. (Author)

  1. Development of nuclear power plant Risk Monitor

    International Nuclear Information System (INIS)

    Yang Xiaoming; Sun Jinlong; Ma Chao; Wang Lin; Gu Xiaohui; Bao Zhenli; Qu Yong; Zheng Hao

    2014-01-01

    Risk Monitor is a tool to monitor the real-time risk of a nuclear power plant for risk management and comprehensive decision-making, which has been widely used all over the world. The nuclear power plant Risk Monitor applies the real-time risk model with low-complicacy that could reflect the plant's actual configuration, automatically reads the plant's configuration information from the engineering system through the developed interface, and efficiently analyzes the plant's risk Dy the intelligent parallel-computing method in order to provide the risk basement for the safety management of nuclear power plant. This paper generally introduces the background, architecture, functions and key technical features of a nuclear power plant Risk Monitor, and validates the risk result, which could well reflect the plant's risk information and has a significant practical value. (authors)

  2. Reliability of the emergency ac-power system at nuclear power plants

    International Nuclear Information System (INIS)

    Battle, R.E.; Campbell, D.J.; Baranowsky, P.W.

    1982-01-01

    The reliability of the emergency ac-power systems typical of several nuclear power plants was estimated, the costs of several possible improvements was estimated. Fault trees were constructed based on a detailed design review of the emergency ac-power systems of 18 nuclear plants. The failure probabilities used in the fault trees were calculated from extensive historical data collected from Licensee Event Reports (LERs) and from operating experience information obtained from nuclear plant licensees. It was found that there are not one or two improvements that can be made at all plants to significantly increase the industry-average emergency ac-power-system reliability, but the improvements are varied and plant-specific. Estimates of the improvements in reliability and the associated cost are estimated using plant-specific designs and failure probabilities

  3. The application of plant information system on third Qinshan nuclear power plant

    International Nuclear Information System (INIS)

    Liu Wangtian

    2005-01-01

    Plant overall control has been applied in Qinshan Nuclear Power Plant, which enhances the security of plant operation, but it is not enough to improve the technical administration level. In order to integrate the overall information and to improve the technical administration level more. Third Qinshan Nuclear Power Plant applies the plant information system. This thesis introduces the application of plant information system in Third Qinshan Nuclear Power Plant and the effect to the plant after the system is carried into execution, in addition, it does more analysis and exceptions for application of plant information system in the future. (authors)

  4. The atlas of large photovoltaic power plants

    International Nuclear Information System (INIS)

    Ducuing, S.; Guillier, A.; Guichard, M.A.

    2015-01-01

    This document reports all the photovoltaic power plants whose installed power is over 1 MWc and that are operating in France or in project. 446 power plants have been reviewed and their cumulated power reaches 2822 MWc. For each plant the following information is listed: the name of the municipality, the operator, the power capacity, the manufacturer of the photovoltaic panels and the type of technology used, the type of installation (on the ground, on the roof, on the facade, as sun protection,...), the yearly power output (kWh), and the date of commissioning. This review shows that 86% of these plants are ground-based. (A.C.)

  5. Modelling of nuclear power plant decommissioning financing.

    Science.gov (United States)

    Bemš, J; Knápek, J; Králík, T; Hejhal, M; Kubančák, J; Vašíček, J

    2015-06-01

    Costs related to the decommissioning of nuclear power plants create a significant financial burden for nuclear power plant operators. This article discusses the various methodologies employed by selected European countries for financing of the liabilities related to the nuclear power plant decommissioning. The article also presents methodology of allocation of future decommissioning costs to the running costs of nuclear power plant in the form of fee imposed on each megawatt hour generated. The application of the methodology is presented in the form of a case study on a new nuclear power plant with installed capacity 1000 MW. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Implication of thermal discharges into the sea - A review

    Digital Repository Service at National Institute of Oceanography (India)

    Krishnakumar, V.; Sastry, J.S.; Swamy, G.N.

    The adverse effects of thermal discharges into coastal waters from power plants have been reviewed. The direct and indirect impacts of thermal pollution to marine biota have been discussed briefly. The tolerance limits documented elsewhere have been...

  7. Analysis of chemical factors affecting marine ecosystem around nuclear power plant

    International Nuclear Information System (INIS)

    Chun, Kwan Sik; Choi, Yoon Dong; Chun, Ki Jeong; Kim, Jin Kyu; Jung, Kyeong Chai; Lee, Yeong Keun; Park, Hyo Kook

    1994-06-01

    The ecological data of the coastal area of Youngkwang nuclear power plant from 1987 to 1993 were comprehensively analyzed, and various physical and chemical properties of sea water and sediments were measured. Major factors affecting phytoplankton standing crops were suspended substances, nitrate, and silicate. The contents of iron, chromium, copper, and sulfur in sediments sampled from the discharge channel were slightly higher than those in the other areas. In order to qantify the chemical impacts on marine ecosystem, it is desirable that a systematic survey be made through the whole year cycle to assure the consistency and confidence of the related data. (Author)

  8. Heat supply from nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Stach, V [Ustav Jaderneho Vyzkumu CSKAE, Rez (Czechoslovakia)

    1978-05-01

    The current state of world power production and consumption is assessed. Prognoses made for the years 1980 to 2000 show that nuclear energy should replace the major part of fossil fuels not only in the production of power but also in the production of heat. In this respect high-temperature reactors are highly prospective. The question is discussed of the technical and economic parameters of dual-purpose heat and power plants. It is, however, necessary to solve problems arising from the safe siting of nuclear heat and power plants and their environmental impacts. The economic benefits of combined power and heat production by such nuclear plants is evident.

  9. Elecnuc. Nuclear power plants in the world. 1997

    International Nuclear Information System (INIS)

    Maubacq, F.; Tailland, C.

    1997-04-01

    This small booklet provides information about all type of nuclear power plants worldwide. It is based on the data taken from the CEA/DSE/SEE Elecnuc database. The content comprises: the 1996 highlights, the main characteristics of the different type of reactors in operation or under construction, the map of the French nuclear power plant sites, the worldwide status of nuclear power plants at the end of 1996, the nuclear power plants in operation, under construction or on order (by groups of reactor-types), the power capacity evolution of power plants in operation, the net and gross capacity of the power plants on the grid, the commercial operation and grid connection forecasts, the first achieved or expected power generation supplied by a nuclear reactor for each country and the power generation from nuclear reactors, the performance indicator of the PWR units in France, the trends of the power generation indicator worldwide, the nuclear power plants in operation, under construction, on order, planned, cancelled, decommissioned and exported worldwide, the schedule of steam generator replacements, and the MOX fuel plutonium recycling programme. (J.S.)

  10. Technical report on dc power supplies in nuclear power plants

    International Nuclear Information System (INIS)

    1977-06-01

    Emergency electrical power supplies, both a.c. and d.c. for nuclear power plants are important to safety. For this reason, the electric power systems for operating nuclear plants and those plants under licensing review have been required to provide a high degree of reliability. It is this high reliability that provides confidence that sufficient safety margin exists against loss of all d.c. power for extended periods of time to allow an orderly examination of safety issues, such as this. However, because of the importance of the a.c. and d.c. power systems, the staff has been expending effort to review the reliability of these systems and shall continue to do so in the future

  11. Radium-based estimates of cesium isotope transport and total direct ocean discharges from the Fukushima Nuclear Power Plant accident

    Energy Technology Data Exchange (ETDEWEB)

    Charette, M.A.; Breier, C.F.; Henderson, P.B.; Pike, S.M.; Buesseler, K.O. [Woods Hole Oceanographic Institution, Woods Hole, MA (United States). Dept. of Marine Chemistry and Geochemistry; Rypina, I.I.; Jayne, S.R. [Woods Hole Oceanographic Institution, Woods Hole, MA (United States). Dept. of Physical Oceanography

    2013-07-01

    Radium has four naturally occurring isotopes that have proven useful in constraining water mass source, age, and mixing rates in the coastal and open ocean. In this study, we used radium isotopes to determine the fate and flux of runoff-derived cesium from the Fukushima Dai-ichi Nuclear Power Plant (FNPP). During a June 2011 cruise, the highest cesium (Cs) concentrations were found along the eastern shelf of northern Japan, from Fukushima south, to the edge of the Kuroshio Current, and in an eddy ∝ 130 km from the FNPP site. Locations with the highest cesium also had some of the highest radium activities, suggesting much of the direct ocean discharges of Cs remained in the coastal zone 2-3 months after the accident. We used a short-lived Ra isotope ({sup 223}Ra, t{sub 1/2} = 11.4 d) to derive an average water mass age (T{sub r}) in the coastal zone of 32 days. To ground-truth the Ra age model, we conducted a direct, station-by-station comparison of water mass ages with a numerical oceanographic model and found them to be in excellent agreement (model avg. T{sub r} = 27 days). From these independent T{sub r} values and the inventory of Cs within the water column at the time of our cruise, we were able to calculate an offshore {sup 134}Cs flux of 3.9-4.6 x 10{sup 13} Bq d{sup -1}. Radium-228 (t{sub 1/2} = 5.75 yr) was used to derive a vertical eddy diffusivity (K{sub z}) of 0.7 m{sup 2} d{sup -1} (0.1 cm{sup 2} s{sup -1}); from this K{sub z} and {sup 134}Cs inventory, we estimated a {sup 134}Cs flux across the pycnocline of 1.8 x 10{sup 4} Bq d{sup -1} for the same time period. On average, our results show that horizontal mixing loss of Cs from the coastal zone was ∝ 10{sup 9} greater than vertical exchange below the surface mixed layer. Finally, a mixing/dilution model that utilized our Ra-based and oceanographic model water mass ages produced a direct ocean discharge of {sup 134}Cs from the FNPP of 11-16 PBq at the time of the peak release in early April 2011

  12. Net energy balance of tokamak fusion power plants

    International Nuclear Information System (INIS)

    Buende, R.

    1983-01-01

    The net energy balance for a tokamak fusion power plant of present day design is determined by using a PWR power plant as reference system, replacing the fission-specific components by fusion-specific components and adjusting the non-reactor-specific components to altered conditions. For determining the energy input to the fusion plant a method was developed that combines the advantages of the energetic input-output method with those of process chain analysis. A comparison with PWR, HTR, FBR, and coal-fired power plants is made. As a result the energy expenditures of the fusion power plant turn out to be lower than that of an LWR, HTR, or coal-fired power plant of equal net electric power output and nearly in the same range as FBR power plants. (orig.)

  13. Facilities for the treatment of radioactively contaminated water in nuclear power plants

    International Nuclear Information System (INIS)

    1978-01-01

    The regulation is to be applied to design, construction and operation of facilities for the treatment of contaminated water in stationary nuclear power plants with LWR and HTR. The facilities are to be designed, constructed and operated in such manner that (a) imcontrolled discharge of contaminated water is avoided (Paragraph 46 section 1, no. 1 Radiation Protection Regulation) (b) the activity discharged with water is as low as possible ( paragraph 46, section 2, no. 2 Radiation Protection Regulation) (c)contaminated water will not get into the ground, unless this is permitted by a license (paragraph 46 section 6 Radiation Protection Regulation) (d) the radiation exposure resulting from direct radiation, contamination and inhalation of the personnel working with the facility is as low as possible and, at the most, corresponds to the values fixed in the regulation (paragraph 28 section 1 Radiation Protection Regulation) or the values given in the discharge permit. The regulation is not to be applied to installations for reactor coolant or fuel pit clean-up. (orig./HP) [de

  14. Operation and maintenance of nuclear power plants

    International Nuclear Information System (INIS)

    Ackermann, G.

    1987-01-01

    This textbook gives a systematic introduction into the operational and maintenance activities in nuclear power plants with pressurized water reactors. Subjects: (1) Setup and operational behaviour of power reactors, (2) setup of nuclear power plants, (3) radiation protection and nuclear safety, (4) nuclear fuel, (5) constructional layout of nuclear power plants, (6) management, and (7) maintenance. 158 figs., 56 tabs

  15. Powerful highly efficient KrF lamps excited by surface and barrier discharges

    International Nuclear Information System (INIS)

    Borisov, V M; Vodchits, V A; El'tsov, A V; Khristoforov, O B

    1998-01-01

    An investigation was made of the characteristics of KrF lamps with different types of excitation by surface and barrier discharges in which the dielectric material was sapphire. The conditions were determined for the attainment of an extremely high yield of the KrF* fluorescence with the internal efficiency η in ∼30 % and 22% for pulsed surface and barrier discharges, respectively. A homogeneous surface discharge was maintained without gas circulation when the pulse repetition rate was 5 x 10 4 Hz. Quasicontinuous excitation of a surface discharge at near-atmospheric pressure made it possible to reach a KrF* fluorescence power density of about 80 W cm -3 , which was close to the limit set by the kinetics of the gaseous medium. Under prolonged excitation conditions the intensity of the UV output radiation was limited by the permissible heating of the gas to a temperature above which the operating life of the gaseous mixture containing fluorine fell steeply. This was the reason for the advantage of surface over barrier discharges: the former were characterised by a high thermal conductivity of a thin (∼0.2 mm) plasma layer on the surface of the cooled dielectric, which made it possible to construct powerful highly efficient KrF and ArF lamps emitting UV radiation of up to 1 W cm -2 intensity. (laser system components)

  16. Power plant conceptual studies in Europe

    International Nuclear Information System (INIS)

    Maisonnier, D.; Campbell, D.; Cook, I.; Pace, L. Di; Giancarli, L.; Hayward, J.; Puma, A. Li; Medrano, M.; Norajitra, P.; Roccella, M.; Sardain, P.; Tran, M.Q.; Ward, D.

    2007-01-01

    The European fusion programme is 'reactor oriented' and it is aimed at the successive demonstration of the scientific, the technological and the economic feasibility of fusion power. The European Power Plant Conceptual Study (PPCS) has been a study of conceptual designs of five commercial fusion power plants and the main emphasis was on system integration. It focused on five power plant models which are illustrative of a wider spectrum of possibilities. They are all based on the tokamak concept and they have approximately the same net electrical power output, 1500 MWe. These span a range from relatively near-term, based on limited technology and plasma physics extrapolations, to an advanced conception. The PPCS allows one to clarify the concept of DEMO, the device that will bridge the gap between ITER and the first-of-a-kind fusion power plant. An assessment of the PPCS models with limited extrapolations highlighted a number of issues that must be addressed to establish the DEMO physics and technological basis

  17. Chemistry management system for nuclear power plants

    International Nuclear Information System (INIS)

    Nagasawa, Katsumi; Maeda, Katsuji

    1998-01-01

    Recently, the chemistry management in the nuclear power plants has been changing from the problem solution to the predictive diagnosis and maintenance. It is important to maintain the integrity of plant operation by an adequate chemistry control. For these reasons, many plant operation data and chemistry analysis data should be collected and treated effectively to evaluate chemistry condition of the nuclear power plants. When some indications of chemistry anomalies occur, quick and effective root cause evaluation and countermeasures should be required. The chemistry management system has been developed as to provide sophisticate chemistry management in the nuclear power plants. This paper introduces the concept and functions of the chemistry management system for the nuclear power plants. (author)

  18. Nuclear power plant safety

    International Nuclear Information System (INIS)

    Otway, H.J.

    1974-01-01

    Action at the international level will assume greater importance as the number of nuclear power plants increases, especially in the more densely populated parts of the world. Predictions of growth made prior to October 1973 [9] indicated that, by 1980, 14% of the electricity would be supplied by nuclear plants and by the year 2000 this figure would be about 50%. This will make the topic of international co-operation and standards of even greater importance. The IAEA has long been active in providing assistance to Member States in the siting design and operation of nuclear reactors. These activities have been pursued through advisory missions, the publication of codes of practice, guide books, technical reports and in arranging meetings to promote information exchange. During the early development of nuclear power, there was no well-established body of experience which would allow formulation of internationally acceptable safety criteria, except in a few special cases. Hence, nuclear power plant safety and reliability matters often received an ad hoc approach which necessarily entailed a lack of consistency in the criteria used and in the levels of safety required. It is clear that the continuation of an ad hoc approach to safety will prove inadequate in the context of a world-wide nuclear power industry, and the international trade which this implies. As in several other fields, the establishment of internationally acceptable safety standards and appropriate guides for use by regulatory bodies, utilities, designers and constructors, is becoming a necessity. The IAEA is presently planning the development of a comprehensive set of basic requirements for nuclear power plant safety, and the associated reliability requirements, which would be internationally acceptable, and could serve as a standard frame of reference for nuclear plant safety and reliability analyses

  19. Environmental physiology of the mole crab Emerita asiatica, at a power plant discharge area on the east coast of India

    International Nuclear Information System (INIS)

    Suresh, K.; Ahamed, M.S.; Durairaj, G.; Nair, K.V.K.

