WorldWideScience

Sample records for powder-like solid solution

  1. PRODUCTION, DIELECTRIC PROPERTY AND MICROWAVE ABSORPTION PROPERTY OF SiC(Fe SOLID SOLUTION POWDER BY SOL-GEL METHOD

    Directory of Open Access Journals (Sweden)

    XIAOLEI SU

    2014-03-01

    Full Text Available SiC(Fe solid solution powders were synthesized by sol–gel method under different reaction time, using methyltriethoxysilane as the silicon and carbon source and analytic ferric chloride as the dopant, respectively. The synthesized powders have been characterized by XRD, SEM and Raman spectra. Results show that the lattice constant decreases with increasing reaction time. The electric permittivities of SiC samples were determined in the frequency range of 8.2 ~ 12.4 GHz. Results show that the permittivity of SiC decreases with increasing reaction time. The SiC(Fe solid solution powder with reaction time of 4 h with 2 mm thickness exhibit the best microwave absorption property in X-band range (8.2 - 12.4 GHz. The microwave absorption mechanism has been discussed.

  2. OIL SOLUTIONS POWDER

    Science.gov (United States)

    Technical product bulletin: aka OIL SOLUTIONS POWDER, SPILL GREEN LS, this miscellaneous oil spill control agent used in cleanups initially behaves like a synthetic sorbent, then as a solidifier as the molecular microencapsulating process occurs.

  3. Synthesis of (Cr,V){sub 2}(C,N) solid solution powders by thermal processing precursors

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Anrui [School of Materials Science & Engineering, Sichuan University, Chengdu, 610065 (China); Liu, Ying [School of Materials Science & Engineering, Sichuan University, Chengdu, 610065 (China); Key Laboratory of Advanced Special Material & Technology, Ministry of Education, Chengdu, 610065 (China); Ma, Shiqing; Qiu, Yuchong; Rong, Pengcheng; Ye, Jinwen [School of Materials Science & Engineering, Sichuan University, Chengdu, 610065 (China)

    2017-06-01

    The single-phase (Cr,V){sub 2}(C,N) solid solution powders were fabricated via carbothermal reduction-nitridation (CRN) processing technique. The effects of heat treatment temperature, nitrogen pressure and carbon proportion were experimentally studied in detail by X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM) and thermal analysis. The chemical transformations of vanadium and chromium compounds were as follows: precursors → V{sub 2}O{sub 3}, Cr{sub 2}O{sub 3} → Cr{sub 3}C{sub 2}, Cr{sub 2}O{sub 3}, (Cr,V){sub 2}(C,N) → (Cr,V){sub 2}(C,N). When the heat-treated temperature was below 1200 °C, chromium oxides didn’t completely react. However, higher temperature ∼1300 °C could not only lead to the segregation of some nitrides and carbon black, but also to the occurrence of fiber-bridged particles. The system nitrogen pressure over 0.03 MPa would cause a subtle transformation of (Cr,V){sub 2}(C,N) to VCrN{sub 2}. When the carbon proportion was below 15 wt%, the oxides could not be completely reduced, while when the carbon proportion was above 15.5 wt%, some undesired carbides, like Cr{sub 23}C{sub 6} and Cr{sub 3}C{sub 2}, would form. Ultimately, the homogeneously distributed pure-phase (Cr,V){sub 2}(C,N) spherical particles with the average size of ∼1.5 μm were obtained at the optimal conditions of the treatment of precursors at 1200 °C for 1 h with the nitrogen pressure of 0.03 MPa and carbon content of 15.5 wt%. The chemical composition of the solid solution with the optimal process could be drawn as (Cr{sub 0.85}V{sub 0.15}){sub 2}(C{sub 0.57}N{sub 0.43}). Thermal processing precursors method shows the advantages of lower synthesis temperature, shorter period and finer particles when comparing with the conventional preparations. - Highlights: • Single phase of (Cr,V){sub 2}(C,N) powders were synthesized for the first time. • Precursors were used to prepared the powders by carbothermal

  4. Production of superconducting Nb3Sn wire using Nb or Nb(Ti) and Sn(Ga) solid solution powders

    International Nuclear Information System (INIS)

    Thieme, C.L.H.; Foner, S.

    1991-01-01

    This paper reports on superconducting Nb 3 Sn wire produced by the powder metallurgy method using Nb or Nb-2.9 at% Ti powder in combination with Sn-x at% Ga powders (x = 3, 4.2, 6.2 and 9.0). Ga additions to the Sn caused considerable solid solution hardening which improved its workability. It made the Nb-Sn(Ga) powder combinations convenient for swaging and extensive wire drawing. Anneals at 950 degrees C produced wires with an overall J c of 10 4 A/cm 2 at 21.9 T for wires with both Ti in the Nb and 6.2 at% Ga in the Sn. Comparison of this wire with the best Nb(Ti)-Cu-internal Sn(Ti) shows a higher J c per A15 areas, especially in fields of 22T and above

  5. Synthesis of (U,Zr)C solid solutions under exothermic conditions

    International Nuclear Information System (INIS)

    Wang, L.L.; Moore, H.G.; Gladson, J.W.

    1993-01-01

    The reactions of forming (U,Zr)C solid solutions from their elemental components or similarly less stable reactants such as UC 2 are strongly exothermic due to the high stability of these solid solutions. A simple approach of utilizing this heat of formation energy to assist the solid solution reaction process is to intimately mix the less stable reactant powders and then pressed them into a compact. The compact is then heated to the ignition temperature of the reaction. The feasibility of this reaction method to synthesize (U,Zr)C solid solutions has been demonstrated in this study. The preliminary results also show that both the initial composition and the heating rate have a significant effect on the nature of the reaction process. As expected the degree of powder mixing was also found to affect the completeness of the reaction

  6. Solid state synthesis, crystal growth and optical properties of urea and p-chloronitrobenzene solid solution

    Energy Technology Data Exchange (ETDEWEB)

    Rai, R.N., E-mail: rn_rai@yahoo.co.in [Department of Chemistry, Centre of Advanced Study, Banaras Hindu University, Varanasi 221005 (India); Kant, Shiva; Reddi, R.S.B. [Department of Chemistry, Centre of Advanced Study, Banaras Hindu University, Varanasi 221005 (India); Ganesamoorthy, S. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamilnadu (India); Gupta, P.K. [Laser Materials Development & Devices Division, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India)

    2016-01-15

    Urea is an attractive material for frequency conversion of high power lasers to UV (for wavelength down to 190 nm), but its usage is hindered due to its hygroscopic nature, though there is no alternative organic NLO crystal which could be transparent up to 190 nm. The hygroscopic character of urea has been modified by making the solid solution (UCNB) of urea (U) and p-chloronitrobenzene (CNB). The formation of the solid solution of CNB in U is explained on the basis of phase diagram, powder XRD, FTIR, elemental analysis and single crystal XRD studies. The solubility of U, CNB and UCNB in ethanol solution is evaluated at different temperatures. Transparent single crystals of UCNB are grown from its saturated solution in ethanol. Optical properties e.g., second harmonic generation (SHG), refractive index and the band gap for UCNB crystal were measured and their values were compared with the parent compounds. Besides modification in hygroscopic nature, UCNB has also shown the higher SHG signal and mechanical hardness in comparison to urea crystal. - Highlights: • The hygroscopic character of urea was modified by making the solid solutionSolid solution formation is support by elemental, powder- and single crystal XRD • Crystal of solid solution has higher SHG signal and mechanical stability. • Refractive index and band gap of solid solution crystal have determined.

  7. Solid solution in Al-4.5 wt% Cu produced by mechanical alloying

    International Nuclear Information System (INIS)

    Fogagnolo, J.B.; Amador, D.; Ruiz-Navas, E.M.; Torralba, J.M.

    2006-01-01

    Mechanical alloying has been used to produce oxide dispersion strengthened alloys, intermetallic compounds, aluminium alloys and to obtain nanostructured and amorphous materials, as well as to extend the solid solution limit. In this work, Al and Cu elemental powders were subjected to high-energy milling to produce Al-4.5 wt% Cu powder alloy. The powders obtained were characterized by scanning electron microscopy, X-ray diffraction (XRD) and differential scanning calorimetry (DSC), aiming to explore if the copper is present in solid solution or as small particles after high-energy milling. Related to the formation of a supersaturated solid solution, the results of scanning electron microscopy and X-ray diffraction are non-conclusive: the copper could be dispersed with a very small size, undetectable to both techniques. The Al 2 Cu precipitation at temperatures between 160 and 230 deg. C, verified by DSC and XRD analyses, substantiated that mechanical alloying had produced a supersaturated solid solution of copper in aluminium. The crystallite size as a function of milling time and annealing temperature was also determined by X-ray techniques

  8. Hydrothermal crystallization of zirconia and zirconia solid solutions

    International Nuclear Information System (INIS)

    Pyda, W.; Haberko, K.; Bucko, M.M.

    1991-01-01

    Zirconia as well as yttria-zirconia and calcia-zirconia solid-solution powders were crystallized under hydrothermal conditions from (co)precipitated hydroxides. The morphology of the power particles is strongly dependent on the crystallization conditions. The powders crystallized in a water solution of Na, K, and Li hydroxides show elongated particles of much larger sizes than those which result from the process carried out in pure water or a water solution of Na, K, or Li chlorides. The shapes of the latter particles are isometric. In this paper the growth mechanism of the elongated particles is suggested

  9. Solid-solution-like ZnO/C composites as excellent anode materials for lithium ion batteries

    International Nuclear Information System (INIS)

    Zhang, Guanhua; Zhang, Hang; Zhang, Xiang; Zeng, Wei; Su, Qingmei; Du, Gaohui; Duan, Huigao

    2015-01-01

    Exploring advanced anode materials to maximize the capacity of lithium ion batteries has been an active research area for decades. Constructing composites materials has been proved to be one of the most effective methods to achieve higher capacity due to the synergistic effect. In this work, we proposed and demonstrated a concept of solid-solution-like ZnO/C composites to approach the largest possible synergistic effect by introducing the most interfaces and minimizing the pulverization. The solid-solution-like ZnO/C electrode could achieve a high reversible capacity of 813.3 mAh g −1 at a current density of 100 mA g −1 after 100 cycles with a decrease rate of only 0.4% per cycle. Moreover, the discharge capacity still maintained 53.5% of the original value even when the current density increased to 40 times as much as the original, showing a distinguished rate performance. In addition, such solid-solution-like nanofibers can be easily prepared because of their compatibility with the existing industrial PAN-based spinning process. This may pave the way to mass produce lithium ion batteries with significantly enhanced performance using existing low-cost commercial facilities and recipes.

  10. Solid solution cermet: (Ti,Nb)(CN)-Ni cermet.

    Science.gov (United States)

    Kwon, Hanjung; Jung, Sun-A

    2014-11-01

    Solid solution powders without W, (Ti,Nb)(CN) powders with a B1 structure (NaCl like), were synthesized by high energy milling and carbothermal reduction in nitrogen. The range of molar ratios of Ti/Nb for forming complete (Ti,Nb)(CN) phase was broader than that of Ti/W for the (Ti,W)(CN) phase because carbide or carbonitride of Nb had a B1 crystal structure identical to Ti(CN) while WC had a hexagonal crystal structure. The results revealed that the hardness of (Ti,Nb)(CN)-Ni cermets was higher than that of (Ti,W)(CN)-Ni cermets. The lower density of the (Ti,Nb)(CN) powder contributed to the higher hardness compared to (Ti,W)(CN) because the volumetric ratio of (Ti,Nb)(CN) in the (Ti,Nb)(CN)-Ni cermets was higher than that of (Ti,Nb)(CN) in the (Ti,W)(CN)-Ni cermets at the same weight ratio of Ni. Additionally, it was assumed that intrinsic the properties of (Ti,Nb)(CN) could also be the cause for the high hardness of the (Ti,Nb)(CN)-Ni cermets.

  11. Superhard Rhenium/Tungsten Diboride Solid Solutions.

    Science.gov (United States)

    Lech, Andrew T; Turner, Christopher L; Lei, Jialin; Mohammadi, Reza; Tolbert, Sarah H; Kaner, Richard B

    2016-11-02

    Rhenium diboride (ReB 2 ), containing corrugated layers of covalently bonded boron, is a superhard metallic compound with a microhardness reaching as high as 40.5 GPa (under an applied load of 0.49 N). Tungsten diboride (WB 2 ), which takes a structural hybrid between that of ReB 2 and AlB 2 , where half of the boron layers are planar (as in AlB 2 ) and half are corrugated (as in ReB 2 ), has been shown not to be superhard. Here, we demonstrate that the ReB 2 -type structure can be maintained for solid solutions of tungsten in ReB 2 with tungsten content up to a surprisingly large limit of nearly 50 atom %. The lattice parameters for the solid solutions linearly increase along both the a- and c-axes with increasing tungsten content, as evaluated by powder X-ray and neutron diffraction. From micro- and nanoindentation hardness testing, all of the compositions within the range of 0-48 atom % W are superhard, and the bulk modulus of the 48 atom % solid solution is nearly identical to that of pure ReB 2 . These results further indicate that ReB 2 -structured compounds are superhard, as has been predicted from first-principles calculations, and may warrant further studies into additional solid solutions or ternary compounds taking this structure type.

  12. Adsorption isotherm studies of chromium (VI) from aqueous solutions using sol-gel hydrotalcite-like compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ramos-Ramirez, Esthela, E-mail: ramosre@quijote.ugto.mx [Centro de Investigaciones en Quimica Inorganica de la Universidad de Guanajuato, Noria Alta s/n, Col. Noria Alta, C.P. 36050, Guanajuato, Gto. (Mexico); Gutierrez Ortega, Norma L.; Conteras Soto, Cesar A. [Centro de Investigaciones en Quimica Inorganica de la Universidad de Guanajuato, Noria Alta s/n, Col. Noria Alta, C.P. 36050, Guanajuato, Gto. (Mexico); Instituto Nacional de Investigaciones Nucleares, Carretera Mexico-Toluca s/n, km 36.5, La Marquesa, Coyoacan Mexico, C.P. 52750 (Mexico); Olguin Gutierrez, Maria T. [Instituto Nacional de Investigaciones Nucleares, Carretera Mexico-Toluca s/n, km 36.5, La Marquesa, Coyoacan Mexico, C.P. 52750 (Mexico)

    2009-12-30

    In under-developed countries, industries such as paint and pigment manufacturing, leather tanning, chrome plating and textile processing, usually discharge effluents containing Cr(VI) and Cr(III) into municipal sanitary sewers. It has been reported that Cr(VI) acts as a powerful epithelial irritant and as a human carcinogen. In the present work, hydrotalcite-like compounds with a Mg/Al ratio = 2 were synthesized by the sol-gel method. The hydrotalcite-like compounds and their corresponding thermally treated products were characterized by powder X-ray diffraction, infrared spectroscopy and N{sub 2} adsorption. The hydrotalcite-like compounds and the heated solids were used as adsorbents for Cr(VI) in aqueous solutions. Adsorption isotherm studies of Cr(VI) from aqueous solution are described. The adsorbent capacity was determined using the Langmuir, Freundlich and Dubinin-Radushkevich adsorption isotherm models. The Cr(VI) adsorption isotherm data fit best to the Langmuir isotherm model. The maximum Cr(VI) uptake by hydrotalcite and the heated solids was determined using the Langmuir equation and was found to range between 26 and 29 mg Cr(VI)/g adsorbent.

  13. Adsorption isotherm studies of chromium (VI) from aqueous solutions using sol-gel hydrotalcite-like compounds

    International Nuclear Information System (INIS)

    Ramos-Ramirez, Esthela; Gutierrez Ortega, Norma L.; Conteras Soto, Cesar A.; Olguin Gutierrez, Maria T.

    2009-01-01

    In under-developed countries, industries such as paint and pigment manufacturing, leather tanning, chrome plating and textile processing, usually discharge effluents containing Cr(VI) and Cr(III) into municipal sanitary sewers. It has been reported that Cr(VI) acts as a powerful epithelial irritant and as a human carcinogen. In the present work, hydrotalcite-like compounds with a Mg/Al ratio = 2 were synthesized by the sol-gel method. The hydrotalcite-like compounds and their corresponding thermally treated products were characterized by powder X-ray diffraction, infrared spectroscopy and N 2 adsorption. The hydrotalcite-like compounds and the heated solids were used as adsorbents for Cr(VI) in aqueous solutions. Adsorption isotherm studies of Cr(VI) from aqueous solution are described. The adsorbent capacity was determined using the Langmuir, Freundlich and Dubinin-Radushkevich adsorption isotherm models. The Cr(VI) adsorption isotherm data fit best to the Langmuir isotherm model. The maximum Cr(VI) uptake by hydrotalcite and the heated solids was determined using the Langmuir equation and was found to range between 26 and 29 mg Cr(VI)/g adsorbent.

  14. Adsorption isotherm studies of chromium (VI) from aqueous solutions using sol-gel hydrotalcite-like compounds.

    Science.gov (United States)

    Ramos-Ramírez, Esthela; Ortega, Norma L Gutiérrez; Soto, Cesar A Contreras; Gutiérrez, Maria T Olguín

    2009-12-30

    In under-developed countries, industries such as paint and pigment manufacturing, leather tanning, chrome plating and textile processing, usually discharge effluents containing Cr(VI) and Cr(III) into municipal sanitary sewers. It has been reported that Cr(VI) acts as a powerful epithelial irritant and as a human carcinogen. In the present work, hydrotalcite-like compounds with a Mg/Al ratio=2 were synthesized by the sol-gel method. The hydrotalcite-like compounds and their corresponding thermally treated products were characterized by powder X-ray diffraction, infrared spectroscopy and N(2) adsorption. The hydrotalcite-like compounds and the heated solids were used as adsorbents for Cr(VI) in aqueous solutions. Adsorption isotherm studies of Cr(VI) from aqueous solution are described. The adsorbent capacity was determined using the Langmuir, Freundlich and Dubinin-Radushkevich adsorption isotherm models. The Cr(VI) adsorption isotherm data fit best to the Langmuir isotherm model. The maximum Cr(VI) uptake by hydrotalcite and the heated solids was determined using the Langmuir equation and was found to range between 26 and 29 mg Cr(VI)/g adsorbent.

  15. Study of the sintering process and the formation of a (Th, U) O2 solid solution

    International Nuclear Information System (INIS)

    Tomasi, Roberto

    1979-01-01

    The effect of some variables in the (Th, U) O 2 sintering process and solid solution formation was studied. ThO 2 , U 3 O 8 and UO 2 powder were prepared. The ThO 2 powders were obtained by calcination of thorium at 500 and 750 deg C; the U 3 O 8 powders were derived from the calcination of ADU at 660 and 750 deg C; the UO 2 powder were prepared from ADU and from ATCU. The different characteristics of these materials were determined by measurements of surface area, by scanning electron microscopy, tap density tests, X-ray diffractometry and by measurements of the O/U ratios. The oxide mixtures were chosen in order to produce a final composition with 10 w/o of UO 2 . A mixture of thorium oxalate and ADU was also prepared by calcining these salts in air at 700 deg C, in order to obtain certain amount of solid solution prior to sintering. The sintering operations were developed in an argon atmosphere at temperatures between 1400 and 1700 deg C, during interval varying from 1 to 4 hours. The effect of the mixture characteristics on the sintering process and solid solution formation were studied considering the results of densification, microstructure development and X-ray diffractometry. The ThO 2 powder characteristics have a main effect on the mixtures compactability and sinterability, the higher calcining temperatures increasing the green density, but decreasing the final density of the sintered pellets. In the sintering of mixtures containing U 3 O 3 , this oxide is reduced to UO 2 and it is possible to obtain pellets with density and microstructures similar to those produced from mixtures containing UO 2 . But if oxygen in excess is present during sintering, the process is affected, occurring exaggerated grain growth. The densification results were related to the Coble's kinetics equation for second stage of sintering, valid for bulk diffusion, grain boundary acting as vacancy sinks. The sintering activation energy is independent from the powder starting

  16. Solid-soluted content of cerium in solid solution of sphene

    International Nuclear Information System (INIS)

    Zhao Wei; Teng Yuancheng; Li Yuxiang; Ren Xuetan; Huang Junjun

    2010-01-01

    The sphene solid solution was synthesized by solid-state method,with calcium carbonate, silica, titanium dioxide, cerium oxalate and alumina as raw materials. The solid-soluted content of cerium in sphene was researched by means of X-ray diffraction (XRD), backscattering scanning electron microscopy (BSE), energy dispersive spectroscopy (EDS) and so on. The influence of A l3+ ion introduction to sphene on the solid-soluted content of cerium in sphene solid solution was studied. The results indicate that when introducing Al 3+ to sphene as electrovalence compensation, Ce 4+ could be well solidified to Ca 1-x Ce x Ti 1-2x A l2x SiO 5 , and the solid-soluted content is approximately 12.61%. With no electrovalence compensation, Ce 4+ could be solidified to Ca 1-2x Ce x TiSiO 5 , and the solid-soluted content is approximately 10.98%. The appropriate synthesis temperature of sphene solid solution is 1 260 degree C.(authors)

  17. Solution based synthesis of perovskite-type oxide films and powders

    International Nuclear Information System (INIS)

    McHale, J.M. Jr.

    1995-01-01

    Conventional solid state reactions are diffusion limited processes that require high temperatures and long reaction times to reach completion. In this work, several solution based methods were utilized to circumvent this diffusion limited reaction and achieve product formation at lower temperatures. The solution methods studied all have the common goal of trapping the homogeneity inherent in a solution and transferring this homogeneity to the solid state, thereby creating a solid atomic mixture of reactants. These atomic mixtures can yield solid state products through diffusionless mechanisms. The effectiveness of atomic mixtures in solid state synthesis was tested on three classes of materials, varying in complexity. A procedure was invented for obtaining the highly water soluble salt, titanyl nitrate, TiO(NO 3 ) 2 , in crystalline form, which allowed the production of titanate materials by freeze drying. The freeze drying procedures yielded phase pure, nanocrystalline BaTiO 3 and the complete SYNROC-B phase assemblage after ten minute heat treatments at 600 C and 1,100 C, respectively. Two novel methods were developed for the solution based synthesis of Ba 2 YCu 3 O 7-x and Bi 2 Sr 2 Ca 2 Cu 3 O 10 . Thin and thick films of Ba 2 YCu 3 O 7-x and Bi 2 Sr 2 Ca 2 Cu 3 O 10 were synthesized by an atmospheric pressure, chemical vapor deposition technique. Liquid ammonia solutions of metal nitrates were atomized with a stream of N 2 O and ignited with a hydrogen/oxygen torch. The resulting flame was used to coat a substrate with superconducting material. Bulk powders of Ba 2 YCu 3 O 7-x and Bi 2 Sr 2 Ca 2 Cu 3 O 10 were synthesized through a novel acetate glass method. The materials prepared were characterized by XRD, TEM, SEM, TGA, DTA, magnetic susceptibility and electrical resistivity measurements

  18. Hierarchical paramecium-like hollow and solid Au/Pt bimetallic nanostructures constructed using goethite as template

    Science.gov (United States)

    Liu, Wei; Repo, Eveliina; Heikkilä, Mikko; Leskelä, Markku; Sillanpää, Mika

    2010-10-01

    Novel hollow and solid paramecium-like hierarchical Au/Pt bimetallic nanostructures were constructed using goethite as template via a seed-mediated growth method. Transmission electron microscopy (TEM), ξ-potential measurement, UV-vis spectroscopy, energy dispersive x-ray spectroscopy (EDS), ICP-AES measurement, x-ray powder diffraction (XRD) and x-ray photoelectron spectroscopy (XPS) were utilized to systematically characterize the bimetallic nanostructures. It is found that the core structure of the paramecium-like bimetallic nanomaterial is closely related to reducing agent. When ascorbic acid is used as reducing agent, goethite serves as in situ sacrificed template and hollow paramecium-like bimetallic structure is obtained. When NH2OH·HCl is used, solid nanostructure with preserved goethite core is produced. Heating the reaction solution is necessary to obtain the paramecium-like morphology with rough interconnected Pt cilia shell. The thickness of Pt cilia layer can be controlled by adjusting the molar ratio of H2PtCl6 to Au nanoseeds. The overgrowth of the rough Pt cilia is proposed to be via an autocatalytic and three-dimensional heterogeneous nucleation process first through flower-like morphology. Both the hollow and solid hierarchical paramecium-like Au/Pt bimetallic nanostructures show good catalytic activities.

  19. Hierarchical paramecium-like hollow and solid Au/Pt bimetallic nanostructures constructed using goethite as template

    International Nuclear Information System (INIS)

    Liu Wei; Repo, Eveliina; Sillanpaeae, Mika; Heikkilae, Mikko; Leskelae, Markku

    2010-01-01

    Novel hollow and solid paramecium-like hierarchical Au/Pt bimetallic nanostructures were constructed using goethite as template via a seed-mediated growth method. Transmission electron microscopy (TEM), ξ-potential measurement, UV-vis spectroscopy, energy dispersive x-ray spectroscopy (EDS), ICP-AES measurement, x-ray powder diffraction (XRD) and x-ray photoelectron spectroscopy (XPS) were utilized to systematically characterize the bimetallic nanostructures. It is found that the core structure of the paramecium-like bimetallic nanomaterial is closely related to reducing agent. When ascorbic acid is used as reducing agent, goethite serves as in situ sacrificed template and hollow paramecium-like bimetallic structure is obtained. When NH 2 OH·HCl is used, solid nanostructure with preserved goethite core is produced. Heating the reaction solution is necessary to obtain the paramecium-like morphology with rough interconnected Pt cilia shell. The thickness of Pt cilia layer can be controlled by adjusting the molar ratio of H 2 PtCl 6 to Au nanoseeds. The overgrowth of the rough Pt cilia is proposed to be via an autocatalytic and three-dimensional heterogeneous nucleation process first through flower-like morphology. Both the hollow and solid hierarchical paramecium-like Au/Pt bimetallic nanostructures show good catalytic activities.

  20. Hierarchical paramecium-like hollow and solid Au/Pt bimetallic nanostructures constructed using goethite as template

    Energy Technology Data Exchange (ETDEWEB)

    Liu Wei; Repo, Eveliina; Sillanpaeae, Mika [Laboratory of Applied Environmental Chemistry, University of Eastern Finland, Patteristonkatu 1, FI-50100 Mikkeli (Finland); Heikkilae, Mikko; Leskelae, Markku, E-mail: weiliuzk@yahoo.cn, E-mail: mika.sillanpaa@uef.fi [Laboratory of Inorganic Chemistry, Department of Chemistry, University of Helsinki, PO Box 55 (A.I. Virtasen aukio 1), FI-00014, Helsinki (Finland)

    2010-10-01

    Novel hollow and solid paramecium-like hierarchical Au/Pt bimetallic nanostructures were constructed using goethite as template via a seed-mediated growth method. Transmission electron microscopy (TEM), {xi}-potential measurement, UV-vis spectroscopy, energy dispersive x-ray spectroscopy (EDS), ICP-AES measurement, x-ray powder diffraction (XRD) and x-ray photoelectron spectroscopy (XPS) were utilized to systematically characterize the bimetallic nanostructures. It is found that the core structure of the paramecium-like bimetallic nanomaterial is closely related to reducing agent. When ascorbic acid is used as reducing agent, goethite serves as in situ sacrificed template and hollow paramecium-like bimetallic structure is obtained. When NH{sub 2}OH{center_dot}HCl is used, solid nanostructure with preserved goethite core is produced. Heating the reaction solution is necessary to obtain the paramecium-like morphology with rough interconnected Pt cilia shell. The thickness of Pt cilia layer can be controlled by adjusting the molar ratio of H{sub 2}PtCl{sub 6} to Au nanoseeds. The overgrowth of the rough Pt cilia is proposed to be via an autocatalytic and three-dimensional heterogeneous nucleation process first through flower-like morphology. Both the hollow and solid hierarchical paramecium-like Au/Pt bimetallic nanostructures show good catalytic activities.

  1. Dielectric properties of tantalum powder with broccoli-like morphology

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Masahiko [Department of Energy Science and Technology, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501 (Japan); Suzuki, Ryosuke O [Department of Energy Science and Technology, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501 (Japan)

    2005-04-19

    Metallic tantalum powder with broccoli-like morphology, consisting of spherical fine particles and of long rods or thin plates, was prepared in a hundred gram scale by calcium reduction of Ta{sub 2}O{sub 5} in molten CaCl{sub 2}. The properties as electrolytic capacitor were evaluated in comparison with commercial powder obtained by Na reduction and with powder consisting of only fine particles obtained by Ca reduction. The capacitance was larger than that of conventional powder with the same surface area, because the broccoli-like powder showed a strong resistance against shrinkage during high temperature annealing due to the framework of branches. The powder with new broccoli-like morphology can circumvent the conventional treatments for grain size control and gas removal.

  2. Dielectric properties of tantalum powder with broccoli-like morphology

    International Nuclear Information System (INIS)

    Baba, Masahiko; Suzuki, Ryosuke O.

    2005-01-01

    Metallic tantalum powder with broccoli-like morphology, consisting of spherical fine particles and of long rods or thin plates, was prepared in a hundred gram scale by calcium reduction of Ta 2 O 5 in molten CaCl 2 . The properties as electrolytic capacitor were evaluated in comparison with commercial powder obtained by Na reduction and with powder consisting of only fine particles obtained by Ca reduction. The capacitance was larger than that of conventional powder with the same surface area, because the broccoli-like powder showed a strong resistance against shrinkage during high temperature annealing due to the framework of branches. The powder with new broccoli-like morphology can circumvent the conventional treatments for grain size control and gas removal

  3. The effects of additives on the microstructure and sinterability of molybdenum oxide - study of related solid solutions

    International Nuclear Information System (INIS)

    Kassem, M.

    2006-01-01

    This study focuses on the phase transformation induced during mixing a fixed quantity of MoO 3 with various concentration of V 2 O 5 , Bn 2 O 5 , Al 2 O 3 and pure aluminium. These concentrations are 2, 3, 4, 5, 10, 20, 40 and 50%. Employing several physical techniques such as x-ray powder diffraction, FTIR and DTA, different solid solution were identified. Also the compressibility and sintering of these solid solutions have been studied via the variation of the density of pellets prepared from these solid solutions (Author)

  4. Characterization investigations during mechanical alloying and sintering of Ni-W solid solution alloys dispersed with WC and Y2O3 particles

    International Nuclear Information System (INIS)

    Genc, Aziz; Luetfi Ovecoglu, M.

    2010-01-01

    Research highlights: → Characterization investigations on the Ni-W solid solution alloys fabricated via mechanical alloying and the evolution of the properties of the powders with increasing MA durations. → Reinforcement of the selected Ni-W powders with WC and Y 2 O 3 particles and further MA together for 12 h. → There is no reported literature on the development and characterization of Ni-W solid solution alloys matrix composites fabricated via MA. → Sintering of the developed composites and the characterization investigations of the sintered samples. → Identification of new 'pomegranate-like' structures in the bulk of the samples. - Abstract: Blended elemental Ni-30 wt.% W powders were mechanically alloyed (MA'd) for 1 h, 3 h, 6 h, 12 h, 24 h, 36 h and 48 h in a Spex mixer/mill at room temperature in order to investigate the effects of MA duration on the solubility of W in Ni and the grain size, hardness and particle size. Microstructural and phase characterizations of the MA'd powders were carried out using X-ray diffractometer (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM). On the basis of achieved saturation on the solid solubility, hardness and particle size, the Ni-30 wt.% W powders MA'd for 48 h were chosen as the matrix which was reinforced with different amounts of WC and/or with 1 wt.% Y 2 O 3 particles. The reinforced powders were further MA'd for 12 h. The MA'd powders were sintered at 1300 o C for 1 h under Ar and H 2 gas flowing conditions. Microstructural characterizations of the sintered samples were conducted via XRD and SEM. Sintered densities were measured by using the Archimedes' method. Vickers microhardness tests were performed on both MA'd powders and the sintered samples. Sliding wear experiments were done in order to investigate wear behaviors of the sintered samples.

  5. Supercritical fluid molecular spray thin films and fine powders

    Science.gov (United States)

    Smith, Richard D.

    1988-01-01

    Solid films are deposited, or fine powders formed, by dissolving a solid material into a supercritical fluid solution at an elevated pressure and then rapidly expanding the solution through a short orifice into a region of relatively low pressure. This produces a molecular spray which is directed against a substrate to deposit a solid thin film thereon, or discharged into a collection chamber to collect a fine powder. The solvent is vaporized and pumped away. Solution pressure is varied to determine, together with flow rate, the rate of deposition and to control in part whether a film or powder is produced and the granularity of each. Solution temperature is varied in relation to formation of a two-phase system during expansion to control porosity of the film or powder. A wide variety of film textures and powder shapes are produced of both organic and inorganic compounds. Films are produced with regular textural feature dimensions of 1.0-2.0 .mu.m down to a range of 0.01 to 0.1 .mu.m. Powders are formed in very narrow size distributions, with average sizes in the range of 0.02 to 5 .mu.m.

  6. Fabricating solid carbon porous electrodes from powders

    Science.gov (United States)

    Kaschmitter, James L.; Tran, Tri D.; Feikert, John H.; Mayer, Steven T.

    1997-01-01

    Fabrication of conductive solid porous carbon electrodes for use in batteries, double layer capacitors, fuel cells, capacitive dionization, and waste treatment. Electrodes fabricated from low surface area (Electrodes having a higher surface area, fabricated from powdered carbon blacks, such as carbon aerogel powder, carbon aerogel microspheres, activated carbons, etc. yield high conductivity carbon compositives with excellent double layer capacity, and can be used in double layer capacitors, or for capacitive deionization and/or waste treatment of liquid streams. By adding metallic catalysts to be high surface area carbons, fuel cell electrodes can be produced.

  7. Supercritical fluid molecular spray film deposition and powder formation

    Science.gov (United States)

    Smith, Richard D.

    1986-01-01

    Solid films are deposited, or fine powders formed, by dissolving a solid material into a supercritical fluid solution at an elevated pressure and then rapidly expanding the solution through a short orifice into a region of relatively low pressure. This produces a molecular spray which is directed against a substrate to deposit a solid thin film thereon, or discharged into a collection chamber to collect a fine powder. Upon expansion and supersonic interaction with background gases in the low pressure region, any clusters of solvent are broken up and the solvent is vaporized and pumped away. Solute concentration in the solution is varied primarily by varying solution pressure to determine, together with flow rate, the rate of deposition and to control in part whether a film or powder is produced and the granularity of each. Solvent clustering and solute nucleation are controlled by manipulating the rate of expansion of the solution and the pressure of the lower pressure region. Solution and low pressure region temperatures are also controlled.

  8. Solution based preparation of Perovskite-type oxide films and powders

    Energy Technology Data Exchange (ETDEWEB)

    McHale, Jr., James M. [Temple Univ., Philadelphia, PA (United States). Dept. of Chemistry

    1995-04-01

    Conventional solid state reactions are diffusion limited processes that require high temperatures and long reaction times to reach completion. In this work, several solution based methods were utilized to circumvent this diffusion limited reaction and achieve product formation at lower temperatures. The solution methods studied all have the common goal of trapping the homogeneity inherent in a solution and transferring this homogeneity to the solid state, thereby creating a solid atomic mixture of reactants. These atomic mixtures can yield solid state products through "diffusionless" mechanisms. The effectiveness of atomic mixtures in solid state synthesis was tested on three classes of materials, varying in complexity. A procedure was invented for obtaining the highly water soluble salt, titanyl nitrate, TiO(NO3)2, in crystalline form, which allowed the production of titanate materials by freeze drying. The freeze drying procedures yielded phase pure, nanocrystalline BaTiO3 and the complete SYNROC-B phase assemblage after ten minute heat treatments at 600{degrees}C and 1100{degrees}C, respectively. Two novel methods were developed for the solution based synthesis of Ba2YCu3O7-x and Bi2Sr2Ca2Cu3O10. Thin and thick films of Ba2YCu3O7-x and Bi2Sr2Ca2u3O10 were synthesized by an atmospheric pressure, chemical vapor deposition technique. Liquid ammonia solutions of metal nitrates were atomized with a stream of N2O and ignited with a hydrogen/oxygen torch. The resulting flame was used to coat a substrate with superconducting material. Bulk powders of Ba2YCu3O7-x and Bi2Sr2Ca2Cu3O10 were synthesized through a novel acetate glass method. The materials prepared were

  9. Formation of solid solution during mutual diffusion of tungsten and molybdenum in the process of sintering

    International Nuclear Information System (INIS)

    Timofeeva, A.A.; Bulat, I.B.; Voronin, Yu.V.; Fedoseev, G.K.; Karasev, V.M.

    1984-01-01

    A process of a solid solution homogenization during sintering of W-15Mo and W-5Mo alloys is studied by the methods of density measurements, analysis of the X-ray lines physical broadening and determination of crystalline lattice constant. Study of the process of solid solution formation under conditions of powder composite sintering is shown to be conducted with account of peculiarities of tungsten and molybdenum mutual diffusion in the investigated temperature range of concentrations

  10. 300 GPM Solids Removal System A True Replacement for Back Flushable Powdered Filter Systems - 13607

    Energy Technology Data Exchange (ETDEWEB)

    Ping, Mark R.; Lewis, Mark [EnergySolutions, Suite 100, Center Point II, 100 Center Point Circle, Columbia, SC 29210 (United States)

    2013-07-01

    The EnergySolutions Solids Removal System (SRS) utilizes stainless steel cross-flow ultra-filtration (XUF) technology which allows it to reliably remove suspended solids greater than one (1) micron from liquid radwaste streams. The SRS is designed as a pre-treatment step for solids separation prior to processing through other technologies such as Ion Exchange Resin (IER) and/or Reverse Osmosis (RO), etc. Utilizing this pre-treatment approach ensures successful production of reactor grade water while 1) decreasing the amount of radioactive water being discharged to the environment; and 2) decreasing the amount of radioactive waste that must ultimately be disposed of due to the elimination of spent powdered filter media. (authors)

  11. 300 GPM Solids Removal System A True Replacement for Back Flushable Powdered Filter Systems - 13607

    International Nuclear Information System (INIS)

    Ping, Mark R.; Lewis, Mark

    2013-01-01

    The EnergySolutions Solids Removal System (SRS) utilizes stainless steel cross-flow ultra-filtration (XUF) technology which allows it to reliably remove suspended solids greater than one (1) micron from liquid radwaste streams. The SRS is designed as a pre-treatment step for solids separation prior to processing through other technologies such as Ion Exchange Resin (IER) and/or Reverse Osmosis (RO), etc. Utilizing this pre-treatment approach ensures successful production of reactor grade water while 1) decreasing the amount of radioactive water being discharged to the environment; and 2) decreasing the amount of radioactive waste that must ultimately be disposed of due to the elimination of spent powdered filter media. (authors)

  12. Characterization investigations during mechanical alloying and sintering of Ni-W solid solution alloys dispersed with WC and Y{sub 2}O{sub 3} particles

    Energy Technology Data Exchange (ETDEWEB)

    Genc, Aziz, E-mail: agenc@itu.edu.t [Particulate Materials Laboratories, Department of Metallurgical and Materials Engineering, Istanbul Technical University, Maslak, 34469 Istanbul (Turkey); Luetfi Ovecoglu, M. [Particulate Materials Laboratories, Department of Metallurgical and Materials Engineering, Istanbul Technical University, Maslak, 34469 Istanbul (Turkey)

    2010-10-15

    Research highlights: {yields} Characterization investigations on the Ni-W solid solution alloys fabricated via mechanical alloying and the evolution of the properties of the powders with increasing MA durations. {yields} Reinforcement of the selected Ni-W powders with WC and Y{sub 2}O{sub 3} particles and further MA together for 12 h. {yields} There is no reported literature on the development and characterization of Ni-W solid solution alloys matrix composites fabricated via MA. {yields} Sintering of the developed composites and the characterization investigations of the sintered samples. {yields} Identification of new 'pomegranate-like' structures in the bulk of the samples. - Abstract: Blended elemental Ni-30 wt.% W powders were mechanically alloyed (MA'd) for 1 h, 3 h, 6 h, 12 h, 24 h, 36 h and 48 h in a Spex mixer/mill at room temperature in order to investigate the effects of MA duration on the solubility of W in Ni and the grain size, hardness and particle size. Microstructural and phase characterizations of the MA'd powders were carried out using X-ray diffractometer (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM). On the basis of achieved saturation on the solid solubility, hardness and particle size, the Ni-30 wt.% W powders MA'd for 48 h were chosen as the matrix which was reinforced with different amounts of WC and/or with 1 wt.% Y{sub 2}O{sub 3} particles. The reinforced powders were further MA'd for 12 h. The MA'd powders were sintered at 1300 {sup o}C for 1 h under Ar and H{sub 2} gas flowing conditions. Microstructural characterizations of the sintered samples were conducted via XRD and SEM. Sintered densities were measured by using the Archimedes' method. Vickers microhardness tests were performed on both MA'd powders and the sintered samples. Sliding wear experiments were done in order to investigate wear behaviors of the sintered samples.

  13. Gold cementation with zinc powder from leaching solutions with ammonia-thiosulphate

    International Nuclear Information System (INIS)

    Navarro, P.; Vargas, C.; Alvarez, R.; Alguacil, F. J.

    2005-01-01

    The cementation of gold with powder of zinc, from solutions with thiosulphate and ammonia, was studied. the variables evaluated were: thiosulphate concentration, ammonia concentration, pH, copper concentration and zinc concentration. the results have revealed the great importance of ammonia/thiosulphate relationship in this process and that the impurities presence like copper and zinc will to inhibit the cementation process. (Author) 16 refs

  14. Spray freeze drying to produce a stable Delta(9)-tetrahydrocannabinol containing inulin-based solid dispersion powder suitable for inhalation

    NARCIS (Netherlands)

    van Drooge, Dirk-Jan; Hinrichs, Wouter L J; Dickhoff, Bastiaan H J; Elli, Marco N A; Visser, Marinella R; Zijlstra, Gerrit S; Frijlink, Henderik W

    2005-01-01

    The purpose of this study is to investigate whether spray freeze drying produces an inhalable solid dispersion powder in which Delta(9)-tetrahydrocannabinol (THC) is stabilised. Solutions of THC and inulin in a mixture of tertiary butanol (TBA) and water were spray freeze dried. Drug loads varied

  15. Nanocrystalline (U0.5Ce0.5)O2±x solid solutions through citrate gel-combustion

    Science.gov (United States)

    Maji, D.; Ananthasivan, K.; Venkata Krishnan, R.; Balakrishnan, S.; Amirthapandian, S.; Joseph, Kitheri; Dasgupta, Arup

    2018-04-01

    Nanocrystalline powders of (U0.5Ce0.5)O2±x solid solutions were synthesized in bulk (100-200 g) through the citrate gel combustion. The fuel (citric acid) to oxidant (nitrate) mole ratio (R) was varied from 0.1 to 1.0. Two independent lots of the products obtained through the gel-combustion were calcined at 973 K in air and in a mixture of argon containing 8% H2 respectively. All these powders were characterized for their bulk density, X-ray crystallite size, specific surface area, size distribution of the particles, porosity as well as residual carbon. The morphology and microstructures of these powders were studied by using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) respectively. Nanocrystalline single phase fluorite solid solutions having a typical crystallite size of about (7-15 nm) were obtained. These powders were highly porous comprising cuboidal flaky agglomerates. The combustion mixture with an 'R' value of 0.25 was found to undergo volume combustion and was found to yield a product that was distinctly different. The systematic investigation on synthesis and characterization of nanocrystalline UCeO2 is reported for the first time.

  16. Fabrication of metal matrix composite by semi-solid powder processing

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yufeng [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    Various metal matrix composites (MMCs) are widely used in the automotive, aerospace and electrical industries due to their capability and flexibility in improving the mechanical, thermal and electrical properties of a component. However, current manufacturing technologies may suffer from insufficient process stability and reliability and inadequate economic efficiency and may not be able to satisfy the increasing demands placed on MMCs. Semi-solid powder processing (SPP), a technology that combines traditional powder metallurgy and semi-solid forming methods, has potential to produce MMCs with low cost and high efficiency. In this work, the analytical study and experimental investigation of SPP on the fabrication of MMCs were explored. An analytical model was developed to understand the deformation mechanism of the powder compact in the semi-solid state. The densification behavior of the Al6061 and SiC powder mixtures was investigated with different liquid fractions and SiC volume fractions. The limits of SPP were analyzed in terms of reinforcement phase loading and its impact on the composite microstructure. To explore adoption of new materials, carbon nanotube (CNT) was investigated as a reinforcing material in aluminum matrix using SPP. The process was successfully modeled for the mono-phase powder (Al6061) compaction and the density and density distribution were predicted. The deformation mechanism at low and high liquid fractions was discussed. In addition, the compaction behavior of the ceramic-metal powder mixture was understood, and the SiC loading limit was identified by parametric study. For the fabrication of CNT reinforced Al6061 composite, the mechanical alloying of Al6061-CNT powders was first investigated. A mathematical model was developed to predict the CNT length change during the mechanical alloying process. The effects of mechanical alloying time and processing temperature during SPP were studied on the mechanical, microstructural and

  17. Existence of a solid solution from brucite to β-Co(OH)2

    International Nuclear Information System (INIS)

    Giovannelli, F.; Delorme, F.; Autret-Lambert, C.; Seron, A.; Jean-Prost, V.

    2012-01-01

    Highlights: ► A solid solution exist between Mg(OH) 2 and β-Co(OH) 2 . ► Synthesis has been performed through an easy and fast coprecipitation route. ► No long range-ordering of the cations occurs. -- Abstract: This study shows that between brucite (Mg(OH) 2 ) and β-Co(OH) 2 , all the compositions are possible. The solid solution Mg 1−x Co x (OH) 2 has been synthesized by an easy and fast coprecipitation route and characterized by XRD and TEM. Single phase powders have been obtained. The particles exhibit platelets morphology with a size close to one hundred nanometers. XRD analysis shows an evolution of the cell parameters when x increases and demonstrates that no ordering of the cations occurs. However, extra reflections on TEM electron diffraction patterns seem to indicate that local ordering can exist. The compounds issued from this solid solution could be good candidates as precursors in order to obtain Mg–Co mixed oxide with all possible cationic ratios.

  18. Solid solutions of hydrogen uranyl phosphate and hydrogen uranyl arsenate. A family of luminescent, lamellar hosts

    International Nuclear Information System (INIS)

    Dorhout, P.K.; Rosenthal, G.L.; Ellis, A.B.

    1988-01-01

    Hydrogen uranyl phosphate, HUO 2 PO 4 x 4H 2 O (HUP), and hydrogen uranyl arsenate, HUO 2 AsO 4 x 4H 2 O (HUAs), form solid solutions of composition HUO 2 (PO 4 ) 1-x (AsO 4 )x (HUPAs), representing a family of lamellar, luminescent solids that can serve as hosts for intercalation chemistry. The solids are prepared by aqueous precipitation reactions from uranyl nitrate and mixtures of phosphoric and arsenic acids; thermogravimetric analysis indicates that the phases are tetrahydrates, like HUP and HUAs. Powder x-ray diffraction data reveal the HUPAs solids to be single phases whose lattice constants increase with X, in rough accord with Vegard's law Spectral shifts observed for the HUPAs samples. Emission from the solids is efficient (quantum yields of ∼ 0.2) and long-lived (lifetimes of ∼ 150 μs), although the measured values are uniformly smaller than those of HUP and HUAs; unimolecular radiative and nonradiative rate constants for excited-state decay of ∼ 1500 and 5000 s -1 , respectively, have been calculated for the compounds. 18 refs., 5 figs., 2 tabs

  19. Neutron diffraction studies on Ca1− xBaxZr4P6O24 solid solutions

    Indian Academy of Sciences (India)

    P6O24 compositions from combined Rietveld refinements of powder X-ray and neutron diffraction data. All the studied compositions crystallize in rhombohedral lattice (space group R-3 No. 148). A continuous solid solution is concluded from ...

  20. Measurement of electromagnetic properties of powder and solid metal materials for additive manufacturing

    Science.gov (United States)

    Todorov, Evgueni Iordanov

    2017-04-01

    The lack of validated nondestructive evaluation (NDE) techniques for examination during and after additive manufacturing (AM) component fabrication is one of the obstacles in the way of broadening use of AM for critical applications. Knowledge of electromagnetic properties of powder (e.g. feedstock) and solid AM metal components is necessary to evaluate and deploy electromagnetic NDE modalities for examination of AM components. The objective of this research study was to develop and implement techniques for measurement of powder and solid metal electromagnetic properties. Three materials were selected - Inconel 625, duplex stainless steel 2205, and carbon steel 4140. The powder properties were measured with alternate current (AC) model based eddy current technique and direct current (DC) resistivity measurements. The solid metal properties were measured with DC resistivity measurements, DC magnetic techniques, and AC model based eddy current technique. Initial magnetic permeability and electrical conductivity were acquired for both powder and solid metal. Additional magnetic properties such as maximum permeability, coercivity, retentivity, and others were acquired for 2205 and 4140. Two groups of specimens were tested along the build length and width respectively to investigate for possible anisotropy. There was no significant difference or anisotropy when comparing measurements acquired along build length to those along the width. A trend in AC measurements might be associated with build geometry. Powder electrical conductivity was very low and difficult to estimate reliably with techniques used in the study. The agreement between various techniques was very good where adequate comparison was possible.

  1. Cefuroxime axetil solid dispersions prepared using solution enhanced dispersion by supercritical fluids.

    Science.gov (United States)

    Jun, Seoung Wook; Kim, Min-Soo; Jo, Guk Hyun; Lee, Sibeum; Woo, Jong Soo; Park, Jeong-Sook; Hwang, Sung-Joo

    2005-12-01

    Cefuroxime axetil (CA) solid dispersions with HPMC 2910/PVP K-30 were prepared using solution enhanced dispersion by supercritical fluids (SEDS) in an effort to increase the dissolution rate of poorly water-soluble drugs. Their physicochemical properties in solid state were characterized by differential scanning calorimeter (DSC), powder X-ray diffraction (PXRD), Fourier transform infrared spectrometry (FT-IR) and scanning electron microscopy. No endothermic and characteristic diffraction peaks corresponding to CA were observed for the solid dispersions in DSC and PXRD. FTIR analysis demonstrated the presence of intermolecular hydrogen bonds between CA and HPMC 2910/PVP K-30 in solid dispersions, resulting in the formation of amorphous or non-crystalline CA. Dissolution studies indicated that the dissolution rates were remarkably increased in solid dispersions compared with those in the physical mixture and drug alone. In conclusion, an amorphous or non-crystalline CA solid dispersion prepared using SEDS could be very useful for the formulation of solid dosage forms.

  2. Optimization of process parameters in precipitation for consistent quality UO2 powder production

    International Nuclear Information System (INIS)

    Tiwari, S.K.; Reddy, A.L.V.; Venkataswamy, J.; Misra, M.; Setty, D.S.; Sheela, S.; Saibaba, N.

    2013-01-01

    Nuclear reactor grade natural uranium dioxide powder is being produced through precipitation route, which is further processed before converting into sintered pellets used in the fabrication of PHWR fuel assemblies of 220 and 540 MWe type reactors. The process of precipitating Uranyl Nitrate Pure Solution (UNPS) is an important step in the UO 2 powder production line, where in soluble uranium is transformed into solid form of Ammonium Uranate (AU), which in turn reflects and decides the powder characteristics. Precipitation of UNPS with vapour ammonia is being carried out in semi batch process and process parameters like ammonia flow rate, temperature, concentration of UNPS and free acidity of UNPS are very critical and decides the UO 2 powder quality. Variation in these critical parameters influences powder characteristics, which in turn influences the sinterability of UO 2 powder. In order to get consistent powder quality and sinterability the critical parameter like ammonia flow rate during precipitation is studied, optimized and validated. The critical process parameters are controlled through PLC based automated on-line data acquisition systems for achieving consistent powder quality with increased recovery and production. The present paper covers optimization of process parameters and powder characteristics. (author)

  3. Existence of a solid solution from brucite to {beta}-Co(OH){sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Giovannelli, F., E-mail: fabien.giovannelli@univ-tours.fr [LEMA, UMR 6157 CNRS - CEA, Universite Francois Rabelais, 15 rue de la chocolaterie, 41000 Blois (France); Delorme, F.; Autret-Lambert, C. [LEMA, UMR 6157 CNRS - CEA, Universite Francois Rabelais, 15 rue de la chocolaterie, 41000 Blois (France); Seron, A.; Jean-Prost, V. [BRGM, 3 Avenue Claude Guillemin, BP 36009, 45060 Orleans Cedex 2 (France)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer A solid solution exist between Mg(OH){sub 2} and {beta}-Co(OH){sub 2}. Black-Right-Pointing-Pointer Synthesis has been performed through an easy and fast coprecipitation route. Black-Right-Pointing-Pointer No long range-ordering of the cations occurs. -- Abstract: This study shows that between brucite (Mg(OH){sub 2}) and {beta}-Co(OH){sub 2}, all the compositions are possible. The solid solution Mg{sub 1-x}Co{sub x}(OH){sub 2} has been synthesized by an easy and fast coprecipitation route and characterized by XRD and TEM. Single phase powders have been obtained. The particles exhibit platelets morphology with a size close to one hundred nanometers. XRD analysis shows an evolution of the cell parameters when x increases and demonstrates that no ordering of the cations occurs. However, extra reflections on TEM electron diffraction patterns seem to indicate that local ordering can exist. The compounds issued from this solid solution could be good candidates as precursors in order to obtain Mg-Co mixed oxide with all possible cationic ratios.

  4. Structural evolution of Fe-50 at.% Al powders during mechanical alloying and subsequent annealing processes

    International Nuclear Information System (INIS)

    Haghighi, Sh. Ehtemam; Janghorban, K.; Izadi, S.

    2010-01-01

    Iron aluminides, despite having desirable properties like excellent corrosion resistance, present low room-temperature ductility and low strength at high temperatures. Mechanical alloying as a capable process to synthesize nanocrystalline materials is under consideration to modify these drawbacks. In this study, the microstructure of iron aluminide powders synthesized by mechanical alloying and subsequent annealing was investigated. Elemental Fe and Al powders with the same atomic percent were milled in a planetary ball mill for 15 min to 100 h. The powder milled for 80 h was annealed at temperatures of 300, 500 and 700 o C for 1 h. The alloyed powders were disordered Fe(Al) solid solutions which were transformed to FeAl intermetallic after annealing. The effect of the milling time and annealing treatment on structural parameters, such as crystallite size, lattice parameter and lattice strain was evaluated by X-ray diffraction. Typically, these values were 15 nm, 2.92 A and 3.1% for the disordered Fe(Al) solid solution milled for 80 h and were 38.5 nm, 2.896 A and 1.2% for the FeAl intermetallic annealed at 700 o C, respectively.

  5. Study of Diffusion Bonding of 45 Steel through the Compacted Nickel Powder Layer

    Science.gov (United States)

    Zeer, G. M.; Zelenkova, E. G.; Temnykh, V. I.; Tokmin, A. M.; Shubin, A. A.; Koroleva, Yu. P.; Mikheev, A. A.

    2018-02-01

    The microstructure of the transition zone and powder spacer, the concentration distribution of chemical elements over the width of the diffusion-bonded joint, and microhardness of 45 steel-compacted Ni powder spacer-45 steel layered composites formed by diffusion bonding have been investigated. It has been shown that the relative spacer thickness χ compacting pressure of 500 MPa. The solid-state diffusion bonding is accompanied by sintering the nickel powder spacer and the formation of the transition zone between the spacer and steel. The transition zone consists of solid solution of nickel in the α-Fe phase and ordered solid solution of iron in nickel (FeNi3).

  6. Continuous powder feeding for pharmaceutical solid dosage form manufacture: a short review.

    Science.gov (United States)

    Blackshields, Caroline A; Crean, Abina M

    2018-07-01

    There has been a noticeable shift from pharmaceutical batch processing towards a more continuous mode of manufacture for solid oral dosage forms. Continuous solid oral dose processes would not be possible in the absence of a highly accurate feeding system. The performance of feeders defines the content of formulations and is therefore a critical operation in continuous manufacturing of solid dosage forms. It was the purpose of this review to review the role of the initial powder feeding step in a continuous manufacturing process. Different feeding mechanisms are discussed with a particular emphasis on screw controlled loss in weight (LIW) feeding. The importance of understanding the physical properties of the raw materials and its impact on the feeding process is reviewed. Prior knowledge of materials provides an initial indication of how the powders will behave through processing and facilitates in the selection of the most suitable (i) feeder (capacity), (ii) feeding mechanism, and (iii) in the case of screw feeder - screw type. The studies identified in this review focus on the impact of material on powder feeding performance.

  7. Neutron powder diffraction investigation of magnetic structure and spin reorientation transition of HoFe{sub 1-x}Cr{sub x}O{sub 3} solid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xinzhi [Department of Nuclear Physics, China Institute of Atomic Energy, Beijing 102413 (China); Hao, Lijie, E-mail: haolijie@ciae.ac.cn [Department of Nuclear Physics, China Institute of Atomic Energy, Beijing 102413 (China); Liu, Yuntao; Ma, Xiaobai; Meng, Siqin; Li, Yuqing; Gao, Jianbo; Guo, Hao; Han, Wenze; Sun, Kai; Wu, Meimei [Department of Nuclear Physics, China Institute of Atomic Energy, Beijing 102413 (China); Chen, Xiping; Xie, Lei [Institute of Nuclear Physics and Chemistry, CAEP, Mianyang 621900 (China); Klose, Frank [Australian Nuclear Science and Technology Organization, Lucas Heights, New South Wales 2234 (Australia); Department of Physics and Materials Science, The City University of Hong Kong, Hong Kong (China); Chen, Dongfeng, E-mail: dongfeng@ciae.ac.cn [Department of Nuclear Physics, China Institute of Atomic Energy, Beijing 102413 (China)

    2016-11-01

    Orthoferrite solid solution HoFe{sub 1−x}Cr{sub x}O{sub 3} (x=0, 0.2,…,1.0) was synthesized via solid state reaction methods. The crystal structure, magnetism and spin reorientation properties of this system were investigated by X-ray diffraction, neutron powder diffraction and magnetic measurements. For compositions of x≤0.6, the system exhibits similar magnetic properties to HoFeO{sub 3}. With increasing Cr-doping, the system adopts a Γ{sub 4}(G{sub x}A{sub y}F{sub z}) magnetic configuration with a decreased Neel temperature from 640 K to 360 K. A Γ{sub 42} spin reorientation of Fe(Cr){sup 3+} was also observed in this system with an increase in transition temperature from 56 K to about 200 K due to competition between the Fe(Cr)–Fe(Cr) and Ho–Fe(Cr) interactions. For the x≥0.8, the system behaves more like HoCrO{sub 3} which adopts a Γ{sub 2}(F{sub x}C{sub y}G{sub z}) configuration with no spin reorientation below the Neel temperature T{sub N}. Throughout the whole substitution range, we found that the saturated moment of Fe(Cr) was less than the ideal value for a free ion, which implies the existence of spin fluctuation in this system. A systematic magnetic structure variation with Cr-substitution is revealed by Rietveld refinement. A phase diagram combining the results of the magnetic measurements and neutron powder diffraction results was obtained. - Highlights: • With Cr-substitution in the HoFe{sub 1−x}Cr{sub x}O{sub 3} system, A Γ{sub 42} spin reorientation of Fe(Cr){sup 3+} was observed with an increase in transition temperature from 56 K to about 200 K for x=0−0.6. • The saturated moment of Fe(Cr) position was found to be systematically less than the ideal value of free ion, and thus implies the presence of spin quantum fluctuation. • A composition–temperature phase diagram throughout x=0–1 for HoFe{sub 1−x}Cr{sub x}O{sub 3} system was established.

  8. Development and characterization of nifedipine-amino methacrylate copolymer solid dispersion powders with various adsorbents

    Directory of Open Access Journals (Sweden)

    Yotsanan Weerapol

    2017-07-01

    Full Text Available Solid dispersions of nifedipine (NDP, a poorly water-soluble drug, and amino methacrylate copolymer (AMCP with aid of adsorbent, that is, fumed silica, talcum, calcium carbonate, titanium dioxide, and mesoporous silica from rice husks (SRH, were prepared by solvent method. The physicochemical properties of solid dispersions, compared to their physical mixtures, were determined using powder X-ray diffractometry (PXRD and differential scanning calorimetry (DSC. The surface morphology of the prepared solid dispersions was examined by scanning electron microscopy (SEM. The dissolution of NDP from solid dispersions was compared to NDP powders. The effect of adsorbent type on NDP dissolution was also examined. The dissolution of NDP increased with the ratio of NDP:AMCP:adsorbent of 1:4:1 when compared to the other formulations. As indicated from PXRD patterns, DSC thermograms and SEM images, NDP was molecularly dispersed within polymer carrier or in an amorphous form, which confirmed the better dissolution of solid dispersions. Solid dispersions containing SRH provided the highest NDP dissolution, due to a porous nature of SRH, allowing dissolved drug to fill in the pores and consequently dissolve in the medium. The results suggested that solid dispersions containing adsorbents (SRH in particular demonstrated improved dissolution of poorly water-soluble drug when compared to NDP powder.

  9. Preparation and Characterization of Nano-structured Ceramic Powders Synthesized by Emulsion Combustion Method

    International Nuclear Information System (INIS)

    Takatori, Kazumasa; Tani, Takao; Watanabe, Naoyoshi; Kamiya, Nobuo

    1999-01-01

    The emulsion combustion method (ECM), a novel powder production process, was originally developed to synthesize nano-structured metal-oxide powders. Metal ions in the aqueous droplets were rapidly oxidized by the combustion of the surrounding flammable liquid. The ECM achieved a small reaction field and a short reaction period to fabricate the submicron-sized hollow ceramic particles with extremely thin wall and chemically homogeneous ceramic powder. Alumina, zirconia, zirconia-ceria solid solutions and barium titanate were synthesized by the ECM process. Alumina and zirconia powders were characterized to be metastable in crystalline phase and hollow structure. The wall thickness of alumina was about 10 nm. The zirconia-ceria powders were found to be single-phase solid solutions for a wide composition range. These powders were characterized as equiaxed-shape, submicron-sized chemically homogeneous materials. The powder formation mechanism was investigated through the synthesis of barium titanate powder with different metal sources

  10. Lattice parameters and electrical resistivity of Ceria-Yttria solid solutions

    International Nuclear Information System (INIS)

    Rey, Jose Fernando Queiruga

    2002-01-01

    Ce0 2 :u mol% Y 2 O 3 (u=0, 4, 6, 8, 10 and 12) solid solutions were prepared by the conventional powder mixture technique. The main purposes of this work are: the study of the dependence of the lattice parameter of the Ceria cubic phase on the Yttria content, comparing the experimental data with data calculated according to the existing theoretical models; to determine the dependence of the ionic conductivity on the Yttria content; and to study the stability of the cubic fluorite phase after extensive thermal treatments (aging) of the Ceria-Yttria specimens. The results show that the lattice parameter of the solid solutions follows the Vegard's law and can be described by the two reported theoretical models. The 8 mol% Yttria-doped Ceria was found to present the largest value of ionic conductivity. Preliminary results show that a large decrease is found for only 1 h aging at 700 deg C and that the ionic conductivity decreases for ceramic specimens aged for times up to 10 h. (author)

  11. Solid-state reactions to synthesize nanostructured lead selenide semiconductor powders by high-energy milling

    Energy Technology Data Exchange (ETDEWEB)

    Rojas-Chavez, H., E-mail: uu_gg_oo@yahoo.com.mx [Centro de Investigacion e Innovacion Tecnologica - IPN, Cerrada de CECATI s/n, Col. Santa Catarina, Del. Azcapotzalco (Mexico) and Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada - IPN, Legaria 694, Col. Irrigacion, Del. Miguel Hidalgo (Mexico); Reyes-Carmona, F. [Facultad de Quimica - UNAM, Circuito de la Investigacion Cientifica s/n, C.U. Del. Coyoacan (Mexico); Jaramillo-Vigueras, D. [Centro de Investigacion e Innovacion Tecnologica - IPN, Cerrada de CECATI s/n, Col. Santa Catarina, Del. Azcapotzalco (Mexico)

    2011-10-15

    Highlights: {yields} PbSe synthesized from PbO instead of Pb powder do not require an inert atmosphere. {yields} During high-energy milling oxygen has to be chemically reduced from the lead oxide. {yields} Solid-state and solid-gas chemical reactions promote both solid and gaseous products. -- Abstract: Both solid-solid and gas-solid reactions have been traced during high-energy milling of Se and PbO powders under vial (P, T) conditions in order to synthesize the PbSe phase. Chemical and thermodynamic arguments are postulated to discern the high-energy milling mechanism to transform PbO-Se micropowders onto PbSe-nanocrystals. A set of reactions were evaluated at around room temperature. Therefore an experimental campaign was designed to test the nature of reactions in the PbO-Se system during high-energy milling.

  12. Solid-state reactions to synthesize nanostructured lead selenide semiconductor powders by high-energy milling

    International Nuclear Information System (INIS)

    Rojas-Chavez, H.; Reyes-Carmona, F.; Jaramillo-Vigueras, D.

    2011-01-01

    Highlights: → PbSe synthesized from PbO instead of Pb powder do not require an inert atmosphere. → During high-energy milling oxygen has to be chemically reduced from the lead oxide. → Solid-state and solid-gas chemical reactions promote both solid and gaseous products. -- Abstract: Both solid-solid and gas-solid reactions have been traced during high-energy milling of Se and PbO powders under vial (P, T) conditions in order to synthesize the PbSe phase. Chemical and thermodynamic arguments are postulated to discern the high-energy milling mechanism to transform PbO-Se micropowders onto PbSe-nanocrystals. A set of reactions were evaluated at around room temperature. Therefore an experimental campaign was designed to test the nature of reactions in the PbO-Se system during high-energy milling.

  13. Investigation on the formation of Cu-Fe nano crystalline super-saturated solid solution developed by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Mojtahedi, M., E-mail: m.mojtahedi@gmail.com [School of Materials Science and Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114 (Iran, Islamic Republic of); Goodarzi, M.; Aboutalebi, M.R. [School of Materials Science and Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114 (Iran, Islamic Republic of); Ghaffari, M. [Department of Electrical and Electronics Engineering, UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800 (Turkey); Soleimanian, V. [Department of Physics, Faculty of Science, Shahrekord University, P.O. Box 115, Shahrekord (Iran, Islamic Republic of)

    2013-02-15

    Highlights: Black-Right-Pointing-Pointer The deformation of the mechanically alloyed Cu-Fe powder is anisotropic. Black-Right-Pointing-Pointer The Rietveld method is more proper and results in smaller crystallite size than the Scherer and Williamson-Hall methods. Black-Right-Pointing-Pointer A dual phase super saturated solid solution achieved after 96 h of milling of the mixtures with 30, 50 and 70 wt.% of Iron. Black-Right-Pointing-Pointer A final proportion of approximately 85% FCC and 15% BCC structure obtained in all of the applied compositions. - Abstract: In this study, the formation of super saturated solid solution in the binary Cu-Fe system was investigated. Three powder blends with 30, 50 and 70 wt.% of Fe were milled for different times to 96 h. The variations of lattice parameter and inter-planar spacing were calculated and analyzed using X-ray diffraction analysis (XDA). The anisotropy of lattice deformation in the FCC phase was studied and the obtained results were compared to milled pure Cu powder. Furthermore, crystallite size was calculated using Scherer formula in comparison with Rietveld full profile refinement method. Considering the previous studies about the formation of non-equilibrium FCC and BCC phases, the phase evolution has been discussed and the proportion of each phase was calculated using Rietveld refinement method. Supplementary studies on the evolution of microstructure and formation of solid solution were carried out using high resolution transmission electron microscopy (HRTEM). Finally, high angle annular dark field (HAADF) imaging was utilized to find out the level of homogeneity in the resulting phases. While true alloying takes place in each phase, the final structure consists of both FCC and BCC nano-crystallites.

  14. Synthesis of vanadium oxide powders by evaporative decomposition of solutions

    International Nuclear Information System (INIS)

    Lawton, S.A.; Theby, E.A.

    1995-01-01

    Powders of the vanadium oxides V 2 O 4 , V 6 O 13 , and V 2 O 5 were produced by thermal decomposition of aqueous solutions of vanadyl sulfate hydrate in atmospheres of N 2 , H 2 mixed with N 2 , or air. The composition of the oxide powder was determined by the reactor temperature and gas composition. Residual sulfur concentrations in powders produced by decomposition at 740 C were less than 1 at.%, and these powders consisted of hollow, roughly spherical aggregates of particles less than 1 microm in diameter

  15. A solid solution series of atacamite type Ni{sub 2x}Mg{sub 2−2x}Cl(OH){sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Bette, Sebastian [TU Bergakademie Freiberg, Institute of Inorganic Chemistry, Leipziger Strasse 29, Freiberg 09596 (Germany); Dinnebier, Robert E. [Max Planck Institute for Solid State Research, Heisenbergstrasse 1, Stuttgart 70569 (Germany); Röder, Christian [TU Bergakademie Freiberg, Institute of Theoretical Physics, Leipziger Strasse 23, Freiberg 09596 (Germany); Freyer, Daniela, E-mail: daniela.freyer@chemie.tu-freiberg.de [TU Bergakademie Freiberg, Institute of Inorganic Chemistry, Leipziger Strasse 29, Freiberg 09596 (Germany)

    2015-08-15

    For the first time a complete solid solution series Ni{sub 2x}Mg{sub 2−2x}Cl(OH){sub 3} of an atacamite type alkaline main group metal chloride, Mg{sub 2}Cl(OH){sub 3}, and a transition group metal chloride, Ni{sub 2}Cl(OH){sub 3}, was prepared and characterized by chemical and thermal analysis as well as by Raman and IR spectroscopy, and high resolution laboratory X-ray powder diffraction. All members of the solid solution series crystallize in space group Pnam (62). The main building units of these crystal structures are distorted, edge-linked Ni/MgO{sub 4}Cl{sub 2} and Ni/MgO{sub 5}Cl octahedra. The distribution of Ni{sup 2+}- and Mg{sup 2+}-ions among these two metal-sites within the solid solution series is discussed in detail. The crystallization of the solid solution phases occurs via an intermediate solid solution series, (Ni/Mg)Cl{sub 2x}(OH){sub 2−2x}, with variable Cl: OH ratio up to the 1:3 ratio according to the formula Ni{sub 2x}Mg{sub 2−2x} Cl(OH){sub 3}. For one isolated intermediate solid solution member, Ni{sub 0.70}Mg{sub 0.30}Cl{sub 0.58}(OH){sub 1.42}, the formation and crystal structure is presented as well. - Graphical abstract: For the first time a complete solid solution series, Ni{sub 2x}Mg{sub 2−2x} Cl(OH){sub 3}, was synthesized and characterized. Structure solution by revealed that Ni{sup 2+} prefers to occupy the Jahn–Teller-like distorted hole, out of two available cation sites. Substitution of Ni{sup 2+} by Mg{sup 2+} in atacamite type Ni{sub 2}Cl(OH){sub 3} results in systematic band shifts in Raman and IR spectra as well as in systematic changes in thermal properties. The α-polymorphs M{sub 2}Cl(OH){sub 3} with M=Mg{sup 2+}, Ni{sup 2+} and other divalent transition metal ions, as described in literature, were identified as separate compounds. - Highlights: • First synthesis of solid solution series between main and transition metal chloride. • Ni{sup 2+} prefers to occupy Jahn–Teller-like distorted octahedral holes

  16. Effect of ionizing radiation on solid and water solution Penicillin G

    International Nuclear Information System (INIS)

    Ben Salem, I.; Amine, Kh.M.; Mabrouk, Y.; Saidi, M.; Mezni, M; Boulila, N; Hafez, E

    2015-01-01

    Penicillin G is a conventional antibiotic used for treatment of different kinds of infectious diseases. Due to its huge quantity production and resistance to biodegradability, this molecule has been a serious concern for clinicians and environmentalists. In this study, the effect of ionizing radiation on the penicillin G powder and in water solution was investigated. The Nuclear Magnetic Resonance (NMR) and fourier transform infrared spectroscopy (FTIR) analysis showed that the ionizing radiation at 50 kGy has no effect on the integrity of solid Penicillin G. The anti-microbial assays revealed that the activity of irradiated solid Penicillin G did not reduce and was stable after storage for one month. Ionizing radiation at 50 kGy led to degradation of water solution Penicillin G. The complete disappear of peaks observed in the control sample confirmed the broken of β-lactam ring, the decarboxylation and cleavage of the thiazolidine ring. The product issued from the irradiation of Penicillin G, was completely removed by the bacterium Cupriavidus.metallidurans. Thus, the ionizing irradiation followed by a biological treatment was very effective method for removing of Penicillin G antibiotics residuals from water solution.

  17. Magnetic clusters in ilmenite-hematite solid solutions

    DEFF Research Database (Denmark)

    Frandsen, Cathrine; Burton, B. P.; Rasmussen, Helge Kildahl

    2010-01-01

    We report the use of high-field 57Fe Mössbauer spectroscopy to resolve the magnetic ordering of ilmenite-hematite [xFeTiO3−(1−x)Fe2O3] solid solutions with x>0.5. We find that nanometer-sized hematite clusters exist within an ilmenite-like matrix. Although both phases are antiferromagnetically...

  18. Microencapsulated Comb-Like Polymeric Solid-Solid Phase Change Materials via In-Situ Polymerization

    Directory of Open Access Journals (Sweden)

    Wei Li

    2018-02-01

    Full Text Available To enhance the thermal stability and permeability resistance, a comb-like polymer with crystallizable side chains was fabricated as solid-solid phase change materials (PCMs inside the cores of microcapsules and nanocapsules prepared via in-situ polymerization. In this study, the effects on the surface morphology and microstructure of micro/nanocapsules caused by microencapsulating different types of core materials (i.e., n-hexadecane, ethyl hexadecanoate, hexadecyl acrylate and poly(hexadecyl acrylate were systematically studied via field emission scanning electron microscope (FE-SEM and transmission electron microscope (TEM. The confined crystallization behavior of comb-like polymer PCMs cores was investigated via differential scanning calorimeter (DSC. Comparing with low molecular organic PCMs cores, the thermal stability of PCMs microencapsulated comb-like polymer enhanced significantly, and the permeability resistance improved obviously as well. Based on these resultant analysis, the microencapsulated comb-like polymeric PCMs with excellent thermal stability and permeability resistance showed promising foreground in the field of organic solution spun, melt processing and organic coating.

