WorldWideScience

Sample records for power n-face gan

  1. The 2018 GaN power electronics roadmap

    Science.gov (United States)

    Amano, H.; Baines, Y.; Beam, E.; Borga, Matteo; Bouchet, T.; Chalker, Paul R.; Charles, M.; Chen, Kevin J.; Chowdhury, Nadim; Chu, Rongming; De Santi, Carlo; Merlyne De Souza, Maria; Decoutere, Stefaan; Di Cioccio, L.; Eckardt, Bernd; Egawa, Takashi; Fay, P.; Freedsman, Joseph J.; Guido, L.; Häberlen, Oliver; Haynes, Geoff; Heckel, Thomas; Hemakumara, Dilini; Houston, Peter; Hu, Jie; Hua, Mengyuan; Huang, Qingyun; Huang, Alex; Jiang, Sheng; Kawai, H.; Kinzer, Dan; Kuball, Martin; Kumar, Ashwani; Boon Lee, Kean; Li, Xu; Marcon, Denis; März, Martin; McCarthy, R.; Meneghesso, Gaudenzio; Meneghini, Matteo; Morvan, E.; Nakajima, A.; Narayanan, E. M. S.; Oliver, Stephen; Palacios, Tomás; Piedra, Daniel; Plissonnier, M.; Reddy, R.; Sun, Min; Thayne, Iain; Torres, A.; Trivellin, Nicola; Unni, V.; Uren, Michael J.; Van Hove, Marleen; Wallis, David J.; Wang, J.; Xie, J.; Yagi, S.; Yang, Shu; Youtsey, C.; Yu, Ruiyang; Zanoni, Enrico; Zeltner, Stefan; Zhang, Yuhao

    2018-04-01

    Gallium nitride (GaN) is a compound semiconductor that has tremendous potential to facilitate economic growth in a semiconductor industry that is silicon-based and currently faced with diminishing returns of performance versus cost of investment. At a material level, its high electric field strength and electron mobility have already shown tremendous potential for high frequency communications and photonic applications. Advances in growth on commercially viable large area substrates are now at the point where power conversion applications of GaN are at the cusp of commercialisation. The future for building on the work described here in ways driven by specific challenges emerging from entirely new markets and applications is very exciting. This collection of GaN technology developments is therefore not itself a road map but a valuable collection of global state-of-the-art GaN research that will inform the next phase of the technology as market driven requirements evolve. First generation production devices are igniting large new markets and applications that can only be achieved using the advantages of higher speed, low specific resistivity and low saturation switching transistors. Major investments are being made by industrial companies in a wide variety of markets exploring the use of the technology in new circuit topologies, packaging solutions and system architectures that are required to achieve and optimise the system advantages offered by GaN transistors. It is this momentum that will drive priorities for the next stages of device research gathered here.

  2. Direct growth of freestanding GaN on C-face SiC by HVPE.

    Science.gov (United States)

    Tian, Yuan; Shao, Yongliang; Wu, Yongzhong; Hao, Xiaopeng; Zhang, Lei; Dai, Yuanbin; Huo, Qin

    2015-06-02

    In this work, high quality GaN crystal was successfully grown on C-face 6H-SiC by HVPE using a two steps growth process. Due to the small interaction stress between the GaN and the SiC substrate, the GaN was self-separated from the SiC substrate even with a small thickness of about 100 μm. Moreover, the SiC substrate was excellent without damage after the whole process so that it can be repeatedly used in the GaN growth. Hot phosphoric acid etching (at 240 °C for 30 min) was employed to identify the polarity of the GaN layer. According to the etching results, the obtained layer was Ga-polar GaN. High-resolution X-ray diffraction (HRXRD) and electron backscatter diffraction (EBSD) were done to characterize the quality of the freestanding GaN. The Raman measurements showed that the freestanding GaN film grown on the C-face 6H-SiC was stress-free. The optical properties of the freestanding GaN layer were determined by photoluminescence (PL) spectra.

  3. Thinning of N-face GaN (0001) samples by inductively coupled plasma etching and chemomechanical polishing

    International Nuclear Information System (INIS)

    Rizzi, F.; Gu, E.; Dawson, M. D.; Watson, I. M.; Martin, R. W.; Kang, X. N.; Zhang, G. Y.

    2007-01-01

    The processing of N-polar GaN (0001) samples has been studied, motivated by applications in which extensive back side thinning of freestanding GaN (FS-GaN) substrates is required. Experiments were conducted on FS-GaN from two commercial sources, in addition to epitaxial GaN with the N-face exposed by a laser lift-off process. The different types of samples produced equivalent results. Surface morphologies were examined over relatively large areas, using scanning electron microscopy and stylus profiling. The main focus of this study was on inductively coupled plasma (ICP) etch processes, employing Cl 2 /Ar or Cl 2 /BCl 3 Ar gas mixtures. Application of a standard etch recipe, optimized for feature etching of Ga-polar GaN (0001) surfaces, caused severe roughening of N-polar samples and confirmed the necessity for specific optimization of etch conditions for N-face material. A series of recipes with a reduced physical (sputter-based) contribution to etching allowed average surface roughness values to be consistently reduced to below 3 nm. Maximum N-face etch rates of 370-390 nm/min have been obtained in recipes examined to date. These are typically faster than etch rates obtained on Ga-face samples under the same conditions and adequate for the process flows of interest. Mechanistic aspects of the ICP etch process and possible factors contributing to residual surface roughness are discussed. This study also included work on chemomechanical polishing (CMP). The optimized CMP process had stock removal rates of ∼500 nm/h on the GaN N face. This was much slower than the ICP etching but showed the important capability of recovering smooth surfaces on samples roughened in previous processing. In one example, a surface roughened by nonoptimized ICP etching was smoothed to give an average surface roughness of ∼2 nm

  4. GaN transistors for efficient power conversion

    CERN Document Server

    Lidow, Alex; de Rooij, Michael; Reusch, David

    2014-01-01

    The first edition of GaN Transistors for Efficient Power Conversion was self-published by EPC in 2012, and is currently the only other book to discuss GaN transistor technology and specific applications for the technology. More than 1,200 copies of the first edition have been sold through Amazon or distributed to selected university professors, students and potential customers, and a simplified Chinese translation is also available. The second edition has expanded emphasis on applications for GaN transistors and design considerations. This textbook provides technical and application-focused i

  5. GaN Power Stage for Switch-mode Audio Amplification

    DEFF Research Database (Denmark)

    Ploug, Rasmus Overgaard; Knott, Arnold; Poulsen, Søren Bang

    2015-01-01

    Gallium Nitride (GaN) based power transistors are gaining more and more attention since the introduction of the enhancement mode eGaN Field Effect Transistor (FET) which makes an adaptation from Metal-Oxide Semiconductor (MOSFET) to eGaN based technology less complex than by using depletion mode Ga......N FETs. This project seeks to investigate the possibilities of using eGaN FETs as the power switching device in a full bridge power stage intended for switch mode audio amplification. A 50 W 1 MHz power stage was built and provided promising audio performance. Future work includes optimization of dead...

  6. Vertical GaN Devices for Power Electronics in Extreme Environments

    Science.gov (United States)

    2016-03-31

    Vertical GaN Devices for Power Electronics in Extreme Environments Isik C. Kizilyalli (1), Robert J. Kaplar (2), O. Aktas (1), A. M. Armstrong (2...electronics applications. In this paper vertical p-n diodes and transistors fabricated on pseudo bulk low defect density (104 to 106 cm-2) GaN substrates are...discussed. Homoepitaxial MOCVD growth of GaN on its native substrate and being able to control doping has allowed the realization of vertical

  7. N-polar GaN epitaxy and high electron mobility transistors

    International Nuclear Information System (INIS)

    Wong, Man Hoi; Keller, Stacia; Dasgupta, Nidhi Sansaptak; Denninghoff, Daniel J; Kolluri, Seshadri; Brown, David F; Lu, Jing; Fichtenbaum, Nicholas A; Ahmadi, Elaheh; DenBaars, Steven P; Speck, James S; Mishra, Umesh K; Singisetti, Uttam; Chini, Alessandro; Rajan, Siddharth

    2013-01-01

    This paper reviews the progress of N-polar (0001-bar) GaN high frequency electronics that aims at addressing the device scaling challenges faced by GaN high electron mobility transistors (HEMTs) for radio-frequency and mixed-signal applications. Device quality (Al, In, Ga)N materials for N-polar heterostructures are developed using molecular beam epitaxy and metalorganic chemical vapor deposition. The principles of polarization engineering for designing N-polar HEMT structures will be outlined. The performance, scaling behavior and challenges of microwave power devices as well as highly-scaled depletion- and enhancement-mode devices employing advanced technologies including self-aligned processes, n+ (In,Ga)N ohmic contact regrowth and high aspect ratio T-gates will be discussed. Recent research results on integrating N-polar GaN with Si for prospective novel applications will also be summarized. (invited review)

  8. Linear Distributed GaN MMIC Power Amplifier with Improved Power-added Efficiency

    Science.gov (United States)

    2017-03-01

    QPSK LTE waveform, the ACPR1improved by ~10 dBc at average output power of 23 dBm, without digital pre-distortion. Keywords: GaN, linear amplifiers...wideband amplifier, OIP3, LTE Introduction RF communications with spectral efficiency utilizes complex modulation schemes that require amplifier...wideband amplifiers remain. In this paper, we report on the measured CW performance of a multi-octave (100 MHz ‒ 8 GHz) GaN MMIC NDPA fabricated with

  9. Prospects for the application of GaN power devices in hybrid electric vehicle drive systems

    Science.gov (United States)

    Su, Ming; Chen, Chingchi; Rajan, Siddharth

    2013-07-01

    GaN, a wide bandgap semiconductor successfully implemented in optical and high-speed electronic devices, has gained momentum in recent years for power electronics applications. Along with rapid progress in material and device processing technologies, high-voltage transistors over 600 V have been reported by a number of teams worldwide. These advances make GaN highly attractive for the growing market of electrified vehicles, which currently employ bipolar silicon devices in the 600-1200 V class for the traction inverter. However, to capture this billion-dollar power market, GaN has to compete with existing IGBT products and deliver higher performance at comparable or lower cost. This paper reviews key achievements made by the GaN semiconductor industry, requirements of the automotive electric drive system and remaining challenges for GaN power devices to fit in the inverter application of hybrid vehicles.

  10. Prospects for the application of GaN power devices in hybrid electric vehicle drive systems

    International Nuclear Information System (INIS)

    Su, Ming; Chen, Chingchi; Rajan, Siddharth

    2013-01-01

    GaN, a wide bandgap semiconductor successfully implemented in optical and high-speed electronic devices, has gained momentum in recent years for power electronics applications. Along with rapid progress in material and device processing technologies, high-voltage transistors over 600 V have been reported by a number of teams worldwide. These advances make GaN highly attractive for the growing market of electrified vehicles, which currently employ bipolar silicon devices in the 600–1200 V class for the traction inverter. However, to capture this billion-dollar power market, GaN has to compete with existing IGBT products and deliver higher performance at comparable or lower cost. This paper reviews key achievements made by the GaN semiconductor industry, requirements of the automotive electric drive system and remaining challenges for GaN power devices to fit in the inverter application of hybrid vehicles. (invited review)

  11. Heteroepitaxial growth of In-face InN on GaN (0001) by plasma-assisted molecular-beam epitaxy

    International Nuclear Information System (INIS)

    Dimakis, E.; Iliopoulos, E.; Tsagaraki, K.; Kehagias, Th.; Komninou, Ph.; Georgakilas, A.

    2005-01-01

    The thermodynamic aspects of indium-face InN growth by radio frequency plasma-assisted molecular-beam epitaxy (rf-MBE) and the nucleation of InN on gallium-face GaN (0001) surface were investigated. The rates of InN decomposition and indium desorption from the surface were measured in situ using reflected high-energy electron diffraction and the rf-MBE 'growth window' of In-face InN (0001) was identified. It is shown that sustainable growth can be achieved only when the arrival rate of active nitrogen species on the surface is higher than the arrival rate of indium atoms. The maximum substrate temperature permitting InN growth as a function of the active nitrogen flux was determined. The growth mode of InN on Ga-face GaN (0001) surface was investigated by reflected high-energy electron diffraction and atomic force microscopy. It was found to be of the Volmer-Weber-type for substrate temperatures less than 350 deg. C and of the Stranski-Krastanov for substrate temperatures between 350 and 520 deg. C. The number of monolayers of initial two-dimensional growth, in the case of Stranski-Krastanov mode, varies monotonically with substrate temperature, from 2 ML at 400 deg. C to about 12 ML at 500 deg. C. The evolution and coalescence of nucleated islands were also investigated as a function of substrate temperature. It was found that at higher temperature their coalescence is inhibited leading to porous-columnar InN thin films, which exhibit growth rates higher than the nominal value. Therefore, in order to achieve continuous InN layers on GaN (0001) a two-step growth approach is introduced. In that approach, InN is nucleated at low temperatures on GaN and the growth continues until full coalescence of the nucleated islands. Subsequently, this nucleation layer is overgrown at higher substrate temperature in order to achieve high-quality continuous films. The InN films grown by the two-step method were investigated by x-ray diffraction, Hall-effect measurements, and

  12. Design of Low Inductance Switching Power Cell for GaN HEMT Based Inverter

    Energy Technology Data Exchange (ETDEWEB)

    Gurpinar, Emre [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Power Electronics and Electric Machinery Research Group; Iannuzzo, Francesco [Aalborg Univ., Aalborg (Denmark). Dept. of Energy Technology; Yang, Yongheng [Aalborg Univ., Aalborg (Denmark). Dept. of Energy Technology; Castellazzi, Alberto [Univ. of Nottingham (United Kingdom). Power Electronics, Machines and Control (PEMC); Blaabjerg, Frede [Aalborg Univ., Aalborg (Denmark). Dept. of Energy Technology

    2017-11-23

    Here in this paper, an ultra-low inductance power cell is designed for a three-Level Active Neutral Point Clamped (3LANPC) based on 650 V gallium nitride (GaN) HEMT devices. The 3L-ANPC topology with GaN HEMT devices and the selected modulation scheme suitable for wide-bandgap (WBG) devices are presented. The commutation loops, which mainly contribute to voltage overshoots and increase of switching losses, are discussed. The ultra-low inductance power cell design based on a fourlayer Printed Circuit Board (PCB) with the aim to maximize the switching performance of GaN HEMTs is explained. The design of gate drivers for the GaN HEMT devices is presented. Parasitic inductance and resistance of the proposed design are extracted with finite element analysis and discussed. Common mode behaviours based on the SPICE model of the converter are analyzed. Experimental results on the designed 3L-ANPC with the output power of up to 1 kW are presented, which verifies the performance of the proposed design in terms of ultra-low inductance.

  13. Design of Low Inductance Switching Power Cell for GaN HEMT Based Inverter

    International Nuclear Information System (INIS)

    Gurpinar, Emre; Iannuzzo, Francesco; Yang, Yongheng; Castellazzi, Alberto; Blaabjerg, Frede

    2017-01-01

    Here in this paper, an ultra-low inductance power cell is designed for a three-Level Active Neutral Point Clamped (3LANPC) based on 650 V gallium nitride (GaN) HEMT devices. The 3L-ANPC topology with GaN HEMT devices and the selected modulation scheme suitable for wide-bandgap (WBG) devices are presented. The commutation loops, which mainly contribute to voltage overshoots and increase of switching losses, are discussed. The ultra-low inductance power cell design based on a fourlayer Printed Circuit Board (PCB) with the aim to maximize the switching performance of GaN HEMTs is explained. The design of gate drivers for the GaN HEMT devices is presented. Parasitic inductance and resistance of the proposed design are extracted with finite element analysis and discussed. Common mode behaviours based on the SPICE model of the converter are analyzed. Experimental results on the designed 3L-ANPC with the output power of up to 1 kW are presented, which verifies the performance of the proposed design in terms of ultra-low inductance.

  14. Design of Low Inductance Switching Power Cell for GaN HEMT Based Inverter

    DEFF Research Database (Denmark)

    Gurpinar, Emre; Iannuzzo, Francesco; Yang, Yongheng

    2018-01-01

    . The design of gate drivers for the GaN HEMT devices is presented. Parasitic inductance and resistance of the proposed design are extracted with finite element analysis and discussed. Common-mode behaviours based on the SPICE model of the converter are analyzed. Experimental results on the designed 3L......In this paper, an ultra-low inductance power cell is designed for a three-Level Active Neutral Point Clamped (3LANPC) based on 650 V gallium nitride (GaN) HEMT devices. The 3L-ANPC topology with GaN HEMT devices and the selected modulation scheme suitable for wide-bandgap (WBG) devices...... are presented. The commutation loops, which mainly contribute to voltage overshoots and increase of switching losses, are discussed. The ultra-low inductance power cell design based on a four-layer Printed Circuit Board (PCB) with the aim to maximize the switching performance of GaN HEMTs is explained...

  15. Enhanced optical output power of InGaN/GaN light-emitting diodes grown on a silicon (111) substrate with a nanoporous GaN layer.

    Science.gov (United States)

    Lee, Kwang Jae; Chun, Jaeyi; Kim, Sang-Jo; Oh, Semi; Ha, Chang-Soo; Park, Jung-Won; Lee, Seung-Jae; Song, Jae-Chul; Baek, Jong Hyeob; Park, Seong-Ju

    2016-03-07

    We report the growth of InGaN/GaN multiple quantum wells blue light-emitting diodes (LEDs) on a silicon (111) substrate with an embedded nanoporous (NP) GaN layer. The NP GaN layer is fabricated by electrochemical etching of n-type GaN on the silicon substrate. The crystalline quality of crack-free GaN grown on the NP GaN layer is remarkably improved and the residual tensile stress is also decreased. The optical output power is increased by 120% at an injection current of 20 mA compared with that of conventional LEDs without a NP GaN layer. The large enhancement of optical output power is attributed to the reduction of threading dislocation, effective scattering of light in the LED, and the suppression of light propagation into the silicon substrate by the NP GaN layer.

  16. AlGaN/GaN field effect transistors for power electronics—Effect of finite GaN layer thickness on thermal characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Hodges, C., E-mail: chris.hodges@bristol.ac.uk; Anaya Calvo, J.; Kuball, M. [H. H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL (United Kingdom); Stoffels, S.; Marcon, D. [IMEC, Kapeldreef 75, B3001 Leuven (Belgium)

    2013-11-11

    AlGaN/GaN heterostructure field effect transistors with a 150 nm thick GaN channel within stacked Al{sub x}Ga{sub 1−x}N layers were investigated using Raman thermography. By fitting a thermal simulation to the measured temperatures, the thermal conductivity of the GaN channel was determined to be 60 W m{sup −1} K{sup −1}, over 50% less than typical GaN epilayers, causing an increased peak channel temperature. This agrees with a nanoscale model. A low thermal conductivity AlGaN buffer means the GaN spreads heat; its properties are important for device thermal characteristics. When designing power devices with thin GaN layers, as well as electrical considerations, the reduced channel thermal conductivity must be considered.

  17. Power-Combined GaN Amplifier with 2.28-W Output Power at 87 GHz

    Science.gov (United States)

    Fung, King Man; Ward, John; Chattopadhyay, Goutam; Lin, Robert H.; Samoska, Lorene A.; Kangaslahti, Pekka P.; Mehdi, Imran; Lambrigtsen, Bjorn H.; Goldsmith, Paul F.; Soria, Mary M.; hide

    2011-01-01

    Future remote sensing instruments will require focal plane spectrometer arrays with higher resolution at high frequencies. One of the major components of spectrometers are the local oscillator (LO) signal sources that are used to drive mixers to down-convert received radio-frequency (RF) signals to intermediate frequencies (IFs) for analysis. By advancing LO technology through increasing output power and efficiency, and reducing component size, these advances will improve performance and simplify architecture of spectrometer array systems. W-band power amplifiers (PAs) are an essential element of current frequency-multiplied submillimeter-wave LO signal sources. This work utilizes GaN monolithic millimeter-wave integrated circuit (MMIC) PAs developed from a new HRL Laboratories LLC 0.15- m gate length GaN semiconductor transistor. By additionally waveguide power combining PA MMIC modules, the researchers here target the highest output power performance and efficiency in the smallest volume achievable for W-band.

  18. N-face GaN nanorods: Continuous-flux MOVPE growth and morphological properties

    Science.gov (United States)

    Bergbauer, W.; Strassburg, M.; Kölper, Ch.; Linder, N.; Roder, C.; Lähnemann, J.; Trampert, A.; Fündling, S.; Li, S. F.; Wehmann, H.-H.; Waag, A.

    2011-01-01

    We demonstrate the morphological properties of height, diameter and shape controlled N-face GaN nanorods (NRs) by adjusting conventional growth parameters of a standard metalorganic vapour phase epitaxy (MOVPE) growth process. Particularly the hydrogen fraction within the carrier gas was shown to be an important shaping tool for the grown nanostructures. Additionally, the aspect ratio of the NRs was successfully tuned by increasing the pitch of the nanoimprint lithography (NIL) pattern, while maintaining the hole-diameter constant. An optimum aspect ratio could be found at pitches between 400 and 800 nm, whereas larger pitches are counter-productive. The major conclusion drawn from our experiments is that the whole amount of growth material available over the masked surface contributes to the growth of the NRs.

  19. A 99%-efficiency GaN converter for 6.78 MHz magnetic resonant wireless power transfer system

    Directory of Open Access Journals (Sweden)

    Yoshiyuki Akuzawa

    2014-10-01

    Full Text Available The authors developed a high-efficiency gallium-nitride (GaN Class-E converter for a 6.78 MHz magnetic resonant wireless power transfer system. A negative-bias gate driver circuit made it possible to use a depletion mode GaN high-electron-mobility transistor (HEMT, and simplified the converter circuit. As the depletion mode GaN HEMT with very small gate–source capacitance provided almost ideal zero-voltage switching, the authors attained a drain efficiency of 98.8% and a total efficiency of 97.7%, including power consumption of a gate driver circuit, at a power output of 33 W. In addition, the authors demonstrated a 6.78 MHz magnetic resonant wireless power transfer system that consisted of the GaN Class-E converter, a pair of magnetic resonant coils 150 mm in diameter with an air-gap distance of 40 mm, and a full-bridge rectifier using Si Schottky barrier diodes. The system achieved a dc–dc efficiency of 82.8% at a power output of 25 W. The efficiencies of coil coupling and the rectifier were estimated to be ∼ 94 and 90%, respectively.

  20. Radar Waveform Pulse Analysis Measurement System for High-Power GaN Amplifiers

    Science.gov (United States)

    Thrivikraman, Tushar; Perkovic-Martin, Dragana; Jenabi, Masud; Hoffman, James

    2012-01-01

    This work presents a measurement system to characterize the pulsed response of high-power GaN amplifiers for use in space-based SAR platforms that require very strict amplitude and phase stability. The measurement system is able to record and analyze data on three different time scales: fast, slow, and long, which allows for greater detail of the mechanisms that impact amplitude and phase stability. The system is fully automated through MATLAB, which offers both instrument control capability and in-situ data processing. To validate this system, a high-power GaN HEMT amplifier operated in saturation was characterized. The fast time results show that variations to the amplitude and phase are correlated to DC supply transients, while long time characteristics are correlated to temperature changes.

  1. A Compact Two-Stage 120 W GaN High Power Amplifier for SweepSAR Radar Systems

    Science.gov (United States)

    Thrivikraman, Tushar; Horst, Stephen; Price, Douglas; Hoffman, James; Veilleux, Louise

    2014-01-01

    This work presents the design and measured results of a fully integrated switched power two-stage GaN HEMT high-power amplifier (HPA) achieving 60% power-added efficiency at over 120Woutput power. This high-efficiency GaN HEMT HPA is an enabling technology for L-band SweepSAR interferometric instruments that enable frequent repeat intervals and high-resolution imagery. The L-band HPA was designed using space-qualified state-of-the-art GaN HEMT technology. The amplifier exhibits over 34 dB of power gain at 51 dBm of output power across an 80 MHz bandwidth. The HPA is divided into two stages, an 8 W driver stage and 120 W output stage. The amplifier is designed for pulsed operation, with a high-speed DC drain switch operating at the pulsed-repetition interval and settles within 200 ns. In addition to the electrical design, a thermally optimized package was designed, that allows for direct thermal radiation to maintain low-junction temperatures for the GaN parts maximizing long-term reliability. Lastly, real radar waveforms are characterized and analysis of amplitude and phase stability over temperature demonstrate ultra-stable operation over temperature using integrated bias compensation circuitry allowing less than 0.2 dB amplitude variation and 2 deg phase variation over a 70 C range.

  2. 5 Watt GaN HEMT Power Amplifier for LTE

    Directory of Open Access Journals (Sweden)

    K. Niotaki

    2014-04-01

    Full Text Available This work presents the design and implementation of a stand-alone linear power amplifier at 2.4 GHz with high output power. A GaN HEMT transistor is selected for the design and implementation of the power amplifier. The device exhibits a gain of 11.7 dB and a drain efficiency of 39% for an output power of 36.7 dBm at 2.4 GHz for an input power of 25dBm. The carrier to intermodulation ratio is better than 25 dB for a two tone input signal of 25 dBm of total power and a spacing of 5 MHz. The fabricated device is also tested with LTE input signals of different bandwidths (5MHz to 20MHz.

  3. Growth of InGaN multiple quantum wells and GaN eplilayer on GaN substrate

    International Nuclear Information System (INIS)

    Lee, Sung-Nam; Paek, H.S.; Son, J.K.; Sakong, T.; Yoon, E.; Nam, O.H.; Park, Y.

    2006-01-01

    We investigated that the surface morphology of GaN epilayers was significantly affected by the surface tilt orientation of GaN substrate. Surface morphologies of GaN epilayers on GaN substrates show three types: mirror, wavy, and hillock. These surface morphologies are dependent on the surface orientation of GaN substrates. It is found that the hillock morphology of GaN epilayer was formed on the GaN substrate with surface tilt orientation less than 0.1 o . As the surface tilt angle increased to 0.35 o , the surface morphology varied from hillock to wavy morphology. Above a surface tilt angle of 0.4 o , surface morphology changed to the mirror-like type morphology. Additionally, these three types of GaN surface morphology also affected the optical quality of GaN epilayers as well as InGaN multiple quantum wells on GaN substrates by non-uniform In incorporation on the different surface morphologies of GaN epilayers

  4. An analytical turn-on power loss model for 650-V GaN eHEMTs

    DEFF Research Database (Denmark)

    Shen, Yanfeng; Wang, Huai; Shen, Zhan

    2018-01-01

    This paper proposes an improved analytical turn-on power loss model for 650-V GaN eHEMTs. The static characteristics, i.e., the parasitic capacitances and transconductance, are firstly modeled. Then the turn-on process is divided into multiple stages and analyzed in detail; as results, the time-d......-domain solutions to the drain-source voltage and drain current are obtained. Finally, double-pulse tests are conducted to verify the proposed power loss model. This analytical model enables an accurate and fast switching behavior characterization and power loss prediction.......This paper proposes an improved analytical turn-on power loss model for 650-V GaN eHEMTs. The static characteristics, i.e., the parasitic capacitances and transconductance, are firstly modeled. Then the turn-on process is divided into multiple stages and analyzed in detail; as results, the time...

  5. Surface chemistry and electronic structure of nonpolar and polar GaN films

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Monu; Krishna, T.C. Shibin; Aggarwal, Neha; Gupta, Govind, E-mail: govind@nplindia.org

    2015-08-01

    Highlights: • Surface chemistry and electronic structure of polar and nonpolar GaN is reported. • Influence of polarization on electron affinity of p & np GaN films is investigated. • Correlation between surface morphology and polarity has been deduced. - Abstract: Photoemission and microscopic analysis of nonpolar (a-GaN/r-Sapphire) and polar (c-GaN/c-Sapphire) epitaxial gallium nitride (GaN) films grown via RF-Molecular Beam Epitaxy is reported. The effect of polarization on surface properties like surface states, electronic structure, chemical bonding and morphology has been investigated and correlated. It was observed that polarization lead to shifts in core level (CL) as well as valence band (VB) spectra. Angle dependent X-ray Photoelectron Spectroscopic analysis revealed higher surface oxide in polar GaN film compared to nonpolar GaN film. On varying the take off angle (TOA) from 0° to 60°, the Ga−O/Ga−N ratio varied from 0.11–0.23 for nonpolar and 0.17–0.36 for polar GaN film. The nonpolar film exhibited N-face polarity while Ga-face polarity was perceived in polar GaN film due to the inherent polarization effect. Polarization charge compensated surface states were observed on the polar GaN film and resulted in downward band bending. Ultraviolet photoelectron spectroscopic measurements revealed electron affinity and ionization energy of 3.4 ± 0.1 eV and 6.8 ± 0.1 eV for nonpolar GaN film and 3.8 ± 0.1 eV and 7.2 ± 0.1 eV for polar GaN film respectively. Field Emission Scanning Electron Microscopy measurements divulged smooth morphology with pits on polar GaN film. The nonpolar film on the other hand showed pyramidal structures having facets all over the surface.

  6. Reliability improvement in GaN HEMT power device using a field plate approach

    Science.gov (United States)

    Wu, Wen-Hao; Lin, Yueh-Chin; Chin, Ping-Chieh; Hsu, Chia-Chieh; Lee, Jin-Hwa; Liu, Shih-Chien; Maa, Jer-shen; Iwai, Hiroshi; Chang, Edward Yi; Hsu, Heng-Tung

    2017-07-01

    This study investigates the effect of implementing a field plate on a GaN high-electron-mobility transistor (HEMT) to improve power device reliability. The results indicate that the field plate structure reduces the peak electrical field and interface traps in the device, resulting in higher breakdown voltage, lower leakage current, smaller current collapse, and better threshold voltage control. Furthermore, after high voltage stress, steady dynamic on-resistance and gate capacitance degradation improvement were observed for the device with the field plate. This demonstrates that GaN device reliability can be improved by using the field plate approach.

  7. Fabrication of p-type porous GaN on silicon and epitaxial GaN

    OpenAIRE

    Bilousov, Oleksandr V.; Geaney, Hugh; Carvajal, Joan J.; Zubialevich, Vitaly Z.; Parbrook, Peter J.; Giguere, A.; Drouin, D.; Diaz, Francesc; Aguilo, Magdalena; O'Dwyer, Colm

    2013-01-01

    Porous GaN layers are grown on silicon from gold or platinum catalyst seed layers, and self-catalyzed on epitaxial GaN films on sapphire. Using a Mg-based precursor, we demonstrate p-type doping of the porous GaN. Electrical measurements for p-type GaN on Si show Ohmic and Schottky behavior from gold and platinum seeded GaN, respectively. Ohmicity is attributed to the formation of a Ga2Au intermetallic. Porous p-type GaN was also achieved on epitaxial n-GaN on sapphire, and transport measurem...

  8. X-Band GaN Power Amplifier MMIC with a Third Harmonic-Tuned Circuit

    Directory of Open Access Journals (Sweden)

    Kyung-Tae Bae

    2017-11-01

    Full Text Available This paper presents an X-band GaN HEMT power amplifier with a third harmonic-tuned circuit for a higher power density per area and a higher power-added efficiency (PAE using a 0.25 μm GaN HEMT process of WIN semiconductors, Inc. The optimum load impedances at the fundamental and third harmonic frequencies are extracted from load-pull simulations at the transistor’s extrinsic plane, including the drain-source capacitance and the series drain inductance. The third harmonic-tuned circuit is effectively integrated with the output matching circuit at the fundamental frequency, without complicating the whole output matching circuit. The input matching circuit uses a lossy matching scheme, which allows a good return loss and a simple LC low-pass circuit configuration. The fabricated power amplifier monolithic microwave integrated circuit (MMIC occupies an area of 13.26 mm2, and shows a linear gain of 20 dB or more, a saturated output power of 43.2~44.7 dBm, and a PAE of 35~37% at 8.5 to 10.5 GHz.

  9. Vertical architecture for enhancement mode power transistors based on GaN nanowires

    Science.gov (United States)

    Yu, F.; Rümmler, D.; Hartmann, J.; Caccamo, L.; Schimpke, T.; Strassburg, M.; Gad, A. E.; Bakin, A.; Wehmann, H.-H.; Witzigmann, B.; Wasisto, H. S.; Waag, A.

    2016-05-01

    The demonstration of vertical GaN wrap-around gated field-effect transistors using GaN nanowires is reported. The nanowires with smooth a-plane sidewalls have hexagonal geometry made by top-down etching. A 7-nanowire transistor exhibits enhancement mode operation with threshold voltage of 1.2 V, on/off current ratio as high as 108, and subthreshold slope as small as 68 mV/dec. Although there is space charge limited current behavior at small source-drain voltages (Vds), the drain current (Id) and transconductance (gm) reach up to 314 mA/mm and 125 mS/mm, respectively, when normalized with hexagonal nanowire circumference. The measured breakdown voltage is around 140 V. This vertical approach provides a way to next-generation GaN-based power devices.

  10. Characterization of vertical GaN p-n diodes and junction field-effect transistors on bulk GaN down to cryogenic temperatures

    Science.gov (United States)

    Kizilyalli, I. C.; Aktas, O.

    2015-12-01

    There is great interest in wide-bandgap semiconductor devices and most recently in vertical GaN structures for power electronic applications such as power supplies, solar inverters and motor drives. In this paper the temperature-dependent electrical behavior of vertical GaN p-n diodes and vertical junction field-effect transistors fabricated on bulk GaN substrates of low defect density (104 to 106 cm-2) is described. Homoepitaxial MOCVD growth of GaN on its native substrate and the ability to control the doping in the drift layers in GaN have allowed the realization of vertical device architectures with drift layer thicknesses of 6 to 40 μm and net carrier electron concentrations as low as 1 × 1015 cm-3. This parameter range is suitable for applications requiring breakdown voltages of 1.2 kV to 5 kV. Mg, which is used as a p-type dopant in GaN, is a relatively deep acceptor (E A ≈ 0.18 eV) and susceptible to freeze-out at temperatures below 200 K. The loss of holes in p-GaN has a deleterious effect on p-n junction behavior, p-GaN contacts and channel control in junction field-effect transistors at temperatures below 200 K. Impact ionization-based avalanche breakdown (BV > 1200 V) in GaN p-n junctions is characterized between 77 K and 423 K for the first time. At higher temperatures the p-n junction breakdown voltage improves due to increased phonon scattering. A positive temperature coefficient in the breakdown voltage is demonstrated down to 77 K; however, the device breakdown characteristics are not as abrupt at temperatures below 200 K. On the other hand, contact resistance to p-GaN is reduced dramatically above room temperature, improving the overall device performance in GaN p-n diodes in all cases except where the n-type drift region resistance dominates the total forward resistance. In this case, the electron mobility can be deconvolved and is found to decrease with T -3/2, consistent with a phonon scattering model. Also, normally-on vertical junction

  11. High-power blue laser diodes with indium tin oxide cladding on semipolar (202{sup ¯}1{sup ¯}) GaN substrates

    Energy Technology Data Exchange (ETDEWEB)

    Pourhashemi, A., E-mail: pourhashemi@engr.ucsb.edu; Farrell, R. M.; Cohen, D. A.; Speck, J. S. [Materials Department, University of California, Santa Barbara, California 93106 (United States); DenBaars, S. P.; Nakamura, S. [Materials Department, University of California, Santa Barbara, California 93106 (United States); Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106 (United States)

    2015-03-16

    We demonstrate a high power blue laser diode (LD) using indium tin oxide as a cladding layer on semipolar oriented GaN. These devices show peak output powers and external quantum efficiencies comparable to state-of-the-art commercial c-plane devices. Ridge waveguide LDs were fabricated on (202{sup ¯}1{sup ¯}) oriented GaN substrates using InGaN waveguiding layers and GaN cladding layers. At a lasing wavelength of 451 nm at room temperature, an output power of 2.52 W and an external quantum efficiency of 39% were measured from a single facet under a pulsed injection current of 2.34 A. The measured differential quantum efficiency was 50%.

  12. Ultralow threading dislocation density in GaN epilayer on near-strain-free GaN compliant buffer layer and its applications in hetero-epitaxial LEDs.

    Science.gov (United States)

    Shih, Huan-Yu; Shiojiri, Makoto; Chen, Ching-Hsiang; Yu, Sheng-Fu; Ko, Chung-Ting; Yang, Jer-Ren; Lin, Ray-Ming; Chen, Miin-Jang

    2015-09-02

    High threading dislocation (TD) density in GaN-based devices is a long unresolved problem because of the large lattice mismatch between GaN and the substrate, which causes a major obstacle for the further improvement of next-generation high-efficiency solid-state lighting and high-power electronics. Here, we report InGaN/GaN LEDs with ultralow TD density and improved efficiency on a sapphire substrate, on which a near strain-free GaN compliant buffer layer was grown by remote plasma atomic layer deposition. This "compliant" buffer layer is capable of relaxing strain due to the absorption of misfit dislocations in a region within ~10 nm from the interface, leading to a high-quality overlying GaN epilayer with an unusual TD density as low as 2.2 × 10(5) cm(-2). In addition, this GaN compliant buffer layer exhibits excellent uniformity up to a 6" wafer, revealing a promising means to realize large-area GaN hetero-epitaxy for efficient LEDs and high-power transistors.

  13. Stopping Power and Energy Straggling of Channeled He-Ions in GaN

    International Nuclear Information System (INIS)

    Turos, A.; Ratajczak, R.; Pagowska, K.; Nowicki, L.; Stonert, A.; Caban, P.

    2011-01-01

    GaN epitaxial layers are usually grown on sapphire substrates. To avoid disastrous effect of the large lattice mismatch a thin polycrystalline nucleation layer is grown at 500 o C followed by the deposition of thick GaN template at much higher temperature. Remnants of the nucleation layer were visualized by transmission electron microscopy as defect agglomeration at the GaN/sapphire interface and provide a very useful depth marker for the measurement of channeled ions stopping power. Random and aligned spectra of He ions incident at energies ranging from 1.7 to 3.7 MeV have been measured and evaluated using the Monte Carlo simulation code McChasy. Impact parameter dependent stopping power has been calculated for channeling direction and its parameters have been adjusted according to experimental data. For virgin, i.e. as grown, samples, the ratio of channeled to random stopping power is constant and amounts to 0.7 in the energy range studied. Defects produced by ion implantation largely influence the stopping power. For channeled ions the variety of possible trajectories leads to different energy loss at a given depth, thus resulting in much larger energy straggling than that for the random path. Beam energy distributions at different depths have been calculated using the McChasy code. They are significantly broader than those predicted by the Bohr formula for random direction. (author)

  14. Investigation of GaN LED with Be-implanted Mg-doped GaN layer

    International Nuclear Information System (INIS)

    Huang, H.-W.; Kao, C.C.; Chu, J.T.; Kuo, H.C.; Wang, S.C.; Yu, C.C.; Lin, C.F.

    2004-01-01

    We report the electrical and optical characteristics of GaN light emitting diode (LED) with beryllium (Be) implanted Mg-doped GaN layer. The p-type layer of Be-implanted GaN LED showed a higher hole carrier concentration of 2.3 x 10 18 cm -3 and low specific contact resistance value of 2.0 x 10 -4 Ωcm 2 than as-grown p-GaN LED samples without Be-implantation. The Be-implanted GaN LEDs with InGaN/GaN MQW show slightly lower light output (about 10%) than the as-grown GaN LEDs, caused by the high RTA temperature annealing process

  15. Improved InGaN/GaN quantum wells on treated GaN template with a Ga-rich GaN interlayer

    International Nuclear Information System (INIS)

    Fang, Zhilai; Shen, Xiyang; Wu, Zhengyuan; Zhang, Tong-Yi

    2015-01-01

    Treated GaN template was achieved by in situ droplet epitaxy of a Ga-rich GaN interlayer on the conventional GaN template. InGaN/GaN quantum wells (QWs) were grown on the conventional and treated GaN templates under the same growth conditions and then comprehensively characterized. The indium homogeneity in the InGaN layers and the interface sharpness between InGaN and GaN layers of the InGaN/GaN QWs on the treated GaN template were significantly improved. The emission intensity from the InGaN/GaN QWs on the treated GaN template was enhanced by 20% than that on the conventional GaN template, which was attributed to the strain reduction and the improvement in crystalline quality. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Characterization of vertical GaN p–n diodes and junction field-effect transistors on bulk GaN down to cryogenic temperatures

    International Nuclear Information System (INIS)

    Kizilyalli, I C; Aktas, O

    2015-01-01

    There is great interest in wide-bandgap semiconductor devices and most recently in vertical GaN structures for power electronic applications such as power supplies, solar inverters and motor drives. In this paper the temperature-dependent electrical behavior of vertical GaN p–n diodes and vertical junction field-effect transistors fabricated on bulk GaN substrates of low defect density (10 4 to 10 6 cm −2 ) is described. Homoepitaxial MOCVD growth of GaN on its native substrate and the ability to control the doping in the drift layers in GaN have allowed the realization of vertical device architectures with drift layer thicknesses of 6 to 40 μm and net carrier electron concentrations as low as 1 × 10 15 cm −3 . This parameter range is suitable for applications requiring breakdown voltages of 1.2 kV to 5 kV. Mg, which is used as a p-type dopant in GaN, is a relatively deep acceptor (E A  ≈ 0.18 eV) and susceptible to freeze-out at temperatures below 200 K. The loss of holes in p-GaN has a deleterious effect on p–n junction behavior, p-GaN contacts and channel control in junction field-effect transistors at temperatures below 200 K. Impact ionization-based avalanche breakdown (BV > 1200 V) in GaN p–n junctions is characterized between 77 K and 423 K for the first time. At higher temperatures the p–n junction breakdown voltage improves due to increased phonon scattering. A positive temperature coefficient in the breakdown voltage is demonstrated down to 77 K; however, the device breakdown characteristics are not as abrupt at temperatures below 200 K. On the other hand, contact resistance to p-GaN is reduced dramatically above room temperature, improving the overall device performance in GaN p–n diodes in all cases except where the n-type drift region resistance dominates the total forward resistance. In this case, the electron mobility can be deconvolved and is found to decrease with T −3/2 , consistent with a phonon scattering model. Also

  17. Real time ellipsometry for monitoring plasma-assisted epitaxial growth of GaN

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, Giovanni [Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR and INSTM UdR Bari, via Orabona, 4, 70126 Bari (Italy); Losurdo, Maria [Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR and INSTM UdR Bari, via Orabona, 4, 70126 Bari (Italy)]. E-mail: maria.losurdo@ba.imip.cnr.it; Giangregorio, Maria M. [Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR and INSTM UdR Bari, via Orabona, 4, 70126 Bari (Italy); Capezzuto, Pio [Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR and INSTM UdR Bari, via Orabona, 4, 70126 Bari (Italy); Brown, April S. [Department of Electrical and Computer Engineering, Duke University, 128 Hudson Hall, Durham, NC (United States); Kim, Tong-Ho [Department of Electrical and Computer Engineering, Duke University, 128 Hudson Hall, Durham, NC (United States); Choi, Soojeong [Department of Electrical and Computer Engineering, Duke University, 128 Hudson Hall, Durham, NC (United States)

    2006-10-31

    GaN is grown on Si-face 4H-SiC(0 0 0 1) substrates using remote plasma-assisted methods including metalorganic chemical vapour deposition (RP-MOCVD) and molecular beam epitaxy (MBE). Real time spectroscopic ellipsometry is used for monitoring all the steps of substrate pre-treatments and the heteroepitaxial growth of GaN on SiC. Our characterization emphasis is on understanding the nucleation mechanism and the GaN growth mode, which depend on the SiC surface preparation.

  18. Thermal stability study of Cr/Au contact formed on n-type Ga-polar GaN, N-polar GaN, and wet-etched N-polar GaN surfaces

    International Nuclear Information System (INIS)

    Choi, Yunju; Kim, Yangsoo; Ahn, Kwang-Soon; Kim, Hyunsoo

    2014-01-01

    Highlights: • The Cr/Au contact on n-type Ga-polar (0 0 0 1) GaN, N-polar (0 0 0 −1) GaN, and wet-etched N-polar GaN were investigated. • Thermal annealing led to a significant degradation of contact formed on N-polar n-GaN samples. • Contact degradation was shown to be closely related to the increase in the electrical resistivity of n-GaN. • Out-diffusion of Ga and N atoms was clearly observed in N-polar samples. - Abstract: The electrical characteristics and thermal stability of a Cr/Au contact formed on n-type Ga-polar (0 0 0 1) GaN, N-polar GaN, and wet-etched N-polar GaN were investigated. As-deposited Cr/Au showed a nearly ohmic contact behavior for all samples, i.e., the specific contact resistance was 3.2 × 10 −3 , 4.3 × 10 −4 , and 1.1 × 10 −3 Ω cm 2 for the Ga-polar, flat N-polar, and roughened N-polar samples, respectively. However, thermal annealing performed at 250 °C for 1 min in a N 2 ambient led to a significant degradation of contact, i.e., the contact resistance increased by 186, 3260, and 2030% after annealing for Ga-polar, flat N-polar, and roughened N-polar samples, respectively. This could be due to the different disruption degree of Cr/Au and GaN interface after annealing, i.e., the insignificant interfacial reaction occurred in the Ga-polar sample, while out-diffusion of Ga and N atoms was clearly observed in N-polar samples

  19. Thermal stability study of Cr/Au contact formed on n-type Ga-polar GaN, N-polar GaN, and wet-etched N-polar GaN surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yunju [School of Semiconductor and Chemical Engineering, Semiconductor Physics Research Center, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Suncheon Center, Korea Basic Science Institute, Suncheon 540-742 (Korea, Republic of); Kim, Yangsoo [Suncheon Center, Korea Basic Science Institute, Suncheon 540-742 (Korea, Republic of); Ahn, Kwang-Soon, E-mail: kstheory@ynu.ac.kr [School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 712-749 (Korea, Republic of); Kim, Hyunsoo, E-mail: hskim7@jbnu.ac.kr [School of Semiconductor and Chemical Engineering, Semiconductor Physics Research Center, Chonbuk National University, Jeonju 561-756 (Korea, Republic of)

    2014-10-30

    Highlights: • The Cr/Au contact on n-type Ga-polar (0 0 0 1) GaN, N-polar (0 0 0 −1) GaN, and wet-etched N-polar GaN were investigated. • Thermal annealing led to a significant degradation of contact formed on N-polar n-GaN samples. • Contact degradation was shown to be closely related to the increase in the electrical resistivity of n-GaN. • Out-diffusion of Ga and N atoms was clearly observed in N-polar samples. - Abstract: The electrical characteristics and thermal stability of a Cr/Au contact formed on n-type Ga-polar (0 0 0 1) GaN, N-polar GaN, and wet-etched N-polar GaN were investigated. As-deposited Cr/Au showed a nearly ohmic contact behavior for all samples, i.e., the specific contact resistance was 3.2 × 10{sup −3}, 4.3 × 10{sup −4}, and 1.1 × 10{sup −3} Ω cm{sup 2} for the Ga-polar, flat N-polar, and roughened N-polar samples, respectively. However, thermal annealing performed at 250 °C for 1 min in a N{sub 2} ambient led to a significant degradation of contact, i.e., the contact resistance increased by 186, 3260, and 2030% after annealing for Ga-polar, flat N-polar, and roughened N-polar samples, respectively. This could be due to the different disruption degree of Cr/Au and GaN interface after annealing, i.e., the insignificant interfacial reaction occurred in the Ga-polar sample, while out-diffusion of Ga and N atoms was clearly observed in N-polar samples.

  20. BInGaN alloys nearly lattice-matched to GaN for high-power high-efficiency visible LEDs

    Science.gov (United States)

    Williams, Logan; Kioupakis, Emmanouil

    2017-11-01

    InGaN-based visible light-emitting diodes (LEDs) find commercial applications for solid-state lighting and displays, but lattice mismatch limits the thickness of InGaN quantum wells that can be grown on GaN with high crystalline quality. Since narrower wells operate at a higher carrier density for a given current density, they increase the fraction of carriers lost to Auger recombination and lower the efficiency. The incorporation of boron, a smaller group-III element, into InGaN alloys is a promising method to eliminate the lattice mismatch and realize high-power, high-efficiency visible LEDs with thick active regions. In this work, we apply predictive calculations based on hybrid density functional theory to investigate the thermodynamic, structural, and electronic properties of BInGaN alloys. Our results show that BInGaN alloys with a B:In ratio of 2:3 are better lattice matched to GaN compared to InGaN and, for indium fractions less than 0.2, nearly lattice matched. Deviations from Vegard's law appear as bowing of the in-plane lattice constant with respect to composition. Our thermodynamics calculations demonstrate that the solubility of boron is higher in InGaN than in pure GaN. Varying the Ga mole fraction while keeping the B:In ratio constant enables the adjustment of the (direct) gap in the 1.75-3.39 eV range, which covers the entire visible spectrum. Holes are strongly localized in non-bonded N 2p states caused by local bond planarization near boron atoms. Our results indicate that BInGaN alloys are promising for fabricating nitride heterostructures with thick active regions for high-power, high-efficiency LEDs.

  1. Use of GaN as a Scintillating Ionizing Radiation Detector

    Science.gov (United States)

    Wensman, Johnathan; Guardala, Noel; Mathur, Veerendra; Alasagas, Leslie; Vanhoy, Jeffrey; Statham, John; Marron, Daniel; Millett, Marshall; Marsh, Jarrod; Currie, John; Price, Jack

    2017-09-01

    Gallium nitride (GaN) is a III/V direct bandgap semiconductor which has been used in light emitting diodes (LEDs) since the 1990s. Currently, due to a potential for increased efficiency, GaN is being investigated as a replacement for silicon in power electronics finding potential uses ranging from data centers to electric vehicles. In addition to LEDs and power electronics though, doped GaN can be used as a gamma insensitive fast neutron detector due to the direct band-gap, light propagation properties, and response to ionizing radiations. Investigation of GaN as a semiconductor scintillator for use in a radiation detection system involves mapping the response function of the detector crystal over a range of photon and neutron energies, and measurements of light generation in the GaN crystal due to proton, alpha, and nitrogen projectiles. In this presentation we discuss the measurements made to date, and plausible interpretations of the response functions. This work funded in part by the Naval Surface Warfare Center, Carderock Division In-house Laboratory Independent Research program.

  2. CW operation of high-power blue laser diodes with polished facets on semi-polar ( 20 2 ¯ 1 ¯ ) GaN substrates

    KAUST Repository

    Pourhashemi, A.

    2016-10-11

    Continuous wave (CW) operation of high-power blue laser diodes (LDs) with polished facets on semi-polar (202̅1̅) gallium nitride (GaN) substrates is demonstrated. Ridge waveguide LDs were fabricated using indium GaN waveguiding layers and GaN cladding layers. At a lasing wavelength of 452 nm, the peak two-facet CW output power from an LD with uncoated facets was 1.71 W at a current of 3 A, corresponding to an optical power density of 32.04 MW/cm2 on each facet. The dependence of output power on current did not change with repeated CW measurements, indicating that the polished facets did not degrade under high-power CW operation. These results show that polished facets are a viable alternative to cleaved or etched facets for high-power CW semi-polar LDs.

  3. CW operation of high-power blue laser diodes with polished facets on semi-polar ( 20 2 ¯ 1 ¯ ) GaN substrates

    KAUST Repository

    Pourhashemi, A.; Farrell, R.M.; Cohen, D.A.; Becerra, D.L.; DenBaars, S.P.; Nakamura, S.

    2016-01-01

    Continuous wave (CW) operation of high-power blue laser diodes (LDs) with polished facets on semi-polar (202̅1̅) gallium nitride (GaN) substrates is demonstrated. Ridge waveguide LDs were fabricated using indium GaN waveguiding layers and GaN cladding layers. At a lasing wavelength of 452 nm, the peak two-facet CW output power from an LD with uncoated facets was 1.71 W at a current of 3 A, corresponding to an optical power density of 32.04 MW/cm2 on each facet. The dependence of output power on current did not change with repeated CW measurements, indicating that the polished facets did not degrade under high-power CW operation. These results show that polished facets are a viable alternative to cleaved or etched facets for high-power CW semi-polar LDs.

  4. Investigation of different mechanisms of GaN growth induced on AlN and GaN nucleation layers

    International Nuclear Information System (INIS)

    Tasco, V.; Campa, A.; Tarantini, I.; Passaseo, A.; Gonzalez-Posada, F.; Munoz, E.; Redondo-Cubero, A.; Lorenz, K.; Franco, N.

    2009-01-01

    The evolution of GaN growth on AlN and GaN nucleation layers is compared through morphological and structural analyses, including ion beam analysis. By using AlN nucleation layer grown at high temperature, improved crystalline quality is exhibited by 300 nm thin GaN epilayers. GaN (002) x-ray rocking curve as narrow as 168 arc sec and atomic-step surface morphology characterize such a thin GaN film on AlN. Defects are strongly confined into the first 50 nm of growth, whereas a fast laterally coherent growth is observed when increasing thickness, as an effect of high temperature AlN surface morphology and Ga adatom dynamics over this template

  5. Nonlinear characterization of GaN HEMT

    International Nuclear Information System (INIS)

    Chen Chi; Hao Yue; Yang Ling; Quan Si; Ma Xiaohua; Zhang Jincheng

    2010-01-01

    DC I-V output, small signal and an extensive large signal characterization (load-pull measurements) of a GaN HEMT on a SiC substrate with different gate widths of 100 μm and 1 mm have been carried out. From the small signal data, it has been found that the cutoff frequencies increase with gate width varying from 100 μm to 1mm, owing to the reduced contribution of the parasitic effect. The devices investigated with different gate widths are enough to work in the C band and X band. The large signal measurements include the load-pull measurements and power sweep measurements at the C band (5.5 GHz) and X band (8 GHz). When biasing the gate voltage in class AB and selecting the source impedance, the optimum load impedances seen from the device for output power and PAE were localized in the load-pull map. The results of a power sweep at an 8 GHz biased various drain voltage demonstrate that a GaN HEMT on a SiC substrate has good thermal conductivity and a high breakdown voltage, and the CW power density of 10.16 W/mm was obtained. From the results of the power sweep measurement at 5.5 GHz with different gate widths, the actual scaling rules and heat effect on the large periphery device were analyzed, although the effects are not serious. The measurement results and analyses prove that a GaN HEMT on a SiC substrate is an ideal candidate for high-power amplifier design.

  6. A DFT study on NEA GaN photocathode with an ultrathin n-type Si-doped GaN cap layer

    Science.gov (United States)

    Xia, Sihao; Liu, Lei; Kong, Yike; Diao, Yu

    2016-10-01

    Due to the drawbacks of conventional negative electron affinity (NEA) GaN photocathodes activated by Cs or Cs/O, a new-type NEA GaN photocathodes with heterojunction surface dispense with Cs activation are proposed. This structure can be obtained through the coverage of an ultrathin n-type Si-doped GaN cap layer on the p-type Mg-doped GaN emission layer. The influences of the cap layer on the photocathode are calculated using DFT. This study indicates that the n-type cap layer can promote the photoemission characteristics of GaN photocathode and demonstrates the probability of the preparation of a NEA GaN photocathode with an n-type cap layer.

  7. Individual GaN nanowires exhibit strong piezoelectricity in 3D.

    Science.gov (United States)

    Minary-Jolandan, Majid; Bernal, Rodrigo A; Kuljanishvili, Irma; Parpoil, Victor; Espinosa, Horacio D

    2012-02-08

    Semiconductor GaN NWs are promising components in next generation nano- and optoelectronic systems. In addition to their direct band gap, they exhibit piezoelectricity, which renders them particularly attractive in energy harvesting applications for self-powered devices. Nanowires are often considered as one-dimensional nanostructures; however, the electromechanical coupling leads to a third rank tensor that for wurtzite crystals (GaN NWs) possesses three independent coefficients, d(33), d(13), and d(15). Therefore, the full piezoelectric characterization of individual GaN NWs requires application of electric fields in different directions and measurements of associated displacements on the order of several picometers. In this Letter, we present an experimental approach based on scanning probe microscopy to directly quantify the three-dimensional piezoelectric response of individual GaN NWs. Experimental results reveal that GaN NWs exhibit strong piezoelectricity in three dimensions, with up to six times the effect in bulk. Based on finite element modeling, this finding has major implication on the design of energy harvesting systems exhibiting unprecedented levels of power density production. The presented method is applicable to other piezoelectric NW materials as well as wires manufactured along different crystallographic orientations. © 2011 American Chemical Society

  8. Impact of GaN transition layers in the growth of GaN epitaxial layer on silicon

    International Nuclear Information System (INIS)

    Zhao Danmei; Zhao Degang; Jiang Desheng; Liu Zongshun; Zhu Jianjun; Chen Ping; Liu Wei; Li Xiang; Shi Ming

    2015-01-01

    A method for growing GaN epitaxial layer on Si (111) substrate is investigated. Due to the large lattice mismatch between GaN and AlN, GaN grown directly above an AlN buffer layer on the Si substrate turns out to be of poor quality. In this study, a GaN transition layer is grown additionally on the AlN buffer before the GaN epitaxial growth. By changing the growth conditions of the GaN transition layer, we can control the growth and merging of islands and control the transfer time from 3D to 2D growth mode. With this method, the crystalline quality of the GaN epitaxial layer can be improved and the crack density is reduced. Here, we have investigated the impact of a transition layer on the crystalline quality and stress evolution of a GaN epitaxial layer with methods of X-ray diffraction, optical microscopy and in situ reflectivity trace. With the increasing thickness of transition layer, the crack decreases and the crystalline quality is improved. But when the transition layer exceeds a critical thickness, the crystalline quality of the epilayer becomes lower and the crack density increases. (paper)

  9. Continuous-flux MOVPE growth of position-controlled N-face GaN nanorods and embedded InGaN quantum wells

    International Nuclear Information System (INIS)

    Bergbauer, W; Strassburg, M; Koelper, Ch; Linder, N; Roder, C; Laehnemann, J; Trampert, A; Fuendling, S; Li, S F; Wehmann, H-H; Waag, A

    2010-01-01

    We demonstrate the fabrication of N-face GaN nanorods by metal organic vapour phase epitaxy (MOVPE), using continuous-flux conditions. This is in contrast to other approaches reported so far, which have been based on growth modes far off the conventional growth regimes. For position control of nanorods an SiO 2 masking layer with a dense hole pattern on a c-plane sapphire substrate was used. Nanorods with InGaN/GaN heterostructures have been grown catalyst-free. High growth rates up to 25 μm h -1 were observed and a well-adjusted carrier gas mixture between hydrogen and nitrogen enabled homogeneous nanorod diameters down to 220 nm with aspect ratios of approximately 8:1. The structural quality and defect progression within nanorods were determined by transmission electron microscopy (TEM). Different emission energies for InGaN quantum wells (QWs) could be assigned to different side facets by room temperature cathodoluminescence (CL) measurements.

  10. Continuous-flux MOVPE growth of position-controlled N-face GaN nanorods and embedded InGaN quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Bergbauer, W; Strassburg, M; Koelper, Ch; Linder, N [Osram Opto Semiconductors GmbH, Leibnizstrasse 4, D-93055 Regensburg (Germany); Roder, C; Laehnemann, J; Trampert, A [Paul-Drude-Institut fuer Festkoerperelektronik, Hausvogteiplatz 5-7, D-10117 Berlin (Germany); Fuendling, S; Li, S F; Wehmann, H-H; Waag, A, E-mail: werner.bergbauer@osram-os.com [Institut fuer Halbleitertechnik, TU Braunschweig, Hans-Sommer-Strasse 66, D-38106 Braunschweig (Germany)

    2010-07-30

    We demonstrate the fabrication of N-face GaN nanorods by metal organic vapour phase epitaxy (MOVPE), using continuous-flux conditions. This is in contrast to other approaches reported so far, which have been based on growth modes far off the conventional growth regimes. For position control of nanorods an SiO{sub 2} masking layer with a dense hole pattern on a c-plane sapphire substrate was used. Nanorods with InGaN/GaN heterostructures have been grown catalyst-free. High growth rates up to 25 {mu}m h{sup -1} were observed and a well-adjusted carrier gas mixture between hydrogen and nitrogen enabled homogeneous nanorod diameters down to 220 nm with aspect ratios of approximately 8:1. The structural quality and defect progression within nanorods were determined by transmission electron microscopy (TEM). Different emission energies for InGaN quantum wells (QWs) could be assigned to different side facets by room temperature cathodoluminescence (CL) measurements.

  11. Continuous-flux MOVPE growth of position-controlled N-face GaN nanorods and embedded InGaN quantum wells

    Science.gov (United States)

    Bergbauer, W.; Strassburg, M.; Kölper, Ch; Linder, N.; Roder, C.; Lähnemann, J.; Trampert, A.; Fündling, S.; Li, S. F.; Wehmann, H.-H.; Waag, A.

    2010-07-01

    We demonstrate the fabrication of N-face GaN nanorods by metal organic vapour phase epitaxy (MOVPE), using continuous-flux conditions. This is in contrast to other approaches reported so far, which have been based on growth modes far off the conventional growth regimes. For position control of nanorods an SiO2 masking layer with a dense hole pattern on a c-plane sapphire substrate was used. Nanorods with InGaN/GaN heterostructures have been grown catalyst-free. High growth rates up to 25 µm h - 1 were observed and a well-adjusted carrier gas mixture between hydrogen and nitrogen enabled homogeneous nanorod diameters down to 220 nm with aspect ratios of approximately 8:1. The structural quality and defect progression within nanorods were determined by transmission electron microscopy (TEM). Different emission energies for InGaN quantum wells (QWs) could be assigned to different side facets by room temperature cathodoluminescence (CL) measurements.

  12. Module Integrated GaN Power Stage for High Switching Frequency Operation

    DEFF Research Database (Denmark)

    Nour, Yasser; Knott, Arnold

    2017-01-01

    is integrated on a high glass transition temperature 0.4 mmthick FR4 substrate configured as a 70 pin ball grid arraypackage. The power stage is tested up to switching frequency of12 MHz. The power stage achieved 88.5 % peak efficiency whenconfigured as a soft switching buck converter operating at 7MHz......An increased attention has been detected todevelop smaller and lighter high voltage power converters in therange of 50 V to 400 V domains. The applications for theseconverters are mainly focused for Power over Ethernet (PoE),LED lighting and ac adapters. Design for high power density isone...... of the targets for next generation power converters. Thispaper presents an 80 V input capable multi-chip moduleintegration of enhancement mode gallium nitride (GaN) fieldeffect transistors (FETs) based power stage. The module design ispresented and validated through experimental results. The powerstage...

  13. Characterization of plasma etching damage on p-type GaN using Schottky diodes

    International Nuclear Information System (INIS)

    Kato, M.; Mikamo, K.; Ichimura, M.; Kanechika, M.; Ishiguro, O.; Kachi, T.

    2008-01-01

    The plasma etching damage in p-type GaN has been characterized. From current-voltage and capacitance-voltage characteristics of Schottky diodes, it was revealed that inductively coupled plasma (ICP) etching causes an increase in series resistance of the Schottky diodes and compensation of acceptors in p-type GaN. We investigated deep levels near the valence band of p-type GaN using current deep level transient spectroscopy (DLTS), and no deep level originating from the ICP etching damage was observed. On the other hand, by capacitance DLTS measurements for n-type GaN, we observed an increase in concentration of a donor-type defect with an activation energy of 0.25 eV after the ICP etching. The origin of this defect would be due to nitrogen vacancies. We also observed this defect by photocapacitance measurements for ICP-etched p-type GaN. For both n- and p-type GaN, we found that the low bias power ICP etching is effective to reduce the concentration of this defect introduced by the high bias power ICP etching

  14. The investigation of stress in freestanding GaN crystals grown from Si substrates by HVPE.

    Science.gov (United States)

    Lee, Moonsang; Mikulik, Dmitry; Yang, Mino; Park, Sungsoo

    2017-08-17

    We investigate the stress evolution of 400 µm-thick freestanding GaN crystals grown from Si substrates by hydride vapour phase epitaxy (HVPE) and the in situ removal of Si substrates. The stress generated in growing GaN can be tuned by varying the thickness of the MOCVD AlGaN/AlN buffer layers. Micro Raman analysis shows the presence of slight tensile stress in the freestanding GaN crystals and no stress accumulation in HVPE GaN layers during the growth. Additionally, it is demonstrated that the residual tensile stress in HVPE GaN is caused only by elastic stress arising from the crystal quality difference between Ga- and N-face GaN. TEM analysis revealed that the dislocations in freestanding GaN crystals have high inclination angles that are attributed to the stress relaxation of the crystals. We believe that the understanding and characterization on the structural properties of the freestanding GaN crystals will help us to use these crystals for high-performance opto-electronic devices.

  15. In situ synthesis and characterization of GaN nanorods through thermal decomposition of pre-grown GaN films

    International Nuclear Information System (INIS)

    Yan, P; Qin, D; An, Y K; Li, G Z; Xing, J; Liu, J J

    2008-01-01

    Herein we describe a thermal treatment route to synthesize gallium nitride (GaN) nanorods. In this method, GaN nanorods were synthesized by thermal treatment of GaN films at a temperature of 800 deg. C. The morphology and structure of GaN nanorods were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that GaN nanorods have a hexagonal wurtzite structure with diameters ranging from 30 to 50 nm. Additionally, GaN nanoplates are also founded in the products. The growth process of GaN nanostructures was investigated and a thermal decomposition mechanism was proposed. Our method provides a cost-effective route to fabricate GaN nanorods, which will benefit the fabrication of one-dimensional nanomaterials and device applications

  16. An analytical turn-on power loss model for 650-V GaN eHEMTs

    DEFF Research Database (Denmark)

    Shen, Yanfeng; Wang, Huai; Shen, Zhan

    2018-01-01

    This paper proposes an improved analytical turn-on power loss model for 650-V GaN eHEMTs. The static characteristics, i.e., the parasitic capacitances and transconductance, are firstly modeled. Then the turn-on process is divided into multiple stages and analyzed in detail; as results, the time-d...

  17. Flexible GaN for High Performance, Strainable Radio Frequency Devices (Postprint)

    Science.gov (United States)

    2017-11-02

    wireless systems where consumers will benefit significantly from the high power densities achievable in GaN devices.[8] Further complicating the...future strainable and conformal devices for transmission of radio-frequency (RF) signals over large distances for more efficient wireless communication... power density of traditional RF amplifier materials at different frequencies and wireless generation bands, as well as an image of the flexible GaN

  18. Ultra-high Efficiency DC-DC Converter using GaN Devices

    DEFF Research Database (Denmark)

    Ramachandran, Rakesh

    2016-01-01

    properties of GaN devices can be utilized in power converters to make them more compact and highly efficient. This thesis entitled “Ultra-high Efficiency DC-DC Converter using GaN devices” focuses on achieving ultra-high conversion efficiency in an isolated dc-dc converter by the optimal utilization of Ga...... for many decades. However, the rate of improvement slowed as the silicon power materials asymptotically approached its theoretical bounds. Compared to Si, wideband gap materials such as Silicon Carbide (SiC) and Gallium Nitride (GaN) are promising semiconductors for power devices due to their superior...... in this thesis. Efficiency measurements from the hardware prototype of both the topologies are also presented in this thesis. Finally, the bidirectional operation of an optimized isolated dc-dc converter is presented. The optimized converter has achieved an ultra-high efficiency of 98.8% in both directions...

  19. Growth of high quality GaN epilayer on AlInN/GaN/AlInN/GaN multilayer buffer and its device characteristics

    International Nuclear Information System (INIS)

    Lee, Suk-Hun; Lee, Hyun-Hwi; Jung, Jong-Jae; Moon, Young-Bu; Kim, Tae Hoon; Baek, Jong Hyeob; Yu, Young Moon

    2004-01-01

    The role of AlInN 1st /GaN/AlInN 2nd /GaN multi-layer buffer (MLB) on the growth of the high quality GaN epilayers was demonstrated by atomic force microscope (AFM), X-ray diffraction (XRD), photoluminescence, and Hall measurement. The surface morphology and crystalline quality of GaN epilayers were considerably dependent on AlInN layers thicknesses rather than those of GaN inter layers. With optimal thickness of 2 nd AlInN layer, the pit density of GaN epilayers was substantially reduced. Also, the RMS roughness of the well ordered terraces generated on the GaN surface was 1.8 A at 5 x 5 μm 2 . The omega-rocking width of GaN(0002) Bragg peak and Hall mobility of GaN epilayers grown on AlInN 1st /GaN/AlInN 2nd /GaN MLB were 190 arcsec and 500 cm 2 /Vs, while those values of GaN epilayers on single GaN buffer layer were 250 arcsec and 250 cm 2 /Vs, respectively. Especially, the light output power and operating voltage of the fabricated light emitting diodes with this new buffer layer was about 5 mW and 3.1 V (dominant luminous wavelength ∝460 nm) at 20 mA, respectively. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Atomic force microscopy studies of homoepitaxial GaN layers grown on GaN template by laser MBE

    Energy Technology Data Exchange (ETDEWEB)

    Choudhary, B. S. [CSIR-National Physical Laboratory, Dr K.S. Krishnan Road, New Delhi 110012 (India); Rajasthan Technical University, Rawatbhata Road, Kota 324010 (India); Singh, A.; Tyagi, P. K. [Department of Applied Physics, Delhi Technological University, Delhi 110042 (India); Tanwar, S. [Rajasthan Technical University, Rawatbhata Road, Kota 324010 (India); Kumar, M. Senthil; Kushvaha, S. S., E-mail: kushvahas@nplindia.org [CSIR-National Physical Laboratory, Dr K.S. Krishnan Road, New Delhi 110012 (India)

    2016-04-13

    We have grown homoepitaxial GaN films on metal organic chemical vapor deposition (MOCVD) grown 3.5 µm thick GaN on sapphire (0001) substrate (GaN template) using an ultra-high vacuum (UHV) laser assisted molecular beam epitaxy (LMBE) system. The GaN films were grown by laser ablating a polycrystalline solid GaN target in the presence of active r.f. nitrogen plasma. The influence of laser repetition rates (10-30 Hz) on the surface morphology of homoepitaxial GaN layers have been studied using atomic force microscopy. It was found that GaN layer grown at 10 Hz shows a smooth surface with uniform grain size compared to the rough surface with irregular shape grains obtained at 30 Hz. The variation of surface roughness of the homoepitaxial GaN layer with and without wet chemical etching has been also studied and it was observed that the roughness of the film decreased after wet etching due to the curved structure/rough surface.

  1. Integrated Production of Ultra-Low Defect GaN Films and Devices for High-Power Amplifiers, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — High quality GaN epitaxial films are key to current efforts for development of both high-power/high-speed electronic devices and optoelectronic devices. In fact,...

  2. Nanoscale imaging of surface piezoresponse on GaN epitaxial layers

    International Nuclear Information System (INIS)

    Stoica, T.; Calarco, R.; Meijers, R.; Lueth, H.

    2007-01-01

    Surfaces of GaN films were investigated by atomic force microscopy (AFM) with implemented piezoelectric force microscopy technique. A model of PFM based on the surface depletion region in GaN films is discussed. The local piezoelectric effect of the low frequency regime was found to be in phase with the applied voltage on large domains, corresponding to a Ga-face of the GaN layer. Low piezoresponse is obtained within the inter-domain regions. The use of frequencies near a resonance frequency enhances very much the resolution of piezo-imaging, but only for very low scanning speed the piezo-imaging can follow the local piezoelectric effect. An inversion of the PFM image contrast is obtained for frequencies higher than the resonance frequencies. The effect of a chemical surface treatment on the topography and the piezoresponse of the GaN films was also investigated. Textured surfaces with very small domains were observed after the chemical treatment. For this kind of surfaces, piezo-induced torsion rather than bending of the AFM cantilever dominates the contrast of the PFM images. A small memory effect was observed, and explained by surface charging and confinement of the piezoelectric effect within the carrier depletion region at the GaN surface

  3. Ultra-Low Inductance Design for a GaN HEMT Based 3L-ANPC Inverter

    DEFF Research Database (Denmark)

    Gurpinar, Emre; Castellazzi, Alberto; Iannuzzo, Francesco

    2016-01-01

    contributors to voltage overshoots and increase of switching losses, are discussed. The ultra-low inductance power cell design based on a four layer PCB with the aim to maximise the switching performance of GaN HEMTs is explained. Gate driver design for GaN HEMT devices is presented. Common-mode behaviours......In this paper, an ultra-low inductance power cell design for a 3L-ANPC based on 650 V GaN HEMT devices is presented. The 3L-ANPC topology with GaN HEMT devices and the selected modulation scheme suitable for wide-bandgap (WBG) devices are presented. The commutation loops, which are the main...

  4. Laser-induced local activation of Mg-doped GaN with a high lateral resolution for high power vertical devices

    Science.gov (United States)

    Kurose, Noriko; Matsumoto, Kota; Yamada, Fumihiko; Roffi, Teuku Muhammad; Kamiya, Itaru; Iwata, Naotaka; Aoyagi, Yoshinobu

    2018-01-01

    A method for laser-induced local p-type activation of an as-grown Mg-doped GaN sample with a high lateral resolution is developed for realizing high power vertical devices for the first time. As-grown Mg-doped GaN is converted to p-type GaN in a confined local area. The transition from an insulating to a p-type area is realized to take place within about 1-2 μm fine resolution. The results show that the technique can be applied in fabricating the devices such as vertical field effect transistors, vertical bipolar transistors and vertical Schottkey diode so on with a current confinement region using a p-type carrier-blocking layer formed by this technique.

  5. Metalorganic chemical vapor deposition growth of high-mobility AlGaN/AlN/GaN heterostructures on GaN templates and native GaN substrates

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jr-Tai, E-mail: jrche@ifm.liu.se; Hsu, Chih-Wei; Forsberg, Urban; Janzén, Erik [Department of Physics, Chemistry, and Biology (IFM), Linköping University, SE 581 83 Linköping (Sweden)

    2015-02-28

    Severe surface decomposition of semi-insulating (SI) GaN templates occurred in high-temperature H{sub 2} atmosphere prior to epitaxial growth in a metalorganic chemical vapor deposition system. A two-step heating process with a surface stabilization technique was developed to preserve the GaN template surface. Utilizing the optimized heating process, a high two-dimensional electron gas mobility ∼2000 cm{sup 2}/V·s was obtained in a thin AlGaN/AlN/GaN heterostructure with an only 100-nm-thick GaN spacer layer homoepitaxially grown on the GaN template. This technique was also demonstrated viable for native GaN substrates to stabilize the surface facilitating two-dimensional growth of GaN layers. Very high residual silicon and oxygen concentrations were found up to ∼1 × 10{sup 20 }cm{sup −3} at the interface between the GaN epilayer and the native GaN substrate. Capacitance-voltage measurements confirmed that the residual carbon doping controlled by growth conditions of the GaN epilayer can be used to successfully compensate the donor-like impurities. State-of-the-art structural properties of a high-mobility AlGaN/AlN/GaN heterostructure was then realized on a 1 × 1 cm{sup 2} SI native GaN substrate; the full width at half maximum of the X-ray rocking curves of the GaN (002) and (102) peaks are only 21 and 14 arc sec, respectively. The surface morphology of the heterostructure shows uniform parallel bilayer steps, and no morphological defects were noticeable over the entire epi-wafer.