    1995-01-01

    Cage experiments at the discharge area of Madras Atomic Power Station (MAPS) facilitated studies of thermal tolerance in Emerita asiatica. At the laboratory, oxygen consumption at various temperatures and varying salinities was also investigated. In the field 100% mortality of crabs was recorded at the Condenser Cooling Water Pumps (CCWP) discharge site compared to no mortality at the Processed Sea Water Pumps (PSWP) site. This observation implicated temperature as a stress factor at the CCWP outfall, because other factors, including residual chlorine and water velocity, were the same at the PSWP and CCWP sites. Laboratory experiments on tolerance revealed that 38.5 o C was lethal to mole crabs. The time taken for 100% mortality decreased as the temperature increased from 35 to 40 o C. Oxygen metabolism showed a progressive increase with temperature from 29 to 36 o c, and declined at 37 o C. The influence of salinity on oxygen consumption was marginal at salinities of 20 to 35o/oo but, when reduced to 15o/oo, the oxygen consumption declined. The present study thus indicates that temperature could be the lethal factor, determining the distribution of mole crabs near the power station, where water temperature can exceed 40 o C. (author)

  20. Modeling of the wind power plant using software DIgSILENT Power factory

    International Nuclear Information System (INIS)

    Mladenovski, Ljubisha; Iliev, Atanas; Fushtikj, Vangel

    2004-01-01

    This paper presents a method for creating a model of the wind power plant NORDEX N-60 in the DIgSILENT Power factory software. At the beginning, the characteristics of the wind power plant and the used software are shortly described. The next step is modeling the part of the power system where the wind power plant will be connected to the grid The modeling of the turbine part and the generator part of the wind power plant is made with blocks, which are part of the machine block of the composite model. Finally, the results obtained from performed practically oriented simulations are presented in graphical form. Design of the model of the wind power plant NORDEX N-60 was performed at the Faculty of Electrical Engineering, at the University of Rostock, Germany, as a part of the DYSIMAC project. (Author)

  1. Preparation and practice for nuclear power plant operation

    International Nuclear Information System (INIS)

    Wu Xuesong; Lu Tiezhong

    2015-01-01

    The operational preparation of the nuclear power plant is an important work in nuclear power plant production preparation. Due to the construction period of nuclear power plant from starting construction to production is as long as five years, the professional requirements of nuclear power operation are very strict, and the requirements for nuclear safety are also extremely high. Especially after the Fukushima accident, higher requirements for the safe operation of nuclear power plant are posed by competent authorities of the national level, regulatory authorities and each nuclear power groups. Based on the characteristics of the construction phase of nuclear power plant and in combination with engineering practice, this paper expounds the system established in the field of nuclear power plant operation and generally analyses the related management innovation. (authors)

  2. Large-Scale Combined Heat and Power (CHP) Generation at Loviisa Nuclear Power Plant Unit 3

    International Nuclear Information System (INIS)

    Bergroth, N.

    2010-01-01

    Fortum has applied for a Decision in Principle concerning the construction of a new nuclear power plant unit (Loviisa 3) ranging from 2800-4600 MWth at its site located at the southern coast of Finland. An attractive alternative investigated is a co-generation plant designed for large-scale district heat generation for the Helsinki metropolitan area that is located approximately 75 km west of the site. The starting point is that the district heat generation capacity of 3 unit would be around 1 000 MWth.The possibility of generating district heat for the metropolitan area by Loviisa's two existing nuclear power plant units was investigated back in the 1980s, but it proved unpractical at the time. With the growing concern of the climate change and the subsequent requirements on heat and power generation, the idea is much more attractive today, when recognising its potential to decrease Finland's carbon dioxide emissions significantly. Currently the district heat generation in metropolitan area is based on coal and natural gas, producing some five to seven million tonnes of carbon dioxide emissions annually. Large-scale combined heat and power (CHP) generation at the 3 unit could cut this figure by up to four million tonnes. This would decrease carbon dioxide emissions by as much as six percent. In addition, large-scale CHP generation would increase the overall efficiency of the new unit significantly and hence, reduce the environmental impact on the local marine environment by cutting heat discharges into the Gulf of Nuclear energy has been used for district heating in several countries both in dedicated nuclear heating plants and in CHP generation plants. However, the heat generation capacity is usually rather limited, maximum being around 250 MWth per unit. Set against this, the 3 CHP concept is much more ambitious, not only because of the much larger heat generation output envisaged, but also because the district heating water would have to be transported over a

  3. Simulation technology for power plants

    International Nuclear Information System (INIS)

    Kuwabara, Kazuo; Yanai, Katsuya.

    1988-01-01

    In the simulation of nuclear power stations, there are the simulation for the training of plant operation, the plant simulation for analyzing the operation of an electric power system, the simulation for controlling a core, the simulation for the safety analysis of reactors, the simulation for the design analysis of plants and so on as the typical ones. The outline and the technical features of these simulations are described. With the increase of capacity and complexity of thermal power plants, recently the automation of operation has advanced rapidly. The chance of starting up and stopping plants by operators themselves is few, and the chance of actually experiencing troubles also is few as the reliability of plants improved. In order to maintain the ability of coping with plant abnormality, an operation supporting system is strongly demanded. Operation training simulators and used widely now, and there are the simulators for analysis, those of replica type, those of versatile compact type and so on. The system configuration, modeling techniques, training function and others of the replica type are explained. In hydroelectric plants, the behavior of water in penstocks, the characteristics of water turbines, the speed control system for water turbines and the characteristics of generators become the main subjects of simulation. These are described. (Kako, I.)

  4. Current fusion power plant design concepts

    International Nuclear Information System (INIS)

    Gore, B.F.; Murphy, E.S.

    1976-09-01

    Nine current U.S. designs for fusion power plants are described in this document. Summary tabulations include a tenth concept, for which the design document was unavailable during preparation of the descriptions. The information contained in the descriptions was used to define an envelope of fusion power plant characteristics which formed the basis for definition of reference first commercial fusion power plant design. A brief prose summary of primary plant features introduces each of the descriptions contained in the body of this document. In addition, summary tables are presented. These tables summarize in side-by-side fashion, plant parameters, processes, combinations of materials used, requirements for construction materials, requirements for replacement materials during operation, and production of wastes

  5. The effectiveness of new austrian tunnelling method (NATM for hydro power plant construction: lau gunung power plant, north sumatera, indonesia

    Directory of Open Access Journals (Sweden)

    Ade Khoir Rizki

    2017-01-01

    Full Text Available Hydro Electric Power Plant is a power generating system using gravity fall of water as the main force to move the turbine and generate electricity. The construction purpose of Lau Gunung hydropower (2×7. 5 MW that is located in Dairi, North Sumatra, is to Supply power to 14,000 house of the surrounding region. The river run-off system, where the water is immediately contained and then flowed through a tunnel considering the discharge flowing river, where it is constant and does not occur in the fluctuating water level. The Lau Gunung river has the minimum flow that can exceed from 15 to 25 m3/s with a high tunnel dimensions of 4 metres long, 3,9 metres wide and a length of 1,6 kilometres. In terms of the analysis of the time effectiveness of the NATM can be saved because of the continuous work of 24 hours, without any obstacles in which the sub methods used include the drilling & blasting. The tunnel then use the form of steel reinforcement rib and Safety shotcrete lining. The general review may show that using NATM result a tremendous savings, also the use of horse shape conduce small displacement which is effective for the construction.

  6. Net energy balance of tokamak fusion power plants

    International Nuclear Information System (INIS)

    Buende, R.

    1981-10-01

    The net energy balance for a tokamak fusion power plant was determined by using a PWR power plant as reference system, replacing the fission-specific components by fusion-specific components and adjusting the non-reactor-specific components to altered conditions. For determining the energy input to the fusion plant a method was developed that combines the advantages of the energetic input-output method with those of process chain analysis. A comparison with PWR, HTR, FBR, and coal-fired power plants is made. As a result the net energy balance of the fusion power plant turns out to be more advantageous than that of an LWR, HTR or coal-fired power plant and nearly in the same range as FBR power plants. (orig.)

  7. Operation of Finnish nuclear power plants

    International Nuclear Information System (INIS)

    Tossavainen, K.

    1991-02-01

    During the third quarter of 1990 the Finnish nuclear power plant units Loviisa 1 and 2 and TVO I and II were in commercial operation for most of the time. The annual maintenance outages of the Loviisa plant units were held during the report period. All events during this quarter are classified as Level hero (Below Scale) on the International Nuclear Event Scale. Occupational radiation doses and external releases of radioactivity were below authorised limits. Only small amounts of radioactive substances originating in nuclear power plants were detected in samples taken in the vicinity of nuclear power plants

  8. Italian steam power plants

    Energy Technology Data Exchange (ETDEWEB)

    von Rautenkranz, J

    1939-01-01

    A brief history of geothermal power production in Italy is presented. Boric acid has been produced on an industrial scale since 1818. The first electrical power was generated in 1904, and by 1939 the output of geothermal power plants had reached 500 GWh, with major expansion of facilities planned.

  9. Nuclear power plants: 2009 atw compact statistics

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    At the turn of 2009/2010, nuclear power plants were available for energy supply in 30 countries of the world. A total of 437 nuclear power plants, which is one plant less than at the 2008/2009 turn, were in operation with an aggregate gross power of approx. 391 GWe and an aggregate net power, respectively, of 371 GWe. The available gross power of nuclear power plants did not changed noticeably from 2008 to the end of 2009. In total 2 nuclear generating units were commissioned in 2009. One NPP started operation in India and one in Japan. Three nuclear generating units in Japan (2) und Lithuania (1) were decomissioned in 2009. 52 nuclear generating units, i.e. 10 plants more than at the end of 2008, with an aggregate gross power of approx. 51 GWe, were under construction in 14 countries end of 2009. New or continued projects are notified from (number of new projects): China (+9), Russia (1), and South Korea (1). Some 84 new nuclear power plants are in the concrete project design, planning and licensing phases worldwide; on some of them, contracts have already been awarded. Another units are in their preliminary project phases. (orig.)

  10. Nuclear power plants: 2008 atw compact statistics

    International Nuclear Information System (INIS)

    Anon.

    2009-01-01

    At the turn of 2008/2009, nuclear power plants were available for energy supply in 31 countries of the world. A total of 438 nuclear power plants, which is one plant less than at the 2007/2008 turn, were in operation with an aggregate gross power of approx. 393 GWe and an aggregate net power, respectively, of 372 GWe. The available gross power of nuclear power plants didn't changed noticeabely from 2007 to the end of 2008. No nuclear generating unit was commissioned in 2008. One nuclear generating unit in the Slovak Republic was decomissioned in 2008. 42 nuclear generating units, i.e. 10 plants more than at the end of 2007, with an aggregate gross power of approx. 38 GWe, were under construction in 14 countries end of 2008. New or continued projects are notified from (in brackets: number of new projects): Bulgaria (2), China (5), South Korea (2), Russia (1), and the Slovak Republic (2). Some 80 new nuclear power plants are in the concrete project design, planning and licensing phases worldwide; on some of them, contracts have already been awarded. Another approximately 120 units are in their preliminary project phases. (orig.)

  11. Nuclear power plants in the world - 2010 edition

    International Nuclear Information System (INIS)

    2010-01-01

    This small booklet summarizes in tables all data relative to the nuclear power plants worldwide. These data come from the IAEA's PRIS and AREVA-CEA's GAIA databases. The following aspects are reviewed: 2009 highlights, Main characteristics of reactor types, Map of the French nuclear power plants on 2010/01/01, Worldwide status of nuclear power plants (12/31/2009), Units distributed by countries, Nuclear power plants connected to the Grid- by reactor type groups, Nuclear power plants under construction on 2009, Evolution of nuclear power plants capacities connected to the grid, First electric generations supplied by a nuclear unit in each country, Electrical generation from nuclear power plants by country at the end 2009, Performance indicator of french PWR units, Evolution of the generation indicators worldwide by type, Nuclear operator ranking according to their installed capacity, Units connected to the grid by countries at 12/31/2009, Status of licence renewal applications in USA, Nuclear power plants under construction at 12/31/2009, Shutdown reactors, Exported nuclear capacity in net MWe, Exported and national nuclear capacity connected to the grid, Exported nuclear power plants under construction, Exported and national nuclear capacity under construction, Nuclear power plants ordered at 12/31/2009, Long term shutdown units at 12/31/2009, COL applications in the USA, Recycling of Plutonium in reactors and experiences, Mox licence plants projects, Appendix - historical development, Meaning of the used acronyms, Glossary

  12. Self-discharge analysis and characterization of supercapacitors for environmentally powered wireless sensor network applications

    Science.gov (United States)

    Yang, Hengzhao; Zhang, Ying

    2011-10-01

    A new approach is presented to characterize the variable leakage resistance, a parameter in the variable leakage resistance model we developed to model supercapacitors used in environmentally powered wireless sensor network applications. Based on an analysis of the supercapacitor terminal behavior during the self-discharge, the variable leakage resistance is modeled as a function of the supercapacitor terminal voltage instead of the self-discharge time, which is more practical for an environmentally powered wireless sensor node. The new characterization approach is implemented and validated using MATLAB Simulink with a 10 F supercapacitor as an example. In addition, effects of initial voltages and temperatures on the supercapacitor self-discharge rate and the variable leakage resistance value are explored.

  13. Effect of special features of nuclear power plants

    International Nuclear Information System (INIS)

    Scharf, H.

    1986-01-01

    Special features of nuclear power plants are reported with the Muelheim-Kaerlich pressurized water reactor as the reference plant. This nuclear reactor uses 'Once Through Steam Generators (OTSG)' with 'Integrated Economizer' to provide the turbine with superheated steam. The implementation of OTSG allows to operate the plant with constant steam pressure over the entire power range, and with constant main coolant temperature over a power range from 15% power to 100% power. Control of the plant during power operation is provided by the 'Integrated Control System', which simultaneously sends signals to the plant's subsystems reactor, OTSG, and turbine to get optimum response of the plant during power transients. The characteristics of this 'Integrated Control System' and its different modes of operation are presented. (orig./GL)

  14. Owners of nuclear power plants

    International Nuclear Information System (INIS)

    Wood, R.S.

    1979-12-01

    The following list indicates percentage ownership of commercial nuclear power plants by utility companies as of December 1, 1979. The list includes all plants licensed to operate, under construction, docketed for NRC safety and envionmental reviews, or under NRC antitrust review. It does not include those plants announced but not yet under review or those plants formally cancelled. In many cases, ownership may be in the process of changing as a result of antitrust license conditions and hearings, altered financial conditions, changed power needs, and other reasons. However, this list reflects only those ownership percentages of which the NRC has been formally notified

  15. Nuclear and thermal power plants and the environment

    International Nuclear Information System (INIS)

    Mejstrik, V.

    1978-01-01

    The growth is briefly outlined of world daily power consumption and the possibilities are discussed of meeting this demand. Coal and nuclear power are of primary importance as energy resources for the present and the near future. Production costs per 1 kWh of electric power in nuclear power plants are already lower in fossil fuel power plants and both types of power plants have an environmental impact. Activities are presented of radioisotopes resulting from nuclear reactor operation and their release and environmental impact are discussed. An analysis is made of emissions from combustion processes and of wastes from fossil-fuel power plant operation. The environmental impacts of nuclear and fossil fuel power plants are compared. (Z.M.)