  19. Optimization of process parameters in precipitation for consistent quality UO{sub 2} powder production

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, S.K.; Reddy, A.L.V.; Venkataswamy, J.; Misra, M.; Setty, D.S.; Sheela, S.; Saibaba, N., E-mail: misra@nfc.gov.in [Nuclear Fuel Complex, Hyderabad (India)

    2013-07-01

    Nuclear reactor grade natural uranium dioxide powder is being produced through precipitation route, which is further processed before converting into sintered pellets used in the fabrication of PHWR fuel assemblies of 220 and 540 MWe type reactors. The process of precipitating Uranyl Nitrate Pure Solution (UNPS) is an important step in the UO{sub 2} powder production line, where in soluble uranium is transformed into solid form of Ammonium Uranate (AU), which in turn reflects and decides the powder characteristics. Precipitation of UNPS with vapour ammonia is being carried out in semi batch process and process parameters like ammonia flow rate, temperature, concentration of UNPS and free acidity of UNPS are very critical and decides the UO{sub 2} powder quality. Variation in these critical parameters influences powder characteristics, which in turn influences the sinterability of UO{sub 2} powder. In order to get consistent powder quality and sinterability the critical parameter like ammonia flow rate during precipitation is studied, optimized and validated. The critical process parameters are controlled through PLC based automated on-line data acquisition systems for achieving consistent powder quality with increased recovery and production. The present paper covers optimization of process parameters and powder characteristics. (author)

  20. Crystal structure and Mössbauer effect in multiferroic 0.5BiFeO3-0.5Pb(Fe0.5Ta0.5O3 solid solution

    Directory of Open Access Journals (Sweden)

    Stoch Agata

    2017-06-01

    Full Text Available Multiferroic 0.5BiFeO3-0.5Pb(Fe0.5Ta0.5O3 solid solution is a material that exhibits ferroelectric and antiferromagnetic orderings in ambient temperature. The solid solution was obtained as a result of a conventional reaction in a solid state. The obtained material is a dense, fine-grained sinter whose surface was observed by scanning electron microscopy (SEM and stoichiometry was confirmed by energy dispersive X-ray spectroscopic (EDS analysis. According to the X-ray powder diffraction (XRD measurements, the main phase is R3c space group with admixture of Pm-3m regular phase. Small contribution of pyrochlore-like phase was also observed. Mössbauer spectroscopy suggested random distribution of Fe3+/Ta5+ cations in the B sites of ABO3 compound. Reduction of the magnetic hyperfine field with an increase in the substitution of Ta5+ in Fe3+ neighbourhood was also observed.

  1. Solid-assisted melt disintegration (SAMD), a novel technique for metal powder production

    International Nuclear Information System (INIS)

    Akhlaghi, F.; Esfandiari, H.

    2007-01-01

    A new process termed 'solid-assisted melt disintegration (SAMD)' has been developed for the preparation of aluminum alloy powder particles. The method consists of introducing and mixing a specified amount of as-received alumina particles (in the range of +700 to 500 μm) in A356 aluminum melt at the temperature of 715 deg. C. Melt disintegration occurs in 10 min by kinetic energy transfer from a rotating impeller (450 rpm) to the metal via the solid atomizing medium (alumina particles). The resulting mixture of aluminum droplets and alumina particles was cooled in air and screened through 300 μm sieve to separate alumina from solidified aluminum powder particles. A356 aluminum alloy was also gas atomized by using a free-fall atomizer operating by nitrogen gas at the pressure of 1.1 MPa and the sub-300 μm of the produced powder was used as a base of comparison. The SAMD produced powders of diameter above 53 μm were mostly spherical while powders less than 53 μm showed various elongated shapes. No evidence was found for satelliting of small particles on to large ones or agglomerated particles. While gas atomized particles in the +53 μm sieve size range showed some signs of porosity, the SAMD particles were dense and did not show any signs of internal porosity in any of the sieve fractions investigated. Comparison of the microstructure of the SAMD and gas-atomized powders revealed that for the same size powder of A356 alloy, the former exhibited a coarser microstructure as a result of a slower cooling rate

  2. Solid solution and amorphous phase in Ti–Nb–Ta–Mn systems synthesized by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, C., E-mail: claudio.aguilar@usm.cl [Departamento de Ingeniería Metalúrgica y Materiales, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Guzman, P. [Departamento de Ingeniería Metalúrgica y Materiales, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Lascano, S. [Departamento de Ingeniería Mecánica, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Parra, C. [Departamento de Física, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Bejar, L. [Instituto de Investigaciones Metalúrgicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia C.P. 58000, Michoacán (Mexico); Medina, A. [Facultad de Ingeniería Mecánica, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, C.P. 58000, Michoacán (Mexico); Guzman, D. [Departamento de Metalurgia, Universidad de Atacama, Av. España 485, Copiapó (Chile)

    2016-06-15

    This work discusses the formation of Ti–30Nb–13Ta–xMn (x: 2, 4 and 6 wt%) solid solution by mechanical alloying using a shaker mill. A solid solution was formed after 15 h of milling and an amorphous phase was formed after 30 h of milling, according to X-ray diffraction results. Disappearance of strongest X-ray diffraction peaks of Nb, Ta and Mn indicated the formation of solid solution, while, X-ray diffraction patterns of powders milled for 30 h showed an amorphous hump with crystalline peaks in the angular range of 35–45° in 2θ. TEM image analysis showed the presence of nanocrystalline intermetallic compounds embedded in an amorphous matrix. Mn{sub 2}Ti, MnTi and NbTi{sub 4} intermetallic compounds were detected and revealed crystallites with size ranging from 3 to 20 nm. The Gibbs free energy for the formation of solid solution and amorphous phase of three ternary systems (Ti–Nb–Ta, Ti–Nb–Mn and Ti–Ta–Mn) was calculated using extended Miedema's model. Experimental and thermodynamic data confirmed that solid solution was first formed in the alloy with 6wt% Mn followed by the formation of an amorphous phase as milling time increases. The presence of Mn promoted the formation of amorphous phase because the atomic radius difference between Mn with Ti, Nb and Ta. - Highlights: • Thermodynamics analysis of extension of solid solution of the Ti–Nb–Ta–Mn system. • Formation of amorphous phase and intermetallic compounds were observed. • Nanocrystalline intermetallic compounds were formed with the sizes between 3 and 20 nm.

  3. The preparation method of solid boron solution in silicon carbide in the form of micro powder

    International Nuclear Information System (INIS)

    Pampuch, R.; Stobierski, L.; Lis, J.; Bialoskorski, J.; Ermer, E.

    1993-01-01

    The preparation method of solid boron solution in silicon carbide in the form of micro power has been worked out. The method consists in introducing mixture of boron, carbon and silicon and heating in the atmosphere of inert gas to the 1573 K

  4. Hyperfine interactions and structural features of Fe–44Co–6Mo (wt.%) nanostructured powders

    International Nuclear Information System (INIS)

    Moumeni, Hayet; Nemamcha, Abderrafik; Alleg, Safia; Grenèche, Jean Marc

    2013-01-01

    Nanocrystalline Fe–44Co–6Mo (wt.%) powders have been prepared by high-energy ball milling from elemental Fe, Co and Mo pure powders in a P7 planetary ball mill. The obtained powders were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Mössbauer spectrometry techniques. The influence of milling process and Mo substitution for Co in equiatomic FeCo have been examined in order to study structural evolution and formation mechanism of nanostructured Fe(CoMo) solid solution. XRD results show the formation of a BCC Fe(CoMo) solid solution (a = 0.2874 nm) where unmixed nanocrystalline Mo with a BCC structure is embedded. Disordered Fe(CoMo) solid solution is characterized by a broad hyperfine magnetic field distribution with two regions centered at B 1 = 35.0 T and B 2 = 30.7 T, respectively, attributed to disordered Fe(Co) solid solution and CoMo enriched environments. Prolonged milling and Mo addition cause the decrease of average hyperfine magnetic field while the average isomer shift remains nearly constant. - Highlights: ► BCC nanostructured Fe(CoMo) solid solution is prepared by milling of Fe, Co and Mo. ► Formation mechanism: Co diffusion into Fe lattice and Mo dissolution in Fe(Co). ► Crystallite size of Fe(CoMo) solid solution reaches 11 nm after 24 h of milling. ► Mössbauer analysis reveals 3 components: high field, enriched Co and low field

  5. Hyperfine interactions and structural features of Fe–44Co–6Mo (wt.%) nanostructured powders

    Energy Technology Data Exchange (ETDEWEB)

    Moumeni, Hayet, E-mail: hmoumeni@yahoo.fr [Laboratoire de Chimie Computationnelle et Nanostructures, Département des Sciences de la Matière, Faculté des Mathématiques et de l' Informatique et des Sciences de la Matière, Université 08 Mai 1945 - Guelma, B.P. 401, Guelma 24000 (Algeria); Nemamcha, Abderrafik [Laboratoire d' Analyses Industrielles et Génie des Matériaux, Faculté des Sciences et de la Technologie, Université 08 Mai 1945 - Guelma, B.P. 401, Guelma 24000 (Algeria); Alleg, Safia [Laboratoire de Magnétisme et de Spectroscopie des Solides, Département de Physique, Faculté des Sciences, Université de Annaba, B.P. 12, Annaba 23000 (Algeria); Grenèche, Jean Marc [Laboratoire de Physique de l' Etat Condensé, UMR CNRS 6087, Institut de Recherche en Ingénierie Moléculaire et Matériaux Fonctionnels IRIM2F, FR CNRS 2575, Université du Maine, 72085 Le Mans Cedex 9 (France)

    2013-02-15

    Nanocrystalline Fe–44Co–6Mo (wt.%) powders have been prepared by high-energy ball milling from elemental Fe, Co and Mo pure powders in a P7 planetary ball mill. The obtained powders were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Mössbauer spectrometry techniques. The influence of milling process and Mo substitution for Co in equiatomic FeCo have been examined in order to study structural evolution and formation mechanism of nanostructured Fe(CoMo) solid solution. XRD results show the formation of a BCC Fe(CoMo) solid solution (a = 0.2874 nm) where unmixed nanocrystalline Mo with a BCC structure is embedded. Disordered Fe(CoMo) solid solution is characterized by a broad hyperfine magnetic field distribution with two regions centered at B{sub 1} = 35.0 T and B{sub 2} = 30.7 T, respectively, attributed to disordered Fe(Co) solid solution and CoMo enriched environments. Prolonged milling and Mo addition cause the decrease of average hyperfine magnetic field while the average isomer shift remains nearly constant. - Highlights: ► BCC nanostructured Fe(CoMo) solid solution is prepared by milling of Fe, Co and Mo. ► Formation mechanism: Co diffusion into Fe lattice and Mo dissolution in Fe(Co). ► Crystallite size of Fe(CoMo) solid solution reaches 11 nm after 24 h of milling. ► Mössbauer analysis reveals 3 components: high field, enriched Co and low field.

  6. Structural evolution in three and four-layer Aurivillius solid solutions: A comparative study versus relaxor properties

    Science.gov (United States)

    Tellier, Jenny; Boullay, Philippe; Ben Jennet, Dorra; Mercurio, Daniele

    2008-02-01

    Two solid solutions of three-layer Ba xBi 4- xNb xTi 3- xO 12 (0 ≤ x ≤ 1.2) and four-layer Aurivillius compounds (Na 0.5Bi 0.5) 1- xBa xBi 4Ti 4O 15 (0 ≤ x ≤ 1), which both present a ferroelectric to relaxor-like transition with increasing x, were synthesized by solid state reaction. The evolution of their crystal structures, as a function of x, was performed using Rietveld refinements from X-ray powder diffraction data. As x increases, the average crystal structures become less distorted with respect to the archetypal high temperature tetragonal one and the coordination number of Bi 3+ in M 2O 2 layers continuously changes from {4 + 2} to {4}. The relaxor behaviour which appears in samples for a tolerance factor t > 0.96 is associated with a general static disorder in A and M sites together with the presence of some Ba 2+ cations in M 2O 2 layers (less than 10%).

  7. Simple thermodynamic model of the extension of solid solution of Cu-Mo alloys processed by mechanical alloying

    International Nuclear Information System (INIS)

    Aguilar, C.; Guzman, D.; Rojas, P.A.; Ordonez, Stella; Rios, R.

    2011-01-01

    Highlights: → Extension of solid solution in Cu-Mo systems achieved by mechanical alloying. → Simple thermodynamic model to explain extension of solid solution of Mo in Cu. → Model gives results that are consistent with the solubility limit extension reported in other works. - Abstract: The objective of this work is proposing a simple thermodynamic model to explain the increase in the solubility limit of the powders of the Cu-Mo systems or other binary systems processed by mechanical alloying. In the regular solution model, the effects of crystalline defects, such as; dislocations and grain boundary produced during milling were introduced. The model gives results that are consistent with the solubility limit extension reported in other works for the Cu-Cr, Cu-Nb and Cu-Fe systems processed by mechanical alloying.

  8. High-temperature thermoelectric properties of the β-As2−xBixTe3 solid solution

    Directory of Open Access Journals (Sweden)

    J.-B. Vaney

    2016-10-01

    Full Text Available Bi2Te3-based compounds are a well-known class of outstanding thermoelectric materials. β-As2Te3, another member of this family, exhibits promising thermoelectric properties around 400 K when appropriately doped. Herein, we investigate the high-temperature thermoelectric properties of the β-As2−xBixTe3 solid solution. Powder X-ray diffraction and scanning electron microscopy experiments showed that a solid solution only exists up to x = 0.035. We found that substituting Bi for As has a beneficial influence on the thermopower, which, combined with extremely low thermal conductivity values, results in a maximum ZT value of 0.7 at 423 K for x = 0.017 perpendicular to the pressing direction.

  9. Method of making supercritical fluid molecular spray films, powder and fibers

    Science.gov (United States)

    Smith, Richard D.

    1988-01-01

    Solid films are deposited, or fine powders formed, by dissolving a solid material into a supercritical fluid solution at an elevated pressure and then rapidly expanding the solution through a heated nozzle having a short orifice into a region of relatively low pressure. This produces a molecular spray which is directed against a substrate to deposit a solid thin film thereon, or discharged into a collection chamber to collect a fine powder. In another embodiment, the temperature of the solution and nozzle is elevated above the melting point of the solute, which is preferably a polymer, and the solution is maintained at a pressure such that, during expansion, the solute precipitates out of solution within the nozzle in a liquid state. Alternatively, a secondary solvent mutually soluble with the solute and primary solvent and having a higher critical temperature than that of primary solvent is used in a low concentration (<20%) to maintain the solute in a transient liquid state. The solute is discharged in the form of long, thin fibers. The fibers are collected at sufficient distance from the orifice to allow them to solidify in the low pressure/temperature region.

  10. Early stages of the mechanical alloying of TiC–TiN powder mixtures

    International Nuclear Information System (INIS)

    Mura, Giovanna; Musu, Elodia; Delogu, Francesco

    2013-01-01

    The present work focuses on the alloying behavior of TiC–TiN powder mixtures submitted to mechanical processing by ball milling. Accurate X-ray diffraction analyses indicate a progressive modification of the unit cell parameters of the TiC and TiN phases, suggesting the formation of TiC- and TiN-rich solid solutions with an increasingly larger content of solutes. Once the discrete character of the mechanical treatment is taken into due account, the smooth change of the unit cell parameters can be explained by a sequence of mutual dissolution stages related to individual collisions. At each collision, the average chemical composition of small amounts of TiC- and TiN-rich phases changes discontinuously. The discontinuous changes can be tentatively ascribed to local mass transport processes activated by the mechanical deformation of powders at collisions. -- Highlights: ► Mechanically processed TiC–TiN powder mixtures form two solid solutions. ► An analytical model was developed to describe the mechanical alloying kinetics. ► The amount of powder alloyed at collision was indirectly estimated. ► A few nanomoles of material participate in the alloying process at each collision. ► The chemical composition of the solid solutions was shown to change discontinuously.

  11. Structural transformation in mechanosynthesized bcc Fe-Al-Si(Ge) solid solutions during heating

    International Nuclear Information System (INIS)

    Kubalova, L.M.; Sviridov, I.A.; Vasilyeva, O.Ya.; Fadeeva, V.I.

    2007-01-01

    X-ray diffractometry and Moessbauer spectroscopy study of Fe 50 Al 25 Si 25 and Fe 50 Al 25 Ge 25 alloys obtained by mechanical alloying (MA) of elementary powders was carried out. Phase transformation during heating of synthesized products was studied using differential scanning calorimetry (DSC). After 2.5 h of MA monophase alloys containing bcc Fe(Al, Ge) solid solutions Fe(Al, Si) are formed. Fe(Al, Si) is partially ordered B2 type and Fe(Al, Ge) is completely disordered. DSC curves of synthesized alloys displayed the presence of exothermal peaks caused by phase transformation. The metastable Fe(Al, Si) solid solution transformed into FeAl 1-x Si x (B2) and FeSi 1-x Al x (B20) equilibrium phases. The Fe(Al, Ge) solid solution transformed into equilibrium phases through intermediate stage of Fe 6 Ge 3 Al 2 metastable phase formation. The Fe 6 Ge 3 Al 2 phase dissociated into three equilibrium phases: FeAl 1-x Ge x (B2), χ-Fe 6 Ge 5 and η-Fe 13 (Ge, Al) 8 (B8 2 ). The structure of Fe 6 Ge 3 Al 2 was calculated by Rietveld method, the distribution of Al and Ge in the elementary cell and its parameters were calculated. Moessbauer study showed that Fe(Al, Si) and Fe(Al, Ge) solid solutions are paramagnetic. In the equilibrium state the alloy containing Si is also paramagnetic while the alloy with Ge showed ferromagnetic properties

  12. Preparation of cauliflower-like shaped Ba0.6Sr0.4TiO3 powders by modified oxalate co-precipitation method

    International Nuclear Information System (INIS)

    Li Mingli; Xu Mingxia

    2009-01-01

    The quantitative barium-strontium titanyl oxalate (Ba 0.6 Sr 0.4 TiO(C 2 O 4 ) 2 .4H 2 O, BSTO) precursor powders were prepared by the modified oxalate co-preparation method. It was based on the cation-exchange reaction between the stoichiometric solutions of oxalotitanic acid (H 2 TiO(C 2 O 4 ) 2 , HTO) and barium + strontium nitrate solution containing stoichiometric quantities of Ba and Sr ions. The pyrolysis of BSTO at 800 deg. C/4 h in air produced the homogeneous cauliflower-like shaped barium-strontium titanate (Ba 0.6 Sr 0.4 TiO 3 , BST) powders. The effect of polyethylene glycol (PEG) on morphology of BSTO and BST powders was also investigated. The characterization studies were carried on the as-dried BSTO and calcined BST powders by various physicochemical techniques, IR, X-ray diffraction (XRD), scanning electron microscopy (SEM), etc. The BSTO and BST powders obtained by aforementioned technique without PEG were homogeneous with spherical shape. The particles grew into spindle shape with the effect of PEG

  13. Crystal-chemical features of the solid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Titov, V.V.; Kesler, Ya.A.; Gordeev, I.V.; Mozhaev, A.P.

    1988-04-01

    The unusual magnetic properties of the solid solutions of CuCr/sub 2/S/sub 4/ in Cu/sub 0.5/Mo/sub 0.5/Cr/sub 2/S/sub 4/ (M = Al, Ga, In) are closely related to the crystal chemistry of these compounds. Specimens for structural investigation were obtained by solid-phase synthesis in evacuated quartz capsules. X-ray phase analysis of all the compounds was made by the powder method in a DRON-1 diffractometer with Cu K..cap alpha.. filtered radiation. The experimental confirmation of the ordering of the cations in the tetrahedral sublattice of the investigated spinels was obtained by the authors from their IR absorption spectra taken in the range 400-33 cm/sup /minus/1/. The presence of seven intense absorption bands in the spectra of the specimens indicates that these materials belong to the space group F/anti/43m, i.e., that there is ordering in the A sublattice. Their investigation led them to the conclusion that in a number of cases the vibrational spectra of the crystals are more sensitive in the investigation of atomic ordering than the spectra of x-ray and neutron diffraction, in agreement with the theoretical predictions.

  14. Microstructural properties of electrochemically prepared Ni–Fe–W powders

    International Nuclear Information System (INIS)

    Ribić-Zelenović, L.; Ćirović, N.; Spasojević, M.; Mitrović, N.; Maričić, A.; Pavlović, V.

    2012-01-01

    A nanostructured Ni–Fe–W powder was obtained by electrodeposition from ammonium citrate electrolyte within the current density range of 500–1000 mA cm −2 at the electrolyte temperature of 50 °C–70 °C. XRD analysis shows that the powder contains an amorphous matrix having embedded nanocrystals of the FCC solid solution of iron and tungsten in nickel, with an average crystal grain size of 3.4 nm, a high internal microstrain value and a high density of chaotically distributed dislocations. EDS analysis exhibits that the chemical composition of the Ni–24%Fe–11%W powder does not depend upon current density and electrolyte temperature due to the diffusion control of the process of codeposition of nickel, iron and tungsten. SEM micrographs show that the electrodeposition results in the formation of two particle shapes: large cauliflower-like particles and small dendrite particles. The cauliflower-like particles contain deep cavities at hydrogen evolution sites. Cavity density increases with increasing deposition current density. Smaller powder particles are formed at higher temperatures and at higher current densities. During the first heating, relative magnetic permeability decreases reaching the Curie temperature at about 350 °C and after cooling exhibits a 12% increase due to the performed relaxation process. Following the second heating to 500 °C, the magnetic permeability of the powder is about 5% lower than that of the as-prepared powder due to crystallization of the amorphous phase of the powder and the crystal grain growth in FCC phase. - Highlights: ► Electrodeposition Ni–Fe–W powder from ammonium citrate electrolyte (500–1000 mA cm −2 ). ► Powder contains amorphous matrix and embedded nanocrystals 3.4 nm. ► Chemical composition Ni–24%Fe–11%W do not depend upon current density and electrolyte temperature. ► Two particle shapes: large cauliflower-like particles and small dendrite particles. ► Smaller powder particles are

  15. Microstructural properties of electrochemically prepared Ni-Fe-W powders

    Energy Technology Data Exchange (ETDEWEB)

    Ribic-Zelenovic, L. [Faculty of Agronomy, University of Kragujevac, Cacak (Serbia); Cirovic, N. [Joint Laboratory for Advanced Materials of SASA, Technical Faculty Cacak, University of Kragujevac, Cacak (Serbia); Spasojevic, M. [Faculty of Agronomy, University of Kragujevac, Cacak (Serbia); Mitrovic, N., E-mail: nmitrov@tfc.kg.ac.rs [Joint Laboratory for Advanced Materials of SASA, Technical Faculty Cacak, University of Kragujevac, Cacak (Serbia); Maricic, A. [Joint Laboratory for Advanced Materials of SASA, Technical Faculty Cacak, University of Kragujevac, Cacak (Serbia); Pavlovic, V. [Faculty of Agriculture, University of Belgrade, Belgrade (Serbia)

    2012-07-16

    A nanostructured Ni-Fe-W powder was obtained by electrodeposition from ammonium citrate electrolyte within the current density range of 500-1000 mA cm{sup -2} at the electrolyte temperature of 50 Degree-Sign C-70 Degree-Sign C. XRD analysis shows that the powder contains an amorphous matrix having embedded nanocrystals of the FCC solid solution of iron and tungsten in nickel, with an average crystal grain size of 3.4 nm, a high internal microstrain value and a high density of chaotically distributed dislocations. EDS analysis exhibits that the chemical composition of the Ni-24%Fe-11%W powder does not depend upon current density and electrolyte temperature due to the diffusion control of the process of codeposition of nickel, iron and tungsten. SEM micrographs show that the electrodeposition results in the formation of two particle shapes: large cauliflower-like particles and small dendrite particles. The cauliflower-like particles contain deep cavities at hydrogen evolution sites. Cavity density increases with increasing deposition current density. Smaller powder particles are formed at higher temperatures and at higher current densities. During the first heating, relative magnetic permeability decreases reaching the Curie temperature at about 350 Degree-Sign C and after cooling exhibits a 12% increase due to the performed relaxation process. Following the second heating to 500 Degree-Sign C, the magnetic permeability of the powder is about 5% lower than that of the as-prepared powder due to crystallization of the amorphous phase of the powder and the crystal grain growth in FCC phase. - Highlights: Black-Right-Pointing-Pointer Electrodeposition Ni-Fe-W powder from ammonium citrate electrolyte (500-1000 mA cm{sup -2}). Black-Right-Pointing-Pointer Powder contains amorphous matrix and embedded nanocrystals 3.4 nm. Black-Right-Pointing-Pointer Chemical composition Ni-24%Fe-11%W do not depend upon current density and electrolyte temperature. Black

  16. Variable valence of praseodymium in rare-earth oxide solid solutions

    International Nuclear Information System (INIS)

    Kravchinskaya, M.V.; Merezhinskii, K.Y.; Tikhonov, P.A.

    1986-01-01

    Solid solutions of elevated praseodymium oxide content have interesting electrical properties, making them the basis for the manufacture of high-temperature electrically conducting materials. Establishment of the composition-structure-valence state relationships enables control of the material properties. The authors performed investigations using a thermogravimetric apparatus with an electronic microbalance of type EM-5-3M, and using x-ray phase analysis of powders (DRON-1 diffractometer, CuK /SUB alpha/ -radiation). The authors also studied the kinetics of praseodymium oxidation with a thermogravimetric apparatus under isothermal conditions. Evaluation of the results with the equation of Kolmogorov, Erofeev, and Avraam indicates that the process is limited by the chemical oxidation of praseodymium and not by diffusion

  17. Design, characterization, and aerosolization of organic solution advanced spray-dried moxifloxacin and ofloxacin dipalmitoylphosphatidylcholine (DPPC) microparticulate/nanoparticulate powders for pulmonary inhalation aerosol delivery

    Science.gov (United States)

    Duan, Jinghua; Vogt, Frederick G; Li, Xiaojian; Hayes, Don; Mansour, Heidi M

    2013-01-01

    The aim of this study was to design and develop respirable antibiotics moxifloxacin (MOXI) hydrochloride and ofloxacin (OFLX) microparticles and nanoparticles, and multifunctional antibiotics particles with or without lung surfactant 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) for targeted dry powder inhalation delivery as a pulmonary nanomedicine. Particles were rationally designed and produced by advanced spray-drying particle engineering from an organic solution in closed mode (no water) from dilute solution. Scanning electron microscopy indicated that these particles had both optimal particle morphology and surface morphology, and the particle size distributions were suitable for pulmonary delivery. Comprehensive and systematic physicochemical characterization and in vitro aerosol dispersion performance revealed significant differences between these two fluoroquinolone antibiotics following spray drying as drug aerosols and as cospray-dried antibiotic drug: DPPC aerosols. Fourier transform infrared spectroscopy and confocal Raman microspectroscopy were employed to probe composition and interactions in the solid state. Spray-dried MOXI was rendered noncrystalline (amorphous) following organic solution advanced spray drying. This was in contrast to spray-dried OFLX, which retained partial crystallinity, as did OFLX:DPPC powders at certain compositions. Aerosol dispersion performance was conducted using inertial impaction with a dry powder inhaler device approved for human use. The present study demonstrates that the use of DPPC offers improved aerosol delivery of MOXI as cospray-dried microparticulate/nanoparticulate powders, whereas residual partial crystallinity influenced aerosol dispersion of OFLX and most of the compositions of OFLX:DPPC inhalation powders. PMID:24092972

  18. Early stages of the mechanical alloying of TiC-TiN powder mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Mura, Giovanna [Dipartimento di Ingegneria Elettrica ed Elettronica, Universita degli Studi di Cagliari, via Marengo 2, 09123 Cagliari (Italy); Musu, Elodia [Industrial Telemicroscopy Laboratory, Sardegna Ricerche, Polaris, Technology Park of Sardinia, Edificio 3, Loc. Piscinamanna, 09010 Pula (Italy); Delogu, Francesco, E-mail: francesco.delogu@dimcm.unica.it [Dipartimento di Ingegneria Meccanica, Chimica, e dei Materiali, Universita degli Studi di Cagliari, via Marengo 2, I-09123 Cagliari (Italy)

    2013-01-15

    The present work focuses on the alloying behavior of TiC-TiN powder mixtures submitted to mechanical processing by ball milling. Accurate X-ray diffraction analyses indicate a progressive modification of the unit cell parameters of the TiC and TiN phases, suggesting the formation of TiC- and TiN-rich solid solutions with an increasingly larger content of solutes. Once the discrete character of the mechanical treatment is taken into due account, the smooth change of the unit cell parameters can be explained by a sequence of mutual dissolution stages related to individual collisions. At each collision, the average chemical composition of small amounts of TiC- and TiN-rich phases changes discontinuously. The discontinuous changes can be tentatively ascribed to local mass transport processes activated by the mechanical deformation of powders at collisions. -- Highlights: Black-Right-Pointing-Pointer Mechanically processed TiC-TiN powder mixtures form two solid solutions. Black-Right-Pointing-Pointer An analytical model was developed to describe the mechanical alloying kinetics. Black-Right-Pointing-Pointer The amount of powder alloyed at collision was indirectly estimated. Black-Right-Pointing-Pointer A few nanomoles of material participate in the alloying process at each collision. Black-Right-Pointing-Pointer The chemical composition of the solid solutions was shown to change discontinuously.

  19. Radionuclide solubility control by solid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, F.; Klinkenberg, M.; Rozov, K.; Bosbach, D. [Forschungszentrum Juelich GmbH (Germany). Inst. of Energy and Climate Research - Nuclear Waste Management and Reactor Safety (IEK-6); Vinograd, V. [Frankfurt Univ. (Germany). Inst. of Geosciences

    2015-07-01

    The migration of radionuclides in the geosphere is to a large extend controlled by sorption processes onto minerals and colloids. On a molecular level, sorption phenomena involve surface complexation, ion exchange as well as solid solution formation. The formation of solid solutions leads to the structural incorporation of radionuclides in a host structure. Such solid solutions are ubiquitous in natural systems - most minerals in nature are atomistic mixtures of elements rather than pure compounds because their formation leads to a thermodynamically more stable situation compared to the formation of pure compounds. However, due to a lack of reliable data for the expected scenario at close-to equilibrium conditions, solid solution systems have so far not been considered in long-term safety assessments for nuclear waste repositories. In recent years, various solid-solution aqueous solution systems have been studied. Here we present state-of-the art results regarding the formation of (Ra,Ba)SO{sub 4} solid solutions. In some scenarios describing a waste repository system for spent nuclear fuel in crystalline rocks {sup 226}Ra dominates the radiological impact to the environment associated with the potential release of radionuclides from the repository in the future. The solubility of Ra in equilibrium with (Ra,Ba)SO{sub 4} is much lower than the one calculated with RaSO{sub 4} as solubility limiting phase. Especially, the available literature data for the interaction parameter W{sub BaRa}, which describes the non-ideality of the solid solution, vary by about one order of magnitude (Zhu, 2004; Curti et al., 2010). The final {sup 226}Ra concentration in this system is extremely sensitive to the amount of barite, the difference in the solubility products of the end-member phases, and the degree of non-ideality of the solid solution phase. Here, we have enhanced the fundamental understanding regarding (1) the thermodynamics of (Ra,Ba)SO{sub 4} solid solutions and (2) the

  20. Radiation induced homogeneous precipitation in undersaturated solid-solutions

    International Nuclear Information System (INIS)

    Cauvin, Richard; Martin, Georges.

    1978-01-01

    The stability of various types of solid solutions under irradiation is studied. In this paper, observations made on AlZn solid solutions under 1 MeV electron irradiation are reported. Al-Zn was chosen as a prototype of solid solutions with a simple miscibility gap. It is shown that under appropriate irradiation conditions undersaturated AnZn solid solutions give rise to a homogeneous precipitation of coherent G.P. zones and of incoherent Zn precipitates the atomic volume of which is smaller than that of the matrix. We propose a more general treatment of solute concentration heterogeneities in solid solutions under irradiation and suggest how it might account for the nucleation of the observed phases. The growth of the observed precipitates is studied

  1. End-Member Formulation of Solid Solutions and Reactive Transport

    Energy Technology Data Exchange (ETDEWEB)

    Lichtner, Peter C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    A model for incorporating solid solutions into reactive transport equations is presented based on an end-member representation. Reactive transport equations are solved directly for the composition and bulk concentration of the solid solution. Reactions of a solid solution with an aqueous solution are formulated in terms of an overall stoichiometric reaction corresponding to a time-varying composition and exchange reactions, equivalent to reaction end-members. Reaction rates are treated kinetically using a transition state rate law for the overall reaction and a pseudo-kinetic rate law for exchange reactions. The composition of the solid solution at the onset of precipitation is assumed to correspond to the least soluble composition, equivalent to the composition at equilibrium. The stoichiometric saturation determines if the solid solution is super-saturated with respect to the aqueous solution. The method is implemented for a simple prototype batch reactor using Mathematica for a binary solid solution. Finally, the sensitivity of the results on the kinetic rate constant for a binary solid solution is investigated for reaction of an initially stoichiometric solid phase with an undersaturated aqueous solution.

  2. Phase coexistence in ferroelectric solid solutions: Formation of monoclinic phase with enhanced piezoelectricity

    Directory of Open Access Journals (Sweden)

    Xiaoyan Lu

    2016-10-01

    Full Text Available Phase morphology and corresponding piezoelectricity in ferroelectric solid solutions were studied by using a phenomenological theory with the consideration of phase coexistence. Results have shown that phases with similar energy potentials can coexist, thus induce interfacial stresses which lead to the formation of adaptive monoclinic phases. A new tetragonal-like monoclinic to rhombohedral-like monoclinic phase transition was predicted in a shear stress state. Enhanced piezoelectricity can be achieved by manipulating the stress state close to a critical stress field. Phase coexistence is universal in ferroelectric solid solutions and may provide a way to optimize ultra-fine structures and proper stress states to achieve ultrahigh piezoelectricity.

  3. Ultrasound-assisted powder-coating technique to improve content uniformity of low-dose solid dosage forms

    DEFF Research Database (Denmark)

    Genina, Natalja; Räikkönen, Heikki; Antikainen, Osmo

    2010-01-01

    An ultrasound-assisted powder-coating technique was used to produce a homogeneous powder formulation of a low-dose active pharmaceutical ingredient (API). The powdered particles of microcrystalline cellulose (MCC; Avicel® PH-200) were coated with a 4% m/V aqueous solution of riboflavin sodium...

  4. Synthesis and properties of γ-Ga2O3-Al2O3 solid solutions

    Science.gov (United States)

    Afonasenko, T. N.; Leont'eva, N. N.; Talzi, V. P.; Smirnova, N. S.; Savel'eva, G. G.; Shilova, A. V.; Tsyrul'nikov, P. G.

    2017-10-01

    The textural and structural properties of mixed oxides Ga2O3-Al2O3, obtained via impregnating γ-Al2O3 with a solution of Ga(NO3)3 and subsequent heat treatment, are studied. According to the results from X-ray powder diffraction, gallium ions are incorporated into the structure of aluminum oxide to form a solid solution of spinel-type γ-Ga2O3-Al2O3 up to a Ga2O3 content of 50 wt % of the total weight of the sample, accompanied by a reduction in the specific surface area, volume, and average pore diameter. It is concluded that when the Ga2O3 content exceeds 50 wt %, the β-Ga2O3 phase is observed along with γ-Ga2O3-Al2O3 solid solution. 71Ga and 27Al NMR spectroscopy shows that gallium replaces aluminum atoms from the tetrahedral position to the octahedral coordination in the structure of γ-Ga2O3-Al2O3.

  5. Formation and characterization of solid-solution (V,W,Ti)CN composite powder

    CSIR Research Space (South Africa)

    Bolokang, Amogelang S

    2017-04-01

    Full Text Available We report on the synthesis of a mixture of vanadium (V), tungsten (W), titanium (Ti) and carbon (C) mixture using ball milling in argon atmosphere. Thermal analysis of the milled powder showed an exothermic reaction at approximately 700°C...

  6. Preparation of UO{sub 2}, ThO{sub 2} and (Th,U)O{sub 2} pellets from photochemically-prepared nano-powders

    Energy Technology Data Exchange (ETDEWEB)

    Pavelková, Tereza [Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Břehová 7, 115 19 Praha 1 (Czech Republic); Čuba, Václav, E-mail: vaclav.cuba@fjfi.cvut.cz [Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Břehová 7, 115 19 Praha 1 (Czech Republic); Visser-Týnová, Eva de [Nuclear Research and Consultancy Group (NRG), Research & Innovation, Westerduinweg 3, 1755 LE Petten (Netherlands); Ekberg, Christian [Nuclear Chemistry/Industrial Materials Recycling, Chalmers University of Technology, SE-412 96 Göteborg (Sweden); Persson, Ingmar [Department of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala (Sweden)

    2016-02-15

    Photochemically-induced preparation of nano-powders of crystalline uranium and/or thorium oxides and their subsequent pelletizing has been investigated. The preparative method was based on the photochemically induced formation of amorphous solid precursors in aqueous solution containing uranyl and/or thorium nitrate and ammonium formate. The EXAFS analyses of the precursors shown that photon irradiation of thorium containing solutions yields a compound with little long-range order but likely “ThO{sub 2} like” and the irradiation of uranium containing solutions yields the mixture of U(IV) and U(VI) compounds. The U-containing precursors were carbon free, thus allowing direct heat treatment in reducing atmosphere without pre-treatment in the air. Subsequent heat treatment of amorphous solid precursors at 300–550 °C yielded nano-crystalline UO{sub 2}, ThO{sub 2} or solid (Th,U)O{sub 2} solutions with high purity, well-developed crystals with linear crystallite size <15 nm. The prepared nano-powders of crystalline oxides were pelletized without any binder (pressure 500 MPa), the green pellets were subsequently sintered at 1300 °C under an Ar:H{sub 2} (20:1) mixture (UO{sub 2} and (Th,U)O{sub 2} pellets) or at 1600 °C in ambient air (ThO{sub 2} pellets). The theoretical density of the sintered pellets varied from 91 to 97%. - Highlights: • Photochemically prepared UO{sub 2}/ThO{sub 2} nano-powders were pelletized. • The nano-powders of crystalline oxides were pelletized without any binder. • Pellets were sintered at 1300 °C (UO{sub 2} and (Th,U)O{sub 2}) or 1600 °C (ThO{sub 2} pellets). • The theoretical density of the sintered pellets varies from 91 to 97%.

  7. Aluminum powder size and microstructure effects on properties of boron nitride reinforced aluminum matrix composites fabricated by semi-solid powder metallurgy

    International Nuclear Information System (INIS)

    Chen, Cunguang; Guo, Leichen; Luo, Ji; Hao, Junjie; Guo, Zhimeng; Volinsky, Alex A.

    2015-01-01

    Al matrix composite reinforced by hexagonal boron nitride (h-BN) with nearly full densification was successfully fabricated by the semi-solid powder metallurgy technique. The h-BN/Al composites were synthesized with elemental pure Al powder size of d_5_0=35, 12 and 2 μm. The powder morphology and the structural characteristics of the composites were analyzed using X-ray diffraction, scanning and transmission electron microscopy. The density, Brinell hardness and compressive behavior of the samples were characterized. Density measurement of the Al composites revealed that the composite densification can be effectively promoted by plenty of embedded liquid phase under pressure. Composites prepared using Al powder with varying granularity showed different grain characteristics, and in situ recrystallization occurred inside the original grains with 35 μm Al powder. A sharp interface consisting of Al/Al_2O_3/h-BN was present in the composites. Both the compressive strength and the fracture strain of the investigated composites increased with the decrease of the Al powder size, along with the Brinell hardness. The composite with 2 μm Al powder exhibited the highest relative density (99.3%), Brinell harness (HB 128), compressive strength (763 MPa) and fracture strain (0.299).

  8. Crystalline-to-amorphous phase transformation in mechanically alloyed Fe50W50 powders

    International Nuclear Information System (INIS)

    Sherif El-Eskandarany, M.S.; Sumiyama, K.; Suzuki, K.

    1997-01-01

    A mechanical alloying process via a ball milling technique has been applied for preparing amorphous Fe 50 W 50 alloy powders. The results have shown that during the first and second stages of milling (0 to 360 ks) W atoms emigrate to Fe lattices to form nanocrystalline b.c.c. Fe-W solid solution, with a grain size of about 7 nm in diameter. After 720 ks of the milling time, this solid solution was transformed to an amorphous Fe-W alloy coexisting with the residual fraction of the unprocessed W powders. During the last stage of milling (720 to 1,440 ks) all of this residual W powder reacts with the amorphous phase to form a homogeneous Fe 50 W 50 amorphous alloy. The crystallization temperature and the enthalpy change of crystallization of amorphous Fe 50 W 50 powders milled for 1,440 ks were measured to be 860 K and -9kJ/mol, respectively. The amorphous Fe 50 W 50 powder produced is almost paramagnetic at room temperature. The powder comprises homogeneous and smooth spheres with an average size of about 0.5 microm in diameter

  9. XRD and DSC study of the formation and the melting of a new zeolite like borosilicate CsBSi5O12 and (Cs,Rb)BSi5O12 solid solutions

    International Nuclear Information System (INIS)

    Bubnova, R.S.; Ugolkov, V.L.; Krzhizhanovskaya, M.G.; Filatov, S.K.; Paufler, P.

    2007-01-01

    Polycrystalline CsBSi 5 O 12 was prepared from a stoichiometric mixture by solid-state reaction above 1000 C. The solid solutions Cs 1-x Rb x BSi 5 O 12 were obtained at 1000 C during a long heat treatment of polycrystalline Cs 1-x Rb x BSi 2 O 6 boropollucites (x Rb = 0, 0.05, 0.2, 0.4). A new borosilicate compound and its solid solutions were studied using X-ray powder diffraction (XRD), annealing, differential scanning calorimetry (DSC), and thermogravimetry (TG). For Cs,Rb-boropollucites the new phase formation is accompanied by significant mass losses detected by DSC and TG. The following mechanism of phase transformations is assumed: (Cs,Rb)BSi 2 O 6 → (Cs,Rb)BSi 5 O 12 + (Cs,Rb)BO 2 ↑. The zeolite phase forms as a result of the boropollucite decomposition over 1000 C. Zeolite decomposes also on further heating and the SiO 2 reflections are observed in the XRD pattern only. Thus above 1000 C both boropollucite and zeolite phases are unstable presumably due to the ability of the alkali cations to leave the structure. Using XRD the unit cell parameters of CsBSi 5 O 12 have been determined in the orthorhombic crystal system: a = 16.242(4) A, b = 13.360(4) A, c = 4.874(1) A. The compound is isostructural with the zeolite compound CsAlSi 5 O 12 . In the crystal structure of Cs 1-x Rb x BSi 5 O 12 solid solutions the changes of cell parameters are insignificant under the substitution of Cs by Rb atoms that indicates a very limited substitution range. (orig.)

  10. Study of fluorine doped (Nb,Ir)O_2 solid solution electro-catalyst powders for proton exchange membrane based oxygen evolution reaction

    International Nuclear Information System (INIS)

    Kadakia, Karan Sandeep; Jampani, Prashanth H.; Velikokhatnyi, Oleg I.; Datta, Moni Kanchan; Patel, Prasad; Chung, Sung Jae; Park, Sung Kyoo; Poston, James A.; Manivannan, Ayyakkannu; Kumta, Prashant N.

    2016-01-01

    Graphical abstract: High surface area (∼300 m"2/g) nanostructured powders of nominal composition (Nb_1_−_xIr_x)O_2 and (Nb_1_−_xIr_x)O_2:10F have been synthesized and tested as oxygen evolution electro-catalysts for PEM based water electrolysis using a simple two-step chemical synthesis procedure. Superior electrochemical activity was demonstrated by fluorine doped compositions of (Nb_1_−_xIr_x)O_2 with an optimal composition (Nb_0_._7_5Ir_0_._2_5)O_2:10F (x = 0.25) demonstrating on-par performance with commercial hydrated IrO_2 and nanostructured in-house chemically synthesized IrO_2. Using first principles calculations, the electronic structure modification resulting in ∼75 at.% reduction (experimentally observed) in noble metal content without loss in catalytic performance and stability has been established. - Highlights: • (Nb_1_−_xIr_x)O_2:10F nanopowder electrocatalysts have been wet chemically synthesized. • (Nb_0_._7_5Ir_0_._2_5)O_2:10F exhibits superior electrochemical activity than pure IrO_2. • Stability of the (Nb,Ir)O_2:10F nanomaterials is comparable to pure (Nb,Ir)O_2. • High surface area F doped (Nb,Ir)O_2 are promising OER anode electro-catalysts. - Abstract: High surface area (∼300 m"2/g) nanostructured powders of (Nb_1_−_xIr_x)O_2 and (Nb_1_−_xIr_x)O_2:10F (∼100 m"2/g) have been examined as promising oxygen evolution reaction (OER) electro-catalysts for proton exchange membrane (PEM) based water electrolysis. Nb_2O_5 and 10 wt.% F doped Nb_2O_5 powders were prepared by a low temperature sol-gel process which were then converted to solid solution (Nb,Ir)O_2 and 10 wt.% F doped (Nb,Ir)O_2 [(NbIr)O_2:10F] electro-catalysts by soaking in IrCl_4 followed by heat treatment in air. Electro-catalyst powders of optimal composition (Nb_0_._7_5Ir_0_._2_5)O_2:10F with ∼75 at.% reduction in noble metal content exhibited comparable OER activity to commercial hydrated IrO_2 and nanostructured in-house chemically synthesized IrO_2

  11. Method of solidifying powderous wastes

    International Nuclear Information System (INIS)

    Kakimoto, Akira; Miyake, Takashi; Sato, Shuichi; Inagaki, Yuzo.

    1985-01-01

    Purpose: To improve the properties of solidification products, in the case of solidifying powderous wastes with thermosetting resins. Method. A solvent for the solution of the thermosetting resin is admixed with the powderous wastes into a paste-like form prior to adding the resin to the wastes, which are then mixed with the resin solution. As the result, those solidification products having the specific gravity and the compression strength more excellent than those of the conventional ones, and much higher than the reference values can be obtained. (Kamimura, M.)

  12. Dissolution of powdered spent fuel and U crystallization from actual dissolver solution for 'NEXT' process development

    International Nuclear Information System (INIS)

    Nomura, Kazunori; Hinai, Hiroshi; Nakahara, Masaumi; Kaji, Naoya; Kamiya, Masayoshi; Ohyama, Koichi; Sano, Yuichi; Washiya, Tadahiro; Komaki, Jun

    2008-01-01

    The beaker-scale experiments on the effective powdered fuel dissolution and the U crystallization from dissolver solution with the irradiated MOX fuel from the experimental fast reactor 'JOYO' were carried out. The powdered fuel was effectively dissolved into the nitric acid solution. In the U crystallization experiments, U crystal was obtained from the actual dissolver solution without any addition of reagent. (authors)

  13. from an aqueous solution using Azadirachta indica leaf powder

    African Journals Online (AJOL)

    Azadirachta indica (neem) leaf powder was used as an adsorbent for the removal of textile dye from aqueous solution. The adsorption of dye on A. indica was found to be dependent on contact time, dye concentration and amount of adsorbent. Spectrophotometric technique was used for the measurement of concentration of ...

  14. Fabrication of nanocrystalline alloys Cu–Cr–Mo super satured solid solution by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, C., E-mail: claudio.aguilar@usm.cl [Departamento de Ingeniería Metalúrgica y Materiales, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Guzmán, D. [Departamento de Ingeniería en Metalurgia, Facultad de Ingeniería, Universidad de Atacama y Centro Regional de Investigación y Desarrollo Sustentable de Atacama (CRIDESAT), Av. Copayapu 485, Copiapó (Chile); Castro, F.; Martínez, V.; Cuevas, F. de las [Centro de Estudios e Investigaciones Técnicas de Gipuzkoa, Paseo de Manuel Lardizábal, N° 15, 20018 San Sebastián (Spain); Lascano, S. [Departamento de Ingeniería Mecánica, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Muthiah, T. [Departamento de Ingeniería Metalúrgica y Materiales, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile)

    2014-08-01

    This work discusses the extension of solid solubility of Cr and Mo in Cu processed by mechanical alloying. Three alloys processed, Cu–5Cr–5Mo, Cu–10Cr–10Mo and Cu–15Cr–15Mo (weight%) using a SPEX mill. Gibbs free energy of mixing values 10, 15 and 20 kJ mol{sup −1} were calculated for these three alloys respectively by using the Miedema's model. The crystallite size decreases and dislocation density increases when the milling time increases, so Gibbs free energy storage in powders increases by the presence of crystalline defects. The energy produced by crystallite boundaries and strain dislocations were estimated and compared with Gibbs free energy of mixing values. The energy storage values by the presence of crystalline defects were higher than Gibbs free energy of mixing at 120 h for Cu–5Cr–5Mo, 130 h for Cu–10Cr–10Mo and 150 h for Cu–15Cr–15Mo. During milling, crystalline defects are produced that increases the Gibbs free energy storage and thus the Gibbs free energy curves are moved upwards and hence the solubility limit changes. Therefore, the three alloys form solid solutions after these milling time, which are supported with the XRD results. - Highlights: • Extension of solid solution Cr and Mo in Cu achieved by mechanical alloying. • X-ray characterization of Cu–Cr–Mo system processed by mechanical alloying. • Thermodynamics analysis of formation of solid solution of the Cu–Cr–Mo system.

  15. Topotactic synthesis of vanadium nitride solid foams

    International Nuclear Information System (INIS)

    Oyama, S.T.; Kapoor, R.; Oyama, H.T.; Hofmann, D.J.; Matijevic, E.

    1993-01-01

    Vanadium nitride has been synthesized with a surface area of 120 m 2 g -1 by temperature programmed nitridation of a foam-like vanadium oxide (35 m 2 g -1 ), precipitated from vanadate solutions. The nitridation reaction was established to be topotactic and pseudomorphous by x-ray powder diffraction and scanning electron microscopy. The crystallographic relationship between the nitride and oxide was {200}//{001}. The effect of precursor geometry on the product size and shape was investigated by employing vanadium oxide solids of different morphologies

  16. Modification of the solid-state nature of sulfathiazole and sulfathiazole sodium by spray drying.

    Science.gov (United States)

    Bianco, Stefano; Caron, Vincent; Tajber, Lidia; Corrigan, Owen I; Nolan, Lorraine; Hu, Yun; Healy, Anne Marie

    2012-06-01

    Solid-state characterisation of a drug following pharmaceutical processing and upon storage is fundamental to successful dosage form development. The aim of the study was to investigate the effects of using different solvents, feed concentrations and spray drier configuration on the solid-state nature of the highly polymorphic model drug, sulfathiazole (ST) and its sodium salt (STNa). The drugs were spray-dried from ethanol, acetone and mixtures of these organic solvents with water. Additionally, STNa was spray-dried from pure water. The physicochemical properties including the physical stability of the spray-dried powders were compared to the unprocessed materials. Spray drying of ST from either acetonic or ethanolic solutions with the spray drier operating in a closed cycle mode yielded crystalline powders. In contrast, the powders obtained from ethanolic solutions with the spray drier operating in an open cycle mode were amorphous. Amorphous ST crystallised to pure form I at ≤35 % relative humidity (RH) or to polymorphic mixtures at higher RH values. The usual crystal habit of form I is needle-like, but spherical particles of this polymorph were generated by spray drying. STNa solutions resulted in an amorphous material upon processing, regardless of the solvent and the spray drier configuration employed. Moisture induced crystallisation of amorphous STNa to a sesquihydrate, whilst crystallisation upon heating gave rise to a new anhydrous polymorph. This study indicated that control of processing and storage parameters can be exploited to produce drugs with a specific/desired solid-state nature.

  17. A thermodynamic model for aqueous solutions of liquid-like density

    Energy Technology Data Exchange (ETDEWEB)

    Pitzer, K.S.

    1987-06-01

    The paper describes a model for the prediction of the thermodynamic properties of multicomponent aqueous solutions and discusses its applications. The model was initially developed for solutions near room temperature, but has been found to be applicable to aqueous systems up to 300/sup 0/C or slightly higher. A liquid-like density and relatively small compressibility are assumed. A typical application is the prediction of the equilibrium between an aqueous phase (brine) and one or more solid phases (minerals). (ACR)

  18. Surface phase transitions in cu-based solid solutions

    Science.gov (United States)

    Zhevnenko, S. N.; Chernyshikhin, S. V.

    2017-11-01

    We have measured surface energy in two-component Cu-based systems in H2 + Ar gas atmosphere. The experiments on solid Cu [Ag] and Cu [Co] solutions show presence of phase transitions on the surfaces. Isotherms of the surface energy have singularities (the minimum in the case of copper solid solutions with silver and the maximum in the case of solid solutions with cobalt). In both cases, the surface phase transitions cause deficiency of surface miscibility: formation of a monolayer (multilayer) (Cu-Ag) or of nanoscale particles (Cu-Co). At the same time, according to the volume phase diagrams, the concentration and temperature of the surface phase transitions correspond to the solid solution within the volume. The method permits determining the rate of diffusional creep in addition to the surface energy. The temperature and concentration dependence of the solid solutions' viscosity coefficient supports the fact of the surface phase transitions and provides insights into the diffusion properties of the transforming surfaces.

  19. Mechanism and kinetic considerations of TOC removal from the powdered activated carbon ozonation of diclofenac aqueous solutions.

    Science.gov (United States)

    Beltrán, Fernando J; Pocostales, J Pablo; Alvarez, Pedro M; Jaramillo, Josefa

    2009-09-30

    Ozonation of DCF in aqueous solution in the presence of powdered activated carbon (PAC) has been studied for mechanistic and kinetic purposes. The effects of gas flow rate, ozone gas concentration and initial TOC on the TOC elimination rate were then investigated. The use of PAC allows liquid-solid and internal diffusion mass transfer resistances being eliminated. Gas-liquid mass transfer resistance is also eliminated when ozonation is applied to DCF preozonated solutions. In the absence of mass transfer resistances a mechanism of reactions involving homogeneous and heterogeneous steps for TOC removal was proposed. From this mechanism a mathematical model constituted by mass balances of main species in water was established. Considerations about the changing nature of ozonation intermediates, as being promoters or inhibitors of ozone decomposition, is a key point to better predict the experimental concentrations of species present in this system.

  20. Dielectric and Piezoelectric Properties of PZT Composite Thick Films with Variable Solution to Powder Ratios.

    Science.gov (United States)

    Wu, Dawei; Zhou, Qifa; Shung, Koping Kirk; Bharadwaja, Srowthi N; Zhang, Dongshe; Zheng, Haixing

    2009-05-08

    The use of PZT films in sliver-mode high-frequency ultrasonic transducers applications requires thick, dense, and crack-free films with excellent piezoelectric and dielectric properties. In this work, PZT composite solutions were used to deposit PZT films >10 μm in thickness. It was found that the functional properties depend strongly on the mass ratio of PZT sol-gel solution to PZT powder in the composite solution. Both the remanent polarization, P(r), and transverse piezoelectric coefficient, e(31,) (f), increase with increasing proportion of the sol-gel solution in the precursor. Films prepared using a solution-to-powder mass ratio of 0.5 have a remanent polarization of 8 μC/cm(2), a dielectric constant of 450 (at 1 kHz), and e(31,) (f) = -2.8 C/m(2). Increasing the solution-to-powder mass ratio to 6, the films were found to have remanent polarizations as large as 37 μC/cm(2), a dielectric constant of 1250 (at 1 kHz) and e(31,) (f) = -5.8 C/m(2).

  1. Phase stability in wear-induced supersaturated Al-Ti solid solution

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Y.; Yokoyama, K. [Dept. of Functional Machinery Mechanics Shinshu Univ., Ueda (Japan); Hosoda, H. [Precision and Intelligence Lab., Tokyo Inst. of Tech., Nagatsuta, Midori-ku, Yokohama (Japan)

    2002-07-01

    Al-Ti supersaturated solid solutions were introduced by wear testing and the rapid quenching of an Al/Al{sub 3}Ti composite (part of an Al/Al{sub 3}Ti functionally graded material) that was fabricated using the centrifugal method. The phase stability of the supersaturated solid solution was studied through systematic annealing of the supersaturated solid solution. It was found that the Al-Ti supersaturated solid solution decomposed into Al and Al{sub 3}Ti intermetallic compound phases during the heat treatment. The Al-Ti supersaturated solid solutions fabricated were, therefore, not an equilibrium phase, and thus decomposed into the equilibrium phases during heat treatment. It was also found that heat treatment leads to a significant hardness increase for the Al-Ti supersaturated solid solution. Finally, it was concluded that formation of the wear-induced supersaturated solid solution layer was a result of severe plastic deformation. (orig.)

  2. Indications of the formation of an oversaturated solid solution during hydrogenation of Mg-Ni based nanocomposite produced by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Guzman, D. [Departamento de Ingenieria en Metalurgia, Facultad de Ingenieria, Universidad de Atacama y Centro Regional de Investigacion y Desarrollo Sustentable de Atacama, CRIDESAT, Av. Copayapu 485, Copiapo (Chile); Ordonez, S. [Departamento de Ingenieria Metalurgica, Facultad de Ingenieria, Universidad de Santiago de Chile, Av. Lib. Bernardo O' Higgins 3363, Santiago (Chile); Fernandez, J.F.; Sanchez, C. [Departamento de Fisica de Materiales, Facultad de Ciencias, Universidad Autonoma de Madrid, Cantoblanco 28049, Madrid (Spain); Serafini, D. [Departamento de Fisica, Facultad de Ciencias, Universidad de Santiago de Chile and Center for Interdisciplinary Research in Materials, CIMAT, Av. Lib. Bernardo O' Higgins 3363, Santiago (Chile); Rojas, P.A. [Escuela de Ingenieria Mecanica, Facultad de Ingenieria, Av. Los Carrera 01567, Quilpue, Pontificia Universidad Catolica de Valparaiso, PUCV (Chile); Aguilar, C. [Instituto de Materiales y Procesos Termomecanicos, Facultad de Ciencias de la Ingenieria, Universidad Austral de Chile, Av. General Lagos 2086, Valdivia (Chile)

    2009-07-15

    An oversaturated solid solution of H in a nanocomposite material formed mainly by nanocrystalline Mg{sub 2}Ni, some residual nanocrystalline Ni and an Mg rich amorphous phase has been found for the first time. The nanocomposite was produced by mechanical alloying starting from Mg and Ni elemental powders, using a SPEX 8000D mill. The hydriding characterization of the nanocomposite was carried out by solid-gas reaction method in a Sievert's type apparatus. The maximum hydrogen content reached in a period of 21 Ks without prior activation was 2.00 wt.% H under hydrogen pressure of 2 MPa at 363 K. The X-ray diffraction analysis showed the presence of an oversaturated solid solution between nanocrystalline Mg{sub 2}Ni and H without any sign of Mg{sub 2}NiH{sub 4} hydride formation. The dehydriding behaviour was studied by differential scanning calorimetry and thermogravimetry. The results showed the existence of two desorption peaks, the first one associated with the transformation of the oversaturated solid solution into Mg{sub 2}NiH{sub 4}, and the second one with the Mg{sub 2}NiH{sub 4} desorption. (author)

  3. Comparison of various chemical processes for avoidance of generation of radio active solid waste in UO{sub 2} powder production process

    Energy Technology Data Exchange (ETDEWEB)

    Visweswara Rao, R.V.R.L.; Babaji, P.; Sairam, S.; Meena, R.; Hemantharao, G.V.S.; Jayaraj, R.N. [Nuclear Fuel Complex, Dept. of Atomic Energy, Hyderabad (India)

    2008-07-01

    The Uranium Di-Oxide (UO{sub 2}) powder production process involves dissolution of yellow cake (uranium concentrate) in commercial grade nitric acid followed by solvent extraction process to obtain nuclear grade Uranyl Nitrate Solution(UNS). The UNS is initially precipitated with ammonia to produce Ammonium Di-Uranate (ADU) and subsequently converted to UO{sub 2} powder through a series of thermal treatment steps viz. calcination, reduction and stabilization. The Uranyl Nitrate Raffinate (UNR) generated in the purification step above, contains residual uranium, due to which its direct disposal is not permissible. The effluent is therefore neutralized with caustic lye and the resultant slurry is filtered over a pre-coat drum filter. The uranium thus gets fixed in the solid form, Uranyl Nitrate Raffinate Cake (UNRC) and the filtrate is disposed off, after ensuring that it meets the disposal criteria of 1 Bq/gm of solid. The uranium bearing solid waste is packed in 200 litre polythene lined MS drums and transported to uranium mill for further processing. This UNR treatment process is manpower intensive, requires large storage space, and involves material handling work, transportation etc. In order to reduce/eliminate generation of UNRC, several new chemical processes were developed and studied in detail. An attempt is made to compare these different processes and the details are presented in this paper. (author)

  4. Diclofenac potassium powder for oral solution: a review of its use in patients with acute migraine.

    Science.gov (United States)

    Garnock-Jones, Karly P

    2014-08-01

    Diclofenac potassium powder for oral solution (Voltfast(®), Catafast(®), Cambia(®); hereafter referred to as diclofenac potassium powder) is a non-steroidal anti-inflammatory drug (NSAID), and is indicated for the acute treatment of migraine. This article reviews the pharmacological properties of diclofenac potassium powder and its efficacy and tolerability in patients with acute migraine. Diclofenac potassium powder was clinically efficacious and generally well tolerated in placebo-controlled trials in patients with this indication; it was more effective than diclofenac potassium tablets with regard to the primary endpoint of 2-h pain relief as well as in several important secondary endpoints, such as time to onset of analgesic action. The oral powder-for-solution formulation of diclofenac potassium is a useful option in the acute treatment of migraine with or without aura.

  5. Solid solution hardening in face centered binary alloys: Gliding statistics of a dislocation in random solid solution by atomistic simulation

    International Nuclear Information System (INIS)

    Patinet, S.

    2009-12-01

    The glide of edge and screw dislocation in solid solution is modeled through atomistic simulations in two model alloys of Ni(Al) and Al(Mg) described within the embedded atom method. Our approach is based on the study of the elementary interaction between dislocations and solutes to derive solid solution hardening of face centered cubic binary alloys. We identify the physical origins of the intensity and range of the interaction between a dislocation and a solute atom. The thermally activated crossing of a solute atom by a dislocation is studied at the atomistic scale. We show that hardening of edge and screw segments are similar. We develop a line tension model that reproduces quantitatively the atomistic calculations of the flow stress. We identify the universality class to which the dislocation depinning transition in solid solution belongs. (author)

  6. Synthesis of Pr0.70Sr0.30MnO3δ and Nd0.70Sr0.30MnO3δ powders by solution-combustion technique

    Directory of Open Access Journals (Sweden)

    Reinaldo Azevedo Vargas

    2011-01-01

    Full Text Available Powders of Pr0.70Sr0.30MnO3δ (PSM and Nd0.70Sr0.30MnO3δ (NSM compositions are being investigated as alternative cathode materials for Intermediate Temperature Solid Oxide Fuel Cells. The compositions were synthesized by a solution-combustion method using metal nitrates and urea as fuel. Combustion synthesis is a highly suitable synthesis route for achieving fine and homogeneous powders at low temperatures. Single phase pseudo-perovskite was obtained by X-ray diffraction after heat treatment of PSM and NSM powders at 900 ºC. The synthesized and milling powders had an average particle size between 0.27 to 0.07 μm. Chemical analyses of the powders calcined was performed by X-ray fluorescence and morphological analysis by scanning electron microscopy. The results were compared with literature values, indicating characteristics adjusted for preparation of ceramic suspensions.

  7. Structural determination of new solid solutions [Y2-x Mx ][Sn2-x Mx ]O7-3x/2 (M = Mg or Zn by Rietveld method

    Directory of Open Access Journals (Sweden)

    Mohamed Douma

    2010-12-01

    Full Text Available New [Y2-x Mx][Sn2-x Mx]O7-3x/2 (0 ≤x≤ 0.30 for M = Mg and 0 ≤x≤ 0.36 for M = Zn solid solutions with the pyrochlore structure were synthesized via high-temperature solid-state reaction method. Powder X-ray diffraction (PXRD patterns and Fourier transform infrared (FT-IR spectra showed that these materials are new non-stoichiometric solid solutions with the pyrochlore type structure. The structural parameters for the solids obtained were successfully determined by Rietveld refinement based on the analysis of the PXRD diagrams. Lattice parameter (a of these solid solutions decreases when x increases in both series. All samples obtained have the pyrochlore structure Fd-3m, no. 227 (origin at center -3m with M2+ (M = Mg2+ or Zn2+ cations in Y3+ and Sn4+ sites, thus creating vacancies in the anionic sublattice.

  8. Preparation of cauliflower-like shaped Ba{sub 0.6}Sr{sub 0.4}TiO{sub 3} powders by modified oxalate co-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Li Mingli [School of Materials Science and Engineering, Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072 (China)], E-mail: lml@tju.edu.cn; Xu Mingxia [School of Materials Science and Engineering, Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072 (China)

    2009-04-17

    The quantitative barium-strontium titanyl oxalate (Ba{sub 0.6}Sr{sub 0.4}TiO(C{sub 2}O{sub 4}){sub 2}.4H{sub 2}O, BSTO) precursor powders were prepared by the modified oxalate co-preparation method. It was based on the cation-exchange reaction between the stoichiometric solutions of oxalotitanic acid (H{sub 2}TiO(C{sub 2}O{sub 4}){sub 2}, HTO) and barium + strontium nitrate solution containing stoichiometric quantities of Ba and Sr ions. The pyrolysis of BSTO at 800 deg. C/4 h in air produced the homogeneous cauliflower-like shaped barium-strontium titanate (Ba{sub 0.6}Sr{sub 0.4}TiO{sub 3}, BST) powders. The effect of polyethylene glycol (PEG) on morphology of BSTO and BST powders was also investigated. The characterization studies were carried on the as-dried BSTO and calcined BST powders by various physicochemical techniques, IR, X-ray diffraction (XRD), scanning electron microscopy (SEM), etc. The BSTO and BST powders obtained by aforementioned technique without PEG were homogeneous with spherical shape. The particles grew into spindle shape with the effect of PEG.

  9. Recovery of manganese and zinc from spent Zn-C cell powder: Experimental design of leaching by sulfuric acid solution containing glucose.

    Science.gov (United States)

    Biswas, Ranjit K; Karmakar, Aneek K; Kumar, Sree L

    2016-05-01

    The spent Zn-C cell powder, containing ZnMn2O4, ZnO, MnO(OH) and possibly Mn2O3 and Mn3O4, can be leached by a sulfuric acid solution mixed with some glucose. The leaching is found to be dependent on solid to liquid (S/L) ratio, amount of glucose, concentration of sulfuric acid solution, time and pulp agitation speed. For 5g powder (S), 1h leaching time and 300rpm pulp agitation speed, two-level four-factor (2(4)) experimental designs have been carried out to derive models for extraction of both Mn(II) and Zn(II). Amount of glucose (G, g), concentration of H2SO4 solution (C, mol/L), volume of H2SO4 solution as leachant (L, mL) and leaching temperature (T, °C) are considered as factors (variables). The model in both cases consists of mean, factor effects and interaction effects. The four-factor interaction effect is observed in neither of the cases. Some two-factor and three-factor effects are found to have produced positive or negative contributions to dissolution percentage in both cases. The models are examined for comparison with experimental results with good fits and also used for optimization of factors. At optimized condition (G=0.50g, C=2mol/L, L=250mL and T=100°C), an aliquot of 5g powder in 1h and at 300rpm produces a solution containing (7.08±0.10)g/L Mn(II) and (2.20±0.06)g/L Zn(II) corresponding to almost 100% extraction of both metal ions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Thermotransport in interstitial solid solutions

    International Nuclear Information System (INIS)

    Fogel'son, R.L.

    1982-01-01

    On the basis of literature data the problem of thermotransport of impurities (H, N, O, C) in interstitial solid solutions is considered. It is shown that from experimental data on the thermotransport an important parameter of dissolved atoms can be found which characterizes atom state in these solutions-enthalpy of transport

  11. Structural analysis and magnetic properties of solid solutions of Co–Cr system obtained by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Betancourt-Cantera, J.A. [Área Académica de Ciencias de la Tierra y Materiales, UAEH Carr., Pachuca-Tulancingo Km. 4.5, Pachuca, Hidalgo 42184 (Mexico); Sánchez-De Jesús, F., E-mail: fsanchez@uaeh.edu.mx [Área Académica de Ciencias de la Tierra y Materiales, UAEH Carr., Pachuca-Tulancingo Km. 4.5, Pachuca, Hidalgo 42184 (Mexico); Bolarín-Miró, A.M. [Área Académica de Ciencias de la Tierra y Materiales, UAEH Carr., Pachuca-Tulancingo Km. 4.5, Pachuca, Hidalgo 42184 (Mexico); Betancourt, I.; Torres-Villaseñor, G. [Departamento de Materiales Metálicos y Cerámicos, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, México D.F. 04510 (Mexico)

    2014-03-15

    In this paper, a systematic study on the structural and magnetic properties of Co{sub 100−x}Cr{sub x} alloys (0powders were used as precursors, and mixed in an adequate weight ratio to obtain Co{sub 1−x}Cr{sub x} (0powder weight ratio of 10:1. The mixtures were milled for 7 h. Results shown that after 7 h of milling time, solid solutions based on Co-hcp, Co-fcc and Cr-bcc structures were obtained. The saturation polarization indicated a maximum value of 1.17 T (144 Am{sup 2}/kg) for the Co{sub 90}Cr{sub 10}, which decreases with the increasing of the Cr content up to x=80, as a consequence of the dilution effect of the magnetic moment which is caused by the Cr content and by the competition between ferromagnetic and antiferromagnetic exchange interactions. The coercivity increases up to 34 kA/m (435 Oe) for Co{sub 40}Cr{sub 60}. For Cr rich compositions, it is observed an important decrease reaching 21 kA/m (272 Oe) for Co{sub 10}Cr{sub 90,} it is related to the grain size and the structural change. Besides, the magnetic anisotropy constant was determined for each composition. Magnetic thermogravimetric analysis allowed to obtain Curie temperatures corresponding to the formation of hcp-Co(Cr) and fcc-Co(Cr) solid solutions. - Highlights: • Mechanical alloying (MA) induces the formation of solid solutions of Co–Cr system in non-equilibrium. • We report the crystal structure and the magnetic behavior of Co–Cr alloys produced by MA. • MA improves the magnetic properties of Co–Cr system.

  12. Neutron diffraction studies on Ca1-xBaxZr4P6O24 solid solutions

    International Nuclear Information System (INIS)

    Achary, S.N.; Jayakumar, O.D.; Patwe, S.J.; Kulshreshtha, S.K.; Tyagi, A.K.; Shinde, A.B.; Krishna, P.S.R.

    2008-01-01

    Herein we report the results of detailed crystallographic studies of Ca 1-x Ba x Zr 4 P 6 O 24 compositions from combined Rietveld refinements of powder X-ray and neutron diffraction data. All the studied compositions crystallize in rhombohedral lattice (space group R-3 No. 148). A continuous solid solution is concluded from the systematic variation of unit cell parameters. The variation of unit cell parameters with the composition indicates decreasing trend in α parameter with increasing Ba 2+ concentration contrast to an increasing trend in c parameter. (author)

  13. Black powder removal in a Mexico gas pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Morrow, John R. [TDW Services, Inc., New Castle, DE (United States); Drysdale, Colin; Warterfield, Bob D. [T.D.Williamson, Inc., Tulsa, OK (United States)

    2008-07-01

    This paper focuses on the cleaning methodology and operational constrains involved with the removal of black powder in a high pressure natural gas transmission pipeline. In this case, the accumulation of black powder along the pipeline system over the seven year period since it was put into service was creating significant problems in the areas of maintenance, customer relations, and cost to the pipeline operator due to clogging of filters, reduced gas flow, and penalties as result of non-compliant delivery contracts. The pipeline cleaning project consisted of running cleaning pigs or scrappers with batches of cleaning solution through each section of the pipeline while dealing with such factors as three (3) pipeline section lengths in excess of 160 kms (100 miles), gas flow velocity fluctuations, shutdowns, and gas delivery schedule requirements. The cleaning program for the entire pipeline system included the use of chemical and diesel based cleaning solution, running multiple cleaning pigs, liquid injection and separation system, mobile storage tanks, various equipment and personnel for logistical support. Upon completion of the cleaning program, the level of black powder and other solids in all pipeline sections was reduced to approximately 0.5% liquid/solid ratio and the pipeline system returned to normal optimum operation. (author.

  14. Structure solution from powder neutron and x-ray diffraction data: getting the best of both worlds

    International Nuclear Information System (INIS)

    Hunter, B.A.

    2000-01-01

    Full text: Powder diffraction methods have traditionally been used in three main areas: phase identification and quantification, lattice parameter determination and structure refinement. Until recently structure solution has been the almost exclusive domain of single crystal diffraction methods, predominantly using x-rays. The increasing use of synchrotron and neutron sources, and the unrelenting advances in computing hardware and software means that powder methods are challenging single crystal methods as a practical method for structure solution, especially when single crystal method can not be applied. It is known that structural refinements from a known starting structure using combined X-ray and neutron data sets are capable of providing highly accurate structures. Likewise, using combined x-ray and neutron powder diffraction data in the structure solution process should also be a powerful technique, although to date no one is pursuing this methodology. This paper present examples of solutions to the problem. Namely we are using high resolution powder X-ray and neutron methods to solve the structures of molecular materials and minerals, then refining the structures using both sets of data. In this way we exploit the advantages of both methods while minimising the disadvantages. We present our solution for a small amino acid structure, a metalorganic and a mineral structure

  15. Combined sol–gel and carbothermal synthesis of ZrC–TiC powders for composites

    Energy Technology Data Exchange (ETDEWEB)

    Umalas, Madis [Institute of Physics, University of Tartu, Riia 142, 51014, Tartu (Estonia); Estonian Nanotechnology Competence Centre, Riia 142, 51014, Tartu (Estonia); Hussainova, Irina, E-mail: irina.hussainova@ttu.ee [Department of Materials Engineering, Tallinn University of Technology, Ehitajate 5, 19086, Tallinn (Estonia); ITMO University, Kronverksky 49, St. Petersburg, 197101 (Russian Federation); Reedo, Valter [Institute of Physics, University of Tartu, Riia 142, 51014, Tartu (Estonia); Young, Der-Liang [Department of Materials Engineering, Tallinn University of Technology, Ehitajate 5, 19086, Tallinn (Estonia); Cura, Erkin; Hannula, Simo-Pekka [Department of Materials Science and Engineering, Aalto University, School of Chemical Technology, POB 16200, Aalto, 00076 (Finland); Lõhmus, Rünno [Institute of Physics, University of Tartu, Riia 142, 51014, Tartu (Estonia); Estonian Nanotechnology Competence Centre, Riia 142, 51014, Tartu (Estonia); Lõhmus, Ants [Institute of Physics, University of Tartu, Riia 142, 51014, Tartu (Estonia)

    2015-03-01

    The TiC–ZrC binary compound of nanostructured powders was synthesised by combination of sol–gel and carbothermal reduction. The polymeric precursor of the blend was produced by sol–gel process from titanium tetrabutoxide, zirconium tetrabutoxide and benzene-1.4-diol; then carbothermally reduced to the TiC–ZrC blend at 1600 °C in an inert environment. The chemical reactions occurring in the system were monitored by infrared spectrometry. Stable alkoxide solution was obtained by adding acetylacetone to avoid premature gelation of the metal alkoxide mixture. A solid solution of ZrTiC{sub 2} was produced by spark plasma sintering at temperature of 2000 °C. - Highlights: • A polymeric precursor of TiC–ZrC blend was synthesised by sol–gel process. • The polymeric precursor synthesis was studied by infrared spectroscopy. • TiC–ZrC powder blend was carbothermally reduced from polymeric precursor. • TiC–ZrC powder blend was sintered to ZrTiC{sub 2} solid solution by spark plasma sintering. • Sintered ZrTiC{sub 2} have good mechanical properties.

