WorldWideScience

Sample records for powder steel parts

  1. Influence of Powder Bed Preheating on Microstructure and Mechanical Properties of H13 Tool Steel SLM Parts

    Science.gov (United States)

    Mertens, R.; Vrancken, B.; Holmstock, N.; Kinds, Y.; Kruth, J.-P.; Van Humbeeck, J.

    Powder bed preheating is a promising development in selective laser melting (SLM), mainly applied to avoid large thermal stresses in the material. This study analyses the effect of in-process preheating on microstructure, mechanical properties and residual stresses during SLM of H13 tool steel. Sample parts are produced without any preheating and are compared to the corresponding parts made with preheating at 100°, 200°, 300°, and 400°C. Interestingly, internal stresses at the top surface of the parts evolve from compressive (-324MPa) without preheating to tensile stresses (371MPa) with preheating at 400°C. Nevertheless, application of powder bed preheating results in a more homogeneous microstructure with better mechanical properties compared to H13 SLM parts produced without preheating. The fine bainitic microstructure leads to hardness values of 650-700Hv and ultimate tensile strength of 1965MPa, which are comparable to or even better than those of conventionally made and heat treated H13 tool steel.

  2. Experience of high-nitrogenous steel powder application in repairs and surface hardening of responsible parts for power equipment by plasma spraying

    Science.gov (United States)

    Kolpakov, A. S.; Kardonina, N. I.

    2016-02-01

    The questions of the application of novel diffusion-alloying high-nitrogenous steel powders for repair and surface hardening of responsible parts of power equipment by plasma spraying are considered. The appropriateness of the method for operative repair of equipment and increasing its service life is justified. General data on the structure, properties, and manufacture of nitrogen-, aluminum-, and chromium-containing steel powders that are economically alloyed using diffusion are described. It is noted that the nitrogen release during the decomposition of iron nitrides, when heating, protects the powder particles from oxidation in the plasma jet. It is shown that the coating retains 50% of nitrogen that is contained in the powder. Plasma spraying modes for diffusion-alloying high-nitrogenous steel powders are given. The service properties of plasma coatings based on these powders are analyzed. It is shown that the high-nitrogenous steel powders to a nitrogen content of 8.9 wt % provide the necessary wear resistance and hardness of the coating and the strength of its adhesion to the substrate and corrosion resistance to typical aggressive media. It is noted that increasing the coating porosity promotes stress relaxation and increases its thickness being limited with respect to delamination conditions in comparison with dense coatings on retention of the low defectiveness of the interface and high adhesion to the substrate. The examples of the application of high-nitrogenous steel powders in power engineering during equipment repairs by service companies and overhaul subdivisions of heat power plants are given. It is noted that the plasma spraying of diffusion-alloyed high-nitrogenous steel powders is a unique opportunity to restore nitrided steel products.

  3. Low pressure powder injection moulding of stainless steel powders

    Energy Technology Data Exchange (ETDEWEB)

    Zampieron, J.V.; Soares, J.P.; Mathias, F.; Rossi, J.L. [Powder Processing Center CCP, Inst. de Pesquisas Energeticas e Nucleares, Sao Paulo, SP (Brazil); Filho, F.A. [IPEN, Inst. de Pesquisas Energeticas e Nucleares, Cidade Univ., Sao Paulo, SP (Brazil)

    2001-07-01

    Low-pressure powder injection moulding was used to obtain AISI 316L stainless steel parts. A rheological study was undertaken using gas-atomised powders and binders. The binders used were based on carnauba wax, paraffin, low density polyethylene and microcrystalline wax. The metal powders were characterised in terms of morphology, particle size distribution and specific surface area. These results were correlated to the rheological behaviour. The mixture was injected in the shape of square bar specimens to evaluate the performance of the injection process in the green state, and after sintering. The parameters such as injection pressure, viscosity and temperature were analysed for process optimisation. The binders were thermally removed in low vacuum with the assistance of alumina powders. Debinding and sintering were performed in a single step. This procedure shortened considerably the debinding and sintering time. (orig.)

  4. Physical characterization of steel and stainless steel metal powders

    International Nuclear Information System (INIS)

    Lavilla, A.O.; Lucchesi, C.G.; Sandin, O.O.

    1991-01-01

    A methodology has been developed for the physical characterization of steel powders (obtained by atomization) for later sintering and for the construction of porous sheets and filtrating tubes, capable of operating at temperatures between 600 deg C and 800 deg C in corrosive atmospheres. This methodology was based on the equipment and methods used for the physical characterization of uranium oxide powders. (Author) [es

  5. The structure and mechanical properties of parts elaborated by direct laser deposition 316L stainless steel powder obtained in various ways

    Science.gov (United States)

    Loginova, I. S.; Solonin, A. N.; Prosviryakov, A. S.; Adisa, S. B.; Khalil, A. M.; Bykovskiy, D. P.; Petrovskiy, V. N.

    2017-12-01

    In this work the morphology, the size and the chemical composition of the powders of steel 316L received by the two methods was studied: fusion dispersion by a gas stream and reduction of metal chlorides with the subsequent plasma atomization of the received powder particles. The powder particles received by the first method have a spherical shape (aspect ratio 1,0-1,2) with an average size of 77 μm and are characterized by the absence of internal porosity. Particles of the powder received by the second method also have a spherical shape and faultless structure, however, their chemical composition may vary in different particles. The average size of particles is 32 μm. Though the obtained powders had different properties, the experimental samples received by DLD technology demonstrated by equally high durability (Ultimate strength is 623±5 and of 623±18 MPa respectively) and plasticity (38 and 41% respectively). It is established that mechanical properties of DLD samples increase for 7-10% after treatment of the surface.

  6. Compactibility of atomized high-speed steel and steel 3 powders

    International Nuclear Information System (INIS)

    Kulak, L.D.; Gavrilenko, A.P.; Pikozh, A.P.; Kuz'menko, N.N.

    1985-01-01

    Spherical powders and powders of lammellar-scaly shape of high-speed R6M5K5 steel and steel 3 produced by the method of centrifugal atomization of a rotating billet under conditions of cold pressing in steel moulds are studied for thier compactability. Compacting pressure dependnences are establsihed for density of cold-pressed compacts of spherical and scaly powders. The powders of lammellar-scaly shape both of high-speed steel and steel 3 are found to possess better compactibility within a wide range of pressures as compared to powders of spherical shape. Compacts of the lammellar-scaly powders possess also higher mechanical strength

  7. Properties of powder metallurgy steel forgings

    International Nuclear Information System (INIS)

    Crowson, A.; Anderson, F.E.

    1977-01-01

    The effects of processing variables on the mechanical properties of heat-treated powder metallurgy (P/M) steel forgings were determined. Prealloyed 4600 steel powder blended with graphite to yield 4640 was compacted into preforms and hot forged in a warm, closed die. Variables studied were preform density, method of lubrication, preform sintering (time, temperature and atmosphere), forging pressure (20 and 40 tsi) and temperature (1850 0 F, 2000 0 F and 2200 0 F), and forging ratio (0.75 and 0.95). Relationships between interconnected porosity and total porosity for the various preform densities were determined. High density compacts required higher sintering temperatures due to the restricted mobility of the reducing gases in the pores. Die wall lubrication was comparable to admixed lubrication, and it simplified powder mixing and preform sintering operations. Forgings with densities from 99 to 99.8 percent of theoretical density were attained with a forging pressure of 20 to 40 tsi and preform temperatures of 2000 0 F and above. At forging conditions which resulted in forgings with acceptable mechanical properties, complete die fill was accomplished at a forging ratio of 0.95, whereas incomplete die fill resulted at a forging ratio of 0.75. The response of P/M forgings to heat treatment was comparable to that for wrought materials, and the resultant tensile and yield strengths were equivalent to the strength values described for wrought 4640 steel in AMS specification 6317B. In addition, ductility and impact properties of P/M forgings with near theoretical density (99.5+ percent) were comparable to bar stock forgings

  8. Milling and Drilling Evaluation of Stainless Steel Powder Metallurgy Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Lazarus, L.J.

    2001-12-10

    Near-net-shape components can be made with powder metallurgy (PM) processes. Only secondary operations such as milling and drilling are required to complete these components. In the past and currently production components are made from powder metallurgy (PM) stainless steel alloys. process engineers are unfamiliar with the difference in machining properties of wrought versus PM alloys and have had to make parts to develop the machining parameters. Design engineers are not generally aware that some PM alloy variations can be furnished with machining additives that greatly increase tool life. Specimens from a MANTEC PM alloy property study were made available. This study was undertaken to determine the machining properties of a number of stainless steel wrought and PM alloys under the same conditions so that comparisons of their machining properties could be made and relative tool life determined.

  9. The effect of reduced oxygen content powder on the impact toughness of 316 steel powder joined to 316 steel by low temperature HIP

    International Nuclear Information System (INIS)

    Lind, Anders; Sundstroem, Johan; Peacock, Alan

    2005-01-01

    During the manufacture of the blanket modules, 316L steel powder is simultaneously consolidated and joined to tubes and blocks of 316L materials by hot isostatic pressing (HIP). The high processing temperature can detrimentally increase the grain size of the water-cooling tubes in the structure and the blocks reducing their strength. It is well known [L. Arnberg, A. Karlsson, Influence of powder surface oxidation on some properties of a HIPed martensitic chromium steel, Int. J. Powder Metall. 24 (2) (1988) 107-112] that surface oxides on the powder particles negatively influence the impact toughness of material and joints consolidated in this way. At a high HIP temperature, the oxides are at least partly transformed, thereby improving the impact toughness [L. Nyborg, I. Olefjord, Surface analysis of PM martensitic steel before and after consolidation. Part 2. Surface analysis of compacted material, Powder Metall. 31 (1) (1988) 40-44]. In order to get acceptable mechanical properties of materials produced at a low HIP temperature, the oxygen content on the powder surfaces needs to be reduced. In order to study the effect of reducing the powder oxygen content, it was reduced and the results were compared to those of specimens with ordinary oxygen content. The effect on the impact toughness and the tensile strength of low temperature (1020 and 1060 deg. C) HIP joints between steel blocks and powder consolidated material with low and ordinary oxygen content was measured

  10. Properties of 40N3M powder structural steel

    International Nuclear Information System (INIS)

    Moskvina, T.P.; Gulyaev, A.P.; Gulyaev, I.A.; Byakov, S.V.; Melent'ev, I.V.; Morgun, G.N.

    1984-01-01

    Effect of the fabrication technique of compact slabs made of the 40N3M powder structural steel on mechanical properties with determination of a cold brittleness threshold was studied. It is established that after a thermal treatment at a density close to 100% a powder steel is sufficiently close to steel, rolled of an ingot, but is second in reference to steel in its ductility and impact strength. Properties of powder steel obtained by the method of dynamic hot forming (DHF) and hot extrusion are practically equal, but the first method has definite advantages as it allows to obtain details with a definitive form. The above investigation permits to recommend an application of the 40N3M powder steel fabricated by the DHF methods. The optimum thermal treatment course is: quenching+high annealing

  11. Corrosion-resistant powder-metallurgy stainless steel powders and compacts therefrom

    International Nuclear Information System (INIS)

    Klar, E.; Ro, D.H.; Whitman, C.I.

    1980-01-01

    Disclosed is a process for improving the corrosion resistance of a stainless steel powder or compact thereof wherein the powder is produced by atomizing a melt of metals in an oxidizing environment whereby the resulting stainless steel powder is surface-enriched in silicon oxides. The process comprises adding an effective proportion of modifier metal to the melt prior to the atomization, the modifier metal selected from the group consisting of tin, aluminum, lead, zinc, magnesium, rare earth metals and like metals capable of enrichment about the surface of the resulting atomized stainless steel powder and effective under reductive sintering conditions in the depletion of the silicon oxides about the surface; and sintering the resulting atomized powder or a compact thereof under reducing conditions, the sintered powder or compact thereof being depleted in the silicon oxides and the corrosion resistance of the powder or compact thereof being improved thereby

  12. Injection molding of coarse 316L stainless steel powder

    International Nuclear Information System (INIS)

    Omar, M.A.; Abdullah, N.S.; Subuki, I; Ali, E.A.G.E.; Ismail, F.; Hassan, N.

    2007-01-01

    Metal injection molding (MIM) process using 316L stainless steel powder of 45 μm was investigated. The binder system consists of a major fraction of palm stearins and minor fraction of polyethylene with a powder loading of 65 vol. %. The rheological behaviour of the feedstock was determined using Capillary Rheometer. The feedstock then injected using vertical injection molding machine into the tensile test bar. Then molded parts were de bound and sintered in vacuum at temperature of 1360 degree Celsius. The results show that the viscosity of the feedstock decreased with the temperature increased. The best sintered density achieved was about 7.5 g/cm 3 with the tensile strength of more than 460 MPa. The properties of the sintered specimens could be increased with the increasing of sintering temperature. (author)

  13. High yttria ferritic ODS steels through powder forging

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Deepak [Department of Metallurgical and Materials Engineering, I.I.T-Roorkee, Uttarakhand 247667 (India); Prakash, Ujjwal, E-mail: ujwalfmt@iitr.ac.in [Department of Metallurgical and Materials Engineering, I.I.T-Roorkee, Uttarakhand 247667 (India); Dabhade, Vikram V. [Department of Metallurgical and Materials Engineering, I.I.T-Roorkee, Uttarakhand 247667 (India); Laha, K.; Sakthivel, T. [Mechanical Metallurgy Group, IGCAR, Kalpakkam, Tamilnadu 603102 (India)

    2017-05-15

    Oxide dispersion strengthened (ODS) steels are being developed for future nuclear reactors. ODS Fe-18%Cr-2%W-0.2%Ti steels with 0, 0.35, 0.5, 1 and 1.5% Y{sub 2}O{sub 3} (all compositions in weight%) dispersion were fabricated by mechanical alloying of elemental powders. The powders were placed in a mild steel can and forged in a stream of hydrogen gas at 1473 K. The steels were forged again to final density. The strength of ODS steel increased with yttria content. Though this was accompanied by a decrease in tensile elongation, all the steels showed significant ductility. The ductility in high yttria alloys may be attributed to improved inter-particle bonding between milled powders due to reduction of surface oxides by hydrogen. This may permit development of ODS steels with yttria contents higher than the conventional limit of 0.5%. It is suggested that powder forging is a promising route to fabricate ODS steels with high yttria contents and improved ductility. - Highlights: •ODS steels with yttria contents beyond the conventional limit of 0.5 wt% were fabricated by powder forging in a hydrogen atmosphere. •All the alloys exhibited significant ductility. •This may be attributed to improved inter-particle bonding due to reduction of surface oxides by hydrogen. •Strength in excess of 300 MPa was obtained at 973 K for 0.5%, 1% and 1.5% yttria ODS alloys. •Powder forging is a promising route to fabricate ODS steels and permits development of compositions with up to 1.5% yttria.

  14. Damage on 316LN stainless steel transformed by powder metallurgy

    International Nuclear Information System (INIS)

    Couturier, R.; Burlet, H.

    1998-01-01

    This study deals with the 316 LN stainless steel elaboration by powder metallurgy. This method allows the realization of structures in austenitic steel less affected by the thermal aging than the cast austenitic-ferritic components. The components are performed by the method of HIP (Hot Isostatic Pressing). Mechanical tests are provided to control mechanical properties

  15. APPLICATION OF POWDER HIGH-SPEED STEEL AS ANTIFRICTION MATERIAL

    Directory of Open Access Journals (Sweden)

    M. Beznak

    2011-01-01

    Full Text Available The influence of disulphide molybdenum additives on antifriction characteristics of powder high-speed steel produced by means of hot hydrostatic pressing is investigated. It is shown that disulphide molybdenum additives promote the decrease of coefficient of friction and temperature in hearth of friction as a result the increase of wear resistance of steel.

  16. High yttria ferritic ODS steels through powder forging

    Science.gov (United States)

    Kumar, Deepak; Prakash, Ujjwal; Dabhade, Vikram V.; Laha, K.; Sakthivel, T.

    2017-05-01

    Oxide dispersion strengthened (ODS) steels are being developed for future nuclear reactors. ODS Fe-18%Cr-2%W-0.2%Ti steels with 0, 0.35, 0.5, 1 and 1.5% Y2O3 (all compositions in weight%) dispersion were fabricated by mechanical alloying of elemental powders. The powders were placed in a mild steel can and forged in a stream of hydrogen gas at 1473 K. The steels were forged again to final density. The strength of ODS steel increased with yttria content. Though this was accompanied by a decrease in tensile elongation, all the steels showed significant ductility. The ductility in high yttria alloys may be attributed to improved inter-particle bonding between milled powders due to reduction of surface oxides by hydrogen. This may permit development of ODS steels with yttria contents higher than the conventional limit of 0.5%. It is suggested that powder forging is a promising route to fabricate ODS steels with high yttria contents and improved ductility.

  17. The filler powders laser welding of ODS ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Shenyong, E-mail: s_y_liang@126.com; Lei, Yucheng; Zhu, Qiang

    2015-01-15

    Laser welding was performed on Oxide Dispersion Strengthened (ODS) ferritic steel with the self-designed filler powders. The filler powders were added to weld metal to produce nano-particles (Y–M–O and TiC), submicron particles (Y–M–O) and dislocation rings. The generated particles were evenly distributed in the weld metal and their forming mechanism and behavior were analyzed. The results of the tests showed that the nano-particles, submicron particles and dislocation rings were able to improve the micro-hardness and tensile strength of welded joint, and the filler powders laser welding was an effective welding method of ODS ferritic steel.

  18. PRODUCTION OF POROUS POWDER MATERIALS OF SPHERICAL POWDERS OF CORROSION-RESISTANT STEEL

    Directory of Open Access Journals (Sweden)

    V. N. Kovalevskij

    2012-01-01

    Full Text Available Production of porous powder materials from spherical powders of corrosion-resistant steel 12Х18н10Т with formation at low pressures 120–140 mpa in the mold with the subsequent activated sintering became possible due to increase of duration of process of spattering and formation of condensate particles (Si–C or (Mo–Si on surface.

  19. Fabrication of spherical high-nitrogen stainless steel powder alloys by mechanical alloying and thermal plasma spheroidization

    Science.gov (United States)

    Razumov, Nikolay G.; Wang, Qing Sheng; Popovich, Anatoly A.; Shamshurin, Aleksey I.

    2018-04-01

    This paper describes the results of experimental studies on the treatment of Fe-23Cr-11Mn-1N high-nitrogen stainless steel powder alloys, synthesized by the mechanical alloying (MA) of elemental powders in the flow of a radio frequency thermal plasma. The as-milled powder with irregular particles were successfully converted into spherical high-nitrogen stainless steel powder alloy. Measurement of the residual nitrogen content in the obtained powder, shown that during the plasma spheroidization process, part of the nitrogen escapes from the alloy.

  20. Control over Coating Structure during Electromagnetic Welding and Application of HighSpeed Steel Powder

    Directory of Open Access Journals (Sweden)

    L. M. Kozhuro

    2004-01-01

    Full Text Available The paper considers peculiar features concerning coating formation in the process of electromagnetic welding of high-speed steel powder. The paper reveals how to control coating structure that ensures the required operational properties of working surfaces of machine parts

  1. Interfacial Microstructure and Properties of Steel/Aluminum Powder Additive

    Directory of Open Access Journals (Sweden)

    YUAN Jiang

    2017-09-01

    Full Text Available Based on first-principles density functional theory, the Fe/Al interface model of steel/aluminum laser welding was constructed by layer technique. The Fe/Al interface was studied by metal atom X (X=Sn, Sr, Zr, Ce, La.The results show that Sn, Sr and Ce preferentially displace the Al atoms at the Fe/Al interface, while La and Zr preferentially displace the Fe atoms at the Fe/Al interface. Alloying promotes the transfer of Fe/Al interfacial electrons between different orbits, enhances the ionic bond properties of Fe-Al, improves the Fe/Al interface binding capacity, improves the brittle fracture of Fe/Al interface, and the alloying effect of Sn most notable. On the basis of this, the laser lap welding test of Sn and Zr powder was carried out on 1.4mm thick DC51D+ZF galvanized steel and 1.2mm thick 6016 aluminum alloy specimen. The results show that the addition of powder can promote the flowability of the molten bath and change the composition and microstructure of the joint interface. The tensile strength of the steel/aluminum joint is 327.41MPa and the elongation is 22.93% with the addition of Sn powder, which is obviously improved compared with the addition of Zr powder and without the addition of powder.

  2. Characterization of rapidly solidified powder of high-speed steel

    Czech Academy of Sciences Publication Activity Database

    Miglierini, M.; Lančok, Adriana; Kusý, M.

    2009-01-01

    Roč. 190, 1-3 (2009), s. 51-57 ISSN 0304-3843 R&D Projects: GA ČR GP203/07/P011 Grant - others:GA(SK) VEGA1/3190/06 Institutional research plan: CEZ:AV0Z40320502 Keywords : Rapidly solidified powder * Tool steel * Mössbauer spectroscopy Subject RIV: CA - Inorganic Chemistry Impact factor: 0.209, year: 2007

  3. Effects of Powder Attributes and Laser Powder Bed Fusion (L-PBF) Process Conditions on the Densification and Mechanical Properties of 17-4 PH Stainless Steel

    Science.gov (United States)

    Irrinki, Harish; Dexter, Michael; Barmore, Brenton; Enneti, Ravi; Pasebani, Somayeh; Badwe, Sunil; Stitzel, Jason; Malhotra, Rajiv; Atre, Sundar V.

    2016-03-01

    The effects of powders attributes (shape and size distribution) and critical processing conditions (energy density) on the densification and mechanical properties of laser powder bed fusion (L-PBF) 17-4 PH stainless steel were studied using four types of powders. The % theoretical density, ultimate tensile strength and hardness of both water- and gas-atomized powders increased with increased energy density. Gas-atomized powders showed superior densification and mechanical properties when processed at low energy densities. However, the % theoretical density and mechanical properties of water-atomized powders were comparable to gas-atomized powders when sintered at a high energy density of 104 J/mm3. An important result of this study was that, even at high % theoretical density (97% ± 1%), the properties of as-printed parts could vary over a relatively large range (UTS: 500-1100 MPa; hardness: 25-39 HRC; elongation: 10-25%) depending on powder characteristics and process conditions. The results also demonstrate the feasibility of using relatively inexpensive water-atomized powders as starting raw material instead of the typically used gas-atomized powders to fabricate parts using L-PBF techniques by sintering at high energy densities.

  4. Spark Plasma Co-Sintering of Mechanically Milled Tool Steel and High Speed Steel Powders.

    Science.gov (United States)

    Pellizzari, Massimo; Fedrizzi, Anna; Zadra, Mario

    2016-06-16

    Hot work tool steel (AISI H13) and high speed steel (AISI M3:2) powders were successfully co-sintered to produce hybrid tool steels that have properties and microstructures that can be modulated for specific applications. To promote co-sintering, which is made difficult by the various densification kinetics of the two steels, the particle sizes and structures were refined by mechanical milling (MM). Near full density samples (>99.5%) showing very fine and homogeneous microstructure were obtained using spark plasma sintering (SPS). The density of the blends (20, 40, 60, 80 wt % H13) was in agreement with the linear rule of mixtures. Their hardness showed a positive deviation, which could be ascribed to the strengthening effect of the secondary particles altering the stress distribution during indentation. A toughening of the M3:2-rich blends could be explained in view of the crack deviation and crack arrest exerted by the H13 particles.

  5. Structure and properties of powder metallurgy constructional steel of different densities

    International Nuclear Information System (INIS)

    Gulyaev, A.P.; Moskvina, T.P.

    1986-01-01

    A specific feature of powder metallurgy steels is porosity, the degree of which depends upon the method of their production. This article establishes the influence of a small amount of porosity on the mechanical properties of powder metallurgy constructional steel. The structure of heat-treated cast and powder metallurgy steels with different porosities are shown. The results of mechanical tests of the experimental steels with different porosities are shown. With an increase in porosity the nonmetallic inclusion rating of the powder metallurgy constructional steel increases, primarily as the result of the increase in the coarse particles, which is caused by the lower degree of plastic deformation in pressing. With an increase in porosity the mechanical properties of the powder metallurgy steel become poorer: the hardness and strength properties with a porosity of more than 3-5%, the plasticity with more than 1-2%, and the toughness even with a porosity of 1%

  6. Wear mechanisms in powder metallurgy high speed steels matrix composites

    International Nuclear Information System (INIS)

    Gordo, E.; Martinez, M. A.; Torralba, J. M.; Jimenez, J. A.

    2001-01-01

    The development of metal matrix composites has a major interest for automotive and cutting tools industries since they possess better mechanical properties and wear resistance than corresponding base materials. One of the manufacturing methods for these materials includes processing by powder metallurgy techniques. in this case, blending of both, base material and reinforcement powders constitute the most important process in order to achieve a homogeneous distribution of second phase particles. in the present work, composite materials of M3/2 tool steel reinforced with 2.5,5 and 8 vol% of niobium carbide have been prepared. In order to ensure a homogeneous mix, powders of both materials were mixed by dry high-energy mechanical milling at 200 r.p.m. for 40 h. After a recovering annealing, two routes for consolidate were followed die pressing and vacuum sintering, and hot isostatic pressing (HIP). Pin-on-disc tests were carried out to evaluate wear behaviour in all the materials. Results show that ceramic particles additions improve wear resistance of base material. (Author) 9 refs

  7. Structure, mechanical and corrosion properties of powdered stainless steel Kh13

    International Nuclear Information System (INIS)

    Radomysel'skij, I.D.; Napara-Volgina, S.G.; Orlova, L.N.; Apininskaya, L.M.

    1982-01-01

    Structure, mechanical and corrosion properties are studied for compact powdered stainless steel, Grade Kh13, produced from prealloyed powder and a mixture of chromium and iron powders by hot vacuum pressing (HVP) following four schemes: HVP of unsintered billets; HVP of presintered billets; HVP of unsintered billets followed by diffusion annealing; HVP of sintered billets followed by diffusion annealing. Analysis of the structure, mechanical and corrosion properties of Kh13 steel produced according to the four schemes confirmed that production of this steel by the HVP method without presintering of porous billets and diffusion annealing of compact stampings is possible only when prealloyed powder of particular composition is used as a starting material

  8. Joining of parts via magnetic heating of metal aluminum powders

    Science.gov (United States)

    Baker, Ian

    2013-05-21

    A method of joining at least two parts includes steps of dispersing a joining material comprising a multi-phase magnetic metal-aluminum powder at an interface between the at least two parts to be joined and applying an alternating magnetic field (AMF). The AMF has a magnetic field strength and frequency suitable for inducing magnetic hysteresis losses in the metal-aluminum powder and is applied for a period that raises temperature of the metal-aluminum powder to an exothermic transformation temperature. At the exothermic transformation temperature, the metal-aluminum powder melts and resolidifies as a metal aluminide solid having a non-magnetic configuration.

  9. Boron steel. I Part. Preparation

    International Nuclear Information System (INIS)

    Jaraiz Franco, E.; Esteban Hernandez, J. A.

    1960-01-01

    With the advent of the first nuclear reactors arise the need for control rods and shielding duties for some types of radiations. One of the materials used for this purpose has been the high boron steel. This paper describes the melting and casting procedures employed for the production, at laboratory scale, of steels with Boron content ranging from 1 to 4 per cent, as well as the metallographic and X-Ray techniques used for the identification of the present phases. The electrolytic technique employed for the isolation of the Fe 2 B phase and its subsequent X-Ray identification has proved to be satisfactory. (Author) 11 refs

  10. Compressibility of 304 Stainless Steel Powder Metallurgy Materials Reinforced with 304 Short Stainless Steel Fibers

    Directory of Open Access Journals (Sweden)

    Bibo Yao

    2016-03-01

    Full Text Available Powder metallurgy (P/M technique is usually used for manufacturing porous metal materials. However, some P/M materials are limitedly used in engineering for their performance deficiency. A novel 304 stainless steel P/M material was produced by a solid-state sintering of 304 stainless steel powders and 304 short stainless steel fibers, which were alternately laid in layers according to mass ratio. In this paper, the compressive properties of the P/M materials were characterized by a series of uniaxial compression tests. The effects of fiber content, compaction pressure and high temperature nitriding on compressive properties were investigated. The results indicated that, without nitriding, the samples changed from cuboid to cydariform without damage in the process of compression. The compressive stress was enhanced with increasing fiber content ranging from 0 to 8 wt.%. For compaction pressure from 55 to 75 MPa, greater compaction pressure improved compressive stress. Moreover, high temperature nitriding was able to significantly improve the yield stress, but collapse failure eventually occurred.

  11. Compressibility of 304 Stainless Steel Powder Metallurgy Materials Reinforced with 304 Short Stainless Steel Fibers.

    Science.gov (United States)

    Yao, Bibo; Zhou, Zhaoyao; Duan, Liuyang; Xiao, Zhiyu

    2016-03-04

    Powder metallurgy (P/M) technique is usually used for manufacturing porous metal materials. However, some P/M materials are limitedly used in engineering for their performance deficiency. A novel 304 stainless steel P/M material was produced by a solid-state sintering of 304 stainless steel powders and 304 short stainless steel fibers, which were alternately laid in layers according to mass ratio. In this paper, the compressive properties of the P/M materials were characterized by a series of uniaxial compression tests. The effects of fiber content, compaction pressure and high temperature nitriding on compressive properties were investigated. The results indicated that, without nitriding, the samples changed from cuboid to cydariform without damage in the process of compression. The compressive stress was enhanced with increasing fiber content ranging from 0 to 8 wt.%. For compaction pressure from 55 to 75 MPa, greater compaction pressure improved compressive stress. Moreover, high temperature nitriding was able to significantly improve the yield stress, but collapse failure eventually occurred.

  12. Evolution of Microstructure and Mechanical Properties of Oxide Dispersion Strengthened Steels Made from Water-Atomized Ferritic Powder

    Science.gov (United States)

    Arkhurst, Barton Mensah; Kim, Jeoung Han

    2018-05-01

    Nano-structured oxide dispersion strengthened (ODS) steels produced from a 410L stainless steel powder prepared by water-atomization was studied. The influences of Ti content and milling time on the microstructure and the mechanical properties were analysed. It was found that the ODS steels made from the Si bearing 410L powder contained Y-Ti-O, Y-Ti-Si-O, Y-Si-O, and TiO2 oxides. Most nanoparticles produced after 80 h of milling were aggregated nanoparticles; however, after 160 h of milling, most aggregated nanoparticles dissociated into smaller individual nanoparticles. Perfect mixing of Y and Ti was not achieved even after the longer milling time of 160 h; instead, the longer hours of milling rather resulted in Si incorporation into the Y-Ti-O rich nanoparticles and a change in the matrix morphology from an equiaxed microstructure to a tempered martensite-like microstructure. The overall micro-hardness of the ODS steel increased with the increase of milling time. After 80 and 160 h, the microhardnesses were over 400 HV, which primarily resulted from the finer dispersed nanoparticles and in part to the formation of martensitic phases. Tensile strength of the 410L ODS steels was comparable with that of ODS steel produced from gas-atomized powder.

  13. High resolution Transmission Electron Microscopy characterization of a milled oxide dispersion strengthened steel powder

    Energy Technology Data Exchange (ETDEWEB)

    Loyer-Prost, M., E-mail: marie.loyer-prost@cea.fr [DEN-Service de Recherches de Métallurgie Physique, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette (France); Merot, J.-S. [Laboratoire d’Etudes des Microstructures – UMR 104, CNRS/ONERA, BP72-29, Avenue de la Division Leclerc, 92 322, Châtillon (France); Ribis, J. [DEN-Service de Recherches de Métallurgie Appliquée, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette (France); Le Bouar, Y. [Laboratoire d’Etudes des Microstructures – UMR 104, CNRS/ONERA, BP72-29, Avenue de la Division Leclerc, 92 322, Châtillon (France); Chaffron, L. [DEN-Service de Recherches de Métallurgie Appliquée, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette (France); Legendre, F. [DEN-Service de la Corrosion et du Comportement des Matériaux dans leur Environnement, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette (France)

    2016-10-15

    Oxide Dispersion Strengthened (ODS) steels are promising materials for generation IV fuel claddings as their dense nano-oxide dispersion provides good creep and irradiation resistance. Even if they have been studied for years, the formation mechanism of these nano-oxides is still unclear. Here we report for the first time a High Resolution Transmission Electron Microscopy and Energy Filtered Transmission Electron Microscopy characterization of an ODS milled powder. It provides clear evidence of the presence of small crystalline nanoclusters (NCs) enriched in titanium directly after milling. Small NCs (<5 nm) have a crystalline structure and seem partly coherent with the matrix. They have an interplanar spacing close to the (011) {sub bcc} iron structure. They coexist with larger crystalline spherical precipitates of 15–20 nm in size. Their crystalline structure may be metastable as they are not consistent with any Y-Ti-O or Ti-O structure. Such detailed observations in the as-milled grain powder confirm a mechanism of Y, Ti, O dissolution in the ferritic matrix followed by a NC precipitation during the mechanical alloying process of ODS materials. - Highlights: • We observed an ODS ball-milled powder by high resolution transmission microscopy. • The ODS ball-milled powder exhibits a lamellar microstructure. • Small crystalline nanoclusters were detected in the milled ODS powder. • The nanoclusters in the ODS milled powder are enriched in titanium. • Larger NCs of 15–20 nm in size are, at least, partly coherent with the matrix.

  14. Development of fully dense and high performance powder metallurgy HSLA steel using HIP method

    Science.gov (United States)

    Liu, Wensheng; Pang, Xinkuan; Ma, Yunzhu; Cai, Qingshan; Zhu, Wentan; Liang, Chaoping

    2018-05-01

    In order to solve the problem that the mechanical properties of powder metallurgy (P/M) steels are much lower than those of traditional cast steels with the same composition due to their porosity, a high–strength–low–alloy (HSLA) steel with fully dense and excellent mechanical properties was fabricated through hot isostatic pressing (HIP) using gas–atomized powders. The granular structure in the P/M HIPed steel composed of bainitic ferrite and martensite–austenite (M–A) islands is obtained without the need of any rapid cooling. The P/M HIPed steel exhibit a combination of tensile strength and ductility that surpasses that of conventional cast steel and P/M sintered steel, confirming the feasibility of fabricating high performance P/M steel through appropriate microstructural control and manufacture process.

  15. Ecologically safe process for sulfo-aluminizing of steel parts

    Directory of Open Access Journals (Sweden)

    Plyatsuk L. D.

    2018-06-01

    Full Text Available The present technical solution refers to the field of electrophysical and electrochemical processing of parts, in particular, to the electroerosion alloying (EEA of the surfaces of steel parts with aluminum (aluminizing and sulfur (sulfidizing, and it can be used to treat the surfaces of heat-treated steel parts in order to increase their hardness, wear resistance, to prevent frictional seizure and improve the resistance to atmospheric corrosion. When aluminizing steel parts with the use of the method of electroerosion alloying (EEA by aluminum electrode at discharge energy Wp = 0.52–6.8 J and productivity of 1.0–3.0 cm2 / min, before the EEA process by an aluminum electrode, to the surface of the part to be aluminized, there is applied a consistency substance containing sulfur and aluminum powder, and thereafter, not having waited for drying of the consistency substance, the process of aluminizing by the EEL method with an aluminum electrode is carried out, and the consistency substance should have the aluminum powder content of not more than 56 %. There have been carried out metallographic and durametric analyses of the features of the surface layers made of carbon steels after simultaneous aluminizing and sulfidizing them by the EEA method. It is shown that the structure of the layer consists of three portions, namely, a “white” layer, a diffusion zone and a base metal. Such qualitative surface layer parameters as thickness, “white” layer and transition zone microhardness values, and also roughness increase with increasing discharge energy. The “white” layer continuity for all the investigated discharge energies of Wp = 0.52, 2.60 and 6.80 J is 100 %.

  16. Study of Diffusion Bonding of 45 Steel through the Compacted Nickel Powder Layer

    Science.gov (United States)

    Zeer, G. M.; Zelenkova, E. G.; Temnykh, V. I.; Tokmin, A. M.; Shubin, A. A.; Koroleva, Yu. P.; Mikheev, A. A.

    2018-02-01

    The microstructure of the transition zone and powder spacer, the concentration distribution of chemical elements over the width of the diffusion-bonded joint, and microhardness of 45 steel-compacted Ni powder spacer-45 steel layered composites formed by diffusion bonding have been investigated. It has been shown that the relative spacer thickness χ compacting pressure of 500 MPa. The solid-state diffusion bonding is accompanied by sintering the nickel powder spacer and the formation of the transition zone between the spacer and steel. The transition zone consists of solid solution of nickel in the α-Fe phase and ordered solid solution of iron in nickel (FeNi3).

  17. Investigation of Magnetic Pulse Deformation of Powder Parts

    OpenAIRE

    Kolbe, M.; Mironov, V.; Shishkin, A.; Zemchenkov, V.

    2012-01-01

    Current article covers basics of powder compaction by electromagnetic impulse field and research results of sintered Fe powder part deformation process. This work is a joint research carried out by Riga Technical University (Latvia) and the Westsächsische Hochschule Zwickau (Germany).

  18. Spark Plasma Co-Sintering of Mechanically Milled Tool Steel and High Speed Steel Powders

    Directory of Open Access Journals (Sweden)

    Massimo Pellizzari

    2016-06-01

    Full Text Available Hot work tool steel (AISI H13 and high speed steel (AISI M3:2 powders were successfully co-sintered to produce hybrid tool steels that have properties and microstructures that can be modulated for specific applications. To promote co-sintering, which is made difficult by the various densification kinetics of the two steels, the particle sizes and structures were refined by mechanical milling (MM. Near full density samples (>99.5% showing very fine and homogeneous microstructure were obtained using spark plasma sintering (SPS. The density of the blends (20, 40, 60, 80 wt % H13 was in agreement with the linear rule of mixtures. Their hardness showed a positive deviation, which could be ascribed to the strengthening effect of the secondary particles altering the stress distribution during indentation. A toughening of the M3:2-rich blends could be explained in view of the crack deviation and crack arrest exerted by the H13 particles.

  19. Powdering of Hot-dip Galvannealed steel using Finite Element Analysis

    International Nuclear Information System (INIS)

    Kim, D. W.; Jang, Y. C.; Lee, Y. S.; Kim, S. I.

    2007-01-01

    Demand for hot-dip galvannealed steel has been increased due to it high corrosion resistance, paintability, and formability in automotive industry. Coating of Hot-dip galvannealed steel consists of various Fe-Zn intermetallic compounds. Since the coating is hard and therefore it is very brittle, the surface of steel sheet is easy to be ruptured during second manufacturing processing. This is called as powdering. Hence, various research have been carried out to prohibit powdering for improving the quality of GA steel during second manufacturing processing. This paper performed finite element analysis to evaluate local powdering and compared FEA results with V-bending test. The effects of punch radius and coating strength on the powdering was examined

  20. Microstructure and properties of gravity sintered 316l stainless steel powder with nickel boride addition

    Directory of Open Access Journals (Sweden)

    Božić Dušan

    2016-01-01

    Full Text Available The present work demonstrates a procedure for synthesis of stainless steel powder by gravity sintering method. As an additive to the basic powder, NiB powder was added in the amount of 0.2 - 1.0 wt.%. Gravity sintering was done in vacuum, at the temperatures of 1100°C-1250°C, in the course of 3 - 60 min, using ceramic mould. Structural characterization was conducted by XRD, and microstructural analysis by optical and scanning electron microscope (SEM. Mechanical properties were investigated by tensile tests with steel rings. Density and permeability were determined by standard techniques for porous samples. Gravity sintered stainless steel with NiB addition had more superior mechanical and physico-chemical properties compared to stainless steel obtained by standard powder metallurgy procedures - pressing and sintering. [Projekat Ministarstva nauke Republike Srbije, br. 172005

  1. CO2 laser cladding of VERSAlloyTM on carbon steel with powder feeding

    International Nuclear Information System (INIS)

    Kim, Jae-Do; Kweon, Jin-Wook

    2007-01-01

    Laser cladding processing with metal powder feeding has been experimented on carbon steel with VERSAlloy TM . A special device for the metal powder feeding was designed and manufactured. By adopting proper cladding parameters, good clad layers and sound metallurgical bonding with the base metal were obtained. Analysis indicates that the micro hardness of clad layer and the heat-affected zone increased with increasing of cladding speed. The experimental results showed that VERSAlloy TM cladded well with carbon steel

  2. Preliminary Investigation on Life Cycle Inventory of Powder Bed Fusion of Stainless Steel

    Science.gov (United States)

    Nyamekye, Patricia; Piili, Heidi; Leino, Maija; Salminen, Antti

    Manufacturing of work pieces from stainless steel with laser additive manufacturing, known also as laser sintering or 3D printing may increase energy and material efficiency. The use of powder bed fusion offers advantages to make parts for dynamic applications of light weight and near-net-shape products. Due to these advantages among others, PBF may also reduce emissions and operational cost in various applications. However, there are only few life cycle assessment studies examining this subject despite its prospect to business opportunity. The application of Life Cycle Inventory (LCI) in Powder Bed Fusion (PBF) provides a distinct evaluation of material and energy consumption. LCI offers a possibility to improve knowledge of process efficiency. This study investigates effect of process sustainability in terms of raw material, energy and time consumption with PBF and CNC machining. The results of the experimental study indicated lower energy efficiency in the production process with PBF. This study revealed that specific energy consumption in PBF decreased when several components are built simultaneously than if they would be built individually. This is due to fact that energy consumption per part is lower. On the contrary, amount of energy needed to machine on part in case of CNC machining is lower when parts are done separately.

  3. STUDIES ON WETTABILITY OF STAINLESS STEEL 316L POWDER IN LASER MELTING PROCESS

    Directory of Open Access Journals (Sweden)

    KURIAN ANTONY

    2014-10-01

    Full Text Available Laser sintering is one of the techniques used in additive manufacturing processes. The main objective of the work is to study the effects of process parameters on wetting phenomenon and interfacial energy during laser melting of stainless steel powder. This paper reports wetting of laser melted powder particles and its use for the determination of surface energy of stainless steel powder under laser beam exposure. Process parameters such as laser power, scan speed and beam diameter are considered for study. This study also identifies the process parameters for better wettability which produces smooth surfaces.

  4. Process Evaluation of AISI 4340 Steel Manufactured by Laser Powder Bed Fusion

    Science.gov (United States)

    Jelis, Elias; Hespos, Michael R.; Ravindra, Nuggehalli M.

    2018-01-01

    Laser powder bed fusion (L-PBF) involves the consolidation of metal powder, layer by layer, through laser melting and solidification. In this study, process parameters are optimized for AISI 4340 steel to produce dense and homogeneous structures. The optimized process parameters produce mechanical properties at the center of the build plate that are comparable to wrought in the vertical and horizontal orientations after heat treatment and machining. Four subsequent builds are filled with specimens to evaluate the mechanical behavior as a function of location and orientation. Variations in the mechanical properties are likely due to recoater blade interactions with the powder and uneven gas flow. The results obtained in this study are analyzed to assess the reliability and reproducibility of the process. A different build evaluates the performance of near-net-shaped tensile specimens angled 35°-90° from the build plate surface (horizontal). Ductility measurements and surface roughness vary significantly as a function of the build angle. In the stress-relieved and as-built conditions, the mechanical behavior of vertically oriented specimens exhibits somewhat lower and more variable ductility than horizontally oriented specimens. Therefore, several process variables affect the mechanical properties of parts produced by the L-PBF process.

  5. Thermal Plasma Spheroidization of High-Nitrogen Stainless Steel Powder Alloys Synthesized by Mechanical Alloying

    Science.gov (United States)

    Razumov, Nikolay G.; Popovich, Anatoly A.; Wang, QingSheng

    2018-03-01

    This paper presents the results of experimental studies on the treatment of Fe-23Cr-11Mn-1N high-nitrogen stainless steel powder alloys, synthesized by the mechanical alloying (MA) of elemental powders in the flow of a thermal plasma. Fe-23Cr-11Mn-1N high-nitrogen stainless steel powder alloys were prepared by MA in the attritor under an argon atmosphere. For spheroidization of Fe-23Cr-11Mn-1N high-nitrogen stainless steel powder alloys, the TekSphero 15 plant manufactured by Tekna Plasma Systems Inc was used. The studies have shown the possibility of obtaining Fe-23Cr-11Mn-1N high-nitrogen spherical powders steel alloys from the powder obtained by MA. According to the results of a series of experiments, it was found that the results of plasma spheroidization of powders essentially depend on the size of the fraction due to some difference in the particle shape and flowability, and on the gas regime of the plasma torch. It is established that during the plasma spheroidization process, some of the nitrogen leaves the alloy. The loss rate of nitrogen depends on the size of the initial particles.

  6. Reuse of scrap of Al and steel SAE 1045 in metal composite as alternative of recycling route powder metallurgy

    International Nuclear Information System (INIS)

    Souza, V.E.S.; Masieiro, F.R.S.; Lourenco, J.M.; Felipe, R.C.T.S.

    2009-01-01

    Full text: The process of powder metallurgy in the production of parts through application of pressure on the selected ceramic or metal powders, which are subjected to a temperature of sintering for to occur consolidation of the components. The metal-mechanical industry is responsible for the generation of inputs from their manufacturing processes. This work aims to re-use of chips of Al and SAE 1045 steel by powder metallurgy of this is a viable and effective. This work is in the manufacture of a composite using Al 6060 metal matrix and steel 1045 as reinforcement (30%, 40%, 50%), under different compaction pressures (250MPa, 400MPa and 600MPa), analyzing the influence of compressibility in hardness of the compressed. The samples were sintered at a temperature of 500 ° C in an oven using resistive atmosphere of hydrogen for 45 minutes. After the procedures of the powder metallurgy technique were analyzed of the optical microscopy, x-ray diffraction, MEV and Rockwell hardness, which was found to be evaluated as not diffusibility between the steel and aluminum. (author)

  7. Effect of process parameters on surface oxides on chromium-alloyed steel powder during sintering

    International Nuclear Information System (INIS)

    Chasoglou, D.; Hryha, E.; Nyborg, L.

    2013-01-01

    The use of chromium in the PM steel industry today puts high demands on the choice and control of the atmosphere during the sintering process due to its high affinity to oxygen. Particular attention is required in order to control the surface chemistry of the powder which in turn is the key factor for the successful sintering and production of PM parts. Different atmosphere compositions, heating rates and green densities were employed while performing sintering trials on water atomized steel powder pre-alloyed with 3 wt.% Cr in order to evaluate the effect on surface chemical reactions. Fracture surfaces of sintered samples were examined using high resolution scanning electron microscopy combined with X-ray microanalysis. The investigation was complemented with thermogravimetric (TG) studies. Reaction products in particulate form containing strong-oxide forming elements such as Cr, Si and Mn were formed during sintering for all conditions. Processing in vacuum results in intensive inter-particle neck development during the heating stage and consequently in the excessive enclosure of surface oxide which is reflected in less good final mechanical properties. Enhanced oxide reduction was observed in samples processed in hydrogen-containing atmospheres independent of the actual content in the range of 3–10 vol.%. An optimum heating rate was required for balancing reduction/oxidation processes. A simple model for the enclosure and growth of oxide inclusions during the sinter-neck development is proposed. The obtained results show that significant reduction of the oxygen content can be achieved by adjusting the atmosphere purity/composition. - Highlights: ► A local atmosphere microclimate is very important for sintering of PM steels. ► High risk of surface oxide enclosure between 800 and 1000 °C. ► Coalescence and agglomeration of enclosed oxides take place during sintering. ► The effect of different process parameters on the oxide reduction is examined. ► A

  8. Surface quality analysis of die steels in powder-mixed electrical discharge machining using titan powder in fine machining

    Directory of Open Access Journals (Sweden)

    Banh Tien Long

    2016-06-01

    Full Text Available Improving the quality of surface molds after electrical discharge machining is still being considered by many researchers. Powder-mixed dielectric in electrical discharge machining showed that it is one of the processing methods with high efficiency. This article reports on the results of surface quality of mold steels after powder-mixed electrical discharge machining using titanium powder in fine machining. The process parameters such as electrode material, workpiece material, electrode polarity, pulse on-time, pulse off-time, current, and titanium powder concentration were considered in the research. These materials are most commonly used with die-sinking electrical discharge machining in the manufacture of molds and has been selected as the subject of research: workpiece materials were SKD61, SKT4, and SKD11 mold steels, and electrode materials were copper and graphite. Taguchi’s method is used to design experiments. The influence of the parameters on surface roughness was evaluated through the average value and ratio (S/N. Results showed that the parameters such as electrical current, electrode material, pulse on-time, electrode polarity, and interaction between the electrode materials with concentration powder mostly influence surface roughness and surface roughness at optimal parameters SRopt = 1.73 ± 0.39 µm. Analysis of the surface layer after powder-mixed electrical discharge machining using titanium powder in optimal conditions has shown that the white layer with more uniform thickness and increased hardness (≈861.0 HV, and amount and size of microscopic cracks, is reduced. This significantly leads to the increase in the quality of the surface layer.

  9. The effect of reduced oxygen content powder on the impact toughness of 316 steel powder joined to 316 steel by low temperature HIP

    International Nuclear Information System (INIS)

    Lind, Anders; Sundstroem, Johan

    2004-11-01

    During the manufacture of the blanket modules, 316L steel powder is simultaneously consolidated and joined to tubes and blocks of 316L materials by Hot Isostatic Pressing (HIP). The high processing temperature can detrimentally increase the grain size of the water cooling tubes in the structure and the blocks reducing their strength. It is well known that surface oxides on the powder particles negatively influence the impact toughness of material and joints consolidated in this way. By increasing the consolidation temperature the metallurgical bonding is improved, due to a redistribution of oxygen within the oxide layer towards more discrete oxide particles. In order to get acceptable mechanical properties of materials produced at a low HIP temperature the oxygen content on the powder surfaces needs to be reduced. The aim of this new techniques to reduce the oxygen content of the metal powder. The influence on Charpy impact energy and tensile strength were demonstrated

  10. The effect of intermediate stop and ball size in fabrication of recycled steel powder using ball milling from machining steel chips

    International Nuclear Information System (INIS)

    Fitri, M.W.M.; Shun, C.H.; Rizam, S.S.; Shamsul, J.B.

    2007-01-01

    A feasibility study for producing recycled steel powder from steel scrap by ball milling was carried out. Steel scrap from machining was used as a raw material and was milled using planetary ball milling. Three samples were prepared in order to study the effect of intermediate stop and ball size. Sample with intermediate stop during milling process showed finer particle size compared to the sample with continuous milling. Decrease in the temperature of the vial during the intermediate stop milling gives less ductile behaviour to the steel powder, which is then easily work-hardened and fragmented to fine powder. Mixed small and big size ball give the best production of recycled steel powder where it gives higher impact force to the scrap and accelerate the fragmentation of the steel scrap into powder. (author)

  11. Properties of Ni-Mo steel prepared from premixed and prealloyed powder in sintered, forged and annealed state

    International Nuclear Information System (INIS)

    Salak, A.; Hrubjak, M.