  16. Nuclear and thermal power plants and the environment

    Energy Technology Data Exchange (ETDEWEB)

    Mejstrik, V [Ceskoslovenska Akademie Ved, Pruhonice. Ustav Krajinne Ekologie

    1978-01-01

    The growth is briefly outlined of world daily power consumption and the possibilities are discussed of meeting this demand. Coal and nuclear power are of primary importance as energy resources for the present and the near future. Production costs per 1 kWh of electric power in nuclear power plants are already lower than in fossil fuel power plants and both types of power plants have an environmental impact. Activities are presented of radioisotopes resulting from nuclear reactor operation and their release and environmental impact are discussed. An analysis is made of emissions from combustion processes and of wastes from fossil-fuel power plant operation. The environmental impacts of nuclear and fossil fuel power plants are compared.

  17. The safety of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    Do nuclear power plants present an unjustifiable risk Can there be confidence in their safety The Uranium Institute invited a group of senior safety experts from eight different Western countries operating different types of reactors to provide an authoritative explanation for non-specialists of the basic principles of reactor safety, their application and their implications. The report presents the group's opinion on the level of safety achieved in the Western nuclear power plants with which the authors are directly familiar. Although many of the points made may well also be true for non-Western reactors, the report does not cover them except where specifically stated. It does describe and discuss the causes of the Chernobyl disaster. It does not compare nuclear power with other fuels, nor does it deal with its benefits, since however great the benefits from the peaceful use of nuclear power, and its own advantages over other fuels, they could not compensate for lack of safety. The conclusion reached is that the risk associated with electricity production at nuclear power plants can be kept very low. Proper use of the extensive knowledge available today can guarantee operation of nuclear power plants at very high safety levels, carrying very low risks, both to health and of contamination of the environment: risks that are continually lowered by upgrading existing plants and their operation, and by the design of future power plants. (author).

  18. DENINT power plant cost benefit analysis code: Analysis of methane fuelled power plant/district heating system

    International Nuclear Information System (INIS)

    Cincotti, V.; D'Andrea, A.

    1989-07-01

    The DENINT power plant cost benefit analysis code takes into consideration, not only power production costs at the generator terminals, but also, in the case of cogeneration, the costs of the fuel supply and heat and power distribution systems which depend greatly on the location of the plant. The code is able to allow comparisons of alternatives with varying annual operation hours, fuel cost increases, and different types of fossil fuels and production systems. For illustrative purposes, this paper examines two methane fired cogeneration plant/district heating alternatives

  19. Energy analysis and projecting of power plants

    International Nuclear Information System (INIS)

    Jirlow, K.

    1975-01-01

    Energy analysis aims at a better explanation of energy flow and energy exchange at different production processes. In this report the energy budget is analysed for separate nuclear power plants and for expanding systems of power plants. A mathematical model is developed for linear and exponential expanding of nuclear power. The profitableness for nuclear power plants in Sweden is considered to be good. (K.K.)

  20. Development of high power pumping system for capillary discharge EUV laser

    International Nuclear Information System (INIS)

    Sakai, Yusuke; Komatsu, Takanori; Watanabe, Masato; Okino, Akitoshi; Hotta, Eiki

    2008-01-01

    Development of high power pumping system for capillary discharge soft X-ray laser is reported. The pulsed power system consists of a 2.2 μF LC generator, a 2:54 step-up transformer and a 3 nF water capacitor. Taking advantage of high efficiency configuration, step-up ratio of water capacitor voltage to LC generator initial voltage is about 40 times. Consequently, obtained water capacitor voltage reaches about 450 kV when LC generator was charged to 12.5 kV. As a consequent, possibility of charging a water capacitor to 1 MV is demonstrated. With this extremely compact system, discharge current could be increased to nearly 100 kA through moderately long capillary, which leads to generation of high-density and high-temperature plasma column in order to realize EUV laser. (author)

  1. Guinea_WADC00321_ADBG_Guinea_Power_Plants

    Data.gov (United States)

    United Nations Cartographic Section — Data for power plants with total installed generating capacity > 10 mw from the Platts World Electric Power Plants Database (WEPP 2006). Plants were georeferenced...

  2. Commissioning of the nuclear power plant

    International Nuclear Information System (INIS)

    Furtado, P.M.; Rolf, F.

    1984-01-01

    Nuclear Power Plant Angra 2, located at Itaorna Beach-Angra dos Reis is the first plant of the Brazilian-German Agreement to be commissioned. The Nuclear Power Plant is a pressurized water reactor rated at 3765 Mw thermal/1325 Mw electrical. For commissioning purpose the plant is divided into 110 systems. Plant commissioning objective is to demonstrate the safe and correct operation of each plan component, system and of the whole plant in agreement with design conditions, licensing requirements and contractual obligations. This work gives a description of plant commissioning objectives, activities their time sequence, and documentation. (Author) [pt

  3. Current production costs in various power plant systems

    Energy Technology Data Exchange (ETDEWEB)

    Weible, H.

    1977-01-01

    The costs of producing electric power were evaluated for flowing water power plants, storage and pumped storage power plants, bituminous coal power plants, heating oil power plants (fired with heavy heating oil), natural gas-fired power plants, gas turbines, pressurized water reactors, and boiling water reactors. The calculational methods used for evaluating costs and the input data for methods used for the KOSKON and KOSKERN computer programs are described. It is emphasized that the calculations are examples to indicate the possible effects of the cost program and are only as valid as the input data. (JSR)

  4. Water regime of steam power plants

    International Nuclear Information System (INIS)

    Oesz, Janos

    2011-01-01

    The water regime of water-steam thermal power plants (secondary side of pressurized water reactors (PWR); fossil-fired thermal power plants - referred to as steam power plants) has changed in the past 30 years, due to a shift from water chemistry to water regime approach. The article summarizes measures (that have been realised by chemists of NPP Paks) on which the secondary side of NPP Paks has become a high purity water-steam power plant and by which the water chemistry stress corrosion risk of heat transfer tubes in the VVER-440 steam generators was minimized. The measures can also be applied to the water regime of fossil-fired thermal power plants with super- and subcritical steam pressure. Based on the reliability analogue of PWR steam generators, water regime can be defined as the harmony of construction, material(s) and water chemistry, which needs to be provided in not only the steam generators (boiler) but in each heat exchanger of steam power plant: - Construction determines the processes of flow, heat and mass transfer and their local inequalities; - Material(s) determines the minimal rate of general corrosion and the sensitivity for local corrosion damage; - Water chemistry influences the general corrosion of material(s) and the corrosion products transport, as well as the formation of local corrosion environment. (orig.)

  5. Docommissioning of nuclear power plants

    International Nuclear Information System (INIS)

    Essmann, J.

    1981-01-01

    The German utilities operating nuclear power plants have long concerned themselves with aspects of decommissioning and for this purpose an engineering company was given a contract to study the entire spectrum of decommissioning. The results of this study have been available in autumn 1980 and it is possible to discuss all the aspects of decommissioning on a new basis. Following these results no change in the design concept of LWR nuclear power plants in operation or under construction is necessary because the techniques, necessary for decommissioning, are fully available today. The technical feasibility of decommissioning for power plants of Biblis A and KRB type has been shown in detail. The calculations of the quantity of waste produced during removal of a nuclear power plant could be confirmed and it could be determined with high procedure. The radiation dose to the decommissioning personnel is in the range of the radiation protection regulations and is in the same range as the radiation dose to the personnel within a yearly inservice inspection. (AF)

  6. Power system stabilising features from wind power plants augmented with energy storage

    DEFF Research Database (Denmark)

    Tarnowski, Germán C.; Kjær, Philip C; Lærke, Rasmus

    2014-01-01

    This paper describes a wind power plant augmented with energy storage, configured to provide ancillary services (primary reserve, inertial response, power oscillation damping) for enhancement of power system stability. Energy storage can complement wind power plants thus reducing the need for any...... overload or curtailment to allow active power modulation. A 12MW + 1.6MW augmented plant is used for demonstration of representative performance of the particular ancillary service control algorithms...

  7. Cooling towers for thermal power plants

    International Nuclear Information System (INIS)

    Chaboseau, J.

    1987-01-01

    After a brief recall on cooling towers testing and construction, this paper presents four examples of very large French nuclear power plant cooling towers, and one of an Australian thermal power plant [fr

  8. Permanent cessation of Tokai power plant's operation

    International Nuclear Information System (INIS)

    Satoh, T.

    1998-01-01

    Tokai power plant (166MWe, Magnox type: GCR) is the first commercial reactor in Japan and has been kept operating stable since its commissioning in July 1996. During this period it has produced electricity of approximately 27.7 billion KWh (as of March 1997) and its stable operation has contributed greatly to the stable supply of electricity in Japan. Furthermore, technologies in various fields have been developed, demonstrated and accumulated through the construction and operation of Tokai power plant. It also contributes to training for many nuclear engineers, and constructions and operations of nuclear power stations by other Japanese power companies. As a pioneer, it has been achieved to develop and popularize Japanese nuclear power generation. On the other hand, Tokai power plant has small capacity in its electric power output, even though the size of the reactor and heat exchangers are rather bigger than those of LWR due to the characteristics of GCR. Therefore, the generation cost is higher than the LWR. Since there is no plant whose reactor type is the same as that of Tokai power plant, the costs for maintenance and fuel cycle are relatively higher than that of LWR. Finally we concluded that the longer we operate it, the less we can take advantage of it economically. As a result of the evaluation for the future operation of Tokai power plant including the current status for supply of electricity by the Japanese utilities and study of decommissioning by Japanese government, we decided to have a plan of stopping its commercial operation of Tokai power plant in the end of March, 1998, when we completely consume its fuel that we possess. From now on, we set about performing necessary studies and researches on the field of plant characterization, remote-cutting, waste disposal for carrying out the decommissioning of Tokai power plant safely and economically. We are going to prepare the decommissioning planning for Tokai power plant in a few years based on the

  9. Vibrations of wind power plants; Schwingungen von Windenergieanlagen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Within the meeting of the department vibration engineering of the Association of German Engineers (Duesseldorf, Federal Republic of Germany) between 3rd and 4th February, 2010 in Hanover (Federal Republic of Germany) the following lectures are presented: (1) Reduction of forced strengths generated by wagging and snaking of the rotor in the power strain of wind power plants (F. Mitsch); (2) Reduction of vibrations at wind power plants by means of active additional systems (S. Katz, S. Pankoke, N. Loix); (3) Reduction of vibrations by means of balancing and alignment (E. Becker, M. Kenzler); (4) Active absorber for reducing tonal emissions of vibration at wind power plants (R. Neugebauer, M. Linke, H. Kunze, M. Ulrich); (5) Control structures for damping torsion vibrations and peak loads in the power strain of wind power converters (C. Sourkounis); (6) Possibilities of a non-contact investigation of vibrations at wind power plants (R. Behrendt, E. Reimers, H. Wiegers); (7) Influences on the loadability of CMS statements (R. Wirth); (8) Recording modal structural properties with sensor grids and methods of operational modal analysis (A. Friedmann, D. Mayer, M. Koch, M. Kauba, T. Melz); (9) Early failure detection of damages of roller bearings in wind power gear units with variable speed (B. Hacke, G. Poll); (10) Condition monitoring in wind power plants - structure monitoring and life time monitoring of wind power plants (SCMS and LCMS) (H. Lange); (11) Development of a model-based structural health monitoring system for condition monitoring of rotor blades (C. Ebert, H. Friedmann, F.O. Henkel, B. Frankenstein, L. Schubert); (12) Efficient remote monitoring at wind power plants by means of an external diagnosis centre (G. Ceglarek); (13) Accurate turbine modelling at component and assembly level for durability and acoustic analysis (D. v. Werner, W. Hendricx); (14) Possibilities of the investigation of the dynamic behaviour of power strains in wind power plants by

  10. Calculation Method for the Projection of Future Spent Nuclear Fuel Discharges

    International Nuclear Information System (INIS)

    B. McLeod

    2002-01-01

    This report describes the calculation method developed for the projection of future utility spent nuclear fuel (SNF) discharges in regard to their timing, quantity, burnup, and initial enrichment. This projection method complements the utility-supplied RW-859 data on historic discharges and short-term projections of SNF discharges by providing long-term projections that complete the total life cycle of discharges for each of the current U.S. nuclear power reactors. The method was initially developed in mid-1999 to update the SNF discharge projection associated with the 1995 RW-859 utility survey (CRWMS M and O 1996). and was further developed as described in Rev. 00 of this report (CRWMS M and O 2001a). Primary input to the projection of SNF discharges is the utility projection of the next five discharges from each nuclear unit, which is provided via the revised final version of the Energy Information Administration (EIA) 1998 RW-859 utility survey (EIA 2000a). The projection calculation method is implemented via a set of Excel 97 spreadsheets. These calculations provide the interface between receipt of the utility five-discharge projections that are provided in the RW-859 survey, and the delivery of projected life-cycle SNF discharge quantities and characteristics in the format requisite for performing logistics analysis to support design of the Civilian Radioactive Waste Management System (CRWMS). Calculation method improvements described in this report include the addition of a reactor-specific maximum enrichment-based discharge burnup limit. This limit is the consequence of the enrichment limit, currently 5 percent. which is imposed as a Nuclear Regulatory Commission (NRC) license condition on nuclear fuel fabrication plants. In addition, the calculation method now includes the capability for projecting future nuclear plant power upratings, consistent with many such recent plant uprates and the prospect of additional future uprates. Finally. this report

  11. Power plants and safety 1982

    International Nuclear Information System (INIS)

    1982-01-01

    The papers of this volume deal with the whole range of safety issues from planning and construction to the operation of power plants, and discuss also issues like availability and safety of power plants, protective clothes and their incommodating effect, alternatives for rendering hot-water generators safe and the safety philosophy in steam turbine engineering. (HAG) [de

  12. China’s Nuclear Power Plants in Operation

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Qinshan Plant Phase I Located in Haiyan,Zhejiang Province,Qinshan Nuclear Power Plant Phase I is t he first 300-megawatt pressurized water reactor (PWR) nuclear power plant independently designed,constructed,operated and managed by China.The plant came into commercial operation in April 1994.

  13. Operating experience in nuclear power plants

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    The nuclear power plants in the Federal Republic of Germany kept their portion of power supply into the public grid system constant in 1983, compared to 1982. The generation had an absolute increase of 3.6% and amounts now to 65.9 TWh. Particularly mentioned should be the generation of the Grafenrheinfeld Nuclear Power Plant which is holding the 'World Record' with 9.969 TWh. The availability of the plants was generally satisfactory, as far as long-term retrofit measures with long outage periods were not necessary, as it was the case in Brunsbuettel and Wuergassen. The planned retrofit phases have been completed in all power plants. As far as safety is concerned, there was no reason to recommended a change of the present fundamental planning- and operation aspects. (orig.) [de

  14. Groundwater flow modeling focused on the Fukushima Daiichi Nuclear Power Plant Site

    International Nuclear Information System (INIS)

    Saegusa, Hiromitsu; Onoe, Hironori; Kohashi, Akio; Watanabe, Masahisa

    2015-01-01

    Fukushima Daiichi nuclear power plant of Tokyo Electric Power Company is facing contaminated water issues in the aftermath of the Great East Japan Earthquake on March 11, 2011. The amount of contaminated water is continuously increasing due to groundwater leakage into the underground part of reactor and turbine buildings. Therefore, it is important to understand the groundwater flow conditions at the site and to predict the impact of countermeasures taken for isolating groundwater from the source of the contamination, i.e. the reactor buildings. Installations, such as of land-side and sea-side impermeable walls have been planned as countermeasures. In this study, groundwater flow modeling has been performed to estimate the response of groundwater flow conditions to the countermeasures. From the modeling, groundwater recharge and discharge areas, major groundwater flow direction, inflow rate into underground part of the buildings, and changes in response to implementation of the countermeasures could be reasonably estimated. The results indicate that the countermeasures will decrease the volume of inflow into the underground part of the buildings. This means that the countermeasures will be effective in reducing the discharge volume of contaminated groundwater to ocean. (author)

  15. ICRF power-deposition profiles and heating in monster sawtooth and peaked-density profile discharges in JET

    International Nuclear Information System (INIS)

    Bhatnagar, V.P.; Taroni, A.; Ellis, J.J.; Jacquinot, J.; Stuart, D.F.