  16. Combined sol–gel and carbothermal synthesis of ZrC–TiC powders for composites

    International Nuclear Information System (INIS)

    Umalas, Madis; Hussainova, Irina; Reedo, Valter; Young, Der-Liang; Cura, Erkin; Hannula, Simo-Pekka; Lõhmus, Rünno; Lõhmus, Ants

    2015-01-01

    The TiC–ZrC binary compound of nanostructured powders was synthesised by combination of sol–gel and carbothermal reduction. The polymeric precursor of the blend was produced by sol–gel process from titanium tetrabutoxide, zirconium tetrabutoxide and benzene-1.4-diol; then carbothermally reduced to the TiC–ZrC blend at 1600 °C in an inert environment. The chemical reactions occurring in the system were monitored by infrared spectrometry. Stable alkoxide solution was obtained by adding acetylacetone to avoid premature gelation of the metal alkoxide mixture. A solid solution of ZrTiC 2 was produced by spark plasma sintering at temperature of 2000 °C. - Highlights: • A polymeric precursor of TiC–ZrC blend was synthesised by sol–gel process. • The polymeric precursor synthesis was studied by infrared spectroscopy. • TiC–ZrC powder blend was carbothermally reduced from polymeric precursor. • TiC–ZrC powder blend was sintered to ZrTiC 2 solid solution by spark plasma sintering. • Sintered ZrTiC 2 have good mechanical properties

  17. Thermal diffusivity of samarium-gadolinium zirconate solid solutions

    International Nuclear Information System (INIS)

    Pan, W.; Wan, C.L.; Xu, Q.; Wang, J.D.; Qu, Z.X.

    2007-01-01

    We synthesized samarium-gadolinium zirconate solid solutions and determined their thermal diffusivities, Young's moduli and thermal expansion coefficients, which are very important for their application in thermal barrier coatings. Samarium-gadolinium zirconate solid solutions have extremely low thermal diffusivity between 20 and 600 deg. C. The solid solutions have lower Young's moduli and higher thermal expansion coefficients than those of pure samarium and gadolinium zirconates. This combination of characteristics is promising for the application of samarium and gadolinium zirconates in gas turbines. The mechanism of phonon scattering by point defects is discussed

  18. Rietveld analysis, powder diffraction and cement

    International Nuclear Information System (INIS)

    Peterson, V.

    2002-01-01

    Full text: Phase quantification of cement is essential in its industrial use, however many methods are inaccurate and/or time consuming. Powder diffraction is one of the more accurate techniques used for quantitative phase analysis of cement. There has been an increase in the use of Rietveld refinement and powder diffraction for the analysis and phase quantification of cement and its components in recent years. The complex nature of cement components, existence of solid solutions, polymorphic variation of phases and overlapping phase peaks in diffraction patterns makes phase quantification of cements by powder diffraction difficult. The main phase in cement is alite, a solid solution of tricalcium silicate. Tricalcium silicate has been found to exist in seven modifications in three crystal systems, including triclinic, monoclinic, and rhombohedral structures. Hence, phase quantification of cements using Rietveld methods usually involves the simultaneous modelling of several tricalcium silicate structures to fit the complex alite phase. An industry ordinary Portland cement, industry and standard clinker, and a synthetic tricalcium silicate were characterised using neutron, laboratory x-ray and synchrotron powder diffraction. Diffraction patterns were analysed using full-profile Rietveld refinement. This enabled comparison of x-ray, neutron and synchrotron data for phase quantification of the cement and examination of the tricalcium silicate. Excellent Rietveld fits were achieved, however the results showed that the quantitative phase analysis results differed for some phases in the same clinker sample between various data sources. This presentation will give a short introduction about cement components including polymorphism, followed by the presentation of some problems in phase quantification of cements and the role of Rietveld refinement in solving these problems. Copyright (2002) Australian X-ray Analytical Association Inc

  19. Environmental and safety aspects. The best of 'powder handling and processing' 1989 - 1997. 'Bulk solids handling' 1992 - 1997 (H/2000)

    Energy Technology Data Exchange (ETDEWEB)

    Woehlbier, R.H. (ed.)

    2000-07-01

    The book contains articles published either during 1992-1997 in ''bulk solids handling'' or during 1989-1997 in ''powder handling and processing''. Main topics are aspects of safety and environmental protection in bulk solids handling: dusts, hazardous powders, prevention and mitigation of dust explosions, powdered coal handling, dedusting, filters, electrostatic precipitation, materials recovery, occupational safety.(uke)

  20. Composite Properties of Polyimide Resins Made From "Salt-Like" Solution Precursors

    Science.gov (United States)

    Cano, Roberto J.; Weiser, Erik S.; SaintClair, Terry L.; Echigo, Yoshiaki; Kaneshiro, Hisayasu

    1997-01-01

    Recent work in high temperature materials at NASA Langley Research Center (LaRC (trademark)) have led to the development of new polyimide resin systems with very attractive properties. The majority of the work done with these resin systems has concentrated on determining engineering mechanical properties of composites prepared from a poly(amide acid) precursor. Three NASA Langley-developed polyimide matrix resins, LaRC (trademark) -IA, LaRC (trademark) -IAX, and LaRC (trademark) -8515, were produced via a salt-like process developed by Unitika Ltd. The 'salt-like' solutions (sixty-five percent solids in NMP) were prepregged onto Hexcel IM7 carbon fiber using the NASA LaRC Multipurpose Tape Machine. Process parameters were determined and composite panels fabricated. Mechanical properties are presented for these three intermediate modulus carbon fiber/polyimide matrix composites and compared to existing data on the same polyimide resin systems and IM7 carbon fiber manufactured via poly(amide acid) solutions (thirty-five percent solids in NMP). This work studies the effects of varying the synthetic route on the processing and mechanical properties of polyimide composites.

  1. Fe1-xZnxS ternary solid solution as an efficient Fenton-like catalyst for ultrafast degradation of phenol.

    Science.gov (United States)

    Gao, Jing; Liu, Yutang; Xia, Xinnian; Wang, Longlu; Dong, Wanyue

    2018-07-05

    Heterogeneous Fenton-like system has been proved to be an promising alternative to Fenton system due to its easy separation. However, it's a challenge to design heterogeneous Fenton-like catalysts with high activity and great durability. Here, ternary solid solution Fe 1-x Zn x S were prepared via hydrothermal synthesis as heterogeneous Fenton-like catalysts. The Fe 0.7 Zn 0.3 S sample exhibited state of the art activity for yielding OH by H 2 O 2 decomposition, and the ultrafast degradation of phenol was achieved in 4 min at initial acidic condition under room temperature. The phenol degradation rate constant of Fe 0.7 Zn 0.3 S was 99 and 70 times of ZnS and FeS, respectively. Further, we show that the unique structural configuration of iron atoms, the formation of FeS 2 -pyrite with (200) plane, are responsible for the excellent activity. The intermediate products were identified by LC-MS and a possible pathway was accordingly proposed to elucidate the mechanism of phenol degradation by OH. Overall, this work provides an idea for the rational design of the relevant heterogeneous Fenton-like catalysts. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. The magnetic properties of powdered and compacted microcrystalline permalloy

    International Nuclear Information System (INIS)

    Kollar, P.; Oleksakova, D.; Fuezer, J.; Kovac, J.; Roth, S.; Polanski, K.

    2007-01-01

    The aim of this work is to investigate the magnetic properties of powdered and compacted microcrystalline Ni-Fe (81 wt% of Ni) permalloy. It was found by investigating the influence of mechanical milling on the magnetic properties of powder samples prepared by milling of the ribbon that the alloy remains a solid solution with stable structure during the whole milling process. With decreasing particle size the rotation of magnetization vector gradually becomes dominant magnetization process and thus coercivity increases. After compaction of the powder by uniaxial hot pressing the magnetic contact between powder particles is recreated and for resulting bulk the displacement of the domain walls becomes dominant magnetization process with coercivity of 11 A/m (comparable with the coercivity of conventional permalloy)

  3. Adsorption by powders and porous solids principles, methodology and applications

    CERN Document Server

    Rouquerol, Jean; Llewellyn, Philip; Maurin, Guillaume; Sing, Kenneth SW

    2013-01-01

    The declared objective of this book is to provide an introductory review of the various theoretical and practical aspects of adsorption by powders and porous solids with particular reference to materials of technological importance. The primary aim is to meet the needs of students and non-specialists who are new to surface science or who wish to use the advanced techniques now available for the determination of surface area, pore size and surface characterization. In addition, a critical account is given of recent work on the adsorptive properties of activated carbons, oxides, clays and zeolit

  4. Use of whey powder and skim milk powder for the production of fermented cream

    Directory of Open Access Journals (Sweden)

    Ceren AKAL

    2016-01-01

    Full Text Available Abstract This study is about the production of fermented cream samples having 18% fat by addition of starter cultures. In order to partialy increase non-fat solid content of fermented cream samples, skim milk powder and demineralized whey powder in two different rates (50% and 70% were used. Samples were analyzed for changes in their biochemical and physicochemical properties (total solid, ash, fat, titratable acidity, pH value, total nitrogen, viscosity, tyrosine, acid number, peroxide and diacetyl values during 29-day of storage period. Samples tested consisted of 7 different groups; control group (without adding any powder, skim milk powder, 50% demineralized whey powder and 70% demineralized whey powder samples were in two different addition rate (2% and 4%. Also samples were analyzed for sensory properties. According to the results obtained, the addition of milk powder products affected titratable acidity and tyrosine values of fermented cream samples. Although powder addition and/or storage period didn’t cause significant variations in total solid, ash, fat, pH value, viscosity, acid number, peroxide, tyrosine and diacetyl values; sensory properties of fermented cream samples were influenced by both powder addition and storage period. Fermented cream containing 2% skim milk powder gets the top score of sensory evaluation among the samples.

  5. Active Edge Sites Engineering in Nickel Cobalt Selenide Solid Solutions for Highly Efficient Hydrogen Evolution

    KAUST Repository

    Xia, Chuan

    2017-01-06

    An effective multifaceted strategy is demonstrated to increase active edge site concentration in NiCoSe solid solutions prepared by in situ selenization process of nickel cobalt precursor. The simultaneous control of surface, phase, and morphology result in as-prepared ternary solid solution with extremely high electrochemically active surface area (C = 197 mF cm), suggesting significant exposure of active sites in this ternary compound. Coupled with metallic-like electrical conductivity and lower free energy for atomic hydrogen adsorption in NiCoSe, identified by temperature-dependent conductivities and density functional theory calculations, the authors have achieved unprecedented fast hydrogen evolution kinetics, approaching that of Pt. Specifically, the NiCoSe solid solutions show a low overpotential of 65 mV at -10 mV cm, with onset potential of mere 18 mV, an impressive small Tafel slope of 35 mV dec, and a large exchange current density of 184 μA cm in acidic electrolyte. Further, it is shown that the as-prepared NiCoSe solid solution not only works very well in acidic electrolyte but also delivers exceptional hydrogen evolution reaction (HER) performance in alkaline media. The outstanding HER performance makes this solid solution a promising candidate for mass hydrogen production.

  6. Mechanical alloying of Hf and Fe powders

    International Nuclear Information System (INIS)

    Mendoza Zelis, L.; Crespo, E.; Creus, M.; Damonte, L.C.; Sanchez, F.H.; Punte, G.

    1994-01-01

    Pure crystalline Hf and Fe powders were mixed and milled under an argon atmosphere. The evolution of the system with milling time was followed with Moessbauer effect spectroscopy and X-ray diffraction. The results indicate that in the first stages an amorphous Fe-rich alloy was gradually formed together with a solid solution of Hf in Fe beyond the solubility limit. (orig.)

  7. Formation of broccoli-like morphology of tantalum powder

    International Nuclear Information System (INIS)

    Suzuki, Ryosuke O.; Baba, Masahiko; Ono, Youhei; Yamamoto, Kosuke

    2005-01-01

    'Broccoli'-like morphology of Ta powder was found when Ca reduces Ta 2 O 5 in the molten CaCl 2 . It consisted of fine particles and branches, and it was different from the conventional spherical particles. The formation of this morphology depended on the stacking methods of the starting materials. Eight types of filling methods proved that the branch was formed when the CaO-enriched region was locally produced near the oxide

  8. Solution and solid state NMR studies of the structure and dynamics of C60 and C70

    International Nuclear Information System (INIS)

    Johnson, R.D.; Yannoni, C.S.; Salem, J.; Meijer, G.; Bethune, D.S.

    1991-01-01

    This paper investigates the structure and dynamics of C 60 and C 70 with 13 C NMR spectroscopy. In solution, high-resolution spectra reveal that C 60 has a single resonance at 143 ppm, indicating a strained, aromatic system with high symmetry. This is strong evidence for a C 60 soccer ball geometry. A 2D NMR INADEQUATE experiment on 13 C-enriched C 70 reveals the bonding connectivity to be a linear string, in firm support of the proposed rugby ball structure with D 5h symmetry, and furnishes resonance assignments. Solid state NMR spectra of C 60 at ambient temperatures yield a narrow resonance, indicative of rapid molecular reorientation. Variable temperature T 1 measurements show that the rotational correlation time is ∼ 10 - 9 s at 230 K. At 77 K, this time increases to more than 1 ms, and the 13 C NMR spectrum of C 60 is a powder pattern due to chemical shift anisotropy (tensor components 220, 186, 40 ppm). At intermediate temperatures a narrow peak is superimposed on the powder pattern, suggesting a distribution of barriers to molecular motion in the sample, or the presence of an additional phase in the solid state. A Carr-Purcell dipolar experiment on C 60 in the solid state allows the first precise determination of the C 60 bond lengths: 1.45 and 1.40 Angstrom

  9. High strength Ni based composite reinforced by solid solution W(Al) obtained by powder metallurgy

    International Nuclear Information System (INIS)

    Zhao Bo; Zhu Changjun; Ma Xianfeng; Zhao Wei; Tang Huaguo; Cai Shuguang; Qiao Zhuhui

    2007-01-01

    The solid-solution-particle reinforced W(Al)-Ni composites were successfully fabricated by using mechanical alloying (MA) and hot-pressing (HP) technique when the content of Ni is between 45 wt% and 55 wt%. Besides, samples of various original component ratio of Al 50 W 50 to Ni have been fabricated, and the corresponding microcomponents and mechanical properties such as microhardness, ultimate tensile strength and elongation were characterized and discussed. The optimum ultimate tensile strength under the experiment conditions is 1868 MPa with elongation of 10.21% and hardness of 6.62 GPa. X-ray diffraction (XRD), FE-SEM and energy dispersive analysis of X-rays (EDS) were given to analysis the components and morphology of the composite bulk specimens

  10. Preparation of ultra-fine powders from polysaccharide-coated solid lipid nanoparticles and nanostructured lipid carriers by innovative nano spray drying technology.

    Science.gov (United States)

    Wang, Taoran; Hu, Qiaobin; Zhou, Mingyong; Xue, Jingyi; Luo, Yangchao

    2016-09-10

    In this study, five polysaccharides were applied as natural polymeric coating materials to prepare solid lipid nanoparticles (SLN) and nanostructure lipid carriers (NLC), and then the obtained lipid colloidal particles were transformed to solid powders by the innovative nano spray drying technology. The feasibility and suitability of this new technology to generate ultra-fine lipid powder particles were evaluated and the formulation was optimized. The spray dried SLN powder exhibited the aggregated and irregular shape and dimension, but small, uniform, well-separated spherical powder particles of was obtained from NLC. The optimal formulation of NLC was prepared by a 20-30% oleic acid content with carrageenan or pectin as coating material. Therefore, nano spray drying technology has a potential application to produce uniform, spherical, and sub-microscale lipid powder particles when the formulation of lipid delivery system is appropriately designed. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Study of fluorine doped (Nb,Ir)O{sub 2} solid solution electro-catalyst powders for proton exchange membrane based oxygen evolution reaction

    Energy Technology Data Exchange (ETDEWEB)

    Kadakia, Karan Sandeep [Chemical and Petroleum Engineering, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); Jampani, Prashanth H., E-mail: pjampani@pitt.edu [Bioengineering, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); Velikokhatnyi, Oleg I.; Datta, Moni Kanchan [Bioengineering, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); Center for Complex Engineered Multifunctional Materials, University of Pittsburgh, PA 15261 (United States); Patel, Prasad [Chemical and Petroleum Engineering, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); Chung, Sung Jae [Mechanical Engineering and Materials Science, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); Park, Sung Kyoo [Bioengineering, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); Poston, James A.; Manivannan, Ayyakkannu [US Department of Energy, National Energy Technology Laboratory, Morgantown, WV 26507 (United States); Kumta, Prashant N. [Chemical and Petroleum Engineering, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); Bioengineering, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); Center for Complex Engineered Multifunctional Materials, University of Pittsburgh, PA 15261 (United States); Mechanical Engineering and Materials Science, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, PA 15217 (United States)

    2016-10-15

    Graphical abstract: High surface area (∼300 m{sup 2}/g) nanostructured powders of nominal composition (Nb{sub 1−x}Ir{sub x})O{sub 2} and (Nb{sub 1−x}Ir{sub x})O{sub 2}:10F have been synthesized and tested as oxygen evolution electro-catalysts for PEM based water electrolysis using a simple two-step chemical synthesis procedure. Superior electrochemical activity was demonstrated by fluorine doped compositions of (Nb{sub 1−x}Ir{sub x})O{sub 2} with an optimal composition (Nb{sub 0.75}Ir{sub 0.25})O{sub 2}:10F (x = 0.25) demonstrating on-par performance with commercial hydrated IrO{sub 2} and nanostructured in-house chemically synthesized IrO{sub 2}. Using first principles calculations, the electronic structure modification resulting in ∼75 at.% reduction (experimentally observed) in noble metal content without loss in catalytic performance and stability has been established. - Highlights: • (Nb{sub 1−x}Ir{sub x})O{sub 2}:10F nanopowder electrocatalysts have been wet chemically synthesized. • (Nb{sub 0.75}Ir{sub 0.25})O{sub 2}:10F exhibits superior electrochemical activity than pure IrO{sub 2}. • Stability of the (Nb,Ir)O{sub 2}:10F nanomaterials is comparable to pure (Nb,Ir)O{sub 2}. • High surface area F doped (Nb,Ir)O{sub 2} are promising OER anode electro-catalysts. - Abstract: High surface area (∼300 m{sup 2}/g) nanostructured powders of (Nb{sub 1−x}Ir{sub x})O{sub 2} and (Nb{sub 1−x}Ir{sub x})O{sub 2}:10F (∼100 m{sup 2}/g) have been examined as promising oxygen evolution reaction (OER) electro-catalysts for proton exchange membrane (PEM) based water electrolysis. Nb{sub 2}O{sub 5} and 10 wt.% F doped Nb{sub 2}O{sub 5} powders were prepared by a low temperature sol-gel process which were then converted to solid solution (Nb,Ir)O{sub 2} and 10 wt.% F doped (Nb,Ir)O{sub 2} [(NbIr)O{sub 2}:10F] electro-catalysts by soaking in IrCl{sub 4} followed by heat treatment in air. Electro-catalyst powders of optimal composition (Nb{sub 0.75}Ir

  12. Fabrication of Nb3Al superconducting wires by utilizing the mechanically alloyed Nb(Al)ss supersaturated solid-solution with low-temperature annealing

    International Nuclear Information System (INIS)

    Pan, X.F.; Yan, G.; Qi, M.; Cui, L.J.; Chen, Y.L.; Zhao, Y.; Li, C.S.; Liu, X.H.; Feng, Y.; Zhang, P.X.; Liu, H.J.

    2014-01-01

    Highlights: • This paper reported superconducting properties of the powder-in-tube Nb 3 Al wires. • The Nb 3 Al wires were made by using Nb(Al) ss supersaturated solid solution powders. • The Cu-matrix Nb 3 Al superconducting wires have been successfully fabricated. • The transport J c of Nb 3 Al wires at 4.2 K, 10 T is up to 12,700 A/cm 2 . - Abstract: High-performance Nb 3 Al superconducting wire is a promising candidate to the application of high-field magnets. However, due to the production problem of km-grade wires that are free from low magnetic field instability, the Nb 3 Al wires made by rapid heating, quenching and transformation (RHQT) are still not available to the large-scale engineering application. In this paper, we reported the properties of the in situ powder-in-tube (PIT) Nb 3 Al superconducting wires, which were made by using the mechanically alloyed Nb(Al) ss supersaturated solid solution, as well as the low temperature heat-treatment at 800 °C for 10 h. The results show that Nb 3 Al superconductors in this method possess very fine grains and well superconducting properties, though a little of Nb 2 Al and Nb impurities still keep being existence at present work. At the Nb 3 Al with a nominal 26 at.% Al content, the onset T c reaches 15.8 K. Furthermore, a series of Nb 3 Al wires and tapes with various sizes have been fabricated; for the 1.0 mm-diameter wire, the J c at 4.2 K, 10 T and 14 T have achieved 12,700 and 6900 A/cm 2 , respectively. This work suggests it is possible to develop high-performance Cu-matrix Nb 3 Al superconducting wires by directly using the Nb(Al) ss supersaturated solid-solution without the complex RHQT heat-treatment process

  13. SOLISOL-handling of solid solutions. Version 1.1

    International Nuclear Information System (INIS)

    Boerjesson, S.; Emren, A.

    1992-09-01

    SOLISOL is a C computer program designed to model geochemical reactions involving solid solutions. The program searches equilibrium concentrations of the components in the aqueous phase and the solid solution given by limited quantities of the solid solution components. The equilibrium code PHREEQE is used as a subprogram in SOLISOL. Subprograms external to PHREEQE extract information from PHREEQE results, take care of conserved properties, calculate solubilities and produce inputdata for PHREEQE. The essential idea in this process is to calculate solubilities for the components in terms of saturation indices, and give directions to PHREEQE on how to search for the equilibrium under those constraints. (au)

  14. A broadband variable-temperature test system for complex permittivity measurements of solid and powder materials

    Science.gov (United States)

    Zhang, Yunpeng; Li, En; Zhang, Jing; Yu, Chengyong; Zheng, Hu; Guo, Gaofeng

    2018-02-01

    A microwave test system to measure the complex permittivity of solid and powder materials as a function of temperature has been developed. The system is based on a TM0n0 multi-mode cylindrical cavity with a slotting structure, which provides purer test modes compared to a traditional cavity. To ensure the safety, effectiveness, and longevity, heating and testing are carried out separately and the sample can move between two functional areas through an Alundum tube. Induction heating and a pneumatic platform are employed to, respectively, shorten the heating and cooling time of the sample. The single trigger function of the vector network analyzer is added to test software to suppress the drift of the resonance peak during testing. Complex permittivity is calculated by the rigorous field theoretical solution considering multilayer media loading. The variation of the cavity equivalent radius caused by the sample insertion holes is discussed in detail, and its influence to the test result is analyzed. The calibration method for the complex permittivity of the Alundum tube and quartz vial (for loading powder sample), which vary with the temperature, is given. The feasibility of the system has been verified by measuring different samples in a wide range of relative permittivity and loss tangent, and variable-temperature test results of fused quartz and SiO2 powder up to 1500 °C are compared with published data. The results indicate that the presented system is reliable and accurate. The stability of the system is verified by repeated and long-term tests, and error analysis is presented to estimate the error incurred due to the uncertainties in different error sources.

  15. Formation of broccoli-like morphology of tantalum powder

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Ryosuke O [Department of Energy Science and Technology, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501 (Japan); Baba, Masahiko [Department of Energy Science and Technology, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501 (Japan); Ono, Youhei [Department of Energy Science and Technology, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501 (Japan); Yamamoto, Kosuke [Department of Energy Science and Technology, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501 (Japan)

    2005-03-08

    'Broccoli'-like morphology of Ta powder was found when Ca reduces Ta{sub 2}O{sub 5} in the molten CaCl{sub 2}. It consisted of fine particles and branches, and it was different from the conventional spherical particles. The formation of this morphology depended on the stacking methods of the starting materials. Eight types of filling methods proved that the branch was formed when the CaO-enriched region was locally produced near the oxide.

  16. Magnetoelectric and electric measurements of the (1-x)BiFeO{sub 3}–(x)Pb(Fe{sub 1/2}Nb{sub 1/2})O{sub 3} solid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Bochenek, D., E-mail: dariusz.bochenek@us.edu.pl [University of Silesia, Faculty of Computer Science and Material Science, Institute of Technology and Mechatronics, 12, Żytnia St., 41–200, Sosnowiec (Poland); Niemiec, P. [University of Silesia, Faculty of Computer Science and Material Science, Institute of Technology and Mechatronics, 12, Żytnia St., 41–200, Sosnowiec (Poland); Guzdek, P. [Institute of Electron Technology Cracow Division, 39, Zabłocie St., Cracow, 30-701 (Poland); Wzorek, M. [Institute of Electron Technology, Al. Lotników 32/46, 02-668, Warsaw (Poland)

    2017-07-01

    In the paper ferro–electro–magnetic (1-x)BiFeO{sub 3}-(x)Pb(Fe{sub 1/2}Nb{sub 1/2})O{sub 3} (BF-PFN) solid solutions were obtained (containing the percentage BF/PFN: 60/40 and 70/30). Individual components of the solid solution were prepared by follows methods: synthesizing a powder BF was performed by calcining the simple oxides (Bi{sub 2}O{sub 3}, Fe{sub 2}O{sub 3}), and synthesizing a powder PFN was carried out by calcining a mixture of complex oxides (FeNbO{sub 4}, PbO). Compaction of synthesized and mixed BiFeO{sub 3}, PbFe{sub 1/2}Nb{sub 1/2}O{sub 3} powders was carried out by free sintering methods. X–ray, microstructure, dielectric, magnetic and magnetoelectric studies, DC electrical conductivity and electrical hysteresis loop were carried out. Magnetoelectric effect measurements performed at room temperature showed coupling between electric and magnetic subsystem of the BF–PFN solid solutions. - Highlights: • BF-PFN samples have a densely packed microstructure, with well crystallized grains. • Bi atoms possibly migrate from BF toward PFN component during sintering. • BF-PFN have a diffuse character of the ferroelectric–paraelectric phase transition. • Magnetoelectric coefficient (α{sub ME}) for BF-PFN is higher, than for pure BF. • The α{sub ME} for BF-PFN is about three times higher than for 0.75BiFeO{sub 3}–0.25BaTiO{sub 3}.

  17. Formation of nanocrystalline and amorphous phase of Al-Pb-Si-Sn-Cu powder during mechanical alloying

    International Nuclear Information System (INIS)

    Ran Guang; Zhou Jingen; Xi Shengqi; Li Pengliang

    2006-01-01

    Al-15%Pb-4%Si-1%Sn-1.5%Cu alloys (mass fraction, %) were prepared by mechanical alloying (MA). Phase transformation and microstructure characteristics of the alloy powders were investigated by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results show that the nanocrystalline supersaturated solid solutions and amorphous phase in the powders are obtained during MA. The effect of ball milling is more evident to lead than to aluminum. During MA, the mixture powders are firstly fined, alloyed, nanocrystallized and then the nanocrystalline partly transforms to amorphous phase. A thermodynamic model is developed based on semi-experimental theory of Miedema to calculate the driving force for phase evolution. The thermodynamic analysis shows that there is no chemical driving force to form a crystalline solid solution from the elemental components. But for the amorphous phase, the Gibbs free energy is higher than 0 for the alloy with lead content in the ranges of 0-86.8 at.% and 98.4-100 at.% and lower than 0 in range of 86.8-98.4 at.%. For the Al-2.25 at.%Pb (Al-15%Pb, mass fraction, %), the driving force for formation of amorphization and nanocrystalline supersaturated solid solutions are provided not by the negative heat of mixing but by mechanical work

  18. Formation of Ni(Al, Mo) solid solutions by mechanical alloying and their ordering on heating

    International Nuclear Information System (INIS)

    Portnoj, V.K.; Tomilin, I.A.; Blinov, A.M.; Kulik, T.

    2002-01-01

    The Ni(Al, Mo) solid solutions with different crystalline lattice periods (0.3592 and 0.3570 nm correspondingly) are formed in the course of the Ni 70 Al 25 Mo 5 and Ni 75 Al 20 Mo 5 powder mixtures mechanical alloying (MA) (through the mechanical activation in a vibrating mill). After MA the Mo atoms in the Ni 75 Al 20 Mo 5 mixture completely replace the aluminium positions with formation of the Ni 75 (AlMo) 25 (the L1 2 -type) ternary ordered phase, whereby such a distribution remains after heating up to 700 deg C. The Ni(Al, Mo) metastable solution is formed by MA in the Ni 75 Al 20 Mo 5 mixture, which decays with the release of molybdenum and the remained aluminide undergoes ordering by the L1 2 -type [ru

  19. Powder metallurgy: Solid and liquid phase sintering of copper

    Science.gov (United States)

    Sheldon, Rex; Weiser, Martin W.

    1993-01-01

    Basic powder metallurgy (P/M) principles and techniques are presented in this laboratory experiment. A copper based system is used since it is relatively easy to work with and is commercially important. In addition to standard solid state sintering, small quantities of low melting metals such as tin, zinc, lead, and aluminum can be added to demonstrate liquid phase sintering and alloy formation. The Taguchi Method of experimental design was used to study the effect of particle size, pressing force, sintering temperature, and sintering time. These parameters can be easily changed to incorporate liquid phase sintering effects and some guidelines for such substitutions are presented. The experiment is typically carried out over a period of three weeks.

  20. Comparison between solid-state and powder-state alkali pretreatment on saccharification and fermentation for bioethanol production from rice straw.

    Science.gov (United States)

    Yeasmin, Shabina; Kim, Chul-Hwan; Islam, Shah Md Asraful; Lee, Ji-Young

    2016-01-01

    The efficacy of different concentrations of NaOH (0.25%, 0.50%, 0.75%, and 1.00%) for the pretreatment of rice straw in solid and powder state in enzymatic saccharification and fermentation for the production of bioethanol was evaluated. A greater amount of biomass was recovered through solid-state pretreatment (3.74 g) from 5 g of rice straw. The highest increase in the volume of rice straw powder as a result of swelling was observed with 1.00% NaOH pretreatment (48.07%), which was statistically identical to 0.75% NaOH pretreatment (32.31%). The surface of rice straw was disrupted by the 0.75% NaOH and 1.00% NaOH pretreated samples as observed using field-emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM). In Fourier-transform infrared (FT-IR) spectra, absorbance of hydroxyl groups at 1,050 cm(-1) due to the OH group of lignin was gradually decreased with the increase of NaOH concentration. The greatest amounts of glucose and ethanol were obtained in 1.00% NaOH solid-state pretreated and powder-state hydrolyzed samples (0.804 g g(-1) and 0.379 g g(-1), respectively), which was statistically similar to the use of 0.75% NaOH (0.763 g g(-1) and 0.358 g g(-1), respectively). Thus, solid-state pretreatment with 0.75% NaOH and powder-state hydrolysis appear to be suitable for fermentation and bioethanol production from rice straw.

  1. (Nbx, Zr1-x)4AlC3 MAX Phase Solid Solutions: Processing, Mechanical Properties, and Density Functional Theory Calculations.

    Science.gov (United States)

    Lapauw, Thomas; Tytko, Darius; Vanmeensel, Kim; Huang, Shuigen; Choi, Pyuck-Pa; Raabe, Dierk; Caspi, El'ad N; Ozeri, Offir; To Baben, Moritz; Schneider, Jochen M; Lambrinou, Konstantina; Vleugels, Jozef

    2016-06-06

    The solubility of zirconium (Zr) in the Nb4AlC3 host lattice was investigated by combining the experimental synthesis of (Nbx, Zr1-x)4AlC3 solid solutions with density functional theory calculations. High-purity solid solutions were prepared by reactive hot pressing of NbH0.89, ZrH2, Al, and C starting powder mixtures. The crystal structure of the produced solid solutions was determined using X-ray and neutron diffraction. The limited Zr solubility (maximum of 18.5% of the Nb content in the host lattice) in Nb4AlC3 observed experimentally is consistent with the calculated minimum in the energy of mixing. The lattice parameters and microstructure were evaluated over the entire solubility range, while the chemical composition of (Nb0.85, Zr0.15)4AlC3 was mapped using atom probe tomography. The hardness, Young's modulus, and fracture toughness at room temperature as well as the high-temperature flexural strength and E-modulus of (Nb0.85, Zr0.15)4AlC3 were investigated and compared to those of pure Nb4AlC3. Quite remarkably, an appreciable increase in fracture toughness was observed from 6.6 ± 0.1 MPa/m(1/2) for pure Nb4AlC3 to 10.1 ± 0.3 MPa/m(1/2) for the (Nb0.85, Zr0.15)4AlC3 solid solution.

  2. Homogenization of compacted blends of Ni and Mo powders

    International Nuclear Information System (INIS)

    Lanam, R.D.; Yeh, F.C.H.; Rovsek, J.E.; Smith, D.W.; Heckel, R.W.

    1975-01-01

    The homogenization behavior of compacted blends of Ni and Mo powders was studied primarily as a function of temperature, mean compact composition, and Mo powder particle size. All compact compositions were in the Ni-rich terminal solid-solution range; temperatures were between 950 and 1200 0 C (in the region of the phase diagram where only the Mo--Ni intermediate phase forms); average Mo particle sizes ranged from 8.4 mu m to 48 mu m. Homogenization was characterized in terms of the rate of decrease of the amounts of the Mo-rich terminal solid-solution phase and the Mo--Ni intermediate phase. The experimental results were compared to predictions based upon the three-phase, concentric-sphere homogenization model. In general, agreement between experimental data and model predictions was fairly good for high-temperature treatments and for compact compositions which were not close to the solubility limit of Mo in Ni. Departures from the model are discussed in terms of surface diffusion contributions to homogenization and non-uniform mixing effects. (U.S.)

  3. Concurrent growth of InSe wires and In2O3 tulip-like structures in the Au-catalytic vapour-liquid-solid process

    International Nuclear Information System (INIS)

    Taurino, A; Signore, M A

    2015-01-01

    In this work, the concurrent growth of InSe and In 2 O 3 nanostructures, obtained by thermal evaporation of InSe powders on Au-covered Si substrates, has been investigated by scanning and transmission electron microscopy techniques. The vapour-solid and Au catalytic vapour-liquid-solid growth mechanisms, responsible of the simultaneous development of the two different types of nanostructures, i.e. InSe wires and In 2 O 3 tulip-like structures respectively, are discussed in detail. The thermodynamic processes giving rise to the obtained morphologies and materials are explained. (paper)

  4. Concurrent growth of InSe wires and In2O3 tulip-like structures in the Au-catalytic vapour-liquid-solid process

    Science.gov (United States)

    Taurino, A.; Signore, M. A.

    2015-06-01

    In this work, the concurrent growth of InSe and In2O3 nanostructures, obtained by thermal evaporation of InSe powders on Au-covered Si substrates, has been investigated by scanning and transmission electron microscopy techniques. The vapour-solid and Au catalytic vapour-liquid-solid growth mechanisms, responsible of the simultaneous development of the two different types of nanostructures, i.e. InSe wires and In2O3 tulip-like structures respectively, are discussed in detail. The thermodynamic processes giving rise to the obtained morphologies and materials are explained.

  5. A study on the cementation of Cu, Ni and Co ions with Mn powders in chloride solution

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Jae-Woo [Daejin University, Pochun-gun(Korea); Ahn, Jong-Gwan [Korea Univ., Seoul(Korea); Park, Kyung-Ho [Korea Institute of Geology Mining and Materials, Taejeon (Korea)

    2000-06-30

    A study on the cementation for the recovery of Cu, Ni and Co with Mn metallic powders in leaching solution from the manganese nodule that have removed Fe ions was studied. The results showed that the recovery efficiencies of metal ions with Mn powders increased when the temperature, pH and the concentration of chloride ions were increased in mixed solution. And the recovery efficiencies of Cu was 98% and not changed with the addition amounts of Mn powders but, in case of Co and Ni, the recovery efficiencies were increased with the addition amounts. The particle size of precipitate was about 5 {mu}m. From the results of experiment we proposed the two-step cementation process for the recovery of Cu, Ni and Co with Mn powders. (author). 9 refs., 4 tabs., 14 figs.

  6. Powder-XRD and (14) N magic angle-spinning solid-state NMR spectroscopy of some metal nitrides.

    Science.gov (United States)

    Kempgens, Pierre; Britton, Jonathan

    2016-05-01

    Some metal nitrides (TiN, ZrN, InN, GaN, Ca3 N2 , Mg3 N2 , and Ge3 N4 ) have been studied by powder X-ray diffraction (XRD) and (14) N magic angle-spinning (MAS) solid-state NMR spectroscopy. For Ca3 N2 , Mg3 N2 , and Ge3 N4 , no (14) N NMR signal was observed. Low speed (νr  = 2 kHz for TiN, ZrN, and GaN; νr  = 1 kHz for InN) and 'high speed' (νr  = 15 kHz for TiN; νr  = 5 kHz for ZrN; νr  = 10 kHz for InN and GaN) MAS NMR experiments were performed. For TiN, ZrN, InN, and GaN, powder-XRD was used to identify the phases present in each sample. The number of peaks observed for each sample in their (14) N MAS solid-state NMR spectrum matches perfectly well with the number of nitrogen-containing phases identified by powder-XRD. The (14) N MAS solid-state NMR spectra are symmetric and dominated by the quadrupolar interaction. The envelopes of the spinning sidebands manifold are Lorentzian, and it is concluded that there is a distribution of the quadrupolar coupling constants Qcc 's arising from structural defects in the compounds studied. Copyright © 2015 John Wiley & Sons, Ltd.

  7. Uncertainties associated with lacking data for predictions of solid-solution partitioning of metals in soil

    International Nuclear Information System (INIS)

    Le, T.T. Yen; Hendriks, A. Jan

    2014-01-01

    Soil properties, i.e., pH and contents of soil organic matter (SOM), dissolved organic carbon (DOC), clay, oxides, and reactive metals, are required inputs to both mechanistic and empirical modeling in assessing metal solid-solution partitioning. Several of these properties are rarely measured in site-specific risk assessment. We compared the uncertainties induced by lacking data on these soil properties in estimating metal soil solution concentrations. The predictions by the Orchestra framework were more sensitive to lacking soil property data than the predictions by the transfer functions. The deviations between soil solution concentrations of Cd, Ni, Zn, Ba, and Co estimated with measured SOM and those estimated with generic SOM by the Orchestra framework were about 10 times larger than the deviations in the predictions by the transfer functions. High uncertainties were induced by lacking data in assessing solid-solution partitioning of oxy-anions like As, Mo, Sb, Se, and V. Deviations associated with lacking data in predicting soil solution concentrations of these metals by the Orchestra framework reached three-to-six orders of magnitude. The solid-solution partitioning of metal cations was strongly influenced by pH and contents of organic matter, oxides, and reactive metals. Deviations of more than two orders of magnitude were frequently observed between the estimates of soil solution concentrations with the generic values of these properties and the estimates based on the measured data. Reliable information on these properties is preferred to be included in the assessment by either the Orchestra framework or transfer functions. - Highlights: • Estimates of metal solid-solution partitioning sensitive to soil property data. • Uncertainty mainly due to lacking reactive metal contents, pH, and organic matter. • Soil solution concentrations of oxy-anions highly influenced by oxide contents. • Clay contents had least effects on solid-solution partitioning

  8. Uncertainties associated with lacking data for predictions of solid-solution partitioning of metals in soil

    Energy Technology Data Exchange (ETDEWEB)

    Le, T.T. Yen, E-mail: YenLe@science.ru.nl; Hendriks, A. Jan

    2014-08-15

    Soil properties, i.e., pH and contents of soil organic matter (SOM), dissolved organic carbon (DOC), clay, oxides, and reactive metals, are required inputs to both mechanistic and empirical modeling in assessing metal solid-solution partitioning. Several of these properties are rarely measured in site-specific risk assessment. We compared the uncertainties induced by lacking data on these soil properties in estimating metal soil solution concentrations. The predictions by the Orchestra framework were more sensitive to lacking soil property data than the predictions by the transfer functions. The deviations between soil solution concentrations of Cd, Ni, Zn, Ba, and Co estimated with measured SOM and those estimated with generic SOM by the Orchestra framework were about 10 times larger than the deviations in the predictions by the transfer functions. High uncertainties were induced by lacking data in assessing solid-solution partitioning of oxy-anions like As, Mo, Sb, Se, and V. Deviations associated with lacking data in predicting soil solution concentrations of these metals by the Orchestra framework reached three-to-six orders of magnitude. The solid-solution partitioning of metal cations was strongly influenced by pH and contents of organic matter, oxides, and reactive metals. Deviations of more than two orders of magnitude were frequently observed between the estimates of soil solution concentrations with the generic values of these properties and the estimates based on the measured data. Reliable information on these properties is preferred to be included in the assessment by either the Orchestra framework or transfer functions. - Highlights: • Estimates of metal solid-solution partitioning sensitive to soil property data. • Uncertainty mainly due to lacking reactive metal contents, pH, and organic matter. • Soil solution concentrations of oxy-anions highly influenced by oxide contents. • Clay contents had least effects on solid-solution partitioning

  9. Purification of uranothorite solid solutions from polyphase systems

    Energy Technology Data Exchange (ETDEWEB)

    Clavier, Nicolas, E-mail: nicolas.clavier@icsm.fr [ICSM, UMR 5257 CEA/CNRS/UM2/ENSCM, Site de Marcoule – Bât. 426, BP 17171, 30207 Bagnols/Cèze cedex (France); Szenknect, Stéphanie; Costin, Dan Tiberiu; Mesbah, Adel; Ravaux, Johann [ICSM, UMR 5257 CEA/CNRS/UM2/ENSCM, Site de Marcoule – Bât. 426, BP 17171, 30207 Bagnols/Cèze cedex (France); Poinssot, Christophe [CEA/DEN/DRCP/DIR, Site de Marcoule – Bât. 400, BP 17171, 30207 Bagnols/Cèze cedex (France); Dacheux, Nicolas [ICSM, UMR 5257 CEA/CNRS/UM2/ENSCM, Site de Marcoule – Bât. 426, BP 17171, 30207 Bagnols/Cèze cedex (France)

    2013-10-15

    Graphical abstract: Display Omitted -- Highlights: •Purification of Th{sub 1−x}U{sub x}SiO{sub 4} uranothorites from oxide mixture was investigated. •Repetition of centrifugation steps was discarded due to poor recovery yields. •Successive washings in acid and basic media allowed the elimination of oxide secondary phases. •Structural and microstructural characterization of the purified samples was provided. -- Abstract: The mineral coffinite, nominally USiO{sub 4}, and associated Th{sub 1−x}U{sub x}SiO{sub 4} uranothorite solid solutions are of great interest from a geochemical point of view and in the case of the direct storage of spent nuclear fuels. Nevertheless, they clearly exhibit a lack in the evaluation of their thermodynamic data, mainly because of the difficulties linked with their preparation as pure phases. This paper thus presents physical and chemical methods aiming to separate uranothorite solid solutions from oxide additional phases such as amorphous SiO{sub 2} and nanometric crystallized Th{sub 1−y}U{sub y}O{sub 2}. The repetition of centrifugation steps envisaged in first place was rapidly dropped due to poor recovery yields, to the benefit of successive washings in acid then basic media. Under both static and dynamic flow rates (i.e. low or high rate of leachate renewal), ICP-AES (Inductively Coupled Plasma – Atomic Emission Spectroscopy) analyses revealed the systematic elimination of Th{sub 1−y}U{sub y}O{sub 2} in acid media and of SiO{sub 2} in basic media. Nevertheless, two successive steps were always needed to reach pure samples. On this basis, a first cycle performed in static conditions was chosen to eliminate the major part of the accessory phases while a second one, in dynamic conditions, allowed the elimination of the residual impurities. The complete purification of the samples was finally evidenced through the characterization of the samples by the means of PXRD (Powder X-Ray Diffraction), SEM (Scanning Electron

  10. Synthesis and characterization of CaTiO3 powder by combustion synthesis process

    International Nuclear Information System (INIS)

    Jung, C. W.; Shin, H. C.; Park, J. Y.; Lee, H. G.; Kim, H. Y.; Hong, K. W.

    2000-01-01

    Synroc is considered as a one of the most promising candidate for HLW solidification. CaTiO 3 , perovskite, which is a component of Synroc, can immobilize lanthanide and actinides by forming solid solutions. Generally most of the radioactive wastes elements were treated as a nitrate form. Therefore, the combustion process using metal nitrates as reactant materials can be easily applied to immobilize the radioactive waste elements. In this study, the feasibility of preparing fine, single-phase powders of multi-component oxide by a combustion process was investigated. Generally, the powder synthesized by combustion process showed different characteristics depending on the type and amount of fuel. And the spherical CaTiO 3 particles were directly prepared from the aqueous solution by an ultrasonic mist combustion process using an ultrasonic nebulizers as mist generators. The particles prepared with simple spray pyrolysis method using nitrate solution without fuel as precursor solution showed porous and hollow morphology, while the particles prepared with precursor solutions containing fuel showed dense solid morphology. Among various kinds of fuel tested, glycine showed the best result in reaction kinetics and crystalline phase purity

  11. Characterization and application of municipal solid waste incineration (MSWI) bottom ash and waste granite powder in alkali activated slag

    NARCIS (Netherlands)

    Gao, X.; Yuan, B.; Yu, Q. L.; Brouwers, H. J.H.

    2017-01-01

    In this paper, the feasibility of using two solid wastes in alkali activated slag composites as construction and building materials is evaluated. One waste is the municipal solid waste incineration (MSWI) bottom ash, and the other one is fine granite powder from aggregate manufacturing. These two

  12. Large-scale fluctuations in the diffusive decomposition of solid solutions

    International Nuclear Information System (INIS)

    Karpov, V.G.; Grimsditch, M.

    1995-01-01

    The concept of an instability in the classic Ostwald ripening theory with respect to compositional fluctuations is suggested. We show that small statistical fluctuations in the precipitate phase lead to gigantic Coulomb-like fluctuations in the solute concentration which in turn affect the ripening. As a result large-scale fluctuations in both the precipitate and solute concentrations appear. These fluctuations are characterized by amplitudes of the order of the average values of the corresponding quantities and by a space scale L∼(na) -1/2 which is considerably greater than both the average nuclear radius and internuclear distance. The Lifshitz-Slyozov theory of ripening is shown to remain locally applicable, over length scales much less than L. The implications of these findings for elastic light scattering in solid solutions that have undergone Ostwald ripening are considered

  13. Large-scale fluctuations in the diffusive decomposition of solid solutions

    Science.gov (United States)

    Karpov, V. G.; Grimsditch, M.

    1995-04-01

    The concept of an instability in the classic Ostwald ripening theory with respect to compositional fluctuations is suggested. We show that small statistical fluctuations in the precipitate phase lead to gigantic Coulomb-like fluctuations in the solute concentration which in turn affect the ripening. As a result large-scale fluctuations in both the precipitate and solute concentrations appear. These fluctuations are characterized by amplitudes of the order of the average values of the corresponding quantities and by a space scale L~(na)-1/2 which is considerably greater than both the average nuclear radius and internuclear distance. The Lifshitz-Slyozov theory of ripening is shown to remain locally applicable, over length scales much less than L. The implications of these findings for elastic light scattering in solid solutions that have undergone Ostwald ripening are considered.

  14. Steam jet mill-a prospective solution to industrial exhaust steam and solid waste.

    Science.gov (United States)

    Zhang, Mingxing; Chen, Haiyan

    2018-04-20

    Bulk industrial solid wastes occupy a lot of our resources and release large amounts of toxic and hazardous substances to the surrounding environment, demanding innovative strategies for grinding, classification, collection, and recycling for economically ultrafine powder. A new technology for grinding, classification, collection, and recycling solid waste is proposed, using the superheated steam produced from the industrial exhaust steam to disperse, grind, classify, and collect the industrial solid waste. A large-scale steam jet mill was designed to operate at an inlet steam temperature 230-300 °C and an inlet pressure of 0.2-0.6 MPa. A kind of industrial solid waste fluidized-bed combustion ashes was used to grinding tests at different steam temperatures and inlet pressures. The total process for grinding, classification, and collection is drying. Two kinds of particle sizes are obtained. One particle size is d 50  = 4.785 μm, and another particle size is d 50  = 8.999 μm. For particle size d 50  = 8.999 μm, the inlet temperature is 296 °C and an inlet pressure is 0.54 MPa for the grinding chamber. The steam flow is 21.7 t/h. The yield of superfine powder is 73 t/h. The power consumption is 3.76 kW h/t. The obtained superfine powder meets the national standard S95 slag. On the basis of these results, a reproducible and sustainable industrial ecological protocol using steam produced by industrial exhaust heat coupled to solid waste recycling is proposed, providing an efficient, large-scale, low-cost, promising, and green method for both solid waste recovery and industrial exhaust heat reutilization.

  15. Time-resolved Neutron Powder Diffraction

    International Nuclear Information System (INIS)

    Pannetier, J.

    1986-01-01

    The use of a high-flux neutron source together with a large position sensitive detector (PSD) allows a powder diffraction pattern to be recorded at a time-scale of a few minutes so that crystalline systems under non-equilibrium conditions may now conveniently be investigated. This introduces a new dimension into powder diffraction (the time and transient phenomena like heterogeneous chemical reactions can now be easily studied. The instrumental parameters relevant for the design of such time-dependent experiments are briefly surveyed and the current limits of the method are discussed. The applications are illustrated by two kinds of experiment in the field of inorganic solid state chemistry: true kinetic studies of heterogeneous chemical reactions and thermodiffractometry experiments

  16. The formation mechanism of mechanically alloyed Fe-20 at% Al powder

    Energy Technology Data Exchange (ETDEWEB)

    Hadef, F., E-mail: hadef77@yahoo.fr [Laboratoire de Recherche sur la Physico-Chimie des Surfaces et Interfaces, LRPCSI, Universite 20 Aout 1955, BP 26, Route d' El-Hadaiek, Skikda 21000 (Algeria); Otmani, A. [Laboratoire de Recherche sur la Physico-Chimie des Surfaces et Interfaces, LRPCSI, Universite 20 Aout 1955, BP 26, Route d' El-Hadaiek, Skikda 21000 (Algeria); Djekoun, A. [Laboratoire de Magnetisme et Spectroscopie des Solides, LM2S, Universite Badji Mokhtar, BP 12 Annaba 23000 (Algeria); Greneche, J.M. [LUNAM, Universite du Maine, Institut des Molecules et Materiaux du Mans, UMR CNRS 6283, 72085 Le Mans (France)

    2013-01-15

    The formation mechanism of the mechanically alloyed Fe-20 at% Al, from elemental Fe and Al powders, has been investigated. The experimental results indicate the formation of a nanocrystalline bcc {alpha}-Fe(Al) solid solution with a lattice parameter close to a{sub {alpha}-Fe(Al)}=0.2890 nm, where each Fe atom is surrounded by (6Fe+2Al) in the first coordination sphere. The reaction mechanism of MA process seems to be controlled by a diffusion phenomenon. Aluminum particles undergo an important refinement to the nanometer scale and then they stick on Fe particles of large sizes. A large number of clear Al/Fe interface areas were generated. The short diffusion path and the presence of high concentration of defects accelerated the solid state reaction. - Highlights: Black-Right-Pointing-Pointer A nanocrystalline bcc {alpha}-Fe(Al) solid solution is formed from elemental Fe and Al powders. Black-Right-Pointing-Pointer The reaction mechanism of MA process seems to be controlled by a diffusion phenomenon. Black-Right-Pointing-Pointer Each Fe atom is surrounded by (6Fe+2Al) in the first coordination sphere.

  17. Processing by both classical and mechanosynthesis routes and characterization of a new solid solution of tungsten-bronze structure ceramics

    International Nuclear Information System (INIS)

    Khachane, M.; Moure, A.; Elaatmani, M.; Zegzouti, A.; Daoud, M.; Castro, A.

    2006-01-01

    A new family of ferroelectric compounds with Ba 2-x Na 1+x Li x Nb 5 O 15 composition (0 ≤ x ≤ 1) and tetragonal tungsten-bronze structure is processed for the first time. This new family of materials derived from Ba 2 NaNb 5 O 15 compound was processed by classical solid-state reaction and by mechanosynthesis. The powders prepared by these two routes were characterized by X-ray diffraction (at room and high temperature), differential thermal analysis, thermogravimetry and scanning electron microscopy. The results confirm the formation of the solid solution in the whole range of composition. The influence of Li addition on the dielectric permittivity and losses and on the ferro-paraelectric transition temperature is also studied

  18. Effect of W content in solid solution on properties and microstructure of (Ti,W)C-Ni{sub 3}Al cermets

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Bin; Xiong, Weihao, E-mail: whxiong@hust.edu.cn; Zhang, Man; Jing, Yong; Li, Baolong; Luo, Haifeng; Wang, Shengqing

    2016-08-15

    (Ti{sub 1-x}W{sub x})C solid solutions (x = 0.05, 0.15, 0.25, 0.35) were synthesized by carbothermal reduction and then were used as hard phases to prepare (Ti,W)C-Ni{sub 3}Al cermets by vacuum sintering. (Ti,W)C-Ni{sub 3}Al cermets showed weak core-rim structure carbide particles embedded in Ni{sub 3}Al binder. As W content in (Ti,W)C increased, core-rim structure of carbide particles got weaker and the contrast of particles lowered down in SEM-BSE morphologies. Furthermore, the densification of cermets was promoted with W content in solid solution increasing, meanwhile TRS and toughness of cermets were improved obviously. In this paper, the wettability of molten metal on different group transition metal carbides was discussed in detail based on valence-electron configurations (VECs) of carbides. - Highlights: • (Ti{sub 1-x}W{sub x})C solid solutions were synthesized by carbothermal reduction. • (Ti,W)C-Ni{sub 3}Al cermets were prepared through powder metallurgy route. • The increase of W can improve wetting and densification significantly. • (Ti,W)C-Ni{sub 3}Al cermets showed a weak core-rim structure particles embedded in binder. • Wetting behavior were discussed from valence-electron configurations of carbides.

  19. Accurate solid solution range of BiMnxFe3-xO6 and low temperature magnetism

    Science.gov (United States)

    Jiang, Pengfei; Yue, Mufei; Cong, Rihong; Gao, Wenliang; Yang, Tao

    2017-11-01

    BiMnxFe3-xO6 (x = 1) represents a new type of oxide structure containing Bi3+ and competing magnetic super-exchanges. In literature, multiple magnetic states were realized at low temperatures in BiMnFe2O6, and the hypothetical parent compounds (BiMn3O6, BiFe3O6) were predicted to be different in magnetism. Herein, we performed a careful study on the syntheses of BiMnxFe3-xO6 at ambient pressure, and the solid solution range was determined to be 0.9 ≤ x ≤ 1.3 by Rietveld refinements on high-quality powder X-ray diffraction data. Due to the very similar cationic size of Mn3+ and Fe3+, and possibly the structural rigidity, there was no significant structure change in the whole range of solid solution. The magnetic behavior of BiMnxFe3-xO6 (x = 1.2, 1.22, 1.26, 1.28 and 1.3) was generally similar to BiMnFe2O6, while the relative higher concentration of Mn3+ led to the decreasing of the antiferromagnetic ordering temperature.

  20. Fabrication of Nb{sub 3}Al superconducting wires by utilizing the mechanically alloyed Nb(Al){sub ss} supersaturated solid-solution with low-temperature annealing

    Energy Technology Data Exchange (ETDEWEB)

    Pan, X.F. [National Engineering Laboratory for Superconducting Material, Western Superconducting Technologies (WST) Co., Ltd., Xi’an 710018 (China); Superconducting Materials Center, Northwest Institute for Nonferrous Metal Research, Xi’an 710016 (China); Yan, G., E-mail: gyan@c-nin.com [National Engineering Laboratory for Superconducting Material, Western Superconducting Technologies (WST) Co., Ltd., Xi’an 710018 (China); Superconducting Materials Center, Northwest Institute for Nonferrous Metal Research, Xi’an 710016 (China); Qi, M. [Superconducting Materials Center, Northwest Institute for Nonferrous Metal Research, Xi’an 710016 (China); Cui, L.J. [National Engineering Laboratory for Superconducting Material, Western Superconducting Technologies (WST) Co., Ltd., Xi’an 710018 (China); Chen, Y.L.; Zhao, Y. [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains (Ministry of Education of China), Superconductivity and New Energy R and D Center, Southwest Jiaotong University, Chengdu 610031 (China); Li, C.S. [Superconducting Materials Center, Northwest Institute for Nonferrous Metal Research, Xi’an 710016 (China); Liu, X.H. [National Engineering Laboratory for Superconducting Material, Western Superconducting Technologies (WST) Co., Ltd., Xi’an 710018 (China); Feng, Y.; Zhang, P.X. [National Engineering Laboratory for Superconducting Material, Western Superconducting Technologies (WST) Co., Ltd., Xi’an 710018 (China); Key Laboratory of Magnetic Levitation Technologies and Maglev Trains (Ministry of Education of China), Superconductivity and New Energy R and D Center, Southwest Jiaotong University, Chengdu 610031 (China); Liu, H.J. [Institute of Plasma Physics, Chinese Academy of Sciences (CAS), Hefei 230031 (China); and others

    2014-07-15

    Highlights: • This paper reported superconducting properties of the powder-in-tube Nb{sub 3}Al wires. • The Nb{sub 3}Al wires were made by using Nb(Al){sub ss} supersaturated solid solution powders. • The Cu-matrix Nb{sub 3}Al superconducting wires have been successfully fabricated. • The transport J{sub c} of Nb{sub 3}Al wires at 4.2 K, 10 T is up to 12,700 A/cm{sup 2}. - Abstract: High-performance Nb{sub 3}Al superconducting wire is a promising candidate to the application of high-field magnets. However, due to the production problem of km-grade wires that are free from low magnetic field instability, the Nb{sub 3}Al wires made by rapid heating, quenching and transformation (RHQT) are still not available to the large-scale engineering application. In this paper, we reported the properties of the in situ powder-in-tube (PIT) Nb{sub 3}Al superconducting wires, which were made by using the mechanically alloyed Nb(Al){sub ss} supersaturated solid solution, as well as the low temperature heat-treatment at 800 °C for 10 h. The results show that Nb{sub 3}Al superconductors in this method possess very fine grains and well superconducting properties, though a little of Nb{sub 2}Al and Nb impurities still keep being existence at present work. At the Nb{sub 3}Al with a nominal 26 at.% Al content, the onset T{sub c} reaches 15.8 K. Furthermore, a series of Nb{sub 3}Al wires and tapes with various sizes have been fabricated; for the 1.0 mm-diameter wire, the J{sub c} at 4.2 K, 10 T and 14 T have achieved 12,700 and 6900 A/cm{sup 2}, respectively. This work suggests it is possible to develop high-performance Cu-matrix Nb{sub 3}Al superconducting wires by directly using the Nb(Al){sub ss} supersaturated solid-solution without the complex RHQT heat-treatment process.

  1. Fabrication and Application of (1-x) NaCl+xKCl Solid Solution

    International Nuclear Information System (INIS)

    Kyi Kyi Lwin

    2011-12-01

    (1-X)NaCl+xKCl solid solution are prepared by the starting materials NaCl (0.9, 0.95) in equal molar ratio. The solid solutions are heat-treated at various temperature and XRD analyses are carried out for the solid solutions to examine the crystalline phase, crystallographic orientation and lattice parameters. The electrical properties of the solutions are determined by using the conductometer. The solid solutions are utilized as crystal oscillator and outcoming frequencies, capacitances and dielectric constants are also investigated.

  2. Synthesis, characterization and thermal stability of solid solutions Zr (Y, Fe, MoO2

    Directory of Open Access Journals (Sweden)

    Felipe Legorreta-García

    2015-05-01

    Full Text Available The synthesis of Fe3+, Mo4+ and Y3+ fully stabilized zirconia by the nitrate/urea combustion route and thermal stability in air was investigated. The solid solution obtained was characterized by X ray diffraction (XRD, scanning electron microscopy (SEM and used the BET method for determining specific surface. The ceramic powders obtained were calcined at 1473 K in air atmosphere in order to determine their thermal stability. The scanning electron microscopy (SEM results showed a homogeneous grain surface, measuring several tens of micrometers across. The crystallographic study revealed that by this method it was successfully achieved zirconia doped with Fe3+, Mo4+ and Y3+ ions in the zirconia tetragonal monophase, even after calcinations.

  3. Structure investigations of ferromagnetic Co-Ni-Al alloys obtained by powder metallurgy.

    Science.gov (United States)

    Maziarz, W; Dutkiewicz, J; Lityńska-Dobrzyńska, L; Santamarta, R; Cesari, E

    2010-03-01

    Elemental powders of Co, Ni and Al in the proper amounts to obtain Co(35)Ni(40)Al(25) and Co(40)Ni(35)Al(25) nominal compositions were ball milled in a high-energy mill for 80 h. After 40 h of milling, the formation of a Co (Ni, Al) solid solution with f.c.c. structure was verified by a change of the original lattice parameter and crystallite size. Analytical transmission electron microscopy observations and X-ray diffraction measurements of the final Co (Ni, Al) solid solution showed that the crystallite size scattered from 4 to 8 nm and lattice parameter a = 0.36086 nm. The chemical EDS point analysis of the milled powder particles allowed the calculation of the e/a ratio and revealed a high degree of chemical homogeneity of the powders. Hot pressing in vacuum of the milled powders resulted in obtaining compacts with a density of about 70% of the theoretical one. An additional heat treatment increased the density and induced the martensitic transformation in a parent phase. Selected area diffraction patterns and dark field images obtained from the heat-treated sample revealed small grains around 300 nm in diameter consisting mainly of the ordered gamma phase (gamma'), often appearing as twins, and a small amount of the L1(0) ordered martensite.

  4. The thermodynamics and kinetics of interstitial solid solutions

    International Nuclear Information System (INIS)

    Silva, J.R.G. da.

    1976-04-01

    Studies of hydrogen metal systems where the hidrogen is disolved in a solid solution are presented. Particular items of interest are: the thermodynamics of the hydrogen-iron system; the solubility of hidrogen in super pure iron single crytals; the thermodinamic functions of hydrogen in solid solutions of Nb, Ta and V; and the solubility of hydrogen in α-manganese. The diffusion of carbon and nitrogen in BCC iron is also studied

  5. Structure and some magnetic properties of (BiFeO3x-(BaTiO31−x solid solutions prepared by solid-state sintering

    Directory of Open Access Journals (Sweden)

    Kowal Karol

    2015-03-01

    Full Text Available This paper presents the results of the study on structure and magnetic properties of the perovskite-type (BiFeO3x-(BaTiO31−x solid solutions. The samples differing in the chemical composition (x = 0.9, 0.8, and 0.7 were produced according to the conventional solid-state sintering method from the mixture of powders. Moreover, three different variants of the fabrication process differing in the temperatures and soaking time were applied. The results of X-ray diffraction (XRD, Mössbauer spectroscopy (MS, and vibrating sample magnetometry (VSM were collected and compared for the set of the investigated materials. The structural transformation from rhombohedral to cubic symmetry was observed for the samples with x = 0.7. With increasing of BaTiO3 concentration Mössbauer spectra become broadened reflecting various configurations of atoms around 57Fe probes. Moreover, gradual decreasing of the average hyperfine magnetic field and macroscopic magnetization were observed with x decreasing.

  6. An ordered metallic glass solid solution phase that grows from the melt like a crystal

    International Nuclear Information System (INIS)

    Chapman, Karena W.; Chupas, Peter J.; Long, Gabrielle G.; Bendersky, Leonid A.; Levine, Lyle E.; Mompiou, Frédéric; Stalick, Judith K.; Cahn, John W.

    2014-01-01

    We report structural studies of an Al–Fe–Si glassy solid that is a solid solution phase in the classical thermodynamic sense. We demonstrate that it is neither a frozen melt nor nanocrystalline. The glass has a well-defined solubility limit and rejects Al during formation from the melt. The pair distribution function of the glass reveals chemical ordering out to at least 12 Å that resembles the ordering within a stable crystalline intermetallic phase of neighboring composition. Under isothermal annealing at 305 °C the glass first rejects Al, then persists for approximately 1 h with no detectable change in structure, and finally is transformed by a first-order phase transition to a crystalline phase with a structure that is different from that within the glass. It is possible that this remarkable glass phase has a fully ordered atomic structure that nevertheless possesses no long-range translational symmetry and is isotropic

  7. Piezoelectric and ferroelectric properties of lead-free (1-x)(Na{sub 1−y}K{sub y})(Nb{sub 1−z}Sb{sub z})O{sub 3}-xBaTiO{sub 3} solid solution

    Energy Technology Data Exchange (ETDEWEB)

    Sasikumar, S., E-mail: sasikuhan@gmail.com [Research Centre and Post Graduate Department of Physics, The Madura College, Madurai 625 011, Tamil Nadu (India); Saravanan, R. [Research Centre and Post Graduate Department of Physics, The Madura College, Madurai 625 011, Tamil Nadu (India); Aravinth, K. [SSN Research Center, SSN College of Engineering, Kalavakkam 603 110, Tamil Nadu (India)

    2017-05-01

    The solid solutions of lead-free (1-x)(Na{sub 1-y}K{sub y})(Nb{sub 1-z}Sb{sub z})O{sub 3}-xBaTiO{sub 3} (with x=0.1, 0.2; y=0.03, 0.05; z=0.05, 0.1) (abbreviated as (1-x)NKNS-xBT) ceramics have been synthesized using conventional solid-state reaction method. The results of X-ray diffraction analysis show that all the grown specimens of NKNS display typical perovskite structure. With BaTiO{sub 3} (BT) addition, a structural phase transition from tetragonal to cubic structure has been observed. The structural parameters of (1-x)NKNS-xBT powders were determined by profile refinements based on the analysis of X-ray powder diffraction. The charge density distributions of the prepared samples have been investigated by observed structure factors to understand the chemical bonding nature of (1-x)NKNS-xBT powders. The optical absorption of the ceramics has been investigated using UV–visible spectrophotometer. Scanning electron microscopic (SEM) measurements were performed to study the surface morphology of the prepared solid solutions. The elemental compositions of the (1-x)NKNS-xBT samples were analyzed by energy-dispersive X-ray (EDS) spectrometer. The dielectric constant versus temperature plots of the solid solutions exhibit ferroelectric to paraelectric phase transition, which is dependent on the BaTiO{sub 3} content. The ferroelectric nature of the samples has been determined through polarization and electric field hysteresis measurements.

  8. Nutritional comparison of Spirulina sp powder by solid-state fermentation using Aspergillus sp (FNCL 6088) and Lactobacillus plantarum (FNCL 0127)

    Science.gov (United States)

    Dewi, E. N.; Amalia, U.

    2018-01-01

    The Spirulina sp powder contains high levels of protein and Solid-State Fermentation (SSF) improved protein level. The aims of the study was to find the proximate contents in Spirulina sp’s powder fermentation. The experiments were conducted by SSF of Spirulina sp’s powder using fungi Aspergillus sp (FNCL 6088) and lactic acid bacteria Lactobacillus plantarum (FNCL 0127). SSF was carried out for 10 days at 35% moisture level. The protein contents of Spirulina sp’s powder fermented by L. plantarum were consistently lower (p fermentation. The Spirulina sp fermented products contained the highest level of protein after 6 days.

  9. Synthesising and comparing electrical properties of NTC thermistors prepared from nano powder and solid state reaction

    International Nuclear Information System (INIS)

    Azad, N.; Ghanbari Shohany, B.; Hosseini, S. M.; Kompany, A.

    2011-01-01

    In this research, NTC thermistors with composition of NiMn 2-x Co x O 4 (x = 0.4, 0.8, 1.2, 1.6) prepared by two methods: solid state reaction and sol-gel (gel-combustion). The average particle size was monitored and structure of the calcinated powders have been investigated using x-ray diffraction and tunneling electron microscopy techniques. The average particle size was estimated to be about 65 nm with the cubic and cubic + tetragonal phases for low and high cobalt concentrations, respectively. The grain size of samples verifies with scanning electron microscopy images. Upon increasing the cobalt fraction, the grain size of samples increases from about 2μm to a few μm in size. The electrical properties of these thermistors depend on the grain size. The grain size of samples made from sol-gel is smaller than from solid state reaction under the same condition. For longer sintering time of the samples prepared by gel-combustion method, the grain size was increased then the electrical parameters of nano powder improved and we obtain better results than the samples prepared from solid state reaction.

  10. Heterogeneous Ferroelectric Solid Solutions Phases and Domain States

    CERN Document Server

    Topolov, Vitaly

    2012-01-01

    The book deals with perovskite-type ferroelectric solid solutions for modern materials science and applications, solving problems of complicated heterophase/domain structures near the morphotropic phase boundary and applications to various systems with morphotropic phases. In this book domain state–interface diagrams are presented for the interpretation of heterophase states in perovskite-type ferroelectric solid solutions. It allows to describe the stress relief in the presence of polydomain phases, the behavior of unit-cell parameters of coexisting phases and the effect of external electric fields. The novelty of the book consists in (i) the first systematization of data about heterophase states and their evolution in ferroelectric solid solutions (ii) the general interpretation of heterophase and domain structures at changing temperature, composition or electric field (iii) the complete analysis of interconnection domain structures, unit-cell parameters changes, heterophase structures and stress relief.

  11. Local structural relaxation around Co2+ along the hardystonite-Co-åkermanite melilite solid solution

    Science.gov (United States)

    Ardit, Matteo; Cruciani, Giuseppe; Dondi, Michele

    2012-10-01

    Six pure compounds belonging to the hardystonite (Ca2ZnSi2O7)-Co-åkermanite (Ca2CoSi2O7) solid solution were investigated by the combined application of X-ray powder diffraction and electronic absorption spectroscopy. Structural refinements of the XRPD data revealed a negative excess volume of mixing due to the single isovalent substitution of Co for Zn in the tetrahedral site. In agreement with the diffraction data, deconvolution of the optical spectra showed a progressive decreasing of the crystal field strength parameter 10 Dq moving toward the Co-åkermanite end-member, meaning that the local cobalt-oxygen bond distance, Co}}{-}{{O}}rangle^{{local}} , increased along the join with the amount of cobalt. The calculated structural relaxation coefficient around the fourfold coordinated Co2+ in the Ca2(Zn1- x Co x )Si2O7 join was ɛ = 0.69, very far from the one predicted by the Vegard's law ( ɛ = 0) and at variance with ɛ = 0.47 previously found for tetrahedrally coordinated Co2+ in gahnite-Co-aluminate spinel solid solution. This difference is consistent with the largest constraints existing on the spinel structure, based on cubic closest packing, compared to the more flexible layered melilite structure.

  12. Synthesis and characterization of Sr2Ir1−xMxO4 (M=Ti, Fe, Co) solid solutions

    International Nuclear Information System (INIS)

    Gatimu, Alvin J.; Berthelot, Romain; Muir, Sean; Sleight, Arthur W.; Subramanian, M.A.

    2012-01-01

    The effects of Ti, Fe and Co substitutions for Ir on the structure and on the physical properties of Sr 2 IrO 4 are investigated. A complete solid solution Sr 2 Ir 1−x Ti x O 4 is obtained while both Fe and Co doping are relatively limited. In each case however, the c-axis cell parameter and the initial IrO 6 octahedra tilting decreases with substitution. Doping with Ti, Fe and Co results in a decrease of the magnetic susceptibility and in an increase in the paramagnetic effective moment for Co and Fe doped samples and a suppression of the weak ferromagnetic ordering observed for Sr 2 IrO 4 . - Graphical abstract: Solid solutions of Sr 2 Ir 1−x M x O 4 (M=Ti, Fe, Co) have been synthesized and characterized by powder X-ray diffraction, magnetism and electrical measurements. Changes in the a parameter and decreases in both the c-axis cell parameters and the initial IrO 6 octahedra tilting are found to be correlated. Highlights: ► Solid Solutions of Sr 2 Ir 1−x M x O 4 (M=Ti, Fe, Co) are synthesized. ► The Sr 2 Ir 1−x Ti x O 4 solid solution is complete while those of Fe and Co are relatively limited. ► The change in a cell parameter with substitution is much less than that of the c parameter. ► Decreased tilting and the smaller size of the M cation contrastingly affect the a parameter. ► Doping results in a suppression of the weak ferromagnetic ordering in Sr 2 IrO 4 .

  13. Removal of Cu (II) ions from aqueous solutions by turmeric powder

    International Nuclear Information System (INIS)

    Qayoom, A.; Kazmi, S.A.; Rafiq, N.

    2009-01-01

    Copper is an essential nutrient, but it is toxic at high intake levels. The presence of copper(II) ions causes serious toxicological concerns, it is usually known to deposit in brain, skin, liver, pancreas and myocardium. In this work the ability of turmeric to remove copper (II) ions from aqueous solution was studied. Adsorption of metals ions by turmeric powder may be used as a natural remedy for sequestration of toxic metals which are ingested through daily food intake It was found that adsorption increased with increasing contact time, pH, temperature, adsorbent dose. The equilibrium data were satisfactorily described by Freundlich isotherm model. Adsorption of Cu (II) by turmeric powder was followed by pseudo 2/sub nd/ order kinetics. (author)

  14. Dihydroxycoumarin Schiff base synthesis and structure determination from powder diffraction data

    Czech Academy of Sciences Publication Activity Database

    Rohlíček, Jan; Ketata, I.; Ben Ayed, T.; Ben Hassen, R.

    2013-01-01

    Roč. 1051, NOV (2013), s. 280-284 ISSN 0022-2860 Grant - others:AV ČR(CZ) AP0701 Program:Akademická prémie - Praemium Academiae Institutional support: RVO:68378271 Keywords : powder diffraction * structure solution * Schiff base * dihydroxycoumarine Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.599, year: 2013

  15. Influences Factors of the Cadmium Removal by Magnetic Solid Chelator Powder(MSC in Soil

    Directory of Open Access Journals (Sweden)

    LIU Jun-long

    2017-12-01

    Full Text Available Pot experiments were conducted for the purpose of analyzing the influencing effects for the magnetic solid chelator powder(MSC, magnetic solid chelator powder on removal of cadmium pollution in the soil. The influencing factors included straws,air drying,activation structural material, stirring time and repetition times, etc. The results showed that the straw addition in the soil decreased the removal efficiency of Cd. The different air drying degree in the soil also had the effect of MSC. The air drying in the soil affected the results more by comparison with the straws. When stirring time was 40 min, the removal rate of Cd was 22.67% and achieved the best removal efficiency. With the increasing of stirring time, the effect of MSC on Cd removal increased first, then decreased. Drying MSC material lost the effect of Cd removal in the soil. After activation(soaking in water for 12 h, MSC material could remov Cd in the soil once again. MSC material had removal and remediation effects on soil Cd, the removal effects depended on soil properties, material properties and operation process and other factors. The research of MSC materials in soil remediation had important practical significance.