    Investigated were 2Ni-0.5Mo steel specimens made of premixed powder on the base of Hametag iron and of ATST-A prealloyed powder with graphite additives of 0.3% and 0.8%. In the sintered and forged state, specimens prepared from premixed powder exhibit better strength properties compared with those made of prealloyed ATST-A powder. After annealing, the carbon content has a different bearing on both systems. With premixed powder steel of 0.6% carbon content the tensile strength amounts to 1,800 MPa whilst that of prealloyed steel specimens with 0.2% carbon content is about 1,240 MPa. (author)

  12. Development of Oxide Dispersion Strengthened (ODS) Ferritic Steel Through Powder Forging

    Science.gov (United States)

    Kumar, Deepak; Prakash, Ujjwal; Dabhade, Vikram V.; Laha, K.; Sakthivel, T.

    2017-04-01

    Oxide dispersion strengthened (ODS) ferritic steels are candidates for cladding tubes in fast breeder nuclear reactors. In this study, an 18%Cr ODS ferritic steel was prepared through powder forging route. Elemental powders with a nominal composition of Fe-18Cr-2 W-0.2Ti (composition in wt.%) with 0 and 0.35% yttria were prepared by mechanical alloying in a Simoloyer attritor under argon atmosphere. The alloyed powders were heated in a mild steel can to 1473 K under flowing hydrogen atmosphere. The can was then hot forged. Steps of sealing, degassing and evacuation are eliminated by using powder forging. Heating ODS powder in hydrogen atmosphere ensures good bonding between alloy powders. A dense ODS alloy with an attractive combination of strength and ductility was obtained after re-forging. On testing at 973 K, a loss in ductility was observed in yttria-containing alloy. The strength and ductility increased with increase in strain rate at 973 K. Reasons for this are discussed. The ODS alloy exhibited a recrystallized microstructure which is difficult to achieve by extrusion. No prior particle boundaries were observed after forging. The forged compacts exhibited isotropic mechanical properties. It is suggested that powder forging may offer several advantages over the traditional extrusion/HIP routes for fabrication of ODS alloys.

  13. Control of the Nano-Particle Weight Ratio in Stainless Steel Micro and Nano Powders by Radio Frequency Plasma Treatment

    OpenAIRE

    Dong-Yeol Yang; Youngja Kim; Min Young Hur; Hae June Lee; Yong-Jin Kim; Tae-Soo Lim; Ki-Bong Kim; Sangsun Yang

    2015-01-01

    This study describes how to make stainless steel hybrid micro-nano-powders (a mixture of micro-powder and nano-powder) using an in situ one-step process via radio frequency (RF) thermal plasma treatment. Nano-particles attached to micro-powders were successfully prepared by RF thermal plasma treatment of stainless steel powder with an average size of 35 μm. The ratio of nano-powders is estimated with a two-dimensional fluid simulation that calculates the temperature profile influencing the r...

  14. Making Self-Lubricating Parts By Powder Metallurgy

    Science.gov (United States)

    Sliney, Harold E.; Dellacorte, Christopher

    1990-01-01

    Compositions and parameters of powder-metallurgical fabrication processes determined for new class of low-friction, low-wear, self-lubricating materials. Used in oxidizing or reducing atmospheres in bearings and seals, at temperatures from below 25 degrees C to as high as 900 degrees C. Thick parts made with minimal waste.

  15. The Promotion of Liquid Phase Sintering of Boron-Containing Powder Metallurgy Steels by Adding Nickel

    Directory of Open Access Journals (Sweden)

    Wu Ming-Wei

    2015-01-01

    Full Text Available Boron is a feasible alloying element for liquid phase sintering (LPS of powder metallurgy (PM steels. This study investigated the effect of nickel (Ni, which is widely used in PM steels, on the liquid phase sintering of boron-containing PM steels. The results showed that the addition of 1.8wt% Ni does not apparently modify the LPS mechanism of boron-containing PM steels. However, adding 1.8wt% Ni slightly improves the LPS densification from 0.60 g/cm3 to 0.65 g/cm3, though the green density is reduced. Thermodynamic simulation demonstrated that the presence of Ni lowers the temperature region of liquid formation, resulting in enhanced LPS densification. Moreover, original graphite powders remains in the steels sintered at 1200 ºC. These graphite powders mostly dissolve into the base iron powder when the sintering temperature is increased from 1200 ºC to 1250 ºC.

  16. A Metallurgical Evaluation of the Powder-Bed Laser Additive Manufactured 4140 Steel Material

    Science.gov (United States)

    Wang, Wesley; Kelly, Shawn

    2016-03-01

    Using laser powder bed fusion (PBF-L) additive manufacturing (AM) process for steel or iron powder has been attempted for decades. This work used a medium carbon steel (AISI 4140) powder to explore the feasibility of AM. The high carbon equivalent of 4140 steel (CEIIW ≈ 0.83) has a strong tendency toward cold cracking. As such, the process parameters must be carefully controlled to ensure the AM build quality. Through an orthogonally designed experimental matrix, a laser-welding procedure was successfully developed to produce 4140 steel AM builds with no welding defects. In addition, the microstructure and micro-cleanliness of the as-welded PBF-L AM builds were also examined. The results showed an ultra-fine martensite lath structure and an ultra-clean internal quality with minimal oxide inclusion distribution. After optimizing the PBF-L AM process parameters, including the laser power and scan speed, the as-welded AM builds yielded an average tensile strength higher than 1482 MPa and an average 33 J Charpy V-notch impact toughness at -18°C. The surface quality, tensile strength, and Charpy V-notch impact toughness of AM builds were comparable to the wrought 4140 steel. The excellent mechanical properties of 4140 steel builds created by the PBF-L AM AM process make industrial production more feasible, which shows great potential for application in the aerospace, automobile, and machinery industries.

  17. Effects of Admixed Titanium on Densification of 316L Stainless Steel Powder during Sintering

    Directory of Open Access Journals (Sweden)

    Aslam Muhammad

    2014-07-01

    Full Text Available Effects of admixed titanium on powder water atomized (PWA and powder gas atomized (PGA 316L stainless steel (SS have been investigated in terms of densification. PGA and PWA powders, having different shapes and sizes, were cold pressed and sintered in argon atmosphere at 1300°C. The admixed titanium compacts of PGA and PWA have shown significant effect on densification through formation of intermetallic compound and reducing porosity during sintering process. PWA, having particle size 8 μm, blended with 1wt% titanium has exhibited higher sintered density and shrinkage as compared to gas atomized powder compacts. Improved densification of titanium blended PGA and PWA 316L SS at sintering temperature 1300°C is probably due to enhanced diffusion kinetics resulting from stresses induced by concentration gradient in powder compacts.

  18. Spheroidization by Plasma Processing and Characterization of Stainless Steel Powder for 3D Printing

    Science.gov (United States)

    Ji, Lina; Wang, Changzhen; Wu, Wenjie; Tan, Chao; Wang, Guoyu; Duan, Xuan-Ming

    2017-10-01

    Stainless steel 316L (SS 316L) powder was spheroidized by plasma processing to improve its suitability for powder 3D printing. The obtained spheroidized (sphero) powder was characterized in terms of its crystalline phases, elemental composition, morphology, particle size and distribution, light absorption, and flow properties. The elemental composition of the sphero powder met the Chinese standard for SS 316L except for its Si content. The volume fraction of ferrite increased after plasma processing. Furthermore, plasma processing was shown to not only reduce the mean size of the particles in the size range of 10 to 100 μm but also generate particles in the size range of 0.1 to 10 μm. The smaller particles filled the voids among larger particles, increasing the powder density. The light absorption was also increased owing to enhanced internal reflection. Although the basic flow energy decreased after plasma processing, the flow function (FF) value was smaller for the sphero powder, indicating a lower flowability of the sphero powder. However, the density of SS 316L pieces printed with commercial and sphero powders was 98.76 pct and 98.16 pct of the SS 316L bulk density, respectively, indicating the suitability of the sphero powder for 3D printing despite an FF below 10.

  19. Formation of oxides particles in ferritic steel by using gas-atomized powder

    International Nuclear Information System (INIS)

    Liu Yong; Fang Jinghua; Liu Donghua; Lu Zhi; Liu Feng; Chen Shiqi; Liu, C.T.

    2010-01-01

    Oxides dispersion strengthened (ODS) ferritic steel was prepared by using gas-atomized pre-alloyed powder, without the conventional mechanical alloying process. By adjusting the volume content of O 2 in the gas atmosphere Ar, the O level in the ferritic powder can be well controlled. The O dissolves uniformly in the ferritic powder, and a very thin layer of oxides forms on the powder surface. After hot deformation, the primary particle boundaries, which retain after sintering, can be disintegrated and near fully dense materials can be obtained. The oxide layer on the powder surface has a significant effect on the microstructural evolution. It may prevent the diffusion in between the primary particles during sintering, and may dissolve and/or induce the nucleation of new oxides in the ferritic matrix during recrystallization. Two kinds of oxide particles are found in the ferritic steel: large (∼100 nm) Ti-rich and fine (10-20 nm) Y-Ti-rich oxides. The hardness of the ferritic steel increases with increasing annealing temperatures, however, decreases at 1400 deg. C, due to the coarsening of precipitates and the recrystallization microstructure.

  20. Characterization of aluminum/steel components from recycled swarf using the powder metallurgy as technique

    International Nuclear Information System (INIS)

    Souza, V.E.S.; Masieiro, F.R.S.; Lourenco, J.M.; Felipe, R.C.T.S.

    2009-01-01

    Full text: The powder metallurgy process consists to produce metallic or ceramic components through pressure in a powder mass. These components will be submitted to a sintering temperature in order to consolidate them and then improve their mechanical proprieties. The industry is responsible for the swarf generation from different manufacture process. This paper has main goal the reutilization of aluminum and steel swarf using the powder metallurgy as technique. The methodology used in this work consists to compact Al 6060 plus steel SAE 1045 as reinforce material at 250MPa, 400MPa and 600MPa. The composition about these compacted will be 30%, 40%, 50% of steel into aluminum matrix. In this way will be analyze the hardness as function of the compressibility and quantity of steel. The samples will be processed at 500°C during 45 minutes using a resistive furnace in a hydrogen atmosphere. Micrographs of the sintered samples will be obtained by using a Scanning Electron Microscope and Optic Microscope. X-rays diffraction will be also used to characterize the phases found to due diffusivity between the steel and aluminum. (author)

  1. Near net shape of powder metallurgy rhenium parts

    International Nuclear Information System (INIS)

    Leonhardt, T.; Downs, J.

    2001-01-01

    In this paper, a description of the stages of processing necessary to produce a near-net shape (NNS) powder metallurgy (PM) rhenium component through the use of cold isostatic pressing (CIP) to form a complex shape will be explained. This method was primarily developed for the production of the 440 N and 490 N liquid apogee engine combustion chambers used in satellite positioning systems. The CIP to NNS process has been used in the manufacture and production of other rhenium aerospace components as well. Cold isostatic pressing (CIP) to a near net shape utilizing a one or two-part mandrel greatly reduces the quantity of rhenium required to produce the component, and also significantly reduces the number of secondary machining operations necessary to complete the manufacturing process. Further, the developments in near-net shape powder metallurgy rhenium manufacturing techniques have generated significant savings in the area of both time and budget. Overall, cost declined by as much as 35 % for the quantity of rhenium chambers, and manufacturing time was decreased by 30-40 %. The quantity of rhenium metal powder used to produce a rhenium chamber was reduced by approximately 70 %, with a subsequent reduction of nearly 50 % in secondary machining operation schedules. Thus, it is apparent that the overall savings provided by the production of near-net shape powder metallurgy rhenium components will be more than merely another aspect of any project involving high temperature applications, it will constitute significant benefit. (author)

  2. Improvement of deposition efficiency and control of hardness for cold-sprayed coatings using high carbon steel/mild steel mixture powder

    International Nuclear Information System (INIS)

    Ogawa, Kazuhiro; Amao, Satoshi; Yokoyama, Nobuyuki; Ootaki, Kousuke

    2011-01-01

    In this study, in order to make high carbon steel coating by cold spray technique, spray conditions such as carrier gas temperature and pressure etc. were investigated. And also, in order to improve deposition efficiency and control coating hardness of cold-sprayed high carbon steel, high carbon and mild steel mixed powder and its mechanical milled powder were developed and were optimized. By using the cold-spray technique, particle deposition of a high carbon steel was successful. Moreover, by applying mixed and mechanical milled powders, the porosity ratio was decreased and deposition efficiency was improved. Furthermore, using these powders, it is possible to control the hardness value. Especially, when using mechanical milled powder, it is very difficult to identify the interface between the coating and the substrate. The bonding between the coating and the substrate is thus considered to be excellent. (author)

  3. Microstructural evolution of ferritic steel powder during mechanical alloying with iron oxide

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Yuren; Liu, Yong; Liu, Donghua; Tang, Bei [Central South Univ., State Key Lab. of Powder Metallurgy, Changsha (China); Liu, C.T. [The Hong Kong Polytechnic Univ., Dept. of Mechanical Engineering, Hong Kong (China)

    2011-02-15

    Mechanical alloying of mixed powders is of great importance for preparing oxide dispersion strengthened ferritic steels. In this study, the microstructural evolution of ferritic steel powder mixed with TiH{sub x}, YH{sub 2} and Fe{sub 2}O{sub 3} in the process of mechanical alloying is systematically investigated by using X-ray diffraction analysis, scanning electron microscopy, transmission electron microscopy and microhardness tests. It is found that titanium, yttrium hydrides and iron oxide are completely dissolved during milling, and homogeneous element distribution can be achieved after milling for 12 h. The disintegration of the composite powder particles occurs at 24 h and reaches the balance of welding and fracturing after 36 h. The oxygen content increases sharply with the disintegration of powder particles due to the absorption of oxygen at the solid/gas interface from the milling atmosphere, which is the main source of extra oxygen in the milled powder. Grain refinement down to nanometer level occurs due to the severe plastic deformation of particles; however, the grain size does not change much with further disintegration of particles. The hardness increases with milling time and then becomes stable during further milling. The study indicates that the addition of iron oxide and hydrides may be more beneficial for the dispersion and homogenization of chemical compositions in the powder mixture, thus shortening the mechanical alloying process. (orig.)

  4. Microstructure and properties of powder metallurgy (PM) high alloy tool steels

    International Nuclear Information System (INIS)

    Wojcieszynski, A.L.; Eisen, W.B.; Dixon, R.B.

    1998-01-01

    Particle metallurgy (PM) processing is currently the primary manufacturing method used to produce advanced high alloy tool steel compositions for use in industrial tooling applications. This process involves gas atomization of the pre-alloyed melt to form spherical powders and consolidation by HIP to full density. The HIP product may be used directly in select applications, but is usually subjected to additional forging to improve properties and produce a wide range of bar and plate sizes. Compared to ingot-cast tool steels, PM tool steels have very homogeneous microstructures with very fine carbide and sulfide size distributions, free from carbide banding, which results in improved machinability, grindability, and mechanical properties. In addition, this technology enables the development of advanced tool steel compositions which could not be economically produced by conventional steelmaking. (author)

  5. Characterization of Tool Wear in High-Speed Milling of Hardened Powder Metallurgical Steels

    Directory of Open Access Journals (Sweden)

    Fritz Klocke

    2011-01-01

    Full Text Available In this experimental study, the cutting performance of ball-end mills in high-speed dry-hard milling of powder metallurgical steels was investigated. The cutting performance of the milling tools was mainly evaluated in terms of cutting length, tool wear, and cutting forces. Two different types of hardened steels were machined, the cold working steel HS 4-2-4 PM (K490 Microclean/66 HRC and the high speed steel HS 6-5-3 PM (S790 Microclean/64 HRC. The milling tests were performed at effective cutting speeds of 225, 300, and 400 m/min with a four fluted solid carbide ball-end mill (0 = 6, TiAlN coating. It was observed that by means of analytically optimised chipping parameters and increased cutting speed, the tool life can be drastically enhanced. Further, in machining the harder material HS 4-2-4 PM, the tool life is up to three times in regard to the less harder material HS 6-5-3 PM. Thus, it can be assumed that not only the hardness of the material to be machined plays a vital role for the high-speed dry-hard cutting performance, but also the microstructure and thermal characteristics of the investigated powder metallurgical steels in their hardened state.

  6. A Study on the Effects of the Use of Gas or Water Atomized AISI 316L Steel Powder on the Corrosion Resistance of Laser Deposited Material

    Science.gov (United States)

    Tobar, M. J.; Amado, J. M.; Montero, J.; Yáñez, A.

    Water atomized and gas atomized powders are commonly used in 3D laser manufacturing. Both types of AISI 316L stainless steel powders are available which differ in their manganese content. This is due to specific procedures related to the two different atomization process. The amount of manganese in the laser processed part might have important implications in its corrosion resistance. It could lead to the formation of manganese sulfides (MnS) which are known to be initiation sites for pitting corrosion. In this work, corrosion performance of laser deposited 316L steel using gas and atomized powders is compared by means of potentiodynamic polarization tests in 0.35%wt. NaCL solution. Worse performance of the gas atomized samples is observed as with respect to the water atomized ones in terms of polarization resistance, corrosion rate and pitting susceptibility.

  7. Characterization of 17-4PH stainless steel powders produced by supersonic gas atomization

    Science.gov (United States)

    Zhao, Xin-Ming; Xu, Jun; Zhu, Xue-Xin; Zhang, Shao-Ming; Zhao, Wen-Dong; Yuan, Guo-Liang

    2012-01-01

    17-4PH stainless steel powders were prepared using a supersonic nozzle in a close-coupled gas atomization system. The characteristics of powder particles were carried out by means of a laser particle size analyzer, scanning electron microscopy (SEM), and the X-ray diffraction (XRD) technique. The results show that the mass median particle diameter is about 19.15 μm. Three main types of surface microstructures are observed in the powders: well-developed dendrite, cellular, and cellular dendrite structure. The XRD measurements show that, as the particle size decreases, the amount of fcc phase gradually decreases and that of bcc phase increases. The cooling rate is inversely related to the particle size, i.e., it decreases with an increase in particle size.

  8. Remediation of Ni(2+)-contaminated water using iron powder and steel manufacturing byproducts.

    Science.gov (United States)

    Jin, Jian; Zhao, Wei-Rong; Xu, Xin-Hua; Hao, Zhi-Wei; Liu, Yong; He, Ping; Zhou, Mi

    2006-01-01

    Steel manufacturing byproducts and commercial iron powders were tested in the treatment of Ni(2+)-contaminated water. Ni2+ is a priority pollutant of some soils and groundwater. The use of zero-valent iron, which can reduce Ni2+ to its neural form appears to be an alternative approach for the remediation of Ni(2+)-contaminated sites. Our experimental data show that the removal efficiencies of Ni2+ were 95.15% and 94.68% at a metal to solution ratio of 20 g/L for commercial iron powders and the steel manufacturing byproducts in 60 min at room temperature, respectively. The removal efficiency reached 98.20% when the metal to solution ratio was 40 g/L for commercial iron powders. Furthermore, we found that the removal efficiency was also largely affected by other factors such as the pHs of the treated water, the length of time for the metal to be in contact with the Ni(2+)-contaminated water, initial concentrations of metal solutions, particle sizes and the amount of iron powders. Surprisingly, the reaction temperature appeared to have little effect on the removal efficiency. Our study opens the way to further optimize the reaction conditions of in situ remediation of Ni2+ or other heavy metals on contaminated sites.

  9. From the TRIP effect and Quenching and Partitioning steels concepts to the development of new high-performance, lean powder metallurgy steels

    International Nuclear Information System (INIS)

    Torralba, José M.; Navarro, Alfonso; Campos, Mónica

    2013-01-01

    A new method of developing lean powder metallurgy steel is proposed. The microstructure of the steel is tailored by combining two different prealloyed steel grades. These materials open a new niche in steel grades for high-performance applications by using a low-cost method of production. Moreover, an alternative route to developing microstructures suitable for manufacturing TRIP and/or Q and P steels is proposed avoiding some of the complex steps that must otherwise be taken to obtain the proper starting microstructure

  10. From the TRIP effect and Quenching and Partitioning steels concepts to the development of new high-performance, lean powder metallurgy steels

    Energy Technology Data Exchange (ETDEWEB)

    Torralba, José M., E-mail: josemanuel.torralba@imdea.org [IMDEA Materials Institute, C/Eric Kandel 2, 28906 - Getafe, Madrid (Spain); Department of Materials Science and Engineering, Universidad Carlos III Av. Universidad, 30, Leganés (Spain); Navarro, Alfonso; Campos, Mónica [Department of Materials Science and Engineering, Universidad Carlos III Av. Universidad, 30, Leganés (Spain)

    2013-06-20

    A new method of developing lean powder metallurgy steel is proposed. The microstructure of the steel is tailored by combining two different prealloyed steel grades. These materials open a new niche in steel grades for high-performance applications by using a low-cost method of production. Moreover, an alternative route to developing microstructures suitable for manufacturing TRIP and/or Q and P steels is proposed avoiding some of the complex steps that must otherwise be taken to obtain the proper starting microstructure.

  11. Anomalous mass transport in Au/304 stainless steel powder under shock loading

    Energy Technology Data Exchange (ETDEWEB)

    Staudhammer, Karl P.

    2004-01-01

    Dynamic deformation experiments on gold plated 304L stainless steel powders were undertaken using a axial symmetrical implosion geometry. These experiments utilized pressures of 0.08 to 1.0 Mbar and contained a symmetric radial melt region along the central axis of the sample holder. To understand the role of deformation in a porous material, the pressure, and temperature as well as the deformation heat and associated defects must be accounted for. Using a strain controllable shock loading design it was possible to separate and control independently strain and pressure. Thus enabling the ability to control the added heat from the deformation process undergoing compaction/consolidation of the powder. When the added heat of consolidation deformation exceeds the melt temperature of the 304 powders, a melt zone results that can consume large regions of the compact. It is within these regions that very high diffusion of gold into the powder occurs. These anomalous increases have been observed via optical microscopy, scanning electron microscopy and EDAX measurements. Values exceeding 1200 m/sec have been measured and correlated to the powder sizes, size distribution and packing density, concomitant with sample container strains ranging from 2.0% to 26%.

  12. Fabrication of Fe-Cr-Mo powder metallurgy steel via a mechanical-alloying process

    Science.gov (United States)

    Park, Jooyoung; Jeong, Gowoon; Kang, Singon; Lee, Seok-Jae; Choi, Hyunjoo

    2015-11-01

    In this study, we employed a mechanical-alloying process to manufacture low-alloy CrL and CrM steel powders that have similar specifications to their water-atomized counterparts. X-ray diffraction showed that Mo and Cr are alloyed in Fe after four cycles of planetary milling for 1 h at 150 RPM with 15-min pauses between the cycles (designated as P2C4 process). Furthermore, the measured powder size was found to be similar to that of the water-atomized counterparts according to both scanning electron microscope images and laser particle size analysis. The samples were sintered at 1120 °C, after which the P2C4-milled CrL showed similar hardness to that of water-atomized CrL, whereas the P2C4-milled CrM showed about 45% lower hardness than that of its water-atomized counterpart. Water-atomized CrM consists of a well-developed lathtype microstructure (bainite or martensite), while a higher fraction of polygonal ferrite is observed in P2C4-milled CrM. This phase difference causes the reduction of hardness in the P2C4-milled CrM, implying that the phase transformation behavior of specimens produced via powder metallurgy is influenced by the powder fabrication method.

  13. Successive carbon- and boron saturation of KhVG steel in powder mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Alimov, Yu A; Gordienko, S I

    1975-01-01

    Method of successive saturation of KhVG steel with carbon and boron in powder mixtures is described. After carbonization of steel in a charcoal carburator at 930 deg C during 3 hrs a domain of equiaxial large grains is formed there the latter representing carbides of Fe/sub 3/C and (Fe, M)/sub 3/C. The increase of duration of carbonization up to 5 hrs and above results in formation of a cement grid greatly impairing the mechanical properties of the metal. Carbonization is followed by borating in powdered technical boron carbide at 900 deg C for 4 hrs which ensures formation on the sample surface of a borated layer with depth up to 65 mkm covering the carbonized zone. As followed from metallographic and x-ray structural analysis, the borated layer consists of boride needles with complex composition (Fe, Cr, Mn)B. Oil hardening of carbonized KhVG steel from 850 deg C and low-temperature tempering at 180 deg C for 1 hr results in formation in the main metal of martensite-carbide structure and, respectively, in the decrease of the microhardness gradient between the diffusion layers, as compared with borated KhVG steel. Operation tests of strengthened matrices of preforming machines under the conditions of application of dynamic pressing forces up to 1500 kg Fce/cm/sup 2/ demonstrated that the cyclical strength of carboborated coverings is 2.0-3.0 times higher than that of borated ones. The method of carboborating is recommended for strengthening the details of stamp and press tools.

  14. Control of the Nano-Particle Weight Ratio in Stainless Steel Micro and Nano Powders by Radio Frequency Plasma Treatment

    Directory of Open Access Journals (Sweden)

    Dong-Yeol Yang

    2015-11-01

    Full Text Available This study describes how to make stainless steel hybrid micro-nano-powders (a mixture of micro-powder and nano-powder using an in situ one-step process via radio frequency (RF thermal plasma treatment. Nano-particles attached to micro-powders were successfully prepared by RF thermal plasma treatment of stainless steel powder with an average size of 35 μm. The ratio of nano-powders is estimated with a two-dimensional fluid simulation that calculates the temperature profile influencing the rate of surface evaporation. The simulation is conducted to determine the variation of the input power and the distance from the plasma torch to the feeding nozzle. It was demonstrated experimentally that the nano-powder ratio in the micro-nano-powder mixture can be controlled by adjusting the feeding rate, plasma power, feeding position and quenching effect during plasma treatment. The ratio of nano-particles in the micro-nano-powder mixture was controlled in a range from 0.1 (wt. % to 30.7 (wt. %.

  15. Densification behavior of gas and water atomized 316L stainless steel powder during selective laser melting

    Science.gov (United States)

    Li, Ruidi; Shi, Yusheng; Wang, Zhigang; Wang, Li; Liu, Jinhui; Jiang, Wei

    2010-04-01

    The densification during selective laser melting (SLM) process is an important factor determining the final application of SLM-part. In the present work, the densifications under different processing conditions were investigated and the densification mechanisms were elucidated. It was found that the higher laser power, lower scan speed, narrower hatch spacing and thinner layer thickness could enable a much smoother melting surface and consequently a higher densification. The gas atomized powder possessed better densification than water atomized powder, due to the lower oxygen content and higher packing density of gas atomized powder. A large number of regular-shaped pores can be generated at a wider hatch spacing, even if the scanning track is continuous and wetted very well. The densification mechanisms were addressed and the methods for building dense metal parts were also proposed as follows: inhibiting the balling phenomenon, increasing the overlap ratio of scanning tracks and reducing the micro-cracks.

  16. Elucidating the Relations Between Monotonic and Fatigue Properties of Laser Powder Bed Fusion Stainless Steel 316L

    Science.gov (United States)

    Zhang, Meng; Sun, Chen-Nan; Zhang, Xiang; Goh, Phoi Chin; Wei, Jun; Li, Hua; Hardacre, David

    2018-03-01

    The laser powder bed fusion (L-PBF) technique builds parts with higher static strength than the conventional manufacturing processes through the formation of ultrafine grains. However, its fatigue endurance strength σ f does not match the increased monotonic tensile strength σ b. This work examines the monotonic and fatigue properties of as-built and heat-treated L-PBF stainless steel 316L. It was found that the general linear relation σ f = mσ b for describing conventional ferrous materials is not applicable to L-PBF parts because of the influence of porosity. Instead, the ductility parameter correlated linearly with fatigue strength and was proposed as the new fatigue assessment criterion for porous L-PBF parts. Annealed parts conformed to the strength-ductility trade-off. Fatigue resistance was reduced at short lives, but the effect was partially offset by the higher ductility such that comparing with an as-built part of equivalent monotonic strength, the heat-treated parts were more fatigue resistant.

  17. A study on some properties of sintered stainless steel powder compacts with sintering conditions

    International Nuclear Information System (INIS)

    Lee, Bang Sik; Kim, Kwan Hyu; Lee, Doh Jae; Choi, Dap Chun

    1986-01-01

    Sintered specimens for the mechanical and corrosion tests were prepared from 316L, 410L and 434L stainless steel powder compacts with green densities in the range of 6.2∼7.0g/cm 3 . The experimental variables studied were green density, sintering atmosphere, temperature and time, type of lubricant used and cooling rate after sintering operation. Mechanical properties of green compacts and sintered specimens were evaluated. The corrosion tests were performed by potentiodynamic anodic polarization technique. Mechanical properties were very sensitive to the sintering atmosphere; sintering in dissociated ammonia resulted in the strengthing but embrittlement of sintered 316L, 410L and 434L strainless steel powder compacts. Their corrosion resistance was also decreased. The tensile strength was increased with increases in sintering time and temperature while the decreases in the yield strength were observed. The tensile properties of green compacts were shown to closely related to the green density. Addition of 1% acrawax as a lubricant was appeared to be most effective for the improvement of green strength. (Author)

  18. Laser cladding of Colmonoy 6 powder on AISI316L austenitic stainless steel

    International Nuclear Information System (INIS)

    Zhang, H.; Shi, Y.; Kutsuna, M.; Xu, G.J.

    2010-01-01

    Stainless steels are widely used in nuclear power plant due to their good corrosion resistance, but their wear resistance is relatively low. Therefore, it is very important to improve this property by surface treatment. This paper investigates cladding Colmonoy 6 powder on AISI316L austenitic stainless steel by CO 2 laser. It is found that preheating is necessary for preventing cracking in the laser cladding procedure and 450 o C is the proper preheating temperature. The effects of laser power, traveling speed, defocusing distance, powder feed rate on the bead height, bead width, penetration depth and dilution are investigated. The friction and wear test results show that the friction coefficient of specimens with laser cladding is lower than that of specimens without laser cladding, and the wear resistance of specimens has been increased 53 times after laser cladding, which reveals that laser cladding layer plays roles on wear resistance. The microstructures of laser cladding layer are composed of Ni-rich austenitic, boride and carbide.

  19. Surface modification of AISI H13 tool steel by laser cladding with NiTi powder

    Science.gov (United States)

    Norhafzan, B.; Aqida, S. N.; Chikarakara, E.; Brabazon, D.

    2016-04-01

    This paper presents laser cladding of NiTi powder on AISI H13 tool steel surface for surface properties enhancement. The cladding process was conducted using Rofin DC-015 diffusion-cooled CO2 laser system with wavelength of 10.6 µm. NiTi powder was pre-placed on H13 tool steel surface. The laser beam was focused with a spot size of 90 µm on the sample surface. Laser parameters were set to 1515 and 1138 W peak power, 18 and 24 % duty cycle and 2300-3500 Hz laser pulse repetition frequency. Hardness properties of the modified layer were characterized by Wilson Hardness tester. Metallographic study and chemical composition were conducted using field emission scanning electron microscope and energy-dispersive X-ray spectrometer (EDXS) analysis. Results showed that hardness of NiTi clad layer increased three times that of the substrate material. The EDXS analysis detected NiTi phase presence in the modified layer up to 9.8 wt%. The metallographic study shows high metallurgical bonding between substrate and modified layer. These findings are significant to both increased hardness and erosion resistance of high-wear-resistant components and elongating their lifetime.

  20. Determination of impurity elements in steel by spark source mass spectrometry using powdered salts

    International Nuclear Information System (INIS)

    Saito, Morimasa; Sudo, Emiko

    1975-01-01

    Determination of impurity elements in steel by speak source mass spectrometry using powdered salts sample electrode was studied. The instrument used in this study was an AEI MS-7 mass spectrograph and the ion detector was Ilford Q2 photograph. Sample, (0.5--1) gram, was dissolved in hydrochloric acid (1 : 1) or nitric acid (1 : 1) together with yttrium of 1 microgram as the internal standard and then the solution was evaporated to dryness without baking. The salt residues were dried at 70 0 C for 30 minutes under vacuum. They were mixed with an equal amount of graphite powder for 5 minutes in a mixer mill, and then pressed into electrodes. When the relative sensitivity coefficient (Fe=1) was determined by using NBS 460 series standard samples, the results obtained by the proposed method for elements of Mo, Sn, Cu, Cr, Co, Ni, Mn, V, P, Si, and B were in good agreement with those obtained by the conventional method using solid sample electrodes (the solid method) and the precision of this method for 11 elements mentioned above was about 10% better than those of the solid method. However, both the accuracy and precision for elements of Nb, Ti, S and W were not good. This method was applied to the determination of impurities in NBS stainless steel and others. The relative standard deviations were within 20%. (auth.)

  1. Simulation for the powder movement and accumulation in the lower part of blast furnace

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, Takashi [Mineral Resources Research Center, Nippon Steel Technoresearch, Futtsu-shi Chiba (Japan)

    1998-12-31

    The behavior of unburnt char and coke powder in the blast furnace becomes material for discussion with the increase in injection rate of pulverized coal into the blast furnace. An analysis was made as to the simulation of powder accumulation at the deadman and dripping zone of blast furnace by using a powder/gas two-phases flow experimental data. When an excessive powder has penetrated at a low gas velocity, it brings an increment in holdup and the controlling factors are powder/gas ratio and gas velocity. An empirical formula used for estimating the powder hold-up in the blast furnace internal conditions has proposed based on similarity. The controlling {pi} numbers are Floude number, powder/gas ratio and particle diameter ratio of powder/lump. This empirical formular was connected with Blast Furnace Total Model `BRIGHT` for the simulation of powder amount distribution in the lower part of blast furnace. When Powder diameter Dk exceeds 100 {mu} and gas velocity becomes lower than 0.7m/s at PC1OOkg/T, the powder tends to accumulate in the deadman. These results was available for the decision of optimum blast conditions and optimum powder diameter in the high amount of pulverized coal injection to the blast furnace. (author) 10 refs.

  2. Simulation for the powder movement and accumulation in the lower part of blast furnace

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, Takashi [Mineral Resources Research Center, Nippon Steel Technoresearch, Futtsu-shi Chiba (Japan)

    1997-12-31

    The behavior of unburnt char and coke powder in the blast furnace becomes material for discussion with the increase in injection rate of pulverized coal into the blast furnace. An analysis was made as to the simulation of powder accumulation at the deadman and dripping zone of blast furnace by using a powder/gas two-phases flow experimental data. When an excessive powder has penetrated at a low gas velocity, it brings an increment in holdup and the controlling factors are powder/gas ratio and gas velocity. An empirical formula used for estimating the powder hold-up in the blast furnace internal conditions has proposed based on similarity. The controlling {pi} numbers are Floude number, powder/gas ratio and particle diameter ratio of powder/lump. This empirical formular was connected with Blast Furnace Total Model `BRIGHT` for the simulation of powder amount distribution in the lower part of blast furnace. When Powder diameter Dk exceeds 100 {mu} and gas velocity becomes lower than 0.7m/s at PC1OOkg/T, the powder tends to accumulate in the deadman. These results was available for the decision of optimum blast conditions and optimum powder diameter in the high amount of pulverized coal injection to the blast furnace. (author) 10 refs.

  3. Effect of vanadium carbide on dry sliding wear behavior of powder metallurgy AISI M2 high speed steel processed by concentrated solar energy

    Energy Technology Data Exchange (ETDEWEB)

    García, C. [Materials Engineering. E.I.I., Universidad de Valladolid. C/Paseo del cauce 59, 47011 Valladolid (Spain); Romero, A. [E.T.S. Ingenieros Industriales. Instituto de Investigaciones Energéticas y Aplicaciones Industriales (INEI). Universidad de Castilla-La Mancha, Edificio Politécnico, Avda. Camilo José Cela s/n, 13071 Ciudad Real (Spain); Herranz, G., E-mail: gemma.herranz@uclm.es [E.T.S. Ingenieros Industriales. Instituto de Investigaciones Energéticas y Aplicaciones Industriales (INEI). Universidad de Castilla-La Mancha, Edificio Politécnico, Avda. Camilo José Cela s/n, 13071 Ciudad Real (Spain); Blanco, Y.; Martin, F. [Materials Engineering. E.I.I., Universidad de Valladolid. C/Paseo del cauce 59, 47011 Valladolid (Spain)

    2016-11-15

    Mixtures of AISI M2 high speed steel and vanadium carbide (3, 6 or 10 wt.%) were prepared by powder metallurgy and sintered by concentrated solar energy (CSE). Two different powerful solar furnaces were employed to sinter the parts and the results were compared with those obtained by conventional powder metallurgy using a tubular electric furnace. CSE allowed significant reduction of processing times and high heating rates. The wear resistance of compacts was studied by using rotating pin-on-disk and linearly reciprocating ball-on-flat methods. Wear mechanisms were investigated by means of scanning electron microscopy (SEM) observations and chemical inspections of the microstructures of the samples. Better wear properties than those obtained by conventional powder metallurgy were achieved. The refinement of the microstructure and the formation of carbonitrides were the reasons for this. - Highlights: •Powder metallurgy of mixtures of M2 high speed steel and VC are studied. •Some sintering is done by concentrated solar energy. •Rotating pin-on-disk and linearly reciprocating ball-on-flat methods are used. •The tribological properties and wear mechanisms, under dry sliding, are studied.

  4. Stainless steel electrochemical behaviour - application to the decontamination of steel parts contaminated by tritium

    International Nuclear Information System (INIS)

    Bellanger, G.

    1991-01-01

    This purpose of this work is the study of an electrochemical decontamination process of stainless steel in which tritium is present on the surface of the metal, in the oxide layer and in the metal. We have first investigated the behaviour of the oxide layer. Then we have studied the hydrogen evolution, its diffusion and retrodiffusion in the metal. The results are applied to the decontamination of steel parts contamined by tritium. Part of the tritium can be eliminated by reducing the oxyde layer, which contains large amounts of tritium. However, it is more beneficial to electrolyse at the potential at which the H + ions are reduced. The hydrogen on the steel surface enters in the metal and displaces most of tritium located in the metallic layers near the surface. The tritium surface elimination rate is about 95%. The tritium eliminated through electrolysis is only a small fraction of all the tritium contained in the metal. However, according to conservation experiments of parts after electrolysis, it can be concluded that hydrogen, probably more strongly bound than tritium to steel, forms near the surface a barrier that prevents tritium retrodiffusion. Electrolysis appears as a satisfactory process for the surface decontamination of slightly tritiated steel parts. A decontamination automaton based on the preceding results is described using a pad electrolyser. This type of decontamination is little polluting, and the parts can be recycled after the in situ treatment [fr

  5. Effect of milling variables on powder character and sintering behaviour of 434L ferritic stainless steel-Al2O3 composites

    International Nuclear Information System (INIS)

    Mukherjee, S.K.; Upadhyaya, G.S.

    1985-01-01

    Ball milling of ferritic stainless steel-4 vol% Al 2 O 3 powder was carried out for the duration up to 222 ks. Attritor milling of ferritic stainless steel-6 vol% Al 2 O 3 were also carried out for the duration up to 32.4 ks. The characterization of the milled powders were performed. The sintering of ball milled powders was carried out at 1623 K for 10.8 ks in hydrogen. The premix of as received stainless steel powder and the attritor milled powder was also sintered at 1623 K for 3.6 ks in hydrogen. The results showed that an optimum ball milling period in between 58 and 173 ks was required to achieve better sintered properties. The attritor milling was more effective in grinding the powders as compared to ball milling, and the sinterability was also higher for such powders. (author)

  6. Self-protective powder wire for semiautomatic welding of corrosion resistant chromium-nickel type 18-10 steels

    International Nuclear Information System (INIS)

    Lipodaev, V.N.; Kakhovskij, N.I.; Fadeeva, G.V.

    1977-01-01

    Self-protecting NP-ANV1 powder wire has been developed for welding 18-10 type stainless steels. The use of the wire provides for the same running properties of the welds as the TsL-11 electrodes, the welding being 3-5 times more efficient

  7. Some aspects of barreling in sintered plain carbon steel powder metallurgy preforms during cold upsetting

    Directory of Open Access Journals (Sweden)

    Sumesh Narayan

    2012-04-01

    Full Text Available The present research establishes a relationship of bulged diameter with densification and hydrostatic stress in forming of sintered iron (Fe powder metallurgy preforms cold upset under two different frictional conditions, namely, nil/no and graphite lubricant condition. Sintered plain carbon steel cylindrical preforms with carbon (C contents of 0, 0.35, 0.75 and 1.1% with constant initial theoretical density of 84% and aspect ratio of 0.4 and 0.6 were prepared using a suitable die-set assembly on a 1 MN capacity hydraulic press and sintered for 90 minutes at 1200 °C. Each sintered preform was cold upset under two different frictional constraints. It is seen that the degree of bulging reduces with reducing frictional constraints at the die contact surface. Further, it is found that the bulging ratio changed as a function of relative density and hydrostatic stress, respectively, according to the power law equations.

  8. The feasibility analysis for the merger of powder from steel making dedusting system in red ceramic

    International Nuclear Information System (INIS)

    Santos, D.M.S.; Goncalves, S.S.; Mocbel, E.B.B.; Barbosa, A.C.C.; Leal, A.P.S.; Lopes, S.A.; Feitosa, E.F.; Silva, G.S.; Rabelo, A.A.; Fagury Neto, E.

    2016-01-01

    The aim of this work was to study the variation of physical and mechanical properties of ceramics made from two clays with the addition of dedusting system powder from a local steel making plant (SDP), which was added in proportions of 3%, 5 %, 7 % and 10 %. The test-bodies were shaped by uniaxial two-stage pressing, calcined for 2 hours at 300 °C and sintered at temperatures of 900 °C, 1000 °C and 1100 °C. The analyzed properties were apparent density, water absorption, apparent porosity, linear firing shrinkage, flexural strength and plasticity index. The starting materials were characterized by XRF as well, in order to evaluate the chemical composition. This methodology showed good results in the development of future work related to the area. (author)

  9. A powder metallurgy austenitic stainless steel for application at very low temperatures

    CERN Document Server

    Sgobba, Stefano; Liimatainen, J; Kumpula, M

    2000-01-01

    The Large Hadron Collider to be built at CERN will require 1232 superconducting dipole magnets operating at 1.9 K. By virtue of their mechanical properties, weldability and improved austenite stability, nitrogen enriched austenitic stainless steels have been chosen as the material for several of the structural components of these magnets. Powder Metallurgy (PM) could represent an attractive production technique for components of complex shape for which dimension tolerances, dimensional stability, weldability are key issues during fabrication, and mechanical properties, ductility and leak tightness have to be guaranteed during operation. PM Hot Isostatic Pressed test plates and prototype components of 316LN-type grade have been produced by Santasalo Powdermet Oy. They have been fully characterized and mechanically tested down to 4.2 K at CERN. The fine grained structure, the absence of residual stresses, the full isotropy of mechanical properties associated to the low level of Prior Particle Boundaries oxides ...

  10. Preparation of steel slag porous sound-absorbing material using coal powder as pore former.

    Science.gov (United States)

    Sun, Peng; Guo, Zhancheng

    2015-10-01

    The aim of the study was to prepare a porous sound-absorbing material using steel slag and fly ash as the main raw material, with coal powder and sodium silicate used as a pore former and binder respectively. The influence of the experimental conditions such as the ratio of fly ash, sintering temperature, sintering time, and porosity regulation on the performance of the porous sound-absorbing material was investigated. The results showed that the specimens prepared by this method had high sound absorption performance and good mechanical properties, and the noise reduction coefficient and compressive strength could reach 0.50 and 6.5MPa, respectively. The compressive strength increased when the dosage of fly ash and sintering temperature were raised. The noise reduction coefficient decreased with increasing ratio of fly ash and reducing pore former, and first increased and then decreased with the increase of sintering temperature and time. The optimum preparation conditions for the porous sound-absorbing material were a proportion of fly ash of 50% (wt.%), percentage of coal powder of 30% (wt.%), sintering temperature of 1130°C, and sintering time of 6.0hr, which were determined by analyzing the properties of the sound-absorbing material. Copyright © 2015. Published by Elsevier B.V.

  11. Microstructural characterisation of vacuum sintered T42 powder metallurgy high-speed steel after heat treatments

    International Nuclear Information System (INIS)

    Trabadelo, V.; Gimenez, S.; Iturriza, I.

    2009-01-01

    High-speed steel powders (T42 grade) have been uniaxially cold-pressed and vacuum sintered to full density. Subsequently, the material was heat treated following an austenitising + quenching + multitempering route or alternatively austenitising + isothermal annealing. The isothermal annealing route was designed in order to attain a hardness value of ∼50 Rockwell C (HRC) (adequate for structural applications) while the multitempering parameters were selected to obtain this value and also the maximum hardening of the material (∼66 HRC). Microstructural characterisation has been carried out by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The microstructure consists of a ferrous (martensitic or ferritic) matrix with a distribution of second phase particles corresponding to nanometric and submicrometric secondary carbides precipitated during heat treatment together with primary carbides. The identification of those secondary precipitates (mainly M 3 C, M 6 C and M 23 C 6 carbides) has allowed understanding the microstructural evolution of T42 high-speed steel under different processing conditions

  12. Corrosion behavior of powder metallurgical stainless steels in urban and marine environments

    Directory of Open Access Journals (Sweden)

    Bautista, A.

    2006-06-01

    Full Text Available This work studies the development of corrosive attack on sintered components manufactured from AISI 316L and AISI 304L powders. The stainless steels were sintered in vacuum and in nitrogen-base atmosphere at 1,120 and 1,250 ºC, and their corrosion resistance was then analyzed by electrochemical techniques and by atmospheric corrosion testing (two years at urban and marine test sites. Images are shown of the morphology of the attack on the surface of the stainless steels and the development of this attack in the interior of the material.

    Este trabajo estudia el desarrollo del proceso corrosivo en componentes sinterizados fabricados a partir de polvos de AISI 316L y AISI 304L. Los aceros inoxidables fueron sinterizados en vacío y en atmósfera base nitrógeno a 1.120 y 1.250 ºC y, su resistencia a corrosión se ha analizado mediante técnicas electroquímicas y mediante ensayos de corrosión atmosférica (dos años en ambientes urbano y marino. Se muestran imágenes de la morfología del ataque en la superficie de los aceros inoxidables y del desarrollo de este ataque en el interior del material.

  13. Gas atomized precursor alloy powder for oxide dispersion strengthened ferritic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Rieken, Joel [Iowa State Univ., Ames, IA (United States)

    2011-12-13

    Gas atomization reaction synthesis (GARS) was employed as a simplified method for producing precursor powders for oxide dispersion strengthened (ODS) ferritic stainless steels (e.g., Fe-Cr-Y-(Ti,Hf)-O), departing from the conventional mechanical alloying (MA) process. During GARS processing a reactive atomization gas (i.e., Ar-O2) was used to oxidize the powder surfaces during primary break-up and rapid solidification of the molten alloy. This resulted in envelopment of the powders by an ultra-thin (t < 150 nm) metastable Cr-enriched oxide layer that was used as a vehicle for solid-state transport of O into the consolidated microstructure. In an attempt to better understand the kinetics of this GARS reaction, theoretical cooling curves for the atomized droplets were calculated and used to establish an oxidation model for this process. Subsequent elevated temperature heat treatments, which were derived from Rhines pack measurements using an internal oxidation model, were used to promote thermodynamically driven O exchange reactions between trapped films of the initial Cr-enriched surface oxide and internal Y-enriched intermetallic precipitates. This novel microstructural evolution process resulted in the successful formation of nano-metric Y-enriched dispersoids, as confirmed using high energy X-ray diffraction and transmission electron microscopy (TEM), equivalent to conventional ODS alloys from MA powders. The thermal stability of these Y-enriched dispersoids was evaluated using high temperature (1200°C) annealing treatments ranging from 2.5 to 1,000 hrs of exposure. In a further departure from current ODS practice, replacing Ti with additions of Hf appeared to improve the Y-enriched dispersoid thermal stability by means of crystal structure modification. Additionally, the spatial distribution of the dispersoids was found to depend strongly on the original rapidly solidified microstructure. To exploit this, ODS microstructures were engineered from

  14. Impact of Defects in Powder Feedstock Materials on Microstructure of 304L and 316L Stainless Steel Produced by Additive Manufacturing

    Science.gov (United States)

    Morrow, Benjamin M.; Lienert, Thomas J.; Knapp, Cameron M.; Sutton, Jacob O.; Brand, Michael J.; Pacheco, Robin M.; Livescu, Veronica; Carpenter, John S.; Gray, George T.

    2018-05-01

    Recent work in both 304L and 316L stainless steel produced by additive manufacturing (AM) has shown that in addition to the unique, characteristic microstructures formed during the process, a fine dispersion of sub-micron particles, with a chemistry different from either the powder feedstock or the expected final material, are evident in the final microstructure. Such fine-scale features can only be resolved using transmission electron microscopy (TEM) or similar techniques. The present work uses electron microscopy to study both the initial powder feedstock and microstructures in final AM parts. Special attention is paid to the chemistry and origin of these nanoscale particles in several different metal alloys, and their impact on the final build. Comparisons to traditional, wrought material will be made.

  15. Microstructure and Mechanical Property of ODS Ferritic Steels Using Commercial Alloy Powders for High Temperature Service Applications

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Sanghoon; Choi, Byoung-Kwon; Kang, Suk Hoon; Kim, Tae Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Oxide dispersion strengthening (ODS) is one of the promising ways to improve the mechanical property at high temperatures. This is mainly attributed to uniformly distributed nano-oxide particle with a high density, which is extremely stable at the high temperature and acts as effective obstacles when the dislocations are moving. In this study, as a preliminary examination to develop the advanced structural materials for high temperature service applications, ODS ferritic steels were fabricated using commercial alloy powders and their microstructural and mechanical properties were investigated. In this study, ODS ferritic steels were fabricated using commercial stainless steel 430L powder and their microstructures and mechanical properties were investigated. Morphology of micro-grains and oxide particles were significantly changed by the addition of minor alloying elements such as Ti, Zr, and Hf. The ODS ferritic steel with Zr and Hf additions showed ultra-fine grains with fine complex oxide particles. The oxide particles were uniformly located in grains and on the grain boundaries. This led to higher hardness than ODS ferritic steel with Ti addition.

  16. Non destructive testing of green parts in powder metallurgy

    International Nuclear Information System (INIS)

    Accary, A.

    1979-01-01

    The non destructive testing of green parts is potentially advantageous by making possible a lowering of the material and energy consumption as well as the production of parts with a 100% reliability. After a survey of the possible methods and of the defects to be detected it is shown that the goal can be achieved using a 'blind detection' method and that the difficulty of the problem depends on the size and shape of the part to be controled. The gravimetric, dimensional, γ absorption and thermal diffusivity methods are then examined. It is concluded that a unit control is paying only if it allows to enter the high reliability part market. Used statisticaly the non destructive testing of green parts can possibly lead to savings on materials and energy [fr

  17. New sulphiding method for steel and cast iron parts

    Science.gov (United States)

    Tarelnyk, V.; Martsynkovskyy, V.; Gaponova, O.; Konoplianchenko, Ie; Dovzyk, M.; Tarelnyk, N.; Gorovoy, S.

    2017-08-01

    A new method for sulphiding steel and cast iron part surfaces by electroerosion alloying (EEA) with the use of a special electrode is proposed, which method is characterized in that while manufacturing the electrode, on its surface, in any known manner (punching, threading, pulling, etc.), there is formed at least a recess to be filled with sulfur as a consistent material, and then there is produced EEA by the obtained electrode without waiting for the consistent material to become dried.