    1989-01-01

    In this paper, we compare experimental results of electron and ion-heating in discharges that feature monster sawtooth with those in pellet-produced peaked-density profile discharges which were heated with ICRF. Also we carry out a comprehensive analysis of ICRF-heated peaked-density profile discharges by a transport code to simulate the evolution of JET discharges and to provide an insight into the improved heating and confinement found in these discharges. In this analysis, the ICRF power-deposition profile in the minority-heating scenario is computed by the ray-tracing code BRAYCO that self-consistently takes the finite antenna geometry, its radiation spectrum and the hot-plasma damping into account. The power delivered to ions and electrons is calculated based on Stix model. (author) 10 refs., 5 figs

  16. Report on radioactive discharges and environmental monitoring at nuclear power stations during 1991

    International Nuclear Information System (INIS)

    Hurst, M.J.; Thomas, D.W.

    1992-09-01

    This report presents the details for 1991 of radioactive discharges and environmental monitoring at Nuclear Electric sites. In addition to the main section which summarises the discharges and monitoring at the Company's nuclear sites as a whole, appendices are presented covering the data in detail for individual sites. In each case the radiological impact on the general public has been estimated. Discharges generally were not substantially different from those of recent years. All radioactive effluent discharges from power stations were within authorised limits. Radiation doses to members of the public resulting from these discharges, and from direct radiation from the Stations, were in all cases less than the limit of 1 mSv per year which has been recommended by ICRP since 1985. (Author)

  17. Plant life extensions for German nuclear power plants? Controversial discussion profit taking of nuclear power plant operators

    International Nuclear Information System (INIS)

    Matthes, Felix C.

    2009-10-01

    The discussion on the plant life extensions for German nuclear power plants beyond the residual quantity of electricity particularly focus on three aspects: Effects for the emission of carbon dioxide as a greenhouse gas; Development of the electricity price for which a reduction or attenuation is postulated due to a plant life extension; Skimming of additional profits at operating companies and their use in the safeguarding of the future (development of renewable energies, support of energy efficiency, promotion of the research, consolidation of the public budget, and so on). Under this aspect, the author of the contribution under consideration reports on the profit taking of nuclear power plant operators. The presented analysis considers three aspects: (a) Specification of the quantity structures for the investigated model of plant life extension; (b) The decisive parameter is the revenue situation and thus the price development for electricity at wholesale markets; (c) Determination and evaluation of the course in time of the profit taking.

  18. Los Alamos Nuclear Plant Analyzer: an interactive power-plant simulation program

    International Nuclear Information System (INIS)

    Steinke, R.; Booker, C.; Giguere, P.; Liles, D.R.; Mahaffy, J.H.; Turner, M.R.

    1984-01-01

    The Nuclear Plant Analyzer (NPA) is a computer-software interface for executing the TRAC or RELAP5 power-plant systems codes. The NPA is designed to use advanced supercomputers, long-distance data communications, and a remote workstation terminal with interactive computer graphics to analyze power-plant thermal-hydraulic behavior. The NPA interface simplifies the running of these codes through automated procedures and dialog interaction. User understanding of simulated-plant behavior is enhanced through graphics displays of calculational results. These results are displayed concurrently with the calculation. The user has the capability to override the plant's modeled control system with hardware-adjustment commands. This gives the NPA the utility of a simulator, and at the same time, the accuracy of an advanced, best-estimate, power-plant systems code for plant operation and safety analysis

  19. Nuclear Plant Analyzer: an interactive TRAC/RELAP Power-Plant Simulation Program

    International Nuclear Information System (INIS)

    Steinke, R.; Booker, C.; Giguere, P.; Liles, D.; Mahaffy, J.; Turner, M.; Wiley, R.

    1984-01-01

    The Nuclear Plant Analyzer (NPA) is a computer-software interface for executing the TRAC or RELAP5 power-plant systems codes. The NPA is designed to use advanced supercomputers, long-distance data communications, and a remote workstation terminal with interactive computer graphics to analyze power-plant thermal-hydraulic behavior. The NPA interface simplifies the running of these codes through automated procedures and dialog interaction. User understanding of simulated-plant behavior is enhanced through graphics displays of calculational results. These results are displayed concurrently with the calculation. The user has the capability to override the plant's modeled control system with hardware adjustment commands. This gives the NPA the utility of a simulator, and at the same time, the accuracy of an advanced, best-estimate, power-plant systems code for plant operation and safety analysis

  20. Kosovo’s Ground Flash Density and Protection of Transmission Lines of the Kosovo Power System from Atmospheric Discharges

    Directory of Open Access Journals (Sweden)

    Bahri Prebreza

    2018-03-01

    Full Text Available In this paper is presented the protection of transmission power lines of the Kosovo Power System from atmospheric discharges, with the use of surge arresters. Atmospheric discharges represent one of the main causes of interruptions for the Kosovo Power System. In addition, the ground flash density for Kosovo is given. The transmission lines with the worst performance regarding atmospheric discharges are discussed in more detail and are presented recommendations about the surge arresters used to protect the system from these overvoltages. The data provided by the localized lightning system in Kosovo enable us to provide a detailed correlation of the reported outages of the Kosovo Power System and corresponding atmospheric discharges. Recommendations for protection in terms of surge arresters are given followed by subsequent dynamic simulations using MATLAB software.

  1. Optimizing the Utility Power of a Geothermal Power Plant using Variable Frequency Drive (VFD) (Case Study: Sibayak Geothermal Power Plant)

    Science.gov (United States)

    Sinaga, R. H. M.; Manik, Y.

    2018-03-01

    Sibayak Geothermal Power Plant (SGPP) is one of the plants being developed by Pertamina Geothermal Energy (PGE) at the upstream phase. At the downstream phase, State - owned Electricity Company (PLN) through PT. Dizamatra Powerindo is the developer. The gross capacity of the power plant is 13.3 MW, consisting 1 unit of Monoblock (2 MW) developed by PGE and 2 units (2×5.65 MW) operated through Energy Sales Contract by PLN. During the development phase of a geothermal power plant, there is a chance to reduce the utility power in order to increase the overall plant efficiency. Reducing the utility power can be attempted by utilizing the wet bulb temperature fluctuation. In this study, a modeling process is developed by using Engineering Equation Solver (EES) software version 9.430. The possibility of energy saving is indicated by condenser pressure changes as a result of wet bulb temperature fluctuation. The result of this study indicates that the change of condenser pressure is about 50.8% on the constant liquid/gas (L/G) condition of the wet bulb temperature of 15°C to 25°C. Further result indicates that in this power plant, Cooling Tower Fan (CTF) is the facility that has the greatest utility load, followed by Hot Well Pump (HWP). The saving of the greatest utility load is applied trough Variable Frequency Drive (VFD) instrumentation. The result of this modeling has been validated by actual operations data (log sheet). The developed model has also been reviewed trough Specific Steam Consumption (SSC), resulting that constant L/G condition allows the optimum condition on of the wet bulb temperature of 15°C to 25°C.

  2. TVA's nuclear power plant experience

    International Nuclear Information System (INIS)

    Willis, W.F.

    1979-01-01

    This paper reviews TVA's nuclear power plant design and construction experience in terms of schedule and capital costs. The completed plant in commercial operation at Browns Ferry and six additional plants currently under construction represent the nation's largest single commitment to nuclear power and an ultimate investment of $12 billion by 1986. The presentation is made in three separate phases. Phase one will recapitulate the status of the nuclear power industry in 1966 and set forth the assumptions used for estimating capital costs and projecting project schedules for the first TVA units. Phase two describes what happened to the program in the hectic early 1979's in terms of expansion of scope (particularly for safety features), the dramatic increase in regulatory requirements, vendor problems, stretchout of project schedules, and unprecedented inflation. Phase three addresses the assumptions used today in estimating schedules and plant costs for the next ten-year period

  3. Economic analysis of power generation from floating solar chimney power plant

    International Nuclear Information System (INIS)

    Zhou, Xinping; Yang, Jiakuan; Xiao, Bo; Wang, Fen

    2009-01-01

    Solar chimney thermal power technology that has a long life span is a promising large-scale solar power generating technology. This paper performs economic analysis of power generation from floating solar chimney power plant (FSCPP) by analyzing cash flows during the whole service period of a 100 MW plant. Cash flows are influenced by many factors including investment, operation and maintenance cost, life span, payback period, inflation rate, minimum attractive rate of return, non-returnable subsidy rate, interest rate of loans, sale price of electricity, income tax rate and whether additional revenue generated by carbon credits is included or not. Financial incentives and additional revenue generated by carbon credits can accelerate the development of the FSCPP. Sensitivity analysis to examine the effects of the factors on cash flows of a 100 MW FSCPP is performed in detail. The results show that the minimum price for obtaining minimum attractive rate of return (MARR) of 8% reaches 0.83 yuan (kWh) -1 under financial incentives including loans at a low interest rate of 2% and free income tax. Comparisons of economics of the FSCPP and reinforced concrete solar chimney power plant or solar photovoltaic plant are also performed by analyzing their cash flows. It is concluded that FSCPP is in reality more economical than reinforced concrete solar chimney power plant (RCSCPP) or solar photovoltaic plant (SPVP) with the same power capacity. (author)

  4. Owners of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, C.R.; White, V.S.

    1996-11-01

    Commercial nuclear power plants in this country can be owned by a number of separate entities, each with varying ownership proportions. Each of these owners may, in turn, have a parent/subsidiary relationship to other companies. In addition, the operator of the plant may be a different entity as well. This report provides a compilation on the owners/operators for all commercial power reactors in the United States. While the utility industry is currently experiencing changes in organizational structure which may affect nuclear plant ownership, the data in this report is current as of July 1996. The report is divided into sections representing different aspects of nuclear plant ownership.

  5. Proceedings: Power Plant Electric Auxiliary Systems Workshop

    International Nuclear Information System (INIS)

    1992-06-01

    The EPRI Power Plant Electric Auxiliary Systems Workshop, held April 24--25, 1991, in Princeton, New Jersey, brought together utilities, architect/engineers, and equipment suppliers to discuss common problems with power plant auxiliary systems. Workshop participants presented papers on monitoring, identifying, and solving problems with auxiliary systems. Panel discussions focused on improving systems and existing and future plants. The solutions presented to common auxiliary system problems focused on practical ideas that can enhance plant availability, reduce maintenance costs, and simplify the engineering process. The 13 papers in these proceedings include: Tutorials on auxiliary electrical systems and motors; descriptions of evaluations, software development, and new technologies used recently by electric utilities; an analysis of historical performance losses caused by power plant auxiliary systems; innovative design concepts for improving auxiliary system performance in future power plants

  6. Intelligent power plant simulator for educational purposes

    International Nuclear Information System (INIS)

    Seifi, A.; Seifi, H.; Ansari, M. R.; Parsa Moghaddam, M.

    2001-01-01

    An Intelligent Tutoring System can be effectively employed for a power plant simulator so that the need for instructor in minimized. In this paper using the above concept as well as object oriented programming and SIMULINK Toolbox of MATLAB, an intelligent tutoring power plant simulator is proposed. Its successful application on a typical 11 MW power plant is demonstrated

  7. Reliability analysis techniques in power plant design

    International Nuclear Information System (INIS)

    Chang, N.E.

    1981-01-01

    An overview of reliability analysis techniques is presented as applied to power plant design. The key terms, power plant performance, reliability, availability and maintainability are defined. Reliability modeling, methods of analysis and component reliability data are briefly reviewed. Application of reliability analysis techniques from a design engineering approach to improving power plant productivity is discussed. (author)

  8. Limiting conditions for nuclear power plant competitiveness vs. fossil and wind plants

    International Nuclear Information System (INIS)

    Feretic, Danilo; Cavlina, Nikola

    2010-01-01

    The aim of this paper is to compare potential energy options for future electricity generation. The paper considers comparison of discounted total cost of electricity generated by nuclear power plant and by combined natural gas and wind plants, having in total equal electricity generation. Large uncertainty in the future fuel costs makes planning of optimal power generating mix very difficult to justify. Probabilistic method is used in the analysis which allows inclusion of uncertainties in future electricity generating cost prediction. Additionally, an informative functional relation between nuclear plant investment cost, natural gas price and wind plant efficiency, that determines competitive power generation between considered options, is also shown. Limiting conditions for nuclear power plant competitiveness vs. fossil and wind plants are presented. (authors)

  9. Power from waste. [Power plant at landfill site

    Energy Technology Data Exchange (ETDEWEB)

    Anon,

    1991-01-01

    Base Load Systems Ltd, a company in the United Kingdom, has just commissioned a power plant in Leicestershire which uses waste gases from a landfill site. The gases power two specially modified turbo charged engine and generator packages. The plant will use approximately 100 cu meters of landfill gas per hour and is expected to feed 1.5MW of electrical power into the supply network of East Midlands Electricity. Once the landfill site has been completely filled and capped with clay, it is estimated that the electrical power output will be 4 MW. At present, since their are no customers for heat in the vicinity, 100 KW of the electricity produced are used to run fans to dissipate the 2.5 MW of waste heat. Base load is also involved elsewhere in combined heat and power projects. (UK).

  10. Forecasting power plant effects on the coastal zone. EG and G final report number B-4441

    International Nuclear Information System (INIS)

    1976-06-01

    Field methods, data analyses, and calculation are presented exemplifying procedures for oceanic dispersion prediction as a tool for forecasting power plant effects on the coastal zone. Measurements were made of dye, drogues and temperatures near Pilgrim Station's discharge (Plymouth, Massachusetts), and of currents and other variables across Massachusetts Bay. Analysis of current data illustrates separation of tidal, wind-driven and inertial constituents and their significance for dispersion. Dye and temperature dispersion are compared with the currents study, and diffusion coefficients estimated. Current data from coastal sites (New Jersey and Massachusetts) are analyzed to determine field requirements for dispersion estimates. Methods to calculate expected precision of estimates based on brief current records are developed. Model calculations predicting dispersion based on observed ocean currents are described. Formulae are derived to estimate the spatial distribution of impact from a discharge. A numerical model to calculate discharge dispersion in more detail is discussed and used to study time variations of discharge effects. Model predictions are compared with field observations

  11. Inductive Sensor Performance in Partial Discharges and Noise Separation by Means of Spectral Power Ratios

    Directory of Open Access Journals (Sweden)

    Jorge Alfredo Ardila-Rey

    2014-02-01

    Full Text Available Partial discharge (PD detection is a standardized technique to qualify electrical insulation in machines and power cables. Several techniques that analyze the waveform of the pulses have been proposed to discriminate noise from PD activity. Among them, spectral power ratio representation shows great flexibility in the separation of the sources of PD. Mapping spectral power ratios in two-dimensional plots leads to clusters of points which group pulses with similar characteristics. The position in the map depends on the nature of the partial discharge, the setup and the frequency response of the sensors. If these clusters are clearly separated, the subsequent task of identifying the source of the discharge is straightforward so the distance between clusters can be a figure of merit to suggest the best option for PD recognition. In this paper, two inductive sensors with different frequency responses to pulsed signals, a high frequency current transformer and an inductive loop sensor, are analyzed to test their performance in detecting and separating the sources of partial discharges.

  12. QA programs in nuclear power plants

    International Nuclear Information System (INIS)

    Ellingson, A.C.

    1976-01-01

    As an overview of quality assurance programs in nuclear power plants, the energy picture as it appears today is reviewed. Nuclear power plants and their operations are described and an attempt is made to place in proper perspective the alleged ''threats'' inherent in nuclear power. Finally, the quality assurance programs being used in the nuclear industry are described

  13. Intelligent distributed control for nuclear power plants

    International Nuclear Information System (INIS)

    Klevans, E.H.