  6. Si Complies with GaN to Overcome Thermal Mismatches for the Heteroepitaxy of Thick GaN on Si.

    Science.gov (United States)

    Tanaka, Atsunori; Choi, Woojin; Chen, Renjie; Dayeh, Shadi A

    2017-10-01

    Heteroepitaxial growth of lattice mismatched materials has advanced through the epitaxy of thin coherently strained layers, the strain sharing in virtual and nanoscale substrates, and the growth of thick films with intermediate strain-relaxed buffer layers. However, the thermal mismatch is not completely resolved in highly mismatched systems such as in GaN-on-Si. Here, geometrical effects and surface faceting to dilate thermal stresses at the surface of selectively grown epitaxial GaN layers on Si are exploited. The growth of thick (19 µm), crack-free, and pure GaN layers on Si with the lowest threading dislocation density of 1.1 × 10 7 cm -2 achieved to date in GaN-on-Si is demonstrated. With these advances, the first vertical GaN metal-insulator-semiconductor field-effect transistors on Si substrates with low leakage currents and high on/off ratios paving the way for a cost-effective high power device paradigm on an Si CMOS platform are demonstrated. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Integrated Production of Ultra-Low Defect GaN Films and Devices for High-Power Amplifiers, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — High quality GaN epitaxial films are one of the keys to current efforts for development of both high-power/high-speed electronic devices and optoelectronic devices....

  8. Flexible Self-Powered GaN Ultraviolet Photoswitch with Piezo-Phototronic Effect Enhanced On/Off Ratio.

    Science.gov (United States)

    Peng, Mingzeng; Liu, Yudong; Yu, Aifang; Zhang, Yang; Liu, Caihong; Liu, Jingyu; Wu, Wei; Zhang, Ke; Shi, Xieqing; Kou, Jinzong; Zhai, Junyi; Wang, Zhong Lin

    2016-01-26

    Flexible self-powered sensing is urgently needed for wearable, portable, sustainable, maintenance-free and long-term applications. Here, we developed a flexible and self-powered GaN membrane-based ultraviolet (UV) photoswitch with high on/off ratio and excellent sensitivity. Even without any power supply, the driving force of UV photogenerated carriers can be well boosted by the combination of both built-in electric field and piezoelectric polarization field. The asymmetric metal-semiconductor-metal structure has been elaborately utilized to enhance the carrier separation and transport for highly sensitive UV photoresponse. Its UV on/off ratio and detection sensitivity reach to 4.67 × 10(5) and 1.78 × 10(12) cm·Hz(0.5) W(1-), respectively. Due to its excellent mechanical flexibility, the piezoelectric polarization field in GaN membrane can be easily tuned/controlled based on piezo-phototronic effect. Under 1% strain, a stronger and broader depletion region can be obtained to further enhance UV on/off ratio up to 154%. As a result, our research can not only provide a deep understanding of local electric field effects on self-powered optoelectronic detection, but also promote the development of self-powered flexible optoelectronic devices and integrated systems.

  9. Field plated 0.15 μm GaN HEMTs for millimeter-wave application

    International Nuclear Information System (INIS)

    Ren Chunjiang; Li Zhonghui; Yu Xuming; Wang Quanhui; Wang Wen; Chen Tangsheng; Zhang Bin

    2013-01-01

    SiN dielectrically-defined 0.15 μm field plated GaN HEMTs for millimeter-wave application have been presented. The AlGaN/GaN hetero-structure epitaxial material for HEMTs fabrication was grown on a 3-inch SiC substrate with an Fe doped GaN buffer layer by metal-organic chemical deposition. Electron beam lithography was used to define both the gate footprint and the cap of the gate with an integrated field plate. Gate recessing was performed to control the threshold voltage of the devices. The fabricated GaN HEMTs exhibited a unit current gain cut-off frequency of 39 GHz and a maximum frequency of oscillation of 63 GHz. Load-pull measurements carried out at 35 GHz showed a power density of 4 W/mm with associated power gain and power added efficiency of 5.3 dB and 35%, respectively, for a 0.15 mm gate width device operated at a 24 V drain bias. The developed 0.15 μm gate length GaN HEMT technology is suitable for Ka band applications and is ready for millimeter-wave power MMICs development. (semiconductor devices)

  10. Unstable behaviour of normally-off GaN E-HEMT under short-circuit

    Science.gov (United States)

    Martínez, P. J.; Maset, E.; Sanchis-Kilders, E.; Esteve, V.; Jordán, J.; Bta Ejea, J.; Ferreres, A.

    2018-04-01

    The short-circuit capability of power switching devices plays an important role in fault detection and the protection of power circuits. In this work, an experimental study on the short-circuit (SC) capability of commercial 600 V Gallium Nitride enhancement-mode high-electron-mobility transistors (E-HEMT) is presented. A different failure mechanism has been identified for commercial p-doped GaN gate (p-GaN) HEMT and metal-insulator-semiconductor (MIS) HEMT. In addition to the well known thermal breakdown, a premature breakdown is shown on both GaN HEMTs, triggered by hot electron trapping at the surface, which demonstrates that current commercial GaN HEMTs has requirements for improving their SC ruggedness.

  11. A 500-600 MHz GaN power amplifier with RC-LC stability network

    Science.gov (United States)

    Ma, Xinyu; Duan, Baoxing; Yang, Yintang

    2017-08-01

    A 500-600 MHz high-efficiency, high-power GaN power amplifier is designed and realized on the basis of the push-pull structure. The RC-LC stability network is proposed and applied to the power amplifier circuit for the first time. The RC-LC stability network can significantly reduce the high gain out the band, which eliminates the instability of the power amplifier circuit. The developed power amplifier exhibits 58.5 dBm (700 W) output power with a 17 dB gain and 85% PAE at 500-600 MHz, 300 μs, 20% duty cycle. It has the highest PAE in P-band among the products at home and abroad. Project supported by the National Key Basic Research Program of China (No. 2014CB339901).

  12. P-type doping of GaN

    International Nuclear Information System (INIS)

    Wong, R.K.

    2000-01-01

    After implantation of As, As + Be, and As + Ga into GaN and annealing for short durations at temperatures as high as 1500 C, the GaN films remained highly resistive. It was apparent from c-RBS studies that although implantation damage did not create an amorphous layer in the GaN film, annealing at 1500 C did not provide enough energy to completely recover the radiation damage. Disorder recovered significantly after annealing at temperatures up to 1500 C, but not completely. From SIMS analysis, oxygen contamination in the AIN capping layer causes oxygen diffusion into the GaN film above 1400 C. The sapphire substrate (A1203) also decomposed and oxygen penetrated into the backside of the GaN layer above 1400 C. To prevent donor-like oxygen impurities from the capping layer and the substrate from contaminating the GaN film and compensating acceptors, post-implantation annealing should be done at temperatures below 1500 C. Oxygen in the cap could be reduced by growing the AIN cap on the GaN layer after the GaN growth run or by depositing the AIN layer in a ultra high vacuum (UHV) system post-growth to minimize residual oxygen and water contamination. With longer annealing times at 1400 C or at higher temperatures with a higher quality AIN, the implantation drainage may fully recover

  13. P-type doping of GaN

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Raechelle Kimberly [Univ. of California, Berkeley, CA (United States)

    2000-04-01

    After implantation of As, As + Be, and As + Ga into GaN and annealing for short durations at temperatures as high as 1500 C, the GaN films remained highly resistive. It was apparent from c-RBS studies that although implantation damage did not create an amorphous layer in the GaN film, annealing at 1500 C did not provide enough energy to completely recover the radiation damage. Disorder recovered significantly after annealing at temperatures up to 1500 C, but not completely. From SIMS analysis, oxygen contamination in the AIN capping layer causes oxygen diffusion into the GaN film above 1400 C. The sapphire substrate (A1203) also decomposed and oxygen penetrated into the backside of the GaN layer above 1400 C. To prevent donor-like oxygen impurities from the capping layer and the substrate from contaminating the GaN film and compensating acceptors, post-implantation annealing should be done at temperatures below 1500 C. Oxygen in the cap could be reduced by growing the AIN cap on the GaN layer after the GaN growth run or by depositing the AIN layer in a ultra high vacuum (UHV) system post-growth to minimize residual oxygen and water contamination. With longer annealing times at 1400 C or at higher temperatures with a higher quality AIN, the implantation drainage may fully recover.

  14. Schottky contacts to polar and nonpolar n-type GaN

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hogyoung [Hanbat National University, Daejeon (Korea, Republic of); Phark, Soohyon [Max-Planck-Institut fur Mikrostrukturphysik, Halle (Germany); Song, Keunman [Korea Advanced Nano Fab Center, Suwon (Korea, Republic of); Kim, Dongwook [Ewha Woman' s University, Seoul (Korea, Republic of)

    2012-01-15

    Using the current-voltage measurements, we observed the barrier heights of c-plane GaN in Pt and Au Schottky contacts to be higher than those of a-plane GaN. However, the barrier height of c-plane GaN was lower than that of a-plane GaN in the Ti Schottky contacts. The N/Ga ratio calculated by integrating the X-ray photoelectron spectroscopy (XPS) spectra of Ga 3d and N 1s core levels showed that c-plane GaN induced more Ga vacancies near the interface than a-plane GaN in the Ti Schottky contacts, reducing the effective barrier height through an enhancement of the tunneling probability.

  15. GaN transistors on Si for switching and high-frequency applications

    Science.gov (United States)

    Ueda, Tetsuzo; Ishida, Masahiro; Tanaka, Tsuyoshi; Ueda, Daisuke

    2014-10-01

    In this paper, recent advances of GaN transistors on Si for switching and high-frequency applications are reviewed. Novel epitaxial structures including superlattice interlayers grown by metal organic chemical vapor deposition (MOCVD) relieve the strain and eliminate the cracks in the GaN over large-diameter Si substrates up to 8 in. As a new device structure for high-power switching application, Gate Injection Transistors (GITs) with a p-AlGaN gate over an AlGaN/GaN heterostructure successfully achieve normally-off operations maintaining high drain currents and low on-state resistances. Note that the GITs on Si are free from current collapse up to 600 V, by which the drain current would be markedly reduced after the application of high drain voltages. Highly efficient operations of an inverter and DC-DC converters are presented as promising applications of GITs for power switching. The high efficiencies in an inverter, a resonant LLC converter, and a point-of-load (POL) converter demonstrate the superior potential of the GaN transistors on Si. As for high-frequency transistors, AlGaN/GaN heterojuction field-effect transistors (HFETs) on Si designed specifically for microwave and millimeter-wave frequencies demonstrate a sufficiently high output power at these frequencies. Output powers of 203 W at 2.5 GHz and 10.7 W at 26.5 GHz are achieved by the fabricated GaN transistors. These devices for switching and high-frequency applications are very promising as future energy-efficient electronics because of their inherent low fabrication cost and superior device performance.

  16. Surface morphology of homoepitaxial GaN grown on non- and semipolar GaN substrates

    Energy Technology Data Exchange (ETDEWEB)

    Wernicke, Tim; Hoffmann, Veit; Netzel, Carsten; Knauer, Arne; Weyers, Markus [FBH, Berlin (Germany); Ploch, Simon; Rass, Jens [Institute of Solid State Physics, TU Berlin (Germany); Schade, Lukas; Schwarz, Ulrich [IAF, Freiburg (Germany); Kneissl, Michael [FBH, Berlin (Germany); Institute of Solid State Physics, TU Berlin (Germany)

    2010-07-01

    Recently a number of groups have reported laser diodes in the green spectral range on semi- and nonpolar GaN. Nevertheless the growth process on semipolar surfaces is not well understood. In this study 3.5 {mu} m thick MOVPE grown GaN layers on bulk m-plane, (11 anti 22), (10 anti 12), and (10 anti 11) GaN substrates were investigated. XRD rocking curves exhibit a FWHM of less than 150{sup ''}, indicating excellent crystalline quality. But the surface morphology exhibits hillocks with a height of 1 {mu}m and lateral extension of 150 {mu}m in many cases. Depending on the substrate orientation and the growth temperature different hillock shapes were observed. Morphology and luminescence data point to threading dislocations as formation sources. In QWs the hillock structure is reproduced in the emission intensity and wavelength distribution on (10 anti 11) but not on the m-plane surfaces. The hillocks could be eliminated for the semipolar planes (not for the m-plane) by increasing the reactor pressure and lowering the growth temperature. Hillock free separate confinement laser structures emitting at 405 nm feature a very homogeneous luminescence in micro-PL and show amplified spontaneous emission under high power stripe excitation. Furthermore the In incorporation was found to be highest in QWs on (10 anti 11).

  17. Efficiency enhancement of InGaN/GaN light-emitting diodes with pin-doped GaN quantum barrier

    International Nuclear Information System (INIS)

    Sirkeli, Vadim P; Al-Daffaie, Shihab; Oprea, Ion; Küppers, Franko; Hartnagel, Hans L; Yilmazoglu, Oktay; Ong, Duu Sheng

    2017-01-01

    Blue InGaN/GaN light-emitting diodes with undoped, heavily Si-doped, Si delta-doped, heavily Mg-doped, Mg delta-doped, and Mg–Si pin-doped GaN barrier are investigated numerically. The simulation results demonstrate that the Mg–Si pin-doping in the GaN barrier effectively reduces the polarization-induced electric field between the InGaN well and the GaN barrier in the multiple quantum well, suppresses the quantum-confined Stark effect, and enhances the hole injection and electron confinement in the active region. For this light-emitting diode (LED) device structure, we found that the turn-on voltage is 2.8 V, peak light emission is at 415.3 nm, and internal quantum efficiency is 85.9% at 100 A cm −2 . It is established that the LED device with Mg–Si pin-doping in the GaN barrier has significantly improved efficiency and optical output power performance, and lower efficiency droop up to 400 A cm −2 compared with LED device structures with undoped or Si(Mg)-doped GaN barrier. (paper)

  18. Fabrication and Characterization of Vertical Gallium Nitride Power Schottky Diodes on Bulk GaN Substrates FY2016

    Science.gov (United States)

    2016-12-01

    ARL-TR-7913 ● DEC 2016 US Army Research Laboratory Fabrication and Characterization of Vertical Gallium Nitride Power Schottky...TR-7913 ● DEC 2016 US Army Research Laboratory Fabrication and Characterization of Vertical Gallium Nitride Power Schottky Diodes on Bulk...Fabrication and Characterization of Vertical Gallium Nitride Power Schottky Diodes on Bulk GaN Substrates FY2016 5a. CONTRACT NUMBER 5b. GRANT NUMBER

  19. Significantly improved surface morphology of N-polar GaN film grown on SiC substrate by the optimization of V/III ratio

    Science.gov (United States)

    Deng, Gaoqiang; Zhang, Yuantao; Yu, Ye; Yan, Long; Li, Pengchong; Han, Xu; Chen, Liang; Zhao, Degang; Du, Guotong

    2018-04-01

    In this paper, N-polar GaN films with different V/III ratios were grown on vicinal C-face SiC substrates by metalorganic chemical vapor deposition. During the growth of N-polar GaN film, the V/III ratio was controlled by adjusting the molar flow rate of ammonia while keeping the trimethylgallium flow rate unchanged. The influence of the V/III ratio on the surface morphology of N-polar GaN film has been studied. We find that the surface root mean square roughness of N-polar GaN film over an area of 20 × 20 μm2 can be reduced from 8.13 to 2.78 nm by optimization of the V/III ratio. Then, using the same growth conditions, N-polar InGaN/GaN multiple quantum wells (MQWs) light-emitting diodes (LEDs) were grown on the rough and the smooth N-polar GaN templates, respectively. Compared with the LED grown on the rough N-polar GaN template, dramatically improved interface sharpness and luminescence uniformity of the InGaN/GaN MQWs are achieved for the LED grown on the smooth N-polar GaN template.

  20. Investigation on the surface characterization of Ga-faced GaN after chemical-mechanical polishing

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Hua [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Shenzhen Key Laboratory of Micro/nano Manufacturing, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China); Pan, Guoshun, E-mail: pangs@tsinghua.edu.cn [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Shenzhen Key Laboratory of Micro/nano Manufacturing, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China); Zhou, Yan; Shi, Xiaolei; Zou, Chunli; Zhang, Suman [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Shenzhen Key Laboratory of Micro/nano Manufacturing, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China)

    2015-05-30

    Highlights: • Tiny-sized nanoparticles were introduced in GaN CMP to realize a good surface. • The relationship between surface characterization and abrasive size was conducted. • An atomic step-terrace structure was achieved on GaN surface after CMP. • Pt/C catalyst nanoparticles were used in GaN CMP to get a higher MRR. - Abstract: The relationship between the surface characterization after chemical mechanical polishing (CMP) and the size of the silica (SiO{sub 2}) abrasive used for CMP of gallium nitride (GaN) substrates was investigated in detail. Atomic force microscope was used for measuring the surface morphology, pit feature, pit depth distribution, and atomic step-terrace structure. With the decrease of SiO{sub 2} abrasive size, the pit depth reduced and the atomic step-terrace structure became more whole with smaller damage area, resulting in smaller roughness. For tiny-sized SiO{sub 2} abrasive, an almost complete atomic step-terrace structure with 0.0523 nm roughness was achieved. On the other hand, in order to acquire higher removal, Pt/C nanoparticle was employed as a catalyst in CMP slurry. The result indicates that when Pt/C catalyst content was reached to 1.0 ppm, material removal rate was increased by 47.69% compared to that by none of the catalyst, and besides, the pit depth reduced and the surface atomic step-terrace structure was not destroyed. The Pt/C nanoparticle is proved to be the promising catalyst to the surface preparation of super-hard and inert materials with high efficiency and good surface.

  1. Synthetic Strategies and Applications of GaN Nanowires

    Directory of Open Access Journals (Sweden)

    Guoquan Suo

    2014-01-01

    Full Text Available GaN is an important III-V semiconductor material with a direct band gap of 3.4 eV at 300 K. The wide direct band gap makes GaN an attractive material for various applications. GaN nanowires have demonstrated significant potential as fundamental building blocks for nanoelectronic and nanophotonic devices and also offer substantial promise for integrated nanosystems. In this paper, we provide a comprehensive review on the general synthetic strategies, characterizations, and applications of GaN nanowires. We first summarize several growth techniques of GaN nanowires. Subsequently, we discuss mechanisms involved to generate GaN nanowires from different synthetic schemes and conditions. Then we review some characterization methods of GaN nanowires. Finally, several kinds of main applications of GaN nanowires are discussed.

  2. Polarity analysis of GaN nanorods by photo-assisted Kelvin probe force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Jiandong; Neumann, Richard; Wang, Xue; Li, Shunfeng; Fuendling, Soenke; Merzsch, Stephan; Al-Suleiman, Mohamed A.M.; Soekmen, Uensal; Wehmann, Hergo-H.; Waag, Andreas [Institut fuer Halbleitertechnik, TU Braunschweig (Germany)

    2011-07-15

    Polarity dependence (N-polar (000-1) and Ga-polar (0001)) of surface photovoltage of epitaxially grown, vertically aligned GaN nanorods has been investigated by photo-assisted Kelvin probe force microscopy (KPFM). Commercial GaN substrates with known polarities are taken as reference samples. The polarity of GaN substrates can be well distinguished by the change in surface photovoltage upon UV illumination in air ambient. These different behaviors of Ga- and N-polar surfaces are attributed to the polarity-related surface-bound charges and photochemical reactivity. GaN nanorods were grown on patterned SiO{sub 2}/sapphire templates by metal-organic vapor phase epitaxy (MOVPE). In order to analyze the bottom surface of the grown GaN nanorods, a technique known from high power electronics and joining techniques is applied to remove the substrate. The top and bottom surfaces of the GaN nanorods are identified to be N-polar and Ga-polar according to the KPFM results, respectively. Our experiments demonstrate that KPFM is a simple and suitable method capable to identify the polarity of GaN nanorods. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Piezo-generator integrating a vertical array of GaN nanowires.

    Science.gov (United States)

    Jamond, N; Chrétien, P; Houzé, F; Lu, L; Largeau, L; Maugain, O; Travers, L; Harmand, J C; Glas, F; Lefeuvre, E; Tchernycheva, M; Gogneau, N

    2016-08-12

    We demonstrate the first piezo-generator integrating a vertical array of GaN nanowires (NWs). We perform a systematic multi-scale analysis, going from single wire properties to macroscopic device fabrication and characterization, which allows us to establish for GaN NWs the relationship between the material properties and the piezo-generation, and to propose an efficient piezo-generator design. The piezo-conversion of individual MBE-grown p-doped GaN NWs in a dense array is assessed by atomic force microscopy (AFM) equipped with a Resiscope module yielding an average output voltage of 228 ± 120 mV and a maximum value of 350 mV generated per NW. In the case of p-doped GaN NWs, the piezo-generation is achieved when a positive piezo-potential is created inside the nanostructures, i.e. when the NWs are submitted to compressive deformation. The understanding of the piezo-generation mechanism in our GaN NWs, gained from AFM analyses, is applied to design a piezo-generator operated under compressive strain. The device consists of NW arrays of several square millimeters in size embedded into spin-on glass with a Schottky contact for rectification and collection of piezo-generated carriers. The generator delivers a maximum power density of ∼12.7 mW cm(-3). This value sets the new state of the art for piezo-generators based on GaN NWs and more generally on nitride NWs, and offers promising prospects for the use of GaN NWs as high-efficiency ultra-compact energy harvesters.

  4. Implantation doping of GaN

    International Nuclear Information System (INIS)

    Zolper, J.C.

    1996-01-01

    Ion implantation has played an enabling role in the realization of many high performance photonic and electronic devices in mature semiconductor materials systems such as Si and GaAs. This can also be expected to be the case in III-Nitride based devices as the material quality continues to improve. This paper reviews the progress in ion implantation processing of the III-Nitride materials, namely, GaN, AlN, InN and their alloys. Details are presented of the successful demonstrations of implant isolation as well as n- and p-type implantation doping of GaN. Implant doping has required activation annealing at temperatures in excess of 1,000 C. The nature of the implantation induced damage and its response to annealing is addressed using Rutherford Backscattering. Finally, results are given for the first demonstration of a GaN device fabricated using ion implantation doping, a GaN junction field effect transistor (JFET)

  5. Green high-power tunable external-cavity GaN diode laser at 515 nm

    DEFF Research Database (Denmark)

    Chi, Mingjun; Jensen, Ole Bjarlin; Petersen, Paul Michael

    2016-01-01

    A 480 mW green tunable diode laser system is demonstrated for the first time to our knowledge. The laser system is based on a GaN broad-area diode laser and Littrow external-cavity feedback. The green laser system is operated in two modes by switching the polarization direction of the laser beam...... incident on the grating. When the laser beam is p-polarized, an output power of 50 mW with a tunable range of 9.2 nm is achieved. When the laser beam is s-polarized, an output power of 480 mW with a tunable range of 2.1 nm is obtained. This constitutes the highest output power from a tunable green diode...... laser system....

  6. GaN based nanorods for solid state lighting

    Energy Technology Data Exchange (ETDEWEB)

    Li Shunfeng; Waag, Andreas [Institute of Semiconductor Technology, Braunschweig University of Technology, 38106 Braunschweig (Germany)

    2012-04-01

    In recent years, GaN nanorods are emerging as a very promising novel route toward devices for nano-optoelectronics and nano-photonics. In particular, core-shell light emitting devices are thought to be a breakthrough development in solid state lighting, nanorod based LEDs have many potential advantages as compared to their 2 D thin film counterparts. In this paper, we review the recent developments of GaN nanorod growth, characterization, and related device applications based on GaN nanorods. The initial work on GaN nanorod growth focused on catalyst-assisted and catalyst-free statistical growth. The growth condition and growth mechanisms were extensively investigated and discussed. Doping of GaN nanorods, especially p-doping, was found to significantly influence the morphology of GaN nanorods. The large surface of 3 D GaN nanorods induces new optical and electrical properties, which normally can be neglected in layered structures. Recently, more controlled selective area growth of GaN nanorods was realized using patterned substrates both by metalorganic chemical vapor deposition (MOCVD) and by molecular beam epitaxy (MBE). Advanced structures, for example, photonic crystals and DBRs are meanwhile integrated in GaN nanorod structures. Based on the work of growth and characterization of GaN nanorods, GaN nanoLEDs were reported by several groups with different growth and processing methods. Core/shell nanoLED structures were also demonstrated, which could be potentially useful for future high efficient LED structures. In this paper, we will discuss recent developments in GaN nanorod technology, focusing on the potential advantages, but also discussing problems and open questions, which may impose obstacles during the future development of a GaN nanorod based LED technology.

  7. Low loss GaN waveguides at the visible spectral wavelengths for integrated photonics applications.

    Science.gov (United States)

    Chen, Hong; Fu, Houqiang; Huang, Xuanqi; Zhang, Xiaodong; Yang, Tsung-Han; Montes, Jossue A; Baranowski, Izak; Zhao, Yuji

    2017-12-11

    We perform comprehensive studies on the fundamental loss mechanisms in III-nitride waveguides in the visible spectral region. Theoretical analysis shows that free carrier loss dominates for GaN under low photon power injection. When optical power increases, the two photon absorption loss becomes important and eventually dominates when photon energy above half-bandgap of GaN. When the dimensions of the waveguides reduce, the sidewall scattering loss will start to dominate. To verify the theoretical results, a high performance GaN-on-sapphire waveguide was fabricated and characterized. Experimental results are consistent with the theoretical findings, showing that under high power injection the optical loss changed significantly for GaN waveguides. A low optical loss ~2 dB/cm was achieved on the GaN waveguide, which is the lowest value ever reported for the visible spectral range. The results and fabrication processes developed in this work pave the way for the development of III-nitride integrated photonics in the visible and potentially ultraviolet spectral range for nonlinear optics and quantum photonics applications.

  8. Design and Characterization of a 6 W GaN HEMT Microwave Power Amplifier with Digital Predistortion Linearization

    OpenAIRE

    Mitrevski, Dragan

    2011-01-01

    In this thesis, characterization of a 6W GaN HEMT power amplifier for optimal operating conditions through load pull simulations and measurements is investigated.The purpose is to find source and load impedances to achieve for instance maximum efficiency and maximum output power, and investigate whether thesimulated results can be replicated in a measurement setup. Simulations show that when matching for maximum output power, a peak output power of 13W is achieved, while in 1 dB compression, ...

  9. Piezotronic Effect in Polarity-Controlled GaN Nanowires.

    Science.gov (United States)

    Zhao, Zhenfu; Pu, Xiong; Han, Changbao; Du, Chunhua; Li, Linxuan; Jiang, Chunyan; Hu, Weiguo; Wang, Zhong Lin

    2015-08-25

    Using high-quality and polarity-controlled GaN nanowires (NWs), we studied the piezotronic effect in crystal orientation defined wurtzite structures. By applying a normal compressive force on c-plane GaN NWs with an atomic force microscopy tip, the Schottky barrier between the Pt tip and GaN can be effectively tuned by the piezotronic effect. In contrast, the normal compressive force cannot change the electron transport characteristics in m-plane GaN NWs whose piezoelectric polarization axis is turned in the transverse direction. This observation provided solid evidence for clarifying the difference between the piezotronic effect and the piezoresistive effect. We further demonstrated a high sensitivity of the m-plane GaN piezotronic transistor to collect the transverse force. The integration of c-plane GaN and m-plane GaN indicates an overall response to an external force in any direction.

  10. Analysis and modelling of GaN Schottky-based circuits at millimeter wavelengths

    International Nuclear Information System (INIS)

    Pardo, D; Grajal, J

    2015-01-01

    This work presents an analysis of the capabilities of GaN Schottky diodes for frequency multipliers and mixers at millimeter wavelengths. By using a Monte Carlo (MC) model of the diode coupled to a harmonic balance technique, the electrical and noise performances of these circuits are investigated. Despite the lower electron mobility of GaN compared to GaAs, multipliers based on GaN Schottky diodes can be competitive in the first stages of multiplier chains, due to the excellent power handling capabilities of this material. The performance of these circuits can be improved by taking advantage of the lateral Schottky diode structures based on AlGaN/GaN HEMT technology. (paper)

  11. GaN MOSFET with Boron Trichloride-Based Dry Recess Process

    International Nuclear Information System (INIS)

    Jiang, Y; Wang, Q P; Tamai, K; Ao, J P; Ohno, Y; Miyashita, T; Motoyama, S; Wang, D J

    2013-01-01

    The dry recessed-gate GaN metal-oxide-semiconductor field-effect transistors (MOSFETs) on AlGaN/GaN heterostructure using boron trichloride (BCl 3 ) as etching gas were fabricated and characterized. Etching with different etching power was conducted. Devices with silicon tetrachloride (SiCl 4 ) etching gas were also prepared for comparison. Field-effect mobility and interface state density were extracted from current-voltage (I-V) characteristics. GaN MOSFETs on AlGaN/GaN heterostructure with BCl 3 based dry recess achieved a high maximum electron mobility of 141.5 cm 2 V −1 s −1 and a low interface state density.

  12. GaN Micromechanical Resonators with Meshed Metal Bottom Electrode.

    Science.gov (United States)

    Ansari, Azadeh; Liu, Che-Yu; Lin, Chien-Chung; Kuo, Hao-Chung; Ku, Pei-Cheng; Rais-Zadeh, Mina

    2015-03-17

    This work describes a novel architecture to realize high-performance gallium nitride (GaN) bulk acoustic wave (BAW) resonators. The method is based on the growth of a thick GaN layer on a metal electrode grid. The fabrication process starts with the growth of a thin GaN buffer layer on a Si (111) substrate. The GaN buffer layer is patterned and trenches are made and refilled with sputtered tungsten (W)/silicon dioxide (SiO₂) forming passivated metal electrode grids. GaN is then regrown, nucleating from the exposed GaN seed layer and coalescing to form a thick GaN device layer. A metal electrode can be deposited and patterned on top of the GaN layer. This method enables vertical piezoelectric actuation of the GaN layer using its largest piezoelectric coefficient ( d 33 ) for thickness-mode resonance. Having a bottom electrode also results in a higher coupling coefficient, useful for the implementation of acoustic filters. Growth of GaN on Si enables releasing the device from the frontside using isotropic xenon difluoride (XeF₂) etch and therefore eliminating the need for backside lithography and etching.

  13. The Formation and Characterization of GaN Hexagonal Pyramids

    Science.gov (United States)

    Zhang, Shi-Ying; Xiu, Xiang-Qian; Lin, Zeng-Qin; Hua, Xue-Mei; Xie, Zi-Li; Zhang, Rong; Zheng, You-Dou

    2013-05-01

    GaN with hexagonal pyramids is fabricated using the photo-assisted electroless chemical etching method. Defective areas of the GaN substrate are selectively etched in a mixed solution of KOH and K2S2O8 under ultraviolet illumination, producing submicron-sized pyramids. Hexagonal pyramids on the etched GaN with well-defined {101¯1¯} facets and very sharp tips are formed. High-resolution x-ray diffraction shows that etched GaN with pyramids has a higher crystal quality, and micro-Raman spectra reveal a tensile stress relaxation in GaN with pyramids compared with normal GaN. The cathodoluminescence intensity of GaN after etching is significantly increased by three times, which is attributed to the reduction in the internal reflection, high-quality GaN with pyramids and the Bragg effect.

  14. Energetics of Mg incorporation at GaN(0001) and GaN(0001¯) surfaces

    Science.gov (United States)

    Sun, Qiang; Selloni, Annabella; Myers, T. H.; Doolittle, W. Alan

    2006-04-01

    By using density functional calculations in the generalized gradient approximation, we investigate the energetics of Mg adsorption and incorporation at GaN(0001) and GaN(0001¯) surfaces under various Ga and Mg coverage conditions as well as in presence of light or electron beam-induced electronic excitation. We find significant differences in Mg incorporation between Ga- and N-polar surfaces. Mg incorporation is easier at the Ga-polar surface, but high Mg coverages are found to cause important distortions which locally change the polarity from Ga to N polar. At the N-rich and moderately Ga-rich GaN(0001) surface, 0.25 ML of Mg substituting Ga in the top bilayer strongly reduce the surface diffusion barriers of Ga and N adatoms, in agreement with the surfactant effect observed in experiments. As the Mg coverage exceeds 0.5 ML, partial incorporation in the subsurface region (second bilayer) becomes favorable. A surface structure with 0.5 ML of incorporated Mg in the top bilayer and 0.25 ML in the second bilayer is found to be stable over a wide range of Ga chemical potential. At the Ga bilayer-terminated GaN(0001) surface, corresponding to Ga-rich conditions, configurations where Mg is incorporated in the interface region between the metallic Ga bilayer and the underlying GaN bilayer appear to be favored. At the N-polar surface, Mg is not incorporated under N-rich or moderately Ga-rich conditions, whereas incorporation in the adlayer may take place under Ga-rich conditions. In the presence of light or electron beam induced excitation, energy differences between Mg incorporated at the surface and in deeper layers are reduced so that the tendency toward surface segregation is also reduced.

  15. Synthesis of p-type GaN nanowires.

    Science.gov (United States)

    Kim, Sung Wook; Park, Youn Ho; Kim, Ilsoo; Park, Tae-Eon; Kwon, Byoung Wook; Choi, Won Kook; Choi, Heon-Jin

    2013-09-21

    GaN has been utilized in optoelectronics for two decades. However, p-type doping still remains crucial for realization of high performance GaN optoelectronics. Though Mg has been used as a p-dopant, its efficiency is low due to the formation of Mg-H complexes and/or structural defects in the course of doping. As a potential alternative p-type dopant, Cu has been recognized as an acceptor impurity for GaN. Herein, we report the fabrication of Cu-doped GaN nanowires (Cu:GaN NWs) and their p-type characteristics. The NWs were grown vertically via a vapor-liquid-solid (VLS) mechanism using a Au/Ni catalyst. Electrical characterization using a nanowire-field effect transistor (NW-FET) showed that the NWs exhibited n-type characteristics. However, with further annealing, the NWs showed p-type characteristics. A homo-junction structure (consisting of annealed Cu:GaN NW/n-type GaN thin film) exhibited p-n junction characteristics. A hybrid organic light emitting diode (OLED) employing the annealed Cu:GaN NWs as a hole injection layer (HIL) also demonstrated current injected luminescence. These results suggest that Cu can be used as a p-type dopant for GaN NWs.

  16. A novel GaN HEMT with double recessed barrier layer for high efficiency-energy applications

    Science.gov (United States)

    Jia, Hujun; Luo, Yehui; Wu, Qiuyuan; Yang, Yintang

    2017-11-01

    In this paper, a novel GaN HEMT with high efficiency-energy characteristic is proposed. Different from the conventional structure, the proposed structure contains double recessed barriers layer (DRBL) beside the gate. The key idea in this work is to improve the microwave output characteristics. The simulated results show that the drain saturation current and peak transconductance of DRBL GaN HEMT is slightly decreased, the transconductance saturation flatness is increased by 0.5 V and the breakdown voltage is also enhanced too. Due to the both recessed barrier layer, the gate-drain/gate-source capacitance is decreased by 6.3% and 11.3%, respectively. The RF simulated results show that the maximum oscillation frequency for DRBL GaN HEMT is increased from 57 GHz to 64 GHz and the saturation power density is 8.7 W/mm at 600 MHz, 6.9 W/mm at 1200 MHz with the higher power added efficiency (PAE). Further investigation show that DRBL GaN HEMT can achieve to 6.4 W/mm and the maximum PAE 83.8% at 2400 MHz. Both are higher than the 5.0 W/mm and 80.3% for the conventional structure. When the operating frequency increases to X band, the DRBL GaN HEMT still exhibits the superior output performances. All the results show that the advantages and the potential capacities of DRBL GaN HEMT at high efficiency-energy are greater than the conventional GaN HEMT.

  17. Photoelectrochemical liftoff of LEDs grown on freestanding c-plane GaN substrates

    KAUST Repository

    Hwang, David

    2016-09-23

    We demonstrate a thin-film flip-chip (TFFC) process for LEDs grown on freestanding c-plane GaN substrates. LEDs are transferred from a bulk GaN substrate to a sapphire submount via a photoelectrochemical (PEC) undercut etch. This PEC liftoff method allows for substrate reuse and exposes the N-face of the LEDs for additional roughening. The LEDs emitted at a wavelength of 432 nm with a turn on voltage of ~3 V. Etching the LEDs in heated KOH after transferring them to a sapphire submount increased the peak external quantum efficiency (EQE) by 42.5% from 9.9% (unintentionally roughened) to 14.1% (intentionally roughened).

  18. Silicon—a new substrate for GaN growth

    Indian Academy of Sciences (India)

    Unknown

    of GaN devices based on silicon is the thermal mismatch of GaN and Si, which generates cracks. In 1998, the .... Considerable research is being carried out on GaN HEMTs at present. ... by InGaN/GaN multiquantum well in MOVPE was first.

  19. GaN Nanowire Arrays for High-Output Nanogenerators

    KAUST Repository

    Huang, Chi-Te

    2010-04-07

    Three-fold symmetrically distributed GaN nanowire (NW) arrays have been epitaxially grown on GaN/sapphire substrates. The GaN NW possesses a triangular cross section enclosed by (0001), (2112), and (2112) planes, and the angle between the GaN NW and the substrate surface is ∼62°. The GaN NW arrays produce negative output voltage pulses when scanned by a conductive atomic force microscope in contact mode. The average of piezoelectric output voltage was about -20 mV, while 5-10% of the NWs had piezoelectric output voltages exceeding -(0.15-0.35) V. The GaN NW arrays are highly stable and highly tolerate to moisture in the atmosphere. The GaN NW arrays demonstrate an outstanding potential to be utilized for piezoelectric energy generation with a performance probably better than that of ZnO NWs. © 2010 American Chemical Society.

  20. Large electron capture-cross-section of the major nonradiative recombination centers in Mg-doped GaN epilayers grown on a GaN substrate

    Science.gov (United States)

    Chichibu, S. F.; Shima, K.; Kojima, K.; Takashima, S.; Edo, M.; Ueno, K.; Ishibashi, S.; Uedono, A.

    2018-05-01

    Complementary time-resolved photoluminescence and positron annihilation measurements were carried out at room temperature on Mg-doped p-type GaN homoepitaxial films for identifying the origin and estimating the electron capture-cross-section ( σ n ) of the major nonradiative recombination centers (NRCs). To eliminate any influence by threading dislocations, free-standing GaN substrates were used. In Mg-doped p-type GaN, defect complexes composed of a Ga-vacancy (VGa) and multiple N-vacancies (VNs), namely, VGa(VN)2 [or even VGa(VN)3], are identified as the major intrinsic NRCs. Different from the case of 4H-SiC, atomic structures of intrinsic NRCs in p-type and n-type GaN are different: VGaVN divacancies are the major NRCs in n-type GaN. The σ n value approximately the middle of 10-13 cm2 is obtained for VGa(VN)n, which is larger than the hole capture-cross-section (σp = 7 × 10-14 cm2) of VGaVN in n-type GaN. Combined with larger thermal velocity of an electron, minority carrier lifetime in Mg-doped GaN becomes much shorter than that of n-type GaN.

  1. Photoluminescence of Mg-doped m-plane GaN grown by MOCVD on bulk GaN substrates

    OpenAIRE

    Monemar, Bo; Paskov, Plamen; Pozina, Galia; Hemmingsson, Carl; Bergman, Peder; Lindgren, David; Samuelson, Lars; Ni, Xianfeng; Morkoç, Hadis; Paskova, Tanya; Bi, Zhaoxia; Ohlsson, Jonas

    2011-01-01

    Photoluminescence (PL) properties are reported for a set of m-plane GaN films with Mg doping varied from mid 1018cm-3 to well above 1019 cm-3. The samples were grown with MOCVD at reduced pressure on low defect density m-plane bulk GaN templates. The sharp line near bandgap bound exciton (BE) spectra observed below 50 K, as well as the broader donor-acceptor pair (DAP) PL bands at 2.9 eV to 3.3 eV give evidence of several Mg related acceptors, similar to the case of c-plane GaN. The dependenc...

  2. The trap states in lightly Mg-doped GaN grown by MOVPE on a freestanding GaN substrate

    Science.gov (United States)

    Narita, Tetsuo; Tokuda, Yutaka; Kogiso, Tatsuya; Tomita, Kazuyoshi; Kachi, Tetsu

    2018-04-01

    We investigated traps in lightly Mg-doped (2 × 1017 cm-3) p-GaN fabricated by metalorganic vapor phase epitaxy (MOVPE) on a freestanding GaN substrate and the subsequent post-growth annealing, using deep level transient spectroscopy. We identified four hole traps with energy levels of EV + 0.46, 0.88, 1.0, and 1.3 eV and one electron trap at EC - 0.57 eV in a p-type GaN layer uniformly doped with magnesium (Mg). The Arrhenius plot of hole traps with the highest concentration (˜3 × 1016 cm-3) located at EV + 0.88 eV corresponded to those of hole traps ascribed to carbon on nitrogen sites in n-type GaN samples grown by MOVPE. In fact, the range of the hole trap concentrations at EV + 0.88 eV was close to the carbon concentration detected by secondary ion mass spectroscopy. Moreover, the electron trap at EC - 0.57 eV was also identical to the dominant electron traps commonly observed in n-type GaN. Together, these results suggest that the trap states in the lightly Mg-doped GaN grown by MOVPE show a strong similarity to those in n-type GaN, which can be explained by the Fermi level close to the conduction band minimum in pristine MOVPE grown samples due to existing residual donors and Mg-hydrogen complexes.

  3. GaN Initiative for Grid Applications (GIGA)

    Energy Technology Data Exchange (ETDEWEB)

    Turner, George [MIT Lincoln Lab., Lexington, MA (United States)

    2015-07-03

    For nearly 4 ½ years, MIT Lincoln Laboratory (MIT/LL) led a very successful, DoE-funded team effort to develop GaN-on-Si materials and devices, targeting high-voltage (>1 kV), high-power, cost-effective electronics for grid applications. This effort, called the GaN Initiative for Grid Applications (GIGA) program, was initially made up of MIT/LL, the MIT campus group of Prof. Tomas Palacios (MIT), and the industrial partner M/A Com Technology Solutions (MTS). Later in the program a 4th team member was added (IQE MA) to provide commercial-scale GaN-on-Si epitaxial materials. A basic premise of the GIGA program was that power electronics, for ubiquitous utilization -even for grid applications - should be closer in cost structure to more conventional Si-based power electronics. For a number of reasons, more established GaN-on-SiC or even SiC-based power electronics are not likely to reach theses cost structures, even in higher manufacturing volumes. An additional premise of the GIGA program was that the technical focus would be on materials and devices suitable for operating at voltages > 1 kV, even though there is also significant commercial interest in developing lower voltage (< 1 kV), cost effective GaN-on-Si devices for higher volume applications, like consumer products. Remarkable technical progress was made during the course of this program. Advances in materials included the growth of high-quality, crack-free epitaxial GaN layers on large-diameter Si substrates with thicknesses up to ~5 μm, overcoming significant challenges in lattice mismatch and thermal expansion differences between Si and GaN in the actual epitaxial growth process. Such thick epilayers are crucial for high voltage operation of lateral geometry devices such as Schottky barrier (SB) diodes and high electron mobility transistors (HEMTs). New “Normally-Off” device architectures were demonstrated – for safe operation of power electronics circuits. The trade-offs between lateral and

  4. Determination of carrier diffusion length in GaN

    Science.gov (United States)

    Hafiz, Shopan; Zhang, Fan; Monavarian, Morteza; Avrutin, Vitaliy; Morkoç, Hadis; Özgür, Ümit; Metzner, Sebastian; Bertram, Frank; Christen, Jürgen; Gil, Bernard

    2015-01-01

    Diffusion lengths of photo-excited carriers along the c-direction were determined from photoluminescence (PL) and cross-sectional cathodoluminescence (CL) measurements in p- and n-type GaN epitaxial layers grown on c-plane sapphire by metal-organic chemical vapor deposition. The investigated samples incorporate a 6 nm thick In0.15Ga0.85N active layer capped with either 500 nm p-GaN or 1500 nm n-GaN. The top GaN layers were etched in steps and PL from the InGaN active region and the underlying layers was monitored as a function of the top GaN thickness upon photo-generation near the surface region by above bandgap excitation. Taking into consideration the absorption in the top GaN layer as well as active and underlying layers, the diffusion lengths at 295 K and at 15 K were measured to be 93 ± 7 nm and 70 ± 7 nm for Mg-doped p-type GaN and 432 ± 30 nm and 316 ± 30 nm for unintentionally doped n-type GaN, respectively, at photogenerated carrier densities of 4.2 × 1018 cm-3 using PL spectroscopy. CL measurements of the unintentionally doped n-type GaN layer at much lower carrier densities of 1017 cm-3 revealed a longer diffusion length of 525 ± 11 nm at 6 K.

  5. Computational study of GaAs1-xNx and GaN1-yAsy alloys and arsenic impurities in GaN

    International Nuclear Information System (INIS)

    Laaksonen, K; Komsa, H-P; Arola, E; Rantala, T T; Nieminen, R M

    2006-01-01

    We have studied the structural and electronic properties of As-rich GaAs 1-x N x and N-rich GaN 1-y As y alloys in a large composition range using first-principles methods. We have systematically investigated the effect of the impurity atom configuration near both GaAs and GaN sides of the concentration range on the total energies, lattice constants and bandgaps. The N (As) atoms, replacing substitutionally As (N) atoms in GaAs (GaN), cause the surrounding Ga atoms to relax inwards (outwards), making the Ga-N (Ga-As) bond length about 15% shorter (longer) than the corresponding Ga-As (Ga-N) bond length in GaAs (GaN). The total energies of the relaxed alloy supercells and the bandgaps experience large fluctuations within different configurations and these fluctuations grow stronger if the impurity concentration is increased. Substituting As atoms with N in GaAs induces modifications near the conduction band minimum, while substituting N atoms with As in GaN modifies the states near the valence band maximum. Both lead to bandgap reduction, which is at first rapid but later slows down. The relative size of the fluctuations is much larger in the case of GaAs 1-x N x alloys. We have also looked into the question of which substitutional site (Ga or N) As occupies in GaN. We find that under Ga-rich conditions arsenic prefers the substitutional N site over the Ga site within a large range of Fermi level values

  6. Improved crystal quality of a-plane GaN with high- temperature 3-dimensional GaN buffer layers deposited by using metal-organic chemical vapor deposition

    International Nuclear Information System (INIS)

    Park, Sung Hyun; Moon, Dae Young; Kim, Bum Ho; Kim, Dong Uk; Chang, Ho Jun; Jeon, Heon Su; Yoon, Eui Joon; Joo, Ki Su; You, Duck Jae; Nanishi, Yasushi

    2012-01-01

    a-plane GaN on r-plane sapphire substrates suffers from high density defects and rough surfaces. To obtain pit-free a-plane GaN by metal-organic chemical vapor deposition, we intentionally grew high-temperature (HT) 3-dimensional (3D) GaN buffer layers on a GaN nucleation layer. The effects of the HT 3D GaN buffer layers on crystal quality and the surface morphology of a-plane GaN were studied. The insertion of a 3D GaN buffer layer with an optimum thickness was found to be an effective method to obtain pit-free a-plane GaN with improved crystalline quality on r-plane sapphire substrates. An a-plane GaN light emitting diode (LED) at an emission wavelength around 480 nm with negligible peak shift was successfully fabricated.

  7. Determination of carrier diffusion length in p- and n-type GaN

    Science.gov (United States)

    Hafiz, Shopan; Metzner, Sebastian; Zhang, Fan; Monavarian, Morteza; Avrutin, Vitaliy; Morkoç, Hadis; Karbaum, Christopher; Bertram, Frank; Christen, Jürgen; Gil, Bernard; Özgür, Ümit

    2014-03-01

    Diffusion lengths of photo-excited carriers along the c-direction were determined from photoluminescence (PL) measurements in p- and n-type GaN epitaxial layers grown on c-plane sapphire by metal-organic chemical vapor deposition. The investigated samples incorporate a 6 nm thick In0.15Ga0.85N active layer capped with either 500 nm p- GaN or 1300 nm n-GaN. The top GaN layers were etched in steps and PL from the InGaN active region and the underlying layers was monitored as a function of the top GaN thickness upon photogeneration near the surface region by above bandgap excitation. Taking into consideration the absorption in the active and underlying layers, the diffusion lengths at 295 K and at 15 K were measured to be about 92 ± 7 nm and 68 ± 7 nm for Mg-doped p-type GaN and 432 ± 30 nm and 316 ± 30 nm for unintentionally doped n-type GaN, respectively. Cross-sectional cathodoluminescence line-scan measurement was performed on a separate sample and the diffusion length in n-type GaN was measured to be 280 nm.

  8. On the phenomenon of large photoluminescence red shift in GaN nanoparticles

    KAUST Repository

    Ben Slimane, Ahmed

    2013-07-01

    We report on the observation of broad photoluminescence wavelength tunability from n-type gallium nitride nanoparticles (GaN NPs) fabricated using the ultraviolet metal-assisted electroless etching method. Transmission and scanning electron microscopy measurements performed on the nanoparticles revealed large size dispersion ranging from 10 to 100 nm. Nanoparticles with broad tunable emission wavelength from 362 to 440 nm have been achieved by exciting the samples using the excitation power-dependent method. We attribute this large wavelength tunability to the localized potential fluctuations present within the GaN matrix and to vacancy-related surface states. Our results show that GaN NPs fabricated using this technique are promising for tunable-color-temperature white light-emitting diode applications. © 2013 Slimane et al.; licensee Springer.

  9. On the phenomenon of large photoluminescence red shift in GaN nanoparticles

    KAUST Repository

    Ben Slimane, Ahmed; Anjum, Dalaver H.; Elafandy, Rami T.; Najar, Adel; Ng, Tien Khee; San Roman Alerigi, Damian; Ooi, Boon S.

    2013-01-01

    We report on the observation of broad photoluminescence wavelength tunability from n-type gallium nitride nanoparticles (GaN NPs) fabricated using the ultraviolet metal-assisted electroless etching method. Transmission and scanning electron microscopy measurements performed on the nanoparticles revealed large size dispersion ranging from 10 to 100 nm. Nanoparticles with broad tunable emission wavelength from 362 to 440 nm have been achieved by exciting the samples using the excitation power-dependent method. We attribute this large wavelength tunability to the localized potential fluctuations present within the GaN matrix and to vacancy-related surface states. Our results show that GaN NPs fabricated using this technique are promising for tunable-color-temperature white light-emitting diode applications. © 2013 Slimane et al.; licensee Springer.

  10. Scatterings and Quantum Effects in (Al ,In )N /GaN Heterostructures for High-Power and High-Frequency Electronics

    Science.gov (United States)

    Wang, Leizhi; Yin, Ming; Khan, Asif; Muhtadi, Sakib; Asif, Fatima; Choi, Eun Sang; Datta, Timir

    2018-02-01

    Charge transport in the wide-band-gap (Al ,In )N /GaN heterostructures with high carrier density approximately 2 ×1013 cm-2 is investigated over a large range of temperature (270 mK ≤T ≤280 K ) and magnetic field (0 ≤B ≤18 T ). We observe the first evidence of weak localization in the two-dimensional electron gas in this system. From the Shubnikov-de Haas (SdH) oscillations a relatively light effective mass of 0.23 me is determined. Furthermore, the linear dependence with temperature (T power and high-frequency electronics.

  11. Epitaxial GaN around ZnO nanopillars

    Energy Technology Data Exchange (ETDEWEB)

    Fikry, Mohamed; Scholz, Ferdinand [Institut fuer Optoelektronik, Universitaet Ulm, Albert-Einstein-Allee 45, 89081 Ulm (Germany); Madel, Manfred; Tischer, Ingo; Thonke, Klaus [Institut fuer Quantenmaterie, Universitaet Ulm, Albert-Einstein-Allee 45, 89081 Ulm (Germany)

    2011-07-01

    We report on an investigation of the epitaxial quality of GaN layers overgrown coaxially around ZnO nanopillars. In a first step, regularly arranged ZnO nanopillars were grown using pre-patterning by e-beam lithography or self-organized hexagonal polystyrene sphere masks. Alternatively, ZnO pillars were also successfully grown on top of GaN pyramids. In a second step, GaN layers were grown around the ZnO pillars by Metal Organic Vapor Phase Epitaxy. At growth temperatures above 800 C, the ZnO pillars are dissolved by the hydrogen carrier gas leaving hollow GaN nanotubes. Characterization involved photoluminescence (PL), scanning electron microscopy and cathodoluminescence. The fair quality of the deposited GaN layers is confirmed by a sharp low temperature PL peak at 3.48 eV attributed to the donor bound exciton emission. Further peaks at 3.42 eV and 3.29 eV show the possible existence of basal plane and prismatic stacking faults.

  12. Exciton emission from bare and hybrid plasmonic GaN nanorods

    Science.gov (United States)

    Mohammadi, Fatemesadat; Kunert, Gerd; Hommel, Detlef; Ge, Jingxuan; Duscher, Gerd; Schmitzer, Heidrun; Wagner, Hans Peter

    We study the exciton emission of hybrid gold nanoparticle/Alq3 (aluminiumquinoline)/wurtzite GaN nanorods. GaN nanorods of 1.5 μm length and 250 nm diameter were grown by plasma assisted MBE. Hybrid GaN nanorods were synthesized by organic molecular beam deposition. Temperature and power dependent time integrated (TI) and time resolved (TR) photoluminescence (PL) measurements were performed on bare and hybrid structures. Bare nanorods show donor (D0,X) and acceptor bound (A0,X) exciton emission at 3.473 eV and at 3.463 eV, respectively. TR-PL trace modeling reveal lifetimes of 240 ps and 1.4 ns for the (D0,X) and (A0,X) transition. 10 nm gold coated GaN nanorods show a significant PL quenching and (D0,X) lifetime shortening which is tentatively attributed to impact ionization of (D0,X) due to hot electron injection from the gold nanoparticles. This is supported by electron energy loss spectroscopy that shows a redshift of a midgap state transition indicating a reduction of a preexisting band-bending at the nanorod surface due to positive charging of the gold nanoparticles. Inserting a nominally 5 nm thick Alq3 spacer between the nanorod and the gold reduces the PL quenching and lifetime shortening. Plasmonic nanorods with a 30 nm thick Alq3 spacer reveal lifetimes which are nearly identical to uncoated GaN nanorods.

  13. Interaction of GaN epitaxial layers with atomic hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Losurdo, M.; Giangregorio, M.M.; Capezzuto, P.; Bruno, G.; Namkoong, G.; Doolittle, W.A.; Brown, A.S

    2004-08-15

    GaN surface passivation processes are still under development and among others hydrogen treatments are investigated. In this study, we use non-destructive optical and electrical probes such as spectroscopic ellipsometry (SE) and surface potential Kelvin probe microscopy (SP-KPM) in conjunction with non-contact atomic force microscopy (AFM) for the study of the different reactivity of Ga-polar and N-polar GaN epitaxial layers with atomic hydrogen. The GaN epitaxial layers are grown by molecular beam epitaxy on sapphire (0 0 0 1) substrates, and GaN and AlN buffer layers are used to grow N-polar and Ga-polar films, respectively. The atomic hydrogen is produced by a remote rf (13.56 MHz) H{sub 2} plasma in order to rule out any ion bombardment of the GaN surface and make the interaction chemical. It is found that the interaction of GaN surfaces with atomic hydrogen depends on polarity, with N-polar GaN exhibiting greater reactivity. Furthermore, it is found that atomic hydrogen is effective in the passivation of grain boundaries and surface defects states.

  14. Interaction of GaN epitaxial layers with atomic hydrogen

    International Nuclear Information System (INIS)

    Losurdo, M.; Giangregorio, M.M.; Capezzuto, P.; Bruno, G.; Namkoong, G.; Doolittle, W.A.; Brown, A.S.

    2004-01-01

    GaN surface passivation processes are still under development and among others hydrogen treatments are investigated. In this study, we use non-destructive optical and electrical probes such as spectroscopic ellipsometry (SE) and surface potential Kelvin probe microscopy (SP-KPM) in conjunction with non-contact atomic force microscopy (AFM) for the study of the different reactivity of Ga-polar and N-polar GaN epitaxial layers with atomic hydrogen. The GaN epitaxial layers are grown by molecular beam epitaxy on sapphire (0 0 0 1) substrates, and GaN and AlN buffer layers are used to grow N-polar and Ga-polar films, respectively. The atomic hydrogen is produced by a remote rf (13.56 MHz) H 2 plasma in order to rule out any ion bombardment of the GaN surface and make the interaction chemical. It is found that the interaction of GaN surfaces with atomic hydrogen depends on polarity, with N-polar GaN exhibiting greater reactivity. Furthermore, it is found that atomic hydrogen is effective in the passivation of grain boundaries and surface defects states

  15. Step-flow growth mode instability of N-polar GaN under N-excess

    International Nuclear Information System (INIS)

    Chèze, C.; Sawicka, M.; Siekacz, M.; Łucznik, B.; Boćkowski, M.; Skierbiszewski, C.; Turski, H.; Cywiński, G.; Smalc-Koziorowska, J.; Weyher, J. L.; Kryśko, M.

    2013-01-01

    GaN layers were grown on N-polar GaN substrates by plasma-assisted molecular beam epitaxy under different III/V ratios. Ga-rich conditions assure step-flow growth with atomically flat surface covered by doubly-bunched steps, as for Ga-polar GaN. Growth under N-excess however leads to an unstable step-flow morphology. Particularly, for substrates slightly miscut towards , interlacing fingers are covered by atomic steps pinned on both sides by small hexagonal pits. In contrast, a three-dimensional island morphology is observed on the Ga-polar equivalent sample. We attribute this result to lower diffusion barriers on N-polar compared to Ga-polar GaN under N-rich conditions

  16. Bulk GaN Schottky Diodes for Millimeter Wave Frequency Multipliers, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Within the context of this project, White Light Power Inc. (WLPI) will demonstrate the feasibility of using vertical GaN Schottky diodes for high-power rectification...

  17. Dislocation-induced nanoparticle decoration on a GaN nanowire.

    Science.gov (United States)

    Yang, Bing; Yuan, Fang; Liu, Qingyun; Huang, Nan; Qiu, Jianhang; Staedler, Thorsten; Liu, Baodan; Jiang, Xin

    2015-02-04

    GaN nanowires with homoepitaxial decorated GaN nanoparticles on their surface along the radial direction have been synthesized by means of a chemical vapor deposition method. The growth of GaN nanowires is catalyzed by Au particles via the vapor-liquid-solid (VLS) mechanism. Screw dislocations are generated along the radial direction of the nanowires under slight Zn doping. In contrast to the metal-catalyst-assisted VLS growth, GaN nanoparticles are found to prefer to nucleate and grow at these dislocation sites. High-resolution transmission electron microscopy (HRTEM) analysis demonstrates that the GaN nanoparticles possess two types of epitaxial orientation with respect to the corresponding GaN nanowire: (I) [1̅21̅0]np//[1̅21̅0]nw, (0001)np//(0001)nw; (II) [1̅21̅3]np//[12̅10]nw, (101̅0)np//(101̅0)nw. An increased Ga signal in the energy-dispersive spectroscopy (EDS) profile lines of the nanowires suggests GaN nanoparticle growth at the edge surface of the wires. All the crystallographic results confirm the importance of the dislocations with respect to the homoepitaxial growth of the GaN nanoparticles. Here, screw dislocations situated on the (0001) plane provide the self-step source to enable nucleation of the GaN nanoparticles.

  18. Suppression of the self-heating effect in GaN HEMT by few-layer graphene heat spreading elements

    Science.gov (United States)

    Volcheck, V. S.; Stempitsky, V. R.

    2017-11-01

    Self-heating has an adverse effect on characteristics of gallium nitride (GaN) high electron mobility transistors (HEMTs). Various solutions to the problem have been proposed, however, a temperature rise due to dissipated electrical power still hinders the production of high power and high speed GaN devices. In this paper, thermal management of GaN HEMT via few-layer graphene (FLG) heat spreading elements is investigated. It is shown that integration of the FLG elements on top of the device structure considerably reduces the maximum temperature and improves the DC and small signal AC performance.

  19. Comb-drive GaN micro-mirror on a GaN-on-silicon platform

    International Nuclear Information System (INIS)

    Wang, Yongjin; Sasaki, Takashi; Wu, Tong; Hu, Fangren; Hane, Kazuhiro

    2011-01-01

    We report here a double-sided process for the fabrication of a comb-drive GaN micro-mirror on a GaN-on-silicon platform. A silicon substrate is first patterned from the backside and removed by deep reactive ion etching, resulting in totally suspended GaN slabs. GaN microstructures including the torsion bars, movable combs and mirror plate are then defined on a freestanding GaN slab by the backside alignment technique and generated by fast atom beam etching with Cl 2 gas. Although the fabricated comb-drive GaN micro-mirrors are deflected by the residual stress in GaN thin films, they can operate on a high resistivity silicon substrate without introducing any additional isolation layer. The optical rotation angles are experimentally characterized in the rotation experiments. This work opens the possibility of producing GaN optical micro-electro-mechanical-system (MEMS) devices on a GaN-on-silicon platform.

  20. Bulk GaN Schottky Diodes for Millimeter Wave Frequency Multipliers, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Within the context of this project, White Light Power Inc. (WLPI) will demonstrate prototype vertical GaN Schottky diodes for high-power rectification at W-band. To...

  1. Application of GaN in Hard-switching Converters:Challenges and Potential Solutions%Application of GaN in Hard-switching Converters: Challenges and Potential Solutions

    Institute of Scientific and Technical Information of China (English)

    Bo LIU; Zhe-yu ZHANG; Edward Jones; Fei(Fred) WANG

    2017-01-01

    This paper overviews the benefits,challenges,research trends and potential solutions on the design and application of gallium nitride (GaN) technology in hard-switching power electronic converters from the device level up to converter level.

  2. Photoluminescence of Mg-doped m-plane GaN grown by MOCVD on bulk GaN substrates

    Energy Technology Data Exchange (ETDEWEB)

    Monemar, Bo [Department of Physics, Chemistry and Biology, Linkoeping University, 581 83 Linkoeping (Sweden); Solid State Physics-The Nanometer Structure Consortium, Lund University, Box 118, 221 00 Lund (Sweden); Paskov, Plamen; Pozina, Galia; Hemmingsson, Carl; Bergman, Peder [Department of Physics, Chemistry and Biology, Linkoeping University, 581 83 Linkoeping (Sweden); Lindgren, David; Samuelson, Lars [Solid State Physics-The Nanometer Structure Consortium, Lund University, Box 118, 221 00 Lund (Sweden); Ni, Xianfeng; Morkoc, Hadis [Department of Electrical and Computer Engineering, Virginia Commonwealth University, Richmond, Virginia 23284-3072 (United States); Paskova, Tanya [Kyma Technologies Inc., Raleigh, North Carolina 27617 (United States); Bi, Zhaoxia; Ohlsson, Jonas [Glo AB, Ideon Science Park, Scheelevaegen 17, 223 70 Lund (Sweden)

    2011-07-15

    Photoluminescence (PL) properties are reported for a set of m-plane GaN films with Mg doping varied from mid 10{sup 18} cm{sup -3} to above 10{sup 20} cm{sup -3}. The samples were grown with MOCVD at reduced pressure on low defect density bulk GaN templates. The sharp line near bandgap bound exciton (BE) spectra observed below 50 K, as well as the broader donor-acceptor pair (DAP) PL bands at 2.9-3.3 eV give evidence of several Mg related acceptors, similar to the case of c-plane GaN. The dependence of the BE spectra on excitation intensity as well as the transient decay behaviour demonstrate acoustic phonon assisted transfer between the acceptor BE states. The lower energy donor-acceptor pair spectra suggest the presence of deep acceptors, in addition to the two main shallower ones at about 0.23 eV. Similar spectra from Mg-doped GaN nanowires (NWs) grown by MOCVD are also briefly discussed. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Improved performance of GaN based light emitting diodes with ex-situ sputtered AlN nucleation layers

    Directory of Open Access Journals (Sweden)

    Shuo-Wei Chen

    2016-04-01

    Full Text Available The crystal quality, electrical and optical properties of GaN based light emitting diodes (LEDs with ex-situ sputtered physical vapor deposition (PVD aluminum nitride (AlN nucleation layers were investigated. It was found that the crystal quality in terms of defect density and x-ray diffraction linewidth was greatly improved in comparison to LEDs with in-situ low temperature GaN nucleation layer. The light output power was 3.7% increased and the reverse bias voltage of leakage current was twice on LEDs with ex-situ PVD AlN nucleation layers. However, larger compressive strain was discovered in LEDs with ex-situ PVD AlN nucleation layers. The study shows the potential and constrain in applying ex-situ PVD AlN nucleation layers to fabricate high quality GaN crystals in various optoelectronics.

  4. Incorporation of Mg in Free-Standing HVPE GaN Substrates

    Science.gov (United States)

    Zvanut, M. E.; Dashdorj, J.; Freitas, J. A.; Glaser, E. R.; Willoughby, W. R.; Leach, J. H.; Udwary, K.

    2016-06-01

    Mg, the only effective p-type dopant for nitrides, is well studied in thin films due to the important role of the impurity in light-emitting diodes and high-power electronics. However, there are few reports of Mg in thick free-standing GaN substrates. Here, we demonstrate successful incorporation of Mg into GaN grown by hydride vapor-phase epitaxy (HVPE) using metallic Mg as the doping source. The concentration of Mg obtained from four separate growth runs ranged between 1016 cm-3 and 1019 cm-3. Raman spectroscopy and x-ray diffraction revealed that Mg did not induce stress or perturb the crystalline quality of the HVPE GaN substrates. Photoluminescence (PL) and electron paramagnetic resonance (EPR) spectroscopies were performed to investigate the types of point defects in the crystals. The near-band-edge excitonic and shallow donor-shallow acceptor radiative recombination processes involving shallow Mg acceptors were prominent in the PL spectrum of a sample doped to 3 × 1018 cm-3, while the EPR signal was also thought to represent a shallow Mg acceptor. Detection of this signal reflects minimization of nonuniform strain obtained in the thick free-standing HVPE GaN compared with heteroepitaxial thin films.

  5. Depletion-Mode GaN HEMT Q-Spoil Switches for MRI Coils.

    Science.gov (United States)

    Lu, Jonathan Y; Grafendorfer, Thomas; Zhang, Tao; Vasanawala, Shreyas; Robb, Fraser; Pauly, John M; Scott, Greig C

    2016-12-01

    Q-spoiling is the process of decoupling an MRI receive coil to protect the equipment and patient. Conventionally, Q-spoiling is performed using a PIN diode switch that draws significant current. In this work, a Q-spoiling technique using a depletion-mode Gallium Nitride HEMT device was developed for coil detuning at both 1.5 T and 3 T MRI. The circuits with conventional PIN diode Q-spoiling and the GaN HEMT device were implemented on surface coils. SNR was measured and compared for all surfaces coils. At both 1.5 T and 3 T, comparable SNR was achieved for all coils with the proposed technique and conventional Q-spoiling. The GaN HEMT device has significantly reduced the required power for Q-spoiling. The GaN HEMT device also provides useful safety features by detuning the coil when unpowered.

  6. Normally-off GaN Transistors for Power Applications

    International Nuclear Information System (INIS)

    Hilt, O; Bahat-Treidel, E; Brunner, F; Knauer, A; Zhytnytska, R; Kotara, P; Wuerfl, J

    2014-01-01

    Normally-off high voltage GaN-HFETs for switching applications are presented. Normally-off operation with threshold voltages of 1 V and more and with 5 V gate swing has been obtained by using p-type GaN as gate. Different GaN-based buffer types using doping and backside potential barriers have been used to obtain blocking strengths up to 1000 V. The increase of the dynamic on-state resistance is analyzed for the different buffer types. The best trade-off between low dispersion and high blocking strength was obtained for a modified carbon-doped GaN-buffer that showed a 2.6x increase of the dynamic on-state resistance for 500 V switching as compared to switching from 20 V off-state drain bias. Device operation up to 200 °C ambient temperature without any threshold voltage shift is demonstrated.

  7. Induced defects in neutron irradiated GaN single crystals

    International Nuclear Information System (INIS)

    Park, I. W.; Koh, E. K.; Kim, Y. M.; Choh, S. H.; Park, S. S.; Kim, B. G.; Sohn, J. M.

    2005-01-01

    The local structure of defects in undoped, Si-doped, and neutron irradiated free standing GaN bulk crystals, grown by hydride vapor phase epitaxy, has been investigated by employing Raman scattering and cathodoluminescence. The GaN samples were irradiated to a dose of 2 x 10 17 neutrons in an atomic reactor at Korea Atomic Energy Research Institute. There was no appreciable change in the Raman spectra for undoped GaN samples before and after neutron irradiation. However, a forbidden transition, A 1 (TO) mode, appeared for a neutron irradiated Si-doped GaN crystal. Cathodoluminescence spectrum for the neutron irradiated Si-doped GaN crystal became much more broadened than that for the unirradiated one. The experimental results reveal the generation of defects with locally deformed structure in the wurtzite Si-doped GaN single crystal

  8. Polarization Raman spectroscopy of GaN nanorod bundles

    International Nuclear Information System (INIS)

    Tite, T.; Lee, C. J.; Chang, Y.-M.

    2010-01-01

    We performed polarization Raman spectroscopy on single wurtzite GaN nanorod bundles grown by plasma-assisted molecular beam epitaxy. The obtained Raman spectra were compared with those of GaN epilayer. The spectral difference between the GaN nanorod bundles and epilayer reveals the relaxation of Raman selection rules in these GaN nanorod bundles. The deviation of polarization-dependent Raman spectroscopy from the prediction of Raman selection rules is attributed to both the orientation of the crystal axis with respect to the polarization vectors of incident and scattered light and the structural defects in the merging boundary of GaN nanorods. The presence of high defect density induced by local strain at the merging boundary was further confirmed by transmission electron microscopy. The averaged defect interspacing was estimated to be around 3 nm based on the spatial correlation model.

  9. Growth of β-Ga2O3 and GaN nanowires on GaN for photoelectrochemical hydrogen generation

    International Nuclear Information System (INIS)

    Hwang, Jih-Shang; Liu, Tai-Yan; Chen, Han-Wei; Chattopadhyay, Surjit; Hsu, Geng-Ming; Basilio, Antonio M; Hsu, Yu-Kuei; Tu, Wen-Hsun; Lin, Yan-Gu; Chen, Kuei-Hsien; Li, Chien-Cheng; Wang, Sheng-Bo; Chen, Hsin-Yi; Chen, Li-Chyong

    2013-01-01

    Enhanced photoelectrochemical (PEC) performances of Ga 2 O 3 and GaN nanowires (NWs) grown in situ from GaN were demonstrated. The PEC conversion efficiencies of Ga 2 O 3 and GaN NWs have been shown to be 0.906% and 1.09% respectively, in contrast to their 0.581% GaN thin film counterpart under similar experimental conditions. A low crystallinity buffer layer between the grown NWs and the substrate was found to be detrimental to the PEC performance, but the layer can be avoided at suitable growth conditions. A band bending at the surface of the GaN NWs generates an electric field that drives the photogenerated electrons and holes away from each other, preventing recombination, and was found to be responsible for the enhanced PEC performance. The enhanced PEC efficiency of the Ga 2 O 3 NWs is aided by the optical absorption through a defect band centered 3.3 eV above the valence band of Ga 2 O 3 . These findings are believed to have opened up possibilities for enabling visible absorption, either by tailoring ion doping into wide bandgap Ga 2 O 3 NWs, or by incorporation of indium to form InGaN NWs. (paper)

  10. Growth of β-Ga2O3 and GaN nanowires on GaN for photoelectrochemical hydrogen generation.

    Science.gov (United States)

    Hwang, Jih-Shang; Liu, Tai-Yan; Chattopadhyay, Surjit; Hsu, Geng-Ming; Basilio, Antonio M; Chen, Han-Wei; Hsu, Yu-Kuei; Tu, Wen-Hsun; Lin, Yan-Gu; Chen, Kuei-Hsien; Li, Chien-Cheng; Wang, Sheng-Bo; Chen, Hsin-Yi; Chen, Li-Chyong

    2013-02-08

    Enhanced photoelectrochemical (PEC) performances of Ga(2)O(3) and GaN nanowires (NWs) grown in situ from GaN were demonstrated. The PEC conversion efficiencies of Ga(2)O(3) and GaN NWs have been shown to be 0.906% and 1.09% respectively, in contrast to their 0.581% GaN thin film counterpart under similar experimental conditions. A low crystallinity buffer layer between the grown NWs and the substrate was found to be detrimental to the PEC performance, but the layer can be avoided at suitable growth conditions. A band bending at the surface of the GaN NWs generates an electric field that drives the photogenerated electrons and holes away from each other, preventing recombination, and was found to be responsible for the enhanced PEC performance. The enhanced PEC efficiency of the Ga(2)O(3) NWs is aided by the optical absorption through a defect band centered 3.3 eV above the valence band of Ga(2)O(3). These findings are believed to have opened up possibilities for enabling visible absorption, either by tailoring ion doping into wide bandgap Ga(2)O(3) NWs, or by incorporation of indium to form InGaN NWs.

  11. GaN growth on silane exposed AlN seed layers

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz-Zepeda, F. [Posgrado en Fisica de Materiales, Centro de Investigacion Cientifica y de Educacion Superior de Ensenada, Km. 107 Carret, Tijuana-Ensenada, C.P. 22860, Ensenada, B.C. (Mexico); Contreras, O. [Centro de Ciencias de la Materia Condesada, Universidad Nacional Autonoma de Mexico, Apdo. Postal 356, C.P. 22800, Ensenada, B.C. (Mexico); Dadgar, A.; Krost, A. [Otto-von-Guericke-Universitaet Magdeburg, FNW-IEP, Universitaetsplatz 2, 39106 Magdeburg (Germany)

    2008-07-01

    The microstructure and surface morphology of GaN films grown on AlN seed layers exposed to silane flow has been studied by TEM and AFM. The epilayers were grown on silicon(111) substrates by MOCVD. The AlN seed layer surface was treated at different SiH{sub 4} exposure times prior to the growth of the GaN film. A reduction in the density of threading dislocations is observed in the GaN films and their surface roughness is minimized for an optimal SiH{sub 4} exposure time between 75-90 sec. At this optimal condition a step-flow growth mode of GaN film is predominant. The improvement of the surface and structure quality of the epilayers is observed to be related to an annihilation process of threading dislocations done by SiN{sub x} masking. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. GaN epitaxial layers grown on multilayer graphene by MOCVD

    Science.gov (United States)

    Li, Tianbao; Liu, Chenyang; Zhang, Zhe; Yu, Bin; Dong, Hailiang; Jia, Wei; Jia, Zhigang; Yu, Chunyan; Gan, Lin; Xu, Bingshe

    2018-04-01

    In this study, GaN epitaxial layers were successfully deposited on a multilayer graphene (MLG) by using metal-organic chemical vapor deposition (MOCVD). Highly crystalline orientations of the GaN films were confirmed through electron backscatter diffraction (EBSD). An epitaxial relationship between GaN films and MLG is unambiguously established by transmission electron microscope (TEM) analysis. The Raman spectra was used to analyze the internal stress of GaN films, and the spectrum shows residual tensile stress in the GaN films. Moreover, the results of the TEM analysis and Raman spectra indicate that the high quality of the MLG substrate is maintained even after the growth of the GaN film. This high-quality MLG makes it possible to easily remove epitaxial layers from the supporting substrate by micro-mechanical exfoliation technology. This work can aid in the development of transferable devices using GaN films.