  18. MECHANICAL PROPERTIES AND CORROSION PROTECTION OF CARBON STEEL COATED WITH AN EPOXY BASED POWDER COATING CONTAINING MONTMORILONITE FUNCTIONALIZED WITH SILANE

    OpenAIRE

    Paula Tibola Bertuoli; Veronica Perozzo Frizzo; Diego Piazza; Lisete Cristine Scienza; Ademir José Zattera

    2014-01-01

    In the present work the MMT-Na+ clay was functionalized with 3-aminopropyltriethoxysilane (γ-APS) and incorporated in a commercial formulation epoxy-based powder coating in a proportion of 8 wt% and applied on 1008 carbon steel panels by electrostatic spray. Adhesion, flexibility, impact and corrosion performance in salt spray chamber tests were performed to evaluate the coatings. The presence of clay did not affect the mechanical properties of the film, however greater subcutaneo...

  19. Laser-Aided Directed Energy Deposition of Steel Powder over Flat Surfaces and Edges.

    Science.gov (United States)

    Caiazzo, Fabrizia; Alfieri, Vittorio

    2018-03-16

    In the framework of Additive Manufacturing of metals, Directed Energy Deposition of steel powder over flat surfaces and edges has been investigated in this paper. The aims are the repair and overhaul of actual, worn-out, high price sensitive metal components. A full-factorial experimental plan has been arranged, the results have been discussed in terms of geometry, microhardness and thermal affection as functions of the main governing parameters, laser power, scanning speed and mass flow rate; dilution and catching efficiency have been evaluated as well to compare quality and effectiveness of the process under conditions of both flat and edge depositions. Convincing results are presented to give grounds for shifting the process to actual applications: namely, no cracks or pores have been found in random cross-sections of the samples in the processing window. Interestingly an effect of the scanning conditions has been proven on the resulting hardness in the fusion zone; therefore, the mechanical characteristics are expected to depend on the processing parameters.

  20. Superplastic Forming of Duplex Stainless Steel for Aerospace Part

    Science.gov (United States)

    Lee, Ho-Sung; Yoon, Jong-Hoon; Yoo, Joon-Tae; Yi, Young-Moo

    2011-08-01

    In this study, the high temperature forming behavior of duplex stainless steel has been characterized and the outer shell of a combustion chamber was fabricated with pressure difference of hot gas. It consists of two parts which are the outer skin made of stainless steel to sustain the internal pressure and the inner shell made of copper alloy for regenerative cooling channels. Two outer skins partitioned to half with respect to the symmetric axis was prepared by hot gas forming process with a maximum pressure of 7 MPa following to FEM analysis. For inner layer, copper alloy was machined for cooling channels and then placed in the gas pressure welding fixture. It is shown that the optimum condition of gas pressure welding is 7 MPa at 890 °C, for one hour. EDX analysis and scanning electron microscope micrograph confirm the atomic diffusion process is observed at the interface and copper atoms diffuse into steel, while iron and chrome atoms diffuse into copper. The result shows that the manufacturing method with superplastic forming and gas pressure welding of steel and copper alloy has been successful for near net shape manufacturing of scaled combustion chamber of launch vehicle.

  1. Anti-carburizing Coating for Resin Sand Casting of Low Carbon Steel Based on Composite Silicate Powder Containing Zirconium

    Directory of Open Access Journals (Sweden)

    Zhan Chunyi

    2018-01-01

    Full Text Available This paper studied the structure and properties of anticarburizing coating based on composite silicate powder containing zirconium by X-ray diffraction analyzer, thermal expansion tester, digital microscope and other equipment. It is introduced that the application example of the coating in the resin-sand casting of ZG1Cr18Ni9Ti stainless steel impeller. The anti-carburizing effect of the coating on the surface layer of the cast is studied by using direct reading spectrometer and spectrum analyzer. The change of the micro-structure of the coating after casting and cooling is observed by scanning electron microscope. The analysis of anti-carburizing mechanism of the coating is presented. The results indicate that the coating possesses excellent suspension property, brush ability, permeability, levelling property and crackresistance. The coating exhibits high strength and low gas evolution. Most of the coating could be automatically stripped off flakily when the casting was shaken out. The casting possesses excellent surface finish and antimetal penetration effect. The carburizing layer thickness of the stainless steel impeller casting with respect to allowable upper limit of carbon content is about 1mm and maximum carburizing rate is 23.6%. The anticarburizing effect of casting surface is greatly improved than that of zircon powder coating whose maximum carburizing rate is 67.9% and the carburizing layer thickness with respect to allowable upper limit of carbon content is greater than 2mm. The composite silicate powder containing zirconium coating substantially reduces the zircon powder which is expensive and radioactive and mainly dependent on imports. The coating can be used instead of pure zircon powder coating to effectively prevent metal-penetration and carburizing of resin-sand-casting surface of low carbon steel, significantly improve the foundry production environment and reduce the production costs.

  2. Stainless steel coatings produced through atmospheric plasma spraying study of in flight powder behavior and coating structure

    International Nuclear Information System (INIS)

    Denoirjean, A.; Denoirjean, P.; Fauchais, P.; Labbe, J.C.; Khan, A.A.

    2005-01-01

    The Stainless Steel coatings deposited through Atmospheric Plasma Spraying over mild steel surface present an interest from commercial point of view, especially for the applications where corrosion resistance or inertness towards severe environment is required. Atmospheric Plasma Spraying is fast and relatively less expensive choice as compared to Vacuum Plasma Spraying, the only limitation being the extremely reactive nature of metallic powders used. A study of the behaviour of metallic powders within an Atmospheric Plasma Jet is presented in view of better understanding and eventual improvement in coating properties. Metallic powder particles show very interesting features when individual particles are collected after passing them through a DC Blown Arc Thermal Plasma Jet under Atmospheric Pressure. The spraying was carried out under air which makes the significance of these results even more interesting from the industrial point of view. Proper control of Spraying Parameters can help produce Stainless Steel coatings of reasonably low porosity and a typical lamellar microstructure. The results of SEM, AFM and XRD are discussed. A strange oxidation phenomenon under highly non equilibrium conditions is observed. (author)

  3. Effects of Magnetite Aggregate and Steel Powder on Thermal Conductivity and Porosity in Concrete for Nuclear Power Plant

    Directory of Open Access Journals (Sweden)

    Han-Seung Lee

    2016-01-01

    Full Text Available Among many engineering advantages in concrete, low thermal conductivity is an attractive property. Concrete has been widely used for nuclear vessels and plant facilities for its excellent radiation shielding. The heat isolation through low thermal conductivity is actually positive for nuclear power plant concrete; however the property may cause adverse effect when fires and melt-down occur in nuclear vessel since cooling down from outer surface is almost impossible due to very low thermal conductivity. If concrete containing atomic reactor has higher thermal conductivity, the explosion risk of conductive may be partially reduced. This paper presents high thermally conductive concrete development. For the work, magnetite with varying replacements of normal aggregates and steel powder of 1.5% of volume are considered, and the equivalent thermal conductivity is evaluated. Only when the replacement ratio goes up to 30%, thermal conductivity increases rapidly to 2.5 times. Addition of steel powder is evaluated to be effective by 1.08~1.15 times. In order to evaluate the improvement of thermal conductivity, several models like ACI, DEMM, and MEM are studied, and their results are compared with test results. In the present work, the effects of steel powder and magnetite aggregate are studied not only for strength development but also for thermal behavior based on porosity.

  4. Experimental and Simulation Analysis of Hot Isostatic Pressing of Gas Atomized Stainless Steel 316L Powder Compacts

    International Nuclear Information System (INIS)

    Lin, Dongguo; Park, Seong Jin; Ha, Sangyul; Shin, Youngho; Park, Dong Yong; Chung, Sung Taek; Bollina, Ravi; See, Seongkyu

    2016-01-01

    In this work, both experimental and numerical studies were conducted to investigate the densification behavior of stainless steel 316L (STS 316L) powders during hot isostatic pressing (HIP), and to characterize the mechanical properties of HIPed specimens. The HIP experiments were conducted with gas atomized STS 316L powders with spherical particle shapes under controlled pressure and temperature conditions. The mechanical properties of HIPed samples were determined based on a series of tensile tests, and the results were compared to a reference STS 316L sample prepared by the conventional process, i.e., extrusion and annealing process. Corresponding microstructures before and after tensile tests were observed using scanning electron microscopy and their relationships to the mechanical properties were addressed. Furthermore, a finite element simulation based on the power-law creep model was carried out to predict the density distribution and overall shape change of the STS316L powder compact during HIP process, which agreed well with the experimental results.

  5. Experimental and Simulation Analysis of Hot Isostatic Pressing of Gas Atomized Stainless Steel 316L Powder Compacts

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Dongguo; Park, Seong Jin [Pohang University of Science and Technology, Pohang (Korea, Republic of); Ha, Sangyul [Samsung Electro-Mechanics, Suwon (Korea, Republic of); Shin, Youngho [Doosan Heavy Industries and Construction Co., Ltd., Changwon (Korea, Republic of); Park, Dong Yong [Korea Institute of Energy Research, Daejeon (Korea, Republic of); Chung, Sung Taek [CetaTech Inc., Sacheon (Korea, Republic of); Bollina, Ravi [Bahadurpally Jeedimetla, Hyderabad (India); See, Seongkyu [POSCO, Pohang (Korea, Republic of)

    2016-10-15

    In this work, both experimental and numerical studies were conducted to investigate the densification behavior of stainless steel 316L (STS 316L) powders during hot isostatic pressing (HIP), and to characterize the mechanical properties of HIPed specimens. The HIP experiments were conducted with gas atomized STS 316L powders with spherical particle shapes under controlled pressure and temperature conditions. The mechanical properties of HIPed samples were determined based on a series of tensile tests, and the results were compared to a reference STS 316L sample prepared by the conventional process, i.e., extrusion and annealing process. Corresponding microstructures before and after tensile tests were observed using scanning electron microscopy and their relationships to the mechanical properties were addressed. Furthermore, a finite element simulation based on the power-law creep model was carried out to predict the density distribution and overall shape change of the STS316L powder compact during HIP process, which agreed well with the experimental results.

  6. Joining of CBN abrasive grains to medium carbon steel with Ag-Cu/Ti powder mixture as active brazing alloy

    International Nuclear Information System (INIS)

    Ding, W.F.; Xu, J.H.; Shen, M.; Su, H.H.; Fu, Y.C.; Xiao, B.

    2006-01-01

    In order to develop new generation brazed CBN grinding wheels, the joining experiments of CBN abrasive grains and medium carbon steel using the powder mixture of Ag-Cu alloy and pure Ti as active brazing alloy are carried out at elevated temperature under high vacuum condition. The relevant characteristics of the special powder mixture, the microstructure of the interfacial region, which are both the key factors for determining the joining behavior among the CBN grains, the filler layer and the steel substrate, are investigated extensively by means of differential thermal analysis (DTA), scanning electron microscope (SEM) and energy dispersion spectrometer (EDS), as well X-ray diffraction (XRD) analysis. The results show that, similar to Ag-Cu-Ti filler alloy, Ag-Cu/Ti powder mixture exhibits good soakage capability to CBN grains during brazing. Moreover, Ti in the powder mixture concentrates preferentially on the surface of the grains to form a layer of needlelike Ti-N and Ti-B compounds by chemical metallurgic interaction between Ti, N and B at high temperature. Additionally, based on the experimental results, the brazing and joining mechanism is deeply discussed in a view of thermodynamic criterion and phase diagram of Ti-B-N ternary system

  7. The study of the laser parameters and environment variables effect on mechanical properties of high compact parts elaborated by selective laser melting 316L powder

    International Nuclear Information System (INIS)

    Zhang, Baicheng; Dembinski, Lucas; Coddet, Christian

    2013-01-01

    In this work, a systematic analysis of the main parameters for the selective laser melting (SLM) of a commercial stainless steel 316L powder was conducted to improve the mechanical properties and dimensional accuracy of the fabricated parts. First, the effects of the processing parameters, such as the laser beam scanning velocity, laser power, substrate condition and thickness of the powder layer, on the formation of single tracks for achieving a continuous melting and densification of the material were analysed. Then, the influence of the environmental conditions (gas nature) and of the preheating temperature on the density and dimensional accuracy of the parts was considered. The microstructural features of the SLM SS 316L parts were carefully observed to elucidate the melting-solidification mechanism and the thermal history, which are the basis of the manufacturing process. Finally, the mechanical properties of the corresponding material were also determined

  8. XPS and SEM analysis of the surface of gas atomized powder precursor of ODS ferritic steels obtained through the STARS route

    Science.gov (United States)

    Gil, E.; Cortés, J.; Iturriza, I.; Ordás, N.

    2018-01-01

    An innovative powder metallurgy route to produce ODS FS, named STARS, has succeeded in atomizing steel powders containing the oxide formers (Y and Ti) and, hence, avoids the mechanical alloying (MA) step to dissolve Y in the matrix. A metastable oxide layer forms at the surface of atomized powders and dissociates during HIP consolidation at high temperatures, leading to precipitation of more stable Y-Ti-O nanoparticles.

  9. Powder metallurgy Rene 95 rotating turbine engine parts, volume 2

    Science.gov (United States)

    Wilbers, L. G.; Redden, T. K.

    1981-01-01

    A Rene 95 alloy as-HIP high pressure turbine aft shaft in the CF6-50 engine and a HIP plus forged Rene 95 compressor disk in the CFM56 engine were tested. The CF6-50 engine test was conducted for 1000 C cycles and the CFM56 test for 2000 C cycles. Post test evaluation and analysis of the CF6-50 shaft and the CFM56 compressor disk included visual, fluorescent penetrant, and dimensional inspections. No defects or otherwise discrepant conditions were found. These parts were judged to have performed satisfactorily.

  10. Depositing laser-generated nanoparticles on powders for additive manufacturing of oxide dispersed strengthened alloy parts via laser metal deposition

    Science.gov (United States)

    Streubel, René; Wilms, Markus B.; Doñate-Buendía, Carlos; Weisheit, Andreas; Barcikowski, Stephan; Henrich Schleifenbaum, Johannes; Gökce, Bilal

    2018-04-01

    We present a novel route for the adsorption of pulsed laser-dispersed nanoparticles onto metal powders in aqueous solution without using any binders or surfactants. By electrostatic interaction, we deposit Y2O3 nanoparticles onto iron-chromium based powders and obtain a high dispersion of nano-sized particles on the metallic powders. Within the additively manufactured component, we show that the particle spacing of the oxide inclusion can be adjusted by the initial mass fraction of the adsorbed Y2O3 particles on the micropowder. Thus, our procedure constitutes a robust route for additive manufacturing of oxide dispersion-strengthened alloys via oxide nanoparticles supported on steel micropowders.

  11. MECHANICAL PROPERTIES AND CORROSION PROTECTION OF CARBON STEEL COATED WITH AN EPOXY BASED POWDER COATING CONTAINING MONTMORILONITE FUNCTIONALIZED WITH SILANE

    Directory of Open Access Journals (Sweden)

    Paula Tibola Bertuoli

    2014-06-01

    Full Text Available In the present work the MMT-Na+ clay was functionalized with 3-aminopropyltriethoxysilane (γ-APS and incorporated in a commercial formulation epoxy-based powder coating in a proportion of 8 wt% and applied on 1008 carbon steel panels by electrostatic spray. Adhesion, flexibility, impact and corrosion performance in salt spray chamber tests were performed to evaluate the coatings. The presence of clay did not affect the mechanical properties of the film, however greater subcutaneous migration was assessed after the completion of salt spray testing, which can compromise the use of paints obtained as primers.

  12. The compatibility of stainless steels with particles and powders of uranium carbide and low-sulphur UCS fuels

    International Nuclear Information System (INIS)

    Venter, S.

    1978-05-01

    Slightly hyperstoichiometric (U,Pu)C is a potential nuclear fuel for fast breeder reactors. The excess carbon above the stoichiometric amount results in a higher carbon activity in the fuel, and carbon is transferred to the stainless steel cladding, resulting in embrittlement of the cladding. It is with this problem of carbon transfer from the fuel to the cladding that this thesis is concerned. For practical reasons, UC and not (U,Pu)C was used as the fuel. The theory of decarburisation of carbide fuel and the carburisation of stainless steel, the facilities constructed for the project at the Atomic Energy Board, and the experimental techniques used, including preparation of the fuels, are discussed. The effect of a number of variables of uranium carbide fuel on its compatibility behaviour with stainless steels was investigated, as well as the effect om microstructure and type of stainless steel (304, 304 L and 316) on the rate of carburisation. These studies can be briefly summarised under the following headings: powder-particle size; surface oxidation of uranium carbide; preparation temperature of uranium carbide; low sulfur UCS fuels; uranium sulfide and the microstructure and type of steel. The author concludes that: the effect of surface oxidation and particle size must be taken into account when evaluating out-of-pile tests; the possible effects of surface oxidation must be taken into account when considering vibro-compacted carbide fuels; there is no advantage in replacing a fraction of the carbon atoms by sulphur atoms in slightly hyperstoichiometric carbide fuels, and the type and thermo-mechanical treatment of the stainless steel used as cladding material in a fuel pin is not important as far as the rate of carburisation by the fuel is concerned

  13. Employing Ti nano-powder dielectric to enhance surface characteristics in electrical discharge machining of AISI D2 steel

    Energy Technology Data Exchange (ETDEWEB)

    Marashi, Houriyeh, E-mail: houriyeh@marashi.co [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Center of Advanced Manufacturing and Materials Processing (AMMP), 50603 Kuala Lumpur (Malaysia); Sarhan, Ahmed A.D., E-mail: ah_sarhan@yahoo.com [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Center of Advanced Manufacturing and Materials Processing (AMMP), 50603 Kuala Lumpur (Malaysia); Department of Mechanical Engineering, Faculty of Engineering, Assiut University, Assiut 71516 (Egypt); Hamdi, Mohd [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Center of Advanced Manufacturing and Materials Processing (AMMP), 50603 Kuala Lumpur (Malaysia)

    2015-12-01

    Graphical abstract: - Highlights: • We proposed adding Ti nano-powder to dielectric in EDM. • Average and peak-valley surface roughness was improved by 35 and 40%, respectively. • Improvement of up to 69% in material removal rate was obtained. • Enhanced surface morphology and formation of shallower craters were observed. - Abstract: Manufacturing components with superior surface characteristics is challenging when electrical discharge machining (EDM) is employed for mass production. The aim of this research is to enhance the characteristics of AISI D2 steel surface machined with EDM through adding Ti nano-powder to dielectric under various machining parameters, including discharge duration (T{sub on}) and peak current (I). Surface roughness profilometer, FESEM and AFM analysis were utilized to reveal the machined surface characteristics in terms of surface roughness, surface morphology and surface micro-defects. Moreover, EDX analysis was performed in order to evaluate the atomic deposition of Ti nano-powder on the surface. The concentration of Ti nano-powder in dielectric was also examined using ESEM and EDX. According to the results, the addition of Ti nano-powder to dielectric notably enhanced the surface morphology and surface roughness at all machining parameters except T{sub on} = 340 μs. Of these parameters, maximum enhancement was observed at T{sub on} = 210 μs, where the material removal rate and average surface roughness improved by ∼69 and ∼35% for peak current of 6 and 12 A, respectively. Elemental analysis signified negligible Ti deposition on the machined surface while the atomic concentration of Ti was increased around the crack areas.

  14. Research of precise pulse plasma arc powder welding technology of thin-walled inner hole parts

    Institute of Scientific and Technical Information of China (English)

    Li Zhanming; Du Xiaokun; Sun Xiaofeng; Song Wei

    2017-01-01

    The inner hole parts played an oriented or supporting role in engineering machinery and equipment,which are prone to appear surface damages such as wear,strain and corrosion.The precise pulse plasma arc powder welding method is used for surface damage repairing of inner hole parts in this paper.The working principle and process of the technology are illustrated,and the microstructure and property of repairing layer by precise pulse plasma powder welding and CO2 gas shielded welding are tested and observed by microscope,micro hardness tester and X-ray residual stress tester etc.Results showed that the substrate deformation of thin-walled inner hole parts samples by precise pulse plasma powder welding is relatively small.The repair layer and substrate is metallurgical bonding,the transition zones (including fusion zone and heat affected zone) are relatively narrow and the welding quality is good.h showed that the thin-walled inner hole parts can be repaired by this technology and equipment.

  15. The EIS investigation of powder polyester coatings on phosphated low carbon steel: The effect of NaNO2 in the phosphating bath

    International Nuclear Information System (INIS)

    Jegdic, B.V.; Bajat, J.B.; Popic, J.P.; Stevanovic, S.I.; Miskovic-Stankovic, V.B.

    2011-01-01

    Highlights: → The effect of NaNO 2 on surface morphology of iron-phosphate coatings were determined. → Better corrosion stability of polyester coating on phosphated steel without NaNO 2 . → EIS results and microscopic examinations correlate well with adhesion measurements. - Abstract: The effect of different type of iron-phosphate coatings on corrosion stability and adhesion characteristic of top powder polyester coating on steel was investigated. Iron-phosphate coatings were deposited on steel in the novel phosphating bath with or without NaNO 2 as an accelerator. The corrosion stability of the powder polyester coating was evaluated by electrochemical impedance spectroscopy (EIS), adhesion by pull-off and NMP test, while surface morphology of phosphate coatings were investigated by atomic force microscopy (AFM). The adhesion and corrosion stability of powder polyester coatings were improved with pretreatment based on iron-phosphate coating deposited from NaNO 2 -free bath.

  16. Development of Duplex Stainless Steels by Field-Assisted Hot Pressing: Influence of the Particle Size and Morphology of the Powders on the Final Mechanical Properties

    Science.gov (United States)

    García-Junceda, A.; Rincón, M.; Torralba, J. M.

    2018-01-01

    The feasibility of processing duplex stainless steels with promising properties using a powder metallurgical route, including the consolidation by field-assisted hot pressing, is assessed in this investigation. The influence of the particle size and morphology of the raw austenitic and ferritic powders on the final microstructure and properties is also evaluated for an austenitic content of 60 wt pct. In addition, the properties of a new microconstituent generated between the initial constituents are analyzed. The maximum sintered density (98.9 pct) and the best mechanical behavior, in terms of elastic modulus, nanohardness, yield strength, ultimate tensile strength, and ductility, are reached by the duplex stainless steel processed with austenitic and ferritic gas atomized stainless steel powders.

  17. Obtention of polyester-montmorillonite (MMT) nanocomposites applied to powder coating - part 1: nanocomposites characterization

    International Nuclear Information System (INIS)

    Piazza, Diego; Zattera, Ademir J.; Silveira, Debora S.; Lorandi, Natalia P.; Birriel, Eliena J.; Scienza, Lisete C.

    2009-01-01

    The development and obtention of polymeric nanocomposites in the nanotechnology and nanoscience field have attracted great attention due to diversity of potential applications and significant property improvement when compared to conventional composites. In this work, commercial formulations of polyester-based powder coating with 0, 2 and 4% (w/w) of montmorillonite (MMT) were obtained by incorporation in the melting state and characterized by TEM, SEM, DSC, TGA and XRD. The nanocoatings were applied on the mild carbon steel panels by electrostatic paint. The microscopy analysis showed MMT in the coating film, predominantly in the exfoliated form, corroborated by XRD results. Some tactoid structures and a surface film with some defects and porous were also revealed. Progressive reduction of crosslinking temperature and thermal stability was observed in thermal analysis. The best clay dispersion in the coating and a higher quality film were achieved at 2% MMT concentration. (author)

  18. Influence of the Addition of Montmorillonite in an Epoxy Powder Coating Applied on Carbon Steel

    OpenAIRE

    Piazza,Diego; Baldissera,Alessandra Fiorini; Kunst,Sandra Raquel; Rieder,Ester Schmidt; Scienza,Lisete Cristine; Ferreira,Carlos Arthur; Zattera,Ademir José

    2015-01-01

    AbstractPolymer coatings have been used for the corrosion protection of metal surfaces acting as a physical barrier against several corroding media. In spite of the good efficiency of these coatings their resistance is limited due to the presence of localized defects which give place to localized corrosion. Aiming to improve the barrier properties of these coatings this work has proposed the use of nanocomposites as powder coatings based on a standard formulation of a commercial powder varnis...

  19. Influence of Powder Outgassing Conditions on the Chemical, Microstructural, and Mechanical Properties of a 14 wt% Cr Ferritic ODS Steel

    Science.gov (United States)

    Sornin, D.; Giroux, P.-F.; Rigal, E.; Fabregue, D.; Soulas, R.; Hamon, D.

    2017-11-01

    Oxide dispersion-strengthened ferritic stainless steels are foreseen as fuel cladding tube materials for the new generation of sodium fast nuclear reactors. Those materials, which exhibit remarkable creep properties at high temperature, are reinforced by a dense precipitation of nanometric oxides. This precipitation is obtained by mechanical alloying of a powder and subsequent consolidation. Before consolidation, to obtain a fully dense material, the powder is vacuumed to outgas trapped gases and species adsorbed at the surface of the powder particles. This operation is commonly done at moderate to high temperature to evacuate as much as possible volatile species. This paper focuses on the influence of outgassing conditions on some properties of the further consolidated materials. Chemical composition and microstructural characterization of different materials obtained from various outgassing cycles are compared. Finally, impact toughness of those materials is evaluated by using Charpy testing. This study shows a significant influence of the outgassing conditions on the mechanical properties of the consolidated material. However, microstructure and oxygen contents seem poorly impacted by the various outgassing conditions.

  20. Dry sliding wear behaviour of heat treated iron based powder metallurgy steels with 0.3% Graphite + 2% Ni additions

    International Nuclear Information System (INIS)

    Tekeli, S.; Gueral, A.

    2007-01-01

    To determine the effect of various heat treatments on the microstructure and dry sliding wear behaviour of iron based powder metallurgy (PM) steels, atomized iron powder was mixed with 0.3% graphite + 2% Ni. The mixed powders were cold pressed at 700 MPa and sintered at 1200 deg. C for 30 min under pure Ar gas atmosphere. One of the sintered specimens was quenched from 890 deg. C and then tempered at 200 deg. C for 1 h. The other sintered specimens were annealed at different intercritical heat treatment temperatures of 728 and 790 deg. C and water quenched. Through this intercritical annealing heat treatment, the specimens with various ferrite + martensite volume fractions were produced. Wear tests were carried out on the quenched + tempered and intercritically annealed specimens under dry sliding conditions using a pin-on-disk type machine at constant load and speed and the results were compared in terms of microstructure, hardness and wear strength. It was seen that hardness and wear strength in intercritically annealed specimens were higher than that of quenched + tempered specimen

  1. Mechanical properties and corrosion resistance of nitrided or oxinitrided, and powder painted regular and interstitial free (IF) drawing steel sheet

    Energy Technology Data Exchange (ETDEWEB)

    Rogalski, Z.; Latas, Z. [Instytut Mechaniki Precyzyjnej, ul. Duchnicka 3, 01-796 Warszawa (Poland)

    2004-06-01

    Specimens of 0.8 mm thick regular and interstitial free (IF) drawing steel sheet have been nitrided in fluidised bed for 2 hours at 620 C and 560 C with and without a post-oxidation, and slow and accelerated cooling. As a result, surface hardness, yield and tensile strength of the sheets increased considerably without a critical loss of ductility. Resistance welds between the sheets did not lose their original strength after nitriding-oxinitriding. Nitrided-oxinitrided at 620 C and then powder painted sheets, as compared with powder painted raw sheets, were more corrosion resistant in neutral salt spray and climatic tests. Some mechanical and anticorrosion properties of the IF steel sheet that had undergone the nitriding-oxinitriding processes were definitely better than those of equally processed regular steel sheet. (Abstract Copyright [2004], Wiley Periodicals, Inc.) [German] Proben aus 0,8 mm dickem Blech aus Ziehmassenstahl sowie aus Ziehstahl ohne interstitiel geloeste Legierungsanteile (IF), werden im Wirbelbett in 2 Stunden bei 620 und 560 {sup o}C nitriert mit nachfolgenden Oxidierung sowie alternativ ohne Oxidierung und mit langsamer und beschleunigter Abkuehlung. Infolge dessen nehmen die Haerte, die Dehngrenze und die Zugfestigkeit der Bleche zu, ohne kritischen Zaehigkeitsverlust. Die Widerstandsschweisswulste zwischen den Blechen nach dem Nitrieren-Oxinitrieren haben nicht an Festigkeit verloren. Die bei 620 {sup o}C nitrierten-oxinitrierten und nachfolgend mit Pulverlack beschichteten Bleche sind bei den Versuchen in Salznebel und bei klimatischen Versuchen korrosionbestaendiger im Vergleich mit den mit nur Pulverlack beschichteten Rohblechen. Manche der mechanischen und korrosionsverhalten betreffenden Eigenschaften der Bleche aus IF-Staehle sind entscheidend besser als fuer das ebenso behandelte Blech aus Ziehmassenstahl. (Abstract Copyright [2004], Wiley Periodicals, Inc.)

  2. Effect of Sintering Atmosphere and Solution Treatment on Density, Microstructure and Tensile Properties of Duplex Stainless Steels Developed from Pre-alloyed Powders

    Science.gov (United States)

    Murali, Arun Prasad; Mahendran, Sudhahar; Ramajayam, Mariappan; Ganesan, Dharmalingam; Chinnaraj, Raj Kumar

    2017-10-01

    In this research, Powder Metallurgy (P/M) of Duplex Stainless Steels (DSS) of different compositions were prepared through pre-alloyed powders and elemental powders with and without addition of copper. The powder mix was developed by pot mill for 12 h to obtain the homogeneous mixture of pre-alloyed powder with elemental compositions. Cylindrical green compacts with the dimensions of 30 mm diameter and 12 mm height were compacted through universal testing machine at a pressure level of 560 ± 10 MPa. These green compacts were sintered at 1350 °C for 2 h in hydrogen and argon atmospheres. Some of the sintered stainless steel preforms were solution treated at 1050 °C followed by water quenching. The sintered as well as solution treated samples were analysed by metallography examination, Scanning Electron Microscopy and evaluation of mechanical properties. Ferrite content of sintered and solution treated DSS were measured by Fischer Ferritoscope. It is inferred that the hydrogen sintered DSS depicted better density (94% theoretical density) and tensile strength (695 MPa) than the argon sintered steels. Similarly the microstructure of solution treated DSS revealed existence of more volume of ferrite grains than its sintered condition. Solution treated hydrogen sintered DSS A (50 wt% 316L + 50 wt% 430L) exhibited higher tensile strength of 716 MPa and elongation of 17%, which are 10-13% increment than the sintered stainless steels.

  3. Proceedings of 1974 National powder metallurgy conference held at Boston, Massachusetts, April 9--10, 1974

    International Nuclear Information System (INIS)

    Halter, R.F.

    1974-01-01

    Papers given at the conference on process variables in production of P/M parts, properties of 316L steel powder, compacts, properties of highly porous Al powder compacts, properties of Cu infiltrated steel powders, uses of P/M Ti and P/M Al alloys, heat treatment of P/M parts, quality control, safety, ultrasonic testing of P/M parts, P/M sealing, cold pressing P/M, properties of AISI 4027 P/M materials, properties of Ni--Mo steel powders, and state of the industry-1974 are presented

  4. Wear and Adhesive Failure of Al2O3 Powder Coating Sprayed onto AISI H13 Tool Steel Substrate

    Science.gov (United States)

    Amanov, Auezhan; Pyun, Young-Sik

    2016-07-01

    In this study, an alumina (Al2O3) ceramic powder was sprayed onto an AISI H13 hot-work tool steel substrate that was subjected to sanding and ultrasonic nanocrystalline surface modification (UNSM) treatment processes. The significance of the UNSM technique on the adhesive failure of the Al2O3 coating and on the hardness of the substrate was investigated. The adhesive failure of the coating sprayed onto sanded and UNSM-treated substrates was investigated by a micro-scratch tester at an incremental load. It was found, based on the obtained results, that the coating sprayed onto the UNSM-treated substrate exhibited a better resistance to adhesive failure in comparison with that of the coating sprayed onto the sanded substrate. Dry friction and wear property of the coatings sprayed onto the sanded and UNSM-treated substrates were assessed by means of a ball-on-disk tribometer against an AISI 52100 steel ball. It was demonstrated that the UNSM technique controllably improved the adhesive failure of the Al2O3 coating, where the critical load was improved by about 31%. Thus, it is expected that the application of the UNSM technique to an AISI H13 tool steel substrate prior to coating may delay the adhesive failure and improve the sticking between the coating and the substrate thanks to the modified and hardened surface.

  5. Superconducting magnetic separation of ground steel slag powder for recovery of resources

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, H. W.; Kim, J. J.; Kim, Young Hun [Andong National University, Andong (Korea, Republic of); Ha, D. W. [Korea Electrotechnology Research Institute, Changwon (Korea, Republic of); Choi, J. H. [Dept. of Environmental Engineering, Catholic University of Pusan, Pusan (Korea, Republic of)

    2017-03-15

    Steel slag has been considered as an industrial waste. A huge amount of slag is produced as a byproduct and the steel slag usually has been dumped in a landfill site. However the steel slag contains valuable resources such as iron, copper, manganese, and magnesium. Superconducting magnetic separation has been applied on recovery of the valuable resources from the steel slag and this process also has intended to reduce the waste to be dumped. Cryo-cooled Nb-Ti superconducting magnet with 100 mm bore and 600 mm of height was used as the magnetic separator. The separating efficiency was evaluated in the function of magnetic field. A steel slag was ground and analyzed for the composition. Iron containing minerals were successfully concentrated from less iron containing portion. The separation efficiency was highly dependent on the particle size giving higher separating efficiency with finer particle. The magnetic field also effects on the separation ratio. Current study showed that an appropriate grinding of slag and magnetic separation lead to the recovery of metal resources from steel slag waste rather than dumping all of the volume.

  6. Welding by submerged arc of steel with addition of iron powder; Soldagem por arco submerso de aco microligado com adicao de po de ferro

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Samuel I.N.; Spinelli, Dirceu [Sao Paulo Univ., Sao Carlos, SP (Brazil). Escola de Engenharia; Souza, Paulo C.R. D. de [SICOM Compressores Ltda., Sao Carlos, SP (Brazil); Magalhaes Bento Goncalves, Gilberto de [Bauru Univ., SP (Brazil)

    1993-12-31

    Welding metals with and without iron powder addition were produced in steel plates ASTM A 242 by submerged arc process. as a conclusion, the mechanical properties of hardness and toughness of weld metal and heat affect zone were more affected when the welding were done with lower heat input. (author). 16 refs., 3 figs., 9 tabs.

  7. Effects of Thermocapillary Forces during Welding of 316L-Type Wrought, Cast and Powder Metallurgy Austenitic Stainless Steels

    CERN Document Server

    Sgobba, Stefano

    2003-01-01

    The Large Hadron Collider (LHC) is now under construction at the European Organization for Nuclear Research (CERN). This 27 km long accelerator requires 1248 superconducting dipole magnets operating at 1.9 K. The cold mass of the dipole magnets is closed by a shrinking cylinder with two longitudinal welds and two end covers at both extremities of the cylinder. The end covers, for which fabrication by welding, casting or Powder Metallurgy (PM) was considered, are dished-heads equipped with a number of protruding nozzles for the passage of the different cryogenic lines. Structural materials and welds must retain high strength and toughness at cryogenic temperature. AISI 316L-type austenitic stainless steel grades have been selected because of their mechanical properties, ductility, weldability and stability of the austenitic phase against low-temperature spontaneous martensitic transformation. 316LN is chosen for the fabrication of the end covers, while the interconnection components to be welded on the protrud...

  8. Corrosion of Steel in Concrete, Part I – Mechanisms

    DEFF Research Database (Denmark)

    Küter, André; Møller, Per; Geiker, Mette Rica

    2006-01-01

    prematurely. Reinforcement corrosion is identified to be the foremost cause of deterioration. Steel in concrete is normally protected by a passive layer due the high alkalinity of the concrete pore solution; corrosion is initiated by neutralization through atmospheric carbon dioxide and by ingress...... of depassivation ions, especially chloride ions. The background and consequences of deterioration of reinforced concrete structures caused by steel corrosion are summarized. Selected corrosion mechanisms postulated in the literature are briefly discussed and related to observations. The key factors controlling...... initiation and propagation of corrosion of steel in concrete are outlined....

  9. Mechanical Behavior of Additive Manufactured Layered Materials, Part 2: Stainless Steels

    Science.gov (United States)

    2015-04-30

    materials. Elsevier, Oxford; 2007: 416 -420. [19] Deng, D., Chen, R., Sun, Q. and Li, X. Microstructural study of 17-4PH stainless steel after plasma...1 Mechanical Behavior of Additive Manufactured Layered Materials, Part 2: Stainless Steels * Todd M. Mower † and Michael J. Long M.I.T. Lincoln... stainless steel alloys produced with Direct Metal Laser Sintering (DMLS) was measured and is compared to that of similar conventional materials

  10. Effect of borides on hot deformation behavior and microstructure evolution of powder metallurgy high borated stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xuan [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Wang, Mingjia, E-mail: mingjiawangysu@126.com [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Fu, Yifeng [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Wang, Zixi; Li, Yanmei [Yanming Alloy Roll Co. Ltd, Qinhuangdao 066004 (China); Yang, Shunkai; Zhao, Hongchang; Li, Hangbo [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China)

    2017-02-15

    To investigate borides effect on the hot deformation behavior and microstructure evolution of powder metallurgy high borated stainless steel, hot compression tests at the temperatures of 950– 1150 °C and the strain rates of 0.01– 10 s{sup −1} were performed. Flow stress curves indicated that borides increased the material's stress level at low temperature but the strength was sacrificed at temperatures above 1100 °C. A hyperbolic-sine equation was used to characterize the dependence of the flow stress on the deformation temperature and strain rate. The hot deformation activation energy and stress exponent were determined to be 355 kJ/mol and 3.2, respectively. The main factors leading to activation energy and stress exponent of studied steel lower than those of commercial 304 stainless steel were discussed. Processing maps at the strains of 0.1, 0.3, 0.5, and 0.7 showed that flow instability mainly concentrated at 950– 1150 °C and strain rate higher than 0.6 s{sup −1}. Results of microstructure illustrated that dynamic recrystallization was fully completed at both high temperature-low strain rate and low temperature-high strain rate. In the instability region cracks were generated in addition to cavities. Interestingly, borides maintained a preferential orientation resulting from particle rotation during compression. - Highlights: •The decrement of activation energy was affected by boride and boron solution. •The decrease of stress exponent was influenced by composition and Cottrell atmosphere. •Boride represented a preferential orientation caused by particle rotation.

  11. Cladding of Ni superalloy powders on AISI 4140 steel with concentrated solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, B.J.; Lopez, V.; Vazquez, A.J. [Centro Nacional de Investigaciones Metalurgicas, CENIM-CSIC, Madrid (Spain); Martinez, D. [Plataforma Solar de Almeria, Tabernas Almeria (Spain)

    1998-05-12

    The present work deals with Ni alloy cladding on AISI 4140 steel samples made with high power density concentrated solar beams. The quality of the cladding is high concerning the adherence, low dilution and high hardness of the coating. Some considerations are presented concerning the future of high power density beams related to SUrface Modification of Metallic mAterials with SOLar Energy (SUMMA cum SOLE)

  12. Contact-Free Support Structures for Part Overhangs in Powder-Bed Metal Additive Manufacturing

    Directory of Open Access Journals (Sweden)

    Kenneth Cooper

    2017-12-01

    Full Text Available This study investigates the feasibility of a novel concept, contact-free support structures, for part overhangs in powder-bed metal additive manufacturing. The intent is to develop alternative support designs that require no or little post-processing, and yet, maintain effectiveness in minimizing overhang distortions. The idea is to build, simultaneously during part fabrications, a heat sink (called “heat support”, underneath an overhang to alter adverse thermal behaviors. Thermomechanical modeling and simulations using finite element analysis were applied to numerically research the heat support effect on overhang distortions. Experimentally, a powder-bed electron beam additive manufacturing system was utilized to fabricate heat support designs and examine their functions. The results prove the concept and demonstrate the effectiveness of contact-free heat supports. Moreover, the method was tested with different heat support parameters and applied to various overhang geometries. It is concluded that the heat support proposed has the potential to be implemented in industrial applications.

  13. Magnetic powder crack tests as a means of quality assurance in forged parts

    International Nuclear Information System (INIS)

    Deutsch, V.

    1979-01-01

    The magnetic powder process has been used for years for crack detection in forged parts, which are used as safety parts in car construction. The representation of the present state of technology appears useful, as terms and units have been redefined in DIN draft standards and guidelines, and because alternating field magnetisation has increasingly displaced earlier techniques. The correct choice of equipment, test materials and UV lamps, and the configuration of the working positions are discussed. As the complete automation of this test method is not possible at present, the organisation of the viewing process is of great importance. The comparison with other processes of non-destructive material testing proves the irreplaceability of the magnetic power crack testing at present. (orig.) [de

  14. Adhesiveness of cold rolled steels for car body parts

    Directory of Open Access Journals (Sweden)

    Kleiner Marques Marra

    2007-09-01

    Full Text Available The aim of this work was to evaluate the adhesiveness of uncoated and zinc-electrogalvanized steel sheets used in the automotive industry. Three types of adhesives, one acrylic and two epoxy resins, were employed to join low carbon cold rolled steels, one uncoated and another electrogalvanized, both previously degreased or chemically pickled. Mechanical strength of the joints was evaluated by the T-peel and tensile strength tests. Steel grade, surface condition and heating below the cure temperatures did not influence the joints' mechanical strength. However, their shear strength decreased drastically as the test temperature increased. The exposure of the joints to an atmosphere with 90% relative humidity at 40 °C caused reduction of their shear strength. Epoxy adhesives showed higher mechanical strength, but exhibited higher degradation by humidity.

  15. Powder Injection Molding for mass production of He-cooled divertor parts

    International Nuclear Information System (INIS)

    Antusch, S.; Norajitra, P.; Piotter, V.; Ritzhaupt-Kleissl, H.-J.

    2011-01-01

    A He-cooled divertor for future fusion power plants has been developed at KIT. Tungsten and tungsten alloys are presently considered the most promising materials for functional and structural divertor components. The advantages of tungsten materials lie, e.g. in the high melting point, and low activation, the disadvantages are high hardness and brittleness. The machinig of tungsten, e.g. milling, is very complex and cost-intensive. Powder Injection Molding (PIM) is a method for cost effective mass production of near-net-shape parts with high precision. The complete W-PIM process route is outlined and, results of product examination discussed. A binary tungsten powder feedstock with a grain size distribution in the range 0.7-1.7 μm FSSS, and a solid load of 50 vol.% was developed. After heat treatment, the successfully finished samples showed promising results, i.e. 97.6% theoretical density, a grain size of approximately 5 μm, and a hardness of 457 HV0.1.

  16. Influence of pre-heating on the surface modification of powder-metallurgy processed cold-work tool steel during laser surface melting

    Energy Technology Data Exchange (ETDEWEB)

    Šturm, Roman, E-mail: roman.sturm@fs.uni-lj.si [University of Ljubljana, Faculty of Mechanical Engineering, Aškerčeva 6, 1000 Ljubljana (Slovenia); Štefanikova, Maria [University of Ljubljana, Faculty of Mechanical Engineering, Aškerčeva 6, 1000 Ljubljana (Slovenia); Steiner Petrovič, Darja [Institute of Metals and Technology, Lepi pot 11, 1000 Ljubljana (Slovenia)

    2015-01-15

    Graphical abstract: - Highlights: • Heat-treatment protocol for laser surface melting of cold-work tool steel is proposed. • The laser melted steel surface is hardened, and morphologically modified. • The pre-heating of substrate creates a crack-and pore-free steel surface. • The optimum pre-heating temperature is determined to be 350 °C. • Using pre-heating the quantity of retained austenite is reduced. - Abstract: In this study we determine the optimal parameters for surface modification using the laser surface melting of powder-metallurgy processed, vanadium-rich, cold-work tool steel. A combination of steel pre-heating, laser surface melting and a subsequent heat treatment creates a hardened and morphologically modified surface of the selected high-alloy tool steel. The pre-heating of the steel prior to the laser surface melting ensures a crack- and pore-free modified surface. Using a pre-heating temperature of 350 °C, the extremely fine microstructure, which typically evolves during the laser-melting, became slightly coarser and the volume fraction of retained austenite was reduced. In the laser-melted layer the highest values of microhardness were achieved in the specimens where a subsequent heat treatment at 550 °C was applied. The performed thermodynamic calculations were able to provide a very valuable assessment of the liquidus temperature and, especially, a prediction of the chemical composition as well as the precipitation and dissolution sequence for the carbides.

  17. Studies of two stage gas turbine combustor for biomass powder. Part 1, Atmospheric cyclone gasification experiments with wood powder. Technical report

    Energy Technology Data Exchange (ETDEWEB)

    Degerman, Bengt; Hedin, Johan; Fredriksson, Christian; Kjellstroem, Bjoern; Salman, Hassan [Luleaa Univ. of Technology (Sweden). Dept. of Mechanical Engineering

    2000-10-01

    and Na in the gas entering a gas turbine with inlet temperature of 850 deg C has been estimated to 10 - 20 mg/kg gas. Reduction of this load of alkali metals requires improved separation function of the cyclone. One possibility to achieve this could be to use a wood powder with larger particles. Tests with a prototype for a double piston feeder to be used for pressurisation of the wood powder showed after several modifications that the pistons will move as intended. The difficulties experienced however also show a need for a much more detailed design study than could be carried out in this project. A problem area to be studied in particular is the choice of sealing design to eliminate risk for penetration of wood powder into the space between moving parts. The pressurised test facility has been designed and the main parts have been installed. Some completions are necessary before commissioning tests can be done.

  18. Sol-gel synthesis and densification of aluminoborosilicate powders. Part 1: Synthesis

    Science.gov (United States)

    Bull, Jeffrey; Selvaduray, Guna; Leiser, Daniel

    1992-01-01

    Aluminoborosilicate powders high in alumina content were synthesized by the sol-gel process utilizing various methods of preparation. Properties and microstructural effects related to these syntheses were examined. After heating to 600 C for 2 h in flowing air, the powders were amorphous with the metal oxides comprising 87 percent of the weight and uncombusted organics the remainder. DTA of dried powders revealed a T(sub g) at approximately 835 C and an exotherm near 900 C due to crystallization. Powders derived from aluminum secbutoxide consisted of particles with a mean diameter 5 microns less than those from aluminum isopropoxide. Powders synthesized with aluminum isopropoxide produced agglomerates comprised of rod shaped particulates while powders made with the secbutoxide precursor produced irregular glassy shards. Compacts formed from these powders required different loadings for equivalent densities according to the method of synthesis.

  19. Cellular Energy Absorbing TRIP-Steel/Mg-PSZ Composite: Honeycomb Structures Fabricated by a New Extrusion Powder Technology

    Directory of Open Access Journals (Sweden)

    Ulrich Martin

    2010-01-01

    Full Text Available Lightweight linear cellular composite materials on basis of austenite stainless TRIP- (TRansformation Induced Plasticity- steel as matrix with reinforcements of MgO partially stabilized zirconia (Mg-PSZ are described. Two-dimensional cellular materials for structural applications are conventionally produced by sheet expansion or corrugation processes. The presented composites are fabricated by a modified ceramic extrusion powder technology. Characterization of the microstructure in as-received and deformed conditions was carried out by optical and scanning electron microscopy. Magnetic balance measurements and electron backscatter diffraction (EBSD were used to identify the deformation-induced martensite evolution in the cell wall material. The honeycomb composite samples exhibit an increased strain hardening up to a certain engineering compressive strain and an extraordinary high specific energy absorption per unit mass and unit volume, respectively. Based on improved property-to-weight ratio such linear cellular structures will be of interest as crash absorbers or stiffened core materials for aerospace, railway, or automotive applications.

  20. The influence of Span-20 surfactant and micro-/nano-Chromium (Cr) Powder Mixed Electrical Discharge Machining (PMEDM) on the surface characteristics of AISI D2 hardened steel

    Science.gov (United States)

    Hosni, N. A. J.; Lajis, M. A.

    2018-04-01

    The application of powder mixed dielectric to improve the efficiency of electrical discharge machining (EDM) has been extensively studied. Therefore, PMEDM have attracted the attention of many researchers since last few decades. Improvement in EDM process has resulted in the use of span-20 surfactant and Cr powder mixed in dielectric fluid, which results in increasing machiniability, better surface quality and faster machining time. However, the study of powder suspension size of surface charateristics in EDM field is still limited. This paper presents the improvement of micro-/nano- Cr powder size on the surface characteristics of the AISI D2 hardened steels in PMEDM. It has found that the reacst layer in PMEDM improved by as high as 41-53 % compared to conventional EDM. Also notably, the combination of added Cr powder and span-20 surfactant reduced the recast layer thickness significantly especially in nano-Cr size. This improvement was great potential adding nano-size Cr powder to dielectric for machining performance.

  1. Effect of milling time and annealing temperature on nanoparticles evolution for 13.5% Cr ODS ferritic steel powders by joint application of XAFS and TEM

    Science.gov (United States)

    He, P.; Hoffmann, J.; Möslang, A.

    2018-04-01

    The characteristics of strengthening nanoparticles have a major influence on the mechanical property and irradiation resistance of oxide dispersion strengthened (ODS) steels. To determine how to control nanoparticles evolution, 0.3% Ti with 0.3% Y2O3 were added in 13.5%Cr pre-alloyed steel powders via different milling and consolidation conditions, then characterized by transmission electron microscopy (TEM) and X-ray absorption fine structure (XAFS) at synchrotron irradiation facility. The dissolution of Y2O3 is greatly dependent on the milling time at fixed milling speeds. After 24 h of milling, only minor amounts of the initially added Y2O3 dissolve into the steel matrix whereas TEM results reveal nearly complete dissolution of Y2O3 in 80-h-milled powder. The annealed powder FT-A800 (at 800 °C for 1 h) exhibits a structure near to the initially added Y2O3. The slightly deviation may be accounted for considerable lattice distortion related to the presence of atomic vacancies or formation of Y-Ti-O nucleus. The annealed powders FT-A1000 and FT-A1100 contain complex mixtures of Y-O/Y-Ti-O oxides, which cannot be fitted by any single thermally stable compounds. The coordination numbers of these first two shells in the annealed powders significantly raise as a function of the annealing temperature, indicating the formation of more ordered Y-O or Y-Ti-O particles. The extended X-ray absorption fine structure (EXAFS) spectrum could not necessarily distinguish the dominant oxide species.

  2. Powder metallurgical nanostructured medium carbon bainitic steel: Kinetics, structure, and in situ thermal stability studies

    Energy Technology Data Exchange (ETDEWEB)

    Lonardelli, I., E-mail: il244@cam.ac.uk [University of Cambridge, Materials Science and Metallurgy, Pembroke Street, Cambridge CB2 3QZ (United Kingdom); University of Trento, Materials Engineering and Industrial Technologies, via Mesiano 77, 38123 Trento (Italy); Bortolotti, M. [Fondazione Bruno Kessler, via Sommarive 18, 38123 Trento (Italy); Beek, W. van [Swiss-Norwegian Beamlines, ESRF, BP 220, 38043 Grenoble Cedex (France); Girardini, L.; Zadra, M. [K4-Sint, via Dante 300, 38057 Pergine Valsugana (Italy); Bhadeshia, H.K.D.H. [University of Cambridge, Materials Science and Metallurgy, Pembroke Street, Cambridge CB2 3QZ (United Kingdom)

    2012-10-15

    It has been possible to produce incredibly fine plates of bainitic ferrite separated by a percolating network of retained austenite in a medium carbon steel produced by mechanical alloying followed by spark plasma sintering and isothermal heat treatment. This is because the sintering process limits the growth of the austenite grains to such an extent that the martensite-start temperature is suppressed in spite of the medium carbon concentration. Furthermore, the fine austenite grain size accelerates the bainite transformation, which can therefore be suppressed to low temperatures to obtain a nanostructure. Microscopy and in situ synchrotron X-ray diffraction were used to investigate the morphology and the thermal stability of the retained austenite during continuous heating. These latter experiments revealed a gradient of carbon concentration in the retained austenite and a reduced thermal stability in high carbon film-austenite. It was also possible to correlate the evolution of defect density and carbon depletion in both retained austenite and bainitic ferrite during tempering.