    1992-01-01

    This project was initiated in September 1989 as a three year project to develop and demonstrate Intelligent Distributed Control (IDC) for Nuclear Power Plants. The body of this Third Annual Technical Progress report summarizes the period from September 1991 to October 1992. There were two primary goals of this research project. The first goal was to combine diagnostics and control to achieve a highly automated power plant as described by M.A. Schultz. His philosophy, is to improve public perception of the safety of nuclear power plants by incorporating a high degree of automation where a greatly simplified operator control console minimizes the possibility of human error in power plant operations. To achieve this goal, a hierarchically distributed control system with automated responses to plant upset conditions was pursued in this research. The second goal was to apply this research to develop a prototype demonstration on an actual power plant system, the EBR-2 stem plant. Emphasized in this Third Annual Technical Progress Report is the continuing development of the in-plant intelligent control demonstration for the final project milestone and includes: simulation validation and the initial approach to experiment formulation

  14. Determination of chemical forms of 14C in liquid discharges from nuclear power plants.

    Science.gov (United States)

    Svetlik, I; Fejgl, M; Povinec, P P; Kořínková, T; Tomášková, L; Pospíchal, J; Kurfiřt, M; Striegler, R; Kaufmanová, M

    2017-10-01

    Developments of radioanalytical methods for determination of radiocarbon in wastewaters from nuclear power plants (NPP) with pressurized light water reactors, which would distinguish between the dissolved organic and inorganic forms have been carried out. After preliminary tests, the method was used to process pilot samples from wastewater outlets from the Temelín and Dukovany NPPs (Czech Republic). The results of analysis of pilot water samples collected in 2015 indicate that the instantaneous 14 C releases into the water streams would be about 7.10 -5 (Temelín) and 4.10 -6 (Dukovany) of the total quantity of the 14 C liberated into the environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. The plant efficiency of fusion power stations

    International Nuclear Information System (INIS)

    Darvas, J.; Foerster, S.

    1976-01-01

    Due to the circulating energy, lower efficiencies are to be expected with fusion power plants than with nuclear fission power plants. According to the systems analysis, the mirror machine is not very promising as a power plant. The plant efficiency of the laser fusion strongly depends on the laser efficiency about which one can only make speculative statements at present. The Tokamak requires a relatively low circulating energy and is certainly able to compete regarding efficiency as long as the consumption time can be kept large (> 100 sec) and the dead time between the power pulses small ( [de

  16. Tasks of a power engineer in future thermal power plants

    International Nuclear Information System (INIS)

    Freymeyer, P.; Scherschmidt, F.

    1982-01-01

    Today already the power plants provide plenty of tasks and problems to the electrical engineer in the fields of power and conductive engineering. A completely new orientation of power engineering leads to larger, more complex system and even to systems unknown so far. In conductive engineering entirely new solutions have come in view. There are a lot of interesting topics for the electrical engineer in the rearrangement and advance into virgin territory of thermal power plants. (orig.) [de

  17. Detailed partial load investigation of a thermal energy storage concept for solar thermal power plants with direct steam generation

    Science.gov (United States)

    Seitz, M.; Hübner, S.; Johnson, M.

    2016-05-01

    Direct steam generation enables the implementation of a higher steam temperature for parabolic trough concentrated solar power plants. This leads to much better cycle efficiencies and lower electricity generating costs. For a flexible and more economic operation of such a power plant, it is necessary to develop thermal energy storage systems for the extension of the production time of the power plant. In the case of steam as the heat transfer fluid, it is important to use a storage material that uses latent heat for the storage process. This leads to a minimum of exergy losses during the storage process. In the case of a concentrating solar power plant, superheated steam is needed during the discharging process. This steam cannot be superheated by the latent heat storage system. Therefore, a sensible molten salt storage system is used for this task. In contrast to the state-of-the-art thermal energy storages within the concentrating solar power area of application, a storage system for a direct steam generation plant consists of a latent and a sensible storage part. Thus far, no partial load behaviors of sensible and latent heat storage systems have been analyzed in detail. In this work, an optimized fin structure was developed in order to minimize the costs of the latent heat storage. A complete system simulation of the power plant process, including the solar field, power block and sensible and latent heat energy storage calculates the interaction between the solar field, the power block and the thermal energy storage system.

  18. Prospects for power plant technology

    International Nuclear Information System (INIS)

    Schilling, H.D.

    1993-01-01

    Careful conservation of resources in the enlarged context of the rational utilization of energy, the environment and capital will determine future power plant technology. The mainstays will be the further development of power plant concepts based on fossil (predominantly coal) and nuclear fuels; world-wide, also regenerative and CO 2 -free hydro-electric power will play a role. Rapid conversion of the available potential requires clear, long-term stable and reliable political framework conditions for the release of the necessary entrepreneurial forces. (orig.) [de

  19. Partner of nuclear power plants

    International Nuclear Information System (INIS)

    Gribi, M.; Lauer, F.; Pauli, W.; Ruzek, W.

    1992-01-01

    Sulzer, the Swiss technology group, is a supplier of components and systems for nuclear power plants. Important parts of Swiss nuclear power stations, such as containments, reactor pressure vessels, primary pipings, are made in Winterthur. Sulzer Thermtec AG and some divisions of Sulzer Innotec focus their activities on servicing and backfitting nuclear power plants. The European market enjoys priority. New types of valves or systems are developed as economic solutions meeting more stringent criteria imposed by public authorities or arising from operating conditions. (orig.) [de

  20. Hurricane Andrew causes major oil spill at Florida Power ampersand Light Company's Turkey Point Power Plant, Homestead, Florida

    International Nuclear Information System (INIS)

    Jones, M.A.; Butts, R.L.; Lindsay, J.R.; McCully, B.S.; Pickering, T.H.

    1993-01-01

    On August 24, 1992, Hurricane Andrew slammed into South Florida with wind gusts in excess of 160 mph. At 4:00 a.m. that day, the eye of this category four storm passed over Florida Power ampersand Light Company's Turkey Point power plant, south of Miami. Although the plant's two nuclear units escaped any significant damage, the storm caused extensive destruction to buildings and transmission facilities, and damaged two 400 foot tall emission stacks associated with the site's two fossil fuel generating units. In addition, a 90,000 to 110,000 gallon spill of No. 6 fuel oil resulted when a piece of wind-blown debris punctured the steel of the unit One 12,000 barrel fuel oil metering tank approximately 30 feet up from the tank bottom. Despite the presence of a secondary containment structure around the tank, the intense wind blew oil throughout the plant site. The damage to the metering tank apparently occurred during the first half hour of the hurricane. As the tank's oil level fell due to the puncture, transfer pumps from the bulk oil storage tanks received a low level alarm which automatically began transferring oil to the damaged metering tank. To prevent the further discharge of oil, plant personnel entered the power block and secured the pumps during the passage of the hurricane eye. Immediately following the storm, facility personnel deployed booms across the barge canal and the Units 1 and 2 intake canal to contain the oil which had entered the water. The response strategy and implementation is described in detail. The remediation costs were approximately $14/gallon spilled, including 54,000 gallons recovered for electricity generation

  1. Modifications to nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    This Safety Guide was prepared under the IAEA's programme for safety standards for nuclear power plants. It supplements Section 7 of the Safety Requirements publication on Safety of Nuclear Power Plants: Operation, which establishes the safety requirements for the modification of nuclear power plants. Reasons for carrying out modifications to nuclear power plants may include: (1) maintaining or strengthening existing safety provisions and thus maintaining consistency with or improving on the current design. (2) recovering from plant faults. (3) improving the thermal performance or increasing the power rating of the plant. (4) increasing the maintainability of the plant, reducing the radiation exposure of personnel or reducing the costs of plant maintenance. And (5) extending the design life of the plant. Most modifications, made on the basis of operating experience, are intended to improve on the design or to improve operational performance and flexibility. Some are rendered necessary by new regulatory requirements, ageing of the plant or obsolescence of equipment. However, the benefits of regularly updating the plant design can be jeopardized if modifications are not kept under rigorous control throughout the lifetime of the plant. The need to reduce costs and improve efficiency, in combination with changes to the structure of the electricity generation sector of the economy in many countries, has led many companies to make changes in the structure of the operating organization for nuclear power plants. Whatever the reason for such organizational changes, consideration should be given to the effects of those changes with the aim of ensuring that they would have no impacts that would compromise the safety of the plant. The objective of this Safety Guide is to provide guidance and recommendations on controlling activities relating to modifications at nuclear power plants in order to reduce risk and to ensure that the configuration of the plant is at all times under

  2. Modifications to nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2007-01-01

    This Safety Guide was prepared under the IAEA's programme for safety standards for nuclear power plants. It supplements Section 7 of the Safety Requirements publication on Safety of Nuclear Power Plants: Operation, which establishes the safety requirements for the modification of nuclear power plants. Reasons for carrying out modifications to nuclear power plants may include: (1) maintaining or strengthening existing safety provisions and thus maintaining consistency with or improving on the current design. (2) recovering from plant faults. (3) improving the thermal performance or increasing the power rating of the plant. (4) increasing the maintainability of the plant, reducing the radiation exposure of personnel or reducing the costs of plant maintenance. And (5) extending the design life of the plant. Most modifications, made on the basis of operating experience, are intended to improve on the design or to improve operational performance and flexibility. Some are rendered necessary by new regulatory requirements, ageing of the plant or obsolescence of equipment. However, the benefits of regularly updating the plant design can be jeopardized if modifications are not kept under rigorous control throughout the lifetime of the plant. The need to reduce costs and improve efficiency, in combination with changes to the structure of the electricity generation sector of the economy in many countries, has led many companies to make changes in the structure of the operating organization for nuclear power plants. Whatever the reason for such organizational changes, consideration should be given to the effects of those changes with the aim of ensuring that they would have no impacts that would compromise the safety of the plant. The objective of this Safety Guide is to provide guidance and recommendations on controlling activities relating to modifications at nuclear power plants in order to reduce risk and to ensure that the configuration of the plant is at all times under

  3. Nuclear Power Plant Lifetime Management Study (I)

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sung Yull; Jeong, Ill Seok; Jang, Chang Heui; Song, Taek Ho; Song, Woo Young [Korea Electric Power Research Institute, Taejon (Korea, Republic of); Jin, Tae Eun [Korea Power Engineering Company Consulting and Architecture Engineers, (Korea, Republic of); Kim, Woo Chul [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    As the operation-year of nuclear power plant increases and finding sites for new nuclear power plant becomes harder, a comprehensive and systematic nuclear plant lifetime management(PLIM) program including life extension has to be established for stable and safe supply of electricity. A feasibility study was conducted to systematically evaluate technical, economic and regulatory aspect of plant lifetime managements and plant life extension for Kori-1 nuclear power plant. For technical evaluation of nuclear power plant, 13 major components were selected for lifetime evaluation by screening system. structure, and components(SSCs) of the plant. It was found that except reactor pressure vessel, which needs detailed integrity analysis, and low pressure turbine, which is scheduled to be replaced, 11 out of 13 major components have sufficient service life, for more than 40 years. Because domestic rules and regulations related to license renewal has not yet been written, review on the regulatory aspect of life extensions was conducted using US NRC rules and regulations. A cooperative effort with nuclear regulatory body is needed for early completion of license renewal rules and regulations. For economic evaluation of plant lifetime extension, a computer program was developed and used. It was found that 10 to 20 year of extension operation of Kori-1 nuclear power plant was proved. Based on the results, next phase of plant lifetime management program for detailed lifetime evaluation and presenting detailed implementation schedule for plant refurbishment for lifetime extension should be followed. (author). 74 refs., figs.

  4. Nuclear Power Plant Lifetime Management Study (I)

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sung Yull; Jeong, Ill Seok; Jang, Chang Heui; Song, Taek Ho; Song, Woo Young [Korea Electric Power Research Institute, Taejon (Korea, Republic of); Jin, Tae Eun [Korea Power Engineering Company Consulting and Architecture Engineers, (Korea, Republic of); Kim, Woo Chul [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-12-31

    As the operation-year of nuclear power plant increases and finding sites for new nuclear power plant becomes harder, a comprehensive and systematic nuclear plant lifetime management(PLIM) program including life extension has to be established for stable and safe supply of electricity. A feasibility study was conducted to systematically evaluate technical, economic and regulatory aspect of plant lifetime managements and plant life extension for Kori-1 nuclear power plant. For technical evaluation of nuclear power plant, 13 major components were selected for lifetime evaluation by screening system. structure, and components(SSCs) of the plant. It was found that except reactor pressure vessel, which needs detailed integrity analysis, and low pressure turbine, which is scheduled to be replaced, 11 out of 13 major components have sufficient service life, for more than 40 years. Because domestic rules and regulations related to license renewal has not yet been written, review on the regulatory aspect of life extensions was conducted using US NRC rules and regulations. A cooperative effort with nuclear regulatory body is needed for early completion of license renewal rules and regulations. For economic evaluation of plant lifetime extension, a computer program was developed and used. It was found that 10 to 20 year of extension operation of Kori-1 nuclear power plant was proved. Based on the results, next phase of plant lifetime management program for detailed lifetime evaluation and presenting detailed implementation schedule for plant refurbishment for lifetime extension should be followed. (author). 74 refs., figs.

  5. Comparison of health and environmental effects of nuclear power plants and lignite-burning power plants

    International Nuclear Information System (INIS)

    Horacek, P.; Chytil, I.; Razga, J.

    1988-01-01

    The individual factors are discussed which characterize the impact of nuclear power plants and lignite-burning power plants on human health and on the environment. The study proceeds from the IAEA categorization of these impacts. In this light, attention is centred on the impact of the normal operation of power plants and on accidents. The former category is further divided into regional impacts such as the emission of chemical substances, the emission of radioactive substances, heat emissions and the sum of regional factors, and on global impacts such as emissions of carbon dioxide, emissions of long-lived radionuclides and the sum of global impacts. It is stated that research should pay more attention to the dangers of the effects of such a state of affairs when the infrastructure contaminated after a large-scale accident would be put out of operation, and the dangers of such a situation especially in small countries with great population densities. Such accidents represent the biggest danger of the use of nuclear power. The greatest danger of coal-burning power plants is their global impact on the atmosphere caused by the increasing concentration of carbon dioxide from burning fossil fuels. (Z.M.). 4 figs., 13 refs

  6. Control of renewable distributed power plants

    OpenAIRE

    Bullich Massagué, Eduard

    2015-01-01

    The main objective of this master thesis is to design a power plant controller for a photo- voltaic (PV) power plant. In a first stage, the current situation of the status of the electrical grid is analysed. The electrical network structure is moving from a conventional system (with centralized power generation, unidirectional power ows, easy control) to a smart grid system consisting on distributed generation, renewable energies, smart and complex control architecture and ...

  7. Design of an Adaptive Power Regulation Mechanism and a Nozzle for a Hydroelectric Power Plant Turbine Test Rig

    Science.gov (United States)

    Mert, Burak; Aytac, Zeynep; Tascioglu, Yigit; Celebioglu, Kutay; Aradag, Selin; ETU Hydro Research Center Team

    2014-11-01

    This study deals with the design of a power regulation mechanism for a Hydroelectric Power Plant (HEPP) model turbine test system which is designed to test Francis type hydroturbines up to 2 MW power with varying head and flow(discharge) values. Unlike the tailor made regulation mechanisms of full-sized, functional HEPPs; the design for the test system must be easily adapted to various turbines that are to be tested. In order to achieve this adaptability, a dynamic simulation model is constructed in MATLAB/Simulink SimMechanics. This model acquires geometric data and hydraulic loading data of the regulation system from Autodesk Inventor CAD models and Computational Fluid Dynamics (CFD) analysis respectively. The dynamic model is explained and case studies of two different HEPPs are performed for validation. CFD aided design of the turbine guide vanes, which is used as input for the dynamic model, is also presented. This research is financially supported by Turkish Ministry of Development.

  8. Owners of nuclear power plants: Percentage ownership of commercial nuclear power plants by utility companies

    International Nuclear Information System (INIS)

    Wood, R.S.

    1987-08-01

    The following list indicates percentage ownership of commercial nuclear power plants by utility companies as of June 1, 1987. The list includes all plants licensed to operate, under construction, docked for NRC safety and environmental reviews, or under NRC antitrust review. It does not include those plants announced but not yet under review or those plants formally canceled. In many cases, ownership may be in the process of changing as a result of altered financial conditions, changed power needs, and other reasons. However, this list reflects only those ownership percentages of which the NRC has been formally notified. Part I lists plants alphabetically with their associated applicants/licensees and percentage ownership. Part II lists applicants/licensees alphabetically with their associated plants and percentage ownership. Part I also indicates which plants have received operating licenses (OL's). Footnotes for both parts appear at the end of this document

  9. Lithium ion battery energy storage system for augmented wind power plants

    DEFF Research Database (Denmark)

    Swierczynski, Maciej Jozef

    with Battery Energy Storage Systems (BESSs) into the so called Virtual Power Plants (VPP). Relatively new energy storage technologies based on Lithium ion (Li-ion) batteries are constantly improving their performance and are becoming attractive for stationary energy storage applications due...... to their characteristics such as high power, high efficiency, low self-discharge, and long lifetime. The family of the Li-ion batteries is wide and the selection of the most appropriate Liion chemistries for VPPs is one of the topics of this thesis, where different chemistries are compared and the most suitable ones...... if the batteries are able to meet several performance requirements, which are application dependent. Furthermore, for the VPP, the degradation or failure of the interconnected BESS can lead to costly downtime. Thus, an accurate estimation of the battery cells lifetime becomes mandatory. However, lifetime...