  13. Zn-dopant dependent defect evolution in GaN nanowires

    Science.gov (United States)

    Yang, Bing; Liu, Baodan; Wang, Yujia; Zhuang, Hao; Liu, Qingyun; Yuan, Fang; Jiang, Xin

    2015-10-01

    Zn doped GaN nanowires with different doping levels (0, doping on the defect evolution, including stacking fault, dislocation, twin boundary and phase boundary, has been systematically investigated by transmission electron microscopy and first-principles calculations. Undoped GaN nanowires show a hexagonal wurtzite (WZ) structure with good crystallinity. Several kinds of twin boundaries, including (101&cmb.macr;3), (101&cmb.macr;1) and (202&cmb.macr;1), as well as Type I stacking faults (...ABABC&cmb.b.line;BCB...), are observed in the nanowires. The increasing Zn doping level (GaN nanowires. At high Zn doping level (3-5 at%), meta-stable cubic zinc blende (ZB) domains are generated in the WZ GaN nanowires. The WZ/ZB phase boundary (...ABABAC&cmb.b.line;BA...) can be identified as Type II stacking faults. The density of stacking faults (both Type I and Type II) increases with increasing the Zn doping levels, which in turn leads to a rough-surface morphology in the GaN nanowires. First-principles calculations reveal that Zn doping will reduce the formation energy of both Type I and Type II stacking faults, favoring their nucleation in GaN nanowires. An understanding of the effect of Zn doping on the defect evolution provides an important method to control the microstructure and the electrical properties of p-type GaN nanowires.Zn doped GaN nanowires with different doping levels (0, doping on the defect evolution, including stacking fault, dislocation, twin boundary and phase boundary, has been systematically investigated by transmission electron microscopy and first-principles calculations. Undoped GaN nanowires show a hexagonal wurtzite (WZ) structure with good crystallinity. Several kinds of twin boundaries, including (101&cmb.macr;3), (101&cmb.macr;1) and (202&cmb.macr;1), as well as Type I stacking faults (...ABABC&cmb.b.line;BCB...), are observed in the nanowires. The increasing Zn doping level (GaN nanowires. At high Zn doping level (3-5 at%), meta

  14. Formation of definite GaN p-n junction by Mg-ion implantation to n--GaN epitaxial layers grown on a high-quality free-standing GaN substrate

    Science.gov (United States)

    Oikawa, Takuya; Saijo, Yusuke; Kato, Shigeki; Mishima, Tomoyoshi; Nakamura, Tohru

    2015-12-01

    P-type conversion of n--GaN by Mg-ion implantation was successfully performed using high quality GaN epitaxial layers grown on free-standing low-dislocation-density GaN substrates. These samples showed low-temperature PL spectra quite similar to those observed from Mg-doped MOVPE-grown p-type GaN, consisting of Mg related donor-acceptor pair (DAP) and acceptor bound exciton (ABE) emission. P-n diodes fabricated by the Mg-ion implantation showed clear rectifying I-V characteristics and UV and blue light emissions were observed at forward biased conditions for the first time.

  15. High hole mobility p-type GaN with low residual hydrogen concentration prepared by pulsed sputtering

    Science.gov (United States)

    Arakawa, Yasuaki; Ueno, Kohei; Kobayashi, Atsushi; Ohta, Jitsuo; Fujioka, Hiroshi

    2016-08-01

    We have grown Mg-doped GaN films with low residual hydrogen concentration using a low-temperature pulsed sputtering deposition (PSD) process. The growth system is inherently hydrogen-free, allowing us to obtain high-purity Mg-doped GaN films with residual hydrogen concentrations below 5 × 1016 cm-3, which is the detection limit of secondary ion mass spectroscopy. In the Mg profile, no memory effect or serious dopant diffusion was detected. The as-deposited Mg-doped GaN films showed clear p-type conductivity at room temperature (RT) without thermal activation. The GaN film doped with a low concentration of Mg (7.9 × 1017 cm-3) deposited by PSD showed hole mobilities of 34 and 62 cm2 V-1 s-1 at RT and 175 K, respectively, which are as high as those of films grown by a state-of-the-art metal-organic chemical vapor deposition apparatus. These results indicate that PSD is a powerful tool for the fabrication of GaN-based vertical power devices.

  16. MOCVD growth of GaN layer on InN interlayer and relaxation of residual strain

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Keon-Hun; Park, Sung Hyun; Kim, Jong Hack; Kim, Nam Hyuk; Kim, Min Hwa [Department of Materials Science and Engineering, Seoul National University, Seoul, 151-742 (Korea, Republic of); Na, Hyunseok [Department of Advanced Materials Science and Engineering, Daejin University, Pocheon, 487-711 (Korea, Republic of); Yoon, Euijoon, E-mail: eyoon@snu.ac.k [Department of Materials Science and Engineering, Seoul National University, Seoul, 151-742 (Korea, Republic of); Department of Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Suwon 433-270 (Korea, Republic of)

    2010-09-01

    100 nm InN layer was grown on sapphire c-plane using a metal-organic chemical vapor deposition (MOCVD) system. Low temperature (LT) GaN layer was grown on InN layer to protect InN layer from direct exposure to hydrogen flow during high temperature (HT) GaN growth and/or abrupt decomposition. Subsequently, thick HT GaN layer (2.5 {mu}m thick) was grown at 1000 {sup o}C on LT GaN/InN/sapphire template. Microstructure of epilayer-substrate interface was investigated by transmission electron microscopy (TEM). From the high angle annular dark field TEM image, the growth of columnar structured LT GaN and HT GaN with good crystallinity was observed. Though thickness of InN interlayer is assumed to be about 100 nm based on growth rate, it was not clearly shown in TEM image due to the InN decomposition. The lattice parameters of GaN layers were measured by XRD measurement, which shows that InN interlayer reduces the compressive strain in GaN layer. The relaxation of compressive strain in GaN layer was also confirmed by photoluminescence (PL) measurement. As shown in the PL spectra, red shift of GaN band edge peak was observed, which indicates the reduction of compressive strain in GaN epilayer.

  17. Investigation on thermodynamics of ion-slicing of GaN and heterogeneously integrating high-quality GaN films on CMOS compatible Si(100) substrates.

    Science.gov (United States)

    Huang, Kai; Jia, Qi; You, Tiangui; Zhang, Runchun; Lin, Jiajie; Zhang, Shibin; Zhou, Min; Zhang, Bo; Yu, Wenjie; Ou, Xin; Wang, Xi

    2017-11-08

    Die-to-wafer heterogeneous integration of single-crystalline GaN film with CMOS compatible Si(100) substrate using the ion-cutting technique has been demonstrated. The thermodynamics of GaN surface blistering is in-situ investigated via a thermal-stage optical microscopy, which indicates that the large activation energy (2.5 eV) and low H ions utilization ratio (~6%) might result in the extremely high H fluence required for the ion-slicing of GaN. The crystalline quality, surface topography and the microstructure of the GaN films are characterized in detail. The full width at half maximum (FWHM) for GaN (002) X-ray rocking curves is as low as 163 arcsec, corresponding to a density of threading dislocation of 5 × 10 7  cm -2 . Different evolution of the implantation-induced damage was observed and a relationship between the damage evolution and implantation-induced damage is demonstrated. This work would be beneficial to understand the mechanism of ion-slicing of GaN and to provide a platform for the hybrid integration of GaN devices with standard Si CMOS process.

  18. High-Quality GaN Epilayers Achieved by Facet-Controlled Epitaxial Lateral Overgrowth on Sputtered AlN/PSS Templates.

    Science.gov (United States)

    He, Chenguang; Zhao, Wei; Zhang, Kang; He, Longfei; Wu, Hualong; Liu, Ningyang; Zhang, Shan; Liu, Xiaoyan; Chen, Zhitao

    2017-12-13

    It is widely believed that the lack of high-quality GaN wafers severely hinders the progress in GaN-based devices, especially for defect-sensitive devices. Here, low-cost AlN buffer layers were sputtered on cone-shaped patterned sapphire substrates (PSSs) to obtain high-quality GaN epilayers. Without any mask or regrowth, facet-controlled epitaxial lateral overgrowth was realized by metal-organic chemical vapor deposition. The uniform coating of the sputtered AlN buffer layer and the optimized multiple modulation guaranteed high growth selectivity and uniformity of the GaN epilayer. As a result, an extremely smooth surface was achieved with an average roughness of 0.17 nm over 3 × 3 μm 2 . It was found that the sputtered AlN buffer layer could significantly suppress dislocations on the cones. Moreover, the optimized three-dimensional growth process could effectively promote dislocation bending. Therefore, the threading dislocation density (TDD) of the GaN epilayer was reduced to 4.6 × 10 7 cm -2 , which is about an order of magnitude lower than the case of two-step GaN on the PSS. In addition, contamination and crack in the light-emitting diode fabricated on the obtained GaN were also effectively suppressed by using the sputtered AlN buffer layer. All of these advantages led to a high output power of 116 mW at 500 mA with an emission wavelength of 375 nm. This simple, yet effective growth technique is believed to have great application prospects in high-performance TDD-sensitive optoelectronic and electronic devices.

  19. Gallium adsorption on (0001) GaN surfaces

    International Nuclear Information System (INIS)

    Adelmann, Christoph; Brault, Julien; Mula, Guido; Daudin, Bruno; Lymperakis, Liverios; Neugebauer, Joerg

    2003-01-01

    We study the adsorption behavior of Ga on (0001) GaN surfaces combining experimental specular reflection high-energy electron diffraction with theoretical investigations in the framework of a kinetic model for adsorption and ab initio calculations of energy parameters. Based on the experimental results we find that for substrate temperatures and Ga fluxes typically used in molecular-beam epitaxy of GaN, finite equilibrium Ga surface coverages can be obtained. The measurement of a Ga/GaN adsorption isotherm allows the quantification of the equilibrium Ga surface coverage as a function of the impinging Ga flux. In particular, we show that a large range of Ga fluxes exists, where 2.5±0.2 monolayers (in terms of the GaN surface site density) of Ga are adsorbed on the GaN surface. We further demonstrate that the structure of this adsorbed Ga film is in good agreement with the laterally contracted Ga bilayer model predicted to be most stable for strongly Ga-rich surfaces [Northrup et al., Phys. Rev. B 61, 9932 (2000)]. For lower Ga fluxes, a discontinuous transition to Ga monolayer equilibrium coverage is found, followed by a continuous decrease towards zero coverage; for higher Ga fluxes, Ga droplet formation is found, similar to what has been observed during Ga-rich GaN growth. The boundary fluxes limiting the region of 2.5 monolayers equilibrium Ga adsorption have been measured as a function of the GaN substrate temperature giving rise to a Ga/GaN adsorption phase diagram. The temperature dependence is discussed within an ab initio based growth model for adsorption taking into account the nucleation of Ga clusters. This model consistently explains recent contradictory results of the activation energy describing the critical Ga flux for the onset of Ga droplet formation during Ga-rich GaN growth [Heying et al., J. Appl. Phys. 88, 1855 (2000); Adelmann et al., J. Appl. Phys. 91, 9638 (2002).

  20. GaN Based Electronics And Their Applications

    Science.gov (United States)

    Ren, Fan

    2002-03-01

    The Group III-nitrides were initially researched for their promise to fill the void for a blue solid state light emitter. Electronic devices from III-nitrides have been a more recent phenomenon. The thermal conductivity of GaN is three times that of GaAs. For high power or high temperature applications, good thermal conductivity is imperative for heat removal or sustained operation at elevated temperatures. The development of III-N and other wide bandgap technologies for high temperature applications will likely take place at the expense of competing technologies, such as silicon-on-insulator (SOI), at moderate temperatures. At higher temperatures (>300°C), novel devices and components will become possible. The automotive industry will likely be one of the largest markets for such high temperature electronics. One of the most noteworthy advantages for III-N materials over other wide bandgap semiconductors is the availability of AlGaN/GaN and InGaN/GaN heterostructures. A 2-dimensional electron gas (2DEG) has been shown to exist at the AlGaN/GaN interface, and heterostructure field effect transistors (HFETs) from these materials can exhibit 2DEG mobilities approaching 2000 cm2 / V?s at 300K. Power handling capabilities of 12 W/mm appear feasible, and extraordinary large signal performance has already been demonstrated, with a current state-of-the-art of >10W/mm at X-band. In this talk, high speed and high temperature AlGaN/GaN HEMTs as well as MOSHEMTs, high breakdown voltage GaN (>6KV) and AlGaN (9.7 KV) Schottky diodes, and their applications will be presented.

  1. AlGaN/GaN high electron mobility transistors with a low sub-threshold swing on free-standing GaN wafer

    Directory of Open Access Journals (Sweden)

    Xinke Liu

    2017-09-01

    Full Text Available This paper reported AlGaN/GaN high electron mobility transistors (HEMTs with low sub-threshold swing SS on free-standing GaN wafer. High quality AlGaN/GaN epi-layer has been grown by metal-organic chemical vapor deposition (MOCVD on free-standing GaN, small full-width hall maximum (FWHM of 42.9 arcsec for (0002 GaN XRD peaks and ultralow dislocation density (∼104-105 cm-2 were obtained. Due to these extremely high quality material properties, the fabricated AlGaN/GaN HEMTs achieve a low SS (∼60 mV/decade, low hysteresis of 54 mV, and high peak electron mobility μeff of ∼1456 cm2V-1s-1. Systematic study of materials properties and device characteristics exhibits that GaN-on-GaN AlGaN/GaN HEMTs are promising candidate for next generation high power device applications.

  2. Lattice-Symmetry-Driven Epitaxy of Hierarchical GaN Nanotripods

    KAUST Repository

    Wang, Ping

    2017-01-18

    Lattice-symmetry-driven epitaxy of hierarchical GaN nanotripods is demonstrated. The nanotripods emerge on the top of hexagonal GaN nanowires, which are selectively grown on pillar-patterned GaN templates using molecular beam epitaxy. High-resolution transmission electron microscopy confirms that two kinds of lattice-symmetry, wurtzite (wz) and zinc-blende (zb), coexist in the GaN nanotripods. Periodical transformation between wz and zb drives the epitaxy of the hierarchical nanotripods with N-polarity. The zb-GaN is formed by the poor diffusion of adatoms, and it can be suppressed by improving the ability of the Ga adatoms to migrate as the growth temperature increased. This controllable epitaxy of hierarchical GaN nanotripods allows quantum dots to be located at the phase junctions of the nanotripods and nanowires, suggesting a new recipe for multichannel quantum devices.

  3. AlGaN/GaN-HEMT power amplifiers with optimized power-added efficiency for X-band applications

    OpenAIRE

    Kühn, J.

    2011-01-01

    This work has arisen out of the strong demand for a superior power-added efficiency (PAE) of AlGaN/GaN high electron mobility transistor (HEMT) high-power amplifiers (HPAs) that are part of any advanced wireless multifunctional RF-system with limited prime energy. Different concepts and approaches on device and design level for PAE improvements are analyzed, e.g. structural and layout changes of the GaN transistor and advanced circuit design techniques for PAE improvements of GaN HEMT HPAs.

  4. Breaking Through the Multi-Mesa-Channel Width Limited of Normally Off GaN HEMTs Through Modulation of the Via-Hole-Length

    Science.gov (United States)

    Chien, Cheng-Yen; Wu, Wen-Hsin; You, Yao-Hong; Lin, Jun-Huei; Lee, Chia-Yu; Hsu, Wen-Ching; Kuan, Chieh-Hsiung; Lin, Ray-Ming

    2017-06-01

    We present new normally off GaN high-electron-mobility transistors (HEMTs) that overcome the typical limitations in multi-mesa-channel (MMC) width through modulation of the via-hole-length to regulate the charge neutrality screen effect. We have prepared enhancement-mode (E-mode) GaN HEMTs having widths of up to 300 nm, based on an enhanced surface pinning effect. E-mode GaN HEMTs having MMC structures and widths as well as via-hole-lengths of 100 nm/2 μm and 300 nm/6 μm, respectively, exhibited positive threshold voltages ( V th) of 0.79 and 0.46 V, respectively. The on-resistances of the MMC and via-hole-length structures were lower than those of typical tri-gate nanoribbon GaN HEMTs. In addition, the devices not only achieved the E-mode but also improved the power performance of the GaN HEMTs and effectively mitigated the device thermal effect. We controlled the via-hole-length sidewall surface pinning effect to obtain the E-mode GaN HEMTs. Our findings suggest that via-hole-length normally off GaN HEMTs have great potential for use in next-generation power electronics.

  5. Thermal analysis and improvement of cascode GaN device package for totem-pole bridgeless PFC rectifier

    International Nuclear Information System (INIS)

    She, Shuojie; Zhang, Wenli; Liu, Zhengyang; Lee, Fred C.; Huang, Xiucheng; Du, Weijing; Li, Qiang

    2015-01-01

    The totem-pole bridgeless power factor correction (PFC) rectifier has a simpler topology and higher efficiency than other boost-type bridgeless PFC rectifiers. Its promising performance is enabled by using high-voltage gallium nitride (GaN) high-electron-mobility transistors, which have considerably better figures of merit (e.g., lower reverse recovery charges and less switching losses) than the state-of-the-art silicon metal-oxide-semiconductor field-effect transistors. Cascode GaN devices in traditional packages, i.e., the TO-220 and power quad flat no-lead, are used in the totem-pole PFC boost rectifier. But the parasitic inductances induced by the traditional packages not only significantly deteriorate the switching characteristics of the discrete GaN device but also adversely affect the performance of the built PFC rectifier. A new stack-die packaging structure with an embedded capacitor has been introduced and proven to be efficient in reducing parasitic ringing at the turn-off transition and achieving true zero-voltage-switching turn-on. However, the thermal dissipation capability of the device packaged in this configuration becomes a limitation on further pushing the operating frequency and the output current level for high-efficiency power conversion. This paper focuses on the thermal analysis of the cascode GaN devices in different packages and the GaN-based multichip module used in a two-phase totem-pole bridgeless PFC boost rectifier. A series of thermal models are built based on the actual structures and materials of the packaged devices to evaluate their thermal performance. Finite element analysis (FEA) simulation results of the cascode GaN device in a flip-chip format demonstrate the possibility of increasing the device switching speed while maintaining the peak temperature of the device below 125 °C. Thermal analysis of the GaN-based power module in a very similar structure is also conducted using the FEA method. Experimental data measured using

  6. Lateral epitaxial overgrowth of GaN on a patterned GaN-on-silicon substrate by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Wang, Yongjin; Hu, Fangren; Hane, Kazuhiro

    2011-01-01

    We report here the lateral epitaxial overgrowth (LEO) of GaN on a patterned GaN-on-silicon substrate by molecular beam epitaxy (MBE) growth with radio frequency nitrogen plasma as a gas source. Two kinds of GaN nanostructures are defined by electron beam lithography and realized on a GaN substrate by fast atom beam etching. The epitaxial growth of GaN by MBE is performed on the prepared GaN template, and the selective growth of GaN takes place with the assistance of GaN nanostructures. The LEO of GaN produces novel GaN epitaxial structures which are dependent on the shape and the size of the processed GaN nanostructures. Periodic GaN hexagonal pyramids are generated inside the air holes, and GaN epitaxial strips with triangular section are formed in the grating region. This work provides a promising way for producing novel GaN-based devices by the LEO of GaN using the MBE technique

  7. GaN and ZnO nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Fuendling, Soenke; Soekmen, Uensal; Behrends, Arne; Al-Suleiman, Mohamed Aid Mansur; Merzsch, Stephan; Li, Shunfeng; Bakin, Andrey; Wehmann, Hergo-Heinrich; Waag, Andreas [Institut fuer Halbleitertechnik, Technische Universitaet Braunschweig, Braunschweig (Germany); Laehnemann, Jonas; Jahn, Uwe; Trampert, Achim; Riechert, Henning [Paul-Drude-Institut fuer Festkoerperelektronik, Berlin (Germany)

    2010-10-15

    GaN and ZnO are both wide band gap semiconductors with interesting properties concerning optoelectronic and sensor device applications. Due to the lack or the high costs of native substrates, alternatives like sapphire, silicon, or silicon carbide are taken, but the resulting lattice and thermal mismatches lead to increased defect densities which reduce the material quality. In contrast, nanostructures with high aspect ratio have lower defect densities as compared to layers. In this work, we give an overview on our results achieved on both ZnO as well as GaN based nanorods. ZnO nanostructures were grown by a wet chemical approach as well as by VPT on different substrates - even on flexible polymers. To compare the growth results we analyzed the structures by XRD and PL and show possible device applications. The GaN nano- and microstructures were grown by metal organic vapor phase epitaxy either in a self-organized process or by selective area growth for a better control of shape and material composition. Finally we take a look onto possible device applications, presenting our attempts, e.g., to build LEDs based on GaN nanostructures. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  8. Epitaxial growth of GaN by radical-enhanced metalorganic chemical vapor deposition (REMOCVD) in the downflow of a very high frequency (VHF) N2/H2 excited plasma - effect of TMG flow rate and VHF power

    Science.gov (United States)

    Lu, Yi; Kondo, Hiroki; Ishikawa, Kenji; Oda, Osamu; Takeda, Keigo; Sekine, Makoto; Amano, Hiroshi; Hori, Masaru

    2014-04-01

    Gallium nitride (GaN) films have been grown by using our newly developed Radical-Enhanced Metalorganic Chemical Vapor Deposition (REMOCVD) system. This system has three features: (1) application of very high frequency (60 MHz) power in order to increase the plasma density, (2) introduction of H2 gas together with N2 gas in the plasma discharge region to generate not only nitrogen radicals but also active NHx molecules, and (3) radical supply under remote plasma arrangement with suppression of charged ions and photons by employing a Faraday cage. Using this new system, we have studied the effect of the trimethylgallium (TMG) source flow rate and of the plasma generation power on the GaN crystal quality by using scanning electron microscopy (SEM) and double crystal X-ray diffraction (XRD). We found that this REMOCVD allowed the growth of epitaxial GaN films of the wurtzite structure of (0001) orientation on sapphire substrates with a high growth rate of 0.42 μm/h at a low temperature of 800 °C. The present REMOCVD is a promising method for GaN growth at relatively low temperature and without using costly ammonia gas.

  9. Control of strain in GaN by a combination of H2 and N2 carrier gases

    International Nuclear Information System (INIS)

    Yamaguchi, Shigeo; Kariya, Michihiko; Kosaki, Masayoshi; Yukawa, Yohei; Nitta, Shugo; Amano, Hiroshi; Akasaki, Isamu

    2001-01-01

    We study the effect of a combination of N 2 and H 2 carrier gases on the residual strain and crystalline properties of GaN, and we propose its application to the improvement of crystalline quality of GaN/Al 0.17 Ga 0.83 N multiple quantum well (MQW) structures. GaN was grown with H 2 or N 2 carrier gas (H 2 - or N 2 - GaN) on an AlN low-temperature-deposited buffer layer. A (0001) sapphire substrate was used. N 2 - GaN was grown on H 2 - GaN. The total thickness was set to be 1.5 μm, and the ratio of N 2 - GaN thickness to the total thickness, x, ranged from 0 to 1. With increasing x, the tensile stress in GaN increased. Photoluminescence intensity at room temperature was much enhanced. Moreover, the crystalline quality of GaN/Al 0.17 Ga 0.83 N MQW was much higher when the MQW was grown with N 2 on H 2 - GaN than when it was grown with H 2 on H 2 - GaN. These results were due to the achievement of control of strain in GaN using a combination of N 2 - GaN and H 2 - GaN. [copyright] 2001 American Institute of Physics

  10. The growth of axially modulated p–n GaN nanowires by plasma-enhanced chemical vapor deposition

    International Nuclear Information System (INIS)

    Wu, Tung-Hsien; Hong, Franklin Chau-Nan

    2013-01-01

    Due to the n-type characteristics of intrinsic gallium nitride, p-type gallium nitride (GaN) is more difficult to synthesize than n-type gallium nitride in forming the p–n junctions for optoelectronic applications. For the growth of the p-type gallium nitride, magnesium is used as the dopant. The Mg-doped GaN nanowires (NWs) have been synthesized on (111)-oriented n + -silicon substrates by plasma-enhanced chemical vapor deposition. The scanning electron microscope images showed that the GaN NWs were bent at high Mg doping levels, and the transmission electron microscope characterization indicated that single-crystalline GaN NWs grew along < 0001 > orientation. As shown by energy dispersive spectroscopy, the Mg doping levels in GaN NWs increased with increasing partial pressure of magnesium nitride, which was employed as the dopant precursor for p-GaN NW growth. Photoluminescence measurements suggested the presence of both p- and n‐type GaN NWs. Furthermore, the GaN NWs with axial p–n junctions were aligned between either two-Ni or two-Al electrodes by applying alternating current voltages. The current–voltage characteristics have confirmed the formation of axial p–n junctions in GaN nanowires. - Highlights: ► Grow axially modulated GaN nanowires by plasma-enhanced chemical vapor deposition ► Control the Mg concentration of GaN nanowires by tuning Mg 3 N 2 temperature ► Align the GaN nanowires by applying alternating current voltages between electrodes

  11. Valorization of GaN based metal-organic chemical vapor deposition dust a semiconductor power device industry waste through mechanochemical oxidation and leaching: A sustainable green process

    Energy Technology Data Exchange (ETDEWEB)

    Swain, Basudev, E-mail: Swain@iae.re.kr [Institute for Advanced Engineering (IAE), Advanced Materials & Processing Center, Yongin-Si 449-863 (Korea, Republic of); Mishra, Chinmayee; Lee, Chan Gi; Park, Kyung-Soo [Institute for Advanced Engineering (IAE), Advanced Materials & Processing Center, Yongin-Si 449-863 (Korea, Republic of); Lee, Kun-Jae [Department of Energy Engineering, Dankook University, Cheonan 330-714 (Korea, Republic of)

    2015-07-15

    Dust generated during metal organic vapor deposition (MOCVD) process of GaN based semiconductor power device industry contains significant amounts of gallium and indium. These semiconductor power device industry wastes contain gallium as GaN and Ga{sub 0.97}N{sub 0.9}O{sub 0.09} is a concern for the environment which can add value through recycling. In the present study, this waste is recycled through mechanochemical oxidation and leaching. For quantitative recovery of gallium, two different mechanochemical oxidation leaching process flow sheets are proposed. In one process, first the Ga{sub 0.97}N{sub 0.9}O{sub 0.09} of the MOCVD dust is leached at the optimum condition. Subsequently, the leach residue is mechanochemically treated, followed by oxidative annealing and finally re-leached. In the second process, the MOCVD waste dust is mechanochemically treated, followed by oxidative annealing and finally leached. Both of these treatment processes are competitive with each other, appropriate for gallium leaching and treatment of the waste MOCVD dust. Without mechanochemical oxidation, 40.11 and 1.86 w/w% of gallium and Indium are leached using 4 M HCl, 100 °C and pulp density of 100 kg/m{sup 3,} respectively. After mechanochemical oxidation, both these processes achieved 90 w/w% of gallium and 1.86 w/w% of indium leaching at their optimum condition. - Highlights: • Waste MOCVD dust is treated through mechanochemical leaching. • GaN is hardly leached, and converted to NaGaO{sub 2} through ball milling and annealing. • Process for gallium recovery from waste MOCVD dust has been developed. • Thermal analysis and phase properties of GaN to Ga{sub 2}O{sub 3} and GaN to NaGaO{sub 2} is revealed. • Solid-state chemistry involved in this process is reported.

  12. Super high-power AlGaInN-based laser diodes with a single broad-area stripe emitter fabricated on a GaN substrate

    Energy Technology Data Exchange (ETDEWEB)

    Goto, Shu; Ohta, Makoto; Yabuki, Yoshifumi; Hoshina, Yukio; Hashizu, Toshihiro; Ikeda, Masao [Development Center, Sony Shiroishi Semiconductor, Inc., 3-53-2 Shiratori, Shiroishi, Miyagi, 989-0734 (Japan); Naganuma, Kaori; Tamamura, Koshi [Core Technology Development Group, Micro Systems Network Company, Sony Corporation, 4-14-1 Asahi-cho, Atsugi-shi Kanagawa, 243-0041 (Japan)

    2003-11-01

    AlGaInN-based blue-violet laser diodes with a single broad-area stripe emitter were successfully fabricated on GaN substrates. Three stripe widths were examined; 10, 50, and 100 {mu}m, and the maximum light output power of 0.94 W under cw operation at 20 C was achieved for the sample with a stripe width of 10 {mu}m. A super high-power laser diode array was fabricated using 11 of these high-performance laser chips, with a resultant output power of 6.1 W under cw operation at 20 C. This result represents the highest reported output power for blue-violet laser diodes. (copyright 2003 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Post-annealing effects on pulsed laser deposition-grown GaN thin films

    International Nuclear Information System (INIS)

    Cheng, Yu-Wen; Wu, Hao-Yu; Lin, Yu-Zhong; Lee, Cheng-Che; Lin, Ching-Fuh

    2015-01-01

    In this work, the post-annealing effects on gallium nitride (GaN) thin films grown from pulsed laser deposition (PLD) are investigated. The as-deposited GaN thin films grown from PLD are annealed at different temperatures in nitrogen ambient. Significant changes of the GaN crystal properties are observed. Raman spectroscopy is used to observe the crystallinity, the change of residual stress, and the thermal decomposition of the annealed GaN thin films. X-ray diffraction is also applied to identify the crystal phase of GaN thin films, and the surface morphology of GaN thin films annealed at different temperatures is observed by scanning electron microscopy. Through the above analyses, the GaN thin films grown by PLD undergo three stages: phase transition, stress alteration, and thermal decomposition. At a low annealing temperature, the rock salt GaN in GaN films is transformed into wurtzite. The rock salt GaN diminishes with increasing annealing temperature. At a medium annealing temperature, the residual stress of the film changes significantly from compressive strain to tensile strain. As the annealing temperature further increases, the GaN undergoes thermal decomposition and the surface becomes granular. By investigating the annealing temperature effects and controlling the optimized annealing temperature of the GaN thin films, we are able to obtain highly crystalline and strain-free GaN thin films by PLD. - Highlights: • The GaN thin film is grown on sapphire by pulsed laser deposition. • The GaN film undergoes three stages with increasing annealing temperature. • In the first stage, the film transfers from rock salt to wurtzite phase. • In the second stage, the stress in film changes from compressive to tensile. • In the final stage, the film thermally decomposes and becomes granular

  14. Alignment control and atomically-scaled heteroepitaxial interface study of GaN nanowires.

    Science.gov (United States)

    Liu, Qingyun; Liu, Baodan; Yang, Wenjin; Yang, Bing; Zhang, Xinglai; Labbé, Christophe; Portier, Xavier; An, Vladimir; Jiang, Xin

    2017-04-20

    Well-aligned GaN nanowires are promising candidates for building high-performance optoelectronic nanodevices. In this work, we demonstrate the epitaxial growth of well-aligned GaN nanowires on a [0001]-oriented sapphire substrate in a simple catalyst-assisted chemical vapor deposition process and their alignment control. It is found that the ammonia flux plays a key role in dominating the initial nucleation of GaN nanocrystals and their orientation. Typically, significant improvement of the GaN nanowire alignment can be realized at a low NH 3 flow rate. X-ray diffraction and cross-sectional scanning electron microscopy studies further verified the preferential orientation of GaN nanowires along the [0001] direction. The growth mechanism of GaN nanowire arrays is also well studied based on cross-sectional high-resolution transmission electron microscopy (HRTEM) characterization and it is observed that GaN nanowires have good epitaxial growth on the sapphire substrate following the crystallographic relationship between (0001) GaN ∥(0001) sapphire and (101[combining macron]0) GaN ∥(112[combining macron]0) sapphire . Most importantly, periodic misfit dislocations are also experimentally observed in the interface region due to the large lattice mismatch between the GaN nanowire and the sapphire substrate, and the formation of such dislocations will favor the release of structural strain in GaN nanowires. HRTEM analysis also finds the existence of "type I" stacking faults and voids inside the GaN nanowires. Optical investigation suggests that the GaN nanowire arrays have strong emission in the UV range, suggesting their crystalline nature and chemical purity. The achievement of aligned GaN nanowires will further promote the wide applications of GaN nanostructures toward diverse high-performance optoelectronic nanodevices including nano-LEDs, photovoltaic cells, photodetectors etc.

  15. Growing GaN LEDs on amorphous SiC buffer with variable C/Si compositions

    Science.gov (United States)

    Cheng, Chih-Hsien; Tzou, An-Jye; Chang, Jung-Hung; Chi, Yu-Chieh; Lin, Yung-Hsiang; Shih, Min-Hsiung; Lee, Chao-Kuei; Wu, Chih-I; Kuo, Hao-Chung; Chang, Chun-Yen; Lin, Gong-Ru

    2016-01-01

    The epitaxy of high-power gallium nitride (GaN) light-emitting diode (LED) on amorphous silicon carbide (a-SixC1−x) buffer is demonstrated. The a-SixC1−x buffers with different nonstoichiometric C/Si composition ratios are synthesized on SiO2/Si substrate by using a low-temperature plasma enhanced chemical vapor deposition. The GaN LEDs on different SixC1−x buffers exhibit different EL and C-V characteristics because of the extended strain induced interfacial defects. The EL power decays when increasing the Si content of SixC1−x buffer. The C-rich SixC1−x favors the GaN epitaxy and enables the strain relaxation to suppress the probability of Auger recombination. When the SixC1−x buffer changes from Si-rich to C-rich condition, the EL peak wavelengh shifts from 446 nm to 450 nm. Moreover, the uniform distribution contour of EL intensity spreads between the anode and the cathode because the traping density of the interfacial defect gradually reduces. In comparison with the GaN LED grown on Si-rich SixC1−x buffer, the device deposited on C-rich SixC1−x buffer shows a lower turn-on voltage, a higher output power, an external quantum efficiency, and an efficiency droop of 2.48 V, 106 mW, 42.3%, and 7%, respectively. PMID:26794268

  16. Ab initio investigations of the strontium gallium nitride ternaries Sr 3GaN3 and Sr6GaN5: Promising materials for optoelectronic

    KAUST Repository

    Goumri-Said, Souraya

    2013-05-31

    Sr3GaN3 and Sr6GaN5 could be promising potential materials for applications in the microelectronics, optoelectronics and coating materials areas of research. We studied in detail their structural, elastic, electronic, optical as well as the vibrational properties, by means of density functional theory framework. Both of these ternaries are semiconductors, where Sr3GaN3 exhibits a small indirect gap whereas Sr6GaN5 has a large direct gap. Indeed, their optical properties are reported for radiation up to 40 eV. Charge densities contours, Hirshfeld and Mulliken populations, are reported to investigate the role of each element in the bonding. From the mechanical properties calculation, it is found that Sr6GaN5 is harder than Sr3GaN3, and the latter is more anisotropic than the former. The phonon dispersion relation, density of phonon states and the vibrational stability are reported from the density functional perturbation theory calculations. © 2013 IOP Publishing Ltd.

  17. Carrier confinement effects of InxGa1-xN/GaN multi quantum disks with GaN surface barriers grown in GaN nanorods

    Science.gov (United States)

    Park, Youngsin; Chan, Christopher C. S.; Taylor, Robert A.; Kim, Nammee; Jo, Yongcheol; Lee, Seung W.; Yang, Woochul; Im, Hyunsik

    2018-04-01

    Structural and optical properties of InxGa1-xN/GaN multi quantum disks (QDisks) grown on GaN nanorods by molecular beam epitaxy have been investigated by transmission electron microscopy and micro-photoluminescence (PL) spectroscopy. Two types of InGaN QDisks were grown: a pseudo-3D confined InGaN pillar-type QDisks embedded in GaN nanorods; and QDisks in flanged cone type GaN nanorods. The PL emission peak and excitation dependent PL behavior of the pillar-type Qdisks differ greatly from those of the flanged cone type QDisks. Time resolved PL was carried out to probe the differences in charge carrier dynamics. The results suggest that by constraining the formation of InGaN QDisks within the centre of the nanorod, carriers are restricted from migrating to the surface, decreasing the surface recombination at high carrier densities.

  18. Optical and field emission properties of layer-structure GaN nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Zhen [Science School, Xi’an University of Technology, Xi’an 710048 (China); School of automation and Information Engineering, Xi’an University of Technology, Xi’an 710048 (China); Li, Enling, E-mail: Lienling@xaut.edu.cn [Science School, Xi’an University of Technology, Xi’an 710048 (China); Shi, Wei; Ma, Deming [Science School, Xi’an University of Technology, Xi’an 710048 (China)

    2014-08-15

    Highlights: • The layer-structure GaN nanowires with hexagonal-shaped cross-sections are produced via a process based on the CVD method. • The diameter of the layer-structure GaN nanowire gradually decreases from ∼500 nm to ∼200 nm along the wire axis. • The layer-structure GaN nanowire film possesses good field emission property. - Abstract: A layer-structure gallium nitride (GaN) nanowires, grown on Pt-coated n-type Si (1 1 1) substrate, have been synthesized using chemical vapor deposition (CVD). The results show: (1) SEM indicates that the geometry structure is layer-structure. HRTEM indicates that GaN nanowire’s preferential growth direction is along [0 0 1] direction. (2) The room temperature PL emission spectrum of the layer-structure GaN nanowires has a peak at 375 nm, which proves that GaN nanowires have potential application in light-emitting nano-devices. (3) Field-emission measurements show that the layer-structure GaN nanowires film has a low turn-on field of 4.39 V/μm (at room temperature), which is sufficient for electron emission devices, field emission displays and vacuum nano-electronic devices. The growth mechanism for GaN nanowires has also been discussed briefly.

  19. GaN Nanowire MOSFET with Near-Ideal Subthreshold Slope.

    Science.gov (United States)

    Li, Wenjun; Brubaker, Matt D; Spann, Bryan T; Bertness, Kris A; Fay, Patrick

    2018-02-01

    Wrap-around gate GaN nanowire MOSFETs using Al 2 O 3 as gate oxide have been experimentally demonstrated. The fabricated devices exhibit a minimum subthreshold slope of 60 mV/dec, an average subthreshold slope of 68 mV/dec over three decades of drain current, drain-induced barrier lowering of 27 mV/V, an on-current of 42 μA/μm (normalized by nanowire circumference), on/off ratio over 10 8 , an intrinsic transconductance of 27.8 μS/μm, for a switching efficiency figure of merit, Q=g m /SS of 0.41 μS/μm-dec/mV. These performance metrics make GaN nanowire MOSFETs a promising candidate for emerging low-power applications such as sensors and RF for the internet of things.

  20. GaN Nanowires Synthesized by Electroless Etching Method

    KAUST Repository

    Najar, Adel; Anjum, Dalaver H.; Ng, Tien Khee; Ooi, Boon S.; Ben Slimane, Ahmed

    2012-01-01

    Ultra-long Gallium Nitride Nanowires is synthesized via metal-electroless etching method. The morphologies and optical properties of GaN NWs show a single crystal GaN with hexagonal Wurtzite structure and high luminescence properties.

  1. P- and N-type implantation doping of GaN with Ca and O

    International Nuclear Information System (INIS)

    Zolper, J.C.; Wilson, R.G.; Pearton, S.J.

    1996-01-01

    III-N photonic devices have made great advances in recent years following the demonstration of doping of GaN p-type with Mg and n-type with Si. However, the deep ionization energy level of Mg in GaN (∼ 160 meV) limits the ionized of acceptors at room temperature to less than 1.0% of the substitutional Mg. With this in mind, the authors used ion implantation to characterize the ionization level of Ca in GaN since Ca had been suggested by Strite to be a shallow acceptor in GaN. Ca-implanted GaN converted from n-to-p type after a 1,100 C activation anneal. Variable temperature Hall measurements give an ionization level at 169 meV. Although this level is equivalent to that of Mg, Ca-implantation may have advantages (shallower projected range and less straggle for a given energy) than Mg for electronic devices. In particular, the authors report the first GaN device using ion implantation doping. This is a GaN junction field effect transistor (JFET) which employed Ca-implantation. A 1.7 microm JFET had a transconductance of 7 mS/mm, a saturation current at 0 V gate bias of 33 mA/mm, a f t of 2.7 GHz, and a f max of 9.4 GHz. O-implantation was also studied and shown to create a shallow donor level (∼ 25 meV) that is similar to Si. SIMS profiles of as-implanted and annealed samples showed no measurable redistribution of either Ca or O in GaN at 1,125 C

  2. Breaking Through the Multi-Mesa-Channel Width Limited of Normally Off GaN HEMTs Through Modulation of the Via-Hole-Length.

    Science.gov (United States)

    Chien, Cheng-Yen; Wu, Wen-Hsin; You, Yao-Hong; Lin, Jun-Huei; Lee, Chia-Yu; Hsu, Wen-Ching; Kuan, Chieh-Hsiung; Lin, Ray-Ming

    2017-12-01

    We present new normally off GaN high-electron-mobility transistors (HEMTs) that overcome the typical limitations in multi-mesa-channel (MMC) width through modulation of the via-hole-length to regulate the charge neutrality screen effect. We have prepared enhancement-mode (E-mode) GaN HEMTs having widths of up to 300 nm, based on an enhanced surface pinning effect. E-mode GaN HEMTs having MMC structures and widths as well as via-hole-lengths of 100 nm/2 μm and 300 nm/6 μm, respectively, exhibited positive threshold voltages (V th ) of 0.79 and 0.46 V, respectively. The on-resistances of the MMC and via-hole-length structures were lower than those of typical tri-gate nanoribbon GaN HEMTs. In addition, the devices not only achieved the E-mode but also improved the power performance of the GaN HEMTs and effectively mitigated the device thermal effect. We controlled the via-hole-length sidewall surface pinning effect to obtain the E-mode GaN HEMTs. Our findings suggest that via-hole-length normally off GaN HEMTs have great potential for use in next-generation power electronics.

  3. Structural characterisation of GaN and GaN:O thin films

    International Nuclear Information System (INIS)

    Granville, S.; Budde, F.; Koo, A.; Ruck, B.J.; Trodahl, H.J.; Bittar, A.; Metson, J.B.; James, B.J.; Kennedy, V.J.; Markwitz, A.; Prince, K.E.

    2005-01-01

    In its crystalline form, the wide band-gap semiconductor GaN is of exceptional interest in the development of suitable materials for short wavelength optoelectronic devices. One of the barriers to its potential usefulness however is the large concentration of defects present even in MBE-grown material often due to the lattice mismatch of the GaN with common substrate materials. Calculations have suggested that GaN films grown with an amorphous structure retain many of the useful properties of the crystalline material, including the wide band-gap and a low density of states in the gap, and thus may be a suitable alternative to the single crystal GaN for a variety of applications. We have performed structural and compositional measurements on heavily disordered GaN thin films with and without measureable O and H concentrations grown using ion-assisted deposition. X-ray diffraction and x-ray absorption fine structure measurements show that stoichiometric films are composed of nanocrystallites of ∼3-4 nm in size and that GaN films containing O to 10 at % or greater are amorphous. Rutherford backscattering spectroscopy (RBS) was performed and nuclear reaction analysis (NRA) measurements were made to determine the elemental composition of the films and elastic recoil detection (ERD) detected the hydrogen concentrations. Secondary ion mass spectroscopy (SIMS) measurements were used to depth profile the films. X-ray photoelectron spectroscopy (XPS) measurements probed the bonding environment of the Ga in the films. (author). 2 figs., 1 tab

  4. Resonant Full-Bridge Synchronous Rectifier Utilizing 15 V GaN Transistors for Wireless Power Transfer Applications Following AirFuel Standard Operating at 6.78 MHz

    DEFF Research Database (Denmark)

    Jensen, Christopher Have Kiaerskou; Spliid, Frederik Monrad; Hertel, Jens Christian

    2018-01-01

    Connectivity in smart devices is increasingly realized by wireless connections. The remaining reason for using connectors at all is for charging the internal battery, for which wireless power transfer is an alternative. Two industry standards, AirFuel and Qi, exist to support compatibility between......, this work uses low voltage GaN transistors on the receiver (Rx) side to allow synchronous rectification and soft switching, thereby achieving high efficiency. After analyzing adequate Class-DE rectifier topologies, a ClassDE full-bridge 5 W rectifier using 15 V GaN transistors are designed and implemented...

  5. GaN membrane MSM ultraviolet photodetectors

    Science.gov (United States)

    Muller, A.; Konstantinidis, G.; Kostopoulos, A.; Dragoman, M.; Neculoiu, D.; Androulidaki, M.; Kayambaki, M.; Vasilache, D.; Buiculescu, C.; Petrini, I.

    2006-12-01

    GaN exhibits unique physical properties, which make this material very attractive for wide range of applications and among them ultraviolet detection. For the first time a MSM type UV photodetector structure was manufactured on a 2.2 μm. thick GaN membrane obtained using micromachining techniques. The low unintentionally doped GaN layer structure was grown by MOCVD on high resistivity (ρ>10kΩcm) oriented silicon wafers, 500μm thick. The epitaxially grown layers include a thin AlN layer in order to reduce the stress in the GaN layer and avoid cracking. Conventional contact lithography, e-gun Ni/Au (10nm /200nm) evaporation and lift-off techniques were used to define the interdigitated Schottky metalization on the top of the wafer. Ten digits with a width of 1μm and a length of 100μm were defined for each electrode. The distance between the digits was also 1μm. After the backside lapping of the wafer to a thickness of approximately 150μm, a 400nm thick Al layer was patterned and deposited on the backside, to be used as mask for the selective reactive ion etching of silicon. The backside mask, for the membrane formation, was patterned using double side alignment techniques and silicon was etched down to the 2.2μm thin GaN layer using SF 6 plasma. A very low dark current (30ρA at 3V) was obtained. Optical responsivity measurements were performed at 1.5V. A maximum responsivity of 18mA/W was obtained at a wavelength of 370nm. This value is very good and can be further improved using transparent contacts for the interdigitated structure.

  6. Structural analysis of GaN using high-resolution X-ray diffraction at variable temperatures; Analyse struktureller Eigenschaften von GaN mittels hochaufloesender Roentgenbeugung bei variabler Messtemperatur

    Energy Technology Data Exchange (ETDEWEB)

    Roder, C.

    2007-02-26

    The main topic of this thesis was the study of stress phenomena in GaN layers by application of high-resolution X-ray diffractometry at variable measurement temperature. For this a broad spectrum of different GaN samples was studied, which extended from bulk GaN crystals as well as thick c-plane oriented HVPE-GaN layers on c-plane sapphire over laterlaly overgrown c-plane GaN Layers on Si(111) substrates toon-polar a-plnae GaN layers on r-plane sapphire. The main topic of the measurements was the determination of the lattice parameters. Supplementarily the curvature of the waver as well as the excitonic resosance energies were studied by means of photoluminescence respectively photoreflection spectroscopy. By the measurement of the temperature-dependent lattice parameters of different GaN bulk crystals for the first time a closed set of thermal-expansion coefficients of GaN was determined from 12 to 1205 K with large accuracy. Analoguously the thermal-expansion coefficents of the substrate material sapphire were determinde over a temperature range from 10 to 1166 K.

  7. Electronic Transport Mechanism for Schottky Diodes Formed by Au/HVPE a-Plane GaN Templates Grown via In Situ GaN Nanodot Formation

    Directory of Open Access Journals (Sweden)

    Moonsang Lee

    2018-06-01

    Full Text Available We investigate the electrical characteristics of Schottky contacts for an Au/hydride vapor phase epitaxy (HVPE a-plane GaN template grown via in situ GaN nanodot formation. Although the Schottky diodes present excellent rectifying characteristics, their Schottky barrier height and ideality factor are highly dependent upon temperature variation. The relationship between the barrier height, ideality factor, and conventional Richardson plot reveals that the Schottky diodes exhibit an inhomogeneous barrier height, attributed to the interface states between the metal and a-plane GaN film and to point defects within the a-plane GaN layers grown via in situ nanodot formation. Also, we confirm that the current transport mechanism of HVPE a-plane GaN Schottky diodes grown via in situ nanodot formation prefers a thermionic field emission model rather than a thermionic emission (TE one, implying that Poole–Frenkel emission dominates the conduction mechanism over the entire range of measured temperatures. The deep-level transient spectroscopy (DLTS results prove the presence of noninteracting point-defect-assisted tunneling, which plays an important role in the transport mechanism. These electrical characteristics indicate that this method possesses a great throughput advantage for various applications, compared with Schottky contact to a-plane GaN grown using other methods. We expect that HVPE a-plane GaN Schottky diodes supported by in situ nanodot formation will open further opportunities for the development of nonpolar GaN-based high-performance devices.

  8. Synthesis of GaN Nanorods by a Solid-State Reaction

    Directory of Open Access Journals (Sweden)

    Keyan Bao

    2010-01-01

    Full Text Available An atom-economical and eco-friendly chemical synthetic route was developed to synthesize wurtzite GaN nanorods by the reaction of NaNH2 and the as-synthesized orthorhombic GaOOH nanorods in a stainless steel autoclave at 600∘C. The lengths of the GaN nanorods are in the range of 400–600 nm and the diameters are about 80–150 nm. The process of orthorhombic GaOOH nanorods transformation into wurtzite GaN nanorods was investigated by powder X-ray diffraction (XRD and field emission scanning electron microscope (FESEM, indicating that the GaN product retained essentially the same basic topological morphology in contrast to that of the GaOOH precursor. It was found that rhombohedral Ga2O3 was the intermediate between the starting orthorhombic GaOOH precursor and the final wurtzite GaN product. The photoluminescence measurements reveal that the as-prepared wurtzite GaN nanorods showed strong blue emission.

  9. Electron transport properties of degenerate n-type GaN prepared by pulsed sputtering

    Science.gov (United States)

    Ueno, Kohei; Fudetani, Taiga; Arakawa, Yasuaki; Kobayashi, Atsushi; Ohta, Jitsuo; Fujioka, Hiroshi

    2017-12-01

    We report a systematic investigation of the transport properties of highly degenerate electrons in Ge-doped and Si-doped GaN epilayers prepared using the pulsed sputtering deposition (PSD) technique. Secondary-ion mass spectrometry and Hall-effect measurements revealed that the doping efficiency of PSD n-type GaN is close to unity at electron concentrations as high as 5.1 × 1020 cm-3. A record low resistivity for n-type GaN of 0.16 mΩ cm was achieved with an electron mobility of 100 cm2 V-1 s-1 at a carrier concentration of 3.9 × 1020 cm-3. We explain this unusually high electron mobility of PSD n-type GaN within the framework of conventional scattering theory by modifying a parameter related to nonparabolicity of the conduction band. The Ge-doped GaN films show a slightly lower electron mobility compared with Si-doped films with the same carrier concentrations, which is likely a consequence of the formation of a small number of compensation centers. The excellent electrical properties presented in this letter clearly demonstrate the striking advantages of the low-temperature PSD technique for growing high-quality and highly conductive n-type GaN.

  10. Electron transport properties of degenerate n-type GaN prepared by pulsed sputtering

    Directory of Open Access Journals (Sweden)

    Kohei Ueno

    2017-12-01

    Full Text Available We report a systematic investigation of the transport properties of highly degenerate electrons in Ge-doped and Si-doped GaN epilayers prepared using the pulsed sputtering deposition (PSD technique. Secondary-ion mass spectrometry and Hall-effect measurements revealed that the doping efficiency of PSD n-type GaN is close to unity at electron concentrations as high as 5.1 × 1020 cm−3. A record low resistivity for n-type GaN of 0.16 mΩ cm was achieved with an electron mobility of 100 cm2 V−1 s−1 at a carrier concentration of 3.9 × 1020 cm−3. We explain this unusually high electron mobility of PSD n-type GaN within the framework of conventional scattering theory by modifying a parameter related to nonparabolicity of the conduction band. The Ge-doped GaN films show a slightly lower electron mobility compared with Si-doped films with the same carrier concentrations, which is likely a consequence of the formation of a small number of compensation centers. The excellent electrical properties presented in this letter clearly demonstrate the striking advantages of the low-temperature PSD technique for growing high-quality and highly conductive n-type GaN.

  11. Effects of catalyst concentration and ultraviolet intensity on chemical mechanical polishing of GaN

    Science.gov (United States)

    Wang, Jie; Wang, Tongqing; Pan, Guoshun; Lu, Xinchun

    2016-08-01

    Effects of catalyst concentration and ultraviolet intensity on chemical mechanical polishing (CMP) of GaN were deeply investigated in this paper. Working as an ideal homogeneous substrate material in LED industry, GaN ought to be equipped with a smooth and flat surface. Taking the strong chemical stability of GaN into account, photocatalytic oxidation technology was adopted in GaN CMP process to realize efficient removal. It was found that, because of the improved reaction rate of photocatalytic oxidation, GaN material removal rate (MRR) increases by a certain extent with catalyst concentration increasing. Cross single line analysis on the surface after polishing by Phase Shift MicroXAM-3D was carried out to prove the better removal effect with higher catalyst concentration. Ultraviolet intensity field in H2O2-SiO2-based polishing system was established and simulated, revealing the variation trend of ultraviolet intensity around the outlet of the slurry. It could be concluded that, owing to the higher planarization efficiency and lower energy damage, the UV lamp of 125 W is the most appropriate lamp in this system. Based on the analysis, defects removal model of this work was proposed to describe the effects of higher catalyst concentration and higher power of UV lamp.

  12. High thermal stability of abrupt SiO2/GaN interface with low interface state density

    Science.gov (United States)

    Truyen, Nguyen Xuan; Taoka, Noriyuki; Ohta, Akio; Makihara, Katsunori; Yamada, Hisashi; Takahashi, Tokio; Ikeda, Mitsuhisa; Shimizu, Mitsuaki; Miyazaki, Seiichi

    2018-04-01

    The effects of postdeposition annealing (PDA) on the interface properties of a SiO2/GaN structure formed by remote oxygen plasma-enhanced chemical vapor deposition (RP-CVD) were systematically investigated. X-ray photoelectron spectroscopy clarified that PDA in the temperature range from 600 to 800 °C has almost no effects on the chemical bonding features at the SiO2/GaN interface, and that positive charges exist at the interface, the density of which can be reduced by PDA at 800 °C. The capacitance-voltage (C-V) and current density-SiO2 electric field characteristics of the GaN MOS capacitors also confirmed the reduction in interface state density (D it) and the improvement in the breakdown property of the SiO2 film after PDA at 800 °C. Consequently, a high thermal stability of the SiO2/GaN structure with a low fixed charge density and a low D it formed by RP-CVD was demonstrated. This is quite informative for realizing highly robust GaN power devices.

  13. Optical properties of Mg doped p-type GaN nanowires

    Science.gov (United States)

    Patsha, Avinash; Pandian, Ramanathaswamy; Dhara, S.; Tyagi, A. K.

    2015-06-01

    Mg doped p-type GaN nanowires are grown using chemical vapor deposition technique in vapor-liquid-solid (VLS) process. Morphological and structural studies confirm the VLS growth process of nanowires and wurtzite phase of GaN. We report the optical properties of Mg doped p-type GaN nanowires. Low temperature photoluminescence studies on as-grown and post-growth annealed samples reveal the successful incorporation of Mg dopants. The as-grwon and annealed samples show passivation and activation of Mg dopants, respectively, in GaN nanowires.

  14. Synthesis and cathodoluminescence of Sb/P co-doped GaN nanowires

    International Nuclear Information System (INIS)

    Wang, Zaien; Liu, Baodan; Yuan, Fang; Hu, Tao; Zhang, Guifeng; Dierre, Benjamin; Hirosaki, Naoto; Sekiguchi, Takashi; Jiang, Xin

    2014-01-01

    Sb/P co-doped Gallium Nitride (GaN) nanowires were synthesized via a simple chemical vapor deposition (CVD) process by heating Ga 2 O 3 and Sb powders in NH 3 atmosphere. Scanning electron microscope (SEM), X-ray diffraction (XRD), transmission electron microscope (TEM) and energy dispersive X-ray spectroscopy (EDS) measurements confirmed the as-synthesized products were Sb/P co-doped GaN nanowires with rough morphology and hexagonal wurtzite structure. Room temperature cathodoluminescence (CL) demonstrated that an obvious band shift of GaN nanowires can be observed due to Sb/P co-doping. Possible explanation for the growth and luminescence mechanism of Sb/P co-doped GaN nanowires was discussed. Highlight: • Sb/P co-doped GaN nanowires were synthesized through a well-designed multi-channel chemical vapor deposition (CVD) process. • Sb/P co-doping leads to the crystallinity deterioration of GaN nanowires. • Sb/P co-doping caused the red-shift of GaN nanowires band-gap in UV range. • Compared with Sb doping, P atoms are more easy to incorporate into the GaN lattice

  15. Hole-induced d"0 ferromagnetism enhanced by Na-doping in GaN

    International Nuclear Information System (INIS)

    Zhang, Yong; Li, Feng

    2017-01-01

    The d"0 ferromagnetism in wurtzite GaN is investigated by the first-principle calculations. It is found that spontaneous magnetization occurs if sufficient holes are injected in GaN. Both Ga vacancy and Na doping can introduce holes into GaN. However, Ga vacancy has a high formation energy, and is thus unlikely to occur in a significant concentration. In contrast, Na doping has relatively low formation energy. Under N-rich growth condition, Na doping with a sufficient concentration can be achieved, which can induce half-metallic ferromagnetism in GaN. Moreover, the estimated Curie temperature of Na-doped GaN is well above the room temperature. - Highlights: • Hole-induced ferromagnetism in GaN is confirmed. • Both Ga Vacancy and Na-doping can introduce hole into GaN. • The concentration of Ga vacancy is too low to induce detectable ferromagnetism. • Na-doped GaN is a possible ferromagnet with a high curie-temperature.

  16. TEM characterization of catalyst- and mask-free grown GaN nanorods

    International Nuclear Information System (INIS)

    Schowalter, M; Aschenbrenner, T; Kruse, C; Hommel, D; Rosenauer, A

    2010-01-01

    Catalyst- and mask-free grown GaN nanorods have been investigated using transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM) and energy filtered transmission electron microscopy (EFTEM). The nanorods were grown on nitridated r-plane sapphire substrates in a molecular beam epitaxy reactor. We investigated samples directly after the nitridation and after the overgrowth of the structure with GaN. High resolution transmission electron microscopy (HRTEM) and EFTEM revealed that AlN islands have formed due to nitridation. After overgrowth, the AlN islands could not be observed any more, neither by EFTEM nor by Z-contrast imaging. Instead, a smooth layer consisting of AlGaN was found. The investigation of the overgrown sample revealed that an a-plane GaN layer and GaN nanorods on top of the a-plane GaN have formed. The nanorods reduced from top of the a-plane GaN towards the a-plane GaN/sapphire interface suggesting that the nanorods originate at the AlN islands found after nitridation. However, this could not be shown unambiguously. The number of threading dislocations in the nanorods was very low. The analysis of the epitaxial relationship to the a-plane GaN showed that the nanorods grew along the [000-1] direction, and the [1-100] direction of the rods was parallel to the [0001] direction of the a-plane GaN.

  17. GaN Nanowire Devices: Fabrication and Characterization

    Science.gov (United States)

    Scott, Reum

    The development of microelectronics in the last 25 years has been characterized by an exponential increase of the bit density in integrated circuits (ICs) with time. Scaling solid-state devices improves cost, performance, and power; as such, it is of particular interest for companies, who gain a market advantage with the latest technology. As a result, the microelectronics industry has driven transistor feature size scaling from 10 μm to ~30 nm during the past 40 years. This trend has persisted for 40 years due to optimization, new processing techniques, device structures, and materials. But when noting processor speeds from the 1970's to 2009 and then again in 2010, the implication would be that the trend has ceased. To address the challenge of shrinking the integrated circuit (IC), current research is centered on identifying new materials and devices that can supplement and/or potentially supplant it. Bottom-up methods tailor nanoscale building blocks---atoms, molecules, quantum dots, and nanowires (NWs)---to be used to overcome these limitations. The Group IIIA nitrides (InN, AlN, and GaN) possess appealing properties such as a direct band gap spanning the whole solar spectrum, high saturation velocity, and high breakdown electric field. As a result nanostructures and nanodevices made from GaN and related nitrides are suitable candidates for efficient nanoscale UV/ visible light emitters, detectors, and gas sensors. To produce devices with such small structures new fabrication methods must be implemented. Devices composed of GaN nanowires were fabricated using photolithography and electron beam lithography. The IV characteristics of these devices were noted under different illuminations and the current tripled from 4.8*10-7 A to 1.59*10 -6 A under UV light which persisted for at least 5hrs.

  18. Barrier characteristics of Pt/Ru Schottky contacts on n-type GaN ...

    Indian Academy of Sciences (India)

    Pt/Ru Schottky rectifiers; n-type GaN; temperature–dependent electrical properties; inhomogeneous barrier heights .... a 2 μm thick Si-doped GaN films which were grown by .... ted values of ap using (9) for two Gaussian distributions of bar-.

  19. Characterization of remote O2-plasma-enhanced CVD SiO2/GaN(0001) structure using photoemission measurements

    Science.gov (United States)

    Truyen, Nguyen Xuan; Ohta, Akio; Makihara, Katsunori; Ikeda, Mitsuhisa; Miyazaki, Seiichi

    2018-01-01

    The control of chemical composition and bonding features at a SiO2/GaN interface is a key to realizing high-performance GaN power devices. In this study, an ∼5.2-nm-thick SiO2 film has been deposited on an epitaxial GaN(0001) surface by remote O2-plasma-enhanced chemical vapor deposition (O2-RPCVD) using SiH4 and Ar/O2 mixture gases at a substrate temperature of 500 °C. The depth profile of chemical structures and electronic defects of the O2-RPCVD SiO2/GaN structures has been evaluated from a combination of SiO2 thinning examined by X-ray photoelectron spectroscopy (XPS) and the total photoelectron yield spectroscopy (PYS) measurements. As a highlight, we found that O2-RPCVD is effective for fabricating an abrupt SiO2/GaN interface.

  20. Growth of GaN micro/nanolaser arrays by chemical vapor deposition.

    Science.gov (United States)

    Liu, Haitao; Zhang, Hanlu; Dong, Lin; Zhang, Yingjiu; Pan, Caofeng

    2016-09-02

    Optically pumped ultraviolet lasing at room temperature based on GaN microwire arrays with Fabry-Perot cavities is demonstrated. GaN microwires have been grown perpendicularly on c-GaN/sapphire substrates through simple catalyst-free chemical vapor deposition. The GaN microwires are [0001] oriented single-crystal structures with hexagonal cross sections, each with a diameter of ∼1 μm and a length of ∼15 μm. A possible growth mechanism of the vertical GaN microwire arrays is proposed. Furthermore, we report room-temperature lasing in optically pumped GaN microwire arrays based on the Fabry-Perot cavity. Photoluminescence spectra exhibit lasing typically at 372 nm with an excitation threshold of 410 kW cm(-2). The result indicates that these aligned GaN microwire arrays may offer promising prospects for ultraviolet-emitting micro/nanodevices.

  1. Viability and proliferation of endothelial cells upon exposure to GaN nanoparticles.

    Science.gov (United States)

    Braniste, Tudor; Tiginyanu, Ion; Horvath, Tibor; Raevschi, Simion; Cebotari, Serghei; Lux, Marco; Haverich, Axel; Hilfiker, Andres

    2016-01-01

    Nanotechnology is a rapidly growing and promising field of interest in medicine; however, nanoparticle-cell interactions are not yet fully understood. The goal of this work was to examine the interaction between endothelial cells and gallium nitride (GaN) semiconductor nanoparticles. Cellular viability, adhesion, proliferation, and uptake of nanoparticles by endothelial cells were investigated. The effect of free GaN nanoparticles versus the effect of growing endothelial cells on GaN functionalized surfaces was examined. To functionalize surfaces with GaN, GaN nanoparticles were synthesized on a sacrificial layer of zinc oxide (ZnO) nanoparticles using hydride vapor phase epitaxy. The uptake of GaN nanoparticles by porcine endothelial cells was strongly dependent upon whether they were fixed to the substrate surface or free floating in the medium. The endothelial cells grown on surfaces functionalized with GaN nanoparticles demonstrated excellent adhesion and proliferation, suggesting good biocompatibility of the nanostructured GaN.

  2. High-Sensitivity GaN Microchemical Sensors

    Science.gov (United States)

    Son, Kyung-ah; Yang, Baohua; Liao, Anna; Moon, Jeongsun; Prokopuk, Nicholas

    2009-01-01

    Systematic studies have been performed on the sensitivity of GaN HEMT (high electron mobility transistor) sensors using various gate electrode designs and operational parameters. The results here show that a higher sensitivity can be achieved with a larger W/L ratio (W = gate width, L = gate length) at a given D (D = source-drain distance), and multi-finger gate electrodes offer a higher sensitivity than a one-finger gate electrode. In terms of operating conditions, sensor sensitivity is strongly dependent on transconductance of the sensor. The highest sensitivity can be achieved at the gate voltage where the slope of the transconductance curve is the largest. This work provides critical information about how the gate electrode of a GaN HEMT, which has been identified as the most sensitive among GaN microsensors, needs to be designed, and what operation parameters should be used for high sensitivity detection.

  3. Electrical transport in GaN and InN nanowires; Elektrischer Transport in GaN- und InN-Nanodraehten

    Energy Technology Data Exchange (ETDEWEB)

    Richter, Thomas Fabian

    2008-12-19

    This thesis discusses the analysis of the electrical transport in GaN and InN nanowires at room temperature and deep temperatures. From those measurements two different transport models for those two in matter of the band banding completely different materials have been found. In the investigation of the GaN nanowires the main focus was the electrical transport in dependence of the diameter and the n-doping. With the use of IV-measurements on those MBE grown nanowires with different diameters at dark and under UV illumination as well as the decay of the persistent photocurrent, it was possible to find an for GaN untypical behaviour. The electrical transport in those wires is extremely diameter dependent. The dark current shows space charged limited current. With the help of those cognitions a diameter dependent transport model could be found. The transport phenomena in those wires is based on the diameter depending band bending at the edge of the wires caused by the Fermi level pinning inside the forbidden band. This model can be fit to the data with the three parameter doping, fermi level pinning and wire diameter. On the base of those effects a method to determine the doping concentration inside those wires without field effect measurements and contact resistance has been developed. The defect structure inside those wires has been analysed with the help of spectral photoluminescence measurements. Here several defect bands have been found and it was possible with help of several contacts on one single wire to determine different defect regions along the wire and to explain them by the lattice mismatch between nanowire and substrate. Further temperature depending measurements and investigations on Schottky contacted wires as well as on GaN wires with AlN tunnel structures complete the work on GaN. The electrical characterisation on a large scale of undoped and doped InN nanowires shows linear growth of the dark current with the diameter up to wires of around 100 nm

  4. Identification of deep levels in GaN associated with dislocations

    International Nuclear Information System (INIS)

    Soh, C B; Chua, S J; Lim, H F; Chi, D Z; Liu, W; Tripathy, S

    2004-01-01

    To establish a correlation between dislocations and deep levels in GaN, a deep-level transient spectroscopy study has been carried out on GaN samples grown by metalorganic chemical vapour deposition. In addition to typical undoped and Si-doped GaN samples, high-quality crack-free undoped GaN film grown intentionally on heavily doped cracked Si-doped GaN and cracked AlGaN templates are also chosen for this study. The purpose of growth of such continuous GaN layers on top of the cracked templates is to reduce the screw dislocation density by an order of magnitude. Deep levels in these layers have been characterized and compared with emphasis on their thermal stabilities and capture kinetics. Three electron traps at E c -E T ∼0.10-0.11, 0.24-0.27 and 0.59-0.63 eV are detected common to all the samples while additional levels at E c -E T ∼0.18 and 0.37-0.40 eV are also observed in the Si-doped GaN. The trap levels exhibit considerably different stabilities under rapid thermal annealing. Based on the observations, the trap levels at E c -E T ∼0.18 and 0.24-0.27 eV can be associated with screw dislocations, whereas the level at E c -E T ∼0.59-0.63 eV can be associated with edge dislocations. This is also in agreement with the transmission electron microscopy measurements conducted on the GaN samples

  5. Surface state of GaN after rapid-thermal-annealing using AlN cap-layer

    Energy Technology Data Exchange (ETDEWEB)

    El-Zammar, G., E-mail: georgio.elzammar@univ-tours.fr [Université François Rabelais, Tours, GREMAN, CNRS UMR 7347, 10 rue Thalès de Milet CS 97155, 37071 Tours Cedex 2 (France); Khalfaoui, W. [Université François Rabelais, Tours, GREMAN, CNRS UMR 7347, 10 rue Thalès de Milet CS 97155, 37071 Tours Cedex 2 (France); Oheix, T. [Université François Rabelais, Tours, GREMAN, CNRS UMR 7347, 10 rue Thalès de Milet CS 97155, 37071 Tours Cedex 2 (France); STMicroelectronics, 10 rue Thalès de Milet CS 97155, 37071 Tours Cedex 2 (France); Yvon, A.; Collard, E. [STMicroelectronics, 10 rue Thalès de Milet CS 97155, 37071 Tours Cedex 2 (France); Cayrel, F.; Alquier, D. [Université François Rabelais, Tours, GREMAN, CNRS UMR 7347, 10 rue Thalès de Milet CS 97155, 37071 Tours Cedex 2 (France)

    2015-11-15

    Graphical abstract: Surface state of a crack-free AlN cap-layer reactive sputtered on GaN and annealed at high temperature showing a smooth, pit-free surface. - Highlights: • We deposit a crystalline AlN layer by reactive magnetron sputtering on GaN. • We show the effect of deposition parameters of AlN by reactive magnetron sputtering on the quality of the grown layer. • We demonstrate the efficiency of double cap-layer for GaN protection during high temperature thermal treatments. • We show an efficient selective etch of AlN without damaging GaN surface. - Abstract: Critical issues need to be overcome to produce high performance Schottky diodes on gallium nitride (GaN). To activate dopant, high temperature thermal treatments are required but damage GaN surface where hexagonal pits appear and prevent any device processing. In this paper, we investigated the efficiency of cap-layers on GaN during thermal treatments to avoid degradation. Aluminum nitride (AlN) and silicon oxide (SiO{sub x}) were grown on GaN by direct current reactive magnetron sputtering and plasma-enhanced chemical vapor deposition, respectively. AlN growth parameters were studied to understand their effect on the grown layers and their protection efficiency. Focused ion beam was used to measure AlN layer thickness. Crystalline quality and exact composition were verified using X-ray diffraction and energy dispersive X-ray spectroscopy. Two types of rapid thermal annealing at high temperatures were investigated. Surface roughness and pits density were evaluated using atomic force microscopy and scanning electron microscopy. Cap-layers wet etching was processed in H{sub 3}PO{sub 4} at 120 °C for AlN and in HF (10%) for SiO{sub x}. This work reveals effective protection of GaN during thermal treatments at temperatures as high as 1150 °C. Low surface roughness was obtained. Furthermore, no hexagonal pit was observed on the surface.

  6. Semipolar GaN grown on m-plane sapphire using MOVPE

    Energy Technology Data Exchange (ETDEWEB)

    Wernicke, Tim; Netzel, Carsten; Weyers, Markus [Ferdinand-Braun-Institut fuer Hoechstfrequenztechnik, Berlin (Germany); Kneissl, Michael [Ferdinand-Braun-Institut fuer Hoechstfrequenztechnik, Berlin (Germany); Institute of Solid State Physics, Technical University of Berlin (Germany)

    2008-07-01

    We have investigated the MOVPE growth of semipolar gallium nitride (GaN) films on (10 anti 1 0) m-plane sapphire substrates. Specular GaN films with a RMS roughness (10 x 10 {mu}m{sup 2}) of 15.2 nm were obtained and an arrowhead like structure aligned along[ anti 2 113] is prevailing. The orientation relationship was determined by XRD and yielded (212){sub GaN} parallel (10 anti 10){sub sapphire} and [anti 2113]{sub GaN} parallel [0001]{sub sapphire} as well as [anti 2113]{sub GaN} parallel [000 anti 1]{sub sapphire}. PL spectra exhibited near band edge emission accompanied by a strong basal plane stacking fault emission. In addition lower energy peaks attributed to prismatic plane stacking faults and donor acceptor pair emission appeared in the spectrum. With similar growth conditions also (1013) GaN films on m-plane sapphire were obtained. In the later case we found that the layer was twinned, crystallites with different c-axis orientation were present. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Polarity Control of Heteroepitaxial GaN Nanowires on Diamond.

    Science.gov (United States)

    Hetzl, Martin; Kraut, Max; Hoffmann, Theresa; Stutzmann, Martin

    2017-06-14

    Group III-nitride materials such as GaN nanowires are characterized by a spontaneous polarization within the crystal. The sign of the resulting sheet charge at the top and bottom facet of a GaN nanowire is determined by the orientation of the wurtzite bilayer of the different atomic species, called N and Ga polarity. We investigate the polarity distribution of heteroepitaxial GaN nanowires on different substrates and demonstrate polarity control of GaN nanowires on diamond. Kelvin Probe Force Microscopy is used to determine the polarity of individual selective area-grown and self-assembled nanowires over a large scale. At standard growth conditions, mixed polarity occurs for selective GaN nanowires on various substrates, namely on silicon, on sapphire and on diamond. To obtain control over the growth orientation on diamond, the substrate surface is modified by nitrogen and oxygen plasma exposure prior to growth, and the growth parameters are adjusted simultaneously. We find that the surface chemistry and the substrate temperature are the decisive factors for obtaining control of up to 93% for both polarity types, whereas the growth mode, namely selective area or self-assembled growth, does not influence the polarity distribution significantly. The experimental results are discussed by a model based on the interfacial bonds between the GaN nanowires, the termination layer, and the substrate.

  8. Effects of thin heavily Mg-doped GaN capping layer on ohmic contact formation of p-type GaN

    International Nuclear Information System (INIS)

    Wu, L L; Zhao, D G; Jiang, D S; Chen, P; Le, L C; Li, L; Liu, Z S; Zhang, S M; Zhu, J J; Wang, H; Zhang, B S; Yang, H

    2013-01-01

    The growth condition of thin heavily Mg-doped GaN capping layer and its effect on ohmic contact formation of p-type GaN were investigated. It is confirmed that the excessive Mg doping can effectively enhance the Ni/Au contact to p-GaN after annealing at 550 °C. When the flow rate ratio between Mg and Ga gas sources is 6.4% and the layer width is 25 nm, the capping layer grown at 850 °C exhibits the best ohmic contact properties with respect to the specific contact resistivity (ρ c ). This temperature is much lower than the conventional growth temperature of Mg-doped GaN, suggesting that the deep-level-defect induced band may play an important role in the conduction of capping layer. (paper)

  9. Hexagonal (wurtzite) GaN inclusions as a defect in cubic (zinc-blende) GaN

    International Nuclear Information System (INIS)

    Zainal, N.; Novikov, S.V.; Akimov, A.V.; Staddon, C.R.; Foxon, C.T.; Kent, A.J.