  3. Melting of SiC powders preplaced duplex stainless steel using TIG welding

    Science.gov (United States)

    Maleque, M. A.; Afiq, M.

    2018-01-01

    TIG torch welding technique is a conventional melting technique for the cladding of metallic materials. Duplex stainless steels (DSS) show decrease in performance under aggressive environment which may lead to unanticipated failure due to poor surface properties. In this research, surface modification is done by using TIG torch method where silicon carbide (SiC) particles are fused into DSS substrate in order to form a new intermetallic compound at the surface. The effect of particle size, feed rate of SiC preplacement, energy input and shielding gas flow rate on surface topography, microstructure, microstructure and hardness are investigated. Deepest melt pool (1.237 mm) is produced via TIG torch with highest energy input of 1080 J/mm. Observations of surface topography shows rippling marks which confirms that re-solidification process has taken place. Melt microstructure consist of dendritic and globular carbides precipitate as well as partially melted silicon carbides (SiC) particles. Micro hardness recorded at value ranging from 316 HV0.5 to 1277 HV0.5 which shows increment from base hardness of 260 HV0.5kgf. The analyzed result showed that incorporation of silicon carbide particles via TIG Torch method increase the hardness of DSS.

  4. Electromagnetic NDT to characterize usage properties of flat steel products - Part 3

    Energy Technology Data Exchange (ETDEWEB)

    Altpeter, I.; Dobmann, G.; Szielasko, K., E-mail: iab.altlau@t-online.de, E-mail: gerd.dobmann@t-online.de, E-mail: klaus.szielasko@izfp.fraunhofer.de [Fraunhofer Inst. - IZFP, Saarbruecken (Germany)

    2015-11-15

    The Fraunhofer Institute for Nondestructive Testing (IZFP) in Saarbruecken, Germany, started its activities in materials characterization of flat steel products in the eighties of the last century in the basic program of the European Community of Coal and Steel (ECCS). Throughout the years, continuous research and development were performed. The objective of the work, presented within this three-part series of reports, is to discuss the history of an innovation that began in 1988 with R&D in the area of texture characterization in steel sheets produced for car-body manufacturing (Part 1). In the following years the activities were to automate online property determination in terms of yield strength, tensile strength, planar- and vertical-anisotropy factors. Again, steel sheets were the focus of the developments and first NDT systems came into industrial application. Parallel research was performed to characterize the mechanical properties and hardness on heavy steel plates, mainly produced for pipeline manufacturing and offshore applications (Part 2). The final report in the series (Part 3) discusses steel sheet characterization and presents the successful development of a combination transducer that combines ultrasonics with electromagnetic NDT. (author)

  5. Electromagnetic NDT to characterize usage properties of flat steel products - Part 2

    Energy Technology Data Exchange (ETDEWEB)

    Altpeter, I.; Dobmann, G.; Szielasko, K., E-mail: iab.altlau@t-online.de, E-mail: gerd.dobmann@t-online.de, E-mail: klaus.szielasko@izfp.fraunhofer.de [Fraunhofer Inst. - IZFP, Saarbruecken (Germany)

    2015-09-15

    The Fraunhofer Institute for Non-destructive Testing (IZFP) in Saarbruecken, Germany, started its activities in materials characterization of flat steel products in the eighties of the last century in the basic program of the European Community of Coal and Steel (ECCS). Throughout the years, continuous research and development were performed. The objective of the work, presented within this three-part series of reports, is to discuss the history of an innovation which began in 1988 with R&D in the area of texture characterization in steel sheets produced for car-body manufacturing (Part 1). In the following years the activities were to automate online property determination in terms of yield strength, tensile strength, planar, and vertical-anisotropy-factors. Again, steel sheets were the focus of the developments and the first NDT systems that came into industrial application for this project. Parallel research was performed to characterize the mechanical properties and hardness of heavy steel plates, mainly produced for pipeline manufacturing and off-shore applications (Part 2) The final report in the series (Part 3) will discuss steel sheet characterization and presents the successful development of a combination-transducer which combines ultrasonics with electromagnetic NDT. (author)

  6. Electromagnetic NDT to characterize usage properties of flat steel products - Part 2

    International Nuclear Information System (INIS)

    Altpeter, I.; Dobmann, G.; Szielasko, K.

    2015-01-01

    The Fraunhofer Institute for Non-destructive Testing (IZFP) in Saarbruecken, Germany, started its activities in materials characterization of flat steel products in the eighties of the last century in the basic program of the European Community of Coal and Steel (ECCS). Throughout the years, continuous research and development were performed. The objective of the work, presented within this three-part series of reports, is to discuss the history of an innovation which began in 1988 with R&D in the area of texture characterization in steel sheets produced for car-body manufacturing (Part 1). In the following years the activities were to automate online property determination in terms of yield strength, tensile strength, planar, and vertical-anisotropy-factors. Again, steel sheets were the focus of the developments and the first NDT systems that came into industrial application for this project. Parallel research was performed to characterize the mechanical properties and hardness of heavy steel plates, mainly produced for pipeline manufacturing and off-shore applications (Part 2) The final report in the series (Part 3) will discuss steel sheet characterization and presents the successful development of a combination-transducer which combines ultrasonics with electromagnetic NDT. (author)

  7. Electromagnetic NDT to characterize usage properties of flat steel products - Part 3

    International Nuclear Information System (INIS)

    Altpeter, I.; Dobmann, G.; Szielasko, K.

    2015-01-01

    The Fraunhofer Institute for Nondestructive Testing (IZFP) in Saarbruecken, Germany, started its activities in materials characterization of flat steel products in the eighties of the last century in the basic program of the European Community of Coal and Steel (ECCS). Throughout the years, continuous research and development were performed. The objective of the work, presented within this three-part series of reports, is to discuss the history of an innovation that began in 1988 with R&D in the area of texture characterization in steel sheets produced for car-body manufacturing (Part 1). In the following years the activities were to automate online property determination in terms of yield strength, tensile strength, planar- and vertical-anisotropy factors. Again, steel sheets were the focus of the developments and first NDT systems came into industrial application. Parallel research was performed to characterize the mechanical properties and hardness on heavy steel plates, mainly produced for pipeline manufacturing and offshore applications (Part 2). The final report in the series (Part 3) discusses steel sheet characterization and presents the successful development of a combination transducer that combines ultrasonics with electromagnetic NDT. (author)

  8. Study on cementitious properties of steel slag

    Directory of Open Access Journals (Sweden)

    Zhu G.

    2013-01-01

    Full Text Available The converter steel slag chemical and mineral components in China’s main steel plants have been analysed in the present paper. The electronic microscope, energy spectrum analysis, X-ray diffraction analysis confirmed the main mineral compositions in the converter slag. Converter slag of different components were grounded to obtain a powder with specific surface area over 400m2/kg, making them to take place some part of the cement in the concrete as the admixture and carry out the standard tests. The results indicate that the converter slag can be used as cementitious materials for construction. Furthermore, physical mechanic and durability tests on the concrete that certain amount of cement be substituted by converter steel slag powder from different steel plants are carried out, the results show that the concrete with partial substitution of steel slag powder has the advantages of higher later period strength, better frost resistance, good wear resistance and lower hydration heat, etc. This study can be used as the technical basis for “Steel Slag Powder Used For Cement And Concrete”, “Steel Slag Portland Cement”, “Low Heat Portland Steel Slag Cement”, “Steel Slag Road Cement” in China, as well as a driving force to the works of steel slag utilization with high-value addition, circular economy, energy conservation and discharge reduction in the iron and steel industry.

  9. Effect of steel structure and defects on reliability of parts of impact mechanisms

    Science.gov (United States)

    Popelyukh, AI; Repin, AA; Alekseev, SE

    2018-03-01

    The paper discusses selection of materials suitable for manufacturing critical parts of impact mechanisms. It is shown that in order to extend life of parts exposed to high dynamic loading, it is expedient to use medium- and high-carbon alloy-treated steels featuring low impurity with nonmetallic inclusions and high hardening characteristics. Application of thermally untreated parts is undesirable as steel having ferrite–pearlite structure possesses low fatigue strength. Aimed to ensure high reliability of parts with a hardness of 42–55 HRC, steel should be reinforced by thermal treatement with the formation of multicomponent martensite–bainite structure. High-quality production should include defectoscopy and incoming material control.

  10. Phased array inspection of large size forged steel parts

    Science.gov (United States)

    Dupont-Marillia, Frederic; Jahazi, Mohammad; Belanger, Pierre

    2018-04-01

    High strength forged steel requires uncompromising quality to warrant advance performance for numerous critical applications. Ultrasonic inspection is commonly used in nondestructive testing to detect cracks and other defects. In steel blocks of relatively small dimensions (at least two directions not exceeding a few centimetres), phased array inspection is a trusted method to generate images of the inside of the blocks and therefore identify and size defects. However, casting of large size forged ingots introduces changes of mechanical parameters such as grain size, the Young's modulus, the Poisson's ratio, and the chemical composition. These heterogeneities affect the wave propagation, and consequently, the reliability of ultrasonic inspection and the imaging capabilities for these blocks. In this context, a custom phased array transducer designed for a 40-ton bainitic forged ingot was investigated. Following a previous study that provided local mechanical parameters for a similar block, two-dimensional simulations were made to compute the optimal transducer parameters including the pitch, width and number of elements. It appeared that depending on the number of elements, backwall reconstruction can generate high amplitude artefacts. Indeed, the large dimensions of the simulated block introduce numerous constructive interferences from backwall reflections which may lead to important artefacts. To increase image quality, the reconstruction algorithm was adapted and promising results were observed and compared with the scattering cone filter method available in the CIVA software.

  11. Properties of Mo-alloyed sintered manganese steels

    International Nuclear Information System (INIS)

    Romanski, A.; Cias, A.

    1998-01-01

    Sintered alloy steels are needed for mostly PM structural parts. Powder metallurgy techniques provide a means of fabricating high quality steel parts with tailored mechanical properties. It is now possible to produce sintered steel parts with properties equal to an even superior to those of parts made by more traditional routes. Challenges arise both with the material selection and component fabrication. This work outlines the processing for high performance structural application. (author)

  12. 3D printing conditions determination for feedstock used in fused filament fabrication (FFF of 17-4PH stainless steel parts

    Directory of Open Access Journals (Sweden)

    J. Gonzalez-Gutierez

    2018-01-01

    Full Text Available Fused filament fabrication combined with debinding and sintering could be an economical process for 3D printing of metal parts. In this study, compounding, filament making and FFF processing of a feedstock material containing 55 vol. % of 17-4PH stainless steel powder and a multicomponent binder system are presented. For the FFF process, processing windows of the most significant parameters, such as range of extrusion temperatures (210 to 260 °C, flow rate multipliers (150 to 200 %, and 3D printing speed multipliers (60 to 100 % were determined for a constant printing bed temperature of 60 °C.

  13. Heavy Section Steel Technology Program. Part II. Intermediate vessel testing

    International Nuclear Information System (INIS)

    Whitman, G.D.

    1975-01-01

    The testing of the intermediate pressure vessels is a major activity under the Heavy Section Steel Technology Program. A primary objective of these tests is to develop or verify methods of fracture prediction, through the testing of selected structures and materials, in order that a valid basis can be established for evaluating the serviceability and safety of light-water reactor pressure vessels. These vessel tests were planned with sufficiently specific objectives that substantial quantitative weight could be given to the results. Each set of testing conditions was chosen so as to provide specific data by which analytical methods of predicting flaw growth, and in some cases crack arrest, could be evaluated. Every practical effort was made to assure that results would be relevant to some aspect of real reactor pressure vessel performance through careful control of material properties, selection of test temperatures, and design of prepared flaws. 5 references

  14. Effect of Carbon Content on the Properties of Iron-Based Powder Metallurgical Parts Produced by the Surface Rolling Process

    Directory of Open Access Journals (Sweden)

    Yan Zhao

    2018-01-01

    Full Text Available In recent years, the rolling densification process has become increasingly widely used to strengthen powder metallurgy parts. The original composition of the rolled powder metallurgy blank has a significant effect on the rolling densification technology. The present work investigated the effects of different carbon contents (0 wt. %, 0.2 wt. %, 0.45 wt. %, and 0.8 wt. % on the rolling densification. The selection of the raw materials in the surface rolling densification process was analyzed based on the pore condition, structure, hardness, and friction performance of the materials. The results show that the 0.8 wt. % carbon content of the surface rolling material can effectively improve the properties of iron-based powder metallurgy parts. The samples with 0.8 wt. % carbon have the highest surface hardness (340 HV0.1 and the lowest surface friction coefficient (0.35. Even if the dense layer depth is 1.13 mm, which is thinner than other samples with low carbon content, it also meets the requirements for powder metallurgy parts such as gears used in the auto industry.

  15. Boron steel. I Part. Preparation; Aceros al Boro Parte I. Preparacion

    Energy Technology Data Exchange (ETDEWEB)

    Jaraiz Franco, E; Esteban Hernandez, J A

    1960-07-01

    With the advent of the first nuclear reactors arise the need for control rods and shielding duties for some types of radiations. One of the materials used for this purpose has been the high boron steel. This paper describes the melting and casting procedures employed for the production, at laboratory scale, of steels with Boron content ranging from 1 to 4 per cent, as well as the metallographic and X-Ray techniques used for the identification of the present phases. The electrolytic technique employed for the isolation of the Fe{sub 2}B phase and its subsequent X-Ray identification has proved to be satisfactory. (Author) 11 refs.

  16. Effect of the Addition of Nickel Powder and Post Weld Heat Treatment on the Metallurgical and Mechanical Properties of the Welded UNS S32304 Duplex Stainless Steel

    Directory of Open Access Journals (Sweden)

    Ali Tahaei

    Full Text Available Abstract In this research, the effect of the addition of nickel powder and the application of a post weld heat treatment (PWHT on the welding properties of the UNS S32304 lean duplex stainless steel were investigated in order to improve the microstructure and mechanical properties. Nickel powder was directly poured inside the joint gap and mixed with the filler metal during the Gas Tungsten Arc Welding (GTAW process; moreover, the solution heat treatment was performed at 1100 °C for 10 min. The joints were characterized by optical microscopy (OM and the evolution of the phase percentages in the different zones was studied by means of the image analysis technique. Tensile and hardness tests were carried out on the joints in order to evaluate the improvement of the mechanical properties. The results showed that both the addition of nickel powder during the welding process and the post weld heat treatment made it possible to improve the mechanical properties of the weld joints. PWHT had the best effect in restoring the equal percentage of ferrite and austenite compared to the addition of nickel powder.

  17. Inverse Processing of Undefined Complex Shape Parts from Structural High Alloyed Tool Steel

    Czech Academy of Sciences Publication Activity Database

    Monková, K.; Monka, P.; Hloch, Sergej

    -, č. 1 (2014), s. 1-11 ISSN 1687-8132 Institutional support: RVO:68145535 Keywords : 3D digitization * complex shape parts * high alloyed tool steel Subject RIV: JQ - Machines ; Tools Impact factor: 0.575, year: 2014 http://www.hindawi.com/journals/ame/aip/478748/

  18. Numerical simulation of projectile impact on mild steel armour plates using LS-DYNA, Part II: Parametric studies

    OpenAIRE

    Raguraman, M; Deb, A; Gupta, NK; Kharat, DK

    2008-01-01

    In Part I of the current two-part series, a comprehensive simulation-based study of impact of Jacketed projectiles on mild steel armour plates has been presented. Using the modelling procedures developed in Part I, a number of parametric studies have been carried out for the same mild steel plates considered in Part I and reported here in Part II. The current investigation includes determination of ballistic limits of a given target plate for different projectile diameters and impact velociti...

  19. Numerical Simulation of Projectile Impact on Mild Steel Armour Platesusing LS-DYNA, Part II: Parametric Studies

    OpenAIRE

    M. Raguraman; A. Deb; N. K. Gupta; D. K. Kharat

    2008-01-01

    In Part I of the current two-part series, a comprehensive simulation-based study of impact of jacketed projectiles on mild steel armour plates has been presented. Using the modelling procedures developed in Part I, a number of parametric studies have been carried out for the same mild steel plates considered in Part I and reported here in Part II. The current investigation includes determination of ballistic limits of a given target plate for different projectile diameters and impact velociti...

  20. Influence of spark plasma sintering conditions on the sintering and functional properties of an ultra-fine grained 316L stainless steel obtained from ball-milled powder

    Energy Technology Data Exchange (ETDEWEB)

    Keller, C., E-mail: clement.keller@insa-rouen.fr [Groupe de Physique des Matériaux, CNRS-UMR 6634, Université de Rouen, INSA de Rouen, Avenue de l' Université, 76800 Saint-Etienne du Rouvray (France); Tabalaiev, K.; Marnier, G. [Groupe de Physique des Matériaux, CNRS-UMR 6634, Université de Rouen, INSA de Rouen, Avenue de l' Université, 76800 Saint-Etienne du Rouvray (France); Noudem, J. [Laboratoire de Cristallographie des Matériaux, CNRS-UMR 6508, Université de Caen, ENSICAEN, 7 bd du Maréchal Juin, 14050 Caen (France); Sauvage, X. [Groupe de Physique des Matériaux, CNRS-UMR 6634, Université de Rouen, INSA de Rouen, Avenue de l' Université, 76800 Saint-Etienne du Rouvray (France); Hug, E. [Laboratoire de Cristallographie des Matériaux, CNRS-UMR 6508, Université de Caen, ENSICAEN, 7 bd du Maréchal Juin, 14050 Caen (France)

    2016-05-17

    In this work, 316L samples with submicrometric grain size were sintered by spark plasma sintering. To this aim, 316L powder was first ball-milled with different conditions to obtain nanostructured powder. The process control agent quantity and milling time were varied to check their influence on the crystallite size of milled powder. Samples were then sintered by spark plasma sintering using different sets of sintering parameters (temperature, dwell time and pressure). For each sample, grain size and density were systematically measured in order to investigate the influence of the sintering process on these two key microstructure parameters. Results show that suitable ball-milling and subsequent sintering can be employed to obtain austenitic stainless steel samples with grain sizes in the nanometer range with porosity lower than 3%. However, ball-milling and subsequent sintering enhance chromium carbides formation at the sample surface in addition to intragranular and intergranular oxides in the sample as revealed by X-ray diffraction and transmission electron microscopy. It has been shown that using Boron nitride together with graphite foils to protect the mold from powder welding prevent such carbide formation. For mechanical properties, results show that the grain size refinement strongly increases the hardness of the samples without deviation from Hall-Petch relationship despite the oxides formation. For corrosion resistance, grain sizes lower than a few micrometers involve a strong decrease in the pitting potential and a strong increase in passivation current. As a consequence, spark plasma sintering can be considered as a promising tool for ultra-fine grained austenitic stainless steel.

  1. Steel

    International Nuclear Information System (INIS)

    Zorev, N.N.; Astafiev, A.A.; Loboda, A.S.; Savukov, V.P.; Runov, A.E.; Belov, V.A.; Sobolev, J.V.; Sobolev, V.V.; Pavlov, N.M.; Paton, B.E.

    1977-01-01

    Steels also containing Al, N and arsenic, are suitable for the construction of large components for high-power nuclear reactors due to their good mechanical properties such as good through-hardening, sufficiently low brittleness conversion temperature and slight displacement of the latter with neutron irradiation. Defined steels and their properties are described. (IHOE) [de

  2. Full-range stress–strain behaviour of contemporary pipeline steels: Part I. Model description

    International Nuclear Information System (INIS)

    Hertelé, Stijn; De Waele, Wim; Denys, Rudi; Verstraete, Matthias

    2012-01-01

    The stress–strain relationship of contemporary pipeline steels is often approximated by the relatively simple Ramberg–Osgood equation. However, these steels often show a more complex post-yield behaviour, which can result in significant errors. To address this limitation for cases where an accurate full-range description is needed, the authors developed a new ‘UGent’ stress–strain model which has two independent strain-hardening exponents. This paper compares the UGent model with the Ramberg–Osgood model for a wide range of experimental data, by means of least-squares curve fitting. A significant improvement is observed for contemporary pipeline steels with a yield-to-tensile ratio above 0.80. These steels typically exhibit two distinct stages of strain hardening. In contrast to the Ramberg–Osgood model, both stages are successfully described by the UGent model. A companion paper (Part II) discusses how to find appropriate model parameter values for the UGent model. - Highlights: ► Contemporary pipeline steels often show two strain-hardening stages. ► This phenomenon is progressively apparent as Y/T exceeds 0.80. ► Both stages cannot be simultaneously described by the Ramberg–Osgood model. ► A new “UGent” model provides significantly better descriptions. ► The improvement becomes more pronounced as Y/T increases.

  3. Titanium Powder Sintering in a Graphite Furnace and Mechanical Properties of Sintered Parts

    Directory of Open Access Journals (Sweden)

    Changzhou Yu

    2017-02-01

    Full Text Available Recent accreditation of titanium powder products for commercial aircraft applications marks a milestone in titanium powder metallurgy. Currently, powder metallurgical titanium production primarily relies on vacuum sintering. This work reported on the feasibility of powder sintering in a non-vacuum furnace and the tensile properties of the as-sintered Ti. Specifically, we investigated atmospheric sintering of commercially pure (C.P. titanium in a graphite furnace backfilled with argon and studied the effects of common contaminants (C, O, N on sintering densification of titanium. It is found that on the surface of the as-sintered titanium, a severely contaminated porous scale was formed and identified as titanium oxycarbonitride. Despite the porous surface, the sintered density in the sample interiors increased with increasing sintering temperature and holding time. Tensile specimens cut from different positions within a large sintered cylinder reveal different tensile properties, strongly dependent on the impurity level mainly carbon and oxygen. Depending on where the specimen is taken from the sintered compact, ultimate tensile strength varied from 300 to 580 MPa. An average tensile elongation of 5% to 7% was observed. Largely depending on the interstitial contents, the fracture modes from typical brittle intergranular fracture to typical ductile fracture.

  4. Sol-gel synthesis and densification of aluminoborosilicate powders. Part 2: Densification

    Science.gov (United States)

    Bull, Jeffrey; Selvaduray, Guna; Leiser, Daniel

    1992-01-01

    Aluminoborosilicate (ABS) powders, high in alumina content, were synthesized by the sol-gel process utilizing four different methods of synthesis. The effect of these methods on the densification behavior of ABS powder compacts was studied. Five regions of shrinkage in the temperature range 25-1184 C were identified. In these regions, the greatest shrinkage occurred between the gel-to-glass transition temperature (T sub g approximately equal to 835 C) and the crystallization transformation temperature (T sub t approximately equal 900 C). The dominant mechanism of densification in this range was found to be viscous sintering. ABS powders were amorphous to x-rays up to T sub t at which a multiphasic structure crystallized. No 2Al2O3.B2O3 was found in these powders as predicted in the phase diagram. Above T sub t, densification was the result of competing mechanisms including grain growth and boria fluxed viscous sintering. Apparent activation energies for densification in each region varied according to the method of synthesis.

  5. Replacement of steel parts with extruded aluminum alloys in an automobile

    Science.gov (United States)

    Daggula, Manikantha Reddy

    Over the past years, vehicle emissions have shown a negative impact on environment and human health. A new strategy has been used by automakers to reduce a vehicle's weight which significantly reduce fuel consumption and C02 emissions. A very light car consumes very less fuel as it needs to overcome less inertia, decreasing the required power to movie the vehicle. Reducing weight is the easiest way to increase fuel economy and making it by just 10% can increase its efficiency 6 to 8 percent. For a normal scale 80% of vehicles weight is shared among chassis, power train and other exterior components. Almost 60% of the vehicles weight is comprised of steel and the remaining is with cast and extruded aluminum and magnesium alloys. Our main aim is to look for the parts like Fuel tank holder, Fuel filler neck, Turbo inlet assembly, and Brake lines, Dash board frame which are made from steel and replace them with extruded aluminum alloys, to analyze a conventional rear wheel aluminum drive shaft and replace it with a new design and with a new aluminum alloy. The current project involves dismantling an automobile and looking for feasible steel parts and making samples, analyzing the hardness of the samples. These parts are optimally analyzed using Ansys Finite element analysis tool, these parts are subjected to the constraints such as three-point bending, tensile testing, hydrostatic pressure and also torsional stress action on the drive shaft, the deformation and stress are observed in these parts. The results show the current steel parts can be replaced with 3000 series aluminum alloy and the drive shaft can be replaced with new design with 6061-T6 Al-alloy which decreases 25% of the shaft weight.

  6. The Effect of Powder Ball Milling on the Microstructure and Mechanical Properties of Sintered Fe-Cr-Mo-Mn-(Cu) Steel

    Science.gov (United States)

    Kulecki, P.; Lichańska, E.

    2017-12-01

    The effect of ball milling powder mixtures of Höganäs pre-alloyed iron Astaloy CrM, low-carbon ferromanganese Elkem, elemental electrolytic Cu and C-UF graphite on the sintered structure and mechanical properties was evaluated. The mixing was conducted using Turbula mixer for 30 minutes and CDI-EM60 frequency inverter for 1 and 2 hours. Milling was performed on 150 g mixtures with (in weight %) CrM + 1% Mn, CrM + 2% Mn, CrM + 1% Mn + 1% Cu and CrM + 2% Mn + 1% Cu, all with 0.6%C. The green compacts were single pressed at 660 MPa according to PN-EN ISO 2740. Sintering was carried out in a laboratory horizontal furnace Carbolite STF 15/450 at 1250°C for 60 minutes in 5%H2 - 95%N2 atmosphere with a heating rate of 75°C/min, followed by sintering hardening at 60°C/min cooling rate. All the steels were characterized by martensitic structures. Mechanical testing revealed that steels based on milled powders have slightly higher mechanical properties compared to those only mixed and sintered. The best combination of mechanical properties, for ball milled CrM + 1% Mn + 1% Cu was UTS 1046 MPa, TRS 1336 MPa and A 1.94%.

  7. Metallography of powder metallurgy materials

    International Nuclear Information System (INIS)

    Lawley, Alan; Murphy, Thomas F.

    2003-01-01

    The primary distinction between the microstructure of an ingot metallurgy/wrought material and one fabricated by the powder metallurgy route of pressing followed by sintering is the presence of porosity in the latter. In its various morphologies, porosity affects the mechanical, physical, chemical, electrical and thermal properties of the material. Thus, it is important to be able to characterize quantitatively the microstructure of powder metallurgy parts and components. Metallographic procedures necessary for the reliable characterization of microstructures in powder metallurgy materials are reviewed, with emphasis on the intrinsic challenges presented by the presence of porosity. To illustrate the utility of these techniques, five case studies are presented involving powder metallurgy materials. These case studies demonstrate problem solving via metallography in diverse situations: failure of a tungsten carbide-coated precipitation hardening stainless steel, failure of a steel pump gear, quantification of the degree of sinter (DOS), simulation of performance of a porous filter using automated image analysis, and analysis of failure in a sinter brazed part assembly

  8. MODEL OF HYDRODYNAMIC MIXING OF CARBONIC POWDERS IN VACUUMATOR, USED IN STEEL-MAKING OF RUP “BMZ”

    Directory of Open Access Journals (Sweden)

    A. N. Chichko

    2005-01-01

    Full Text Available The mathematical model of the mixing and dissolving process of carbonic powder in a system '"vacuumator-bowl” under influence of circulating argon is offered. The spatial distribution of hydrodynamic currents at mixing of carbonic powder, received on the basis of computer calculations is presented. The character of distribution of hydrodynamic speeds of melt (circulating currents in industrial bowl and vacuumator for different time slots of mixing is determined. 

  9. Comparison between Palm Oil Derivative and Commercial Thermo-Plastic Binder System on the Properties of the Stainless Steel 316L Sintered Parts

    Science.gov (United States)

    Ibrahim, R.; Azmirruddin, M.; Wei, G. C.; Fong, L. K.; Abdullah, N. I.; Omar, K.; Muhamad, M.; Muhamad, S.

    2010-03-01

    Binder system is one of the most important criteria for the powder injection molding (PIM) process. Failure in the selection of the binder system will affect on the final properties of the sintered parts. The objectives of this studied is to develop a novel binder system based on the local natural resources and environmental friendly binder system from palm oil derivative which is easily available and cheap in our country of Malaysia. The novel binder that has been developed will be replaced the commercial thermo-plastic binder system or as an alternative binder system. The results show that the physical and mechanical properties of the final sintered parts fulfill the Metal Powder Industries Federation (MPIF) standard 35 for PIM parts. The biocompatibility test using cell osteosarcoma (MG63) and vero fibroblastic also shows that the cell was successfully growth on the sintered stainless steel 316L parts indicate that the novel binder was not toxic. Therefore, the novel binder system based on palm oil derivative that has been developed as a binder system fulfills the important criteria for the binder system in PIM process.

  10. Evaluation of mechanically alloyed Cu-based powders as filler alloy for brazing tungsten to a reduced activation ferritic-martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Prado, J. de, E-mail: javier.deprado@urjc.es; Sánchez, M.; Ureña, A.

    2017-07-15

    80Cu-20Ti powders were evaluated for their use as filler alloy for high temperature brazing of tungsten to a reduced activation ferritic/martensitic steel (Eurofer), and its application for the first wall of the DEMO fusion reactor. The use of alloyed powders has not been widely considered for brazing purposes and could improve the operational brazeability of the studied system due to its narrower melting range, determined by DTA analysis, which enhances the spreading capabilities of the filler. Ti contained in the filler composition acts as an activator element, reacting and forming several interfacial layers at the Eurofer-braze, which enhances the wettability properties and chemical interaction at the brazing interface. Brazing thermal cycle also activated the diffusion phenomena, which mainly affected to the Eurofer alloying elements causing in it a softening band of approximately 400 μm of thickness. However, this softening effect did not degrade the shear strength of the brazed joints (94 ± 23 MPa), because failure during testing was always located at the tungsten-braze interface. - Highlights: •W-Eurofer brazed joints, manufactured using Cu-based mechanically alloyed powders as filler is proposed. •The benefits derivate from the alloyed composition could improve the operational brazeability of the studied system. •Tested pre-alloyed fillers have a more homogeneous melting stage which enhances its spreading and flowing capabilities. •This behaviour could lead to work with higher heating rates and lower brazing temperatures.

  11. Influence of iron powder addition onto heat inputs, at stainless steels welds; Influencia da adicao do po de ferro no insumo de calor e na ZAC, em soldas de aco ARBL

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Samuel I.N.; Spinelli, Dirceu [Sao Paulo Univ., Sao Carlos, SP (Brazil). Escola de Engenharia; Magalhaes B Goncalves, Gilberto de; Souza, Paulo C.R.D. de

    1992-12-31

    In this work, welding with or without iron powder addition in stainless steels were produced. The welds obtained in only one pass with three different angles of grooves and several welding condition. The results showed that the heat input changes with and without iron powder addition that were found out by the cooling rates changes in weld pool. (author). 10 refs., 4 figs., 4 tabs.

  12. Non-destructive evaluation of welding part of stainless steels by phased array system

    International Nuclear Information System (INIS)

    Tatematsu, Nobuhiro; Matsumoto, Eiji

    2009-01-01

    Recently, more accurate and convenient Non-Destructive Evaluation techniques are required for flaw inspection of structural materials. Phased array ultrasonic transducers are expected as such as NDE technique but there are many subjects to be solved. Furthermore, commercial phased array systems with conventional scanning and imaging techniques have not fulfilled their maximum potential. The purpose of this paper is to improve the phased array system to be applicable to the inhomogeneity evaluation of welding part of stainless steels. (author)

  13. Steel fiber reinforced concrete pipes: part 1: technological analysis of the mechanical behavior

    Directory of Open Access Journals (Sweden)

    A. D. de Figueiredo

    Full Text Available This paper is the first part of an extensive work focusing the technological development of steel fiber reinforced concrete pipes (FRCP. Here is presented and discussed the experimental campaign focusing the test procedure and the mechanical behavior obtained for each of the dosages of fiber used. In the second part ("Steel fiber reinforced concrete pipes. Part 2: Numerical model to simulate the crushing test", the aspects of FRCP numerical modeling are presented and analyzed using the same experimental results in order to be validated. This study was carried out trying to reduce some uncertainties related to FRCP performance and provide a better condition to the use of these components. In this respect, an experimental study was carried out using sewage concrete pipes in full scale as specimens. The diameter of the specimens was 600 mm, and they had a length of 2500 mm. The pipes were reinforced with traditional bars and different contents of steel fibers in order to compare their performance through the crushing test. Two test procedures were used in that sense. In the 1st Series, the diameter displacement was monitored by the use of two LVDTs positioned at both extremities of the pipes. In the 2nd Series, just one LVDT is positioned at the spigot. The results shown a more rigidity response of the pipe during tests when the displacements were measured at the enlarged section of the socket. The fiber reinforcement was very effective, especially when low level of displacement was imposed to the FRCP. At this condition, the steel fibers showed an equivalent performance to superior class pipes made with traditional reinforced. The fiber content of 40 kg/m3 provided a hardening behavior for the FRCP, and could be considered as equivalent to the critical volume in this condition.

  14. Hybrid Binder to Mitigate Feed Powder Segregation in the Inkjet 3D Printing of Titanium Metal Parts

    Directory of Open Access Journals (Sweden)

    Saeed Maleksaeedi

    2018-05-01

    Full Text Available Using feedstock containing discrete dual or multi powders leads to segregation in the powder bed of additive manufacturing processes. In the present study, a new impregnated hybrid binder with properties closer to those of the base powder is developed to mitigate powder segregation in the inkjet 3D printing of titanium components.

  15. Design of joints in steel and composite structures Eurocode 3 : design of steel structures : part 1-8 : design of joints, Eurocode 4 : design of composite steel and concrete structures : part 1-1 : general rules and rules for buildings

    CERN Document Server

    Jaspart, Jean-Pierre

    2016-01-01

    This book details the basic concepts and the design rules included in Eurocode 3 Design of steel structures Part 1-8 Design of joints. Joints in composite construction are also addressed through references to Eurocode 4 Design of composite steel and concrete structures Part 1-1 General rules and rules for buildings. Attention has to be duly paid to the joints when designing a steel or composite structure, in terms of the global safety of the construction, and also in terms of the overall cost, including fabrication, transportation and erection. Therefore, in this book, the design of the joints themselves is widely detailed, and aspects of selection of joint configuration and integration of the joints into the analysis and the design process of the whole construction are also fully covered. Connections using mechanical fasteners, welded connections, simple joints, moment-resisting joints and lattice girder joints are considered. Various joint configurations are treated, including beam-to-column, beam-to-beam, ...

  16. Inspection of cup-shaped steel parts from the I.D. side using eddy current

    Science.gov (United States)

    Griffiths, Erick W.; Pearson, Lee H.

    2018-04-01

    An eddy current method was developed to inspect cup-shaped steel parts from the I.D. side. During the manufacturing process of these parts, a thin Al tape foil is applied to the I.D. side of the part. One of the critical process parameters is that only one foil layer can be applied. An eddy current inspection system was developed to reject parts with more than one foil layer. The Al tape foil is cut to length to fit the inner diameter, however, after application of the foil there is a gap created between the beginning and end of the foil. It was found that this gap interfered with the eddy current inspection causing a false positive indication. To solve this problem a sensor design and data analysis process were developed to overcome the effects of these gaps. The developed system incorporates simultaneous measurements from multiple eddy current sensors and signal processing to achieve a reliable inspection.

  17. Basics of compounding: Tips and hints: powders, capsules, tablets, suppositories, and sticks, part 1.

    Science.gov (United States)

    Allen, Loyd V

    2014-01-01

    No matter the profession, professionals should never stop learning. This is especially true and important in the profession of compounding pharmacy. Compounding pharmacists are continuously faced with the challenge of finding new and inventive ways to assist patients with their individual and specific drug requirements. As compounding pharmacists learn, be it through formal continuing education or experience, they should be willing to share their knowledge with other compounders. In our goal of providing compounding pharmacists with additional knowledge to improve their skills in the art and practice of compounding, this article, which provides tips and hits on compounding with powders, capsules, tablets, suppositories, and sticks, represents the first in a series of articles to assist compounding pharmacists in the preparation of compounded medications.

  18. Evaluation of mechanically alloyed Cu-based powders as filler alloy for brazing tungsten to a reduced activation ferritic-martensitic steel

    Science.gov (United States)

    de Prado, J.; Sánchez, M.; Ureña, A.

    2017-07-01

    80Cu-20Ti powders were evaluated for their use as filler alloy for high temperature brazing of tungsten to a reduced activation ferritic/martensitic steel (Eurofer), and its application for the first wall of the DEMO fusion reactor. The use of alloyed powders has not been widely considered for brazing purposes and could improve the operational brazeability of the studied system due to its narrower melting range, determined by DTA analysis, which enhances the spreading capabilities of the filler. Ti contained in the filler composition acts as an activator element, reacting and forming several interfacial layers at the Eurofer-braze, which enhances the wettability properties and chemical interaction at the brazing interface. Brazing thermal cycle also activated the diffusion phenomena, which mainly affected to the Eurofer alloying elements causing in it a softening band of approximately 400 μm of thickness. However, this softening effect did not degrade the shear strength of the brazed joints (94 ± 23 MPa), because failure during testing was always located at the tungsten-braze interface.

  19. Simulation of the hot flow behaviour of a medium carbon microalloyed steel. Part 1. Theoretical approach

    International Nuclear Information System (INIS)

    Cabrera, J.M.; Prado, J.M.

    1997-01-01

    The constitutive equations to model the hot flow behaviour of metallic materials in general, and of microalloyed steels in particular (see part 2 of this work) are established in this work. Special emphasis is done on the dynamic softening mechanisms, i.e., dynamic recovery and recrystallization phenomena. The equations developed are physic-based, not empirical, and the modelling allows an easy implementation in an analysis by numerical methods. The resulting equations are even able to predict the final grain size. (Author) 39 refs

  20. Corrosion fatigue crack growth in clad low-alloy steels: Part 1, medium-sulfur forging steel

    International Nuclear Information System (INIS)

    James, L.A.; Poskie, T.J.; Auten, T.A.; Cullen, W.H.

    1996-01-01

    Corrosion fatigue crack propagation tests were conducted on a medium- sulfur ASTM A508-2 forging steel overlaid with weld-deposited Alloy EN82H cladding. The specimens featured semi-elliptical surface cracks penetrating approximately 6.3 mm of cladding into the underlying steel. The initial crack sizes were relatively large with surface lengths of 30.3--38.3 mm, and depths of 13.1--16.8 mm. The experiments were conducted in a quasi-stagnant low-oxygen (O 2 < 10 ppb) aqueous environment at 243 degrees C, under loading conditions (ΔK, R, and cyclic frequency) conductive to environmentally-assisted cracking (EAC) in higher-sulfur steels under quasi-stagnant conditions. Earlier experiments on unclad compact tension specimens of this heat of steel did not exhibit EAC, and the present experiments on semi-elliptical surface cracks penetrating cladding also did not exhibit EAC

  1. Material report in support to RCC-MRX code 2010 stainless steel parts and products

    International Nuclear Information System (INIS)

    Ancelet, Olivier; Lebarbe, Thierry; Dubiez-Le Goff, Sophie; Bonne, Dominique; Gelineau, Odile

    2012-01-01

    This paper presents the Material Report dedicated to stainless steels parts and products issued by AFCEN (Association Francaise pour les regles de Conception et de Construction des Materiels des Chaudieres Electro-Nucleaires) in support to RCC-MRx 2010 Code. The RCC-MRx Code is the result of the merger of the RCC-MX 2008, developed in the context of the research reactor Jules Horowitz Reactor project, in the RCC-MR 2007, which set up rules applicable to the design of components operating at high temperature and to the Vacuum Vessel of ITER (a presentation of RCC-MRx 2010 Code is the subject of another paper proposed in this Congress; it explains in particular the status of this Code). This Material Report is part of a set of Criteria of RCC-MRx (this set of Criteria is under construction). The Criteria aim at explaining the design and construction rules of the Code. They cover analyses rules as well as part procurement, welding, methods of tests and examination and fabrication rules. The Material Report particularly provides justifications and explanations on requirements and features dealing with parts and products proposed in the Code. The Material Report contains the following information: Introduction of the grade(s): codes and standards and Reference Procurement Specifications covering parts and products, applications and experience gained, - Physical properties, - Mechanical properties used for design calculations (base metal and welds): basic mechanical properties, creep mechanical properties, irradiated mechanical properties, - Fabrication: experience gained, metallurgy, - Welding: weldability, experience gained during welding and repair procedure qualifications, - Non-destructive examination, - In-service behaviour. In the article, examples of data supplied in the Material Report dedicated to stainless steels will be exposed. (authors)

  2. Structural properties of H13 tool steel parts produced with use of selective laser melting technology

    International Nuclear Information System (INIS)

    Šafka, J; Ackermann, M; Voleský, L

    2016-01-01

    This paper deals with establishing of building parameters for 1.2344 (H13) tool steel processed using Selective Laser Melting (SLM) technology with layer thickness of 50 µm. In the first part of the work, testing matrix of models in the form of a cube with chamfered edge were built under various building parameters such as laser scanning speed and laser power. Resulting models were subjected to set of tests including measurement of surface roughness, inspection of inner structure with aid of Light Optical Microscopy and Scanning Electron Microscopy and evaluation of micro-hardness. These tests helped us to evaluate an influence of changes in building strategy to the properties of the resulting model. In the second part of the work, mechanical properties of the H13 steel were examined. For this purpose, the set of samples in the form of “dog bone” were printed under three different alignments towards the building plate and tested on universal testing machine. Mechanical testing of the samples should then reveal if the different orientation and thus different layering of the material somehow influence its mechanical properties. For this type of material, the producer provides the parameters for layer thickness of 30 µm only. Thus, our 50 µm building strategy brings shortening of the building time which is valuable especially for large models. Results of mechanical tests show slight variation in mechanical properties for various alignment of the sample. (paper)

  3. Structural properties of H13 tool steel parts produced with use of selective laser melting technology

    Science.gov (United States)

    Šafka, J.; Ackermann, M.; Voleský, L.

    2016-04-01

    This paper deals with establishing of building parameters for 1.2344 (H13) tool steel processed using Selective Laser Melting (SLM) technology with layer thickness of 50 µm. In the first part of the work, testing matrix of models in the form of a cube with chamfered edge were built under various building parameters such as laser scanning speed and laser power. Resulting models were subjected to set of tests including measurement of surface roughness, inspection of inner structure with aid of Light Optical Microscopy and Scanning Electron Microscopy and evaluation of micro-hardness. These tests helped us to evaluate an influence of changes in building strategy to the properties of the resulting model. In the second part of the work, mechanical properties of the H13 steel were examined. For this purpose, the set of samples in the form of “dog bone” were printed under three different alignments towards the building plate and tested on universal testing machine. Mechanical testing of the samples should then reveal if the different orientation and thus different layering of the material somehow influence its mechanical properties. For this type of material, the producer provides the parameters for layer thickness of 30 µm only. Thus, our 50 µm building strategy brings shortening of the building time which is valuable especially for large models. Results of mechanical tests show slight variation in mechanical properties for various alignment of the sample.

  4. Production of a Powder Metallurgical Hot Work Tool Steel with Harmonic Structure by Mechanical Milling and Spark Plasma Sintering

    Science.gov (United States)

    Deirmina, Faraz; Pellizzari, Massimo; Federici, Matteo

    2017-04-01

    Commercial AISI-H13 gas atomized powders (AT) were mechanically milled (MM) to refine both the particle size and the microstructure. Different volume fractions of coarser grained (CG) AT powders were mixed with the ultra-fine grained (UFG) MM and consolidated by spark plasma sintering to obtain bulks showing a harmonic structure ( i.e. a 3D interconnected network of UFG areas surrounding the CG atomized particles). The low sintering temperature, 1373.15 K (1100 °C) and the short sintering time (30 minutes) made it possible to obtain near full density samples while preserving the refined microstructure induced by MM. A combination of high hardness and significantly improved fracture toughness is achieved by the samples containing 50 to 80 vol pct MM, essentially showing harmonic structure. The design allows to easily achieve specific application oriented properties by varying the MM volume fraction in the initial mixture. Hardness is governed by the fine-grained MM matrix and improved toughening is due to (1) deviatory effect of AT particles and (2) energy dissipation as a result of the decohesion in MM regions or AT and MM interface.

  5. Effects of hot isostatic pressing on the elastic modulus and tensile properties of 316L parts made by powder bed laser fusion

    Energy Technology Data Exchange (ETDEWEB)

    Lavery, N.P., E-mail: N.P.Lavery@swansea.ac.uk [Materials Research Centre, College of Engineering, Swansea University Bay Campus, Fabian Way, Swansea SA1 8EP (United Kingdom); Zienkiewicz Centre for Computational Engineering, College of Engineering, Swansea University Bay Campus, Fabian Way, Swansea SA1 8EP (United Kingdom); Cherry, J.; Mehmood, S. [Materials Research Centre, College of Engineering, Swansea University Bay Campus, Fabian Way, Swansea SA1 8EP (United Kingdom); Zienkiewicz Centre for Computational Engineering, College of Engineering, Swansea University Bay Campus, Fabian Way, Swansea SA1 8EP (United Kingdom); Davies, H. [Materials Research Centre, College of Engineering, Swansea University Bay Campus, Fabian Way, Swansea SA1 8EP (United Kingdom); Girling, B.; Sackett, E. [Materials Research Centre, College of Engineering, Swansea University Bay Campus, Fabian Way, Swansea SA1 8EP (United Kingdom); Zienkiewicz Centre for Computational Engineering, College of Engineering, Swansea University Bay Campus, Fabian Way, Swansea SA1 8EP (United Kingdom); Brown, S.G.R. [Materials Research Centre, College of Engineering, Swansea University Bay Campus, Fabian Way, Swansea SA1 8EP (United Kingdom); Sienz, J. [Zienkiewicz Centre for Computational Engineering, College of Engineering, Swansea University Bay Campus, Fabian Way, Swansea SA1 8EP (United Kingdom)

    2017-05-02

    The microstructure and mechanical properties of 316L steel have been examined for parts built by a powder bed laser fusion process, which uses a laser to melt and build parts additively on a layer by layer basis. Relative density and porosity determined using various experimental techniques were correlated against laser energy density. Based on porosity sizes, morphology and distributions, the porosity was seen to transition between an irregular, highly directional porosity at the low laser energy density and a smaller, more rounded and randomly distributed porosity at higher laser energy density, thought to be caused by keyhole melting. In both cases, the porosity was reduced by hot isostatic pressing (HIP). High throughput ultrasound based measurements were used to calculate elasticity properties and show that the lower porosities from builds with higher energy densities have higher elasticity moduli in accordance with empirical relationships, and hot isostatic pressing improves the elasticity properties to levels associated with wrought/rolled 316L. However, even with hot isostatic pressing the best properties were obtained from samples with the lowest porosity in the as-built condition. A finite element stress analysis based on the porosity microstructures was undertaken, to understand the effect of pore size distributions and morphology on the Young's modulus. Over 1–5% porosity range angular porosity was found to reduce the Young's modulus by 5% more than rounded porosity. Experimentally measured Young's moduli for samples treated by HIP were closer to the rounded trends than the as-built samples, which were closer to angular trends. Tensile tests on specimens produced at optimised machine parameters displayed a high degree of anisotropy in the build direction and test variability for as-built parts, especially between vertical and horizontal build directions. The as-built properties were generally found to have a higher yield stress, but

  6. Effects of hot isostatic pressing on the elastic modulus and tensile properties of 316L parts made by powder bed laser fusion

    International Nuclear Information System (INIS)

    Lavery, N.P.; Cherry, J.; Mehmood, S.; Davies, H.; Girling, B.; Sackett, E.; Brown, S.G.R.; Sienz, J.

    2017-01-01

    The microstructure and mechanical properties of 316L steel have been examined for parts built by a powder bed laser fusion process, which uses a laser to melt and build parts additively on a layer by layer basis. Relative density and porosity determined using various experimental techniques were correlated against laser energy density. Based on porosity sizes, morphology and distributions, the porosity was seen to transition between an irregular, highly directional porosity at the low laser energy density and a smaller, more rounded and randomly distributed porosity at higher laser energy density, thought to be caused by keyhole melting. In both cases, the porosity was reduced by hot isostatic pressing (HIP). High throughput ultrasound based measurements were used to calculate elasticity properties and show that the lower porosities from builds with higher energy densities have higher elasticity moduli in accordance with empirical relationships, and hot isostatic pressing improves the elasticity properties to levels associated with wrought/rolled 316L. However, even with hot isostatic pressing the best properties were obtained from samples with the lowest porosity in the as-built condition. A finite element stress analysis based on the porosity microstructures was undertaken, to understand the effect of pore size distributions and morphology on the Young's modulus. Over 1–5% porosity range angular porosity was found to reduce the Young's modulus by 5% more than rounded porosity. Experimentally measured Young's moduli for samples treated by HIP were closer to the rounded trends than the as-built samples, which were closer to angular trends. Tensile tests on specimens produced at optimised machine parameters displayed a high degree of anisotropy in the build direction and test variability for as-built parts, especially between vertical and horizontal build directions. The as-built properties were generally found to have a higher yield stress, but lower upper

  7. Thermal stability of solid lubricant element MoS2 in injection molded parts of 17-4 PH stainless steel

    International Nuclear Information System (INIS)

    Furlan, K.P.; Binder, C.; Klein, A.N.

    2009-01-01

    Sintered copper-based parts with self-lubricating properties are, nowadays, extensively employed, e.g. in automotive bushes. However, in such components, the liquid lubricant is added after the sintering stage. Recent developments have attempted to substitute the liquid lubricant for a solid one (which is incorporated during the mixing step), aiming operations under extreme conditions where liquids may be ineffective. For powder injection molding (PIM) market, stainless steels are the widest-ranging application group. In this study composites of 17-4 PH stainless steel with 10% vol. of molybdenum disulfide solid lubricant were prepared by PIM. The sintering of the compacts was carried out at various temperatures ranging from 650 to 1300 deg C. The composite structure was analyzed by SEM/EDS, and the phases formed were identified by XRD. Results indicated decomposition of MoS 2 during the sintering cycle, for temperatures above 650 deg C, with formation of others sulfides and supplementary diffusion of molybdenum into the matrix. (author)

  8. Development of TS590MPa grade high tensile strength steel for automotive anti-collision parts; Shogeki kyushuyo 590MPa kyu kochoryoku koban no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Miura, K; Takagi, S; Furukimi, O; Hira, T; Obara, T [Kawasaki Steel Corp., Tokyo (Japan); Tanimura, S [University of Osaka Prefecture, Osaka (Japan)

    1997-10-01

    The effects of strain rate on the deformation behavior of steels were investigated to find the most appropriate micro-structure of steel for anti-crash parts of automobiles, such as front-side-members. The dual phase steel absorbed a higher amount of energy during dynamic deformation than other steels with the same static yield strength. The increase of volume fraction of the austenite phase in the dual phase steel deteriorates the dynamic deformation behavior. The FEM analysis for crash test of HAT-sectional sheet box also showed the superior performance of the dual phase steel. 4 refs., 7 figs., 1 tab.