  10. Ardennes nuclear power plant

    International Nuclear Information System (INIS)

    1974-12-01

    The SENA nuclear power plant continued to operate, as before, at authorized rated power, namely 905MWth during the first half year and 950MWth during the second half year. Net energy production:2028GWh; hours phased to the line: 7534H; availability factor: 84%; utilization factor: 84%; total shutdowns:19; number of scrams:10; cost per KWh: 4,35 French centimes. Overall, the plant is performing very satisfactory. Over the last three years net production has been 5900GWh, corresponding to in average utilization factor of 83%

  11. Latina nuclear power plant

    International Nuclear Information System (INIS)

    1976-03-01

    In the period under review, the Latina power plant produced 1009,07 million kWh with a utilization factor of 72% and an availability factor of 80,51%. The disparity between the utilization and availability factors was mainly due to the shutdown of the plant owing to trade union strife. The reasons for non-availability (19,49%) were almost all related to the functioning of the conventional part and the general servicing of the plant (18 September-28 October). During the shutdown for maintenance, an inspection of the steel members and parts of the core stabilizing structure was made in order to check for the familiar oxidation phenomena caused by CO 2 ; the results of the inspection were all satisfactory. Operation of the plant during 1974 was marked by numerous power cutbacks as a result of outages of the steam-raising units (leaks from the manifolds) and main turbines (inspection and repairs to the LP rotors). Since it was first brought into commercial operation, the plant has produced 13,4 thousand million kWh

  12. Temperature variation on the Mediterranean Sea by the exploitation of the Vandellos II Nuclear Power Plant

    International Nuclear Information System (INIS)

    Villarreal Romero, M.; Ribes Hernandez, G.; Esparza Martin, J. L.

    2010-01-01

    The aim of this study is to verify the compliance with the Resolution of 7th February MAH/285/2007 Departament de Medi Ambient I Habitatge de la Generalitat de Catalunya establishing discharges limits to the Mediterranean Sea and, in particular, the section that references the thermal rise. The study area include about 1.5 km coastline, which is located in the vicinity of the Vandellos II Nuclear Power Plant.

  13. Improvements of radioactive waste management at WWER nuclear power plants

    International Nuclear Information System (INIS)

    2006-04-01

    This report is part of a systematic IAEA effort to improve waste management practices at WWER plants and to make them consistent with the current requirements and standards for safe and reliable operation of nuclear power plants. The report reviews the wet and dry solid waste management practices at the various types of WWER nuclear power plants (NPP) and describes approaches and recent achievements in waste minimization. Waste minimization practices in use at western PWRs are reviewed and compared, and their applicability at WWER plants is evaluated. Radioactive waste volume reduction issues and waste management practices are reflected in many IAEA publications. However, aspects of waste minimization specific to individual WWER nuclear power plant designs and WWER waste management policies are not addressed extensively in those publications. This report covers the important aspects applicable to the improvement of waste management at WWER NPP, including both plant-level and country-level considerations. It is recognized that most WWER plants are already implementing many of these concepts and recommendations with varying degrees of success; others will benefit from the included considerations. The major issues addressed are: - Review of current waste management policies and practices related to WWERs and western PWRs, including the influence of the original design concepts and significant modifications, liquid waste discharge limits and dry solid waste clearance levels applied in individual countries, national policies and laws, and other relevant aspects affecting the nature and quantities of waste arisings; - Identification of strategies and methods for improving the radioactive waste management generated in normal operation and maintenance at WWERs. This report is a composite (combination) of the two separate initiatives mentioned above. The first draft report was prepared at the meeting 26-30 May 1997 by five consultants. The draft was improved during an

  14. Dynamic Frequency Response of Wind Power Plants

    DEFF Research Database (Denmark)

    Altin, Müfit

    according to their grid codes. In these scenarios particularly with high wind power penetration cases, conventional power plants (CPPs) such as old thermal power plants are planned to be replaced with wind power plants (WPPs). Consequently, the power system stability will be affected and the control...... to maintain sustainable and reliable operation of the power system for these targets, transmission system operators (TSOs) have revised the grid code requirements. Also, the TSOs are planning the future development of the power system with various wind penetration scenarios to integrate more wind power...... capability of WPPs would be investigated. The objective of this project is to analyze and identify the power system requirements for the synchronizing power support and inertial response control of WPPs in high wind power penetration scenarios. The dynamic frequency response of WPPs is realized...

  15. Power plant perspectives for sugarcane mills

    International Nuclear Information System (INIS)

    Bocci, E.; Di Carlo, A.; Marcelo, D.

    2009-01-01

    Biomass, integral to life, is one of the main energy sources that modern technologies could widely develop, overcoming inefficient and pollutant uses. The sugarcane bagasse is one of the more abundant biomass. Moreover, the fluctuating sugar and energy prices force the sugarcane companies to implement improved power plants. Thanks to a multiyear collaboration between University of Rome and University of Piura and Chiclayo, this paper investigates, starting from the real data of an old sugarcane plant, the energy efficiency of the plant. Furthermore, it explores possible improvements as higher temperature and pressure Rankine cycles and innovative configurations based on gasifier plus hot gas conditioning and gas turbine or molten carbonate fuel cells. Even if the process of sugar extraction from sugarcane and the relative Rankine cycles power plants are well documented in literature, this paper shows that innovative power plant configurations can increase the bagasse-based cogeneration potential. Sugarcane companies can become electricity producers, having convenience in the use of sugarcane leaves and trash (when it is feasible). The worldwide implementation of advanced power plants, answering to a market competition, will improve significantly the renewable electricity produced, reducing CO 2 emissions, and increasing economic and social benefits.

  16. Optimal control systems in hydro power plants

    International Nuclear Information System (INIS)

    Babunski, Darko L.

    2012-01-01

    The aim of the research done in this work is focused on obtaining the optimal models of hydro turbine including auxiliary equipment, analysis of governors for hydro power plants and analysis and design of optimal control laws that can be easily applicable in real hydro power plants. The methodology of the research and realization of the set goals consist of the following steps: scope of the models of hydro turbine, and their modification using experimental data; verification of analyzed models and comparison of advantages and disadvantages of analyzed models, with proposal of turbine model for design of control low; analysis of proportional-integral-derivative control with fixed parameters and gain scheduling and nonlinear control; analysis of dynamic characteristics of turbine model including control and comparison of parameters of simulated system with experimental data; design of optimal control of hydro power plant considering proposed cost function and verification of optimal control law with load rejection measured data. The hydro power plant models, including model of power grid are simulated in case of island ing and restoration after breakup and load rejection with consideration of real loading and unloading of hydro power plant. Finally, simulations provide optimal values of control parameters, stability boundaries and results easily applicable to real hydro power plants. (author)

  17. ALARA at nuclear power plants

    International Nuclear Information System (INIS)

    Baum, J.W.

    1991-01-01

    Implementation of the ALARA principle at nuclear power plants presents a continuing challenge for health physicists at utility corporate and plant levels, for plant designers, and for regulatory agencies. The relatively large collective doses at some plants are being addressed through a variety of dose reduction techniques. Initiatives by the ICRP, NCRP, NRC, INPO, EPRI, and BNL ALARA Center have all contributed to a heightened interest and emphasis on dose reduction. The NCRP has formed Scientific Committee 46-9 which is developing a report on ALARA at Nuclear Power Plants. It is planned that this report will include material on historical aspects, management, valuation of dose reduction ($/person-Sv), quantitative and qualitative aspects of optimization, design, operational considerations, and training. The status of this work is summarized in this report

  18. Adaptive Reactive Power Control of PV Power Plants for Improved Power Transfer Capability under Ultra-Weak Grid Conditions

    DEFF Research Database (Denmark)

    Yang, Dongsheng; Wang, Xiongfei; Liu, Fangcheng

    2018-01-01

    with the unity power factor. Then, considering the reactive power compensation from PV inverters, the minimum SCR in respect to Power Factor (PF) is derived, and the optimized coordination of the active and reactive power is exploited. It is revealed that the power transfer capability of PV power plant under...... of a 200 MW PV power plant demonstrate that the proposed method can ensure the rated power transfer of PV power plant with the SCR of 1.25, provided that the PV inverters are operated with the minimal PF=0.9.......This paper analyzes the power transfer limitation of the PV power plant under the ultra-weak grid condition, i.e., when the Short-Circuit Ratio (SCR) is close to 1. It explicitly identifies that a minimum SCR of 2 is required for the PV power plant to deliver the rated active power when operating...

  19. Public exposure from environmental release of radioactive material under normal operation of unit-1 Bushehr nuclear power plant

    International Nuclear Information System (INIS)

    Sohrabi, M.; Parsouzi, Z.; Amrollahi, R.; Khamooshy, C.; Ghasemi, M.

    2013-01-01

    Highlights: ► The unit-1 Bushehr nuclear power plant is a VVER type reactor with 1000 MWe power. ► Doses of public critical groups living around the plant were assessed under normal reactor operation conditions. ► PC-CREAM 98 computer code developed by the HPA was applied to assess the public doses. ► Doses are comparable with those in the FSAR, in the ER and doses monitored. ► The doses assessed are lower than the dose constraint of 0.1 mSv/y associated with the plant. - Abstract: The Unit-1 Bushehr Nuclear Power Plant (BNPP-1), constructed at the Hallileh site near Bushehr located at the coast of the Persian Gulf, Iran, is a VVER type reactor with 1000 MWe power. According to standard practices, under normal operation conditions of the plant, radiological assessment of atmospheric and aquatic releases to the environment and assessment of public exposures are considered essential. In order to assess the individual and collective doses of the critical groups of population who receive the highest dose from radioactive discharges into the environment (atmosphere and aquatic) under normal operation conditions, this study was conducted. To assess the doses, the PC-CREAM 98 computer code developed by the Radiation Protection Division of the Health Protection Agency (HPA; formerly called NRPB) was applied. It uses a standard Gaussian plume dispersion model and comprises a suite of models and data for estimation of the radiological impact assessments of routine and continuous discharges from an NPP. The input data include a stack height of 100 m annual radionuclides release of gaseous effluents from the stack and liquid effluents that are released from heat removal system, meteorological data from the Bushehr local meteorological station, and the data for agricultural products. To assess doses from marine discharges, consumption of sea fish, crustacean and mollusca were considered. According to calculation by PC-CREAM 98 computer code, the highest individual

  20. Operation of Finnish nuclear power plants

    International Nuclear Information System (INIS)

    Tossavainen, K.

    1991-12-01

    The Finnish nuclear power plant units Loviisa 1 and 2 as well as TVO 1 and II were in operation for almost the whole second quarter of 1991. The load factor average was 87.4 %. In consequence of a fire, which broke out in the switchgear building, connections to both external grids were lost and TVO II relied on power supplied by four back-up diesels for 7.5 hrs. The event is classified as Level 2 on the International Nuclear Event Scale. The process of examining the non-leaking fuel bundles removed from the Loviisa nuclear reactors has continued. The examinations have revealed, so far, that the uppermost spacing lattices of the bundles exhibit deformations similar to those detected in the leaking fuel bundles removed from the reactors. This event is classified as Level 1 on the International Nuclear Event Scale. Other events in this quarter which are classified according to the International Nuclear Event Scale are Level Zero (Below Scale) on the Scale. The Finnish Centre for Radiation and Nuclear Safety has assessed the safety of the Loviisa and Olkiluoto nuclear power plants based on the new regulations issued on 14.2.1991 by the Council of State. The safety regulations are much more stringent than those in force when the Loviisa and Olkiluoto nuclear power plants were built. The assessment indicated that the TVO nuclear power plant meets these safety regulations. The Loviisa nuclear power plant meets the requirements with the exception of certain requirements related to the ensuring of safety functions and provision for accidents. At the Loviisa nuclear power plant there are several projects under consideration to enhance safety

  1. Safety Assessment - Swedish Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kjellstroem, B. [Luleaa Univ. of Technology (Sweden)

    1996-12-31

    After the reactor accident at Three Mile Island, the Swedish nuclear power plants were equipped with filtered venting of the containment. Several types of accidents can be identified where the filtered venting has no effect on the radioactive release. The probability for such accidents is hopefully very small. It is not possible however to estimate the probability accurately. Experiences gained in the last years, which have been documented in official reports from the Nuclear Power Inspectorate indicate that the probability for core melt accidents in Swedish reactors can be significantly larger than estimated earlier. A probability up to one in a thousand operating years can not be excluded. There are so far no indications that aging of the plants has contributed to an increased accident risk. Maintaining the safety level with aging nuclear power plants can however be expected to be increasingly difficult. It is concluded that the 12 Swedish plants remain a major threat for severe radioactive pollution of the Swedish environment despite measures taken since 1980 to improve their safety. Closing of the nuclear power plants is the only possibility to eliminate this threat. It is recommended that until this is done, quantitative safety goals, same for all Swedish plants, shall be defined and strictly enforced. It is also recommended that utilities distributing misleading information about nuclear power risks shall have their operating license withdrawn. 37 refs.

  2. Safety Assessment - Swedish Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kjellstroem, B.

    1996-01-01

    After the reactor accident at Three Mile Island, the Swedish nuclear power plants were equipped with filtered venting of the containment. Several types of accidents can be identified where the filtered venting has no effect on the radioactive release. The probability for such accidents is hopefully very small. It is not possible however to estimate the probability accurately. Experiences gained in the last years, which have been documented in official reports from the Nuclear Power Inspectorate indicate that the probability for core melt accidents in Swedish reactors can be significantly larger than estimated earlier. A probability up to one in a thousand operating years can not be excluded. There are so far no indications that aging of the plants has contributed to an increased accident risk. Maintaining the safety level with aging nuclear power plants can however be expected to be increasingly difficult. It is concluded that the 12 Swedish plants remain a major threat for severe radioactive pollution of the Swedish environment despite measures taken since 1980 to improve their safety. Closing of the nuclear power plants is the only possibility to eliminate this threat. It is recommended that until this is done, quantitative safety goals, same for all Swedish plants, shall be defined and strictly enforced. It is also recommended that utilities distributing misleading information about nuclear power risks shall have their operating license withdrawn. 37 refs

  3. Nuclear power plants: 2004 atw compact statistics

    International Nuclear Information System (INIS)

    Anon.

    2005-01-01

    In late 2004, nuclear power plants were available for power supply or were under construction in 32 countries worldwide. A total of 441 nuclear power plants, i.e. two plants more than in late 2003, were in operation with an aggregate gross power of approx. 386 GWe and an aggregate net power, respectively, of 362 GWe, in 31 countries. The available capacity of nuclear power plants increased by approx. 5 GWe as a result of the additions by the six units newly commissioned: Hamaoka 5 (Japan), Ulchin 6 (Korea), Kalinin 3 (Russia), Khmelnitski 2 (Ukraine), Qinshan II-2 (People's Republic of China), and Rowno 4 (Ukraine). In addition, unit 3 of the Bruce A nuclear power plant in Canada with a power of 825 MWe was restarted after an outage of many years. Contrary to earlier plans, a recommissioning program was initiated for the Bruce A-1 and A-2 units, which are also down at present. Five plants were decommissioned for good in 2004; Chapelcross 1 to 4 with 50 MWe each in the United Kingdom, and Ignalina 1 with 1 300 MWe in Lithuania. 22 nuclear generating units with an aggregate gross power of 19 GWe in nine countries were under construction in late 2004. In India, construction work was started on a new project, the 500 MWe PFBR prototype fast breeder reactor. In France, the EDF utility announced its intention to build an EPR on the Flamanville site beginning in 2007. (orig.)