    2012-01-01

    The dependence of the hexagonal fraction with thickness in MBE-grown bulk cubic (c-) GaN epilayer is presented in this paper. A number of c-GaN epilayers with different thicknesses were characterized via PL and XRD measurements. From the PL spectra, the signal due to h-GaN inclusions increases as the thickness of the c-GaN increases. On the contrary, in the XRD diffractogram, c-GaN shows a dominant signal at all thicknesses, and only a weak peak at ∼35° is observed in the diffractogram, implying the existence of a small amount of h-GaN in the c-GaN layer. The best quality of c-GaN is observed in the first 10 μm of GaN on the top of GaAs substrate. Even though the hexagonal content increases with the thickness, the average content remains below 20% in c-GaN layers up to 50 μm thick. The surface morphology of thick c-GaN is also presented.

  10. High surface hole concentration p-type GaN using Mg implantation

    International Nuclear Information System (INIS)

    Long Tao; Yang Zhijian; Zhang Guoyi

    2001-01-01

    Mg ions were implanted on Mg-doped GaN grown by metalorganic chemical vapor deposition (MOCVD). The p-type GaN was achieved with high hole concentration (8.28 x 10 17 cm -3 ) conformed by Van derpauw Hall measurement after annealing at 800 degree C for 1 h. this is the first experimental report of Mg implantation on Mg-doped GaN and achieving p-type GaN with high surface hole concentration

  11. Design and characterization of GaN p-i-n diodes for betavoltaic devices

    Science.gov (United States)

    Khan, Muhammad R.; Smith, Joshua R.; Tompkins, Randy P.; Kelley, Stephen; Litz, Marc; Russo, John; Leathersich, Jeff; Shahedipour-Sandvik, Fatemeh (Shadi); Jones, Kenneth A.; Iliadis, Agis

    2017-10-01

    The performance of gallium nitride (GaN) p-i-n diodes were investigated for use as a betavoltaic device. Dark IV measurements showed a turn on-voltage of approximately 3.2 V, specific-on-resistance of 15.1 mΩ cm2 and a reverse leakage current of -0.14 mA/cm2 at -10 V. A clear photo-response was observed when IV curves were measured under a light source at a wavelength of 310 nm (4.0 eV). In addition, GaN p-i-n diodes were tested under an electron-beam in order to simulate common beta radiation sources ranging from that of 3H (5.6 keV average) to 63Ni (17 keV average). From this data, we estimated output powers of 53 nW and 750 nW with overall efficiencies of 0.96% and 4.4% for our device at incident electron energies of 5.6 keV and 17 keV corresponding to 3H and 63Ni beta sources respectively.

  12. High-quality GaN epitaxially grown on Si substrate with serpentine channels

    Science.gov (United States)

    Wei, Tiantian; Zong, Hua; Jiang, Shengxiang; Yang, Yue; Liao, Hui; Xie, Yahong; Wang, Wenjie; Li, Junze; Tang, Jun; Hu, Xiaodong

    2018-06-01

    A novel serpentine-channeled mask was introduced to Si substrate for low-dislocation GaN epitaxial growth and the fully coalesced GaN film on the masked Si substrate was achieved for the first time. Compared with the epitaxial lateral overgrowth (ELOG) growth method, this innovative mask only requires one-step epitaxial growth of GaN which has only one high-dislocation region per mask opening. This new growth method can effectively reduce dislocation density, thus improving the quality of GaN significantly. High-quality GaN with low dislocation density ∼2.4 × 107 cm-2 was obtained, which accounted for about eighty percent of the GaN film in area. This innovative technique is promising for the growth of high-quality GaN templates and the subsequent fabrication of high-performance GaN-based devices like transistors, laser diodes (LDs), and light-emitting diodes (LEDs) on Si substrate.

  13. High Temperature Terahertz Detectors Realized by a GaN High Electron Mobility Transistor

    Science.gov (United States)

    Hou, H. W.; Liu, Z.; Teng, J. H.; Palacios, T.; Chua, S. J.

    2017-04-01

    In this work, a high temperature THz detector based on a GaN high electron mobility transistor (HEMT) with nano antenna structures was fabricated and demonstrated to be able to work up to 200 °C. The THz responsivity and noise equivalent power (NEP) of the device were characterized at 0.14 THz radiation over a wide temperature range from room temperature to 200 °C. A high responsivity Rv of 15.5 and 2.7 kV/W and a low NEP of 0.58 and 10 pW/Hz0.5 were obtained at room temperature and 200 °C, respectively. The advantages of the GaN HEMT over other types of field effect transistors for high temperature terahertz detection are discussed. The physical mechanisms responsible for the temperature dependence of the responsivity and NEP of the GaN HEMT are also analyzed thoroughly.

  14. High energy ion irradiated III-N semiconductors (AlN, GaN, InN): study of point defect and extended defect creation

    International Nuclear Information System (INIS)

    Sall, Mamour

    2013-01-01

    Nitride semiconductors III N (AlN, GaN, InN) have interesting properties for micro-and opto-electronic applications. In use, they may be subjected to different types of radiation in a wide range of energy. In AlN, initially considered insensitive to electronic excitations (Se), we have demonstrated a novel type of synergy between Se and nuclear collisions (Sn) for the creation of defects absorbing at 4.7 eV. In addition, another effect of Se is highlighted in AlN: climb of screw dislocations under the influence of Se, at high fluence. In GaN, two mechanisms can explain the creation of defects absorbing at 2.8 eV: a synergy between Se and Sn, or a creation only due to Sn but with a strong effect of the size of displacement cascades. The study, by TEM, of the effects of Se in the three materials, exhibits behaviors highly dependent on the material while they all belong to the same family with the same atomic structure. Under monoatomic ion irradiations (velocity between 0.4 and 5 MeV/u), while discontinuous tracks are observed in GaN and InN, no track is observed in AlN with the highest electronic stopping power (33 keV/nm). Only fullerene clusters produce tracks in AlN. The inelastic thermal spike model was used to calculate the energies required to produce track in AlN, GaN and InN, they are 4.2 eV/atom, 1.5 eV/atom and 0.8 eV/atom, respectively. This sensitivity difference according to Se, also occurs at high fluence. (author)

  15. GaN epilayers on nanopatterned GaN/Si(1 1 1) templates: Structural and optical characterization

    International Nuclear Information System (INIS)

    Wang, L.S.; Tripathy, S.; Wang, B.Z.; Chua, S.J.

    2006-01-01

    Template-based nanoscale epitaxy has been explored to realize high-quality GaN on Si(1 1 1) substrates. We have employed polystyrene-based nanosphere lithography to form the nano-hole array patterns on GaN/Si(1 1 1) template and then, subsequent regrowth of GaN is carried out by metalorganic chemical vapor deposition (MOCVD). During the initial growth stage of GaN on such nanopatterned substrates, we have observed formation of nanoislands with hexagonal pyramid shape due to selective area epitaxy. With further epitaxial regrowth, these nanoislands coalesce and form continuous GaN film. The overgrown GaN on patterned and non-patterned regions is characterized by high-resolution X-ray diffraction (HRXRD) and high-spatial resolution optical spectroscopic methods. Micro-photoluminescence (PL), micro-Raman scattering and scanning electron microscopy (SEM) have been used to assess the microstructural and optical properties of GaN. Combined PL and Raman data analyses show improved optical quality when compared to GaN simultaneously grown on non-patterned bulk Si(1 1 1). Such thicker GaN templates would be useful to achieve III-nitride-based opto- and electronic devices integrated on Si substrates

  16. Amphoteric arsenic in GaN

    CERN Document Server

    Wahl, U; Araújo, J P; Rita, E; Soares, JC

    2007-01-01

    We have determined the lattice location of implanted arsenic in GaN by means of conversion electron emission channeling from radioactive $^{73}$As. We give direct evidence that As is an amphoteric impurity, thus settling the long-standing question as to whether it prefers cation or anion sites in GaN. The amphoteric character of As and the fact that As$\\scriptstyle_{Ga}\\,$ " anti-sites ” are not minority defects provide additional aspects to be taken into account for an explanantion of the so-called “ miscibility gap ” in ternary GaAs$\\scriptstyle_{1-x}$N$\\scriptstyle_{x}$ compounds, which cannot be grown with a single phase for values of $x$ in the range 0.1<${x}$< 0.99.

  17. High surface hole concentration p-type GaN using Mg implantation

    CERN Document Server

    Long Tao; Zhang Guo Yi

    2001-01-01

    Mg ions were implanted on Mg-doped GaN grown by metalorganic chemical vapor deposition (MOCVD). The p-type GaN was achieved with high hole concentration (8.28 x 10 sup 1 sup 7 cm sup - sup 3) conformed by Van derpauw Hall measurement after annealing at 800 degree C for 1 h. this is the first experimental report of Mg implantation on Mg-doped GaN and achieving p-type GaN with high surface hole concentration

  18. Understanding the Room Temperature Ferromagnetism in GaN Nanowires with Pd Doping

    International Nuclear Information System (INIS)

    Manna, S; De, S K

    2011-01-01

    We report the first synthesis and characterization of 4d transition metal palladium-doped GaN nanowires (NWs). Room temperature ferromagnetism has been observed in high quality Vapor Liquid Solid (VLS) epitaxy grown undoped n-type GaN nanowires. It was proposed that this type of magnetism is due to defects which are not observed in Bulk GaN because of large formation energy of defects in bulk GaN. Here we have successfully doped 4d transition metal Pd in GaN NWs. We find fairly strong and long-range ferromagnetic coupling between Pd substituted for Ga in GaN . The results suggest that 4d metals such as Pd may also be considered as candidates for ferromagnetic dopants in semiconductors.

  19. Demonstration of a High Open-Circuit Voltage GaN Betavoltaic Microbattery

    International Nuclear Information System (INIS)

    Cheng Zai-Jun; San Hai-Sheng; Chen Xu-Yuan; Liu Bo; Feng Zhi-Hong

    2011-01-01

    A high open-circuit voltage betavoltaic microbattery based on a GaN p-i-n diode is demonstrated. Under the irradiation of a 4×4 mm 2 planar solid 63 Ni source with an activity of 2 mCi, the open-circuit voltage V oc of the fabricated single 2×2mm 2 cell reaches as high as 1.62 V, the short-circuit current density J sc is measured to be 16nA/cm 2 . The microbattery has a fill factor of 55%, and the energy conversion efficiency of beta radiation into electricity reaches to 1.13%. The results suggest that GaN is a highly promising potential candidate for long-life betavoltaic microbatteries used as power supplies for microelectromechanical system devices. (cross-disciplinary physics and related areas of science and technology)

  20. Characterization of an Mg-implanted GaN p-i-n Diode

    Science.gov (United States)

    2016-03-31

    Characterization of an Mg- implanted GaN p-i-n Diode Travis J. Anderson, Jordan D. Greenlee, Boris N. Feigelson, Karl D. Hobart, and Francis J...Kub Naval Research Laboratory, Washington, DC 20375 Abstract: A p-i-n diode formed by the implantation of Mg in GaN was fabricated and...characterized. After implantation , Mg was activated using the symmetrical multicycle rapid thermal annealing technique with heating pulses up to 1340C

  1. Monolithic Flexible Vertical GaN Light-Emitting Diodes for a Transparent Wireless Brain Optical Stimulator.

    Science.gov (United States)

    Lee, Han Eol; Choi, JeHyuk; Lee, Seung Hyun; Jeong, Minju; Shin, Jung Ho; Joe, Daniel J; Kim, DoHyun; Kim, Chang Wan; Park, Jung Hwan; Lee, Jae Hee; Kim, Daesoo; Shin, Chan-Soo; Lee, Keon Jae

    2018-05-18

    Flexible inorganic-based micro light-emitting diodes (µLEDs) are emerging as a significant technology for flexible displays, which is an important area for bilateral visual communication in the upcoming Internet of Things era. Conventional flexible lateral µLEDs have been investigated by several researchers, but still have significant issues of power consumption, thermal stability, lifetime, and light-extraction efficiency on plastics. Here, high-performance flexible vertical GaN light-emitting diodes (LEDs) are demonstrated by silver nanowire networks and monolithic fabrication. Transparent, ultrathin GaN LED arrays adhere to a human fingernail and stably glow without any mechanical deformation. Experimental studies provide outstanding characteristics of the flexible vertical μLEDs (f-VLEDs) with high optical power (30 mW mm -2 ), long lifetime (≈12 years), and good thermal/mechanical stability (100 000 bending/unbending cycles). The wireless light-emitting system on the human skin is successfully realized by transferring the electrical power f-VLED. Finally, the high-density GaN f-VLED arrays are inserted onto a living mouse cortex and operated without significant histological damage of brain. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Growth on nonpolar and semipolar GaN: The substrate dilemma

    Energy Technology Data Exchange (ETDEWEB)

    Wernicke, T.; Weyers, M. [Ferdinand-Braun-Institute, Berlin (Germany); Kneissl, M. [Ferdinand-Braun-Institute, Berlin (Germany); Institute of Solid State Physics, TU Berlin (Germany)

    2009-07-01

    Growth of nonpolar and semipolar GaN is very promising for achieving green laser diodes (LDs). However, the choice of the substrate is a difficult one: Heteroepitaxial growth on sapphire, SiC, LiAlO{sub 2} yields GaN films with a poor surface quality and high defect densities. On the other hand non- and semipolar bulk GaN substrates provide excellent crystal quality, but are so far only available in very small sizes. In this paper hetero- and homoepitaxial growth is compared. For all heteroepitaxially grown semi- and nonpolar GaN layers threading dislocations (TD) and basal plane stacking faults (BSF) can be found. There are four possible mechanisms for the generation of BSF: Growth of the N-polar basal plane, formation during nucleation at substrate steps, formation at the coalescence front of differently stacked nucleation islands, and generation at planar defects occurring in m-plane GaN on LiAlO{sub 2}. BSF induce surface roughening and are associated with partial dislocations causing nonradiative recombination. Thus they affect the performance of devices. We show that BSFs and TDs can be reduced by epitaxial lateral overgrowth resulting in several micrometer wide defect free areas. However, for LEDs larger defect-free areas are required. GaN layers grown on bulk GaN substrates exhibit a high crystal quality, but show in many cases long-range surface structures with a height of {approx}1{mu}m.

  3. Spin injection in epitaxial MnGa(111)/GaN(0001) heterostructures

    Science.gov (United States)

    Zube, Christian; Malindretos, Joerg; Watschke, Lars; Zamani, Reza R.; Disterheft, David; Ulbrich, Rainer G.; Rizzi, Angela; Iza, Michael; Keller, Stacia; DenBaars, Steven P.

    2018-01-01

    Ferromagnetic MnGa(111) layers were grown on GaN(0001) by molecular beam epitaxy. MnGa/GaN Schottky diodes with a doping level of around n = 7 × 1018 cm-3 were fabricated to achieve single step tunneling across the metal/semiconductor junction. Below the GaN layer, a thin InGaN quantum well served as optical spin detector ("spin-LED"). For electron spin injection from MnGa into GaN and subsequent spin transport through a 45 nm (70 nm) thick GaN layer, we observe a circular polarization of 0.3% (0.2%) in the electroluminescence at 80 K. Interface mixing, spin polarization losses during electrical transport in the GaN layer, and spin relaxation in the InGaN quantum well are discussed in relation with the low value of the optically detected spin polarization.

  4. Mechanical, Thermodynamic and Electronic Properties of Wurtzite and Zinc-Blende GaN Crystals

    Science.gov (United States)

    Luan, Xinghe; Feng, Chuang; Yang, Daoguo; Zhang, Guoqi

    2017-01-01

    For the limitation of experimental methods in crystal characterization, in this study, the mechanical, thermodynamic and electronic properties of wurtzite and zinc-blende GaN crystals were investigated by first-principles calculations based on density functional theory. Firstly, bulk moduli, shear moduli, elastic moduli and Poisson’s ratios of the two GaN polycrystals were calculated using Voigt and Hill approximations, and the results show wurtzite GaN has larger shear and elastic moduli and exhibits more obvious brittleness. Moreover, both wurtzite and zinc-blende GaN monocrystals present obvious mechanical anisotropic behavior. For wurtzite GaN monocrystal, the maximum and minimum elastic moduli are located at orientations [001] and , respectively, while they are in the orientations and for zinc-blende GaN monocrystal, respectively. Compared to the elastic modulus, the shear moduli of the two GaN monocrystals have completely opposite direction dependences. However, different from elastic and shear moduli, the bulk moduli of the two monocrystals are nearly isotropic, especially for the zinc-blende GaN. Besides, in the wurtzite GaN, Poisson’s ratios at the planes containing [001] axis are anisotropic, and the maximum value is 0.31 which is located at the directions vertical to [001] axis. For zinc-blende GaN, Poisson’s ratios at planes (100) and (111) are isotropic, while the Poisson’s ratio at plane (110) exhibits dramatically anisotropic phenomenon. Additionally, the calculated Debye temperatures of wurtzite and zinc-blende GaN are 641.8 and 620.2 K, respectively. At 300 K, the calculated heat capacities of wurtzite and zinc-blende are 33.6 and 33.5 J mol−1 K−1, respectively. Finally, the band gap is located at the G point for the two crystals, and the band gaps of wurtzite and zinc-blende GaN are 3.62 eV and 3.06 eV, respectively. At the G point, the lowest energy of conduction band in the wurtzite GaN is larger, resulting in a wider band gap

  5. Mechanical, Thermodynamic and Electronic Properties of Wurtzite and Zinc-Blende GaN Crystals

    Directory of Open Access Journals (Sweden)

    Hongbo Qin

    2017-12-01

    Full Text Available For the limitation of experimental methods in crystal characterization, in this study, the mechanical, thermodynamic and electronic properties of wurtzite and zinc-blende GaN crystals were investigated by first-principles calculations based on density functional theory. Firstly, bulk moduli, shear moduli, elastic moduli and Poisson’s ratios of the two GaN polycrystals were calculated using Voigt and Hill approximations, and the results show wurtzite GaN has larger shear and elastic moduli and exhibits more obvious brittleness. Moreover, both wurtzite and zinc-blende GaN monocrystals present obvious mechanical anisotropic behavior. For wurtzite GaN monocrystal, the maximum and minimum elastic moduli are located at orientations [001] and <111>, respectively, while they are in the orientations <111> and <100> for zinc-blende GaN monocrystal, respectively. Compared to the elastic modulus, the shear moduli of the two GaN monocrystals have completely opposite direction dependences. However, different from elastic and shear moduli, the bulk moduli of the two monocrystals are nearly isotropic, especially for the zinc-blende GaN. Besides, in the wurtzite GaN, Poisson’s ratios at the planes containing [001] axis are anisotropic, and the maximum value is 0.31 which is located at the directions vertical to [001] axis. For zinc-blende GaN, Poisson’s ratios at planes (100 and (111 are isotropic, while the Poisson’s ratio at plane (110 exhibits dramatically anisotropic phenomenon. Additionally, the calculated Debye temperatures of wurtzite and zinc-blende GaN are 641.8 and 620.2 K, respectively. At 300 K, the calculated heat capacities of wurtzite and zinc-blende are 33.6 and 33.5 J mol−1 K−1, respectively. Finally, the band gap is located at the G point for the two crystals, and the band gaps of wurtzite and zinc-blende GaN are 3.62 eV and 3.06 eV, respectively. At the G point, the lowest energy of conduction band in the wurtzite GaN is larger

  6. Mechanical, Thermodynamic and Electronic Properties of Wurtzite and Zinc-Blende GaN Crystals.

    Science.gov (United States)

    Qin, Hongbo; Luan, Xinghe; Feng, Chuang; Yang, Daoguo; Zhang, Guoqi

    2017-12-12

    For the limitation of experimental methods in crystal characterization, in this study, the mechanical, thermodynamic and electronic properties of wurtzite and zinc-blende GaN crystals were investigated by first-principles calculations based on density functional theory. Firstly, bulk moduli, shear moduli, elastic moduli and Poisson's ratios of the two GaN polycrystals were calculated using Voigt and Hill approximations, and the results show wurtzite GaN has larger shear and elastic moduli and exhibits more obvious brittleness. Moreover, both wurtzite and zinc-blende GaN monocrystals present obvious mechanical anisotropic behavior. For wurtzite GaN monocrystal, the maximum and minimum elastic moduli are located at orientations [001] and , respectively, while they are in the orientations and for zinc-blende GaN monocrystal, respectively. Compared to the elastic modulus, the shear moduli of the two GaN monocrystals have completely opposite direction dependences. However, different from elastic and shear moduli, the bulk moduli of the two monocrystals are nearly isotropic, especially for the zinc-blende GaN. Besides, in the wurtzite GaN, Poisson's ratios at the planes containing [001] axis are anisotropic, and the maximum value is 0.31 which is located at the directions vertical to [001] axis. For zinc-blende GaN, Poisson's ratios at planes (100) and (111) are isotropic, while the Poisson's ratio at plane (110) exhibits dramatically anisotropic phenomenon. Additionally, the calculated Debye temperatures of wurtzite and zinc-blende GaN are 641.8 and 620.2 K, respectively. At 300 K, the calculated heat capacities of wurtzite and zinc-blende are 33.6 and 33.5 J mol -1 K -1 , respectively. Finally, the band gap is located at the G point for the two crystals, and the band gaps of wurtzite and zinc-blende GaN are 3.62 eV and 3.06 eV, respectively. At the G point, the lowest energy of conduction band in the wurtzite GaN is larger, resulting in a wider band gap. Densities of

  7. Enhanced thermoelectric transport in modulation-doped GaN/AlGaN core/shell nanowires.

    Science.gov (United States)

    Song, Erdong; Li, Qiming; Swartzentruber, Brian; Pan, Wei; Wang, George T; Martinez, Julio A

    2016-01-08

    The thermoelectric properties of unintentionally n-doped core GaN/AlGaN core/shell N-face nanowires are reported. We found that the temperature dependence of the electrical conductivity is consistent with thermally activated carriers with two distinctive donor energies. The Seebeck coefficient of GaN/AlGaN nanowires is more than twice as large as that for the GaN nanowires alone. However, an outer layer of GaN deposited onto the GaN/AlGaN core/shell nanowires decreases the Seebeck coefficient at room temperature, while the temperature dependence of the electrical conductivity remains the same. We attribute these observations to the formation of an electron gas channel within the heavily-doped GaN core of the GaN/AlGaN nanowires. The room-temperature thermoelectric power factor for the GaN/AlGaN nanowires can be four times higher than the GaN nanowires. Selective doping in bandgap engineered core/shell nanowires is proposed for enhancing the thermoelectric power.

  8. Hybrid GaN LED with capillary-bonded II–VI MQW color-converting membrane for visible light communications

    International Nuclear Information System (INIS)

    Santos, Joao M M; Jones, Brynmor E; Schlosser, Peter J; Herrnsdorf, Johannes; Guilhabert, Benoit; McKendry, Jonathan J D; Hastie, Jennifer E; Laurand, Nicolas; Dawson, Martin D; Watson, Scott; Kelly, Anthony E; De Jesus, Joel; Garcia, Thor A; Tamargo, Maria C

    2015-01-01

    The rapid emergence of gallium-nitride (GaN) light-emitting diodes (LEDs) for solid-state lighting has created a timely opportunity for optical communications using visible light. One important challenge to address this opportunity is to extend the wavelength coverage of GaN LEDs without compromising their modulation properties. Here, a hybrid source for emission at 540 nm consisting of a 450 nm GaN micro-sized LED (micro-LED) with a micron-thick ZnCdSe/ZnCdMgSe multi-quantum-well color-converting membrane is reported. The membrane is liquid-capillary-bonded directly onto the sapphire window of the micro-LED for full hybridization. At an injection current of 100 mA, the color-converted power was found to be 37 μW. At this same current, the −3 dB optical modulation bandwidth of the bare GaN and hybrid micro-LEDs were 79 and 51 MHz, respectively. The intrinsic bandwidth of the color-converting membrane was found to be power-density independent over the range of the micro-LED operation at 145 MHz, which corresponds to a mean carrier lifetime of 1.9 ns. (paper)

  9. Semi-polar GaN heteroepitaxy an high index Si-surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ravash, Roghaiyeh; Blaesing, Juergen; Hempel, Thomas; Dadgar, Armin; Christen, Juergen; Krost, Alois [Otto-von-Guericke-University Magdeburg, FNW/IEP/AHE, Magdeburg (Germany)

    2011-07-01

    Due to the lack of GaN homosubstrates, the growth of GaN-based devices is usually performed on heterosubstrates as sapphire or SiC. These substrates are either insulating or expensive, and both unavailable in large diameters. Meanwhile, silicon can meet the requirements for a low price and thermally well conducting substrate and also enabling the integration of optoelectronic devices with Si-based electronics. Up to now, the good matching of hexagonal GaN with the three-fold symmetry of Si(111) greatly promotes the c-axis orientated growth of GaN on this surface plane. A large spontaneous and piezoelectric polarization oriented along the c-axis exists in such hexagonal structure leading to low efficiencies for thick quantum wells. The attention to the growth of non-polar or semi-polar GaN based epitaxial structures has been increased recently because of reducing the effect of the polarization fields in these growth directions. Therefore we studied semi-polar GaN epilayers grown by metalorganic vapor phase epitaxy on silicon substrates with different orientations from Si(211) to Si(711). We observed that AlN seeding layer growth time play a significant role in obtaining the different GaN texture.

  10. Positron annihilation study of Pd contacts on impurity-doped GaN

    International Nuclear Information System (INIS)

    Lee, Jong-Lam; Kim, Jong Kyu; Weber, Marc H.; Lynn, Kelvin G.

    2001-01-01

    Pd contacts on both n-type and p-type GaN were studied using positron annihilation spectroscopy, and the results were used to interpret the role of Ga vacancies on the band bending below the contacts. The concentration of Ga vacancy in Si-doped GaN was higher than that in the Mg-doped one. In Si-doped GaN, implanted positrons were annihilated at the nearer surface region and the interface of Pd/n-type GaN was detected by positrons clearly shifted toward the surface of Pd. This suggests that Ga vacancies could act as an interface state, pinning the Fermi level at the interface of Pd with GaN, leading to the production of a negative electric field below the interface. [copyright] 2001 American Institute of Physics

  11. Electrical properties of sputtered-indium tin oxide film contacts on n-type GaN

    International Nuclear Information System (INIS)

    Hwang, J. D.; Lin, C. C.; Chen, W. L.

    2006-01-01

    A transparent indium tin oxide (ITO) Ohmic contact on n-type gallium nitride (GaN) (dopant concentration of 2x10 17 cm -3 ) having a specific contact resistance of 4.2x10 -6 Ω cm 2 was obtained. In this study, ITO film deposition method was implemented by sputtering. We found that the barrier height, 0.68 eV, between ITO and n-type GaN is the same for both evaporated- and sputtered-ITO films. However, the 0.68 eV in barrier height renders the evaporated-ITO/n-GaN Schottky contact. This behavior is different from that of our sputtered-ITO/n-GaN, i.e., Ohmic contact. During sputtering, oxygen atoms on the GaN surface were significantly removed, thereby resulting in an improvement in contact resistance. Moreover, a large number of nitrogen (N) vacancies, caused by sputtering, were produced near the GaN surface. These N vacancies acted as donors for electrons, thus affecting a heavily doped n-type formed at the subsurface below the sputtered ITO/n-GaN. Both oxygen removal and heavy doping near the GaN surface, caused by N vacancies, in turn led to a reduction in contact resistivity as a result of electrons tunneling across the depletion layer from the ITO to the n-type GaN. All explanations are given by Auger analysis and x-ray photoelectron spectroscopy

  12. Thermodynamic analysis of Mg-doped p-type GaN semiconductor

    International Nuclear Information System (INIS)

    Li Jingbo; Liang Jingkui; Rao Guanghui; Zhang Yi; Liu Guangyao; Chen Jingran; Liu Quanlin; Zhang Weijing

    2006-01-01

    A thermodynamic modeling of Mg-doped p-type GaN was carried out to describe the thermodynamic behaviors of native defects, dopants (Mg and H) and carriers in GaN. The formation energies of charged component compounds in a four-sublattice model were defined as functions of the Fermi-level based on the results of the first-principles calculations and adjusted to fit experimental data. The effect of the solubility of Mg on the low doping efficiency of Mg in GaN and the role of H in the Mg-doping MOCVD process were discussed. The modeling provides a thermodynamic approach to understand the doping process of GaN semiconductors

  13. Control of residual carbon concentration in GaN high electron mobility transistor and realization of high-resistance GaN grown by metal-organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    He, X.G. [State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083 (China); Zhao, D.G., E-mail: dgzhao@red.semi.ac.cn [State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083 (China); Jiang, D.S.; Liu, Z.S.; Chen, P.; Le, L.C.; Yang, J.; Li, X.J. [State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083 (China); Zhang, S.M.; Zhu, J.J.; Wang, H.; Yang, H. [Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215125 (China)

    2014-08-01

    GaN films were grown by metal-organic chemical vapor deposition (MOCVD) under various growth conditions. The influences of MOCVD growth parameters, i.e., growth pressure, ammonia (NH{sub 3}) flux, growth temperature, trimethyl-gallium flux and H{sub 2} flux, on residual carbon concentration ([C]) were systematically investigated. Secondary ion mass spectroscopy measurements show that [C] can be effectively modulated by growth conditions. Especially, it can increase by reducing growth pressure up to two orders of magnitude. High-resistance (HR) GaN epilayer with a resistivity over 1.0 × 10{sup 9} Ω·cm is achieved by reducing growth pressure. The mechanism of the formation of HR GaN epilayer is discussed. An Al{sub x}Ga{sub 1−x}N/GaN high electron mobility transistor structure with a HR GaN buffer layer and an additional low-carbon GaN channel layer is presented, exhibiting a high two dimensional electron gas mobility of 1815 cm{sup 2}/Vs. - Highlights: • Influence of MOCVD parameters on residual carbon concentration in GaN is studied. • GaN layer with a resistivity over 1 × 10{sup 9} Ω·cm is achieved by reducing growth pressure. • High electron mobility transistor (HEMT) structures were prepared. • Control of residual carbon content results in HEMT with high 2-D electron gas mobility.

  14. Preparation of freestanding GaN wafer by hydride vapor phase epitaxy on porous silicon

    Science.gov (United States)

    Wu, Xian; Li, Peng; Liang, Renrong; Xiao, Lei; Xu, Jun; Wang, Jing

    2018-05-01

    A freestanding GaN wafer was prepared on porous Si (111) substrate using hydride vapor phase epitaxy (HVPE). To avoid undesirable effects of the porous surface on the crystallinity of the GaN, a GaN seed layer was first grown on the Si (111) bare wafer. A pattern with many apertures was fabricated in the GaN seed layer using lithography and etching processes. A porous layer was formed in the Si substrate immediately adjacent to the GaN seed layer by an anodic etching process. A 500-μm-thick GaN film was then grown on the patterned GaN seed layer using HVPE. The GaN film was separated from the Si substrate through the formation of cracks in the porous layer caused by thermal mismatch stress during the cooling stage of the HVPE. Finally, the GaN film was polished to obtain a freestanding GaN wafer.

  15. Botulinum toxin detection using AlGaN /GaN high electron mobility transistors

    Science.gov (United States)

    Wang, Yu-Lin; Chu, B. H.; Chen, K. H.; Chang, C. Y.; Lele, T. P.; Tseng, Y.; Pearton, S. J.; Ramage, J.; Hooten, D.; Dabiran, A.; Chow, P. P.; Ren, F.

    2008-12-01

    Antibody-functionalized, Au-gated AlGaN /GaN high electron mobility transistors (HEMTs) were used to detect botulinum toxin. The antibody was anchored to the gate area through immobilized thioglycolic acid. The AlGaN /GaN HEMT drain-source current showed a rapid response of less than 5s when the target toxin in a buffer was added to the antibody-immobilized surface. We could detect a range of concentrations from 1to10ng/ml. These results clearly demonstrate the promise of field-deployable electronic biological sensors based on AlGaN /GaN HEMTs for botulinum toxin detection.

  16. Infrared Reflectance Analysis of Epitaxial n-Type Doped GaN Layers Grown on Sapphire.

    Science.gov (United States)

    Tsykaniuk, Bogdan I; Nikolenko, Andrii S; Strelchuk, Viktor V; Naseka, Viktor M; Mazur, Yuriy I; Ware, Morgan E; DeCuir, Eric A; Sadovyi, Bogdan; Weyher, Jan L; Jakiela, Rafal; Salamo, Gregory J; Belyaev, Alexander E

    2017-12-01

    Infrared (IR) reflectance spectroscopy is applied to study Si-doped multilayer n + /n 0 /n + -GaN structure grown on GaN buffer with GaN-template/sapphire substrate. Analysis of the investigated structure by photo-etching, SEM, and SIMS methods showed the existence of the additional layer with the drastic difference in Si and O doping levels and located between the epitaxial GaN buffer and template. Simulation of the experimental reflectivity spectra was performed in a wide frequency range. It is shown that the modeling of IR reflectance spectrum using 2 × 2 transfer matrix method and including into analysis the additional layer make it possible to obtain the best fitting of the experimental spectrum, which follows in the evaluation of GaN layer thicknesses which are in good agreement with the SEM and SIMS data. Spectral dependence of plasmon-LO-phonon coupled modes for each GaN layer is obtained from the spectral dependence of dielectric of Si doping impurity, which is attributed to compensation effects by the acceptor states.

  17. Highly c-axis oriented growth of GaN film on sapphire (0001 by laser molecular beam epitaxy using HVPE grown GaN bulk target

    Directory of Open Access Journals (Sweden)

    S. S. Kushvaha

    2013-09-01

    Full Text Available Growth temperature dependant surface morphology and crystalline properties of the epitaxial GaN layers grown on pre-nitridated sapphire (0001 substrates by laser molecular beam epitaxy (LMBE were investigated in the range of 500–750 °C. The grown GaN films were characterized using high resolution x-ray diffraction, atomic force microscopy (AFM, micro-Raman spectroscopy, and secondary ion mass spectroscopy (SIMS. The x-ray rocking curve full width at a half maximum (FWHM value for (0002 reflection dramatically decreased from 1582 arc sec to 153 arc sec when the growth temperature was increased from 500 °C to 600 °C and the value further decreased with increase of growth temperature up to 720 °C. A highly c-axis oriented GaN epitaxial film was obtained at 720 °C with a (0002 plane rocking curve FWHM value as low as 102 arc sec. From AFM studies, it is observed that the GaN grain size also increased with increasing growth temperature and flat, large lateral grains of size 200-300 nm was obtained for the film grown at 720 °C. The micro-Raman spectroscopy studies also exhibited the high-quality wurtzite nature of GaN film grown on sapphire at 720 °C. The SIMS measurements revealed a non-traceable amount of background oxygen impurity in the grown GaN films. The results show that the growth temperature strongly influences the surface morphology and crystalline quality of the epitaxial GaN films on sapphire grown by LMBE.

  18. GaN and LED structures grown on pre-patterned silicon pillar arrays

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shunfeng; Fuendling, Soenke; Soekmen, Uensal; Merzsch, Stephan; Neumann, Richard; Peiner, Erwin; Wehmann, Hergo-Heinrich; Waag, Andreas [Institut fuer Halbleitertechnik, TU Braunschweig, Hans-Sommer-Strasse 66, 38106 Braunschweig (Germany); Hinze, Peter; Weimann, Thomas [Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig (Germany); Jahn, Uwe; Trampert, Achim; Riechert, Henning [Paul-Drude-Institut fuer Festkoerperelektronik, Hausvoigteiplatz 5-7, 10117 Berlin (Germany)

    2010-01-15

    GaN nanorods (or nanowires) have attracted great interest in a variety of applications, e.g. high-efficiency light emitting diodes, monolithic white light emission and optical interconnection due to their superior properties. In contrast to the mostly investigated self-assembled growth of GaN nanorods, we performed GaN nanorod growth by pre-patterning of the Si substrates. The pattern was transferred to Si substrates by photolithography and cryo-temperature inductively-coupled plasma etching. These Si templates then were used for further GaN nanorod growth by metal-organic vapour phase epitaxy (MOVPE). The low temperature AlN nucleation layer had to be optimized since it differs from its 2D layer counterpart on the surface area and orientations. We found a strong influence of diffusion processes, i.e. the GaN grown on top of the Si nanopillars can deplete the GaN around the Si pillars. Transmission electron microscopy measurements demonstrated clearly that the threading dislocations bend to the side facets of the pyramidal GaN nanostructures and terminate. Cathodoluminescence measurements reveal a difference of In composition and/or thickness of InGaN quantum wells on the different facets of the pyramidal GaN nanostructures. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. High-electron-mobility GaN grown on free-standing GaN templates by ammonia-based molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Kyle, Erin C. H., E-mail: erinkyle@umail.ucsb.edu; Kaun, Stephen W.; Burke, Peter G.; Wu, Feng; Speck, James S. [Materials Department, University of California, Santa Barbara, California 93106 (United States); Wu, Yuh-Renn [Institute of Photonics and Optoelectronics, and Department of Electrical Engineering, National Taiwan University, Taipei City 10617, Taiwan (China)

    2014-05-21

    The dependence of electron mobility on growth conditions and threading dislocation density (TDD) was studied for n{sup −}-GaN layers grown by ammonia-based molecular beam epitaxy. Electron mobility was found to strongly depend on TDD, growth temperature, and Si-doping concentration. Temperature-dependent Hall data were fit to established transport and charge-balance equations. Dislocation scattering was analyzed over a wide range of TDDs (∼2 × 10{sup 6} cm{sup −2} to ∼2 × 10{sup 10} cm{sup −2}) on GaN films grown under similar conditions. A correlation between TDD and fitted acceptor states was observed, corresponding to an acceptor state for almost every c lattice translation along each threading dislocation. Optimized GaN growth on free-standing GaN templates with a low TDD (∼2 × 10{sup 6} cm{sup −2}) resulted in electron mobilities of 1265 cm{sup 2}/Vs at 296 K and 3327 cm{sup 2}/Vs at 113 K.

  20. GaN Bulk Growth and Epitaxy from Ca-Ga-N Solutions, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR proposal addresses the liquid phase epitaxy (LPE) of gallium nitride (GaN) films using nitrogen-enriched metal solutions. Growth of GaN from solutions...

  1. A Frontal Attack on Limiting Defects in GaN

    National Research Council Canada - National Science Library

    Morkoc, Hadis

    2002-01-01

    GaN community, particularly under the leadership of Drs. Wood, Win, and Litton, recognized that it is imperative that the extended, and point defects in GaN and related materials, and the mechanisms for their formation are understood...

  2. Conductivity based on selective etch for GaN devices and applications thereof

    Science.gov (United States)

    Zhang, Yu; Sun, Qian; Han, Jung

    2015-12-08

    This invention relates to methods of generating NP gallium nitride (GaN) across large areas (>1 cm.sup.2) with controlled pore diameters, pore density, and porosity. Also disclosed are methods of generating novel optoelectronic devices based on porous GaN. Additionally a layer transfer scheme to separate and create free-standing crystalline GaN thin layers is disclosed that enables a new device manufacturing paradigm involving substrate recycling. Other disclosed embodiments of this invention relate to fabrication of GaN based nanocrystals and the use of NP GaN electrodes for electrolysis, water splitting, or photosynthetic process applications.

  3. Synthesis and Raman scattering of GaN nanorings, nanoribbons and nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Li, Z.J. [Academia Sinica, Beijing, BJ (China). Inst. of Physics; Northwestern Polytechnical Univ., Xian, SN (China). Dept. of Materials Science and Engineering; Chen, X.L.; Tu, Q.Y.; Yang, Z.; Xu, Y.P.; Hu, B.Q. [Academia Sinica, Beijing, BJ (China). Inst. of Physics; Li, H.J. [Northwestern Polytechnical Univ., Xian, SN (China). Dept. of Materials Science and Engineering

    2001-05-01

    Low-dimensional GaN materials, including nanorings, nanoribbons and smooth nanowires have been synthesized by reacting gallium and ammonia using Ag particles as a catalyst on the substrate of MgO single crystals. They were characterized by field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). EDX, XRD indicated that the low-dimensional nanomaterials were wurtzite GaN. New features are found in Raman scatterings for these low-dimensional GaN materials, which are different from the previous observations of GaN materials. (orig.)

  4. A new system for sodium flux growth of bulk GaN. Part I: System development

    Science.gov (United States)

    Von Dollen, Paul; Pimputkar, Siddha; Alreesh, Mohammed Abo; Albrithen, Hamad; Suihkonen, Sami; Nakamura, Shuji; Speck, James S.

    2016-12-01

    Though several methods exist to produce bulk crystals of gallium nitride (GaN), none have been commercialized on a large scale. The sodium flux method, which involves precipitation of GaN from a sodium-gallium melt supersaturated with nitrogen, offers potentially lower cost production due to relatively mild process conditions while maintaining high crystal quality. We successfully developed a novel apparatus for conducting crystal growth of bulk GaN using the sodium flux method which has advantages with respect to prior reports. A key task was to prevent sodium loss or migration from the growth environment while permitting N2 to access the growing crystal. We accomplished this by implementing a reflux condensing stem along with a reusable capsule containing a hermetic seal. The reflux condensing stem also enabled direct monitoring of the melt temperature, which has not been previously reported for the sodium flux method. Furthermore, we identified and utilized molybdenum and the molybdenum alloy TZM as a material capable of directly containing the corrosive sodium-gallium melt. This allowed implementation of a crucible-free system, which may improve process control and potentially lower crystal impurity levels. Nucleation and growth of parasitic GaN ("PolyGaN") on non-seed surfaces occurred in early designs. However, the addition of carbon in later designs suppressed PolyGaN formation and allowed growth of single crystal GaN. Growth rates for the (0001) Ga face (+c-plane) were up to 14 μm/h while X-ray omega rocking (ω-XRC) curve full width half-max values were 731″ for crystals grown using a later system design. Oxygen levels were high, >1019 atoms/cm3, possibly due to reactor cleaning and handling procedures.

  5. Buffer free MOCVD growth of GaN on 4H-SiC: Effect of substrate treatments and UV-photoirradiation

    Energy Technology Data Exchange (ETDEWEB)

    Losurdo, Maria; Giangregorio, Maria M.; Bruno, Giovanni [Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR and INSTM UdR Bari, via Orabona, 4, 70126 Bari (Italy); Kim, Tong-Ho; Choi, Soojeong; Brown, April [Department of Electrical and Computer Engineering, Duke University, Durham, NC 27709 (United States)

    2006-05-15

    GaN has been grown directly on the Si-face 4H-SiC(0001) substrates using remote plasma-assisted metalorganic chemical vapour deposition (RP-MOCVD) with UV-light irradiation. The effects of substrate pre-treatments and UV-photoirradiation of the growth surface on GaN nucleation and film morphology are investigated. Optical data from spectroscopic ellipsometry measurements and morphological data show an improvement in nucleation and material quality with UV-light irradiation. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Scanning tunneling microscopy and spectroscopy on GaN and InGaN surfaces; Rastertunnelmikroskopie und -spektroskopie an GaN- und InGaN-Oberflaechen

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, David

    2009-12-02

    Optelectronic devices based on gallium nitride (GaN) and indium gallium nitride (InGaN) are in the focus of research since more than 20 years and still have great potential for optical applications. In the first part of this work non-polar surfaces of GaN are investigated by scanning electron microscopy (SEM), atomic force microscopy (AFM) and scanning tunneling microscopy (STM). In SEM and AFM, the (1 anti 100)- and especially the (anti 2110)-plane are quite corrugated. For the first time, the (anti 2110)-plane of GaN is atomically resolved in STM. In the second part InGaN quantum dot layers are investigated by X-ray photoelectron spectroscopy (XPS), scanning tunneling spectroscopy (STS) and STM. The STMmeasurements show the dependency of surface morphology on growth conditions in the metalorganic vapour phase epitaxy (MOVPE). Nucleation, a new MOVPE-strategy, is based on phase separations on surfaces. It is shown that locally varying density of states and bandgaps can be detected by STS, that means bandgap histograms and 2D-bandgap-mapping. (orig.)

  7. Effect of annealing on metastable shallow acceptors in Mg-doped GaN layers grown on GaN substrates

    OpenAIRE

    Pozina, Galia; Hemmingsson, Carl; Paskov, Plamen P.; Bergman, Peder; Monemar, Bo; Kawashima, T.; Amano, H.; Akasaki, I.; Usui, A.

    2008-01-01

    Mg-doped GaN layers grown by metal-organic vapor phase epitaxy on GaN substrates produced by the halide vapor phase technique demonstrate metastability of the near-band-gap photoluminescence (PL). The acceptor bound exciton (ABE) line possibly related to the C acceptor vanishes in as-grown samples within a few minutes under UV laser illumination. Annealing activates the more stable Mg acceptors and passivates C acceptors. Consequently, only the ABE line related to Mg is dominant in PL spectra...

  8. Axial p-n junction and space charge limited current in single GaN nanowire

    Science.gov (United States)

    Fang, Zhihua; Donatini, Fabrice; Daudin, Bruno; Pernot, Julien

    2018-01-01

    The electrical characterizations of individual basic GaN nanostructures, such as axial nanowire (NW) p-n junctions, are becoming indispensable and crucial for the fully controlled realization of GaN NW based devices. In this study, electron beam induced current (EBIC) measurements were performed on two single axial GaN p-n junction NWs grown by plasma-assisted molecular beam epitaxy. I-V characteristics revealed that both ohmic and space charge limited current (SCLC) regimes occur in GaN p-n junction NW. Thanks to an improved contact process, both the electric field induced by the p-n junction and the SCLC in the p-part of GaN NW were disclosed and delineated by EBIC signals under different biases. Analyzing the EBIC profiles in the vicinity of the p-n junction under 0 V and reverse bias, we deduced a depletion width in the range of 116-125 nm. Following our previous work, the acceptor N a doping level was estimated to be 2-3 × 1017 at cm-3 assuming a donor level N d of 2-3 × 1018 at cm-3. The hole diffusion length in n-GaN was determined to be 75 nm for NW #1 and 43 nm for NW #2, demonstrating a low surface recombination velocity at the m-plane facet of n-GaN NW. Under forward bias, EBIC imaging visualized the electric field induced by the SCLC close to p-side contact, in agreement with unusual SCLC previously reported in GaN NWs.

  9. Axial p-n junction and space charge limited current in single GaN nanowire.

    Science.gov (United States)

    Fang, Zhihua; Donatini, Fabrice; Daudin, Bruno; Pernot, Julien

    2018-01-05

    The electrical characterizations of individual basic GaN nanostructures, such as axial nanowire (NW) p-n junctions, are becoming indispensable and crucial for the fully controlled realization of GaN NW based devices. In this study, electron beam induced current (EBIC) measurements were performed on two single axial GaN p-n junction NWs grown by plasma-assisted molecular beam epitaxy. I-V characteristics revealed that both ohmic and space charge limited current (SCLC) regimes occur in GaN p-n junction NW. Thanks to an improved contact process, both the electric field induced by the p-n junction and the SCLC in the p-part of GaN NW were disclosed and delineated by EBIC signals under different biases. Analyzing the EBIC profiles in the vicinity of the p-n junction under 0 V and reverse bias, we deduced a depletion width in the range of 116-125 nm. Following our previous work, the acceptor N a doping level was estimated to be 2-3 × 10 17 at cm -3 assuming a donor level N d of 2-3 × 10 18 at cm -3 . The hole diffusion length in n-GaN was determined to be 75 nm for NW #1 and 43 nm for NW #2, demonstrating a low surface recombination velocity at the m-plane facet of n-GaN NW. Under forward bias, EBIC imaging visualized the electric field induced by the SCLC close to p-side contact, in agreement with unusual SCLC previously reported in GaN NWs.

  10. Thermal quenching of the yellow luminescence in GaN

    Science.gov (United States)

    Reshchikov, M. A.; Albarakati, N. M.; Monavarian, M.; Avrutin, V.; Morkoç, H.

    2018-04-01

    We observed varying thermal quenching behavior of the yellow luminescence band near 2.2 eV in different GaN samples. In spite of the different behavior, the yellow band in all the samples is caused by the same defect—the YL1 center. In conductive n-type GaN, the YL1 band quenches with exponential law, and the Arrhenius plot reveals an ionization energy of ˜0.9 eV for the YL1 center. In semi-insulating GaN, an abrupt and tunable quenching of the YL1 band is observed, where the apparent activation energy in the Arrhenius plot is not related to the ionization energy of the defect. In this case, the ionization energy can be found by analyzing the shift of the characteristic temperature of PL quenching with excitation intensity. We conclude that only one defect, namely, the YL1 center, is responsible for the yellow band in undoped and doped GaN samples grown by different techniques.

  11. X-ray absorption and emission study of amorphous and nanocrystalline GaN films containing buried N2

    International Nuclear Information System (INIS)

    Ruck, B.J.; Koo, A.; Budde, F.; Granville, S.; Trodahl, H.J.

    2004-01-01

    Full text: It has been predicted that amorphous gallium nitride (a-GaN) may possess a well-defined wide band gap, and is thus a potential substitute for the more expensive crystalline form used in short wavelength optoelectronic devices. Experimental investigations of disordered GaN have lent support to this prediction, but the picture is complicated because the properties of the amorphous state are not unique, and instead depend on the exact nature of the disordered structure. We have pioneered a novel ion-assisted growth technique that produces GaN films with a microstructure that ranges from nanocrystalline, with crystallite size of order 3 nm, to fully amorphous, depending on the exact growth conditions. This presentation will give an overview of our research into the properties of disordered GaN, including characterization of the physical structure of the films and their electronic energy levels, and also their photoconductive response. In particular I will focus on synchrotron radiation studies of samples with a range of different microstructures. X-ray absorption spectroscopy (XAS) and x-ray emission spectroscopy (XES) provide particularly powerful tools for examining a sample's empty and filled electronic energy levels, respectively. The details of the absorption and emission processes make it possible to obtain atom-specific information and to investigate the symmetry of the electronic levels. An example of the information obtained is shown. The thin solid curve shows XAS data, which is a measure of the nitrogen /7-projected density of unfilled electronic states in this nanocrystalline GaN sample. The thick solid curve shows XES data from the same sample, which provides complementary information about the occupied valence band states. Although the spectral features are broader in fully amorphous films than in nanocrystalline samples, a well-defined band gap exists in both cases with magnitude similar to that of crystalline GaN. There are additional feature

  12. Radiotracer Spectroscopy on Group II Acceptors in GaN

    CERN Multimedia

    2002-01-01

    The semiconductor GaN is already used for the production of high power light emitting diodes in the blue and UV spectral range. But the $\\rho$-type doping, which is usually obtained by Mg doping, is still inefficient due to compensation and passivation effects caused by defects present in the material. It is theoretically predicted, that Be is a more promising candidate for $\\rho$-doping with a lower ionization energy of 60meV. It is our goal to investigate the electrical and optical properties of Be- and Mg-related defects in GaN to clarify the problem of compensation and passivation. The used methods are standard spectroscopic methods in semiconductor physics which are improved by using radioactive isotopes. The radioactive decay of $^{7}$Be and $^{28}$Mg is used to clearly correlate different signals with Be or Mg related defects. We intend to use the spectroscopic techniques Deep Level Transient Spectroscopy (DLTS), Thermal Admittance Spectroscopy (TAS), photoluminescence (PL) and additionally Hall-effect...

  13. Red shift of near band edge emission in cerium implanted GaN

    International Nuclear Information System (INIS)

    Majid, Abdul; Ali, Akbar

    2009-01-01

    Rare earth (RE) doping in GaN is a promising technology to control the optical properties. However, there are no reports on doping of cerium (Ce) into GaN, which is a very unique RE element. In this paper, we performed photoluminescence (PL) and optical transmission measurements on Ce-doped GaN for the first time. A significant red shift of about 120 meV was observed in the PL peak position of the donor bound excitons. This red shift of near band emission was corroborated by the red shift of the absorption edge related to GaN in the optical transmission measurements. This observation is attributed to the band gap narrowing in GaN heavily doped with Ce. The activation energy of the Ce-related shallow donor is found to be 21.9 meV in GaN.

  14. Red shift of near band edge emission in cerium implanted GaN

    Energy Technology Data Exchange (ETDEWEB)

    Majid, Abdul; Ali, Akbar, E-mail: abdulmajid40@yahoo.co, E-mail: akbar@qau.edu.p [Advance Materials Physics Laboratory, Physics Department, Quaid-i-Azam University, Islamabad (Pakistan)

    2009-02-21

    Rare earth (RE) doping in GaN is a promising technology to control the optical properties. However, there are no reports on doping of cerium (Ce) into GaN, which is a very unique RE element. In this paper, we performed photoluminescence (PL) and optical transmission measurements on Ce-doped GaN for the first time. A significant red shift of about 120 meV was observed in the PL peak position of the donor bound excitons. This red shift of near band emission was corroborated by the red shift of the absorption edge related to GaN in the optical transmission measurements. This observation is attributed to the band gap narrowing in GaN heavily doped with Ce. The activation energy of the Ce-related shallow donor is found to be 21.9 meV in GaN.

  15. Kinetic-limited etching of magnesium doping nitrogen polar GaN in potassium hydroxide solution

    International Nuclear Information System (INIS)

    Jiang, Junyan; Zhang, Yuantao; Chi, Chen; Yang, Fan; Li, Pengchong; Zhao, Degang; Zhang, Baolin; Du, Guotong

    2016-01-01

    Graphical abstract: - Highlights: • Effects of Mg doping on wet etching of N-polar GaN are illustrated and analysed. • Etching process model of Mg-doped N-polar GaN in KOH solution is purposed. • It is found that Mg doping can induce tensile strain in N-polar GaN film. • N-polar p-GaN film with a hole concentration of 2.4 × 10"1"7 cm"−"3 is obtained. - Abstract: KOH based wet etchings were performed on both undoped and Mg-doped N-polar GaN films grown by metal-organic chemical vapor deposition. It is found that the etching rate for Mg-doped N-polar GaN gets slow obviously compared with undoped N-polar GaN. X-ray photoelectron spectroscopy analysis proved that Mg oxide formed on N-polar GaN surface is insoluble in KOH solution so that kinetic-limited etching occurs as the etching process goes on. The etching process model of Mg-doped N-polar GaN in KOH solution is tentatively purposed using a simplified ideal atomic configuration. Raman spectroscopy analysis reveals that Mg doping can induce tensile strain in N-polar GaN films. Meanwhile, p-type N-polar GaN film with a hole concentration of 2.4 × 10"1"7 cm"−"3 was obtained by optimizing bis-cyclopentadienyl magnesium flow rates.

  16. Kinetic-limited etching of magnesium doping nitrogen polar GaN in potassium hydroxide solution

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Junyan; Zhang, Yuantao; Chi, Chen; Yang, Fan; Li, Pengchong [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Qianjin Street 2699, Changchun 130012 (China); Zhao, Degang [State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Science, PO Box 912, Beijing 100083 (China); Zhang, Baolin; Du, Guotong [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Qianjin Street 2699, Changchun 130012 (China)

    2016-01-01

    Graphical abstract: - Highlights: • Effects of Mg doping on wet etching of N-polar GaN are illustrated and analysed. • Etching process model of Mg-doped N-polar GaN in KOH solution is purposed. • It is found that Mg doping can induce tensile strain in N-polar GaN film. • N-polar p-GaN film with a hole concentration of 2.4 × 10{sup 17} cm{sup −3} is obtained. - Abstract: KOH based wet etchings were performed on both undoped and Mg-doped N-polar GaN films grown by metal-organic chemical vapor deposition. It is found that the etching rate for Mg-doped N-polar GaN gets slow obviously compared with undoped N-polar GaN. X-ray photoelectron spectroscopy analysis proved that Mg oxide formed on N-polar GaN surface is insoluble in KOH solution so that kinetic-limited etching occurs as the etching process goes on. The etching process model of Mg-doped N-polar GaN in KOH solution is tentatively purposed using a simplified ideal atomic configuration. Raman spectroscopy analysis reveals that Mg doping can induce tensile strain in N-polar GaN films. Meanwhile, p-type N-polar GaN film with a hole concentration of 2.4 × 10{sup 17} cm{sup −3} was obtained by optimizing bis-cyclopentadienyl magnesium flow rates.

  17. Evaluation of threading dislocation densities in In- and N-face InN

    International Nuclear Information System (INIS)

    Gallinat, C. S.; Koblmueller, G.; Wu, Feng; Speck, J. S.

    2010-01-01

    The threading dislocation (TD) structure and density has been studied in In- and N-face InN films grown on GaN by plasma-assisted molecular beam epitaxy. The TD densities were determined by nondestructive x-ray diffraction rocking curve measurements in on-axis symmetric and off-axis skew symmetric geometries and calibrated by transmission electron microscopy measurements. TD densities were dominated by edge-type TDs with screw-component TDs accounting for less than 10% of the total TD density. A significant decrease in edge-type TD density was observed for In-face InN films grown at increasingly higher substrate temperatures. In-face InN films grown with excess In exhibited lower TD densities compared to films grown under N-rich conditions. The edge-type TD density of N-face InN films was independent of substrate temperature due to the higher allowable growth temperatures for N-face InN compared to In-face InN. TD densities in In-face InN also showed a strong dependence on film thickness. Films grown at a thickness of less than 1 μm had higher TD densities compared with films grown thicker than 1 μm. The lowest measured TD density for an In-face InN film was ∼1.5x10 10 /cm 2 for 1 μm thick films.

  18. Ultra-low leakage and high breakdown Schottky diodes fabricated on free-standing GaN substrate

    International Nuclear Information System (INIS)

    Wang, Yaqi; Alur, Siddharth; Sharma, Yogesh; Tong, Fei; Thapa, Resham; Gartland, Patrick; Issacs-Smith, Tamara; Ahyi, Claude; Williams, John; Park, Minseo; Johnson, Mark; Paskova, Tanya; Preble, Edward A; Evans, Keith R

    2011-01-01

    Vertical Schottky diodes were fabricated on the bulk GaN substrate with decreasing impurity concentration from N-face to Ga-face. An array of circular Pt Schottky contacts and a full backside Ti/Al/Ni/Au ohmic contact were prepared on the Ga-face and the N-face of the n-GaN substrate, respectively. The Schottky diode exhibits a minimum specific on-state resistance of 1.3 mΩ cm 2 and a maximum breakdown voltage of 600 V, resulting in a figure-of- merit of 275 MW cm −2 . An ultra-low reverse leakage current density of 3.7 × 10 −4 A cm −2 at reverse bias of 400 V was observed. Temperature-dependent I–V measurements were also carried out to study the forward and reverse transportation mechanisms. (fast track communication)

  19. The impact of SiC substrate treatment on the heteroepitaxial growth of GaN by plasma assisted MBE

    Energy Technology Data Exchange (ETDEWEB)

    Brown, A.S.; Kim, T.H.; Choi, S.; Morse, M.; Wu, P. [Department of Electrical and Computer Engineering, Duke University, Durham, NC 27709 (United States); Losurdo, M.; Giangregorio, M.M.; Capezzuto, P.; Bruno, G. [Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR, and INSTM via Orabona 4 -70126, Bari (Italy)

    2005-11-01

    We report on the impact of the preparation of the Si-face 4H-SiC(0001){sub Si} substrate using a Ga flash-off process on the epitaxial growth of GaN by plasma-assisted molecular beam epitaxy. The nucleation, as well as the resultant structural and morphological properties of GaN grown directly on 4H-SiC(0001){sub Si} are strongly influenced by the chemical and morphological modifications of the SiC surface induced by the Ga flash-off process. Herein we describe the impact of the specific concentration of Ga incident on the surface (quantified in terms of monolayer (ML) coverage): of 0.5 ML, 1ML and 2ML. The residual oxygen at the SiC surface, unintentional SiC nitridation and the formation of cubic GaN grains during the initial nucleation stage, are all reduced when a 2 ML Ga flash is used. All of the above factors result in structural improvement of the GaN epitaxial layers. The correlation between the SiC surface modification, the initial nucleation stage, and the GaN epitaxial layer structural quality has been articulated using x-ray photoelectron spectroscopy, X-ray diffraction, atomic force microscopy and spectroscopic ellipsometry data. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Doping of GaN by ion implantation: Does It Work?

    International Nuclear Information System (INIS)

    Suvkhanov, A.; Wu, W.; Price, K.; Parikh, N.; Irene, E.; Hunn, J.; Thomson, D.; Davis, R.F.; Krasnobaev, L.

    1998-04-01

    Epitaxially grown GaN by metal organic chemical vapor deposition (MOCVD) on SiC were implanted with 100 keV Si + (for n-type) and 80 keV Mg + (for p-type) with various fluences from 1 x 10 12 to 7 x 10 15 ions/cm 2 at liquid nitrogen temperature (LT), room temperature (RT), and 700 C (HT). High temperature (1,200 C and 1,500 C) annealing was carried out after capping the GaN with epitaxial AlN by MOCVD to study damage recovery. Samples were capped by a layer of AlN in order to protect the GaN surface during annealing. Effects of implant temperature, damage and dopant activation are critically studied to evaluate a role of ion implantation in doping of GaN. The damage was studied by Rutherford Backscattering/Channeling, spectroscopic ellipsometry and photoluminescence. Results show dependence of radiation damage level on temperature of the substrate during implantation: implantations at elevated temperatures up to 550 C decrease the lattice disorder; hot implants above 550 C can not be useful in doping of GaN due to nitrogen loss from the surface. SE measurements have indicated very high sensitivity to the implantation damage. PL measurements at LT of 80 keV Mg + (5 x 10 14 cm 2 ) implanted and annealed GaN showed two peaks: one ∼ 100 meV and another ∼ 140 meV away from the band edge

  1. Tuning range and output power optimization of an external-cavity GaN diode laser at 455 nm

    DEFF Research Database (Denmark)

    Chi, Mingjun; Jensen, Ole Bjarlin; Petersen, Paul Michael

    2016-01-01

    In this paper we discuss how different feedback gratings affect the tuning range and the output power of external feedback diode laser systems. A tunable high-power narrow-spectrum external-cavity diode laser system around 455 nm is investigated. The laser system is based on a high-power GaN diode...... laser in a Littrow external-cavity. Both a holographic diffraction grating and a ruled diffraction grating are used as feedback elements in the external cavity. The output power, spectral bandwidth, and tunable range of the external cavity diode laser system are measured and compared with the two...... gratings at different injected currents. When the holographic grating is used, the laser system can be tuned over a range of 1.4 nm with an output power around 530 mW. When the ruled grating is used, the laser system can be tuned over a range of 6.0 nm with an output power around 80 mW. The results can...

  2. Synthesis, optical properties and residual strain effect of GaN nanowires generated via metal-assisted photochemical electroless etching

    KAUST Repository

    Najar, Adel

    2017-04-18

    Herein, we report on the studies of GaN nanowires (GaN NWs) prepared via a metal-assisted photochemical electroless etching method with Pt as the catalyst. It has been found that etching time greatly influences the growth of GaN NWs. The density and the length of nanowires increased with longer etching time, and excellent substrate coverage was observed. The average nanowire width and length are around 35 nm and 10 μm, respectively. Transmission electron microscopy (TEM) shows a single-crystalline wurtzite structure and is confirmed by X-ray measurements. The synthesis mechanism of GaN NWs using the metal-assisted photochemical electroless etching method was presented. Photoluminescence (PL) measurements of GaN NWs show red-shift PL peaks compared to the as-grown sample associated with the relaxation of compressive stress. Furthermore, a shift of the E2 peak to the lower frequency in the Raman spectra for the samples etched for a longer time confirms such a stress relaxation. Based on Raman measurements, the compressive stress σxx and the residual strain εxx were evaluated to be 0.23 GPa and 2.6 × 10−4, respectively. GaN NW synthesis using a low cost method might be used for the fabrication of power optoelectronic devices and gas sensors.

  3. Electronic and Optical Properties of Two-Dimensional GaN from First-Principles.

    Science.gov (United States)

    Sanders, Nocona; Bayerl, Dylan; Shi, Guangsha; Mengle, Kelsey A; Kioupakis, Emmanouil

    2017-12-13

    Gallium nitride (GaN) is an important commercial semiconductor for solid-state lighting applications. Atomically thin GaN, a recently synthesized two-dimensional material, is of particular interest because the extreme quantum confinement enables additional control of its light-emitting properties. We performed first-principles calculations based on density functional and many-body perturbation theory to investigate the electronic, optical, and excitonic properties of monolayer and bilayer two-dimensional (2D) GaN as a function of strain. Our results demonstrate that light emission from monolayer 2D GaN is blueshifted into the deep ultraviolet range, which is promising for sterilization and water-purification applications. Light emission from bilayer 2D GaN occurs at a similar wavelength to its bulk counterpart due to the cancellation of the effect of quantum confinement on the optical gap by the quantum-confined Stark shift. Polarized light emission at room temperature is possible via uniaxial in-plane strain, which is desirable for energy-efficient display applications. We compare the electronic and optical properties of freestanding two-dimensional GaN to atomically thin GaN wells embedded within AlN barriers in order to understand how the functional properties are influenced by the presence of barriers. Our results provide microscopic understanding of the electronic and optical characteristics of GaN at the few-layer regime.

  4. High temperature refractive indices of GaN

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.; Stepanov, S.; Gott, A.; Shields, P.A.; Zhirnov, E.; Wang, W.N. [Department of Physics, University of Bath, Bath, BA2 7AY (United Kingdom); Steimetz, E.; Zettler, J.T. [LayTec, Helmholtzstr. 13-14, 10587 Berlin (Germany)

    2006-06-15

    Undoped GaN (u-GaN) films were grown by low pressure metalorganic vapour phase epitaxy (LP-MOVPE) on sapphire substrates. In situ optical monitoring was applied to the growth process either using a LayTec EpiR-DA TT spectroscopic reflectometer or Filmetrics F30. Refractive indices of u-GaN films at 1060 C were obtained in a spectral range from 370-900 nm. A peak at 412{+-}5 nm in refractive index spectra was observed, which most likely corresponds to the band-gap of hexagonal GaN at a temperature of 1060 C. Refractive indices below this band-gap are fitted well to the first-order Sellmeier formula. As an example of the applications of the refractive indices, the effective film thicknesses of GaN during the resumption from 3 dimensional (3D) to 2 dimensional (2D) growth have been calculated from the spectra recorded by a LayTec system using the optical constants obtained. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Pt-decorated GaN nanowires with significant improvement in H2 gas-sensing performance at room temperature.

    Science.gov (United States)

    Abdullah, Q N; Yam, F K; Hassan, Z; Bououdina, M

    2015-12-15

    Superior sensitivity towards H2 gas was successfully achieved with Pt-decorated GaN nanowires (NWs) gas sensor. GaN NWs were fabricated via chemical vapor deposition (CVD) route. Morphology (field emission scanning electron microscopy and transmission electron microscopy) and crystal structure (high resolution X-ray diffraction) characterizations of the as-synthesized nanostructures demonstrated the formation of GaN NWs having a wurtzite structure, zigzaged shape and an average diameter of 30-166nm. The Pt-decorated GaN NWs sensor shows a high response of 250-2650% upon exposure to H2 gas concentration from 7 to 1000ppm respectively at room temperature (RT), and then increases to about 650-4100% when increasing the operating temperature up to 75°C. The gas-sensing measurements indicated that the Pt-decorated GaN NWs based sensor exhibited efficient detection of H2 at low concentration with excellent sensitivity, repeatability, and free hysteresis phenomena over a period of time of 100min. The large surface-to-volume ratio of GaN NWs and the catalytic activity of Pt metal are the most influential factors leading to the enhancement of H2 gas-sensing performances through the improvement of the interaction between the target molecules (H2) and the sensing NWs surface. The attractive low-cost, low power consumption and high-performance of the resultant decorated GaN NWs gas sensor assure their uppermost potential for H2 gas sensor working at low operating temperature. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. The origin of the residual conductivity of GaN films on ferroelectric materials

    Science.gov (United States)

    Lee, Kyoung-Keun; Cai, Zhuhua; Ziemer, Katherine; Doolittle, William Alan

    2009-08-01

    In this paper, the origin of the conductivity of GaN films grown on ferroelectric materials was investigated using XPS, AES, and XRD analysis tools. Depth profiles confirmed the existence of impurities in the GaN film originating from the substrates. Bonding energy analysis from XPS and AES verified that oxygen impurities from the substrates were the dominant origin of the conductivity of the GaN film. Furthermore, Ga-rich GaN films have a greater chance of enhancing diffusion of lithium oxide from the substrates, resulting in more substrate phase separation and a wider inter-mixed region confirmed by XRD. Therefore, the direct GaN film growth on ferroelectric materials causes impurity diffusion from the substrates, resulting in highly conductive GaN films. Future work needs to develop non-conductive buffer layers for impurity suppression in order to obtain highly resistive GaN films.

  7. Mn doped GaN thin films and nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Šofer, Z.; Sedmidubský, D.; Huber, Š.; Hejtmánek, Jiří; Macková, Anna; Fiala, R.

    2012-01-01

    Roč. 9, 8-9 (2012), s. 809-824 ISSN 1475-7435 R&D Projects: GA ČR GA104/09/0621 Institutional research plan: CEZ:AV0Z10100521; CEZ:AV0Z10480505 Keywords : GaN nanoparticles * GaN thin films * manganese * transition metals * MOVPE * ion implantations Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.087, year: 2012

  8. Photoconductive GaN UV Detectors

    National Research Council Canada - National Science Library

    Baranowski, Jacek

    1999-01-01

    This report results from a contract tasking University of Warsaw as follows: The contractor will investigate the growth of GaN material using atmospheric pressure metalorganic chemical vapor deposition method (MOCVD...

  9. Infrared reflectance of GaN films grown on Si(001) substrates

    International Nuclear Information System (INIS)

    Zhang, Xiong; Hou, Yong-Tian; Feng, Zhe-Chuan; Chen, Jin-Li

    2001-01-01

    GaN thin films on Si(001) substrates are studied by infrared reflectance (IRR) spectroscopy at room temperature (RT). Variations in the IRR spectral line shape with the microstructure of GaN/Si(011) film are quantitatively explained in terms of a three-component effective medium model. In this model, the nominally undoped GaN film is considered to consist of three elementary components, i.e., single crystalline GaN grains, pores (voids), and inter-granulated materials (amorphous GaN clusters). Such a polycrystalline nature of the GaN/Si(001) films was confirmed by scanning electron microscopy measurements. It was demonstrated that based on the proposed three-component effective medium model, excellent overall simulation of the RT-IRR spectra can be achieved, and the fine structures of the GaN reststrahlen band in the measured RT-IRR spectra can also be interpreted very well. Furthermore, the volume fraction for each component in the GaN/Si(001) film was accurately determined by fitting the experimental RT-IRR spectra with the theoretical simulation. These results indicate that IRR spectroscopy can offer a sensitive and convenient tool to probe the microstructure of GaN films grown on silicon. [copyright] 2001 American Institute of Physics

  10. Structural characteristics of single crystalline GaN films grown on (111) diamond with AlN buffer

    DEFF Research Database (Denmark)

    Pécz, Béla; Tóth, Lajos; Barna, Árpád

    2013-01-01

    Hexagonal GaN films with the [0001] direction parallel to the surface normal were grown on (111) oriented single crystalline diamond substrates by plasma-assisted molecular beam epitaxy. Pre-treatments of the diamond surface with the nitrogen plasma beam, prior the nucleation of a thin AlN layer......, eliminated the inversion domains and reduced the density of threading dislocations in the GaN epilayers. The films have an in-plane epitaxial relationship [1010]GaN//[110]diamond. Thus GaN (0001) thin films of single epitaxial relationship and of single polarity were realised on diamond with AlN buffer....

  11. Thermal Annealing induced relaxation of compressive strain in porous GaN structures

    KAUST Repository

    Ben Slimane, Ahmed; Najar, Adel; Ng, Tien Khee; Ooi, Boon S.

    2012-01-01

    The effect of annealing on strain relaxation in porous GaN fabricated using electroless chemical etching is presented. The Raman shift of 1 cm-1 in phonon frequency of annealed porous GaN with respect to as-grown GaN corresponds to a relaxation

  12. Optically active centers in Eu implanted, Eu in situ doped GaN, and Eu doped GaN quantum dots

    International Nuclear Information System (INIS)

    Bodiou, L.; Braud, A.; Doualan, J.-L.; Moncorge, R.; Park, J. H.; Munasinghe, C.; Steckl, A. J.; Lorenz, K.; Alves, E.; Daudin, B.

    2009-01-01

    A comparison is presented between Eu implanted and Eu in situ doped GaN thin films showing that two predominant Eu sites are optically active around 620 nm in both types of samples with below and above bandgap excitation. One of these sites, identified as a Ga substitutional site, is common to both types of Eu doped GaN samples despite the difference in the GaN film growth method and in the doping technique. High-resolution photoluminescence (PL) spectra under resonant excitation reveal that in all samples these two host-sensitized sites are in small amount compared to the majority of Eu ions which occupy isolated Ga substitutional sites and thus cannot be excited through the GaN host. The relative concentrations of the two predominant host-sensitized Eu sites are strongly affected by the annealing temperature for Eu implanted samples and by the group III element time opening in the molecular beam epitaxy growth. Red luminescence decay characteristics for the two Eu sites reveal different excitation paths. PL dynamics under above bandgap excitation indicate that Eu ions occupying a Ga substitutional site are either excited directly into the 5 D 0 level or into higher excited levels such as 5 D 1 , while Eu ions sitting in the other site are only directly excited into the 5 D 0 level. These differences are discussed in terms of the spectral overlap between the emission band of a nearby bound exciton and the absorption bands of Eu ions. The study of Eu doped GaN quantum dots reveals the existence of only one type of Eu site under above bandgap excitation, with Eu PL dynamics features similar to Eu ions in Ga substitutional sites

  13. Kinetic-limited etching of magnesium doping nitrogen polar GaN in potassium hydroxide solution

    Science.gov (United States)

    Jiang, Junyan; Zhang, Yuantao; Chi, Chen; Yang, Fan; Li, Pengchong; Zhao, Degang; Zhang, Baolin; Du, Guotong

    2016-01-01

    KOH based wet etchings were performed on both undoped and Mg-doped N-polar GaN films grown by metal-organic chemical vapor deposition. It is found that the etching rate for Mg-doped N-polar GaN gets slow obviously compared with undoped N-polar GaN. X-ray photoelectron spectroscopy analysis proved that Mg oxide formed on N-polar GaN surface is insoluble in KOH solution so that kinetic-limited etching occurs as the etching process goes on. The etching process model of Mg-doped N-polar GaN in KOH solution is tentatively purposed using a simplified ideal atomic configuration. Raman spectroscopy analysis reveals that Mg doping can induce tensile strain in N-polar GaN films. Meanwhile, p-type N-polar GaN film with a hole concentration of 2.4 ÿ 1017 cm⿿3 was obtained by optimizing bis-cyclopentadienyl magnesium flow rates.