  9. Single-step laser deposition of functionally graded coating by dual ‘wire powder’ or ‘powder powder’ feeding—A comparative study

    Science.gov (United States)

    Syed, Waheed Ul Haq; Pinkerton, Andrew J.; Liu, Zhu; Li, Lin

    2007-07-01

    The creation of iron-copper (Fe-Cu) alloys has practical application in improving the surface heat conduction and corrosion resistance of, for example, conformal cooling channels in steel moulds, but is difficult to achieve because the elements have got low inter-solubility and are prone to solidification cracking. Previous work by these authors has reported a method to produce a graded iron-nickel-copper coating in a single-step by direct diode laser deposition (DLD) of nickel wire and copper powder as a combined feedstock. This work investigates whether dual powder feeds can be used in that process to afford greater geometric flexibility and compares attributes of the 'nickel wire and copper powder' and 'nickel powder and copper powder' processes for deposition on a H13 tool steel substrate. In wire-powder deposition, a higher temperature developed in the melt pool causing a clad with a smooth gradient structure. The nickel powder in powder-powder deposition did not impart much heat into the melt pool so the melt pool solidified with sharp composition boundaries due to single metal melting in some parts. In wire-powder experiments, a graded structure was obtained by varying the flow rates of wire and powder. However, a graded structure was not realised in powder-powder experiments by varying either the feed or the directions. Reasons for the differences and flow patterns in the melt pools and their effect on final part properties of parts produced are discussed.

  10. Metals for bone implants. Part 1. Powder metallurgy and implant rendering.

    Science.gov (United States)

    Andani, Mohsen Taheri; Shayesteh Moghaddam, Narges; Haberland, Christoph; Dean, David; Miller, Michael J; Elahinia, Mohammad

    2014-10-01

    New metal alloys and metal fabrication strategies are likely to benefit future skeletal implant strategies. These metals and fabrication strategies were looked at from the point of view of standard-of-care implants for the mandible. These implants are used as part of the treatment for segmental resection due to oropharyngeal cancer, injury or correction of deformity due to pathology or congenital defect. The focus of this two-part review is the issues associated with the failure of existing mandibular implants that are due to mismatched material properties. Potential directions for future research are also studied. To mitigate these issues, the use of low-stiffness metallic alloys has been highlighted. To this end, the development, processing and biocompatibility of superelastic NiTi as well as resorbable magnesium-based alloys are discussed. Additionally, engineered porosity is reviewed as it can be an effective way of matching the stiffness of an implant with the surrounding tissue. These porosities and the overall geometry of the implant can be optimized for strain transduction and with a tailored stiffness profile. Rendering patient-specific, site-specific, morphology-specific and function-specific implants can now be achieved using these and other metals with bone-like material properties by additive manufacturing. The biocompatibility of implants prepared from superelastic and resorbable alloys is also reviewed. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. Optimization and Simulation of SLM Process for High Density H13 Tool Steel Parts

    Science.gov (United States)

    Laakso, Petri; Riipinen, Tuomas; Laukkanen, Anssi; Andersson, Tom; Jokinen, Antero; Revuelta, Alejandro; Ruusuvuori, Kimmo

    This paper demonstrates the successful printing and optimization of processing parameters of high-strength H13 tool steel by Selective Laser Melting (SLM). D-Optimal Design of Experiments (DOE) approach is used for parameter optimization of laser power, scanning speed and hatch width. With 50 test samples (1×1×1cm) we establish parameter windows for these three parameters in relation to part density. The calculated numerical model is found to be in good agreement with the density data obtained from the samples using image analysis. A thermomechanical finite element simulation model is constructed of the SLM process and validated by comparing the calculated densities retrieved from the model with the experimentally determined densities. With the simulation tool one can explore the effect of different parameters on density before making any printed samples. Establishing a parameter window provides the user with freedom for parameter selection such as choosing parameters that result in fastest print speed.

  12. Mechanical properties of steel fiber reinforced reactive powder concrete following exposure to high temperature reaching 800 deg. C

    Energy Technology Data Exchange (ETDEWEB)

    Tai, Yuh-Shiou, E-mail: ystai@cc.cma.edu.tw [Department of Civil Engineering, ROC Military Academy, Kaohsiung, Taiwan (China); Pan, Huang-Hsing; Kung, Ying-Nien [Department of Civil Engineering, Kaohsiung University of Applied Sciences, Kaohsiung, Taiwan (China)

    2011-07-15

    Highlights: > The stress-strain relation of reactive powder concrete after exposure to high temperatures are tested by using displacement control. > Develops regression formulae to estimate the mechanical properties of RPC. > Valuable experimental data have been obtained about RPC with various fiber contents. These data include compressive strength, peak strain and modulus of elasticity. - Abstract: This study investigates the stress-strain relation of RPC in quasi-static loading after an elevated temperature. The cylinder specimens of RPC with {phi} 50 mm x 100 mm are examined at the room temperature and after 200-800 deg. C. Experimental results indicate that the residual compressive strength of RPC after heating from 200-300 deg. C increases more than that at room temperature, but, significantly decreases when the temperature exceeds 300 deg. C. The residual peak strains of RPC also initially increase up to 400-500 deg. C, then decrease gradually beyond 500 deg. C. Meanwhile, Young's modulus diminishes with an increasing temperature. Based on the regression analysis results, this study also develops regression formulae to estimate the mechanical properties of RPC after an elevated temperature, thus providing a valuable reference for industrial applications and design.

  13. Utilización del polvo de acería de horno de arco eléctrico. // Use of powder produced by electric arc furnaces at steel plants.

    Directory of Open Access Journals (Sweden)

    D. Tápanes Robau

    2001-01-01

    Full Text Available El polvo de las Acerías de Horno de Arco Eléctrico se produce como consecuencia de la producción de Acero, durante ladepuración de los gases, y, en menor medida, en sus equipos de captación de aire. Estos polvos deben ser captados por lossistemas de depuración del taller. Con el presente trabajo pretendemos darle utilidad a un producto de desecho como es elpolvo, mejorar las condiciones ambientales en el taller, elevar la calidad del pavimento u hormigón asfáltico mediante lavariación de sus propiedades y disminuir el costo de la tonelada de acero mediante la comercialización de estos productosde desecho.Palabras claves: Polvos, aglutinantes, composición química, pruebas realizadas._______________________________________________________________________________SummaryThe powder generated by electric arc furnaces at steel plants is the result of processes such as the production of steel, thepurification of gases and, capturing air equipment .This article shows a method for recycling waste material – powder in this case- which also contributes to improve the steelplant environment, provides the possibility of improving asphalt paving and makes the production of steel cheaper throughthe commercialization of waste materials.Key words: Powder, binder, tests, chemical composition.

  14. Consolidation of titanium hydride powders during the production of titanium PM parts: The effect of die wall lubricants

    CSIR Research Space (South Africa)

    Machio, Christopher N

    2015-11-01

    Full Text Available The effects of die wall lubricants on the cold compaction of titanium hydride powder are studied. Three commonly-used die wall powder metallurgy lubricants – zinc stearate, Acrawax® C dispersion and Mirror Glaze® – are compared. The influence...

  15. Formability of dual-phase steels in deep drawing of rectangular parts: Influence of blank thickness and die radius

    Science.gov (United States)

    López, Ana María Camacho; Regueras, José María Gutiérrez

    2017-10-01

    The new goals of automotive industry related with environment concerns, the reduction of fuel emissions and the security requirements have driven up to new designs which main objective is reducing weight. It can be achieved through new materials such as nano-structured materials, fibre-reinforced composites or steels with higher strength, among others. Into the last group, the Advance High Strength Steels (AHSS) and particularly, dual-phase steels are in a predominant situation. However, despite of their special characteristics, they present issues related to their manufacturability such as springback, splits and cracks, among others. This work is focused on the deep drawing processof rectangular shapes, a very usual forming operation that allows manufacturing several automotive parts like oil pans, cases, etc. Two of the main parameters in this process which affect directly to the characteristics of final product are blank thickness (t) and die radius (Rd). Influence of t and Rd on the formability of dual-phase steels has been analysed considering values typically used in industrial manufacturing for a wide range of dual-phase steels using finite element modelling and simulation; concretely, the influence of these parameters in the percentage of thickness reduction pt(%), a quite important value for manufactured parts by deep drawing operations, which affects to its integrity and its service behaviour. Modified Morh Coulomb criteria (MMC) has been used in order to obtain Fracture Forming Limit Diagrams (FFLD) which take into account an important failure mode in dual-phase steels: shear fracture. Finally, a relation between thickness reduction percentage and studied parameters has been established fordual-phase steels, obtaining a collection of equations based on Design of Experiments (D.O.E) technique, which can be useful in order to predict approximate results.

  16. Electropolishing of Re-melted SLM Stainless Steel 316L Parts Using Deep Eutectic Solvents: 3 × 3 Full Factorial Design

    Science.gov (United States)

    Alrbaey, K.; Wimpenny, D. I.; Al-Barzinjy, A. A.; Moroz, A.

    2016-07-01

    This three-level three-factor full factorial study describes the effects of electropolishing using deep eutectic solvents on the surface roughness of re-melted 316L stainless steel samples produced by the selective laser melting (SLM) powder bed fusion additive manufacturing method. An improvement in the surface finish of re-melted stainless steel 316L parts was achieved by optimizing the processing parameters for a relatively environmentally friendly (`green') electropolishing process using a Choline Chloride ionic electrolyte. The results show that further improvement of the response value-average surface roughness ( Ra) can be obtained by electropolishing after re-melting to yield a 75% improvement compared to the as-built Ra. The best Ra value was less than 0.5 μm, obtained with a potential of 4 V, maintained for 30 min at 40 °C. Electropolishing has been shown to be effective at removing the residual oxide film formed during the re-melting process. The material dissolution during the process is not homogenous and is directed preferentially toward the iron and nickel, leaving the surface rich in chromium with potentially enhanced properties. The re-melted and polished surface of the samples gave an approximately 20% improvement in fatigue life at low stresses (approximately 570 MPa). The results of the study demonstrate that a combination of re-melting and electropolishing provides a flexible method for surface texture improvement which is capable of delivering a significant improvement in surface finish while holding the dimensional accuracy of parts within an acceptable range.

  17. Measurement of loose powder density

    International Nuclear Information System (INIS)

    Akhtar, S.; Ali, A.; Haider, A.; Farooque, M.

    2011-01-01

    Powder metallurgy is a conventional technique for making engineering articles from powders. Main objective is to produce final products with the highest possible uniform density, which depends on the initial loose powder characteristics. Producing, handling, characterizing and compacting materials in loose powder form are part of the manufacturing processes. Density of loose metallic or ceramic powder is an important parameter for die design. Loose powder density is required for calculating the exact mass of powder to fill the die cavity for producing intended green density of the powder compact. To fulfill this requirement of powder metallurgical processing, a loose powder density meter as per ASTM standards is designed and fabricated for measurement of density. The density of free flowing metallic powders can be determined using Hall flow meter funnel and density cup of 25 cm/sup 3/ volume. Density of metal powders like cobalt, manganese, spherical bronze and pure iron is measured and results are obtained with 99.9% accuracy. (author)

  18. Stress-Corrosion Cracking of Metallic Materials. Part III. Hydrogen Entry and Embrittlement in Steel

    Science.gov (United States)

    1975-04-01

    work of Kerns (36)] 29 22 Crack Velocity vs. Stress Intensity for AISI 4340 Steel (Martensitic and Bainitic Structures) in 314 NaCl Solution (pit = 6.0...magnitude greater for 4340 steel with a tempered martensite structure than for the lower bainite structure. Figure 22 shows crack velocity as a function of...applied stress intensity for martensitic and bainitic steels . The dif- ference was attributed to more effective trapping of hydrogen at coher- ently

  19. Fatigue design of steel and composite structures Eurocode 3 : design of steel structures, part 1-9 fatigue ; Eurocode 4 : design of composite steel and concrete structures

    CERN Document Server

    Nussbaumer, Alain; Davaine, Laurence

    2012-01-01

    This volume addresses the specific subject of fatigue, a subject not familiar to many engineers, but still relevant for proper and good design of numerous steel structures. It explains all issues related to the subject: Basis of fatigue design, reliability and various verification formats, determination of stresses and stress ranges, fatigue strength, application range and limitations. It contains detailed examples of applications of the concepts, computation methods and verifications.

  20. In-service behavior of creep strength enhanced ferritic steels Grade 91 and Grade 92 – Part 1 parent metal

    International Nuclear Information System (INIS)

    Parker, Jonathan

    2013-01-01

    In creep strength enhanced ferritic steels, such as Grade 91 and Grade 92, control of both composition and heat treatment of the parent steel is necessary to avoid producing components which have creep strength below the minimum expected by applicable ASME and other International Codes. These efforts are required to ensure that the steel develops a homogeneous fully tempered martensitic microstructure, with the appropriate distribution of precipitates and the required dislocation substructure. In-service creep related problems with Grade 91 steel have been reported associated with factors such as incorrect microstructure and heat treatment, welded connections in headers and piping, dissimilar metal welds as well as the manufacture and performance of castings. Difficulties associated with remediation of in-service damage include challenges over detection and removal of damaged material as well as the selection and qualification of appropriate methodologies for repair. Since repeated heat treatment leads to continued tempering, and a potential degradation of properties, specific procedures for performing and then lifing repair welds are a key aspect of Asset Management. This paper presents a summary of in-service experience with Grade 91 steel and outlines approaches for repair welding. Highlights: ► The steel alloy known as Grade 91 is widely used to fabricate critical pressure part components. ► Designers favor Grade 91 because it provides superior elevated temperature strength at substantially lower cost than the austenitic stainless steels. ► Service experience has confirmed that early failures can occur. ► Life management solutions involved attention to detail at Purchase, during design and all stages of fabrication.

  1. High strength reinforcing steel bars : concrete shear friction interface : final report : Part A.

    Science.gov (United States)

    2017-03-01

    High-strength steel (HSS) reinforcement, specifically ASTM A706 Grade 80 (550), is now permitted by the AASHTO LRFD Bridge Design Specifications for use in reinforced concrete bridge components in non-seismic regions. Using Grade 80 (550) steel reinf...

  2. Radiation damage of the construction materials, Phase I, Part I- Radiation damage of the construction steels

    International Nuclear Information System (INIS)

    Lazarevic, Dj.

    1962-10-01

    The objective of this task was testing the mechanical properties of stainless steels having different grain size. Being an important material used mainly for reactor vessel construction stainless steel will be exposed to neutron flux in the RA reactor for testing

  3. Vibration impact acoustic emission technique for identification and analysis of defects in carbon steel tubes: Part B Cluster analysis

    Energy Technology Data Exchange (ETDEWEB)

    Halim, Zakiah Abd [Universiti Teknikal Malaysia Melaka (Malaysia); Jamaludin, Nordin; Junaidi, Syarif [Faculty of Engineering and Built, Universiti Kebangsaan Malaysia, Bangi (Malaysia); Yahya, Syed Yusainee Syed [Universiti Teknologi MARA, Shah Alam (Malaysia)

    2015-04-15

    Current steel tubes inspection techniques are invasive, and the interpretation and evaluation of inspection results are manually done by skilled personnel. Part A of this work details the methodology involved in the newly developed non-invasive, non-destructive tube inspection technique based on the integration of vibration impact (VI) and acoustic emission (AE) systems known as the vibration impact acoustic emission (VIAE) technique. AE signals have been introduced into a series of ASTM A179 seamless steel tubes using the impact hammer. Specifically, a good steel tube as the reference tube and four steel tubes with through-hole artificial defect at different locations were used in this study. The AEs propagation was captured using a high frequency sensor of AE systems. The present study explores the cluster analysis approach based on autoregressive (AR) coefficients to automatically interpret the AE signals. The results from the cluster analysis were graphically illustrated using a dendrogram that demonstrated the arrangement of the natural clusters of AE signals. The AR algorithm appears to be the more effective method in classifying the AE signals into natural groups. This approach has successfully classified AE signals for quick and confident interpretation of defects in carbon steel tubes.

  4. Vibration impact acoustic emission technique for identification and analysis of defects in carbon steel tubes: Part B Cluster analysis

    International Nuclear Information System (INIS)

    Halim, Zakiah Abd; Jamaludin, Nordin; Junaidi, Syarif; Yahya, Syed Yusainee Syed

    2015-01-01

    Current steel tubes inspection techniques are invasive, and the interpretation and evaluation of inspection results are manually done by skilled personnel. Part A of this work details the methodology involved in the newly developed non-invasive, non-destructive tube inspection technique based on the integration of vibration impact (VI) and acoustic emission (AE) systems known as the vibration impact acoustic emission (VIAE) technique. AE signals have been introduced into a series of ASTM A179 seamless steel tubes using the impact hammer. Specifically, a good steel tube as the reference tube and four steel tubes with through-hole artificial defect at different locations were used in this study. The AEs propagation was captured using a high frequency sensor of AE systems. The present study explores the cluster analysis approach based on autoregressive (AR) coefficients to automatically interpret the AE signals. The results from the cluster analysis were graphically illustrated using a dendrogram that demonstrated the arrangement of the natural clusters of AE signals. The AR algorithm appears to be the more effective method in classifying the AE signals into natural groups. This approach has successfully classified AE signals for quick and confident interpretation of defects in carbon steel tubes.

  5. Both sulfate-reducing bacteria and Enterobacteriaceae take part in marine biocorrosion of carbon steel.

    Science.gov (United States)

    Bermont-Bouis, D; Janvier, M; Grimont, P A D; Dupont, I; Vallaeys, T

    2007-01-01

    In order to evaluate the part played in biocorrosion by microbial groups other than sulfate-reducing bacteria (SRB), we characterized the phylogenetic diversity of a corrosive marine biofilm attached to a harbour pile structure as well as to carbon steel surfaces (coupons) immersed in seawater for increasing time periods (1 and 8 months). We thus experimentally checked corroding abilities of defined species mixtures. Microbial community analysis was performed using both traditional cultivation techniques and polymerase chain reaction cloning-sequencing of 16S rRNA genes. Community structure of biofilms developing with time on immersed coupons tended to reach after 8 months, a steady state similar to the one observed on a harbour pile structure. Phylogenetic affiliations of isolates and cloned 16S rRNA genes (rrs) indicated that native biofilms (developing after 1-month immersion) were mainly colonized by gamma-proteobacteria. Among these, Vibrio species were detected in majority with molecular methods while cultivation techniques revealed dominance of Enterobacteriaceae such as Citrobacter, Klebsiella and Proteus species. Conversely, in mature biofilms (8-month immersion and pile structure), SRB, and to a lesser extent, spirochaetes were dominant. Corroding activity detection assays confirmed that Enterobacteriaceae (members of the gamma-proteobacteria) were involved in biocorrosion of metallic material in marine conditions. In marine biofilms, metal corrosion may be initiated by Enterobacteriaceae.

  6. Reducing metal alloy powder costs for use in powder bed fusion additive manufacturing: Improving the economics for production

    Science.gov (United States)

    Medina, Fransisco

    Titanium and its associated alloys have been used in industry for over 50 years and have become more popular in the recent decades. Titanium has been most successful in areas where the high strength to weight ratio provides an advantage over aluminum and steels. Other advantages of titanium include biocompatibility and corrosion resistance. Electron Beam Melting (EBM) is an additive manufacturing (AM) technology that has been successfully applied in the manufacturing of titanium components for the aerospace and medical industry with equivalent or better mechanical properties as parts fabricated via more traditional casting and machining methods. As the demand for titanium powder continues to increase, the price also increases. Titanium spheroidized powder from different vendors has a price range from 260/kg-450/kg, other spheroidized alloys such as Niobium can cost as high as $1,200/kg. Alternative titanium powders produced from methods such as the Titanium Hydride-Dehydride (HDH) process and the Armstrong Commercially Pure Titanium (CPTi) process can be fabricated at a fraction of the cost of powders fabricated via gas atomization. The alternative powders can be spheroidized and blended. Current sectors in additive manufacturing such as the medical industry are concerned that there will not be enough spherical powder for production and are seeking other powder options. It is believed the EBM technology can use a blend of spherical and angular powder to build fully dense parts with equal mechanical properties to those produced using traditional powders. Some of the challenges with angular and irregular powders are overcoming the poor flow characteristics and the attainment of the same or better packing densities as spherical powders. The goal of this research is to demonstrate the feasibility of utilizing alternative and lower cost powders in the EBM process. As a result, reducing the cost of the raw material to reduce the overall cost of the product produced with

  7. Optical photon transport in powdered-phosphor scintillators. Part II. Calculation of single-scattering transport parameters

    Energy Technology Data Exchange (ETDEWEB)

    Poludniowski, Gavin G. [Joint Department of Physics, Division of Radiotherapy and Imaging, Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT, United Kingdom and Centre for Vision Speech and Signal Processing (CVSSP), Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); Evans, Philip M. [Centre for Vision Speech and Signal Processing (CVSSP), Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom)

    2013-04-15

    Purpose: Monte Carlo methods based on the Boltzmann transport equation (BTE) have previously been used to model light transport in powdered-phosphor scintillator screens. Physically motivated guesses or, alternatively, the complexities of Mie theory have been used by some authors to provide the necessary inputs of transport parameters. The purpose of Part II of this work is to: (i) validate predictions of modulation transform function (MTF) using the BTE and calculated values of transport parameters, against experimental data published for two Gd{sub 2}O{sub 2}S:Tb screens; (ii) investigate the impact of size-distribution and emission spectrum on Mie predictions of transport parameters; (iii) suggest simpler and novel geometrical optics-based models for these parameters and compare to the predictions of Mie theory. A computer code package called phsphr is made available that allows the MTF predictions for the screens modeled to be reproduced and novel screens to be simulated. Methods: The transport parameters of interest are the scattering efficiency (Q{sub sct}), absorption efficiency (Q{sub abs}), and the scatter anisotropy (g). Calculations of these parameters are made using the analytic method of Mie theory, for spherical grains of radii 0.1-5.0 {mu}m. The sensitivity of the transport parameters to emission wavelength is investigated using an emission spectrum representative of that of Gd{sub 2}O{sub 2}S:Tb. The impact of a grain-size distribution in the screen on the parameters is investigated using a Gaussian size-distribution ({sigma}= 1%, 5%, or 10% of mean radius). Two simple and novel alternative models to Mie theory are suggested: a geometrical optics and diffraction model (GODM) and an extension of this (GODM+). Comparisons to measured MTF are made for two commercial screens: Lanex Fast Back and Lanex Fast Front (Eastman Kodak Company, Inc.). Results: The Mie theory predictions of transport parameters were shown to be highly sensitive to both grain size

  8. Ductile fracture behavior of 6-inch diameter type 304 stainless steel and STS 42 carbon steel piping containing a through-wall or part-through crack

    International Nuclear Information System (INIS)

    Shibata, Katsuyuki; Ohba, Toshihiro; Kawamura, Takaichi; Miyazono, Shohachiro; Kaneko, Tadashi; Yokoyama, Norio.

    1986-05-01

    The double ended guillotine break philosophy in the design base accident of the nuclear power plant is considered to be overly conservative from the view point of piping design. Through the past experiences and developments of the fabrication, inspection, and operation of nuclear power plants, it has been recognized that the Leak-Before-Break (LBB) concept can be justified in the LWR pressure boundary pipings. In order to verify the LBB concept, extensive experimental and theoretical works are being conducted in many countries. Furthermore, a revised piping design standard, in which LBB concept is introduced, is under preparation in Japan, U.S.A., and European countries. At JAERI, a research program to investigate the unstable ductile fracture behavior of LWR piping under bending load has been carried out as a part of the LBB verification researches since 1983. This report summarizes the result of the ductile fracture tests conducted at room temperature in 1983 and 84. The 6-inch diameter pipes of type 304 stainless steel and STS 42 carbon steel pipe with a through-wall or part-through crack were tested under bending load with low or high compliance condition at room temperature. Pipe fracture data were obtained from the test as regards to load- displacement curve, crack extension, net section stress, J-resistance curve, and so on. Besides, the influence of the compliance on the fracture behavior was examined. Discussions are performed on the ductile pipe fracture criterion, flaw evaluation criterion, and LBB evaluation method. (author)

  9. Globalization of Japanese steel industry. Part 1. Materials; Tekkogyo no kokusaika. 1. Zairyo

    Energy Technology Data Exchange (ETDEWEB)

    Aramaki, T. [Nippon Steel Corp., Tokyo (Japan)

    1995-01-01

    This paper discusses the globalization of the Japanese steel industry from the viewpoint of maintenance of international competitive potential. In the steel industry, remarkable technology innovation is currently occurring in the production process. The direct iron ore smelting process and strip caster process are being developed. These innovative technologies are characterized by processes having simplified facilities and lower fixed costs. A large problem of Japanese steel industry is the maintenance of competitive potential in the international price. For the purpose of the cost reduction, profitability improvement efforts have been made, as for the cut of research and development cost, consolidation of standards, intensive production, specialization among undertakings, cooperations, etc. Additionally, accompanied with the overseas production of steel consumers, the overseas steel production has been conducted. The overseas production is currently focused on Asia. Significance of the Japanese steel industry in Asia is provided from the viewpoint of accumulating technological know-how, establishment of new technologies, acquisition of operation technologies, promotion of talented persons for industries, etc. 12 refs., 7 figs., 3 tabs.

  10. Texture evolution of experimental silicon steel grades. Part I: Hot rolling

    Energy Technology Data Exchange (ETDEWEB)

    Sandoval Robles, J.A., E-mail: jsandoval.uanl@yahoo.com [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica, Ave. Universidad S/N, Cd. Universitaria, San Nicolás de los Garza, Nuevo León C.P. 66450 (Mexico); Salas Zamarripa, A.; Guerrero Mata, M.P. [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica, Ave. Universidad S/N, Cd. Universitaria, San Nicolás de los Garza, Nuevo León C.P. 66450 (Mexico); Cabrera, J. [Universitat Politècnica de Catalunya, Departament de Ciència dels Materials I Enginyeria Metal-lúrgica, Av. Diagonal 647, Barcelona 08028 (Spain)

    2017-05-01

    The metallurgical understanding of the deformation processes during the fabrication of non-oriented electrical steels plays a key role in improving their final properties. Texture control and optimization is critical in these steels for the enhancement of their magnetic properties. The aim of the present work is to study the texture evolution of six non-oriented experimental silicon steel grades during hot rolling. These steels were low carbon steel with a silicon content from 0.5 to 3.0 wt%. The first rolling schedule was performed in the austenitic (γ-Fe) region for the steel with a 0.5 wt% of silicon content, while the 1.0 wt% silicon steel was rolled in the two-phase (α+γ) region. Steels with higher silicon content were rolled in the ferritic (α-Fe) region. The second rolling schedule was performed in the α-Fe region. Samples of each stage were analyzed by means of Electron Backscatter Diffraction (EBSD). Findings showed that the texture was random and heterogeneous in all samples after 60% of rolling reduction, which is due to the low deformation applied during rolling. After the second rolling program, localized deformation and substructured grains near to surface were observed in all samples. The Goss {110}<001>texture-component was found in the 0.5 and 1.0 wt.-%silicon steels. This is due to the thermomechanical conditions and the corresponding hot band microstructure obtained after the first program. Moreover, the α<110>//RD and the γ <111>//ND fiber components of the texture presented a considerable increment as the silicon content increases. Future research to be published soon will be related to the texture evolution during the cold-work rolling process. - Highlights: • We analyze six silicon steel experimental grades alloys trough the rolling process. • Material was subjected to a hot deformation process in the α-γ region. • No recrystalization was observed during-after the rolling schedules. • Rise of the magnetic texture components

  11. Metallurgy of high-silicon steel parts produced using Selective Laser Melting

    International Nuclear Information System (INIS)

    Garibaldi, Michele; Ashcroft, Ian; Simonelli, Marco; Hague, Richard

    2016-01-01

    The metallurgy of high-silicon steel (6.9%wt.Si) processed using Selective Laser Melting (SLM) is presented for the first time in this study. High-silicon steel has great potential as a soft magnetic alloy, but its employment has been limited due to its poor workability. The effect of SLM-processing on the metallurgy of the alloy is investigated in this work using microscopy, X-Ray Diffraction (XRD) and Electron Backscatter Diffraction (EBSD). XRD analysis suggests that the SLM high-silicon steel is a single ferritic phase (solid solution), with no sign of phase ordering. This is expected to have beneficial effects on the material properties, since ordering has been shown to make silicon steels more brittle and electrically conductive. For near-fully dense samples, columnar grains with a high aspect ratio and oriented along the build direction are found. Most importantly, a <001> fibre-texture along the build direction can be changed into a cube-texture when the qualitative shape of the melt-pool is altered (from shallow to deep) by increasing the energy input of the scanning laser. This feature could potentially open the path to the manufacture of three-dimensional grain-oriented high-silicon steels for electromechanical applications.

  12. Air classifier technology (ACT) in dry powder inhalation. Part 1 : Introduction of a novel force distribution concept (FDC) explaining the performance of a basic air classifier on adhesive mixtures

    NARCIS (Netherlands)

    de Boer, A H; Hagedoorn, P; Gjaltema, D; Goede, J; Frijlink, H W

    2003-01-01

    Air classifier technology (ACT) is introduced as part of formulation integrated dry powder inhaler development (FIDPI) to optimise the de-agglomeration of inhalation powders. Carrier retention and de-agglomeration results obtained with a basic classifier concept are discussed. The theoretical

  13. Simulation of the hot flow behaviour of a medium carbon microalloyed steel. Part 2. Dynamic recrystallization: onset and kinetics

    International Nuclear Information System (INIS)

    Cabrera, J.M.; Al Omar, A.; Prado, J.M.

    1997-01-01

    According to the part 1 of this work, in this second part the dynamic recrystallization of a commercial medium carbon microalloyed steel is characterized from the point of view of its onset and kinetics. For this purpose uniaxial hot compression tests were carried out over a range of five orders of magnitude in strain rate and 300 degree centigree of temperature. Experimental results are compared with those reported in the literature and the possible effect of dynamic precipitation is also analyzed. It is verified that the kinetics of dynamics recrystallization can balefully be described by the classical Avrami equation. (Author) 42 refs

  14. Modelling the continuous cooling transformation diagram of engineering steels using neural networks. Part I. Phase regions

    Energy Technology Data Exchange (ETDEWEB)

    Wolk, P.J. van der; Wang, J. [Delft Univ. of Technology (Netherlands); Sietsma, J.; Zwaag, S. van der [Delft Univ. of Technology, Lab. for Materials Science (Netherlands)

    2002-12-01

    A neural network model for the calculation of the phase regions of the continuous cooling transformation (CCT) diagram of engineering steels has been developed. The model is based on experimental CCT diagrams of 459 low-alloy steels, and calculates the CCT diagram as a function of composition and austenitisation temperature. In considering the composition, 9 alloying elements are taken into account. The model reproduces the original diagrams rather accurately, with deviations that are not larger than the average experimental inaccuracy of the experimental diagrams. Therefore, it can be considered an adequate alternative to the experimental determination of the CCT diagram of a certain steel within the composition range used. The effects of alloying elements can be quantified, either individually or in combination, with the model. Nonlinear composition dependencies are observed. (orig.)

  15. Characterization of Metal Powders Used for Additive Manufacturing.

    Science.gov (United States)

    Slotwinski, J A; Garboczi, E J; Stutzman, P E; Ferraris, C F; Watson, S S; Peltz, M A

    2014-01-01

    Additive manufacturing (AM) techniques can produce complex, high-value metal parts, with potential applications as critical parts, such as those found in aerospace components. The production of AM parts with consistent and predictable properties requires input materials (e.g., metal powders) with known and repeatable characteristics, which in turn requires standardized measurement methods for powder properties. First, based on our previous work, we assess the applicability of current standardized methods for powder characterization for metal AM powders. Then we present the results of systematic studies carried out on two different powder materials used for additive manufacturing: stainless steel and cobalt-chrome. The characterization of these powders is important in NIST efforts to develop appropriate measurements and standards for additive materials and to document the property of powders used in a NIST-led additive manufacturing material round robin. An extensive array of characterization techniques was applied to these two powders, in both virgin and recycled states. The physical techniques included laser diffraction particle size analysis, X-ray computed tomography for size and shape analysis, and optical and scanning electron microscopy. Techniques sensitive to structure and chemistry, including X-ray diffraction, energy dispersive analytical X-ray analysis using the X-rays generated during scanning electron microscopy, and X-Ray photoelectron spectroscopy were also employed. The results of these analyses show how virgin powder changes after being exposed to and recycled from one or more Direct Metal Laser Sintering (DMLS) additive manufacturing build cycles. In addition, these findings can give insight into the actual additive manufacturing process.

  16. Characterization of Metal Powders Used for Additive Manufacturing

    Science.gov (United States)

    Slotwinski, JA; Garboczi, EJ; Stutzman, PE; Ferraris, CF; Watson, SS; Peltz, MA

    2014-01-01

    Additive manufacturing (AM) techniques1 can produce complex, high-value metal parts, with potential applications as critical parts, such as those found in aerospace components. The production of AM parts with consistent and predictable properties requires input materials (e.g., metal powders) with known and repeatable characteristics, which in turn requires standardized measurement methods for powder properties. First, based on our previous work, we assess the applicability of current standardized methods for powder characterization for metal AM powders. Then we present the results of systematic studies carried out on two different powder materials used for additive manufacturing: stainless steel and cobalt-chrome. The characterization of these powders is important in NIST efforts to develop appropriate measurements and standards for additive materials and to document the property of powders used in a NIST-led additive manufacturing material round robin. An extensive array of characterization techniques was applied to these two powders, in both virgin and recycled states. The physical techniques included laser diffraction particle size analysis, X-ray computed tomography for size and shape analysis, and optical and scanning electron microscopy. Techniques sensitive to structure and chemistry, including X-ray diffraction, energy dispersive analytical X-ray analysis using the X-rays generated during scanning electron microscopy, and X-Ray photoelectron spectroscopy were also employed. The results of these analyses show how virgin powder changes after being exposed to and recycled from one or more Direct Metal Laser Sintering (DMLS) additive manufacturing build cycles. In addition, these findings can give insight into the actual additive manufacturing process. PMID:26601040

  17. Functionally Graded Mo sintered steels

    Directory of Open Access Journals (Sweden)

    Manuel Cisneros-Belmonte

    2016-12-01

    Full Text Available Functionally graded materials (FGM, the multi-materials, strive to satisfy the numerous requirements demanded of parts in a given combination of compositions and microstructures. The required material compatibility lead the manufacturing process and the achieving of an interface, not always diffuse. Powder metallurgy is one of the techniques used in manufacturing functionally graded materials, in particular the compaction matrix of the possible techniques for forming these materials. In this paper, a process of forming a functionally graded steel based on the use of a high molybdenum steel with cooper and other steel with copper, without molybdenum, is proposed with the aim of concentrating this element to the surface of the workpiece, increasing the mechanical strength. The study is completed with the evaluation of physical properties (density and porosity distribution, mechanical properties (hardness, tensile strength and elongation and microstructural analysis by optical and scanning electron microscopy.

  18. A Novel Approach for Dry Powder Coating of Pellets with Ethylcellulose. Part II: Evaluation of Caffeine Release.

    Science.gov (United States)

    Albertini, Beatrice; Melegari, Cecilia; Bertoni, Serena; Dolci, Luisa Stella; Passerini, Nadia

    2018-04-01

    The objective of this study was to assess the efficacy and the capability of a novel ethylcellulose-based dry-coating system to obtain prolonged and stable release profiles of caffeine-loaded pellets. Lauric and oleic acids at a suitable proportion were used to plasticize ethylcellulose. The effect of coating level, percentage of drug loading, inert core particle size, and composition of the coating formulation including the anti-sticking agent on the drug release profile were fully investigated. A coating level of 15% w/w was the maximum layered amount which could modify the drug release. The best controlled drug release was obtained by atomizing talc (2.5% w/w) together with the solid plasticizer during the dry powder-coating process. SEM pictures revealed a substantial drug re-crystallization on the pellet surface, and the release studies evidenced that caffeine diffused through the plasticized polymer acting as pore former. Therefore, the phenomenon of caffeine migration across the coating layer had a strong influence on the permeability of the coating membrane. Comparing dry powder-coated pellets to aqueous film-coated ones, drug migration happened during storage, though more sustained release profiles were obtained. The developed dry powder-coating process enabled the production of stable caffeine sustained release pellets. Surprisingly, the release properties of the dry-coated pellets were mainly influenced by the way of addition of talc into the dry powder-coating blend and by the drug nature and affinity to the coating components. It would be interesting to study the efficacy of novel coating system using a different API.

  19. Development of a dielectric ceramic based on diatomite-titania. Part one: powder preparation and sintering study

    Directory of Open Access Journals (Sweden)

    Tavares Elcio Correia de Souza

    1997-01-01

    Full Text Available This work presents powder preparation and sintering experiments of a mixture diatomite-titania. X-ray diffraction, DTA, TGA as well as chemical and microstructural analyses were made. The sintering process was investigated as a function of sintering temperature and time, mass variation, linear shrinkage and activation energy. The results show that sintering of diatomite-titania could be described by a viscous flow mechanism.

  20. SEU blending project, concept to commercial operation, Part 3: production of powder for demonstration irradiation fuel bundles

    International Nuclear Information System (INIS)

    Ioffe, M.S.; Bhattacharjee, S.; Oliver, A.J.; Ozberk, E.

    2005-01-01

    The processes for production of Slightly Enriched Uranium (SEU) dioxide powder and Blended Dysprosium and Uranium (BDU) oxide powder that were developed at laboratory scale at Cameco Technology Development (CTD), were implemented and further optimized to supply to Zircatec Precision Industries (ZPI) the quantities required for manufacturing twenty six Low Void Reactivity (LVRF) CANFLEX fuel bundles. The production of this new fuel was a challenge for CTD and involved significant amount of work to prepare and review documentation, develop and approve new analytical procedures, and go through numerous internal reviews and audits by Bruce Power, CNSC and third parties independent consultants that verified the process and product quality. The audits were conducted by Quality Assurance specialists as well as by Human Factor Engineering experts with the objective to systematically address the role of human errors in the manufacturing of New Fuel and confirm whether or not a credible basis had been established for preventing human errors. The project team successfully passed through these audits. The project management structure that was established during the SEU and BDU blending process development, which included a cross-functional project team from several departments within Cameco, maintained its functionality when Cameco Technology Development was producing the powder for manufacturing Demonstration Irradiation fuel bundles. Special emphasis was placed on the consistency of operating steps and product quality certification, independent quality surveillance, materials segregation protocol, enhanced safety requirements, and accurate uranium accountability. (author)

  1. Causes of Cracking in Quenching of the Parts Made of Steels and Cast Iron and Recommendations for Their Removal: A Review

    Science.gov (United States)

    Kuznetsov, A. A.; Rudnev, V. I.

    2017-12-01

    The domestic and foreign experience on revealing the causes of quenching cracking and its prevention is generalized. We consider the works performed on the machine parts made of carbon and alloyed pearlitic steel and quenchable cast irons.

  2. Effect of layer thickness in selective laser melting on microstructure of Al/5 wt.%Fe2O3 powder consolidated parts.

    Science.gov (United States)

    Dadbakhsh, Sasan; Hao, Liang

    2014-01-01

    In situ reaction was activated in the powder mixture of Al/5 wt.%Fe2O3 by using selective laser melting (SLM) to directly fabricate aluminium metal matrix composite parts. The microstructural characteristics of these in situ consolidated parts through SLM were investigated under the influence of thick powder bed, 75  μm layer thickness, and 50  μm layer thickness in various laser powers and scanning speeds. It was found that the layer thickness has a strong influence on microstructural outcome, mainly attributed to its impact on oxygen content of the matrix. Various microstructural features (such as granular, coralline-like, and particulate appearance) were observed depending on the layer thickness, laser power, and scanning speed. This was associated with various material combinations such as pure Al, Al-Fe intermetallics, and Al(-Fe) oxide phases formed after in situ reaction and laser rapid solidification. Uniformly distributed very fine particles could be consolidated in net-shape Al composite parts by using lower layer thickness, higher laser power, and lower scanning speed. The findings contribute to the new development of advanced net-shape manufacture of Al composites by combining SLM and in situ reaction process.

  3. Effect of Layer Thickness in Selective Laser Melting on Microstructure of Al/5 wt.%Fe2O3 Powder Consolidated Parts

    Directory of Open Access Journals (Sweden)

    Sasan Dadbakhsh

    2014-01-01

    Full Text Available In situ reaction was activated in the powder mixture of Al/5 wt.%Fe2O3 by using selective laser melting (SLM to directly fabricate aluminium metal matrix composite parts. The microstructural characteristics of these in situ consolidated parts through SLM were investigated under the influence of thick powder bed, 75 μm layer thickness, and 50 μm layer thickness in various laser powers and scanning speeds. It was found that the layer thickness has a strong influence on microstructural outcome, mainly attributed to its impact on oxygen content of the matrix. Various microstructural features (such as granular, coralline-like, and particulate appearance were observed depending on the layer thickness, laser power, and scanning speed. This was associated with various material combinations such as pure Al, Al-Fe intermetallics, and Al(-Fe oxide phases formed after in situ reaction and laser rapid solidification. Uniformly distributed very fine particles could be consolidated in net-shape Al composite parts by using lower layer thickness, higher laser power, and lower scanning speed. The findings contribute to the new development of advanced net-shape manufacture of Al composites by combining SLM and in situ reaction process.

  4. On the Processing of Martensitic Steels in Continuous Galvanizing Lines: Part 1

    Science.gov (United States)

    Song, Taejin; Kwak, Jaihyun; de Cooman, B. C.

    2012-01-01

    Whereas low-carbon (galvanizing lines make it difficult to produce hot-dip Zn or Zn-alloy coated high-strength martensitic grades. This is because of the tempering processes occurring during dipping of the strip in the liquid Zn bath and, in the case of galvannealed sheet steel, the short thermal treatment required to achieve the alloying between the Zn and the steel. These short additional thermal treatments last less than 30 seconds but severely degrade the mechanical properties. Using a combination of internal friction, X-ray diffraction, and transmission electron microscopy, it is shown that the ultrafine-grained lath microstructure allows for a rapid dislocation recovery and carbide formation during the galvanizing processes. In addition, the effective dislocation pinning occurring during the galvannealing process results in strain localization and the suppression of strain hardening.

  5. Fatigue cracks in Eurofer 97 steel: Part II. Comparison of small and long fatigue crack growth

    Czech Academy of Sciences Publication Activity Database

    Kruml, Tomáš; Hutař, Pavel; Náhlík, Luboš; Seitl, Stanislav; Polák, Jaroslav

    2011-01-01

    Roč. 412, 1 (2011), s. 7-12 ISSN 0022-3115 R&D Projects: GA ČR GA106/09/1954; GA ČR GA101/09/0867 Institutional research plan: CEZ:AV0Z20410507 Keywords : ferritic-martensitic steel * long crack growth * small crack growth * crack closure Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 2.052, year: 2011

  6. Fatigue cracks in Eurofer 97 steel: Part I. Nucleation and small crack growth kinetics

    Czech Academy of Sciences Publication Activity Database

    Kruml, Tomáš; Polák, Jaroslav

    2011-01-01

    Roč. 412, 1 (2011), s. 2-6 ISSN 0022-3115 R&D Projects: GA ČR GA106/09/1954; GA ČR GA101/09/0867 Institutional research plan: CEZ:AV0Z20410507 Keywords : ferritic-martensitic steel * low cycle fatigue * small crack growth * fatigue life prediction Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 2.052, year: 2011

  7. Forming Limit Diagram of Titanium and Stainless Steel Alloys to Study the Formability of Hydro-Mechanical Deep Drawing Parts

    Science.gov (United States)

    Shirizly, A.

    2005-08-01

    The increase demand for stronger, lighter and economic sheet metal products, make the Hydromecanical deep drawing process lately more and more popular. The Hydromecanical process is used in almost all types of sheet metal parts from home appliances and kitchenware to automotive and aviation industries. Therefore, many common materials were tested and characterized by their ability to sustain large strains via the well known Forming Limit Diagram (FLD). The aim of this work is to examine the forming capability if the Hydromecanical process in production of hemisphere parts made of materials commonly used in the aviation and aerospace industries. Experimental procedures were carried out to assess their ductility through FLD and the Forming Limit Carve (FLC).Two type of material sheets were tested herewith for demonstrating the procedure: commercial pure titanium and stainless steel 316L. A numerical simulation of the Hydromecanical process was examined and compared to self made Hydromecanical deep drawing of hemispherical parts.

  8. Surface integrity and part accuracy in reaming and tapping stainless steel with new vegetable based cutting oils

    DEFF Research Database (Denmark)

    Belluco, Walter; De Chiffre, Leonardo

    2002-01-01

    This paper presents an investigation on the effect of new formulations of vegetable oils on surface integrity and part accuracy in reaming and tapping operations with AISI 316L stainless steel. Surface integrity was assessed with measurements of roughness, microhardness, and using metallographic...... as part accuracy. Cutting fluids based on vegetable oils showed comparable or better performance than mineral oils. ÆÉ2002 Published by Elsevier Science Ltd....... techniques, while part accuracy was measured on a coordinate measuring machine. A widely diffused commercial mineral oil was used as reference for all measurements. Cutting fluid was found to have a significant effect on surface integrity and thickness of the strain hardened layer in the sub-surface, as well...

  9. Forming Limit Diagram of Titanium and Stainless Steel Alloys to Study the Formability of Hydro-Mechanical Deep Drawing Parts

    International Nuclear Information System (INIS)

    Shirizly, A.

    2005-01-01

    The increase demand for stronger, lighter and economic sheet metal products, make the Hydromecanical deep drawing process lately more and more popular. The Hydromecanical process is used in almost all types of sheet metal parts from home appliances and kitchenware to automotive and aviation industries. Therefore, many common materials were tested and characterized by their ability to sustain large strains via the well known Forming Limit Diagram (FLD).The aim of this work is to examine the forming capability if the Hydromecanical process in production of hemisphere parts made of materials commonly used in the aviation and aerospace industries. Experimental procedures were carried out to assess their ductility through FLD and the Forming Limit Carve (FLC).Two type of material sheets were tested herewith for demonstrating the procedure: commercial pure titanium and stainless steel 316L. A numerical simulation of the Hydromecanical process was examined and compared to self made Hydromecanical deep drawing of hemispherical parts

  10. Simulation of press-forming for automobile part using ultra high tension steel

    Directory of Open Access Journals (Sweden)

    Tanabe I.

    2012-08-01

    Full Text Available In recent years, ultra high tension steel has gradually been used in the automobile industry. The development of press-forming technology is now essential by reason of its high productivity and high product quality. In this study, tensile tests were performed with a view to understanding the material properties. Press-forming tests were then carried out with regard to the behaviors of spring back and deep-drawability, and manufacturing a real product. The ultra high tension steel used in the experiments had a thickness of 1 mm and a tensile strength of 1000 MPa. Finally, simulations of spring back, deep-drawability and manufacturing a real product in ultra high tension steel were conducted and evaluated in order to calculate the optimum-press-forming conditions and the optimum shape of the die. FEM with non-linear and dynamic analysis using Euler-Lagrange’s element was used for the simulations. It is concluded from the results that (1 the simulations conformed to the results of the experiments (2 the simulations proved very effective for calculating the optimum press conditions and die shape.

  11. Vacuum brazing of OFE Copper-316L stainless steel transition joints without electroplating stainless steel part for application in particle accelerators

    International Nuclear Information System (INIS)

    Yadav, D.P.; Kumar, Abhay; Ganesh, P.

    2015-01-01

    Brazed transition Joints between OFE copper and type 316L austenitic stainless steel (SS) find extensive applications in particle accelerators all over the world. In contrast to excellent wettability of OFE copper, austenitic SS is well known for its poor wettability for BVAg-8 ( 72 Ag/ 28 Cu; melting point: 1052 K) braze filler metal (BFM). High surface wettability is believed to be necessary to drag molten BFM into the capillary gap between mating metallic surfaces. Therefore, the widely accepted practice for vacuum brazing of such transition joints involves electroplating of SS parts with nickel or copper to enhance its wettability. A recently concluded in-house study, involving Nb to Ni-plated 316L SS brazing, has demonstrated that satisfactory ingress of BFM into a capillary joint between two dissimilar metals is possible if the poor wettability of one of the mating surfaces is compensated by good wettability of its counterpart. In the light of these observations, the present study was undertaken to explicitly evaluate the requirement of electroplating the SS part for establishment of sound OFE copper-316L SS brazed joints suitable for service in ultra-high vacuum (UHV) of particle accelerators

  12. Spray Drying as a Processing Technique for Syndiotactic Polystyrene to Powder Form for Part Manufacturing Through Selective Laser Sintering

    Science.gov (United States)

    Mys, N.; Verberckmoes, A.; Cardon, L.

    2017-03-01

    Selective laser sintering (SLS) is a rapidly expanding field of the three-dimensional printing concept. One stumbling block in the evolution of the technique is the limited range of materials available for processing with SLS making the application window small. This article aims at identifying syndiotactic polystyrene (sPS) as a promising material. sPS pellets were processed into powder form with a lab-scale spray dryer with vibrating nozzle. This technique is the focus of this scope as it almost eliminates the agglomeration phenomenon often encountered with the use of solution-based processing techniques. Microspheres obtained were characterized in shape and size by scanning electron microscopy and evaluation of the particle size distribution. The effect the processing technique imparts on the intrinsic properties of the material was examined by differential scanning calorimetry analysis.

  13. Evaluation of hydrogen production from CO2 corrosion of steel drums in SFR, Part 2

    International Nuclear Information System (INIS)

    Dugstad, A.; Videm, K.

    1987-06-01

    An experimental program has been carried out for the investigation of the hydrogen formation due to corrosion of steel by water containing CO 2 produced by microbiologic decomposition of paper in waste drums. The hydrogen production will be limited by a limited rate of CO 2 production, as CO 2 is consumed by corrosive reactions producing carbonate containing corrosion products. Experiments indicated that also iron oxide and hydroxides were formed together with FeCO 3 at low CO 2 partial pressures but at a rate which leads to a rather slow increase in hydrogen production. Hydrogen evaluation has been overestimated in previous reports on this subject. (authors)

  14. On the Processing of Martensitic Steels in Continuous Galvanizing Lines: Part II

    Science.gov (United States)

    Song, Taejin; Kwak, Jaihyun; de Cooman, B. C.

    2012-01-01

    The conventional continuous hot-dip galvanizing (GI) and galvannealing (GA) processes can be applied to untransformed austenite to produce Zn and Zn-alloy coated low-carbon ultra-high-strength martensitic steel provided specific alloying additions are made. The most suitable austenite decomposition behavior results from the combined addition of boron, Cr, and Mo, which results in a pronounced transformation bay during isothermal transformation. The occurrence of this transformation bay implies a considerable retardation of the austenite decomposition in the temperature range below the bay, which is close to the stages in the continuous galvanizing line (CGL) thermal cycle related to the GI and GA processes. After the GI and GA processes, a small amount of granular bainite, which consists of bainitic ferrite and discrete islands of martensite/austenite (M/A) constituents embedded in martensite matrix, is present in the microstructure. The ultimate tensile strength (UTS) of the steel after the GI and GA cycle was over 1300 MPa, and the stress-strain curve was continuous without any yielding phenomena.