  4. Robotics for nuclear power plants

    International Nuclear Information System (INIS)

    Nakayama, Ryoichi; Kimura, Motohiko; Abe, Akira

    1993-01-01

    A continuing need exists for automatic or remote-controlled machines or robots which can perform inspection and maintenance tasks in nuclear power plants. Toshiba has developed several types of monofunctional and multi- functional robots for such purposes over the past 20 years, some of which have already been used in actual plants. This paper describes new multifunctional robots for inspection and maintenance. An inspection robot has been applied in an actual plant for two years for performance testing. Maintenance robots for grinding tasks have also been developed, which can be easily teleoperated by the operator using automatic control. These new robots are expected to be applied to actual inspection and maintenance work in nuclear power plants. (author)

  5. Seismic reevaluation of existing nuclear power plants

    International Nuclear Information System (INIS)

    Hennart, J.C.

    1978-01-01

    The codes and regulations governing Nuclear Power Plant seismic analysis are continuously becoming more stringent. In addition, design ground accelerations of existing plants must sometimes be increased as a result of discovery of faulting zones or recording of recent earthquakes near the plant location after plant design. These new factors can result in augmented seismic design criteria. Seismic reanalysius of the existing Nuclear Power Plant structures and equipments is necessary to prevent the consequences of newly postulated accidents that could cause undue risk to the health or safety of the public. This paper reviews the developments of seismic analysis as applied to Nuclear Power Plants and the methods used by Westinghouse to requalify existing plants to the most recent safety requirements. (author)

  6. Robotics for nuclear power plants

    International Nuclear Information System (INIS)

    Shiraiwa, Takanori; Watanabe, Atsuo; Miyasawa, Tatsuo

    1984-01-01

    Demand for robots in nuclear power plants is increasing of late in order to reduce workers' exposure to radiations. Especially, owing to the progress of microelectronics and robotics, earnest desire is growing for the advent of intellecturized robots that perform indeterminate and complicated security work. Herein represented are the robots recently developed for nuclear power plants and the review of the present status of robotics. (author)

  7. Robotics for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Shiraiwa, Takanori; Watanabe, Atsuo; Miyasawa, Tatsuo

    1984-10-01

    Demand for robots in nuclear power plants is increasing of late in order to reduce workers' exposure to radiations. Especially, owing to the progress of microelectronics and robotics, earnest desire is growing for the advent of intellecturized robots that perform indeterminate and complicated security work. Herein represented are the robots recently developed for nuclear power plants and the review of the present status of robotics.

  8. Administrative competence of regions in connection with the establishment of power plants

    International Nuclear Information System (INIS)

    Poidomani, C.

    1980-03-01

    This paper which is divided into two parts, analyses the concept of competence underlying the regulations concerning the transfer of certain state duties to the regions. The author considers that this concept does not seem adaptable to the various functions the regions are required to discharge in the energy field. A description follows of the technical and administrative authority given to the regions in the licensing process for power-producing plants. The second part of the paper deals with recent regulations concerning energy conservation and development of alternative energy sources, in the context of regional competence. (NEA) [fr

  9. Biological effects of activation products and other chemicals released from fusion power plants

    International Nuclear Information System (INIS)

    Strand, J.A.; Poston, T.M.

    1976-09-01

    Literature reviews indicate that existing information is incomplete, often contradictory, and of questionable value for the prediction and assessment of ultimate impact from fusion-associated activation products and other chemical releases. It is still uncertain which structural materials will be used in the blanket and first wall of fusion power plants. However, niobium, vanadium, vanadium-chromium alloy, vanadium-titanium alloy, sintered aluminum product, and stainless steel have been suggested. The activation products of principal concern will be the longer-lived isotopes of 26 Al, 49 V, 51 Cr, 54 Mn, 55 Fe, 58 Co, 60 Co, 93 Nb, and 94 Nb. Lithium released to the environment either during the mining cycle, from power plant operation or accident, may be in the form of a number of compound types varying in solubility and affinity for biological organisms. The effects of a severe liquid metal fire or explosion involving Na or K will vary according to inherent abiotic and biotic features of the affected site. Saline, saline-alkaline, and sodic soils of arid lands would be particularly susceptible to alkaline stress. Beryllium released to the environment during the mining cycle or reactor accident situation could be in the form of a number of compound types. Adverse effects to aquatic species from routine chemical releases (biocides, corrosion inhibitors, dissolution products) may occur in the discharge of both fission and fusion power plant designs

  10. Transportable nuclear power plant TEC-M with two reactor plants of improved safety

    International Nuclear Information System (INIS)

    Ogloblin, B.G.; Sazonov, A.G.; Svishchev, A.M.; Gromov, B.F.; Zelensky, V.N.; Komkova, O.I.; Sidorov, V.I.; Tolstopyatov, V.P.; Toshinsky, G.I.

    1993-01-01

    Liquid metals are the best to meet the requirements of inherently safety nuclear power plants among the coolants used. A great experience has been gained in lead coolant power plant development and operation as applied to transportable power set-ups. Low chemical activity of this coolant with respect to air-water interaction is a determining factor for this coolant. The transportable nuclear power plant is described. It is intended to generate electric power for populated areas placed a long distance from the main electric power supply sources where it is difficult or not economical to deliver the conventional types of fuel. There are several remote areas in Siberia, Kamchatka in need of this type of power plant

  11. A virtual power plant model for time-driven power flow calculations

    Directory of Open Access Journals (Sweden)

    Gerardo Guerra

    2017-11-01

    Full Text Available This paper presents the implementation of a custom-made virtual power plant model in OpenDSS. The goal is to develop a model adequate for time-driven power flow calculations in distribution systems. The virtual power plant is modeled as the aggregation of renewable generation and energy storage connected to the distribution system through an inverter. The implemented operation mode allows the virtual power plant to act as a single dispatchable generation unit. The case studies presented in the paper demonstrate that the model behaves according to the specified control algorithm and show how it can be incorporated into the solution scheme of a general parallel genetic algorithm in order to obtain the optimal day-ahead dispatch. Simulation results exhibit a clear benefit from the deployment of a virtual power plant when compared to distributed generation based only on renewable intermittent generation.

  12. Monitoring support system for nuclear power plant

    International Nuclear Information System (INIS)

    Higashikawa, Yuichi; Kubota, Rhuji; Tanaka, Keiji; Takano, Yoshiyuki

    1996-01-01

    The nuclear power plants in Japan reach to 49 plants and supply 41.19 million kW in their installed capacities, which is equal to about 31% of total electric power generation and has occupied an important situation as a stable energy supplying source. As an aim to keeping safe operation and working rate of the power plants, various monitoring support systems using computer technology, optical information technology and robot technology each advanced rapidly in recent year have been developed to apply to the actual plants for a plant state monitoring system of operators in normal operation. Furthermore, introduction of the emergent support system supposed on accidental formation of abnormal state of the power plants is also investigated. In this paper, as a monitoring system in the recent nuclear power plants, design of control panel of recent central control room, introduction to its actual plant and monitoring support system in development were described in viewpoints of improvement of human interface, upgrade of sensor and signal processing techniques, and promotion of information service technique. And, trend of research and development of portable miniature detector and emergent monitoring support system are also introduced in a viewpoint of labor saving and upgrade of the operating field. (G.K.)

  13. Plant life management study of Japanese nuclear power plants

    International Nuclear Information System (INIS)

    Fukuda, Toshihiko

    1999-01-01

    Already more than twenty-five years have passed since the first commercial LWR plant went into operation in Japan. In this situation, MITI and 3 electric utilities (Tokyo Electric Power Company, Kansai Electric Power Co., Inc, Japan Atomic Power Company) have started a plant life management (PLM) study from 1994 to evaluate the long-term integrity of major systems, structures and components of aged LWR plants and ensure the safe, steady and highly reliable long-term operation. It consists of two phases: part 1 study and part 2 study. The part 1 study started in 1994 and focused on seven typical safety-related components. The part 1 study reports were made public in 1996. The part 2 study started in 1997. In this study we reviewed not only safety-related components but also plant reliability related components. The part 2 study reports were opened to the public in February 1999. This paper shows a summary of the part 2 study and our future PLM program. (author)

  14. Preliminary experiments on the growth of plants exposed to DC corona discharge in a hydroponics. Chokuryu corona hodenkadeno suiko sanbaini yoru shokubutsu seiikuno yobiteki kento

    Energy Technology Data Exchange (ETDEWEB)

    Shigemitsu, Tsukasa; Watanabe, Yasunori

    1988-01-01

    For the purpose of utilizing electrical phenomena to agriculture fields, preliminary experiments were carried out hydroponically to evaluate especially the effects of ion by DC corona discharge on the growth of plants such as lettuce or radish. The influences of various shapes of discharge electrodes on a water evaporation rate, ozone production rate and ion current change were studied, and the indirect stimulation effects on plants by more water evaporation under discharge, and the direct stimulation effects on plants with discharge by the electrode fixed 45cm above plants were studied. As a result, the water evaporation rate was 2 or 3 times more than that of control plots by positive or negative corona discharge, however, for the growth of plants, no remarkable direct or indirect stimulation effects by discharge were observed. As subjects, the clarification of water behavior change under discharge and of effects on plants in cellular level were pointed out to be necessary. (14 figs, 12 tabs, 12 refs)

  15. The future of integrated coal gasification combined cycle power plants

    International Nuclear Information System (INIS)

    Mueller, R.; Termuehlen, H.

    1991-01-01

    This paper examines the future of integrated coal gasification combined cycle (IGCC) power plants as affected by various technical, economical and environmental trends in power generation. The topics of the paper include a description of natural gas-fired combined cycle power plants, IGCC plants, coal gasifier concepts, integration of gasifiers into combined cycle power plants, efficiency, environmental impacts, co-products of IGCC power plants, economics of IGCC power plants, and a review of IGCC power plant projects

  16. Toxic releases from power plants

    International Nuclear Information System (INIS)

    Rubin, E.S.

    1999-01-01

    Beginning in 1998, electric power plants burning coal or oil must estimate and report their annual releases of toxic chemicals listed in the Toxics Release Inventory (TRI) published by the US Environmental Protection Agency (EPA). This paper identifies the toxic chemicals of greatest significance for the electric utility sector and develops quantitative estimates of the toxic releases reportable to the TRI for a representative coal-fired power plant. Key factors affecting the magnitude and types of toxic releases for individual power plants also are discussed. A national projection suggests that the magnitude of electric utility industry releases will surpass those of the manufacturing industries which current report to the TRI. Risk communication activities at the community level will be essential to interpret and provide context for the new TRI results

  17. Availability of thermal power plants 1977-1986

    International Nuclear Information System (INIS)

    Nitsch, D.; Schmitz, H.

    1987-01-01

    To get a picture of power plant availability and its influencing factors, availability data have been acquired and evaluated by VGB according to different design and operation parameters since 1970. The present volume is the 16th annual statistics since 1970. It covers the decade of 1977 to 1986 and contains availability data of 384 power plants in Germany and abroad, with a total of 94.896 MW and 3.768 plant years. Data are presented on fossil-fuelled units, units with a combined gas/steam cycle, nuclear power plants and gas turbine systems, with further sub-categories according to unit size, fuel, type, years of operation, and operating regime. German plants are reviewed separately. All power data are gross data measured at the generator terminals. For a comparative evaluation, the data of 1986 are supplemented by yearly averages since 1977 and averages for the decade from 1977 to 1986. Since 1978, nonavailability data are categorized as 'unscheduled' and 'scheduled' nonavailabilities. For availability data of 1970 to 1976, see the VGB publication 'Availability of thermal power plants, 1970 to 1981'. (orig./UA) [de

  18. EPRI nuclear power plant decommissioning technology program

    International Nuclear Information System (INIS)

    Kim, Karen S.; Bushart, Sean P.; Naughton, Michael; McGrath, Richard

    2011-01-01

    The Electric Power Research Institute (EPRI) is a non-profit research organization that supports the energy industry. The Nuclear Power Plant Decommissioning Technology Program conducts research and develops technology for the safe and efficient decommissioning of nuclear power plants. (author)

  19. Dispersion of radioactive material in air and water and consideration of population distribution in site evaluation for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    The IAEA issues Safety Requirements and Safety Guides pertaining to nuclear power plants and activities in the field of nuclear energy, on the basis of its Safety Fundamentals publication on The Safety of Nuclear Installations. The present Safety Guide, which supplements the Code on the Safety of Nuclear Power Plants: Siting, concerns the effects of a nuclear power plant on the surrounding region and the consideration of population distribution in the siting of a plant. This Safety Guide makes recommendations on how to meet the requirements of the Code on the Safety of Nuclear Power Plants: Siting, on the basis of knowledge of the mechanisms for the dispersion of effluents discharged into the atmosphere and into surface water and groundwater. Relevant site characteristics and safety considerations are discussed. Population distribution, the projected population growth rate, particular geographical features, the capabilities of local transport networks and communications networks, industry and agriculture in the region, and recreational and institutional activities in the region should be considered in assessing the feasibility of developing an emergency response plan. In the selection of a site for a facility using radioactive material, such as a nuclear power plant, account should be taken of any local features that might be affected by the facility and of the feasibility of off-site intervention, including emergency response and protective actions. This is in addition to the evaluation of any features of the site itself that might affect the safety of the facility. This Safety Guide recommends methods for the assessment of regional and local characteristics. This Safety Guide supersedes four earlier IAEA Safety Guides, namely: Atmospheric Dispersion in Nuclear Power Plant Siting (Safety Series No. 50-SG-S3 (1980)). Site Selection and Evaluation for Nuclear Power Plants with Respect to Population Distribution (Safety Series No. 50-SG-S4 (1980)). Hydrological

  20. Dispersion of radioactive material in air and water and consideration of population distribution in site evaluation for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2002-01-01

    The IAEA issues Safety Requirements and Safety Guides pertaining to nuclear power plants and activities in the field of nuclear energy, on the basis of its Safety Fundamentals publication on The Safety of Nuclear Installations. The present Safety Guide, which supplements the Code on the Safety of Nuclear Power Plants: Siting, concerns the effects of a nuclear power plant on the surrounding region and the consideration of population distribution in the siting of a plant. This Safety Guide makes recommendations on how to meet the requirements of the Code on the Safety of Nuclear Power Plants: Siting, on the basis of knowledge of the mechanisms for the dispersion of effluents discharged into the atmosphere and into surface water and groundwater. Relevant site characteristics and safety considerations are discussed. Population distribution, the projected population growth rate, particular geographical features, the capabilities of local transport networks and communications networks, industry and agriculture in the region, and recreational and institutional activities in the region should be considered in assessing the feasibility of developing an emergency response plan. In the selection of a site for a facility using radioactive material, such as a nuclear power plant, account should be taken of any local features that might be affected by the facility and of the feasibility of off-site intervention, including emergency response and protective actions. This is in addition to the evaluation of any features of the site itself that might affect the safety of the facility. This Safety Guide recommends methods for the assessment of regional and local characteristics. This Safety Guide supersedes four earlier IAEA Safety Guides, namely: Atmospheric Dispersion in Nuclear Power Plant Siting (Safety Series No. 50-SG-S3 (1980)); Site Selection and Evaluation for Nuclear Power Plants with Respect to Population Distribution (Safety Series No. 50-SG-S4 (1980)); Hydrological

  1. Occupational dose control in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Viktorsson, C.; Lochard, J.; Benedittini, M.; Baum, J.; Khan, T.A.

    1990-01-01

    Reduction in occupational exposure at nuclear power plants is desirable not only in the interest of the health and safety of plant personnel, but also because it enhances the safety and reliability of the plants. This report summarises the current trends of doses to workers at nuclear power plants and the achievements and developments regarding methods for their reduction

  2. Effect of thermal and radioactive waste waters from nuclear power plant on recipient biocenosis

    Energy Technology Data Exchange (ETDEWEB)

    Veresikova, M; Csupka, S; Tomanova, E [Krajska Hygienicka Stanica, Bratislava (Czechoslovakia)

    1979-01-01

    During the years 1974 to 1976 the effect was studied of thermal and radioactive effluents from the A-1 nuclear power plant on aquatic microorganisms. The values obtained from the waste water canal and the river Dudvah after the canal discharged into the river were compared with the values found in the Dudvah before the discharge. The correlation between aquatic microorganisms and water temperature was found to be closest in the waste water canal and between microorganisms and /sup 137/Cs content in the Dudvah after sewer emptying. With increasing water temperature the populations of aquatic microorganisms decrease, with the exception of producers whose numbers will increase with rising water temperature. The content of /sup 137/Cs in water had an effect similar to that of water temperature.