  16. Characteristics and production of tantalum powders for solid-electrolyte capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jae Sik [Korea Basic Science Institute, Sunchon Branch, Sunchon 540-742 (Korea); Department of Chemical and Materials Engineering, University of Alberta, Edmonton T6G 2G6 (Canada); Kim, Byung Il [Department of Material Science and Metallurgical Engineering, Sunchon National, University, Sunchon 540-742 (Korea)

    2007-02-10

    The effects of using K{sub 2}TaF{sub 7} as the raw material and sodium as the reducing agent on the characteristics of tantalum powder are investigated. Batch-type metallothermic reduction (BTMR) is used to charge the reactor with the raw material and the reducing agent, and external continuous supply metallothermic reduction (ESMR) is used to supply the raw material and the reducing agent at a constant rate at the temperature of the reduction reaction. In the case of ESMR, the yield increases by several tens of percent because of the uniform reaction between the raw material and the reducing agent. It is possible to obtain a powder of over 99.5% purity. The powder particles obtained with BTMR are relatively large (4-6 {mu}m) and have a coarse lamellar shape, while those prepared via ESMR are of uniform 1-2 {mu}m size with a coral-like shape. Measurements of the electric properties show that the leakage current and the dielectric dissipation are low with higher reliability in ESMR than in BTMR, and the capacitance is 26,000 and 8400 CV for ESMR and in BTMR, respectively. (author)

  17. Mixture of fuels for solution combustion synthesis of porous Fe{sub 3}O{sub 4} powders

    Energy Technology Data Exchange (ETDEWEB)

    Parnianfar, H.; Masoudpanah, S.M., E-mail: masoodpanah@iust.ac.ir; Alamolhoda, S.; Fathi, H.

    2017-06-15

    Highlights: • Mixture of glycine and urea fuels was applied for solution combustion synthesis of Fe3O4 powders. • The phase and crystallite size of the as-combusted powders depends on the fuel to oxidant ratio (ϕ). • The maximum density (0.033 cm{sup 3}/g) was observed for the as-combusted powders at ϕ = 1. • The highest Ms of 75.5 emu/g and the lowest Hc of 84 Oe were achieved at ϕ = 1. - Abstract: The solution combustion synthesis of porous magnetite (Fe{sub 3}O{sub 4}) powders by a mixture of glycine and urea fuels was investigated concerning the thermodynamic aspects and powder characteristics. The adiabatic combustion temperature and combusted species were thermodynamically calculated as a function of the fuel to oxidant molar ratio (ϕ). The combustion behavior, phase evolution, porous structure and magnetic properties were characterized by thermal analysis, X-ray diffractometry, N{sub 2} adsorption–desorption, electron microscopy and vibrating sample magnetometry techniques. Nearly single phase Fe{sub 3}O{sub 4} powders were synthesized by the mixture of fuels at ϕ values of 0.75 and 1. The as-combusted Fe{sub 3}O{sub 4} powders at ϕ = 1 exhibited porous structure with the specific surface area of 83.4 m{sup 2}/g. The highest saturation magnetization of 75.5 emu/g and the lowest coercivity of 84 Oe were achieved at ϕ = 1, due to the high purity and large crystallite size, inducing from the highest adiabatic combustion temperature.

  18. Polymer liquids fracture like solids

    DEFF Research Database (Denmark)

    Huang, Qian; Hassager, Ole

    2017-01-01

    While fracture in brittle solids has been studied for centuries until today, there are few studies on fracture in polymer liquids. Recent developments in experimental techniques, especially the combination of controlled filament stretching rheometry and high speed imaging, have opened new windows...... into the detailed study of fracture processes for polymer liquids. High speed imaging shows that polymer liquids fracture like solids with initiation and propagation of an edge fracture. However, remarkable features such as highly reproducible critical stress, independent appearance of multiple fractures...

  19. Synthesis, characterization and thermal stability of solid solutions Zr (Y, Fe, Mo)O {sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Legorreta-Garcia, F.; Esperanza Hernandez-Cruz, L.; Villanueva-Ibanez, M.; Flores-Gonzalez, M. A.

    2015-10-01

    The synthesis of Fe{sup 3}+, Mo{sup 4+} and Y{sup 3+} fully stabilized zirconia by the nitrate/urea combustion route and thermal stability in air was investigated. The solid solution obtained was characterized by X ray diffraction (XRD), scanning electron microscopy (SEM) and used the BET method for determining specific surface. The ceramic powders obtained were calcined at 1473 K in air atmosphere in order to determine their thermal stability. The scanning electron microscopy (SEM) results showed a homogeneous grain surface, measuring several tens of micrometers across. The crystallographic study revealed that by this method it was successfully achieved zirconia doped with Fe{sup 3+}, Mo{sup 4+} and Y{sup 3+} ions in the zirconia tetragonal monophase, even after calcinations. (Author)

  20. Comparison of blueberry powder produced via foam-mat freeze-drying versus spray-drying: evaluation of foam and powder properties.

    Science.gov (United States)

    Darniadi, Sandi; Ho, Peter; Murray, Brent S

    2018-03-01

    Blueberry juice powder was developed via foam-mat freeze-drying (FMFD) and spray-drying (SD) via addition of maltodextrin (MD) and whey protein isolate (WPI) at weight ratios of MD/WPI = 0.4 to 3.2 (with a fixed solids content of 5 wt% for FMFD and 10 wt% for SD). Feed rates of 180 and 360 mL h -1 were tested in SD. The objective was to evaluate the effect of the drying methods and carrier agents on the physical properties of the corresponding blueberry powders and reconstituted products. Ratios of MD/WPI = 0.4, 1.0 and 1.6 produced highly stable foams most suitable for FMFD. FMFD gave high yields and low bulk density powders with flake-like particles of large size that were also dark purple with high red values. SD gave low powder recoveries. The powders had higher bulk density and faster rehydration times, consisting of smooth, spherical and smaller particles than in FMFD powders. The SD powders were bright purple but less red than FMFD powders. Solubility was greater than 95% for both FMFD and SD powders. The FMFD method is a feasible method of producing blueberry juice powder and gives products retaining more characteristics of the original juice than SD. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  1. Phase evolution in Al-Ni-(Ti, Nb, Zr) powder blends by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Samanta, A. [Department of Metallurgy and Materials Engineering, Bengal Engineering and Science University, Shibpur (India); Manna, I. [Metallurgical and Materials Engineering Department, I.I.T., Kharagpur 721302 (India); Chattopadhyay, P.P. [Department of Metallurgy and Materials Engineering, Bengal Engineering and Science University, Shibpur (India)], E-mail: c.partha@mailcity.com

    2007-08-25

    Mechanical alloying of Al-rich Al-Ni-ETM (ETM = Ti, Nb, Zr) elemental powder blends by planetary ball milling yielded amorphous and/or nanocrystalline products after ball milling for suitable duration. Powder samples collected at different stages of ball milling have been examined by X-ray diffraction, differential scanning caloremetry and high-resolution transmission electron microscopy to examine the solid-state phase evolution. Powder blends having nominal composition of Al{sub 80}Ni{sub 10}Ti{sub 10} and Al{sub 80}Ni{sub 10}Nb{sub 10} yielded predominantly amorphous products, while the other alloys formed composite microstructures comprising nanaocrystalline and amorphous solid solutions. The amorphous Al{sub 80}Ni{sub 10}Ti{sub 10} alloy was mixed with different amounts of Al powder, and subjected to warm rolling after consolidation within the Al-cans with or without intermediate annealing for 10 min at 500 K to obtain sheet of 2.5 mm thickness. Notable improvement in mechanical properties has been achieved for the composite sheets in comparison to the pure Al.

  2. The calcium oxide influence on formation of manganese, calcium pyrovanadate solid solutions

    International Nuclear Information System (INIS)

    Vatolin, N.A.; Volkova, P.I.; Sapozhnikova, T.V.; Ovchinnikova, L.A.

    1988-01-01

    The X-ray graphic, derivatographic, microscopic and chemical methods are used to study solid solutions of manganese, calcium pyrovanadates containing 1-10 mass% CaO and the products of interaction of reprocessing charges of vanadium-containing converter slags intended for he formation of manganese and calcium pyrovanadates with additions of calcium oxide within 10-90 mass%. It is established that in the case of 1-6 mass% CaO content in manganese pyrovanadate solid interstitial solutions appear, while at 6-20 mass% CaO - solid substitution solutions form. The results of calculating elementary cell parameters as well as melting temperatures and pyrovanadate solid solution solubility depending on CaO content are presented. The best solubility of introduction solid solutions during vanadium extraction according to the lime technology is found

  3. X-Ray Characterization of Non-Equilibrium Solid Solutions

    International Nuclear Information System (INIS)

    Brown, A.; Rosdahl, Oe.

    1975-01-01

    The Rudman approach to composition line broadening in X-ray diffraction patterns, originally designed for the study of diffusion in alloys, is seen to provide a basis for characterizing inhomogeneous solid solutions. Limitations, imposed on this treatment when the cell dimensions of the primary components differ by less than 0.1 A, are attributable to experimental effects such as instrument broadening. These limitations can be overcome by a rigorous numerical treatment of the measured data. Thus, separate elimination of the Kα 2 radiation component followed by iterative deconvolution are advocated for the recovery of the intrinsic broadening. This course of action is made possible chiefly through the availability of large, fast memory computers and primary data recorded in the form of a step scan on punched paper tape. The characteristics of inhomogeneous solid solutions made available by the above treatment are the identity of closely similar, solid solution phases, the frequency distribution curve for a chosen component, and the degree of homogeneity of the X-ray sample

  4. Studies on mixed metal oxides solid solutions as heterogeneous catalysts

    Directory of Open Access Journals (Sweden)

    H. R. Arandiyan

    2009-03-01

    Full Text Available In this work, a series of perovskite-type mixed oxide LaMo xV1-xO3+δ powder catalysts (x = 0, 0.1, 0.3, 0.5, 0.7, 0.9, and 1.0, with 0.5 < δ < 1.5, prepared by the sol-gel process and calcined at 750ºC, provide an attractive and effective alternative means of synthesizing materials with better control of morphology. Structures of resins obtained during the gel formation process by FT-IR spectroscopy and XRD analysis showed that all the LaMo xV1-xO3+δ samples are single phase perovskite-type solid solutions. The surface area (BET between 2.5 - 5.0 m²/g (x = 0.1 and 1.0 respectively increases with increasing Mo ratio in the samples. They show high purity, good chemical homogeneity, and lower calcinations temperatures as compared with the solid-state chemistry route. SEM coupled to EDS and thermogravimetric analysis/differential thermal analyses (TGA/DTA have been carried out in order to evaluate the homogeneity of the catalyst. Finally, the experimental studies show that the calcination temperature and Mo content exhibited a significant influence on catalytic activity. Among the LaMo xV1-xO3+δ samples, LaMo0.7V0.3O4.2 showed the best catalytic activity for the topic reaction and the best activity and stability for ethane reforming at 850ºC under 8 bar.

  5. Studying the Super-cooled Solid Solution Breakdown of V-1341 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Yu. A. Puchkov

    2017-01-01

    Full Text Available Deformable alloys of the Al-Mg-Si system are widely used in aviation industry, rocket engineering, shipbuilding, as well as on railway and highway transport. These alloys are characterized by high stamping ability, weld-ability, and machinability with a comparatively high strength and corrosion resistance in a heat-strengthened state. A promising alloy of the Al-Mg-Si system with increased structural strength and manufacturability is on par with foreign analogues in properties is the V-1341 alloy [1, 2].The properties of heat-treatable aluminum alloys strongly depend on the cooling rate of the product during quenching [3-12], which determines the structure and level of residual stresses. Decrease in structural strength, tendency to pitting and inter-crystalline corrosion with slow cooling from the quenching temperature is caused by formation of coarse unequiaxed precipitate, precipitates-free zones, and also by decreasing proportion of inclusions of the strengthening phase [3-12].Thus, the relevant task is to study the effect of isothermal quenching modes on the structure of deformable V-1341 aluminum alloy thermally hardened.The paper studies the impact of isothermal time in quenching on the composition and morphology of breakdown products of the V-1341 alloy solid solution. It is shown that at isothermal time under the solid solution breakdown, at first on the dispersoid surface and then in the solid solution are formed and grow large needle-like crystals of the β'-phase which are structural concentrators of stresses. An increasing isothermal time leads to decreasing solid solution super-saturation by doping elements and vacancies. This leads to a decrease in the fraction of the coherent finely dispersed hardening β '' phase, and also to an increase in the width of the precipitates-free zone.

  6. An Inquiry-Based Project Focused on the X-Ray Powder Diffraction Analysis of Common Household Solids

    Science.gov (United States)

    Hulien, Molly L.; Lekse, Jonathan W.; Rosmus, Kimberly A.; Devlin, Kasey P.; Glenn, Jennifer R.; Wisneski, Stephen D.; Wildfong, Peter; Lake, Charles H.; MacNeil, Joseph H.; Aitken, Jennifer A.

    2015-01-01

    While X-ray powder diffraction (XRPD) is a fundamental analytical technique used by solid-state laboratories across a breadth of disciplines, it is still underrepresented in most undergraduate curricula. In this work, we incorporate XRPD analysis into an inquiry-based project that requires students to identify the crystalline component(s) of…

  7. Synthesis, second-harmonic generation (SHG), and photoluminescence (PL) properties of noncentrosymmetric bismuth selenite solid solutions, Bi2-xLnxSeO5 (Ln = La and Eu; x = 0-0.3)

    Science.gov (United States)

    Qi, Hai-Xin; Jo, Hongil; Oh, Seung-Jin; Ok, Kang Min

    2018-02-01

    A series of La3+ or Eu3+-doped noncentrosymmetric (NCS) bismuth selenite solid solutions, Bi2-xLnxSeO5 (x = 0.1, 0.2, and 0.3), have been successfully synthesized via standard solid-state reactions under vacuum with Bi2O3, La2O3 (or Eu2O3), and SeO2 as starting materials. Crystal structures and phase purities of the resultant materials were thoroughly characterized by powder X-ray diffraction using the Rietveld method. The results clearly show that the reported materials crystallize in the orthorhombic space group, Abm2 (No. 39), and exhibit pseudo-three-dimensional frameworks consisting of BiO3, BiO5, and SeO3 polyhedra that share edges and corners. Detailed diffraction studies indicate that the cell volume of Bi2-xLnxSeO5 decreases with an increasing amount of Ln3+ on the Bi3+ sites. However, no ordering between Ln3+ and Bi3+ was observed in the Bi2-xLnxSeO5 solid solutions. Powder second-harmonic generation (SHG) measurements, using 1064 nm radiation, reveal that SHG efficiencies of Bi2-xLnxSeO5 solid solutions continuously decrease as more Ln3+ cations are added to the sites of polarizable Bi3+ cations. Photoluminescence (PL) measurements on Bi2-xEuxSeO5 exhibit three specific emission peaks at 592, 613, and 702 nm (5D0 → 7F1, 2, 4) owing to the 4f-4f intrashell transitions of Eu3+ ions.

  8. Comparative solution and solid-phase glycosylations toward a disaccharide library

    DEFF Research Database (Denmark)

    Agoston, K.; Kröger, Lars; Agoston, Agnes

    2009-01-01

    A comparative study on solution-phase and solid-phase oligosaccharide synthesis was performed. A 16-member library containing all regioisomers of Glc-Glc, Glc-Gal, Gal-Glc, and Gal-Gal disaccharides was synthesized both in solution and on solid phase. The various reaction conditions for different...

  9. On calculation of lattice parameters of refractory metal solid solutions

    International Nuclear Information System (INIS)

    Barsukov, A.D.; Zhuravleva, A.D.; Pedos, A.A.

    1995-01-01

    Technique for calculating lattice periods of solid solutions is suggested. Experimental and calculation values of lattice periods of some solid solutions on the basis of refractory metals (V-Cr, Nb-Zr, Mo-W and other) are presented. Calculation error was correlated with experimental one. 7 refs.; 2 tabs

  10. Mixture of fuels for solution combustion synthesis of porous Fe3O4 powders

    Science.gov (United States)

    Parnianfar, H.; Masoudpanah, S. M.; Alamolhoda, S.; Fathi, H.

    2017-06-01

    The solution combustion synthesis of porous magnetite (Fe3O4) powders by a mixture of glycine and urea fuels was investigated concerning the thermodynamic aspects and powder characteristics. The adiabatic combustion temperature and combusted species were thermodynamically calculated as a function of the fuel to oxidant molar ratio (ϕ). The combustion behavior, phase evolution, porous structure and magnetic properties were characterized by thermal analysis, X-ray diffractometry, N2 adsorption-desorption, electron microscopy and vibrating sample magnetometry techniques. Nearly single phase Fe3O4 powders were synthesized by the mixture of fuels at ϕ values of 0.75 and 1. The as-combusted Fe3O4 powders at ϕ = 1 exhibited porous structure with the specific surface area of 83.4 m2/g. The highest saturation magnetization of 75.5 emu/g and the lowest coercivity of 84 Oe were achieved at ϕ = 1, due to the high purity and large crystallite size, inducing from the highest adiabatic combustion temperature.

  11. Design, physicochemical characterization, and optimization of organic solution advanced spray-dried inhalable dipalmitoylphosphatidylcholine (DPPC and dipalmitoylphosphatidylethanolamine poly(ethylene glycol (DPPE-PEG microparticles and nanoparticles for targeted respiratory nanomedicine delivery as dry powder inhalation aerosols

    Directory of Open Access Journals (Sweden)

    Meenach SA

    2013-01-01

    Full Text Available Samantha A Meenach,1,2 Frederick G Vogt,3 Kimberly W Anderson,2,4 J Zach Hilt,2,4 Ronald C McGarry,5Heidi M Mansour1,41Department of Pharmaceutical Sciences-Drug Development Division, University of Kentucky College of Pharmacy, Lexington, KY; 2Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY, USA; 3Analytical Sciences, Product Development, GlaxoSmithKline, King of Prussia, PA; 4Center of Membrane Sciences, University of Kentucky, Lexington, KY, 5Department of Radiation Medicine, University of Kentucky College of Medicine, Lexington, KY, USAAbstract: Novel advanced spray-dried and co-spray-dried inhalable lung surfactant-mimic phospholipid and poly(ethylene glycol (PEGylated lipopolymers as microparticulate/nanoparticulate dry powders of biodegradable biocompatible lipopolymers were rationally formulated via an organic solution advanced spray-drying process in closed mode using various phospholipid formulations and rationally chosen spray-drying pump rates. Ratios of dipalmitoylphosphatidylcholine (DPPC and dipalmitoylphosphatidylethanolamine PEG (DPPE-PEG with varying PEG lengths were mixed in a dilute methanol solution. Scanning electron microscopy images showed the smooth, spherical particle morphology of the inhalable particles. The size of the particles was statistically analyzed using the scanning electron micrographs and SigmaScan® software and were determined to be 600 nm to 1.2 μm in diameter, which is optimal for deep-lung alveolar penetration. Differential scanning calorimetry (DSC and powder X-ray diffraction (PXRD were performed to analyze solid-state transitions and long-range molecular order, respectively, and allowed for the confirmation of the presence of phospholipid bilayers in the solid state of the particles. The residual water content of the particles was very low, as quantified analytically via Karl Fischer titration. The composition of the particles was confirmed using attenuated

  12. A green emissive amorphous fac-Alq3 solid generated by grinding crystalline blue fac-Alq3 powder.

    Science.gov (United States)

    Bi, Hai; Chen, Dong; Li, Di; Yuan, Yang; Xia, Dandan; Zhang, Zuolun; Zhang, Hongyu; Wang, Yue

    2011-04-14

    A novel green emissive Alq(3) solid with a facial isomeric form has been obtained by grinding the typical blue luminescent fac-Alq(3) crystalline powder. This is the first report, to the best of our knowledge, that a fac-Alq(3) isomer emits green light.

  13. Precipitation of Nd-Ca carbonate solid solution at 25 degrees C

    International Nuclear Information System (INIS)

    Carroll, S.A.

    1993-01-01

    The formation of a Nd-Ca carbonate solid solution was studied by monitoring the reactions of calcite with aqueous Nd, orthorhombic NdOHCO 3 (s) with aqueous Ca, and calcite with hexagonal Nd-carbonate solid phase as a function of time at 25 degrees C and controlled pCO 2 (g). All experiments reached steady state after 200 h of reaction. The dominant mechanism controlling the formation of the solid solution was precipitation of a Nd-Ca carbonate phase from the bulk solution as individual crystals or at the orthorhombic NdOHCO 3 (s)-solution interface. The lack of Nd adsorption or solid solution at the calcite-solution interface suggests that the solid solution was orthorhombic and may be modeled as a mixture of orthorhombic NdOHCO 3 (s) and aragonite. Orthorhombic NdOHCO 3 (s) was determined to be the stable Nd-carbonate phase in the Nd-CO 2 -H 2 O system at pCO 2 (g) 0.1 atmospheres at 25 degrees C. The equilibrium constant corrected to zero ionic strength for orthorhombic NdOHCO 3 (s) solubility is 10 10.41(±0.29) for the following: NdOHCO 3 (s) + 3H + = Nd 3+ + CO 2 (g) + H 2 O. Results are discussed in relation to radioactive waste disposal by burial, and specifically in relation to americium chemistry

  14. Features of solid solutions composition in magnesium with yttrium alloys

    International Nuclear Information System (INIS)

    Drits, M.E.; Rokhlin, L.L.; Tarytina, I.E.

    1983-01-01

    Additional data on features of yttrium solid solutions composition in magnesium in the course of their decomposition investigation in the case of aging are obtianed. The investigation has been carried out on the base of a binary magnesium-yttrium alloy the composition of which has been close to maximum solubility (at eutectic temperature) and magnesium-yttrium alloys additionally doped with zinc. It is shown that higher yttrium solubility in solid magnesium than it has been expected, issueing from the difference in atomic radii of these metals indicates electron yttrium-magnesium atoms interaction. In oversaturated magnesium-yttrium solid solutions at earlier decomposition stages Mg 3 Cd type ordering is observed. At aging temperatures up to 250 deg C and long exposures corresponding to highest strengthening in oversaturated magnesium yttrium solid solutions a rhombic crystal lattice phase with three symmetric orientations is formed

  15. Gold cementation with zinc powder from leaching solutions with ammonia-thiosulphate; Cementacion de oro con polvo de cinc en soluciones de lixiviacion coon amoniaco-tiosulfato

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, P.; Vargas, C.; Alvarez, R.; Alguacil, F. J.

    2005-07-01

    The cementation of gold with powder of zinc, from solutions with thiosulphate and ammonia, was studied. the variables evaluated were: thiosulphate concentration, ammonia concentration, pH, copper concentration and zinc concentration. the results have revealed the great importance of ammonia/thiosulphate relationship in this process and that the impurities presence like copper and zinc will to inhibit the cementation process. (Author) 16 refs.

  16. Precipitation in Al–Mg solid solution prepared by solidification under high pressure

    International Nuclear Information System (INIS)

    Jie, J.C.; Wang, H.W.; Zou, C.M.; Wei, Z.J.; Li, T.J.

    2014-01-01

    The precipitation in Al–Mg solid solution containing 21.6 at.% Mg prepared by solidification under 2 GPa was investigated. The results show that the γ-Al 12 Mg 17 phase is formed and the β′ phase cannot be observed in the solid solution during ageing process. The precipitation of γ and β phases takes place in a non-uniform manner during heating process, i.e. the γ and β phases are first formed in the interdendritic region, which is caused by the inhomogeneous distribution of Mg atoms in the solid solution solidified under high pressure. Peak splitting of X-ray diffraction patterns of Al(Mg) solid solution appears, and then disappears when the samples are aged at 423 K for different times, due to the non-uniform precipitation in Al–Mg solid solution. The direct transformation from the γ to β phase is observed after ageing at 423 K for 24 h. It is considered that the β phase is formed through a peritectoid reaction of α + γ → β which needs the diffusion of Mg atoms across the interface of α/γ phases. - Highlights: • The γ phase is formed and the β′ phase is be observed in Al(Mg) solid solution. • Peak splitting of XRD pattern of Al(Mg) solid solution appears during aged at 150 °C. • The β phase is formed through a peritectoid reaction of α + γ → β

  17. X-Ray Characterization of Non-Equilibrium Solid Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Brown, A; Rosdahl, Oe

    1975-07-01

    The Rudman approach to composition line broadening in X-ray diffraction patterns, originally designed for the study of diffusion in alloys, is seen to provide a basis for characterizing inhomogeneous solid solutions. Limitations, imposed on this treatment when the cell dimensions of the primary components differ by less than 0.1 A, are attributable to experimental effects such as instrument broadening. These limitations can be overcome by a rigorous numerical treatment of the measured data. Thus, separate elimination of the Kalpha{sub 2} radiation component followed by iterative deconvolution are advocated for the recovery of the intrinsic broadening. This course of action is made possible chiefly through the availability of large, fast memory computers and primary data recorded in the form of a step scan on punched paper tape. The characteristics of inhomogeneous solid solutions made available by the above treatment are the identity of closely similar, solid solution phases, the frequency distribution curve for a chosen component, and the degree of homogeneity of the X-ray sample

  18. Novel powder/solid composites possessing low Young’s modulus and tunable energy absorption capacity, fabricated by electron beam melting, for biomedical applications

    International Nuclear Information System (INIS)

    Ikeo, Naoko; Ishimoto, Takuya; Nakano, Takayoshi

    2015-01-01

    Highlights: • We fabricated novel porous composites by electron beam melting. • The composites consist of necked powder and melted solid framework. • Unmelted powder that is usually discarded was mechanically functionalized by necking. • The composites possess controllably low Young’s modulus and excellent toughness. • The composites would be promising for utilization in biomedical applications. - Abstract: A novel, hierarchical, porous composite from a single material composed of necked powder and melted solid, with tunable mechanical properties, is fabricated by electron beam melting and subsequent heat treatment. The composite demonstrates low Young’s modulus (⩽31 GPa) and excellent energy absorption capacity, both of which are necessary for use in orthopedic applications. To the best of our knowledge, this is the first report on the synthesis of a material combining controllably low Young’s modulus and excellent toughness

  19. Study of Velocity and Materials on Tribocharging of Polymer Powders for Powder Coating Applications

    Science.gov (United States)

    Biris, Alex S.; Trigwell, Steve; Sims, Robert A.; Mazumder, Malay K.

    2005-01-01

    Electrostatic powder deposition is widely used in a plethora of industrial-applications ranging from the pharmaceutical and food.industries, to farm equipment and automotive applications. The disadvantages of this technique are possible back corona (pin-like formations) onset and the Faraday penetration limitation (when the powder does not penetrate in some recessed areas). A possible solution to overcome these problems is to use tribochargers to electrostatically charge the powder. Tribocharging, or contact charging while two materials are in contact, is related to the work function difference between the contacting materials and generates bipolarly charged particles. The generation of an ion-free powder cloud by tribocharging with high bipolar charge and an overall charge density of almost zero, provides a better coverage of the recessed areas. In this study, acrylic and epoxy powders were fluidized and charged by passing through stainless steel, copper, aluminum, and polycarbonate static mixers, respectively. The particle velocity was varied to determine its effect on the net charge-to-mass ratio (QIM) acquired by the powders. In general, the Q/M increases rapidly when the velocity was increased from 1.5 to 2.5 m/s, remaining almost constant for higher velocities. Charge separation experiments showed bipolar charging for all chargers.

  20. Thermogravimetric study of reduction of oxides present in oxidized nickel-base alloy powders

    Science.gov (United States)

    Herbell, T. P.

    1976-01-01

    Carbon, hydrogen, and hydrogen plus carbon reduction of three oxidized nickel-base alloy powders (a solid solution strengthened alloy both with and without the gamma prime formers aluminum and titanium and the solid solution strengthened alloy NiCrAlY) were evaluated by thermogravimetry. Hydrogen and hydrogen plus carbon were completely effective in reducing an alloy containing chromium, columbium, tantalum, molybdenum, and tungsten. However, with aluminum and titanium present the reduction was limited to a weight loss of about 81 percent. Carbon alone was not effective in reducing any of the alloys, and none of the reducing conditions were effective for use with NiCrAlY.

  1. Failure criterion effect on solid production prediction and selection of completion solution

    Directory of Open Access Journals (Sweden)

    Dariush Javani

    2017-12-01

    Full Text Available Production of fines together with reservoir fluid is called solid production. It varies from a few grams or less per ton of reservoir fluid posing only minor problems, to catastrophic amount possibly leading to erosion and complete filling of the borehole. This paper assesses solid production potential in a carbonate gas reservoir located in the south of Iran. Petrophysical logs obtained from the vertical well were employed to construct mechanical earth model. Then, two failure criteria, i.e. Mohr–Coulomb and Mogi–Coulomb, were used to investigate the potential of solid production of the well in the initial and depleted conditions of the reservoir. Using these two criteria, we estimated critical collapse pressure and compared them to the reservoir pressure. Solid production occurs if collapse pressure is greater than pore pressure. Results indicate that the two failure criteria show different estimations of solid production potential of the studied reservoir. Mohr–Coulomb failure criterion estimated solid production in both initial and depleted conditions, where Mogi–Coulomb criterion predicted no solid production in the initial condition of reservoir. Based on Mogi–Coulomb criterion, the well may not require completion solutions like perforated liner, until at least 60% of reservoir pressure was depleted which leads to decrease in operation cost and time.

  2. Tungsten oxide coatings deposited by plasma spray using powder and solution precursor for detection of nitrogen dioxide gas

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chao, E-mail: zhangc@yzu.edu.cn [College of Mechanical Engineering, Yangzhou University, Yangzhou 225127 (China); Wang, Jie [College of Mechanical Engineering, Yangzhou University, Yangzhou 225127 (China); Geng, Xin [College of Mechanical Engineering, Yangzhou University, Yangzhou 225127 (China); College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002 (China)

    2016-05-25

    Increasing attention has been paid on preparation methods for resistive-type gas sensors based on semiconductor metal oxides. In this work, tungsten oxide (WO{sub 3}) coatings were prepared on alumina substrates and used as gas sensitive layers. The coatings were deposited by atmospheric plasma spray using powder, solution precursor, or a combination of both. Tungsten oxide powder through a powder port and ammonium tungstate aqueous solution through a liquid port were injected into plasma stream respectively or together to deposit WO{sub 3} coatings. Phase structures in the coatings were characterized by X-ray diffraction analyzer. The field-emission scanning electron microscopy images confirmed that the coatings were in microstructure, nanostructure or micro-nanostructure. The sensing properties of the sensors based on the coatings exposed to 1 ppm nitrogen dioxide gas were characterized in a home-made instrument. Sensing properties of the coatings were compared and discussed. The influences of gas humidity and working temperature on the sensor responses were further studied. - Highlights: • Porous gas sensitive coatings were deposited by plasma spray using powder and solution precursor. • Crystallized WO{sub 3} were obtained through hybrid plasma spray plus a pre-conditioned step. • Plasma power had an important influence on coating microstructure. • The particle size of atmospheric plasma-sprayed microstructured coating was stable. • Solution precursor plasma-sprayed WO{sub 3} coatings had nanostructure and showed good responses to 1 ppm NO{sub 2}.

  3. Crystal structure and tautomerism of Pigment Yellow 138 determined by X-ray powder diffraction and solid-state NMR

    DEFF Research Database (Denmark)

    Gumbert, Silke D.; Körbitzer, Meike; Alig, Edith

    2016-01-01

    The crystal structure of C.I. Pigment Yellow 138 was determined from X-ray powder diffraction data using real-space methods with subsequent Rietveld refinements. The tautomeric state was investigated by solid-state 1D and 2D multinuclear NMR experiments. In the crystals, the compound exhibits...... the NH-tautomer with a hydrogen atom situated at the nitrogen of the quinoline moiety. Direct evidence of the presence of the NH-tautomer is provided by 1H–14N HMQC solid-state NMR at very fast MAS. Solid-state dispersion-corrected density functional theory calculations with BLYP-D3 confirm...

  4. Synthesis of high-purity Li{sub 8}ZrO{sub 6} powder by solid state reaction under hydrogen atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Shin-mura, Kiyoto; Otani, Yu; Ogawa, Seiya [Course of Mechanical Engineering, Graduate School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan); Niwa, Eiki; Hashimoto, Takuya [Department of Physics, College of Humanities and Sciences, Nihon University, 3-8-1 Sakurajousui, Setagaya-ku, Tokyo 156-8550 (Japan); Hoshino, Tsuyoshi [Breeding Functional Materials Development Group, Department of Blanket Systems Research, Rokkasho Fusion Institute, Sector of Fusion Research and Development, Japan Atomic Energy Agency, 2-166 Obuchi, Omotedate, Rokkasho-mura, Kamikita-gun, Aomori 039-3212 (Japan); Sasaki, Kazuya, E-mail: k_sasaki@tokai-u.ac.jp [Course of Mechanical Engineering, Graduate School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan); Department of Prime Mover Engineering, School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan)

    2016-11-01

    Highlights: • A fine pure Li{sub 8}ZrO{sub 6} powder was synthesized by using Li{sub 2}CO{sub 3} and ZrO{sub 2} via a solid state reaction. • Influences on the purity of product powder, lattice defect, and crystal orientation were revealed. • The suitable synthesis conditions of the fine and high purity Li{sub 8}ZrO{sub 6} powder were found. • The reaction process of the synthesis of Li{sub 8}ZrO{sub 6} was estimated. - Abstract: Li{sub 8}ZrO{sub 6} contains a large amount of Li and has a significant potential as a tritium breeder. However, few syntheses of fine-grain, high-purity Li{sub 8}ZrO{sub 6} powder have been reported. In this study, a high-purity powder of Li{sub 8}ZrO{sub 6} was synthesized by solid state reaction under hydrogen atmosphere combined with an effective lithium source and a suitable initial Li:Zr molar ratio. Mixed powders of Li{sub 2}CO{sub 3} and ZrO{sub 2} were fired at around 630 °C in H{sub 2} for several hours and several firing cycles. The low firing temperature inhibited the vaporization of Li during the heating, so that excessive amounts of Li were not needed for the synthesis, and the Li:Zr ratio in the starting material was 10:1 (mol:mol). In this synthesis, Li{sub 2}O was generated via the decomposition of Li{sub 2}CO{sub 3} during firing in H{sub 2}, and reacted with ZrO{sub 2} to form Li{sub 6}Zr{sub 2}O{sub 7}, which reacted with itself to form Li{sub 8}ZrO{sub 6}.

  5. Effect of Sintering Atmosphere and Solution Treatment on Density, Microstructure and Tensile Properties of Duplex Stainless Steels Developed from Pre-alloyed Powders

    Science.gov (United States)

    Murali, Arun Prasad; Mahendran, Sudhahar; Ramajayam, Mariappan; Ganesan, Dharmalingam; Chinnaraj, Raj Kumar

    2017-10-01

    In this research, Powder Metallurgy (P/M) of Duplex Stainless Steels (DSS) of different compositions were prepared through pre-alloyed powders and elemental powders with and without addition of copper. The powder mix was developed by pot mill for 12 h to obtain the homogeneous mixture of pre-alloyed powder with elemental compositions. Cylindrical green compacts with the dimensions of 30 mm diameter and 12 mm height were compacted through universal testing machine at a pressure level of 560 ± 10 MPa. These green compacts were sintered at 1350 °C for 2 h in hydrogen and argon atmospheres. Some of the sintered stainless steel preforms were solution treated at 1050 °C followed by water quenching. The sintered as well as solution treated samples were analysed by metallography examination, Scanning Electron Microscopy and evaluation of mechanical properties. Ferrite content of sintered and solution treated DSS were measured by Fischer Ferritoscope. It is inferred that the hydrogen sintered DSS depicted better density (94% theoretical density) and tensile strength (695 MPa) than the argon sintered steels. Similarly the microstructure of solution treated DSS revealed existence of more volume of ferrite grains than its sintered condition. Solution treated hydrogen sintered DSS A (50 wt% 316L + 50 wt% 430L) exhibited higher tensile strength of 716 MPa and elongation of 17%, which are 10-13% increment than the sintered stainless steels.

  6. A study of Al-Mo powder processing as a possible way to corrosion resistent aluminum-alloys

    Directory of Open Access Journals (Sweden)

    Wilson Corrêa Rodrigues

    2009-06-01

    Full Text Available Elementary Al and Mo powder mixtures have been processed by high energy ball milling up to milling times of 100 hours. The shift of the pitting potential and the X ray analysis of green milled samples showed that part of the Mo has formed a supersaturated solid solution of Mo in Al. Elementary Mo powder, however, was still present after 100 hours of milling. Sintering led to the formation of the intermetallic Al12Mo phase.

  7. A series of new soliton-like solutions and double-like periodic solutions of a (2 + 1)-dimensional dispersive long wave equation

    International Nuclear Information System (INIS)

    Yong Chen; Qi Wang

    2005-01-01

    In this paper, we extend the algebraic method proposed by Fan (Chaos, Solitons and Fractals 20 (2004) 609) and the improved extended tanh method by Yomba (Chaos, Solitons and Fractals 20 (2004) 1135) to uniformly construct a series of soliton-like solutions and double-like periodic solutions for nonlinear partial differential equations (NPDE). Some new soliton-like solutions and double-like periodic solutions of a (2 + 1)-dimensional dispersive long wave equation are obtained

  8. Modelling solid solutions with cluster expansion, special quasirandom structures, and thermodynamic approaches

    Science.gov (United States)

    Saltas, V.; Horlait, D.; Sgourou, E. N.; Vallianatos, F.; Chroneos, A.

    2017-12-01

    Modelling solid solutions is fundamental in understanding the properties of numerous materials which are important for a range of applications in various fields including nanoelectronics and energy materials such as fuel cells, nuclear materials, and batteries, as the systematic understanding throughout the composition range of solid solutions for a range of conditions can be challenging from an experimental viewpoint. The main motivation of this review is to contribute to the discussion in the community of the applicability of methods that constitute the investigation of solid solutions computationally tractable. This is important as computational modelling is required to calculate numerous defect properties and to act synergistically with experiment to understand these materials. This review will examine in detail two examples: silicon germanium alloys and MAX phase solid solutions. Silicon germanium alloys are technologically important in nanoelectronic devices and are also relevant considering the recent advances in ternary and quaternary groups IV and III-V semiconductor alloys. MAX phase solid solutions display a palette of ceramic and metallic properties and it is anticipated that via their tuning they can have applications ranging from nuclear to aerospace industries as well as being precursors for particular MXenes. In the final part, a brief summary assesses the limitations and possibilities of the methodologies discussed, whereas there is discussion on the future directions and examples of solid solution systems that should prove fruitful to consider.

  9. Eggshell Powder as an Adsorbent for Removal of Fluoride from Aqueous Solution: Equilibrium, Kinetic and Thermodynamic Studies

    Directory of Open Access Journals (Sweden)

    R. Bhaumik

    2012-01-01

    Full Text Available A new medium, eggshell powder has been developed for fluoride removal from aqueous solution. Fluoride adsorption was studied in a batch system where adsorption was found to be pH dependent with maximum removal efficiency at 6.0. The experimental data was more satisfactorily fitted with Langmuir isotherm model. The kinetics and the factor controlling adsorption process fully accepted by pseudo-second-order model were also discussed. Ea was found to be 45.98 kJmol-1 by using Arrhenius equation, indicating chemisorption nature of fluoride onto eggshell powder. Thermodynamic study showed spontaneous nature and feasibility of the adsorption process with negative enthalpy (∆H0 value also supported the exothermic nature. Batch experiments were performed to study the applicability of the adsorbent by using fluoride contaminated water collected from affected areas. These results indicate that eggshell powder can be used as an effective, low-cost adsorbent to remove fluoride from aqueous solution as well as groundwater.

  10. Impact of vacancy-solute clusters on the aging of α-Fe solid solutions

    International Nuclear Information System (INIS)

    Schuler, Thomas

    2015-01-01

    Understanding and monitoring the aging of steels under vacancy supersaturation is a challenge of great practical interest for many industrial groups, and most of all for those related to nuclear energy. These steels always contain interstitial solutes, either as alloying elements or as impurities, and vacancies (V) that are equilibrium structural defects of materials. We have chosen the Fe-V -X system (X = C, N or O) as a model system for ferritic steels. Vacancy-solute clusters are likely to form in such systems because, despite the very low concentrations of their components, these cluster show very high attractive bonding. First of all, we have been working on the computation of intrinsic equilibrium properties of individual clusters, both thermodynamic (free binding energies) and kinetic (mobilities, dissociation coefficients, and their relationship with continuum diffusion) properties. Thanks to this atomic-scale characterization procedure, we have been able to highlight various effects of these clusters on a macroscopic system containing different cluster types: increase of solute solubility limits and total vacancy concentrations, flux couplings between interstitial solutes and vacancies, acceleration of solute precipitation kinetics and precipitate dissolution by solid solution stabilization due to vacancies. These results would not have been obtained without the development and/or extension of analytical methods in statistical physics which are able to describe cluster's components and their interactions at the atomic scale. Finally, we have also been working on cavities in α-iron, the study of which requires a different approach. Our study highlights the impact of the atomic discrete lattice on the equilibrium shape of cavities, and describes various kinetic mechanisms of these objects at the atomic scale. (author) [fr

  11. Synthesis of nanometer metallic powders or its oxides by γ-ray reduction of salts aqueous solution

    International Nuclear Information System (INIS)

    Zhang Manwei; Zhu Yingjie; Qian Yitai; Chen Zuyao

    1995-01-01

    The nanocrystal powders of pure Ag, Cu, Ni, Pt, Au, Pd, Cd, Sn, Pb and Co were obtained by γ-radiation reduction of their salt aqueons solution. The average particle sizes of them are 5-45 nm respectively. the factors affecting the particle size and the formation and growth of the nanocrystal particles into single crystal are illustrated and discussed. the pure nanocrystal Cu 2 O powders were also successfully prepared. The mechanism of its formation is discussed. (author)

  12. Turbulent solutal convection and surface patterning in solid dissolution

    International Nuclear Information System (INIS)

    Sullivan, T.S.; Liu, Y.; Ecke, R.E.

    1996-01-01

    We describe experiments in which crystals of NaCl, KBr, and KCl are dissolved from below by aqueous solutions containing concentrations of the respective salts from zero concentration to near saturation. The solution near the solid-liquid interface is gravitationally unstable, producing turbulent hydrodynamic motion similar to thermal convection from a single surface cooled from above. The coupling of the fluid flow with the solid dissolution produces irregular patterns at the solid-liquid interface with a distribution of horizontal length scales. The dissolution mass flux and the pattern length scales are compared with a turbulent boundary layer model. Remarkable agreement is found, showing that the fluid motion controls both the dissolution rate and the interface patterning. copyright 1996 The American Physical Society

  13. Pulsed laser photoacoustic spectrometer for study of solid materials

    International Nuclear Information System (INIS)

    Patel, N.D.; Kartha, V.B.

    1991-01-01

    The technique of photoacoustic spectroscopy has wide applications bacause it is extremely sensitive, and can be used to obtain spectra in wide spectral range for solids, liquids, gases, solutions, crystals etc. which may be usually difficult by conventional methods. For studying a variety of materials, a pulsed laser photoacoustic spectrometer has been set up in the laboratory. The report discusses the design and performance of the instrument. Some of the spectra of materials like Nd 2 O 9 powder, Nd-YAG crystal, CoCl 2 6H 2 O etc. are shown. A detailed discussion on assignment of the spectra of Nd-YAG is also presented. (author). 4 refs., 5 figs., 1 tab

  14. Magnetic susceptibilities of Ca/sub y/U/sub 1-y/O/sub 2+x/ solid solutions

    International Nuclear Information System (INIS)

    Hinatsu, Y.; Fujino, T.

    1988-01-01

    Magnetic susceptibilities of Ca/sub y/U/sub 1-y/O/sub 2+x/ solid solutions with fluorite structure were measured from 4.2 K to room temperature. An antiferromagnetic transition was observed for all the solid solutions examined in this study (y ≤ 0.33). The Neel temperature of the oxygen-hypostoichiometric solid solutions (x 2 solid solutions, but different from that of (U,Th)O 2 solid solutions. The effective magnetic moment decreased with increasing calcium concentration, which indicates the oxidation of uranium in the solid solutions. From the analysis of the magnetic susceptibility data, it was found that the oxidation state of uranium was either tetravalent or pentavalent. The Neel temperature of the hyperstoichiometric solid solutions (x > 0) did not change appreciably with calcium concentrations. From the comparison of the magnetic susceptibility data of the hypostoichiometric solid solutions with those of the hyperstoichiometric solid solutions, the effect of oxygen vacancies is more significant than that of interstitial oxygens on the decrease of magnetic interactions between uranium ions

  15. Improved creep strength of nickel-base superalloys by optimized γ/γ′ partitioning behavior of solid solution strengthening elements

    International Nuclear Information System (INIS)

    Pröbstle, M.; Neumeier, S.; Feldner, P.; Rettig, R.; Helmer, H.E.; Singer, R.F.; Göken, M.

    2016-01-01

    Solid solution strengthening of the γ matrix is one key factor for improving the creep strength of single crystal nickel-base superalloys at high temperatures. Therefore a strong partitioning of solid solution hardening elements to the matrix is beneficial for high temperature creep strength. Different Rhenium-free alloys which are derived from CMSX-4 are investigated. The alloys have been characterized regarding microstructure, phase compositions as well as creep strength. It is found that increasing the Titanium (Ti) as well as the Tungsten (W) content causes a stronger partitioning of the solid solution strengtheners, in particular W, to the γ phase. As a result the creep resistance is significantly improved. Based on these ideas, a Rhenium-free alloy with an optimized chemistry regarding the partitioning behavior of W is developed and validated in the present study. It shows comparable creep strength to the Rhenium containing second generation alloy CMSX-4 in the high temperature / low stress creep regime and is less prone to the formation of deleterious topologically close packed (TCP) phases. This more effective usage of solid solution strengtheners can enhance the creep properties of nickel-base superalloys while reducing the content of strategic elements like Rhenium.

  16. Thermal expansion studies on uranium-neodymium mixed oxide solid solutions

    International Nuclear Information System (INIS)

    Panneerselvam, G.; Venkata Krishnan, R.; Antony, M.P.; Nagarajan, K.

    2012-01-01

    Uranium-Neodymium mixed oxides solid solutions (U 1-y Nd y ) O 2 (y=0.2-0.95) were prepared by combustion synthesis using citric acid as fuel. Structural characterization and computation of lattice parameter was carried out from room temperature X-ray diffraction measurements. Single-phase fluorite structure was observed up to y=0.80. For solid solutions with y>0.80 additional Nd 2 O 3 lines were visible

  17. Reaction paths and equilibrium end-points in solid-solution aqueous-solution systems

    Science.gov (United States)

    Glynn, P.D.; Reardon, E.J.; Plummer, Niel; Busenberg, E.

    1990-01-01

    Equations are presented describing equilibrium in binary solid-solution aqueous-solution (SSAS) systems after a dissolution, precipitation, or recrystallization process, as a function of the composition and relative proportion of the initial phases. Equilibrium phase diagrams incorporating the concept of stoichiometric saturation are used to interpret possible reaction paths and to demonstrate relations between stoichiometric saturation, primary saturation, and thermodynamic equilibrium states. The concept of stoichiometric saturation is found useful in interpreting and putting limits on dissolution pathways, but there currently is no basis for possible application of this concept to the prediction and/ or understanding of precipitation processes. Previously published dissolution experiments for (Ba, Sr)SO4 and (Sr, Ca)C??O3orth. solids are interpreted using equilibrium phase diagrams. These studies show that stoichiometric saturation can control, or at least influence, initial congruent dissolution pathways. The results for (Sr, Ca)CO3orth. solids reveal that stoichiometric saturation can also control the initial stages of incongruent dissolution, despite the intrinsic instability of some of the initial solids. In contrast, recrystallisation experiments in the highly soluble KCl-KBr-H2O system demonstrate equilibrium. The excess free energy of mixing calculated for K(Cl, Br) solids is closely modeled by the relation GE = ??KBr??KClRT[a0 + a1(2??KBr-1)], where a0 is 1.40 ?? 0.02, a1, is -0.08 ?? 0.03 at 25??C, and ??KBr and ??KCl are the mole fractions of KBr and KCl in the solids. The phase diagram constructed using this fit reveals an alyotropic maximum located at ??KBr = 0.676 and at a total solubility product, ???? = [K+]([Cl-] + [Br-]) = 15.35. ?? 1990.

  18. Modern trends in x-ray powder diffraction

    International Nuclear Information System (INIS)

    Goebel, H.E.; Snyder, R.L.

    1985-01-01

    The revival of interest in X-ray powder diffraction, being quoted as a metamorphosis from the 'ugly duckling' to a 'beautiful swan', can be attributed to a number of modern developments in instrumentation and evaluation software. They result in faster data collection, improved accuracy and resolution, and better detectability of minor phases. The ease of data evaluation on small computers coupled direct to the instrument allows convenient execution of previously tedious and time-consuming off-line tasks like qualitative and quantitative analysis, characterization of microcrystalline properties, indexing, and lattice-constant refinements, as well as structure refinements or even exploration of new crystal structures. Powder diffraction has also progressed from an isolated analytical laboratory method to an in situ technique for analysing solid-state reactions or for the on-stream control of industrial processes. The paper surveys these developments and their real and potential applications, and tries to emphasize new trends that are regarded as important steps for the further progress of X-ray powder diffraction

  19. Nanospray Drying as a Novel Technique for the Manufacturing of Inhalable NSAID Powders

    Directory of Open Access Journals (Sweden)

    Aquino Rita Patrizia

    2014-01-01

    Full Text Available The aim of this research was to evaluate the potential of the nanospray drier as a novel apparatus for the manufacturing of a dry powder for inhalation containing ketoprofen lysinate, a nonsteroidal anti-inflammatory drug able to control the inflammation in cystic fibrosis patients. We produced several ketoprofen lysinate and leucine powder batches by means of nanospray dryer, studying the influence of process parameters on yield, particle properties (size distribution and morphology, and, mainly, aerodynamic properties of powders. Micronized particles were prepared from different hydroalcoholic solutions (alcohol content from 0 to 30% v/v using ketoprofen in its lysine salt form and leucine as dispersibility enhancer in different ratios (from 5 to 15% w/w with a total solid concentration ranging from 1 to 7% w/v. Results indicated that the spray head equipped with a 7 µm nozzle produced powders too big to be inhaled. The reduction of nozzle size from 7 to 4 µm led to smaller particles suitable for inhalation but, at the same time, caused a dramatic increase in process time. The selection of process variables, together with the nozzle pretreatment with a surfactant solution, allowed us to obtain a free flowing powder with satisfying aerosol performance, confirming the usefulness of the nanospray drier in the production of powder for inhalation.

  20. The effect of structural changes during sintering on the electric and magnetic traits of the Ni96.7Mo3.3 alloy nanostructured powder

    Directory of Open Access Journals (Sweden)

    Ribić-Zelenović L.

    2009-01-01

    Full Text Available Ni96.7Mo3.3 powder was electrochemically obtained. An X-ray diffraction analysis determined that the powder consisted of a 20% amorphous and 80% crystalline phase. The crystalline phase consisted of a nanocrystalline solid nickel and molybdenum solution with a face-centred cubic (FCC lattice with a high density of chaotically distributed dislocations and high microstrain value. The scanning electronic microscopy (SEM showed that two particle structures were formed: larger cauliflower-like particles and smaller dendriteshaped ones. The thermal stability of the alloy was examined by differential scanning calorimetry (DSC and by measuring the temperature dependence of the electrical resistivity and magnetic permeability. Structural powder relaxation was carried out in the temperature range of 450 K to 560 K causing considerable changes in the electrical resistivity and magnetic permeability. Upon structural relaxation, the magnetic permeability of the cooled alloy was about 80% higher than the magnetic permeability of the fresh powder. The crystallisation of the amorphous portion of the powder and crystalline grain increase occurred in the 630 K to 900 K temperature interval. Upon crystallisation of the amorphous phase and crystalline grain increase, the powder had about 50% lower magnetic permeability than the fresh powder and 3.6 times lower permeability than the powder where only structural relaxation took place.

  1. Thermodynamic characteristics of systems with solid solutions composed of crystal hydrates of lanthanide and yttrium chlorides, at 250C. III. Systems of Roozeboom's type IV, with restricted solid solutions

    International Nuclear Information System (INIS)

    Sokolova, N.P.

    1983-01-01

    The values of the activity, the activity coefficients, the free energy of mixing and the excess free energy of mixing have been calculated for CeCl 3 -LnCl 3 -H 2 O systems (where Ln identical with Sm, Gd, Dy, Ho, Er, Y) containing solid solutions of types IV and IVa. It is shown that the stability of the solid solutions decreases with increasing difference between the radii of the cations of cerium and the second lanthanide, which enter into the composition of the components of the solid solutions. The factors determining the composition of a liquid solution corresponding to the eutonic point are specified

  2. Effects of Lignosulfonate Structure on the Surface Activity and Wettability to a Hydrophobic Powder

    Directory of Open Access Journals (Sweden)

    Yuanyuan Ge

    2014-10-01

    Full Text Available The wettability of a solid material is very important in many applications, such as food, agrochemical formulations, and cosmetics. Wettability can be improved by adding surface active agents, especially biocompatible surfactants derived from biomass. In this work, the surface activity (ability to lower the surface tension of an aqueous solution and wettability toward a hydrophobic powder by a series of sodium lignosulfonates (NaLS synthesized with different degree of sulfonation (QS and weight-average molecular weights (Mw were investigated by measuring the surface tension and contact angle. The results demonstrated NaLS with a larger Mw or lower QS had higher surface activity. Conversely, the wettability of the NaLS aqueous solution toward difenoconazole powder showed a reverse trend, i.e., NaLS with a smaller Mw or higher Qs improved the wettability to difenoconazole. The surface activity and wettability was controlled by the varying densities of the NaLS molecules at the water to air interface or the solid/liquid interface, which was dependent on the molecular structure of NaLS.

  3. Valence states of cobalt and crystal structure peculiarities of solid solution YBa2Cu3-xCoxO6+σ

    International Nuclear Information System (INIS)

    Voronin, V.I.; Goshchinskij, B.N.; Mitberg, Eh.B.; Leonidov, I.A.; Kozhevnikov, V.L.

    2000-01-01

    Crystal structure of solid solution YBa 2 Cu 3-x Co x O 6+σ , where x = 0.2, 0.4, 0.6 and 0.8, is studied by the method of powder neutron diffraction. Charge states of the cation are calculated using the interatomic distances obtained. It is shown that cobalt in Cu1 position has valency 3 + and octahedral coordination at x = 0.2 and 0.4. Increase in doping degree involves both transition of a portion of cobalt ions in the positions mentioned to the state with valence 4 + and tetrahedral coordination and partial substitution of copper in Cu2 position [ru

  4. Solid lipid nanoparticles suspension versus commercial solutions for dermal delivery of minoxidil.

    Science.gov (United States)

    Padois, Karine; Cantiéni, Céline; Bertholle, Valérie; Bardel, Claire; Pirot, Fabrice; Falson, Françoise

    2011-09-15

    Solid lipid nanoparticles have been reported as possible carrier for skin drug delivery. Solid lipid nanoparticles are produced from biocompatible and biodegradable lipids. Solid lipid nanoparticles made of semi-synthetic triglycerides stabilized with a mixture of polysorbate and sorbitan oleate were loaded with 5% of minoxidil. The prepared systems were characterized for particle size, pH and drug content. Ex vivo skin penetration studies were performed using Franz-type glass diffusion cells and pig ear skin. Ex vivo skin corrosion studies were realized with a method derived from the Corrositex(®) test. Solid lipid nanoparticles suspensions were compared to commercial solutions in terms of skin penetration and skin corrosion. Solid lipid nanoparticles suspensions have been shown as efficient as commercial solutions for skin penetration; and were non-corrosive while commercial solutions presented a corrosive potential. Solid lipid nanoparticles suspensions would constitute a promising formulation for hair loss treatment. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Crystalline structure and electrical properties of Dy1-XCaXMnO3 solid solution

    Directory of Open Access Journals (Sweden)

    Durán, P.

    2002-12-01

    Full Text Available Solid solutions corresponding to the Dy1-xCaXMnO3 system, x=0.0 to 0.60 have been studied. The powders were prepared by solid state reaction of the corresponding oxides and carbonates. Sintered bodies were obtained by firing between 1250 and 1450ºC. All the compositions showed single-phased perovskite-type structure with orthorhombic symmetry and Space Group Pbnm. Increase of the CaO content leads to a monotonic decrease of the orthorhombicity factor b/a with the Ca2+ concentration up to x=0.60. All the solid solutions crystallised with the same O’-type orthorhombic perovskite structure such as pure DyMnO3. Electrical measurements have shown semiconducting behaviour for all the solid solutions. The room temperature conductivity increases monotonically with the CaO content. The 60/40 Ca/Dy composition showed a high value of the electrical conductivity and a correlative very low value of the activation energy. Thermally activated small polaron hopping mechanism controls the conductivity of these perovskite ceramics.Se han estudiado soluciones sólidas correspondientes al sistema Dy1-xCaxMnO3, x=0.0 a 0.60. Los polvos cerámicos fueron preparados por reacción en estado sólido de los correspondientes óxidos y carbonatos. Los materiales cerámicos se obtuvieron por sinterización entre 1250º y 1450ºC. Todas las composiciones fueron monofásicas y mostraron una estructura tipo perovskita, con simetría ortorrómbica y Grupo Espacial Pbnm. El aumento del contenido en CaO llevó a una disminución monótona del factor de ortorrombicidad, b/a. Todas las soluciones sólidas cristalizaron con el mismo tipo de estructura perovskita ortorrómbica O’, como la del compuesto puro DyMnO3. Las medidas eléctricas mostraron comportamiento semiconductor en todas las soluciones sólidas. La conductividad a temperatura ambiente aumenta monótonamente con el contenido de CaO. La composición 60/40 mostró un elevado valor de conductividad y un correlativo

  6. Low temperature kinetics of In-Cd solid solution decomposition

    Czech Academy of Sciences Publication Activity Database

    Pal-Val, P.P.; Pal-Val, L.N.; Ostapovets, A.A.; Vaněk, Přemysl

    2008-01-01

    Roč. 137, - (2008), s. 35-42 ISSN 1012-0394 Institutional research plan: CEZ:AV0Z10100520 Keywords : low temperatures * In-based alloys * solid solutions * isothermal structure instability * Young's modulus * electrical resistivity * phase diagrams Subject RIV: BM - Solid Matter Physics ; Magnetism http://www.scientific.net/3-908451-53-1/35/

  7. Easy solid-phase synthesis of pH-insensitive heterogeneous CNTs/FeS Fenton-like catalyst for the removal of antibiotics from aqueous solution.

    Science.gov (United States)

    Ma, Jie; Yang, Mingxuan; Yu, Fei; Chen, Junhong

    2015-04-15

    We report a facile solid method to synthesize efficient carbon-based Fenton-like catalyst (CNTs/FeS) using as-prepared carbon nanotubes (APCNTs), which makes full use of the iron nanoparticles in APCNTs without needless purification. Furthermore, the CNTs/FeS was characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric (TG) and other analysis techniques, and then the CNTs/FeS was used as a Fenton-like catalyst for removing ciprofloxacin from aqueous solution. Response Surface Methodology (RSM) was applied to find the effect of the reaction parameter and the optimum operating condition. Results shows the catalytic reaction had better suitability than previous studies in a wide range of pH values (pH 3-8) and the Fenton-like catalyst CNTs/FeS exhibits good catalytic activity for removing of antibiotic, which be attributed to the synergistic effect of adsorption-advanced oxidation and significantly improves efficiency of advanced oxidation. More importantly, the CNTs/FeS catalyst exhibit good regeneration performance and retains a high catalytic capacity (>75%) even after four reaction cycles. The catalytic mechanism were also studied further, the removal mechanism of ciprofloxacin by a CNTs/FeS heterogeneous Fenton-like process primarily involves three removal pathways occurring simultaneously: (a) adsorption removal by CNTs, (b) Fenton-like degradation catalyzed by FeS, (c) catalytic degradation by CNTs catalyst. And these actions also have synergistic effects for ciprofloxacin removal. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Nanometer, submicron and micron sized aluminum powder prepared by semi-solid mechanical stirring method with addition of ceramic particles

    International Nuclear Information System (INIS)

    Qin, X.H.; Jiang, D.L.; Dong, S.M.

    2004-01-01

    Composite powder, which is a mixture of Al/Al 2 O 3 composite particles and nanometer, submicron and micron sized aluminum powder, was prepared by semi-solid mechanical stirring method with addition of Al 2 O 3 ceramic particles. The ceramic particles have an average diameter of 80 μm and a volume fraction of 15% in the slurry. The methods used to measure the size distribution of particles greater than 50 μm and less than 50 μm were sieve analysis and photosedimentation, respectively. The surface morphology and transverse sections of the composite powder of different sizes were examined by scanning electron microscope (SEM), optical microscope and auger electron spectroscopy (AES). The results indicate that the composite powder prepared in present work have a wide size distribution ranging from less than 50-900 μm, and the aluminum particles and Al/Al 2 O 3 composite particles are separated and isolated. The particles greater than 200 μm and less than 50 μm are almost pure aluminum powder. The rate of conversion of ingot aluminum into particles less than 1 μm containing nanometer and submicron sizes is 1.777 wt.% in this work. The aluminum powder of different sizes has different shape and surface morphology, quasi-spherical in shape with rough surface for aluminum particles of micron scale, irregular in shape for aluminum particles of submicron scale, and quite close to a globular or an excellent globular in shape for aluminum particles of nanometer size. On the other hand, the surface of ceramic particle was coated by aluminum particles with maximum thickness less than 10 μm containing nanometer and submicron sizes as a single layer. It is suggested that the surface of ceramic particles can provide more nucleation sites for solidification of liquid aluminum and the nucleation of liquid aluminum can take place readily, grow and adhere on the surface of ceramic particles, although it is poorly wetted by the liquid aluminum and the semi-solid slurry can

  9. Preparation of cerium oxide for lens polishing powder

    International Nuclear Information System (INIS)

    Injarean, Uthaiwan; Rodthongkom, Chouvana; Pichestapong, Pipat; Changkrurng, Kalaya

    2003-10-01

    Cerium is an element of rare earth group which is called lanthanide series. It is found in the ores like monazite and xenotime which are the tailings of tin mines in the south of Thailand. Cerium is used mostly as lens polishing powder besides the applications in other industries. In this study, cerium extracted from monazite ore breakdown by alkaline process was used for the preparation of lens polishing powder. Cerium hydroxide cake from the process was dissolved by hydrochloric acid and precipitated with oxalic acid. The oxalate precipitate then was calcined to oxide powder and its particle size was measured. Precipitation conditions being studied are concentration of feed cerium chloride solution, concentration of oxalic acid used for the precipitation, concentration of sulfuric acid used as precipitation control reagent and the precipitation temperature. It was found that the appropriate precipitation conditions yielded the fine oxide powder with particle size about 12μm. The oxide powder can be ground to the size of 1-3 μm which is suitable for making lens polishing powder

  10. Dislocation cross-slip in fcc solid solution alloys

    International Nuclear Information System (INIS)

    Nöhring, Wolfram Georg; Curtin, W.A.

    2017-01-01

    Cross-slip is a fundamental process of screw dislocation motion and plays an important role in the evolution of work hardening and dislocation structuring in metals. Cross-slip has been widely studied in pure FCC metals but rarely in FCC solid solutions. Here, the cross-slip transition path in solid solutions is calculated using atomistic methods for three representative systems of Ni-Al, Cu-Ni and Al-Mg over a range of solute concentrations. Studies using both true random alloys and their corresponding average-alloy counterparts allow for the independent assessment of the roles of (i) fluctuations in the spatial solute distribution in the true random alloy randomness and (ii) average alloy properties such as stacking fault energy. The results show that the solute fluctuations dominate the activation energy barrier, i.e. there are large sample-to-sample variations around the average activation barrier. The variations in activation barrier correlate linearly with the energy difference between the initial and final states. The distribution of this energy difference can be computed analytically in terms of the solute/dislocation interaction energies. Thus, the distribution of cross-slip activation energies can be accurately determined from a parameter-free analytic model. The implications of the statistical distribution of activation energies on the rate of cross-slip in real alloys are then identified.

  11. Grape powder intake prevents ovariectomy-induced anxiety-like behavior, memory impairment and high blood pressure in female Wistar rats.

    Directory of Open Access Journals (Sweden)

    Gaurav Patki

    Full Text Available Diminished estrogen influence at menopause is reported to be associated with cognitive decline, heightened anxiety and hypertension. While estrogen therapy is often prescribed to overcome these behavioral and physiological deficits, antioxidants which have been shown beneficial are gaining nutritional intervention and popularity. Therefore, in the present study, utilizing the antioxidant properties of grapes, we have examined effect of 3 weeks of grape powder (GP; 15 g/L dissolved in tap water treatment on anxiety-like behavior, learning-memory impairment and high blood pressure in ovariectomized (OVX rats. Four groups of female Wistar rats were used; sham control, sham-GP treated, OVX and OVX+GP treated. We observed a significant increase in systolic and diastolic blood pressure in OVX rats as compared to sham-controls. Furthermore, ovariectomy increased anxiety-like behavior and caused learning and memory impairment in rats as compared to sham-controls. Interestingly, providing grape powder treated water to OVX rats restored both systolic and diastolic blood pressure, decreased anxiety-like behavior and improved memory function. Moreover, OVX rats exhibited an impaired long term potentiation which was restored with grape powder treatment. Furthermore, ovariectomy increased oxidative stress in the brain, serum and urine, selectively decreasing antioxidant enzyme, glyoxalase-1 protein expression in the hippocampus but not in the cortex and amygdala of OVX rats, while grape powder treatment reversed these effects. Other antioxidant enzyme levels, including manganese superoxide dismutase (SOD and Cu/Zn SOD remained unchanged. We suggest that grape powder by regulating oxidative stress mechanisms exerts its protective effect on blood pressure, learning-memory and anxiety-like behavior. Our study is the first to examine behavioral, biochemical, physiological and electrophysiological outcome of estrogen depletion in rats and to test protective role

  12. Phase segregation in cerium-lanthanum solid solutions

    NARCIS (Netherlands)

    Belliere, V.; Joorst, G; Stephan, O; de Groot, FMF; Weckhuysen, BM

    2006-01-01

    Electron energy-loss spectroscopy (EELS) in combination with scanning transmission electron microscopy ( STEM) reveals that the La enrichment at the surface of cerium-lanthanum solid solutions is an averaged effect and that segregation occurs in a mixed oxide phase. This separation occurs within a

  13. Geochemical and numerical modelling of interactions between solid solutions and an aqueous solution. Extension of a reactive transport computer code called Archimede and application to reservoirs diagenesis; Modelisation geochimique et numerique des interactions entre des solutions solides et une solution aqueuse: extension du logiciel de reaction-transport archimede et application a la diagenese des reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Nourtier-Mazauric, E.

    2003-03-15

    This thesis presents a thermodynamic and kinetic model of interactions between a fluid and ideal solid solutions represented by several end-members. The reaction between a solid solution and the aqueous solution results from the competition between the stoichiometric dissolution of the initial solid solution and the co-precipitation of the least soluble solid solution in the fluid at considered time. This model was implemented in ARCHIMEDE, a computer code of reactive transport in porous media, then applied to various examples. In the case of binary solid solutions, a graphical method allowed to determine the compositions of the precipitating solid solutions, with the aid of the end-member chemical potentials. The obtained program could be used to notably model the diagenesis of clayey or carbonated oil reservoirs, or the ground pollutant dispersion. (author)

  14. Investigation of the hydrothermal crystallisation of the perovskite solid solution NaCe{sub 1−x}La{sub x}Ti{sub 2}O{sub 6} and its defect chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Harunsani, Mohammad H. [Department of Chemistry, University of Warwick, Coventry CV4 7AL (United Kingdom); Woodward, David I. [Department of Physics, University of Warwick, Coventry CV4 7Al (United Kingdom); Peel, Martin D.; Ashbrook, Sharon E. [School of Chemistry, and EaStCHEM University of St. Andrews, North Haugh, St. Andrews, KY16 9ST (United Kingdom); Walton, Richard I., E-mail: r.i.walton@warwick.ac.uk [Department of Chemistry, University of Warwick, Coventry CV4 7AL (United Kingdom)

    2013-11-15

    Perovskites of nominal composition NaCe{sub 1−x}La{sub x}Ti{sub 2}O{sub 6} (0≤x≤1) crystallise directly under hydrothermal conditions at 240 °C. Raman spectroscopy shows distortion from the ideal cubic structure and Rietveld analysis of powder X-ray and neutron diffraction reveals that the materials represent a continuous series in rhombohedral space group R3-bar c. Ce L{sub III}-edge X-ray absorption near edge structure spectroscopy shows that while the majority of cerium is present as Ce{sup 3+} there is evidence for Ce{sup 4+}. The paramagnetic Ce{sup 3+} affects the chemical shift and line width of {sup 23}Na MAS NMR spectra, which also show with no evidence for A-site ordering. {sup 2}H MAS NMR of samples prepared in D{sub 2}O shows the inclusion of deuterium, which IR spectroscopy shows is most likely to be as D{sub 2}O. The deuterium content is highest for the cerium-rich materials, consistent with oxidation of some cerium to Ce{sup 4+} to provide charge balance of A-site water. - Graphical abstract: A multi-element A-site perovskite crystallises directly from aqueous, basic solutions at 240 °C; while the paramagnetic effect of Ce{sup 3+} on the {sup 23}Na NMR shows a homogeneous solid-solution, the incorporation of A-site water is also found from {sup 2}H NMR and IR, with oxidation of some cerium to charge balance proved by XANES spectroscopy. Display Omitted - Highlights: • Direct hydrothermal synthesis allows crystallisation of a perovskite solid-solution. • XANES spectroscopy shows some oxidation of Ce{sup 3+} to Ce{sup 4+}. • The paramagnetism of Ce{sup 3+} shifts and broadens the {sup 23}Na solid-state NMR. • The perovskite materials incorporate water as an A-site defect.

  15. Synthesis, characterization and thermal expansion studies on thorium-praseodymium mixed oxide solid solutions

    International Nuclear Information System (INIS)

    Panneerselvam, G.; Antony, M.P.; Srinivasan, T.G.; Vasudeva Rao, P.R.

    2010-01-01

    Full text: Thorium-praseodymium mixed oxide solid solutions containing 15, 25, 40 and 55 mole percent of praseodymia were synthesized by mixing the solutions of thorium nitrate in water and praseodymium oxide (Pr 6 O 11 ) in conc. HNO 3 . Subsequently, their hydroxides were co-precipitated by the addition of aqueous ammonia. Further the precipitate was dried at 50 deg C, calcined at 600 deg C for 4 hours and sintered at 1200 deg C for 6 h in air. X-ray diffraction measurements were performed for phase identification and lattice parameter derivation. Single-phase fluorite structure was observed for all the compositions. Bulk and theoretical densities of solid solutions were also determined by immersion and X-ray techniques. Thermal expansion coefficients and percentage linear thermal expansion of the solid solutions were determined using high temperature X-ray diffraction technique in the temperature range 300 to 1700 K for the first time. The room temperature lattice constants estimated for above compositions are 0.5578, 0.5565, 0.5545 and 0.5526 nm, respectively. The mean linear thermal expansion coefficients for the solid solutions are 15.48 x 10 -6 K -1 , 18.35 x 10 -6 K -1 , 22.65 x 10 -6 K -1 and 26.95 x 10 -6 K -1 , respectively. The percentage linear thermal expansions in this temperature range are 1.68, 1.89, 2.21 and 2.51 respectively. It is seen that the solid solutions are stable up to 1700 K. It is also seen that the effect and nature of the dopant are the important parameters influencing the thermal expansion of the ThO 2 . The lattice parameter of the solid solutions exhibited a decreasing trend with respect to praseodymia addition. The percentage linear thermal expansion of the solid solutions increases steadily with increasing temperature

  16. Na{sub 2}EDTA-assisted hydrothermal synthesis and electrochemical performance of LiFePO{sub 4} powders with rod-like and block-like morphologies

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Juan, E-mail: juanwang168@gmail.com [Shaanxi Key Laboratory of Nanomaterials and Nanotechnology, Xi' an University of Architecture and Technology, Xi' an 710055 (China); Zheng, Siqi; Yan, Hao; Zhang, Haipeng [Shaanxi Key Laboratory of Nanomaterials and Nanotechnology, Xi' an University of Architecture and Technology, Xi' an 710055 (China); Hojamberdiev, Mirabbos [Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama, Kanagawa 226-8503 (Japan); Ren, Bing; Xu, Yunhua [Shaanxi Key Laboratory of Nanomaterials and Nanotechnology, Xi' an University of Architecture and Technology, Xi' an 710055 (China)

    2015-06-15

    Nano and micro-sized LiFePO{sub 4} were synthesized by disodium ethylenediamine tetraacetate (Na{sub 2}EDTA) – assisted hydrothermal synthesis method with the pH of synthesizing solution in the range from 2 to 8. The as-synthesized samples were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM) and electrochemical performance experiments. The obtained results showed that the pH of synthesizing solution played a key role in the formation of the final products with different morphologies, including rod-like and block-like structures and so on. The formation mechanism and the influence of Na{sub 2}EDTA on the morphology of LiFePO{sub 4} micro- and nanocrystals were investigated as a function of pH value. The results of electrochemical performance measurement revealed that the charge/discharge cycling characteristics of the samples were varied by tailoring their morphologies. Particularly, the block-like LiFePO{sub 4} particles with the average size of 200–600 nm present the highest initial discharge capacity of 141 mAh/g at 0.1C rate, and cycling stability of this sample is optimal among all the obtained products owing to its good diffusion properties. It also exhibits an excellent rate capability with high discharge capacities of more than 93.2 mAh/g at 5C after 80 cycles. The present study offers a simple way to synthesize and design high performance cathode materials for lithium-ion batteries by the methods of morphology control without carbon coating or doping with supervalent cations. - Highlights: • Nano and micro-sized LiFePO{sub 4} were synthesized by a hydrothermal synthesis method. • Effect of the pH of synthesizing solution on the formation of LiFePO{sub 4} was studied. • The block-like LiFePO{sub 4} particles present the highest initial discharge capacity. • The rate capability of the block-like LiFePO{sub 4} is more than 93.2 m

  17. Study On Precipitation Of UO2 Ex-AUC Powder. Part I: Precipitation Of AUC By (NH4)2CO3 From Uranyl Fluoride Solution

    International Nuclear Information System (INIS)

    Nguyen Trong Hung; Le Ba Thuan; Do Van Khoai; Nguyen Thanh Thuy; Nguyen Van Tung

    2011-01-01

    In this paper, Ammonium Uranyl Carbonate (AUC) powders were prepared by precipitation method in solution. UO 2 F 2 /HF, ammonium carbonate (AC), and ammonium hydroxide solution were used as precursors for precipitation. The influence of C/U ratio (mol/mol), AC concentration (g/L), reaction temperature ( o C), on characteristics of AUC powders was also investigated. Then, the synthesized AUC powders were analyzed (to define) phase composition (X-ray), fluorine content, morphology (by SEM), and specific surface area (BET). (author)

  18. Effect of Cu2+ ion incorporation on the phase development of ZrO2-type solid solutions during the thermal treatments

    International Nuclear Information System (INIS)

    Stefanic, Goran; Music, Svetozar; Ivanda, Mile

    2010-01-01

    The amorphous precursors of the ZrO 2 -CuO system at the ZrO 2 -rich side of the concentration range were prepared by co-precipitation from aqueous solutions of the corresponding salts. Thermal behavior of the amorphous precursors was monitored using X-ray powder diffraction, Raman spectroscopy, field emission scanning electron microscopy, energy dispersive X-ray spectrometry, differential scanning calorimetry and thermogravimetric analysis. The crystallization temperature of the amorphous precursors rose with an increase in the CuO content for ∼180 o C. Maximum solubility of Cu 2+ ions in the ZrO 2 lattice (∼23 mol%) occurs in the metastable products obtained upon crystallization of the amorphous precursors. The results of Raman spectroscopy indicate that the incorporation of Cu 2+ ions stabilize the tetragonal ZrO 2 polymorph. A precise determination of lattice parameters, using both Rietveld and Le Bail refinements of the powder diffraction patterns, showed that the axial ratio c/a in the ZrO 2 -type solid solutions with a Cu 2+ content ≥20 mol% approach 1 (formation of t''-form of tetragonal phase). The terminal solid solubility limit of Cu 2+ ions in the ZrO 2 lattice rapidly drops with an increase in treatment temperature (up to 1000 o C) that is followed by the formation of and increase in phases structurally closely related to tenorite and monoclinic ZrO 2 . Low thermal stability of the t-ZrO 2 -type phase was attributed to the reduction of the sintering temperature in the presence of CuO and a significant difference in size and shape of zirconia and tenorite particles, which prevent surface interactions.