  15. Inhaladores de polvo seco para el tratamiento de las enfermedades respiratorias: Parte I Dry powder inhalers for the treatment of respiratory diseases: Part I

    Directory of Open Access Journals (Sweden)

    Adriana Muñoz Cernada

    2006-08-01

    Full Text Available Se presenta una revisión acerca de la tecnología de los inhaladores de polvo seco (IPS empleados para el tratamiento de las enfermedades respiratorias entre las que se destaca el asma bronquial y la enfermedad pulmonar obstructiva crónica (EPOC. Los IPS comenzaron su desarrollo en la década de los 70 y se han reactualizado en años recientes como una alternativa de sustitución de los inhaladores de dosis metrada con clorofluocarbono (CFC. Se describen los antecedentes de esta tecnología, se mencionan las características físico-químicas principales de este tipo de formulación, así como los factores que influyen en la desagregación y dispersión de los polvos. Por último, se menciona la técnica empleada actualmente en el desarrollo de un nuevo prototipo de IPS que permite optimizar los mecanismos de fluidización para lograr una dosificación altamente reproducibleA review of the dry powder inhalers (DPI technology used to treat respiratory diseases, such as bronchial asthma and chronic obstructive pulmonary disease (COPD, was made. The DPIs began to be developed in the 70's and they have been reupdated recently as a replacement alternative of metered-dose inhalers with chlorofluorocarbon (CFC. The history of this technology is dealt with, the main physicochemical characteristics of this type of formulation are described, and the factors influencing on the disaggregation and dispersion of the powders are mentioned. Finally, the technique used at present in the development of a new prototype of DPI that allows to optimize the fluidization mechanisms to attain a highly reproducible dosage is approached

  16. The effect of SiC powder mixing electrical discharge machining on white layer thickness, heat flux and fatigue life of AISI D2 die steel

    Directory of Open Access Journals (Sweden)

    Ahmed Al-Khazraji

    2016-09-01

    Full Text Available This paper deals with studying the effect of powder mixing electrical discharge machining (PMEDM parameters using copper and graphite electrodes on the white layer thickness (WLT, the total heat flux generated and the fatigue life. Response surface methodology (RSM was used to plan and design the experimental work matrices for two groups of experiments: for the first EDM group, kerosene dielectric was used alone, whereas the second was treated by adding the SiC micro powders mixing to dielectric fluid (PMEDM. The total heat flux generated and fatigue lives after EDM and PMEDM models were developed by FEM using ANSYS 15.0 software. The graphite electrodes gave a total heat flux higher than copper electrodes by 82.4%, while using the SiC powder and graphite electrodes gave a higher total heat flux than copper electrodes by 91.5%. The lowest WLT values of 5.0 µm and 5.57 µm are reached at a high current and low current with low pulse on time using the copper and graphite electrodes and the SiC powder, respectively. This means that there is an improvement in WLT by 134% and 110%, respectively, when compared with the use of same electrodes and kerosene dielectric alone. The graphite electrodes with PMEDM and SiC powder improved the experimental fatigue safety factor by 7.30% compared with the use of copper electrodes and by 14.61% and 18.61% compared with results using the kerosene dielectric alone with copper and graphite electrodes, respectively.

  17. The feasibility analysis for the merger of powder from steel making dedusting system in red ceramic; Analise da viabilidade da incorporacao do po de despoeiramento siderurgico em ceramica vermelha

    Energy Technology Data Exchange (ETDEWEB)

    Santos, D.M.S.; Goncalves, S.S.; Mocbel, E.B.B.; Barbosa, A.C.C.; Leal, A.P.S.; Lopes, S.A.; Feitosa, E.F.; Silva, G.S.; Rabelo, A.A.; Fagury Neto, E., E-mail: danilo.marciano@gmail.com, E-mail: fagury@unifesspa.edu.br [Universidade Federal do Sul e Sudeste do Para (UNIFESSPA), Maraba, PA (Brazil). Instituto de Geociencias e Engenharias

    2016-07-01

    The aim of this work was to study the variation of physical and mechanical properties of ceramics made from two clays with the addition of dedusting system powder from a local steel making plant (SDP), which was added in proportions of 3%, 5 %, 7 % and 10 %. The test-bodies were shaped by uniaxial two-stage pressing, calcined for 2 hours at 300 °C and sintered at temperatures of 900 °C, 1000 °C and 1100 °C. The analyzed properties were apparent density, water absorption, apparent porosity, linear firing shrinkage, flexural strength and plasticity index. The starting materials were characterized by XRF as well, in order to evaluate the chemical composition. This methodology showed good results in the development of future work related to the area. (author)

  18. Modelling and computer simulation for the manufacture by powder HIPing of Blanket Shield components for ITER

    International Nuclear Information System (INIS)

    Gillia, O.; Bucci, Ph.; Vidotto, F.; Leibold, J.-M.; Boireau, B.; Boudot, C.; Cottin, A.; Lorenzetto, P.; Jacquinot, F.

    2006-01-01

    In components of blanket modules for ITER, intricate cooling networks are needed in order to evacuate all heat coming from the plasma. Hot Isostatic Pressing (HIPing) technology is a very convenient method to produce near net shape components with complex cooling network through massive stainless steel parts by bonding together tubes inserted in grooves machined in bulk stainless steel. Powder is often included in the process so as to release difficulties arising with gaps closure between tube and solid part or between several solid parts. In the mean time, it releases the machining precision needed on the parts to assemble before HIP. However, inserting powder in the assembly means densification, i.e. volume change of powder during the HIP cycle. This leads to global and local shape changes of HIPed parts. In order to control the deformations, modelling and computer simulation are used. This modelling and computer simulation work has been done in support to the fabrication of a shield prototype for the ITER blanket. Problems such as global bending of the whole part and deformations of tubes in their powder bed are addressed. It is important that the part does not bend too much. It is important as well to have circular tube shape after HIP, firstly in order to avoid their rupture during HIP but also because non destructive ultrasonic examination is needed to check the quality of the densification and bonding between tube and powder or solid parts; the insertions of a probe in the tubes requires a minimal circular tube shape. For simulation purposes, the behaviour of the different materials has to be modelled. Although the modelling of the massive stainless steel behaviour is not neglected, the most critical modelling is about power. For this study, a thorough investigation on the powder behaviour has been performed with some in-situ HIP dilatometry experiments and some interrupted HIP cycles on trial parts. These experiments have allowed the identification of a

  19. Prototype evaluation of transformation toughened blast resistant naval hull steels: Part II

    Science.gov (United States)

    Saha, A.; Jung, J.; Olson, G. B.

    2007-07-01

    Application of a systems approach to computational materials design led to the theoretical design of a transformation toughened ultratough high-strength plate steel for blast-resistant naval hull applications. A first prototype alloy has achieved property goals motivated by projected naval hull applications requiring extreme fracture toughness (C v > 85 ft-lbs or 115 J corresponding to K Id≥ 200 ksi.in1/2 or 220 MPa.m1/2) at strength levels of 150 180 ksi (1,030 1,240 MPa) yield strength in weldable, formable plate steels. A continuous casting process was simulated by slab casting the prototype alloy as a 1.75‧‧ (4.45 cm) plate. Consistent with predictions, compositional banding in the plate was limited to an amplitude of 6 7.5 wt% Ni and 3.5 5 wt% Cu. Examination of the oxide scale showed no evidence of hot shortness in the alloy during hot working. Isothermal transformation kinetics measurements demonstrated achievement of 50% bainite in 4 min at 360 °C. Hardness and tensile tests confirmed predicted precipitation strengthening behavior in quench and tempered material. Multi-step tempering conditions were employed to achieve the optimal austenite stability resulting in significant increase of impact toughness to 130 ft-lb (176 J) at a strength level of 160 ksi (1,100 MPa). Comparison with the baseline toughness strength combination determined by isochronal tempering studies indicates a transformation toughening increment of 65% in Charpy energy. Predicted Cu particle number densities and the heterogeneous nucleation of optimal stability high Ni 5 nm austenite on nanometer-scale copper precipitates in the multi-step tempered samples was confirmed using three-dimensional atom probe microanalysis. Charpy impact tests and fractography demonstrate ductile fracture with C v > 80 ft-lbs (108 J) down to -40 °C, with a substantial toughness peak at 25 °C consistent with designed transformation toughening behavior. The properties demonstrated in this first

  20. Coating and Interface Degradation of Coated steel, Part 2: Accelerated Laboratory Tests

    International Nuclear Information System (INIS)

    Cambier, S.M.; Frankel, G.S.

    2014-01-01

    In a previous paper, it was demonstrated that the measurement of cathodic delamination by the Scanning Kelvin Probe can assess the interface stability of poly(vinyl butyral) (PVB) coated steel after field exposure. This technique was utilized to characterize the degradation of the polymer/metal interface in several outdoor climates. In this paper, the effects of environmental factors on the interface degradation were investigated in the laboratory. The mechanisms measured in the field were reproduced to provide input in the development of an appropriate accelerated test for PVB coated steel. The ASTM B117 and G154 standardized tests were investigated individually and sequentially. The interface stability improved after 24 h of ASTM G154 exposure. After 144 h of exposure to ASTM G154 exposure, polymer oxidation took place simultaneously with interface degradation. The condensation phase of the ASTM G154 test was responsible for the interface improvement while the ultraviolet radiation triggered the interface degradation. Pre-exposure to ASTM G154 delayed wet de-adhesion during ASTM B117 exposure. After wet de-adhesion caused by 6 h of ASTM B117, exposure to ASTM G154 for 24 h increased the interface stability. The effects of ultraviolet radiation, relative humidity, temperature and environment on interface degradation were investigated in a special chamber. Humidity was the primary factor found to influence the interface improvement during G154 exposure. A wet/dry salt fog cycle with irradiation by an ultraviolet or filtered xenon arc lamp around room temperature was suggested to reproduce the competition between the interface improvement and the interface degradation that takes place in the field

  1. Electrocoagulation applied to the decontamination of stainless steel parts contaminated with uranium

    International Nuclear Information System (INIS)

    Pujol P, A. A.; Monroy G, F.; Bustos B, E.

    2017-09-01

    The decontamination of non-compact able radioactive waste, such as tools and equipment, has the purpose of removing surface radioactive waste from waste, in order to reduce its volume to be conditioned and stored. The application of treatment techniques based on electrochemistry, such as electro-coagulation (Ec) in the decontamination of waste or non-compact able radioactive materials of stainless steel containing uranium, was studied in the present work and its technical feasibility was evaluated. For this, tests were carried out, first with stainless steel plates coated with WO 3 , to simulate a fixed contamination and to determine the best conditions of tungsten removal by Ec as: ph, support electrolyte, cell potential, type of counter electrode material and distance between the anode/cathode electrodes. In addition, different arrangements of configurations were tested for a rectangular acrylic cell and for a circular configuration cell, using flat plate electrodes and cylindrical electrodes to perform the removal process of the contaminant with the best conditions. In the case of the Ec, the mechanism that occurs is an electrodisolution of the iron plate, with the release of oxygen at the anode and detachment of the WO 3 layer, all the material passing to the solution with the formation of iron hydroxides. Subsequently, from the best experimental conditions to remove WO 3 , UO 2 (NO 3 ) 2 was used as radioactive contaminant to evaluate the feasibility of the decontamination process. Removal efficiencies of 90% uranium were obtained in 1 hour, ph = 1, using a molar solution of H 2 SO 4 as support electrolyte and potential of 2.4 V. Finally, after testing the different electrochemical cell (Ec) arrays at the laboratory level, radioactive decontamination of real pieces contaminated with U-238 was performed using the circular configuration arrangement under the best experimental conditions previously determined. (Author)

  2. Microstructural engineering applied to the controlled cooling of steel wire rod: Part I. Experimental design and heat transfer

    Science.gov (United States)

    Campbell, P. C.; Hawbolt, E. B.; Brimacombe, J. K.

    1991-11-01

    The goal of this study was to develop a mathematical model which incorporates heat flow, phase transformation kinetics, and property-structure-composition relationships to predict the mechanical properties of steel rod being control cooled under industrial conditions. Thus, the principles of microstructural engineering have been brought to bear on this interdisciplinary problem by combining computer modeling with laboratory measurements of heat flow, austenite decomposition kinetics, microstructure and mechanical properties, and industrial trials to determine heat transfer and obtain rod samples under known conditions. Owing to the length and diversity of the study, it is reported in three parts,[8191]the first of which is concerned with the heat flow measurements. A relatively simple and reliable technique, involving a preheated steel rod instrumented with a thermocouple secured at its centerline, has been devised to determine the cooling rate in different regions of the moving bed of rod loops on an operating Stelmor line. The measured thermal response of the rod has been analyzed by two transient conduction models (lumped and distributed parameter, respectively) to yield overall heat-transfer coefficients for radiation and convection. The adequacy of the technique has been checked by cooling instrumented rods under well-defined, air crossflow conditions in the laboratory and comparing measured heat-transfer coefficients to values predicted from well-established equations. The industrial thermal measurements have permitted the characterization of a coefficient to account for radiative interaction among adjacent rod loops near the edge and at the center of the bed.

  3. About the influence of the topography of the steel surface on faults during hot galvanizing of part loads; Zum Einfluss der Topographie der Stahloberflaeche auf Fehler beim Stueckgut-Feuerverzinken

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, W.D. [Institut fuer Korrosionsschutz GmbH, Dresden (Germany); Schubert, P.

    2002-03-01

    The topography of the steel surface can influence the formation of layers during hot galvanizing in many ways. Information is given on galvanizing faults caused by impressions in the steel surface (rolling and drawing ridges). Flux remainders accumulated in these impressions can be encapsulated in the zinc coating during hot galvanizing. This leads to cavities and pores in the coating or to sponge-like zinc raisings at its surface. The flux remainders from the zinc coating can boil during powder coating and lead to blisters and pimple-like rises in the coating. Therefore, steel surfaces designed for galvanizing should be even or only have flat impressions. (orig.)

  4. Peculiar features of metallurgical processes at plasma-arc spraying of coatings, made of steel wire with powder fillers B4C and B4C+ZrO2

    Directory of Open Access Journals (Sweden)

    Георгій Михайлович Григоренко

    2016-11-01

    Full Text Available The interaction of metallurgical processes occurring in plasma-arc spraying between the steel shell and the carbide fillers of B4C and B4C cored wires with the addition of nanocrystalline ZrO2 powder has been analyzed. Iron-boron compounds alloyed with carbon are formed in ingots as a result of ferritiс coating of wire interacrion with fillers while the ferritic matrix contains boride and carboboride eutectics. Average microhardness of the carboboride compounds and the matrix is high – 17,78; 16,40 and 8,69; 9,95 GPa for the ingots with с B4C and B4C+ZrO2 respectively. The best quality coatings with low porosity (~1%, lamellar structure consisting of ferrite matrix reinforced with dispersed Fe borides, were obtained at a higher heat input (plasmatron current 240-250 A. The average amount of oxides in the coatings makes 15%. 0,5% addition of nanopowder ZrO2 accelerates dispersed iron-boron compounds forming, promotes their uniform distribution in the structure and improves coating microhardness up to 7,0 GPa. Application of the differential thermal analysis method to simulate the interaction processes between the steel shell and the filler during the heating of wire in the shielding gas makes it possible to promote formation of new phases (borides and carboborides of iron and to predict the phase composition of the coatings

  5. Multiple-layer laser deposition of steel components using gas- and water-atomised powders: the differences and the mechanisms leading to them

    International Nuclear Information System (INIS)

    Pinkerton, Andrew J.; Li Lin

    2005-01-01

    Functionally-graded or composite components have been recognised as having immense potential for many industries. The flexibility of direct metal deposition (DMD) has the potential to expand this to microstructurally graded components, but accurate control of the process is a problem. In this work, the effects of using different powder morphologies as a control mechanism for microstructure and other material properties are investigated experimentally. For the first time, comparison of the characteristics of two different gas-atomised (GA) and water-atomised (WA) materials is undertaken in order to evaluate the significance of the different DMD characteristics originating from the difference in atomisation method. 316L and H13 materials and a 1.2 kW CO 2 DMD system are used. Three primary factors for the differences are identified: increased vaporisation of the powder, a hotter melt pool and less powerful outward Marangoni flow when using water-atomised powder. The reasons for these, the influence they have on process characteristics and final material properties, and the circumstances under which they occur are discussed

  6. Line profile analysis of ODS steels Fe20Cr5AlTiY milled powders at different Y2O3 concentrations

    Science.gov (United States)

    Afandi, A.; Nisa, R.; Thosin, K. A. Z.

    2017-04-01

    Mechanical properties of material are largely dictated by constituent microstructure parameters such as dislocation density, lattice microstrain, crystallite size and its distribution. To develop ultra-fine grain alloys such as Oxide Dispersion Strengthened (ODS) alloys, mechanical alloying is crucial step to introduce crystal defects, and refining the crystallite size. In this research the ODS sample powders were mechanically alloyed with different Y2O3 concentration respectively of 0.5, 1, 3, and 5 wt%. MA process was conducted with High Energy Milling (HEM) with the ball to powder ratio of 15:1. The vial and the ball were made of alumina, and the milling condition is set 200 r.p.m constant. The ODS powders were investigated by X-Ray Diffractions (XRD), Bragg-Brentano setup of SmartLab Rigaku with 40 KV, and 30 mA, step size using 0.02°, with scanning speed of 4°min-1. Line Profile Analysis (LPA) of classical Williamson-Hall was carried out, with the aim to investigate the different crystallite size, and microstrain due to the selection of the full wide at half maximum (FWHM) and integral breadth.

  7. Bactericidal Effect of Calcium Oxide (Scallop-Shell Powder) Against Pseudomonas aeruginosa Biofilm on Quail Egg Shell, Stainless Steel, Plastic, and Rubber.

    Science.gov (United States)

    Jung, Soo-Jin; Park, Shin Young; Kim, Seh Eun; Kang, Ike; Park, Jiyong; Lee, Jungwon; Kim, Chang-Min; Chung, Myung-Sub; Ha, Sang-Do

    2017-07-01

    The aim of this study was to evaluate the bactericidal effect of calcium oxide (CaO) against Pseudomonas aeruginosa biofilms on quail eggshells and major egg contacting surfaces (stainless steel, plastic, and rubber). The samples were subjected to CaO treatments (0%, 0.01%, 0.05%, 0.10%, 0.15%, 0.20%, 0.25%, and 0.30%) for 1 min. All the CaO treatments significantly reduced P. aeruginosa biofilms on all tested surfaces as compared to controls. In comparison of biofilm stability, the strongest and most resistant biofilm was formed on eggshell against the CaO treatment, followed by rubber, stainless steel, and plastic. In evaluation of bactericidal effect, the largest reduction (3.16 log CFU) was observed in plastic even at the lowest concentration of CaO (0.01%), whereas the least reduction was found in eggshells, regardless of CaO concentration. In addition, stainless steel showed a significant reduction in biofilm formation at all concentrations except 0.10% to 0.15% CaO. At 0.30% CaO, the reduction of P. aeruginosa in biofilms on stainless steel, plastic, rubber, and eggshell were 5.48, 6.37, 4.87, and 3.14 log CFU/cm 2 (CFU/egg), respectively. Biofilm reduction after CaO treatment was also observed by field emission scanning electron microscopy (FE-SEM). Based on the FE-SEM images, we observed that P. aeruginosa biofilms formed compact aggregations on eggshell surfaces with CaO treatments up to 0.30%. More specifically, a 0.20% CaO treatment resulted in the reductions of 3 to 6 log CFU in all materials. © 2017 Institute of Food Technologists®.

  8. Some aspects of thermomechanical fatigue of AISI 304L stainless steel: Part I. creep- fatigue damage

    Science.gov (United States)

    Zauter, R.; Christ, H. J.; Mughrabi, H.

    1994-02-01

    Thermomechanical fatigue (TMF) tests on the austenitic stainless steel AISI 304L have been conducted under “true≓ plastic-strain control in vacuum. This report considers the damage oc-curring during TMF loading. It is shown how the temperature interval and the phasing (in-phase, out-of-phase) determine the mechanical response and the lifetime of the specimens. If creep-fatigue interaction takes place during in-phase cycling, the damage occurs inside the ma-terial, leading to intergranular cracks which reduce the lifetime considerably. Out-of-phase cy-cling inhibits creep-induced damage, and no lifetime reduction occurs, even if the material is exposed periodically to temperatures in the creep regime. A formula is proposed which allows prediction of the failure mode, depending on whether creep-fatigue damage occurs or not. At a given strain rate, the formula is able to estimate the temperature of transition between pure fatigue and creep-fatigue damage.

  9. Reparatory and Manufacturing Hard-Facing of Working Parts Made of Stainless Steels in Confectionary Industry

    Directory of Open Access Journals (Sweden)

    S. Rakic

    2012-09-01

    Full Text Available In this paper, for the sake of improving the reparatory hard-facing technology is especially analyzed reparatory hard-facing of tools for manufacturing compressed products in confectionary industry. Those products are being made of a mixture consisting of several powdery components, which is compressed under high pressure. In that way the connection between particles is realized, thus achieving certain hardness and strength of the confectionary product. The considered tool is made of high-alloyed stainless steel. The tool contains 30 identical working places. Besides the production process wear, on those tools, from time to time, appear mechanical damage on some of the products' shape punches, as cracks at the edges, where the products' final shapes are formed. Those damages are small, size wise, but they cause strong effect on the products' final shape. The aggravating circumstance is that the shape punch is extremely loaded in pressure, thus after the reparatory hard-facing, the additional heat treatment is necessary. Mechanical properties in the heat affected zone (HAZ are being leveled by annealing and what also partially reduces the residual internal stresses.

  10. Globalization of Japanese steel industry. Part 2. Welding materials; Tekkogyo no kokusaika. 2. Yozai

    Energy Technology Data Exchange (ETDEWEB)

    Aida, I. [Kobe Steel, Ltd., Kobe (Japan)

    1995-01-01

    This paper mainly discusses the current status and problems of arc welding materials. The domestic production of welding materials has decreased. The recent trend of demand is characterized by the change of form make-up of welding materials. Various technologies for welding materials and their operation in Japan have developed with the progress of steel materials. The high quality and high-grade welding technologies, highly efficient production processes, laborsaving, and robotization have been promoted in various fields. In response to the rapid strong yen, quality and cost have to be further pursued, and amenity and cleanliness of welding have to be realized. The welding technologies have to be developed for large structures, such as ultra high-rise buildings, energy and chemical plants, ships, marine structures, etc. For the welding materials which are applied to robots and robot systems, obstruction factors for the operation have to be removed, which include the unsteady arc, re-arc badness, spattering, wear of chip, slag formation, etc. These measures promote the globalization of welding materials. 17 refs., 4 figs.

  11. Influence of the Lubricant Type on the Surface Quality of Steel Parts Obtained by Ironing

    Directory of Open Access Journals (Sweden)

    D. Adamović

    2015-06-01

    Full Text Available If it is needed to achieve a higher strain rate during the ironing process, which is possible without inter-stage annealing, the ironing is performed in succession through multiple dies. During that process, changes of friction conditions occur due to the change of contact conditions (dislodging of lubricants, changes of surface roughness, formation of friction junctions, etc.. In the multistage ironing, after each stage, the completely new conditions on the contact surfaces occur, which will significantly affect the quality of the workpiece surface. Lubricant has a very important role during the steel sheet metal ironing process; to separate the sheet metal surface from the tool and to reduce the friction between the contact surfaces. The influence of tribological conditions in ironing process is extremely important and it was a subject of study among researches in recent years, both in the real processes and on the tribo-models. Investigation of tribological conditions in the real processes is much longer and more expensive, so testing on the tribo-models is more frequent. Experimental research on the original tribo-model presented in this paper was aimed to indicate the changes that occur during multistage ironing, as well as to consider the impact of some factors (tool material, lubricant on die and punch on increase or decrease of the sheet metal surface roughness in ironing stages.

  12. Role of cavity formation in SCC of cold worked carbon steel in high-temperature water. Part 2. Study of crack initiation behavior

    International Nuclear Information System (INIS)

    Yamada, Takuyo; Aoki, Masanori; Miyamoto, Tomoki; Arioka, Koji

    2013-01-01

    To consider the role of cavity formation in stress corrosion cracking (SCC) of cold worked (CW) carbon steel in high-temperature water, SCC and creep growth (part 1) and initiation (part 2) tests were performed. The part 2 crack initiation tests used blunt notched compact tension (CT) type specimens of CW carbon steel exposed under the static load condition in hydrogenated pure water and in air in the range of temperatures between 360 and 450°C. Inter-granular (IG) crack initiation was observed both in water and in air even in static load condition when steel specimens had been cold worked. 1/T type temperature dependencies of initiation times were observed for CW carbon steel, and the crack initiation times in an operating pressurized heavy water reactor, PHWR (Pt Lepreau) seemed to lie on the extrapolated line of the experimental results. Cavities were identified at the grain boundaries near the bottom of a notch (highly stressed location) before cracks initiated both in water and air. The cavities were probably formed by the condensation of vacancies and they affected the bond strength of the grain boundaries. To assess the mechanism of IGSCC initiation in high temperature water, the diffusion of vacancies driven by stress gradients was studied using a specially designed CT specimen. As a model for IGSCC in CW carbon steel in high temperature water, it was concluded that the formation of cavities from the collapse of vacancies offers the best interpretation of the present data. (author)

  13. An engineering assessment methodology for non-sharp defects in steel structures – Part I: Procedure development

    International Nuclear Information System (INIS)

    Horn, A.J.; Sherry, A.H.

    2012-01-01

    This Part I paper describes a new engineering assessment methodology for ferritic steel structures containing non-sharp defects within the context of a Failure Assessment Diagram (FAD) approach. Although the modification of the FAD for non-sharp defects can be applied whether the initiating failure mechanism is cleavage or ductile tearing, this paper focuses on cleavage fracture. The parameters describing the sensitivity of the material toughness to the notch effect can either be measured by testing notched specimens of the same thickness as the structure, or for cleavage fracture they can be obtained using look-up tables generated using the Weibull stress toughness scaling model. The other parameters in the procedure can either be conservatively estimated using simple equations or they can be determined more accurately using finite element analysis. Validation of the new method is presented in the companion Part II paper: this shows that assessments of U-notched SE(B) specimens have significantly reduced conservatism when using the new assessment methodology compared to the standard FAD approach for sharp cracks. - Highlights: ► Development of a new procedure for predicting failure from non-sharp defects. ► Based on a modification of the Failure Assessment Diagram (FAD) approach. ► Applicable to cleavage and ductile tearing initiation although paper focuses on cleavage. ► Validation provided in a companion Part II paper.

  14. Review of Manganese Processing for Production of TRIP/TWIP Steels, Part 1: Current Practice and Processing Fundamentals

    Science.gov (United States)

    Elliott, R.; Coley, K.; Mostaghel, S.; Barati, M.

    2018-02-01

    The increasing demand for high-performance steel alloys has led to development of transformation-induced plasticity (TRIP) and twinning-induced plasticity (TWIP) alloys over the past three decades. These alloys offer exceptional combinations of high tensile strength and ductility. Thus, the mechanical behavior of these alloys has been a subject of significant work in recent years. However, the challenge of economically providing Mn in the quantity and purity required by these alloys has received considerably less attention. To enable commercial implementation of ultrahigh-Mn alloys, it is desirable to lower the high material costs associated with their production. Therefore, the present work reviews Mn processing routes in the context of the chemical requirements of these alloys. The aim of this review is to assess the current state of the art regarding reduction of manganese ores and provide a comprehensive reference for researchers working to mitigate material processing costs associated with Mn production. The review is presented in two parts: Part 1 introduces TRIP and TWIP alloys, current industrial practice, and pertinent thermodynamic fundamentals; Part 2 addresses available literature regarding reduction of Mn ores and oxides, and seeks to identify opportunities for future process development.

  15. Microstructural evolution during the synthesis of bulk components from nanocrystalline ceramic powder, part II: microstructure and properties

    International Nuclear Information System (INIS)

    Ajaal, T. T.; Metak, A. M.

    2004-01-01

    Part I of this review, published in 5 /4th of Al-Nawah magazine, was devoted to the synthetic techniques used in the production processes of a bulk components of nanocrystalline materials. In this part, the microstructural evolution and its effect on the materials properties will be detailed. Minimizing grain growth and maximizing densification during the sintering stage of the ultrafine particles as well as the homogeneous densification in pressureless sintering, grain growth and rapid rate pressureless sintering will be discussed. Ceramics are well known for their high strength at elevated temperatures, as well as the extreme brittleness that prevents their application in many critical components. However, researchers have found that brittleness can be overcome by reducing particle sizes to nanometer levels. These fine grain structures are believed to provide improved ductility the individual grains can slide over one another without causing cracks. In addition, nanophase ceramics are more easily formed than their conventional counterparts, and easier to machine without cracking or breaking. Shrinkage during sintering is also greatly reduced in nanophase ceramics, and they can be sintered at lower temperatures than conventional ceramics. As a result, nanophase ceramics have the potential to deliver an ideal combination of ductility and high-temperature strength, allowing increased efficiency in applications ranging from automobile engines to jet aircraft. This part of the review covers the microstructural evolution during the synthetic process of nanocrystalline ceramic materials and its effects on the materials properties.(author)

  16. Synthesis of Uranium nitride powders using metal uranium powders

    International Nuclear Information System (INIS)

    Yang, Jae Ho; Kim, Dong Joo; Oh, Jang Soo; Rhee, Young Woo; Kim, Jong Hun; Kim, Keon Sik

    2012-01-01

    Uranium nitride (UN) is a potential fuel material for advanced nuclear reactors because of their high fuel density, high thermal conductivity, high melting temperature, and considerable breeding capability in LWRs. Uranium nitride powders can be fabricated by a carbothermic reduction of the oxide powders, or the nitriding of metal uranium. The carbothermic reduction has an advantage in the production of fine powders. However it has many drawbacks such as an inevitable engagement of impurities, process burden, and difficulties in reusing of expensive N 15 gas. Manufacturing concerns issued in the carbothermic reduction process can be solved by changing the starting materials from oxide powder to metals. However, in nitriding process of metal, it is difficult to obtain fine nitride powders because metal uranium is usually fabricated in the form of bulk ingots. In this study, a simple reaction method was tested to fabricate uranium nitride powders directly from uranium metal powders. We fabricated uranium metal spherical powder and flake using a centrifugal atomization method. The nitride powders were obtained by thermal treating those metal particles under nitrogen containing gas. We investigated the phase and morphology evolutions of powders during the nitriding process. A phase analysis of nitride powders was also a part of the present work

  17. Cast Steels for Creep-Resistant Parts Used in Heat Treatment Plants

    Directory of Open Access Journals (Sweden)

    Drotlew A.

    2012-12-01

    Full Text Available Creep-resistant parts of heat treatment furnaces are in most cases made from high-alloyed chromium-nickel and nickel-chromium iron alloys, both cast and wrought. This paper presents the types of casting alloys used for this particular purpose, since the majority of furnace components are made by the casting process. Standards were cited which give symbols of alloy grades used in technical specifications by the domestic industry. It has been indicated that castings made currently are based on a wider spectrum of the creep-resistant alloy grades than the number of alloys covered by the standards. Alloy grades recommended by the technical literature for individual parts of the furnace equipment were given. The recommendations reflect both the type of the technological process used and the technical tasks performed by individual parts of the furnace equipment. Comments were also made on the role of individual alloying elements in shaping the performance properties of castings.

  18. Inverse Processing of Undefined Complex Shape Parts from Structural High Alloyed Tool Steel

    Directory of Open Access Journals (Sweden)

    Katarina Monkova

    2014-02-01

    Full Text Available The paper deals with the process of 3D digitization as a tool for increasing production efficiency of complex shaped parts. Utilizes the concept of reverse engineering and new the model of NC program generation STEP-NC, for the of templates production for winding the stator coil of electromotors that is for electric household appliances. The manual production of prototype was substituted by manufacturing with NC machines. A 3D scanner was used for data digitizing, CAD/CAM system Pro/Engineering was used for NC program generation, and 3D measuring equipment was used for verification of new produced parts. The company estimated that only due to the implementation of STEP NC standard into production process it was allowed to read the 3D geometry of the product without problems. It helps the workshop to shorten the time needed for part production by about 30%.

  19. Cast Steels for Creep-resistant Parts Used in Heat Treatment Plants

    Directory of Open Access Journals (Sweden)

    A. Drotlew

    2012-12-01

    Full Text Available Creep-resistant parts of heat treatment furnaces are in most cases made from high-alloyed chromium-nickel and nickel-chromium ironalloys, both cast and wrought. This paper presents the types of casting alloys used for this particular purpose, since the majority of furnace components are made by the casting process. Standards were cited which give symbols of alloy grades used in technical specifications by the domestic industry. It has been indicated that castings made currently are based on a wider spectrum of the creep-resistant alloy grades than the number of alloys covered by the standards. Alloy grades recommended by the technical literature for individual parts of the furnace equipment were given. The recommendations reflect both the type of the technological process used and the technical tasks performed by individual parts of the furnace equipment. Comments were also made on the role of individual alloying elements in shaping the performance properties of castings.

  20. (YSZ) powders

    Indian Academy of Sciences (India)

    Unknown

    109–114. © Indian Academy of Sciences. 109 ... Materials Science Division, Bhabha Atomic Research Centre, Mumbai 400 085, India .... pensions of 900°C calcined YSZ powders. .... The sintered density data of the compacts (sintered at.

  1. Determinants of the quality of sintered steel for the automotive industry

    Directory of Open Access Journals (Sweden)

    Barbara Lisiecka

    2016-03-01

    Full Text Available The increasing demand on components obtained using powder metallurgy is driven by economic changes that have turned product quality into the most basic criterion which affects the interest in a component and its successful use. The improvement in quality should be expected in the beginning of the planning of the technological process and selection of adequate raw materials. High requirements concerning product quality management and production improvement stimulates the development of the current automotive industry where sintered steels represent the highest percentage of products. The multiphase sinters investigated in the study were prepared from two types of water–atomized steel powders: 316L and 409L. Optical microscopy, X–ray phase analysis and examinations of microhardness were performed in order to determine the microstructure and basic properties of sintered steels. The main assumption for this study was to analyse the microstructure and mechanical properties of sintered steels used for manufacturing of various car parts.

  2. Trends in steel technology

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    Dual phase steels, composite products, and microalloyed steels are making inroads in the automotive industry applications for bumpers, automotive parts, bodies, mechanical parts, suspension and steering equipment and truck bumpers. New steels are also used to support solar mirrors and cells, in corrosive environments in the oil and gas industry, fusion reactors, and pressure vessels in nuclear power plants

  3. The radiation swelling effect on fracture properties and fracture mechanisms of irradiated austenitic steels. Part I. Ductility and fracture toughness

    Energy Technology Data Exchange (ETDEWEB)

    Margolin, B., E-mail: mail@crism.ru; Sorokin, A.; Shvetsova, V.; Minkin, A.; Potapova, V.; Smirnov, V.

    2016-11-15

    The radiation swelling effect on the fracture properties of irradiated austenitic steels under static loading has been studied and analyzed from the mechanical and physical viewpoints. Experimental data on the stress-strain curves, fracture strain, fracture toughness and fracture mechanisms have been represented for austenitic steel of 18Cr-10Ni-Ti grade (Russian analog of AISI 321 steel) irradiated up to neutron dose of 150 dpa with various swelling. Some phenomena in mechanical behaviour of irradiated austenitic steels have been revealed and explained as follows: a sharp decrease of fracture toughness with swelling growth; untypical large increase of fracture toughness with decrease of the test temperature; some increase of fracture toughness after preliminary cyclic loading. Role of channel deformation and channel fracture has been clarified in the properties of irradiated austenitic steel and different tendencies to channel deformation have been shown and explained for the same austenitic steel irradiated at different temperatures and neutron doses.

  4. The effect of potential upon the high-temperature fatigue crack growth response of low-alloy steels. Part 1: Crack growth results

    International Nuclear Information System (INIS)

    James, L.A.; Moshier, W.C.

    1997-01-01

    Corrosion-fatigue crack propagation experiments were conducted on several low-alloy steels in elevated temperature aqueous environments, and experimental parameters included temperature, sulfur content of the steel, applied potential level, and dissolved hydrogen (and in one case, dissolved oxygen) concentration in the water. Specimen potentials were controlled potentiostatically, and the observation (or non-observation) of accelerated fatigue crack growth rates was a complex function of the above parameters. Electrochemical results and the postulated explanation for the complex behavior are given in Part II

  5. Computationally efficient analysis of particle transport and deposition in a human whole-lung-airway model. Part II: Dry powder inhaler application.

    Science.gov (United States)

    Kolanjiyil, Arun V; Kleinstreuer, Clement; Sadikot, Ruxana T

    2017-05-01

    Pulmonary drug delivery is becoming a favored route for administering drugs to treat both lung and systemic diseases. Examples of lung diseases include asthma, cystic fibrosis and chronic obstructive pulmonary disease (COPD) as well as respiratory distress syndrome (ARDS) and pulmonary fibrosis. Special respiratory drugs are administered to the lungs, using an appropriate inhaler device. Next to the pressurized metered-dose inhaler (pMDI), the dry powder inhaler (DPI) is a frequently used device because of the good drug stability and a minimal need for patient coordination. Specific DPI-designs and operations greatly affect drug-aerosol formation and hence local lung deposition. Simulating the fluid-particle dynamics after use of a DPI allows for the assessment of drug-aerosol deposition and can also assist in improving the device configuration and operation. In Part I of this study a first-generation whole lung-airway model (WLAM) was introduced and discussed to analyze particle transport and deposition in a human respiratory tract model. In the present Part II the drug-aerosols are assumed to be injected into the lung airways from a DPI mouth-piece, forming the mouth-inlet. The total as well as regional particle depositions in the WLAM, as inhaled from a DPI, were successfully compared with experimental data sets reported in the open literature. The validated modeling methodology was then employed to study the delivery of curcumin aerosols into lung airways using a commercial DPI. Curcumin has been implicated to possess high therapeutic potential as an antioxidant, anti-inflammatory and anti-cancer agent. However, efficacy of curcumin treatment is limited because of the low bioavailability of curcumin when ingested. Hence, alternative drug administration techniques, e.g., using inhalable curcumin-aerosols, are under investigation. Based on the present results, it can be concluded that use of a DPI leads to low lung deposition efficiencies because large amounts of

  6. Production of Steel Casts in Two-Layer Moulds with Alkaline Binders Part 2. Facing sand with the alkaline organic binder REZOLIT

    Directory of Open Access Journals (Sweden)

    M. Holtzer

    2011-04-01

    Full Text Available This paper constitutes the second part of the article concerning the implementation of the two-layer mould technology for steel casts inZ.M. POMET. The results of the laboratory examinations of the backing sand with the inorganic binder RUDAL were presented in thefirst part of the paper. Whereas in the second part the results of the laboratory testing of the facing sand with the alkaline resin REZOLITare given. The technology of two-layer moulds was already implemented in Z.M. POMET within the target project. Examples of castingsmade in this technology are shown in the final part of this paper.

  7. TIG-dressing of High Strength Steel Butt Welded Connections. Part 1 : Weld Toe Geometry and Local Hardness

    NARCIS (Netherlands)

    Van Es, S.H.J.; Kolstein, M.H.; Pijpers, R.J.M.; Bijlaard, F.S.K.

    2014-01-01

    This paper presents the results of extensive measurements on weld toe geometry of as-welded and TIG-dressed butt welded connections in high strength steels S460, S690 and very high strength steels S890 and S1100. Descriptions of the measurement techniques and data analysis are presented. Four weld

  8. TIG-dressing of high strength steel butt welded connections - Part 1: weld toe geometry and local hardness

    NARCIS (Netherlands)

    Es, S.H.J. van; Kolstein, M.H.; Pijpers, R.J.M.; Bijlaard, F.S.K.

    2013-01-01

    This paper presents the results of extensive measurements on weld toe geometry of as-welded and TIG-dressed butt welded connections in high strength steels S460, S690 and very high strength steels S890 and S1100. Descriptions of the measurement techniques and data analysis are presented. Four weld

  9. 75 FR 5947 - Stainless Steel Sheet and Strip in Coils from Taiwan: Final Results and Rescission in Part of...

    Science.gov (United States)

    2010-02-05

    ... defined as a non-magnetic stainless steel manufactured to American Society of Testing and Materials... magnetic remanence between 9,000 and 12,000 gauss, and a coercivity of between 50 and 300 oersteds. This... percent. This steel has a carbide density on average of 100 carbide particles per 100 square microns. An...

  10. Composite action of steel frames and precast concrete infill panels with corner connections – Part 2 : finite element analysis

    NARCIS (Netherlands)

    Hoenderkamp, J.C.D.; Hofmeyer, H.; Snijder, H.H.; Liew, J.Y.R.; Lee, S.C.

    2012-01-01

    When precast concrete infill panels are connected to steel frames at discrete locations, interaction at the structural interface is neither complete nor absent. The contribution of precast concrete infill panels to the lateral stiffness and strength of steel frames can be significant depending on

  11. Composite action of steel frames and precast concrete infill panels with corner connections – Part 1 : experiments

    NARCIS (Netherlands)

    Hoenderkamp, J.C.D.; Snijder, H.H.; Hofmeyer, H.; Liew, J.Y.R.; Lee, S.C.

    2012-01-01

    When precast concrete infill panels are connected to steel frames at discrete locations, interaction at the structural interface is neither complete nor absent. The contribution of precast concrete infill panels to the lateral stiffness and strength of steel frames can be significant depending on

  12. Interfacial characterization of SLM parts in multi-material processing: Metallurgical diffusion between 316L stainless steel and C18400 copper alloy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Z.H., E-mail: AZHLIU@ntu.edu.sg; Zhang, D.Q., E-mail: ZHANGDQ@ntu.edu.sg; Sing, S.L., E-mail: SING0011@e.ntu.edu.sg; Chua, C.K., E-mail: MCKCHUA@ntu.edu.sg; Loh, L.E., E-mail: LELOH1@e.ntu.edu.sg

    2014-08-15

    Multi-material processing in selective laser melting using a novel approach, by the separation of two different materials within a single dispensing coating system was investigated. 316L stainless steel and UNS C18400 Cu alloy multi-material samples were produced using selective laser melting and their interfacial characteristics were analyzed using focused ion beam, scanning electron microscopy, energy dispersive spectroscopy and electron back scattered diffraction techniques. A substantial amount of Fe and Cu element diffusion was observed at the bond interface suggesting good metallurgical bonding. Quantitative evidence of good bonding at the interface was also obtained from the tensile tests where the fracture was initiated at the copper region. Nevertheless, the tensile strength of steel/Cu SLM parts was evaluated to be 310 ± 18 MPa and the variation in microhardness values was found to be gradual along the bonding interface from the steel region (256 ± 7 HV{sub 0.1}) to the copper region (72 ± 3 HV{sub 0.1}). - Highlights: • Multi-material processing was successfully implemented and demonstrated in SLM. • Bi-metallic laminates of steel/Cu were successfully produced with the SLM process. • A substantial amount of Fe and Cu diffusion was observed at the bond interface. • Good metallurgical bonding was obtained at the interface of the steel/Cu laminates. • Highly refined microstructure was obtained due to rapid solidification in SLM.

  13. The radiation swelling effect on fracture properties and fracture mechanisms of irradiated austenitic steels. Part II. Fatigue crack growth rate

    Energy Technology Data Exchange (ETDEWEB)

    Margolin, B., E-mail: margolinbz@yandex.ru; Minkin, A.; Smirnov, V.; Sorokin, A.; Shvetsova, V.; Potapova, V.

    2016-11-15

    The experimental data on the fatigue crack growth rate (FCGR) have been obtained for austenitic steel of 18Cr-10Ni-Ti grade (Russian analog of AISI 321 steel) irradiated up to neutron dose of 150 dpa with various radiation swelling. The performed study of the fracture mechanisms for cracked specimens under cyclic loading has explained why radiation swelling affects weakly FCGR unlike its effect on fracture toughness. Mechanical modeling of fatigue crack growth has been carried out and the dependencies for prediction of FCGR in irradiated austenitic steel with and with no swelling are proposed and verified with the obtained experimental results. As input data for these dependencies, FCGR for unirradiated steel and the tensile mechanical properties for unirradiated and irradiated steels are used.

  14. Sub-impacts of simply supported beam struck by steel sphere—part II: Numerical simulations

    Directory of Open Access Journals (Sweden)

    Xiaoli Qi

    2016-12-01

    Full Text Available This part of the article describes numerical simulations of the problem investigated experimentally. A three-dimensional finite element model of elastic–plastic for sphere falling on beam has been implemented using the nonlinear dynamic finite element software LS-DYNA. From the numerical simulations, it was found that the LS-DYNA is suitable to study complex sub-impact phenomenon, and good agreement is in general obtained between the simulation and experimental results. The numerical simulations show that the initial impact velocity, equivalent elasticity modulus, contact curvature radius of the sphere, and equivalent mass have great influence on the contact–impact time of the sub-impact, and an applicable range of the theoretical expression of contact–impact time of the sub-impact was determined. In addition, the numerical simulations demonstrate the ratios of maximum amplitudes of the first-, second-, and third-order vibrations to the maximum amplitudes of the beam vibrations, and the phase angle of the first-order vibration will change suddenly when the sub-impacts occur. Furthermore, the occurrence conditions of the sub-impacts were clarified numerically. It was found that the occurrence conditions of the sub-impacts can be represented by a mass ratio threshold, and the thickness or length of the beam has also a great influence on the occurrence of the sub-impacts. Once the sub-impacts occur, which would result in an uncertain behavior of the apparent coefficient of restitution.

  15. Full-range stress–strain behaviour of contemporary pipeline steels: Part II. Estimation of model parameters

    International Nuclear Information System (INIS)

    Hertelé, Stijn; De Waele, Wim; Denys, Rudi; Verstraete, Matthias

    2012-01-01

    Contemporary pipeline steels with a yield-to-tensile ratio above 0.80 often show two-stages of strain hardening, which cannot be simultaneously described by the standardized Ramberg–Osgood model. A companion paper (Part I) showed that the recently developed UGent model provides more accurate descriptions than the Ramberg–Osgood model, as it succeeds in describing both strain hardening stages. However, it may be challenging to obtain an optimal model fit in absence of full stress–strain data. This paper discusses on how to find suited parameter values for the UGent model, given a set of measurable tensile test characteristics. The proposed methodology shows good results for an extensive set of investigated experimental stress–strain curves. Next to some common tensile test characteristics, the 1.0% proof stress is needed. The authors therefore encourage the acquisition of this stress during tensile tests. - Highlights: ► An analytical procedure estimates UGent model parameters. ► The procedure requires a set of tensile test characteristics. ► The UGent model performs better than the Ramberg–Osgood model. ► Apart from common characteristics, the 1.0% proof stress is required. ► The authors encourage the acquisition of this 1.0% proof stress.

  16. Investigation into Effects of Scanning Speed on in Vitro Biocompatibility of Selective Laser Melted 316L Stainless Steel Parts

    Directory of Open Access Journals (Sweden)

    Shang Yitong

    2017-01-01

    Full Text Available In recent years, selective laser melting (SLM has gained an important place in fabrication due to their strong individualization which cannot be manufactured using conventional processes such as casting or forging. By proper control of the SLM processing parameters, characteristics of the alloy can be optimized. In the present work, 316L stainless steel (SS, as a widely used biomedical material, is investigated in terms of the effects of scanning speed on in vitro biocompatibility during SLM process. Cytotoxicity assay is adopted to assess the in vitro biocompatibility. The results show the scanning speed strongly affects the in vitro biocompatibility of 316L SS parts and with prolongs of incubation time, the cytotoxicity increase and the in vitro biocompatibility gets worse. The optimal parameters are determined as follows: scanning speed of 900 mm/s, laser power of 195 W, hatch spacing of 0.09 mm and layer thickness of 0.02 mm. The processing parameters lead to the change of surface morphology and microstructures of samples, which can affect the amount of toxic ions release, such as Cr, Mo and Co, that can increase risks to patient health and reduce the biocompatibility.

  17. Study on the blasting demolition of steel construction. Part 2. Demolition work of steel tower; Tekkotsu kozobutsu no bakuha kaitai ni kansuru kenkyu. 2. Koro yagura happa kaitai koji

    Energy Technology Data Exchange (ETDEWEB)

    Ogata, Y.; Wada, Y.; Katsuyama, K. [National Institute for Resources and Environment, Tsukuba (Japan); Nishida, T.; Hoshino, M.; Nagano, M. [Kacoh Co. Ltd., Tokyo (Japan)

    1997-06-30

    This paper describes the blasting demolition of steel tower of iron works. The steel tower had four columns, and its dimension was 17 mtimes17 m in cross section and 77.6 m height. The total weight was about 1,724 t. The 18.4 kg V-type linear shaped charge was fixed around columns with box weld structures, and initiated using 16 seismograph electric detonators. Vibration and noise were measured during blasting and collapse of the tower. In the both case, the vibration levels were between 67 and 71 dB, which were low and under 75 dB, the standard level during specific construction works of the regulation act of vibration. The noise level was 120 dB(A) at the point 200 m away from the blasting source, which was over 85 dB(A), the standard level. The collapse process of steel tower was simulated using discontinuous deformation analysis. The results agreed well with those from the actual collapse. The steel tower landed about 6 seconds after the initiation, and it took about 15 seconds to complete the collapse. Before the demolition, the 6 t parts of forefeet of two columns in the collapse direction were cut and removed by blasting. Thus, the collapse was controlled in the given direction. 5 refs., 13 figs., 2 tabs.

  18. Investigation on the parameter optimization and performance of laser cladding a gradient composite coating by a mixed powder of Co50 and Ni/WC on 20CrMnTi low carbon alloy steel

    Science.gov (United States)

    Shi, Yan; Li, Yunfeng; Liu, Jia; Yuan, Zhenyu

    2018-02-01

    In this study, a gradient composite coating was manufactured on 20CrMnTi alloy steel by laser cladding. The laser power, cladding scan velocity and powder flow rate were selected as influencing factors of the orthogonal cladding experiments. The influencing factors were optimized by the comprehensive analysis of Taguchi OA and TOPSIS method. The high significant parameters and the predicted results were confirmed by the ANOVA method. The macromorphology and microstructures are characterized by using laser microscope, SEM, XRD and microhardness tester. Comparison tests of wear resistance of gradient composite coating, 20CrMnTi cemented quenching sample and the 20CrMnTi sample were conducted on the friction-wear tester. The results show that the phases are γ-Co solid solution, Co3B, M23C6 and etc. The interlayers and wear-resisting layer also contain new hard phases as WC, W2C. The microhardness of the gradient coating was increased to 3 times as compared with that of the 20CrMnTi substrate. The wear resistance of the gradient composite coating and 20CrMnTi cemented quenching sample was enhanced to 36.4 and 15.9 times as compared with that of the 20CrMnTi.