  14. Modification of GaN(0001) growth kinetics by Mg doping

    International Nuclear Information System (INIS)

    Monroy, E.; Andreev, T.; Holliger, P.; Bellet-Amalric, E.; Shibata, T.; Tanaka, M.; Daudin, B.

    2004-01-01

    We have studied the effect of Mg doping on the surface kinetics of GaN during growth by plasma-assisted molecular-beam epitaxy. Mg tends to segregate on the surface of GaN, inhibiting the formation of the self-regulated Ga film which is used as a surfactant for the growth of undoped and Si-doped GaN. The growth window is hence significantly reduced. Higher growth temperatures lead to an enhancement of Mg segregation and an improvement of the surface morphology

  15. Power cycling test of a 650 V discrete GaN-on-Si power device with a laminated packaging embedding technology

    DEFF Research Database (Denmark)

    Song, Sungyoung; Munk-Nielsen, Stig; Uhrenfeldt, Christian

    2017-01-01

    A GaN-on-Si power device is a strong candidate to replace power components based on silicon in high-end market for low-voltage applications, thanks to its electrical characteristics. To maximize opportunities of the GaN device in field applications, a package technology plays an important role...... in a discrete GaN power device. A few specialized package technologies having very lower stray inductance and higher thermal conductivity have been proposed for discrete GaN-on-Si power devices. Despite their superior performance, there has been little discussion of their reliability. The paper presents a power...... cycling test of a discrete GaN power device employing a laminated embedded packaging technology subjected to 125 degrees Celsius junction temperature swing. Failure modes are described with collected electrical characteristics and measured temperature data under the test. In conclusion, physical...

  16. Dry etching characteristics of GaN for blue/green light-emitting diode fabrication

    International Nuclear Information System (INIS)

    Baik, K.H.; Pearton, S.J.

    2009-01-01

    The etch rates, surface morphology and sidewall profiles of features formed in GaN/InGaN/AlGaN multiple quantum well light-emitting diodes by Cl 2 -based dry etching are reported. The chlorine provides an enhancement in etch rate of over a factor of 40 relative to the physical etching provided by Ar and the etching is reactant-limited until chlorine gas flow rates of at least 50 standard cubic centimeters per minute. Mesa sidewall profile angle control is possible using a combination of Cl 2 /Ar plasma chemistry and SiO 2 mask. N-face GaN is found to etch faster than Ga-face surfaces under the same conditions. Patterning of the sapphire substrate for improved light extraction is also possible using the same plasma chemistry

  17. Reduction of the Mg acceptor activation energy in GaN, AlN, Al0.83Ga0.17N and MgGa δ-doping (AlN)5/(GaN)1: the strain effect

    Science.gov (United States)

    Jiang, Xin-He; Shi, Jun-Jie; Zhang, Min; Zhong, Hong-Xia; Huang, Pu; Ding, Yi-Min; He, Ying-Ping; Cao, Xiong

    2015-12-01

    To resolve the p-type doping problem of Al-rich AlGaN alloys, we investigate the influence of biaxial and hydrostatic strains on the activation energy, formation energy and band gap of Mg-doped GaN, AlN, Al0.83Ga0.17N disorder alloy and (AlN)5/(GaN)1 superlattice based on first-principles calculations by combining the standard DFT and hybrid functional. We find that the Mg acceptor activation energy {{E}\\text{A}} , the formation energy {{E}\\text{f}} and the band gap {{E}\\text{g}} decrease with increasing the strain ɛ. The hydrostatic strain has a more remarkable impact on {{E}\\text{g}} and {{E}\\text{A}} than the biaxial strain. Both {{E}\\text{A}} and {{E}\\text{g}} have a linear dependence on the hydrostatic strain. For the biaxial strain, {{E}\\text{g}} shows a parabolic dependence on ɛ if \\varepsilon ≤slant 0 while it becomes linear if \\varepsilon ≥slant 0 . In GaN and (AlN)5/(GaN)1, {{E}\\text{A}} parabolically depends on the biaxial compressive strain and linearly depends on the biaxial tensible strain. However, the dependence is approximately linear over the whole biaxial strain range in AlN and Al0.83Ga0.17N. The Mg acceptor activation energy in (AlN)5/(GaN)1 can be reduced from 0.26 eV without strain to 0.16 (0.22) eV with the hydrostatic (biaxial) tensible strain 3%.

  18. Effects of Precursor-Substrate Distances on the Growth of GaN Nanowires

    Directory of Open Access Journals (Sweden)

    Hongbin Cheng

    2015-01-01

    Full Text Available GaN nanowires were synthesized through the Ni-catalyzed chemical vapor deposition (CVD method using Ga2O3/GaN mixtures as gallium sources, and precursor-substrate distances were investigated as the important factor for the growth of GaN nanowires. The microstructure, composition, and photoluminescence property were characterized by X-ray diffraction, field emission scanning electron microscopy, high-resolution transmission electron microscopy, and photoluminescence spectra. The results showed that single crystalline GaN nanowires with the diameter of about 90 nm and the length up to tens of micrometers had been grown thickly across Si (100 substrates with uniform density. Moreover, the variations of the GaN nanowire morphology, density, and size were largely attributed to substrate positions which would influence Ga precursor density in the carrier gas, the saturation degree of gaseous reactants, and the catalyst activity, respectively, in the fabrication of GaN nanowires by the vapour liquid solid mechanism.

  19. Millimeter-Wave GaN MMIC Integration with Additive Manufacturing

    Science.gov (United States)

    Coffey, Michael

    This thesis addresses the analysis, design, integration and test of microwave and millimeter-wave monolithic microwave integrated circuits (MMIC or MMICs). Recent and ongoing progress in semiconductor device fabrication and MMIC processing technology has pushed the upper limit in MMIC frequencies from millimeter-wave (30-300 GHz) to terahertz (300-3000 GHz). MMIC components operating at these frequencies will be used to improve the sensitivity and performance of radiometers, receivers for communication systems, passive remote sensing systems, transceivers for radar instruments and radio astronomy systems. However, a serious hurdle in the utilization of these MMIC components, and a main topic presented in this thesis, is the development and reliable fabrication of practical packaging techniques. The focus of this thesis is the investigation of first, the design and analysis of microwave and millimeter-wave GaN MMICs and second, the integration of those MMICs into usable waveguide components. The analysis, design and testing of various X-band (8-12 GHz) thru H-band (170-260 GHz) GaN MMIC power amplifier (PA or PAs), including a V-band (40-75 GHz) voltage controlled oscillator, is the majority of this work. Several PA designs utilizing high-efficiency techniques are analyzed, designed and tested. These examples include a 2nd harmonic injection amplifier, a Class-E amplifier fabricated with a GaN-on-SiC 300 GHz fT process, and an example of the applicability of supply-modulation with a Doherty power amplifier, all operating at 10 GHz. Two H-band GaN MMIC PAs are designed, one with integrated CPW-to-waveguide transitions for integration. The analysis of PA stability is especially important for wideband, high- fT devices and a new way of analyzing stability is explored and experimentally validated. Last, the challenges of integrating MMICs operating at millimeter-wave frequencies are discussed and assemblies using additive and traditional manufacturing are demonstrated.

  20. Influence of ammonia flow rate for improving properties of polycrystalline GaN

    Science.gov (United States)

    Ariff, A.; Ahmad, M. A.; Hassan, Z.; Zainal, N.

    2018-06-01

    Post-annealing treatment in ammonia ambient is widely accepted for GaN material, but less works have been done to investigate the influence of the ammonia (NH3) flow rate for reducing the N-deficiency as well as improving the quality of the material. In this work, we investigated the influence of NH3 flow rate at 1, 2, 3, and 4 slm in improving properties of a ∼1 μm thick polycrystalline GaN layer. Our simulation work suggested that the uniformity of temperature and pressure gradient of the NH3 gas did not lead to the reduction of N-deficiency of the polycrystalline GaN layer. Instead, it was found that the mitigation of the N-deficiency was strongly influenced by the fluid velocity of the NH3 gas, which had passed over the layer. Either at lower or higher fluid velocity, the chance for the active N atoms to incorporate into the GaN lattice structure was low. Therefore, the N-deficiency on the polycrystalline GaN layer could not be minimized under these conditions. As measured by EDX, the N atoms incorporation was the most effective when the NH3 flow rate at 3 slm, suggesting the flow rate significantly improved the N-deficiency of the polycrystalline GaN layer. Furthermore, it favored the formation of larger hexagonal faceted grains, with the smallest FWHM of XRD peaks from the GaN diffractions in (10 1 bar 0), (0002) and (10 1 bar 1) orientations, while allowing the polycrystalline GaN layer to show sharp and intense emissions peak of NBE in a PL spectrum.

  1. A new system for sodium flux growth of bulk GaN. Part II: in situ investigation of growth processes

    KAUST Repository

    Von Dollen, Paul

    2016-09-09

    We report recent results of bulk GaN crystal growth using the sodium flux method in a new crucible-free growth system. We observed a (0001) Ga face (+c-plane) growth rate >50 µm/h for growth at a N2 overpressure of ~5 MPa and 860 °C, which is the highest crystal growth rate reported for this technique to date. Omega X-ray rocking curve (ω-XRC) measurements indicated the presence of multiple grains, though full width at half maximum (FWHM) values for individual peaks were <100 arcseconds. Oxygen impurity concentrations as measured by secondary ion mass spectroscopy (SIMS) were >1020 atoms/cm3. By monitoring the nitrogen pressure decay over the course of the crystal growth, we developed an in situ method that correlates gas phase changes with precipitation of GaN from the sodium-gallium melt. Based on this analysis, the growth rate may have actually been as high as 90 µm/h, as it would suggest GaN growth ceased prior to the end of the run. We also observed gas phase behavior identified as likely characteristic of GaN polynucleation.

  2. A new system for sodium flux growth of bulk GaN. Part II: in situ investigation of growth processes

    KAUST Repository

    Von Dollen, Paul; Pimputkar, Siddha; Alreesh, Mohammed Abo; Nakamura, Shuji; Speck, James S.

    2016-01-01

    We report recent results of bulk GaN crystal growth using the sodium flux method in a new crucible-free growth system. We observed a (0001) Ga face (+c-plane) growth rate >50 µm/h for growth at a N2 overpressure of ~5 MPa and 860 °C, which is the highest crystal growth rate reported for this technique to date. Omega X-ray rocking curve (ω-XRC) measurements indicated the presence of multiple grains, though full width at half maximum (FWHM) values for individual peaks were <100 arcseconds. Oxygen impurity concentrations as measured by secondary ion mass spectroscopy (SIMS) were >1020 atoms/cm3. By monitoring the nitrogen pressure decay over the course of the crystal growth, we developed an in situ method that correlates gas phase changes with precipitation of GaN from the sodium-gallium melt. Based on this analysis, the growth rate may have actually been as high as 90 µm/h, as it would suggest GaN growth ceased prior to the end of the run. We also observed gas phase behavior identified as likely characteristic of GaN polynucleation.

  3. Enhanced thermoelectric transport in modulation-doped GaN/AlGaN core/shell nanowires

    International Nuclear Information System (INIS)

    Song, Erdong; Martinez, Julio A; Li, Qiming; Pan, Wei; Wang, George T; Swartzentruber, Brian

    2016-01-01

    The thermoelectric properties of unintentionally n-doped core GaN/AlGaN core/shell N-face nanowires are reported. We found that the temperature dependence of the electrical conductivity is consistent with thermally activated carriers with two distinctive donor energies. The Seebeck coefficient of GaN/AlGaN nanowires is more than twice as large as that for the GaN nanowires alone. However, an outer layer of GaN deposited onto the GaN/AlGaN core/shell nanowires decreases the Seebeck coefficient at room temperature, while the temperature dependence of the electrical conductivity remains the same. We attribute these observations to the formation of an electron gas channel within the heavily-doped GaN core of the GaN/AlGaN nanowires. The room-temperature thermoelectric power factor for the GaN/AlGaN nanowires can be four times higher than the GaN nanowires. Selective doping in bandgap engineered core/shell nanowires is proposed for enhancing the thermoelectric power. (paper)

  4. Nanoselective area growth of GaN by metalorganic vapor phase epitaxy on 4H-SiC using epitaxial graphene as a mask

    International Nuclear Information System (INIS)

    Puybaret, Renaud; Jordan, Matthew B.; Voss, Paul L.; Ougazzaden, Abdallah; Patriarche, Gilles; Sundaram, Suresh; El Gmili, Youssef; Salvestrini, Jean-Paul; Heer, Walt A. de; Berger, Claire

    2016-01-01

    We report the growth of high-quality triangular GaN nanomesas, 30-nm thick, on the C-face of 4H-SiC using nanoselective area growth (NSAG) with patterned epitaxial graphene grown on SiC as an embedded mask. NSAG alleviates the problems of defects in heteroepitaxy, and the high mobility graphene film could readily provide the back low-dissipative electrode in GaN-based optoelectronic devices. A 5–8 graphene-layer film is first grown on the C-face of 4H-SiC by confinement-controlled sublimation of silicon carbide. Graphene is then patterned and arrays of 75-nm-wide openings are etched in graphene revealing the SiC substrate. A 30-nm-thick GaN is subsequently grown by metal organic vapor phase epitaxy. GaN nanomesas grow epitaxially with perfect selectivity on SiC, in the openings patterned through graphene. The up-or-down orientation of the mesas on SiC, their triangular faceting, and cross-sectional scanning transmission electron microscopy show that they are biphasic. The core is a zinc blende monocrystal surrounded with single-crystal wurtzite. The GaN crystalline nanomesas have no threading dislocations or V-pits. This NSAG process potentially leads to integration of high-quality III-nitrides on the wafer scalable epitaxial graphene/silicon carbide platform.

  5. Nanoselective area growth of GaN by metalorganic vapor phase epitaxy on 4H-SiC using epitaxial graphene as a mask

    Energy Technology Data Exchange (ETDEWEB)

    Puybaret, Renaud; Jordan, Matthew B.; Voss, Paul L.; Ougazzaden, Abdallah, E-mail: aougazza@georgiatech-metz.fr [School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); CNRS UMI 2958, Georgia Institute of Technology, 2 Rue Marconi, 57070 Metz (France); Patriarche, Gilles [CNRS, Laboratoire de Photonique et de Nanostructures, Route de Nozay, 91460 Marcoussis (France); Sundaram, Suresh; El Gmili, Youssef [CNRS UMI 2958, Georgia Institute of Technology, 2 Rue Marconi, 57070 Metz (France); Salvestrini, Jean-Paul [Université de Lorraine, CentraleSupélec, LMOPS, EA4423, 57070 Metz (France); Heer, Walt A. de [School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Berger, Claire [School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); CNRS, Institut Néel, BP166, 38042 Grenoble Cedex 9 (France)

    2016-03-07

    We report the growth of high-quality triangular GaN nanomesas, 30-nm thick, on the C-face of 4H-SiC using nanoselective area growth (NSAG) with patterned epitaxial graphene grown on SiC as an embedded mask. NSAG alleviates the problems of defects in heteroepitaxy, and the high mobility graphene film could readily provide the back low-dissipative electrode in GaN-based optoelectronic devices. A 5–8 graphene-layer film is first grown on the C-face of 4H-SiC by confinement-controlled sublimation of silicon carbide. Graphene is then patterned and arrays of 75-nm-wide openings are etched in graphene revealing the SiC substrate. A 30-nm-thick GaN is subsequently grown by metal organic vapor phase epitaxy. GaN nanomesas grow epitaxially with perfect selectivity on SiC, in the openings patterned through graphene. The up-or-down orientation of the mesas on SiC, their triangular faceting, and cross-sectional scanning transmission electron microscopy show that they are biphasic. The core is a zinc blende monocrystal surrounded with single-crystal wurtzite. The GaN crystalline nanomesas have no threading dislocations or V-pits. This NSAG process potentially leads to integration of high-quality III-nitrides on the wafer scalable epitaxial graphene/silicon carbide platform.

  6. Heteroepitaxial growth of basal plane stacking fault free a-plane GaN

    Energy Technology Data Exchange (ETDEWEB)

    Wieneke, Matthias; Hempel, Thomas; Noltemeyer, Martin; Witte, Hartmut; Dadgar, Armin; Blaesing, Juergen; Christen, Juergen; Krost, Alois [Otto-von-Guericke Universitaet Magdeburg, FNW/IEP, Magdeburg (Germany)

    2010-07-01

    Growth of light emitting quantum-wells based on a-plane GaN is a possibility to reduce or even to avoid polarization correlated luminescence red shift and reduction of radiative recombination efficiency. But until now heteroepitaxially grown a-plane GaN films are characterized by a poor crystalline quality expressed by a high density of basal plane stacking faults (BSF) and partial dislocations. We present Si doped a-plane GaN films grown on r-plane sapphire substrates by metal organic vapor phase epitaxy using high temperature AlGaN nucleation layers. FE-SEM images revealed three dimensionally grown GaN crystallites sized up to tenth micrometer in the basal plane and a few tenth micrometers along the c-axes. Though, the full width at half maxima of the X-ray diffraction {omega}-scans of the in-plane GaN(1 anti 100) and GaN(0002) Bragg reflections exhibited a very high crystal quality. Furthermore, luminescence spectra were dominated by near band gap emission, while there was no separated peak of the basal plane stacking fault. In summary we present heteroepitaxially grown a-plane GaN without an evidence of basal plane stacking faults in X-ray diffraction measurements and luminescence spectra.

  7. Mg doping and its effect on the semipolar GaN(1122) growth kinetics

    International Nuclear Information System (INIS)

    Lahourcade, L.; Wirthmueller, A.; Monroy, E.; Pernot, J.; Chauvat, M. P.; Ruterana, P.; Laufer, A.; Eickhoff, M.

    2009-01-01

    We report the effect of Mg doping on the growth kinetics of semipolar GaN(1122) synthesized by plasma-assisted molecular-beam epitaxy. Mg tends to segregate on the surface, inhibiting the formation of the self-regulated Ga film which is used as a surfactant for the growth of undoped and Si-doped GaN(1122). We observe an enhancement of Mg incorporation in GaN(1122) compared to GaN(0001). Typical structural defects or polarity inversion domains found in Mg-doped GaN(0001) were not observed for the semipolar films investigated in the present study.

  8. Epitaxial condition and polarity in GaN grown on a HfN-buffered Si(111) wafer

    Science.gov (United States)

    Xu, X.; Armitage, R.; Shinkai, Satoko; Sasaki, Katsutaka; Kisielowski, C.; Weber, E. R.

    2005-05-01

    Single-crystal GaN thin films have been deposited epitaxially on a HfN-buffered Si(111) substrates by molecular-beam epitaxy. The microstructural and compositional characteristics of the films were studied in detail by transmission electron microscopy (TEMs). Cross-sectional TEM investigations have revealed the crystallographic orientation relationship in different GaN /HfN/Si layers. GaN film polarity is studied by conventional TEM and convergent beam electron diffraction simulations, and the results show that the GaN film has a Ga polarity with relatively high density of inversion domains. Based on our observations, growth mechanisms related to the structural properties are discussed.

  9. Chemical lift-off of (11-22) semipolar GaN using periodic triangular cavities

    Science.gov (United States)

    Jeon, Dae-Woo; Lee, Seung-Jae; Jeong, Tak; Baek, Jong Hyeob; Park, Jae-Woo; Jang, Lee-Woon; Kim, Myoung; Lee, In-Hwan; Ju, Jin-Woo

    2012-01-01

    Chemical lift-off of (11-22) semipolar GaN using triangular cavities was investigated. The (11-22) semipolar GaN was grown using epitaxial lateral overgrowth by metal-organic chemical vapor deposition on m-plane sapphire, in such a way as to keep N terminated surface of c-plane GaN exposed in the cavities. After regrowing 300 μm thick (11-22) semipolar GaN by hydride vapor phase epitaxy for a free-standing (11-22) semipolar GaN substrate, the triangular cavities of the templates were chemically etched in molten KOH. The (000-2) plane in the triangular cavities can be etched in the [0002] direction with the high lateral etching rate of 196 μm/min. The resulting free-standing (11-22) semipolar GaN substrate was confirmed to be strain-free by the Raman analysis.

  10. Defect formation and magnetic properties of Co-doped GaN crystal and nanowire

    International Nuclear Information System (INIS)

    Shi, Li-Bin; Liu, Jing-Jing; Fei, Ying

    2013-01-01

    Theoretical calculation based on density functional theory (DFT) and generalized gradient approximation (GGA) has been carried out in studying defect formation and magnetic properties of Co doped GaN crystal and nanowire (NW). Co does not exhibit site preference in GaN crystal. However, Co occupies preferably surface sites in GaN NW. Transition level of the defect is also investigated in GaN crystal. We also find that Co Ga (S) in NW does not produce spin polarization and Co Ga (B) produces spontaneous spin polarization. Ferromagnetic (FM) and antiferromagnetic (AFM) couplings are analyzed by six different configurations. The results show that AFM coupling is more stable than FM coupling for Co doped GaN crystal. It is also found from Co doped GaN NW calculation that the system remains FM stability for majority of the configurations. Magnetic properties in Co doped GaN crystal can be mediated by N and Ga vacancies. The FM and AFM stability can be explained by Co 3d energy level coupling

  11. Ion Beam Assisted Deposition of Thin Epitaxial GaN Films.

    Science.gov (United States)

    Rauschenbach, Bernd; Lotnyk, Andriy; Neumann, Lena; Poppitz, David; Gerlach, Jürgen W

    2017-06-23

    The assistance of thin film deposition with low-energy ion bombardment influences their final properties significantly. Especially, the application of so-called hyperthermal ions (energy GaN thin films on (0001)-oriented 6H-SiC substrates at 700 °C. The films are studied in situ by reflection high energy electron diffraction, ex situ by X-ray diffraction, scanning tunnelling microscopy, and high-resolution transmission electron microscopy. It is demonstrated that the film growth mode can be controlled by varying the ion to atom ratio, where 2D films are characterized by a smooth topography, a high crystalline quality, low biaxial stress, and low defect density. Typical structural defects in the GaN thin films were identified as basal plane stacking faults, low-angle grain boundaries forming between w-GaN and z-GaN and twin boundaries. The misfit strain between the GaN thin films and substrates is relieved by the generation of edge dislocations in the first and second monolayers of GaN thin films and of misfit interfacial dislocations. It can be demonstrated that the low-energy nitrogen ion assisted molecular beam epitaxy is a technique to produce thin GaN films of high crystalline quality.

  12. Atomic structures and mechanical properties of single-crystal GaN nanotubes

    International Nuclear Information System (INIS)

    Xu, B.; Lu, A.J.; Pan, B.C.; Yu, Q.X.

    2005-01-01

    An approach is proposed to theoretically construct a realistic single-crystal GaN nanotube at atomic scale. The generated atomic structures of the single-crystal GaN nanotubes match the structural aspects from experiment very well. Our energetic calculations show that a single-crystal GaN nanotube with [100]-oriented lateral facets is more stable than that with [110]-oriented lateral facets, when they have around the same wall thickness. For a specified orientation of the lateral facets on the single-crystal GaN nanotubes, the energetic stabilities of the tubes obey a P rule, in which P is the ratio of the number of four-coordinated atoms to the number of three-coordinated atoms. Furthermore, the Young's modulus of the considered GaN nanotubes decrease with increasing the ratio of the number of bulk atoms to the number of surface atoms in each type of tube. Our calculations and analysis demonstrate that the surface effect of a single-crystal nanotube enhances its Young's modulus significantly

  13. Vertical current-flow enhancement via fabrication of GaN nanorod p–n junction diode on graphene

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Sung Ryong [Quantum-functional Semiconductor Research Center, Dongguk University-Seoul, 100-715 (Korea, Republic of); Department of physics, Dongguk University, Seoul, 100-715 (Korea, Republic of); Ram, S.D. Gopal; Lee, Seung Joo; Cho, Hak-dong; Lee, Sejoon [Quantum-functional Semiconductor Research Center, Dongguk University-Seoul, 100-715 (Korea, Republic of); Kang, Tae Won, E-mail: twkang@dongguk.edu [Quantum-functional Semiconductor Research Center, Dongguk University-Seoul, 100-715 (Korea, Republic of); Clean Energy and Nano Convergence Centre, Hindustan University, Chennai 600 016 (India); Kwon, Sangwoo; Yang, Woochul [Department of physics, Dongguk University, Seoul, 100-715 (Korea, Republic of); Shin, Sunhye [Soft-Epi Inc., 240 Opo-ro, Opo-eup, Gwangju-si, Gyeonggi-do (Korea, Republic of); Woo, Yongdeuk [Department of Mechanical and Automotive Engineering, Woosuk University, Chonbuk 565-701 (Korea, Republic of)

    2015-08-30

    Highlights: • Uniaxial p–n junction diode in GaN nanorod is made by Hydride vapor phase epitaxy method. • The p–n junction diode property is clearly observed from the fabricated uniaxial p–n junction nanorod GaN nanorod. • Graphene is used as a current spreading layer to reduce the lateral resistance up to 700 times when compared with the commercial sapphire substrate, which is clearly explained with the aid of an equivalent circuit. • Kelvin Force Probe microscopy method is employed to visualize the p- and n- regions in a single GaN nanorod. - Abstract: Mg doped GaN nanorods were grown on undoped n-type GaN nanorods uniaxial on monolayer graphene by hydride vapor phase epitaxy (HVPE) method. The monolayer graphene used as the bottom electrode and a substrate as well provides good electrical contact, acts as a current spreading layer, well suitable for the growth of hexagonal GaN nanorod. In addition it has a work function suitable to that of n-GaN. The formed p–n nanorods show a Schottky behavior with a turn on voltage of 3 V. Using graphene as the substrate, the resistance of the nanorod is reduced by 700 times when compared with the case without using graphene as the current spreading layer. The low resistance of graphene acts in parallel with the resistance of the GaN buffer layer, and reduces the resistance drastically. The formed p–n junction in a single GaN nanorod is visualized by Kelvin Force Probe Microscopy (KPFM) to have distinctively contrast p and n regions. The measured contact potential difference of p-and n-region has a difference of 103 mV which well confirms the formed regions are electronically different. Low temperature photoluminescence (PL) spectra give evidence of dopant related acceptor bound emission at 3.2 eV different from 3.4 eV of undoped GaN. The crystalline structure, compositional purity is confirmed by X-ray diffraction (XRD), Transmission and Scanning electron microcopies (SEM), (TEM), Energy dispersive analysis

  14. Vertical current-flow enhancement via fabrication of GaN nanorod p–n junction diode on graphene

    International Nuclear Information System (INIS)

    Ryu, Sung Ryong; Ram, S.D. Gopal; Lee, Seung Joo; Cho, Hak-dong; Lee, Sejoon; Kang, Tae Won; Kwon, Sangwoo; Yang, Woochul; Shin, Sunhye; Woo, Yongdeuk

    2015-01-01

    Highlights: • Uniaxial p–n junction diode in GaN nanorod is made by Hydride vapor phase epitaxy method. • The p–n junction diode property is clearly observed from the fabricated uniaxial p–n junction nanorod GaN nanorod. • Graphene is used as a current spreading layer to reduce the lateral resistance up to 700 times when compared with the commercial sapphire substrate, which is clearly explained with the aid of an equivalent circuit. • Kelvin Force Probe microscopy method is employed to visualize the p- and n- regions in a single GaN nanorod. - Abstract: Mg doped GaN nanorods were grown on undoped n-type GaN nanorods uniaxial on monolayer graphene by hydride vapor phase epitaxy (HVPE) method. The monolayer graphene used as the bottom electrode and a substrate as well provides good electrical contact, acts as a current spreading layer, well suitable for the growth of hexagonal GaN nanorod. In addition it has a work function suitable to that of n-GaN. The formed p–n nanorods show a Schottky behavior with a turn on voltage of 3 V. Using graphene as the substrate, the resistance of the nanorod is reduced by 700 times when compared with the case without using graphene as the current spreading layer. The low resistance of graphene acts in parallel with the resistance of the GaN buffer layer, and reduces the resistance drastically. The formed p–n junction in a single GaN nanorod is visualized by Kelvin Force Probe Microscopy (KPFM) to have distinctively contrast p and n regions. The measured contact potential difference of p-and n-region has a difference of 103 mV which well confirms the formed regions are electronically different. Low temperature photoluminescence (PL) spectra give evidence of dopant related acceptor bound emission at 3.2 eV different from 3.4 eV of undoped GaN. The crystalline structure, compositional purity is confirmed by X-ray diffraction (XRD), Transmission and Scanning electron microcopies (SEM), (TEM), Energy dispersive analysis

  15. Above room-temperature ferromagnetism of Mn delta-doped GaN nanorods

    International Nuclear Information System (INIS)

    Lin, Y. T.; Wadekar, P. V.; Kao, H. S.; Chen, T. H.; Chen, Q. Y.; Tu, L. W.; Huang, H. C.; Ho, N. J.

    2014-01-01

    One-dimensional nitride based diluted magnetic semiconductors were grown by plasma-assisted molecular beam epitaxy. Delta-doping technique was adopted to dope GaN nanorods with Mn. The structural and magnetic properties were investigated. The GaMnN nanorods with a single crystalline structure and with Ga sites substituted by Mn atoms were verified by high-resolution x-ray diffraction and Raman scattering, respectively. Secondary phases were not observed by high-resolution x-ray diffraction and high-resolution transmission electron microscopy. In addition, the magnetic hysteresis curves show that the Mn delta-doped GaN nanorods are ferromagnetic above room temperature. The magnetization with magnetic field perpendicular to GaN c-axis saturates easier than the one with field parallel to GaN c-axis

  16. Molten Salt-Based Growth of Bulk GaN and InN for Substrates

    Energy Technology Data Exchange (ETDEWEB)

    Waldrip, Karen Elizabeth [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Power Sources Technology Dept.; Tsao, Jeffrey Yeenien [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Energy Sciences Dept.; Kerley, Thomas M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Materials Sciences Dept.

    2006-09-01

    An atmospheric pressure approach to growth of bulk group III-nitrides is outlined. Native III-nitride substrates for optoelectronic and high power, high frequency electronics are desirable to enhance performance and reliability of these devices; currently, these materials are available in research quantities only for GaN, and are unavailable in the case of InN. The thermodynamics and kinetics of the reactions associated with traditional crystal growth techniques place these activities on the extreme edges of experimental physics. The technique described herein relies on the production of the nitride precursor (N3-) by chemical and/or electrochemical methods in a molten halide salt. This nitride ion is then reacted with group III metals in such a manner as to form the bulk nitride material. The work performed during the period of funding (July 2004-September 2005) focused on the initial measurement of the solubility of GaN in molten LiCl as a function of temperature, the construction of electrochemical cells, the modification of a commercial glove box (required for handling very hygroscopic LiCl), and on securing intellectual property for the technique.

  17. Influence of AlGaN Buffer Growth Temperature on GaN Epilayer based on Si(lll) Substrate

    International Nuclear Information System (INIS)

    Wei Meng; Wang Xiaoliang; Pan Xu; Xiao Hongling; Wang Cuimei; Zhang Minglan; Wang Zhanguo

    2011-01-01

    This paper investigated the influence of AlGaN buffer growth temperature on strain status and crystal quality of the GaN film on Si(111) sbustrates by metal organic chemical vapor deposition. It was demonstrated by the optical microscopy that AlGaN buffer gorwth temperature had a remarkable effect on compensating tensil stress in top GaN layer and preventing the formation of cracks. X-ray diffraction and atomic force microscopy analysis showed crystal quality and surface morphology of the GaN epilayer could be improved through increasing AlGaN buffer growth temperature. 1μm crack-free GaN epilayer on Si (111) substrates was obtained with graded AlGaN buffer layer at optimized temperature of 1050 deg. C. Transmission electron microscopy analysis revealed that a significant reduction in threading dislocations was achieved in GaN epilayer.

  18. Ultrathin silicon oxynitride layer on GaN for dangling-bond-free GaN/insulator interface.

    Science.gov (United States)

    Nishio, Kengo; Yayama, Tomoe; Miyazaki, Takehide; Taoka, Noriyuki; Shimizu, Mitsuaki

    2018-01-23

    Despite the scientific and technological importance of removing interface dangling bonds, even an ideal model of a dangling-bond-free interface between GaN and an insulator has not been known. The formation of an atomically thin ordered buffer layer between crystalline GaN and amorphous SiO 2 would be a key to synthesize a dangling-bond-free GaN/SiO 2 interface. Here, we predict that a silicon oxynitride (Si 4 O 5 N 3 ) layer can epitaxially grow on a GaN(0001) surface without creating dangling bonds at the interface. Our ab initio calculations show that the GaN/Si 4 O 5 N 3 structure is more stable than silicon-oxide-terminated GaN(0001) surfaces. The electronic properties of the GaN/Si 4 O 5 N 3 structure can be tuned by modifying the chemical components near the interface. We also propose a possible approach to experimentally synthesize the GaN/Si 4 O 5 N 3 structure.

  19. Electrical properties of cubic InN and GaN epitaxial layers as a function of temperature

    International Nuclear Information System (INIS)

    Fernandez, J.R.L.; Chitta, V.A.; Abramof, E.

    2000-01-01

    Carrier concentration and mobility were measured for intrinsic cubic InN and GaN, and for Si-doped cubic GaN as a function of temperature. Metallic n-type conductivity was found for the InN, while background p-type conductivity was observed for the intrinsic GaN layer. Doping the cubic GaN with Si two regimes were observed. For low Si-doping concentrations, the samples remain p-type. Increasing the Si-doping level, the background acceptors are compensated and the samples became highly degenerated n-type. From the carrier concentration dependence on temperature, the activation energy of the donor and acceptor levels was determined. Attempts were made to determine the scattering mechanisms responsible for the behavior of the mobility as a function of temperature

  20. Hydrogen dissociation in the deposition of GaN films with ECR-PECVD process

    Science.gov (United States)

    Fu, S. L.; Wang, C. A.; Ding, L. C.; Qin, Y. X.

    2018-05-01

    The hydrogen dissociation and its effect on the GaN film growth in the ECR-PECVD process are investigated in this paper. We use N2 and trimethylgallium (TMG) as N and Ga sources respectively in the ECR- PECVD process. The results show that the rate of hydrogen dissociation increases with the microwave power and it becomes higher at high microwave power (> 500 W). However, this population increase of the H species dissociated from the TMG gas in ECR plasma is not enough to change the growth condition from Ga-rich to N-rich.

  1. Oxygen adsorption and incorporation at irradiated GaN(0001) and GaN(0001¯) surfaces: First-principles density-functional calculations

    Science.gov (United States)

    Sun, Qiang; Selloni, Annabella; Myers, T. H.; Doolittle, W. Alan

    2006-11-01

    Density functional theory calculations of oxygen adsorption and incorporation at the polar GaN(0001) and GaN(0001¯) surfaces have been carried out to explain the experimentally observed reduced oxygen concentration in GaN samples grown by molecular beam epitaxy in the presence of high energy (˜10keV) electron beam irradiation [Myers , J. Vac. Sci. Technol. B 18, 2295 (2000)]. Using a model in which the effect of the irradiation is to excite electrons from the valence to the conduction band, we find that both the energy cost of incorporating oxygen impurities in deeper layers and the oxygen adatom diffusion barriers are significantly reduced in the presence of the excitation. The latter effect leads to a higher probability for two O adatoms to recombine and desorb, and thus to a reduced oxygen concentration in the irradiated samples, consistent with experimental observations.

  2. GaN nanorods and LED structures grown on patterned Si and AlN/Si substrates by selective area growth

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shunfeng; Fuendling, Soenke; Soekmen, Uensal; Neumann, Richard; Merzsch, Stephan; Peiner, Erwin; Wehmann, Hergo-Heinrich; Waag, Andreas [Institut fuer Halbleitertechnik, TU Braunschweig (Germany); Hinze, Peter; Weimann, Thomas [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany); Jahn, Uwe; Trampert, Achim; Riechert, Henning [Paul-Drude-Institut fuer Festkoerperelektronik, Berlin (Germany)

    2010-07-15

    GaN nanorods (NRs) show promising applications in high-efficiency light emitting diodes, monolithic white light emission and optical interconnection due to their superior properties. In this work, we performed GaN nanostructures growth by pre-patterning the Si and AlN/Si substrates. The pattern was transferred to Si and AlN/Si substrates by photolithography and inductively-coupled plasma etching. GaN NRs were grown on these templates by metal-organic vapour phase epitaxy (MOVPE). GaN grown on Si pillar templates show a truncated pyramidal structure. Transmission electron microscopy measurements demonstrated clearly that the threading dislocations bend to the side facets of the GaN nanostructures and terminate. GaN growth can also be observed on the sidewalls and bottom surface between the Si pillars. A simple phenomenological model is proposed to explain the GaN nanostructure growth on Si pillar templates. Based on this model, we developed another growth method, by which we grow GaN rod structures on pre-patterned AlN/Si templates. By in-situ nitridation and decreasing of the V/III ratio, we found that GaN rods only grew on the patterned AlN/Si dots with an aspect ratio of about 1.5 - 2. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Fabrication and Characterization of Mg-Doped GaN Nanowires

    International Nuclear Information System (INIS)

    Dong-Dong, Zhang; Cheng-Shan, Xue; Hui-Zhao, Zhuang; Ying-Long, Huang; Zou-Ping, Wang; Ying, Wang; Yong-Fu, Guo

    2008-01-01

    Mg-doped GaN nanowires have been synthesized by ammoniating Ga 2 O 3 films doped with Mg under flowing ammonia atmosphere at 850° C. The Mg-doped GaN nanowires are characterized by x-ray diffraction (XRD), scanning electron microscope (SEM), high-resolution transmission electron microscopy (HRTEM) and photo-luminescence (PL). The results demonstrate that the nanowires are single crystalline with hexagonal wurzite structure. The diameters of the nanowires are 20–30 nm and the lengths are 50–100 μm. The GaN nanowires show three emission bands with well-defined PL peak at 3.45 eV, 3.26 eV, 2.95 eV, respectively. The large distinct blueshift of the bandgap emission can be attributed to the Burstein–Moss effect. The peak at 3.26 eV represents the transition from the conduction-band edge to the acceptor level AM (acceptor Mg). The growth mechanism of crystalline GaN nanowires is discussed briefly. (cross-disciplinary physics and related areas of science and technology)

  4. Design and simulation of GaN based Schottky betavoltaic nuclear micro-battery

    International Nuclear Information System (INIS)

    San, Haisheng; Yao, Shulin; Wang, Xiang; Cheng, Zaijun; Chen, Xuyuan

    2013-01-01

    The current paper presents a theoretical analysis of Ni-63 nuclear micro-battery based on a wide-band gap semiconductor GaN thin-film covered with thin Ni/Au films to form Schottky barrier for carrier separation. The total energy deposition in GaN was calculated using Monte Carlo methods by taking into account the full beta spectral energy, which provided an optimal design on Schottky barrier width. The calculated results show that an 8 μm thick Schottky barrier can collect about 95% of the incident beta particle energy. Considering the actual limitations of current GaN growth technique, a Fe-doped compensation technique by MOCVD method can be used to realize the n-type GaN with a carrier concentration of 1×10 15 cm −3 , by which a GaN based Schottky betavoltaic micro-battery can achieve an energy conversion efficiency of 2.25% based on the theoretical calculations of semiconductor device physics. - Highlights: • Ni-63 is employed as the pure beta radioisotope source. • The Schottky junction betavoltaic battery is based on the wide-band gap semiconductor GaN. • The total energy deposition of incident beta particles in GaN was simulated by the Monte Carlo method. • A Fe-doped compensation technique is suggested to increase the energy conversion efficiency

  5. Mg doping of GaN by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Lieten, R R; Buchowicz, G; Dubon, O; Motsnyi, V; Zhang, L; Cheng, K; Leys, M; Degroote, S; Borghs, G

    2011-01-01

    We present a systematic study on the influence of growth conditions on the incorporation and activation of Mg in GaN layers grown by plasma-assisted molecular beam epitaxy. We show that high quality p-type GaN layers can be obtained on GaN-on-silicon templates. The Mg incorporation and the electrical properties have been investigated as a function of growth temperature, Ga : N flux ratio and Mg : Ga flux ratio. It was found that the incorporation of Mg and the electrical properties are highly sensitive to the Ga : N flux ratio. The highest hole mobility and lowest resistivity were achieved for slightly Ga-rich conditions. In addition to an optimal Ga : N ratio, an optimum Mg : Ga flux ratio was also observed at around 1%. We observed a clear Mg flux window for p-type doping of GaN : 0.31% 17 cm -3 and a mobility of 15 cm 2 V -1 s -1 . Temperature-dependent Hall effect measurements indicate an acceptor depth in these samples of 100 meV for a hole concentration of 5.5 x 10 17 cm -3 . The corresponding Mg concentration is 5 x 10 19 cm -3 , indicating approximately 1% activation at room temperature. In addition to continuous growth of Mg-doped GaN layers we also investigated different modulated growth procedures. We show that a modulated growth procedure has only limited influence on Mg doping at a growth temperature of 800 deg. or higher. This result is thus in contrast to previously reported GaN : Mg doping at much lower growth temperatures of 500 deg. C.

  6. Rare earths in GaN and ZnO studied with the PAC method; Seltene Erden in GaN und ZnO untersucht mit der PAC-Methode

    Energy Technology Data Exchange (ETDEWEB)

    Nedelec, R.

    2007-07-01

    The present thesis deals with the implantation and annealing behaviour of two examples of large-band-gap semiconductors GaN and ZnO. The studies begin with the annealing behaviour of GaN after the implantation of {sup 172}Lu. For GaN the annealing process begins at low temperatures with the decreasing of the damping of the lattice frequency. At essentially higher temperatures finally the substitunial contribution increases. This behaviour is also observed for other probe nuclei in GaN. For ZnO the behaviour at low temperature is different. Both for {sup 172}Lu and for {sup 181}Hf the damping is already after the implantation very low. The increasement of the substitutional contribution occurs like in GaN at higher temperatures. Thereafter for GaN and ZnO PAC spectra were token up at different measurement temperatures between 25 and 873 K. For {sup 172}Lu in GaN and in ZnO a strong temperature dependence of the lattice field gradient was observed. Also for {sup 181}Hf in ZnO a strong temperature dependence is observed. For {sup 172}Lu by means of a model for the interaction of quadrupole moments of electronic shells with the nucleus a lattice field gradient of {+-}5.9.10{sup 15} Vcm{sup -2} could be determined. For {sup 172}Lu in ZnO the model yields at 293 K a lattice field gradient of +14.10{sup 15} Vcm{sup -2} respectively -13.10{sup 15} Vcm{sup -2}. The corrsponding measurement with {sup 181}Hf yields a lattice field gradient of {+-}5.7.10{sup 15} Vcm{sup -2}.

  7. Polarity-inverted lateral overgrowth and selective wet-etching and regrowth (PILOSWER) of GaN.

    Science.gov (United States)

    Jang, Dongsoo; Jue, Miyeon; Kim, Donghoi; Kim, Hwa Seob; Lee, Hyunkyu; Kim, Chinkyo

    2018-03-07

    On an SiO 2 -patterned c-plane sapphire substrate, GaN domains were grown with their polarity controlled in accordance with the pattern. While N-polar GaN was grown on hexagonally arranged circular openings, Ga-polar GaN was laterally overgrown on mask regions due to polarity inversion occurring at the boundary of the circular openings. After etching of N-polar GaN on the circular openings by H 3 PO 4 , this template was coated with 40-nm Si by sputtering and was slightly etched by KOH. After slight etching, a thin layer of Si left on the circular openings of sapphire,but not on GaN, was oxidized during thermal annealing and served as a dielectric mask during subsequent regrowth. Thus, the subsequent growth of GaN was made only on the existing Ga-polar GaN domains, not on the circular openings of the sapphire substrate. Transmission electron microscopy analysis revealed no sign of threading dislocations in this film. This approach may help fabricating an unholed and merged GaN film physically attached to but epitaxially separated from the SiO 2 -patterned sapphire.

  8. Dislocation confinement in the growth of Na flux GaN on metalorganic chemical vapor deposition-GaN

    International Nuclear Information System (INIS)

    Takeuchi, S.; Asazu, H.; Nakamura, Y.; Sakai, A.; Imanishi, M.; Imade, M.; Mori, Y.

    2015-01-01

    We have demonstrated a GaN growth technique in the Na flux method to confine c-, (a+c)-, and a-type dislocations around the interface between a Na flux GaN crystal and a GaN layer grown by metalorganic chemical vapor deposition (MOCVD) on a (0001) sapphire substrate. Transmission electron microscopy (TEM) clearly revealed detailed interface structures and dislocation behaviors that reduced the density of vertically aligned dislocations threading to the Na flux GaN surface. Submicron-scale voids were formed at the interface above the dislocations with a c component in MOCVD-GaN, while no such voids were formed above the a-type dislocations. The penetration of the dislocations with a c component into Na flux GaN was, in most cases, effectively blocked by the presence of the voids. Although some dislocations with a c component in the MOCVD-GaN penetrated into the Na flux GaN, their propagation direction changed laterally through the voids. On the other hand, the a-type dislocations propagated laterally and collectively near the interface, when these dislocations in the MOCVD-GaN penetrated into the Na flux GaN. These results indicated that the dislocation propagation behavior was highly sensitive to the type of dislocation, but all types of dislocations were confined to within several micrometers region of the Na flux GaN from the interface. The cause of void formation, the role of voids in controlling the dislocation behavior, and the mechanism of lateral and collective dislocation propagation are discussed on the basis of TEM results

  9. The influence of Fe doping on the surface topography of GaN epitaxial material

    International Nuclear Information System (INIS)

    Cui Lei; Yin Haibo; Jiang Lijuan; Wang Quan; Feng Chun; Xiao Hongling; Wang Cuimei; Wang Xiaoliang; Gong Jiamin; Zhang Bo; Li Baiquan; Wang Zhanguo

    2015-01-01

    Fe doping is an effective method to obtain high resistivity GaN epitaxial material. But in some cases, Fe doping could result in serious deterioration of the GaN material surface topography, which will affect the electrical properties of two dimensional electron gas (2DEG) in HEMT device. In this paper, the influence of Fe doping on the surface topography of GaN epitaxial material is studied. The results of experiments indicate that the surface topography of Fe-doped GaN epitaxial material can be effectively improved and the resistivity could be increased after increasing the growth rate of GaN materials. The GaN material with good surface topography can be manufactured when the Fe doping concentration is 9 × 10 19 cm −3 . High resistivity GaN epitaxial material which is 1 × 10 9 Ω·cm is achieved. (paper)

  10. Crystal Structures of GaN Nanodots by Nitrogen Plasma Treatment on Ga Metal Droplets

    Directory of Open Access Journals (Sweden)

    Yang-Zhe Su

    2018-06-01

    Full Text Available Gallium nitride (GaN is one of important functional materials for optoelectronics and electronics. GaN exists both in equilibrium wurtzite and metastable zinc-blende structural phases. The zinc-blende GaN has superior electronic and optical properties over wurtzite one. In this report, GaN nanodots can be fabricated by Ga metal droplets in ultra-high vacuum and then nitridation by nitrogen plasma. The size, shape, density, and crystal structure of GaN nanodots can be characterized by transmission electron microscopy. The growth parameters, such as pre-nitridation treatment on Si surface, substrate temperature, and plasma nitridation time, affect the crystal structure of GaN nanodots. Higher thermal energy could provide the driving force for the phase transformation of GaN nanodots from zinc-blende to wurtzite structures. Metastable zinc-blende GaN nanodots can be synthesized by the surface modification of Si (111 by nitrogen plasma, i.e., the pre-nitridation treatment is done at a lower growth temperature. This is because the pre-nitridation process can provide a nitrogen-terminal surface for the following Ga droplet formation and a nitrogen-rich condition for the formation of GaN nanodots during droplet epitaxy. The pre-nitridation of Si substrates, the formation of a thin SiNx layer, could inhibit the phase transformation of GaN nanodots from zinc-blende to wurtzite phases. The pre-nitridation treatment also affects the dot size, density, and surface roughness of samples.

  11. Characterization and growth mechanism of nonpolar and semipolar GaN layers grown on patterned sapphire substrates

    International Nuclear Information System (INIS)

    Okada, Narihito; Tadatomo, Kazuyuki

    2012-01-01

    Nonpolar and semipolar GaN layers with markedly improved crystalline quality can be obtained by selective-area growth from the sapphire sidewalls of patterned sapphire substrates (PSSs). In this paper, we review the crystalline qualities of GaN layers grown on PSSs and their growth mechanism. We grew semipolar {1 1 −2 2} and {1 0 −1 1} GaN layers on r- and n-PSSs. The crystalline qualities of the GaN layers grown on the PSSs were higher than those of GaN layers grown directly on heteroepitaxial substrates. To reveal the growth mechanism of GaN layers grown on PSSs, we also grew various nonpolar and semipolar GaN layers such as m-GaN on a-PSS, {1 1 −2 2} GaN on r-PSS, {1 0 − 1  1} GaN on n-PSS, m-GaN on c-PSS and a-GaN on m-PSS. It was found that the nucleation of GaN on the c-plane-like sapphire sidewall results in selective growth from the sapphire sidewall, and nonpolar or semipolar GaN can be obtained. Finally, we demonstrated a light-emitting diode fabricated on a {1 1 −2 2} GaN layer grown on an r-PSS. (paper)

  12. Study on the influence of annealing effects in GaN VPE

    International Nuclear Information System (INIS)

    Furtado, M.

    1983-06-01

    The effects of annealing that occur during VPE growth of GaN were investigated. GaN powder (and epilayers) samples were annealed in Ar, N 2 , H 2 , NH 3 , HC1 + N 2 and HC1 + H 2 (N 2 , H 2 and HC1 + N 2 ), respectively; under a range of experimental conditions of interest for preparing electroluminescent devices. Good surface appearence Zn doped epilayers were also used under N 2 in order to investigate surface morphology changes due to thermal decomposition. It was found that GaN reacts with H 2 , remains stable under NH 3 , and the effects of thermal decomposition are somewhat enhanced with HC1. The epilayers' behaviour under thermal decomposition and HC1 are interpreted by the greater stability of the (0001) crystal plane, which accounts for the improvement of the surface quality under special growth conditions. Significant observations are reported concerning GaN decomposition in different ambients [pt

  13. Growth and characterization of semi-insulating carbon-doped/undoped GaN multiple-layer buffer

    International Nuclear Information System (INIS)

    Kim, Dong-Seok; Won, Chul-Ho; Kang, Hee-Sung; Kim, Young-Jo; Kang, In Man; Lee, Jung-Hee; Kim, Yong Tae

    2015-01-01

    We have proposed a new semi-insulating GaN buffer layer, which consists of multiple carbon-doped and undoped GaN layer. The buffer layer showed sufficiently good semi-insulating characteristics, attributed to the depletion effect between the carbon-doped GaN and the undoped GaN layers, even though the thickness of the carbon-doped GaN layer in the periodic structure was designed to be very thin to minimize the total carbon incorporation into the buffer layer. The AlGaN/AlN/GaN heterostructure grown on the proposed buffer exhibited much better electrical and structural properties than that grown on the conventional thick carbon-doped semi-insulating GaN buffer layer, confirmed by Hall measurement, x-ray diffraction, and secondary ion mass spectrometry. The fabricated device also showed excellent buffer breakdown characteristics. (paper)

  14. A High-Efficiency 100-W GaN Three-Way Doherty Amplifier for Base-Station Applications

    NARCIS (Netherlands)

    Pelk, M.J.; Neo, W.C.E.; Gajadharsing, J.R.; Pengelly, R.S.; De Vreede, L.C.N.

    2008-01-01

    A three-way Doherty 100-W GaN base-station power amplifier at 2.14 GHz is presented. Simple, but accurate design equations for the output power combiner of the amplifier are introduced. Mixed-signal techniques are utilized for uncompromised control of the amplifier stages to optimize efficiency, as

  15. Structural effects of field emission from GaN nanofilms on SiC substrates

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Cheng-Cheng; Wang, Ru-Zhi, E-mail: wrz@bjut.edu.cn; Zhu, Man-Kang; Yan, Hui [College of Materials Science and Engineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124 (China); Liu, Peng [Department of Physics Tsinghua University, Tsinghua-Foxconn Nanotechnology Research Center, Beijing 100084 (China); Wang, Bi-Ben [College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054 (China)

    2014-04-21

    GaN nanofilms (NFs) with different structures are grown on SiC substrates by pulsed laser deposition under different conditions. The synthesized GaN NFs are studied by X-ray diffraction, field-emission (FE) scanning electron microscopy, X-ray photoelectron spectroscopy, and atomic force microscopy. The GaN NFs are composed of diversified GaN nanoparticles with a diameter of 9–38 nm, thickness of 10–50 nm, and roughness of 0.22–13.03 nm. FE from the GaN NFs is structure dependent, which is explained by stress changing the band gap of the NFs. By structure modulation, the turn-on field of GaN NFs can be as low as 0.66 V/μm at a current density of 1 μA/cm{sup 2}, with a current density of up to 1.1 mA/cm{sup 2} at a field of 4.18 V/μm. Fowler-Nordheim curves of some samples contain multiple straight lines, which originate from the structural change and diversification of GaN nanoparticles under an applied field. Overall, our results suggest that GaN NFs with excellent FE properties can be prepared on SiC substrates, which provides a new route to fabricate high-efficiency FE nanodevices.

  16. Influence of the GaN spacer thickness on the structural and photoluminescence properties of multi-stack InN/GaN quantum dots

    International Nuclear Information System (INIS)

    Ke, Wen-Cheng; Lee, Shuo-Jen; Chen, Shiow-Long; Kao, Chia-Yu; Houng, Wei-Chung; Wei, Chih-An; Su, Yi-Ru

    2012-01-01

    Highlights: ► We present structural and photoluminescence characteristics of multi-stack InN/GaN QDs. ► A single crystalline 10-nm thick GaN capping layer is grown on the InN QDs. ► The PL intensity of the three-layer stacked sample is about 3 times that of the single-layer sample. - Abstract: This paper reports the structural and photoluminescence (PL) characteristics of single-layer and multi-stack InN/GaN quantum dots (QDs) with varying spacer thickness. A single crystalline 10-nm thick GaN capping layer is grown on the InN QDs by the flow-rate modulation epitaxy (FME) method. The PL peak is red shifted down to 18 meV and its full width at half maximum (FWHM) was narrowed from 104 meV to 77 meV as increasing GaN capping layer thickness to 20-nm. The red-shift and the linewidth narrowing of the PL spectra for the single-layer InN QDs as a result of the increase in capping thickness are believed to be due to the fact that the GaN capping layer decreases the surface defect density thereby decreasing the surface electron concentration of the InN QDs. However, the PL intensity decreases rapidly with the increase in GaN spacer thickness for the three-layer stacked InN/GaN QDs. Because of kinetic roughening, the 20-nm thick GaN capping layer shows a roughened surface. This roughened GaN capping layer degrades the InN QDs growth in the next layer of multi-stack InN QDs. In addition, the increased compressive strain on the InN QDs with the increase in GaN spacer thickness increases the defect density at the InN/GaN capped interface and will further decrease the PL intensity. After the GaN spacer thickness is modified, the PL intensity of the three-layer stacked sample with a 10-nm thick GaN spacer layer is about 3 times that of the single-layer sample.

  17. Raman scattering in GaN, AlN and AlGaN. Basic material properties, processing and devices

    International Nuclear Information System (INIS)

    Hayes, J.M.

    2002-05-01

    GaN, AIN and AIGaN are very promising materials for high-power, high-temperature and high-frequency electronic device applications but many of their material properties and the effects of processing steps for device fabrication have not yet been fully investigated. AIGaN/GaN films were annealed at temperatures of 800 to 1300 deg C in different ambient atmospheres. The films were then analysed by micro-Raman spectroscopy. Compressive stress was found in films annealed in oxygen containing atmospheres which was significantly enhanced by the presence of water vapour in the annealing atmosphere. No stress was detected after annealing in nitrogen even at temperatures close to the thermal decomposition temperature and in the presence of water vapour. Thermal decomposition can be prevented by the use of high-pressure atmospheres during annealing. Mg/P implanted and non-implanted GaN films annealed at temperatures up to 1500 deg C with nitrogen over-pressures of 1-1.5 GPa were analysed by micro-Raman spectroscopy. Annealing temperatures of 1400-1500 deg C resulted in the nearly full recovery of the crystalline quality of the ion-implanted GaN. Ultraviolet Raman spectroscopy showed that no significant surface degradation occurred during the annealing. High-quality bulk AIN crystals were studied by micro-Raman spectroscopy. The pressure dependence of the phonon frequencies was measured in the range 0 GPa to 9.5 GPa determining the mode-Grueneisen parameters. The temperature dependence of the phonon frequencies and lifetimes was measured from 10 K to 1275 K. Empirical fitting and theoretical modelling of the temperature dependence was performed. The results have application for the monitoring of temperature in (Ga/AI)N. The E 2 (high) phonon frequency of GaN measured by micro-Raman spectroscopy was used to monitor local temperatures in active AIGaN/GaN hetero-structure field effect transistor devices (HFETs). The temperature rise in the active area of devices on sapphire

  18. Growth modes of InN (000-1) on GaN buffer layers on sapphire

    International Nuclear Information System (INIS)

    Liu Bing; Kitajima, Takeshi; Chen Dongxue; Leone, Stephen R.

    2005-01-01

    In this work, using atomic force microscopy and scanning tunneling microscopy, we study the surface morphologies of epitaxial InN films grown by plasma-assisted molecular beam epitaxy with intervening GaN buffer layers on sapphire substrates. On smooth GaN buffer layers, nucleation and evolution of three-dimensional InN islands at various coverages and growth temperatures are investigated. The shapes of the InN islands are observed to be predominantly mesalike with large flat (000-1) tops, which suggests a possible role of indium as a surfactant. Rough GaN buffer layers composed of dense small GaN islands are found to significantly improve uniform InN wetting of the substrates, on which atomically smooth InN films are obtained that show the characteristics of step-flow growth. Scanning tunneling microscopy imaging reveals the defect-mediated surface morphology of smooth InN films, including surface terminations of screw dislocations and a high density of shallow surface pits with depths less than 0.3 nm. The mechanisms of the three-dimensional island size and shape evolution and formation of defects on smooth surfaces are considered

  19. Impact of substrate off-angle on the m-plane GaN Schottky diodes

    Science.gov (United States)

    Yamada, Hisashi; Chonan, Hiroshi; Takahashi, Tokio; Shimizu, Mitsuaki

    2018-04-01

    We investigated the effects of the substrate off-angle on the m-plane GaN Schottky diodes. GaN epitaxial layers were grown by metal-organic chemical vapor deposition on m-plane GaN substrates having an off-angle of 0.1, 1.1, 1.7, or 5.1° toward [000\\bar{1}]. The surface of the GaN epitaxial layers on the 0.1°-off substrate consisted of pyramidal hillocks and contained oxygen (>1017 cm-3) and carbon (>1016 cm-3) impurities. The residual carbon and oxygen impurities decreased to current of the 0.1°-off m-plane GaN Schottky diodes originated from the +c facet of the pyramidal hillocks. The leakage current was efficiently suppressed through the use of an off-angle that was observed to be greater than 1.1°. The off-angle of the m-plane GaN substrate is critical in obtaining high-performance Schottky diodes.

  20. Growth of (20 anti 21)AlGaN, GaN and InGaN by metal organic vapor phase epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Ploch, S.; Wernicke, T.; Rass, J.; Pristovsek, M. [TU Berlin, Institut fuer Festkoerperphysik, Hardenbergstr. 36, 10623 Berlin (Germany); Weyers, M. [Ferdinand-Braun-Institut, Leibniz Institut fuer Hoechstfrequenztechnik, Gustav-Kirchhoff-Str. 4, 12489 Berlin (Germany); Kneissl, M. [TU Berlin, Institut fuer Festkoerperphysik, Hardenbergstr. 36, 10623 Berlin (Germany); Ferdinand-Braun-Institut, Leibniz Institut fuer Hoechstfrequenztechnik, Gustav-Kirchhoff-Str. 4, 12489 Berlin (Germany)

    2012-07-01

    Green InGaN-based laser diodes on (20 anti 21)GaN substrates have recently demonstrated performances exceeding those of conventional (0001) oriented devices. However little is known regarding the growth parameters. We have investigated growth of AlGaN, GaN and InGaN on (20 anti 21)GaN substrates by MOVPE. Smooth GaN layers with a rms roughness <0.5 nm were obtained by low growth temperatures and reactor pressures. The layers exhibit undulations along [10 anti 14] similar to the GaN substrate. AlGaN and InGaN layers exhibit an increased surface roughness. Undulation bunching was observed and attributed to reduced adatom surface mobility due to the binding energy of Al and the low growth temperature for InGaN respectively or strain relaxation. AlGaN and InGaN heterostructures on (20 anti 21)GaN relax by layer tilt accompanied by formation of misfit dislocations, due to shear strain of the unit cell. This relaxation mechanism leads to a reduced critical layer thickness of (20 anti 21)AlGaN layers and InGaN multi quantum wells (MQW) in comparison to (0001). PL spectral broadening of 230 meV of (20 anti 21)InGaN single QWs emitting at 415 nm can be reduced by increased growth temperature or increased number of QWs with reduced thickness.

  1. Ga vacancy induced ferromagnetism enhancement and electronic structures of RE-doped GaN

    International Nuclear Information System (INIS)

    Zhong Guohua; Zhang Kang; He Fan; Ma Xuhang; Lu Lanlan; Liu Zhuang; Yang Chunlei

    2012-01-01

    Because of their possible applications in spintronic and optoelectronic devices, GaN dilute magnetic semiconductors (DMSs) doped by rare-earth (RE) elements have attracted much attention since the high Curie temperature was obtained in RE-doped GaN DMSs and a colossal magnetic moment was observed in the Gd-doped GaN thin film. We have systemically studied the GaN DMSs doped by RE elements (La, Ce-Yb) using the full-potential linearized augmented plane wave method within the framework of density functional theory and adding the considerations of the electronic correlation and the spin-orbital coupling effects. We have studied the electronic structures of DMSs, especially for the contribution from f electrons. The origin of magnetism, magnetic interaction and the possible mechanism of the colossal magnetic moment were explored. We found that, for materials containing f electrons, electronic correlation was usually strong and the spin-orbital coupling was sometimes crucial in determining the magnetic ground state. It was found that GaN doped by La was non-magnetic. GaN doped by Ce, Nd, Pm, Eu, Gd, Tb and Tm are stabilized at antiferromagnetic phase, while GaN doped by other RE elements show strong ferromagnetism which is suitable materials for spintronic devices. Moreover, we have identified that the observed large enhancement of magnetic moment in GaN is mainly caused by Ga vacancies (3.0μB per Ga vacancy), instead of the spin polarization by magnetic ions or originating from N vacancies. Various defects, such as substitutional Mg for Ga, O for N under the RE doping were found to bring a reduction of ferromagnetism. In addition, intermediate bands were observed in some systems of GaN:RE and GaN with intrinsic defects, which possibly opens the potential application of RE-doped semiconductors in the third generation high efficiency photovoltaic devices.

  2. Selective area growth of GaN rod structures by MOVPE: Dependence on growth conditions

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shunfeng; Fuendling, Soenke; Wang, Xue; Erenburg, Milena; Al-Suleiman, Mohamed Aid Mansur; Wei, Jiandong; Wehmann, Hergo-Heinrich; Waag, Andreas [Institut fuer Halbleitertechnik, TU Braunschweig, Hans-Sommer-Strasse 66, 38106 Braunschweig (Germany); Bergbauer, Werner [Institut fuer Halbleitertechnik, TU Braunschweig, Hans-Sommer-Strasse 66, 38106 Braunschweig (Germany); Osram Opto Semiconductors GmbH, Leibnizstr. 4, 93055 Regensburg (Germany); Strassburg, Martin [Osram Opto Semiconductors GmbH, Leibnizstr. 4, 93055 Regensburg (Germany)

    2011-07-15

    Selective area growth of GaN nanorods by metalorganic vapor phase epitaxy is highly demanding for novel applications in nano-optoelectronic and nanophotonics. Recently, we report the successful selective area growth of GaN nanorods in a continuous-flow mode. In this work, as examples, we show the morphology dependence of GaN rods with {mu}m or sub-{mu}m in diameters on growth conditions. Firstly, we found that the nitridation time is critical for the growth, with an optimum from 90 to 180 seconds. This leads to more homogeneous N-polar GaN rods growth. A higher temperature during GaN rod growth tends to increase the aspect ratio of the GaN rods. This is due to the enhanced surface diffusion of growth species. The V/III ratio is also an important parameter for the GaN rod growth. Its increase causes reduction of the aspect ratio of GaN rods, which could be explained by the relatively lower growth rate on (000-1) N-polar top surface than it on {l_brace}1-100{r_brace} m-planes by supplying more NH{sub 3} (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Macrodefect-free, large, and thick GaN bulk crystals for high-quality 2–6 in. GaN substrates by hydride vapor phase epitaxy with hardness control

    Science.gov (United States)

    Fujikura, Hajime; Konno, Taichiro; Suzuki, Takayuki; Kitamura, Toshio; Fujimoto, Tetsuji; Yoshida, Takehiro

    2018-06-01

    On the basis of a novel crystal hardness control, we successfully realized macrodefect-free, large (2–6 in.) and thick +c-oriented GaN bulk crystals by hydride vapor phase epitaxy. Without the hardness control, the introduction of macrodefects including inversion domains and/or basal-plane dislocations seemed to be indispensable to avoid crystal fracture in GaN growth with millimeter thickness. However, the presence of these macrodefects tended to limit the applicability of the GaN substrate to practical devices. The present technology markedly increased the GaN crystal hardness from below 20 to 22 GPa, thus increasing the available growth thickness from below 1 mm to over 6 mm even without macrodefect introduction. The 2 and 4 in. GaN wafers fabricated from these crystals had extremely low dislocation densities in the low- to mid-105 cm‑2 range and low off-angle variations (2 in.: <0.1° 4 in.: ∼0.2°). The realization of such high-quality 6 in. wafers is also expected.

  4. Transient atomic behavior and surface kinetics of GaN

    International Nuclear Information System (INIS)

    Moseley, Michael; Billingsley, Daniel; Henderson, Walter; Trybus, Elaissa; Doolittle, W. Alan

    2009-01-01

    An in-depth model for the transient behavior of metal atoms adsorbed on the surface of GaN is developed. This model is developed by qualitatively analyzing transient reflection high energy electron diffraction (RHEED) signals, which were recorded for a variety of growth conditions of GaN grown by molecular-beam epitaxy (MBE) using metal-modulated epitaxy (MME). Details such as the initial desorption of a nitrogen adlayer and the formation of the Ga monolayer, bilayer, and droplets are monitored using RHEED and related to Ga flux and shutter cycles. The suggested model increases the understanding of the surface kinetics of GaN, provides an indirect method of monitoring the kinetic evolution of these surfaces, and introduces a novel method of in situ growth rate determination.

  5. Transient atomic behavior and surface kinetics of GaN

    Science.gov (United States)

    Moseley, Michael; Billingsley, Daniel; Henderson, Walter; Trybus, Elaissa; Doolittle, W. Alan

    2009-07-01

    An in-depth model for the transient behavior of metal atoms adsorbed on the surface of GaN is developed. This model is developed by qualitatively analyzing transient reflection high energy electron diffraction (RHEED) signals, which were recorded for a variety of growth conditions of GaN grown by molecular-beam epitaxy (MBE) using metal-modulated epitaxy (MME). Details such as the initial desorption of a nitrogen adlayer and the formation of the Ga monolayer, bilayer, and droplets are monitored using RHEED and related to Ga flux and shutter cycles. The suggested model increases the understanding of the surface kinetics of GaN, provides an indirect method of monitoring the kinetic evolution of these surfaces, and introduces a novel method of in situ growth rate determination.

  6. Dependence of N-polar GaN rod morphology on growth parameters during selective area growth by MOVPE

    Science.gov (United States)

    Li, Shunfeng; Wang, Xue; Mohajerani, Matin Sadat; Fündling, Sönke; Erenburg, Milena; Wei, Jiandong; Wehmann, Hergo-Heinrich; Waag, Andreas; Mandl, Martin; Bergbauer, Werner; Strassburg, Martin

    2013-02-01

    Selective area growth of GaN rods by metalorganic vapor phase epitaxy has attracted great interest due to its novel applications in optoelectronic and photonics. In this work, we will present the dependence of GaN rod morphology on various growth parameters i.e. growth temperature, H2/N2 carrier gas concentration, V/III ratio, total carrier gas flow and reactor pressure. It is found that higher growth temperature helps to increase the aspect ratio of the rods, but reduces the height homogeneity. Furthermore, H2/N2 carrier gas concentration is found to be a critical factor to obtain vertical rod growth. Pure nitrogen carrier gas leads to irregular growth of GaN structure, while an increase of hydrogen carrier gas results in vertical GaN rod growth. Higher hydrogen carrier gas concentration also reduces the diameter and enhances the aspect of the GaN rods. Besides, increase of V/III ratio causes reduction of the aspect ratio of N-polar GaN rods, which could be explained by the relatively lower growth rate on (000-1) N-polar top surface when supplying more ammonia. In addition, an increase of the total carrier gas flow leads to a decrease in the diameter and the average volume of GaN rods. These phenomena are tentatively explained by the change of partial pressure of the source materials and boundary layer thickness in the reactor. Finally, it is shown that the average volume of the N-polar GaN rods keeps a similar value for a reactor pressure PR of 66 and 125 mbar, while an incomplete filling of the pattern opening is observed with PR of 250 mbar. Room temperature photoluminescence spectrum of the rods is also briefly discussed.

  7. Ab initio-based approach to reconstruction, adsorption and incorporation on GaN surfaces

    International Nuclear Information System (INIS)

    Ito, T; Akiyama, T; Nakamura, K

    2012-01-01

    Reconstruction, adsorption and incorporation on various GaN surfaces are systematically investigated using an ab initio-based approach that predicts the surface phase diagram as functions of temperature and beam-equivalent pressure (BEP). The calculated results for GaN surface reconstructions with polar (0 0 0 1), nonpolar (1 1 −2 0), semipolar (1 −1 0 1) and semipolar (1 1 −2 2) orientations imply that reconstructions on GaN surfaces with Ga adlayers generally appear on the polar and the semipolar surfaces, while the stable ideal surface without Ga adsorption is found on the nonpolar GaN(1 1 −2 0) surface because it satisfies the electron counting rule. The hydrogen adsorption on GaN(0 0 0 1) and GaN(1 1 −2 0) realizes several surface structures forming N–H and Ga–NH 2 bonds on their surfaces that depend on temperature and Ga BEP during metal-organic vapor-phase epitaxy (MOVPE). In contrast, the stable structures due to hydrogen adsorption on the semipolar GaN(1 −1 0 1) and GaN(1 1 −2 2) surfaces are not varied over the wide range of temperature and Ga BEP. This implies that the hydrogen adsorbed stable structures are expected to emerge on the semipolar surfaces during MOVPE regardless of the growth conditions. Furthermore, we clarify that Mg incorporation on GaN(1 −1 0 1) surfaces is enhanced by hydrogen adsorption consistent with experimental findings

  8. Ambient-temperature diffusion and gettering of Pt atoms in GaN with surface defect region under 60Co gamma or MeV electron irradiation

    Science.gov (United States)

    Hou, Ruixiang; Li, Lei; Fang, Xin; Xie, Ziang; Li, Shuti; Song, Weidong; Huang, Rong; Zhang, Jicai; Huang, Zengli; Li, Qiangjie; Xu, Wanjing; Fu, Engang; Qin, G. G.

    2018-01-01

    Generally, the diffusion and gettering of impurities in GaN needs high temperature. Calculated with the ambient-temperature extrapolation value of the high temperature diffusivity of Pt atoms in GaN reported in literature, the time required for Pt atoms diffusing 1 nm in GaN at ambient temperature is about 19 years. Therefore, the ambient-temperature diffusion and gettering of Pt atoms in GaN can hardly be observed. In this work, the ambient-temperature diffusion and gettering of Pt atoms in GaN is reported for the first time. It is demonstrated by use of secondary ion mass spectroscopy that in the condition of introducing a defect region on the GaN film surface by plasma, and subsequently, irradiated by 60Co gamma-ray or 3 MeV electrons, the ambient-temperature diffusion and gettering of Pt atoms in GaN can be detected. It is more obvious with larger irradiation dose and higher plasma power. With a similar surface defect region, the ambient-temperature diffusion and gettering of Pt atoms in GaN stimulated by 3 MeV electron irradiation is more marked than that stimulated by gamma irradiation. The physical mechanism of ambient-temperature diffusion and gettering of Pt atoms in a GaN film with a surface defect region stimulated by gamma or MeV electron irradiation is discussed.

  9. White emission from non-planar InGaN/GaN MQW LEDs grown on GaN template with truncated hexagonal pyramids.

    Science.gov (United States)

    Lee, Ming-Lun; Yeh, Yu-Hsiang; Tu, Shang-Ju; Chen, P C; Lai, Wei-Chih; Sheu, Jinn-Kong

    2015-04-06

    Non-planar InGaN/GaN multiple quantum well (MQW) structures are grown on a GaN template with truncated hexagonal pyramids (THPs) featuring c-plane and r-plane surfaces. The THP array is formed by the regrowth of the GaN layer on a selective-area Si-implanted GaN template. Transmission electron microscopy shows that the InGaN/GaN epitaxial layers regrown on the THPs exhibit different growth rates and indium compositions of the InGaN layer between the c-plane and r-plane surfaces. Consequently, InGaN/GaN MQW light-emitting diodes grown on the GaN THP array emit multiple wavelengths approaching near white light.

  10. Enhanced lateral heat dissipation packaging structure for GaN HEMTs on Si substrate

    International Nuclear Information System (INIS)

    Cheng, Stone; Chou, Po-Chien; Chieng, Wei-Hua; Chang, E.Y.

    2013-01-01

    This work presents a technology for packaging AlGaN/GaN high electron mobility transistors (HEMTs) on a Si substrate. The GaN HEMTs are attached to a V-groove copper base and mounted on a TO-3P leadframe. The various thermal paths from the GaN gate junction to the case are carried out for heat dissipation by spreading to protective coating; transferring through the bond wires; spreading in the lateral device structure through the adhesive layer, and vertical heat spreading of silicon chip bottom. Thermal characterization showed a thermal resistance of 13.72 °C/W from the device to the TO-3P package. Experimental tests of a 30 mm gate-periphery single chip packaged in a 5 × 3 mm V-groove Cu base with a 100 V drain bias showed power dissipation of 22 W. -- Highlights: ► An enhanced packaging structure designed for AlGaN/GaN HEMTs on an Si substrate. ► The V-groove copper base is designed on the device periphery surface heat conduction for enhancing Si substrate thermal dissipation. ► The proposed device shows a lower thermal resistance and upgrade in thermal conductivity capability. ► This work provides useful thermal IR imagery information to aid in designing high efficiency package for GaN HEMTs on Si

  11. Probing defect states in polycrystalline GaN grown on Si(111) by sub-bandgap laser-excited scanning tunneling spectroscopy

    Science.gov (United States)

    Hsiao, F.-M.; Schnedler, M.; Portz, V.; Huang, Y.-C.; Huang, B.-C.; Shih, M.-C.; Chang, C.-W.; Tu, L.-W.; Eisele, H.; Dunin-Borkowski, R. E.; Ebert, Ph.; Chiu, Y.-P.