  19. Growing three-dimensional biomorphic graphene powders using naturally abundant diatomite templates towards high solution processability

    Science.gov (United States)

    Chen, Ke; Li, Cong; Shi, Liurong; Gao, Teng; Song, Xiuju; Bachmatiuk, Alicja; Zou, Zhiyu; Deng, Bing; Ji, Qingqing; Ma, Donglin; Peng, Hailin; Du, Zuliang; Rümmeli, Mark Hermann; Zhang, Yanfeng; Liu, Zhongfan

    2016-11-01

    Mass production of high-quality graphene with low cost is the footstone for its widespread practical applications. We present herein a self-limited growth approach for producing graphene powders by a small-methane-flow chemical vapour deposition process on naturally abundant and industrially widely used diatomite (biosilica) substrates. Distinct from the chemically exfoliated graphene, thus-produced biomorphic graphene is highly crystallized with atomic layer-thickness controllability, structural designability and less noncarbon impurities. In particular, the individual graphene microarchitectures preserve a three-dimensional naturally curved surface morphology of original diatom frustules, effectively overcoming the interlayer stacking and hence giving excellent dispersion performance in fabricating solution-processible electrodes. The graphene films derived from as-made graphene powders, compatible with either rod-coating, or inkjet and roll-to-roll printing techniques, exhibit much higher electrical conductivity (~110,700 S m-1 at 80% transmittance) than previously reported solution-based counterparts. This work thus puts forward a practical route for low-cost mass production of various powdery two-dimensional materials.

  20. Effect of La{sub 0.8}Sr{sub 0.2}MnO{sub 3} powder addition in the precursor solution on the properties of cathode films deposited by spray pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Caio Luis Santos; Rangel, Maria do Carmo, E-mail: clssilva@ufba.br, E-mail: mcarmov@ufba.br [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Grupo de Estudo em Cinetica e Catalise; Gama, Leonardo Marques; Paes Junior, Herval Ramos, E-mail: leonardo.m.gama@gmail.com, E-mail: herval@uenf.br [Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ (Brazil). Laboratorio de Materiais Avancados; Santos, Jacqueline Amanda Figueiredo dos; Domingues, Rosana Zacarias, E-mail: jac.amanda28@gmail.com, E-mail: rosanazd@ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Laboratorio de Materiais e Pilhas a Combustivel

    2017-01-15

    Films of lanthanum strontium manganite, LSM (La{sub 0.8}Sr{sub 0.2}MnO{sub 3}) were deposited on yttria stabilized zirconia (YSZ) substrates by different methods aiming to establish the most suitable route to prepare cathodes for solid oxide fuel cells (SOFC). Samples were obtained by using a solution of lanthanum, strontium and manganese nitrates or a dispersion of the LSM powder in this solution. Both commercial and synthesized LSM powders were used, the last one obtained by amorphous citrate method. The films were deposited by spray pyrolysis on YSZ substrates prepared by uniaxial and isostatic pressing. Samples were characterized by scanning electron microscopy, confocal laser scanning microscopy, X-ray diffraction and two-probe conductivity measurements. The area specific resistance and relaxation to cathodic activation were measured by electrochemical impedance spectroscopy. The substrate obtained by uniaxial pressing and the commercial LSM produced films with the highest amount of surface cracks. The film obtained from the suspension showed area specific resistance and activation energy lower than the other produced from the solution. For both samples, the cathodic activation process resulted in an initial reduction of the total resistance of around 20%, the sample produced from the suspension being more resistant to relaxation. Therefore, the LSM suspension is more suitable than the salts solution for preparing films by spray pyrolysis on YSZ substrates to obtain efficient cathodes for SOFC. (author)

  1. All-proportional solid-solution Rh–Pd–Pt alloy nanoparticles by femtosecond laser irradiation of aqueous solution with surfactant

    Energy Technology Data Exchange (ETDEWEB)

    Sarker, Md. Samiul Islam, E-mail: samiul-phy@ru.ac.bd; Nakamura, Takahiro; Sato, Shunichi [Tohoku University, Institute of Multidisciplinary Research for Advanced Materials (Japan)

    2015-06-15

    Formation of Rh–Pd–Pt solid-solution alloy nanoparticles (NPs) by femtosecond laser irradiation of aqueous solution in the presence of polyvinylpyrrolidone (PVP) or citrate as a stabilizer was studied. It was found that the addition of surfactant (PVP or citrate) significantly contributed to reduce the mean size of the particles to 3 nm for PVP and 10 nm for citrate, which was much smaller than that of the particles fabricated without any surfactants (20 nm), and improved the dispersion state as well as the colloidal stability. The solid-solution formation of the Rh–Pd–Pt alloy NPs was confirmed by the XRD results that the diffraction pattern was a single peak, which was found between the positions corresponding to each pure Rh, Pd, and Pt NPs. Moreover, all the elements were homogeneously distributed in every particle by STEM-EDS elemental mapping, strongly indicating the formation of homogeneous solid-solution alloy. Although the Rh–Pd–Pt alloy NPs fabricated with PVP was found to be Pt rich by EDS observation, the composition of NPs fabricated with citrate almost exactly preserved the feeding ratio of ions in the mixed solution. To our best knowledge, these results demonstrated for the first time, the formation of all-proportional solid-solution Rh–Pd–Pt alloy NPs with well size control.

  2. Combined Approach for the Structural Characterization of Alkali Fluoroscandates: Solid-State NMR, Powder X-ray Diffraction, and Density Functional Theory Calculations.

    Science.gov (United States)

    Rakhmatullin, Aydar; Polovov, Ilya B; Maltsev, Dmitry; Allix, Mathieu; Volkovich, Vladimir; Chukin, Andrey V; Boča, Miroslav; Bessada, Catherine

    2018-02-05

    The structures of several fluoroscandate compounds are presented here using a characterization approach combining powder X-ray diffraction and solid-state NMR. The structure of K 5 Sc 3 F 14 was fully determined from Rietveld refinement performed on powder X-ray diffraction data. Moreover, the local structures of NaScF 4 , Li 3 ScF 6 , KSc 2 F 7 , and Na 3 ScF 6 compounds were studied in detail from solid-state 19 F and 45 Sc NMR experiments. The 45 Sc chemical shift ranges for six- and seven-coordinated scandium environments were defined. The 19 F chemical shift ranges for bridging and terminal fluorine atoms were also determined. First-principles calculations of the 19 F and 45 Sc NMR parameters were carried out using plane-wave basis sets and periodic boundary conditions (CASTEP), and the results were compared with the experimental data. A good agreement between the calculated shielding constants and experimental chemical shifts was obtained. This demonstrates the good potential of computational methods in spectroscopic assignments of solid-state 45 Sc NMR spectroscopy.

  3. Ab initio identified design principles of solid-solution strengthening in Al

    International Nuclear Information System (INIS)

    Ma Duancheng; Friák, Martin; Pezold, Johann von; Raabe, Dierk; Neugebauer, Jörg

    2013-01-01

    Solid-solution strengthening in six Al–X binary systems is investigated using first-principle methods. The volumetric mismatch parameter and the solubility enthalpy per solute were calculated. We derive three rules for designing solid-solution strengthened alloys: (i) the solubility enthalpy per solute is related to the volumetric mismatch by a power law; (ii) for each annealing temperature, there exists an optimal solute–volume mismatch to achieve maximum strength; and (iii) the strengthening potential of high volumetric mismatch solutes is severely limited by their low solubility. Our results thus show that the thermodynamic properties of the system (here Al–X alloys) set clear upper bounds to the achievable strengthening effects owing to the reduced solubility with increasing volume mismatch. (paper)

  4. Synthesis and characterization of Sr{sub 2}Ir{sub 1-x}M{sub x}O{sub 4} (M=Ti, Fe, Co) solid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Gatimu, Alvin J.; Berthelot, Romain; Muir, Sean; Sleight, Arthur W. [Department of Chemistry, Oregon State University, Corvallis, OR 97331 (United States); Subramanian, M.A., E-mail: mas.subramanian@oregonstate.edu [Department of Chemistry, Oregon State University, Corvallis, OR 97331 (United States)

    2012-06-15

    The effects of Ti, Fe and Co substitutions for Ir on the structure and on the physical properties of Sr{sub 2}IrO{sub 4} are investigated. A complete solid solution Sr{sub 2}Ir{sub 1-x}Ti{sub x}O{sub 4} is obtained while both Fe and Co doping are relatively limited. In each case however, the c-axis cell parameter and the initial IrO{sub 6} octahedra tilting decreases with substitution. Doping with Ti, Fe and Co results in a decrease of the magnetic susceptibility and in an increase in the paramagnetic effective moment for Co and Fe doped samples and a suppression of the weak ferromagnetic ordering observed for Sr{sub 2}IrO{sub 4}. - Graphical abstract: Solid solutions of Sr{sub 2}Ir{sub 1-x}M{sub x}O{sub 4} (M=Ti, Fe, Co) have been synthesized and characterized by powder X-ray diffraction, magnetism and electrical measurements. Changes in the a parameter and decreases in both the c-axis cell parameters and the initial IrO{sub 6} octahedra tilting are found to be correlated. Highlights: Black-Right-Pointing-Pointer Solid Solutions of Sr{sub 2}Ir{sub 1-x}M{sub x}O{sub 4} (M=Ti, Fe, Co) are synthesized. Black-Right-Pointing-Pointer The Sr{sub 2}Ir{sub 1-x}Ti{sub x}O{sub 4} solid solution is complete while those of Fe and Co are relatively limited. Black-Right-Pointing-Pointer The change in a cell parameter with substitution is much less than that of the c parameter. Black-Right-Pointing-Pointer Decreased tilting and the smaller size of the M cation contrastingly affect the a parameter. Black-Right-Pointing-Pointer Doping results in a suppression of the weak ferromagnetic ordering in Sr{sub 2}IrO{sub 4}.

  5. Synthesis, single crystal growth and thermodynamic properties of SrNdAlO4-CaNdAlO4 solid solutions

    International Nuclear Information System (INIS)

    Novoselov, A.; Ryumin, M.; Pushkina, G.; Spiridonov, F.; Komissarova, L.; Zimina, G.; Pajaczkowska, A.

    2005-01-01

    Continuous solid solutions in the SrNdAlO 4 -CaNdAlO 4 system are formed. Powder samples of Sr x Ca 1-x NdAlO 4 (0.0≤x≤1.0) were obtained using the carbonate coprecipitation method while single crystals of Sr x Ca 1-x NdAlO 4 (x=0.0,0.162,0.392,0.687,1.0) were grown by the Czochralski method. Structural parameters and thermodynamic properties of the samples were studied by X-ray diffraction and heat flux Calvet calorimetry. Composition dependence of lattice constants was observed to follow Vegard's low. Heat of solution of the Sr x Ca 1-x NdAlO 4 samples in molten 2PbO.B 2 O 3 were measured, and enthalpies of formation and mixing were calculated. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Comparative efficacy of oil solution and wettable powder of lambda-cyhalothrin to naturally occurring Ornithonyssus sylviarum infestation of chickens.

    Science.gov (United States)

    Pan, Baoliang; Liang, Daming; Zhang, Yafeng; Wang, Hailiang; Wang, Ming

    2009-10-14

    The Northern Fowl Mite (NFM), Ornithonyssus sylviarum, is one of the most important and common pests of poultry. Most of available pesticides applied in the NFM control are formulated as wettable powder or emulsifiable concentrate and require to be diluted with water before use. As water has very low affinity to bird feathers, a part of the diluted pesticide will fall on the ground, on the cages, on feed bins or drift in the air upon application, which becomes a source of a potential harm to administrative workers and birds. In contrast to water, an oil solution of pesticide has a higher affinity for feathers and can stay on the feather for a longer time, and maybe provide a high efficacy and be effective for a longer, persistent period against the NFM. In the present study, the efficacy of oil solution and wettable powder of lambda-cyhalothrin to NFM in breeders was compared; the results showed that while spraying lambda-cyhalothrin wettable powder on birds could effectively control NFM, painting lambda-cyhalothrin oil solution on birds gave complete control of NFM for at least 6 weeks. In the application of lambda-cyhalothrin oil solution, no containment of pesticide to cages, feed bin and no pesticide drifting in the air was observed. These results indicated that lambda-cyhalothrin oil solution has a potential to become an effective and safe formulation to control NFM in breeders.

  7. Thermodynamic properties of solid solutions in the system Ag2S–Ag2Se

    International Nuclear Information System (INIS)

    Pal’yanova, G.A.; Chudnenko, K.V.; Zhuravkova, T.V.

    2014-01-01

    We have summarized experimental data on the phase diagram of the system Ag 2 S–Ag 2 Se. Standard thermodynamic functions of four solid solutions in this system have been calculated using the model of regular and subregular solutions: a restricted fcc solid solution γ-Ag 2 S-Ag 2 S 1−x Se x (x 2 S–Ag 2 Se, monoclinic solid solution (α) from Ag 2 S to Ag 2 S 0.4 Se 0.6 , and orthorhombic solid solution (α) from Ag 2 S 0.3 Se 0.7 to the Ag 2 Se. G mix and S mix have been evaluated using the subregular model for asymmetric solution for the region Ag 2 S 0.4 Se 0.6 –Ag 2 S 0.3 Se 0.7 . The thermodynamic data can be used for modeling in complex natural systems and in matters of semiconductor materials

  8. The phase diagram and magnetic properties of Co and Ti co-doped (1−x)BiFeO_3–xLaFeO_3 solid solutions

    International Nuclear Information System (INIS)

    Wu, Jiangtao; Xu, Jun; Li, Nan; Jiang, Yaqi; Xie, Zhaoxiong

    2015-01-01

    Single phase Co and Ti co-doped Bi_1_−_xFeO_3−La_xFeO_3 (x = 0–1) solid solutions were prepared by the sol–gel method. Room temperature x-ray powder diffraction (XRD) patterns showed that the structures of as-prepared Bi_1_−_xLa_xFe_0_._9_0Co_0_._0_5Ti_0_._0_5O_3 solid solutions transformed from rhombohedral R3c to tetragonal P4mm and then to orthorhombic Pnma, with increasing La concentration from 0 to 1. In situ high-temperature XRD (HTXRD) analysis further revealed that rhombohedral structure R3c (x ≤ 0.16) and tetragonal structure P4mm (0.17 ≤ x ≤ 0.40) changed to orthorhombic Pnma along with increasing temperature, and the phase transition temperature decreased with the increase of La doping concentration. However, the orthorhombic structure Pnma (x ≥ 0.41) kept stable even when the temperature reached 850 °C. The phase diagram of as-prepared binary solid solutions of Bi_1_−_xLa_xFe_0_._9_0Co_0_._0_5Ti_0_._0_5O_3(x = 0–1) was drawn on the basis of XRD and HTXRD analysis. Magnetic measurement revealed that the magnetic properties are greatly enhanced with the increase of La content. - Highlights: • Single phase Co and Ti co-doped (1−x)BiFeO_3–xLaFeO_3 (x = 0–1) solid solutions were synthesized. • The phase transitions were investigated by tuning composition and temperature. • Phase diagram was constructed according to the results of XRD for the first time. • The magnetization of solid solution can be enhanced when increasing La content.

  9. ENTIRELY AQUEOUS SOLUTION-GEL ROUTE FOR THE PREPARATION OF ZIRCONIUM CARBIDE, HAFNIUM CARBIDE AND THEIR TERNARY CARBIDE POWDERS

    Directory of Open Access Journals (Sweden)

    Zhang Changrui

    2016-07-01

    Full Text Available An entirely aqueous solution-gel route has been developed for the synthesis of zirconium carbide, hafnium carbide and their ternary carbide powders. Zirconium oxychloride (ZrOCl₂.8H₂O, malic acid (MA and ethylene glycol (EG were dissolved in water to form the aqueous zirconium carbide precursor. Afterwards, this aqueous precursor was gelled and transformed into zirconium carbide at a relatively low temperature (1200 °C for achieving an intimate mixing of the intermediate products. Hafnium and the ternary carbide powders were also synthesized via the same aqueous route. All the zirconium, hafnium and ternary carbide powders exhibited a particle size of ∼100 nm.

  10. Method of altering the effective bulk density of solid material and the resulting product: hollow polymeric particles

    International Nuclear Information System (INIS)

    Kool, L.B.; Nolen, R.L.; Solomon, D.E.

    1981-01-01

    Hollow spherical particles are made by spraying a mixture of powdered solid material with a solution of a film-forming polymer in a solvent therefor into a heated chamber where the solvent evaporates. The powder is thereby captured in the wall of the hollow polymer particles formed. Such particles are used to form a suspension in a fluid material. The hollow particles are of such size and wall thickness, in relation to the bulk density of the powdered solid material, that the bulk density of each hollow spherical particle is commensurate with the density of the fluid material. The particles thereby remain in suspension over a substantial period of time with little or no agitation of the fluid. (author)

  11. Diffusion kinetics and spinodal decay of quasi-equilibrium solid solutions

    International Nuclear Information System (INIS)

    Zakharov, M.A.

    2000-01-01

    Phenomenological theory for rearrangement of solid solutions with the hierarchy of the component atomic mobilities is elaborated in the approximation of the local equilibrium. The hydrodynamic stage of the evolution of these solutions is studied as a sequence of quasi-equilibrium states characterized by implementation of some conditions of the total equilibrium. On the basis of separation of fast and slow constituents of diffusion and on the basis of the method of reduced description one derived equation for evolution of separations of fast components in quasi-equilibrium solid solutions at the arbitrary stages of rearrangement in terms of the generalized lattice model taking account of the proper volumes of the components. The conditions of the stability of quasi-equilibrium solutions to the spinodal decomposition are determined and the equations of metastability boundaries of such systems are derived [ru

  12. Neutron powder diffraction studies of Hydrogen and Denterium in Palladium Phosphides

    International Nuclear Information System (INIS)

    Andersson, Y.

    1986-01-01

    The use of the Rietveld-type profile refinements on neutron powder diffraction intensity data for determining crystallographic positions of hydrogen and deuterium in metal hydrides is illustrated by results obtained on some hydrogenated and deuterated palladium phosphides. The structural features of the solid solutions of hydrogen and deuterium in Pd/sb15/P/sb2/ Pd/sb6/P and Pd/sb3/P/sb1-u/ (0< u<0.28) are briefly presented and discussed

  13. Combined solid state and solution NMR studies of α,ε-15N labeled bovine rhodopsin

    International Nuclear Information System (INIS)

    Werner, Karla; Lehner, Ines; Dhiman, Harpreet Kaur; Richter, Christian; Glaubitz, Clemens; Schwalbe, Harald; Klein-Seetharaman, Judith; Khorana, H. Gobind

    2007-01-01

    Rhodopsin is the visual pigment of the vertebrate rod photoreceptor cell and is the only member of the G protein coupled receptor family for which a crystal structure is available. Towards the study of dynamics in rhodopsin, we report NMR-spectroscopic investigations of α,ε- 15 N-tryptophan labeled rhodopsin in detergent micelles and reconstituted in phospholipids. Using a combination of solid state 13 C, 15 N-REDOR and HETCOR experiments of all possible 13 C' i-1 carbonyl/ 15 N i -tryptophan isotope labeled amide pairs, and H/D exchange 1 H, 15 N-HSQC experiments conducted in solution, we assigned chemical shifts to all five rhodopsin tryptophan backbone 15 N nuclei and partially to their bound protons. 1 H, 15 N chemical shift assignment was achieved for indole side chains of Trp35 1.30 and Trp175 4.65 . 15 N chemical shifts were found to be similar when comparing those obtained in the native like reconstituted lipid environment and those obtained in detergent micelles for all tryptophans except Trp175 4.65 at the membrane interface. The results suggest that the integrated solution and solid state NMR approach presented provides highly complementary information in the study of structure and dynamics of large membrane proteins like rhodopsin

  14. Tetragonal-cubic phase boundary in nanocrystalline ZrO2-Y2O3 solid solutions synthesized by gel-combustion

    International Nuclear Information System (INIS)

    Fabregas, Ismael O.; Craievich, Aldo F.; Fantini, Marcia C.A.; Millen, Ricardo P.; Temperini, Marcia L.A.; Lamas, Diego G.

    2011-01-01

    Research highlights: → Gel-combustion synthesis yields compositionally homogeneous, single-phased ZrO 2 -Y 2 O 3 nanopowders, that exhibit the presence at room temperature of three different phases depending on Y 2 O 3 content, namely two tetragonal forms (t' and t'') and the cubic phase. → Phase identification can be achieved by synchrotron XPD (SXPD) and Raman spectroscopy since the tetragonal forms and the cubic phase can be distinguished by these techniques. → The crystallographic features of ZrO 2 -Y 2 O 3 nanopowders were determined by SXPD. They are similar to those reported by Yashima and coworkers for compositionally homogeneous materials containing larger (micro)crystals. However, the lattice parameters are slightly different and the axial ratios c/a of our t' samples are smaller than those reported by these authors. → Compositional t'/t'' and t''/cubic phase boundaries are located at (9 ± 1) and (10.5 ± 0.5) mol% Y 2 O 3 , respectively. → For the whole series of nanocrystalline ZrO 2 -Y 2 O 3 solid solutions studied in the present work, no evidences of the presence of a mixture of phases - as reported by Yashima and coworkers for microcrystalline solid solutions - were detected. - Abstract: By means of synchrotron X-ray powder diffraction (SXPD) and Raman spectroscopy, we have detected, in a series of nanocrystalline and compositionally homogeneous ZrO 2 -Y 2 O 3 solid solutions, the presence at room temperature of three different phases depending on Y 2 O 3 content, namely two tetragonal forms and the cubic phase. The studied materials, with average crystallite sizes within the range 7-10 nm, were synthesized by a nitrate-citrate gel-combustion process. The crystal structure of these phases was also investigated by SXPD. The results presented here indicate that the studied nanocrystalline ZrO 2 -Y 2 O 3 solid solutions exhibit the same phases reported in the literature for compositionally homogeneous materials containing larger (micro

  15. Utilization of pumpkin powder in bakery products

    Directory of Open Access Journals (Sweden)

    Thirawat Thepjaikat

    2006-03-01

    Full Text Available The objective of this study was to produce pumpkin powder and use it as an ingredient in bakery products. Pumpkin powder was produced from mature pumpkin (Cucurbita moschat Duch. ex. Poir.. It contained 6.01% moisture, 3.74% protein, 1.34 % fat, 7.24% ash, 2.9% fiber, 78.77% carbohydrate, 56.04% alcohol insoluble solids, 7.29 mg/100g sample of β-carotene, had color values of L*57.81, a*8.31, and b*34.39, and 0.24 water activity. It gelatinized at 90ºC. It was used as a source of β-carotene and yellow color supplement in bakery products. Wheat flour was substituted by 5 levels of pumpkin powder (10, 20, 30, 40 and 50% in sandwich bread, sweet bread, butter cake, chiffon cake and cookies. The products were consumertested and their physicochemical and sensory properties analyzed. Results showed that 20% substitution was optimum for butter cake, and chiffon cake, while only 10% substitution was acceptable for sandwich bread, sweet bread and cookies. The acceptance by the consumer group was at the level of "like moderately" to "like very much". Between 90-100% of the consumers who accepted the products would buy them. Chiffon cake substituted with pumpkin powder was the most preferred, followed by butter cake, sandwich bread, cookies, and sweet bread. The pumpkin-substituted products contained 15.00-103.30 µg RE of vitamin A (3.13-12.92% of Thai RDI for vitamin A intake per day.

  16. Growing three-dimensional biomorphic graphene powders using naturally abundant diatomite templates towards high solution processability.

    Science.gov (United States)

    Chen, Ke; Li, Cong; Shi, Liurong; Gao, Teng; Song, Xiuju; Bachmatiuk, Alicja; Zou, Zhiyu; Deng, Bing; Ji, Qingqing; Ma, Donglin; Peng, Hailin; Du, Zuliang; Rümmeli, Mark Hermann; Zhang, Yanfeng; Liu, Zhongfan

    2016-11-07

    Mass production of high-quality graphene with low cost is the footstone for its widespread practical applications. We present herein a self-limited growth approach for producing graphene powders by a small-methane-flow chemical vapour deposition process on naturally abundant and industrially widely used diatomite (biosilica) substrates. Distinct from the chemically exfoliated graphene, thus-produced biomorphic graphene is highly crystallized with atomic layer-thickness controllability, structural designability and less noncarbon impurities. In particular, the individual graphene microarchitectures preserve a three-dimensional naturally curved surface morphology of original diatom frustules, effectively overcoming the interlayer stacking and hence giving excellent dispersion performance in fabricating solution-processible electrodes. The graphene films derived from as-made graphene powders, compatible with either rod-coating, or inkjet and roll-to-roll printing techniques, exhibit much higher electrical conductivity (∼110,700 S m -1 at 80% transmittance) than previously reported solution-based counterparts. This work thus puts forward a practical route for low-cost mass production of various powdery two-dimensional materials.

  17. Structural evolution of Ni-20Cr alloy during ball milling of elemental powders

    International Nuclear Information System (INIS)

    Lopez B, I.; Trapaga M, L. G.; Martinez F, E.; Zoz, H.

    2011-01-01

    The ball milling (B M) of blended Ni and Cr elemental powders was carried out in a Simoloyer performing on high-energy scale mode at maximum production to obtain a nano structured Ni-20Cr alloy. The phase transformations and structural changes occurring during mechanical alloying were investigated by X-ray diffraction (XRD) and optical microscopy (Om). A gradual solid solubility of Cr and the subsequent formation of crystalline metastable solid solutions described in terms of the Avrami-Ero fe ev kinetics model were calculated. The XRD analysis of the structure indicates that cumulative lattice strain contributes to the driving force for solid solution between Ni and Cr during B M. Microstructure evolution has shown, additionally to the lamellar length refinement commonly observed, the folding of lamellae in the final processing stage. Om observations revealed that the lamellar spacing of Ni rich zones reaches a steady value near 500 nm and almost disappears after 30 h of milling. (Author)

  18. Structural evolution of Ni-20Cr alloy during ball milling of elemental powders

    Energy Technology Data Exchange (ETDEWEB)

    Lopez B, I.; Trapaga M, L. G. [IPN, Centro de Investigacion y de Estudios Avanzados, Unidad Queretaro, Libramiento Norponiente No. 2000, Juriquilla, 76230 Queretaro (Mexico); Martinez F, E. [Centro de Investigacion e Innovacion Tecnologica, Cerrada de Cecati s/n, Col. Santa Catarina Azcapotzalco, 02250 Mexico D. F. (Mexico); Zoz, H., E-mail: israelbaez@gmail.co [Zoz GmbH, D-57482, Wenden (Germany)

    2011-07-01

    The ball milling (B M) of blended Ni and Cr elemental powders was carried out in a Simoloyer performing on high-energy scale mode at maximum production to obtain a nano structured Ni-20Cr alloy. The phase transformations and structural changes occurring during mechanical alloying were investigated by X-ray diffraction (XRD) and optical microscopy (Om). A gradual solid solubility of Cr and the subsequent formation of crystalline metastable solid solutions described in terms of the Avrami-Ero fe ev kinetics model were calculated. The XRD analysis of the structure indicates that cumulative lattice strain contributes to the driving force for solid solution between Ni and Cr during B M. Microstructure evolution has shown, additionally to the lamellar length refinement commonly observed, the folding of lamellae in the final processing stage. Om observations revealed that the lamellar spacing of Ni rich zones reaches a steady value near 500 nm and almost disappears after 30 h of milling. (Author)

  19. A thermodynamic model for solid solutions and its application to the C-Fe-Co, C-Fe-Ni and Mn-Cr-Pt solid dilutions

    International Nuclear Information System (INIS)

    Tao, D.P.

    2004-01-01

    Based on the free volume theory and the lattice model, the partition functions of pure solids and their mixtures were expressed. This resulted in the establishment of a thermodynamic model for solid solutions. The model naturally combines the excess entropy and excess enthalpy of a solution by means of new expressions of the configurational partition functions of solids and their mixtures derived from statistical thermodynamics, which is approximate to real solid solutions, that is S E ≠0 (V E ≠0) and H E ≠0. It can describe the thermodynamic properties of partially miscible systems and predict the thermodynamic properties in a multicomponent solid solution system using only the related binary infinite dilute activity coefficients. The predicted activity coefficients from the model are in good agreement with the experimental data of the ternary solid dilutions. This shows that the prediction effect of the proposed model is of better stability and reliability because it has a good physical basis

  20. Extended solid solubility of a Co–Cr system by mechanical alloying

    International Nuclear Information System (INIS)

    Betancourt-Cantera, J.A.; Sánchez-De Jesús, F.; Torres-Villaseñor, G.; Bolarín-Miró, A.M.; Cortés-Escobedo, C.A.

    2012-01-01

    Highlights: ► Solubility of the Co–Cr system is modified by means of Mechanical Alloying (MA). ► MA induces the formation of new solid solutions of Co–Cr system in non-equilibrium. ► MA promote the formation of metastable Co–Cr phases with greater solubility. - Abstract: Mechanical alloying, MA, has been successfully used to extend the limits of solid solubility in many commercially important metallic systems. The aim of this work is to demonstrate that MA modifies the solid solubility of the Co–Cr system. Co and Cr elemental powders were used as precursors and mixed in an adequate weight ratio to obtain Co 100−x Cr x (0 ≤ x ≤ 100, Δx = 10) to study the effect of mechanical processing in the solubility of the Co–Cr system. Processing was carried out at room temperature in a shaker mixer mill using vials and balls of hardened steel as milling media with a ball:powder weight ratio of 10:1. Crystalline structure characterization of the milled powders was conducted using X-ray diffraction, and phase transformations as a function of composition were analyzed. Thermal analysis confirmed structural changes occurred in the mechanically alloyed powders. The evolution of the phase transformations with composition is reported for each composition. The results showed that after high energy ball milling for 7 h, the solid solubility between Co and Cr could be evidently extended, despite the low solid solubility at the equilibrium conditions of this system. Additionally, the micrographs of the milled powders showed that increasing composition of chromium changes the shape and size of the particles while simultaneously reducing their agglomeration; this effect is possibly attributed to the brittleness of elemental chrome.

  1. Extended solid solubility of a Co-Cr system by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Betancourt-Cantera, J.A. [Area Academica de Ciencias de la Tierra y Materiales, UAEH Carr. Pachuca-Tulancingo Km. 4.5, Pachuca, Hidalgo 42184 (Mexico); Sanchez-De Jesus, F., E-mail: fsanchez@uaeh.edu.mx [Area Academica de Ciencias de la Tierra y Materiales, UAEH Carr. Pachuca-Tulancingo Km. 4.5, Pachuca, Hidalgo 42184 (Mexico); Torres-Villasenor, G. [Instituto de Investigaciones en Materiales-UNAM, Apdo. Postal 70-360, 04510 Mexico, DF (Mexico); Bolarin-Miro, A.M. [Area Academica de Ciencias de la Tierra y Materiales, UAEH Carr. Pachuca-Tulancingo Km. 4.5, Pachuca, Hidalgo 42184 (Mexico); Cortes-Escobedo, C.A. [Centro de Investigacion e Innovacion Tecnologica del IPN Cda. CECATI S/N, Col. Sta. Catarina, Azcapotzalco, 02250 Mexico, DF (Mexico)

    2012-07-15

    Highlights: Black-Right-Pointing-Pointer Solubility of the Co-Cr system is modified by means of Mechanical Alloying (MA). Black-Right-Pointing-Pointer MA induces the formation of new solid solutions of Co-Cr system in non-equilibrium. Black-Right-Pointing-Pointer MA promote the formation of metastable Co-Cr phases with greater solubility. - Abstract: Mechanical alloying, MA, has been successfully used to extend the limits of solid solubility in many commercially important metallic systems. The aim of this work is to demonstrate that MA modifies the solid solubility of the Co-Cr system. Co and Cr elemental powders were used as precursors and mixed in an adequate weight ratio to obtain Co{sub 100-x}Cr{sub x} (0 {<=} x {<=} 100, {Delta}x = 10) to study the effect of mechanical processing in the solubility of the Co-Cr system. Processing was carried out at room temperature in a shaker mixer mill using vials and balls of hardened steel as milling media with a ball:powder weight ratio of 10:1. Crystalline structure characterization of the milled powders was conducted using X-ray diffraction, and phase transformations as a function of composition were analyzed. Thermal analysis confirmed structural changes occurred in the mechanically alloyed powders. The evolution of the phase transformations with composition is reported for each composition. The results showed that after high energy ball milling for 7 h, the solid solubility between Co and Cr could be evidently extended, despite the low solid solubility at the equilibrium conditions of this system. Additionally, the micrographs of the milled powders showed that increasing composition of chromium changes the shape and size of the particles while simultaneously reducing their agglomeration; this effect is possibly attributed to the brittleness of elemental chrome.

  2. Use of the CSD program package for structure determination from powder data

    International Nuclear Information System (INIS)

    Akselrud, L.G.; Zavalii, P.Yu.; Grin, Yu.N.; Pecharski, V.K.; Baumgartner, B.; Woelfel, E.

    1993-01-01

    Although Rietveld's method of full profile structure refinement of powder data is a much-used tool today, ab initio structure solution from powder data is still not a routine task. One of the reasons for this is that fully overlapped peaks usually cannot be handled by routine structure determination programs. This shortcoming is not present in the Crystal Structure Determination (CSD) package which accepts intensities from powder diagrams as well as single crystal data. In order to demonstrate the possibilities of the CSD package, powder diagrams of five substances with already known crystal structure were collected and evaluated with the CSD package. The samples were scheelite (CaWO 4 ), pentaerythritol (C(CH 2 OH) 4 ), sodium sulfite (Na 2 SO 3 ), copper sulfate pentahydrate (CuSO 4 .5H 2 O) and silver germanium phosphide (Ag 6 Ge 10 P 12 ) and showed problems typical for powder work like preferred orientation and heavy peak overlapping. For four of the samples, correct atomic positions for some atoms could be found from the automatic MULTAN solution, which were then used in subsequent least squares- and difference Fourier calculations to locate the remaining atoms. Surprisingly, the cubic Ag 6 Ge 10 P 12 posed the most problems for the structure solution although one third of the observed intensities was single-indexed and the final R-value was as low as 4%. (orig.)

  3. Fracture toughness of neutron irradiated solid and powder HIP 316L(N). ITER Task 214, NET deliverable GB6 ECN-5

    International Nuclear Information System (INIS)

    Rensman, J.; Van den Broek, F.P.; Jong, M.; Van Osch, E.V.

    1998-04-01

    The fracture toughness properties of unirradiated and neutron irradiated type 316L(N) stainless steel plate (European Reference Heat ERHII), conventional 316L(N) solid HIP joints (heat PM-130), and 316L(N)-1G powder HIP material have been measured. Compact tension specimens with a thickness of 12 and 5 mm were irradiated in the High Flux Reactor (HFR) in Petten, The Netherlands, simulating the fusion reactor's first wall conditions by a combination of high displacement damage with proportional amounts of helium. The solid HIP (or HIP-bonded) CT-specimens were irradiated in two separate experiments: SIWAS-6 with 1.3 to 2.3 dpa (1.7 dpa av.) at 353 K, and CHARIOT-3 with 2.7 to 3.1 dpa (2.9 dpa av.) at 600 K. The plate material and powder HIP CT-specimens were irradiated in one experiment only, SIWAS-6. The helium content is up to 20 appm for the 2.9 dpa (av.) dose level. Testing temperatures of 353K and 573K have been used for the fracture toughness experiments. The report contains the experimental conditions and summarises the results, which are given in terms of J-resistance curve fits. The main conclusions are that all three materials have very high toughness in the unirradiated state with little difference between them; the solid HIP has the highest toughness, the powder HIP lowest. The toughness of all three materials is reduced significantly by irradiation, the reduction is the least for the plate material and the highest for the powder HIP material. However, many, but not all, of the solid HIP CT specimens showed debonding of the joint during testing. The machined notch of the CT specimens was not exactly on the joint interface, which could lead to unjustified interpretation of the measured values as being the toughness of the joint, the toughness of the joint being probably much lower. The reduction by irradiation of the fracture toughness of the powder HIP material is clearly larger than for plate material, which is confirmed by the observed early initiation

  4. EPR of gamma irradiated solid sucrose and UV spectra of its solution. An attempt for calibration of solid state/EPR dosimetry

    International Nuclear Information System (INIS)

    Yordanov, N.D.; Karakirova, Y.

    2007-01-01

    A simple new approach for independent calibration of solid state/EPR (SS/EPR) dosimetry system is reported. It is based on the fact that: (i) gamma-irradiation of solid sucrose (sugar) induces stable EPR detectable free radicals accompanied by UV detectable brown colour stable in the solid state and in solution; (ii) both the EPR intensity of gamma-irradiated solid sucrose and its solution UV absorbance linearly depend on the absorbed dose high energy radiation and may be independently used for dosimetric purpose; (iii) UV spectrometers are calibrated. The correlation between EPR response and absorbed dose radiation of solid sucrose and UV absorption of its solutions is used in the present communication for calibration purpose. The procedure of sucrose extraction from sucrose-paraffin dosimeters is described. The calibration procedure may be applied to any other (alanine, self-calibrated, etc.) SS/EPR dosimeters, simultaneously irradiated with sucrose

  5. Characterization of manganese-gallium mixed oxide powders

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Escribano, V.; Fernandez Lopez, E.; Sanchez Huidobro, P. [Universidad de Salamanca, Dept. de Quimica Inorganica (Spain); Panizza, M.; Resini, C.; Busca, G. [UNiversita di Genova, Dipt. di Ingegneria Chimica e di Processo, Genova (Italy); Resini, C. [Istituto Nazionale di Fisica della Materia, INFM (Spain); Gallardo- Amores, J.M. [Universidad Complutense, Dept. de Quimica Inorganica, Lab. Complutense de Altas Presiones, Madrid (Spain)

    2003-12-01

    Mn-Ga mixed oxides have been prepared by coprecipitation of the corresponding oxo-hydroxides as powders and have been characterized in relation to their structural and optical properties. The materials have been characterized by XRD, TG-DTA, skeletal IR and UV-visible-NIR spectroscopies. Large solubility of Mn in the diaspore type {alpha}-GaOOH oxo-hydroxide has been found. The spinel related structures of hausmannite Mn{sub 3}O{sub 4} and of {beta}-gallia present large reciprocal solubilities at least in a metastable form. At high temperature also bixbyite-type {alpha}-Mn{sub O3} solid solutions containing up to 20% at. Ga have been observed. (authors)

  6. Characterization of manganese?gallium mixed oxide powders

    Science.gov (United States)

    Sánchez Escribano, Vicente; Fernández López, Enrique; Sánchez Huidobro, Paula; Panizza, Marta; Resini, Carlo; Gallardo-Amores, José M.; Busca, Guido

    2003-11-01

    MnGa mixed oxides have been prepared by coprecipitation of the corresponding oxo-hydroxides as powders and have been characterized in relation to their structural and optical properties. The materials have been characterized by XRD, TG-DTA, skeletal IR and UV-visible-NIR spectroscopies. Large solubility of Mn in the diaspore type α-GaOOH oxo-hydroxide has been found. The spinel related structures of hausmannite Mn 3O 4 and of β-gallia present large reciprocal solubilities at least in a metastable form. At high temperature also bixbyite-type α-Mn 2O 3 solid solutions containing up to 20% at. Ga have been observed.

  7. Fabrication of Ti-Ni-Cu shape memory alloy powders by ball milling method

    International Nuclear Information System (INIS)

    Kang, S.; Nam, T.

    2001-01-01

    Ti-Ni and Ti-Ni-Cu shape memory alloy powders have been fabricated by ball milling method, and then alloying behavior and transformation behavior were investigated by means of optical microscopy, electron microscopy, X-ray diffraction and differential scanning calorimetry. As milled Ti-Ni powders fabricated with milling time less than 20 hrs was a mixture of pure elemental Ti and Ni, and therefore it was unable to obtain alloy powders because the combustion reaction between Ti and Ni occurred during heat treatment. Since those fabricated with milling time more than 20 hrs was a mixture of Ti-rich and Ni-rich Ti-Ni solid solution, however, it was possible to obtain alloy powders without the combustion reaction during heat treatment. Clear exothermic and endothermic peaks appeared in the cooling and heating curves, respectively in DSC curves of 20 hrs and 30 hrs milled Ti-Ni powders. On the other hand, in DSC curves of 1 hr, 10 hrs, 50 hrs and 100 hrs, the thermal peaks were almost discernible. The most optimum ball milling time for fabricating Ti-Ni alloy powders was 30 hrs. Ti-40Ni-10Cu(at%) alloy powders were fabricated successfully by ball milling conditions with rotating speed of 100 rpm and milling time of 30 hrs. (author)

  8. Microstructure of rapidly solidified Nb-based pre-alloyed powders for additive manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yueling; Jia, Lina, E-mail: jialina@buaa.edu.cn; Kong, Bin; Zhang, Shengnan; Zhang, Fengxiang; Zhang, Hu

    2017-07-01

    Highlights: • Sphere shaped Nb-37Ti-13Cr-2Al-1Si pre-alloyed powders were prepared by PREP. • An oxide layer with a thickness of 9.39 nm was generated on the powder surface. • The main phases of the pre-alloyed powders were Nbss and Cr{sub 2}Nb. • SDAS increased and microhardness decreased with the increase of powder size. • Microstructure of powders evolved into large grains from dendrite structures after HT. - Abstract: For powder-based additive manufacturing, sphere-shaped Nb-37Ti-13Cr-2Al-1Si pre-alloyed powders were prepared by plasma rotating electrode processing (PREP). The microstructure, surface oxidation and microhardness of the pre-alloyed powders were systematically investigated. Results showed that the main phases were Nb solid solution (Nbss) and Cr{sub 2}Nb. The Cr{sub 2}Nb phases were further determined using transmission electron microscopy (TEM). Fine dendrite structures were observed in the as-fabricated pre-alloyed powders, which transformed to large grains after heat treatment (HT) at 1450 °C for 3 h. With the increase of powder size, the secondary dendrite arm spacing (SDAS) increased and the microhardness (HV) decreased. A clean powder surface free of oxide particles was obtained by PREP and an oxide layer with 9.39 nm in thickness was generated on the powder surface. Compared with Cr- and Nb-oxides, more Ti-oxides were formed on outmost powder surface with a higher content of Ti (up to 47.86 at.%). The differences upon the microstructure and microhardness of the pre-alloyed powders with different sizes were discussed.

  9. Spray Drying of Honey: The Effect of Drying Agents on Powder Properties

    Directory of Open Access Journals (Sweden)

    Samborska Katarzyna

    2015-06-01

    Full Text Available The aim of this study was to investigate the possibility of honey spray drying with addition of maltodextrin and gum Arabic as drying agents. The influence of the concentration of the solution subjected to drying, the type and content of the drying agents upon the physical properties of obtained powders was examined. An attempt was undertaken to obtain powder with a honey content of more than 50% d.b. Spray drying of multifloral honey with the addition of maltodextrin and gum Arabic was carried out at inlet air temperature of 180°C, feed rate of 1 mL/s and rotational speed of a disc atomizer of 39,000 rpm. The properties of obtained powders were quantified in terms of moisture content, bulk density, Hausner ratio, apparent density, hygroscopicity and wettability. Using gum Arabic it was possible to obtain a product with a higher content of honey (67% solids than in the case of maltodextrin (50% d.b.. However, the powders obtained with gum Arabic were characterised by worse physical properties: higher hygroscopicity and cohesion, and longer wetting time.

  10. Preparation and characterisation of nanocrystalline IrxSn1-xO2 electrocatalytic powders

    International Nuclear Information System (INIS)

    Marshall, A.; Borresen, B.; Hagen, G.; Tsypkin, M.; Tunold, R.

    2005-01-01

    Nanocrystalline oxide powders of the type Ir x Sn 1-x O 2 (0.2-bar x-bar 1) have been produced and characterised. These oxides have been developed primarily as oxygen evolution electrocatalysts for proton exchange membrane (PEM) water electrolysers. Two methods were used to produce the oxide materials: the modified polyol method and the Adams fusion method. X-ray diffraction analysis suggests that an iridium-tin oxide solid solution with a rutile structure can be produced using the modified polyol method, with a linear relationship between the lattice parameters and composition. The crystal size of the solid solution phase is below 15-bar nm for all compositions. The Adams fusion method results in at least two separate oxide phases, namely a tin rich oxide and an iridium rich oxide. X-ray photoelectron spectroscopy (XPS) analysis revealed no significant difference between the bulk and surface compositions, and that the iridium was present in at least two valent states. The electrical resistivity of the powders was compared, and an exponential increase in resistivity with tin addition was found. Overall the resistivity measurements suggest that the limit for tin addition is around 50-60-bar mol% due to the high ohmic losses expected at higher tin contents in a PEM water electrolyser

  11. Structural and electrical properties of (1-x)(Na1/2Bi1/2)TiO3-xPb(Mg1/3Nb2/3)O3 solid solution

    International Nuclear Information System (INIS)

    Lee, J.-K.; Yi, J.Y.; Hong, K.S.

    2004-01-01

    Structural, dielectric and piezoelectric properties of (1-x)(Na 1/2 Bi 1/2 )TiO 3 -xPb(Mg 1/3 Nb 2/3 )O 3 (NBT-xPMN) solid solution have been investigated. An addition of PMN into NBT transformed the structure of sintered samples from rhombohedral to pseudocubic phase where x is larger than 0.1. In calcined powders, however, the intermediate structure were observed between rhombohedral and cubic phases near x=0.1. The formation of solid solution between NBT and PMN modified the dielectric and piezoelectric properties of NBT to be suitable for high temperature dielectric and piezoelectric material. With increasing the content of PMN, the temperature-stability of ε r (T) increased and the high temperature dielectric loss decreased. In addition, the piezoelectric property of NBT-xPMN was enhanced, for the decrease of coercive field and conductivity promoted the domain reversal under the high electric field of the poling process

  12. Hexagonal pencil-like CdS nanorods: Facile synthesis and enhanced visible light photocatalytic performance

    Science.gov (United States)

    An, Liang; Wang, Guanghui; Zhao, Lei; Zhou, Yong; Gao, Fang; Cheng, Yang

    2015-07-01

    In the present study, hexagonal pencil-like CdS nanorods have been successfully synthesized through a typical facile and economical one-step hydrothermal method without using any surfactant or template. The product was characterized by X-ray powder diffraction (XRD), field-emission scanning electron microscopy (FE-SEM) and energy dispersive analysis of X-ray (EDX). The results revealed that the prepared CdS photocatalyst consisted of a large quantity of straight and smooth solid hexagonal nanorods and a few nanoparticles. The photocatalytic activities of CdS nanorods and commercial CdS powders were investigated by the photodegradation of Orange II (OII) in aqueous solution under visible light, and the CdS nanorods presented the highest photocatalytic activity. Its photocatalytic efficiency enhancement was attributed to the improved transmission of photogenerated electron-hole pairs in the CdS nanostructures. The present findings may provide a facile approach to synthesize high efficient CdS photocatalysts.

  13. The elastic solid solution model for minerals at high pressures and temperatures

    Science.gov (United States)

    Myhill, R.

    2018-02-01

    Non-ideality in mineral solid solutions affects their elastic and thermodynamic properties, their thermobaric stability, and the equilibrium phase relations in multiphase assemblages. At a given composition and state of order, non-ideality in minerals is typically modelled via excesses in Gibbs free energy which are either constant or linear with respect to pressure and temperature. This approach has been extremely successful when modelling near-ideal solutions. However, when the lattice parameters of the solution endmembers differ significantly, extrapolations of thermodynamic properties to high pressures using these models may result in significant errors. In this paper, I investigate the effect of parameterising solution models in terms of the Helmholtz free energy, treating volume (or lattice parameters) rather than pressure as an independent variable. This approach has been previously applied to models of order-disorder, but the implications for the thermodynamics and elasticity of solid solutions have not been fully explored. Solid solution models based on the Helmholtz free energy are intuitive at a microscopic level, as they automatically include the energetic contribution from elastic deformation of the endmember lattices. A chemical contribution must also be included in such models, which arises from atomic exchange within the solution. Derivations are provided for the thermodynamic properties of n-endmember solutions. Examples of the use of the elastic model are presented for the alkali halides, pyroxene, garnet, and bridgmanite solid solutions. Elastic theory provides insights into the microscopic origins of non-ideality in a range of solutions, and can make accurate predictions of excess enthalpies, entropies, and volumes as a function of volume and temperature. In solutions where experimental data are sparse or contradictory, the Helmholtz free energy approach can be used to assess the magnitude of excess properties and their variation as a function

  14. Rhometal interface in pseudo-core shell powders like Permalloy/Rhometal type

    Energy Technology Data Exchange (ETDEWEB)

    Chicinaş, I.; Marinca, T.F.; Popa, F.; Neamţu, B.V.

    2015-12-15

    Highlights: • Pseudo-core shell powders like Permalloy/Rhometal type obtained by microalloying. • During annealing, by interdiffusion, Rhometal phase is formed at the interface. • Both bcc and fcc structures of the Rhometal have been evidenced in interface. - Abstract: The nanocrystalline Ni{sub 3}Fe (around Permalloy composition) powders were prepared by dry mechanical alloying. The nanocrystalline Ni{sub 3}Fe and carbonyl Fe mixture powders and green compacts have been subjected to heat treatments in an argon atmosphere in order to obtain pseudo-core-shell like particles by micro-alloying in the temperature range of 400–900 °C. The large Permalloy particles are partially covered by very small Fe particles and at the interface a layer of Rhometal is formed by micro-alloying. The Permalloy particles remain in the nanocrystalline/nanostructured state after the annealing independent on the annealing temperature up to 900 °C. Structural, microstructural characterisation and local elemental chemical analysis have been performed by X-ray diffraction, scanning electron microscopy and X-ray microanalysis. The Rhometal interface was studied and evidenced by Fe and Ni concentration profile (EDX microanalysis) and X-ray diffraction. It was found that by a heat treatment up to 900 °C the interface is in the iron zone and at the heat treatment temperature of 900 °C the interface is in both Permalloy and iron zones. By XRD the bcc and fcc structures of the Rhometal have been evidenced. The interface length in iron zones is about 0.8 μm for the heat treatment at 400 °C and reaches 2.5 μm for heat treatment at 900 °C. The interface reaches 10 μm for a temperature of a heat treatment of 900 °C. The iron zones welded by Permalloy zones is evidenced the presence of the Ni atoms up to 4.7 at%. Also, in Permalloy particles are evidenced two zones with a different amount of Ni: one around Ni{sub 0.6}Fe{sub 0.4} composition close to the interface and the second in the

  15. Influence of isotopic disorder on solid state amorphization and polyamorphism in solid H2O -D2O solutions

    Science.gov (United States)

    Gromnitskaya, E. L.; Danilov, I. V.; Lyapin, A. G.; Brazhkin, V. V.

    2015-10-01

    We present a low-temperature and high-pressure ultrasonic study of elastic properties of isotopic H2O-D2O solid solutions, comparing their properties with those of the isotopically pure H2O and D2O ices. Measurements were carried out for solid state amorphization (SSA) from 1h to high-density amorphous (HDA) ice upon compression up to 1.8 GPa at 77 K and for the temperature-induced (77 -190 K ) u-HDA (unrelaxed HDA) → e-HDA (expanded HDA) → low-density amorphous (LDA )→1 c cascade of ice transformations near room pressure. There are many similarities in the elasticity behaviour of H2O ,D2O , and H2O-D2O solid solutions, including the softening of the shear elastic modulus as a precursor of SSA and the HDA →LDA transition. We have found significant isotopic effects during H/D substitution, including elastic softening of H2O -D2O solid solutions with respect to the isotopically pure ices in the case of the bulk moduli of ices 1c and 1h and for both bulk and shear elastic moduli of HDA ice at high pressures (>1 GPa ) . This softening is related to the configurational isotopic disorder in the solid solutions. At low pressures, the isotope concentration dependence of the elastic moduli of u-HDA ice changes remarkably and becomes monotonic with pronounced change of the bulk modulus (≈20 %) .

  16. Contribution to the study of the structure of silver krypton solid solutions; Contribution a l'etude de la structure des solutions solides argent-krypton

    Energy Technology Data Exchange (ETDEWEB)

    Levy, V; Tullairet, J; Delaplace, J; Antolin-Baudier, J; Adda, Y [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    The silver-krypton solid solutions formed by electrical discharge have been studied by X-rays, electrical resistivity and electronic transmission microscopy. The crystalline parameter and residual resistivity measurements have shown that the krypton atom behaves very differently to those of other elements of the periodic classification when dissolved in silver. The recovery of the crystalline parameter and of the electrical resistivity has been studied as a function of temperature. (authors) [French] Les solutions solides argent, krypton, realisees par decharges electrique ont ete etudiees par Rayons X, resistivite electrique et microscopie electronique en transmission. Les mesures de parametre cristallin et de resistivite residuelle ont montre que le comportement de l'atome de krypton est tres different de celui des autres elements de la classification periodique en solution dans l'argent. La restauration du parametre cristallin et de la resistivite electrique en fonction de la temperature a ete etudiee. (auteurs)

  17. Computationally efficient and quantitatively accurate multiscale simulation of solid-solution strengthening by ab initio calculation

    International Nuclear Information System (INIS)

    Ma, Duancheng; Friák, Martin; Pezold, Johann von; Raabe, Dierk; Neugebauer, Jörg

    2015-01-01

    We propose an approach for the computationally efficient and quantitatively accurate prediction of solid-solution strengthening. It combines the 2-D Peierls–Nabarro model and a recently developed solid-solution strengthening model. Solid-solution strengthening is examined with Al–Mg and Al–Li as representative alloy systems, demonstrating a good agreement between theory and experiments within the temperature range in which the dislocation motion is overdamped. Through a parametric study, two guideline maps of the misfit parameters against (i) the critical resolved shear stress, τ 0 , at 0 K and (ii) the energy barrier, ΔE b , against dislocation motion in a solid solution with randomly distributed solute atoms are created. With these two guideline maps, τ 0 at finite temperatures is predicted for other Al binary systems, and compared with available experiments, achieving good agreement

  18. Experimental study on Ra2+ uptake by barite (BaSO{sub 4}). Kinetics of solid solution formation via BaSO{sub 4} dissolution and Ra{sub x}Ba{sub 1-x}SO{sub 4} (re) precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Bosbach, Dirk; Boettle, Melanie; Metz, Volker (Karlsruher Inst. fuer Technologie, Inst fuer Nukleare Entsorgung (INE), Karlsruhe (Germany))

    2010-03-15

    226Ra2+ and 133Ba2+ uptake by barite in aqueous solution is studied on the basis of batch type experiments with two different barite powders with different specific surface area (0.5 m2/g and 3.2 m2/g, respectively). The uptake of 226Ra2+ and 133Ba2+ is not only limited to adsorption reactions but proceeds significantly into the bulk of the barite crystals. 133Ba2+ uptake kinetics is affected by various parameters, such as amount of sample, specific surface area, sample type and solution composition. In the case of 133Ba2+, complete isotopic equilibration of the 133Ba2+ spiked solution with the barite powder occurs within 50 to 600 days. This information is derived by monitoring the aqueous 133Ba2+ concentration combined with simple mass balance calculations. In the case of 226Ra2+ a Ra{sub x}Ba{sub 1-x}SO{sub 4} solid solution forms and the uptake rate drops significantly within 400 days. The observed 226Ra2+ concentration in solution is controlled by the solubility of a Ra{sub x}Ba{sub 1-x}SO{sub 4} solid solution and several orders of magnitude below the Ra2+ solubility with respect to a pure RaSO{sub 4}(s) end member. It cannot be demonstrated unambiguously that a zero exchange rate and therefore thermodynamic equilibrium has been established within the observation period. The observed concentrations may be interpreted either as (1) a partial equilibration of 20 to 50% of the barite crystals with 226Ra2+ or (2) as complete equilibration of a Ra{sub 0.000128}Ba{sub 0.999872}SO{sub 4} solid solution with 226Ra2+ with no pure barite left. In both cases it is concluded that equilibration between aqueous Ra2+ and barite involves the replacement of a substantial fraction of the initial barite and proceeds significantly beyond pure surface adsorption processes

  19. Aluminum powder metallurgy processing

    Energy Technology Data Exchange (ETDEWEB)

    Flumerfelt, J.F.

    1999-02-12

    The objective of this dissertation is to explore the hypothesis that there is a strong linkage between gas atomization processing conditions, as-atomized aluminum powder characteristics, and the consolidation methodology required to make components from aluminum powder. The hypothesis was tested with pure aluminum powders produced by commercial air atomization, commercial inert gas atomization, and gas atomization reaction synthesis (GARS). A comparison of the GARS aluminum powders with the commercial aluminum powders showed the former to exhibit superior powder characteristics. The powders were compared in terms of size and shape, bulk chemistry, surface oxide chemistry and structure, and oxide film thickness. Minimum explosive concentration measurements assessed the dependence of explosibility hazard on surface area, oxide film thickness, and gas atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization oxidation of aluminum powder. An Al-Ti-Y GARS alloy exposed in ambient air at different temperatures revealed the effect of reactive alloy elements on post-atomization powder oxidation. The pure aluminum powders were consolidated by two different routes, a conventional consolidation process for fabricating aerospace components with aluminum powder and a proposed alternative. The consolidation procedures were compared by evaluating the consolidated microstructures and the corresponding mechanical properties. A low temperature solid state sintering experiment demonstrated that tap densified GARS aluminum powders can form sintering necks between contacting powder particles, unlike the total resistance to sintering of commercial air atomization aluminum powder.

  20. Ultrasonic wave propagation in powders

    Science.gov (United States)

    Al-Lashi, R. S.; Povey, M. J. W.; Watson, N. J.

    2018-05-01

    Powder clumps (cakes) has a significant effect on the flowability and stability of powders. Powder caking is mainly caused by moisture migration due to wetting and environmental (temperature and humidity) changes. The process of moisture migration caking involves creating liquid bridges between the particles during condensation which subsequently harden to form solid bridges. Therefore, an effective and reliable technique is required to quantitatively and non-invasively monitor caking kinetics and effective stiffness. This paper describes two ultrasonic instruments (ultrasonic velocity pulse and airborne ultrasound systems) that have been used to monitor the caking phenomenon. Also, it discusses the relationship between the ultrasonic velocity and attenuation measurements and tracking caking kinetics and the effective stiffness of powders.

  1. The growth and tensile deformation behavior of the silver solid solution phase with zinc

    International Nuclear Information System (INIS)

    Wu, Jiaqi; Lee, Chin C.

    2016-01-01

    The growth of homogeneous silver solid solution phase with zinc are conducted at two different compositions. X-ray diffraction (XRD) and Scanning electron microscope/Energy dispersive X-ray spectroscopy (SEM/EDX) are carried out for phase identification and chemical composition verification. The mechanical properties of silver solid solution phase with zinc are evaluated by tensile test. The engineering and true stress vs. strain curves are presented and analyzed, with those of pure silver in comparison. According to the experimental results, silver solid solution phase with zinc at both compositions show tempered yield strength, high tensile strength and large uniform strain compared to those of pure silver. Fractography further confirmed the superior ductility of silver solid solution phase with zinc at both compositions. Our preliminary but encouraging results may pave the way for the silver based alloys to be applied in industries such as electronic packaging and structure engineering.

  2. Production of rare earth polishing powders in Russia

    International Nuclear Information System (INIS)

    Kosynkin, V.D.; Ivanov, E.N.; Kotrekhov, V.A.; Shtutza, M.G.; Grabko, A.I.

    1998-01-01

    in a suspension; polishing powder Ftoropol with addition of fluorine and higher contents of cerium dioxide (at least 70% by mass) that has a higher polishing ability and is attrition-proof, used for high-speed treatment of optical lenses, mirrors, TV screens and eyeglasses. The rare earth polishing powders made in Russia possess the following physico-chemical properties and performance characteristics; cerium dioxide content in solid REE solution - 50-90% by mass; F-ion content (in Ftoropol powder) - 8-14% by mass; non-REE content of sodium, calcium, strontium and iron impurities - at most 0.1% by mass of each element; natural radionuclide content of thorium, uranium, actinium, potassium-40 series, total standard specific activity - 0.45-0.85 Bq/g; - average particle size, 2.0-3.5 μm; density - 6.3-6.8 g/cm 3 ; pH of aqueous extract, 6-7; sedimentary stability - 10-20 minutes; polishing ability - 45-60 mg per 31 minutes (for polishing resin); abrasive inclusions - none. The report gives analysis of the. Russian powders compared against the best world analogues such as Cerox (Rhone Poulenc Company, France), Regipol (London and Scandinavian Division Chemical Company, England), etc. The analysis results imply, that the chief characteristics (granulometric composition, polishing ability and service life) of the Russian samples do not yield to the best foreign analogues, and in some properties (radionuclide content, sedimentary stability and scratching inclusions quantity) even surpass them

  3. Peculiarities of powder metallurgy of vanadium and its alloys

    International Nuclear Information System (INIS)

    Radomysel'skij, I.D.; Solntsev, V.P.; Evtushenko, O.V.

    1987-01-01

    Literature data on preparation of vanadium powder and powder materials on the vanadium base are generalized. Application of powder metallurgy engineering, allowing simulaneously to introduce practically any strengthening and solid-lubricating components as well as to alloy vanadium, permits undoubtedly to develop composite materials on the vanadium base

  4. Synthesis, characterization and thermal expansion studies on ThO2-SmO1.5 solid solutions

    International Nuclear Information System (INIS)

    Panneerselvam, G.; Antony, M.P.

    2008-01-01

    Full text: A highly homogeneous Th 1-x Sm x O 2 ; 0 ≤ x ≤ 0.8 solid solutions were synthesized by co-precipitation technique and the co-precipitated samples were sintered at 1473 K. Compositions of the solid solutions were characterized by standard wet-chemical analysis. X-ray diffraction measurements were performed in the sintered pellets for structural analysis, lattice parameter calculation and determination of solid solubility of SmO 1.5 in ThO 2 matrix. Bulk and theoretical densities of solid solutions were also determined. A fluorite structure was observed for ThO 2 -SmO 1.5 solid solutions with 0-55.2 mol % SmO 1.5 . Their thermal expansion coefficients were measured using high temperature X-ray diffraction technique. The mean linear thermal expansivity, αm for ThO 2 -SmO 1.5 solid solutions containing 17.9, 41.7 and 52.0 mole percent of SmO 1.5 were determined in the temperature range 298 to 2000 K for the first time. The mean linear thermal expansion coefficients for ThO 2 -SmO 1.5 solid solutions are 10.47x10 -6 K -1 , 11.16x10 -6 K -1 and 11.45x10 -6 K -1 , respectively. The percentage linear thermal expansion in this temperature range, for ThO 2 -SmO 1.5 solid solutions containing 17.9, 41.7 and 52.0 mol % SmO 1.5 are 1.82,1.94 and 1.99 respectively. It is suggested that the solid solutions are stable up to 2000 K. It is also suggested that the effect and nature of the dopant are the important parameters influenced in the thermal expansion of the ThO 2

  5. Solids loading evaluation for HB-line scrap recovery filters

    International Nuclear Information System (INIS)

    Crowder, M.L.

    2000-01-01

    The HB-Line Scrap Recovery facility uses wire screen filters to remove solids from plutonium-containing solutions transferred from the slab tank dissolvers. At times, the accumulation of solids is large enough to cause blinding (i.e., pluggage) of the filters. If the solids contain undissolved plutonium, significant accumulation of fissile material could impact operations. To address this potential issue, experiments were performed to define the minimum solids required to completely blind a filter. The solids loading experiments were performed by arranging 25- and 10-microm HB-Line filters in series to simulate the equipment in the scrap recovery process. Separate tests were performed using coarse and fine glass frit and cerium oxide powder suspended in 35 wt% sodium nitrate solution using a small turbine mixer. The solution and solids were transferred from a reservoir through the filter housings by vacuum. In each case, the 25-microm filter blinded first and was full of wet cake. After drying and accounting for the sodium nitrate in the filter cake, the following results were obtained. The results of the solids loading tests demonstrated that at least 800 g of solids accumulated in the filter housing before flow stopped. The actual amount of collected material was dependent upon the physical properties of the solids such as density and particle size. The mass of solids collected by the blinded 25-microm filter increased when successively finer solids were used in the experiments. Based on these results, one should anticipate that filters in the HB-Line Scrap Recovery Facility have the potential to collect similar quantities of material before transfer of solution from the dissolvers is severely impacted

  6. Synthesis and characterization of type solid solution in the binary ...

    Indian Academy of Sciences (India)

    We have investigated Bi2O3–Eu2O3 binary system by doping with Eu2O3 in the composition range from 1 to 10 mole% via solid state reactions and succeeded to stabilize -Bi2O3 ... Our experimental observations strongly suggested that oxygen deficiency type non-stoichiometry is present in doped type solid solutions.

  7. Tree-like SnO2 nanowires and optical properties

    International Nuclear Information System (INIS)

    Tao Tao; Chen Qiyuan; Hu Huiping; Chen Ying

    2011-01-01

    Research highlights: → Tree-like SnO 2 nanowires can be grown as low as 1100 deg. C by a vapour-solid process using a milled SnO 2 powder as the evaporation source. → FT-IR and PL measurements have shown that the tree-like nanostructures lead to superb physical properties. → The PL spectrum of such tree-like nanowires exhibits a strong PL peak at 548 nm. - Abstract: Tree-like SnO 2 nanowires have been grown by a vapor-solid process using a milled SnO 2 powder as the evaporation source. Phase, structural evolution and chemical composition were investigated using X-ray diffraction (XRD), X-ray spectrometry (EDS), and scanning electron microscopy (SEM). The process yields a large proportion of ultra-long rutile nanowires of 50-150 nm diameter and lengths up to several tens of micrometers. High-resolution transmission electron microscopy (HRTEM) shows that the SnO 2 nanowires are single crystals in the (1 0 1) growth direction with scattered smaller crystals or nanowires as the tree branches. The SnO 2 nanostructures were also examined using Fourier transform infra-red (FT-IR) and photoluminescence (PL) spectroscopy. A strong emission band centered at 548 nm dominated the PL spectrum of the tree-like nanowires.

  8. The LiBH4-LiI Solid Solution as an Electrolyte in an All-Solid-State Battery

    DEFF Research Database (Denmark)

    Sveinbjörnsson, Dadi Þorsteinn; Christiansen, Ane Sælland; Viskinde, Rasmus

    2014-01-01

    The charge and discharge performance of an all-solid-state lithium battery with the LiBH4-LiI solid solution as an electrolyte is reported. Lithium titanate (Li4Ti5O12) was used as the positive electrode and lithium metal as the negative electrode. The performance of the all-solid-state cell...

  9. Theromdynamics of carbon in nickel-based multicomponent solid solutions

    International Nuclear Information System (INIS)

    Bradley, D.J.

    1978-04-01

    The activity coefficient of carbon in nickel, nickel-titanium, nickel-titanium-chromium, nickel-titanium-molybdenum and nickel-titanium-molybdenum-chromium alloys has been measured at 900, 1100 and 1215 0 C. The results indicate that carbon obeys Henry's Law over the range studied (0 to 2 at. percent). The literature for the nickel-carbon and iron-carbon systems are reviewed and corrected. For the activity of carbon in iron as a function of composition, a new relationship based on re-evaluation of the thermodynamics of the CO/CO 2 equilibrium is proposed. Calculations using this relationship reproduce the data to within 2.5 percent, but the accuracy of the calibrating standards used by many investigators to analyze for carbon is at best 5 percent. This explains the lack of agreement between the many precise sets of data. The values of the activity coefficient of carbon in the various solid solutions are used to calculate a set of parameters for the Kohler-Kaufman equation. The calculations indicate that binary interaction energies are not sufficient to describe the thermodynamics of carbon in some of the nickel-based solid solutions. The results of previous workers for carbon in nickel-iron alloys are completely described by inclusion of ternary terms in the Kohler-Kaufman equation. Most of the carbon solid solution at high temperatures in nickel and nickel-titantium alloys precipitates from solution on quenching in water. The precipitate is composed of very small particles (greater than 2.5 nm) of elemental carbon. The results of some preliminary thermomigration experiments are discussed and recommendations for further work are presented

  10. Nanometric solid solutions of the fluorite and perovskite type crystal structures: Synthesis and properties

    Directory of Open Access Journals (Sweden)

    Snežana Bošković

    2012-09-01

    Full Text Available In this paper a short review of our results on the synthesis of nanosized CeO2, CaMnO3 and BaCeO3 solid solutions are presented. The nanopowders were prepared by two innovative methods: self propagating room temperature synthesis (SPRT and modified glycine/nitrate procedure (MGNP. Different types of solid solutions with rare earth dopants in concentrations ranging from 0–0.25 mol% were synthesized. The reactions forming solid solutions were studied. In addition, the characteristics of prepared nanopowders, phenomena during sintering and the properties of sintered samples are discussed.

  11. Thermal conductivities of (ZrxPu(1-x)/2Am(1-x)/2)N solid solutions

    International Nuclear Information System (INIS)

    Nishi, Tsuyoshi; Takano, Masahide; Akabori, Mitsuo; Arai, Yasuo

    2011-01-01

    The thermal conductivity of Zr-based transuranium (TRU) nitride solid solutions is important for designing subcritical cores in nitride-fueled ADS. Some results have been reported concerning the thermal conductivities of (Zr,Pu)N. However, there have been no experimental data on the thermal conductivities of Zr-based nitride solid solutions containing MA. In this study, the authors prepared sintered samples of (Zr x Pu (1-x)/2 Am (1-x)/2) N (x=0.0, 0.58, 0.80) solid solutions. The thermal diffusivity and heat capacity of (Zr x Pu (1-x)/2 Am (1-x)/2) N solid solutions were measured using a laser flash method and drop calorimetry, respectively. Thermal conductivities were determined from the measured thermal diffusivities, heat capacities and bulk densities over a temperature range of 473 to 1473 K. The thermal conductivities of (Zr 0.58 Pu 0.21 Am 0.21 )N and (Zr 0.80 Pu 0.10 Am 0.10 )N solid solutions were found to be higher than that of (Pu 0.5 Am 0.5 )N due to the high thermal conductivity of ZrN as the principal component, although they were lower than that of ZrN due to the impurifying effect of the transuranium elements. Thus, the thermal conductivities of (Zr x Pu (1-x)/2 Am (1-x)/2) N solid solutions increased with increasing ZrN concentration. Moreover, in order to help to promote the design study of nitride-fueled ADS, the thermal conductivity of the (Zr x Pu (1-x)/2 Am (1-x)/2) N solid solutions were fitted to an equation using the least squares method. (author)

  12. Long-term behavior of refractory thorium-plutonium dioxide solid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Claparede, Laurent, E-mail: laurent.claparede@umontpellier.fr [ICSM, UMR 5257 CNRS/CEA/Univ. Montpellier/ENSCM, Site de Marcoule, Bât. 426, BP 17171, 30207 Bagnols/Cèze (France); Guigue, Mireille [CEA, Nuclear Energy Division, RadioChemistry & Processes Department, BP 17171, 30207 Bagnols/Cèze (France); Jouan, Gauthier [CEA, Nuclear Energy Division, DTEC Department, BP 17171, 30207 Bagnols/Cèze (France); Nadah, Nassima [CEA, Nuclear Energy Division, RadioChemistry & Processes Department, BP 17171, 30207 Bagnols/Cèze (France); Dacheux, Nicolas [ICSM, UMR 5257 CNRS/CEA/Univ. Montpellier/ENSCM, Site de Marcoule, Bât. 426, BP 17171, 30207 Bagnols/Cèze (France); Moisy, Philippe [CEA, Nuclear Energy Division, RadioChemistry & Processes Department, BP 17171, 30207 Bagnols/Cèze (France)

    2017-01-15

    The long-term behavior of Th{sub 0.87}Pu{sub 0.13}O{sub 2} was examined in nitric acid concentrations. The normalized dissolution rates after 3380 days, range from (1.4 ± 0.2) × 10{sup −6} g m{sup −2} d{sup −1} in 5 M HNO{sub 3} down to (3.2 ± 0.4) × 10{sup −8} g m{sup −2} d{sup −1} in 10{sup −3} M HNO{sub 3}, which confirms the high chemical durability of this solid solution. The amounts of plutonium measured in solution lead to 0.9% and 2.1% of dissolved solid in 1 M and 5 M HNO{sub 3}, respectively. In such conditions, the time required to reach the full dissolution of the material varies from 430 years (5 M HNO{sub 3}) to 18,000 years (10{sup −3} M HNO{sub 3}). Moreover, the partial order related to the proton activity (n = 0.45 ± 0.03) suggests that the dissolution is mainly driven by surface reactions occurring at the solid/liquid interface. The characterization of the leached samples by SEM shows small microstructural modifications (i.e. detachment of crystallites) and the absence of neoformed phase while from PXRD, the unit cell parameter and crystallite size are not significantly affected. - Highlights: • Leaching tests of Th{sub 0.87}Pu{sub 0.13}O{sub 2} were performed for 9 years in several nitric acid solutions. • The high chemical durability of thorium-plutonium oxide solid solutions was confirmed. • The solubility of plutonium(IV) was not controlled by the precipitation of plutonium tetrahydroxide in these experiments.

  13. Synthesis and characterization of solid solutions in ABCO 4 system

    Science.gov (United States)

    Novoselov, A.; Zimina, G.; Komissarova, L.; Pajaczkowska, A.

    2006-01-01

    Formation of continuous solid solutions with a tetragonal structure of K 2NiF 4-type was investigated by direct solid-state synthesis, carbonate precipitations, the freeze-drying method and the Czochralski crystal growth technique. In the systems of SrLaAlO 4-CaLaAlO 4, SrNdAlO 4-CaNdAlO 4, SrPrAlO 4-CaPrAlO 4, SrLaAlO 4-SrLaGaO 4 and SrLaAlO 4-SrLaFeO 4 solid solutions are formed in the whole concentration range (0.0⩽ x⩽1.0) and in the systems of SrLaAlO 4-SrLaMnO 4 and SrLaAlO 4-SrLaCrO 4 in the limited compositional interval of (0.0⩽ x⩽0.20) and (0.0⩽ x⩽0.25), respectively, with composition dependency of lattice constants following Vegard's law.

  14. The complex synthesis and solid state chemistry of ceria-lanthana solid solutions prepared via a hexamethylenetetramine precipitation

    International Nuclear Information System (INIS)

    Fleming, P.G.; Holmes, J.D.; Otway, D.J.; Morris, M.A.