  19. Comparing Microstructures and Tensile Properties of Intercritically Annealed and Quenched-Tempered 1.7Ni-1.5Cu-0.5Mo-0.2C Powder Metallurgy Steels

    Science.gov (United States)

    Güral, Ahmet; Başak, Hüdayim; Türkan, Mustafa

    2018-01-01

    The aim of this study was to compare the influence of intercritical quenching (IQ), step quenching (SQ) and quenching plus tempering (QT) heat treatments on the microstructure and tensile properties of 1.7Ni-1.5Cu-0.5Mo-0.2C pre-alloyed powder metallurgy (P/M) steels. In the microstructures of the IQ and SQ specimens partial martensite having Ni-rich phases formed up in the soft ferritic matrix. It was observed that unlike Mo, a Cu alloying element dissolved homogeneously in the specimens. The martensite volume fraction (MVF) in the SQ specimens was higher than that in the IQ specimens. It was found that macrohardness, yield and tensile strengths increased, whereas microhardness of ferrite and elongation decreased with increasing MVF. However, with this increase, microhardness values of martensite phases decreased in the IQ specimen, while they increased in SQ specimens. It was observed that the yield, tensile, and elongation values of the QT specimens were lower than those of all intercritically annealed specimens having the same hardness values.

  20. Parameters in selective laser melting for processing metallic powders

    Science.gov (United States)

    Kurzynowski, Tomasz; Chlebus, Edward; Kuźnicka, Bogumiła; Reiner, Jacek

    2012-03-01

    The paper presents results of studies on Selective Laser Melting. SLM is an additive manufacturing technology which may be used to process almost all metallic materials in the form of powder. Types of energy emission sources, mainly fiber lasers and/or Nd:YAG laser with similar characteristics and the wavelength of 1,06 - 1,08 microns, are provided primarily for processing metallic powder materials with high absorption of laser radiation. The paper presents results of selected variable parameters (laser power, scanning time, scanning strategy) and fixed parameters such as the protective atmosphere (argon, nitrogen, helium), temperature, type and shape of the powder material. The thematic scope is very broad, so the work was focused on optimizing the process of selective laser micrometallurgy for producing fully dense parts. The density is closely linked with other two conditions: discontinuity of the microstructure (microcracks) and stability (repeatability) of the process. Materials used for the research were stainless steel 316L (AISI), tool steel H13 (AISI), and titanium alloy Ti6Al7Nb (ISO 5832-11). Studies were performed with a scanning electron microscope, a light microscopes, a confocal microscope and a μCT scanner.

  1. Identification of powdered Chinese herbal medicines by fluorescence microscopy, Part 1: Fluorescent characteristics of mechanical tissues, conducting tissues, and ergastic substances.

    Science.gov (United States)

    Wang, Ya-Qiong; Liang, Zhi-Tao; Li, Qin; Yang, Hua; Chen, Hu-Biao; Zhao, Zhong-Zhen; Li, Ping

    2011-03-01

    The light microscope has been successfully used in identification of Chinese herbal medicines (CHMs) for more than a century. However, positive identification is not always possible. Given the popularity of fluorescence microscopy in bioanalysis, researchers dedicated to finding new ways to identify CHMs more effectively are now turning to fluorescence microscopy for authentication purposes. Some studies on distinguishing confused species from the same genus and on exploring distributions of chemicals in tissues of CHMs by fluorescence microscopy have been reported; however, no systematic investigations on fluorescent characteristics of powdered CHMs have been reported. Here, 46 samples of 16 CHMs were investigated. Specifically, the mechanical tissues including stone cells and fibers, the conducting tissues including three types of vessels, and ergastic substances including crystals of calcium oxalate and secretions, in various powdered CHMs were investigated by both light microscope and fluorescence microscope. The results showed many microscopic features emit fluorescence that makes them easily observed, even against complex backgrounds. Under the fluorescence microscope, different microscopic features from the same powdered CHM or some same features from different powdered CHMs emitted the different fluorescence, making this information very helpful for the authentication of CHMs in powder form. Moreover, secretions with unique chemical profiles from different powdered CHMs showed different fluorescent characteristics. Hence, fluorescence microscopy could be a useful additional method for the authentication of powdered CHMs if the fluorescent characteristics of specific CHMs are known. Copyright © 2010 Wiley-Liss, Inc.

  2. Powder diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Hart, M.

    1995-12-31

    the importance of x-ray powder diffraction as an analytical tool for phase identification of materials was first pointed out by Debye and Scherrer in Germany and, quite independently, by Hull in the US. Three distinct periods of evolution lead to ubiquitous application in many fields of science and technology. In the first period, until the mid-1940`s, applications were and developed covering broad categories of materials including inorganic materials, minerals, ceramics, metals, alloys, organic materials and polymers. During this formative period, the concept of quantitative phase analysis was demonstrated. In the second period there followed the blossoming of technology and commercial instruments became widely used. The history is well summarized by Parrish and by Langford and Loueer. By 1980 there were probably 10,000 powder diffractometers in routine use, making it the most widely used of all x-ray crystallographic instruments. In the third, present, period data bases became firmly established and sophisticated pattern fitting and recognition software made many aspects of powder diffraction analysis routine. High resolution, tunable powder diffractometers were developed at sources of synchrotron radiation. The tunability of the spectrum made it possible to exploit all the subtleties of x-ray spectroscopy in diffraction experiments.

  3. Powder diffraction

    International Nuclear Information System (INIS)

    Hart, M.

    1995-01-01

    The importance of x-ray powder diffraction as an analytical tool for phase identification of materials was first pointed out by Debye and Scherrer in Germany and, quite independently, by Hull in the US. Three distinct periods of evolution lead to ubiquitous application in many fields of science and technology. In the first period, until the mid-1940's, applications were and developed covering broad categories of materials including inorganic materials, minerals, ceramics, metals, alloys, organic materials and polymers. During this formative period, the concept of quantitative phase analysis was demonstrated. In the second period there followed the blossoming of technology and commercial instruments became widely used. The history is well summarized by Parrish and by Langford and Loueer. By 1980 there were probably 10,000 powder diffractometers in routine use, making it the most widely used of all x-ray crystallographic instruments. In the third, present, period data bases became firmly established and sophisticated pattern fitting and recognition software made many aspects of powder diffraction analysis routine. High resolution, tunable powder diffractometers were developed at sources of synchrotron radiation. The tunability of the spectrum made it possible to exploit all the subtleties of x-ray spectroscopy in diffraction experiments

  4. Powder diffractometry

    International Nuclear Information System (INIS)

    Doucet, J.

    1983-01-01

    The new possibilities openned by the synchrotron radiation in the powder diffractometry techniques are presented. This technique is described in a general manner and some aspects which can be developed with the use of the synchrotron radiation are analyzed. (L.C.) [pt

  5. Study On Precipitation Of UO2 Ex-AUC Powder. Part I: Precipitation Of AUC By (NH4)2CO3 From Uranyl Fluoride Solution

    International Nuclear Information System (INIS)

    Nguyen Trong Hung; Le Ba Thuan; Do Van Khoai; Nguyen Thanh Thuy; Nguyen Van Tung

    2011-01-01

    In this paper, Ammonium Uranyl Carbonate (AUC) powders were prepared by precipitation method in solution. UO 2 F 2 /HF, ammonium carbonate (AC), and ammonium hydroxide solution were used as precursors for precipitation. The influence of C/U ratio (mol/mol), AC concentration (g/L), reaction temperature ( o C), on characteristics of AUC powders was also investigated. Then, the synthesized AUC powders were analyzed (to define) phase composition (X-ray), fluorine content, morphology (by SEM), and specific surface area (BET). (author)

  6. Powder metallurgy - some economic considerations

    Energy Technology Data Exchange (ETDEWEB)

    Kassem, M.E.

    1982-01-01

    As a forming process powder metallurgy offers reductions in material and energy consumption. The engineering prerequisites and economics are discussed in relation to several industrial applications including automobile parts. 14 refs.

  7. Corrosion fatigue crack growth in clad low-alloy steels. Part 2: Water flow rate effects in high-sulfur plate steel

    International Nuclear Information System (INIS)

    James, L.A.; Lee, H.B.; Wire, G.L.; Novak, S.R.; Cullen, W.H.

    1997-01-01

    Corrosion fatigue crack propagation tests were conducted on a high-sulfur ASTM A302-B plate steel overlaid with weld-deposited Alloy EN82H cladding. The specimens featured semi-elliptical surface cracks penetrating approximately 6.3 mm of cladding into the underlying steel. The initial crack sizes were relatively large with surface lengths of 22.8--27.3 mm, and depths of 10.5--14.1 mm. The experiments were initiated in a quasi-stagnant low-oxygen (O 2 < 10 ppb) aqueous environment at 243 C, under loading conditions (ΔK, R, cyclic frequency) conducive to environmentally assisted cracking (EAC) under quasi-stagnant conditions. Following fatigue testing under quasi-stagnant conditions where EAC was observed, the specimens were then fatigue tested under conditions where active water flow of either 1.7 m/s or 4.7 m/s was applied parallel to the crack. Earlier experiments on unclad surface-cracked specimens of the same steel exhibited EAC under quasi-stagnant conditions, but water flow rates at 1.7 m/s and 5.0 m/s parallel to the crack mitigated EAC. In the present experiments on clad specimens, water flow at approximately the same as the lower of these velocities did not mitigate EAC, and a free stream velocity approximately the same as the higher of these velocities resulted in sluggish mitigation of EAC. The lack of robust EAC mitigation was attributed to the greater crack surface roughness in the cladding interfering with flow induced within the crack cavity. An analysis employing the computational fluid dynamics code, FIDAP, confirmed that frictional forces associated with the cladding crack surface roughness reduced the interaction between the free stream and the crack cavity

  8. 3D modelling of the flow of self-compacting concrete with or without steel fibres. Part I: slump flow test

    Science.gov (United States)

    Deeb, R.; Kulasegaram, S.; Karihaloo, B. L.

    2014-12-01

    In part I of this two-part paper, a three-dimensional Lagrangian smooth particle hydrodynamics method has been used to model the flow of self-compacting concrete (SCC) with or without short steel fibres in the slump cone test. The constitutive behaviour of this non-Newtonian viscous fluid is described by a Bingham-type model. The 3D simulation of SCC without fibres is focused on the distribution of large aggregates (larger than or equal to 8 mm) during the flow. The simulation of self-compacting high- and ultra-high- performance concrete containing short steel fibres is focused on the distribution of fibres and their orientation during the flow. The simulation results show that the fibres and/or heavier aggregates do not precipitate but remain homogeneously distributed in the mix throughout the flow.

  9. Review of Thermal Spray Coating Applications in the Steel Industry: Part 2—Zinc Pot Hardware in the Continuous Galvanizing Line

    Science.gov (United States)

    Matthews, S.; James, B.

    2010-12-01

    This two-part article series reviews the application of thermal spray coating technology in the production of steel and steel sheet products. Part 2 of this article series is dedicated to coating solutions in the continuous galvanizing line. The corrosion mechanisms of Fe- and Co-based bulk materials are briefly reviewed as a basis for the development of thermal spray coating solutions. WC-Co thermal spray coatings are commonly applied to low Al-content galvanizing hardware due to their superior corrosion resistance compared to Fe and Co alloys. The effect of phase degradation, carbon content, and WC grain size are discussed. At high Al concentrations, the properties of WC-Co coatings degrade significantly, leading to the application of oxide-based coatings and corrosion-resistant boride containing coatings. The latest results of testing are summarized, highlighting the critical coating parameters.

  10. Black powder in gas pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Sherik, Abdelmounam [Saudi Aramco, Dhahran (Saudi Arabia)

    2009-07-01

    Despite its common occurrence in the gas industry, black powder is a problem that is not well understood across the industry, in terms of its chemical and physical properties, source, formation, prevention or management of its impacts. In order to prevent or effectively manage the impacts of black powder, it is essential to have knowledge of its chemical and physical properties, formation mechanisms and sources. The present paper is divided into three parts. The first part of this paper is a synopsis of published literature. The second part reviews the recent laboratory and field work conducted at Saudi Aramco Research and Development Center to determine the compositions, properties, sources and formation mechanisms of black powder in gas transmission systems. Microhardness, nano-indentation, X-ray Diffraction (XRD), X-ray Fluorescence (XRF) and Scanning Electron Microscopy (SEM) techniques were used to analyze a large number of black powder samples collected from the field. Our findings showed that black powder is generated inside pipelines due to internal corrosion and that the composition of black powder is dependent on the composition of transported gas. The final part presents a summary and brief discussion of various black powder management methods. (author)

  11. DNA barcoding for species identification from dried and powdered plant parts: a case study with authentication of the raw drug market samples of Sida cordifolia.

    Science.gov (United States)

    Vassou, Sophie Lorraine; Kusuma, G; Parani, Madasamy

    2015-03-15

    The majority of the plant materials used in herbal medicine is procured from the markets in the form of dried or powdered plant parts. It is essential to use authentic plant materials to derive the benefits of herbal medicine. However, establishing the identity of these plant materials by conventional taxonomy is extremely difficult. Here we report a case study in which the species identification of the market samples of Sida cordifolia was done by DNA barcoding. As a prelude to species identification by DNA barcoding, 13 species of Sida were collected, and a reference DNA barcode library was developed using rbcL, matK, psbA-trnH and ITS2 markers. Based on the intra-species and inter-species divergence observed, psbA-trnH and ITS2 were found to be the best two-marker combination for species identification of the market samples. The study showed that none of the market samples belonged to the authentic species, S. cordifolia. Seventy-six per cent of the market samples belonged to other species of Sida. The predominant one was Sida acuta (36%) followed by S. spinosa (20%), S. alnifolia (12%), S. scabrida (4%) and S. ravii (4%). Such substitutions may not only fail to give the expected therapeutic effect, but may also give undesirable effects as in case of S. acuta which contains a 6-fold higher amount of ephedrine compared to the roots of S. cordifolia. The remaining 24% of the samples were from other genera such as Abutilon sp. (8%), Ixonanthes sp., Terminalia sp., Fagonia sp., and Tephrosia sp. (4% each). This observation is in contrast to the belief that medicinal plants are generally substituted or adulterated with closely related species. The current study strongly suggests that the raw drug market samples of herbal medicines need to be properly authenticated before use, and DNA barcoding has been found to be suitable for this purpose. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Alternative methodology for assessing part-through-wall cracks in carbon steel bends removed from Point Lepreau Generating Station

    Energy Technology Data Exchange (ETDEWEB)

    Duan Xinjian, E-mail: duanx@aecl.c [Senior Engineer, Reactor Engineering Department, Atomic Energy of Canada Ltd., Mississauga, ON (Canada); Kozluk, Michael J., E-mail: kozlukm@aecl.c [Independent Consultant, Oakville, ON (Canada); Gendron, Tracy [Manager-HTS Materials Integrity, Atomic Energy of Canada Ltd., Chalk River, ON (Canada); Slade, John [Senior Technical Advisor, Point Lepreau Generating Station, Lepreau, NB (Canada)

    2011-03-15

    In 2008 April Point Lepreau Generating Station entered an extended refurbishment outage that will involve the replacement of key reactor components (fuel channels and connecting feeder pipes). Prior to the refurbishment outage, New Brunswick Power Nuclear had been successfully managing intergranular, axial cracking of carbon steel feeder piping, that were also experiencing thinning, in the Point Lepreau Generating Station, primarily by an aggressive program of inspection, repair and testing of ex-service material. For the previous three maintenance outages, a probabilistic safety evaluation (PSE) had been used to demonstrate that annual inspection of the highest risk locations maintains the nuclear safety risk from cracking at an acceptably low level. The PSE makes use of the Failure Assessment Diagram (FAD) model to predict the failure of part-through-wall cracks. Burst-pressure testing of two ex-service feeder pipe sections with part-through-wall cracks showed that this FAD model significantly under predicts the failure pressure measured in the component tests. Use of this FAD model introduces undesirable conservatism into PSE assessments that are used to optimize feeder piping inspection and maintenance plans. This paper describes an alternative finite element approach, which could be used to provide more representative structural models for use in PSE assessments. This alternative approach employs the elasto-plastic large strain finite element formulation; uses representative material properties; considers the spatial microstructural distribution; accounts for the effect of work hardening rate; models all deformation processes, i.e., uniform deformation, localized necking, and failure imitation and propagation. Excellent pre-test prediction was shown for the burst-pressure test performed in 2006. Although cold-worked feeder bends have reduced fracture toughness compared to the parent straight pipe, post-test metallurgical examinations showed that failure at the

  13. Steel castings of valves for nuclear power station

    International Nuclear Information System (INIS)

    Yamasaki, Yutaka

    1975-01-01

    The manufacturing of the steel castings of valves for nuclear power plants is reported. The report is divided in six parts. The first part describes the reliability of the steel castings of valves for nuclear power plants. Particular attention must be paid to larger diameter and lower pressure rating for the valves in nuclear power plants than those in thermal power plants. The second part describes the characteristics of steel casting quality, defects and their cause. The defects that may be produced in steel castings are as follows: (a) cavities caused by the insufficient supply of molten steel, (b) sand bites caused by the mold destruction due to thermal shock, and (c) pinholes caused by the gas absorption of molten steel. The third part describes the clarification of quality level and the measures quality project. Gaseous defects and the indications detected by magnetic powder test are attributed to electric furnace steel making. In particular, the method to minimize gas content is important. The fourth part describes the quality control of manufacturing processes. In practice, thirteen semi-automatic testers using gamma radiation are employed. A full automatic inspection plant having capacity of 20,000 radiographs per month is under design. The fifth part describes a quality warrant system. A check sheet system concerning quality and safety is employed in all work shops. The reliability of all testers and measuring instruments as well as the skill of workmen are examined periodically. The seventh part deals with future problems. The manufacturing plan must be controlled so that non-destructive inspection becomes the main means for quality control. (Iwakiri, K.)

  14. Experimental and numerical study of steel pipe with part-wall defect reinforced with fibre glass sleeve

    International Nuclear Information System (INIS)

    Mazurkiewicz, Lukasz; Tomaszewski, Michal; Malachowski, Jerzy; Sybilski, Kamil; Chebakov, Mikhail; Witek, Maciej; Yukhymets, Peter; Dmitrienko, Roman

    2017-01-01

    The paper presents numerical and experimental burst pressure evaluation of the gas seamless hot-rolled steel pipe. The main goal was to estimate mechanical toughness of pipe wrapped with composite sleeve and verify selected sleeve thickness. The authors used a nonlinear explicit FE code with constitutive models which allows for steel and composite structure failure modelling. Thanks to the achieved numerical and analytical results it was possible to perform the comparison with data received from a capacity test and good correlation between the results were obtained. Additionally, the conducted analyses revealed that local reduction of pipe wall thickness from 6 mm to 2.4 mm due to corrosion defect can reduce high pressure resistance by about 40%. Finally, pipe repaired by a fibre glass sleeve with epoxy resin with 6 mm thickness turned out more resistant than an original steel pipe considering burst pressure. - Highlights: • Numerical and experimental burst pressure evaluation of steel pipe was performed. • Seamless hot-rolled steel pipe with and without corrosion defect were considered. • Local reduction of pipe wall thickness from 6 to 2.4 mm reduces resistance by 40%. • Pipe repaired by a 6 mm fibre glass sleeve was more resistant than an original pipe.

  15. Vibration impact acoustic emission technique for identification and analysis of defects in carbon steel tubes: Part A Statistical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Halim, Zakiah Abd [Universiti Teknikal Malaysia Melaka (Malaysia); Jamaludin, Nordin; Junaidi, Syarif [Faculty of Engineering and Built, Universiti Kebangsaan Malaysia, Bangi (Malaysia); Yahya, Syed Yusainee Syed [Universiti Teknologi MARA, Shah Alam (Malaysia)

    2015-04-15

    Current steel tubes inspection techniques are invasive, and the interpretation and evaluation of inspection results are manually done by skilled personnel. This paper presents a statistical analysis of high frequency stress wave signals captured from a newly developed noninvasive, non-destructive tube inspection technique known as the vibration impact acoustic emission (VIAE) technique. Acoustic emission (AE) signals have been introduced into the ASTM A179 seamless steel tubes using an impact hammer, and the AE wave propagation was captured using an AE sensor. Specifically, a healthy steel tube as the reference tube and four steel tubes with through-hole artificial defect at different locations were used in this study. The AE features extracted from the captured signals are rise time, peak amplitude, duration and count. The VIAE technique also analysed the AE signals using statistical features such as root mean square (r.m.s.), energy, and crest factor. It was evident that duration, count, r.m.s., energy and crest factor could be used to automatically identify the presence of defect in carbon steel tubes using AE signals captured using the non-invasive VIAE technique.

  16. Hegelian Steel

    DEFF Research Database (Denmark)

    Kjær, Poul F.

    2015-01-01

    Even in our globalized world the notion of national economies remain incredibly strong, just as a considerable part of the literature on transnational governance and globalization continue to rely on a zero-sum perspective concerning the relationship between the national and the transnational. De...... of the European steel industry....

  17. Notch aspects of RSP steel microstructure

    Directory of Open Access Journals (Sweden)

    Michal Černý

    2012-01-01

    Full Text Available For a rather long time, basic research projects have been focused on examinations of mechanical properties for Rapid Solidification Powder (RSP steels. These state-of-art steels are commonly known as “powdered steels“. In fact, they combine distinctive attributes of conventional steel alloys with unusual resistance of construction material manufactured by so called “pseudo-powdered” metallurgy.Choice of suitable materials for experimental verification was carried out based on characteristic application of so called “modern steel”. First, groups of stainless and tool steel types (steel grades ČSN 17 and 19 were selected. These provided representative specimens for the actual comparison experiment. For stainless steel type, two steel types were chosen: hardenable X47Cr14 (ČSN 17 029 stainless steel and non-hardenable X2CrNiMo18-14-3 (ČSN 17 350 steel. They are suitable e.g. for surgical tools and replacements (respectively. For tooling materials, C80U (ČSN 19 152 carbon steel and American D2 highly-alloyed steel (ČSN “equivalent” being 19 572 steel were chosen for the project. Finally, the M390 Böhler steel was chosen as representative of powdered (atomized steels. The goal of this paper is to discuss structural aspects of modern stainless and tool steel types and to compare them against the steel made by the RSP method. Based on the paper's results, impact of powdered steel structural characteristics on the resistance to crack initiation shall be evaluated.

  18. Monitoring of occupational exposure in manufacturing of stainless steel constructions. Part I: Chromium, iron, manganese, molybdenum, nickel and vanadium in the workplace air of stainless steel welders.

    Science.gov (United States)

    Kucera, J; Bencko, V; Pápayová, A; Saligová, D; Tejral, J; Borská, L

    2001-11-01

    Exposure to workplace airborne pollutants was examined in a group of 20 workers dealing mainly with welding, polishing, drilling and assembling of stainless steel constructions. Airborne particulate matter (APM) collected using both personal and stationary samplers was analyzed by instrumental neutron activation analysis (INAA). Quality assurance procedures of both sampling and analytical stages are described. Of the elements determined, results are presented for chromium, iron, manganese, molybdenum, nickel and vanadium. The median values of element concentrations exceeded the maximum admissible limits for workplace pollutants only for chromium, while for nickel the limit was exceeded in several individual cases. Sampling of hair, nails, blood, urine and saliva to be used for biological monitoring of the exposed and control groups is also described.

  19. Study of the mechanical properties of stainless steel 316LN prepared by hot isostatic compression. Influence of preparation parameters

    International Nuclear Information System (INIS)

    Couturier, Raphael

    1999-01-01

    This research thesis has been performed within an R and D programme which aimed at optimising and certifying the HIP process (hot isostatic pressing) from a technological as well as metallurgical point of view. The objective has been to improve dimensional reproducibility of fabricated parts, and metallurgical properties of the dense material. Reference parts are those belonging to PWR primary circuit, and are made in cast austenitic-ferritic steel. Thus, the objective has been to show that these parts can be beneficially fabricated by powder metallurgy in austenitic grade. A mock part (a primary circuit pump wheel at the 1/2 scale) has first been fabricated by HIP, and a more complex shape generator has been designed. The author reports the determination of microstructure and mechanical characteristics of the austenitic 316LN steel produced by HIP and used to fabricate mock parts and demonstrator parts, the study of the relationship between dense material properties and fabrication parameters (temperature, pressure, consolidation time), and the analysis of the consequences of an elaboration by HIP on the 316LN steel with comparison with forged parts. After a presentation of the Powder Metallurgy elaboration technique, the author reports a bibliographical study on the precipitation at Prior Particle Boundaries (PPB), reports the study of microstructure and mechanical properties of the HIPed 316LN, and discusses the possibility of a decrease of precipitation at PPBs by adjusting powder degassing or a granulometric sorting. The last part reports the extension of the study of steel coherence to a temperature range which encompasses the primary circuit operation temperature (350 C). Resilience tests are performed as well as mechanical tests on notched axisymmetric samples. A finite element calculation of these samples allows the validation of the use of a Thomson-type model to describe the emergence of defects which are typical of a steel elaborated by powder

  20. From Powders to Dense Metal Parts: Characterization of a Commercial AlSiMg Alloy Processed through Direct Metal Laser Sintering.

    Science.gov (United States)

    Manfredi, Diego; Calignano, Flaviana; Krishnan, Manickavasagam; Canali, Riccardo; Ambrosio, Elisa Paola; Atzeni, Eleonora

    2013-03-06

    In this paper, a characterization of an AlSiMg alloy processed by direct metal laser sintering (DMLS) is presented, from the analysis of the starting powders, in terms of size, morphology and chemical composition, through to the evaluation of mechanical and microstructural properties of specimens built along different orientations parallel and perpendicular to the powder deposition plane. With respect to a similar aluminum alloy as-fabricated, a higher yield strength of about 40% due to the very fine microstructure, closely related to the mechanisms involved in this additive process is observed.

  1. From Powders to Dense Metal Parts: Characterization of a Commercial AlSiMg Alloy Processed through Direct Metal Laser Sintering

    Directory of Open Access Journals (Sweden)

    Eleonora Atzeni

    2013-03-01

    Full Text Available In this paper, a characterization of an AlSiMg alloy processed by direct metal laser sintering (DMLS is presented, from the analysis of the starting powders, in terms of size, morphology and chemical composition, through to the evaluation of mechanical and microstructural properties of specimens built along different orientations parallel and perpendicular to the powder deposition plane. With respect to a similar aluminum alloy as-fabricated, a higher yield strength of about 40% due to the very fine microstructure, closely related to the mechanisms involved in this additive process is observed.

  2. Powder technology

    International Nuclear Information System (INIS)

    Agueda, Horacio

    1989-01-01

    Powder technology is experiencing nowadays a great development and has broad application in different fields: nuclear energy, medicine, new energy sources, industrial and home artifacts, etc. Ceramic materials are of daily use as tableware and also in the building industry (bricks, tiles, etc.). However, in machine construction its utilization is not so common. The same happens with metals: powder metallurgy is employed less than traditional metal forming techniques. Both cases deal with powder technology and the forming techniques as far as the final consolidation through sintering processes are very similar. There are many different methods and techniques in the forming stage: cold-pressing, slip casting, injection molding, extrusion molding, isostatic pressing, hot-pressing (which involves also the final consolidation step), etc. This variety allows to obtain almost any desired form no matter how complex it could be. Some applications are very specific as in the case of UO 2 pellets (used as nuclear fuels) but with the same technique and other materials, it is possible to manufacture a great number of different products. This work shows the characteristics and behaviour of two magnetic ceramic materials (ferrites) fabricated in the laboratory of the Applied Research Division of the Bariloche Atomic Center for different purposes. Other materials and products made with the same method are also mentioned. Likewise, densities and shrinkage obtained by different methods of forming (cold-pressing, injection molding, slip casting and extrusion molding) using high-purity alumina (99.5% Al 2 O 3 ). Finally, different applications of such methods are given. (Author) [es

  3. Shock diffraction in alumina powder

    International Nuclear Information System (INIS)

    Venz, G.; Killen, P.D.; Page, N.W.

    1996-01-01

    In order to produce complex shaped components by dynamic compaction of ceramic powders detailed knowledge of their response under shock loading conditions is required. This work attempts to provide data on release effects and shock attenuation in 1 μm and 5 μm α-alumina powders which were compacted to between 85 % and 95 % of the solid phase density by the impact of high velocity steel projectiles. As in previous work, the powder was loaded into large cylindrical dies with horizontal marker layers of a contrasting coloured powder to provide a record of powder displacement in the recovered specimens. After recovery and infiltration with a thermosetting resin the specimens were sectioned and polished to reveal the structure formed by the passage of the projectile and shock wave. Results indicate that the shock pressures generated were of the order of 0.5 to 1.4 GPa and higher, with shock velocities and sound speeds in the ranges 650 to 800 m/s and 350 to 400 m/s respectively

  4. Corrosion behaviour of laser clad stainless steels

    International Nuclear Information System (INIS)

    Damborenea, J.J. de; Weerasinghe, V.M.; West, D.R.F.

    1993-01-01

    The present paper is focussed in the study of the properties of a clad layer of stainless steel on a mild steel. By blowing powder of the alloy into a melt pool generated by a laser of 2 KW, an homogeneous layer of 316 stainless steel can be obtained. Structure, composition and corrosion behaviour are similar to those of a stainless steel in as-received condition. (Author)

  5. Reduction-oxidation Enabled Glass-ceramics to Stainless Steel Bonding Part I: screening of doping oxidants

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Steve Xunhu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    Lithium silicate-based glass-ceramics with high coefficients of thermal expansion, designed to form matched hermetic seals in 304L stainless steel housing, show little evidence of interfacial chemical bonding, despite extensive inter-diffusion at the glass-ceramic-stainless steel (GC-SS) interface. A series of glass-ceramic compositions modified with a variety of oxidants, AgO, FeO, NiO, PbO, SnO, CuO, CoO, MoO3 and WO3, are examined for the feasibility of forming bonding oxides through reduction-oxidation (redox) at the GC-SS interface. The oxidants were selected according to their Gibbs free energy to allow for oxidation of Cr/Mn/Si from stainless steel, and yet to prevent a reduction of P2O5 in the glass-ceramic where the P2O5 is to form Li3PO4 nuclei for growth of high expansion crystalline SiO2 phases. Other than the CuO and CoO modified glass-ceramics, bonding from interfacial redox reactions were not achieved in the modified glass-ceramics, either because of poor wetting on the stainless steel or a reduction of the oxidants at the surface of glass-ceramic specimens rather than the GC-SS interface.

  6. How to Choose between the Implant Materials Steel and Titanium in Orthopedic Trauma Surgery: Part 2 - Biological Aspects.

    Science.gov (United States)

    Perren, S M; Regazzoni, P; Fernandez, A A

    2017-01-01

    BIOLOGICAL ASPECTS OF STEEL AND TITANIUM AS IMPLANT MATERIAL IN ORTHOPEDIC TRAUMA SURGERY The following case from the ICUC database, where a titanium plate was implanted into a flourishing infection, represents the clinical experience leading to preferring titanium over steel. (Fig. 1) (6). Current opinions regarding biological aspects of implant function. The "street" opinions regarding the biological aspects of the use of steel versus titanium as a surgical trauma implant material differ widely. Statements of opinion leaders range from "I do not see any difference in the biological behavior between steel and titanium in clinical application" to "I successfully use titanium implants in infected areas in a situation where steel would act as foreign body "sustaining" infection." Furthermore, some comments imply that clinical proof for the superiority of titanium in human application is lacking. The following tries to clarify the issues addressing the different aspects more through a practical clinical approach than a purely scientific one, this includes simplifications. Today's overall biocompatibility of implant materials is acceptable but: As the vast majority of secondary surgeries are elective procedures this allows the selection of implant materials with optimal infection resistance. The different biological reactions of stainless steel and titanium are important for this segment of clinical pathologies. Biological tole - rance (18) depends on the toxicity and on the amount of soluble implant material released. Release, diffusion and washout through blood circulation determine the local concentration of the corrosion products. Alloying components of steel, especially nickel and chromium, are less than optimal in respect to tissue tolerance and allergenicity. Titanium as a pure metal provides excellent biological tolerance (3, 4, 16). Better strength was obtained by titanium alloys like TiAl6V4. The latter found limited application as surgical implants. It

  7. Monitoring of occupational exposure in manufacturing of stainless steel constructions. Part I: Chromium, iron, manganese, molybdenum, nickel and vanadium in the workplace air of stainless steel welders

    International Nuclear Information System (INIS)

    Kucera, J.; Hnatowicz, V.; Bencko, V.; Papayova, A.; Saligova, D.; Tejral, J.; Borska, L.

    2000-01-01

    Exposure to workplace airborne pollutants was examined in a group of 20 workers dealing mainly with welding, polishing, drilling and assembling of stainless steel constructions. Monitoring of airborne particulate matter (ARM) was performed using both personal and stationary samplers. For the personal full-shift monitoring, a SKC 224 PCRX-4 constant flow rate pump was used which was connected to a sampling head with mixed cellulose matched-weight filters having a diameter of 32 mm and a 0.8 μm pore size. The constant flow rate amounted to 2 L min -1 . For the stationary sampling, the ''Gent'' stacked filter unit PM10 sampler was used, operating at a flow rate of 16 L min -1 . It collects particles having an equivalent aerodynamic diameter (EAD) of less than 10,um in the separate ''coarse'' (2-10 μm EAD) and ''fine'' (< 2 μm EAD) size fractions on two sequential polycarbonate (Costar, Nuclepore) filters with a 47 mm diameter. The filters of both types were analyzed by instrumental neutron activation analysis (INAA). Of the elements determined, results for chromium, iron, manganese, molybdenum, nickel and vanadium are presented. Procedures for quality assurance of both sampling and analytical stages are described. Sampling of biological material for elemental analysis (hair, nails, urine and blood and/or serum) of exposed and control persons in contamination-free conditions was also performed. In addition, saliva samples were collected for studying immunological and genotoxicity aspects of occupational exposure. (author)

  8. Hydrothermal Valorization of Steel Slags—Part I: Coupled H2 Production and CO2 Mineral Sequestration

    Directory of Open Access Journals (Sweden)

    Camille Crouzet

    2017-10-01

    Full Text Available A new process route for the valorization of BOF steel slags combining H2 production and CO2 mineral sequestration is investigated at 300°C (HT under hydrothermal conditions. A BOF steel slag stored several weeks outdoor on the production site was used as starting material. To serve as a reference, room temperature (RT carbonation of the same BOF steel slag has been monitored with in situ Raman spectroscopy and by measuring pH and PCO2 on a time-resolved basis. CO2 uptake under RT and HT are, respectively, 243 and 327 kg CO2/t of fresh steel slag, which add up with the 63 kg of atmospheric CO2 per ton already uptaken by the starting steel slag on the storage site. The CO2 gained by the sample at HT is bounded to the carbonation of brownmillerite. H2 yield decreased by about 30% in comparison to the same experiment performed without added CO2, due to sequestration of ferrous iron in a Mg-rich siderite phase. Ferric iron, initially present in brownmillerite, is partitioned between an Fe-rich clay mineral of saponite type and metastable hematite. Saponite is likely stabilized by the presence of Al, whereas hematite may represent a metastable product of brownmillerite carbonation. Mg-rich wüstite is involved in at least two competing reactions, i.e., oxidation into magnetite and carbonation into siderite. Results of both water-slag and water-CO2-slag experiments after 72 h are consistent with a kinetics enhancement of the former reaction when a CO2 partial pressure imposes a pH between 5 and 6. Three possible valorization routes, (1 RT carbonation prior to hydrothermal oxidation, (2 RT carbonation after hydrothermal treatment, and (3 combined HT carbonation and oxidation are discussed in light of the present results and literature data.

  9. Heat treatment of investment cast PH 13-8 Mo stainless steel: Part II. Isothermal aging kinetics

    Science.gov (United States)

    Robino, C. V.; Cieslak, M. J.; Hochanadel, P. W.; Edwards, G. R.

    1994-04-01

    The hardening response of investment cast PH 13-8 Mo stainless steel has been evaluated by hardness measurements following aging in the temperature range normally specified for this alloy (510 °C to 593 °C). A new relationship between fraction transformed and hardness was developed, and analysis of the data in terms of the kinetics of precipitation, in a manner similar to that frequently applied to other precipitation-hardenable martensitic steels, yielded low time exponents and a low value for the apparent activation energy. The values of the time exponents were 0.49, 0.37, 0.56, and 0.53 at 510 °C, 538 °C, 566 °C, and 593 °C, respectively, and that for the apparent activation energy was 139 kJ/mole. As has been proposed for other maraging type steels, these estimates suggest that Β-NiAl precipitates along or near dislocations and that growth of the precipitates is dominated by dislocation pipe diffusion. However, these predictions were neither supported nor refuted by transmission electron microscopy (TEM) because of difficulties in imaging the Β-NiAl precipitates at the aging times and temperatures used. Further, analysis of the data using the formalism of Wert and Zener for the growth of precipitates with interfering diffusion fields indicated that the estimates of fraction transformed from hardness data are not fully appropriate for maraging type steels. Consideration of the nature of the Avrami analysis and the electron microscopy results suggests that other phenomena, including dislocation recovery and reversion of martensite to austenite, occur at rates sufficient to convolute the Avrami analysis. It is further suggested that these results cast doubt on the fundamental implications of previous analyses of precipitation kinetics in age-hardening martensitic steels. Although the Avrami analysis was found not to provide a tenable description of the precipitation kinetics, it does provide a reasonable methodology for portrayal of the hardening response

  10. Behaviour of high stretch bolts in tension working as part of elements of steel structures, and their tendency to delayed fracturing

    Directory of Open Access Journals (Sweden)

    Moyseychik Evgeniy Alekseevich

    2014-12-01

    Full Text Available In the article, the author has proven that manufacturing and installation errors, as well as contact deformations of high strength bolts, if analyzed as part of tensile connections of steel structures, work in eccentric tension. In pursuance of the effective state standards, the analysis of these bolts is based on the axial tension. The author has analyzed the failure of a steel structure, caused by the fracture of eccentrically loaded bolts made of steel grade XC 42 (France, or C40 (Germany, that later followed the delayed fracturing pattern. The author provides the findings of the lab tests, whereby the above bolts were tested in the presence of an angle washer. The author has also analyzed the findings of low-temperature tests of bolts in tension. The author demonstrates that the strength of high strength bolts is driven by the material, the structure shape, and the thermal treatment pattern. Eccentric tension tests of bolts have proven that cracks emerge in the areas of maximal concentration of stresses (holes in shafts, etc. that coincide with the areas where fibers are in tension; cracks tend to follow the delayed fracturing pattern, and their development is accompanied by the deformation-induced metal heating in the fracture area. Therefore, the analysis of high strength bolts shall concentrate on the eccentric tension with account for contact-induced loads, while the tendency to delayed fracturing may be adjusted through the employment of both metallurgical and process techniques.

  11. Using special additions to preparation of the moulding mixture for casting steel parts of drive wheel type

    Science.gov (United States)

    Josan, A.; Pinca Bretotean, C.

    2015-06-01

    The paper presents the possibility of using special additions to the execution of moulding mixtures for steel castings, drive wheel type. Critical analysis of moulding technology leads to the idea that most defects appear due to using improper moulding mixture. Using a improper moulding mixture leads to penetration of steel in moulding mixture, resulting in the formation of adherences, due to inadequate refractarity of the mould and core mixtures. Using only the unique mixture to the moulding leads to increasing consumption of new sand, respectively to the increase of price of piece. Acording to the dates registered in the industrial practice is necessary to use the special additions to obtain the moulding mixtures, carbonaceous materials respectively.

  12. Application of processing maps in the optimization of the parameters of a hot working process. Part 2. Processing maps of a microalloyed medium carbon steel

    International Nuclear Information System (INIS)

    Al Omar, A.; Cabrera, J.M.; Prado, J.M.

    1997-01-01

    Part 1 of this work presents a revision of the general characteristics of the so called dynamic materials model on which processing maps are developed. In this part following the methodology described in part 1, processing maps of a microalloyed medium carbon steel are developed over a temperature range varying from 900 to 1.150 degree centigree at different true strain rates ranging from 10''-4 to 10s''-1. The analysis of these maps revealed a domain of dynamic recrystallization centred at about 1.1.50 degree centigree and strain rate 10 s''-1 and a domain of dynamic recovery centred at 900 degree centigree and 0,1 s''-1. (Author) 20 refs

  13. Experimental study of the effect of neutron radiation on pressurised water reactor vessel steel resilience - First part

    International Nuclear Information System (INIS)

    Verdeau, Jean-Jacques

    1969-12-01

    After having outlined the importance of the embrittlement of vessel steels by neutrons during the exploitation of pressurised water reactors, the author reports a set of tests which aimed at determining the effect of neutron irradiation on vessel steel resilience for operated, under construction or projected pressurized water reactors. He also tries to highlight the influence of irradiation temperature and of initial thermal treatments, and to look for a restoration thermal treatment of neutron-induced damages which could be applied to the considered vessels. Tests were performed on V Charpy resilience samples. Some samples have been irradiated by the Pile Department of the Grenoble CEN and then broken by the Laboratory of very high activity, whereas other samples have been irradiated in a prototype vessel and broken by a Cadarache department. The author presents characteristics of the studied steels (chemical compositions, thermal treatments), describes sample irradiation conditions, and the method of assessment of the transition temperature after irradiation, presents experimental results, discusses their interpretation, and presents future tests to be performed [fr

  14. A process model for the heat-affected zone microstructure evolution in duplex stainless steel weldments: Part I. the model

    Science.gov (United States)

    Hemmer, H.; Grong, Ø.

    1999-11-01

    The present investigation is concerned with modeling of the microstructure evolution in duplex stainless steels under thermal conditions applicable to welding. The important reactions that have been modeled are the dissolution of austenite during heating, subsequent grain growth in the delta ferrite regime, and finally, the decomposition of the delta ferrite to austenite during cooling. As a starting point, a differential formulation of the underlying diffusion problem is presented, based on the internal-state variable approach. These solutions are later manipulated and expressed in terms of the Scheil integral in the cases where the evolution equation is separable or can be made separable by a simple change of variables. The models have then been applied to describe the heat-affected zone microstructure evolution during both thick-plate and thin-plate welding of three commercial duplex stainless steel grades: 2205, 2304, and 2507. The results may conveniently be presented in the form of novel process diagrams, which display contours of constant delta ferrite grain size along with information about dissolution and reprecipitation of austenite for different combinations of weld input energy and peak temperature. These diagrams are well suited for quantitative readings and illustrate, in a condensed manner, the competition between the different variables that lead to structural changes during welding of duplex stainless steels.

  15. In-service behaviour of creep strength enhanced ferritic steels Grade 91 and Grade 92 – Part 2 weld issues

    International Nuclear Information System (INIS)

    Parker, Jonathan

    2014-01-01

    In Creep Strength Enhanced Ferritic steels control of both composition and heat treatment of the parent steel is necessary to avoid producing components which have properties below the minimum expected by applicable codes. The degree of tempering involved in manufacture will modify the material hardness. While under most conditions hardness is reduced by tempering, exceeding the AC 1 temperature can lead to an increase in hardness. In this heat treatment the properties will be relatively poor even though the measured hardness may be apparently acceptable. Thus, care should be exercised in imposing an acceptance test of components based on simple hardness alone. Differences in parent material heat treatment and composition apparently have remarkably little influence on the creep life of the heat affect zone (HAZ). Thus, Type IV cracking in the fine grained or intercritically heat treated regions of the HAZ does not appear to directly depend on the strength of the base steel. This form of in-service damage is relatively difficult to detect using traditional methods of non-destructive testing. Moreover, since repeated heat treatment leads to over tempering and a degradation of properties, specific procedures for making and then lifing repair welds are required. The present paper summarizes examples of damage and discusses best option repairs. -- Highlights: ► For many components damage in the weld heat affected zone will be the primary source of in-service problems. ► Repair approaches should consider the influence of heat flow on metallurgical transformations. ► Both development of residual stresses and the local properties of the constituent zones influence Type IV damage. ► Serviceability of components in the creep range must consider stress, temperature and applicable material properties

  16. Deformation and damage mechanisms of zinc coatings on hot-dip galvanized steel sheets: Part II. Damage modes

    Science.gov (United States)

    Parisot, Rodolphe; Forest, Samuel; Pineau, André; Grillon, François; Demonet, Xavier; Mataigne, Jean-Michel

    2004-03-01

    Zinc-based coatings are widely used for protection against corrosion of steel-sheet products in the automotive industry. The objective of the present article is to investigate the damage modes at work in three different microstructures of a zinc coating on an interstitial-free steel substrate under tension, planestrain tension, and expansion loading. Plastic-deformation mechanisms are addressed in the companion article. Two main fracture mechanisms, namely, intergranular cracking and transgranular cleavage fracture, were identified in an untempered cold-rolled coating, a tempered cold-rolled coating, and a recrystallized coating. No fracture at the interface between the steel and zinc coating was observed that could lead to spalling, in the studied zinc alloy. A complex network of cleavage cracks and their interaction with deformation twinning is shown to develop in the material. An extensive quantitative analysis based on systematic image analysis provides the number and cumulative length of cleavage cracks at different strain levels for the three investigated microstructures and three loading conditions. Grain refinement by recrystallization is shown to lead to an improved cracking resistance of the coating. A model for crystallographic cleavage combining the stress component normal to the basal plane and the amount of plastic slip on the basal slip systems is proposed and identified from equibiaxial tension tests and electron backscattered diffraction (EBSD) analysis of the cracked grains. This analysis requires the computation of the nonlinear stress-strain response of each grain using a crystal-plasticity constitutive model. The model is then applied successfully to other loading conditions and is shown to account for the preferred orientations of damaged grains observed in the case of plane-strain tension.

  17. Effects of rare earth metals addition on the resistance to pitting corrosion of super duplex stainless steel - Part 1

    International Nuclear Information System (INIS)

    Kim, Soon-Tae; Jeon, Soon-Hyeok; Lee, In-Sung; Park, Yong-Soo

    2010-01-01

    To elucidate the effects of rare earth metals addition on the resistance to pitting corrosion of super duplex stainless steel, a metallographic examination, potentiodynamic and potentiostatic polarization tests, a SEM-EDS and a SAM analysis of inclusion, austenite phase and ferrite phase were conducted. The addition of rare earth metals to the base alloy led to the formation of (Mn, Cr, Si, Al, Ce) oxides and (Mn, Cr, Si, Ce) oxides, which improved the resistance to pitting corrosion and caused a decrease in the preferential interface areas for the initiation of the pitting corrosion.

  18. Theoretical and practical aspects about corrosion of refractories used in steel metallurgy: part 3: characterization of commercial refractories

    International Nuclear Information System (INIS)

    Braganca, S.R.

    2012-01-01

    In this study, it was reviewed the main aspects found in the literature about refractories corrosion, evaluating the feasibility of certain tests and relating them with experimental results. The physical properties and microstructure of commercial refractories were analyzed, considering the differences between them and the quality implications and probable life of the refractory. Thus, it was studied the various types of refractories used as lining on steel ladle. Magnesia-carbon and doloma-carbon refractories were analyzed, highlighting the differences between them. The examined refractory showed characteristics favoring high resistance to corrosion process, presenting a series of properties to be selected in accordance with industry practice. (author)

  19. Investigation of impact phenomena on the marine structures: Part II - Internal energy of the steel structure applied by selected materials in the ship-ship collision incidents

    Science.gov (United States)

    Prabowo, A. R.; Baek, S. J.; Lee, S. G.; Bae, D. M.; Sohn, J. M.

    2018-01-01

    Phenomena of impact loads on the marine structures has attracted attention to be predicted regarding its influences to structural damage. This part demands sustainable analysis and observation as tendency may vary from one to others since impact involves various scenario models and the structure itself experiences continuous development. Investigation of the damage extent can be conducted by observation on the energy behaviour during two entities involve in a contact. This study aimed to perform numerical investigation to predict structural damage by assessing absorbed strain energy represented by the internal energy during a series of ship collisions. The collision target in ship-ship interactions were determined on the single and double hulls part of a passenger ship. Tendency of the internal energy by the steel structures was summarized, and verification was presented by several crashworthiness criteria. It was found that steel structures applied by the material grades A and B produced different tendencies compared to the material grades D and E. Effect of the structural arrangement to structural responses in terms of strain and stress indicated that the single hull presented contour expansion mainly on the longitudinal directions.

  20. Effect of Sr substitution on superconductivity in Hg2(Ba1-ySry)2YCu2O8-d (part 1): a neutron powder diffraction study

    OpenAIRE

    Toulemonde, P.; Odier, P.; Bordet, P.; Floch, S. Le; Suard, E.

    2002-01-01

    The effect of Sr chemical pressure on superconductivity was investigated in Hg2(Ba1-ySry)2YCu2O8-d. The samples were synthesized at high pressure-high temperature from y = 0.0 to full substitution, y = 1.0. These Sr-substituted compounds are superconducting, without Ca doping on the Y site, and show an increasing Tc with Sr, reaching 42 K for y = 1.0. A detailed neutron powder diffraction study compares the structural changes induced by this chemical Sr/Ba substitution and the mechanical pres...

  1. Structure and mechanical properties of parts obtained by selective laser melting of metal powder based on intermetallic compounds Ni3Al

    Science.gov (United States)

    Smelov, V. G.; Sotov, A. V.; Agapovichev, A. V.; Nosova, E. A.

    2018-03-01

    The structure and mechanical properties of samples are obtained from metal powder based on intermetallic compound by selective laser melting. The chemical analysis of the raw material and static tensile test of specimens were made. Change in the samples’ structure and mechanical properties after homogenization during four and twenty-four hours were investigated. A small-sized combustion chamber of a gas turbine engine was performed by the selective laser melting method. The print combustion chamber was subjected to the gas-dynamic test in a certain temperature and time range.

  2. Effect of carbon on mechanical properties of powder-processed Fe ...

    Indian Academy of Sciences (India)

    The present paper records the results of mechanical tests on iron-phosphorus powder alloys which were made using a hot powder forging technique. In this process mild steel encapsulated powders were hot forged into slabs, hot rolled and annealed to relieve the residual stresses. These alloys were characterized in terms ...

  3. Combating Wear of ASTM A36 Steel by Surface Modification Using Thermally Sprayed Cermet Coatings

    OpenAIRE

    Shibe, Vineet; Chawla, Vikas

    2016-01-01

    Thermal spray coatings can be applied economically on machine parts to enhance their requisite surface properties like wear, corrosion, erosion resistance, and so forth. Detonation gun (D-Gun) thermal spray coatings can be applied on the surface of carbon steels to improve their wear resistance. In the present study, alloy powder cermet coatings WC-12% Co and Cr3C2-25% NiCr have been deposited on ASTM A36 steel with D-Gun thermal spray technique. Sliding wear behavior of uncoated ASTM A36 ste...

  4. Shock-induced modification of inorganic powders

    International Nuclear Information System (INIS)

    Graham, R.A.; Morosin, B.; Venturini, E.L.; Beauchamp, E.K.; Hammetter, W.F.