    2017-01-01

    We demonstrate the potential of sub-bandgap laser-excited cross-sectional scanning tunneling microscopy and spectroscopy to investigate the presence of defect states in semiconductors. The characterization method is illustrated on GaN layers grown on Si(111) substrates without intentional buffer layers. According to high-resolution transmission electron microscopy and cathodoluminescence spectroscopy, the GaN layers consist of nanoscale wurtzite and zincblende crystallites with varying crystal orientations and hence contain high defect state densities. In order to discriminate between band-to-band excitation and defect state excitations, we use sub-bandgap laser excitation. We probe a clear increase in the tunnel current at positive sample voltages during sub-bandgap laser illumination for the GaN layer with high defect density, but no effect is found for high quality GaN epitaxial layers. This demonstrates the excitation of free charge carriers at defect states. Thus, sub-bandgap laser-excited scanning tunneling spectroscopy is a powerful complimentary characterization tool for defect states.

  12. Fabrication and characterization of GaN-based light-emitting diodes without pre-activation of p-type GaN.

    Science.gov (United States)

    Hu, Xiao-Long; Wang, Hong; Zhang, Xi-Chun

    2015-01-01

    We fabricated GaN-based light-emitting diodes (LEDs) without pre-activation of p-type GaN. During the fabrication process, a 100-nm-thick indium tin oxide film was served as the p-type contact layer and annealed at 500°C in N2 ambient for 20 min to increase its transparency as well as to activate the p-type GaN. The electrical measurements showed that the LEDs were featured by a lower forward voltage and higher wall-plug efficiency in comparison with LEDs using pre-activation of p-type GaN. We discussed the mechanism of activation of p-type GaN at 500°C in N2 ambient. Furthermore, x-ray photoemission spectroscopy examinations were carried out to study the improved electrical performances of the LEDs without pre-activation of p-type GaN.

  13. A comparative study on magnetism in Zn-doped AlN and GaN from first-principles

    International Nuclear Information System (INIS)

    Xu, Liang; Wang, Lingling; Huang, Weiqing; Xiao, Wenzhi; Xiao, Gang

    2014-01-01

    First-principles calculations have been used to comparatively investigate electronic and magnetic properties of Zn-doped AlN and GaN. A total magnetic moment of 1.0 μ B induced by Zn is found in AlN, but not in GaN. Analyses show that the origin of spontaneous polarization not only depend on the localized atomic orbitals of N and sufficient hole concentration, but also the relative intensity of the covalency of matrix. The relatively stronger covalent character of GaN with respect to AlN impedes forming local magnetic moment in GaN matrix. Our study offers a fresh sight of spontaneous spin polarization in d 0 magnetism. The much stronger ferromagnetic coupling in c-plane of AlN means that it is feasible to realize long-range ferromagnetic order via monolayer delta-doping. This can apply to other wide band-gap semiconductors in wurtzite structure.

  14. Growth and characterization of Fe nanostructures on GaN

    International Nuclear Information System (INIS)

    Honda, Yuya; Hayakawa, Satoko; Hasegawa, Shigehiko; Asahi, Hajime

    2009-01-01

    We have investigated the growth of Fe nanostructures on GaN(0 0 0 1) substrates at room temperature using reflection high-energy electron diffraction (RHEED), scanning tunneling microscopy (STM), and superconducting quantum interference device magnetometer. Initially, a ring RHEED pattern appears, indicating the growth of polycrystalline α-Fe. At around 0.5 nm deposition, the surface displays a transmission pattern from α-Fe films with the epitaxial relationship of Fe(1 1 0)//GaN(0 0 0 1) and Fe[1 -1 1]//GaN[1 1 -2 0] (Kurdjumov-Sachs (KS) orientational relationship). Further deposition to 1 nm results in the appearance of a new spot pattern together with the pattern from domains with the KS orientation relationship. The newly observed pattern shows that Fe layers are formed with the epitaxial relationship of Fe(1 1 0)//GaN(0 0 0 1) and Fe[0 0 1]//GaN[1 1 -2 0] (Nishiyama-Wasserman (NW) orientational relationship). From STM images for Fe layers with the KS and NW orientational relationships, it can be seen that Fe layers with the KS relationship consist of round-shaped Fe nanodots with below 7 nm in average diameter. These nanodots coalesce to form nanodots elongating along the Fe[1 0 0] direction, and they have the KS orientational relationship. Elongated Fe nanodots with the NW relationship show ferromagnetism while round-shaped Fe nanodots with the KS relationship show super-paramagnetic behavior. We will discuss their magnetic properties in connection with the change in crystalline configurations of nanodots.

  15. Luminescence evolution of porous GaN thin films prepared via UV-assisted electrochemical etching

    International Nuclear Information System (INIS)

    Cheah, S.F.; Lee, S.C.; Ng, S.S.; Yam, F.K.; Abu Hassan, H.; Hassan, Z.

    2015-01-01

    Porous gallium nitride (GaN) thin films with different surface morphologies and free carriers properties were fabricated from Si-doped GaN thin films using ultra-violet assisted electrochemical etching approach under various etching voltages. Fluctuation of luminescence signals was observed in the photoluminescence spectra of porous GaN thin films. Taking advantage of the spectral sensitivity of infrared attenuated total reflection spectroscopy on semiconductor materials, roles of free carriers and porous structure in controlling luminescence properties of GaN were investigated thoroughly. The results revealed that enhancement in luminescence signal is not always attained upon porosification. Although porosification is correlated to the luminescence enhancement, however, free carrier is the primary factor to enhance luminescence intensity. Due to unavoidable significant reduction of free carriers from Si-doped GaN in the porosification process, control of etching depth (i.e., thickness of porous layer formed from the Si-doped layer) is critical in fabricating porous GaN thin film with enhanced luminescence response. - Highlights: • Various pore morphologies with free carrier properties are produced by Si-doped GaN. • Free carriers are important to control the luminescence signal of porous GaN. • Enhancement of luminescence signal relies on the pore depth of Si-doped layer

  16. Thermal Annealing induced relaxation of compressive strain in porous GaN structures

    KAUST Repository

    Ben Slimane, Ahmed

    2012-01-01

    The effect of annealing on strain relaxation in porous GaN fabricated using electroless chemical etching is presented. The Raman shift of 1 cm-1 in phonon frequency of annealed porous GaN with respect to as-grown GaN corresponds to a relaxation of compressive strain by 0.41 ± 0.04 GPa. The strain relief promises a marked reduction in threading dislocation for subsequent epitaxial growth.

  17. Effects of hydrogen on Mn-doped GaN: A first principles calculation

    International Nuclear Information System (INIS)

    Wu, M.S.; Xu, B.; Liu, G.; Lei, X.L.; Ouyang, C.Y.

    2013-01-01

    First-principles calculations based on spin density functional theory are performed to study the effects of H on the structural, electronic and magnetic properties of the Mn-doped GaN dilute magnetic semiconductors. Our results show that the interstitial H atom prefers to bond with N atom rather than Mn atom, which means that H favors to form the N–H complex rather than Mn–H complex in the Mn-doped GaN. After introducing one H atom in the system, the total magnetic moment of the Mn-doped GaN increases by 25%, from 4.0μ B to 5.0μ B . The physics mechanism of the increase of magnetic moment after hydrogenation in Mn-doped GaN is discussed

  18. Fabrication of GaN epitaxial thin film on InGaZnO4 single-crystalline buffer layer

    International Nuclear Information System (INIS)

    Shinozaki, Tomomasa; Nomura, Kenji; Katase, Takayoshi; Kamiya, Toshio; Hirano, Masahiro; Hosono, Hideo

    2010-01-01

    Epitaxial (0001) films of GaN were grown on (111) YSZ substrates using single-crystalline InGaZnO 4 (sc-IGZO) lattice-matched buffer layers by molecular beam epitaxy with a NH 3 source. The epitaxial relationships are (0001) GaN //(0001) IGZO //(111) YSZ in out-of-plane and [112-bar 0] GaN //[112-bar 0] IGZO //[11-bar 0] YSZ in in-plane. This is different from those reported for GaN on many oxide crystals; the in-plane orientation of GaN crystal lattice is rotated by 30 o with respect to those of oxide substrates except for ZnO. Although these GaN films showed relatively large tilting and twisting angles, which would be due to the reaction between GaN and IGZO, the GaN films grown on the sc-IGZO buffer layers exhibited stronger band-edge photoluminescence than GaN grown on a low-temperature GaN buffer layer.

  19. Dislocation core structures in Si-doped GaN

    International Nuclear Information System (INIS)

    Rhode, S. L.; Fu, W. Y.; Sahonta, S.-L.; Kappers, M. J.; Humphreys, C. J.; Horton, M. K.; Pennycook, T. J.; Dusane, R. O.; Moram, M. A.

    2015-01-01

    Aberration-corrected scanning transmission electron microscopy was used to investigate the core structures of threading dislocations in plan-view geometry of GaN films with a range of Si-doping levels and dislocation densities ranging between (5 ± 1) × 10 8  and (10 ± 1) × 10 9  cm −2 . All a-type (edge) dislocation core structures in all samples formed 5/7-atom ring core structures, whereas all (a + c)-type (mixed) dislocations formed either double 5/6-atom, dissociated 7/4/8/4/9-atom, or dissociated 7/4/8/4/8/4/9-atom core structures. This shows that Si-doping does not affect threading dislocation core structures in GaN. However, electron beam damage at 300 keV produces 4-atom ring structures for (a + c)-type cores in Si-doped GaN

  20. Dislocation core structures in Si-doped GaN

    Energy Technology Data Exchange (ETDEWEB)

    Rhode, S. L., E-mail: srhode@imperial.ac.uk; Fu, W. Y.; Sahonta, S.-L.; Kappers, M. J.; Humphreys, C. J. [Department of Materials Science and Metallurgy, University of Cambridge, Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Horton, M. K. [Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom); Pennycook, T. J. [SuperSTEM, STFC Daresbury Laboratories, Warrington WA4 4AD (United Kingdom); Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Dusane, R. O. [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai 400076 (India); Moram, M. A. [Department of Materials Science and Metallurgy, University of Cambridge, Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom)

    2015-12-14

    Aberration-corrected scanning transmission electron microscopy was used to investigate the core structures of threading dislocations in plan-view geometry of GaN films with a range of Si-doping levels and dislocation densities ranging between (5 ± 1) × 10{sup 8} and (10 ± 1) × 10{sup 9} cm{sup −2}. All a-type (edge) dislocation core structures in all samples formed 5/7-atom ring core structures, whereas all (a + c)-type (mixed) dislocations formed either double 5/6-atom, dissociated 7/4/8/4/9-atom, or dissociated 7/4/8/4/8/4/9-atom core structures. This shows that Si-doping does not affect threading dislocation core structures in GaN. However, electron beam damage at 300 keV produces 4-atom ring structures for (a + c)-type cores in Si-doped GaN.

  1. Electron holography studies of the charge on dislocations in GaN

    Energy Technology Data Exchange (ETDEWEB)

    Cherns, D.; Jiao, C.G.; Mokhtari, H. [H.H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Cai, J.; Ponce, F.A. [Department of Physics and Astronomy, Arizona State University, Tempe, AZ85287 (United States)

    2002-12-01

    The measurement of charge on dislocations in GaN by electron holography is described. Recent results are presented showing that edge dislocations in n-doped GaN are highly negatively charged, whereas those in p-doped GaN are positively charged. It is shown that the results are consistent with a model which assumes Fermi level pinning at dislocation states about 2.5 V below the conduction band edge. The application of electron holography to screw dislocations, and the dependence of the observations on the dislocation core structure, are also discussed. (Abstract Copyright [2002], Wiley Periodicals, Inc.)

  2. X-ray determination of strain in ion implanted GaN

    International Nuclear Information System (INIS)

    Qadri, S.B.; Molnar, B.; Yousuf, M.; Carosella, C.A.

    2002-01-01

    The out-of-plane c, and in-plane a, lattice parameters of wurtzite gallium nitride (GaN) films, grown on the [0 0 0 1] basal plane of sapphire have been determined and the impact of ion implantation having dose between 5x10 13 and 5x10 15 cm -2 investigated. The thickness of the GaN layers was in the 1-3.5 μm range. The overall effect of the (0 0 0 1) GaN growth on (0 0 0 1) sapphire is biaxial compression in wurtzite α-GaN. Earlier X-ray studies have indicated that the films of GaN grow either purely in α-GaN phase or in α-GaN phase with a cubic β-GaN component. In contrast, our high-resolution X-ray diffraction (XRD) measurement revealed two isostructural polymorphs of α-GaN phases having different lattice parameters. Influence of ion implantation is to increase the values of lattice parameters a and c and could be rationalized in terms of an increase in the defects. At doses above 5x10 15 cm -2 , XRD analysis indicates the existence of an amorphous layer preventing the determination of a and c accurately

  3. The feasibility of tunable p-type Mg doping in a GaN monolayer nanosheet

    International Nuclear Information System (INIS)

    Xia, Congxin; Peng, Yuting; Wei, Shuyi; Jia, Yu

    2013-01-01

    Based on density functional theory, the electronic structures, formation energy and transition energy level of a p-type Mg-doped GaN nanosheet are investigated. Numerical results show that the transition energy level decreases monotonously with increasing Mg doping concentration in Mg-doped GaN nanosheet systems, which is lower than that of the Mg-doped bulk GaN case. Moreover, the formation energy calculations indicate that Mg-doped GaN nanosheet structures can be realized under N-rich experimental growth conditions

  4. Growth of GaN single crystals by a Ca- and Ba-added Na flux method

    Science.gov (United States)

    Ukegawa, H.; Konishi, Y.; Fujimori, T.; Miyoshi, N.; Imade, M.; Yoshimura, M.; Kitaoka, Y.; Sasaki, T.; Mori, Y.

    2011-02-01

    GaN substrates are desirable for fabricating ultra-violet LEDs and LDs, and high-power and high-frequency transistors. High-quality GaN single crystals can be obtained by using Na flux method, but the growth habit of bulk crystals must be controlled. In this study, we investigated the effects of additives (Ca, Ba) on the growth habit and impurity concentration in the crystals. The aspect ratio (c/a) of the crystals was increased by increasing the amount of additives, showing that the growth habit could be changed from the pyramidal shape to the prism shape. Ba concentration was below the detection limit (1x1015 atoms/cm3).

  5. Hybrid device based on GaN nanoneedles and MEH-PPV/PEDOT:PSS polymer

    International Nuclear Information System (INIS)

    Shin, Min Jeong; Gwon, Dong-Oh; Lee, Chan-Mi; Lee, Gang Seok; Jeon, In-Jun; Ahn, Hyung Soo; Yi, Sam Nyung; Ha, Dong Han

    2015-01-01

    Highlights: • A hybrid device was demonstrated by using MEH-PPV, PEDOT:PSS, and GaN nanoneedles. • I–V curve of the hybrid device showed its rectification behaviour, similar to a diode. • EL peak originated by the different potential barriers at MEH-PPV and GaN interface. - Abstract: A hybrid device that combines the properties of organic and inorganic semiconductors was fabricated and studied. It incorporated poly[2-methoxy-5-(2-ethylhexyloxy)- 1,4-phenylenevinylene] (MEH-PPV) and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as organic polymers and GaN nanoneedles as an inorganic semiconductor. Layers of the two polymers were spin coated on to the GaN nanoneedles. The one peak in the electroluminescence spectrum originated from the MEH-PPV layer owing to the different potential barriers of electrons and holes at its interface with the GaN nanoneedles. However, the photoluminescence spectrum showed peaks due to both GaN nanoneedles and MEH-PPV. Such hybrid structures, suitably developed, might be able to improve the efficiency of optoelectronic devices

  6. Hybrid device based on GaN nanoneedles and MEH-PPV/PEDOT:PSS polymer

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Min Jeong; Gwon, Dong-Oh; Lee, Chan-Mi; Lee, Gang Seok [Department of Applied Science, Korea Maritime and Ocean University, Busan 606-791 (Korea, Republic of); Jeon, In-Jun [Department of Nano-semiconductor Engineering, Korea Maritime and Ocean University, Busan 606-791 (Korea, Republic of); Ahn, Hyung Soo [Department of Applied Science, Korea Maritime and Ocean University, Busan 606-791 (Korea, Republic of); Department of Nano-semiconductor Engineering, Korea Maritime and Ocean University, Busan 606-791 (Korea, Republic of); Yi, Sam Nyung, E-mail: snyi@kmou.ac.kr [Department of Applied Science, Korea Maritime and Ocean University, Busan 606-791 (Korea, Republic of); Department of Nano-semiconductor Engineering, Korea Maritime and Ocean University, Busan 606-791 (Korea, Republic of); Ha, Dong Han [Division of Convergence Technology, Korea Research Institute of Standards and Science, Daejeon 305-340 (Korea, Republic of)

    2015-08-15

    Highlights: • A hybrid device was demonstrated by using MEH-PPV, PEDOT:PSS, and GaN nanoneedles. • I–V curve of the hybrid device showed its rectification behaviour, similar to a diode. • EL peak originated by the different potential barriers at MEH-PPV and GaN interface. - Abstract: A hybrid device that combines the properties of organic and inorganic semiconductors was fabricated and studied. It incorporated poly[2-methoxy-5-(2-ethylhexyloxy)- 1,4-phenylenevinylene] (MEH-PPV) and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as organic polymers and GaN nanoneedles as an inorganic semiconductor. Layers of the two polymers were spin coated on to the GaN nanoneedles. The one peak in the electroluminescence spectrum originated from the MEH-PPV layer owing to the different potential barriers of electrons and holes at its interface with the GaN nanoneedles. However, the photoluminescence spectrum showed peaks due to both GaN nanoneedles and MEH-PPV. Such hybrid structures, suitably developed, might be able to improve the efficiency of optoelectronic devices.

  7. Electron beam irradiation effect on GaN HEMT

    International Nuclear Information System (INIS)

    Lou Yinhong; Guo Hongxia; Zhang Keying; Wang Yuanming; Zhang Fengqi

    2011-01-01

    In this work, GaN HEMTs (High Electron Mobility Transistor) were irradiated by 0.8 and 1.2 MeV electron beams, and the irradiation effects were investigated. The results show that the device damage caused by 0.8 MeV electrons is more serious than that by 1.2 MeV electrons. Saturation drain current increase and threshold voltage negative shift are due to trapped positive charge from ionization in the AlGaN layer and N, Ga vacancy from non-ionizing energy loss in the GaN layer. Electron traps and trapped positive charges from non-ionizing in the AlGaN layer act as trap-assisted-tunneling centers that increase the gate leakage current.(authors)

  8. Nanoscratch Characterization of GaN Epilayers on c- and a-Axis Sapphire Substrates

    Directory of Open Access Journals (Sweden)

    Wen Hua-Chiang

    2010-01-01

    Full Text Available Abstract In this study, we used metal organic chemical vapor deposition to form gallium nitride (GaN epilayers on c- and a-axis sapphire substrates and then used the nanoscratch technique and atomic force microscopy (AFM to determine the nanotribological behavior and deformation characteristics of the GaN epilayers, respectively. The AFM morphological studies revealed that pile-up phenomena occurred on both sides of the scratches formed on the GaN epilayers. It is suggested that cracking dominates in the case of GaN epilayers while ploughing during the process of scratching; the appearances of the scratched surfaces were significantly different for the GaN epilayers on the c- and a-axis sapphire substrates. In addition, compared to the c-axis substrate, we obtained higher values of the coefficient of friction (μ and deeper penetration of the scratches on the GaN a-axis sapphire sample when we set the ramped force at 4,000 μN. This discrepancy suggests that GaN epilayers grown on c-axis sapphire have higher shear resistances than those formed on a-axis sapphire. The occurrence of pile-up events indicates that the generation and motion of individual dislocation, which we measured under the sites of critical brittle transitions of the scratch track, resulted in ductile and/or brittle properties as a result of the deformed and strain-hardened lattice structure.

  9. High temperature electron cyclotron resonance etching of GaN, InN, and AlN

    International Nuclear Information System (INIS)

    Shul, R.J.; Kilcoyne, S.P.; Hagerott Crawford, M.; Parmeter, J.E.; Vartuli, C.B.; Abernathy, C.R.; Pearton, S.J.

    1995-01-01

    Electron cyclotron resonance etch rates for GaN, InN, and AlN are reported as a function of temperature for Cl 2 /H 2 /CH 4 /Ar and Cl 2 /H 2 /Ar plasmas. Using Cl 2 /H 2 /CH 4 /Ar plasma chemistry, GaN etch rates remain relatively constant from 30 to 125 degree C and then increase to a maximum of 2340 A/min at 170 degree C. The InN etch rate decreases monotonically from 30 to 150 degree C and then rapidly increases to a maximum of 2300 A/min at 170 degree C. This is the highest etch rate reported for this material. The AlN etch rate decreases throughout the temperature range studied with a maximum of 960 A/min at 30 degree C. When CH 4 is removed from the plasma chemistry, the GaN and InN etch rates are slightly lower, with less dramatic changes with temperature. The surface composition of the III--V nitrides remains unchanged after exposure to the Cl 2 /H 2 /CH 4 /Ar plasma over the temperatures studied

  10. Strain-mediated electronic properties of pristine and Mn-doped GaN monolayers

    Science.gov (United States)

    Sharma, Venus; Srivastava, Sunita

    2018-04-01

    Graphene-like two-dimensional (2D) monolayer structures GaN has gained enormous amount of interest due to high thermal stability and inherent energy band gap for practical applications. First principles calculations are performed to investigate the electronic structure and strain-mediated electronic properties of pristine and Mn-doped GaN monolayer. Binding energy of Mn dopant at various adsorption site is found to be nearly same indicating these sites to be equally favorable for adsorption of foreign atom. Depending on the adsorption site, GaN monolayer can act as p-type or n-type magnetic semiconductor. The tensile strength of both pristine and doped GaN monolayer (∼24 GPa) at ultimate tensile strain of 34% is comparable with the tensile strength of graphene. The in-plane biaxial strain modulate the energy band gap of both pristine and doped-monolayer from direct to indirect gap semiconductor and finally retendered theme into metal at critical value of applied strain. These characteristics make GaN monolayer to be potential candidate for the future applications in tunable optoelectronics.

  11. Effect of High-Temperature Annealing on Yellow and Blue Luminescence of Undoped GaN

    International Nuclear Information System (INIS)

    Chai Xu-Zhao; Zhou Dong; Liu Bin; Xie Zi-Li; Han Ping; Xiu Xiang-Qian; Chen Peng; Lu Hai; Zhang Rong; Zheng You-Dou

    2015-01-01

    The effect of high-temperature annealing on the yellow and blue luminescence of the undoped GaN is investigated by photoluminescence (PL) and x-ray photoelectron spectroscopy (XPS). It is found that the band-edge emission in the GaN apparently increases, and the yellow luminescence (YL) and blue luminescence (BL) bands dramatically decrease after annealing at 700°C. At the annealing temperature higher than 900°C, the YL and BL intensities show an enhancement for the nitrogen annealed GaN. This fact should be attributed to the increment of the Ga and N vacancies in the GaN decomposition. However, the integrated PL intensity of the oxygen annealed GaN decreases at the temperature ranging from 900°C to 1000°C. This results from the capture of many photo-generated holes by high-density surface states. XPS characterization confirms that the high-density surface states mainly originate from the incorporation of oxygen atoms into GaN at the high annealing temperature, and even induces the 0.34eV increment of the upward band bending for the oxygen annealed GaN at 1000°C. (paper)

  12. Role of Ga vacancies in enhancing the leakage current of GaN Schottky barrier ultraviolet photodetectors

    International Nuclear Information System (INIS)

    De-Gang, Zhao; Shuang, Zhang; Wen-Bao, Liu; De-Sheng, Jiang; Jian-Jun, Zhu; Zong-Shun, Liu; Hui, Wang; Shu-Ming, Zhang; Hui, Yang; Xiao-Peng, Hao; Long, Wei

    2010-01-01

    The leakage current of GaN Schottky barrier ultraviolet photodetectors is investigated. It is found that the photodetectors adopting undoped GaN instead of lightly Si-doped GaN as an active layer show a much lower leakage current even when they have a higher dislocation density. It is also found that the density of Ga vacancies in undoped GaN is much lower than in Si-doped GaN. The Ga vacancies may enhance tunneling and reduce effective Schottky barrier height, leading to an increase of leakage current. It suggests that when undoped GaN is used as the active layer, it is necessary to reduce the leakage current of GaN Schottky barrier ultraviolet photodetector. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  13. GaN MOSHEMT employing HfO2 as a gate dielectric with partially etched barrier

    Science.gov (United States)

    Han, Kefeng; Zhu, Lin

    2017-09-01

    In order to suppress the gate leakage current of a GaN high electron mobility transistor (GaN HEMT), a GaN metal-oxide-semiconductor high electron mobility transistor (MOSHEMT) is proposed, in which a metal-oxide-semiconductor gate with high-dielectric-constant HfO2 as an insulating dielectric is employed to replace the traditional GaN HEMT Schottky gate. A 0.5 μm gate length GaN MOSHEMT was fabricated based on the proposed structure, the {{{Al}}}0.28{{{Ga}}}0.72{{N}} barrier layer is partially etched to produce a higher transconductance without deteriorating the transport characteristics of the two-dimensional electron gas in the channel, the gate dielectric is HfO2 deposited by atomic layer deposition. Current-voltage characteristics and radio frequency characteristics are obtained after device preparation, the maximum current density of the device is 900 mA mm-1, the source-drain breakdown voltage is 75 V, gate current is significantly suppressed and the forward gate voltage swing range is about ten times higher than traditional GaN HEMTs, the GaN MOSHEMT also demonstrates radio frequency characteristics comparable to traditional GaN HEMTs with the same gate length.

  14. Dominant intrinsic acceptors in GaN and ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Saarinen, K; Hautakangas, S; Tuomisto, F [Laboratory of Physics, Helsinki University of Technology, PO Box 1100, FI-02015 TKK (Finland)

    2006-09-01

    Positron annihilation measurements reveal negatively charged Ga vacancies in n-type GaN and Zn vacancies in n-type ZnO. Positron trapping at other negative defects is not observed, indicating that cation vacancies are the dominant acceptors in these materials. The vacancy concentrations are the same as the total acceptor densities determined in Hall experiments, confirming the dominant role of the vacancy defects. The Ga vacancy in GaN is found as the main compensating centre over the range of four orders of magnitude of intentional oxygen doping.

  15. Dominant intrinsic acceptors in GaN and ZnO

    International Nuclear Information System (INIS)

    Saarinen, K; Hautakangas, S; Tuomisto, F

    2006-01-01

    Positron annihilation measurements reveal negatively charged Ga vacancies in n-type GaN and Zn vacancies in n-type ZnO. Positron trapping at other negative defects is not observed, indicating that cation vacancies are the dominant acceptors in these materials. The vacancy concentrations are the same as the total acceptor densities determined in Hall experiments, confirming the dominant role of the vacancy defects. The Ga vacancy in GaN is found as the main compensating centre over the range of four orders of magnitude of intentional oxygen doping

  16. Gadolinium-Based GaN for Neutron Detection with Gamma Discrimination

    Science.gov (United States)

    2016-06-01

    Gadolinium-Based GaN for Neutron Detection with Gamma Discrimination Distribution Statement A. Approved for public release; distribution is...Final Technical Report BRBAA08-Per5-Y-1-2-0030 Title: “Gadolinium-Based GaN for Neutron Detection with Gamma Discrimination ” Grant...Analysis  .............................................................................................  23   6.   Gamma-ray Discrimination

  17. Growth of GaN nanostructures with polar and semipolar orientations for the fabrication of UV LEDs

    Science.gov (United States)

    Brault, Julien; Damilano, Benjamin; Courville, Aimeric; Leroux, Mathieu; Kahouli, Abdelkarim; Korytov, Maxim; Vennéguès, Philippe; Randazzo, Gaetano; Chenot, Sébastien; Vinter, Borge; De Mierry, Philippe; Massies, Jean; Rosales, Daniel; Bretagnon, Thierry; Gil, Bernard

    2014-03-01

    (Al,Ga)N light emitting diodes (LEDs), emitting over a large spectral range from 360 nm (GaN) down to 210 nm (AlN), have been successfully fabricated over the last decade. Clear advantages compared to the traditional mercury lamp technology (e.g. compactness, low-power operation, lifetime) have been demonstrated. However, LED efficiencies still need to be improved. The main problems are related to the structural quality and the p-type doping efficiency of (Al,Ga)N. Among the current approaches, GaN nanostructures, which confine carriers along both the growth direction and the growth plane, are seen as a solution for improving the radiative recombination efficiency by strongly reducing the impact of surrounding defects. Our approach, based on a 2D - 3D growth mode transition in molecular beam epitaxy, can lead to the spontaneous formation of GaN nanostructures on (Al,Ga)N over a broad range of Al compositions. Furthermore, the versatility of the process makes it possible to fabricate nanostructures on both (0001) oriented "polar" and (11 2 2) oriented "semipolar" materials. We show that the change in the crystal orientation has a strong impact on the morphological and optical properties of the nanostructures. The influence of growth conditions are also investigated by combining microscopy (SEM, TEM) and photoluminescence techniques. Finally, their potential as UV emitters will be discussed and the performances of GaN / (Al,Ga)N nanostructure-based LED demonstrators are presented.

  18. Secondary ion mass spectrometry analysis of In-doped p-type GaN films

    International Nuclear Information System (INIS)

    Chiou, C.Y.; Wang, C.C.; Ling, Y.C.; Chiang, C.I.

    2003-01-01

    SIMS was used to investigate the isoelectronic In-doped p-type GaN films. The growth rate of the p-type GaN film decreased with increasing Mg and In doping. The Mg saturation in GaN was 3.55x10 19 atoms/cm 3 . The role of In as surfactant was evaluated by varying In concentrations and it was observed that the surface appeared smooth with increasing In incorporation. The Mg solubility in p-type GaN improved to 0.0025% molar ratio of the GaN with In incorporation. The In concentration results observed in neutron activation analysis (NAA) were found to be higher by a factor of 2.88 than that observed in SIMS and can be attributed to the difference in sensitivity of the two techniques. Good linearity in the results was observed from both techniques

  19. Understanding the Growth Mechanism of GaN Epitaxial Layers on Mechanically Exfoliated Graphite.

    Science.gov (United States)

    Li, Tianbao; Liu, Chenyang; Zhang, Zhe; Yu, Bin; Dong, Hailiang; Jia, Wei; Jia, Zhigang; Yu, Chunyan; Gan, Lin; Xu, Bingshe; Jiang, Haiwei

    2018-04-27

    The growth mechanism of GaN epitaxial layers on mechanically exfoliated graphite is explained in detail based on classic nucleation theory. The number of defects on the graphite surface can be increased via O-plasma treatment, leading to increased nucleation density on the graphite surface. The addition of elemental Al can effectively improve the nucleation rate, which can promote the formation of dense nucleation layers and the lateral growth of GaN epitaxial layers. The surface morphologies of the nucleation layers, annealed layers and epitaxial layers were characterized by field-emission scanning electron microscopy, where the evolution of the surface morphology coincided with a 3D-to-2D growth mechanism. High-resolution transmission electron microscopy was used to characterize the microstructure of GaN. Fast Fourier transform diffraction patterns showed that cubic phase (zinc-blend structure) GaN grains were obtained using conventional GaN nucleation layers, while the hexagonal phase (wurtzite structure) GaN films were formed using AlGaN nucleation layers. Our work opens new avenues for using highly oriented pyrolytic graphite as a substrate to fabricate transferable optoelectronic devices.

  20. The study of electronic structures and optical properties of Al-doped GaN

    International Nuclear Information System (INIS)

    Li Enling; Hou Liping; Liu Mancang; Xi Meng; Wang Xiqiang; Dai Yuanbin; Li Lisha

    2011-01-01

    The electronic structures and optical properties of undoped and Al-doped GaN (Al x Ga 1-x N, x=0.0625, 0.125, 0.25) have been studied based on generalized gradient approximation (GGA) method of density functional theory (DFT). The differences of the electronic structures and optical properties of undoped and Al-doped GaN have been discussed in detail. The result shows: according to total density of state of undoped and Al-doped GaN, the conduction band becomes width and moves to high energy level with gradual increase concentration of Al impurity. Impurity energy band isn't found in energy band structures of Al x Ga 1-x N, the same as energy band structures of undoped GaN, but the band gaps gradually become wide with increase of Al impurity. Absorption spectra of undoped and Al-doped GaN of main absorption peak moves to high energy level with increase of Al impurity.

  1. Theoretical study for heterojunction surface of NEA GaN photocathode dispensed with Cs activation

    Science.gov (United States)

    Xia, Sihao; Liu, Lei; Wang, Honggang; Wang, Meishan; Kong, Yike

    2016-09-01

    For the disadvantages of conventional negative electron affinity (NEA) GaN photocathodes activated by Cs or Cs/O, new-type NEA GaN photocathodes with heterojunction surface dispensed with Cs activation are investigated based on first-principle study with density functional theory. Through the growth of an ultrathin n-type GaN cap layer on p-type GaN emission layer, a p-n heterojunction is formed on the surface. According to the calculation results, it is found that Si atoms tend to replace Ga atoms to result in an n-type doped cap layer which contributes to the decreasing of work function. After the growth of n-type GaN cap layer, the atom structure near the p-type emission layer is changed while that away from the surface has no obvious variations. By analyzing the E-Mulliken charge distribution of emission surface with and without cap layer, it is found that the positive charge of Ga and Mg atoms in the emission layer decrease caused by the cap layer, while the negative charge of N atom increases. The conduction band moves downwards after the growth of cap layer. Si atom produces donor levels around the valence band maximum. The absorption coefficient of GaN emission layer decreases and the reflectivity increases caused by n-type GaN cap layer.

  2. The origins and properties of intrinsic nonradiative recombination centers in wide bandgap GaN and AlGaN

    Science.gov (United States)

    Chichibu, S. F.; Uedono, A.; Kojima, K.; Ikeda, H.; Fujito, K.; Takashima, S.; Edo, M.; Ueno, K.; Ishibashi, S.

    2018-04-01

    The nonradiative lifetime (τNR) of the near-band-edge emission in various quality GaN samples is compared with the results of positron annihilation measurement, in order to identify the origin and to determine the capture-cross-section of the major intrinsic nonradiative recombination centers (NRCs). The room-temperature τNR of various n-type GaN samples increased with decreasing the concentration of divacancies composed of a Ga vacancy (VGa) and a N vacancy (VN), namely, VGaVN. The τNR value also increased with increasing the diffusion length of positrons, which is almost proportional to the inverse third root of the gross concentration of all point defects. The results indicate that major intrinsic NRC in n-type GaN is VGaVN. From the relationship between its concentration and τNR, its hole capture-cross-section is estimated to be about 7 × 10-14 cm2. Different from the case of 4H-SiC, the major NRCs in p-type and n-type GaN are different: the major NRCs in Mg-doped p-type GaN epilayers are assigned to multiple vacancies containing a VGa and two (or three) VNs, namely, VGa(VN)n (n = 2 or 3). The ion-implanted Mg-doped GaN films are found to contain larger size vacancy complexes such as (VGa)3(VN)3. In analogy with GaN, major NRCs in Al0.6Ga0.4N alloys are assigned to vacancy complexes containing an Al vacancy or a VGa.

  3. Integrated GaN photonic circuits on silicon (100) for second harmonic generation

    OpenAIRE

    Xiong, Chi; Pernice, Wolfram; Ryu, Kevin K.; Schuck, Carsten; Fong, King Y.; Palacios, Tomas; Tang, Hong X.

    2014-01-01

    We demonstrate second order optical nonlinearity in a silicon architecture through heterogeneous integration of single-crystalline gallium nitride (GaN) on silicon (100) substrates. By engineering GaN microrings for dual resonance around 1560 nm and 780 nm, we achieve efficient, tunable second harmonic generation at 780 nm. The \\{chi}(2) nonlinear susceptibility is measured to be as high as 16 plus minus 7 pm/V. Because GaN has a wideband transparency window covering ultraviolet, visible and ...

  4. Studies on electronic structure of GaN(0001) surface

    CERN Document Server

    Xie Chang Kun; Xu Fa Qiang; Deng Rui; Liu Feng; Yibulaxin, K

    2002-01-01

    An electronic structure investigation on GaN(0001) is reported. The authors employ a full-potential linearized augmented plane-wave (FPLAPW) approach to calculate the partial density of state, which is in agreement with previous experimental results. The effects of the Ga3d semi-core levels on the electronic structure of GaN are discussed. The valence-electronic structure of the wurtzite GaN(0001) surface is investigated using synchrotron radiation excited angle-resolved photoemission spectroscopy. The bulk bands dispersion along GAMMA A direction in the Brillouin zones is measured using normal-emission spectra by changing photon-energy. The band structure derived from authors' experimental data is compared well with the results of authors' FPLAPW calculation. Furthermore, off-normal emission spectra are also measured along the GAMMA K and GAMMA M directions. Two surface states are identified, and their dispersions are characterized

  5. Morphological and luminescent characteristics of GaN dots deposited on AlN by alternate supply of TMG and NH3

    International Nuclear Information System (INIS)

    Tsai, Y.-L.; Gong, J.-R.; Lin, T.-Y.; Lin, H.-Y.; Chen, Yang-Fang; Lin, K.-M.

    2006-01-01

    GaN dots were deposited on AlN underlayers by alternate supply of trimethylgallium (TMG) and ammonia (NH 3 ) in an inductively heated quartz reactor operated at atmospheric pressure. Various growth parameters including deposition temperature, TMG admittance and pulse time between TMG and NH 3 exposures were proposed to investigate the influence of growth parameters on the size distribution of GaN dots. It appears that GaN dots with uniform size distribution can be achieved under certain growth conditions. Based on the study of atomic force microscopy (AFM), high deposition temperature was found to be in favor of forming large GaN dots with small dot density. Decrement of TMG flow rate or reduction in the number of growth cycle tends to enable the formation of GaN dots with small dot sizes. The results of room temperature (RT) cathodoluminescence (CL) measurements of the GaN dots exhibit an emission peak at 3.735 eV. A remarkable blue shift of GaN dot emission was observed by reduced temperature photoluminescence (PL) measurements

  6. Effect of H, O intentionally doping on photoelectric properties in MOVPE-growth GaN layers

    KAUST Repository

    Ohkawa, Kazuhiro

    2017-10-24

    GaN crystal growth requires higher purity of materials. Some contaminants in NH3 gas could be the causal factor of defects in GaN crystals. These atoms act as donor or acceptor. In order to clearly demonstrate the effect of gaseous impurities such as H2O on the properties of undoped-GaN layer, high purity NH3 (N70) was used as NH3 source. The concentration of H2O in NH3 was varied at 32, 49, 75, 142, 266, 489, and 899 ppb, respectively. Under the same recipe, we deposited undoped-GaN epitaxial layer with purifier, and H2O-doped GaN series layers. As similar to the results of CO and CO2-doped GaN series, the increase tendency of carrier density changing with increasing H2O concentration. The FWHMs of XRC around (0002) remain stable, witnessing that the crystal quality of GaN layer remain good. LT (15K) PL of undoped-GaN and H2O-doped GaN were measured, the D0X emission peak intensity of all H2O-doped GaN are decreased drastically compared with undoped-GaN. H2O impurity was doped into GaN layer, which not only effects electrical properties and but also effects the radiative emission and furthermore effects PL intensity, its mechanism is discussed.

  7. Spatially and spectrally resolved photoluminescence of InGaN MQWs grown on highly Si doped a-plane GaN buffer

    Energy Technology Data Exchange (ETDEWEB)

    Thunert, Martin; Wieneke, Matthias; Dempewolf, Anja; Bertram, Frank; Dadgar, Armin; Krost, Alois; Christen, Juergen [Institute of Experimental Physics, Otto-von-Guericke-University Magdeburg (Germany)

    2011-07-01

    A set of InGaN multi quantum well (MQW) samples grown by MOVPE on highly Si doped a-plane GaN on r-plane sapphire templates has been investigated using spatially resolved photoluminescence spectroscopy ({mu}-PL). The Si doping level of nominal about 10{sup 20} cm{sup -3} leads to three dimensionally grown crystallites mostly terminated by m-facets. The MQW thickness has been systematically varied from nominally 2.1 to 4.2 nm, as well as the InGaN growth temperature, which was varied from 760 C to 700 C. The growth of a-plane GaN based devices leads to a non-polar growth direction avoiding the polarization field affected Quantum-Confined-Stark-Effect. Spatially resolved PL studies show for all samples low near band edge (NBE) GaN emission intensity over the whole area under investigation accompanied by highly intense InGaN MQW emission for single crystallites. The MQW luminescence shows a systematic blueshift with increasing InGaN growth temperature due to lower In incorporation as well as a systematic redshift with increasing MQW thickness. Excitation power dependent spectra at 4 K as well as temperature dependent PL spectra will be presented.

  8. Real time spectroscopic ellipsometry investigation of homoepitaxial GaN grown by plasma assisted molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tong-Ho; Choi, Soojeong; Wu, Pae; Brown, April [Department of Electrical and Computer Engineering, Duke University, 128 Hudson Hall, Durham, NC (United States); Losurdo, Maria; Giangregorio, Maria M.; Bruno, Giovanni [Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR and INSTM UdR Bari, via Orabona, 4, 70126 Bari (Italy); Moto, Akihiro [Innovation Core SEI, Inc., 3235 Kifer Road, Santa Clara, CA 95051 (United States)

    2006-06-15

    The growth of GaN by plasma assisted molecular beam epitaxy on GaN template substrates (GaN on sapphire) is investigated with in-situ multi-channel spectroscopic ellipsometry. Growth is performed under various Ga/N flux ratios at growth temperatures in the range 710-780 C. The thermal roughening of the GaN template caused by decomposition of the surface is investigated through the temporal variation of the GaN pseudodielectric function over the temperature range of 650 C to 850 C. The structural, morphological, and optical properties are also discussed. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Structural and optical properties of Si-doped GaN

    OpenAIRE

    Cremades Rodríguez, Ana Isabel; Gorgens, L.; Ambacher, O.; Stutzmann, M.; Scholz, F.

    2000-01-01

    Structural and optical properties of Si-doped GaN thin films grown by metal-organic chemical vapor deposition have been studied by means of high resolution x-ray diffraction (XRD), atomic force microscopy, photoluminescence, photothermal deflection spectroscopy, and optical transmission measurements. The incorporation of silicon in the GaN films leads to pronounced tensile stress. The energy position of the neutral donor bound excitonic emission correlates with the measured stress. The stress...

  10. Insulating gallium oxide layer produced by thermal oxidation of gallium-polar GaN: Insulating gallium oxide layer produced by thermal oxidation of gallium-polar GaN

    Energy Technology Data Exchange (ETDEWEB)

    Hossain, T. [Kansas State Univ., Manhattan, KS (United States); Wei, D. [Kansas State Univ., Manhattan, KS (United States); Nepal, N. [Naval Research Lab. (NRL), Washington, DC (United States); Garces, N. Y. [Naval Research Lab. (NRL), Washington, DC (United States); Hite, J. K. [Naval Research Lab. (NRL), Washington, DC (United States); Meyer, H. M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Eddy, C. R. [Naval Research Lab. (NRL), Washington, DC (United States); Baker, Troy [Nitride Solutions, Wichita, KS (United States); Mayo, Ashley [Nitride Solutions, Wichita, KS (United States); Schmitt, Jason [Nitride Solutions, Wichita, KS (United States); Edgar, J. H. [Kansas State Univ., Manhattan, KS (United States)

    2014-02-24

    We report the benefits of dry oxidation of n -GaN for the fabrication of metal-oxide-semiconductor structures. GaN thin films grown on sapphire by MOCVD were thermally oxidized for 30, 45 and 60 minutes in a pure oxygen atmosphere at 850 °C to produce thin, smooth GaOx layers. Moreover, the GaN sample oxidized for 30 minutes had the best properties. Its surface roughness (0.595 nm) as measured by atomic force microscopy (AFM) was the lowest. Capacitance-voltage measurements showed it had the best saturation in accumulation region and the sharpest transition from accumulation to depletion regions. Under gate voltage sweep, capacitance-voltage hysteresis was completely absent. The interface trap density was minimum (Dit = 2.75×1010 cm–2eV–1) for sample oxidized for 30 mins. These results demonstrate a high quality GaOx layer is beneficial for GaN MOSFETs.

  11. Light Modulation and Water Splitting Enhancement Using a Composite Porous GaN Structure.

    Science.gov (United States)

    Yang, Chao; Xi, Xin; Yu, Zhiguo; Cao, Haicheng; Li, Jing; Lin, Shan; Ma, Zhanhong; Zhao, Lixia

    2018-02-14

    On the basis of the laterally porous GaN, we designed and fabricated a composite porous GaN structure with both well-ordered lateral and vertical holes. Compared to the plane GaN, the composite porous GaN structure with the combination of the vertical holes can help to reduce UV reflectance and increase the saturation photocurrent during water splitting by a factor of ∼4.5. Furthermore, we investigated the underlying mechanism for the enhancement of the water splitting performance using a finite-difference time-domain method. The results show that the well-ordered vertical holes can not only help to open the embedded pore channels to the electrolyte at both sides and reduce the migration distance of the gas bubbles during the water splitting reactions but also help to modulate the light field. Using this composite porous GaN structure, most of the incident light can be modulated and trapped into the nanoholes, and thus the electric fields localized in the lateral pores can increase dramatically as a result of the strong optical coupling. Our findings pave a new way to develop GaN photoelectrodes for highly efficient solar water splitting.

  12. A density functional theory study of the TMG adsorption on the GaN surface

    Energy Technology Data Exchange (ETDEWEB)

    Ptasinska, Maria; Soltys, Jakub; Piechota, Jacek [Interdisciplinary Centre for Materials Modelling, University of Warsaw, ul. Pawinskiego 5a, 02-106 Warszawa (Poland); Krukowski, Stanislaw [Interdisciplinary Centre for Materials Modelling, University of Warsaw, ul. Pawinskiego 5a, 02-106 Warszawa (Poland); Institute of High Pressure Physics, Polish Academy of Sciences, ul. Sokolowska 29/37, 01-142 Warsaw (Poland)

    2011-07-01

    TMG (trimetylogallium) and NH{sub 3} (ammonia) are widely used reactants in the metal organic chemical vapor deposition (MOCVD) technique used in the growth of the GaN thin films. We have recently examined theoretically, with the help of the density functional theory (DFT), TMG adsorption on the GaN(0001) surface in order to study formation of bonds between Ga and N. Dangling bonds on the GaN(0001) surface were saturated with the hydrogen atoms. The slab polarization, which is due to the dangling bonds present on the GaN(0001) surface, and energy of the system in the vicinity of TMG was computed for different distances between the surface atoms and TMG. We also studied TMG diffusion on the GaN surface. As a result, the energy path for diffusion from Top N to Hollow was obtained.

  13. Gate less-FET pH Sensor Fabricated on Undoped AlGaN/ GaN HEMT Structure

    International Nuclear Information System (INIS)

    Maneea Eizadi Sharifabad; Mastura Shafinaz Zainal Abidin; Shaharin Fadzli Abd Rahman; Abdul Manaf Hashim; Abdul Rahim Abdul Rahman

    2011-01-01

    Gallium nitride with wurtzite crystal structure is a chemically stable semiconductor with high internal spontaneous and piezoelectric polarization, which make it highly suitable materials to create very sensitive and robust sensors for the detection of ions, gases and liquids. Sensing characteristics of an open-gate liquid-phase sensor fabricated on undoped-AlGaN/ GaN high-electron-mobility-transistor (HEMT) structure in aqueous solution was investigated. In ambient atmosphere, the open-gate undoped AlGaN/ GaN HEMT clearly showed only the presence of linear region of currents while Si-doped AlGaN/ GaN showed the linear and saturation regions of currents, very similar to those of gated devices. This seems to show that very low Fermi level pinning by surface states exists in undoped AlGaN/ GaN sample. In aqueous solution, the typical current-voltage (I-V) characteristics of HEMTs with good gate controllability were observed. The potential of the AlGaN surface at the open-gate area is effectively controlled via aqueous solution by Ag/ AgCl reference gate electrode. The open-gate undoped AlGaN/ GaN HEMT structure is capable of stable operation in aqueous electrolytes and exhibit linear sensitivity, and high sensitivity of 1.9 mA/ pH or 3.88 mA/ mm/ pH at drain-source voltage, VDS = 5 V was obtained. Due to large leakage current where it increases with the negative reference gate voltage, the Nernstians like sensitivity cannot be determined. Suppression of current leakage is likely to improve the device performance. The open-gate undoped-AlGaN/ GaN structure is expected to be suitable for pH sensing application. (author)

  14. Growth of GaN on Sapphire via Low-Temperature Deposited Buffer Layer and Realization of p-Type GaN by Mg Doping Followed by Low-Energy Electron Beam Irradiation

    Science.gov (United States)

    Amano, Hiroshi

    2015-12-01

    This is a personal history of one of the Japanese researchers engaged in developing a method for growing GaN on a sapphire substrate, paving the way for the realization of smart television and display systems using blue LEDs. The most important work was done in the mid- to late 80s. The background to the author's work and the process by which the technology enabling the growth of GaN and the realization of p-type GaN was established are reviewed.

  15. In-situ measurement of the strain relaxation of GaN nanograins during X-ray irradiation

    International Nuclear Information System (INIS)

    Choe, Hyeokmin; Lee, Sanghwa; Sohn, Yuri; Kim, Chinkyo

    2008-01-01

    GaN nanograins were grown on a c-plane sapphire substrate and their strain relaxation due to X-ray irradiation was investigated in-situ by utilizing synchrotron xray scattering. The GaN nanograins were constantly exposed to the synchrotron X-ray and θ-2θ scans through the (002) Bragg peak of GaN were repeatedly carried out during the irradiation. The Bragg peak of the compressively strained GaN nanograins gradually shifted toward higher angle, which implies that the GaN nanograins in compressive strain experienced strain relaxation during X-ray irradiation. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Partially filled intermediate band of Cr-doped GaN films

    International Nuclear Information System (INIS)

    Sonoda, S.

    2012-01-01

    We investigated the band structure of sputtered Cr-doped GaN (GaCrN) films using optical absorption, photoelectron yield spectroscopy, and charge transport measurements. It was found that an additional energy band is formed in the intrinsic band gap of GaN upon Cr doping, and that charge carriers in the material move in the inserted band. Prototype solar cells showed enhanced short circuit current and open circuit voltage in the n-GaN/GaCrN/p-GaN structure compared to the GaCrN/p-GaN structure, which validates the proposed concept of an intermediate-band solar cell.

  17. Optical and Structural Characterizations of GaN Nano structures

    International Nuclear Information System (INIS)

    Shekari, L.; Abu Hassan, H.; Thahab, S.M.

    2011-01-01

    We have grown wurtzite GaN nano wires (NWs) on polished silicon (Si) either with or without Au as catalyst, using commercial GaN powder by thermal evaporation in an atmosphere of argon (Ar) gas. Structural and optical characterizations were performed using high resolution X-ray diffraction (HR-XRD), scanning electron microscopy (SEM), photoluminescence (PL) and energy-dispersive X-ray spectroscopy (EDX) spectroscopy. Results indicate that the nano wires are of single-crystal hexagonal GaN and the nano wires on Si with Au catalyst are more oriented than those without Au catalyst; and using catalyst make the NWs grow much faster and quite well-ordered. The compositional quality of the grown nano wires on the substrates are mostly same, however the nano wires on the Au coated silicon are of low density, while the nano wires on the Si are of high density. (author)

  18. Rare earth point defects in GaN

    Energy Technology Data Exchange (ETDEWEB)

    Sanna, S.

    2007-12-14

    In this work we investigate rare earth doped GaN, by means of theoretical simulations. The huge unit cells necessary to model the experimental system, where dilute amount of rare earth ions are used, are handled with the charge self consistent density-functional based-tight binding (SCC-DFTB) calculational scheme. The method has been extended to include LDA+U and simplified self interaction corrected (SIC)-like potentials for the simulation of systems with localised and strongly correlated electrons. A set of tight-binding parameters has been created to model the interaction of GaN with some dopants, including a selection of lanthanide ions interesting due to their optical or magnetic properties (Pr, Eu, Gd, Er and Tm). The f-electrons were treated as valence electrons. A qualitatively correct description of the band gap is crucial for the simulation of rare earth doped GaN, because the luminescence intensity of the implanted samples depends on the size of the host band gap and because the rare earths could introduce charge transition levels near the conduction band. In this work these levels are calculated with the Slater-Janak (SJ) transition state model, which allows an approximate calculation of the charge transition levels by analysing the Kohn-Sham eigenvalues of the DFT. (orig.)

  19. Conduction, reverse conduction and switching characteristics of GaN E-HEMT

    DEFF Research Database (Denmark)

    Sørensen, Charlie; Lindblad Fogsgaard, Martin; Christiansen, Michael Noe

    2015-01-01

    In this paper switching and conduction characterization of the GS66508P-E03 650V enhancement mode gallium nitride (GaN) transistor is described. GaN transistors are leading edge technology and as so, their characteristics are less than well documented. The switching characteristics are found using...

  20. MOVPE growth of position-controlled InGaN / GaN core-shell nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Mandl, Martin [Osram Opto Semiconductors GmbH, Regensburg (Germany); Institut fuer Halbleitertechnik, TU Braunschweig (Germany); Schimpke, Tilman; Binder, Michael; Galler, Bastian; Lugauer, Hans-Juergen; Strassburg, Martin [Osram Opto Semiconductors GmbH, Regensburg (Germany); Wang, Xue; Ledig, Johannes; Ehrenburg, Milena; Wehmann, Hergo-Heinrich; Waag, Andreas [Institut fuer Halbleitertechnik, TU Braunschweig (Germany); Kong, Xiang; Trampert, Achim [Paul-Drude-Institut fuer Festkoerperelektronik, Berlin (Germany)

    2013-07-01

    Core-shell group III-nitride nano- and microrods (NAMs) enable a significant increase of the active layer area by exploiting the non-polar side facets (m-planes) and thus can potentially contribute to mitigating the so-called efficiency droop in LEDs. GaN NAMs exhibiting high aspect ratios were grown in a production-type MOVPE system. Low V/III ratio, hydrogen-rich carrier gas mixture and surfactants supported the 3D growth of the pencil-shape n-type GaN core. Desired narrow distributions of shape, diameter and height were achieved. The arrangement of the NAMs was controlled by patterns etched into SiO{sub 2} masks deposited on GaN templates. The active layer (InGaN/GaN SQW and MQWs) and the layer for the p-side were deposited with 2D-like conditions wrapped around the core. The crystalline quality of the NAMs, shell growth rates and the Indium distribution were investigated by high resolution transmission electron microscopy. Furthermore, optical emission was studied using density-dependent photoluminescence spectroscopy.

  1. Epitaxial Gd2O3 on GaN and AlGaN: a potential candidate for metal oxide semiconductor based transistors on Si for high power application

    Science.gov (United States)

    Ghosh, Kankat; Das, S.; Khiangte, K. R.; Choudhury, N.; Laha, Apurba

    2017-11-01

    We report structural and electrical properties of hexagonal Gd2O3 grown epitaxially on GaN/Si (1 1 1) and AlGaN/GaN/Si(1 1 1) virtual substrates. GaN and AlGaN/GaN heterostructures were grown on Si(1 1 1) substrates by plasma assisted molecular beam epitaxy (PA-MBE), whereas the Gd2O3 layer was grown by the pulsed laser ablation (PLA) technique. Initial structural characterizations show that Gd2O3 grown on III-nitride layers by PLA, exhibit a hexagonal structure with an epitaxial relationship as {{≤ft[ 0 0 0 1 \\right]}G{{d2}{{O}3}}}||{{≤ft[ 0 0 0 1 \\right]}GaN} and {{≤ft[ 1 \\bar{1} 0 0 \\right]}G{{d2}{{O}3}}}||{{≤ft[ 1 \\bar{1} 0 0 \\right]}GaN} . X-ray photoelectron measurements of the valence bands revealed that Gd2O3 exhibits band offsets of 0.97 eV and 0.4 eV, for GaN and Al0.3Ga0.7N, respectively. Electrical measurements such as capacitance-voltage and leakage current characteristics further confirm that epi-Gd2O3 on III-nitrides could be a potential candidate for future metal-oxide-semiconductor (MOS)-based transistors also for high power applications in radio frequency range.

  2. Growth mechanism of InGaN nanodots on three-dimensional GaN structures

    Energy Technology Data Exchange (ETDEWEB)

    Park, Donghwy; Min, Daehong; Nam, Okhyun [Department of Nano-Optical Engineering, Convergence Center for Advanced Nano-Semiconductor (CANS), Korea Polytechnic University (KPU), Siheung-si, Gyeonggi-do (Korea, Republic of)

    2017-07-15

    In this study, we investigated the growth mechanism of indium gallium nitride (InGaN) nanodots (NDs) and an InGaN layer, which were simultaneously formed on a three-dimensional (3D) gallium nitride (GaN) structure, having (0001) polar, (11-22) semi-polar, and (11-20) nonpolar facets. We observed the difference in the morphological and compositional properties of the InGaN structures. From the high resolution transmission electron microscopy (HR-TEM) images, it can be seen that the InGaN NDs were formed only on the polar and nonpolar facets, whereas an InGaN layer was formed on the semi-polar facet. The indium composition variation in all the InGaN structures was observed using scanning transmission electron microscopy (STEM) and the energy dispersive X-ray spectroscopy (EDS). The different growth mechanism can be explained by two reasons: (i) The difference in the diffusivities of indium and gallium adatoms at each facet of 3D GaN structure; and (ii) the difference in the kinetic Wulff plots of polar, semi-polar, and nonpolar GaN planes. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Evidence for moving of threading dislocations during the VPE growth in GaN thin layers

    Energy Technology Data Exchange (ETDEWEB)

    Kuwano, Noriyuki [Art, Science and Technology Center for Cooperative Research, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan); Department of Applied Science for Electronics and Materials, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan); Miyake, Hideto; Hiramatsu, Kazumasa [Department of Electrical and Electronic Engineering, Mie University, Tsu, Mie 514-8507 (Japan); Amano, Hiroshi [Graduate School of Engineering, Akasaki Research Center, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603 (Japan); Akasaki, Isamu [Faculty of Science and Technology, Meijo University, 1-501 Shiogamaguchi, Tempaku, Nagoya 468-8502 (Japan)

    2011-05-15

    Cross-sectional transmission electron microscope (TEM) observation was performed in detail to analyze the morphology of threading dislocations (TDs) in GaN thin layers with various thicknesses. The GaN layers were overgrown on an Al{sub 0.28}Ga{sub 0.72}N layer by the metal-organic vapor-phase epitaxy (MOVPE) method. In a GaN layer about 50 nm in thickness, TDs running up in the AlGaN layer pass into the GaN layer and most of them reach the top surface without bending. In thicker GaN layers, on the other hand, many of TDs form a hairpin-configuration on or above the interface of GaN and AlGaN to be annihilated. This difference in morphology of TDs indicates that the TDs have moved down inside the GaN layer. Since the formation of hairpins is attributed to a stress-relief, there should be an extra half-plane between the paired TDs. Therefore, the movement of TDs should be of ''climb motion''. Another example of possible TD movement inside a GaN layer is also described. It is emphasized that the possibility of TD-movements inside the thin film crystal during the growth should be taken into account in analysis of thin-layer growth through the behavior of TDs (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Morphological and luminescent characteristics of GaN dots deposited on AlN by alternate supply of TMG and NH{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Y.-L. [Department of Materials Science and Engineering, Feng Chia University, Taichung 407, Taiwan (China); Gong, J.-R. [Institute of Opto-Mechatronics, National Chung Cheng University, Chiayi 621, Taiwan (China); Lin, T.-Y. [Institute of Optoelectronic Sciences, National Taiwan Ocean University, Keelung 202, Taiwan (China); Lin, H.-Y. [Department of Physics, National Taiwan University, Taipei 106, Taiwan (China); Chen, Yang-Fang [Department of Physics, National Taiwan University, Taipei 106, Taiwan (China); Lin, K.-M. [Department of Materials Science and Engineering, Feng Chia University, Taichung 407, Taiwan (China)

    2006-03-15

    GaN dots were deposited on AlN underlayers by alternate supply of trimethylgallium (TMG) and ammonia (NH{sub 3}) in an inductively heated quartz reactor operated at atmospheric pressure. Various growth parameters including deposition temperature, TMG admittance and pulse time between TMG and NH{sub 3} exposures were proposed to investigate the influence of growth parameters on the size distribution of GaN dots. It appears that GaN dots with uniform size distribution can be achieved under certain growth conditions. Based on the study of atomic force microscopy (AFM), high deposition temperature was found to be in favor of forming large GaN dots with small dot density. Decrement of TMG flow rate or reduction in the number of growth cycle tends to enable the formation of GaN dots with small dot sizes. The results of room temperature (RT) cathodoluminescence (CL) measurements of the GaN dots exhibit an emission peak at 3.735 eV. A remarkable blue shift of GaN dot emission was observed by reduced temperature photoluminescence (PL) measurements.

  5. A High-Voltage Low-Power Switched-Capacitor DC-DC Converter Based on GaN and SiC Devices for LED Drivers

    DEFF Research Database (Denmark)

    Fan, Lin; Knott, Arnold; Jørgensen, Ivan Harald Holger

    2018-01-01

    Previous research on switched-capacitor DC-DC converters has focused on low-voltage and/or high-power ranges where the efficiencies are dominated by conduction loss. Switched-capacitor DC-DC converters at high-voltage (> 100 V) low-power (high efficiency and high power density...... are anticipated to emerge. This paper presents a switched-capacitor converter with an input voltage up to 380 V (compatible with rectified European mains) and a maximum output power of 10 W. GaN switches and SiC diodes are analytically compared and actively combined to properly address the challenges at high......-voltage low-current levels, where switching loss becomes significant. Further trade-off between conduction loss and switching loss is experimentally optimized with switching frequencies. Three variant designs of the proposed converter are implemented, and the trade-off between the efficiency and the power...

  6. First-principle natural band alignment of GaN / dilute-As GaNAs alloy

    Directory of Open Access Journals (Sweden)

    Chee-Keong Tan

    2015-01-01

    Full Text Available Density functional theory (DFT calculations with the local density approximation (LDA functional are employed to investigate the band alignment of dilute-As GaNAs alloys with respect to the GaN alloy. Conduction and valence band positions of dilute-As GaNAs alloy with respect to the GaN alloy on an absolute energy scale are determined from the combination of bulk and surface DFT calculations. The resulting GaN / GaNAs conduction to valence band offset ratio is found as approximately 5:95. Our theoretical finding is in good agreement with experimental observation, indicating the upward movements of valence band at low-As content dilute-As GaNAs are mainly responsible for the drastic reduction of the GaN energy band gap. In addition, type-I band alignment of GaN / GaNAs is suggested as a reasonable approach for future device implementation with dilute-As GaNAs quantum well, and possible type-II quantum well active region can be formed by using InGaN / dilute-As GaNAs heterostructure.

  7. Nonpolar a-plane GaN grown on r-plane sapphire using multilayer AlN buffer by metalorganic chemical vapor deposition

    International Nuclear Information System (INIS)

    Chiang, C.H.; Chen, K.M.; Wu, Y.H.; Yeh, Y.S.; Lee, W.I.; Chen, J.F.; Lin, K.L.; Hsiao, Y.L.; Huang, W.C.; Chang, E.Y.

    2011-01-01

    Mirror-like and pit-free non-polar a-plane (1 1 -2 0) GaN films are grown on r-plane (1 -1 0 2) sapphire substrates using metalorganic chemical vapor deposition (MOCVD) with multilayer high-low-high temperature AlN buffer layers. The buffer layer structure and film quality are essential to the growth of a flat, crack-free and pit-free a-plane GaN film. The multilayer AlN buffer structure includes a thin low-temperature-deposited AlN (LT-AlN) layer inserted into the high-temperature-deposited AlN (HT-AlN) layer. The results demonstrate that the multilayer AlN buffer structure can improve the surface morphology of the upper a-plane GaN film. The grown multilayer AlN buffer structure reduced the tensile stress on the AlN buffer layers and increased the compressive stress on the a-plane GaN film. The multilayer AlN buffer structure markedly improves the surface morphology of the a-plane GaN film, as revealed by scanning electron microscopy. The effects of various growth V/III ratios was investigated to obtain a-plane GaN films with better surface morphology. The mean roughness of the surface was 1.02 nm, as revealed by atomic force microscopy. Accordingly, the multilayer AlN buffer structure improves the surface morphology and facilitates the complete coalescence of the a-plane GaN layer.

  8. Performance Analysis of GaN Capping Layer Thickness on GaN/AlGaN/GaN High Electron Mobility Transistors.

    Science.gov (United States)

    Sharma, N; Periasamy, C; Chaturvedi, N

    2018-07-01

    In this paper, we present an investigation of the impact of GaN capping layer and AlGaN layer thickness on the two-dimensional (2D)-electron mobility and the carrier concentration which was formed close to the AlGaN/GaN buffer layer for Al0.25Ga0.75N/GaN and GaN/Al0.25Ga0.75N/GaN heterostructures deposited on sapphire substrates. The results of our analysis clearly indicate that expanding the GaN capping layer thickness from 1 nm to 100 nm prompts an increment in the electron concentration at hetero interface. As consequence of which drain current was additionally increments with GaN cap layer thicknesses, and eventually saturates at approximately 1.85 A/mm for capping layer thickness greater than 40 nm. Interestingly, for the same structure, the 2D-electron mobility, decrease monotonically with GaN capping layer thickness, and saturate at approximately 830 cm2/Vs for capping layer thickness greater than 50 nm. A device with a GaN cap layer didn't exhibit gate leakage current. Furthermore, it was observed that the carrier concentration was first decrease 1.03 × 1019/cm3 to 6.65 × 1018/cm3 with AlGaN Layer thickness from 5 to 10 nm and after that it increases with the AlGaN layer thickness from 10 to 30 nm. The same trend was followed for electric field distributions. Electron mobility decreases monotonically with AlGaN layer thickness. Highest electron mobility 1354 cm2/Vs were recorded for the AlGaN layer thickness of 5 nm. Results obtained are in good agreement with published experimental data.

  9. Stress engineering in GaN structures grown on Si(111) substrates by SiN masking layer application

    Energy Technology Data Exchange (ETDEWEB)

    Szymański, Tomasz, E-mail: tomasz.szymanski@pwr.edu.pl; Wośko, Mateusz; Paszkiewicz, Bogdan; Paszkiewicz, Regina [The Faculty of Microsystem Electronics and Photonics, Wrocaw University of Technology, Janiszewskiego 11/17, 50-372 Wroclaw (Poland); Drzik, Milan [International Laser Center, Ilkovicova 3, 841-04 Bratislava 4 (Slovakia)

    2015-07-15

    GaN layers without and with an in-situ SiN mask were grown by using metal organic vapor phase epitaxy for three different approaches used in GaN on silicon(111) growth, and the physical and optical properties of the GaN layers were studied. For each approach applied, GaN layers of 1.4 μm total thickness were grown, using silan SiH{sub 4} as Si source in order to grow Si{sub x}N{sub x} masking layer. The optical micrographs, scanning electron microscope images, and atomic force microscope images of the grown samples revealed cracks for samples without SiN mask, and micropits, which were characteristic for the samples grown with SiN mask. In situ reflectance signal traces were studied showing a decrease of layer coalescence time and higher degree of 3D growth mode for samples with SiN masking layer. Stress measurements were conducted by two methods—by recording micro-Raman spectra and ex-situ curvature radius measurement—additionally PLs spectra were obtained revealing blueshift of PL peak positions with increasing stress. The authors have shown that a SiN mask significantly improves physical and optical properties of GaN multilayer systems reducing stress in comparison to samples grown applying the same approaches but without SiN masking layer.

  10. Design of a new two-dimensional diluted magnetic semiconductor: Mn-doped GaN monolayer

    International Nuclear Information System (INIS)

    Zhao, Qian; Xiong, Zhihua; Luo, Lan; Sun, Zhenhui; Qin, Zhenzhen; Chen, Lanli; Wu, Ning

    2017-01-01

    Highlights: • It is found nonmagnetic GaN ML exhibits half-metallic FM behavior by Mn doping due to double exchange mechanism. • Interestingly, the FM coupling is enhanced with the increasing tensile strain due to stronger interaction between Mn-3d and N-2p state. • While, the FM interaction is weakened with the increasing compressive strain until it transforms into AFM under strain of −9.5%. • These results provide a feasible approach for the fabrication of 2D DMS based GaN ML. - Abstract: To meet the need of low-dimensional spintronic devices, we investigate the electronic structure and magnetic properties of Mn-doped GaN monolayer using first-principles method. We find the nonmagnetic GaN monolayer exhibits half-metallic ferromagnetism by Mn doping due to double-exchange mechanism. Interestingly, the ferromagnetic coupling in Mn-doped GaN monolayer is enhanced with tensile strain and weakened with compressive strain. What is more, the ferromagnetic–antiferromagnetic transformation occurs under compressive strain of −9.5%. These results provide a feasible approach for fabrication of a new GaN monolayer based diluted magnetic semiconductor.

  11. Design of a new two-dimensional diluted magnetic semiconductor: Mn-doped GaN monolayer

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Qian [Key Laboratory for Optoelectronics and Communication of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang 330038 (China); Materials Genome Institute, Shanghai University, Shanghai 200444 (China); Xiong, Zhihua, E-mail: xiong_zhihua@126.com [Key Laboratory for Optoelectronics and Communication of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang 330038 (China); Luo, Lan [School of Materials Science and Engineering, Nanchang University, Nanchang 330031 (China); Sun, Zhenhui [Key Laboratory for Optoelectronics and Communication of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang 330038 (China); Qin, Zhenzhen [College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071 (China); Chen, Lanli [Materials Genome Institute, Shanghai University, Shanghai 200444 (China); Wu, Ning [Key Laboratory for Optoelectronics and Communication of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang 330038 (China)

    2017-02-28

    Highlights: • It is found nonmagnetic GaN ML exhibits half-metallic FM behavior by Mn doping due to double exchange mechanism. • Interestingly, the FM coupling is enhanced with the increasing tensile strain due to stronger interaction between Mn-3d and N-2p state. • While, the FM interaction is weakened with the increasing compressive strain until it transforms into AFM under strain of −9.5%. • These results provide a feasible approach for the fabrication of 2D DMS based GaN ML. - Abstract: To meet the need of low-dimensional spintronic devices, we investigate the electronic structure and magnetic properties of Mn-doped GaN monolayer using first-principles method. We find the nonmagnetic GaN monolayer exhibits half-metallic ferromagnetism by Mn doping due to double-exchange mechanism. Interestingly, the ferromagnetic coupling in Mn-doped GaN monolayer is enhanced with tensile strain and weakened with compressive strain. What is more, the ferromagnetic–antiferromagnetic transformation occurs under compressive strain of −9.5%. These results provide a feasible approach for fabrication of a new GaN monolayer based diluted magnetic semiconductor.

  12. Simultaneous measurement of temperature, stress, and electric field in GaN HEMTs with micro-Raman spectroscopy.

    Science.gov (United States)

    Bagnall, Kevin R; Moore, Elizabeth A; Badescu, Stefan C; Zhang, Lenan; Wang, Evelyn N

    2017-11-01

    As semiconductor devices based on silicon reach their intrinsic material limits, compound semiconductors, such as gallium nitride (GaN), are gaining increasing interest for high performance, solid-state transistor applications. Unfortunately, higher voltage, current, and/or power levels in GaN high electron mobility transistors (HEMTs) often result in elevated device temperatures, degraded performance, and shorter lifetimes. Although micro-Raman spectroscopy has become one of the most popular techniques for measuring localized temperature rise in GaN HEMTs for reliability assessment, decoupling the effects of temperature, mechanical stress, and electric field on the optical phonon frequencies measured by micro-Raman spectroscopy is challenging. In this work, we demonstrate the simultaneous measurement of temperature rise, inverse piezoelectric stress, thermoelastic stress, and vertical electric field via micro-Raman spectroscopy from the shifts of the E 2 (high), A 1 longitudinal optical (LO), and E 2 (low) optical phonon frequencies in wurtzite GaN. We also validate experimentally that the pinched OFF state as the unpowered reference accurately measures the temperature rise by removing the effect of the vertical electric field on the Raman spectrum and that the vertical electric field is approximately the same whether the channel is open or closed. Our experimental results are in good quantitative agreement with a 3D electro-thermo-mechanical model of the HEMT we tested and indicate that the GaN buffer acts as a semi-insulating, p-type material due to the presence of deep acceptors in the lower half of the bandgap. This implementation of micro-Raman spectroscopy offers an exciting opportunity to simultaneously probe thermal, mechanical, and electrical phenomena in semiconductor devices under bias, providing unique insight into the complex physics that describes device behavior and reliability. Although GaN HEMTs have been specifically used in this study to

  13. Simultaneous measurement of temperature, stress, and electric field in GaN HEMTs with micro-Raman spectroscopy

    Science.gov (United States)

    Bagnall, Kevin R.; Moore, Elizabeth A.; Badescu, Stefan C.; Zhang, Lenan; Wang, Evelyn N.