    2011-01-01

    Mixed oxide solid solutions are becoming ever more commercially important across a range of applications. However, their synthesis can be problematical. Here, we show that ceria-lanthana solid solutions can be readily prepared via simple precipitation using hexamethylenetetramine. However, the solution chemistry can be complex, which results in the precipitated particles having a complex structure and morphology. Great care must be taken in both the synthesis and characterisation to quantify the complexity of the product. Even very high heat treatments were not able to produce highly homogeneous materials and X-ray diffractions reveals the non-equilibrium form of particles prepared in this way. Unexpected crystal structures are revealed including a new metastable cubic La 2 O 3 phase. - Graphical abstract: The suggested mechanism for the formation of dual fluorite phase particles, where Step 1 corresponds to room temperature aging, Step 2; heating the solution to 90 deg. C, Step 3; cooling of the solution to room temperature, Step 4; calcination to 500 deg. C, Step 5; calcination to 700 deg. C and Step 6; calcination to 1300 deg. C. The terminology of e.g. La 1-x Ce x (OH) 3 is used to indicate the formation of a mixed oxy-hydroxy participate rather than a definitive assignment of stoichiometry. Similarly, La 1-y Ce y O 2 only implies a mixed solid solution. Highlights: → Mol% of prepared Ce-La oxides did not follow that of reactant mol%. → Complex reaction pathway found to be dependent on metal solution concentrations. → At certain concentrations core shell particles were found to form. → A reaction model was produced based on cationic solubility. → Report lanthana solubility higher than previously reported in CeO 2 .

  15. Crystalline structure and electrical properties of solid solutions YNixMn1-xO3

    Directory of Open Access Journals (Sweden)

    Moure, C.

    1999-12-01

    Full Text Available Solid solutions belonging to the Mn-rich region of the YNiXMn1-XO3 system have been studied. The powders were prepared by solid state reaction between the corresponding oxides. Sintered ceramics were obtained by firing at 1325-1350ºC. The incorporation of 20 atomic % Ni2+ to the Yttrium manganite induces the formation of a perovskite phase, with orthorhombic symmetry. Increase of the Ni amount leads to an increase of the orthorhombicity factor b/a, up to an amount of 50 atomic % Ni2+. Above this Ni amount, a biphasic system has been observed, with the presence of unreacted Y2O3. DC electrical conductivity measurements have shown semiconducting behaviour for all the solid solutions with perovskite-type structure. The room temperature conductivity increases with Ni until ~33 atomic % Ni, and then decreases. The 50/50 Ni/Mn composition has different values of conductivity and activation energy against those corresponding to samples with lower values of that ionic ratio. Small polaron hopping mechanism controls the conductivity in these ceramics. Results are discussed as a function of the Mn3+/Mn4+ ratio for each composition.Se han estudiado las soluciones sólidas correspondientes a la región rica en Mn del sistema YNiXMn1-XO3, entre 0 y 50 atomic % Ni. Los compuestos fueron preparados por reacción en estado sólido de los óxidos correspondientes. Se sinterizaron materiales cerámicos a 1325-1350ºC. Con cantidades de 20 atomic % Ni se produce la formación de una fase con estructura de perovskita, y simetría ortorrómbica. La distorsión ortorrómbica crece con el contenido de Ni. Por encima de 50 atomic % Ni, aparece Y2O3 sin reaccionar. Las soluciones sólidas muestran semiconducción con valores de σ que aumentan con el contenido de Ni hasta ~33 atomic %, para luego decrecer, hasta x=0.5. La composición 50/50 Ni/Mn muestra un comportamiento eléctrico algo diferente. Se discuten los resultados en función de la razón Mn3+/Mn4+ para cada

  16. Synthesis of Al₂Ca Dispersoids by Powder Metallurgy Using a Mg-Al Alloy and CaO Particles.

    Science.gov (United States)

    Fujita, Junji; Umeda, Junko; Kondoh, Katsuyoshi

    2017-06-28

    The elemental mixture of Mg-6 wt %Al-1 wt %Zn-0.3 wt %Mn (AZ61B) alloy powder and CaO particles was consolidated by an equal-channel angular bulk mechanical alloying (ECABMA) process to form a composite precursor. Subsequently, the precursor was subjected to a heat treatment to synthesize fine Al₂Ca particles via a solid-state reaction between the Mg-Al matrix and CaO additives. Scanning electron microscopy-energy-dispersive spectroscopy (SEM-EDS) and electron probe micro-analysis on the precursor indicated that 4.7-at % Al atoms formed a supersaturated solid solution in the α-Mg matrix. Transmission electron microscopy-EDS and X-ray diffraction analyses on the AZ61B composite precursor with 10-vol % CaO particles obtained by heat treatment confirmed that CaO additives were thermally decomposed in the Mg-Al alloy, and the solid-soluted Ca atoms diffused along the α-Mg grain boundaries. Al atoms also diffused to the grain boundaries because of attraction to the Ca atoms resulting from a strong reactivity between Al and Ca. As a result, needle-like (Mg,Al)₂Ca intermetallics were formed as intermediate precipitates in the initial reaction stage during the heat treatment. Finally, the precipitates were transformed into spherical Al₂Ca particles by the substitution of Al atoms for Mg atoms in (Mg,Al)₂Ca after a long heat treatment.

  17. Direct and indirect effects of radiation on polar solid solutions

    International Nuclear Information System (INIS)

    Ershov, V.G.; Gaponova, I.S.

    1982-01-01

    Radiation-chemical decomposition of a solute is due to the direct effect of ionizing radiation on it and also to its reaction with radical-ion products of radiolysis of the solution. At low temperature, the movement of the reagents is limited, and thus it is possible to isolate and evaluate the contribution of direct and indirect effects of radiation on the solute. The present paper is devoted to an investigation of the mechanism of formation of radicals from a solute (LiNO 2 ) in a polar solid solution (CH 3 OH) under the effect of γ-radiation

  18. Experimental data of biomaterial derived from Malva sylvestris and charcoal tablet powder for Hg2+ removal from aqueous solutions

    Directory of Open Access Journals (Sweden)

    Alireza Rahbar

    2016-09-01

    Full Text Available In this experimental data article, a novel biomaterial was provided from Malva sylvestris and characterized its properties using various instrumental techniques. The operating parameters consisted of pH and adsorbent dose on Hg2+ adsorption from aqueous solution using M. sylvestris powder (MSP were compared with charcoal tablet powder (CTP, a medicinal drug. The data acquired showed that M. sylvestris is a viable and very promising alternative adsorbent for Hg2+ removal from aqueous solutions. The experimental data suggest that the MSP is a potential adsorbent to use in medicine for treatment of poisoning with heavy metals; however, the application in animal models is a necessary step before the eventual application of MSP in situations involving humans. Keywords: Adsorption, Biomaterial, Hg2+ ion, Malva sylvestris, Charcoal tablet

  19. Corrosion-resistant powder-metallurgy stainless steel powders and compacts therefrom

    International Nuclear Information System (INIS)

    Klar, E.; Ro, D.H.; Whitman, C.I.

    1980-01-01

    Disclosed is a process for improving the corrosion resistance of a stainless steel powder or compact thereof wherein the powder is produced by atomizing a melt of metals in an oxidizing environment whereby the resulting stainless steel powder is surface-enriched in silicon oxides. The process comprises adding an effective proportion of modifier metal to the melt prior to the atomization, the modifier metal selected from the group consisting of tin, aluminum, lead, zinc, magnesium, rare earth metals and like metals capable of enrichment about the surface of the resulting atomized stainless steel powder and effective under reductive sintering conditions in the depletion of the silicon oxides about the surface; and sintering the resulting atomized powder or a compact thereof under reducing conditions, the sintered powder or compact thereof being depleted in the silicon oxides and the corrosion resistance of the powder or compact thereof being improved thereby

  20. Review of some past and present powder metallurgy programs at the Los Alamos Scientific Laboratory

    International Nuclear Information System (INIS)

    Sheinberg, H.

    1977-07-01

    A new process is described for molding and extruding complicated shapes of uranium-loaded graphite to close tolerances for use in nuclear propulsion engines. The process for hot-pressing copper-boron carbide and forming it into sheet for use as neutronic control material for these engines is also described. Fabrication procedure and deformation testing of carbide-graphite composites for fuel element supports are outlined, as is the procedure for fabricating tungsten-thoria heat shields for these reactors. Details are given for production of uranium carbide-zirconium carbide solid-solution powder and fabrication of this powder and molybdenum uranium oxide powder into fuel pins for thermionic reactors. Methods and details are given for spheroidization of lithium deuteride to be used as laser fusion targets and for quality upgrading and characterization of micron-size balloons for that use

  1. Phase transitions of sodium niobate powder and ceramics, prepared by solid state synthesis

    Science.gov (United States)

    Koruza, J.; Tellier, J.; Malič, B.; Bobnar, V.; Kosec, M.

    2010-12-01

    Phase transitions of sodium niobate, prepared by the solid state synthesis method, were examined using dielectric measurements, differential scanning calorimetry, and high temperature x-ray diffraction, in order to contribute to the clarification of its structural behavior below 400 °C. Four phase transitions were detected in the ceramic sample using dielectric measurements and differential scanning calorimetry and the obtained temperatures were in a good agreement with previous reports for the transitions of the P polymorph. The anomaly observed by dielectric measurements in the vicinity of 150 °C was frequency dependent and could be related to the dynamics of the ferroelectric nanoregions. The phase transitions of the as-synthesized NaNbO3 powder were investigated using differential scanning calorimetry and high temperature x-ray diffraction. The results show the existence of the Q polymorph at room temperature, not previously reported for the powder, which undergoes a transition to the R polymorph upon heating through a temperature region between 265 and 326.5 °C. This transition is mainly related to the displacement of Na into a more symmetric position and a minor change in the tilting system. The structures at room temperature, 250, 300, and 420 °C were refined by the Rietveld method and the evolution of the tilting system of the octahedral network and cationic displacement are reported.

  2. Phase transitions of sodium niobate powder and ceramics, prepared by solid state synthesis

    International Nuclear Information System (INIS)

    Koruza, J.; Tellier, J.; Malic, B.; Bobnar, V.; Kosec, M.

    2010-01-01

    Phase transitions of sodium niobate, prepared by the solid state synthesis method, were examined using dielectric measurements, differential scanning calorimetry, and high temperature x-ray diffraction, in order to contribute to the clarification of its structural behavior below 400 deg. C. Four phase transitions were detected in the ceramic sample using dielectric measurements and differential scanning calorimetry and the obtained temperatures were in a good agreement with previous reports for the transitions of the P polymorph. The anomaly observed by dielectric measurements in the vicinity of 150 deg. C was frequency dependent and could be related to the dynamics of the ferroelectric nanoregions. The phase transitions of the as-synthesized NaNbO 3 powder were investigated using differential scanning calorimetry and high temperature x-ray diffraction. The results show the existence of the Q polymorph at room temperature, not previously reported for the powder, which undergoes a transition to the R polymorph upon heating through a temperature region between 265 and 326.5 deg. C. This transition is mainly related to the displacement of Na into a more symmetric position and a minor change in the tilting system. The structures at room temperature, 250, 300, and 420 deg. C were refined by the Rietveld method and the evolution of the tilting system of the octahedral network and cationic displacement are reported.

  3. Characterization of solid-solution interface by potentiometric titration and electrophoretic mobility

    International Nuclear Information System (INIS)

    Lindecker, C.; Drot, R.; Fourest, B.; Simoni, E.

    1999-01-01

    The study of nuclear waste storage in deep geological sites involves the understanding of processes which could produce a possible dispersion or retention of radioelements. The dispersion of solid particles in aqueous solution is consequently important to be characterized. In this bi-phased system it is necessary to determine the characteristics of the solid-solution interface. The method used of this study is the techniques of potentiometric titration applied to heterogeneous systems. The material studied were phosphate matrices which were synthesized in the laboratory. The dependence of their surface change upon the nature of the electrolytes was investigated

  4. Understanding the defect structure of solution grown zinc oxide

    Energy Technology Data Exchange (ETDEWEB)

    Liew, Laura-Lynn [Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A-STAR), 3 Research Link, Singapore 117602 (Singapore); School of Materials Science and Engineering, Nanyang Technological University, Block N4.1 Nanyang Avenue, Singapore 639798 (Singapore); Sankar, Gopinathan, E-mail: g.sankar@ucl.ac.uk [Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom); Handoko, Albertus D. [Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A-STAR), 3 Research Link, Singapore 117602 (Singapore); Goh, Gregory K.L., E-mail: g-goh@imre.a-star.edu.sg [Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A-STAR), 3 Research Link, Singapore 117602 (Singapore); School of Materials Science and Engineering, Nanyang Technological University, Block N4.1 Nanyang Avenue, Singapore 639798 (Singapore); Kohara, Shinji [Japan Synchrotron Radiation Research Institute (JASRI), Mikazuki, Sayo, Hyogo 679-5198 (Japan)

    2012-05-15

    Zinc oxide (ZnO) is a wide bandgap semiconducting oxide with many potential applications in various optoelectronic devices such as light emitting diodes (LEDs) and field effect transistors (FETs). Much effort has been made to understand the ZnO structure and its defects. However, one major issue in determining whether it is Zn or O deficiency that provides ZnO its unique properties remains. X-ray absorption spectroscopy (XAS) is an ideal, atom specific characterization technique that is able to probe defect structure in many materials, including ZnO. In this paper, comparative studies of bulk and aqueous solution grown ({<=}90 Degree-Sign C) ZnO powders using XAS and x-ray pair distribution function (XPDF) techniques are described. The XAS Zn-Zn correlation and XPDF results undoubtedly point out that the solution grown ZnO contains Zn deficiency, rather than the O deficiency that were commonly reported. This understanding of ZnO short range order and structure will be invaluable for further development of solid state lighting and other optoelectronic device applications. - Graphical abstract: Highlights: Black-Right-Pointing-Pointer ZnO powders have been synthesized through an aqueous solution method. Black-Right-Pointing-Pointer Defect structure studied using XAS and XPDF. Black-Right-Pointing-Pointer Zn-Zn correlations are less in the ZnO powders synthesized in solution than bulk. Black-Right-Pointing-Pointer Zn vacancies are present in the powders synthesized. Black-Right-Pointing-Pointer EXAFS and XPDF, when used complementary, are useful characterization techniques.

  5. Structural and compositional characterization of synthetic (Ca,Sr)-tremolite and (Ca,Sr)-diopside solid solutions

    Science.gov (United States)

    Gottschalk, M.; Najorka, J.; Andrut, M.

    Tremolite (CaxSr1-x)2Mg5[Si8O22/(OH)2] and diopside (CaxSr1-x)Mg[Si2O6] solid solutions have been synthesized hydrothermally in equilibrium with a 1 molar (Ca,Sr)Cl2 aqueous solution at 750°C and 200 MPa. The solid run products have been investigated by optical, electron scanning and high resolution transmission electron microscopy, electron microprobe, X-ray-powder diffraction and Fourier-transform infrared spectroscopy. The synthesized (Ca,Sr)-tremolites are up to 2000 µm long and 30 µm wide, the (Ca,Sr)-diopsides are up to 150 µm long and 20 µm wide. In most runs the tremolites and diopsides are well ordered and chain multiplicity faults are rare. Nearly pure Sr-tremolite (tr0.02Sr-tr0.98) and Sr-diopside (di0.01Sr-di0.99) have been synthesized. A continuous solid solution series, i.e. complete substitution of Sr2+ for Ca2+ on M4-sites exists for (Ca,Sr)-tremolite. Total substitution of Sr2+ for Ca2+ on M2-sites can be assumed for (Ca,Sr)-diopsides. For (Ca,Sr)-tremolites the lattice parameters a, b and β are linear functions of composition and increase with Sr-content whereas c is constant. For the diopside series all 4 lattice parameters are a linear function of composition; a, b, c increase and β decreases with rising Sr-content. The unit cell volume for tremolite increases 3.47% from 906.68 Å3 for tremolite to 938.21 Å3 for Sr-tremolite. For diopside the unit cell volume increases 4.87 % from 439.91 Å3 for diopside to 461.30 Å3 for Sr-diopside. The observed splitting of the OH stretching band in tremolite is caused by different configurations of the next nearest neighbors (multi mode behavior). Resolved single bands can be attributed to the following configurations on the M4-sites: SrSr, SrCa, CaCa and CaMg. The peak positions of these 4 absorption bands are a linear function of composition. They are shifted to lower wavenumbers with increasing Sr-content. No absorption band due to the SrMg configuration on the M4-site is observed. This indicates

  6. Development of Wood Apple Shell (Feronia acidissima Powder Biosorbent and Its Application for the Removal of Cd(II from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Ch. Suresh

    2014-01-01

    Full Text Available A biosorbent was prepared by using wood apple shell (WAS powder and studied its application for the removal of Cd(II from aqueous solution by a batch method. The biosorbent was characterized by infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and elemental analysis. WAS is principally made up of lignin and cellulose, containing functional groups such as alcoholic, ketonic, and carboxylic groups which can be involved in complexation reactions with Cd(II. The effect of experimental parameters like initial pH, contact time, metal ion concentration, and sorbent dose on adsorption was investigated. The optimum pH for biosorption of Cd(II onto WAS was found to be pH 5.0 and the quantitative removal of Cd(II ions was achieved in 30 min. The kinetic study showed that the biosorption process followed the pseudo-second-order rate. Experimental data were analyzed by Langmuir, Freundlich, and Dubinin-Radushkevich isotherm models. Desorption studies were carried out using HCl solution.

  7. Hydrothermal synthesis of pollucite, analcime and their solid solutions and analysis of their properties

    Energy Technology Data Exchange (ETDEWEB)

    Jing, Zhenzi, E-mail: zzjing@tongji.edu.cn [Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, Tongji University, 4800 Cao' an Road, Shanghai 201804 (China); Cai, Kunchuan; Li, Yan; Fan, Junjie; Zhang, Yi; Miao, Jiajun; Chen, Yuqian [Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, Tongji University, 4800 Cao' an Road, Shanghai 201804 (China); Jin, Fangming [School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China)

    2017-05-15

    Pollucite, as a perfect long-term potential host for radioactive Cs immobilization, barely exists in pure form naturally but in an isomorphism form between pollucite and analcime due to coexistence of Cs and Na. Pollucite could be hydrothermally synthesized with Cs-polluted soil or clay minerals which contain Cs and Na, and it is necessary to study the properties of the synthesis if Cs and Na contained. Pure pollucite, analcime and their solid solutions were hydrothermally synthesized with chemicals, and it was found that the most formed pollucite analcime solid solutions with Cs/(Cs + Na) ratios of 2/6–5/6 had very similar properties in mineral composition, morphology and size, structural water (Cs cations) and coordination environment to pollucite. This also suggests that even coexistence of Cs and Na in nature, pollucite favors to form due to site preference for Cs over Na, which leads to the property and the structure of the most solid solutions similar to that of pollucite. - Highlights: •Pure pollucite barely exists in nature due to coexistence of Cs and Na. •Pollucite, analcime and their solid solutions could be hydrothermally synthesized. •Most formed solid solutions were found to have similar properties to pollucite. •Even coexistence in nature, pollucite favors to form due to site preference for Cs over Na.

  8. Light refractive index in indium phosphide and InP-containing solid solutions

    International Nuclear Information System (INIS)

    Yas'kov, A.D.

    1983-01-01

    Spectral and temperatUre dependences of the InP and Gasub(x)Insub(1-x)P refractive indexes in the range of 0.98-1.3 μm are measured. The obtained in this case and published earlier experimental data on refractive index dispersion of the InP and solid solutions with its participation are generalized within the framework of a simple model approach based on a consecutiVe account of measured parameters of zone structure with the solid solution composition

  9. Characterization of polymorphic solid-state changes using variable temperature X-ray powder diffraction

    DEFF Research Database (Denmark)

    Karjalainen, Milja; Airaksinen, Sari; Rantanen, Jukka

    2005-01-01

    The aim of this study was to use variable temperature X-ray powder diffraction (VT-XRPD) to understand the solid-state changes in the pharmaceutical materials during heating. The model compounds studied were sulfathiazole, theophylline and nitrofurantoin. This study showed that the polymorph form...... of sulfathiazole SUTHAZ01 was very stable and SUTHAZ02 changed as a function of temperature to SUTHAZ01. Theophylline monohydrate changed via its metastable form to its anhydrous form during heating and nitrofurantoin monohydrate changed via amorphous form to its anhydrous form during heating. The crystallinity...... to the anhydrous form. The average crystallite size of sulfathiazole samples varied only a little during heating. The average crystallite size of both theophylline and nitrofurantoin monohydrate decreased during heating. However, the average crystallite size of nitrofurantoin monohydrate returned back to starting...

  10. Interfacial hydrothermal synthesis of nanorod-like CdMo{sub 1−x}W{sub x}O{sub 4} solid solutions with enhanced photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Linrui, E-mail: houlr629@163.com; Lian, Lin; Zhang, Longhai; Zhou, Lu; Yuan, Changzhou, E-mail: ayuancz@163.com

    2014-12-15

    In the work, CdMo{sub 1−x}W{sub x}O{sub 4} solid solutions with various compositions in the entire range of 0 ≤ x ≤ 1 have been prepared successfully by a facile interfacial hydrothermal method. All CdMo{sub 1−x}W{sub x}O{sub 4} products are composed of one-dimensional (1D) nanorods (NRs) with tetragonal structure. The composition-dependent structure, absorption properties and photocatalytic efficiencies of the resulting 1D CdMo{sub 1−x}W{sub x}O{sub 4} samples are systematically investigated. The photocatalytic degradation of methylene blue (MB) under ultraviolet (UV) light irradiation was utilized as a model reaction to evaluate the photocatalytic activities of all the samples. The sample, CdMo{sub 0.5}W{sub 0.5}O{sub 4} (i.e., x = 0.5) NRs, exhibits the highest photocatalytic activity and appealing stability for widespread photocatalytic application, owing to the unique 1D nanoscale architecture, suitable band gap and strong absorption in the UV region. Our approach developed here provides an elegant technique to tune both the nanoarchitecture and band gap of the photocatalysts by simply adjusting the composition of the solid solutions, resulting in the enhanced photocatalytic activity. Moreover, the method we proposed can be further extended to the smart design and controllable synthesis of other novel and highly efficient multi-component photocatalysts for environmental remediation. - Graphical abstract: 1D nanorod-based CdMo{sub 1−x}W{sub x}O{sub 4} solid solutions with various W compositions in the entire range of 0 ≤ x ≤ 1 were fabricated by a facile interfacial hydrothermal strategy, and exhibited intriguing photodecomposition of the MB under UV light irradiation. - Highlights: • CdMo{sub 1−x}W{sub x}O{sub 4} solid solutions with W compositions of 0 ≤ x ≤ 1 were prepared. • Facile interfacial hydrothermal strategy was developed. • 1D nanorod-based CdMo{sub 1−x}W{sub x}O{sub 4} photocatalysts were synthesized.

  11. Method and apparatus for the production of metal oxide powder

    Science.gov (United States)

    Harris, Michael T.; Scott, Timothy C.; Byers, Charles H.

    1992-01-01

    The present invention provides a method for preparing metal oxide powder. A first solution, which is substantially organic, is prepared. A second solution, which is an aqueous solution substantially immiscible in the first solution, is prepared and delivered as drops to the first solution. The drops of the second solution are atomized by a pulsed electric field forming micro-drops of the second solution. Reagents in the first solution diffuse into and react with reactants in the micro-drops of the second solution forming metal hydroxide or oxalate particles. The metal hydroxide or metal oxalate particles are then recovered and dried to produce the metal oxide powder. An apparatus for preparing a metal oxide powder is also disclosed.

  12. Exact soliton-like solutions of perturbed phi4-equation

    International Nuclear Information System (INIS)

    Gonzalez, J.A.

    1986-05-01

    Exact soliton-like solutions of damped, driven phi 4 -equation are found. The exact expressions for the velocities of solitons are given. It is non-perturbatively proved that the perturbed phi 4 -equation has stable kink-like solutions of a new type. (author)

  13. CuInSe2 nano-crystallite reaction kinetics using solid state reaction from Cu2Se and In2Se3 powders

    International Nuclear Information System (INIS)

    Hsiang, Hsing-I; Lu, Li-Hsin; Chang, Yu-Lun; Ray, Dahtong; Yen, Fu-Su

    2011-01-01

    Highlights: → CuInSe 2 phase increased gradually accompanied with a decrease in γ-In 2 Se 3 and no intermediate phase during calcination. → CuInSe 2 formation from Cu 2 Se and In 2 Se 3 powders follows a one-dimensional diffusion-controlled reaction with apparent activation energy of about 122.5 kJ/mol. → The solid reaction kinetics may be dominated by the diffusion of In 3+ ions. - Abstract: The reaction mechanism and CuInSe 2 formation kinetics using a solid state reaction from Cu 2 Se and In 2 Se 3 powders synthesized using a heating up process were investigated using X-ray diffractomy (XRD) and transmission electron microscopy (TEM). It was observed that the CuInSe 2 phase increased gradually, accompanied with a decrease in γ-In 2 Se 3 with no intermediate phase as the calcination temperature and soaking time were increased. The reaction kinetics was analyzed using the Avrami and polynomial kinetic model, suggesting that CuInSe 2 formation from Cu 2 Se and In 2 Se 3 powders follows a diffusion-controlled reaction with an apparent activation energy of about 122.5-182.3 kJ/mol. Cu 2 Se and In 2 Se 3 phases react and directly transform into CIS without the occurrence of any intermediate phase and the size of the newly formed CuInSe 2 crystallites was close to that of the Cu 2 Se reactant particle based on the TEM results, which indicated that the solid reaction kinetics may be dominated by the diffusion of In 3+ ions.

  14. Raman scattering quantitative analysis of the anion chemical composition in kesterite Cu2ZnSn(SxSe1−x)4 solid solutions

    International Nuclear Information System (INIS)

    Dimitrievska, Mirjana; Gurieva, Galina; Xie, Haibing; Carrete, Alex; Cabot, Andreu; Saucedo, Edgardo; 2UB, Departament d’Electrònica, Universitat de Barcelona, C. Martí i Franquès 1, 08028 Barcelona (Spain))" data-affiliation=" (Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1 2pl., 08930 Sant Adrià del Besòs, Barcelona (Spain); IN2UB, Departament d’Electrònica, Universitat de Barcelona, C. Martí i Franquès 1, 08028 Barcelona (Spain))" >Pérez-Rodríguez, Alejandro

    2015-01-01

    Highlights: • An optical method for the quantitative measurement of [S]/([S] + [Se]) in CZTSSe is presented. • It is based on Raman spectroscopy and covers whole S–Se range of compositions. • The proposed method is independent of crystal quality, experimental conditions and type of material. • The validity of the technique is proven by comparison with independent composition measurements (XRD and EQE). • Test of the method on the data published in the literature has given satisfactory results. - Abstract: A simple and non destructive optical methodology for the quantitative measurement of [S]/([S] + [Se]) anion composition in kesterite Cu 2 ZnSn(S x Se 1−x ) 4 (CZTSSe) solid solutions by means of Raman spectroscopy in the whole S–Se range of compositions has been developed. This methodology is based on the dependence of the integral intensity ratio of Raman bands sensitive to anion vibrations with the [S]/([S] + [Se]) composition of the kesterite solid solutions. The calibration of the parameters used in this analysis involved the synthesis of a set of CZTSSe powders by solid state reaction method, spanning the range from pure Cu 2 ZnSnS 4 to pure Cu 2 ZnSnSe 4 . The validity of the methodology has been tested on different sets of independent samples, including also non-stoichiometric device grade CZTSSe layers with different compositions and films that were synthesized by solution based processes with different crystalline quality. In all cases, the comparison of the results obtained from the analysis of the intensity of the Raman bands with independent composition measurements performed by different techniques as X-ray diffraction and external quantum efficiency has confirmed the satisfactory performance of the developed methodology for the quantitative analysis of these compounds, independently on the crystal quality or the method of synthesis. Further strong support on the methodology performance has been obtained from the analysis of a wider

  15. Zirconium-cerin solid solutions: thermodynamic model and thermal stability at high temperature; Solutions solides de zirconium dans la cerine: modele thermodynamique et stabilite thermique a haute temperature

    Energy Technology Data Exchange (ETDEWEB)

    Janvier, C.

    1998-04-02

    The oxides-gaseous dioxygen equilibria and the textural thermal stability of six zirconium-cerin solutions Ce{sub 1-x}Zr{sub x}O{sub 2} (0solid solutions and the gaseous oxygen by thermal gravimetric analysis at 600 degrees Celsius has shown that these solutions have not a ideal behaviour. A thermodynamic model where the point defects of solutions are included describe them the best. It becomes then possible to know the variations of the concentrations of the point defects in terms of temperature, oxygen pressure and zirconium concentration. A kinetic study (by calcination at 950 degrees Celsius of the solid solutions) of the specific surface area decrease has revealed a minima (0

  16. Production of ultrafine zinc powder from wastes containing zinc by electrowinning in alkaline solution

    Directory of Open Access Journals (Sweden)

    Zhao Youcai

    2013-12-01

    Full Text Available Production of ultrafine zinc powder from industrial wastes by electrowinning in alkaline solution was studied. Stainless steel and magnesium electrodes were used as anode and cathode, respectively. Morphology, size distribution and composition of the Zn particles were characterized by Scanning Electron Microscopy, Laser Particle Size Analyzer, and Inductive Coupled Plasma Emission Spectrometer. The required composition of the electrolyte for ultrafine particles was found to be 25-35 g/L Zn, 200-220 g/L NaOH and 20-40 mg/L Pb. The optimal conditions were a current density of 1000-1200 A/m² and an electrolyte temperature of 30-40 °C. The results indicated that the lead additive exerted a beneficial effect on the refining of the particles, by increasing the cathodic polarization. Through this study, ultrafine zinc powder with a size distribution of around 10 μm could be produced, and considerably high current efficiencies (97-99 % were obtained.

  17. Solid solution strengthening and diffusion in nickel- and cobalt-based superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Rehman, Hamad ur

    2016-07-01

    Nickel and cobalt-based superalloys with a γ-γ{sup '} microstructure are known for their excellent creep resistance at high temperatures. Their microstructure is engineered using different alloying elements, that partition either to the fcc γ matrix or to the ordered γ{sup '} phase. In the present work the effect of alloying elements on their segregation behaviour in nickel-based superalloys, diffusion in cobalt-based superalloys and the temperature dependent solid solution strengthening in nickel-based alloys is investigated. The effect of dendritic segregation on the local mechanical properties of individual phases in the as-cast, heat treated and creep deformed state of a nickel-based superalloy is investigated. The local chemical composition is characterized using Electron Probe Micro Analysis and then correlated with the mechanical properties of individual phases using nanoindentation. Furthermore, the temperature dependant solid solution hardening contribution of Ta, W and Re towards fcc nickel is studied. The room temperature hardening is determined by a diffusion couple approach using nanoindentation and energy dispersive X-ray analysis for relating hardness to the chemical composition. The high temperature properties are determined using compression strain rate jump tests. The results show that at lower temperatures, the solute size is prevalent and the elements with the largest size difference with nickel, induce the greatest hardening consistent with a classical solid solution strengthening theory. At higher temperatures, the solutes interact with the dislocations such that the slowest diffusing solute poses maximal resistance to dislocation glide and climb. Lastly, the diffusion of different technically relevant solutes in fcc cobalt is investigated using diffusion couples. The results show that the large atoms diffuse faster in cobalt-based superalloys similar to their nickel-based counterparts.

  18. Solid solution strengthening and diffusion in nickel- and cobalt-based superalloys

    International Nuclear Information System (INIS)

    Rehman, Hamad ur

    2016-01-01

    Nickel and cobalt-based superalloys with a γ-γ ' microstructure are known for their excellent creep resistance at high temperatures. Their microstructure is engineered using different alloying elements, that partition either to the fcc γ matrix or to the ordered γ ' phase. In the present work the effect of alloying elements on their segregation behaviour in nickel-based superalloys, diffusion in cobalt-based superalloys and the temperature dependent solid solution strengthening in nickel-based alloys is investigated. The effect of dendritic segregation on the local mechanical properties of individual phases in the as-cast, heat treated and creep deformed state of a nickel-based superalloy is investigated. The local chemical composition is characterized using Electron Probe Micro Analysis and then correlated with the mechanical properties of individual phases using nanoindentation. Furthermore, the temperature dependant solid solution hardening contribution of Ta, W and Re towards fcc nickel is studied. The room temperature hardening is determined by a diffusion couple approach using nanoindentation and energy dispersive X-ray analysis for relating hardness to the chemical composition. The high temperature properties are determined using compression strain rate jump tests. The results show that at lower temperatures, the solute size is prevalent and the elements with the largest size difference with nickel, induce the greatest hardening consistent with a classical solid solution strengthening theory. At higher temperatures, the solutes interact with the dislocations such that the slowest diffusing solute poses maximal resistance to dislocation glide and climb. Lastly, the diffusion of different technically relevant solutes in fcc cobalt is investigated using diffusion couples. The results show that the large atoms diffuse faster in cobalt-based superalloys similar to their nickel-based counterparts.

  19. Studies on Al-Mg solid solutions using electrical resistivity and microhardness measurements

    Energy Technology Data Exchange (ETDEWEB)

    Gaber, A.; Afify, N.; El-Halawany, S.M.; Mossad, A. [Assiut Univ. (Egypt). Dept. of Physics

    1999-08-01

    Al-C at% Mg alloys (C = 0.82, 1.84, 3.76, 5.74 and 12.18) have been selected for this study. From the electrical resistivity measurements it is concluded that the resistivity increment of Al-Mg alloys (in a solid solution state) is proportional to the atomic fractional constituents (Mg and Al) as {delta}{rho}{sub all} = 64.66 c(1-c) {mu}{omega} cm. In addition, both the temperature coefficient of resistivity, {alpha}{sub all} and the relaxation time of the free electrons {tau}{sub all} in the alloys diminish with increasing the solute Mg concentration. The increase of the scattering power, {eta}, with increasing C is interpreted to be due to the contribution of electron-impurity scattering. The percentage increase due to electron-impurity scattering per one atomic percent Mg has been determined as 12.99%. The Debye temperature {theta} decreases as the Mg concentration increases. The microhardness results showed that the solid solution hardening obeys the relation {delta}HV{sub s} = 135.5C{sup 0.778} MPa which is comparable to the theory of solid solution hardening for all alloys; {delta}HV{sub s} {approx} C{sup 0.5-0.67} MPa. (orig.)

  20. Combined solid state and solution NMR studies of {alpha},{epsilon}-{sup 15}N labeled bovine rhodopsin

    Energy Technology Data Exchange (ETDEWEB)

    Werner, Karla; Lehner, Ines [Johann Wolfgang Goethe-Universitaet Frankfurt, Center for Biomolecular Magnetic Resonance (Germany); Dhiman, Harpreet Kaur [University of Pittsburgh School of Medicine, Department of Structural Biology (United States); Richter, Christian; Glaubitz, Clemens; Schwalbe, Harald, E-mail: schwalbe@nmr.uni-frankfurt.de; Klein-Seetharaman, Judith [Johann Wolfgang Goethe-Universitaet Frankfurt, Center for Biomolecular Magnetic Resonance (Germany); Khorana, H. Gobind [Massachusetts Institute of Technology, Departments of Biology and Chemistry (United States)], E-mail: khorana@mit.edu

    2007-04-15

    Rhodopsin is the visual pigment of the vertebrate rod photoreceptor cell and is the only member of the G protein coupled receptor family for which a crystal structure is available. Towards the study of dynamics in rhodopsin, we report NMR-spectroscopic investigations of {alpha},{epsilon}-{sup 15}N-tryptophan labeled rhodopsin in detergent micelles and reconstituted in phospholipids. Using a combination of solid state {sup 13}C,{sup 15}N-REDOR and HETCOR experiments of all possible {sup 13}C'{sub i-1} carbonyl/{sup 15}N{sub i}-tryptophan isotope labeled amide pairs, and H/D exchange {sup 1}H,{sup 15}N-HSQC experiments conducted in solution, we assigned chemical shifts to all five rhodopsin tryptophan backbone {sup 15}N nuclei and partially to their bound protons. {sup 1}H,{sup 15}N chemical shift assignment was achieved for indole side chains of Trp35{sup 1.30} and Trp175{sup 4.65}. {sup 15}N chemical shifts were found to be similar when comparing those obtained in the native like reconstituted lipid environment and those obtained in detergent micelles for all tryptophans except Trp175{sup 4.65} at the membrane interface. The results suggest that the integrated solution and solid state NMR approach presented provides highly complementary information in the study of structure and dynamics of large membrane proteins like rhodopsin.

  1. Kinetic Uptake Studies of Powdered Materials in Solution

    Directory of Open Access Journals (Sweden)

    Mohamed H. Mohamed

    2015-06-01

    Full Text Available Challenges exist for the study of time dependent sorption processes for heterogeneous systems, especially in the case of dispersed nanomaterials in solvents or solutions because they are not well suited to conventional batch kinetic experiments. In this study, a comparison of batch versus a one-pot setup in two variable configurations was evaluated for the study of uptake kinetics in heterogeneous (solid/solution systems: (i conventional batch method; (ii one-pot system with dispersed adsorbent in solution with a semi-permeable barrier (filter paper or dialysis tubing for in situ sampling; and (iii one-pot system with an adsorbent confined in a semi-permeable barrier (dialysis tubing or filter paper barrier with ex situ sampling. The sorbent systems evaluated herein include several cyclodextrin-based polyurethane materials with two types of phenolic dyes: p-nitrophenol and phenolphthalein. The one-pot kinetics method with in situ (Method ii or ex situ (Method iii sampling described herein offers significant advantages for the study of heterogeneous sorption kinetics of highly dispersed sorbent materials with particles sizes across a range of dimensions from the micron to nanometer scale. The method described herein will contribute positively to the development of advanced studies for heterogeneous sorption processes where an assessment of the relative uptake properties is required at different experimental conditions. The results of this study will be advantageous for the study of nanomaterials with significant benefits over batch kinetic studies for a wide range of heterogeneous sorption processes.

  2. Synthesis and characterization of lead zirconate titanate powders obtained by the oxidant peroxo method

    International Nuclear Information System (INIS)

    Camargo, Emerson R.; Leite, Edson R.; Longo, Elson

    2009-01-01

    Lead zirconate titanate (PbZr 1-x Ti x O 3 ) was synthesized by the 'oxidant peroxo method (OPM)' with 'x' between 0.25 and 0.50. Titanium metal was dissolved into a hydrogen peroxide/ammonia aqueous solution, followed by the addition of lead and zirconium nitrate solution. The amorphous precipitated precursor obtained was crystallized by heat treatment between 400 and 1000 deg. C. Images of transmission microscopy showed spherical particles with average diameter between 20 and 60 nm, and the presence of necks between particles treated at 700 deg. C. All of the unpressed powders were characterized by X-ray diffractometry and FT-Raman spectroscopy. Powder samples with 'x' up to 0.35 showed rhombohedral structure when treated at temperatures higher than 500 deg. C, and tetragonal structure when 'x' was higher than 0.40. Analysis of XRD and Raman spectroscopy of the precursor powders showed amorphous-like structures, however powders treated at 400 deg. C showed a structure identified as an intermediate pyrochlore phase, independently of the Zr and Ti mole ratio

  3. A novel approach to determine the thermal transition of gum powder/hydro-gels using dynamic mechanical analysis

    Science.gov (United States)

    Nagamadhu, M.; Jeyaraj, P.; Kumar, G. C. Mohan

    2018-04-01

    The dynamic characterization of materials plays a major role in the present area. The many researchers are worked on solid materials and its characterization, it can be tested using dynamic mechanical analyzer (DMA), however, no such work on powder a semiliquid samples. The powder and liquid samples can also easily characterization as like solid samples using DMA. These powder samples are analyzed with a material pocket method which can be used to accurately determine very low levels of variation in powder properties, due to the high sensitivity of DMA to glass transitions. No such DMA studies on hydrogel and Gum powders. The gum powders are used in various applications start from food industries, pharmacy, natural gums paste, biomedical applications etc. among all this applications gum Ghatti is one of the powders using for varies applications. Around 50 milligrams of Ghatti powders are placed inside material pocket and analyzed storage modulus (G'), loss modulus (G″) and tan delta (δ). Also, understand the curing and glass transition effect using water, glycerin and superplastic from room temperature to 200°C. The result shows that storage modulus decreases with increase in temperature in pure Ghatti powder. The surprising improvement in storage modulus was found with an increase in temperature with addition of water, glycerin, and superplastic. However, loss modulus and tan delta are also having very significant influence and also shows a clear peak of the tan delta. The loss modulus results were found to be improved by adding solidifying agents, along with this water and superplastic better influence. But glycerine found to be hydrogel in nature and thermodynamic properties are much influenced by frequency.

  4. Solute redistribution in dendritic solidification with diffusion in the solid

    Science.gov (United States)

    Ganesan, S.; Poirier, D. R.

    1989-01-01

    An investigation of solute redistribution during dendritic solidification with diffusion in the solid has been performed using numerical techniques. The extent of diffusion is characterized by the instantaneous and average diffusion parameters. These parameters are functions of the diffusion Fourier number, the partition ratio and the fraction solid. Numerical results are presented as an approximate model, which is used to predict the average diffusion parameter and calculate the composition of the interdendritic liquid during solidification.

  5. BiOCl{sub x}Br{sub y}I{sub z} (x + y + z = 1) solid solutions with controllable band gap and highly enhanced visible light photocatalytic performances

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xiuguo; Zhang, Yangyang; Li, Chunmei; Zhang, Zhifeng; Peng, Zheng; Si, Huayan; Zhang, Jianmin [School of Materials Science and Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043 (China); Li, Yanting, E-mail: yantingcn@stdu.edu.cn [School of Materials Science and Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043 (China); Hebei Provincial Key Laboratory of Traffic Engineering materials, Shijiazhuang Tiedao University, Shijiazhuang 050043 (China)

    2015-07-25

    Highlights: • BiOCl{sub x}Br{sub y}I{sub z} solid solutions were prepared by hydrolysis method. • Band gap of the solid solutions can be controllable by adjusting the molar ratio of halogen ions. • The samples show higher visible light photocatalytic activity than pure BiOX. • Orbital diversification of VB is beneficial to separating the holes and electrons effectively. • The mechanisms are discussed by active species trapping and band theory. - Abstract: A series of BiOCl{sub x}Br{sub y}I{sub z} solid solutions with controllable band gap and highly enhanced visible light photocatalytic performances were synthesized by a simple hydrolysis method. The samples were characterized by X-ray powder diffraction, UV–vis diffuse reflectance spectra, scanning electron microscope, high-resolution transmission electron microscopy and Brunauer–Emmett–Teller analysis. By adjusting the molar ratio of halogen ions, the band gap of BiOCl{sub x}Br{sub y}I{sub z} could be controllable to the suitable value for a photocatalytic reaction. Especially, BiOCl{sub x}Br{sub y}I{sub z} with a 1:1:2 molar ratio of Cl, Br to I showed the highest visible light photocatalytic activity for the degradation of methyl orange than individual BiOX systems. The degradation efficiency could reach over 90% within 60 min. The possible mechanism of photogenerated carrier transfer and higher photocatalytic activity was analyzed by active species trapping and energy band theory.

  6. Powder metallurgical processing of equiatomic AlCoCrFeNi high entropy alloy: Microstructure and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, S.; Maity, T.N.; Mukhopadhyay, S. [Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016 (India); Sarkar, S. [Department of Materials Engineering, Indian Institute of Science, Bangalore 560012 (India); Gurao, N.P. [Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016 (India); Bhowmick, S. [Hysitron Inc., Eden Prairie, MN 55344 (United States); Biswas, Krishanu, E-mail: kbiswas@iitk.ac.in [Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016 (India)

    2017-01-02

    Phase formation, microstructural evolution and the mechanical properties of novel multi-component equiatomic AlCoCrFeNi high entropy alloy synthesized by high energy ball milling followed by spark plasma sintering have been reported here. The microstructure of the mechanically alloyed (MA) powder and sintered samples were studied using X-ray diffraction, scanning electron and transmission electron microscopy, whereas the detailed investigation of the mechanical properties of the sintered samples were measured using micro and nano hardness techniques. The fracture toughness measurements were performed by applying single edge V notch beam (SEVNB) technique. The MA powder shows the presence of FCC (τ) and BCC (κ) solid solution phases. Extended ball milling (up to 60 h) does not change the phases present in MA powder. The sintered pellets show phase-separated microstructure consisting of Al-Ni rich L1{sub 2} phase, α′ and tetragonal Cr-Fe-Co based σ phase along with Al-Ni-Co-Fe FCC solid solution phase (ε) for sample sintered from 973 to 1273 K. The experimental evidences indicate that BCC (κ) solid solution undergoes eutectoid transformation during sintering leading to the formation of L1{sub 2} ordered α′ and σ phases, whereas FCC (τ) phase remains unaltered with a slight change in the lattice parameter. The hardness of the sample increases with sintering temperature and a sudden rise in hardness is observed 1173 K. The sample sintered at 1273 K shows the highest hardness of ~8 GPa. The elastic modulus mapping clearly indicates the presence of three phases having elastic moduli of about 300, 220 and 160 GPa. The fracture toughness obtained using SEVNB test shows a maximum value of 3.9 MPa m{sup 1/2}, which is attributed to the presence of brittle nanosized σ phase precipitates. It is proposed that significant increase in the fraction of σ phase precipitates and eutectoid transformation of the τ phase contribute to increase in hardness along with

  7. The role of solid-solution strengthening in the development of alloys for HTR applications

    International Nuclear Information System (INIS)

    Dean, A.V.

    1978-09-01

    In this paper the fundamental factors (lattice distortion, stacking fault energy and diffusion rates) which contribute to solid-solution strengthening are examined and used as a basis for indicating the composition of alloys likely to posses the highest strength at elevated temperatures. Alloys based on Ni-Cr-W-Mo should possess the best properties but alloys based on Ni-Cr-Nb-Ti are also recommended for further study. The effect of alloy composition on corrosion resistance has been excluded from this examination but it should be possible to adjust alloy composition in order to optimise corrosion resistance. (orig./IHOE) [de

  8. Thermal solid-state Z/E isomerization of 2-alkylidene-4-oxothiazolidines: effects of non-covalent interactions

    Directory of Open Access Journals (Sweden)

    ZDRAVKO DŽAMBASKI

    2011-03-01

    Full Text Available Configurational isomerization of stereo-defined 5-substituted and unsubstituted 2-alkylidene-4-oxothiazolidines (1 in the solid state, giving the Z/E mixtures in various ratios, was investigated by 1H-NMR spectroscopy, X-ray powder crystallography and differential scanning calorimetry (DSC. The Z/E composition can be rationalized in terms of non-covalent interactions, involving intermolecular and intramolecular hydrogen bonding and directional non-bonded 1,5-type S×××O interactions. X-Ray powder crystallography, using selected crystalline (Z-4-oxothiazolidine substrates, revealed transformation to the amorphous state during the irreversible Z®E process. A correlation between previous results on the Z/E isomerization in solution and now in the solid state was established.

  9. Current state in adsorption from multicomponent solutions of nonelectrolytes on solids

    International Nuclear Information System (INIS)

    Borowko, M.; Jaroniec, M.

    1983-01-01

    This paper surveys the research carried out on the adsorption from multicomponent liquid mixtures of nonelectrolytes on solids with emphasis on the work performed by the authors. The consistent theoretical treatment of adsorption from concentrated and dilute multicomponent solutions and its application to the liquid adsorption chromatography with the mixed mobile phase are presented. This treatment involved nonideality of the bulk and surface phases, energetic heterogeneity of the adsorbent surface and it may be extended to multilayer adsorption from solutions. The multicomponent liquid/solid adsorption systems, studied experimentally, are reviewed. Many of them have been examined by means of the equations derived for liquid adsorption on heterogeneous surfaces. These studies are summarized in this paper. Moreover, the model studies illustrating the influence of solution nonideality and adsorbent heterogeneity on the excess adsorption isotherms and the distribution coefficient are discussed. (orig.)

  10. Free energies of formation of WC and WzC and the thermodynamic properties of carbon in solid tungsten

    Science.gov (United States)

    Gupta, D. K.; Seigle, L. L.

    1974-01-01

    The activity of carbon in the two-phase regions - W + WC and W + W2C was obtained from the carbon content of iron rods equilibrated with mixtures of metal plus carbide powders. From this activity data the standard free energies of formation of WC and W2C were calculated. The temperature of the invariant reaction W2C = W + WC was fixed at 1570 + or - 5K. Using available solubility data for C in solid W, the partial molar free energy of C in the dilute solid solution was also calculated. The heat of solution of C in W, and the excess entropy for the interstitial solid solution, were computed, assuming that the carbon atoms reside in the octahedral interstices of bcc W.

  11. Face-centered-cubic Nb-Si solid solutions produced by picosecond pulsed laser quenching

    International Nuclear Information System (INIS)

    Wang, W.K.; Spaepen, F.

    1985-01-01

    Face-centered-cubic Nb/sub 100-x/Si/sub x/ solid solutions (10 2 . The lattice parameters of these solutions suggest that the solute atoms can be interstitial or substitutional, probably as a result of a change in the quenching conditions

  12. Method and apparatus for the production of metal oxide powder

    Science.gov (United States)

    Harris, M.T.; Scott, T.C.; Byers, C.H.

    1992-06-16

    The present invention provides a method for preparing metal oxide powder. A first solution, which is substantially organic, is prepared. A second solution, which is an aqueous solution substantially immiscible in the first solution, is prepared and delivered as drops to the first solution. The drops of the second solution are atomized by a pulsed electric field forming micro-drops of the second solution. Reagents in the first solution diffuse into and react with reactants in the micro-drops of the second solution forming metal hydroxide or oxalate particles. The metal hydroxide or metal oxalate particles are then recovered and dried to produce the metal oxide powder. An apparatus for preparing a metal oxide powder is also disclosed. 2 figs.

  13. Pressurized Anneal of Consolidated Powders

    Science.gov (United States)

    Nemir, David Charles (Inventor); Rubio, Edward S. (Inventor); Beck, Jan Bastian (Inventor)

    2017-01-01

    Systems and methods for producing a dense, well bonded solid material from a powder may include consolidating the powder utilizing any suitable consolidation method, such as explosive shockwave consolidation. The systems and methods may also include a post-processing thermal treatment that exploits a mismatch between the coefficients of thermal expansion between the consolidated material and the container. Due to the mismatch in the coefficients, internal pressure on the consolidated material during the heat treatment may be increased.

  14. Structure and hardness of a hard metal alloy prepared with a WC powder synthesized at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Costa, F.A. da [Programa de Pos-Graduacao em Ciencia e Engenharia de Materiais, UFRN, Campus Universitario, 59072-970 Natal, RN (Brazil)], E-mail: francineac@yahoo.com; Medeiros, F.F.P. de [Programa de Pos-Graduacao em Ciencia e Engenharia de Materiais, UFRN, Campus Universitario, 59072-970 Natal, RN (Brazil); Silva, A.G.P. da [Laboratorio de Materiais Avancados, UENF, 28015-620 Campos de Goytacazes, RJ (Brazil); Gomes, U.U. [Departamento de Fisica Teorica e Experimental, UFRN, Campus Universitario, 59072-970 Natal, RN (Brazil); Filgueira, M. [Laboratorio de Materiais Avancados, UENF, 28015-620 Campos de Goytacazes, RJ (Brazil); Souza, C.P. de [Laboratorio de Termodinamica e Reatores, UFRN, Campus Universitario, 59072-970 Natal, RN (Brazil)

    2008-06-25

    The structure and hardness of a WC-10 wt% Co alloy prepared with an experimental WC powder are compared with those of another alloy of the same composition produced under the same conditions and prepared with a commercial WC powder. The experimental WC powder was synthesized by a gas-solid reaction between APT and methane at low temperature and the commercial WC powder was conventionally produced by a solid-solid reaction between tungsten and carbon black. WC-10 wt% Co alloys with the two powders were prepared under the same conditions of milling and sintering. The structure of the sample prepared with the experimental WC powder is homogeneous and coarse grained. The structure of the sample prepared with the commercial powder is heterogeneous. Furthermore the size and shape of the WC grains are significantly different.

  15. Multiferroic properties in NdFeO3-PbTiO3 solid solutions

    Science.gov (United States)

    Kumar, Sunil; Pal, Jaswinder; Kaur, Shubhpreet; Agrawal, P.; Singh, Mandeep; Singh, Anupinder

    2018-05-01

    The x(NdFeO3) - 1-x(PbTiO3) where x = 0.2 solid solution was prepared using solid state reaction route. The X-ray diffraction (XRD) data reveals the single phase formation. The microstructure shows grain growth with lesser porosity. The energy dispersive analysis confirms the presence of elements in stochiometric proportion. The polarization vs. Electric field loop estabilished a ferroelectric type behavior but lossy in nature. This lossy nature may be due to the presence of large leakage current in solid solution. The Magnetization vs. Magnetic field plot exhibits a unsaturated hysteriss loop indicates that the sample is not purely ferromagnetic.

  16. Tetragonal-cubic phase boundary in nanocrystalline ZrO{sub 2}-Y{sub 2}O{sub 3} solid solutions synthesized by gel-combustion

    Energy Technology Data Exchange (ETDEWEB)

    Fabregas, Ismael O. [CINSO (Centro de Investigaciones en Solidos), CITEFA-CONICET, J.B. de La Salle 4397, 1603 Villa Martelli, Pcia. de Buenos Aires (Argentina); Craievich, Aldo F.; Fantini, Marcia C.A. [Instituto de Fisica, Universidade de Sao Paulo, Travessa R da Rua do Matao, No. 187, Cidade Universitaria, 05508-900 Sao Paulo (Brazil); Millen, Ricardo P.; Temperini, Marcia L.A. [Instituto de Quimica, Universidade de Sao Paulo, Avenida Prof. Lineu Prestes 748, Cidade Universitaria, 05508-900 Sao Paulo (Brazil); Lamas, Diego G., E-mail: dlamas@uncoma.edu.ar [CINSO (Centro de Investigaciones en Solidos), CITEFA-CONICET, J.B. de La Salle 4397, 1603 Villa Martelli, Pcia. de Buenos Aires (Argentina); Laboratorio de Caracterizacion de Materiales, Facultad de Ingenieria, Universidad Nacional del Comahue, Buenos Aires 1400, (8300) Neuquen Capital, Prov. de Neuquen (Argentina)

    2011-04-21

    Research highlights: > Gel-combustion synthesis yields compositionally homogeneous, single-phased ZrO{sub 2}-Y{sub 2}O{sub 3} nanopowders, that exhibit the presence at room temperature of three different phases depending on Y{sub 2}O{sub 3} content, namely two tetragonal forms (t' and t'') and the cubic phase. > Phase identification can be achieved by synchrotron XPD (SXPD) and Raman spectroscopy since the tetragonal forms and the cubic phase can be distinguished by these techniques. > The crystallographic features of ZrO{sub 2}-Y{sub 2}O{sub 3} nanopowders were determined by SXPD. They are similar to those reported by Yashima and coworkers for compositionally homogeneous materials containing larger (micro)crystals. However, the lattice parameters are slightly different and the axial ratios c/a of our t' samples are smaller than those reported by these authors. > Compositional t'/t'' and t''/cubic phase boundaries are located at (9 {+-} 1) and (10.5 {+-} 0.5) mol% Y{sub 2}O{sub 3}, respectively. > For the whole series of nanocrystalline ZrO{sub 2}-Y{sub 2}O{sub 3} solid solutions studied in the present work, no evidences of the presence of a mixture of phases - as reported by Yashima and coworkers for microcrystalline solid solutions - were detected. - Abstract: By means of synchrotron X-ray powder diffraction (SXPD) and Raman spectroscopy, we have detected, in a series of nanocrystalline and compositionally homogeneous ZrO{sub 2}-Y{sub 2}O{sub 3} solid solutions, the presence at room temperature of three different phases depending on Y{sub 2}O{sub 3} content, namely two tetragonal forms and the cubic phase. The studied materials, with average crystallite sizes within the range 7-10 nm, were synthesized by a nitrate-citrate gel-combustion process. The crystal structure of these phases was also investigated by SXPD. The results presented here indicate that the studied nanocrystalline ZrO{sub 2}-Y{sub 2}O{sub 3} solid

  17. Structure and high-piezoelectricity in lead oxide solid solutions

    NARCIS (Netherlands)

    Noheda, B.

    2002-01-01

    A review of the recent advances in the understanding of piezoelectricity in lead oxide solid solutions is presented, giving special attention to the structural aspects. It has now become clear that the very high electromechanical response in these materials is directly related to the existence of

  18. Structure and magnetic properties of nanocrystalline Fe75Si25 powders prepared by mechanical alloying

    International Nuclear Information System (INIS)

    Kalita, M.P.C.; Perumal, A.; Srinivasan, A.

    2008-01-01

    Nanocrystalline Fe 75 Si 25 powders were prepared by mechanical alloying in a planetary ball mill. The evolution of the microstructure and magnetic properties during the milling process were studied by X-ray diffraction, scanning electron microscope and vibrating sample magnetometer measurements. The evolution of non-equilibrium solid solution Fe (Si) during milling was accompanied by refinement of crystallite size down to 10 nm and the introduction of high density of dislocations of the order of 10 17 m -2 . During the milling process, Fe sites get substituted by Si. This structural change and the resulting disorder are reflected in the lattice parameters and average magnetic moment of the powders milled for various time periods. A progressive increase of coercivity was also observed with increasing milling time. The increase of coercivity could be attributed to the introduction of dislocations and reduction of powder particle size as a function of milling time

  19. Solvothermal synthesis and characterization of ceria with solid and hollow spherical and multilayered morphologies

    International Nuclear Information System (INIS)

    He, Lei; Li, Junping; Feng, Zhihai; Sun, Dongfeng; Wang, Tingyu; Li, Ruixing; Xu, Yaohui

    2014-01-01

    Highlights: • Various morphologies of CeO 2 are gotten by controlling the solvothermal conditions. • The various morphologies are synthesized without any template or surfactant. • The chemical mechanisms for the formation of the products in the solvothermal process are discussed. • The morphology evolution from solid spheres to multilayered structures is supposed. • The as-synthesized CeO 2 samples possess excellent adsorption capacities. - Abstract: Ceria powders with different morphologies were synthesized using a facile template-free solvothermal process combined with calcination. The influence of solvothermal temperature and time on the powder was studied. Solid spheres, hollow spheres, and multilayered structures were controlled by adjusting the solvothermal conditions. The possible mechanisms for the formation of the precursors under the solvothermal conditions employed and the evolution of the powder from solid spherical to multilayered structures were discussed. Ethylene glycol played a key role in the morphology evolution of the powder. Cerium catalyzed the Guerbet-like reaction and reacted with ethylene glycol to produce ceria (CeO 2 ), Ce(HCOO) 3 , and Ce(OH)CO 3 . The redox-assisted dissolution–recrystallization process significantly contributed to the morphology transformation from solid spheres to multilayered structures. Moreover, the samples synthesized at different temperatures for 24 h possessed excellent adsorption capacities towards the removal of acid orange 7 when compared with commercial ceria

  20. Magnetic and electrical properties in BaNiS2-type solid solutions

    International Nuclear Information System (INIS)

    Irizawa, Akinori; Yoshimura, Kazuyoshi; Kosuge, Koji

    2000-01-01

    The magnetic and electrical properties are reported in the new solid solutions BaCo 1-x Cu x S 2 and BaNi 1-x Fe x S 2 . Both compounds show spin-glass-like behavior, although the type of spin frustrations is different with each other. BaCo 1-x Cu x S 2 shows a competition type spin-glass behavior with reentrant phenomenon from antiferromagnetic to spin-glass at low temperatures. BaNi 1-x Fe x S 2 shows a dilute type spin-glass behavior together with super-paramagnetic properties. The temperature variation of 57 Fe Moessbauer spectra in BaNi 0.8 Fe 0.2 S 2 is explicable in a framework of cluster-glass. (author)

  1. Synthesis of Gold Nanoparticles Stabilized in Dextran Solution by Gamma Co-60 Ray Irradiation and Preparation of Gold Nanoparticles/Dextran Powder

    Directory of Open Access Journals (Sweden)

    Phan Ha Nu Diem

    2017-01-01

    Full Text Available Gold nanoparticles (AuNPs in spherical shape with diameter of 6–35 nm stabilized by dextran were synthesized by γ-irradiation method. The AuNPs were characterized by UV-Vis spectroscopy and transmission electron microscopy. The influence of pH, Au3+ concentration, and dextran concentration on the size of AuNPs was investigated. Results indicated that the smallest AuNPs size (6 nm and the largest AuNPs size (35 nm were obtained for pH of 1 mM Au3+/1% dextran solution of 5.5 and 7.5, respectively. The smaller Au3+ concentration favored smaller size and conversely the smaller dextran concentration favored bigger size of AuNPs. AuNPs powders were prepared by spay drying, coagulation, and centrifugation and their sizes were also evaluated. The purity of prepared AuNPs powders was also examined by energy dispersive X-ray (EDX analysis. Thus, the as-prepared AuNPs stabilized by biocompatible dextran in solution and/or in powder form can be potentially applied in biomedicine and pharmaceutics.

  2. Synthesis of LaCoO{sub 3} nano-powders by aqueous gel-casting for intermediate temperature solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Chia Siang; Zhang, Lan; Jiang, San Ping [School of Mechanical and Aerospace Engineering, Nanyang Technological University (Singapore); Zhang, Yu.Jun [Key Lab for Liquid Structure and Heredity of Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan (China)

    2008-04-15

    LaCoO{sub 3} (LC) perovskite powders for intermediate temperature solid oxide fuel cells (IT-SOFCs) are synthesized by a simple and cost-effective aqueous gel-casting technique using metal nitrates as raw materials. Effect of the ratio of organic precursors (acrylamide (AM) monomer and N,N'-Methylenebisacrylamide (MBAM) crosslinker) to metal nitrates (lanthanum nitrate, cobalt nitrate) and the ratio of AM to MBAM on the particle size are investigated in detail. TEM results indicate that the particle size of LC nano-powders is in the range of 31-60 nm and decreases with increasing ratio of organic precursor to metal nitrates but is not affected by the ratio of AM to MBAM. Preliminary results show that the nano-structured electrode approach based on wet impregnation is effective to combine the high electrocatalytic activity of LC nano-powders and the structural stability of La{sub 0.72}Sr{sub 0.18}MnO{sub 3} {sub -} {sub {delta}} (LSM) electrodes for the development of IT-SOFC cathodes. (author)

  3. Development and characterization of Al-Zn alloy by ingot metallurgy and powder metallurgy with improved mechanical properties

    International Nuclear Information System (INIS)

    Waseem, M.; Awais, H.B.; Zauha, M.S.; Tariq, N.H.

    2007-01-01

    Current project focuses on the production of AI-Zn alloy AA7075 used for wide range of applications like Aircraft components, missile and other structural applications. The above alloy was developed by two different routes. One was melting /casting, after which alloy was characterized by microstructural - examination (optical and SEM) and mechanical testing. Other route was the preparation of this alloy by powder metallurgy. This involves preparation of powders, mechanical alloying, compaction, sintering, rolling, solution treatment and aging then analysis. Powders of Aluminum, Zinc and powders of master alloys of AI-Cu, AI-Mg, AI-Mn, and AI-Cr were Mechanical alloyed. Then this powder was compacted by uniaxial press to form pellets. Sintering was carried out at 500 degree C and then hot rolled in Ar atmosphere. After solution and aging treatments samples were characterized. It is observed that there is about 12-21% improvement in mechanical properties such as tensile strength, yield strength, ductility and fracture toughness due to the more fine microstructure and less segregation than ingot metallurgy route. (author)

  4. Cellulose powder from Cladophora sp. algae.

    Science.gov (United States)

    Ek, R; Gustafsson, C; Nutt, A; Iversen, T; Nyström, C

    1998-01-01

    The surface are and crystallinity was measured on a cellulose powder made from Cladophora sp. algae. The algae cellulose powder was found to have a very high surface area (63.4 m2/g, N2 gas adsorption) and build up of cellulose with a high crystallinity (approximately 100%, solid state NMR). The high surface area was confirmed by calculations from atomic force microscope imaging of microfibrils from Cladophora sp. algae.

  5. An experimental evaluation of powder flow predictions in small-scale process equipment based on Jenike's hopper design methodology

    DEFF Research Database (Denmark)

    Søgaard, Søren Vinter; Olesen, Niels Erik; Hirschberg, Cosima

    2017-01-01

    . The comparison of the observed and predicted critical outlet diameters showed good agreement for the powder with the best flowability when linear extrapolation of the flow function was applied. In contrast, the predicted critical outlet diameter was slightly overestimated compared to the experimentally observed...... diameter for the two more cohesive powders. A likely reason for this overestimation is that the flow function probably has a non-linear convex upward shape for these two powders at very small consolidation stresses. These findings illustrate the relevance of measuring shear and wall shear stresses at very...... small consolidation stresses to improve the flow behavior predictions for small-scale process equipment typically used during production of solid state pharmaceuticals....

  6. Microstructure and Hardness of Mg - 9Li - 6Al Alloy After Different Variants of Solid Solution Treatment

    Science.gov (United States)

    Zheng, Haipeng; Fei, Pengfei; Wu, Ruizhi; Hou, Legan; Zhang, Milin

    2018-03-01

    The microstructure and the hardness of cast magnesium alloy Mg - 9% Li - 6% Al are studied after a treatment for solid solution at 300, 350, and 450°C for 0.5 - 5 h. The phase composition of the alloy is represented by α-Mg, β-Li, thin-plate and faceted particles of an AlLi phase, and particles of a MgLi2Al θ-phase. The θ-phase dissolves in the matrix in the initial stage of the solution treatment, which causes growth in the hardness of the alloy. At a temperature above 350°C the AlLi phase dissolves giving way to short rod-like precipitates of a θ-phase, which remain steady in the process of solution treatment. The hardness of the alloy deceases in this stage for this reason.

  7. Calorimetric measurements on plutonium rich (U,Pu)O2 solid solutions

    International Nuclear Information System (INIS)

    Kandan, R.; Babu, R.; Nagarajan, K.; Vasudeva Rao, P.R.

    2008-01-01

    Enthalpy increments of U (1-y) Pu y O 2 solid solutions with y = 0.45, 0.55 and 0.65 were measured using a high-temperature differential calorimeter by employing the method of inverse drop calorimetry in the temperature range 956-1803 K. From the fit equations for the enthalpy increments, other thermodynamic functions such as heat capacity, entropy and Gibbs energy function have been computed in the temperature range 298-1800 K. The results are presented and compared with the data available in the literature. The results indicate that the enthalpies of U (1-y) Pu y O 2 solid solutions with y = 0.45, 0.55 and 0.65 obey the Neumann-Kopp's molar additivity rule

  8. Advances on reverse strike co-precipitation method of uranium-plutonium mixed solutions

    International Nuclear Information System (INIS)

    Menghini, Jorge E.; Marchi, Daniel E.; Orosco, Edgardo H.; Greco, Luis

    2000-01-01

    The reverse strike coprecipitation of uranium-plutonium mixed solutions, is an alternative way to obtain MOX fuel pellets. Previous tests, carried out in the Alpha Laboratory, included a stabilization step for transforming 100 % of plutonium into Pu +4 . Therefore, the plutonium precipitated as Pu(OH) 4 . In this second step, the stabilization process was suppressed. In this way, besides Pu(OH) 4 , a part of the precipitated is composed of a mixed salt: AD(U,Pu). Then, a homogeneous solid solution is formed in the early steps of the process. The powders showed higher tap density, better performance during the pressing and lower sinterability than the powders obtained in previous tests. The advantageous and disadvantageous effects of the stabilization step are analyzed in this paper. (author)

  9. Synthesis, microstructure and mechanical properties of (Ti1−x,Nbx)2AlC/Al2O3 solid solution composites

    International Nuclear Information System (INIS)

    Zhu, Jianfeng; Han, Na; Wang, Anning

    2012-01-01

    (Ti,Nb) 2 AlC/Al 2 O 3 in-situ solid solution composites were successfully synthesized from the elemental powder mixtures of Nb 2 O 5 , Ti, Al and carbon black using hot-press-aided reaction synthesis. The reaction path was investigated by differential scanning calorimetry (DSC) and X-ray diffractometry (XRD), and a possible reaction mechanism was proposed to explain the formation of (Ti,Nb) 2 AlC/Al 2 O 3 composites in which the thermite reaction between Al and Nb 2 O 5 formed Al 2 O 3 and Nb, and the latter together with TiAl and TiC reacted to form (Ti,Nb) 2 AlC. The synthesized composites show plate-like grains packed in a laminated structure typical of Ti 2 AlC, and the fine Al 2 O 3 particles formed in-situ tend to disperse on the matrix grain boundaries. Compared with the monolithic Ti 2 AlC synthesized using an identical process, the Vickers hardness, maximum compressive stress, flexural strength and fracture toughness of (Ti 0.96 ,Nb 0.04 ) 2 AlC/5 wt% Al 2 O 3 were enhanced by 33.8%, 12.1%, 118.4% and 111.8%, respectively. The mechanisms by which Al 2 O 3 increases the strength and toughness of the material were also discussed.

  10. Influence of the milling time in the microstructural parameters of TA2O5-Al powder refined by Rietveld method

    International Nuclear Information System (INIS)

    Brito, R.A.; Mendes, M.W.D.; Alves Junior, C.; Costa, F.A. da; Gomes, U.U.

    2009-01-01

    Mechanical alloying (MA) is a solid-state powder processing technique involving repeated welding, fracturing, and re-welding of powder particles in a high energy mill. This process is used for producing of fine powders containing unique microstructures. The process starts with mixing of the powders in the desired proportion. Then, the mixture is milled using the established time in the high-energy mill. The powder particles are submitted to repeated cycles of cold working and fracture, and the final product correspond to a composite powder, containing characteristics different of the initial constituents. Ta 2 O 5 -Al powders were milled in a planetary ball mill for different times in order to evaluate the influence of the milling time in their microstructural parameters like crystallite size and micro deformation. The microstructural parameters were obtained by the Rietveld Method. The results showed that the microstructural parameters were influenced by the increase of the milling time. (author)

  11. A study on the decontamination of insoles colonized by Trichophyton rubrum: effect of terbinafine spray powder 1% and terbinafine spray solution 1%.

    Science.gov (United States)

    Feuilhade de Chauvin, M

    2012-07-01

    Shoes worn with bare feet function as a fungal reservoir and lead to persistent dermatophytosis. This study was designed to evaluate two formulations of terbinafine (1% spray powder or solution) to treat the insoles of shoes colonized by skin scales infected with Trichophyton rubrum and to determine the contact time necessary to achieve decontamination. Infected skin scales weighing 0.5 g, taken from the feet of patients with confirmed T. rubrum infection, was dispersed onto insoles pre-moistened with sterile saline solution (to mimic perspiration). Three types of insole were tested (felt, latex, leather). After inoculation, insoles were placed separately in new cardboard boxes at ambient temperature, and re-humidified with sterile normal saline solution for 48 h before being treated; untreated insoles served as controls. Scales were scraped off at 48 h or 96 h, and dropped into tubes of Sabouraud agar, incubated at 27°C and examined at 3 and 6 weeks. Cultures from all control insoles showed numerous T. rubrum colonies. In contrast, cultures from all insoles treated with a single application of terbinafine 1% spray solution or powder, and taken after 48 h or 96 h contact with the product, remained sterile at 3 weeks and 6 weeks. This study demonstrated the successful treatment of insoles colonized by T. rubrum-infected skin scales. Terbinafine 1% spray solution and powder showed good efficacy; the dermatophyte could no longer be cultured 48 h after a single application of terbinafine. © 2011 The Author. Journal of the European Academy of Dermatology and Venereology © 2011 European Academy of Dermatology and Venereology.

  12. Solid solutions of hydrogen in niobium, molybdenum and their alloys

    International Nuclear Information System (INIS)

    Ishikawa, T.T.

    1981-01-01

    The solubility of hydrogen in niobium, molybdenum and niobium-molybdenum alloys with varying atomic fraction of molybdenum from 0.15 to 0.75 was measured on the temperature range of 673 0 K to 1273 0 k for one atmosphere hydrogen pressure. The experimental technique involved the saturation of the solvent metal or alloy with hydrogen, followed by quenching and analysis of the solid solution. The results obtained of hydrogen solubility are consistent with the quasi-regular model for the dilute interstitial solid solutions. The partial molar enthalpy and partial molar entropy in excess of the dissolved hydrogen atoms were calculated from data of solubility versus reciprocal doping temperature. The variation of the relative partial molar enthalpy of hydrogen dissolved in niobium-molybdenum alloys, with the increase of molybdenum content of the alloy was analized. (Author) [pt

  13. Electrowinning of lead powder from chloride leach liquor

    Energy Technology Data Exchange (ETDEWEB)

    Owais, Ashour [Suez Canal Univ., Suez (Egypt). Metallurgical and Materials Engineering Dept.

    2012-11-15

    Electrowinning of lead powder from chloride leach liquor obtained from secondary lead slag leached in hydrochloric acid is the main aim of this work. The resulted lead chloride solution (leachate) containing 2.2 wt.-% Pb and 1.24 wt.-% HCl was electrowon in an electrolytic cell containing one graphite plate as inert anode and two lead sheets as starting permanent cathodes. Different electrolysis parameters such as current density, electrolyte temperature and electrolyte stirring rate were studied. As indicated by SEM, EDX and XRD analyses, fine and pure (100 % Pb) powders with a dispersed and needle-like shape were formed with cathodic current efficiency up to 67.9 % and electrical energy demand ranges from 0.809 to 4.998 kWh/kg Pb with productivity up to 2.63 g/Ah. (orig.)

  14. High resolution Neutron and Synchrotron Powder Diffraction

    International Nuclear Information System (INIS)

    Hewat, A.W.

    1986-01-01

    The use of high-resolution powder diffraction has grown rapidly in the past years, with the development of Rietveld (1967) methods of data analysis and new high-resolution diffractometers and multidetectors. The number of publications in this area has increased from a handful per year until 1973 to 150 per year in 1984, with a ten-year total of over 1000. These papers cover a wide area of solid state-chemistry, physics and materials science, and have been grouped under 20 subject headings, ranging from catalysts to zeolites, and from battery electrode materials to pre-stressed superconducting wires. In 1985 two new high-resolution diffractometers are being commissioned, one at the SNS laboratory near Oxford, and one at the ILL in Grenoble. In different ways these machines represent perhaps the ultimate that can be achieved with neutrons and will permit refinement of complex structures with about 250 parameters and unit cell volumes of about 2500 Angstrom/sp3/. The new European Synchotron Facility will complement the Grenoble neutron diffractometers, and extend the role of high-resolution powder diffraction to the direct solution of crystal structures, pioneered in Sweden

  15. Synthesis and characterization of scandia ceria stabilized zirconia powders prepared by polymeric precursor method for integration into anode-supported solid oxide fuel cells

    Science.gov (United States)

    Tu, Hengyong; Liu, Xin; Yu, Qingchun

    2011-03-01

    Scandia ceria stabilized zirconia (10Sc1CeSZ) powders are synthesized by polymeric precursor method for use as the electrolyte of anode-supported solid oxide fuel cell (SOFC). The synthesized powders are characterized in terms of crystalline structure, particle shape and size distribution by X-ray diffraction (XRD), transmission electron microscopy (TEM) and photon correlation spectroscopy (PCS). 10Sc1CeSZ electrolyte films are deposited on green anode substrate by screen-printing method. Effects of 10Sc1CeSZ powder characteristics on sintered films are investigated regarding the integration process for application as the electrolytes in anode-supported SOFCs. It is found that the 10Sc1CeSZ films made from nano-sized powders with average size of 655 nm are very porous with many open pores. In comparison, the 10Sc1CeSZ films made from micron-sized powders with average size of 2.5 μm, which are obtained by calcination of nano-sized powders at higher temperatures, are much denser with a few closed pinholes. The cell performances are 911 mW cm-2 at the current density of 1.25 A cm-2 and 800 °C by application of Ce0.8Gd0.2O2 (CGO) barrier layer and La0.6Sr0.4CoO3 (LSC) cathode.