  3. Nuclear power plants of the nineties

    International Nuclear Information System (INIS)

    Weyermann, P.

    1989-01-01

    Nuclear power plants which will be available in the second half of the nineties are introduced. The demands which utilities must put on such a power plant that it covers their needs and meets the necessary acceptance of the public are presented. 8 figs

  4. I and C upgrading at nuclear power plants

    International Nuclear Information System (INIS)

    Tamiri, A.

    2003-01-01

    Continuing the operation of existing nuclear power plants will help reduce the number of new base-load nuclear and fossil power plants that need to be built. Old nuclear power plants in Canada are operating with analog instrumentation and control systems. For a number of reasons, such as changes and improvements in the applicable standards and design, maintenance problems due to the lack of spares, technical obsolescence, the need to increase power production, availability, reliability and safety, and in order to reduce operation and maintenance costs, instrumentation and control upgrading at nuclear power plants in a cost effective manner should be considered the greatest priority. Failures of instrumentation and control (I and C) due to aging and obsolescence issues may have an immediate negative impact on plant reliability and availability and also affect long-term plant performance and safety. In today's competitive marketplace, power plants are under pressure to cut spending on maintenance while reducing the risk of equipment failure that could cause unplanned outage. To improve plant safety and availability, old nuclear power plants will require investment in new technologies that can improve the performance and reduce the costs of generation by addressing the long term reliability of systems by up-grading to modem digital instrumentation and control and optimization opportunities. Boiler drum level control at nuclear power plants is critical for both plant protection and equipment safety and applies equality to high and low levels of water within the boiler drum. Plant outage studies at Pickering Nuclear have identified boiler drum level control and feed water control systems as major contributors to plant unavailability. Ways to improve transient and steady state response, upgrading existing poor analog control systems for boiler level and feed-water control systems at Pickering Nuclear, with enhanced and robust controller will be discussed in this paper

  5. The spherical tokamak fusion power plant

    International Nuclear Information System (INIS)

    Wilson, H.R.; Voss, G.; Ahn, J.W.

    2003-01-01

    The design of a 1GW(e) steady state fusion power plant, based on the spherical tokamak concept, has been further iterated towards a fully self-consistent solution taking account of plasma physics, engineering and neutronics constraints. In particular a plausible solution to exhaust handling is proposed and the steam cycle refined to further improve efficiency. The physics design takes full account of confinement, MHD stability and steady state current drive. It is proposed that such a design may offer a fusion power plant which is easy to maintain: an attractive feature for the power plants following ITER. (author)

  6. Operation of Finnish nuclear power plants

    International Nuclear Information System (INIS)

    Tossavainen, K.

    1992-09-01

    The Finnish nuclear power plant units Loviisa 1 and 2 as well as TVO I and II were in operation for almost all the time in the first quarter of 1992. The load factor average was 99.8%. All events which are classified on the International Nuclear Event Scale were level 0/below scale on the Scale. Occupational radiation doses and releases of radioactive material off-site remained well below authorised limits. Only quantities of radioactive material insignificant to radiation exposure, originating from the nuclear power plants, were detected in samples collected in the vicinity of the nuclear power plants

  7. Wind power plant

    Energy Technology Data Exchange (ETDEWEB)

    Caneghem, A.E. von

    1975-07-24

    The invention applies to a wind power plant in which the wind is used to drive windmills. The plant consists basically of a vertical tube with a lateral wind entrance opening with windmill on its lower end. On its upper end, the tube carries a nozzle-like top which increases the wind entering the tube by pressure decrease. The wind is thus made suitable for higher outputs. The invention is illustrated by constructional examples.

  8. VGB-requirements regarding technical data for power plants

    International Nuclear Information System (INIS)

    Richnow, Joerg

    2009-01-01

    Much of the technical plant data resulting from the planning, construction and start-up of power plants is needed for subsequent management and maintenance. Because of this, VGB has taken the initiative and has defined standard minimum requirements from power plant operators for technical plant data. They relate to the details and structure of this data, the definition of material classes and characteristics for the main power plant components and IT implementation for delivery of the technical plant data. (orig.)

  9. Transfer-factors for radionuclides in the coal-fired power plants environments in Serbia

    International Nuclear Information System (INIS)

    Todorovic, Dragana; Jankovic, Marija; Joksic, Jasminka; Radenkovic, Mirjana

    2008-01-01

    Full text: During the coal combustion in power plants, radionuclides are distributed in solid and gaseous combustion products and discharged into environment. Radioactivity monitoring of coal-fired power-plants environments (PP Nikola Tesla, PP Kolubara, PP Morava and PP Kostolac) in Serbia was carried out during 2003-2006. Here are presented results concerning the soil-plant and ash-plant systems. Plant samples growing at the soil and ash disposals are analyzed by gamma spectrometry (HPGe detector, relative efficiency 23%) and corresponding transfer factors (TF) for natural isotopes 226 Ra, 232 Th and 40 K were calculated and discussed. Obtained concentrations values of naturally occurring radionuclides are in following ranges: (0.4 - 29) Bq/kg 226 Ra, (0.16 - 23) Bq/kg 232 Th, (245 - 1274) Bq/kg 40 K, (1.7 - 30) Bq/kg 238 U, (0.08 - 4.7) Bq/kg 235 U, (5.6 - 95) Bq/kg 210 Pb; (28 - 288) Bq/kg 7 Be and man-made 137 Cs in range 0.06 - 2.8 Bq/kg. Ash-to-plant and soil-to-plant transfer factors for 226 Ra, 232 Th and 40 K are calculated for several sampling points. Values for both ash-to-plant and soil-to-plant transfer factors are much higher for 40 K than 226 Ra and 232 Th probably due to different assimilation mechanisms of these elements by plants. Analyzed radionuclides have higher concentrations in the ash disposal than soil, and corresponding transfer-factors values obtained for ash-plant systems (ranged from 0,007 to 0,179 for 226 Ra, from 0,015 to 0,174 for 232 Th and from 0,418 to 2,230 for 40 K) are higher, indicating that there is no limit value for absorption in plants. (author)

  10. Nuclear power plants: 2005 atw compact statistics

    International Nuclear Information System (INIS)

    Anon.

    2006-01-01

    Nuclear power plants were available for power supply and under construction, respectively, in 32 countries of the world as per end of 2005. A total of 444 nuclear power plants, i.e. three plants more than at the end of 2004, with an aggregate gross power of approx. 389 GWe and an aggregate net power of 370 GWe, respectively, were in operation in 31 countries. The available capacity of nuclear power plants increased by some 4,5 GWe as a result of the capacities added by the four newly commissioned units of Higashidori 1 (Japan), Shika 2 (Japan), Tarapur 4 (India), and Tianwan 1 (China). In addition, unit A-1 of the Pickering nuclear power station in Canada, with 825 MWe, was restarted after a downtime of several years. Two plants were decommissioned for good in 2005: Obrigheim in Germany, and Barsebaeck 2 in Sweden. 23 nuclear generating units, i.e. one unit more than in late 2004, with an aggregate gross power of approx. 19 GWe were still under construction in nine countries by late 2005. In Pakistan, construction of a new project, Chasnupp 2, was started; in China, construction was begun of two units, Lingao Phase 2, units 3 and 4, and in Japan, the Shimane 3 generating unit is being built. (orig.)

  11. Glow discharging device

    International Nuclear Information System (INIS)

    Maeno, Katsuki; Kawasaki, Kozo; Hiratsuka, Hajime; Kawashima, Shuichi.

    1989-01-01

    In a thermonuclear device, etc. impurities adsorbed to inner walls of a vacuum vessel by glow discharge are released to clean the vacuum vessel for preventing intrusion of the impurities into plasmas. The object of the present invention is to minimize the capacity of a power source equipment for the glow discharge device to the least extent. That is, a stabilization resistance is connected in series between each of a plurality of anodes which are inserted and arranged at the inside of a vacuum vessel as a cathode and a power source respectively. The resistance value R is selected so as to satisfy the relation: R < (Vi - Vm)/Ii, in which Vi: glow discharge starting voltage, Vm: glow discharge keeping voltage, Ii: glow discharge starting current. Accordingly, if a voltage is applied from a power source to a plurality of anodes, scattering of electric discharge between the anodes can be suppressed and the effect of voltage drop during discharge by the stabilization resistance can be eliminated. As a result, it is possible to provide an economically advantageous glow discharge device with the capacity for the power source facility being to the least extent. (K.M.)

  12. Evaluating the vulnerability of surface waters to antibiotic contamination from varying wastewater treatment plant discharges

    International Nuclear Information System (INIS)

    Batt, Angela L.; Bruce, Ian B.; Aga, Diana S.

    2006-01-01

    Effluents from three wastewater treatment plants with varying wastewater treatment technologies and design were analyzed for six antibiotics and caffeine on three sampling occasions. Sulfamethoxazole, trimethoprim, ciprofloxacin, tetracycline, and clindamycin were detected in the effluents at concentrations ranging from 0.090 to 6.0 μg/L. Caffeine was detected in all effluents at concentrations ranging from 0.19 to 9.9 μg/L. These findings indicate that several conventional wastewater management practices are not effective in the complete removal of antibiotics, and their discharges have a large potential to affect the aquatic environment. To evaluate the persistence of antibiotics coming from the wastewater discharges on the surrounding surface waters, samples were collected from the receiving streams at 10-, 20- and 100-m intervals. Ciprofloxacin, sulfamethoxazole, and clindamycin (0.043 to 0.076 μg/L) were found as far as 100 m from the discharge point, which indicates the persistence of these drugs in surface waters. - This work investigates the extent of antibiotic concentrations in receiving waters from discharges of wastewater treatment plants

  13. Nuclear power plant

    International Nuclear Information System (INIS)

    Aisaka, Tatsuyoshi; Kamahara, Hisato; Yanagisawa, Ko.

    1982-01-01

    Purpose: To prevent corrosion stress cracks in structural materials in a BWR type nuclear power plant by decreasing the oxygen concentration in the reactor coolants. Constitution: A hydrogen injector is connected between the condensator and a condensate clean up system of a nuclear power plant. The injector is incorporated with hydrogenated compounds formed from metal hydrides, for example, of alloys such as lanthanum-nickel alloy, iron titanium alloy, vanadium, palladium, magnesium-copper alloy, magnesium-nickel alloy and the like. Even if the pressure of hydrogen obtained from a hydrogen bomb or by way of water electrolysis is changed, the hydrogen can always be injected into a reactor coolant at a pressure equal to the equilibrium dissociation pressure for metal hydride by introducing the hydrogen into the hydrogen injector. (Seki, T.)

  14. Human factors in nuclear power plants

    International Nuclear Information System (INIS)

    Swain, A.D.

    1981-01-01

    This report describes some of the human factors problems in nuclear power plants and the technology that can be employed to reduce those problems. Many of the changes to improve the human factors in existing plants are inexpensive, and the expected gain in human reliability is substantial. The human factors technology is well-established and there are practitioners in most countries that have nuclear power plants. (orig.) [de

  15. National Pollution Discharge Elimination System (NPDES) Wastewater Treatment Plant Outfall Points, Region 9, 2012, US EPA Region 9

    Data.gov (United States)

    U.S. Environmental Protection Agency — Point geospatial dataset representing locations of NPDES outfalls/dischargers for waste water treatment plants which generally represent the site of the discharge....

  16. National Pollution Discharge Elimination System (NPDES) Wastewater Treatment Plant Outfall Points, Region 9, 2007, US EPA Region 9

    Data.gov (United States)

    U.S. Environmental Protection Agency — Point geospatial dataset representing locations of NPDES outfalls/dischargers for waste water treatment plants which generally represent the site of the discharge....

  17. National Pollution Discharge Elimination System (NPDES) Wastewater Treatment Plant Outfall Points, Region 9, 2011, US EPA Region 9

    Data.gov (United States)

    U.S. Environmental Protection Agency — Point geospatial dataset representing locations of NPDES outfalls/dischargers for waste water treatment plants which generally represent the site of the discharge....

  18. Beloyarsk Nuclear Power Plant

    International Nuclear Information System (INIS)

    1997-01-01

    The Beloyarsk Nuclear Power Plant (BNPP) is located in Zarechny, approximately 60 km east of Ekaterinberg along the Trans-Siberian Highway. Zarechny, a small city of approximately 30,000 residents, was built to support BNPP operations. It is a closed city to unescorted visitors. Residents must show identification for entry. BNPP is one of the first and oldest commercial nuclear power plants in Russia and began operations in 1964. As for most nuclear power plants in the Russian Federation, BNPP is operated by Rosenergoatom, which is subordinated to the Ministry of Atomic Energy of the Russian Federation (Minatom). BNPP is the site of three nuclear reactors, Units 1, 2, and 3. Units 1 and 2, which have been shut-down and defueled, were graphite moderated reactors. The units were shut-down in 1981 and 1989. Unit 3, a BN-600 reactor, is a 600 MW(electric) sodium-cooled fast breeder reactor. Unit 3 went on-line in April 1980 and produces electric power which is fed into a distribution grid and thermal power which provides heat to Zarechny. The paper also discusses the SF NIKIET, the Sverdiovsk Branch of NIKIET, Moscow, which is the research and development branch of the parent NIKEIT and is primarily a design institute responsible for reactor design. Central to its operations is a 15 megawatt IVV research reactor. The paper discusses general security and fissile material control and accountability at these two facilities

  19. Characterization and comprehension of corona partial discharge in air under power frequency to very low frequency voltage

    Science.gov (United States)

    Yuanxiang, ZHOU; Zhongliu, ZHOU; Ling, ZHANG; Yunxiao, ZHANG; Yajun, MO; Jiantao, SUN

    2018-05-01

    For the partial discharge test of electrical equipment with large capacitance, the use of low-frequency voltage instead of power frequency voltage can effectively reduce the capacity requirements of test power supply. However, the validity of PD test under low frequency voltage needs to be evaluated. In order to investigate the influence of voltage frequency on corona discharge in the air, the discharge test of the tip-plate electrode under the frequency from 50 to 0.1 Hz is carried out based on the impulse current method. The results show that some of the main features of corona under low frequency do not change. The magnitude of discharge in a positive half cycle is obviously larger than that in a negative cycle. The magnitude of discharge and interval in positive cycle are random, while that in negative cycle are regular. With the decrease of frequency, the inception voltage increases. The variation trend of maximum and average magnitude and repetition rate of the discharge in positive and negative half cycle with the variation of voltage frequency and magnitude is demonstrated, with discussion and interpretation from the aspects of space charge transportation, effective discharge time and transition of discharge modes. There is an obvious difference in the phase resolved pattern of partial discharge and characteristic parameters of discharge patterns between power and low frequency. The experimental results can be the reference for mode identification of partial discharge under low frequency tests. The trend of the measured parameters with the variation of frequency provides more information about the insulation defect than traditional measurements under a single frequency (usually 50 Hz). Also it helps to understand the mechanism of corona discharge with an explanation of the characteristics under different frequencies.

  20. Limitation of radioactive discharges from NPP based on radionuclide specific monitoring

    International Nuclear Information System (INIS)

    Bucina, I.; Malatova, I.; Vidlakova, J.

    1998-01-01

    Monitoring of gaseous and liquid discharges from nuclear power plants based on particulate-iodine-gas measurements and gross beta or gamma plus tritium measurements is being improved by performing radionuclide specific measurements using semiconductor gamma and beta spectrometers and radiochemical methods. A new concept of regulatory effluent limits is being developed. The activities of all the relevant radionuclides discharged during a years, multiplied by the appropriate Sv/Bq conversion coefficient based on a standard multi-pathway model, are summed up, and the effective dose is compared with the new limit. Such limits should be laid down as the per capita collective commitment effective dose in the plant surroundings for atmospheric discharges, and as the committed effective dose to a critical group member for the hydrospheric releases