    2017-11-01

    As semiconductor devices based on silicon reach their intrinsic material limits, compound semiconductors, such as gallium nitride (GaN), are gaining increasing interest for high performance, solid-state transistor applications. Unfortunately, higher voltage, current, and/or power levels in GaN high electron mobility transistors (HEMTs) often result in elevated device temperatures, degraded performance, and shorter lifetimes. Although micro-Raman spectroscopy has become one of the most popular techniques for measuring localized temperature rise in GaN HEMTs for reliability assessment, decoupling the effects of temperature, mechanical stress, and electric field on the optical phonon frequencies measured by micro-Raman spectroscopy is challenging. In this work, we demonstrate the simultaneous measurement of temperature rise, inverse piezoelectric stress, thermoelastic stress, and vertical electric field via micro-Raman spectroscopy from the shifts of the E2 (high), A1 longitudinal optical (LO), and E2 (low) optical phonon frequencies in wurtzite GaN. We also validate experimentally that the pinched OFF state as the unpowered reference accurately measures the temperature rise by removing the effect of the vertical electric field on the Raman spectrum and that the vertical electric field is approximately the same whether the channel is open or closed. Our experimental results are in good quantitative agreement with a 3D electro-thermo-mechanical model of the HEMT we tested and indicate that the GaN buffer acts as a semi-insulating, p-type material due to the presence of deep acceptors in the lower half of the bandgap. This implementation of micro-Raman spectroscopy offers an exciting opportunity to simultaneously probe thermal, mechanical, and electrical phenomena in semiconductor devices under bias, providing unique insight into the complex physics that describes device behavior and reliability. Although GaN HEMTs have been specifically used in this study to

  14. The controlled growth of GaN microrods on Si(111) substrates by MOCVD

    Science.gov (United States)

    Foltynski, Bartosz; Garro, Nuria; Vallo, Martin; Finken, Matthias; Giesen, Christoph; Kalisch, Holger; Vescan, Andrei; Cantarero, Andrés; Heuken, Michael

    2015-03-01

    In this paper, a selective area growth (SAG) approach for growing GaN microrods on patterned SiNx/Si(111) substrates by metal-organic chemical vapor deposition (MOCVD) is studied. The surface morphology, optical and structural properties of vertical GaN microrods terminated by pyramidal shaped facets (six { 10 1 bar 1} planes) were characterized using scanning electron microscopy (SEM), room temperature photoluminescence (PL) and Raman spectroscopy, respectively. Measurements revealed high-quality GaN microcolumns grown with silane support. Characterized structures were grown nearly strain-free (central frequency of Raman peak of 567±1 cm-1) with crystal quality comparable to bulk crystals (FWHM=4.2±1 cm-1). Such GaN microrods might be used as a next-generation device concept for solid-state lighting (SSL) applications by realizing core-shell InGaN/GaN multi-quantum wells (MQWs) on the n-GaN rod base.

  15. Single phase semipolar (11 anti 22) GaN on (10 anti 10) sapphire

    Energy Technology Data Exchange (ETDEWEB)

    Ploch, S.; Stellmach, J.; Schwaner, T.; Frentrup, M.; Wernicke, T.; Pristovsek, M.; Kneissl, M. [Institute of Solid States Physics, (Germany); Park, J.B.; Niermann, T.; Lehmann, M. [Institute of Optics and Atomic Physics, TU Berlin, Hardenbergstr. 36, 10623 Berlin (Germany)

    2011-07-01

    InGaN quantum well based light emitters grown on (0001) GaN suffer from poor quantum efficiencies with increasing indium mole fraction due to strong polarization fields along the polar crystal orientation. This effect can be greatly reduced by growing on semi- and non-polar GaN orientations. Semipolar (11 anti 22) GaN layers were deposited by metalorganic vapour phase epitaxy on (10 anti 10) sapphire. After sapphire substrate nitridation at 1000 C, a GaN nucleation layer was deposited at high temperature, followed by the deposition of 1.5 nm thick GaN buffer layers. The samples show predominantly (11 anti 22) orientation with a small fraction of (10 anti 13) oriented domains. With increasing nitridation layer thickness the (10 anti 13) phase is suppressed leading to a very smooth surface morphology (rms roughness < 4nm). PL measurements show dominant basel plane stacking fault (BSF) I{sub 1} luminescence without any other defects. Transmission electron microscopy measurements reveal a high BSF density. The FWHM of the X-ray diffraction rocking curve measurements of the (1122) reflection decreases to 1193 arcsec and 739 arcsec along [1 anti 100] and [11 anti 23] respectively with increasing nucleation temperature. Using high temperature nucleation smooth and homogeneous (11 anti 22) phase GaN layers have been obtained.

  16. Photoassisted Kelvin probe force microscopy at GaN surfaces: The role of polarity

    Science.gov (United States)

    Wei, J. D.; Li, S. F.; Atamuratov, A.; Wehmann, H.-H.; Waag, A.

    2010-10-01

    The behavior of GaN surfaces during photoassisted Kelvin probe force microscopy is demonstrated to be strongly dependant on surface polarity. The surface photovoltage of GaN surfaces illuminated with above-band gap light is analyzed as a function of time and light intensity. Distinct differences between Ga-polar and N-polar surfaces could be identified, attributed to photoinduced chemisorption of oxygen during illumination. These differences can be used for a contactless, nondestructive, and easy-performable analysis of the polarity of GaN surfaces.

  17. Scanning tunneling microscopy and spectroscopy on GaN and InGaN surfaces

    International Nuclear Information System (INIS)

    Krueger, David

    2009-01-01

    Optelectronic devices based on gallium nitride (GaN) and indium gallium nitride (InGaN) are in the focus of research since more than 20 years and still have great potential for optical applications. In the first part of this work non-polar surfaces of GaN are investigated by scanning electron microscopy (SEM), atomic force microscopy (AFM) and scanning tunneling microscopy (STM). In SEM and AFM, the (1 anti 100)- and especially the (anti 2110)-plane are quite corrugated. For the first time, the (anti 2110)-plane of GaN is atomically resolved in STM. In the second part InGaN quantum dot layers are investigated by X-ray photoelectron spectroscopy (XPS), scanning tunneling spectroscopy (STS) and STM. The STMmeasurements show the dependency of surface morphology on growth conditions in the metalorganic vapour phase epitaxy (MOVPE). Nucleation, a new MOVPE-strategy, is based on phase separations on surfaces. It is shown that locally varying density of states and bandgaps can be detected by STS, that means bandgap histograms and 2D-bandgap-mapping. (orig.)

  18. 380 keV proton irradiation effects on photoluminescence of Eu-doped GaN

    International Nuclear Information System (INIS)

    Okada, Hiroshi; Nakanishi, Yasuo; Wakahara, Akihiro; Yoshida, Akira; Ohshima, Takeshi

    2008-01-01

    The effect of 380 keV proton irradiation on the photoluminescence (PL) properties has been investigated for undoped and Eu-doped GaN. As the proton irradiation exceeds 1x10 13 cm -2 , a drastic decrease of PL intensity of the near band-edge emission of undoped GaN was observed. On the other hand, for Eu-doped GaN, the PL emission corresponding to the 5 D 0 → 7 F 2 transition in Eu 3+ kept the initial PL intensity after the proton irradiation up to 1x10 14 cm -2 . Present results, together with our previous report on electron irradiation results, suggest that Eu-doped GaN is a strong candidate for light emitting devices in high irradiation environment

  19. Photoluminescence enhancement from GaN by beryllium doping

    Science.gov (United States)

    García-Gutiérrez, R.; Ramos-Carrazco, A.; Berman-Mendoza, D.; Hirata, G. A.; Contreras, O. E.; Barboza-Flores, M.

    2016-10-01

    High quality Be-doped (Be = 0.19 at.%) GaN powder has been grown by reacting high purity Ga diluted alloys (Be-Ga) with ultra high purity ammonia in a horizontal quartz tube reactor at 1200 °C. An initial low-temperature treatment to dissolve ammonia into the Ga melt produced GaN powders with 100% reaction efficiency. Doping was achieved by dissolving beryllium into the gallium metal. The powders synthesized by this method regularly consist of two particle size distributions: large hollow columns with lengths between 5 and 10 μm and small platelets in a range of diameters among 1 and 3 μm. The GaN:Be powders present a high quality polycrystalline profile with preferential growth on the [10 1 bar 1] plane, observed by means of X-ray diffraction. The three characteristics growth planes of the GaN crystalline phase were found by using high resolution TEM microscopy. The optical enhancing of the emission in the GaN powder is attributed to defects created with the beryllium doping. The room temperature photoluminescence emission spectra of GaN:Be powders, revealed the presence of beryllium on a shoulder peak at 3.39 eV and an unusual Y6 emission at 3.32eV related to surface donor-acceptor pairs. Also, a donor-acceptor-pair transition at 3.17 eV and a phonon replica transition at 3.1 eV were observed at low temperature (10 K). The well-known yellow luminescence band coming from defects was observed in both spectra at room and low temperature. Cathodoluminescence emission from GaN:Be powders presents two main peaks associated with an ultraviolet band emission and the yellow emission known from defects. To study the trapping levels related with the defects formed in the GaN:Be, thermoluminescence glow curves were obtained using UV and β radiation in the range of 50 and 150 °C.

  20. Increase the threshold voltage of high voltage GaN transistors by low temperature atomic hydrogen treatment

    Energy Technology Data Exchange (ETDEWEB)

    Erofeev, E. V., E-mail: erofeev@micran.ru [Tomsk State University of Control Systems and Radioelectronics, Research Institute of Electrical-Communication Systems (Russian Federation); Fedin, I. V.; Kutkov, I. V. [Research and Production Company “Micran” (Russian Federation); Yuryev, Yu. N. [National Research Tomsk Polytechnic University, Institute of Physics and Technology (Russian Federation)

    2017-02-15

    High-electron-mobility transistors (HEMTs) based on AlGaN/GaN epitaxial heterostructures are a promising element base for the fabrication of high voltage electronic devices of the next generation. This is caused by both the high mobility of charge carriers in the transistor channel and the high electric strength of the material, which makes it possible to attain high breakdown voltages. For use in high-power switches, normally off-mode GaN transistors operating under enhancement conditions are required. To fabricate normally off GaN transistors, one most frequently uses a subgate region based on magnesium-doped p-GaN. However, optimization of the p-GaN epitaxial-layer thickness and the doping level makes it possible to attain a threshold voltage of GaN transistors close to V{sub th} = +2 V. In this study, it is shown that the use of low temperature treatment in an atomic hydrogen flow for the p-GaN-based subgate region before the deposition of gate-metallization layers makes it possible to increase the transistor threshold voltage to V{sub th} = +3.5 V. The effects under observation can be caused by the formation of a dipole layer on the p-GaN surface induced by the effect of atomic hydrogen. The heat treatment of hydrogen-treated GaN transistors in a nitrogen environment at a temperature of T = 250°C for 12 h reveals no degradation of the transistor’s electrical parameters, which can be caused by the formation of a thermally stable dipole layer at the metal/p-GaN interface as a result of hydrogenation.

  1. Increase the threshold voltage of high voltage GaN transistors by low temperature atomic hydrogen treatment

    International Nuclear Information System (INIS)

    Erofeev, E. V.; Fedin, I. V.; Kutkov, I. V.; Yuryev, Yu. N.

    2017-01-01

    High-electron-mobility transistors (HEMTs) based on AlGaN/GaN epitaxial heterostructures are a promising element base for the fabrication of high voltage electronic devices of the next generation. This is caused by both the high mobility of charge carriers in the transistor channel and the high electric strength of the material, which makes it possible to attain high breakdown voltages. For use in high-power switches, normally off-mode GaN transistors operating under enhancement conditions are required. To fabricate normally off GaN transistors, one most frequently uses a subgate region based on magnesium-doped p-GaN. However, optimization of the p-GaN epitaxial-layer thickness and the doping level makes it possible to attain a threshold voltage of GaN transistors close to V_t_h = +2 V. In this study, it is shown that the use of low temperature treatment in an atomic hydrogen flow for the p-GaN-based subgate region before the deposition of gate-metallization layers makes it possible to increase the transistor threshold voltage to V_t_h = +3.5 V. The effects under observation can be caused by the formation of a dipole layer on the p-GaN surface induced by the effect of atomic hydrogen. The heat treatment of hydrogen-treated GaN transistors in a nitrogen environment at a temperature of T = 250°C for 12 h reveals no degradation of the transistor’s electrical parameters, which can be caused by the formation of a thermally stable dipole layer at the metal/p-GaN interface as a result of hydrogenation.

  2. GaN quantum dots: from basic understanding to unique applications

    International Nuclear Information System (INIS)

    Pelekanos, N T; Dialynas, G E; Simon, J; Mariette, H; Daudin, B

    2005-01-01

    The GaN self-assembled quantum dots constitute a very special and intriguing type of semiconductor nanostructure, mainly because they carry in their structure a giant internal electric field that can reach a value up to 7 MV/cm. In this report, we review the most important structural and optical properties of GaN quantum dots, and we discuss their advantages and limitations for blue-UV optoelectronic applications. (invited paper)

  3. Energetics and magnetism of Co-doped GaN(0001) surfaces: A first-principles study

    International Nuclear Information System (INIS)

    Qin, Zhenzhen; Xiong, Zhihua; Chen, Lanli; Qin, Guangzhao

    2014-01-01

    A comprehensive first-principles study of the energetics, electronic, and magnetic properties of Co-doped GaN(0001) thin films are presented and the effect of surface structure on the magnetic coupling between Co atoms is demonstrated. It is found that Co atoms prefer to substitute the surface Ga sites in different growth conditions. In particular, a CoN/GaN interface structure with Co atoms replacing the first Ga layer is preferred under N-rich and moderately Ga-rich conditions, while CoGa x /GaN interface is found to be energetically stable under extremely Ga-rich conditions. It is worth noted that the antiferromagnetic coupling between Co atoms is favorable in clean GaN(0001) surface, but the existence of ferromagnetism would be expected to occur as Co concentration increased in Ga-bilayer GaN(0001) surface. Our study provides the theoretical understanding for experimental research on Co-doped GaN films and might promise the Co:GaN system potential applications in spin injection devices

  4. Size dictated thermal conductivity of GaN

    Science.gov (United States)

    Beechem, Thomas E.; McDonald, Anthony E.; Fuller, Elliot J.; Talin, A. Alec; Rost, Christina M.; Maria, Jon-Paul; Gaskins, John T.; Hopkins, Patrick E.; Allerman, Andrew A.

    2016-09-01

    The thermal conductivity of n- and p-type doped gallium nitride (GaN) epilayers having thicknesses of 3-4 μm was investigated using time domain thermoreflectance. Despite possessing carrier concentrations ranging across 3 decades (1015-1018 cm-3), n-type layers exhibit a nearly constant thermal conductivity of 180 W/mK. The thermal conductivity of p-type epilayers, in contrast, reduces from 160 to 110 W/mK with increased doping. These trends—and their overall reduction relative to bulk—are explained leveraging established scattering models where it is shown that, while the decrease in p-type layers is partly due to the increased impurity levels evolving from its doping, size effects play a primary role in limiting the thermal conductivity of GaN layers tens of microns thick. Device layers, even of pristine quality, will therefore exhibit thermal conductivities less than the bulk value of 240 W/mK owing to their finite thickness.

  5. Electronic structure and magnetic properties of substitutional transition-metal atoms in GaN nanotubes

    International Nuclear Information System (INIS)

    Zhang Min; Shi Jun-Jie

    2014-01-01

    The electronic structure and magnetic properties of the transition-metal (TM) atoms (Sc—Zn, Pt and Au) doped zigzag GaN single-walled nanotubes (NTs) are investigated using first-principles spin-polarized density functional calculations. Our results show that the bindings of all TM atoms are stable with the binding energy in the range of 6–16 eV. The Sc- and V-doped GaN NTs exhibit a nonmagnetic behavior. The GaN NTs doped with Ti, Mn, Ni, Cu and Pt are antiferromagnetic. On the contrary, the Cr-, Fe-, Co-, Zn- and Au-doped GaN NTs show the ferromagnetic characteristics. The Mn- and Co-doped GaN NTs induce the largest local moment of 4μ B among these TM atoms. The local magnetic moment is dominated by the contribution from the substitutional TM atom and the N atoms bonded with it. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  6. High quality self-separated GaN crystal grown on a novel nanoporous template by HVPE.

    Science.gov (United States)

    Huo, Qin; Shao, Yongliang; Wu, Yongzhong; Zhang, Baoguo; Hu, Haixiao; Hao, Xiaopeng

    2018-02-16

    In this study, a novel nanoporous template was obtained by a two-step etching process from MOCVD-GaN/Al 2 O 3 (MGA) with electrochemical etching sequentially followed by chemical wet etching. The twice-etched MOCVD-GaN/Al 2 O 3 (TEMGA) templates were utilized to grow GaN crystals by hydride vapor phase epitaxy (HVPE) method. The GaN crystals were separated spontaneously from the TEMGA template with the assistance of voids formed by the etched nanopores. Several techniques were utilized to characterize the quality of the free-standing GaN crystals obtained from the TEMGA template. Results showed that the quality of the as-obtained GaN crystals was improved obviously compared with those grown on the MGA. This convenient technique can be applied to grow high-quality free-standing GaN crystals.

  7. GaN quantum dot polarity determination by X-ray photoelectron diffraction

    Czech Academy of Sciences Publication Activity Database

    Romanyuk, Olexandr; Bartoš, Igor; Brault, J.; De Mierry, P.; Paskova, T.; Jiříček, Petr

    2016-01-01

    Roč. 389, Dec (2016), s. 1156-1160 ISSN 0169-4332 R&D Projects: GA ČR GA15-01687S; GA MŠk LM2015088 Institutional support: RVO:68378271 Keywords : GaN * semipolar GaN * quantum dots * X-ray photoelectron diffraction * surface polarity Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.387, year: 2016

  8. Radiation sensors based on GaN microwires

    Science.gov (United States)

    Verheij, D.; Peres, M.; Cardoso, S.; Alves, L. C.; Alves, E.; Durand, C.; Eymery, J.; Lorenz, K.

    2018-05-01

    GaN microwires were shown to possess promising characteristics as building blocks for radiation resistant particle detectors. They were grown by metal organic vapour phase epitaxy with diameters between 1 and 2 μm and lengths around 20 μm. Devices were fabricated by depositing gold contacts at the extremities of the wires using photolithography. The response of these single wire radiation sensors was then studied under irradiation with 2 MeV protons. Severe degradation of the majority of devices only sets in for fluences above protons cm‑2 revealing good radiation resistance. During proton irradiation, a clear albeit small current gain was observed with a corresponding decay time below 1 s. Photoconductivity measurements upon irradiation with UV light were carried out before and after the proton irradiation. Despite a relatively low gain, attributed to significant dark currents caused by a high dopant concentration, fast response times of a few seconds were achieved comparable to state-of-the-art GaN nanowire photodetectors. Irradiation and subsequent annealing resulted in an overall improvement of the devices regarding their response to UV radiation. The photocurrent gain increased compared to the values that were obtained prior to the irradiation, without compromising the decay times. The results indicate the possibility of using GaN microwires not only as UV detectors, but also as particle detectors.

  9. Uniform GaN thin films grown on (100) silicon by remote plasma atomic layer deposition

    International Nuclear Information System (INIS)

    Shih, Huan-Yu; Chen, Miin-Jang; Lin, Ming-Chih; Chen, Liang-Yih

    2015-01-01

    The growth of uniform gallium nitride (GaN) thin films was reported on (100) Si substrate by remote plasma atomic layer deposition (RP-ALD) using triethylgallium (TEG) and NH 3 as the precursors. The self-limiting growth of GaN was manifested by the saturation of the deposition rate with the doses of TEG and NH 3 . The increase in the growth temperature leads to the rise of nitrogen content and improved crystallinity of GaN thin films, from amorphous at a low deposition temperature of 200 °C to polycrystalline hexagonal structures at a high growth temperature of 500 °C. No melting-back etching was observed at the GaN/Si interface. The excellent uniformity and almost atomic flat surface of the GaN thin films also infer the surface control mode of the GaN thin films grown by the RP-ALD technique. The GaN thin films grown by RP-ALD will be further applied in the light-emitting diodes and high electron mobility transistors on (100) Si substrate. (paper)

  10. Effect of different electrolytes on porous GaN using photo-electrochemical etching

    Energy Technology Data Exchange (ETDEWEB)

    Al-Heuseen, K., E-mail: kalhussen@yahoo.com [Nano-Optoelectronics Research Laboratory, School of Physics, Universiti Sains Malaysia, 11800 Penang (Malaysia); Hashim, M.R. [Nano-Optoelectronics Research Laboratory, School of Physics, Universiti Sains Malaysia, 11800 Penang (Malaysia); Ali, N.K. [Material Innovations and Nanoelectronics Research Group, Faculty of Electrical Engineering, Department of Electronic Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia)

    2011-05-01

    This article reports the properties and the behavior of GaN during the photoelectrochemical etching process using four different electrolytes. The measurements show that the porosity strongly depends on the electrolyte and highly affects the surface morphology of etched samples, which has been revealed by scanning electron microscopy (SEM) images. Peak intensity of the photoluminescence (PL) spectra of the porous GaN samples was observed to be enhanced and strongly depend on the electrolytes. Among the samples, there is a little difference in the peak position indicating that the change of porosity has little influence on the PL peak shift, while it highly affecting the peak intensity. Raman spectra of porous GaN under four different solution exhibit phonon mode E{sub 2} (high), A{sub 1} (LO), A{sub 1} (TO) and E{sub 2} (low). There was a red shift in E{sub 2} (high) in all samples, indicating a relaxation of stress in the porous GaN surface with respect to the underlying single crystalline epitaxial GaN. Raman and PL intensities were high for samples etched in H{sub 2}SO{sub 4}:H{sub 2}O{sub 2} and KOH followed by the samples etched in HF:HNO{sub 3} and in HF:C{sub 2}H{sub 5}OH.

  11. Effect of different electrolytes on porous GaN using photo-electrochemical etching

    International Nuclear Information System (INIS)

    Al-Heuseen, K.; Hashim, M.R.; Ali, N.K.

    2011-01-01

    This article reports the properties and the behavior of GaN during the photoelectrochemical etching process using four different electrolytes. The measurements show that the porosity strongly depends on the electrolyte and highly affects the surface morphology of etched samples, which has been revealed by scanning electron microscopy (SEM) images. Peak intensity of the photoluminescence (PL) spectra of the porous GaN samples was observed to be enhanced and strongly depend on the electrolytes. Among the samples, there is a little difference in the peak position indicating that the change of porosity has little influence on the PL peak shift, while it highly affecting the peak intensity. Raman spectra of porous GaN under four different solution exhibit phonon mode E 2 (high), A 1 (LO), A 1 (TO) and E 2 (low). There was a red shift in E 2 (high) in all samples, indicating a relaxation of stress in the porous GaN surface with respect to the underlying single crystalline epitaxial GaN. Raman and PL intensities were high for samples etched in H 2 SO 4 :H 2 O 2 and KOH followed by the samples etched in HF:HNO 3 and in HF:C 2 H 5 OH.

  12. Effect of different electrolytes on porous GaN using photo-electrochemical etching

    Science.gov (United States)

    Al-Heuseen, K.; Hashim, M. R.; Ali, N. K.

    2011-05-01

    This article reports the properties and the behavior of GaN during the photoelectrochemical etching process using four different electrolytes. The measurements show that the porosity strongly depends on the electrolyte and highly affects the surface morphology of etched samples, which has been revealed by scanning electron microscopy (SEM) images. Peak intensity of the photoluminescence (PL) spectra of the porous GaN samples was observed to be enhanced and strongly depend on the electrolytes. Among the samples, there is a little difference in the peak position indicating that the change of porosity has little influence on the PL peak shift, while it highly affecting the peak intensity. Raman spectra of porous GaN under four different solution exhibit phonon mode E 2 (high), A 1 (LO), A 1 (TO) and E 2 (low). There was a red shift in E 2 (high) in all samples, indicating a relaxation of stress in the porous GaN surface with respect to the underlying single crystalline epitaxial GaN. Raman and PL intensities were high for samples etched in H 2SO 4:H 2O 2 and KOH followed by the samples etched in HF:HNO 3 and in HF:C 2H 5OH.

  13. Electronic structures and optical properties of GaN nanotubes with MgGa–ON co-doping

    International Nuclear Information System (INIS)

    Yang, Mao; Shi, Jun-jie; Zhang, Min; Zhang, Shuai; Bao, Zhi-qiang; Luo, Shao-jun; Zhou, Tie-Cheng; Zhu, Tian-cong; Li, Xiang; Li, Jia

    2013-01-01

    Both the electronic structures and the optical properties of single-walled zigzag GaN nanotubes (NTs) with Mg Ga –O N co-doping are investigated using first-principles calculations. We find that the Mg Ga –O N defect complex can exist stably in GaN NTs. The direct band gap width of the GaN NTs can be reduced by means of the Mg Ga –O N co-doping. The electrons of the valence band maximum (VBM) state are localized around the N atoms bonded with the Mg atom. The imaginary part ε 2 of the complex dielectric function of GaN NTs with Mg Ga –O N co-doping has a sharp peak closely related to the optical transitions between the VBM and conduction band minimum states. - Highlights: ► The Mg Ga –O N defect complex can exist stably in GaN NTs. ► The band gap of the GaN NTs can be reduced due to the Mg Ga –O N co-doping. ► The VBM states are localized around the N atoms bonded with the Mg atom. ► The ε 2 -plot has a peak related to the optical transition from the VBM to CBM state

  14. Epitaxy of GaN on silicon-impact of symmetry and surface reconstruction

    International Nuclear Information System (INIS)

    Dadgar, A; Schulze, F; Wienecke, M; Gadanecz, A; Blaesing, J; Veit, P; Hempel, T; Diez, A; Christen, J; Krost, A

    2007-01-01

    GaN-on-silicon is a low-cost alternative to growth on sapphire or SiC. Today epitaxial growth is usually performed on Si(111), which has a threefold symmetry. The growth of single crystalline GaN on Si(001), the material of the complementary metal oxide semiconductor (CMOS) industry, is more difficult due to the fourfold symmetry of this Si surface leading to two differently aligned domains. We show that breaking the symmetry to achieve single crystalline growth can be performed, e.g. by off-oriented substrates to achieve single crystalline device quality GaN layers. Furthermore, an exotic Si orientation for GaN growth is Si(110), which we show is even better suited as compared to Si(111) for the growth of high quality GaN-on-silicon with a nearly threefold reduction in the full width at half maximum (FWHM) of the (1 1-bar 0 0)ω-scan. It is found that a twofold surface symmetry is in principal suitable for the growth of single crystalline GaN on Si

  15. Defect analysis in GaN films of HEMT structure by cross-sectional cathodoluminescence

    Science.gov (United States)

    Isobe, Yasuhiro; Hung, Hung; Oasa, Kohei; Ono, Tasuku; Onizawa, Takashi; Yoshioka, Akira; Takada, Yoshiharu; Saito, Yasunobu; Sugiyama, Naoharu; Tsuda, Kunio; Sugiyama, Toru; Mizushima, Ichiro

    2017-06-01

    Defect analysis of GaN films in high electron mobility transistor (HEMT) structures by cross-sectional cathodoluminescence (X-CL) is demonstrated as a useful technique for improving the current collapse of GaN-HEMT devices, and the relationship between crystal quality and device characteristics is also investigated. The crystal quality of intrinsic-GaN (i-GaN) and carbon-doped GaN produced clearly different peak intensities of blue luminescence (BL), yellow luminescence (YL), and band-edge emission (BE), which is independently detected by X-CL. Current collapse in GaN-HEMT devices is found to be determined by the BL/BE and YL/BE ratios at the top of the i-GaN layer, which is close to the channel. Moreover, the i-GaN thickness required in order to minimize the BL/BE and YL/BE ratios and the thickness dependency of GaN for minimizing the BL/BE and YL/BE ratios depending on the growth conditions can be evaluated by X-CL. However, there is no correlation between current collapse in GaN-HEMT devices and the YL/BE ratio by conventional photoluminescence because HEMT devices consist of multiple GaN layers and the YL signal is detected from the carbon-doped GaN layer. Thus, the X-CL analysis method is a useful technique for device design in order to suppress current collapse.

  16. Fabrication of GaN with buried tungsten (W) structures using epitaxial lateral overgrowth (ELO) via LP-MOVPE

    International Nuclear Information System (INIS)

    Miyake, Hideto; Yamaguchi, Motoo; Haino, Masahiro

    2000-01-01

    A buried tungsten (W) mask structure with GaN is successfully obtained by epitaxial lateral overgrowth (ELO) technique via low-pressure metalorganic vapor phase epitaxy (LP-MOVPE). The selectivity of GaN growth on the window region vs. the mask region is good. An underlying GaN with a striped W metal mask is easily decomposed above 500 C by the W catalytic effect, by which radical hydrogen is reacted with GaN. It is difficult to bury the W mask because severe damage occurs in the GaN epilayer under the mask. It is found that an underlying AlGaN/GaN layer with a narrow W stripe mask width (mask/window - 2/2 microm) leads the ELO GaN layer to be free from damage, resulting in an excellent W-buried structure

  17. Growth of GaN on sapphire via low-temperature deposited buffer layer and realization of p-type GaN by Mg doping followed by low-energy electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Amano, Hiroshi [Department of Electrical Engineering and Computer Science, Venture Business Laboratory, Akasaki Research Center, Nagoya University (Japan)

    2015-06-15

    This is a personal history of one of the Japanese researchers engaged in developing a method for growing GaN on a sapphire substrate, paving the way for the realization of smart television and display systems using blue LEDs. The most important work was done in the mid to late 1980s. The background to the author's work and the process by which the technology enabling the growth of GaN and the realization of p-type GaN was established are reviewed. (copyright 2015 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Growth of GaN Layers on Sapphire by Low-Temperature-Deposited Buffer Layers and Realization of p-type GaN by Magesium Doping and Electron Beam Irradiation (Nobel Lecture).

    Science.gov (United States)

    Amano, Hiroshi

    2015-06-26

    This Review is a personal reflection on the research that led to the development of a method for growing gallium nitride (GaN) on a sapphire substrate. The results paved the way for the development of smart display systems using blue LEDs. The most important work was done in the mid to late 80s. The background to the author's work and the process by which the technology that enables the growth of GaN and the realization of p-type GaN was established are reviewed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Hydrogen-surfactant-assisted coherent growth of GaN on ZnO substrate

    Science.gov (United States)

    Zhang, Jingzhao; Zhang, Yiou; Tse, Kinfai; Zhu, Junyi

    2018-01-01

    Heterostructures of wurtzite based devices have attracted great research interest because of the tremendous success of GaN in light emitting diodes (LED) industry. High-quality GaN thin films on inexpensive and lattice matched ZnO substrates are both commercially and technologically desirable. Intrinsic wetting conditions, however, forbid such heterostructures as the energy of ZnO polar surfaces is much lower than that of GaN polar surfaces, resulting in 3D growth mode and poor crystal quality. Based on first-principles calculations, we propose the use of surfactant hydrogen to dramatically alter the growth mode of the heterostructures. Stable H-involved surface configurations and interfaces are investigated with the help of our newly developed modelling techniques. The temperature and chemical potential dependence of our proposed strategy, which is critical in experiments, is predicted by applying the experimental Gibbs free energy of H2. Our thermodynamic wetting condition analysis is a crucial step for the growth of GaN on ZnO, and we find that introducing H will not degrade the stability of ZnO substrate. This approach will allow the growth of high-quality GaN thin films on ZnO substrates. We believe that our new strategy may reduce the manufactory cost, improve the crystal quality, and improve the efficiency of GaN-based devices.

  20. Growth and characterizations of GaN micro-rods on graphene films for flexible light emitting diodes

    Directory of Open Access Journals (Sweden)

    Kunook Chung

    2014-09-01

    Full Text Available We report the growth of GaN micro-rods and coaxial quantum-well heterostructures on graphene films, together with structural and optical characterization, for applications in flexible optical devices. Graphene films were grown on Cu foil by means of chemical vapor deposition, and used as the substrates for the growth of the GaN micro-rods, which were subsequently transferred onto SiO2/Si substrates. Highly Si-doped, n-type GaN micro-rods were grown on the graphene films using metal–organic chemical vapor deposition. The growth and vertical alignment of the GaN micro-rods, which is a critical factor for the fabrication of high-performance light-emitting diodes (LEDs, were characterized using electron microscopy and X-ray diffraction. The GaN micro-rods exhibited promising photoluminescence characteristics for optoelectronic device applications, including room-temperature stimulated emission. To fabricate flexible LEDs, InxGa1–xN/GaN multiple quantum wells and a p-type GaN layer were deposited coaxially on the GaN micro-rods, and transferred onto Ag-coated polymer substrates using lift-off. Ti/Au and Ni/Au metal layers were formed to provide electrical contacts to the n-type and p-type GaN regions, respectively. The micro-rod LEDs exhibited intense emission of visible light, even after transfer onto the flexible polymer substrate, and reliable operation was achieved following numerous cycles of mechanical deformation.

  1. Formation of helical dislocations in ammonothermal GaN substrate by heat treatment

    International Nuclear Information System (INIS)

    Horibuchi, Kayo; Yamaguchi, Satoshi; Kimoto, Yasuji; Nishikawa, Koichi; Kachi, Tetsu

    2016-01-01

    GaN substrate produced by the basic ammonothermal method and an epitaxial layer on the substrate was evaluated using synchrotron radiation x-ray topography and transmission electron microscopy. We revealed that the threading dislocations present in the GaN substrate are deformed into helical dislocations and the generation of the voids by heat treatment in the substrate for the first observation in the GaN crystal. These phenomena are formed by the interactions between the dislocations and vacancies. The helical dislocation was formed in the substrate region, and not in the epitaxial layer region. Furthermore, the evaluation of the influence of the dislocations on the leakage current of Schottky barrier diodes fabricated on the epitaxial layer is discussed. The dislocations did not affect the leakage current characteristics of the epitaxial layer. Our results suggest that the deformation of dislocations in the GaN substrate does not adversely affect the epitaxial layer. (paper)

  2. P-type surface effects for thickness variation of 2um and 4um of n-type layer in GaN LED

    Science.gov (United States)

    Halim, N. S. A. Abdul; Wahid, M. H. A.; Hambali, N. A. M. Ahmad; Rashid, S.; Ramli, M. M.; Shahimin, M. M.

    2017-09-01

    The internal quantum efficiency of III-Nitrides group, GaN light-emitting diode (LED) has been considerably limited due to the insufficient hole injection and this is caused by the lack of performance p-type doping and low hole mobility. The low hole mobility makes the hole less energetic, thus reduced the performance operation of GaN LED itself. The internal quantum efficiency of GaN-based LED with surface roughness (texture) can be changed by texture size, density, and thickness of GaN film or by the combined effects of surface shape and thickness of GaN film. Besides, due to lack of p-type GaN, attempts to look forward the potential of GaN LED relied on the thickness of n-type layer and surface shape of p-type GaN layer. This work investigates the characteristics of GaN LED with undoped n-GaN layer of different thickness and the surface shape of p-type layer. The LEDs performance is significantly altered by modifying the thickness and shape. Enhancement of n-GaN layer has led to the annihilation of electrical conductivity of the chip. Different surface geometry governs the emission rate extensively. Internal quantum efficiency is also predominantly affected by the geometry of n-GaN layer which subjected to the current spreading. It is recorded that the IQE droop can be minimized by varying the thickness of the active layer without amplifying the forward voltage. Optimum forward voltage (I-V), total emission rate relationship with the injected current and internal quantum efficiency (IQE) for 2,4 µm on four different surfaces of p-type layer are also reported in this paper.

  3. Vacancy complexes induce long-range ferromagnetism in GaN

    KAUST Repository

    Zhang, Zhenkui

    2014-11-14

    By means of density functional theory, we argue that ferromagnetism in GaN can be induced by vacancy complexes. Spin polarization originates from the charge compensation between neutral N and Ga vacancies. Defect formation energy calculations predict that a vacancy complex of two positively charged N vacancies and one doubly negative Ga vacancy is likely to form. This defect complex induces a net moment of 1 μB, which is localized around the negative Ga center and exhibits pronounced in-plane ferromagnetic coupling. In contrast to simple Ga vacancy induced ferromagnetism, the proposed picture is in line with the fact that N vacancies have a low formation energy. Formation energies indicate mutual stabilization of the intrinsic defects in GaN.

  4. Vacancy complexes induce long-range ferromagnetism in GaN

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhenkui; Schwingenschlögl, Udo, E-mail: Udo.Schwingenschlogl@kaust.edu.sa, E-mail: Iman.Roqan@kaust.edu.sa; Roqan, Iman S., E-mail: Udo.Schwingenschlogl@kaust.edu.sa, E-mail: Iman.Roqan@kaust.edu.sa [Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900 (Saudi Arabia)

    2014-11-14

    By means of density functional theory, we argue that ferromagnetism in GaN can be induced by vacancy complexes. Spin polarization originates from the charge compensation between neutral N and Ga vacancies. Defect formation energy calculations predict that a vacancy complex of two positively charged N vacancies and one doubly negative Ga vacancy is likely to form. This defect complex induces a net moment of 1 μ{sub B}, which is localized around the negative Ga center and exhibits pronounced in-plane ferromagnetic coupling. In contrast to simple Ga vacancy induced ferromagnetism, the proposed picture is in line with the fact that N vacancies have a low formation energy. Formation energies indicate mutual stabilization of the intrinsic defects in GaN.

  5. Vacancy complexes induce long-range ferromagnetism in GaN

    KAUST Repository

    Zhang, Zhenkui; Schwingenschlö gl, Udo; Roqan, Iman S.

    2014-01-01

    By means of density functional theory, we argue that ferromagnetism in GaN can be induced by vacancy complexes. Spin polarization originates from the charge compensation between neutral N and Ga vacancies. Defect formation energy calculations predict that a vacancy complex of two positively charged N vacancies and one doubly negative Ga vacancy is likely to form. This defect complex induces a net moment of 1 μB, which is localized around the negative Ga center and exhibits pronounced in-plane ferromagnetic coupling. In contrast to simple Ga vacancy induced ferromagnetism, the proposed picture is in line with the fact that N vacancies have a low formation energy. Formation energies indicate mutual stabilization of the intrinsic defects in GaN.

  6. 4 Gbps direct modulation of 450 nm GaN laser for high-speed visible light communication

    KAUST Repository

    Lee, Changmin; Zhang, Chong; Cantore, Michael; Farrell, Robert M.; Oh, Sang Ho; Margalith, Tal; Speck, James S.; Nakamura, Shuji; Bowers, John E.; DenBaars, Steven P.

    2015-01-01

    We demonstrate high-speed data transmission with a commercial high power GaN laser diode at 450 nm. 2.6 GHz bandwidth was achieved at an injection current of 500 mA using a high-speed visible light communication setup. Record high 4 Gbps free

  7. Dopant Adsorption and Incorporation at Irradiated GaN Surfaces

    Science.gov (United States)

    Sun, Qiang; Selloni, Annabella; Myers, Thomas; Doolittle, W. Alan

    2006-03-01

    Mg and O are two of the common dopants in GaN, but, in spite of extensive investigation, the atomic scale understanding of their adsorption and incorporation is still incomplete. In particular, high-energy electron irradiation, such as occurring during RHEED, has been reported to have an important effect on the incorporation of these impurities, but no study has addressed the detailed mechanisms of this effect yet. Here we use DFT calculations to study the adsorption and incorporation of Mg and O at the Ga- and N-polar GaN surfaces under various Ga, Mg and O coverage conditions as well as in presence of light or electron beam-induced electronic excitation. We find that the adsorption and incorporation of the two impurities have opposite surface polarity dependence: substitutional Mg prefers to incorporate at the GaN(0001) surface, while O prefers to adsorb and incorporate at the N-polar surface. In addition, our results indicate that in presence of light irradiation the tendency of Mg to surface-segregate is reduced. The O adsorption energy on the N-polar surface is also significantly reduced, consistent with the experimental observation of a much smaller concentration of oxygen in the irradiated samples.

  8. High speed visible light communication using blue GaN laser diodes

    Science.gov (United States)

    Watson, S.; Viola, S.; Giuliano, G.; Najda, S. P.; Perlin, P.; Suski, T.; Marona, L.; Leszczyński, M.; Wisniewski, P.; Czernecki, R.; Targowski, G.; Watson, M. A.; White, H.; Rowe, D.; Laycock, L.; Kelly, A. E.

    2016-10-01

    GaN-based laser diodes have been developed over the last 20 years making them desirable for many security and defence applications, in particular, free space laser communications. Unlike their LED counterparts, laser diodes are not limited by their carrier lifetime which makes them attractive for high speed communication, whether in free space, through fiber or underwater. Gigabit data transmission can be achieved in free space by modulating the visible light from the laser with a pseudo-random bit sequence (PRBS), with recent results approaching 5 Gbit/s error free data transmission. By exploiting the low-loss in the blue part of the spectrum through water, data transmission experiments have also been conducted to show rates of 2.5 Gbit/s underwater. Different water types have been tested to monitor the effect of scattering and to see how this affects the overall transmission rate and distance. This is of great interest for communication with unmanned underwater vehicles (UUV) as the current method using acoustics is much slower and vulnerable to interception. These types of laser diodes can typically reach 50-100 mW of power which increases the length at which the data can be transmitted. This distance could be further improved by making use of high power laser arrays. Highly uniform GaN substrates with low defectivity allow individually addressable laser bars to be fabricated. This could ultimately increase optical power levels to 4 W for a 20-emitter array. Overall, the development of GaN laser diodes will play an important part in free space optical communications and will be vital in the advancement of security and defence applications.

  9. Influence of in-situ deposited SiNx interlayer on crystal quality of GaN epitaxial films

    Science.gov (United States)

    Fan, Teng; Jia, Wei; Tong, Guangyun; Zhai, Guangmei; Li, Tianbao; Dong, Hailiang; Xu, Bingshe

    2018-05-01

    GaN epitaxial films with SiNx interlayers were prepared by metal organic chemical vapor deposition (MOCVD) on c-plane sapphire substrates. The influences of deposition times and locations of SiNx interlayers on crystal quality of GaN epitaxial films were studied. Under the optimal growth time of 120 s for the SiNx interlayer, the dislocation density of GaN film is reduced to 4.05 × 108 cm-2 proved by high resolution X-ray diffraction results. It is found that when the SiNx interlayer deposits on the GaN nucleation islands, the subsequent GaN film has the lowest dislocation density of only 2.89 × 108 cm-2. Moreover, a model is proposed to illustrate the morphological evolution and associated propagation processes of TDs in GaN epi-layers with SiNx interlayers for different deposition times and locations.

  10. Influence of Si-doping on heteroepitaxially grown a-plane GaN

    Energy Technology Data Exchange (ETDEWEB)

    Wieneke, Matthias; Bastek, Barbara; Noltemeyer, Martin; Hempel, Thomas; Rohrbeck, Antje; Witte, Hartmut; Veit, Peter; Blaesing, Juergen; Dadgar, Armin; Christen, Juergen; Krost, Alois [Otto-von-Guericke-Universitaet Magdeburg, FNW/IEP, Universitaetsplatz 2, 39106 Magdeburg (Germany)

    2011-07-01

    Si-doped a-plane GaN samples with nominal doping levels up to 10{sup 20} cm{sup -3} were grown on r-plane sapphire by metal organic vapor phase epitaxy. Silane flow rates higher than 59 nmol/min lead to three dimensional grown crystallites as revealed by scanning electron microscopy. High resolution X-ray diffraction, photoluminescence and cathodoluminescence suggest considerably reduced defect densities in the large micrometer-sized GaN crystallites. Especially, transmission electron microscopy images verify a very low density of basal plane stacking faults less than 10{sup 4} cm{sup -1} in these crystallites consisting of heteroepitaxially grown a-plane GaN. In our presentation the influence of the Si doping on the basal plane stacking faults will be discussed.

  11. Inductively Coupled Plasma-Induced Etch Damage of GaN p-n Junctions

    International Nuclear Information System (INIS)

    SHUL, RANDY J.; ZHANG, LEI; BACA, ALBERT G.; WILLISON, CHRISTI LEE; HAN, JUNG; PEARTON, S.J.; REN, F.

    1999-01-01

    Plasma-induced etch damage can degrade the electrical and optical performance of III-V nitride electronic and photonic devices. We have investigated the etch-induced damage of an Inductively Coupled Plasma (ICP) etch system on the electrical performance of mesa-isolated GaN pn-junction diodes. GaN p-i-n mesa diodes were formed by Cl 2 /BCl 3 /Ar ICP etching under different plasma conditions. The reverse leakage current in the mesa diodes showed a strong relationship to chamber pressure, ion energy, and plasma flux. Plasma induced damage was minimized at moderate flux conditions (≤ 500 W), pressures ≥2 mTorr, and at ion energies below approximately -275 V

  12. Electronic structure and optical properties of Al and Mg co-doped GaN

    International Nuclear Information System (INIS)

    Ji Yan-Jun; Du Yu-Jie; Wang Mei-Shan

    2013-01-01

    The electronic structure and optical properties of Al and Mg co-doped GaN are calculated from first principles using density function theory with the plane-wave ultrasoft pseudopotential method. The results show that the optimal form of p-type GaN is obtained with an appropriate Al:Mg co-doping ratio rather than with only Mg doping. Al doping weakens the interaction between Ga and N, resulting in the Ga 4s states moving to a high energy region and the system band gap widening. The optical properties of the co-doped system are calculated and compared with those of undoped GaN. The dielectric function of the co-doped system is anisotropic in the low energy region. The static refractive index and reflectivity increase, and absorption coefficient decreases. This provides the theoretical foundation for the design and application of Al—Mg co-doped GaN photoelectric materials

  13. Highly resistive C-doped hydride vapor phase epitaxy-GaN grown on ammonothermally crystallized GaN seeds

    Science.gov (United States)

    Iwinska, Malgorzata; Piotrzkowski, Ryszard; Litwin-Staszewska, Elzbieta; Sochacki, Tomasz; Amilusik, Mikolaj; Fijalkowski, Michal; Lucznik, Boleslaw; Bockowski, Michal

    2017-01-01

    GaN crystals were grown by hydride vapor phase epitaxy (HVPE) and doped with C. The seeds were high-structural-quality ammonothermally crystallized GaN. The grown crystals were highly resistive at 296 K and of high structural quality. High-temperature Hall effect measurements revealed p-type conductivity and a deep acceptor level in the material with an activation energy of 1 eV. This is in good agreement with density functional theory calculations based on hybrid functionals as presented by the Van de Walle group. They obtained an ionization energy of 0.9 eV when C was substituted for N in GaN and acted as a deep acceptor.

  14. Rode's iterative calculation of surface optical phonon scattering limited electron mobility in N-polar GaN devices

    International Nuclear Information System (INIS)

    Ghosh, Krishnendu; Singisetti, Uttam

    2015-01-01

    N-polar GaN channel mobility is important for high frequency device applications. Here, we report theoretical calculations on the surface optical (SO) phonon scattering rate of two-dimensional electron gas (2DEG) in N-polar GaN quantum well channels with high-k dielectrics. Rode's iterative calculation is used to predict the scattering rate and mobility. Coupling of the GaN plasmon modes with the SO modes is taken into account and dynamic screening is employed under linear polarization response. The effect of SO phonons on 2DEG mobility was found to be small at >5 nm channel thickness. However, the SO mobility in 3 nm N-polar GaN channels with HfO 2 and ZrO 2 high-k dielectrics is low and limits the total mobility. The SO scattering for SiN dielectric on GaN was found to be negligible due to its high SO phonon energy. Using Al 2 O 3 , the SO phonon scattering does not affect mobility significantly only except the case when the channel is too thin with a low 2DEG density

  15. Undoped p-type GaN1-xSbx alloys: Effects of annealing

    Science.gov (United States)

    Segercrantz, N.; Baumgartner, Y.; Ting, M.; Yu, K. M.; Mao, S. S.; Sarney, W. L.; Svensson, S. P.; Walukiewicz, W.

    2016-12-01

    We report p-type behavior for undoped GaN1-xSbx alloys with x ≥ 0.06 grown by molecular beam epitaxy at low temperatures (≤400 °C). Rapid thermal annealing of the GaN1-xSbx films at temperatures >400 °C is shown to generate hole concentrations greater than 1019 cm-3, an order of magnitude higher than typical p-type GaN achieved by Mg doping. The p-type conductivity is attributed to a large upward shift of the valence band edge resulting from the band anticrossing interaction between localized Sb levels and extended states of the host matrix.

  16. High-pressure X-ray diffraction study of bulk- and nanocrystalline GaN

    DEFF Research Database (Denmark)

    Jorgensen, J.E.; Jakobsen, J.M.; Jiang, Jianzhong

    2003-01-01

    Bulk- and nanocrystalline GaN have been studied by high-pressure energy-dispersive X-ray diffraction. Pressure-induced structural phase transitions from the wurtzite to the NaCl phase were observed in both materials. The transition pressure was found to be 40 GPa for the bulk-crystalline GaN, while...... the wurtzite phase was retained up to 60 GPa in the case of nanocrystalline GaN. The bulk moduli for the wurtzite phases were determined to be 187 ( 7) and 319 ( 10) GPa for the bulk- and nanocrystalline phases, respectively, while the respective NaCl phases were found to have very similar bulk moduli [ 208...

  17. Strain-free GaN thick films grown on single crystalline ZnO buffer layer with in situ lift-off technique

    International Nuclear Information System (INIS)

    Lee, S. W.; Minegishi, T.; Lee, W. H.; Goto, H.; Lee, H. J.; Lee, S. H.; Lee, Hyo-Jong; Ha, J. S.; Goto, T.; Hanada, T.; Cho, M. W.; Yao, T.

    2007-01-01

    Strain-free freestanding GaN layers were prepared by in situ lift-off process using a ZnO buffer as a sacrificing layer. Thin Zn-polar ZnO layers were deposited on c-plane sapphire substrates, which was followed by the growth of Ga-polar GaN layers both by molecular beam epitaxy (MBE). The MBE-grown GaN layer acted as a protecting layer against decomposition of the ZnO layer and as a seeding layer for GaN growth. The ZnO layer was completely in situ etched off during growth of thick GaN layers at low temperature by hydride vapor phase epitaxy. Hence freestanding GaN layers were obtained for the consecutive growth of high-temperature GaN thick layers. The lattice constants of freestanding GaN agree with those of strain-free GaN bulk. Extensive microphotoluminescence study indicates that strain-free states extend throughout the high-temperature grown GaN layers

  18. Large lattice relaxation deep levels in neutron-irradiated GaN

    International Nuclear Information System (INIS)

    Li, S.; Zhang, J.D.; Beling, C.D.; Wang, K.; Wang, R.X.; Gong, M.; Sarkar, C.K.

    2005-01-01

    Deep level transient spectroscopy (DLTS) and deep level optical spectroscopy (DLOS) measurements have been carried out in neutron-irradiated n-type hydride-vapor-phase-epitaxy-grown GaN. A defect center characterized by a DLTS line, labeled as N1, is observed at E C -E T =0.17 eV. Another line, labeled as N2, at E C -E T =0.23 eV, seems to be induced at the same rate as N1 under irradiation and may be identified with E1. Other defects native to wurtzite GaN such as the C and E2 lines appear to enhance under neutron irradiation. The DLOS results show that the defects N1 and N2 have large Frank-Condon shifts of 0.64 and 0.67 eV, respectively, and hence large lattice relaxations. The as-grown and neutron-irradiated samples all exhibit the persistent photoconductivity effect commonly seen in GaN that may be attributed to DX centers. The concentration of the DX centers increases significantly with neutron dosage and is helpful in sustaining sample conductivity at low temperatures, thus making possible DLTS measurements on N1 an N2 in the radiation-induced deep-donor defect compensated material which otherwise are prevented by carrier freeze-out

  19. Transmission electron microscopy of defects and internal fields in GaN structures

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtari, H

    2001-07-01

    The main aim of this study was to understand the microstructure of GaN and InGaN/GaN and to examine electric fields around the defects, and across the quantum wells by electron holography. For this reason different types of GaN and InGaN/GaN samples have been prepared and studied. Conventional transmission electron microscopy has been used for structural study of two MBE grown GaN/GaAs samples, grown at room temperature and at 340 deg C. The structure of the samples were found to be hexagonal polycrystalline in an amorphous GaN matrix, and textured hexagonal polycrystalline material respectively. The experimental results indicate that the higher growth temperature results in a more crystalline material with a higher density of bigger grain sizes. Different types of undoped and Si doped GaN/Sapphire samples were studied, with respect to the defect structure in GaN films. GaN was found to be a highly defective material with a dislocation density of 10{sup 9}/cm{sup 2}. The majority of the dislocations are edge dislocations. It has been found that nanopipes are open core screw dislocations, and the population and size of the nanopipes is proportional to the Si doping concentration. Dislocation structures were found to depend on the Si doping level in the material, with higher Si doping giving a lower density of dislocations with a more random distribution. In addition some EELS, EDX and HRTEM have been performed on the nanopipes and dislocations in order to investigate Si segregation in the defects. In MBE grown GaN/In{sub 0.1}Ga{sub 0.9}N/GaN SQWs and MQWs, V shaped defects were found to be present in the InGaN regions, which locally reduced the width of the InGaN layers. (author)

  20. Transmission electron microscopy of defects and internal fields in GaN structures

    International Nuclear Information System (INIS)

    Mokhtari, H.

    2001-07-01

    The main aim of this study was to understand the microstructure of GaN and InGaN/GaN and to examine electric fields around the defects, and across the quantum wells by electron holography. For this reason different types of GaN and InGaN/GaN samples have been prepared and studied. Conventional transmission electron microscopy has been used for structural study of two MBE grown GaN/GaAs samples, grown at room temperature and at 340 deg C. The structure of the samples were found to be hexagonal polycrystalline in an amorphous GaN matrix, and textured hexagonal polycrystalline material respectively. The experimental results indicate that the higher growth temperature results in a more crystalline material with a higher density of bigger grain sizes. Different types of undoped and Si doped GaN/Sapphire samples were studied, with respect to the defect structure in GaN films. GaN was found to be a highly defective material with a dislocation density of 10 9 /cm 2 . The majority of the dislocations are edge dislocations. It has been found that nanopipes are open core screw dislocations, and the population and size of the nanopipes is proportional to the Si doping concentration. Dislocation structures were found to depend on the Si doping level in the material, with higher Si doping giving a lower density of dislocations with a more random distribution. In addition some EELS, EDX and HRTEM have been performed on the nanopipes and dislocations in order to investigate Si segregation in the defects. In MBE grown GaN/In 0.1 Ga 0.9 N/GaN SQWs and MQWs, V shaped defects were found to be present in the InGaN regions, which locally reduced the width of the InGaN layers. (author)

  1. Selectively Enhanced UV-A Photoresponsivity of a GaN MSM UV Photodetector with a Step-Graded AlxGa1-xN Buffer Layer.

    Science.gov (United States)

    Lee, Chang-Ju; Won, Chul-Ho; Lee, Jung-Hee; Hahm, Sung-Ho; Park, Hongsik

    2017-07-21

    The UV-to-visible rejection ratio is one of the important figure of merits of GaN-based UV photodetectors. For cost-effectiveness and large-scale fabrication of GaN devices, we tried to grow a GaN epitaxial layer on silicon substrate with complicated buffer layers for a stress-release. It is known that the structure of the buffer layers affects the performance of devices fabricated on the GaN epitaxial layers. In this study, we show that the design of a buffer layer structure can make effect on the UV-to-visible rejection ratio of GaN UV photodetectors. The GaN photodetector fabricated on GaN-on-silicon substrate with a step-graded Al x Ga -x N buffer layer has a highly-selective photoresponse at 365-nm wavelength. The UV-to-visible rejection ratio of the GaN UV photodetector with the step-graded Al x Ga 1-x N buffer layer was an order-of-magnitude higher than that of a photodetector with a conventional GaN/AlN multi buffer layer. The maximum photoresponsivity was as high as 5 × 10 - ² A/W. This result implies that the design of buffer layer is important for photoresponse characteristics of GaN UV photodetectors as well as the crystal quality of the GaN epitaxial layers.

  2. Emission dynamics of hybrid plasmonic gold/organic GaN nanorods

    Science.gov (United States)

    Mohammadi, F.; Schmitzer, H.; Kunert, G.; Hommel, D.; Ge, J.; Duscher, G.; Langbein, W.; Wagner, H. P.

    2017-12-01

    We studied the emission of bare and aluminum quinoline (Alq3)/gold coated wurtzite GaN nanorods by temperature- and intensity-dependent time-integrated and time-resolved photoluminescence (PL). The GaN nanorods of ˜1.5 μm length and ˜250 nm diameter were grown by plasma-assisted molecular beam epitaxy. Gold/Alq3 coated GaN nanorods were synthesized by organic molecular beam deposition. The near band-edge and donor-acceptor pair luminescence was investigated in bare GaN nanorods and compared with multilevel model calculations providing the dynamical parameters for electron-hole pairs, excitons, impurity bound excitons, donors and acceptors. Subsequently, the influence of a 10 nm gold coating without and with an Alq3 spacer layer was studied and the experimental results were analyzed with the multilevel model. Without a spacer layer, a significant PL quenching and lifetime reduction of the near band-edge emission is found. The behavior is attributed to surface band-bending and Förster energy transfer from excitons to surface plasmons in the gold layer. Inserting a 5 nm Alq3 spacer layer reduces the PL quenching and lifetime reduction which is consistent with a reduced band-bending and Förster energy transfer. Increasing the spacer layer to 30 nm results in lifetimes which are similar to uncoated structures, showing a significantly decreased influence of the gold coating on the excitonic dynamics.

  3. Microstructures and growth mechanisms of GaN films epitaxially grown on AlN/Si hetero-structures by pulsed laser deposition at different temperatures.

    Science.gov (United States)

    Wang, Wenliang; Yang, Weijia; Lin, Yunhao; Zhou, Shizhong; Li, Guoqiang

    2015-11-13

    2 inch-diameter GaN films with homogeneous thickness distribution have been grown on AlN/Si(111) hetero-structures by pulsed laser deposition (PLD) with laser rastering technique. The surface morphology, crystalline quality, and interfacial property of as-grown GaN films are characterized in detail. By optimizing the laser rastering program, the ~300 nm-thick GaN films grown at 750 °C show a root-mean-square (RMS) thickness inhomogeneity of 3.0%, very smooth surface with a RMS surface roughness of 3.0 nm, full-width at half-maximums (FWHMs) for GaN(0002) and GaN(102) X-ray rocking curves of 0.7° and 0.8°, respectively, and sharp and abrupt AlN/GaN hetero-interfaces. With the increase in the growth temperature from 550 to 850 °C, the surface morphology, crystalline quality, and interfacial property of as-grown ~300 nm-thick GaN films are gradually improved at first and then decreased. Based on the characterizations, the corresponding growth mechanisms of GaN films grown on AlN/Si hetero-structures by PLD with various growth temperatures are hence proposed. This work would be beneficial to understanding the further insight of the GaN films grown on Si(111) substrates by PLD for the application of GaN-based devices.

  4. Low modulation bias InGaN-based integrated EA-modulator-laser on semipolar GaN substrate

    KAUST Repository

    Shen, Chao

    2015-10-06

    In summary, we demonstrated the monolithic integration of electroabsorption modulator with laser diode and measured DC and AC modulation characteristics of the device, which is grown on (2021̅) plane GaN substrate. By alternating the modulation voltage at −3.5 V and 0 V, we achieve the laser output power of < 1.5 mW to > 9 mW, respectively, leading to ∼8.1 dB On/Off ratio. Our results clearly show that a low power consumption modulator can be achieved with semipolar EA-modulator compared to that of the c-plane devices.

  5. Low modulation bias InGaN-based integrated EA-modulator-laser on semipolar GaN substrate

    KAUST Repository

    Shen, Chao; Leonard, John; Pourhashemi, Arash; Oubei, Hassan M.; Alias, Mohd Sharizal; Ng, Tien Khee; Nakamura, Shuji; DenBaars, Steven P.; Speck, James S.; Alyamani, Ahmed Y.; Eldesouki, Munir M.; Ooi, Boon S.

    2015-01-01

    In summary, we demonstrated the monolithic integration of electroabsorption modulator with laser diode and measured DC and AC modulation characteristics of the device, which is grown on (2021̅) plane GaN substrate. By alternating the modulation voltage at −3.5 V and 0 V, we achieve the laser output power of < 1.5 mW to > 9 mW, respectively, leading to ∼8.1 dB On/Off ratio. Our results clearly show that a low power consumption modulator can be achieved with semipolar EA-modulator compared to that of the c-plane devices.

  6. Metal contacts on ZnSe and GaN

    Energy Technology Data Exchange (ETDEWEB)

    Duxstad, Kristin Joy [Univ. of California, Berkeley, CA (United States). Materials Science and Mineral Engineering

    1997-05-01

    Recently, considerable interest has been focused on the development of blue light emitting materials and devices. The focus has been on GaN and ZnSe, direct band gap semiconductors with bands gaps of 3.4 and 2.6 eV, respectively. To have efficient, reliable devices it is necessary to have thermally and electrically stable Ohmic contacts. This requires knowledge of the metal-semiconductor reaction behavior. To date few studies have investigated this behavior. Much information has accumulated over the years on the behavior of metals on Si and GaAs. This thesis provides new knowledge for the more ionic wide band gap semiconductors. The initial reaction temperatures, first phases formed, and phase stability of Pt, Pd, and Ni on both semiconductors were investigated. The reactions of these metals on ZnSe and GaN are discussed in detail and correlated with predicted behavior. In addition, comparisons are made between these highly ionic semiconductors and Si and GaAs. The trends observed here should also be applicable to other II-VI and III-Nitride semiconductor systems, while the information on phase formation and stability should be useful in the development of contacts for ZnSe and GaN devices.

  7. The electronic properties of phosphorus-doped GaN nanowires from first-principle calculations

    International Nuclear Information System (INIS)

    Fu, Nannan; Li, Enling; Cui, Zhen; Ma, Deming; Wang, Wei; Zhang, Yulong; Song, Sha; Lin, Jie

    2014-01-01

    Highlights: • The P impurities tend to enrich at the surface of GaN nanowires. • The lattice parameters of GaN nanowires are changed by the P impurity. • Donor impurity level appears when the P impurity substitutes for the Ga atom. • The band gap decreases slightly when the P impurity substitutes for the N atom. - Abstract: The electronic properties of phosphorus-doped unsaturated and saturated gallium nitride (GaN) nanowires have been investigated from first-principles using the ultrasoft pseudopotential method. The results of these calculations indicate that the P impurities are enriched at the surface of gallium nitride nanowires, and that the structural symmetry of GaN nanowires is broken due to changes in the lattice parameters. When the P impurity substitutes for the Ga atom, the width of band gap increases at the Γ point, a donor impurity level appears in the band gap, and the P impurity and adjacent N atoms exists covalent interaction. Moreover, when the P impurity substitutes for the N atom, the width of the band gap decreases slightly at the Γ point, there is no obvious impurity level in the band gap, and P–Ga covalent bonds are formed, including those composed of ionic bonds. These conclusions indicate that the incorporation of P impurities can improve the field emission performance of GaN nanowires, which is consistent with the experimental results

  8. The electronic properties of phosphorus-doped GaN nanowires from first-principle calculations

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Nannan; Li, Enling, E-mail: Lienling@xaut.edu.cn; Cui, Zhen; Ma, Deming; Wang, Wei; Zhang, Yulong; Song, Sha; Lin, Jie

    2014-05-01

    Highlights: • The P impurities tend to enrich at the surface of GaN nanowires. • The lattice parameters of GaN nanowires are changed by the P impurity. • Donor impurity level appears when the P impurity substitutes for the Ga atom. • The band gap decreases slightly when the P impurity substitutes for the N atom. - Abstract: The electronic properties of phosphorus-doped unsaturated and saturated gallium nitride (GaN) nanowires have been investigated from first-principles using the ultrasoft pseudopotential method. The results of these calculations indicate that the P impurities are enriched at the surface of gallium nitride nanowires, and that the structural symmetry of GaN nanowires is broken due to changes in the lattice parameters. When the P impurity substitutes for the Ga atom, the width of band gap increases at the Γ point, a donor impurity level appears in the band gap, and the P impurity and adjacent N atoms exists covalent interaction. Moreover, when the P impurity substitutes for the N atom, the width of the band gap decreases slightly at the Γ point, there is no obvious impurity level in the band gap, and P–Ga covalent bonds are formed, including those composed of ionic bonds. These conclusions indicate that the incorporation of P impurities can improve the field emission performance of GaN nanowires, which is consistent with the experimental results.

  9. Valorization of GaN based metal-organic chemical vapor deposition dust a semiconductor power device industry waste through mechanochemical oxidation and leaching: A sustainable green process.

    Science.gov (United States)

    Swain, Basudev; Mishra, Chinmayee; Lee, Chan Gi; Park, Kyung-Soo; Lee, Kun-Jae

    2015-07-01

    Dust generated during metal organic vapor deposition (MOCVD) process of GaN based semiconductor power device industry contains significant amounts of gallium and indium. These semiconductor power device industry wastes contain gallium as GaN and Ga0.97N0.9O0.09 is a concern for the environment which can add value through recycling. In the present study, this waste is recycled through mechanochemical oxidation and leaching. For quantitative recovery of gallium, two different mechanochemical oxidation leaching process flow sheets are proposed. In one process, first the Ga0.97N0.9O0.09 of the MOCVD dust is leached at the optimum condition. Subsequently, the leach residue is mechanochemically treated, followed by oxidative annealing and finally re-leached. In the second process, the MOCVD waste dust is mechanochemically treated, followed by oxidative annealing and finally leached. Both of these treatment processes are competitive with each other, appropriate for gallium leaching and treatment of the waste MOCVD dust. Without mechanochemical oxidation, 40.11 and 1.86 w/w% of gallium and Indium are leached using 4M HCl, 100°C and pulp density of 100 kg/m(3,) respectively. After mechanochemical oxidation, both these processes achieved 90 w/w% of gallium and 1.86 w/w% of indium leaching at their optimum condition. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Ti/Al Ohmic Contacts to n-Type GaN Nanowires

    Directory of Open Access Journals (Sweden)

    Gangfeng Ye

    2011-01-01

    Full Text Available Titanium/aluminum ohmic contacts to tapered n-type GaN nanowires with triangular cross-sections were studied. To extract the specific contact resistance, the commonly used transmission line model was adapted to the particular nanowire geometry. The most Al-rich composition of the contact provided a low specific contact resistance (mid 10−8 Ωcm2 upon annealing at 600 °C for 15 s, but it exhibited poor thermal stability due to oxidation of excess elemental Al remaining after annealing, as revealed by transmission electron microscopy. On the other hand, less Al-rich contacts required higher annealing temperatures (850 or 900 °C to reach a minimum specific contact resistance but exhibited better thermal stability. A spread in the specific contact resistance from contact to contact was tentatively attributed to the different facets that were contacted on the GaN nanowires with a triangular cross-section.

  11. Investigations on 40 MeV Li3+ ions irradiated GaN epilayers

    International Nuclear Information System (INIS)

    Suresh Kumar, V.; Kumar, J.; Kanjilal, D.; Asokan, K.; Mohanty, T.; Tripathi, A.; Rossi, Francisca; Zappettini, A.; Lazzarani, L.; Ferrari, C.

    2008-01-01

    The Metal Organic Chemical Vapour Deposition (MOCVD) grown n-type Gallium nitride (GaN) layers on sapphire (0 0 0 1) substrates have been irradiated at low and room temperatures with 40 MeV Li 3+ ions at the fluence of 1 x 10 13 ions cm -2 . Irradiated samples were characterised by using X-ray diffraction (XRD), photoluminescence (PL), Raman spectroscopy and atomic force microscopy (AFM). XRD results show that the formation of Ga 2 O 3 has been observed upon irradiation. This is due to interface mixing of GaN/Al 2 O 3 , at both temperatures. Also the GaN (0 0 0 2) peak splits into two at low temperature irradiation. PL measurements show a yellow emission band shift towards blue band side upon irradiation at 77 K. Raman studies indicate that the lattice disorder is high at room temperature irradiation compared to low temperature irradiation. AFM images indicate the increasing surface roughness after ion irradiation at room temperature when compared to pristine GaN and low temperature irradiated GaN. These observations are discussed in detail with the use of complementary techniques

  12. Successful Fabrication of GaN Epitaxial Layer on Non-Catalytically grown Graphene

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Sung Won [Konkuk University, Chungju (Korea, Republic of); Choi, Suk-Ho [Kyung Hee University, Yongin (Korea, Republic of)

    2016-07-15

    Sapphire is widely used as a substrate for the growth of GaN epitaxial layer (EPI), but has several drawbacks such as high cost, large lattice mismatch, non-flexibility, and so on. Here, we first employ graphene directly grown on Si or sapphire substrate as a platform for the growth and lift-off of GaN-light-emitting diode (LED) EPI, useful for not only recycling the substrate but also transferring the GaN-LED EPI to other flexible substrates. Sequential standard processes of nucleation/recrystallization of GaN seeds and deposition of undoped (u-) GaN/AlN buffer layer were done on graphene/substrate before the growth of GaN-LED EPI, accompanied by taping and lift-off of u-GaN/AlN or GaN-LED EPI. This approach can overcome the limitations by the catalytic growth and transfer of graphene, and make the oxygen-plasma treatment of graphene for the growth of GaN EPI unnecessary.

  13. GaN microring waveguide resonators bonded to silicon substrate by a two-step polymer process.

    Science.gov (United States)

    Hashida, Ryohei; Sasaki, Takashi; Hane, Kazuhiro

    2018-03-20

    Using a polymer bonding technique, GaN microring waveguide resonators were fabricated on a Si substrate for future hybrid integration of GaN and Si photonic devices. The designed GaN microring consisted of a rib waveguide having a core of 510 nm in thickness, 1000 nm in width, and a clad of 240 nm in thickness. A GaN crystalline layer of 1000 nm in thickness was grown on a Si(111) substrate by metal organic chemical vapor deposition using a buffer layer of 300 nm in thickness for the compensation of lattice constant mismatch between GaN and Si crystals. The GaN/Si wafer was bonded to a Si(100) wafer by a two-step polymer process to prevent it from trapping air bubbles. The bonded GaN layer was thinned from the backside by a fast atom beam etching to remove the buffer layer and to generate the rib waveguides. The transmission characteristics of the GaN microring waveguide resonators were measured. The losses of the straight waveguides were measured to be 4.0±1.7  dB/mm around a wavelength of 1.55 μm. The microring radii ranged from 30 to 60 μm, where the measured free-spectral ranges varied from 2.58 to 5.30 nm. The quality factors of the microring waveguide resonators were from 1710 to 2820.

  14. Thermal degradation of ohmic contacts on semipolar (11-22) GaN films grown on m-plane (1-100) sapphire substrates

    International Nuclear Information System (INIS)

    Kim, Doo Soo; Kim, Deuk Young; Seo, Yong Gon; Kim, Ji Hoon; Hwang, Sung Min; Baik, Kwang Hyeon

    2012-01-01

    Semipolar (11-22) GaN films were grown on m-plane (1-100) sapphire substrates by using metalorganic chemical vapor deposition. The line widths of the omega rocking curves of the semipolar GaN films were 498 arcsec along the [11-23] GaN direction and 908 arcsec along the [10-10] GaN direction. The properties of the Ti/Al/Ni/Au metal contact were investigated using transmission-line-method patterns oriented in both the [11-23] GaN and the [10-10] GaN directions of semipolar (11-22) GaN. The minimum specific contact resistance of ∼3.6 x 10 -4 Ω·cm -2 was obtained on as-deposited metal contacts. The Ohmic contact properties of semipolar (11-22) GaN became degraded with increasing annealing temperature above 400 .deg. C. The thermal degradation of the metal contacts may be attributed to the surface property of N-polarity on the semipolar (11-22) GaN films. Also, the semipolar (11-22) GaN films did not show clear anisotropic behavior of the electrical properties for different azimuthal angles.

  15. Design and simulation of a novel 1400 V–4000 V enhancement mode buried gate GaN HEMT for power applications

    International Nuclear Information System (INIS)

    Faramehr, Soroush; Kalna, Karol; Igić, Petar

    2014-01-01

    A novel enhancement mode structure, a buried gate gallium nitride (GaN) high electron mobility transistor (HEMT) with a breakdown voltage (BV) of 1400 V–4000 V for a source-to-drain spacing (L SD ) of 6 μm–32 μm, is investigated using simulations by Silvaco Atlas. The simulations are based on meticulous calibration of a conventional lateral 1 μm gate length GaN HEMT with a source-to-drain spacing of 6 μm against its experimental transfer characteristics and BV. The specific on-resistance R S for the new power transistor with the source-to-drain spacing of 6 μm showing BV = 1400 V and the source-to-drain spacing of 8 μm showing BV = 1800 V is found to be 2.3 mΩ · cm 2 and 3.5 mΩ · cm 2 , respectively. Further improvement up to BV  = 4000 V can be achieved by increasing the source-to-drain spacing to 32 μm with the specific on-resistance of R S = 35.5 mΩ · cm 2 . The leakage current in the proposed devices stays in the range of ∼5 × 10 −9 mA mm −1 . (paper)

  16. Thermoelastic Stress Field Investigation of GaN Material for Laser Lift-off Technique based on Finite Element Method

    International Nuclear Information System (INIS)

    Ting, Wang; Zhan-Zhong, Cui; Li-Xin, Xu

    2009-01-01

    The transient thermoelastic stress fields of GaN films is analyzed by the finite element method for the laser lift-off (LLO) technique. Stress distributions in GaN films irradiated by pulse laser with different energy densities as functions of time and depth are simulated. The results show that the high thermoelastic stress distributions in GaN films localize within about 1 μm below the GaN/Al 2 O 3 interface using proper laser parameters. It is also found that GaN films can avoid the thermal deformation because the maximum thermoelastic stress 4.28 GPa is much smaller than the yield strength of GaN 15GPa. The effects of laser beam dimension and the thickness of GaN films on stress distribution are also analyzed. The variation range of laser beam dimension as a function of the thickness of GaN films is simulated to keep the GaN films free of thermal deformation. LLO experiments are also carried out. GaN-based light-emitting diodes (LEDs) are separated from sapphire substrates using the parameters obtained from the simulation. Compared with devices before LLO, P–I–V measurements of GaN-based LEDs after LLO show that the electrical and optical characteristics improve greatly, indicating that no stress damage is brought to GaN films using proper parameters obtained by calculation during LLO

  17. Vacancy-type defects in Al2O3/GaN structure probed by monoenergetic positron beams

    Science.gov (United States)

    Uedono, Akira; Nabatame, Toshihide; Egger, Werner; Koschine, Tönjes; Hugenschmidt, Christoph; Dickmann, Marcel; Sumiya, Masatomo; Ishibashi, Shoji

    2018-04-01

    Defects in the Al2O3(25 nm)/GaN structure were probed by using monoenergetic positron beams. Al2O3 films were deposited on GaN by atomic layer deposition at 300 °C. Temperature treatment above 800 °C leads to the introduction of vacancy-type defects in GaN due to outdiffusion of atoms from GaN into Al2O3. The width of the damaged region was determined to be 40-50 nm from the Al2O3/GaN interface, and some of the vacancies were identified to act as electron trapping centers. In the Al2O3 film before and after annealing treatment at 300-900 °C, open spaces with three different sizes were found to coexist. The density of medium-sized open spaces started to decrease above 800 °C, which was associated with the interaction between GaN and Al2O3. Effects of the electron trapping/detrapping processes of interface states on the flat band voltage and the defects in GaN were also discussed.

  18. Tuning electronic and magnetic properties of GaN nanosheets by surface modifications and nanosheet thickness.

    Science.gov (United States)

    Xiao, Meixia; Yao, Tingzhen; Ao, Zhimin; Wei, Peng; Wang, Danghui; Song, Haiyang

    2015-04-14

    Density-functional theory calculations are performed to investigate the effects of surface modifications and nanosheet thickness on the electronic and magnetic properties of gallium nitride (GaN) nanosheets (NSs). Unlike the bare GaN NSs terminating with polar surfaces, the systems with hydrogenated Ga (H-GaN), fluorinated Ga (F-GaN), and chlorinated Ga (Cl-GaN) preserve their initial wurtzite structures and exhibit ferromagnetic states. The abovementioned three different decorations on Ga atoms are energetically more favorable for thicker GaN NSs. Moreover, as the thickness increases, H-GaN and F-GaN NSs undergo semiconductor to metal and half-metal to metal transition, respectively, while Cl-GaN NSs remain completely metallic. The predicted diverse and tunable electronic and magnetic properties highlight the potential of GaN NSs for novel electronic and spintronic nanodevices.