  16. Thermal expansion of TRU nitride solid solutions as fuel materials for transmutation of minor actinides

    International Nuclear Information System (INIS)

    Takano, Masahide; Akabori, Mitsuo; Arai, Yasuo; Minato, Kazuo

    2009-01-01

    The lattice thermal expansion of the transuranium nitride solid solutions was measured to investigate the composition dependence. The single-phase solid solution samples of (Np 0.55 Am 0.45 )N, (Pu 0.59 Am 0.41 )N, (Np 0.21 Pu 0.52 Am 0.22 Cm 0.05 )N and (Pu 0.21 Am 0.18 Zr 0.61 )N were prepared by carbothermic nitridation of the respective transuranium dioxides and nitridation of Zr metal through hydride. The lattice parameters were measured by the high temperature X-ray diffraction method from room temperature up to 1478 K. The linear thermal expansion of each sample was determined as a function of temperature. The average thermal expansion coefficients over the temperature range of 293-1273 K for the solid solution samples were 10.1, 11.5, 10.8 and 8.8 x 10 -6 K -1 , respectively. Comparison of these values with those for the constituent nitrides showed that the average thermal expansion coefficients of the solid solution samples could be approximated by the linear mixture rule within the error of 2-3%.

  17. Integral recycling of municipal solid waste incineration (MSWI) bottom ash fines (0–2 mm) and industrial powder wastes by cold-bonding pelletization

    NARCIS (Netherlands)

    Tang, P.; Brouwers, H.J.H.

    2017-01-01

    The cold-bonding pelletizing technique is applied in this study as an integrated method to recycle municipal solid waste incineration (MSWI) bottom ash fines (BAF, 0–2 mm) and several other industrial powder wastes. Artificial lightweight aggregates are produced successfully based on the combination

  18. Adsorption of ammonium dinitramide (ADN) from aqueous solutions. 1. Adsorption on powdered activated charcoal.

    Science.gov (United States)

    Santhosh, G; Venkatachalam, S; Ninan, K N; Sadhana, R; Alwan, S; Abarna, V; Joseph, M A

    2003-03-17

    Investigations on the adsorption of ammonium dinitramide (NH(4)N(NO(2))(2)) (ADN) from aqueous solutions on powdered activated charcoal (PAC) were carried out in order to find out an effective and easier method of separating ADN from aqueous solutions. The effectiveness of PAC in the selective adsorption of ADN from aqueous solutions of ADN (ADN-F) and ADN in presence of sulfate (SO(4)(2-)) and nitrate (NO(3)(-)) ions (ADN-PS) was examined and compared using batch and column methods. The adsorption process follows both Langmuir and Freundlich adsorption isotherms and the isotherm parameters for the models were determined. The observed data favor the formation of monolayer adsorption. The adsorption capacities were found to be 63.3, 119, 105.3 and 82 mg of ADN per g of PAC for ADN-F (batch), ADN-PS (batch), ADN-F (column) and ADN-PS (column), respectively. Break-through curves for ADN-F and ADN-PS were obtained for the optimization of separation of ADN from aqueous solutions. Elution curves were generated for the desorption of ADN from PAC using hot water as eluent. Copyright 2003 Elsevier Science B.V.

  19. Permanent magnets and its production by powder metallurgy

    Directory of Open Access Journals (Sweden)

    Enrique Herraiz Lalana

    2018-06-01

    Full Text Available In this work, the historical relationship between permanent magnets and powder metallurgy is reviewed. Powder metallurgy is a manufacturing technique based on the compaction of powders that are sintered to create a solid product. This technique was used in the production of permanent magnets for the first time in the 18th century and, nowadays, most permanent magnetic materials are manufacturing by this mean. Magnetic properties are highly dependent on the microstructure of the final product, the magnetic alignment of domains and presence of porosity, to mention a few, and powder metallurgy enables fine control of these factors.

  20. Free energy of formation of Mo2C and the thermodynamic properties of carbon in solid molybdenum

    Science.gov (United States)

    Seigle, L. L.; Chang, C. L.; Sharma, T. P.

    1979-01-01

    As part of a study of the thermodynamical properties of interstitial elements in refractory metals, the free energy of formation of Mo2C is determined, and the thermodynamical properties of C in solution in solid Mo evaluated. The activity of C in the two-phase region Mo + Mo2C is obtained from the C content of iron rods equilibrated with metal + carbide powder mixtures. The free energy of formation of alpha-Mo2C is determined from the activity data. The thermodynamic properties of C in the terminal solid solution are calculated from available data on the solid solubility of C in Mo. Lattice distortion due to misfit of the C atoms in the interstitial sites appears to play a significant role in determining the thermodynamic properties of C in solid Mo.

  1. Measurement of loose powder density

    International Nuclear Information System (INIS)

    Akhtar, S.; Ali, A.; Haider, A.; Farooque, M.

    2011-01-01

    Powder metallurgy is a conventional technique for making engineering articles from powders. Main objective is to produce final products with the highest possible uniform density, which depends on the initial loose powder characteristics. Producing, handling, characterizing and compacting materials in loose powder form are part of the manufacturing processes. Density of loose metallic or ceramic powder is an important parameter for die design. Loose powder density is required for calculating the exact mass of powder to fill the die cavity for producing intended green density of the powder compact. To fulfill this requirement of powder metallurgical processing, a loose powder density meter as per ASTM standards is designed and fabricated for measurement of density. The density of free flowing metallic powders can be determined using Hall flow meter funnel and density cup of 25 cm/sup 3/ volume. Density of metal powders like cobalt, manganese, spherical bronze and pure iron is measured and results are obtained with 99.9% accuracy. (author)

  2. A fluorescent chemosensor for Zn(II). Exciplex formation in solution and the solid state.

    Science.gov (United States)

    Bencini, Andrea; Berni, Emanuela; Bianchi, Antonio; Fornasari, Patrizia; Giorgi, Claudia; Lima, Joao C; Lodeiro, Carlos; Melo, Maria J; de Melo, J Seixas; Parola, Antonio Jorge; Pina, Fernando; Pina, Joao; Valtancoli, Barbara

    2004-07-21

    The macrocyclic phenanthrolinophane 2,9-[2,5,8-triaza-5-(N-anthracene-9-methylamino)ethyl]-[9]-1,10-phenanthrolinophane (L) bearing a pendant arm containing a coordinating amine and an anthracene group forms stable complexes with Zn(II), Cd(II) and Hg(II) in solution. Stability constants of these complexes were determined in 0.10 mol dm(-3) NMe(4)Cl H(2)O-MeCN (1:1, v/v) solution at 298.1 +/- 0.1 K by means of potentiometric (pH metric) titration. The fluorescence emission properties of these complexes were studied in this solvent. For the Zn(II) complex, steady-state and time-resolved fluorescence studies were performed in ethanol solution and in the solid state. In solution, intramolecular pi-stacking interaction between phenanthroline and anthracene in the ground state and exciplex emission in the excited state were observed. From the temperature dependence of the photostationary ratio (I(Exc)/I(M)), the activation energy for the exciplex formation (E(a)) and the binding energy of the exciplex (-DeltaH) were determined. The crystal structure of the [ZnLBr](ClO(4)).H(2)O compound was resolved, showing that in the solid state both intra- and inter-molecular pi-stacking interactions are present. Such interactions were also evidenced by UV-vis absorption and emission spectra in the solid state. The absorption spectrum of a thin film of the solid complex is red-shifted compared with the solution spectra, whereas its emission spectrum reveals the unique featureless exciplex band, blue shifted compared with the solution. In conjunction with X-ray data the solid-state data was interpreted as being due to a new exciplex where no pi-stacking (full overlap of the pi-electron cloud of the two chromophores - anthracene and phenanthroline) is observed. L is a fluorescent chemosensor able to signal Zn(II) in presence of Cd(II) and Hg(II), since the last two metal ions do not give rise either to the formation of pi-stacking complexes or to exciplex emission in solution.

  3. Tailored Core Shell Cathode Powders for Solid Oxide Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Swartz, Scott [NexTech Materials, Ltd.,Lewis Center, OH (United States)

    2015-03-23

    In this Phase I SBIR project, a “core-shell” composite cathode approach was evaluated for improving SOFC performance and reducing degradation of lanthanum strontium cobalt ferrite (LSCF) cathode materials, following previous successful demonstrations of infiltration approaches for achieving the same goals. The intent was to establish core-shell cathode powders that enabled high performance to be obtained with “drop-in” process capability for SOFC manufacturing (i.e., rather than adding an infiltration step to the SOFC manufacturing process). Milling, precipitation and hetero-coagulation methods were evaluated for making core-shell composite cathode powders comprised of coarse LSCF “core” particles and nanoscale “shell” particles of lanthanum strontium manganite (LSM) or praseodymium strontium manganite (PSM). Precipitation and hetero-coagulation methods were successful for obtaining the targeted core-shell morphology, although perfect coverage of the LSCF core particles by the LSM and PSM particles was not obtained. Electrochemical characterization of core-shell cathode powders and conventional (baseline) cathode powders was performed via electrochemical impedance spectroscopy (EIS) half-cell measurements and single-cell SOFC testing. Reliable EIS testing methods were established, which enabled comparative area-specific resistance measurements to be obtained. A single-cell SOFC testing approach also was established that enabled cathode resistance to be separated from overall cell resistance, and for cathode degradation to be separated from overall cell degradation. The results of these EIS and SOFC tests conclusively determined that the core-shell cathode powders resulted in significant lowering of performance, compared to the baseline cathodes. Based on the results of this project, it was concluded that the core-shell cathode approach did not warrant further investigation.

  4. Thorough removal of inorganic and organic mercury from aqueous solutions by adsorption on Lemna minor powder

    Energy Technology Data Exchange (ETDEWEB)

    Li Shunxing, E-mail: lishunxing@fjzs.edu.cn [Department of Chemistry, Zhangzhou Normal University, Zhangzhou 363000 (China); Fujian Province University Key Laboratory of Analytical Science, Zhangzhou Normal University, Zhangzhou (China); Zheng Fengying; Huang Yang [Department of Chemistry, Zhangzhou Normal University, Zhangzhou 363000 (China); Fujian Province University Key Laboratory of Analytical Science, Zhangzhou Normal University, Zhangzhou (China); Ni Jiancong [Department of Chemistry, Zhangzhou Normal University, Zhangzhou 363000 (China)

    2011-02-15

    The adsorption ability of duckweed (Lemna minor) powders for removing inorganic and organic mercury (methyl and ethyl mercury) has been studied using cold vapour atomic absorption spectrometry. The optimal adsorption conditions were: (a) the pH value of the solution 7.0 for inorganic and ethyl mercury, 9.0 for methyl mercury, and (b) equilibrium adsorption time 10, 20, and 40 min for inorganic mercury, methyl mercury, and ethyl mercury, respectively. After adsorption by L. minor powder for 40 min, when the initial concentrations of inorganic and organic mercury were under 12.0 {mu}g L{sup -1} and 50.0 {mu}g L{sup -1}, respectively, the residual concentrations of mercury could meet the criterion of drinking water (1.0 {mu}g L{sup -1}) and the permitted discharge limit of wastewater (10.0 {mu}g L{sup -1}) set by China and USEPA, respectively. Thorough removal of both inorganic and organic mercury from aqueous solutions was reported for the first time. The significant adsorption sites were C-O-P and phosphate groups by the surface electrostatic interactions with aqueous inorganic and organic mercury cations, and then the selective adsorption was resulted from the strong chelating interaction between amine groups and mercury on the surface of L. minor cells.

  5. Thorough removal of inorganic and organic mercury from aqueous solutions by adsorption on Lemna minor powder

    International Nuclear Information System (INIS)

    Li Shunxing; Zheng Fengying; Huang Yang; Ni Jiancong

    2011-01-01

    The adsorption ability of duckweed (Lemna minor) powders for removing inorganic and organic mercury (methyl and ethyl mercury) has been studied using cold vapour atomic absorption spectrometry. The optimal adsorption conditions were: (a) the pH value of the solution 7.0 for inorganic and ethyl mercury, 9.0 for methyl mercury, and (b) equilibrium adsorption time 10, 20, and 40 min for inorganic mercury, methyl mercury, and ethyl mercury, respectively. After adsorption by L. minor powder for 40 min, when the initial concentrations of inorganic and organic mercury were under 12.0 μg L -1 and 50.0 μg L -1 , respectively, the residual concentrations of mercury could meet the criterion of drinking water (1.0 μg L -1 ) and the permitted discharge limit of wastewater (10.0 μg L -1 ) set by China and USEPA, respectively. Thorough removal of both inorganic and organic mercury from aqueous solutions was reported for the first time. The significant adsorption sites were C-O-P and phosphate groups by the surface electrostatic interactions with aqueous inorganic and organic mercury cations, and then the selective adsorption was resulted from the strong chelating interaction between amine groups and mercury on the surface of L. minor cells.

  6. Structural and magnetic properties of the (Ca1-xNax)(Fe2-xTix)O4 solid solution (0 ≤ x ≤ 1)

    International Nuclear Information System (INIS)

    Zouari, S.; Ranno, L.; Cheikh-Rouhou, A.; Isnard, O.; Wolfers, P.; Bordet, P.; Strobel, P.

    2008-01-01

    New compounds corresponding to the (Ca 1-x Na x )(Fe 2-x Ti x )O 4 formula with 0 ≤ x ≤ 1 were prepared by solid state reactions at 1100 deg. C in air. A continuous solid solution was found between end members CaFe 2 O 4 and NaFeTiO 4 . The evolution of structural parameters and bonding geometry with composition is discussed in detail. Magnetic measurements show that the antiferromagnetic ordering known in CaFe 2 O 4 is suppressed for all x values investigated (x ≥ 0.2). The absence of crystallographic transition at low temperature was checked by X-ray diffraction down to 10 K. The magnetic structure of CaFe 2 O 4 was redetermined from powder neutron diffraction. Spins on the two iron sites order antiparallel (F z F z spin arrangement), as described previously. The difference in magnetic moments on Fe 1 and Fe 2 sites result in a ferrimagnetic configuration with net moment 2.72μ B at 2 K

  7. Synthesis and characterization of lead zirconate titanate powders obtained by the oxidant peroxo method

    Energy Technology Data Exchange (ETDEWEB)

    Camargo, Emerson R. [LIEC-Laboratorio Interdisciplinar de Eletroquimica e Ceramica, Department of Chemistry, UFSCar-Federal University of Sao Carlos, Rod. Washington Luis km 235, CP 676, Sao Carlos SP, 13565-905 (Brazil)], E-mail: camargo@ufscar.br; Leite, Edson R. [LIEC-Laboratorio Interdisciplinar de Eletroquimica e Ceramica, Department of Chemistry, UFSCar-Federal University of Sao Carlos, Rod. Washington Luis km 235, CP 676, Sao Carlos SP, 13565-905 (Brazil)], E-mail: derl@power.ufscar.br; Longo, Elson [Department of Biochemistry, Chemistry Institute of Araraquara, UNESP, Sao Paulo State University Rua Francisco Degni, CP 355 Araraquara SP, 14801-907 Brazil (Brazil)], E-mail: elson@iq.unesp.br

    2009-02-05

    Lead zirconate titanate (PbZr{sub 1-x}Ti{sub x}O{sub 3}) was synthesized by the 'oxidant peroxo method (OPM)' with 'x' between 0.25 and 0.50. Titanium metal was dissolved into a hydrogen peroxide/ammonia aqueous solution, followed by the addition of lead and zirconium nitrate solution. The amorphous precipitated precursor obtained was crystallized by heat treatment between 400 and 1000 deg. C. Images of transmission microscopy showed spherical particles with average diameter between 20 and 60 nm, and the presence of necks between particles treated at 700 deg. C. All of the unpressed powders were characterized by X-ray diffractometry and FT-Raman spectroscopy. Powder samples with 'x' up to 0.35 showed rhombohedral structure when treated at temperatures higher than 500 deg. C, and tetragonal structure when 'x' was higher than 0.40. Analysis of XRD and Raman spectroscopy of the precursor powders showed amorphous-like structures, however powders treated at 400 deg. C showed a structure identified as an intermediate pyrochlore phase, independently of the Zr and Ti mole ratio.

  8. Dynamic Aspects of Solid Solution Cathodes for Electrochemical Power Sources

    DEFF Research Database (Denmark)

    Atlung, Sven; West, Keld; Jacobsen, Torben

    1979-01-01

    Battery systems based on alkali metal anodes and solid solution cathodes,i.e., cathodes based on the insertion of the alkali cation in a "host lattice,"show considerable promise for high energy density storage batteries. Thispaper discusses the interaction between battery requirements...

  9. Thermal evolution of CaO-doped HfO{sub 2} films and powders

    Energy Technology Data Exchange (ETDEWEB)

    Barolin, S A; Sanctis, O A de [Lab. Materiales Ceramicos, FCEIyA, Universidad Nacional de Rosario, IFIR-CONICET (Argentina); Caracoche, M C; Martinez, J A; Taylor, M A; Pasquevich, A F [Departamento de Fisica, FCE, Universidad Nacional de La Plata, IFLP-CONICET (Argentina); Rivas, P C, E-mail: oski@fceia.unr.edu.a [Facultad de Ciencias Agronomicas y Forestales, Universidad Nacional de La Plata, IFLP (Argentina)

    2009-05-01

    Solid solutions of ZrO2 and HfO2 are potential electrolyte materials for intermediate-temperature SOFC because both are oxygen-ion conductors. The main challenge for these compounds is to reduce the relatively high value of the activation energies vacancies diffusion, which is influenced by several factors. In this work the thermal evolution of CaO-HfO{sub 2} materials have been investigated. (CaO)y-Hf(1-y)O(2-y) (y = 0.06, 0.14 y 0.2) coatings and powders were synthesized by chemical solution deposition (CSD). Films were deposited onto alumina substrates by Dip Coating technique, the burning of organic waste was carried out at 500 deg. C under normal atmosphere and then the films were thermally treated at intervals of temperature rising to a maximum temperature of 1250 deg. C. By means Glazing Incidence X-ray Diffraction (rho-2theta configuration) the phases were studied in the annealed films. On the other hand, the thermal evolution and crystallization process of powders were analyzed in-situ by HT-XRD. The phenomena crystallization occurred in films and powders were analyzed. The activation energies of diffusion of oxygen vacancies of HfO2-14 mole% CaO and HfO2-20 mole% CaO films were measured from the thermal evolution of the relaxation constant measured by Perturbed Angular Correlation Technique.

  10. Evidence for existence of functional monoclinic phase in sodium niobate based solid solution by powder neutron diffraction

    Science.gov (United States)

    Mishra, S. K.; Jauhari, Mrinal; Mittal, R.; Krishna, P. S. R.; Reddy, V. R.; Chaplot, S. L.

    2018-04-01

    We have carried out systematic temperature-dependent neutron diffraction measurements in conjunction with dielectric spectroscopy from 6 to 300 K for sodium niobate based compounds (1-x) NaNbO3-xBaTiO3 (NNBTx). The dielectric constant is measured as a function of both temperature and frequency. It shows an anomaly at different temperatures in cooling and heating cycles and exhibits a large thermal hysteresis of ˜150 K for the composition x = 0.03. The dielectric constant is found to be dispersive in nature and suggests a relaxor ferroelectric behavior. In order to explore structural changes as a function of temperature, we analyzed the powder neutron diffraction data for the compositions x = 0.03 and 0.05. Drastic changes are observed in the powder profiles near 2θ ˜ 30.6°, 32.1°, and 34.6° in the diffraction pattern below 200 K during cooling and above 190 K in heating cycles, respectively. The disappearance of superlattice reflection and splitting in main perovskite peaks provide a signature for structural phase transition. We observed stabilization of a monoclinic phase (Cc) at low temperature. This monoclinic phase is believed to provide a flexible polarization rotation and considered to be directly linked to the high performance piezoelectricity in materials. The thermal hysteresis for composition x = 0.03 is larger than that for x = 0.05. This suggests that the addition of BaTiO3 to NaNbO3 suppresses the thermal hysteresis. It is also observed that the structural phase transition temperature decreases upon increasing the dopant concentration.

  11. Synthesis of yttria powders by electrospray pyrolysis

    International Nuclear Information System (INIS)

    Rulison, A.J.; Flagan, R.C.

    1994-01-01

    Electrospray atomization of high-concentration (∼400 g/L) chemical precursor solutions was applied to the synthesis of yttria powders. Conditions were found which led to high-quality powders, composed of dense, spheroidal, submicrometer, and nanocrystalline oxide particles. The precursor solutions were hydrated yttrium nitrates dissolved in n-propyl alcohol at concentrations ranging from 44.1 to 455 g/L. Electrospray atomization produced submicrometer precursor droplets which were dispersed in air and carried through an electric furnace for thermal decomposition at 500 C for several seconds residence time. X-ray powder diffraction patterns indicated the expected cubic phase. Transmission electron micrographs showed that the particle structure varied with solution composition, ranging from hollow, inflated spheres for 6-hydrated nitrates to dense spheroids for 5-hydrated nitrates. The use of 6-hydrated nitrates in the solutions appeared to form particle surfaces which were impermeable to alcohol vapor evolved during thermal decomposition, leading to hollow, inflated spheres

  12. Molecular water motions of skim milk powder solutions during acidification studied by 17O and 1H nuclear magnetic resonance and rheology

    DEFF Research Database (Denmark)

    Møller, S M; Whittaker, A. K.; Stokes, J. R.

    2011-01-01

    The molecular motion of water was studied in glucono-δ-lactone-acidified skim milk powder (SMP) solutions with various pH values and dry matter contents. NMR relaxometry measurements revealed that lowering the pH in SMP solutions affected 17O and 1HT2 relaxation rates almost identically. Conseque......The molecular motion of water was studied in glucono-δ-lactone-acidified skim milk powder (SMP) solutions with various pH values and dry matter contents. NMR relaxometry measurements revealed that lowering the pH in SMP solutions affected 17O and 1HT2 relaxation rates almost identically...... could contribute to the initial decrease in 17O and 1Hrelaxation rate in the pH range between 6.6 and 5.5 for 15% SMP and in the pH range between 6.6 and 5.9 for 25% SMP. However, below pH 5.5 the viscosity and 17Oand 1HNMRrelaxation rates did not correlate, revealing that the aggregation of casein...... micelles, which increases viscosity below pH 5.5, does not involve major repartitioning of water....

  13. Investigations on Bi25FeO40 powders synthesized by hydrothermal and combustion-like processes

    International Nuclear Information System (INIS)

    Köferstein, Roberto; Buttlar, Toni; Ebbinghaus, Stefan G.

    2014-01-01

    The syntheses of phase-pure and stoichiometric iron sillenite (Bi 25 FeO 40 ) powders by a hydrothermal (at ambient pressure) and a combustion-like process are described. Phase-pure samples were obtained in the hydrothermal reaction at 100 °C (1), whereas the combustion-like process leads to pure Bi 25 FeO 40 after calcination at 750 °C for 2 h (2a). The activation energy of the crystallite growth process of hydrothermally synthesized Bi 25 FeO 40 was calculated as 48(9) kJ mol −1 . The peritectic point was determined as 797(1) °C. The optical band gaps of the samples are between 2.70(7) eV and 2.81(6) eV. Temperature and field-depending magnetization measurements (5−300 K) show a paramagnetic behaviour with a Curie constant of 55.66×10 −6 m 3 K mol −1 for sample 1 and C=57.82×10 −6 m 3 K mol −1 for sample 2a resulting in magnetic moments of µ mag =5.95(8) µ B mol −1 and µ mag =6.07(4) µ B mol −1 . The influence of amorphous iron-oxide as a result of non-stoichiometric Bi/Fe ratios in hydrothermal syntheses on the magnetic behaviour was additionally investigated. - Graphical abstract: Bi 25 FeO 40 powders were prepared by a hydrothermal method and a combustion process. The optical band gaps and the peritectic point were determined. The magnetic behaviour was investigated depending on the synthesis and the initial Bi/Fe ratios. The influence of amorphous iron-oxide on the magnetic properties was examined. - Highlights: • Two simple syntheses routes for stoichiometric Bi 25 FeO 40 powders using starch as polymerization agent. • Monitoring the phase evolution and crystallite growth kinetics during the syntheses. • Determination of the optical band gap and melting point. • Investigations of the magnetic behaviour of Bi 25 FeO 40 powders. • Influence of amorphous iron oxide and a non-stoichiometric Bi/Fe ratio on the magnetic behaviour

  14. Shock diffraction in alumina powder

    International Nuclear Information System (INIS)

    Venz, G.; Killen, P.D.; Page, N.W.

    1996-01-01

    In order to produce complex shaped components by dynamic compaction of ceramic powders detailed knowledge of their response under shock loading conditions is required. This work attempts to provide data on release effects and shock attenuation in 1 μm and 5 μm α-alumina powders which were compacted to between 85 % and 95 % of the solid phase density by the impact of high velocity steel projectiles. As in previous work, the powder was loaded into large cylindrical dies with horizontal marker layers of a contrasting coloured powder to provide a record of powder displacement in the recovered specimens. After recovery and infiltration with a thermosetting resin the specimens were sectioned and polished to reveal the structure formed by the passage of the projectile and shock wave. Results indicate that the shock pressures generated were of the order of 0.5 to 1.4 GPa and higher, with shock velocities and sound speeds in the ranges 650 to 800 m/s and 350 to 400 m/s respectively

  15. High-temperature, Knudsen cell-mass spectroscopic studies on lanthanum oxide/uranium dioxide solid solutions

    International Nuclear Information System (INIS)

    Sunder, S.; McEachern, R.; LeBlanc, J.C.

    2001-01-01

    Knudsen cell-mass spectroscopic experiments were carried out with lanthanum oxide/uranium oxide solid solutions (1%, 2% and 5% (metal at.% basis)) to assess the volatilization characteristics of rare earths present in irradiated nuclear fuel. The oxidation state of each sample used was conditioned to the 'uranium dioxide stage' by heating in the Knudsen cell under an atmosphere of 10% CO 2 in CO. The mass spectra were analyzed to obtain the vapour pressures of the lanthanum and uranium species. It was found that the vapour pressure of lanthanum oxide follows Henry's law, i.e., its value is directly proportional to its concentration in the solid phase. Also, the vapour pressure of lanthanum oxide over the solid solution, after correction for its concentration in the solid phase, is similar to that of uranium dioxide. (authors)

  16. Solid-state one-way photoisomerisation of Z,E,Z-1,6-(4,4'-diphenyl)hexa-1,3,5-triene dicarboxylate examined using higher-order derivative spectra and powder XRD patterns.

    Science.gov (United States)

    Sonoda, Yoriko; Goto, Midori; Ichimura, Kunihiro

    2018-03-14

    Higher order derivative spectra were applied at first to one-way ZEZ-to-EEE photoisomerisation of dimethyl ester (ZEZ-DPH1) of the titled compound in a methylcyclohexane solution. Many common crossing points emerged in UV-induced derivative-spectral changes to reveal the direct ZEZ-to-EEE photoisomerisation without the transient formation of an intermediate to suggest the bicycle-pedal mechanism. The solid-state photoisomerisation was subsequently monitored by tracing changes in the fourth-order derivatives of absorption spectra of a thin crystalline layer of ZEZ-DPH1 prepared by the drop-casting method, because the distortion of absorption spectra due to light scattering is cancelled. It was suggested that the solid-state photochemical event consists of three steps: fast ZEZ-to-EEE photoisomerisation, a subsequent slow ZEZ-to-EEE photoisomerisation and very slow disappearance of the EEE-isomer. Studies on powder XRD were also carried out for a drop-cast solid layer of ZEZ-DPH1 to disclose the coexistence of a crystal form other than the original one, and the former exhibited faster ZEZ-to-EEE photoisomerisation when compared with the original crystal form. The results revealed by XRD analysis are in line with those obtained by higher-order derivative spectra, confirming the solid-state one-way photoisomerisation to take place through the bicycle-pedal process.

  17. Continuous Process for Low-Cost, High-Quality YSZ Powder

    Energy Technology Data Exchange (ETDEWEB)

    Scott L. Swartz; Michael Beachy; Matthew M. Seabaugh

    2006-03-31

    This report describes results obtained by NexTech Materials, Ltd. in a project funded by DOE under the auspices of the Solid-State Energy Conversion Alliance (SECA). The project focused on development of YSZ electrolyte powder synthesis technology that could be ''tailored'' to the process-specific needs of different solid oxide fuel cell (SOFC) designs being developed by SECA's industry teams. The work in the project involved bench-scale processing work aimed at establishing a homogeneous precipitation process for producing YSZ electrolyte powder, scaleup of the process to 20-kilogram batch sizes, and evaluation of the YSZ powder products produced by the process. The developed process involved the steps of: (a) preparation of an aqueous hydrous oxide slurry via coprecipitation; (b) washing of residual salts from the precipitated hydroxide slurry followed by drying; (c) calcination of the dried powder to crystallize the YSZ powder and achieve desired surface area; and (d) milling of the calcined powder to targeted particle size. YSZ powders thus prepared were subjected to a comprehensive set of characterization and performance tests, including particle size distribution and surface area analyses, sintering performance studies, and ionic conductivity measurements. A number of different YSZ powder formulations were established, all of which had desirable performance attributes relative to commercially available YSZ powders. Powder characterization and performance metrics that were established at the onset of the project were met or exceeded. A manufacturing cost analysis was performed, and a manufactured cost of $27/kg was estimated based on this analysis. The analysis also allowed an identification of process refinements that would lead to even lower cost.

  18. Novel composition above the limit of Bi:Zr solid solution; synthesis and physical properties of Bi1.33Zr0.67O3+δ

    International Nuclear Information System (INIS)

    Meatza, Iratxe de; Chapman, Jon P.; Mauvy, Fabrice; Larramendi, Jose I. Ruiz de; Arriortua, Maria I.; Rojo, Teofilo

    2004-01-01

    This paper presents an increase to x = 0.67 of the zirconium content in the conductive Bi 2-x Zr x O 3+δ solid solution. Complete incorporation of Zr in the β III -Bi 2 O 3 structure, confirmed by X-ray powder diffraction, has produced a phase with a lower volume and superior conductivity than those predicted by an earlier study. The observed β III -δ Bi 2-x Zr x O 3+δ phase transition around 730 deg. C has been characterised for the first time and shows a segregation of a mixture of predominantly γ-Bi 2 O 3 and approximately 30% of the ZrO 2 , before total reincorporation of the Zr in the high temperature δ-phase

  19. Vaporization study on vanadium-oxygen solid solution by mass spectrometric method

    International Nuclear Information System (INIS)

    Banchorndhevakul, W.; Matsui, Tsuneo; Naito, Keiji

    1986-01-01

    The vapor pressures over vanadium-oxygen solid solution (0.001 ≤ O/V ≤ 0.145) were measured by mass-spectrometric method in the temperature range of 1,855 ∼ 2,117 K. The main vapor species were observed to be V(g) and VO(g). The vapor pressure of V(g) is higher than that of VO(g) over the solid solutions with all O/V ratios except for O/V = 0.145. The vapor pressure of V(g) is nearly independent of O/V ratio. The vapor pressure of VO(g) decreases with decreasing O/V ratio. The oxygen partial pressure was calculated as a function of temperature and O/V ratio from the vapor pressures of V(g) and VO(g), from which the partial molar enthalpy and entropy of oxygen in the solid solution were determined. The partial molar enthalpy of oxygen was observed to be independent of composition, suggesting the presence of very weak interaction between interstitial oxygens. The compositional dependence of the partial molar entropy of oxygen can be explained by assuming the occupation of the octahedral site in bcc vanadium lattice by the interstitial oxygens. The excess partial molar entropy of oxygen was compared with the value derived from the sum of the contributions from the volume expansion, electronic heat capacity and vibrational terms. (author)

  20. Studies on thermal expansion and XPS of urania-thoria solid solutions

    International Nuclear Information System (INIS)

    Anthonysamy, S.; Panneerselvam, G.; Bera, Santanu; Narasimhan, S.V.; Vasudeva Rao, P.R.

    2000-01-01

    The thermal expansion characteristics of polycrystalline (U y Th 1-y )O 2 solid solutions with y=0.13, 0.55 and 0.91 were determined in the temperature range from 298 to 1973 K by means of X-ray diffraction technique. For these temperatures, the average linear thermal expansion coefficients for (U 0.13 Th 0.87 )O 2 , (U 0.55 Th 0.45 )O 2 and (U 0.91 Th 0.09 )O 2 are 1.033x10 -5 , 1.083x10 -5 and 1.145x10 -5 K -1 , respectively. The measured thermal expansion values were compared with those calculated by applying the equations for linear thermal expansion of pure urania and thoria. It was shown that the stoichiometric (U, Th)O 2 solid solutions are almost ideal at least up to 2000 K. The binding energies of U 4f 7/2 and Th 4f 7/2 electrons of (U 0.1 Th 0.9 )O 2 , (U 0.25 Th 0.75 )O 2 , (U 0.50 Th 0.50 )O 2 , (U 0.75 Th 0.25 )O 2 and (U 0.90 Th 0.10 )O 2 were experimentally determined by X-ray photoelectron spectroscopy. The result showed the presence of only U 4+ and Th 4+ chemical states in the stoichiometric urania-thoria solid solutions

  1. Solid-state transformation of Fe-rich intermetallic phases in Al–5.0Cu–0.6Mn squeeze cast alloy with variable Fe contents during solution heat treatment

    International Nuclear Information System (INIS)

    Lin, Bo; Zhang, Weiwen; Zhao, Yuliang; Li, Yuanyuan

    2015-01-01

    The Al–5.0 wt.% Cu–0.6 wt.% Mn alloys with a variable Fe content were prepared by squeeze casting. Optical microscopy (OM), Deep etching technique, scanning electron microscopy(SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to examine the solid-state transformation of Fe-rich intermetallics during the solution heat treatment. The results showed that the Chinese script-like α-Fe, Al 6 (FeMn) and needle-like Al 3 (FeMn) phases transform to a new Cu-rich β-Fe (Al 7 Cu 2 (FeMn)) phase during solution heat treatment. The possible reaction and overall transformation kinetics of the solid-state phase transformation for the Fe-rich intermetallics were investigated. - Graphical abstract: Display Omitted - Highlights: • The α-Fe, Al 6 (FeMn) and Al 3 (FeMn) phases change to the β-Fe phases. • Possible reactions of Fe phases during solution heat treatment are discussed. • The overall fractional transformation rate follows an Avrami curve

  2. Size-dependent magnetic and structural properties of CoCrFeO4 nano-powder prepared by solution self-combustion

    Science.gov (United States)

    Sijo, A. K.; Dutta, Dimple P.

    2018-04-01

    The study reports the tuning of magnetic and structural properties of nano-sized CoCrFeO4 via post-annealing treatment. CoCrFeO4 nano-powder has been prepared by solution self-combustion method. The structural and magnetic properties have been studied over a range of annealing temperatures (300-900 °C). The formation of the phase pure CoCrFeO4 spinel has been confirmed from powder XRD analysis. The crystallite size is observed to increase with an increase in annealing temperature. On annealing, the value of magnetic parameters-remanence, coercivity and saturation magnetization have enhanced. All the samples exhibit irreversibility at low-temperature measurements.

  3. The effect of YBa2Cu3O7-x powder characteristics on thick coatings prepared by atmospheric plasma spraying

    International Nuclear Information System (INIS)

    Georgiopoulos, E.; Tsetsekou, A.

    2000-01-01

    The development of superconducting YBa 2 Cu 3 O 7-x plasma sprayed coatings on metal substrates can be very useful for applications such as targets for thin-film deposition techniques (sputtering, laser ablation, ion assisted deposition) or magnetic shielding, due to the brittle nature of bulk superconductors. The plasma spraying technique is very flexible and can be used for manufacturing components with a large variety of geometries. This technique requires the use of powders with good rheological characteristics. In this study, YBa 2 Cu 3 O 7-x powders were produced by using the conventional solid-state reaction route and also by spray drying a solution of nitrate precursors. Both powders, as well as mixtures of them, were plasma sprayed to develop coatings on stainless-steel substrates, with the aim of studying the effect of the feedstock powder characteristics on the coating properties. It was found that by optimizing the plasma spraying conditions, good quality coatings could be obtained. However, the powder morphology and homogeneity significantly affect the coating quality. More homogeneous powders lead to better results, the spray-dried powder being the best because of its enhanced rheological properties and good morphology. (author)

  4. Uranium Dioxide Powder Flow ability Improvement Using Sol-Gel

    International Nuclear Information System (INIS)

    Juanda, D.; Sambodo Daru, G.

    1998-01-01

    The improvement of flow ability characteristics of uranium dioxide powder has been done using sol-gel process. To anticipate a pellet mass production with uniform pellet dimension, the uranium dioxide powder must be have a spherical form. Uranium dioxide spherical powder has been diluted in acid transformed into sol colloidal solution. To obtain uranium dioxide spherical form, the uranium sol-colloidal solution has been dropped in a hot paraffin ( at the temperature of 90 0 C) to form gelatinous colloid and then dried at 800 0 C, and sintered at the temperature of 1700 0 C. The flow ability of spherical uranium dioxide powder has been examined by using Flowmeter Hall (ASTM. B. 213-46T). The measurement result reveals that the spherical uranium dioxide powder has a flow ability twice than that of unprocessed uranium dioxide powder

  5. High-temperature x-ray diffraction study of HfTiO4-HfO2 solid solutions

    International Nuclear Information System (INIS)

    Carpenter, D.A.

    1975-01-01

    High-temperature x-ray diffraction techniques were used to determine the axial thermal expansion curves of HfTiO 4 -HfO 2 solid solutions as a function of composition. Data show increasing anisotropy with increasing HfO 2 content. An orthorhombic-to-monoclinic phase transformation was detected near room temperature for compositions near the high HfO 2 end of the orthorhombic phase field and for compositions within the two-phase region (HfTiO 4 solid solution plus HfO 2 solid solution). An orthorhombic-to-cubic phase transformation is indicated by data from oxygen-deficient materials at greater than 1873 0 K. (U.S.)

  6. Extracting solid carbonaceous materials with solvents

    Energy Technology Data Exchange (ETDEWEB)

    1936-02-08

    Solvent extraction of solid carbonaceous materials is performed in the presence of powdered catalysts together with alkaline substances. Oxides of nickel or iron or nickel nitrate have been used together with caustic soda or potash solutions or milk of lime. Solvents used include benzenes, middle oils, tars, tetrahydronaphthalene. The extraction is performed at 200 to 500/sup 0/C under pressures of 20 to 200 atm. Finely ground peat was dried and mixed with milk of lime and nickel nitrate and an equal quantity of middle oil. The mixture was heated for 3 h at 380/sup 0/C at 90 atm. 88.5% of the peat was extracted. In a similar treatment brown coal was impregnated with solutions of caustic soda and ferric chloride.

  7. Synthesis and characterization of superconducting YBCO powder

    International Nuclear Information System (INIS)

    Praveen, B.; Karki, T.; Krishnamoorthi, J.

    2008-01-01

    Full text: Superconducting yttrium barium copper oxide power has been synthesized through solid state sintering method - milling and sintering - using Y 2 O 3 , BaCo 3 and CuO powders. XRD result of the milled and sintered powder reveals that the powder that has formed contains YBa 2 Cu 3 O 6.5 superconducting phase. Results obtained by SEM/EDAX show the distribution of the different elements. Experiments carried out by intermediate firing and final annealing in oxygen controlled atmosphere show the diffusion of oxygen in preformed YBa 2 Cu 3 O 6.5 and their results are discussed

  8. Ionic thermocurrents and ionic conductivity of solid solutions of SrF2 and YbF3

    NARCIS (Netherlands)

    Meuldijk, J.; Hartog, den H.W.

    1983-01-01

    We report dielectric [ionic thermocurrent (!TC)] experiments and ionic conductivity of cubic solid solutions of the type Sr1-xYbxF2+x. These combined experiments provide us with new information concerning the ionic conductivity mechanisms which play an important role in solid solutions Sr1-xRxF2+x

  9. Effect of solvent and temperature on solution-crystallized terfenadine

    International Nuclear Information System (INIS)

    Leitao, M. Luisa P.; Canotilho, Joao; Ferreira, Simone C.R.; Sousa, Adriano T.; Simoes Redinha, J.

    2004-01-01

    The aim of this work was to understand the crystallization process of terfenadine in solution. Cooling of saturated solutions prepared at 50 deg. C at different temperatures, evaporating the solvent from nearly saturated solutions at a certain temperature, and exposing ethanol solutions of terfenadine to water vapour atmosphere were the techniques used for obtaining terfenadine specimens. The characterization of these specimens was carried out by thermal microscopy, differential thermal analysis, thermogravimetry and powder X-ray diffraction. Crystalline phases, amorphous solids, and solvates were identified. For the solvents used in the present study, the crystallinity degree of terfenadine decreases from ethanol-water to ethanol and from this to methanol. Decreasing the temperature promotes the formation of amorphous solid material; at low temperatures, methanol and ethanol solvates are also formed. Desolvation, following the terfenadine aggregation process in solution accounts for the different behaviour found for the solvents and for the effect of temperature on the structure. The role of the solvent as structure-mediator is explained on the grounds of the values previously published for the enthalpy of solution of terfenadine in the solvents under study

  10. Excess Gibbs energy for six binary solid solutions of molecularly simple substances

    Energy Technology Data Exchange (ETDEWEB)

    Lobo, L J; Staveley, L A.K.

    1985-01-01

    In this paper we apply the method developed in a previous study of Ar + CH/sub 4/ to the evaluation of the excess Gibbs energy G /SUP E.S/ for solid solutions of two molecularly simple components. The method depends on combining information on the excess Gibbs energy G /SUP E.L/ for the liquid mixture of the two components with a knowledge of the (T, x) solid-liquid phase diagram. Certain thermal properties o the pure substances are also needed. G /SUP E.S/ has been calculated for binary mixtures of Ar + Kr, Kr + CH/sub 4/, CO + N/sub 2/, Kr + Xe, Ar + N/sub 2/, and Ar + CO. In general, but not always, the solid mixtures are more non-ideal than the liquid mixtures of the same composition at the same temperature. Except for the Kr + CH/sub 4/ system, the ratio r = G /SUP E.S/ /G /SUP E.L/ is larger the richer the solution in the component with the smaller molecules.

  11. B-site substituted solid solutions on the base of sodium-bismuth titanate

    Directory of Open Access Journals (Sweden)

    V. M. Ishchuk

    2016-12-01

    Full Text Available The paper presents results of studies of the formation of phases during the solid-state synthesis in the [(Na0.5Bi0.50.80Ba0.20](Ti1–yByO3 system of solid solutions with B-site substitutions. The substitutions by zirconium, tin and ion complexes (In0.5Nb0.5 and (Fe0.5Nb0.5 have been studied. It has been found that the synthesis is a multi-step process associated with the formation of a number of intermediate phases (depending on the compositions and calcination temperatures. Single-phase solid solutions have been produced at the calcination temperatures in the interval 1000–1100∘C. An increase in the substituting ions concentration leads to a linear increase of the crystal cell size. At the same time, the tolerance factor gets reduced boosting the stability of the antiferroelectric phase as compared to that of the ferroelectric phase.

  12. [Development of Inhalable Dry Powder Formulations Loaded with Nanoparticles Maintaining Their Original Physical Properties and Functions].

    Science.gov (United States)

    Okuda, Tomoyuki

    2017-01-01

     Functional nanoparticles, such as liposomes and polymeric micelles, are attractive drug delivery systems for solubilization, stabilization, sustained release, prolonged tissue retention, and tissue targeting of various encapsulated drugs. For their clinical application in therapy for pulmonary diseases, the development of dry powder inhalation (DPI) formulations is considered practical due to such advantages as: (1) it is noninvasive and can be directly delivered into the lungs; (2) there are few biocomponents in the lungs that interact with nanoparticles; and (3) it shows high storage stability in the solid state against aggregation or precipitation of nanoparticles in water. However, in order to produce effective nanoparticle-loaded dry powders for inhalation, it is essential to pursue an innovative and comprehensive formulation strategy in relation to composition and powderization which can achieve (1) the particle design of dry powders with physical properties suitable for pulmonary delivery through inhalation, and (2) the effective reconstitution of nanoparticles that will maintain their original physical properties and functions after dissolution of the powders. Spray-freeze drying (SFD) is a relatively new powderization technique combining atomization and lyophilization, which can easily produce highly porous dry powders from an aqueous sample solution. Previously, we advanced the optimization of components and process conditions for the production of SFD powders suitable to DPI application. This review describes our recent results in the development of novel DPI formulations effectively loaded with various nanoparticles (electrostatic nanocomplexes for gene therapy, liposomes, and self-assembled lipid nanoparticles), based on SFD.

  13. Solution and solid-state electrochemiluminescence of a fac-tris(2-phenylpyridyl)iridium(III)-cored dendrimer

    International Nuclear Information System (INIS)

    Reid, Ellen F.; Burn, Paul L.; Lo, Shih-Chun; Hogan, Conor F.

    2013-01-01

    The solution phase and solid-state electrochemistry and electrochemiluminescence (ECL) of an iridium(III) complex-cored dendrimeric analogue of Ir(ppy) 3 , (G1pIr), are reported. The solid-state electrochemistry and solid-state ECL of Ir(ppy) 3 itself is also described for the first time. In solution phase, the dendrimer displays greater immunity to oxygen quenching in photoluminescence (PL) experiments and exhibits greater ECL efficiency compared to the parent Ir(ppy) 3 core under the same conditions, despite a lower photoluminescence quantum yield. It is proposed that the dendrons which effectively shield the core from PL quenching interactions in the solid-state counteract the effects of parasitic side-reactions during the solution ECL experiments. Electroactive and ECL-active solid-state films of both Ir(ppy) 3 and G1pIr were produced by drop-coating on boron doped diamond electrodes. Films of Ir(ppy) 3 produced stable co-reactant ECL. However, films of G1pIr produced lower than expected ECL intensity. This was attributed to poorer charge transport and the lipophilicity of the film limiting the rate of interaction with the co-reactant required for formation of the excited state

  14. Production of titanium alloy powders by vacuum fusion-centrifugation

    International Nuclear Information System (INIS)

    Decours, Jacques; Devillard, Jacques; Sainfort, G.

    1975-01-01

    This work presents a method of preparing powdered TA6V and TA6Z5D alloys by fusion-centrifugation under electron bombardment. An industrial capacity apparatus for the production of metallic powders is described and the characteristics of the powders obtained are presented. Solid parts were shaped by sintering and drawing at temperatures between 850 and 1100 deg C. The structure and mechanical properties of the cold densified products before and after heat treatment are compared [fr

  15. Removal of thorium(IV) from aqueous solution by biosorption onto modified powdered waste sludge. Experimental design approach

    International Nuclear Information System (INIS)

    Yunus Pamukoglu, M.; Mustafa Senyurt; Bulent Kirkan

    2017-01-01

    The biosorption of radioactive Th(IV) ions in the aqueous solutions onto the modified powdered waste sludge (MPWS) has been examined. In this context, the parameters affecting biosorption of Th(IV) from aqueous solutions has been examined by using MPWS biosorbent in Box Behnken statistical experimental design. The structure of MPWS biosorbent was characterized by using SEM and BET techniques. According to the experimental design results, MPWS and Th(IV) concentrations should be kept high to achieve the maximum efficiency in Th(IV) biosorption. On the other hand, MPWS, which is also used as a biosorbent, is an economical, effective and natural biosorbent. (author)

  16. Influence of chemical heterogeneity of solid solutions on brittleness in chromium steels

    International Nuclear Information System (INIS)

    Madyanov, S.A.; Sedov, V.K.; Apaev, B.A.

    1985-01-01

    The role of chemical heterogeneity of solid solutions in formation of mechanical properties of Kh09, Kh15, Kh20, Kh19N2G5T chromium steels has been investigated. It is established that besides the known regioA of chemical heterogeneity in the vicinity of 475 deg C exists a high-temperature region (1000-1050 deg C), where maximum heteroge=- neity of chromium distribution in solid solution, is observed. Both types of chemical heterogeneity cause essential hardening of alloys, which becomes apparent in abrupt change of capability to microplastic deformation The mechanism of occurrence of the given temper brittleness consists in carbon diffusion into microvolunes enriched in carbide-forming elements

  17. Vortex-like and string-like solutions for the 2+1 dimensional SU(2) Yang-Mills theory with the Chern-Simons term

    International Nuclear Information System (INIS)

    Teh, R.

    1989-07-01

    Vortex-like and string-like solutions of 2+1 Dim. SU(2) YM theory with the Chern-Simons term are discussed. Two ansatze are constructed which yield respectively analytic Bessel function solutions and elliptic function solutions. The Bessel function solutions are vortex-like and tend to the same vacuum state as the Ginzburg-Landau vortex solution at large ρ. The Jacobi elliptic function solutions are string-like, have finite energy and magnetic flux concentrated along a line in the x 1 - x 2 plane. (author). 18 refs

  18. Minimum ignition energy of nano and micro Ti powder in the presence of inert nano TiO₂ powder.

    Science.gov (United States)

    Chunmiao, Yuan; Amyotte, Paul R; Hossain, Md Nur; Li, Chang

    2014-06-15

    The inerting effect of nano-sized TiO2 powder on ignition sensitivity of nano and micro Ti powders was investigated with a Mike 3 apparatus. "A little is not good enough" is also suitable for micro Ti powders mixed with nano-sized solid inertants. MIE of the mixtures did not significantly increase until the TiO2 percentage exceeded 50%. Nano-sized TiO2 powders were ineffective as an inertant when mixed with nano Ti powders, especially at higher dust loadings. Even with 90% nano TiO2 powder, mixtures still showed high ignition sensitivity because the statistic energy was as low as 2.1 mJ. Layer fires induced by ignited but unburned metal particles may occur for micro Ti powders mixed with nano TiO2 powders following a low level dust explosion. Such layer fires could lead to a violent dust explosion after a second dispersion. Thus, additional attention is needed to prevent metallic layer fires even where electric spark potential is low. In the case of nano Ti powder, no layer fires were observed because of less flammable material involved in the mixtures investigated, and faster flame propagation in nanoparticle clouds. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Cementation of the solid radioactive waste with polymer-cement solutions using the method of impregnation

    International Nuclear Information System (INIS)

    Gorbunova, O.

    2015-01-01

    Cementation of solid radioactive waste (SRW), i.e. inclusion of solid radioactive waste into cement matrix without cavities - is one of the main technological processes used for conditioning low and intermediate level radioactive waste. At FSUE 'Radon' the industrialized method of impregnation has been developed and since 2003 has been using for cementation of solid radioactive waste. The technology is that the polymer-cement solution, having high penetrating properties, is supplied under pressure through a tube to the bottom of the container in which solid radioactive waste has preliminarily been placed. The polymer-cement solution is evenly moving upwards through the channels between the particles of solid radioactive waste, fills the voids in the bulk volume of the waste and hardens, forming a cement compound, the amount of which is equal to the original volume. The aim of the investigation was a selection of a cement solution suitable for SRW impregnation (including fine particles) without solution depletion and bottom layers stuffing. It has been chosen a polymer: PHMG (polyhexamethylene-guanidine), which is a stabilizing and water-retaining component of the cement solution. The experiments confirm that the polymer increases the permeability of the cement solution by a 2-2.5 factor, the viscosity by a 1.2 factor, the stability of the consistency by a 1.5-1.7 factor, and extends the operating range of the W/C ratio to 0.5-1.1. So it is possible to penetrate a volume of SRW bigger by a 1.5-2.0 factor. It has been proved, that PHMG polymer increases strength and frost-resistance of the final compounds by a 1.8-2.7 factor, and contributes to fast strength development at the beginning of hardening and it decreases Cs-137 leashing rate by a 1.5-2 factor

  20. Determination of impurity elements in steel by spark source mass spectrometry using powdered salts

    International Nuclear Information System (INIS)

    Saito, Morimasa; Sudo, Emiko

    1975-01-01

    Determination of impurity elements in steel by speak source mass spectrometry using powdered salts sample electrode was studied. The instrument used in this study was an AEI MS-7 mass spectrograph and the ion detector was Ilford Q2 photograph. Sample, (0.5--1) gram, was dissolved in hydrochloric acid (1 : 1) or nitric acid (1 : 1) together with yttrium of 1 microgram as the internal standard and then the solution was evaporated to dryness without baking. The salt residues were dried at 70 0 C for 30 minutes under vacuum. They were mixed with an equal amount of graphite powder for 5 minutes in a mixer mill, and then pressed into electrodes. When the relative sensitivity coefficient (Fe=1) was determined by using NBS 460 series standard samples, the results obtained by the proposed method for elements of Mo, Sn, Cu, Cr, Co, Ni, Mn, V, P, Si, and B were in good agreement with those obtained by the conventional method using solid sample electrodes (the solid method) and the precision of this method for 11 elements mentioned above was about 10% better than those of the solid method. However, both the accuracy and precision for elements of Nb, Ti, S and W were not good. This method was applied to the determination of impurities in NBS stainless steel and others. The relative standard deviations were within 20%. (auth.)

  1. Development of precipitation strengthened brass with Ti and Sn alloying elements additives by using water atomized powder via powder metallurgy route

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shufeng, E-mail: shufengli@hotmail.com [Joining and Welding Research Institute, Osaka University, Osaka (Japan); Imai, Hisashi; Kondoh, Katsuyoshi [Joining and Welding Research Institute, Osaka University, Osaka (Japan); Kojima, Akimichi; Kosaka, Yoshiharu [San-Etsu Metals Co. LTD., 1892 OHTA, Tonami, Toyama (Japan); Yamamoto, Koji; Takahashi, Motoi [Nippon Atomized Metal Powders Corporation, 87-16, Nishi-Sangao, Noda, Chiba (Japan)

    2012-08-15

    Effect of Ti and Sn alloying elements on microstructure and mechanical properties of 60/40 brass has been studied via the powder metallurgy (P/M) route. The water-atomized BS40-0.6Sn1.0Ti (Cu40wt%Zn-0.6wt%Sn1.0wt%Ti) pre-alloyed powder was consolidated at various temperatures within range of 400-600 Degree-Sign C using spark plasma sintering (SPS) and hot extrusion was carried out at 500 Degree-Sign C. Effects of extrusion temperature on microstructure and tensile strength were investigated by employing SEM-EDS/EBSD, TEM, XRD and tensile test. Results indicated that super-saturated solid solution Ti and Sn elements created high chemical potential for a precipitate reaction in rapidly solidified brass powder, which showed significant strengthening effects on the extruded sample consolidated at lower temperature. Solid solubility of Ti in brass matrix decreased with increasing of sintering temperature, thus resulted in degradation of mechanical properties. Consequently, lower hot processing temperature is necessary to obtain excellent mechanical properties for BS40-0.6Sn1.0Ti during sintering and extrusion. An yield strength of 398 MPa and ultimate tensile strength of 615 MPa were achieved, they respectively showed 31.3% and 22.9% higher values than those of extruded Cu40Zn brass. -- Graphical abstract: The Ti and Sn alloying elements additions showed significant grain refinement on Cu40Zn-0.6Sn1.0Ti brass (b) as comparing with that of the conventional Cu40Zn brass (a), detected by electron backscatter diffraction (EBSD) technique. The grain boundaries maps of (a) BS40 (b) BS40-0.6Sn1.0Ti SPS compact sintered at 400 Degree-Sign C reveals by electron backscatter diffraction (EBSD) technique. Highlights: Black-Right-Pointing-Pointer Alloying elements Ti and Sn are proposed as additives in 60/40 brass. Black-Right-Pointing-Pointer Super-saturated Ti in powder creates high chemical potential for precipitation. Black-Right-Pointing-Pointer CuSn{sub 3}Ti{sub 5

  2. Structural and magnetic properties of Co50Ni50 powder mixtures

    International Nuclear Information System (INIS)

    Loudjani, N.; Bensebaa, N.; Dekhil, L.; Alleg, S.; Sunol, J.J.

    2011-01-01

    In the present work, morphological, structural, thermal and magnetic properties of nanocrystalline Co 50 Ni 50 alloy prepared by high energy planetary ball milling have been studied by means of scanning electron microscopy, X-ray diffraction, and differential scanning calorimetry. The coercivity and the saturation magnetization of alloyed powders were measured at room temperature by a vibration sample magnetization. Morphological observations indicated a narrow distribution in the particle and homogeneous shape form with mean average particle size around 130 μm 2 . The results show that an allotropic Co transformation hcp→fcc occurs within the three first hours of milling and contrary to what expected, the Rietveld refinement method reveals the formation of two fcc solid solutions (SS): fcc Co(Ni) and Ni(Co) beside a small amount of the undissolved Co hcp. Thermal measurement, as a function of milling time was carried out to confirm the existence of the hcp phase and to estimate its amount. Magnetic measurement indicated that the 48 h milled powders with a steady state particles size have the highest saturation (105.3 emu/g) and the lowest coercivity (34.5 Oe). - Highlights: → By using the Rietveld refinement method we found that Co 50 Ni 50 alloy, milled for 48 h, contains two fcc solid solutions: fcc Co(Ni) and Ni(Co), beside a small amount of the undissolved Co hcp. DSC measurement as a function of milling time was carried out to confirm the existence of the hcp phase and to estimate its amount. → By means of imageJ we found the area distribution and not just the diameter distribution. → The coercivity is strongly related to the particles size distribution.

  3. Crystal chemical analysis of formation of solid solutions on the basis of compounds with garnet structure

    International Nuclear Information System (INIS)

    Kuz'micheva, G.M.; Kozlikin, S.N.

    1989-01-01

    Crystal chemical formulas permitting to evaluate the character of changes in interatomic distances during isomorphous substitution and, hence, the probability of formation of internal solid solutions and successive isomorphous substitution, are presented. The possibility of formation of introduction solid solutions is considered, using as an example Sc, Y oxides, rare earths with garnet structure

  4. Intake of Wild Blueberry Powder Improves Episodic-Like and Working Memory during Normal Aging in Mice.

    Science.gov (United States)

    Beracochea, Daniel; Krazem, Ali; Henkouss, Nadia; Haccard, Guillaume; Roller, Marc; Fromentin, Emilie

    2016-08-01

    The number of Americans older than 65 years old is projected to more than double in the next 40 years. Cognitive changes associated to aging can affect an adult's day-to-day functioning. Among these cognitive changes, reasoning, episodic memory, working memory, and processing speed decline gradually over time. Early memory changes include a decline in both working and episodic memory. The aim of the present study was to determine whether chronic (up to 75 days) daily administration of wild blueberry extract or a wild blueberry full spectrum powder would help prevent memory failure associated with aging in tasks involving various forms of memory. Both blueberry ingredients were used in a study comparing young mice (6 months old) to aged mice (18 months old). At this age, mice exhibit memory decline due to aging, which is exacerbated first by a loss in working and contextual (episodic-like) memory. Contextual memory (episodic-like memory) was evaluated using the contextual serial discrimination test. Working and spatial memory were evaluated using the Morris-Water maze test and the sequential alternation test. Statistical analysis was performed using an ANOVA with the Bonferroni post-hoc test. Supplementation with wild blueberry full spectrum powder and wild blueberry extract resulted in significant improvement of contextual memory, while untreated aged mice experienced a decline in such memory. Only the wild blueberry full spectrum powder significantly contributed to an improvement of spatial and working memory versus untreated aged mice. These improvements of cognitive performance may be related to brain oxidative status, acetylcholinesterase activity, neuroprotection, or attenuation of immunoreactivity. Georg Thieme Verlag KG Stuttgart · New York.

  5. Thermodynamics of CoAl2O4-CoGa2O4 solid solutions

    International Nuclear Information System (INIS)

    Lilova, Kristina I.; Navrotsky, Alexandra; Melot, Brent C.; Seshadri, Ram

    2010-01-01

    CoAl 2 O 4 , CoGa 2 O 4 , and their solid solution Co(Ga z Al 1-z ) 2 O 4 have been studied using high temperature oxide melt solution calorimetry in molten 2PbO.B 2 O 3 at 973 K. There is an approximately linear correlation between lattice parameters, enthalpy of formation from oxides, and the Ga content. The experimental enthalpy of mixing is zero within experimental error. The cation distribution parameters are calculated using the O'Neill and Navrotsky thermodynamic model. The enthalpies of mixing calculated from these parameters are small and consistent with the calorimetric data. The entropies of mixing are calculated from site occupancies and compared to those for a random mixture of Ga and Al ions on octahedral site with all Co tetrahedral and for a completely random mixture of all cations on both sites. Despite a zero heat of mixing, the solid solution is not ideal in that activities do not obey Raoult's Law because of the more complex entropy of mixing. - Graphical abstract: Measured enthalpies of mixing of CoAl 2 O 4 -CoGa 2 O 4 solid solutions are close to zero but entropies of mixing reflect the complex cation distribution, so the system is not an ideal solution.

  6. Soliton-like solutions to the GKdV equation by extended mapping method

    International Nuclear Information System (INIS)

    Wu Ranchao; Sun Jianhua

    2007-01-01

    In this note, many new exact solutions of the generalized KdV equation, such as rational solutions, periodic solutions like Jacobian elliptic and triangular functions, soliton-like solutions, are constructed by symbolic computation and the extended mapping method, with the auxiliary ordinary equation replaced by a more general one

  7. Investigation of samarium solubility in the magnesium based solid solution

    International Nuclear Information System (INIS)

    Rokhlin, L.L.; Padezhnova, E.M.; Guzej, L.S.

    1976-01-01

    Electric resistance measurements and microscopic analysis were used to investigate the solubility of samarium in a magnesium-based solid solution. The constitutional diagram Mg-Sm on the magnesium side is of an eutectic type with the temperature of the eutectic transformation of 542 deg C. Samarium is partly soluble in solid magnesium, the less so, the lower is the temperature. The maximum solubility of samarium in magnesium (at the eutectic transformation point) is 5.8 % by mass (0.99 at. %). At 200 deg C, the solubility of samarium in magnesium is 0.4 % by mass (0.063 at. %)

  8. Ceramic grade (U,Pu)O2 powder fabrication

    International Nuclear Information System (INIS)

    Cristallini, O.A.; Villegas de Maroto, Marina; De Pino, J.I.; Osuna, H.A.

    1980-01-01

    Ceramic grade UO 2 powder was obtained by the homogeneous precipitation method. This procedure was afterwards applied to the fabrication of ceramic grade (U,Pu)O 2 powders, and mixed oxide powders with Pu content ranging from 0.7 to 16% were obtained. The obtainment of mixed ceramic oxides as well as the recuperation of fabrication scraps were developed in three steps: 1)study of the process of homogeneous precipitation of ammonium diuranate (ADU); 2) co-precipitation of ADU/PuO 2 .H 2 O for Pu concentrations of 0.6 and 6.8; 3) the thermal conditioning to mixed oxide (U,Pu)O 2 powders. The experimental procedure involves the following steps: preparation of the PuO 2 (NO 3 ) 4 solution; co-precipitation of the PuO 2 (NO 3 ) 2 solution with an UO 2 (NO 3 ) 2 solution; filtration and drying of the precipitate, thermal treatment and finally, mixing, pressing and sintering of the (U,Pu)O 2 and Nukem UO 2 powder with a 0. of zinc stearate. Different controls were made by means of physical, chemical and ceramographic tests. This method can be used for the fabrication of fast reactor fuels or, previous mechanical dispersion in UO 2 powder, for the fabrication of thermal reactors fuels. (M.E.L.) [es

  9. Influence of hydrostatic pressure on BCC-lattice parameter in molybdenum, niobium and vanadium with rhenium solid solutions

    International Nuclear Information System (INIS)

    Smol'yaninova, Eh.A.; Stribuk, E.K.; Tyavlovskij, V.I.

    1987-01-01

    Data on the effect of 1.8GPa hydrostatic pressure on bcc lattice parameters of solid solutions in Mo-Re, Nb-Re, V-re systems are presented. It is shown that after the application hydrostatic pressure a decrease in bcc lattice parameter is observed and the greatest change in the lattice parameter takes place in bcc of solid solutions in the Nb-Re system (DELTA A ∼ 0.0035 nm). Analysis of the experimental data obtained on the basis of calculations made for packing density change in the above-mentioned solid solutions under the pressure is carried out

  10. Synthesis of LiBOB Fine Powder to Increase Solubility

    Directory of Open Access Journals (Sweden)

    Etty Marti Wigayati

    2017-04-01

    Full Text Available Lithium bis (oxalate borate or LiBOB compound has captured interest of researchers, because it is potentially viable to be used as electrolyte salt in lithium-ion battery system. This compound is easy to synthesize and considered to be more environmentally friendly compared to conventional electrolyte salt because LiBOB does not contain halogen element. This research focused on the synthesis of LiBOB fine powder, which main purpose is improving LiBOB salt solubility in liquid electrolyte solution. This will aid the ion transfer between electrodes which in turn will increase the electrolyte performance. Solid state reaction was employed in this experiment. Synthesis of LiBOB compound was performed by reacting oxalic acid dihydrate, lithium hydroxide monohydrate, and boric acid. The resulting powder was then processed into fine powder using ball milling technique with varying milling time (0, 6, 10, and 13 hour. Microstructure of the sample was then analyzed to obtain information regarding phase formation, functional groups, grain surface morphology, surface area, pore volume, solubility, and ionic conductivity. The analysis shown that LiBOB and LiBOB hydrate phase was formed during the reaction, there was no changed in existing phase during milling process, crystallinity index was shifted to lower value but there was no difference in functional groups. Highest value in surface area was found to be 83.11 m2/g, with pore volume of 1.21311e+02 A at 10 hours milling. Smaller powder size resulted in higher solubility, unfortunately the ionic conductivity was found to be decreased.

  11. Properties of magnetic nickel/porous-silicon composite powders

    Directory of Open Access Journals (Sweden)

    Toshihiro Nakamura

    2012-09-01

    Full Text Available The magnetic and photoluminescence (PL properties of nickel/porous-silicon (Ni/PSi composite powders are investigated. Ni/PSi composite powders are prepared by stain etching of Si powder in a HF/HNO3 solution followed by electroless plating of Ni nanoparticles on the stain-etched PSi powder in a NiCl2 solution. The Ni/PSi powders exhibit hydrophillicity, superparamagnetism caused by the deposited Ni nanoparticles, and orange-red PL owing to the nanostructured PSi surface. The degree of magnetization decreases with increasing Ni plating time, indicating its dependence on the size of the Ni nanoparticles. The Ni/PSi composite powders also show a stronger magnetization as compared to that of the Ni-particle-plated Si powder. The stronger magnetization results from the larger surface area of PSi. The PL intensity, peak wavelength, and lifetime of Ni/PSi are strongly dependent on the NiCl2 concentration. This dependence is due to the different thickness of the oxide overlayer on the PSi surface formed during the Ni plating process. The existence of the oxide overlayer also results in a small change in the PL intensity against excitation time.

  12. Process for disposal of aqueous solutions containing radioactive isotopes

    Science.gov (United States)

    Colombo, Peter; Neilson, Jr., Robert M.; Becker, Walter W.

    1979-01-01

    A process for disposing of radioactive aqueous waste solutions whereby the waste solution is utilized as the water of hydration to hydrate densified powdered portland cement in a leakproof container; said waste solution being dispersed without mechanical inter-mixing in situ in said bulk cement, thereafter the hydrated cement body is impregnated with a mixture of a monomer and polymerization catalyst to form polymer throughout the cement body. The entire process being carried out while maintaining the temperature of the components during the process at a temperature below 99.degree. C. The container containing the solid polymer-impregnated body is thereafter stored at a radioactive waste storage dump such as an underground storage dump.

  13. Process for disposal of aqueous solutions containing radioactive isotopes

    International Nuclear Information System (INIS)

    Colombo, P.; Neilson, R.M. Jr.; Becker, W.W.

    1979-01-01

    A process for disposing of radioactive aqueous waste solutions whereby the waste solution is utilized as the water of hydration to hydrate densified powdered portland cement in a leakproof container; said waste solution being dispersed without mechanical inter-mixing in situ in said bulk cement, thereafter the hydrated cement body is impregnated with a mixture of a monomer and polymerization catalyst to form polymer throughout the cement body. The entire process being carried out while maintaining the temperature of the components during the process at a temperature below 99 0 C. The container containing the solid polymer-impregnated body is thereafter stored at a radioactive waste storage dump such as an underground storage dump

  14. Synthesis and Characterizations of Fine Silica Powder from Rice Husk Ash

    International Nuclear Information System (INIS)

    Khin Muyar Latt

    2011-12-01

    The silica content of rice husk ash obtained from the uncontrolled burning temperature of gasifier was 90.4%. The obtained rice husk ash was an amorphous form of silica with low crystallization by XRD. The sodium hydroxide solution, 1.5N, 2N, 2.5N and 3N, respectively was used to prepare sodium silicate solution by extraction method. The product silica was produced by acid precipitation method used 4.5N, 5.5N and 6.5N sulphuric acid solution. The highest yield percent of product silica extraced by 2.5N sodium hydroxide solution at 5N sulphuric acid solution was 88.84%. The crystallize size of product silica containing silicalite as a source of silica was 86nm at this condition. The fine silica powder was produced by acid refluxing mothod used 5.5N, 6N and 6.5N hydrochloric acid solution. 98% of pure fine silica powder can be produced from the product silica by refluxing method. The crystallize size of fine silica powder was 54nm. The distribution of the crystallize size of product silica powder could be found uniform in size and agglomeration. The Fourier Transform Infrared Spectra indicate the hydrogen bonded silinol groups and siloxane groups in product silica and fine silica powder.

  15. Transport properties of dilute α -Fe (X ) solid solutions (X = C, N, O)

    Science.gov (United States)

    Schuler, Thomas; Nastar, Maylise

    2016-06-01

    We extend the self-consistent mean field (SCMF) method to the calculation of the Onsager matrix of Fe-based interstitial solid solutions. Both interstitial jumps and substitutional atom-vacancy exchanges are accounted for. A general procedure is introduced to split the Onsager matrix of a dilute solid solution into intrinsic cluster Onsager matrices, and extract from them flux-coupling ratios, mobilities, and association-dissociation rates for each cluster. The formalism is applied to vacancy-interstitial solute pairs in α -Fe (V X pairs, X = C, N, O), with ab initio based thermodynamic and kinetic parameters. Convergence of the cluster mobility contribution gives a controlled estimation of the cluster definition distance, taking into account both its thermodynamic and kinetic properties. Then, the flux-coupling behavior of each V X pair is discussed, and qualitative understanding is achieved from the comparison between various contributions to the Onsager matrix. Also, the effect of low-activation energy second-nearest-neighbor interstitial solute jumps around a vacancy on these results is addressed.

  16. Removal of methylene blue from aqueous solution by adsorption onto pineapple leaf powder

    International Nuclear Information System (INIS)

    Weng, Chih-Huang; Lin, Yao-Tung; Tzeng, Tai-Wei

    2009-01-01

    The ability of an unconventional bio-adsorbent, pineapple leaf powder (PLP) for the adsorption of methylene blue (MB) from aqueous solution was studied. It was observed that intra-particle diffusion was involved in the adsorption process and that the kinetic data fitted well with a pseudo-second-order equation. Fitting parameters revealed that the rate of adsorption increased with decrease in dye concentration and decrease in ionic strength while the mixing speed did not have a significant effect on adsorption. The adsorption was favorable at higher pH and lower temperature, and the equilibrium data were well fitted by the Langmuir isotherm. The maximum adsorption capacity varied from 4.68 x 10 -4 to 9.28 x 10 -4 mol/g when pH increases from 3.5 to 9.5. Thermodynamic parameters suggest that the adsorption is a typical physical process, spontaneous, and exothermic in nature. The results revealed that this agricultural waste has potential to be used as an economical adsorbent for the removal of methylene blue from aqueous solution.

  17. Removal of methylene blue from aqueous solution by adsorption onto pineapple leaf powder

    Energy Technology Data Exchange (ETDEWEB)

    Weng, Chih-Huang, E-mail: chweng@isu.edu.tw [Department of Civil and Ecological Engineering, I-Shou University, Da-Hsu Township, Kaohsiung 84008, Taiwan (China); Lin, Yao-Tung; Tzeng, Tai-Wei [Department of Soil and Environmental Sciences, National Chung Hsing University, TaiChung 40227, Taiwan (China)

    2009-10-15

    The ability of an unconventional bio-adsorbent, pineapple leaf powder (PLP) for the adsorption of methylene blue (MB) from aqueous solution was studied. It was observed that intra-particle diffusion was involved in the adsorption process and that the kinetic data fitted well with a pseudo-second-order equation. Fitting parameters revealed that the rate of adsorption increased with decrease in dye concentration and decrease in ionic strength while the mixing speed did not have a significant effect on adsorption. The adsorption was favorable at higher pH and lower temperature, and the equilibrium data were well fitted by the Langmuir isotherm. The maximum adsorption capacity varied from 4.68 x 10{sup -4} to 9.28 x 10{sup -4} mol/g when pH increases from 3.5 to 9.5. Thermodynamic parameters suggest that the adsorption is a typical physical process, spontaneous, and exothermic in nature. The results revealed that this agricultural waste has potential to be used as an economical adsorbent for the removal of methylene blue from aqueous solution.

  18. Regularities in electroconductivity and thermo-emf in systems of binary continuous solid solutions of metals

    International Nuclear Information System (INIS)

    Vedernikov, M.V.; Dvunitkin, V.G.; Zhumagulov, A.

    1978-01-01

    Given are new experimental data about specific electric resistance of 10 systems of binary continuous solid metal solutions at the temperatures of 293 and 4.2 K: Cr-V, Mo-Nb, Mo-V, Cr-Mo, Nb-V, Ti-Zr, Hf-Zr, Hf-Ti, Sc-Zr, Sc-Hf. For the first time a comparative analysis of all available data on the resistance dependence on the composition of systems of continuous solid solutions, which covers 21 systems, is carried out. The ''resistance-composition'' dependence for such alloy systems is found to be of two types. The dependence of the first type is characteristic of the systems, formed by two isoelectronic metals, the dependence of the second type - for the systems, formed by non-isoelectronic metals. Thermo-emf of each type of solid solutions differently depends on their compositions

  19. Solid phase extraction of cadmium on 2-mercaptobenzothiazole loaded on sulfur powder in the medium of ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate and cold vapor generation-atomic absorption spectrometric determination

    International Nuclear Information System (INIS)

    Pourreza, N.; Ghanemi, K.

    2010-01-01

    A novel solid phase extractor for preconcentration of cadmium at ng L -1 levels has been developed. Cadmium ions were retained on a column packed with sulfur powder modified with 2-mercaptobenzothiazole (2-MBT) in the medium of 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim] + PF 6 - ) ionic liquid. The presence of ionic liquid during modification of sulfur enhanced the retention of cadmium ions on the column. The retained cadmium ions were eluted with 2 mol L -1 solution of HCl and measured by cold vapor generation-atomic absorption spectrometry (CVG-AAS). By using reaction cell-gas liquid separator (RC-GLS), gaseous cadmium vapors were produced and reached the atomic absorption spectrometer, instantaneously. The influence of different variables on both processes of solid phase extraction and CVG-AAS determination of cadmium ions was investigated. The calibration curve was linear in the range of 10-200 ng L -1 of cadmium in the initial solution with r = 0.9992 (n = 8) under optimum conditions. The limit of detection based on three times the standard deviation of the blank (3S b , n = 10) was 4.6 ng L -1 . The relative standard deviation (R.S.D.) of 25 and 150 ng L -1 of cadmium was 4.1 and 2.2% (n = 8), respectively. The procedure was validated by the analysis of a certified reference material (DORM-3), water and fish samples.

  20. Industrial testing of modified clay powders by the ''Permneft''' organization

    Energy Technology Data Exchange (ETDEWEB)

    Matytsyn, V I; Kosivchenko, A M; Ryabchenko, V I; Shishov, V A

    1980-01-01

    VNIIKRneft' has developed a modified clay powder based on Cherkask bentonite with one ton of solution resulting in 20-28 cubic meters of powder per TU 39-08-123-77 formula. The modification stems from the type of bentonite treatment used. Bentonite is used in the amount of 3-5% of the total mass and the treatment involves the use of 0.3% calcium soda, copolymer methacrylic acid with M-14VV methacrylate. These reagents induce processes of change within the clay. The carbonate-nitrate activity serves to penthiatize the clay particles and the reagent solution which accompany the process of coagulation in the polymer structure, and in turn, increases the incidence of viscosity in the newly emerging systems. Tests indicate that the use of modified clay powder enhances drill bit pass-through. The large quantity of drilling solution resulting from one ton of modified clay powder further enhances the practical aspects of this system and reduces overall expenditures for solution treatment and clay powder while permitting the reduction of expenditures for other chemical reagents. Such economic benefits have been confirmed by industrial testing.

  1. Soliton-like solutions to the ordinary Schroedinger equation

    International Nuclear Information System (INIS)

    Zamboni-Rached, Michel; Recami, Erasmo

    2011-01-01

    In recent times it has been paid attention to the fact that (linear) wave equations admit of soliton-like solutions, known as Localized Waves or Non-diffracting Waves, which propagate without distortion in one direction. Such Localized Solutions (existing also for K-G or Dirac equations) are a priori suitable, more than Gaussian's, for describing elementary particle motion. In this paper we show that, mutatis mutandis, Localized Solutions exist even for the ordinary Schroedinger equation within standard Quantum Mechanics; and we obtain both approximate and exact solutions, also setting forth for them particular examples. In the ideal case such solutions bear infinite energy, as well as plane or spherical waves: we show therefore how to obtain nite-energy solutions. At last, we briefly consider solutions for a particle moving in the presence of a potential. (author)

  2. Soliton-like solutions to the ordinary Schroedinger equation

    Energy Technology Data Exchange (ETDEWEB)

    Zamboni-Rached, Michel [Universidade Estadual de Campinas (DMO/FEEC/UNICAMP), Campinas, SP (Brazil). Fac. de Engenharia Eletrica e de Computacao. Dept. de Microondas e Optica; Recami, Erasmo, E-mail: recami@mi.infn.i [Universita Statale di Bergamo, Bergamo (Italy). Facolta di Ingegneria

    2011-07-01

    In recent times it has been paid attention to the fact that (linear) wave equations admit of soliton-like solutions, known as Localized Waves or Non-diffracting Waves, which propagate without distortion in one direction. Such Localized Solutions (existing also for K-G or Dirac equations) are a priori suitable, more than Gaussian's, for describing elementary particle motion. In this paper we show that, mutatis mutandis, Localized Solutions exist even for the ordinary Schroedinger equation within standard Quantum Mechanics; and we obtain both approximate and exact solutions, also setting forth for them particular examples. In the ideal case such solutions bear infinite energy, as well as plane or spherical waves: we show therefore how to obtain nite-energy solutions. At last, we briefly consider solutions for a particle moving in the presence of a potential. (author)

  3. Magnetically responsive enzyme powders

    Energy Technology Data Exchange (ETDEWEB)

    Pospiskova, Kristyna, E-mail: kristyna.pospiskova@upol.cz [Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 11, 783 71 Olomouc (Czech Republic); Safarik, Ivo, E-mail: ivosaf@yahoo.com [Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 11, 783 71 Olomouc (Czech Republic); Department of Nanobiotechnology, Institute of Nanobiology and Structural Biology of GCRC, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic)

    2015-04-15

    Powdered enzymes were transformed into their insoluble magnetic derivatives retaining their catalytic activity. Enzyme powders (e.g., trypsin and lipase) were suspended in various liquid media not allowing their solubilization (e.g., saturated ammonium sulfate and highly concentrated polyethylene glycol solutions, ethanol, methanol, 2-propanol) and subsequently cross-linked with glutaraldehyde. Magnetic modification was successfully performed at low temperature in a freezer (−20 °C) using magnetic iron oxides nano- and microparticles prepared by microwave-assisted synthesis from ferrous sulfate. Magnetized cross-linked enzyme powders were stable at least for two months in water suspension without leakage of fixed magnetic particles. Operational stability of magnetically responsive enzymes during eight repeated reaction cycles was generally without loss of enzyme activity. Separation of magnetically modified cross-linked powdered enzymes from reaction mixtures was significantly simplified due to their magnetic properties. - Highlights: • Cross-linked enzyme powders were prepared in various liquid media. • Insoluble enzymes were magnetized using iron oxides particles. • Magnetic iron oxides particles were prepared by microwave-assisted synthesis. • Magnetic modification was performed under low (freezing) temperature. • Cross-linked powdered trypsin and lipase can be used repeatedly for reaction.

  4. First-Principles Modeling of ThO2 Solid Solutions with Oxides of Trivalent Cations

    Science.gov (United States)

    Alexandrov, Vitaly; Asta, Mark; Gronbech-Jensen, Niels

    2010-03-01

    Solid solutions formed by doping ThO2 with oxides of trivalent cations, such as Y2O3 and La2O3, are suitable for solid electrolyte applications, similar to doped zirconia and ceria. ThO2 has also been gaining much attention as an alternative to UO2 in nuclear energy applications, the aforementioned trivalent cations being important fission products. In both cases the mixing energetics and short-range ordering/clustering are key to understanding structural and transport properties. Using first-principles atomistic calculations, we address intra- and intersublattice interactions for both cation and anion sublattices in ThO2-based fluorite-type solid solutions and compare the results with similar modeling studies for related trivalent-doped zirconia systems.

  5. Solid-state structural properties of 2,4,6-trimethoxybenzene derivatives, determined directly from powder X-ray diffraction data in conjunction with other techniques

    International Nuclear Information System (INIS)

    Pan Zhigang; Xu Mingcan; Cheung, Eugene Y.; Platts, James A.; Harris, Kenneth D.M.; Constable, Edwin C.; Housecroft, Catherine E.

    2006-01-01

    Structural properties of 2,4,6-trimethoxybenzaldehyde, 2,4,6-trimethoxybenzyl alcohol and 2,4,6-trimethoxyacetophenone have been determined directly from powder X-ray diffraction data, using the direct-space Genetic Algorithm (GA) technique for structure solution followed by Rietveld refinement. Structural similarities and contrasts within this family of materials are elucidated. The work illustrates the value of utilizing information from other sources, including spectroscopic data and computational techniques, as a means of augmenting the structural knowledge established from the powder X-ray diffraction data

  6. by a solid-state metathesis approach

    Indian Academy of Sciences (India)

    Wintec

    Department of Mechanical Engineering,. † ... A solid-state metathesis approach initiated by microwave energy has been successfully applied for ... and chemical properties of synthesized powders are determined by powder X-ray diffraction, ...

  7. Nanostructured hydroxyapatite powders produced by a flame-based technique

    Energy Technology Data Exchange (ETDEWEB)

    Trommer, R.M., E-mail: rafael_trommer@yahoo.com.br [Ceramic Materials Laboratory, av. Osvaldo Aranha 99/705, 90035190, Porto Alegre, RS (Brazil); Santos, L.A. [Biomaterials Laboratory, av. Bento Goncalves 9500, Campus do Vale Setor IV Predio 74 Sala 123, 91501970, Porto Alegre, RS (Brazil); Bergmann, C.P. [Ceramic Materials Laboratory, av. Osvaldo Aranha 99/705, 90035190, Porto Alegre, RS (Brazil)

    2009-08-01

    In this work we reported the production of hydroxyapatite (HA) powder, one of the most studied calcium phosphates in the bioceramics field, using a cost-effective apparatus, composed by three major components: the atomization device, the pilot and main flames and finally the powder collector system. Calcium acetate and ammonium phosphate, diluted in ethanol and water, were used as salts in the precursor solution. The Ca/P molar ratio in the precursor solution was 1.65, equivalent to biological hydroxyapatite. After its production and collection, HA powder was calcined at 600 deg. C for 2 h. X-ray diffraction analysis pointed to the formation of crystalline hydroxyapatite powders. Carbonate was identified in the powders by Fourier-transform infrared (FTIR) spectroscopy. Scanning electronic microscopy (SEM) showed that the powders were composed of spherical primary particles and secondary aggregates, with the morphology unchanged after calcination. By transmission electronic microscopy (TEM), it was observed that the crystallite size of the primary particles was 24.8 {+-} 5.8 nm, for the calcined powder. The specific surface area was 15.03 {+-} 6.4 and 26.50 {+-} 7.6 m{sup 2}/g, for the as-synthetized and calcined powder respectively.

  8. Preparing a suitable solid target for generating copper-64 using a biomedical cyclotron

    International Nuclear Information System (INIS)

    Jeffery, Charmaine; Cryer, David; Chan, Sun; Asad, Ali; Fleming, Adam; Hubble, Lee

    2009-01-01

    Full text: Radiopharmaceutical research at SCGH has been advancing in the production of copper-64, a promising radionuclide for PET. Production has commenced using a self-manufactured solid target with alBA 18/9 cyclotron, via the 6 4 N i(p,n) 6 4 C u reaction pathway. One aspect of the project has been the preparation of a suitable solid target for irradiation. The chosen production method involves electrolysis of a solution of nickel ammonium sulphate in a self-manufactured electroplating cell, using a gold disk as the cathode for deposition of nickel metal. Various defects in the nickel surface were observed ∼ including cracks, formation of pits and inclusions, loose powder-like plating, lack of metallic lustre and lifting of the plated nickel. Several variables were investigated - including adjustment of the anode-cathode distance, anode composition, solution composition, and voltage/current settings. A suitable method that produced acceptable plating was achieved - the surface was then analysed to ensure there were no underlying defects. Three analytical techniques were used - AFM, SEM and optical profilometry. Two disks were ana lysed (approx. 3 0 m g of natNi plated). The depth of plating, evenness of plating and surface uniformity were of particular interest. Conclusions: Analysis revealed that the surface was not completely uniform (thinner at edges, 'well' in centre, with inclusions on the surface more prevalent than pitting), and required more nickel to be plated to reach optimum thickness. Final target specifications are still being optimised, however test irradiation of a solid target ( 3 1 n ickel, I l0 m g) proved that a sound solid target can be reliably produced and irradiated.

  9. Analysis of the influence of two different milling processes in the properties of precursor powder and [Beta]-TCP cement

    International Nuclear Information System (INIS)

    Cardoso, H.A.I.; Pereira, C.H.R.; Zavaglia, C.A.C.; Motisuke, M.

    2011-01-01

    There are several characteristics that put calcium phosphate cements in evidence, like its bioactivity and in vivo resorption. The influence of two milling processes in the morphological properties of the [beta]-tricalcium phosphate powder, [beta]-TCP, and in the mechanical properties of the cement were analyzed. The powder was obtained by solid state reaction of CaCO_3 and CaHPO_4 at 1050 ° C. It showed high phase purity and absence of toxic elements. The powder was processed in ball mill (A) and high-energy vibratory mill (B), with posterior analyze by SEM and particle size distribution. The powders showed different average and distribution of grain size. Finally, the cement obtained by the process (B) showed values of axial tensile strength significantly greater than that obtained by the process (A). The milling process (B) is much more efficient than the process (A). (author)

  10. Optimization of LiCoO2 powder extraction process from cathodes of lithium-ion batteries by chemical dissolution

    Directory of Open Access Journals (Sweden)

    Lucas Evangelista Sita

    2015-05-01

    Full Text Available A chemical process has been applied to extract LiCoO2 powder from cathodes of spent lithium-ion batteries by dissolution of the binder that agglutinate the powder particle each other as well to the Al collector surface. As solvents dimethylformamide (DMF and N-methyilpirrolidone (NMP were employed and the variables, cathode area, solution temperature, ultrasound bath power and solution stirring were chosen to optimize the extraction process. NMP solutions presented best results for powder extraction than DMF solutions. At 100 oC and under mechanical stirring or low power ultrasound bath NMP solution optimizes the binder dissolution. Powder extractions under DMF solutions are slow and an increase in the powder extraction efficiency was observed for crushed cathodes on solutions under ultrasound bath, at medium power. Filtration processes can separate the decanted LiCoO2 powder extracted upon DMF dissolution while the powder in suspension in the NMP solutions is separated by centrifugation techniques.

  11. Electrochemical performance of solid oxide fuel cells having electrolytes made by suspension and solution precursor plasma spraying

    Science.gov (United States)

    Marr, M.; Kuhn, J.; Metcalfe, C.; Harris, J.; Kesler, O.

    2014-01-01

    Yttria-stabilized zirconia (YSZ) electrolytes were deposited by suspension plasma spraying (SPS) and solution precursor plasma spraying (SPPS). The electrolytes were evaluated for permeability, microstructure, and electrochemical performance. With SPS, three different suspensions were tested to explore the influence of powder size distribution and liquid properties. Electrolytes made from suspensions of a powder with d50 = 2.6 μm were more gas-tight than those made from suspensions of a powder with d50 = 0.6 μm. A peak open circuit voltage of 1.00 V was measured at 750 °C with a cell with an electrolyte made from a suspension of d50 = 2.6 μm powder. The use of a flammable suspension liquid was beneficial for improving electrolyte conductivity when using lower energy plasmas, but the choice of liquid was less important when using higher energy plasmas. With SPPS, peak electrolyte conductivities were comparable to the peak conductivities of the SPS electrolytes. However, leak rates through the SPPS electrolytes were higher than those through the electrolytes made from suspensions of d50 = 2.6 μm powder. The electrochemical test data on SPPS electrolytes are the first reported in the literature.

  12. Sysnthesis of powders by freeze-drying

    International Nuclear Information System (INIS)

    Johnson, S.M.; Gusman, M.I.; Hildenbrand, D.L.

    1988-01-01

    The freeze-drying method of synthesizing powders of the superconducting oxide YBa 2 Cu 3 O 7 - δ is described. This process produces homogeneous, submicron powders of high purity. The effects of salt selection, solution concentration and pH on the process are described. Some evaluation of the sintering behavior and the effects on critical current density are included

  13. Nanocrystalline spinel ferrite (MFe2O4, M = Ni, Co, Mn, Mg, Zn) powders prepared by a simple aloe vera plant-extracted solution hydrothermal route

    International Nuclear Information System (INIS)

    Phumying, Santi; Labuayai, Sarawuth; Swatsitang, Ekaphan; Amornkitbamrung, Vittaya; Maensiri, Santi

    2013-01-01

    Graphical abstract: This figure shows the specific magnetization curves of the as-prepared MFe 2 O 4 (M = Ni, Co, Mn, Mg, Zn) powders obtained from room temperature VSM measurement. These curves are typical for a soft magnetic material and indicate hysteresis ferromagnetism in the field ranges of ±500 Oe, ±1000 Oe, and ±2000 Oe for the CoFe 2 O 4 , MgFe 2 O 4 and MnFe 2 O 4 respectively, whereas the samples of NiFe 2 O 4 and ZnFe 2 O 4 show a superparamagnetic behavior. Highlights: ► Nanocrystalline MFe 2 O 4 powders were synthesized by a novel hydrothermal method. ► Metal acetylacetonates and aloe vera plant-extracted solution are used. ► This biosynthetic route is very simple and provides high-yield oxide nanomaterials. ► XRD and TEM results indicate that the prepared samples have only spinel structure. ► The maximum M s of 68.9 emu/g at 10 kOe were observed for the samples of MnFe 2 O 4 . - Abstract: Nanocrystalline spinel ferrite MFe 2 O 4 (M = Ni, Co, Mn, Mg, Zn) powders were synthesized by a novel hydrothermal method using Fe(acac) 3 , M(acac) 3 (M = Ni, Co, Mn, Mg, Zn) and aloe vera plant extracted solution. The X-ray diffraction and selected-area electron diffraction results indicate that the synthesized nanocrystalline have only spinel structure without the presence of other phase impurities. The crystal structure and morphology of the spinel ferrite powders, as revealed by TEM, show that the NiFe 2 O 4 and CoFe 2 O 4 samples contain nanoparticles, whereas the MnFe 2 O 4 and MgFe 2 O 4 samples consist of many nanoplatelets and nanoparticles. Interestingly, the ZnFe 2 O 4 sample contains plate-like structure of networked nanocrystalline particles. Room temperature magnetization results show a ferromagnetic behavior of the CoFe 2 O 4 , MnFe 2 O 4 and MgFe 2 O 4 samples, whereas the samples of NiFe 2 O 4 and ZnFe 2 O 4 exhibit a superparamagnetic behavior

  14. Radiation induced homogeneous precipitation in undersaturated solid-solutions

    International Nuclear Information System (INIS)

    Cauvin, R.; Martin, G.

    1979-01-01

    A TEM study of 1 MeV electron irradiated Al 1.9 at% Zn solid solution shows that Zn precipitates form, under irradiation at temperatures well above the Zn solvus temperature outside irradiation. The corresponding upward shift of this temperature is dose rate dependent. This new example of radiation-induced precipitation exhibits unexpected features, which are not accounted for by the available models: (1) no correlation exists between the location of the precipitates and that of the point defects sinks; (2) the precipitation of incoherent β-phase with atomic volume smaller than that of the matrix, and of coherent G.P. zones both occurs; (3) the size of the coherent β precipitates saturates at large dose. A general mechanism for solute concentration fluctuations under irradiation is proposed which qualitatively accounts for the formation of coherent G.P. zones and for the nucleation of solute clusters with more complex structures. A reanalysis of Russell's model (1977) for the growth of incoherent precipitates shows that it may qualitatively account for the observed behavior of the β phase precipitates. (Auth.)

  15. Solid-state transformation of Fe-rich intermetallic phases in Al–5.0Cu–0.6Mn squeeze cast alloy with variable Fe contents during solution heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Bo [School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640 (China); School of Mechanical Engineering, Gui Zhou University, Guiyang 550000 (China); Zhang, Weiwen, E-mail: mewzhang@scut.edu.cn [School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640 (China); Zhao, Yuliang; Li, Yuanyuan [School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640 (China)

    2015-06-15

    The Al–5.0 wt.% Cu–0.6 wt.% Mn alloys with a variable Fe content were prepared by squeeze casting. Optical microscopy (OM), Deep etching technique, scanning electron microscopy(SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to examine the solid-state transformation of Fe-rich intermetallics during the solution heat treatment. The results showed that the Chinese script-like α-Fe, Al{sub 6}(FeMn) and needle-like Al{sub 3}(FeMn) phases transform to a new Cu-rich β-Fe (Al{sub 7}Cu{sub 2}(FeMn)) phase during solution heat treatment. The possible reaction and overall transformation kinetics of the solid-state phase transformation for the Fe-rich intermetallics were investigated. - Graphical abstract: Display Omitted - Highlights: • The α-Fe, Al{sub 6}(FeMn) and Al{sub 3}(FeMn) phases change to the β-Fe phases. • Possible reactions of Fe phases during solution heat treatment are discussed. • The overall fractional transformation rate follows an Avrami curve.

  16. Liquid-like thermal conduction in intercalated layered crystalline solids

    Science.gov (United States)

    Li, B.; Wang, H.; Kawakita, Y.; Zhang, Q.; Feygenson, M.; Yu, H. L.; Wu, D.; Ohara, K.; Kikuchi, T.; Shibata, K.; Yamada, T.; Ning, X. K.; Chen, Y.; He, J. Q.; Vaknin, D.; Wu, R. Q.; Nakajima, K.; Kanatzidis, M. G.

    2018-03-01

    As a generic property, all substances transfer heat through microscopic collisions of constituent particles1. A solid conducts heat through both transverse and longitudinal acoustic phonons, but a liquid employs only longitudinal vibrations2,3. As a result, a solid is usually thermally more conductive than a liquid. In canonical viewpoints, such a difference also serves as the dynamic signature distinguishing a solid from a liquid. Here, we report liquid-like thermal conduction observed in the crystalline AgCrSe2. The transverse acoustic phonons are completely suppressed by the ultrafast dynamic disorder while the longitudinal acoustic phonons are strongly scattered but survive, and are thus responsible for the intrinsically ultralow thermal conductivity. This scenario is applicable to a wide variety of layered compounds with heavy intercalants in the van der Waals gaps, manifesting a broad implication on suppressing thermal conduction. These microscopic insights might reshape the fundamental understanding on thermal transport properties of matter and open up a general opportunity to optimize performances of thermoelectrics.

  17. Uranothorite solid solutions: From synthesis to dissolution

    International Nuclear Information System (INIS)

    Costin, Dan-Tiberiu

    2012-01-01

    USiO 4 coffinite appears as one of the potential phases formed in the back-end of the alteration of spent fuel, in reducing storage conditions. A study aiming to assess the thermodynamic data associated with coffinite through an approach based on the preparation of Th 1-x U x SiO 4 uranothorite solid solutions was then developed during this work. First, the preparation of uranothorite samples was successfully undertaken in hydrothermal conditions. However, the poly-phased samples systematically formed for x ≥ 0,2 underlined the kinetic hindering linked with the preparation of uranium-enriched samples, including coffinite end-member. Nevertheless, the characterization of the various samples led to confirm the formation of an ideal solid solution and allowed the constitution of a spectroscopic database. The purification of the samples was then performed by the means of different protocols based on physical (dispersion-centrifugation) or chemical (selective dissolution of secondary phases) methods. This latter led to a complete of the impurities (Th 1-y U y O 2 mixed oxide and amorphous silica) through successive washing steps in acid then basic media. Finally, dissolution experiments were undertaken on uranothorite samples (0 ≤ xexp. ≤ 0,5) and allowed pointing out the influence of composition, pH and temperature on the normalized dissolution rate of the compounds. Also, the associated thermodynamic data, such as activation energy, indicate that the reaction is controlled by surface reactions. Once the equilibrium is reached, the analogous solubility constants were determined for each composition studied, then allowing the extrapolation to coffinite value. It was then finally possible to conclude on the inversion of coffinitisation reaction with temperature. (author) [fr

  18. Discovery of a thermally persistent h.c.p. solid-solution phase in the Ni-W system

    International Nuclear Information System (INIS)

    Kurz, S. J. B.; Leineweber, A.; Maisel, S. B.; Höfler, M.; Müller, S.; Mittemeijer, E. J.

    2014-01-01

    Although the accepted Ni-W phase diagram does not reveal the existence of h.c.p.-based phases, h.c.p.-like stacking sequences were observed in magnetron-co-sputtered Ni-W thin films at W contents of 20 to 25 at. %, by using transmission electron microscopy and X-ray diffraction. The occurrence of this h.c.p.-like solid-solution phase could be rationalized by first-principles calculations, showing that the vicinity of the system's ground-state line is populated with metastable h.c.p.-based superstructures in the intermediate concentration range from 20 to 50 at. % W. The h.c.p.-like stacking in Ni-W films was observed to be thermally persistent, up to temperatures as high as at least 850 K, as evidenced by extensive X-ray diffraction analyses on specimens before and after annealing treatments. The tendency of Ni-W for excessive planar faulting is discussed in the light of these new findings

  19. The stoichiometry of synthetic alunite as a function of hydrothermal aging investigated by solid-state NMR spectroscopy, powder X-ray diffraction and infrared spectroscopy

    DEFF Research Database (Denmark)

    Grube, Elisabeth; Nielsen, Ulla Gro

    2015-01-01

    The stoichiometry of a series of synthetic alunite (nominally KAl3(SO4)2(OH)6) samples prepared by hydrothermal methods as a function of reaction time (1 – 31 days) has been investigated by powder X-ray diffraction, Fourier transform infrared spectroscopy as well as solid-state 1H and 27Al magic...... of potassium defects present, from 17.261(1) to 17.324(5) Å. Solid-state 27Al MAS NMR revealed a decrease in the defect concentration as a function of time and showed the presence of 7-10 % impurities in the samples....

  20. Hygroscopic behavior of lyophilized acerola pulp powder

    Directory of Open Access Journals (Sweden)

    Luciana C. Ribeiro

    2016-03-01

    Full Text Available ABSTRACT Powder products are characterized by their practicality and long life. However, fruit powders have high hygroscopicity and tend to agglomerate due to its hydrophilic nature. The isotherms of equilibrium moisture content apply to the study of dehydrated food preservation potential. Acerola is a nutritionally rich fruit, with great economic and industrial potential. The objective of this study was to analyse acerola powder adsorption isotherms obtained by lyophilization and characterize the powder obtained from lyophilized acerola pulp. Analysis of hygroscopicity, solubility and degree of caking were performed. Isotherms were represented by the mathematical models of GAB, BET, Henderson and Oswin, at temperatures of 25, 35 and 45 °C. According to the results, the obtained powder showed hygroscopicity of 5.96 g of absorbed water 100g-1 of solids, solubility of 95.08% and caking of 14.12%. The BET model showed the best fit to the adsorption isotherms of the acerola pulp powder obtained by lyophilization. The obtained isotherm was of type III, with a "J" shape. There was an inversion of the effect of temperature on the isotherms of acerola powders.

  1. State of atoms and interatomic interactions in complex perovskite-like oxides. Communication XVIII. Magnetic dilution in the LaCrO3-LaGaO3 system

    International Nuclear Information System (INIS)

    Chezhina, N.V.; Zolotukhina, N.V.; Bodritskaya, Eh.V.

    2005-01-01

    Solid solutions LaCr x Ga 1-x O 3 (0.01 ≤ x ≤ 0.10) were synthesized using the ceramic technique and characterized by X-ray powder diffraction and chemical analysis. Magnetic susceptibility of dilute solid solutions of lanthanum chromate in lanthanum gallate was studied in the temperature range 77-400 K. The calculated antiferromagnetic exchange parameter and distribution of chromium atoms over the diamagnetic matrix gave evidence for enhanced chromium aggregation and weakened magnetic exchange in lanthanum gallate compared to lanthanum aluminate [ru

  2. Thorium-d-metals compounds and solid solutions

    International Nuclear Information System (INIS)

    Chachkhiani, Z.B.; Chechernikov, V.I.; Chachkhiani, L.G.

    1986-01-01

    Thorium compounds with Fe, Co, Ni dependence of their magnetic properties on temperature, pressure and concentration of the second element are considered. Anomalous magnetic behaviour of alloys in the Th-Fe system is noted. Special attention is paid to compounds with CaCu 5 type hexagonal structure and their solid solutions. Th-Co-Ni specimens containing up to 25% Ni are ferromagnetics and the rest are paramagnetics. Specimens with 60% cobalt content do not display ferromagnetic properties up to 4.2 K. Hydrides of Th 7 M 3 H 30 type (M - Fe, Co, Ni) are also considered. Highly hydrogenized specimens (under high pressure) appear to be stronger ferromagnetics

  3. Interactions between lanthanum gallate based solid electrolyte and ceria

    Energy Technology Data Exchange (ETDEWEB)

    Hrovat, M.; Ahmad-Khanlou, A.; Samardzija, Z.; Holc, J.

    1999-10-01

    Possible interactions between La{sub 0.9}Sr{sub 0.1}Ga{sub 0.8}Mg{sub 0.2}O{sub 2.85} and Gd{sub 2}O{sub 3}-doped CeO{sub 2} (solid electrolyte and anode binding materials, respectively, for solid oxide fuel cells (SOFC)) at 1,300 C were studied with diffusion couples and fired powder mixtures. The SrLaGa{sub 3}O{sub 7} compound was detected and its formation was attributed to the diffusion of La{sub 2}O{sub 3} from La{sub 0.9}Sr{sub 0.1}Ga{sub 0.8}Mg{sub 0.2}O{sub 2.85} into Ce{sub 1{minus}x}La{sub x}O{sub 2{minus}x/2} solid solution. As the resistivity of SrLaGa{sub 3}O{sub 7} is rather high, around 1 M{center_dot}ohm at 800 C, its presence in the solid electrolyte/anode interface could significantly increase the internal resistivity of an SOFC.

  4. Method of processing radioactive solid wastes

    International Nuclear Information System (INIS)

    Ootaka, Hisashi; Aizu, Tadashi.

    1980-01-01

    Purpose: To improve the volume-reducing effect for the radioactive solids wastes by freezing and then pulverizing them. Method: Miscellaneous radioactive solid wastes produced from a nuclear power plant and packed in vinyl resin bags are filled in a drum can and nitrogen gas at low temperature (lower than 0 0 C) from a cylinder previously prepared by filling liquid nitrogen (at 15kg/cm 2 , -196 0 C) to freeze the radioactive solid wastes. Thereafter, a hydraulic press is inserted into the drum can to compress and pulverize the thus freezed miscellaneous radioactive solid wastes into powder. The powder thus formed does not expand even after removing the hydraulic press from the drum can, whereby the volume reduction of the radioactive solid wastes can be carried out effectively. (Horiuchi, T.)

  5. Newton-like methods for Navier-Stokes solution

    Science.gov (United States)

    Qin, N.; Xu, X.; Richards, B. E.

    1992-12-01

    The paper reports on Newton-like methods called SFDN-alpha-GMRES and SQN-alpha-GMRES methods that have been devised and proven as powerful schemes for large nonlinear problems typical of viscous compressible Navier-Stokes solutions. They can be applied using a partially converged solution from a conventional explicit or approximate implicit method. Developments have included the efficient parallelization of the schemes on a distributed memory parallel computer. The methods are illustrated using a RISC workstation and a transputer parallel system respectively to solve a hypersonic vortical flow.

  6. On the rheology of dilative granular media: Bridging solid- and fluid-like behavior

    Science.gov (United States)

    Andrade, José E.; Chen, Qiushi; Le, Phong H.; Avila, Carlos F.; Matthew Evans, T.

    2012-06-01

    A new rate-dependent plasticity model for dilative granular media is presented, aiming to bridge the seemingly disparate solid- and fluid-like behavioral regimes. Up to date, solid-like behavior is typically tackled with rate-independent plasticity models emanating from Mohr-Coulomb and Critical State plasticity theory. On the other hand, the fluid-like behavior of granular media is typically treated using constitutive theories amenable to viscous flow, e.g., Bingham fluid. In our proposed model, the material strength is composed of a dilation part and a rate-dependent residual strength. The dilatancy strength plays a key role during solid-like behavior but vanishes in the fluid-like regime. The residual strength, which in a classical plasticity model is considered constant and rate-independent, is postulated to evolve with strain rate. The main appeal of the model is its simplicity and its ability to reconcile the classic plasticity and rheology camps. The applicability and capability of the model are demonstrated by numerical simulation of granular flow problems, as well as a classical shear banding problem, where the performance of the continuum model is compared to discrete particle simulations and physical experiment. These results shed much-needed light onto the mechanics and physics of granular media at various shear rates.

  7. phase formation and thermal stability of fcc (fluorite) Ce1-xTbxO2-d solid solutions

    NARCIS (Netherlands)

    de Vries, Karel Jan; de Vries, K.J.; Meng, G.Y.

    1998-01-01

    Ce1−xTbxO2−δ solid solutions (x = 0.3, 0.4, and 0.5) were synthesized by a coprecipitation method, using ammonia. The formation process of the solid solutions was studied as a function of temperature up to 1200°C by X-ray diffraction, thermogravimetric analysis, and differential scanning

  8. Raman scattering quantitative analysis of the anion chemical composition in kesterite Cu{sub 2}ZnSn(S{sub x}Se{sub 1−x}){sub 4} solid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Dimitrievska, Mirjana, E-mail: mdimitrievska@irec.cat [Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1 2pl., 08930 Sant Adrià del Besòs, Barcelona (Spain); Gurieva, Galina [Helmholtz Centre Berlin for Materials and Energy, Department Crystallography, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Xie, Haibing; Carrete, Alex [Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1 2pl., 08930 Sant Adrià del Besòs, Barcelona (Spain); Cabot, Andreu [Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1 2pl., 08930 Sant Adrià del Besòs, Barcelona (Spain); Institució Catalana de Recerca i Estudis Avançats – ICREA, Passeig Lluís Companys 23, 08010 Barcelona (Spain); Saucedo, Edgardo [Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1 2pl., 08930 Sant Adrià del Besòs, Barcelona (Spain); Pérez-Rodríguez, Alejandro [Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1 2pl., 08930 Sant Adrià del Besòs, Barcelona (Spain); IN" 2UB, Departament d’Electrònica, Universitat de Barcelona, C. Martí i Franquès 1, 08028 Barcelona (Spain); and others

    2015-04-15

    Highlights: • An optical method for the quantitative measurement of [S]/([S] + [Se]) in CZTSSe is presented. • It is based on Raman spectroscopy and covers whole S–Se range of compositions. • The proposed method is independent of crystal quality, experimental conditions and type of material. • The validity of the technique is proven by comparison with independent composition measurements (XRD and EQE). • Test of the method on the data published in the literature has given satisfactory results. - Abstract: A simple and non destructive optical methodology for the quantitative measurement of [S]/([S] + [Se]) anion composition in kesterite Cu{sub 2}ZnSn(S{sub x}Se{sub 1−x}){sub 4} (CZTSSe) solid solutions by means of Raman spectroscopy in the whole S–Se range of compositions has been developed. This methodology is based on the dependence of the integral intensity ratio of Raman bands sensitive to anion vibrations with the [S]/([S] + [Se]) composition of the kesterite solid solutions. The calibration of the parameters used in this analysis involved the synthesis of a set of CZTSSe powders by solid state reaction method, spanning the range from pure Cu{sub 2}ZnSnS{sub 4} to pure Cu{sub 2}ZnSnSe{sub 4}. The validity of the methodology has been tested on different sets of independent samples, including also non-stoichiometric device grade CZTSSe layers with different compositions and films that were synthesized by solution based processes with different crystalline quality. In all cases, the comparison of the results obtained from the analysis of the intensity of the Raman bands with independent composition measurements performed by different techniques as X-ray diffraction and external quantum efficiency has confirmed the satisfactory performance of the developed methodology for the quantitative analysis of these compounds, independently on the crystal quality or the method of synthesis. Further strong support on the methodology performance has been

  9. Effect of Heat Treatment on the Lithium Ion Conduction of the LiBH4–LiI Solid Solution

    DEFF Research Database (Denmark)

    Sveinbjörnsson, Dadi Þorsteinn; Mýrdal, Jón Steinar Garðarsson; Blanchard, Didier

    2013-01-01

    The LiBH4–LiI solid solution is a good Li+ conductor and a promising crystalline electrolyte for all-solid-state lithium based batteries. The focus of the present work is on the effect of heat treatment on the Li+ conduction. Solid solutions with a LiI content of 6.25–50% were synthesized by high...

  10. Joining of parts via magnetic heating of metal aluminum powders

    Science.gov (United States)

    Baker, Ian

    2013-05-21

    A method of joining at least two parts includes steps of dispersing a joining material comprising a multi-phase magnetic metal-aluminum powder at an interface between the at least two parts to be joined and applying an alternating magnetic field (AMF). The AMF has a magnetic field strength and frequency suitable for inducing magnetic hysteresis losses in the metal-aluminum powder and is applied for a period that raises temperature of the metal-aluminum powder to an exothermic transformation temperature. At the exothermic transformation temperature, the metal-aluminum powder melts and resolidifies as a metal aluminide solid having a non-magnetic configuration.

  11. Production of nanocrystalline metal powders via combustion reaction synthesis

    Science.gov (United States)

    Frye, John G.; Weil, Kenneth Scott; Lavender, Curt A.; Kim, Jin Yong

    2017-10-31

    Nanocrystalline metal powders comprising tungsten, molybdenum, rhenium and/or niobium can be synthesized using a combustion reaction. Methods for synthesizing the nanocrystalline metal powders are characterized by forming a combustion synthesis solution by dissolving in water an oxidizer, a fuel, and a base-soluble, ammonium precursor of tungsten, molybdenum, rhenium, or niobium in amounts that yield a stoichiometric burn when combusted. The combustion synthesis solution is then heated to a temperature sufficient to substantially remove water and to initiate a self-sustaining combustion reaction. The resulting powder can be subsequently reduced to metal form by heating in a reducing gas environment.

  12. Remediation of chromium and copper on water hyacinth (E. crassipes shoot powder

    Directory of Open Access Journals (Sweden)

    M. Sarkar

    2017-06-01

    Full Text Available Tannery effluent characterization and removal efficiency of Chromium (Cr and Copper (Cu on water hyacinth has been observed by filtration process. The effluent was contaminated by deep blue color, acidic pH, higher value of total dissolve solid (TDS, electrical conductivity (EC, chemical oxygen demand (COD and lower value of dissolve oxygen (DO. After filtration, the effluent shows that the permissible limit of investigated metals. Adsorbent capacity of water hyacinth shoot powder for Cr and Cu ion was found to be 99.98% and 99.96% for standard solution (SS and 98.83% and 99.59% for tannery effluent (TE, respectively.

  13. Hygroscopic trend of lyophilized ‘mangaba’ pulp powder

    Directory of Open Access Journals (Sweden)

    Juliana Conegero

    Full Text Available ABSTRACT Mangaba is a widely-consumed fruit in the Northeast of Brazil, which is usually exploited through extractivism. This fruit is rich in various nutrients, especially in vitamin C, with pleasant taste and aroma. The lyophilization process transforms these fruits into amorphous powders, which must be analyzed regarding their properties and hygroscopic trend. Thus, the objective of this study was to characterize and evaluate the physico-chemical properties of adsorption isotherms of the lyophilized ‘mangaba’ pulp powder, with addition of maltodextrin (DE 20. The pH, titratable acidity, soluble solids, ascorbic acid and water activity were analyzed. Regarding the isotherms, the mathematical models of GAB, BET, Oswin, and Henderson were used at temperatures of 25, 30, 35 and 40 °C. The obtained powder presented pH of 3.14, titratable acidity of 1.95 mg of citric acid 100g-1 of powder, soluble solid contents of 99 ºBrix, ascorbic acid content of 55.97 mg 100g-1 and water activity of 0.16. Henderson was the mathematical model that best fitted the data of the adsorption isotherms at the four evaluated temperatures, with average errors ranging from 5.76 to 9.70% and R2 from 0.9974 to 0.9995.

  14. Computationally efficient and quantitatively accurate multiscale simulation of solid-solution strengthening by ab initio calculation

    Czech Academy of Sciences Publication Activity Database

    Ma, D.; Friák, Martin; von Pezold, J.; Raabe, D.; Neugebauer, J.

    2015-01-01

    Roč. 85, FEB (2015), s. 53-66 ISSN 1359-6454 Institutional support: RVO:68081723 Keywords : Solid-solution strengthening * DFT * Peierls–Nabarro model * Ab initio * Al alloys Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 5.058, year: 2015

  15. Concentration of electrolyte reserves of the juvenile african catfish clarias gariepinus (burchell, 1822) exposed to sublethal concentrations of portland cement powder in solution

    International Nuclear Information System (INIS)

    Adamu, M.K.; Francis, O.A.

    2008-01-01

    The study investigated the effect of sublethal concentrations (39.10, 19.55, 9.87 and 0.00 mg/l) of Portland cement powder in solution on the electrolyte reserves (sodium, potassium, calcium, chloride and inorganic phosphorus) in the serum, liver and kidney of the juvenile African catfish Clarias gariepinus after a 15 day exposure period. The basic function of the determined electrolyte reserves in the body lies in controlling fluid distribution, intra and extra cellular acidobasic equilibrium, maintaining osmotic pressure of body fluid and normal neuro-muscular irritability. The result revealed significant (P 0.05) changes in inorganic phosphorus. Sodium, calcium, chloride and inorganic phosphorus and potassium were significantly (P 0.05) different in liver and kidney, respectively. Ipso-facto, the effector organs viz: liver and kidney of teleost species - Clarias gariepinus which are primarily responsible for regulating water and ionic movement between external and internal milieu of fishes are susceptible to deleterious effects of Portland cement powder thus sublethal concentration (39.10 mg/l) of Portland cement powder in solution after a 15 day exposure has been most toxic and debilitating to the test fish. (author)

  16. Local structure of Th1-xMO2 solid solutions (M = U, Pu)

    International Nuclear Information System (INIS)

    Hubert, S.; Heisbourg, G.; Moisy, Ph.; Dacheux, N.; Purans, J.E.

    2004-01-01

    X-ray absorption spectroscopy of Th 1-x U x O 2 and Th 1-x Pu x O 2 solid solutions was carried out on the Th, U L 3 -edges, and Pu L 3 edge to study the local structure environment of actinide mixed oxides. Various compositions of Th 1-x M x O 2 solid solutions have been prepared through the coprecipitation of the mixed oxalates from chloride or nitrate solutions: x = 0.11, 0.24, 0.37, 0.53, 0.67, 0.81, 0.91 and 1 for Th 1-x U x O 2 , and x = 0.13, 0.32, 0.66 and 1 for Th 1-x Pu x O 2 . They were characterized using X- ray diffraction. XRD analysis allowed to confirm that the variation of the lattice parameters varies linearly with the composition between the end members, suggesting that the atomic volume was conserved regardless of the details of the local distortions of the lattice, following the Vegard's law. Extending X-ray absorption fine structure (EXAFS) provides a direct characterization of the local distortions present in solid solutions. We found that opposite to the lattice parameter obtained by XRD, the interatomic distances given by EXAFS do not follow completely to neither the Vegard's law nor the virtual crystal approximation (VCA). However, the average lattice parameter obtained from EXAFS data for the first and the second shells agrees well with the one calculated from XRD data. (authors)

  17. Development of a process for co-conversion of Pu-U nitrate mixed solutions to mixed oxide powder using microwave heating method

    International Nuclear Information System (INIS)

    Koizumi, Masumichi; Ohtsuka, Katsuyuki; Ohshima, Hirofumi; Isagawa, Hiroto; Akiyama, Hideo; Todokoro, Akio; Naruki, Kaoru

    1983-01-01

    For the complete nuclear fuel cycle, the development of a process for the co-conversion of Pu-U nitrate mixed solutions to mixed oxide powder has been performed along the line of non-proliferation policy of nuclear materials. A new co-conversion process using a microwave heating method has been developed and successfully demonstrated with good results using the test unit with a capacity of 2 kg MOX/d. Through the experiments and engineering test operations, several important data have been obtained concerning the feasibility of the test unit, powder characteristics and homogeneity of the product, and impurity pickups during denitration process. The results of these experimental operations show that the co-conversion process using a microwave heating method has many excellent advantages, such as good powder characteristics of the product, good homogeneity of Pu-U oxide, simplicity of the process, minimum liquid waste, no possibility of changing the Pu/U ratio and stable operability of the plant. Since August 1979, plutonium nitrate solution transported from the Tokai Reprocessing Plant has been converted to mixed oxide powder which has the Pu/U ratio = 1. The products have been processed to the ATR ''FUGEN'' reloading fuel. Based on the successful development of the co-conversion process, the microwave heating direct denitration facility with a 10 kg MOX/d capacity has been constructed adjacent to the reprocessing plant. This facility will come into hot operation by the fall of this year. For future development of the microwave heating method, a continuous direct denitration, a vitrification of high active liquid waste and a solidification of the plutonium-contaminated waste are investigated in Power Reactor and Nuclear Fuel Development Corp. (author)

  18. X-ray study of CuGa sub x In sub 1-x Se sub 2 solid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Suri, D.K.; Nagpal, K.C. (National Physical Lab., New Delhi (India). Materials Characterization Div.); Chadha, G.K. (Delhi Univ. (India). Dept. of Physics and Astrophysics)

    1989-12-01

    The semiconducting compound CuGa{sub x}In{sub 1-x}Se{sub 2} crystallizes in the chalcopyrite structure (space group Ianti 42d, Z=4). The X-ray powder data for x=1, 0.75, 0.6, 0.5, 0.4, 0.25 and 0.0 have been collected and it is found that the lattice parameters a and c and their ratio c/a vary linearly with x. Thus the composition of any chalcopyrite in the pseudo-binary system CuGaSe{sub 2} and CuInSe{sub 2} can be obtained from the accurate lattice parameters. The crystallite size determined from the (112) plane is minimum for x=0.50 ({proportional to}1000 A) and away from x=0.50 it increases. A value of u=0.240 (5) has been established for fixing, the Se-atom positions in the CuGa{sub 0.5}In{sub 0.5}Se{sub 2} solid solution. The JCPDS Diffraction File No. for CuInSe{sub 2} is 40-1487 and for CuGa{sub 0.5}In{sub 0.5}Se{sub 2} is 40-1488. (orig.).

  19. Solid solutions of platinum(II) and palladium(II) oxalato-complex salt as precursors of nanoalloys

    Science.gov (United States)

    Zadesenets, A. V.; Asanova, T. I.; Vikulova, E. S.; Filatov, E. Yu.; Plyusnin, P. E.; Baidina, I. A.; Asanov, I. P.; Korenev, S. V.

    2013-03-01

    A solid solution of platinum (II) and palladium (II) oxalato-complex salt, (NH4)2[Pt0.5Pd0.5(C2O4)2]·2H2O, has been synthesized and studied as a precursor for preparing bimetallic PtPd nanoparticles through its thermal decomposition. The smallest homogenous bimetallic PtPd nanoparticles were found to form in hydrogen and helium atmospheres. The annealing temperature and time have low effect on the bimetallic particles size. Comparative analysis of structural and thermal properties of the solid solution and individual Pt, Pd oxalato-complex salts was performed to investigate a mechanism of thermal decomposition of (NH4)2[Pt0.5Pd0.5(C2O4)2]·2H2O. Based on in situ X-ray photoemission spectroscopy investigation it was proposed a mechanism of formation of bimetallic PtPd nanoparticles from the solid-solution oxalato-complex salt during thermal decomposition.

  20. The origin of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution crystals

    Energy Technology Data Exchange (ETDEWEB)

    Li, Fei; Zhang, Shujun; Yang, Tiannan; Xu, Zhuo; Zhang, Nan; Liu, Gang; Wang, Jianjun; Wang, Jianli; Cheng, Zhenxiang; Ye, Zuo-Guang; Luo, Jun; Shrout, Thomas R.; Chen, Long-Qing (Penn); (Xian Jiaotong); (CIW); (Simon); (TRS Techn); (Wollongong)

    2016-12-19

    The discovery of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution single crystals is a breakthrough in ferroelectric materials. A key signature of relaxor-ferroelectric solid solutions is the existence of polar nanoregions, a nanoscale inhomogeneity, that coexist with normal ferroelectric domains. Despite two decades of extensive studies, the contribution of polar nanoregions to the underlying piezoelectric properties of relaxor ferroelectrics has yet to be established. Here we quantitatively characterize the contribution of polar nanoregions to the dielectric/piezoelectric responses of relaxor-ferroelectric crystals using a combination of cryogenic experiments and phase-field simulations. The contribution of polar nanoregions to the room-temperature dielectric and piezoelectric properties is in the range of 50–80%. A mesoscale mechanism is proposed to reveal the origin of the high piezoelectricity in relaxor ferroelectrics, where the polar nanoregions aligned in a ferroelectric matrix can facilitate polarization rotation. This mechanism emphasizes the critical role of local structure on the macroscopic properties of ferroelectric materials.

  1. The origin of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution crystals.

    Science.gov (United States)

    Li, Fei; Zhang, Shujun; Yang, Tiannan; Xu, Zhuo; Zhang, Nan; Liu, Gang; Wang, Jianjun; Wang, Jianli; Cheng, Zhenxiang; Ye, Zuo-Guang; Luo, Jun; Shrout, Thomas R; Chen, Long-Qing

    2016-12-19

    The discovery of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution single crystals is a breakthrough in ferroelectric materials. A key signature of relaxor-ferroelectric solid solutions is the existence of polar nanoregions, a nanoscale inhomogeneity, that coexist with normal ferroelectric domains. Despite two decades of extensive studies, the contribution of polar nanoregions to the underlying piezoelectric properties of relaxor ferroelectrics has yet to be established. Here we quantitatively characterize the contribution of polar nanoregions to the dielectric/piezoelectric responses of relaxor-ferroelectric crystals using a combination of cryogenic experiments and phase-field simulations. The contribution of polar nanoregions to the room-temperature dielectric and piezoelectric properties is in the range of 50-80%. A mesoscale mechanism is proposed to reveal the origin of the high piezoelectricity in relaxor ferroelectrics, where the polar nanoregions aligned in a ferroelectric matrix can facilitate polarization rotation. This mechanism emphasizes the critical role of local structure on the macroscopic properties of ferroelectric materials.

  2. Alloying Solid Solution Strengthening of Fe-Ga Alloys: A First-Principle Study

    National Research Council Canada - National Science Library

    Chen, Kuiying; Cheng, Leon M

    2006-01-01

    ... and Co in cubic solid solution of Fe-Ga alloys. Mayer bond order "BO" values were used to evaluate the atomic bond strengths in the alloys, and were then used to assess the alloying strengthening characteristics...

  3. Alloying and microstructural changes in platinum–titanium milled and annealed powders

    International Nuclear Information System (INIS)

    Maweja, Kasonde; Phasha, M.J.; Yamabe-Mitarai, Y.

    2012-01-01

    Graphical abstract: (a) SE-SEM micrographs of PtTi martensite formed in powder milled for short time annealed at 1500 °C and quenched in helium gas flow (b) BSE-SEM of structure formed after slow cooling. Highlights: ► A disordered metastable FCC Pt(Ti) solid solution was formed after longer milling period. ► HCP Ti crystals were first deformed and then the atoms were dissolved in strained FCC Pt lattices. ► Longer milling time suppressed the occurrence of martensitic transformation after annealing. ► Martensite phase was formed in products that went through a short milling time then annealed and quenched. ► The width of the martensite features formed was smaller at higher cooling rates. - Abstract: Equiatomic platinum–titanium powder mixtures were processed by high energy ball milling under argon atmosphere and sintered under vacuum. Evolution of the crystal structures and microstructures of the products formed were investigated by XRD and SEM techniques, respectively. The HCP crystals of Ti were first deformed and then a disordered metastable FCC Pt(Ti) solid solution was formed during milling due to semi-coherency of FCC lattices. A nanostructured Pt(Ti) product was formed after long milling time, which contained 44–47 at.% Ti and 53–56 at.% Pt. An ordered PtTi intermetallic was formed by annealing the metastable Pt(Ti) at temperature above 1300 °C. The crystal structure and microstructure of the TiPt phase depended on the milling time, annealing temperature and the cooling rate. The B19 PtTi plate martensite was formed after annealing at 1500 °C and quenching at a cooling rate of 23 °C/min to 200 °C/min for short time milled products. The width of martensite features was smaller at high cooling rate. In PtTi products milled for longer time, no martensitic transformation was observed on cooling the annealed samples. Small amounts of Pt 5 Ti 3 were formed in the powders milled for 16 h or more, followed by annealing at 1500 °C and furnace

  4. STRUCTURE, PHASE COMPOSITION AND PROPERTIES OF GAS-THERMAL COVERINGS OF MECHANICALLY ALLOYED THERMOREACTING COMPOSITE POWDERS OF NICKEL-ALUMINIUM SYSTEM

    Directory of Open Access Journals (Sweden)

    F. G. Lovshenko

    2015-01-01

    Full Text Available The presented results show that coverings from mechanically alloyed thermoreacting powders of system «nickel–aluminum» are nonequilibrium multiphase systems which basis represents solid solution of aluminum in nickel. It has the microcrystalline type of structure which is characterized by an advanced surface of borders of the grains and subgrains stabilized by nanodimensional inclusions of oxides and alyuminid. These coverings surpass by 1,2–1,6 times analogs in durability, hardness and wear resistance.

  5. Equilibrium, Kinetic and Thermodynamic Study of Removal of Eosin Yellow from Aqueous Solution Using Teak Leaf Litter Powder.

    Science.gov (United States)

    Oyelude, Emmanuel O; Awudza, Johannes A M; Twumasi, Sylvester K

    2017-09-22

    Low-cost teak leaf litter powder (TLLP) was prepared as possible substitute for activated carbon. The feasibility of using the adsorbent to remove eosin yellow (EY) dye from aqueous solution was investigated through equilibrium adsorption, kinetic and thermodynamic studies. The removal of dye from aqueous solution was feasible but influenced by temperature, pH, adsorbent dosage and contact time. Variation in the initial concentration of dye did not influence the equilibrium contact time. Optimum adsorption of dye occurred at low adsorbent dosages, alkaline pH and high temperatures. Langmuir isotherm model best fit the equilibrium adsorption data and the maximum monolayer capacity of the adsorbent was 31.64 mg g -1 at 303 K. The adsorption process was best described by pseudo-second order kinetic model at 303 K. Boundary layer diffusion played a key role in the adsorption process. The mechanism of uptake of EY by TLLP was controlled by both liquid film diffusion and intraparticle diffusion. The values of mean adsorption free energy, E (7.91 kJ mol -1 ), and standard enthalpy, ΔH° (+13.34 kJ mol -1 ), suggest physical adsorption. The adsorption process was endothermic and spontaneous. Teak leaf litter powder is a promising low-cost adsorbent for treating wastewaters containing eosin yellow.

  6. Ti2Al(C, N) Solid Solution Reinforcing TiAl-Based Composites: Evolution of a Core-Shell Structure, Interfaces, and Mechanical Properties.

    Science.gov (United States)

    Song, Xiaojie; Cui, Hongzhi; Han, Ye; Ding, Lei; Song, Qiang

    2018-05-16

    In this work, Ti 2 Al(C, N) solid solution with lamellar structure-enhanced TiAl matrix composites was synthesized by vacuum arc melting, using bulk g-C 3 N 4 , Ti, and Al powders as raw materials. The phases, microstructures, interfaces, and mechanical properties were investigated. MAX phase of Ti 2 Al(C, N) solid solution with lamellar structure was formed. During the melting process, first, C 3 N 4 reacted with Ti to form Ti(C, N) by Ti + C 3 N 4 → Ti(C, N). Then Ti 2 Al(C, N) was formed by a peritectic reaction of TiAl(l) + Ti(C, N)(s) → Ti 2 Al(C, N). C 3 N 4 is the single reactant that provides C and N simultaneously to final product of Ti 2 Al(C, N). The interfaces of TiAl//Ti 2 Al(C, N) and Ti 2 Al(C, N)//Ti(C, N) display perfect orientation relationships with low misfit values. The microhardness, compressive strength, and strain of best-performing TiAl-10 mol % Ti 2 Al(C, N) composite were improved by 45%, 55.7%, and 50% compared with the TiAl alloy, respectively. Uniformly distributed Ti 2 Al(C, N) and unreacted Ti(C, N) particles contributed to the grain refinement and reinforcement of the TiAl matrix. Laminated tearing, particle pull-out, and the crack-arresting of Ti 2 Al(C, N) are crucial for the improvement in compressive strength and plasticity of the composites.

  7. Determination of the functional properties of Kappaphycus alvarezii seaweed powder

    International Nuclear Information System (INIS)

    Sjamsiah; Nazaruddin Ramli; Rusli Daik; Mohd Ambar Yarmo

    2013-01-01

    Seaweed Kappaphycus alvarezii powder prepared by spray drying (SD), freeze drying (FD) and sun drying(SND) were determined their functional properties such as swelling capacity (SWC), water holding capacity (WHC), oil holding capacity (OHC), viscosity and gel strength. The study showed that the Kappaphycus alvarezii seaweed powder obtained by FD and SND have the ability to swell to 25 mL/ g and 50 mL/ g respectively, while the SD powder formed a homogeneous solution and it exhibited highly viscous solution (SWC 100 mL/ g). The WHC of SND powder (30.67 g/ g) was higher (p<0.05) than the FD (21.33 g/ g) and SD (4.67 g/ g) powders. The OHC of FD powder (19.81 g/ g) was higher (p<0.05) than the SD (5.11 g/ g) and SND (4.67 g/ g) powders. While the viscosity of the FD, SND and SD powders were 0.22, 0.17 and 0.06 Pa.s respectively. Meanwhile, the gel strength of the SD powder (82.77 gf) was higher (p<0.05) than the FD (57.1 gf) and SND (35.01 gf) powders. These results on determination of functional properties shows that the SD powder had the most potential to be applied as a viscosity modifier in the manufacturing of beverages.(author)

  8. Particle-like solutions of the Einstein-Dirac-Maxwell equations

    Science.gov (United States)

    Finster, Felix; Smoller, Joel; Yau, Shing-Tung

    1999-08-01

    We consider the coupled Einstein-Dirac-Maxwell equations for a static, spherically symmetric system of two fermions in a singlet spinor state. Soliton-like solutions are constructed numerically. The stability and the properties of the ground state solutions are discussed for different values of the electromagnetic coupling constant. We find solutions even when the electromagnetic coupling is so strong that the total interaction is repulsive in the Newtonian limit. Our solutions are regular and well-behaved; this shows that the combined electromagnetic and gravitational self-interaction of the Dirac particles is finite.

  9. Contribution of Lattice Distortion to Solid Solution Strengthening in a Series of Refractory High Entropy Alloys

    Science.gov (United States)

    Chen, H.; Kauffmann, A.; Laube, S.; Choi, I.-C.; Schwaiger, R.; Huang, Y.; Lichtenberg, K.; Müller, F.; Gorr, B.; Christ, H.-J.; Heilmaier, M.

    2018-03-01

    We present an experimental approach for revealing the impact of lattice distortion on solid solution strengthening in a series of body-centered-cubic (bcc) Al-containing, refractory high entropy alloys (HEAs) from the Nb-Mo-Cr-Ti-Al system. By systematically varying the Nb and Cr content, a wide range of atomic size difference as a common measure for the lattice distortion was obtained. Single-phase, bcc solid solutions were achieved by arc melting and homogenization as well as verified by means of scanning electron microscopy and X-ray diffraction. The atomic radii of the alloying elements for determination of atomic size difference were recalculated on the basis of the mean atomic radii in and the chemical compositions of the solid solutions. Microhardness (μH) at room temperature correlates well with the deduced atomic size difference. Nevertheless, the mechanisms of microscopic slip lead to pronounced temperature dependence of mechanical strength. In order to account for this particular feature, we present a combined approach, using μH, nanoindentation, and compression tests. The athermal proportion to the yield stress of the investigated equimolar alloys is revealed. These parameters support the universality of this aforementioned correlation. Hence, the pertinence of lattice distortion for solid solution strengthening in bcc HEAs is proven.

  10. Decomposition features of a supersaturated solid solution in the Mg-3.3 wt. % Yb alloy

    International Nuclear Information System (INIS)

    Dobromyslov, A.V.; Kajgorodova, L.I.; Sukhanov, V.D.; Dobatkina, T.V.

    2007-01-01

    Methods of electron microscopy, hardness measuring and X-ray diffraction analysis are applied to study decomposition kinetics for a supersaturated solid solution in a Mg-3.3 mas. % alloy on aging within a temperature range of 150-225 deg C. The mechanism of supersaturation solid solution decomposition is revealed along with the nature of phases precipitated at various stages of aging: on incomplete and extended aging as well as at maximum hardness. The types of structural constituents responsible for changes of hardness on aging are determined [ru

  11. Solutions of Heat-Like and Wave-Like Equations with Variable Coefficients by Means of the Homotopy Analysis Method

    International Nuclear Information System (INIS)

    Alomari, A. K.; Noorani, M. S. M.; Nazar, R.

    2008-01-01

    We employ the homotopy analysis method (HAM) to obtain approximate analytical solutions to the heat-like and wave-like equations. The HAM contains the auxiliary parameter ħ, which provides a convenient way of controlling the convergence region of series solutions. The analysis is accompanied by several linear and nonlinear heat-like and wave-like equations with initial boundary value problems. The results obtained prove that HAM is very effective and simple with less error than the Adomian decomposition method and the variational iteration method

  12. Phase evolution during early stages of mechanical alloying of Cu–13 wt.% Al powder mixtures in a high-energy ball mill

    International Nuclear Information System (INIS)

    Dudina, Dina V.; Lomovsky, Oleg I.; Valeev, Konstantin R.; Tikhov, Serguey F.; Boldyreva, Natalya N.; Salanov, Aleksey N.; Cherepanova, Svetlana V.; Zaikovskii, Vladimir I.; Andreev, Andrey S.; Lapina, Olga B.; Sadykov, Vladislav A.

    2015-01-01

    Highlights: • Phase formation during early stages of Cu–Al mechanical alloying was studied. • The products of mechanical alloying are of highly non-equilibrium character. • X-ray amorphous phases are present in the products of mechanical alloying. • An Al-rich X-ray amorphous phase is distributed between the crystallites. - Abstract: We report the phase and microstructure evolution of the Cu–13 wt.% Al mixture during treatment in a high-energy planetary ball mill with a particular focus on the early stages of mechanical alloying. Several characterization techniques, including X-ray diffraction phase analysis, nuclear magnetic resonance spectroscopy, differential dissolution, thermal analysis, and electron microscopy/elemental analysis, have been combined to study the evolution of the phase composition of the mechanically alloyed powders and describe the microstructure of the multi-phase products of mechanical alloying at different length scales. The following reaction sequence has been confirmed: Cu + Al → CuAl 2 (+Cu) → Cu 9 Al 4 + (Cu) → Cu(Al). The phase evolution was accompanied by the microstructure changes, the layered structure of the powder agglomerates disappearing with milling time. This scheme is further complicated by the processes of copper oxidation, reduction of copper oxides by metallic aluminum, and by variation of the stoichiometry of Cu(Al) solid solutions with milling time. Substantial amounts of X-ray amorphous phases were detected as well. Differential dissolution technique has revealed that a high content of aluminum in the Cu(Al) solid solution-based powders is due to the presence of Al-rich phases distributed between the Cu(Al) crystallites

  13. optimisation of solid optimisation of solid state fermentation

    African Journals Online (AJOL)

    eobe

    from banana peels via solid state fermentation using Aspergillus niger. ermentation ... [7,8], apple pomace [9], banana peels [4], date palm. [10], carob ... powder, jams, juice, bar, biscuits, wine etc results in ... Yeast extract was taken as nitrogen.

  14. Bone-like hydroxyapatite precipitated from 10×SBF-like solution by microwave irradiation

    International Nuclear Information System (INIS)

    Tolga Demirtaş, T.; Kaynak, Gökçe; Gümüşderelioğlu, Menemşe

    2015-01-01

    Microwave-assisted methods have been frequently used in many processes owing to their numerous advantages such as performing fast, efficient and homogenous processes and reducing side reactions. In view of these benefits, in this study it was purposed to produce bone-like hydroxyapatite (HA) by inducing biomimetic process with microwave-irradiation. This is why, concentrated body fluid (SBF) i.e. 10×SBF-like solution was used and it was precipitated in different microwave powers i.e. 90 W, 360 W, 600 W, and 1200 W and in different exposure times. For comparison, precipitation process was also carried out at room temperature for 6 h and at 80 °C for 1 h. The obtained HA structures were characterized by appropriate instrumental techniques. As a result, microwave-induced precipitation at 600 W for 9 times 30 s was determined as the optimum condition for the production of HA which has similar properties to the cortical bone. At this condition, B-type HA with 9.22% (wt.) carbonate content, 1.61 Ca/P molar ratio and amorphous structure was obtained easily, rapidly and efficiently. So, this is the first time microwave technology has been used to precipitate HA from SBF solution. - Highlights: • Simple, rapid and efficient method was developed to produce bone-like HA. • Microwave radiation and biomimetic approach via 10×SBF-like solution were combined. • Microwave irradiation at 600 W for 9 × 30 s was determined as the optimum condition. • B-type HA (carbonate content: 9.22%; 1.61 Ca/P:1.61; amorph) was produced. • This method may be employed for the effective HA coating of 3D bone scaffolds

  15. Bone-like hydroxyapatite precipitated from 10×SBF-like solution by microwave irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Tolga Demirtaş, T.; Kaynak, Gökçe [Bioengineering Engineering Department, Hacettepe University, 06800 Beytepe, Ankara (Turkey); Gümüşderelioğlu, Menemşe, E-mail: menemse@hacettepe.edu.tr [Bioengineering Engineering Department, Hacettepe University, 06800 Beytepe, Ankara (Turkey); Chemical Engineering Department, Hacettepe University, 06800 Beytepe, Ankara (Turkey)

    2015-04-01

    Microwave-assisted methods have been frequently used in many processes owing to their numerous advantages such as performing fast, efficient and homogenous processes and reducing side reactions. In view of these benefits, in this study it was purposed to produce bone-like hydroxyapatite (HA) by inducing biomimetic process with microwave-irradiation. This is why, concentrated body fluid (SBF) i.e. 10×SBF-like solution was used and it was precipitated in different microwave powers i.e. 90 W, 360 W, 600 W, and 1200 W and in different exposure times. For comparison, precipitation process was also carried out at room temperature for 6 h and at 80 °C for 1 h. The obtained HA structures were characterized by appropriate instrumental techniques. As a result, microwave-induced precipitation at 600 W for 9 times 30 s was determined as the optimum condition for the production of HA which has similar properties to the cortical bone. At this condition, B-type HA with 9.22% (wt.) carbonate content, 1.61 Ca/P molar ratio and amorphous structure was obtained easily, rapidly and efficiently. So, this is the first time microwave technology has been used to precipitate HA from SBF solution. - Highlights: • Simple, rapid and efficient method was developed to produce bone-like HA. • Microwave radiation and biomimetic approach via 10×SBF-like solution were combined. • Microwave irradiation at 600 W for 9 × 30 s was determined as the optimum condition. • B-type HA (carbonate content: 9.22%; 1.61 Ca/P:1.61; amorph) was produced. • This method may be employed for the effective HA coating of 3D bone scaffolds.

  16. POWDER INJECTION MOLDING OF SIC FOR THERMAL MANAGEMENT V

    Directory of Open Access Journals (Sweden)

    Valmikanathan Onbattuvelli

    2012-06-01

    Full Text Available Silicon carbide (SiC exhibits many functional properties that are relevant to applications in electronics, aerospace, defense and automotive industries. However, the successful translation of these properties into final applications lies in the net-shaping of ceramics into fully dense microstructures. Increasing the packing density of the starting powders is one effective route to achieve high sintered density and dimensional precision. The present paper presents an in-depth study on the effects of nanoparticle addition on the powder injection molding process (PIM of SiC powder-polymer mixtures. In particular, bimodal mixtures of nanoscale and sub-micrometer particles are found to have significantly increased powder packing characteristics (solids loading in the powder-polymer mixtures. The influence of nanoparticle addition on the multi-step PIM process is examined. The above results provide new perspectives which could impact a wide range of materials, powder processing techniques and applications.

  17. MANAGEMENT OF SOLID WASTE GENERATED BY THE INTEGRATED STEELWORKS ACTIVITY AND SOLUTIONS TO REDUCE THE ENVIRONMENTAL IMPACT

    Directory of Open Access Journals (Sweden)

    Anişoara CIOCAN

    2010-05-01

    Full Text Available The development of steel industry is subject to solve major problems arising from industry-nature relationship, strictly targeted on pollution control and protection of natural resources and energy. In this paper we discussed about the management of solid waste generated by an integrated steelwork located near a major urban area and the adopted solutions for the reduction of environmental impact. There are summarized technical solutions that are currently applied and were proposed some solutions that can be applied in accordance with the environmental legislations. The new solutions are proposed for integrated management of solid wastes in accordance with: the exact quantification (quantitative, qualitative and the generation sources of emissions and solid wastes; controlled storage; minimization of the wastes and its harmfulness; transformation of the wastes into valuable by-products used directly by the company in a subsequent process, or by external down-stream user.

  18. Structural and magnetic properties of a mechanochemically activated Ti-Fe2O3 solid mixture

    International Nuclear Information System (INIS)

    Cristobal, A.A.; Ramos, C.P.; Bercoff, P.G.; Conconi, S.; Aglietti, E.F.; Botta, P.M.; Lopez, J.M. Porto

    2010-01-01

    The mechanochemical effects on the reactivity and properties of a titanium/hematite powder mixture with molar ratio of 1/2 are investigated. Crystalline-phase structure, composition, hyperfine and magnetic behaviors were analyzed as a function of activation time by means of X-ray diffraction, scanning electron microscopy, Moessbauer spectroscopy and vibrating sample magnetometry. The results showed that at relatively short activation times metallic Ti reduces part of the ferric ions, yielding a complex product formed mainly by a mix of two solid solutions Fe 3-x Ti x O 4 (titanomagnetites), both with very different x values (0 < x < 1). Also metallic iron and superparamagnetic hematite particles were detected by Moessbauer spectroscopy. As the mechanical treatment extends the composition of the reactive mixture changes, prevailing in the end the solid solution with higher x value. In contrast, when these activated samples are thermally treated the fraction of the solid solution which is richer in Ti diminishes. This fact produces a significant variation of the saturation magnetization of the obtained material.

  19. Synthesis of nanosized powders of stabilized zirconia

    International Nuclear Information System (INIS)

    Takodoro, Sandra Kiyoko

    2000-01-01

    Zirconia solid solutions containing 3 mol % Yttria or 12 mol % ceria have been prepared by the coprecipitation technique followed by azeotropic distillation. The aim of this work is the synthesis of tetragonal zirconia polycrystals nanosized powders that sinter at comparatively lower temperatures attaining high densification, and without using any milling procedure. The main results show that: 1- the dopant cation has a strong influence on the crystallization behavior of the precipitates; 2- the used techniques allowed for obtaining high values of specific surface area (∼130 m 2 .g -1 ); 3- the optimization of the synthesis and processing parameters are responsible for obtaining high densification (≥97% of the theoretical value), at lower temperatures (∼1200 deg C) with average grain sizes lower than 500 nm; 4- impedance spectroscopy results show a strong correlation between the electrical resistivity and the microstructure of sintered ceramics.(author)

  20. Effect of nano-sized cerium-zirconium oxide solid solution on far-infrared emission properties of tourmaline powders

    Science.gov (United States)

    Guo, Bin; Yang, Liqing; Hu, Weijie; Li, Wenlong; Wang, Haojing

    2015-10-01

    Far-infrared functional nanocomposites were prepared by the co-precipitation method using natural tourmaline (XY3Z6Si6O18(BO3)3V3W, where X is Na+, Ca2+, K+, or vacancy; Y is Mg2+, Fe2+, Mn2+, Al3+, Fe3+, Mn3+, Cr3+, Li+, or Ti4+; Z is Al3+, Mg2+, Cr3+, or V3+; V is O2-, OH-; and W is O2-, OH-, or F-) powders, ammonium cerium(IV) nitrate and zirconium(IV) nitrate pentahydrate as raw materials. The reference sample, tourmaline modified with ammonium cerium(IV) nitrate alone was also prepared by a similar precipitation route. The results of Fourier transform infrared spectroscopy show that tourmaline modified with Ce and Zr has a better far-infrared emission property than tourmaline modified with Ce alone. Through characterization by transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS), the mechanism for oxygen evolution during the heat process in the two composite materials was systematically studied. The XPS spectra show that Fe3+ ratio inside tourmaline modified with Ce alone can be raised by doping Zr. Moreover, it is showed that there is a higher Ce3+ ratio inside the tourmaline modified with Ce and Zr than tourmaline modified with Ce alone. In addition, XRD results indicate the formation of CeO2 and Ce1-xZrxO2 crystallites during the heat treatment and further TEM observations show they exist as nanoparticles on the surface of tourmaline powders. Based on these results, we attribute the improved far-infrared emission properties of Ce-Zr doped tourmaline to the enhanced unit cell shrinkage of the tourmaline arisen from much more oxidation of Fe2+ to Fe3+ inside the tourmaline caused by the change in the catalyst redox properties of CeO2 brought about by doping with Zr4+. In all samples, tourmaline modified with 7.14 wt.% Ce and 1.86 wt.% Zr calcined at 800∘C for 5 h has the best far-infrared emission property with the maximum emissivity value of 98%.

  1. [Glass transition of Chinese medicine extract powder and its application].

    Science.gov (United States)

    Luo, Xiao-Jian; Liu, Hui; Liang, Hong-Bo; Xiong, Lei; Rao, Xiao-Yong; Xie, Yin; He, Yan

    2017-01-01

    Glass transition theory is an important theory in polymer science, which is used to characterize the physical properties. It refers to the transition of amorphous polymer from the glassy state to the rubber state due to heating or the transition from rubber state to glassy state due to cooling. In this paper, the glassy state and glass transition of food and the similar relationship between the composition of Chinese medicine extract powder and food ingredients were described; the determination method for glass transition temperature (Tg) of Chinese medicine extract powder was established and its main influencing factors were analyzed. Meanwhile, the problems in drying process, granulation process and Chinese medicine extract powder and solid preparation storage were analyzed and investigated based on Tg, and then the control strategy was put forward to provide guidance for the research and production of Chinese medicine solid preparation. Copyright© by the Chinese Pharmaceutical Association.

  2. Microstructural Evolution, Thermodynamics, and Kinetics of Mo-Tm2O3 Powder Mixtures during Ball Milling

    Directory of Open Access Journals (Sweden)

    Yong Luo

    2016-10-01

    Full Text Available The microstructural evolution, thermodynamics, and kinetics of Mo (21 wt % Tm2O3 powder mixtures during ball milling were investigated using X-ray diffraction and transmission electron microscopy. Ball milling induced Tm2O3 to be decomposed and then dissolved into Mo crystal. After 96 h of ball milling, Tm2O3 was dissolved completely and the supersaturated nanocrystalline solid solution of Mo (Tm, O was obtained. The Mo lattice parameter increased with increasing ball-milling time, opposite for the Mo grain size. The size and lattice parameter of Mo grains was about 8 nm and 0.31564 nm after 96 h of ball milling, respectively. Ball milling induced the elements of Mo, Tm, and O to be distributed uniformly in the ball-milled particles. Based on the semi-experimental theory of Miedema, a thermodynamic model was developed to calculate the driving force of phase evolution. There was no chemical driving force to form a crystal solid solution of Tm atoms in Mo crystal or an amorphous phase because the Gibbs free energy for both processes was higher than zero. For Mo (21 wt % Tm2O3, it was mechanical work, not the negative heat of mixing, which provided the driving force to form a supersaturated nanocrystalline Mo (Tm, O solid solution.

  3. Titanium Metal Powder Production by the Plasma Quench Process

    Energy Technology Data Exchange (ETDEWEB)

    R. A. Cordes; A. Donaldson

    2000-09-01

    The goals of this project included the scale-up of the titanium hydride production process to a production rate of 50 kg/hr at a purity level of 99+%. This goal was to be achieved by incrementally increasing the production capability of a series of reactor systems. This methodic app