  19. Epitaxial GaN films by hyperthermal ion-beam nitridation of Ga droplets

    Energy Technology Data Exchange (ETDEWEB)

    Gerlach, J. W.; Ivanov, T.; Neumann, L.; Hoeche, Th.; Hirsch, D.; Rauschenbach, B. [Leibniz-Institut fuer Oberflaechenmodifizierung (IOM), D-04318 Leipzig (Germany)

    2012-06-01

    Epitaxial GaN film formation on bare 6H-SiC(0001) substrates via the process of transformation of Ga droplets into a thin GaN film by applying hyperthermal nitrogen ions is investigated. Pre-deposited Ga atoms in well defined amounts form large droplets on the substrate surface which are subsequently nitridated at a substrate temperature of 630 Degree-Sign C by a low-energy nitrogen ion beam from a constricted glow-discharge ion source. The Ga deposition and ion-beam nitridation process steps are monitored in situ by reflection high-energy electron diffraction. Ex situ characterization by x-ray diffraction and reflectivity techniques, Rutherford backscattering spectrometry, and electron microscopy shows that the thickness of the resulting GaN films depends on the various amounts of pre-deposited gallium. The films are epitaxial to the substrate, exhibit a mosaic like, smooth surface topography and consist of coalesced large domains of low defect density. Possible transport mechanisms of reactive nitrogen species during hyperthermal nitridation are discussed and the formation of GaN films by an ion-beam assisted process is explained.

  20. P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI)

    International Nuclear Information System (INIS)

    Amano, Hiroshi; Kito, Masahiro; Hiramatsu, Kazumasa

    1989-01-01

    Distinct p-type conduction is realized with Mg-doped GaN by the low-energy electron-beam irradiation (LEEBI) treatment, and the properties of the GaN p-n junction LED are reported for the first time. It was found that the LEEBI treatment drastically lowers the resistivity and remarkably enhances the PL efficiency of MOVPE-grown Mg-doped GaN. The Hall effect measurement of this Mg-doped GaN treated with LEEBI at room temperature showed that the hole concentration is ∼2·10 16 cm -3 , the hole mobility is ∼8 cm 2 /V·s and the resistivity is ∼35Ω· cm. The p-n junction LED using Mg-doped GaN treated with LEEBI as the p-type material showed strong near-band-edge emission due to the hole injection from the p-layer to the n-layer at room temperature. (author)

  1. Resonant Full-Bridge Synchronous Rectifier Utilizing 15 V GaN Transistors for Wireless Power Transfer Applications Following AirFuel Standard Operating at 6.78 MHz

    DEFF Research Database (Denmark)

    Jensen, Christopher Have Kiaerskou; Spliid, Frederik Monrad; Hertel, Jens Christian

    2018-01-01

    , this work uses low voltage GaN transistors on the receiver (Rx) side to allow synchronous rectification and soft switching, thereby achieving high efficiency. After analyzing adequate Class-DE rectifier topologies, a ClassDE full-bridge 5 W rectifier using 15 V GaN transistors are designed and implemented...

  2. From Stable ZnO and GaN Clusters to Novel Double Bubbles and Frameworks

    Directory of Open Access Journals (Sweden)

    Matthew R. Farrow

    2014-05-01

    Full Text Available A bottom up approach is employed in the design of novel materials: first, gas-phase “double bubble” clusters are constructed from high symmetry, Th, 24 and 96 atom, single bubbles of ZnO and GaN. These are used to construct bulk frameworks. Upon geometry optimization—minimisation of energies and forces computed using density functional theory—the symmetry of the double bubble clusters is reduced to either C1 or C2, and the average bond lengths for the outer bubbles are 1.9 Å, whereas the average bonds for the inner bubble are larger for ZnO than for GaN; 2.0 Å and 1.9 Å, respectively. A careful analysis of the bond distributions reveals that the inter-bubble bonds are bi-modal, and that there is a greater distortion for ZnO. Similar bond distributions are found for the corresponding frameworks. The distortion of the ZnO double bubble is found to be related to the increased flexibility of the outer bubble when composed of ZnO rather than GaN, which is reflected in their bulk moduli. The energetics suggest that (ZnO12@(GaN48 is more stable both in gas phase and bulk frameworks than (ZnO12@(ZnO48 and (GaN12@(GaN48. Formation enthalpies are similar to those found for carbon fullerenes.

  3. Interface gap states and Schottky barrier inhomogeneity at metal/n-type GaN Schottky contacts

    International Nuclear Information System (INIS)

    Mamor, M

    2009-01-01

    The barrier heights (BH) of various metals including Pd, Pt and Ni on n-type GaN (M/n-GaN) have been measured in the temperature range 80-400 K with using a current-voltage (I-V) technique. The temperature dependence of the I-V characteristics of M/n-GaN have shown non-ideal behaviors and indicate the presence of a non-uniform distribution of surface gap states, resulting from the residual defects in the as grown GaN. The surface gap states density N ss , as well as its temperature dependence were obtained from the bias and temperature dependence of the ideality factor n(V,T) and the barrier height Φ Bn (V,T). Further, a dependence of zero-bias BH Φ 0Bn on the metal work function (Φ m ) with an interface parameter coefficient of proportionality of 0.47 is found. This result indicates that the Fermi level at the M/n-GaN interface is unpinned. Additionally, the presence of lateral inhomogeneities of the BH, with two Gaussian distributions of the BH values is seen. However, the non-homogeneous SBH is found to be correlated to the surface gap states density, in that Φ 0Bn becomes smaller with increasing N ss . These findings suggest that the lateral inhomogeneity of the SBH is connected to the non-uniform distribution of the density of surface gap states at metal/GaN which is attributed to the presence of native defects in the as grown GaN. Deep level transient spectroscopy confirms the presence of native defects with discrete energy levels at GaN and provides support to this interpretation.

  4. Enhanced Properties of Porous GaN Prepared by UV Assisted Electrochemical Etching

    International Nuclear Information System (INIS)

    Ainorkhilah Mahmood; Ainorkhilah Mahmood; Siang, C.L.

    2011-01-01

    The structural and optical properties of porous GaN films on sapphire (0001) prepared by UV assisted electrochemical etching were reported in this study. SEM micrographs indicated that the shapes of the pores for both porous samples are nearly hexagonal. XRD revealed that the broadening in spectrum is due to the small size crystallites. As compared to the as grown GaN films, porous layers exhibit a substantial photoluminescence (PL) intensity enhancement with red-shifted band-edge PL peaks associated with the relaxation of compressive stress. The shift of E2(high) to the lower frequency in Raman spectra of the porous GaN films further confirms such a stress relaxation. (author)

  5. Theoretical investigation of electronic, magnetic and optical properties of Fe doped GaN thin films

    International Nuclear Information System (INIS)

    Salmani, E.; Mounkachi, O.; Ez-Zahraouy, H.; Benyoussef, A.; Hamedoun, M.; Hlil, E.K.

    2013-01-01

    Highlights: •Magnetic and optical properties Fe-doped GaN thin films are studied using DFT. •The band gaps of GaN thin films are larger than the one of the bulk. •The layer thickness and acceptor defect can switch the magnetic ordering. -- Abstract: Using first principles calculations based on spin-polarized density functional theory, the magnetic and optical properties of GaN and Fe-doped GaN thin films with and without acceptor defect is studied. The band structure calculations show that the band gaps of GaN thin films with 2, 4 and 6 layers are larger than the one of the bulk with wurtzite structure and decreases with increasing the film thickness. In Fe doped GaN thin films, we show that layer of thickness and acceptor defect can switch the magnetic ordering from disorder local moment (DLM) to ferromagnetic (FM) order. Without acceptor defect Fe doped GaN exhibits spin glass phase in 4 layers form and ferromagnetic state for 2 layers form of the thin films, while it exhibits ferromagnetic phase with acceptor defect such as vacancies defect for 2 and 4 layers. In the FM ordering, the thin films is half-metallic and is therefore ideal for spin application. The different energy between ferromagnetic state and disorder local moment state was evaluated. Moreover, the optical absorption spectra obtained by ab initio calculations confirm the ferromagnetic stability based on the charge state of magnetic impurities

  6. ''Cube-on-hexagon'' orientation relationship for Fe on GaN(0001): The missing link in bcc/hcp epitaxy

    International Nuclear Information System (INIS)

    Gao Cunxu; Brandt, Oliver; Laehnemann, Jonas; Jahn, Uwe; Jenichen, Bernd; Schoenherr, Hans-Peter; Erwin, Steven C.

    2010-01-01

    We investigate, experimentally and theoretically, the epitaxy of body-centered-cubic Fe on hexagonal GaN. For growth on the Ga-polar GaN(0001) surface we find the well-known Pitsch-Schrader orientation relationship between Fe and GaN. On the N-polar GaN(0001) surface we observe coexistence between the familiar Burgers orientation and a new orientation in which the Fe(001) plane is parallel to GaN(0001). This 'cube-on-hexagon' orientation constitutes the high-symmetry link required for constructing a symmetry diagram for bcc/hcp systems in which all orientation relationships are connected by simple rotations.

  7. Local lattice environment of indium in GaN, AlN, and InN; Lokale Gitterumgebung von Indium in GaN, AlN und InN

    Energy Technology Data Exchange (ETDEWEB)

    Penner, J

    2007-12-20

    After an introduction to the physical properties of the nitrides, their preparation, and the state of studies on the implantation in the nitrides the experimental method (PAC) applied in this thesis and the data analysis are presented. The next chapter describes then the applied materials and the sample preparation. The following chapters contain the PAC measurements on the annealing behaviout of GaN, AlN, and InN after the implantation as well as dose- and temperature dependent PAC studies. Finally the most important results are summarized.

  8. Structural and optical studies of GaN pn-junction with AlN buffer layer grown on Si (111) by RF plasma enhanced MBE

    Energy Technology Data Exchange (ETDEWEB)

    Yusoff, Mohd Zaki Mohd; Hassan, Zainuriah; Woei, Chin Che; Hassan, Haslan Abu; Abdullah, Mat Johar [Nano-Optoelectronics Research and Technology Laboratory School of Physics, Universiti Sains Malaysia, 11800 Penang, Malaysia and Department of Applied Sciences Universiti Teknologi MARA (UiTM) 13500 Permatang Pauh, Penang (Malaysia); Department of Applied Sciences Universiti Teknologi MARA (UiTM) 13500 Permatang Pauh, Penang (Malaysia)

    2012-06-29

    GaN pn-junction grown on silicon substrates have been the focus in a number of recent reports and further effort is still necessary to improve its crystalline quality for practical applications. GaN has the high n-type background carrier concentration resulting from native defects commonly thought to be nitrogen vacancies. In this work, we present the growth of pn-junction of GaN on Si (111) substrate using RF plasma-enhanced molecular beam epitaxy (MBE). Both of the layers show uniformity with an average thickness of 0.709 {mu}m and 0.095 {mu}m for GaN and AlN layers, respectively. The XRD spectra indicate that no sign of cubic phase of GaN are found, so it is confirmed that the sample possessed hexagonal structure. It was found that all the allowed Raman optical phonon modes of GaN, i.e. the E2 (low), E1 (high) and A1 (LO) are clearly visible.

  9. Structural and optical properties of vanadium ion-implanted GaN

    Czech Academy of Sciences Publication Activity Database

    Macková, Anna; Malinský, Petr; Jagerová, Adéla; Sofer, Z.; Klímová, K.; Sedmidubský, D.; Mikulics, M.; Lorinčík, Jan; Veselá, D.; Bottger, R.; Akhmadaliev, S.

    2017-01-01

    Roč. 406, SEP (2017), s. 53-57 ISSN 0168-583X R&D Projects: GA ČR GA13-20507S; GA ČR GA15-01602S; GA MŠk LM2015056 Institutional support: RVO:61389005 ; RVO:67985882 Keywords : GaN implantation * RBS-channelling * optical properties of metal-implanted GaN Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders; JA - Electronics ; Optoelectronics, Electrical Engineering (URE-Y) OBOR OECD: Nuclear physics; Electrical and electronic engineering (URE-Y) Impact factor: 1.109, year: 2016

  10. GaN CVD Reactions: Hydrogen and Ammonia Decomposition and the Desorption of Gallium

    International Nuclear Information System (INIS)

    Bartram, Michael E.; Creighton, J. Randall

    1999-01-01

    Isotopic labeling experiments have revealed correlations between hydrogen reactions, Ga desorption, and ammonia decomposition in GaN CVD. Low energy electron diffraction (LEED) and temperature programmed desorption (TPD) were used to demonstrate that hydrogen atoms are available on the surface for reaction after exposing GaN(0001) to deuterium at elevated temperatures. Hydrogen reactions also lowered the temperature for Ga desorption significantly. Ammonia did not decompose on the surface before hydrogen exposure. However, after hydrogen reactions altered the surface, N 15 H 3 did undergo both reversible and irreversible decomposition. This also resulted in the desorption of N 2 of mixed isotopes below the onset of GaN sublimation, This suggests that the driving force of the high nitrogen-nitrogen bond strength (226 kcal/mol) can lead to the removal of nitrogen from the substrate when the surface is nitrogen rich. Overall, these findings indicate that hydrogen can influence G-aN CVD significantly, being a common factor in the reactivity of the surface, the desorption of Ga, and the decomposition of ammonia

  11. Assembly of phosphonic acids on GaN and AlGaN

    Energy Technology Data Exchange (ETDEWEB)

    Simpkins, B S; Stine, R; Theodore, N D; Pehrsson, P E [Chemistry Division, Naval Research Laboratory, Washington DC (United States); Hong, S [Thomas Jefferson High School, McClean, VA (United States); Maekinen, A J [Optical Sciences Division, Naval Research Laboratory, Washington, DC (United States); Mastro, M A; Eddy, C R Jr [Electronics Science and Technology Division, Naval Research Laboratory, Washington, DC (United States)

    2010-01-13

    Self-assembled monolayers of octadecylphosphonic acid and 16-phosphonohexadecanoic acid (PHDA) were formed on the semiconductor substrates gallium nitride (GaN) and aluminium gallium nitride (AlGaN). The presence of the molecular layers was verified through x-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy. Structural information was acquired with infrared spectroscopy which verified the bonding orientation of the carboxyl-containing PHDA. The impact of the molecular layers on the channel conductivity and the surface electronic structure of an AlGaN/GaN heterostructure was measured. Our results indicate that pinning of the surface Fermi level prohibits modification of the channel conductivity by the layer. However, a surface dipole of {approx}0.8 eV is present and associated with both phosphonic acid layers. These results are of direct relevance to field-effect-based biochemical sensors and metal-semiconductor contact formation for this system and provide a fundamental basis for further applications of GaN and AlGaN technology in the fields of biosensing and microelectronics.

  12. Atomic-scale structure of irradiated GaN compared to amorphised GaP and GaAs

    International Nuclear Information System (INIS)

    Ridgway, M.C.; Everett, S.E.; Glover, C.J.; Kluth, S.M.; Kluth, P.; Johannessen, B.; Hussain, Z.S.; Llewellyn, D.J.; Foran, G.J.; Azevedo, G. de M.

    2006-01-01

    We have compared the atomic-scale structure of ion irradiated GaN to that of amorphised GaP and GaAs. While continuous and homogenous amorphised layers were easily achieved in GaP and GaAs, ion irradiation of GaN yielded both structural and chemical inhomogeneities. Transmission electron microscopy revealed GaN crystallites and N 2 bubbles were interspersed within an amorphous GaN matrix. The crystallite orientation was random relative to the unirradiated epitaxial structure, suggesting their formation was irradiation-induced, while the crystallite fraction was approximately constant for all ion fluences beyond the amorphisation threshold, consistent with a balance between amorphisation and recrystallisation processes. Extended X-ray absorption fine structure measurements at the Ga K-edge showed short-range order was retained in the amorphous phase for all three binary compounds. For ion irradiated GaN, the stoichiometric imbalance due to N 2 bubble formation was not accommodated by Ga-Ga bonding in the amorphous phase or precipitation of metallic Ga but instead by a greater reduction in Ga coordination number

  13. Determination of the nitrogen vacancy as a shallow compensating center in GaN doped with divalent metals.

    Science.gov (United States)

    Buckeridge, J; Catlow, C R A; Scanlon, D O; Keal, T W; Sherwood, P; Miskufova, M; Walsh, A; Woodley, S M; Sokol, A A

    2015-01-09

    We report accurate energetics of defects introduced in GaN on doping with divalent metals, focusing on the technologically important case of Mg doping, using a model that takes into consideration both the effect of hole localization and dipolar polarization of the host material, and includes a well-defined reference level. Defect formation and ionization energies show that divalent dopants are counterbalanced in GaN by nitrogen vacancies and not by holes, which explains both the difficulty in achieving p-type conductivity in GaN and the associated major spectroscopic features, including the ubiquitous 3.46 eV photoluminescence line, a characteristic of all lightly divalent-metal-doped GaN materials that has also been shown to occur in pure GaN samples. Our results give a comprehensive explanation for the observed behavior of GaN doped with low concentrations of divalent metals in good agreement with relevant experiment.

  14. Determination of the Nitrogen Vacancy as a Shallow Compensating Center in GaN Doped with Divalent Metals

    Science.gov (United States)

    Buckeridge, J.; Catlow, C. R. A.; Scanlon, D. O.; Keal, T. W.; Sherwood, P.; Miskufova, M.; Walsh, A.; Woodley, S. M.; Sokol, A. A.

    2015-01-01

    We report accurate energetics of defects introduced in GaN on doping with divalent metals, focusing on the technologically important case of Mg doping, using a model that takes into consideration both the effect of hole localization and dipolar polarization of the host material, and includes a well-defined reference level. Defect formation and ionization energies show that divalent dopants are counterbalanced in GaN by nitrogen vacancies and not by holes, which explains both the difficulty in achieving p -type conductivity in GaN and the associated major spectroscopic features, including the ubiquitous 3.46 eV photoluminescence line, a characteristic of all lightly divalent-metal-doped GaN materials that has also been shown to occur in pure GaN samples. Our results give a comprehensive explanation for the observed behavior of GaN doped with low concentrations of divalent metals in good agreement with relevant experiment.

  15. Influence of growth temperature and temperature ramps on deep level defect incorporation in m-plane GaN

    International Nuclear Information System (INIS)

    Armstrong, A. M.; Kelchner, K.; Nakamura, S.; DenBaars, S. P.; Speck, J. S.

    2013-01-01

    The dependence of deep level defect incorporation in m-plane GaN films grown by metal-organic chemical vapor deposition on bulk m-plane GaN substrates as a function of growth temperature (T g ) and T g ramping method was investigated using deep level optical spectroscopy. Understanding the influence of T g on GaN deep level incorporation is important for InGaN/GaN multi-quantum well (MQW) light emitting diodes (LEDs) and laser diodes (LDs) because GaN quantum barrier (QB) layers are grown much colder than thin film GaN to accommodate InGaN QW growth. Deep level spectra of low T g (800 °C) GaN films grown under QB conditions were compared to deep level spectra of high T g (1150 °C) GaN. Reducing T g , increased the defect density significantly (>50×) through introduction of emergent deep level defects at 2.09 eV and 2.9 eV below the conduction band minimum. However, optimizing growth conditions during the temperature ramp when transitioning from high to low T g substantially reduced the density of these emergent deep levels by approximately 40%. The results suggest that it is important to consider the potential for non-radiative recombination in QBs of LED or LD active regions, and tailoring the transition from high T g GaN growth to active layer growth can mitigate such non-radiative channels

  16. Selectively Enhanced UV-A Photoresponsivity of a GaN MSM UV Photodetector with a Step-Graded AlxGa1−xN Buffer Layer

    Directory of Open Access Journals (Sweden)

    Chang-Ju Lee

    2017-07-01

    Full Text Available The UV-to-visible rejection ratio is one of the important figure of merits of GaN-based UV photodetectors. For cost-effectiveness and large-scale fabrication of GaN devices, we tried to grow a GaN epitaxial layer on silicon substrate with complicated buffer layers for a stress-release. It is known that the structure of the buffer layers affects the performance of devices fabricated on the GaN epitaxial layers. In this study, we show that the design of a buffer layer structure can make effect on the UV-to-visible rejection ratio of GaN UV photodetectors. The GaN photodetector fabricated on GaN-on-silicon substrate with a step-graded AlxGa−xN buffer layer has a highly-selective photoresponse at 365-nm wavelength. The UV-to-visible rejection ratio of the GaN UV photodetector with the step-graded AlxGa1−xN buffer layer was an order-of-magnitude higher than that of a photodetector with a conventional GaN/AlN multi buffer layer. The maximum photoresponsivity was as high as 5 × 10−2 A/W. This result implies that the design of buffer layer is important for photoresponse characteristics of GaN UV photodetectors as well as the crystal quality of the GaN epitaxial layers.

  17. Influence of the carrier Gas, trimethylgallium flow, and growth time on the character of the selective epitaxy of GaN

    Energy Technology Data Exchange (ETDEWEB)

    Rozhavskaya, M. M., E-mail: MRozhavskaya@gmail.com; Lundin, V. V.; Zavarin, E. E.; Troshkov, S. I.; Brunkov, P. N.; Tsatsulnikov, A. F. [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation)

    2013-03-15

    The influence of the carrier gas, trimethylgallium flow, and growth time on the character of the selective epitaxy of GaN in stripe windows oriented along the crystallographic direction Left-Pointing-Angle-Bracket 11-bar00 Right-Pointing-Angle-Bracket GaN for various widths of the mask between the stripes is studied. It is shown that the addition of nitrogen in the reactor atmosphere leads to changes in the form of the stripes in the case of wide (40 {mu}m) mask from a rectangular form restricted by a {l_brace}1 1-bar20{r_brace} lateral face to a trapezoidal form restricted by a {l_brace}1 1-bar22{r_brace} lateral face. It is also shown that during growth in the nitrogen-hydrogen mixture, the gallium flow starts to considerably affect the form of the growing stripes. It is shown that the process is significantly unstable, which leads to a noticeable variation in the form type as the transverse section of the stripe increases.

  18. Optical Properties and Lasing in GaN

    National Research Council Canada - National Science Library

    Song, J

    2001-01-01

    .... In the second article. femtosecond pump-probe transmission spectroscopy was used to study the nonequilibrium carrier dynamics in a GaN thin film at 10 K with carrier densities ranging from 4 x 10(exp 17) to 10(exp 19)/cu cm...

  19. Characterization of GaN P-N Junction Grown on Si (111) Substrate by Plasma-assisted Molecular Beam Epitaxy

    International Nuclear Information System (INIS)

    Rosfariza Radzali; Rosfariza Radzali; Mohd Anas Ahmad; Zainuriah Hassan; Norzaini Zainal; Kwong, Y.F.; Woei, C.C.; Mohd Zaki Mohd Yusoff; Mohd Zaki Mohd Yusoff

    2011-01-01

    In this report, the growth of GaN pn junction on Si (111) substrate by plasma assisted molecular beam epitaxy (PAMBE) is presented. Doping of GaN p-n junction has been carried out using Si and Mg as n-type dopant and p-type dopants, respectively. The sample had been characterized by PL, Raman spectroscopy, HR-XRD and SEM. PL spectrum showed strong band edge emission of GaN at ∼364 nm, indicating good quality of the sample. The image of SEM cross section of the sample showed sharp interfaces. The presence of peak ∼657 cm -1 in Raman measurement exhibited successful doping of Mg in the sample. (author)

  20. GaN light-emitting device based on ionic liquid electrolyte

    Science.gov (United States)

    Hirai, Tomoaki; Sakanoue, Tomo; Takenobu, Taishi

    2018-06-01

    Ionic liquids (ILs) are attractive materials for fabricating unique hybrid devices based on electronics and electrochemistry; thus, IL-gated transistors and organic light-emitting devices of light-emitting electrochemical cells (LECs) are investigated for future low-voltage and high-performance devices. In LECs, voltage application induces the formation of electrochemically doped p–n homojunctions owing to ion rearrangements in composites of semiconductors and electrolytes, and achieves electron–hole recombination for light emission at the homojunctions. In this work, we applied this concept of IL-induced electrochemical doping to the fabrication of GaN-based light-emitting devices. We found that voltage application to the layered IL/GaN structure accumulated electrons on the GaN surface owing to ion rearrangements and improved the conductivity of GaN. The ion rearrangement also enabled holes to be injected by the strong electric field of electric double layers on hole injection contacts. This simultaneous injection of holes and electrons into GaN mediated by ions achieves light emission at a low voltage of around 3.4 V. The light emission from the simple IL/GaN structure indicates the usefulness of an electrochemical technique in generating light emission with great ease of fabrication.

  1. First-principles and thermodynamic analysis of trimethylgallium (TMG) decomposition during MOVPE growth of GaN

    Science.gov (United States)

    Sekiguchi, K.; Shirakawa, H.; Yamamoto, Y.; Araidai, M.; Kangawa, Y.; Kakimoto, K.; Shiraishi, K.

    2017-06-01

    We analyzed the decomposition mechanisms of trimethylgallium (TMG) used for the gallium source of GaN fabrication based on first-principles calculations and thermodynamic analysis. We considered two conditions. One condition is under the total pressure of 1 atm and the other one is under metal organic vapor phase epitaxy (MOVPE) growth of GaN. Our calculated results show that H2 is indispensable for TMG decomposition under both conditions. In GaN MOVPE, TMG with H2 spontaneously decomposes into Ga(CH3) and Ga(CH3) decomposes into Ga atom gas when temperature is higher than 440 K. From these calculations, we confirmed that TMG surely becomes Ga atom gas near the GaN substrate surfaces.

  2. Growth optimization and characterization of GaN epilayers on multifaceted (111) surfaces etched on Si(100) substrates

    Energy Technology Data Exchange (ETDEWEB)

    Ansah-Antwi, KwaDwo Konadu, E-mail: kakadee@gmail.com; Chua, Soo Jin [Institute of Materials Research and Engineering (IMRE), A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis # 08-03, Singapore 138634 (Singapore); Department of Electrical and Computer Engineering, National University of Singapore, E4-5-45, 4 Engineering Drive 3, Singapore 117576 (Singapore); Soh, Chew Beng [Singapore Institute of Technology, 10 Dover Drive, Singapore 138683 (Singapore); Liu, Hongfei [Institute of Materials Research and Engineering (IMRE), A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis # 08-03, Singapore 138634 (Singapore)

    2015-11-15

    The four nearest Si(111) multifaceted sidewalls were exposed inside an array of 3 μm-wide square holes patterned on an Si(100) substrate, and this patterned Si(100) substrate was used as a substrate for the deposition of a gallium nitride (GaN) epilayer. Subsequently the effect that the growth pressure, the etched-hole profiles, and the etched-hole arrangement had upon the quality of the as-grown GaN was investigated. The coalescence of the as-grown GaN epilayer on the exposed Si(111) facets was observed to be enhanced with reduced growth pressure from 120 to 90 Torr. A larger Si(001) plane area at the bottom of the etched holes resulted in bidirectional GaN domains, which resulted in poor material quality. The bidirectional GaN domains were observed as two sets of six peaks via a high-resolution x-ray diffraction phi scan of the GaN(10-11) reflection. It was also shown that a triangular array of etched holes was more desirable than square arrays of etched holes for the growth high-quality and continuous GaN films.

  3. Growth of GaN on SiC/Si substrates using AlN buffer layer by hot-mesh CVD

    International Nuclear Information System (INIS)

    Tamura, Kazuyuki; Kuroki, Yuichiro; Yasui, Kanji; Suemitsu, Maki; Ito, Takashi; Endou, Tetsuro; Nakazawa, Hideki; Narita, Yuzuru; Takata, Masasuke; Akahane, Tadashi

    2008-01-01

    GaN films were grown on SiC/Si (111) substrates by hot-mesh chemical vapor deposition (CVD) using ammonia (NH 3 ) and trimetylgallium (TMG) under low V/III source gas ratio (NH 3 /TMG = 80). The SiC layer was grown by a carbonization process on the Si substrates using propane (C 3 H 8 ). The AlN layer was deposited as a buffer layer using NH 3 and trimetylaluminum (TMA). GaN films were formed and grown by the reaction between NH x radicals, generated on a tungsten hot mesh, and the TMG molecules. The GaN films with the AlN buffer layer showed better crystallinity and stronger near-band-edge emission compared to those without the AlN layer

  4. Dependence of adhesion strength between GaN LEDs and sapphire substrate on power density of UV laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Junsu [Department of Nano-Manufacturing Technology, Korea Institute of Machinery and Materials, 156 Gajeongbuk-Ro, Yuseong-Gu, Daejeon 34103 (Korea, Republic of); Sin, Young-Gwan [Department of Nano-Mechatronics, Korea University of Science and Technology (UST), 217 Gajeong-Ro, Yuseong-Gu, Daejeon 34113 (Korea, Republic of); Kim, Jae-Hyun [Department of Nano-Mechanics, Korea Institute of Machinery and Materials, 156 Gajeongbuk-Ro, Yuseong-Gu, Daejeon 34103 (Korea, Republic of); Kim, Jaegu, E-mail: gugu99@kimm.re.kr [Department of Nano-Manufacturing Technology, Korea Institute of Machinery and Materials, 156 Gajeongbuk-Ro, Yuseong-Gu, Daejeon 34103 (Korea, Republic of)

    2016-10-30

    Highlights: • Fundamental relationship between laser irradiation and adhesion strength, between gallium-nitride light emitted diode and sapphire substrate, is proposed during selective laser lift-off. • Two competing mechanisms affect adhesion at the irradiated interface between the GaN LED and sapphire substrate. • Ga precipitation caused by thermal decomposition and roughened interface caused by thermal damage lead to the considerable difference of adhesion strength at the interface. - Abstract: Selective laser lift-off (SLLO) is an innovative technology used to manufacture and repair micro-light-emitting diode (LED) displays. In SLLO, laser is irradiated to selectively separate micro-LED devices from a transparent sapphire substrate. The light source used is an ultraviolet (UV) laser with a wavelength of 266 nm, pulse duration of 20 ns, and repetition rate of 30 kHz. Controlled adhesion between a LED and the substrate is key for a SLLO process with high yield and reliability. This study examined the fundamental relationship between adhesion and laser irradiation. Two competing mechanisms affect adhesion at the irradiated interface between the GaN LED and sapphire substrate: Ga precipitation caused by the thermal decomposition of GaN and roughened interface caused by thermal damage on the sapphire. The competition between these two mechanisms leads to a non-trivial SLLO condition that needs optimization. This study helps understand the SLLO process, and accelerate the development of a process for manufacturing micro-LED displays via SLLO for future applications.

  5. P-type doping of GaN(000\\bar{1}) by magnesium ion implantation

    Science.gov (United States)

    Narita, Tetsuo; Kachi, Tetsu; Kataoka, Keita; Uesugi, Tsutomu

    2017-01-01

    Magnesium ion implantation has been performed on a GaN(000\\bar{1}) substrate, whose surface has a high thermal stability, thus allowing postimplantation annealing without the use of a protective layer. The current-voltage characteristics of p-n diodes fabricated on GaN(000\\bar{1}) showed distinct rectification at a turn-on voltage of about 3 V, although the leakage current varied widely among the diodes. Coimplantation with magnesium and hydrogen ions effectively suppressed the leakage currents and device-to-device variations. In addition, an electroluminescence band was observed at wavelengths shorter than 450 nm for these diodes. These results provide strong evidence that implanted magnesium ions create acceptors in GaN(000\\bar{1}).

  6. Implantation induced electrical isolation of sulphur doped GaN xAs1-x layers

    International Nuclear Information System (INIS)

    Ahmed, S.; Lin, J.; Haq, A.; Sealy, B.

    2005-01-01

    The study of III-N-V semiconductor alloys, especially GaN x As 1-x has been increasing in the last few years. The strong dependence of the band gap on the nitrogen content has made this material important for a variety of applications, including long wavelength optoelectronic devices and high efficiency solar cells. We report on the effects of sulphur doping implants on the achieved electrical isolation in GaN x As 1-x layers using proton bombardment. Sulphur ions were implanted in MOCVD-grown GaN x As 1-x layers (1.4 μm thick with nominal x = 1%) with multiple energies creating approximately uniform doping profiles in the range of about 1 x 10 18 -5 x 10 19 cm -3 . Several proton implants were performed in order to find the threshold dose (minimum dose to achieve maximum sheet resistivity) for the electrical isolation of n-type GaN x As 1-x layers. Results show that the sheet resistance of n-type layers can be increased by about five orders of magnitude by proton implantation and the threshold dose to convert a conductive layer to a highly resistive one depends on the original free carrier concentration. The study of annealing temperature dependence of sheet resistivity in proton-isolated GaN x As 1-x layers shows that the electrical isolation can be preserved up to 450 and 500 deg. C when the implantation is performed at RT and 77 K with threshold dose, respectively. These results for n-type GaN x As 1-x layers are novel and have ramifications for device engineers

  7. Benefits and Drawbacks of A High Frequency Gan Zvzcps Converter

    Directory of Open Access Journals (Sweden)

    Blanes J. M.

    2017-01-01

    Full Text Available This paper presents the benefits and drawbacks of replacing the traditional Si Mosfets transistors with enhancement mode GaN transistors in a Half-Bridge Zero Voltage and Zero Current Switching Power Switching (ZVZCPS converter. This type of converters is usually used as Electronic Power Converters (EPC for telecommunication satellites travelling-wave tube amplifiers (TWTAs. In this study, firstly the converter is theoretically analysed, obtaining its operation, losses and efficiency equations. From these equations, optimizations maps based on the main system parameters are obtained. These optimization maps are the key to quantify the potential benefits of GaN transistors in this type of converters. Theoretical results show that using GaN transistors, the frequency of the converter can be pushed from 125kHz to 830kHz without sacrificing the converter efficiency. This frequency increase is directly related to reduction on the EPC size and weight.

  8. Surface morphology of homoepitaxial GaN grown on non- and semipolar GaN substrates

    Energy Technology Data Exchange (ETDEWEB)

    Wernicke, Tim; Ploch, Simon [Institute of Solid State Physics, Technische Universitaet Berlin, Hardenbergstr. 36, 10623 Berlin (Germany); Hoffmann, Veit; Knauer, Arne; Weyers, Markus [Ferdinand-Braun-Institut, Leibniz Institut fuer Hoechstfrequenztechnik, Gustav-Kirchhoff-Str. 4, 12489 Berlin (Germany); Kneissl, Michael [Institute of Solid State Physics, Technische Universitaet Berlin, Hardenbergstr. 36, 10623 Berlin (Germany); Ferdinand-Braun-Institut, Leibniz Institut fuer Hoechstfrequenztechnik, Gustav-Kirchhoff-Str. 4, 12489 Berlin (Germany)

    2011-03-15

    GaN layers on bulk m-plane, (11 anti 22), (10 anti 12) and (10 anti 11) GaN substrates were grown by metal organic vapor phase epitaxy. XRD rocking curves have a FWHM of less than 150'', indicating excellent crystalline quality. However in many cases surface morphology exhibits hillocks with a height of 1-2 {mu}m and a lateral extension of 50-200 {mu}m whereas a smooth surface would be desirable for optoelectronic devices. The influence of growth parameters on the surface morphology was studied. The goal was, to constrain the material redistribution, that is necessary to form large hillocks. This was achieved by lowering the adatom diffusion length by a reduction of temperature and an increased reactor pressure. In the case of the (10 anti 11) and (10 anti 12) semipolar planes a reduction of the adatom diffusion length leads to a reduction of hillock density, hillock size and a smoother surface between hillocks. However, the m-plane surface does not react to a reduction of adatom mobility. Even at 890 C and 400 mbar rectangular pyramids cover the surface. In contrast to the other planes, the (11 anti 22) becomes instable, when the adatom diffusion length is reduced. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. High-quality GaN nanowires grown on Si and porous silicon by thermal evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Shekari, L., E-mail: lsg09_phy089@student.usm.my [Nano-Optoelectronics Research and Technology Laboratory, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Ramizy, A.; Omar, K.; Hassan, H. Abu; Hassan, Z. [Nano-Optoelectronics Research and Technology Laboratory, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer A new kind of substrate (porous silicon) was used. Black-Right-Pointing-Pointer Also this research introduces an easy and safe method to grow high quality GaN NWs. Black-Right-Pointing-Pointer This is a new growth process to decrease the cost, complexity of growth of GaN NWs. Black-Right-Pointing-Pointer It is a controllable method to synthesize GaN NWs by thermal evaporation. - Abstract: Nanowires (NWs) of GaN thin films were prepared on as-grown Si (1 1 1) and porous silicon (PS) substrates using thermal evaporation method. The film growth produced high-quality wurtzite GaN NWs. The size, morphology, and nanostructures of the crystals were investigated through scanning electron microscopy, high-resolution X-ray diffraction and photoluminescence spectroscopy. The NWs grown on porous silicon were thinner, longer and denser compared with those on as-grown Si. The energy band gap of the NWs grown on PS was larger than that of NWs on as-grown Si. This is due to the greater quantum confinement effects of the crystalline structure of the NWs grown on PS.

  10. Improvement of GaN epilayer by gradient layer method with molecular-beam epitaxy

    International Nuclear Information System (INIS)

    Chen, Yen-Liang; Lo, Ikai; Gau, Ming-Hong; Hsieh, Chia-Ho; Sham, Meng-Wei; Pang, Wen-Yuan; Hsu, Yu-Chi; Tsai, Jenn-Kai; Schuber, Ralf; Schaadt, Daniel

    2012-01-01

    We demonstrated a molecular beam epitaxy method to resolve the dilemma between structural and morphological quality in growth of the GaN epilayer. A gradient buffer layer was grown in such a way that the N/Ga ratio was gradually changed from nitrogen-rich to gallium-rich. The GaN epitaxial layer was then grown on the gradient buffer layer. In the X-ray diffraction analysis of GaN(002) rocking curves, we found that the full width at half-maximum was improved from 531.69″ to 59.43″ for the sample with a gradient buffer layer as compared to a purely gallium-rich grown sample. Atomic force microscopy analysis showed that the root-mean-square roughness of the surface was improved from 18.28 nm to 1.62 nm over an area of 5 × 5 μm 2 with respect to a purely nitrogen-rich grown sample. Raman scattering showed the presence of a slightly tilted plane in the gradient layer. Furthermore we showed that the gradient layer can also slash the strain force caused by either Ga-rich GaN epitaxial layer or AlN buffer layer. - Highlights: ► The samples were grown by plasma-assisted molecular beam epitaxy. ► The GaN epilayer was grown on sapphire substrate. ► The samples were characterized by X-ray diffraction and atomic force microscopy. ► The sample quality was improved by gradient buffer layer.

  11. Three-dimensionally structured silicon as a substrate for the MOVPE growth of GaN nanoLEDs

    Energy Technology Data Exchange (ETDEWEB)

    Fuendling, Soenke; Li, Shunfeng; Soekmen, Uensal; Merzsch, Stephan; Peiner, Erwin; Wehmann, Hergo-Heinrich; Waag, Andreas [Institut fuer Halbleitertechnik, TU Braunschweig, Braunschweig (Germany); Hinze, Peter; Weimann, Thomas [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany); Jahn, Uwe; Trampert, Achim; Riechert, Henning [Paul-Drude-Institut fuer Festkoerperelektronik, Berlin (Germany)

    2009-06-15

    Three-dimensionally patterned Si(111) substrates are used to grow GaN based heterostructures by metalorganic vapour phase epitaxy, with the goal of fabricating well controlled, defect reduced GaN-based nanoLEDs. In contrast to other approaches to achieve GaN nanorods, we employed silicon substrates with deep etched nanopillars to control the GaN nanorods growth by varying the size and distance of the Si pillars. The small footprint of GaN nanorods grown on Si pillars minimise the influence of the lattice mismatched substrate and improve the material quality. For the Si pillars an inductively coupled plasma dry-etching process at cryogenic temperature has been developed. An InGaN/GaN multi quantum well (MQW) structure has been incorporated into the GaN nanorods. We found GaN nanostructures grown on top of the silicon pillars with a pyramidal shape. This shape results from a competitive growth on different facets as well as from surface diffusion of the growth species. Spatially resolved optical properties of the structures are analysed by cathodoluminescence. Strongly spatial-dependent MQW emission spectra indicate the growth rate differences on top of the rods. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Suppression of concentration quenching of Er-related luminescence in Er-doped GaN

    International Nuclear Information System (INIS)

    Chen Shaoqiang; Tomita, Shigeo; Kudo, Hiroshi; Akimoto, Katsuhiro; Dierre, Benjamin; Lee, Woong; Sekiguchi, Takashi

    2010-01-01

    Erbium-doped GaN with different doping concentrations were grown by ammonia-source molecular beam epitaxy. The intra-4f-shell transitions related green luminescence were observed by both photoluminescence (PL) and cathodoluminescence (CL) measurements. It was found that concentration quenching of Er-related luminescence was observed in PL measurements while not in CL measurements. The different excitation and relaxation processes are suggested as the cause of the concentration quenching characteristics between PL and CL. The strong Er-related CL intensity in highly doped GaN demonstrates that high energy excitation is a promising approach to suppress the concentration quenching in Er-doped GaN.

  13. Conceptual design of GaN betavoltaic battery using in cardiac pacemaker

    International Nuclear Information System (INIS)

    Mohamadian, M.; Feghhi, S.A. H.; Afarideh, H.

    2007-01-01

    Introduction: Pacemaker is an electronic biomedical device which stimulates and regulates or amplify the human heartbeat by delivering weak electrical pulses to the cardiac muscle at regular intervals when its natural regulating mechanisms break down. Developments in design and implementation of power source in adjacent to advances in electronic circuitry is an important aspect in optimization of pacemakers. For instance, many implant patients continue to outlive their batteries and require costly and risky replacement surgery. So such device needs to have high energy density power source and maintain a stable current and voltage for a long period of time to avoid frequent replacements. In addition, the size is also an important consideration for implantable batteries. Betavoltaic batteries are being researched as a suitable source for these applications. Also, these batteries have vast application in which the replacement of batteries is highly inconvenient, such as in oil and mining industries, which often place sensors in dangerous or hard-to-reach locations. The purpose of the present investigation is determination of the optimal parameters of low energy GaN betavoltaic battery in artificial cardiac pacemakers using MCNP code which have higher efficiency than those available with previous devices, especially thermoelectric converters (∼15%). Material and Methods: In this design, two p-n diode structures from GaN semiconductor were used to collect the charge from a layer of 6 3Ni as a source which is centered between the two p-n junctions. MCNP simulation results have been used to determine the amount of electron current from interaction of beta particles in p-n junctions. Results and Discussion: Calculation results indicate that the short circuit current, open circuit voltage and efficiency of a single device are 1.1 μA/cm 2 , 2.7 volt and 25%, respectively. Also, it's concluded that with suitable arrangement of these single devices, one could construct a

  14. Synchrotron-based XPS studies of AlGaN and GaN surface chemistry and its relationship to ion sensor behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Khir, Farah Liyana Muhammad, E-mail: 21001899@student.uwa.edu.au [School of Electrical, Electronic and Computer Engineering, The University of Western Australia, 35 Stirling Hwy., Crawley, Western Australia 6009 (Australia); Myers, Matthew, E-mail: Matt.Myers@csiro.au [School of Chemistry and Biochemistry, The University of Western Australia, 35 Stirling Hwy., Crawley, Western Australia 6009 (Australia); CSIRO Earth Science and Resource Engineering, Kensington, Western Australia 6151 (Australia); Podolska, Anna [School of Electrical, Electronic and Computer Engineering, The University of Western Australia, 35 Stirling Hwy., Crawley, Western Australia 6009 (Australia); Department of Exploration Geophysics, Curtin University of Technology, 26 Dick Perry Avenue, ARRC, Kensington, Western Australia 6151 (Australia); Sanders, Tarun Maruthi [School of Electrical, Electronic and Computer Engineering, The University of Western Australia, 35 Stirling Hwy., Crawley, Western Australia 6009 (Australia); Baker, Murray V., E-mail: murray.baker@uwa.edu.au [School of Chemistry and Biochemistry, The University of Western Australia, 35 Stirling Hwy., Crawley, Western Australia 6009 (Australia); Nener, Brett D., E-mail: brett.nener@uwa.edu.au [School of Electrical, Electronic and Computer Engineering, The University of Western Australia, 35 Stirling Hwy., Crawley, Western Australia 6009 (Australia); Parish, Giacinta, E-mail: giacinta.parish@uwa.edu.au [School of Electrical, Electronic and Computer Engineering, The University of Western Australia, 35 Stirling Hwy., Crawley, Western Australia 6009 (Australia)

    2014-09-30

    Highlights: • Soft X-ray was used to study the surface chemistry of GaN and AlGaN. • The surface chemistry and sensor behaviour were investigated. • The oxide of aluminum is significantly more reactive than gallium. • The Cl{sup −} ions are greater in GaN samples compared to AlGaN samples. - Abstract: Soft X-ray photoelectron spectroscopy was used to investigate the fundamental surface chemistry of both AlGaN and GaN surfaces in the context of understanding the behaviour of AlGaN/GaN heterostructures as chemical field-effect transistor (CHEMFET) ion sensors. AlGaN and GaN samples were subjected to different methods of oxide growth (native oxide and thermally grown oxide) and chemical treatment conditions. Our investigations indicate that the etching of the oxide layer is more pronounced with AlGaN compared to GaN. Also, we observed that chloride ions have a greater tendency to attach to the GaN surface relative to the AlGaN surface. Furthermore, chloride ions are comparatively more prevalent on surfaces treated with 5% HCl acid solution. The concentration of chloride ions is even higher on the HCl treated native oxide surface resulting in a very clear deconvolution of the Cl 2p{sub 1/2} and Cl 2p{sub 3/2} peaks. For GaN and AlGaN surfaces, a linear response (e.g. source-drain current) is typically seen with variation in pH of buffered solutions with constant reference electrode voltage at the surface gate; however, an inverted bath-tub type response (e.g. a maximum at neutral pH and lower values at pH values away from neutral) and a general tendency to negative charge selectivity has been also widely reported. We have shown that our XPS investigations are consistent with the different sensor response reported in the literature for these CHEMFET devices and may help to explain the differing response of these materials.

  15. Impact of the AlN seeding layer thickness on GaN orientation on high index Si-substrates

    Energy Technology Data Exchange (ETDEWEB)

    Ravash, Roghaiyeh; Blaesing, Juergen; Veit, Peter; Hempel, Thomas; Dadgar, Armin; Christen, Juergen; Krost, Alois [Otto-von-Guericke-University Magdeburg (Germany). FNW/IEP/AHE

    2010-07-01

    Silicon is considered to be a reasonable alternative to substrates such as sapphire and SiC, because of its low price and availability in large diameters. Because of spontaneous and strain induced piezoelectric polarization field along the c-axis, leading to the separation of electrons and holes in quantum wells reducing the recombination efficiency, c-axis oriented GaN-based light emitters have a low efficiency, especially in the longer wavelength region. In order to reduce or eliminate these polarization effects, semi-polar or non-polar GaN-heterostructure is favored. In this work we investigated the growth of GaN applying a low temperature AlN seeding layer with various thicknesses. The impact of the AlN seeding layer on GaN orientation using different Si substrate orientations (e. g. (211), (711), (410), (100)+4.5 off) were investigated by x-ray diffraction measurements in Bragg-Brentano geometry and X-ray pole figure measurements. We found that the thickness of the AlN seeding layer plays a significant role in obtaining different GaN textures. Applying a about 4 nm AlN seeding layer we achieved a single crystalline GaN epilayer on Si (211) with a 18 tilted c-axis orientation. Some of the samples were characterized by scanning electron microscopy and transmission electron microscopy.

  16. Free-standing GaN grating couplers and rib waveguide for planar photonics at telecommunication wavelength

    Science.gov (United States)

    Liu, Qifa; Wang, Wei

    2018-01-01

    Gallium Nitride (GaN) free-standing planar photonic device at telecommunication wavelength based on GaN-on-silicon platform was presented. The free-standing structure was realized by particular double-side fabrication process, which combining GaN front patterning, Si substrate back releasing and GaN slab etching. The actual device parameters were identified via the physical characterizations employing scanning electron microscope (SEM), atomic force microscope (AFM) and reflectance spectra testing. High coupling efficiency and good light confinement properties of the gratings and rib waveguide at telecommunication wavelength range were verified by finite element method (FEM) simulation. This work illustrates the potential of new GaN photonic structure which will enable new functions for planar photonics in communication and sensing applications, and is favorable for the realization of integrated optical circuit.

  17. Effects of a highly Si-doped GaN current spreading layer at the n+-GaN/multi-quantum-well interface on InGaN/GaN blue-light-emitting diodes

    International Nuclear Information System (INIS)

    Kim, C. S.; Cho, H. K.; Choi, R. J.; Hahn, Y. B.; Lee, H. J.; Hong, C. H.

    2004-01-01

    Highly Si-doped GaN thin current spreading layer (CSL) with various carrier concentrations were inserted before the n + -GaN/multi-quantum-well (MQW) interface controlled by the growth rate and the modulated Si-doping in InGaN/GaN blue light-emitting diodes (LEDs), and their effects were investigated by using capacitance-voltage (C-V), current-voltage (I-V), and output power measurements. The LEDs with a highly Si-doped CSL show enhanced I-V characteristics and increased output power with increasing carrier concentration up to some critical point in the CSL. This means that proper high Si-doping in some limited area before the interface may enhance the device performance through the current spreading effect.

  18. Electrical performance of GaN diode as betavoltaic isotope battery energy converter

    International Nuclear Information System (INIS)

    Wang Guanquan; Yang Yuqing; Liu Yebing; Hu Rui; Li Hao; Zhong Zhengkun; Luo Shunzhong

    2013-01-01

    Two kinds of GaN PiN diodes were prepared to be the energy converters of betavoltaic batteries, and irradiated by 63 Ni and 3 H radioactive sources. The I sc was 5.4 nA and V oc was 771 mV for 63 Ni source; the I sc was 10.8 nA and V oc was 839 mV for 3 H source. These results show that their V oc are far better than silicon diodes', but their I sc are poor. And there are some differences between the theory values and experiment results. There would be greatly improving space in electrical performance of beta voltaic isotope batteries with GaN diodes as the energy converters, if the dislocation could be reduced in GaN material producing process, the Ohmic contact could be prepared very well and the diodes configuration could be designed more optimizedly in the future. (authors)

  19. Photophysics of GaN single-photon emitters in the visible spectral range

    Science.gov (United States)

    Berhane, Amanuel M.; Jeong, Kwang-Yong; Bradac, Carlo; Walsh, Michael; Englund, Dirk; Toth, Milos; Aharonovich, Igor

    2018-04-01

    In this work, we present a detailed photophysical analysis of recently discovered, optically stable single-photon emitters (SPEs) in gallium nitride (GaN). Temperature-resolved photoluminescence measurements reveal that the emission lines at 4 K are three orders of magnitude broader than the transform-limited width expected from excited-state lifetime measurements. The broadening is ascribed to ultrafast spectral diffusion. The photophysical study on several emitters at room temperature (RT) reveals an average brightness of (427 ±215 )kCounts /s . Finally, polarization measurements from 14 emitters are used to determine visibility as well as dipole orientation of defect systems within the GaN crystal. Our results underpin some of the fundamental properties of SPEs in GaN both at cryogenic and RT, and define the benchmark for future work in GaN-based single-photon technologies.

  20. Study of GaN nanorods converted from β-Ga2O3

    Science.gov (United States)

    Li, Yuewen; Xiong, Zening; Zhang, Dongdong; Xiu, Xiangqian; Liu, Duo; Wang, Shuang; Hua, Xuemei; Xie, Zili; Tao, Tao; Liu, Bin; Chen, Peng; Zhang, Rong; Zheng, Youdou

    2018-05-01

    We report here high-quality β-Ga2O3 nanorods (NRs) grown on sapphire substrates by hydrothermal method. Ammoniating the β-Ga2O3 NRs results in strain-free wurtzite gallium nitride (GaN) NRs. It was shown by XRD and Raman spectroscopy that β-Ga2O3 was partially converted to GaN/β-Ga2O3 at 1000 °C and then completely converted to GaN NRs at 1050 °C, as confirmed by high-resolution transmission electron microscopy (HRTEM). There is no band-edge emission of β-Ga2O3 in the cathodoluminescence spectrum, and only a deep-level broad emission observed at 3.68-3.73 eV. The band edge emission (3.39 eV) of GaN NRs converted from β-Ga2O3 can also be observed.

  1. Lattice-Symmetry-Driven Epitaxy of Hierarchical GaN Nanotripods

    KAUST Repository

    Wang, Ping; Wang, Xinqiang; Wang, Tao; Tan, Chih Shan; Sheng, Bowen; Sun, Xiaoxiao; Li, Mo; Rong, Xin; Zheng, Xiantong; Chen, Zhaoying; Yang, Xuelin; Xu, Fujun; Qin, Zhixin; Zhang, Jian; Zhang, Xixiang; Shen, Bo

    2017-01-01

    -resolution transmission electron microscopy confirms that two kinds of lattice-symmetry, wurtzite (wz) and zinc-blende (zb), coexist in the GaN nanotripods. Periodical transformation between wz and zb drives the epitaxy of the hierarchical nanotripods with N

  2. Beryllium doped p-type GaN grown by metal-organic chemical vapor depostion

    International Nuclear Information System (INIS)

    Al-Tahtamouni, T.M.; Sedhain, A.; Lin, J.Y.; Jiang, H.X.

    2010-01-01

    The authors report on the growth of Be-doped p-type GaN epilayers by metal-organic chmical vapor deposition (MOCVD). The electrical and optical properties of the Be-doped GaN epilayers were studied by Hall-effect measurements and photoluminescence (PL) spectroscopy. The PL spectra of Be-doped GaN epilayers ethibited two emission lines at 3.36 and 2.71 eV, which were obsent in undoped epilayers. The transition at 3.36 eV was at 3.36 and 2.71eV, which were absent in undoped epilayers. The transition at 3.36 eV was assigned to the transition of free electrons to the neutral Be acceptor Be d eg.. The transition at 2.71 eV was assigned to the transition of electrons bound to deep level donors to the Be d eg. acceptors. Three independent measurements: (a) resistivity vs. temperature, (b) PL peak positions between Be doped and undoped GaN and (c) activation energy of 2.71 eV transition all indicate that the Be energy level is between 120 and 140 meV above the valence band. This is about 20-40 meV shallower than the Mg energy level (160 meV) in GaN. It is thus concluded that Be could be an excellent acceptor dopant in nitride materials. (authors).

  3. Effect of light Si doping on the properties of GaN

    International Nuclear Information System (INIS)

    Shang, Lin; Zhai, Guangmei; Jia, Zhigang; Mei, Fuhong; Lu, Taiping; Liu, Xuguang; Xu, Bingshe

    2016-01-01

    An obvious increase in electron mobility and yellow luminescence (YL) band intensity was found in light Si doping GaN. For a series of GaN samples with different doping concentration, the dislocation density is almost the same. It is inferred that the abrupt increase in mobility and YL intensity does not originate from the change of dislocation density. The mobility behavior is attributed to the screening of scattering by dislocation and increase of ionized impurity scattering with the increase of Si doping concentration. At lower doping level, the screening of dislocation scattering is dominant, which results in the increase in carrier mobility. At higher doping level, the increase in ionized impurity scattering leads to the decrease in carrier mobility. Higher mobility causes longer diffusion length of nonequilibrium carrier. More dislocations will participate in the recombination process which induces stronger YL intensity in light Si doping GaN.

  4. Reliability-Driven Assessment of GaN HEMTs and Si IGBTs in 3L-ANPC PV Inverters

    DEFF Research Database (Denmark)

    Gurpinar, Emre; Yang, Yongheng; Iannuzzo, Francesco

    2016-01-01

    In this paper, thermal loading of the state-of-the-art GaN HEMTs and traditional Si IGBTs in 3L-ANPC PV inverters is presented considering real-field long-term mission profiles (i.e., ambient temperature and solar irradiance). A comparison of Si IGBT against GaN HEMT with three different possibil......In this paper, thermal loading of the state-of-the-art GaN HEMTs and traditional Si IGBTs in 3L-ANPC PV inverters is presented considering real-field long-term mission profiles (i.e., ambient temperature and solar irradiance). A comparison of Si IGBT against GaN HEMT with three different...... be achieved without compromise of operating efficiency with GaN HEMTs. Both simulations and experimental tests are provided to demonstrate the thermal loading analysis approach. More important, the proposed analysis and comparison approach can be used for lifetime and reliability analysis of wide...

  5. High-Temperature Growth of GaN and Al x Ga1- x N via Ammonia-Based Metalorganic Molecular-Beam Epitaxy

    Science.gov (United States)

    Billingsley, Daniel; Henderson, Walter; Doolittle, W. Alan

    2010-05-01

    The effect of high-temperature growth on the crystalline quality and surface morphology of GaN and Al x Ga1- x N grown by ammonia-based metalorganic molecular-beam epitaxy (NH3-MOMBE) has been investigated as a means of producing atomically smooth films suitable for device structures. The effects of V/III ratio on the growth rate and surface morphology are described herein. The crystalline quality of both GaN and AlGaN was found to mimic that of the GaN templates, with (002) x-ray diffraction (XRD) full-widths at half- maximum (FWHMs) of ~350 arcsec. Nitrogen-rich growth conditions have been found to provide optimal surface morphologies with a root-mean-square (RMS) roughness of ~0.8 nm, yet excessive N-rich environments have been found to reduce the growth rate and result in the formation of faceted surface pitting. AlGaN exhibits a decreased growth rate, as compared with GaN, due to increased N recombination as a result of the increased pyrolysis of NH3 in the presence of Al. AlGaN films grown directly on GaN templates exhibited Pendellösung x-ray fringes, indicating an abrupt interface and a planar AlGaN film. AlGaN films grown for this study resulted in an optimal RMS roughness of ~0.85 nm with visible atomic steps.

  6. Valence band offset of β-Ga2O3/wurtzite GaN heterostructure measured by X-ray photoelectron spectroscopy.

    Science.gov (United States)

    Wei, Wei; Qin, Zhixin; Fan, Shunfei; Li, Zhiwei; Shi, Kai; Zhu, Qinsheng; Zhang, Guoyi

    2012-10-10

    A sample of the β-Ga2O3/wurtzite GaN heterostructure has been grown by dry thermal oxidation of GaN on a sapphire substrate. X-ray diffraction measurements show that the β-Ga2O3 layer was formed epitaxially on GaN. The valence band offset of the β-Ga2O3/wurtzite GaN heterostructure is measured by X-ray photoelectron spectroscopy. It is demonstrated that the valence band of the β-Ga2O3/GaN structure is 1.40 ± 0.08 eV.

  7. High temperature dielectric function of silicon, germanium and GaN

    Energy Technology Data Exchange (ETDEWEB)

    Leyer, Martin; Pristovsek, Markus; Kneissl, Michael [Technische Universitaet Berlin (Germany). Institut fuer Festkoerperphysik

    2010-07-01

    In the last few years accurate values for the optical properties of silicon, germanium and GaN at high temperatures have become important as a reference for in-situ analysis, e.g. reflectometry. Precise temperature dependent dielectric measurements are necessary for the growth of GaInP/GaInAs/Ge triple-junction solar cells and the hetero epitaxy of GaN on silicon and sapphire. We performed spectroscopic ellipsometry (SE) measurements of the dielectric function of silicon, germanium and GaN between 1.5 eV and 6.5 eV in the temperature range from 300 K to 1300 K. The Samples were deoxidized chemically or by heating. High resolution SE spectra were taken every 50 K while cooling down to room temperature. The temperature dependence of the critical energies is compared to literature. Measurements for germanium showed a shift of the E{sub 2} critical point of {proportional_to}0.1 eV toward lower energies. The reason for this behavior is a non-negligible oxide layer on the samples in the literature.

  8. Magneto-ballistic transport in GaN nanowires

    International Nuclear Information System (INIS)

    Santoruvo, Giovanni; Allain, Adrien; Ovchinnikov, Dmitry; Matioli, Elison

    2016-01-01

    The ballistic filtering property of nanoscale crosses was used to investigate the effect of perpendicular magnetic fields on the ballistic transport of electrons on wide band-gap GaN heterostructures. The straight scattering-less trajectory of electrons was modified by a perpendicular magnetic field which produced a strong non-linear behavior in the measured output voltage of the ballistic filters and allowed the observation of semi-classical and quantum effects, such as quenching of the Hall resistance and manifestation of the last plateau, in excellent agreement with the theoretical predictions. A large measured phase coherence length of 190 nm allowed the observation of universal quantum fluctuations and weak localization of electrons due to quantum interference up to ∼25 K. This work also reveals the prospect of wide band-gap GaN semiconductors as a platform for basic transport and quantum studies, whose properties allow the investigation of ballistic transport and quantum phenomena at much larger voltages and temperatures than in other semiconductors.

  9. Magneto-ballistic transport in GaN nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Santoruvo, Giovanni, E-mail: giovanni.santoruvo@epfl.ch; Allain, Adrien; Ovchinnikov, Dmitry; Matioli, Elison, E-mail: elison.matioli@epfl.ch [Ecole Polytechnique Fédérale de Lausanne (EPFL), CH 1015 Lausanne (Switzerland)

    2016-09-05

    The ballistic filtering property of nanoscale crosses was used to investigate the effect of perpendicular magnetic fields on the ballistic transport of electrons on wide band-gap GaN heterostructures. The straight scattering-less trajectory of electrons was modified by a perpendicular magnetic field which produced a strong non-linear behavior in the measured output voltage of the ballistic filters and allowed the observation of semi-classical and quantum effects, such as quenching of the Hall resistance and manifestation of the last plateau, in excellent agreement with the theoretical predictions. A large measured phase coherence length of 190 nm allowed the observation of universal quantum fluctuations and weak localization of electrons due to quantum interference up to ∼25 K. This work also reveals the prospect of wide band-gap GaN semiconductors as a platform for basic transport and quantum studies, whose properties allow the investigation of ballistic transport and quantum phenomena at much larger voltages and temperatures than in other semiconductors.

  10. Growth of GaN on SiC/Si substrates using AlN buffer layer by hot-mesh CVD

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, Kazuyuki [Nagaoka University of Technology, Nagaoka 940-2188 (Japan)], E-mail: kazuyuki@stn.nagaokaut.ac.jp; Kuroki, Yuichiro; Yasui, Kanji [Nagaoka University of Technology, Nagaoka 940-2188 (Japan); Suemitsu, Maki; Ito, Takashi [Center of Interdisciplinary Research, Tohoku University, Sendai 980-8578 (Japan); Endou, Tetsuro [Research Institute of Electrical Communication, Tohoku University, Sendai 980-8577 (Japan); Nakazawa, Hideki [Faculty of Science and Technology, Hirosaki University, Hirosaki 036-8561 (Japan); Narita, Yuzuru [Center of Interdisciplinary Research, Tohoku University, Sendai 980-8578 (Japan); Takata, Masasuke; Akahane, Tadashi [Nagaoka University of Technology, Nagaoka 940-2188 (Japan)

    2008-01-15

    GaN films were grown on SiC/Si (111) substrates by hot-mesh chemical vapor deposition (CVD) using ammonia (NH{sub 3}) and trimetylgallium (TMG) under low V/III source gas ratio (NH{sub 3}/TMG = 80). The SiC layer was grown by a carbonization process on the Si substrates using propane (C{sub 3}H{sub 8}). The AlN layer was deposited as a buffer layer using NH{sub 3} and trimetylaluminum (TMA). GaN films were formed and grown by the reaction between NH{sub x} radicals, generated on a tungsten hot mesh, and the TMG molecules. The GaN films with the AlN buffer layer showed better crystallinity and stronger near-band-edge emission compared to those without the AlN layer.

  11. Mechanism of nucleation and growth of catalyst-free self-organized GaN columns by MOVPE

    Science.gov (United States)

    Wang, Xue; Li, Shunfeng; Fündling, Sönke; Wehmann, Hergo-H.; Strassburg, Martin; Lugauer, Hans-Jürgen; Steegmüller, Ulrich; Waag, Andreas

    2013-05-01

    The growth mechanism of catalyst-free self-organized GaN nuclei and three-dimensional columns on sapphire by metal organic vapour phase epitaxy (MOVPE) is investigated. Temperature- and time-dependent growth is performed. The growth behaviour can be characterized by two different kinetic regimes: mass-transport-limited growth and thermodynamically limited growth. The sum of activation energies for thermodynamic barrier of nucleation and for surface diffusion/mass-transport limitation, i.e. Whet +Ed, is 0.57 eV in the ‘low’-temperature region and 2.43 eV in the ‘high’-temperature region. GaN columns grown under the same conditions have very comparable height, which is not dependent on their diameter or the distance to other columns. Therefore, the growth rate is presumably limited by the incorporation rate on the top surface of columns. The height and diameter at the top of the GaN columns increase linearly with time and no height limit is observed. The GaN columns can reach more than 40 µm in height. Moreover, the investigated GaN columns are Ga-polar.

  12. 4 Gbps direct modulation of 450 nm GaN laser for high-speed visible light communication

    KAUST Repository

    Lee, Changmin

    2015-06-10

    We demonstrate high-speed data transmission with a commercial high power GaN laser diode at 450 nm. 2.6 GHz bandwidth was achieved at an injection current of 500 mA using a high-speed visible light communication setup. Record high 4 Gbps free-space data transmission rate was achieved at room temperature.

  13. 4 Gbps direct modulation of 450 nm GaN laser for high-speed visible light communication.

    Science.gov (United States)

    Lee, Changmin; Zhang, Chong; Cantore, Michael; Farrell, Robert M; Oh, Sang Ho; Margalith, Tal; Speck, James S; Nakamura, Shuji; Bowers, John E; DenBaars, Steven P

    2015-06-15

    We demonstrate high-speed data transmission with a commercial high power GaN laser diode at 450 nm. 2.6 GHz bandwidth was achieved at an injection current of 500 mA using a high-speed visible light communication setup. Record high 4 Gbps free-space data transmission rate was achieved at room temperature.

  14. X-parameter Based GaN Device Modeling and its Application to a High-efficiency PA Design

    DEFF Research Database (Denmark)

    Wang, Yelin; Nielsen, Troels Studsgaard; Jensen, Ole Kiel

    2014-01-01

    X-parameters are supersets of S-parameters and applicable to both linear and nonlinear system modeling. In this paper, a packaged 6 W Gallium Nitride (GaN) RF power transistor is modeled using load-dependent X-parameters by simulations. During the device characterization the load impedance is tuned...... to decrease the complexity of a harmonic load-pull measurement setup. A high-efficiency 2 GHz power amplifier is also designed for further validation of the concept....

  15. Optical and structural characterisation of epitaxial nanoporous GaN grown by CVD.

    Science.gov (United States)

    Mena, Josué; Carvajal, Joan J; Martínez, Oscar; Jiménez, Juan; Zubialevich, Vitaly Z; Parbrook, Peter J; Diaz, Francesc; Aguiló, Magdalena

    2017-09-15

    In this paper we study the optical properties of nanoporous gallium nitride (GaN) epitaxial layers grown by chemical vapour deposition on non-porous GaN substrates, using photoluminescence, cathodoluminescence, and resonant Raman scattering, and correlate them with the structural characteristic of these films. We pay special attention to the analysis of the residual strain of the layers and the influence of the porosity in the light extraction. The nanoporous GaN epitaxial layers are under tensile strain, although the strain is progressively reduced as the deposition time and the thickness of the porous layer increases, becoming nearly strain free for a thickness of 1.7 μm. The analysis of the experimental data point to the existence of vacancy complexes as the main source of the tensile strain.

  16. The role of inversion domain boundaries in fabricating crack-free GaN films on sapphire substrates by hydride vapor phase epitaxy

    International Nuclear Information System (INIS)

    Ahn, Yong Nam; Lee, Sung Hoon; Lim, Sung Keun; Woo, Kwang Je; Kim, Hyunbin

    2015-01-01

    Highlights: • Atomistic simulations of inversion domain boundary (IDB) in GaN were performed. • The existence of IDBs in GaN films leads to the reduction of the film stiffness. • A sudden reduction of IDB density induces a strong tensile stress within the films. • The density of IDB in GaN film can be controlled by adjusting GaCl/NH 3 flow ratio. • A microstructure of GaN buffer layer for minimization of stress was proposed. - Abstract: Inversion domain boundaries (IDBs) are frequently found in GaN films grown on sapphire substrates. However, the lack of atomic-level understandings about the effects of the IDBs on the properties of GaN films has hindered to utilize the IDBs for the stress release that minimizes the crack-formation in GaN films. This study performed atomistic computational analyses to fundamentally understand the roles of the IDBs in the development of the stresses in the GaN films. A sudden reduction of the IDB density induces a strong intrinsic stress in the GaN films, possibly leading to the mud-cracking of the films. A gradual decrease in the IDB density was achieved by slowly reducing the GaCl flux during the growth process of GaN buffer layer on sapphire substrates, and allowed us to experimentally demonstrate the successful fabrication of 4-in. crack-free GaN films. This approach may contribute to the fabrication of larger crack-free GaN films

  17. The role of inversion domain boundaries in fabricating crack-free GaN films on sapphire substrates by hydride vapor phase epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Yong Nam, E-mail: ynahn81@gmail.com; Lee, Sung Hoon, E-mail: sunghoon.lee@corning.com; Lim, Sung Keun, E-mail: sk96.lim@samsung.com; Woo, Kwang Je, E-mail: kwangje.woo@corning.com; Kim, Hyunbin, E-mail: hyunbin.kim@corning.com

    2015-03-15

    Highlights: • Atomistic simulations of inversion domain boundary (IDB) in GaN were performed. • The existence of IDBs in GaN films leads to the reduction of the film stiffness. • A sudden reduction of IDB density induces a strong tensile stress within the films. • The density of IDB in GaN film can be controlled by adjusting GaCl/NH{sub 3} flow ratio. • A microstructure of GaN buffer layer for minimization of stress was proposed. - Abstract: Inversion domain boundaries (IDBs) are frequently found in GaN films grown on sapphire substrates. However, the lack of atomic-level understandings about the effects of the IDBs on the properties of GaN films has hindered to utilize the IDBs for the stress release that minimizes the crack-formation in GaN films. This study performed atomistic computational analyses to fundamentally understand the roles of the IDBs in the development of the stresses in the GaN films. A sudden reduction of the IDB density induces a strong intrinsic stress in the GaN films, possibly leading to the mud-cracking of the films. A gradual decrease in the IDB density was achieved by slowly reducing the GaCl flux during the growth process of GaN buffer layer on sapphire substrates, and allowed us to experimentally demonstrate the successful fabrication of 4-in. crack-free GaN films. This approach may contribute to the fabrication of larger crack-free GaN films.

  18. Study on GaN buffer leakage current in AlGaN/GaN high electron mobility transistor structures grown by ammonia-molecular beam epitaxy on 100-mm Si(111)

    International Nuclear Information System (INIS)

    Ravikiran, L.; Radhakrishnan, K.; Ng, G. I.; Munawar Basha, S.; Dharmarasu, N.; Agrawal, M.; Manoj kumar, C. M.; Arulkumaran, S.

    2015-01-01

    The effect of carbon doping on the structural and electrical properties of GaN buffer layer of AlGaN/GaN high electron mobility transistor (HEMT) structures has been studied. In the undoped HEMT structures, oxygen was identified as the dominant impurity using secondary ion mass spectroscopy and photoluminescence (PL) measurements. In addition, a notable parallel conduction channel was identified in the GaN buffer at the interface. The AlGaN/GaN HEMT structures with carbon doped GaN buffer using a CBr 4 beam equivalent pressure of 1.86 × 10 −7 mTorr showed a reduction in the buffer leakage current by two orders of magnitude. Carbon doped GaN buffers also exhibited a slight increase in the crystalline tilt with some pits on the growth surface. PL and Raman measurements indicated only a partial compensation of donor states with carbon acceptors. However, AlGaN/GaN HEMT structures with carbon doped GaN buffer with 200 nm thick undoped GaN near the channel exhibited good 2DEG characteristics

  19. Study on GaN buffer leakage current in AlGaN/GaN high electron mobility transistor structures grown by ammonia-molecular beam epitaxy on 100-mm Si(111)

    Energy Technology Data Exchange (ETDEWEB)

    Ravikiran, L.; Radhakrishnan, K., E-mail: ERADHA@e.ntu.edu.sg; Ng, G. I. [NOVITAS-Nanoelectronics, Centre of Excellence, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Munawar Basha, S.; Dharmarasu, N.; Agrawal, M.; Manoj kumar, C. M.; Arulkumaran, S. [Temasek Laboratories@NTU, Nanyang Technological University, Singapore 637553 (Singapore)

    2015-06-28

    The effect of carbon doping on the structural and electrical properties of GaN buffer layer of AlGaN/GaN high electron mobility transistor (HEMT) structures has been studied. In the undoped HEMT structures, oxygen was identified as the dominant impurity using secondary ion mass spectroscopy and photoluminescence (PL) measurements. In addition, a notable parallel conduction channel was identified in the GaN buffer at the interface. The AlGaN/GaN HEMT structures with carbon doped GaN buffer using a CBr{sub 4} beam equivalent pressure of 1.86 × 10{sup −7} mTorr showed a reduction in the buffer leakage current by two orders of magnitude. Carbon doped GaN buffers also exhibited a slight increase in the crystalline tilt with some pits on the growth surface. PL and Raman measurements indicated only a partial compensation of donor states with carbon acceptors. However, AlGaN/GaN HEMT structures with carbon doped GaN buffer with 200 nm thick undoped GaN near the channel exhibited good 2DEG characteristics.

  20. Structure Shift of GaN Among Nanowall Network, Nanocolumn, and Compact Film Grown on Si (111) by MBE.

    Science.gov (United States)

    Zhong, Aihua; Fan, Ping; Zhong, Yuanting; Zhang, Dongping; Li, Fu; Luo, Jingting; Xie, Yizhu; Hane, Kazuhiro

    2018-02-13

    Structure shift of GaN nanowall network, nanocolumn, and compact film were successfully obtained on Si (111) by plasma-assisted molecular beam epitaxy (MBE). As is expected, growth of the GaN nanocolumns was observed in N-rich condition on bare Si, and the growth shifted to compact film when the Ga flux was improved. Interestingly, if an aluminum (Al) pre-deposition for 40 s was carried out prior to the GaN growth, GaN grows in the form of the nanowall network. Results show that the pre-deposited Al exits in the form of droplets with typical diameter and height of ~ 80 and ~ 6.7 nm, respectively. A growth model for the nanowall network is proposed and the growth mechanism is discussed. GaN grows in the area without Al droplets while the growth above Al droplets is hindered, resulting in the formation of continuous GaN nanowall network that removes the obstacles of nano-device fabrication.