    1984-01-01

    The results of studies performed to quantify the characteristics of TiO2, ZrO2 and Si3N4 powders exposed to explosive loading and post-shock analysis are reported. The shocks were produced with plane wave generators and explosive pads impinging on steel disks, a copper recovery fixture, and then the samples. Peak pressures of 13 and 17 GPa were attained, along with 40 GPz at the center of the powder cavity. Data are provided on the changes occurring during the explosive densification and X-ray and paramagnetic studies of the products. Only fractured disks were obtained in the trials. The shock-treated materials were more free flowing than the original powders, which were fluffy. Post-shock annealing was a significant feature of the treated powders

  5. Radiation grafting of various water-soluble monomers on ultra-high molecular weight polyethylene powder. Part II: Thermal, FTIR and morphological characterisation

    Energy Technology Data Exchange (ETDEWEB)

    Aydinli, Bahattin; Tincer, Teoman E-mail: teotin@metu.edu.tr

    2001-10-01

    Radiation induced grafted polyacrylic acid (PAA), polymethacrylic acid (PMAA), polyacrylamide (PAAm), poly N,N-dimethyl acrylamide (PNDAAm) and poly 1-vinyl-2 pyrrolidone (PVP) on ultra-high molecular weight polyethylene (UHMWPE) were characterised by DSC, FTIR and SEM analysis. While the effect of irradiation on pure UHMWPE was found to increase crystallinity and cause higher enthalpy of crystallisation, grafted UHMWPE powders showed lower crystallinity and enthalpy of crystallisation. In all grafted UHMWPE there existed secondary transitions corresponding to grafting polymers in the first run of DSC above 60 deg. C and they became clearer at a higher grafting level. In the second run of DSC some T{sub g} values appeared to shift to higher temperatures while some were not detected. FTIR analysis indicated the presence of water-soluble polymers in the grafted UHMWPE. The characteristic peaks of water-soluble polymers became sharper in the grafted UHMWPE. SEM analysis revealed that the grafting occurs both on fiber and microparticles of UHMWPE while flowing characteristic of powder is retained.

  6. Radiation grafting of various water-soluble monomers on ultra-high molecular weight polyethylene powder. Part II: Thermal, FTIR and morphological characterisation

    Science.gov (United States)

    Aydınlı, Bahattin; Tin c̡er, Teoman

    2001-10-01

    Radiation induced grafted polyacrylic acid (PAA), polymethacrylic acid (PMAA), polyacrylamide (PAAm), poly N,N-dimethyl acrylamide (PNDAAm) and poly 1-vinyl-2 pyrrolidone (PVP) on ultra-high molecular weight polyethylene (UHMWPE) were characterised by DSC, FTIR and SEM analysis. While the effect of irradiation on pure UHMWPE was found to increase crystallinity and cause higher enthalpy of crystallisation, grafted UHMWPE powders showed lower crystallinity and enthalpy of crystallisation. In all grafted UHMWPE there existed secondary transitions corresponding to grafting polymers in the first run of DSC above 60°C and they became clearer at a higher grafting level. In the second run of DSC some Tg values appeared to shift to higher temperatures while some were not detected. FTIR analysis indicated the presence of water-soluble polymers in the grafted UHMWPE. The characteristic peaks of water-soluble polymers became sharper in the grafted UHMWPE. SEM analysis revealed that the grafting occurs both on fiber and microparticles of UHMWPE while flowing characteristic of powder is retained.

  7. Powder densification maps in Selective Laser Sintering

    International Nuclear Information System (INIS)

    Bourell, D.; Wohlert, M.; Harlan, N.; Beaman, J.; Das, S.

    2002-01-01

    Selective Laser Sintering (SLS) is a manufacturing process in which a part is produced without the need for part-specific tooling. It competes effectively with other manufacturing processes when part geometry is complex and the production run is not large. Traditionally, this was limited to prototype production, although tooling applications are now appearing. This paper describes several applications of powder densification maps to advance solutions in direct SLS of metallic and ceramic powders. Time-dependent plasticity issues arise in pre-processing of powder to make it suitable for SLS and in post-processing of SLS parts to obtain desired density. (Abstract Copyright [2002], Wiley Periodicals, Inc.)

  8. Foundations of powder metallurgy

    International Nuclear Information System (INIS)

    Libenson, G.A.

    1987-01-01

    Consideration is being given to physicochemical foundations and technology of metal powders, moulding and sintering of bars, made of them or their mixtures with nonmetal powders. Data on he design of basic equipment used in the processes of powder metallurgy and its servicing are presented. General requirements of safety engineering when fabricating metal powders and products of them are mentioned

  9. Novel benzimidazole derivatives as corrosion inhibitors of mild steel in the acidic media. Part II: Theoretical studies

    International Nuclear Information System (INIS)

    Cao, Ziyi; Tang, Yongming; Cang, Hui; Xu, Jinqiu; Lu, Gang; Jing, Wenheng

    2014-01-01

    Highlights: • Quantum chemical and MD studies of benzimidazole derivatives inhibitors. • Inhibition effectiveness depends on the ability to accept electrons. • Active sites of adsorption are mainly centralized on imidazole rings. • Steric effect results in the non-planar adsorption of BBIA and TBIA. - Abstract: In this paper, the adsorption behavior and inhibition mechanism of 2-aminomethyl benzimidazole (ABI), bis(2-benzimidazolylmethyl) amine (BBIA) and tri-(2-benzimidazolylmethyl) amine (TBIA) on the surface of mild steel were studied by quantum chemical calculations and molecular dynamics (MD) simulations. It was found that the three molecules show the similar ability to donate electrons while the difference in inhibition performance should mainly be attributed to the difference in accepting electrons. MD simulations show that steric effect between the benzimidazole segments significantly affects the adsorptive configurations of the molecules on Fe (1 0 0) surface

  10. Fate of corrosion products released from stainless steel in marine sediments and seawater. Part 4: Hatteras abyssal red clay

    International Nuclear Information System (INIS)

    Schmidt, R.L.

    1982-07-01

    A study in which neutron-activated 347 stainless steel was exposed to surficial sediment from a site in the Hatteras Abyssal Plain of the Northwest Atlantic Ocean is described. This sediment consists of approx. 20% CaCO 3 , which could lead to the formation of calcareous scale on the metal surface and reduce the corrosion rate. The distribution of indigenous metals among different chemical fractions shows that extractable Cr, Mn, Fe, Co, and Zn were associated with amorphous Mn and Fe oxides. Most of the remaining extractable Cr, and about a third of the extractable Cu appear to have been weakly complexed. Major fractions (25 to 36%) of extractable Mn, Co and Ni were present as adsorbed cations. Organic complexation appears to account for a large amount of extractable Fe, Ni, Cu and Zn. Neutron-activated 347 stainless steel specimens were exposed to sediment slurry under aerobic and non-oxygenated conditions for a period of 94 days. The redox potential measurements for air-sparged and N 2 , CO 2 -sparged sediment slurries were +410 and +60 mv, respectively. The presence of 0 2 produced increased amounts of corrosion products. Chemical extraction showed that relatively labile substances constituted about 84% of the 60 Co activity released in aerated sediment. Relatively labile substances constitute about 82% of the total 60 Co activity released under non-oxygenated conditions. A large fraction of 60 Co which was in the soluble or easily dissolved forms under non-oxygenated conditions appears to have been more strongly adsorbed to the sediment under aerated conditions

  11. Fate of corrosion products released from stainless steel in marine sediments and seawater. Part 4: Hatteras abyssal red clay

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, R.L.

    1982-07-01

    A study in which neutron-activated 347 stainless steel was exposed to surficial sediment from a site in the Hatteras Abyssal Plain of the Northwest Atlantic Ocean is described. This sediment consists of approx. 20% CaCO/sub 3/, which could lead to the formation of calcareous scale on the metal surface and reduce the corrosion rate. The distribution of indigenous metals among different chemical fractions shows that extractable Cr, Mn, Fe, Co, and Zn were associated with amorphous Mn and Fe oxides. Most of the remaining extractable Cr, and about a third of the extractable Cu appear to have been weakly complexed. Major fractions (25 to 36%) of extractable Mn, Co and Ni were present as adsorbed cations. Organic complexation appears to account for a large amount of extractable Fe, Ni, Cu and Zn. Neutron-activated 347 stainless steel specimens were exposed to sediment slurry under aerobic and non-oxygenated conditions for a period of 94 days. The redox potential measurements for air-sparged and N/sub 2/, CO/sub 2/-sparged sediment slurries were +410 and +60 mv, respectively. The presence of 0/sub 2/ produced increased amounts of corrosion products. Chemical extraction showed that relatively labile substances constituted about 84% of the /sup 60/Co activity released in aerated sediment. Relatively labile substances constitute about 82% of the total /sup 60/Co activity released under non-oxygenated conditions. A large fraction of /sup 60/Co which was in the soluble or easily dissolved forms under non-oxygenated conditions appears to have been more strongly adsorbed to the sediment under aerated conditions.

  12. Fundamentals of powder metallurgy

    International Nuclear Information System (INIS)

    Khan, I.H.; Qureshi, K.A.; Minhas, J.I.

    1988-01-01

    This book is being presented to introduce the fundamentals of technology of powder metallurgy. An attempt has been made to present an overall view of powder metallurgy technology in the first chapter, whereas chapter 2 to 8 deal with the production of metal powders. The basic commercial methods of powder production are briefly described with illustrations. Chapter 9 to 12 describes briefly metal powder characteristics and principles of testing, mixing, blending, conditioning, compaction and sintering. (orig./A.B.)

  13. Part I. Corrosion studies of continuous alumina fiber reinforced aluminum-matrix composites. Part II. Galvanic corrosion between continuous alumina fiber reinforced aluminum-matrix composites and 4340 steel

    Science.gov (United States)

    Zhu, Jun

    Part I. The corrosion performance of continuous alumina fiber reinforced aluminum-matrix composites (CF-AMCs) was investigated in both the laboratory and field environments by comparing them with their respective monolithic matrix alloys, i.e., pure Al, A1-2wt%Cu T6, and Al 6061 T6. The corrosion initiation sites were identified by monitoring the changes in the surface morphology. Corrosion current densities and pH profiles at localized corrosion sites were measured using the scanning-vibrating electrode technique and the scanning ion-selective electrode technique, respectively. The corrosion damage of the materials immersed in various electrolytes, as well as those exposed in a humidity chamber and outdoor environments, was evaluated. Potentiodynamic polarization behavior was also studied. The corrosion initiation for the composites in 3.15 wt% NaCl occurred primarily around the Fe-rich intermetallic particles, which preferentially existed around the fiber/matrix interface on the composites. The corrosion initiation sites were also caused by physical damage (e.g., localized deformation) to the composite surface. At localized corrosion sites, the buildup of acidity was enhanced by the formation of micro-crevices resulting from fibers left in relief as the matrix corroded. The composites that were tested in exposure experiments exhibited higher corrosion rates than their monolithic alloys. The composites and their monolithic alloys were subjected to pitting corrosion when anodically polarized in the 3.15 wt% NaCl, while they passivated when anodically polarized in 0.5 M Na2SO4. The experimental results indicated that the composites exhibited inferior corrosion resistance compared to their monolithic matrix alloys. Part II. Galvanic corrosion studies were conducted on CF-AMCs coupled to 4340 steel since CF-AMCs have low density and excellent mechanical properties and are being considered as potential jacketing materials for reinforcing steel gun barrels. Coupled and

  14. STUDY ON ANTI-CRACKING PERFORMANCE EVALUATION METHOD OF STEEL FIBER REINFORCED CERAMSITE CONCRETE (SFRCC BASED ON PARTLY-RESTRAINED SHRINKAGE RING

    Directory of Open Access Journals (Sweden)

    Zhang Yi-fan

    2017-12-01

    Full Text Available In the study of crack resistance of steel fiber reinforced concrete in steel fiber on concrete deformation ability and prevent the Angle of the micro cracks, and the lack of overall evaluation on the performance of steel fiber reinforced concrete crack. By tinder barrier-free restrain some experimental research on steel fiber ceramsite concrete shrinkage ring crack resistance, and use the test results within the definition of steel ring strain from expansion to contraction cut-off age for early and late ages, and the ages of the cut-off point for the early and the late steel fiber ceramsite concrete anti-cracking performance evaluation. The results show that the anti-cracking properties of the steel fiber ceramic concrete are improved with the increase of steel fiber content.

  15. Safety consideration when handling metal powders

    CSIR Research Space (South Africa)

    Benson, JM

    2012-03-01

    Full Text Available to some form of irritation or allergic reaction (e.g. dermatitis). In the case of nano-powders, the particles can penetrate the skin and become absorbed into cells in various parts of the body, including the brain � Eye contact, resulting in a... powders, and thus data is often limited to various ailments that have been reported for people working with that particular powder (amongs other things). There are three ways that powders can interact with the body: � Skin contact, which may lead...

  16. Corrosão de refratários utilizados na siderurgia. Parte I: propriedades microestruturais Corrosion of refractories used in steel metallurgy. Part I: microstructural properties

    Directory of Open Access Journals (Sweden)

    S. R. Bragança

    2012-09-01

    Full Text Available Neste trabalho foi realizada uma revisão dos principais aspectos encontrados na literatura especializada sobre corrosão de refratários, avaliando-se a viabilidade de determinados ensaios e relacionando-os com resultados experimentais. O principal fator de desgaste dos refratários é considerado o ataque químico que o material sofre, porém ele é influenciado também por solicitações térmicas e mecânicas, sendo muitas vezes fatores concomitantes. O aumento da vida útil dos refratários enfrenta a compreensão de fenômenos complexos e depende de fatores operacionais, cujo controle e quantificação são difíceis no dia-a-dia da empresa, além das propriedades físicas e químicas dos refratários. Na abordagem proposta, mostram-se dados da investigação do desgaste corrosivo de refratários básicos, incluindo-se análise microestrutural, procurando relacionar os resultados experimentais com a perspectiva teórica da literatura.In this study, main aspects found in the literature about refractories corrosion were reviewed, evaluating the feasibility of certain tests and relating them with experimental results. The main cause of refractories wear is considered the chemical attack that the material suffers, but it is also influenced by thermal and mechanical factors, often concomitantly. Increased life of refractories faces the understanding of complex phenomena and depends on operational factors, whose control is difficult in routine steel company processing. In addition the physical and chemical properties of refractories must be considered. In the proposed approach, research data of corrosive wear of basic refractories, including microstructural analysis, are related to the theoretical fundamentals found in literature.

  17. Fate of corrosion products released from stainless steel in marine sediments and seawater. Part 2. Sequim Bay clayey silt

    International Nuclear Information System (INIS)

    Schmidt, R.L.

    1982-04-01

    This report describes laboratory experiments in which neutron-activated 347 stainless steel specimens were exposed to clayey silt from Sequim Bay, Washington. The properties and trace metal geochemistry of the sediment and the amounts of corrosion products that were released under oxic and reduced conditions and their distribution among different chemical fractions of the sediment are discussed. The distributions of Cr, Mn, Fe, Ni and Cu among different chemical forms in the Sequim Bay sediment show that DTPA removed <10% of extractable Cr, Fe and Mn, approx. 20% of extractable Ni and approx. 30% of extractable Cu. The inorganic fraction (material soluble in 2.5% acetic acid) accounted for approx. 30% of total extractable Mn and approx. 10% or less of Cr, Fe, Ni and Cu. Major portions of Cr and Cu, and a large amount of Fe were in the organic fraction. Extractable Mn, Fe and Ni were associated with hydrous oxides likely as coatings on the mineral substrate of the sediment. No Co was detectable in any of the extracts

  18. Application of near-surface geophysics as part of a hydrologic study of a subsurface drip irrigation system along the Powder River floodplain near Arvada, Wyoming

    Science.gov (United States)

    Sams, James I.; Veloski, Garret; Smith, Bruce D.; Minsley, Burke J.; Engle, Mark A.; Lipinski, Brian A.; Hammack, Richard W.; Zupancic, John W.

    2014-01-01

    Rapid development of coalbed natural gas (CBNG) production in the Powder River Basin (PRB) of Wyoming has occurred since 1997. National attention related to CBNG development has focused on produced water management, which is the single largest cost for on-shore domestic producers. Low-cost treatment technologies allow operators to reduce their disposal costs, provide treated water for beneficial use, and stimulate oil and gas production by small operators. Subsurface drip irrigation (SDI) systems are one potential treatment option that allows for increased CBNG production by providing a beneficial use for the produced water in farmland irrigation.Water management practices in the development of CBNG in Wyoming have been aided by integrated geophysical, geochemical, and hydrologic studies of both the disposal and utilization of water. The U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) and the U.S. Geological Survey (USGS) have utilized multi-frequency airborne, ground, and borehole electromagnetic (EM) and ground resistivity methods to characterize the near-surface hydrogeology in areas of produced water disposal. These surveys provide near-surface EM data that can be compared with results of previous surveys to monitor changes in soils and local hydrology over time as the produced water is discharged through SDI.The focus of this investigation is the Headgate Draw SDI site, situated adjacent to the Powder River near the confluence of a major tributary, Crazy Woman Creek, in Johnson County, Wyoming. The SDI system was installed during the summer of 2008 and began operation in October of 2008. Ground, borehole, and helicopter electromagnetic (HEM) conductivity surveys were conducted at the site prior to the installation of the SDI system. After the installation of the subsurface drip irrigation system, ground EM surveys have been performed quarterly (weather permitting). The geophysical surveys map the heterogeneity of the near

  19. Carburizing treatment of low alloy steels: Effect of technological parameters

    Science.gov (United States)

    Benarioua, Younes

    2018-05-01

    The surface areas of the parts subjected to mechanical loads influence to a great extent the resistance to wear and fatigue. In majority of cases, producing of a hard superficial layer on a tough substrate is conducive to an increased resistance to mechanical wear and fatigue. Cementation treatment of low alloy steels which bonds superficial martensitic layer of high hardness and lateral compressive to a core of lower hardness and greater toughness is an example of a good solution of the problem. The high hardness of the martensitic layer is due to an increased concentration of interstitial carbon atoms in the austenite before quenching. The lower hardness of the core after quenching is due to the presence of ferrite and pearlite components which appear if the cooling rate after austenitization becomes lower than the critical on. The objective of the present study was to obtain a cemented surface layer on low alloy steel by means of pack carburizing treatment. Different steel grades, austenitization temperatures as well as different soaking times were used as parameters of the pack carburizing treatment. During this treatment, carbon atoms from the pack powder diffuse toward the steels surface and form compounds of iron carbides. The effect of carburizing parameters on the transformation rate of low carbon surface layer of the low alloy steel to the cemented one was investigated by several analytical techniques.

  20. Aluminum powder metallurgy processing

    Energy Technology Data Exchange (ETDEWEB)

    Flumerfelt, J.F.

    1999-02-12

    The objective of this dissertation is to explore the hypothesis that there is a strong linkage between gas atomization processing conditions, as-atomized aluminum powder characteristics, and the consolidation methodology required to make components from aluminum powder. The hypothesis was tested with pure aluminum powders produced by commercial air atomization, commercial inert gas atomization, and gas atomization reaction synthesis (GARS). A comparison of the GARS aluminum powders with the commercial aluminum powders showed the former to exhibit superior powder characteristics. The powders were compared in terms of size and shape, bulk chemistry, surface oxide chemistry and structure, and oxide film thickness. Minimum explosive concentration measurements assessed the dependence of explosibility hazard on surface area, oxide film thickness, and gas atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization oxidation of aluminum powder. An Al-Ti-Y GARS alloy exposed in ambient air at different temperatures revealed the effect of reactive alloy elements on post-atomization powder oxidation. The pure aluminum powders were consolidated by two different routes, a conventional consolidation process for fabricating aerospace components with aluminum powder and a proposed alternative. The consolidation procedures were compared by evaluating the consolidated microstructures and the corresponding mechanical properties. A low temperature solid state sintering experiment demonstrated that tap densified GARS aluminum powders can form sintering necks between contacting powder particles, unlike the total resistance to sintering of commercial air atomization aluminum powder.

  1. Thermal stability of retained austenite in TRIP steels studied by synchrotron X-ray diffraction during cooling

    International Nuclear Information System (INIS)

    Dijk, N.H. van; Butt, A.M.; Zhao, L.; Sietsma, J.; Offerman, S.E.; Wright, J.P.; Zwaag, S. van der

    2005-01-01

    We have performed in situ X-ray diffraction measurements at a synchrotron source in order to study the thermal stability of the retained austenite phase in transformation induced plasticity steels during cooling from room temperature to 100 K. A powder analysis of the diffraction data reveals a martensitic transformation of part of the retained austenite during cooling. The fraction of austenite that transforms during cooling is found to depend strongly on the bainitic holding time and the composition of the steel. It is shown that that austenite grains with a lower average carbon concentration have a lower stability during cooling

  2. Effect of process parameters on formability of laser melting deposited 12CrNi2 alloy steel

    Science.gov (United States)

    Peng, Qian; Dong, Shiyun; Kang, Xueliang; Yan, Shixing; Men, Ping

    2018-03-01

    As a new rapid prototyping technology, the laser melting deposition technology not only has the advantages of fast forming, high efficiency, but also free control in the design and production chain. Therefore, it has drawn extensive attention from community.With the continuous improvement of steel performance requirements, high performance low-carbon alloy steel is gradually integrated into high-tech fields such as aerospace, high-speed train and armored equipment.However, it is necessary to further explore and optimize the difficult process of laser melting deposited alloy steel parts to achieve the performance and shape control.This article took the orthogonal experiment on alloy steel powder by laser melting deposition ,and revealed the influence rule of the laser power, scanning speed, powder gas flow on the quality of the sample than the dilution rate, surface morphology and microstructure analysis were carried out.Finally, under the optimum technological parameters, the Excellent surface quality of the alloy steel forming part with high density, no pore and cracks was obtained.

  3. Deposition Time and Thermal Cycles of Fabricating Thin-wall Steel Parts by Double Electrode GMAW Based Additive Manufacturing

    Directory of Open Access Journals (Sweden)

    Yang Dongqing

    2017-01-01

    Full Text Available The deposition time for fabricating the thin-wall part as well as the peak temperature of the substrate during the process was analyzed in the double electrode gas metal arc welding (DE-GMAW based additive manufacturing (AM. The total deposition time and the interlayer idle time of the manufacturing process decreased with the increasing of the bypass current under the same interlayer temperature and the same deposition rate. The thermal cycling curves illustrated that the peak temperature of the substrate was lower in the DE-GMAW base AM under the same conditions. When depositing the thin-wall parts, the DE-GMAW based AM can reduce the heat input to the substrate and improve the fabrication efficiency, compared with the GMAW based AM.

  4. Oxidising alternative species to chromium VI in zinc-galvanised steel surface treatment. Part 2. An electrochemical study

    International Nuclear Information System (INIS)

    Almeida, E.; Fedrizzi, L.; Diamantinio, T.C.

    1998-01-01

    In the first part of this work, the authors present the main results and conclusions of a morphological and chemical study carried out on zinc conversion layers (ZCLs) obtained with oxidising alternative passivation baths, that includes molybdates, permanganates, van[ates and tungstates. A good chromate-based bath was used as reference. In this second part of the work, the authors present the main results obtained on selected zinc conversion layers (ZCLs), using a.c. electrochemical impedance spectroscopy (EIS). The results obtained were correlated with the morphological and chemical data obtained with the same ZCLs in the first part of this work. Finally, it is concluded that the alternative ZCLs studied, does not seem to be as efficient as that obtained with a chromate-based passivation bath used as reference. It is believed that a better understanding of the mechanisms involved in the ZCL's formation, can be useful for studying, in the very near future, possible synergetic effects between molybdates and other chemical species. (orig.)

  5. Low alloy steels that minimize the hydrogen-carbide reaction. Final technical report, October 1, 1978-September 30, 1979. Part I

    Energy Technology Data Exchange (ETDEWEB)

    Kar, R. J.; Parker, E. R.; Zackay, V. F.

    1979-01-01

    This report presents results obtained during the first year of a research program to investigate important metallurgical parameters that control the reactions of hydrogen with carbides in steels. Preliminary work included a detailed literature review of th phenomenon of decarburization and methane bubble formation in steels and a suitable experimental technique for investigating hydrogen attack in laboratory conditions was established. Detailed microstructural-mechanical property evaluations were carried out on two series of alloys; the first was based on a plain carbon steel to which binary and ternary alloy additions were made to vary the carbide structure and morphology and assess these effects on the observed hydrogen attack resistance. The second group of steels consisted of commercial Mn-Mo-Ni (A 533 B) and Cr-Mo (A 542 type) steels and their alloy modifications, with a view towards developing steels with improved hydrogen attack resistance.

  6. Aircraft Steels

    Science.gov (United States)

    2009-02-19

    component usage. PH 13-8Mo is a precipitation-hardenable martensitic stainless steel combining excellent corrosion resistance with strength. Custom 465 is...a martensitic , age-hardenable stainless steel capable of about 1,724 MPa (250 ksi) UTS when peak-aged (H900 condition). Especially, this steel can...NOTES 14. ABSTRACT Five high strength steels (4340, 300M, AerMet 100, Ferrium S53, and Hy-Tuf) and four stainless steels (High Nitrogen, 13

  7. Recobrimentos de poli (tereftalato de etileno depositados em aço por aspersão térmica a partir de pós obtidos em diferentes condições de moagem Thermally sprayed coated carbon steel produced using PET powder obtained in different grinding conditions

    Directory of Open Access Journals (Sweden)

    Luciana Tavares Duarte

    2003-07-01

    Full Text Available Neste trabalho foram analisados recobrimentos de poli(tereftalato de etileno, PET, depositados em aço carbono através da técnica de aspersão térmica à combustão, e produzidos a partir de pós oriundos de processos de moagem, em moinho de bolas e de facas, de garrafas de PET pós-consumo. Algumas condições de moagem foram testadas, tendo-se obtido pós com diferentes características morfológicas. As características morfológicas dos pós e dos recobrimentos foram avaliadas por microscopia óptica e eletrônica, tendo-se observado que o recobrimento apresentava bolhas, provavelmente devido à degradação do polímero. Além disto, os recobrimentos produzidos, bem como as amostras de pó, foram caracterizados por espectroscopia na região do infravermelho, por calorimetria exploratória diferencial e através da determinação de viscosidade intrínseca em solução. Os resultados obtidos mostraram que é possível a produção de aço carbono recoberto com PET através da técnica de aspersão térmica, sendo que o grau de degradação, a morfologia e a distribuição granulométrica dos pós utilizados influenciaram significativamente as características e propriedades dos recobrimentos formados.The main purpose of this work was to study the production of a thermal spray coated poly(ethyleneterephthalate steel. Poly(ethylene terephthalate coatings were made of a thin grinding waste produced by a PET recycling company, and of a PET powder, which was obtained by grinding post-consumer beverage bottles. Some grinding conditions, using a ceramic ball mill, were studied. Scanning Electronic Microscopy (SEM and optical microscopy (OM were used in the study of powder and coating morphologies, and this analysis showed that PET coating presents bubbles due to polymer degradation. PET powder and coating characteristics were investigated using Differential Scanning Calorimetry (DSC and measurements of intrinsic viscosity. It was observed that

  8. Spherical rhenium metal powder

    International Nuclear Information System (INIS)

    Leonhardt, T.; Moore, N.; Hamister, M.

    2001-01-01

    The development of a high-density, spherical rhenium powder (SReP) possessing excellent flow characteristics has enabled the use of advanced processing techniques for the manufacture of rhenium components. The techniques that were investigated were vacuum plasma spraying (VPS), direct-hot isostatic pressing (D-HIP), and various other traditional powder metallurgy processing methods of forming rhenium powder into near-net shaped components. The principal disadvantages of standard rhenium metal powder (RMP) for advanced consolidation applications include: poor flow characteristics; high oxygen content; and low and varying packing densities. SReP will lower costs, reduce processing times, and improve yields when manufacturing powder metallurgy rhenium components. The results of the powder characterization of spherical rhenium powder and the consolidation of the SReP are further discussed. (author)

  9. Mechanism for the effect of sulphate on SCC in BWRs. Part 1: Hypothesis; Part 2: Microstructural examination of an oxide layer on steel

    International Nuclear Information System (INIS)

    Hermansson, H.P.; Gott, K.; Vatter, I.; Crossley, A.; Cattle, G.

    1999-07-01

    Part 1: Stress corrosion cracking is one of the most serious materials related problems encountered in BWRs. The crack propagation rate has been shown to be strongly affected by sulphates in the coolant. Typical concentrations of sulphates and other anions in the primary water is 1 ppb. The values can increase temporarily to much higher values during transients. Shorter periods of such extra exposure give no effect, but there seems to be an integrated threshold value ('Memory effect') beyond which the propagation rate increases rapidly. The primary system surfaces communicating with the bulk water are normally protected by a very thin, passivating oxide film. This is composed of spinel phases like chromite, situated closest to the metal upon which there could be a layer of nickel ferrite. On top of the spinels there is also normally a cover of deposits. This composite film is going to act as a surface for adsorption, transportation and storage of sulphates from the primary bulk water. Starting from a comparison of the surface conditions around a corrosion pit it was proposed that in the close vicinity of an active crack, the surface oxide is going to function as a cathode on which pH and also the potential are high compared to the surrounding surfaces. The permeability of the oxide is essential for the cathodic function as chemical species and charge have to be transported through it. This has led to the hypothesis that the rate determining step of the crack propagation should be found in the set of processes on the cathode like adsorption, transportation, chemical transformation and precipitation in which hydrogen sulphate and sulphate participate while migrating through the cathodic area towards the crack. It is also postulated that the permeability and geometry of the cathodic surface oxide will be influenced by sulphate and other sulphur containing species breaking down the passive film. Sulphate entering the crack environment can be reduced down to sulphide

  10. Inverse mathematical modelling and identification in metal powder compaction process

    International Nuclear Information System (INIS)

    Gakwaya, A.; Hrairi, M.; Guillot, M.

    2000-01-01

    An online assessment of the quality of advanced integrated computer aided manufacturing systems require the knowledge of accurate and reliable non-linear constitutive material behavior. This paper is concerned with material parameter identification based on experimental data for which non uniform distribution of stresses and deformation within the volume of the specimen is considered. Both geometric and material non linearities as well interfacial frictional contact are taken into account during the simulation. Within the framework of finite deformation theory, a multisurface multiplicative plasticity model for metal powder compaction process is presented. The model is seen to involve several parameters which are not always activated by a single state variable even though it may be technologically important in assessing the final product quality and manufacturing performance. The resulting expressions are presented in spatial setting and gradient based descent method utilizing the modified Levenberg-Marquardt scheme is used for the minimization of least square functional so as to obtain the best agreement between relevant experimental data and simulated data in a specified energy norm. The identification of a subset of material parameters of the cap model for stainless steel powder compaction is performed. The obtained parameters are validated through a simulation of an industrial part manufacturing case. A very good agreement between simulated final density and measured density is obtained thus demonstrating the practical usefulness of the proposed approach. (author)

  11. Dimensional and material characteristics of direct deposited tool steel by CO II laser

    Science.gov (United States)

    Choi, J.

    2006-01-01

    Laser aided direct metalimaterial deposition (DMD) process builds metallic parts layer-by-layer directly from the CAD representation. In general, the process uses powdered metaUmaterials fed into a melt pool, creating fully dense parts. Success of this technology in the die and tool industry depends on the parts quality to be achieved. To obtain designed geometric dimensions and material properties, delicate control of the parameters such as laser power, spot diameter, traverse speed and powder mass flow rate is critical. In this paper, the dimensional and material characteristics of directed deposited H13 tool steel by CO II laser are investigated for the DMD process with a feedback height control system. The relationships between DMD process variables and the product characteristics are analyzed using statistical techniques. The performance of the DMD process is examined with the material characteristics of hardness, porosity, microstructure, and composition.

  12. Radiation damage of the construction materials, Phase I, Part I- Radiation damage of the construction steels; Radijaciono ostecenje konstrukcionih materijala, I faza, I deo, Radijaciono ostecenje konstrukcionih celika

    Energy Technology Data Exchange (ETDEWEB)

    Lazarevic, Dj [Institute of the Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1962-10-15

    The objective of this task was testing the mechanical properties of stainless steels having different grain size. Being an important material used mainly for reactor vessel construction stainless steel will be exposed to neutron flux in the RA reactor for testing.

  13. Study of the fluidized bed chemical vapor deposition process on very dense powder for nuclear applications

    International Nuclear Information System (INIS)

    Vanni, Florence

    2015-01-01

    This thesis is part of the development of low-enriched nuclear fuel, for the Materials Test Reactors (MTRs), constituted of uranium-molybdenum particles mixed with an aluminum matrix. Under certain conditions under irradiations, the U(Mo) particles interact with the aluminum matrix, causing unacceptable swelling of the fuel plate. To inhibit this phenomenon, one solution consists in depositing on the surface of the U(Mo) particles, a thin silicon layer to create a barrier effect. This thesis has concerned the study of the fluidized bed chemical vapor deposition (CVD) process to deposit silicon from silane, on the U(Mo) powder, which has an exceptional density of 17,500 kg/m 3 . To achieve this goal, two axes were treated during the thesis: the study and the optimization of the fluidization of a so dense powder, and then those of the silicon deposition process. For the first axis, a series of tests was performed on a surrogate tungsten powder in different columns made of glass and made of steel with internal diameters ranging from 2 to 5 cm, at room temperature and at high temperature (650 C) close to that of the deposits. These experiments helped to identify wall effects phenomena within the fluidized bed, which can lead to heterogeneous deposits or particles agglomeration. Some dimensions of the fluidization columns and operating conditions allowing a satisfactory fluidization of the powder were identified, paving the way for the study of silicon deposition. Several campaigns of deposition experiments on the surrogate powder and then on the U(Mo) powder were carried out in the second axis of the study. The influence of the bed temperature, the inlet molar fraction of silane diluted in argon, and the total gas flow of fluidization, was examined for different diameters of reactor and for various masses of powder. Morphological and structural characterization analyses (SEM, XRD..) revealed a uniform silicon deposition on all the powder and around each particle

  14. Production of Steel Casts in Two-Layer Moulds with Alkaline Binders Part 1. Backing sand with the alkaline inorganic binder RUDAL

    Directory of Open Access Journals (Sweden)

    M. Holtzer

    2011-04-01

    Full Text Available Steel casts in Z.N. POMET were produced in moulds made of the moulding sand Floster. This sand did not have good knocking outproperties, required a significant binder addition (4.5-5.0 parts by weight, and the casting surface quality gave rise to clients objections.Therefore a decision of implementing two-layer moulds, in which the facing sand would consist of the moulding sand with an alkalineorganic binder while the backing sand would be made of the moulding sand with an inorganic binder also of an alkaline character - wasundertaken. The fraction of this last binder in the moulding sand mass would be smaller than that of the binder used up to now (waterglass. The application of two moulding sands of the same chemical character (highly alkaline should facilitate the reclamation processand improve the obtained reclaimed material quality, due to which it would be possible to increase the reclaim fraction in the mouldingsand (up to now it was 50%. The results of the laboratory investigations of sands with the RUDAL binder are presented in the paper.

  15. MICROALLOYED STEELS FOR THE AUTOMOTIVE INDUSTRY

    Directory of Open Access Journals (Sweden)

    Debanshu Bhattacharya

    2014-12-01

    Full Text Available Two major drivers for the use of newer steels in the automotive industry are fuel efficiency and increased safety performance. Fuel efficiency is mainly a function of weight of steel parts, which in turn, is controlled by gauge and design. Safety is determined by the energy absorbing capacity of the steel used to make the part. All of these factors are incentives for the U.S. automakers to use both Highly Formable and Advanced High Strength Steels (AHSS to replace the conventional steels used to manufacture automotive parts in the past. AHSS is a general term used to describe various families of steels. The most common AHSS is the dual-phase steel that consists of a ferrite-martensite microstructure. These steels are characterized by high strength, good ductility, low tensile to yield strength ratio and high bake hardenability. Another class of AHSS is the complex-phase or multi-phase steel which has a complex microstructure consisting of various phase constituents and a high yield to tensile strength ratio. Transformation Induced Plasticity (TRIP steels is another class of AHSS steels finding interest among the U.S. automakers. These steels consist of a ferrite-bainite microstructure with significant amount of retained austenite phase and show the highest combination of strength and elongation, so far, among the AHSS in use. High level of energy absorbing capacity combined with a sustained level of high n value up to the limit of uniform elongation as well as high bake hardenability make these steels particularly attractive for safety critical parts and parts needing complex forming. A relatively new class of AHSS is the Quenching and Partitioning (Q&P steels. These steels seem to offer higher ductility than the dual-phase steels of similar strengths or similar ductility as the TRIP steels at higher strengths. Finally, martensitic steels with very high strengths are also in use for certain parts. The most recent initiative in the area of AHSS

  16. Internal Friction Angle of Metal Powders

    Directory of Open Access Journals (Sweden)

    Jiri Zegzulka

    2018-04-01

    Full Text Available Metal powders are components with multidisciplinary usage as their application is very broad. Their consistent characterization across all disciplines is important for ensuring repeatable and trouble-free processes. Ten metal powders were tested in the study. In all cases, the particle size distribution and morphology (scanning electron microscope—SEM photos were determined. The aim of this work was to inspect the flow behavior of metal powders through another measured characteristic, namely the angle of internal friction. The measured values of the effective internal friction angle in the range 28.6–32.9°, together with the spherical particle shape and the particle size distribution, revealed the likely dominant mode of the metal particle transfer mechanism for stainless steel 316L, zinc and aluminum powder. This third piston flow mechanism is described and illustrated in detail. The angle of internal friction is mentioned as another suitable parameter for the characterization of metal powders, not only for the relative simplicity of the determination but also for gaining insight into the method of the movement of individual particles during the flow.

  17. Damage and fatigue crack growth of Eurofer steel first wall mock-up under cyclic heat flux loads. Part 2: Finite element analysis of damage evolution

    International Nuclear Information System (INIS)

    You, Jeong-Ha

    2014-01-01

    Highlights: • The surface heat flux load of 3.5 MW/m 2 produced substantial stresses and inelastic strains in the heat-loaded surface region, especially at the notch root. • The notch root exhibited a typical notch effect such as stress concentration and localized inelastic yield leading to a preferred damage development. • The predicted damage evolution feature agrees well with the experimental observation. • The smooth surface also experiences considerable stresses and inelastic strains. However, the stress intensity and the amount of inelastic deformation are not high enough to cause any serious damage. • The level of maximum inelastic strain is higher at the notch root than at the smooth surface. On the other hand, the amplitude of inelastic strain variation is comparable at both positions. • The amount of inelastic deformation is significantly affected by the length of pulse duration time indicating the important role of creep. - Abstract: In the preceding companion article (part 1), the experimental results of the high-heat-flux (3.5 MW/m 2 ) fatigue tests of a Eurofer bare steel first wall mock-up was presented. The aim was to investigate the damage evolution and crack initiation feature. The mock-up used there was a simplified model having only basic and generic structural feature of an actively cooled steel FW component for DEMO reactor. In that study, it was found that microscopic damage was formed at the notch root already in the early stage of the fatigue loading. On the contrary, the heat-loaded smooth surface exhibited no damage up to 800 load cycles. In this paper, the high-heat-flux fatigue behavior is investigated with a finite element analysis to provide a theoretical interpretation. The thermal fatigue test was simulated using the coupled damage-viscoplastic constitutive model developed by Aktaa. The stresses, inelastic deformation and damage evolution at the notch groove and at the smooth surface are compared. The different damage

  18. Life after Steel

    Science.gov (United States)

    Mangan, Katherine

    2013-01-01

    Bobby Curran grew up in a working-class neighborhood in Baltimore, finished high school, and followed his grandfather's steel-toed bootprints straight to Sparrows Point, a 3,000-acre sprawl of industry on the Chesapeake Bay. College was not part of the plan. A gritty but well-paying job at the RG Steel plant was Mr. Curran's ticket to a secure…

  19. Double Step Sintering Behavior Of 316L Nanoparticle Dispersed Micro-Sphere Powder

    Directory of Open Access Journals (Sweden)

    Jeon Byoungjun

    2015-06-01

    Full Text Available 316L stainless steel is a well-established engineering material and lots of components are fabricated by either ingot metallurgy or powder metallurgy. From the viewpoints of material properties and process versatility, powder metallurgy has been widely applied in industries. Generally, stainless steel powders are prepared by atomization processes and powder characteristics, compaction ability, and sinterability are quite different according to the powder preparation process. In the present study, a nanoparticle dispersed micro-sphere powder is synthesized by pulse wire explosion of 316L stainless steel wire in order to facilitate compaction ability and sintering ability. Nanoparticles which are deposited on the surface of micro-powder are advantageous for a rigid die compaction while spherical micro-powder is not to be compacted. Additionally, double step sintering behavior is observed for the powder in the dilatometry of cylindrical compact body. Earlier shrinkage peak comes from the sintering of nanoparticle and later one results from the micro-powder sintering. Microstructure as well as phase composition of the sintered body is investigated.

  20. SAF line powder operations

    International Nuclear Information System (INIS)

    Frederickson, J.R.; Horgos, R.M.

    1983-10-01

    An automated nuclear fuel fabrication line is being designed for installation in the Fuels and Materials Examination Facility (FMEF) near Richland, Washington. The fabrication line will consist of seven major process systems: Receiving and Powder Preparation; Powder Conditioning; Pressing and Boat Loading; Debinding, Sintering, and Property Adjustment; Boat Transport; Pellet Inspection and Finishing; and Pin Operations. Fuel powder processing through pellet pressing will be discussed in this paper

  1. Two layer powder pressing

    International Nuclear Information System (INIS)

    Schreiner, H.

    1979-01-01

    First, significance and advantages of sintered materials consisting of two layers are pointed out. By means of the two layer powder pressing technique metal powders are formed resulting in compacts with high accuracy of shape and mass. Attributes of basic powders, different filling methods and pressing techniques are discussed. The described technique is supposed to find further applications in the field of two layer compacts in the near future

  2. Operation whey powder

    International Nuclear Information System (INIS)

    Brunner, E.

    1987-01-01

    The odyssey of the contaminated whey powder finally has come to an end, and the 5000 tonnes of whey now are designated for decontamination by means of an ion exchange technique. The article throws light upon the political and economic reasons that sent the whey powder off on a chaotic journey. It is worth mentioning in this context that the natural radioactivity of inorganic fertilizers is much higher than that of the whey powder in question. (HP) [de

  3. Steel making

    CERN Document Server

    Chakrabarti, A K

    2014-01-01

    "Steel Making" is designed to give students a strong grounding in the theory and state-of-the-art practice of production of steels. This book is primarily focused to meet the needs of undergraduate metallurgical students and candidates for associate membership examinations of professional bodies (AMIIM, AMIE). Besides, for all engineering professionals working in steel plants who need to understand the basic principles of steel making, the text provides a sound introduction to the subject.Beginning with a brief introduction to the historical perspective and current status of steel making together with the reasons for obsolescence of Bessemer converter and open hearth processes, the book moves on to: elaborate the physiochemical principles involved in steel making; explain the operational principles and practices of the modern processes of primary steel making (LD converter, Q-BOP process, and electric furnace process); provide a summary of the developments in secondary refining of steels; discuss principles a...

  4. Net shape powder processing of aluminium

    International Nuclear Information System (INIS)

    Schaffer, G.B.

    2000-01-01

    The increasing interest in light weight materials coupled to the need for cost-effective processing have combined to create a significant opportunity for aluminium powder metallurgy. Net shape processing of aluminium using the classical press-and-sinter powder metallurgy technique is a unique and important metal-forming method which is cost effective in producing complex parts at, or very close to, final dimensions. This paper provides an overview of the net shape powder processing of aluminium. Current research is critically reviewed and the future potential is briefly considered

  5. Pharmaceutical powder compaction technology

    National Research Council Canada - National Science Library

    Çelik, Metin

    2011-01-01

    ... through the compaction formulation process and application. Compaction of powder constituents both active ingredient and excipients is examined to ensure consistent and reproducible disintegration and dispersion profiles...

  6. Characterization of films formed by the aluminizing of T91 steel

    Science.gov (United States)

    Sanabria Cala, J. A.; Conde Rodríguez, G. R.; Y Peña Ballesteros, D.; Laverde Cataño, D.; Quintero Rangel, L. S.

    2017-12-01

    The aluminizing of a T91 martensitic ferritic steel was carried out by a novel modification to the traditional technique of packed cementation, with the objective of producing a diffusion coating of aluminum in a shorter time and operating cost, from a technique that allows the reuse of powder packaging and which the coating of metal parts with complex shapes can be secured. As an aluminum source, commercial foil is used to wrap the piece to be coated, while the powder packaging contains aluminum oxide Al2O3 and an activating salt, ammonium chloride NH4Cl. During the deposition process of the coating, the NH4Cl is decomposed by reacting with foil, and thus, aluminum halides can be transferred to the metallic substrate, which deposit aluminum on the T91 steel surface while Al2O3 can be recycled for subsequent processes. The results of the diffractograms and micrographs indicated the strong influence of temperature, exposure time and ammonium chloride concentration in the formation and growth evolution of a stable coating of iron-aluminum and iron-aluminum-nickel on the T91 steel surface, which was effectively deposited at a temperature of 700°C and an exposure period of 9 hours. The coating formed on the T91 steel surface could play a protective role towards the material by acting as a physical barrier between the alloy and other corrosive species in high temperature operated systems.

  7. Study of Velocity and Materials on Tribocharging of Polymer Powders for Powder Coating Applications

    Science.gov (United States)

    Biris, Alex S.; Trigwell, Steve; Sims, Robert A.; Mazumder, Malay K.

    2005-01-01

    Electrostatic powder deposition is widely used in a plethora of industrial-applications ranging from the pharmaceutical and food.industries, to farm equipment and automotive applications. The disadvantages of this technique are possible back corona (pin-like formations) onset and the Faraday penetration limitation (when the powder does not penetrate in some recessed areas). A possible solution to overcome these problems is to use tribochargers to electrostatically charge the powder. Tribocharging, or contact charging while two materials are in contact, is related to the work function difference between the contacting materials and generates bipolarly charged particles. The generation of an ion-free powder cloud by tribocharging with high bipolar charge and an overall charge density of almost zero, provides a better coverage of the recessed areas. In this study, acrylic and epoxy powders were fluidized and charged by passing through stainless steel, copper, aluminum, and polycarbonate static mixers, respectively. The particle velocity was varied to determine its effect on the net charge-to-mass ratio (QIM) acquired by the powders. In general, the Q/M increases rapidly when the velocity was increased from 1.5 to 2.5 m/s, remaining almost constant for higher velocities. Charge separation experiments showed bipolar charging for all chargers.

  8. Powder metallurgy in aerospace research: A survey

    Science.gov (United States)

    Blakeslee, H. W.

    1971-01-01

    The various techniques by which powders can be produced, as pure metals or as alloys, are discussed; the methods by which these powders can be formed into the final parts are explained as well as further processing that may be necessary to meet specific requirements. The NASA developments are detailed, and references are provided for those who wish to obtain further information characteristic of any methodology.

  9. Biaxially textured articles formed by powder metallurgy

    Science.gov (United States)

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2003-08-05

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of ternary mixtures consisting of: Ni powder, Cu powder, and Al powder, Ni powder, Cr powder, and Al powder; Ni powder, W powder and Al powder; Ni powder, V powder, and Al powder; Ni powder, Mo powder, and Al powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100} orientation texture; and further having a Curie temperature less than that of pure Ni.

  10. Vacuum hot pressing of titanium-alloy powders

    International Nuclear Information System (INIS)

    Malik, R.K.

    1975-01-01

    Full or nearly full dense products of wrought-metal properties have been obtained by vacuum hot pressing (VHP) of several prealloyed Ti--6Al--4V powders including hydride, hydride/dehydride, and rotating electrode process (REP) spherical powder. The properties of billets VHP from Ti--6Al--4V hydride powder and from hydride/dehydride powders have been shown to be equivalent. The REP spherical powder billets processed by VHP or by hot isostatic pressing (HIP) resulted in equivalent tensile properties. The potential of VHP for fabrication of near net aircraft parts such as complex fittings and engine disks offers considerable cost savings due to reduced material and machining requirements

  11. Sintered aluminium powders

    International Nuclear Information System (INIS)

    Stepanova, M.G.; Matveev, B.I.

    1974-01-01

    The mechanical and physical properties of aluminium powder alloys and the various methods employed to produce them are considered. Data are given on the hardening of the alloys SAP and SPAK-4, as well as the powder-alloy system Al-Cr-Zr. (L.M.)

  12. 3D modelling of the flow of self-compacting concrete with or without steel fibres. Part II: L-box test and the assessment of fibre reorientation during the flow

    Science.gov (United States)

    Deeb, R.; Kulasegaram, S.; Karihaloo, B. L.

    2014-12-01

    The three-dimensional Lagrangian particle-based smooth particle hydrodynamics method described in Part I of this two-part paper is used to simulate the flow of self-compacting concrete (SCC) with and without steel fibres in the L-box configuration. As in Part I, the simulation of the SCC mixes without fibres emphasises the distribution of large aggregate particles of different sizes throughout the flow, whereas the simulation of high strength SCC mixes which contain steel fibres is focused on the distribution of fibres and their orientation during the flow. The capabilities of this methodology are validated by comparing the simulation results with the L-box test carried out in the laboratory. A simple method is developed to assess the reorientation and distribution of short steel fibres in self-compacting concrete mixes during the flow. The reorientation of the fibres during the flow is used to estimate the fibre orientation factor (FOF) in a cross section perpendicular to the principal direction of flow. This estimation procedure involves the number of fibres cut by the section and their inclination to the cutting plane. This is useful to determine the FOF in practical image analysis on cut sections.

  13. Damage and fatigue crack growth of Eurofer steel first wall mock-up under cyclic heat flux loads. Part 1: Electron beam irradiation tests

    Energy Technology Data Exchange (ETDEWEB)

    You, J.H., E-mail: you@ipp.mpg.de [Max-Planck-Institut für Plasmaphysik, Euratom Association, Boltzmannstr. 2, 85748 Garching (Germany); Höschen, T. [Max-Planck-Institut für Plasmaphysik, Euratom Association, Boltzmannstr. 2, 85748 Garching (Germany); Pintsuk, G. [Forschungszentrum Jülich GmbH, IEK2, Euratom Association, 52425 Jülich (Germany)

    2014-04-15

    Highlights: • Clear evidence of microscopic damage and crack formation at the notch root in the early stage of the fatigue loading (50–100 load cycles). • Propagation of fatigue crack at the notch root in the course of subsequent cyclic heat-flux loading followed by saturation after roughly 600 load cycles. • No sign of damage on the notch-free surface up to 800 load cycles. • No obvious effect of the pulse time duration on the crack extension. • Slight change in the grain microstructure due to the formation of sub-grain boundaries by plastic deformation. - Abstract: Recently, the idea of bare steel first wall (FW) is drawing attention, where the surface of the steel is to be directly exposed to high heat flux loads. Hence, the thermo-mechanical impacts on the bare steel FW will be different from those of the tungsten-coated one. There are several previous works on the thermal fatigue tests of bare steel FW made of austenitic steel with regard to the ITER application. In the case of reduced-activation steel Eurofer97, a candidate structural material for the DEMO FW, there is no report on high heat flux tests yet. The aim of the present study is to investigate the thermal fatigue behavior of the Eurofer-based bare steel FW under cyclic heat flux loads relevant to DEMO operation. To this end, we conducted a series of electron beam irradiation tests with heat flux load of 3.5 MW/m{sup 2} on water-cooled mock-ups with an engraved thin notch on the surface. It was found that the notch root region exhibited a marked development of damage and fatigue cracks whereas the notch-free surface manifested no sign of crack formation up to 800 load cycles. Results of extensive microscopic investigation are reported.

  14. Simple process to fabricate nitride alloy powders

    International Nuclear Information System (INIS)

    Yang, Jae Ho; Kim, Dong-Joo; Kim, Keon Sik; Rhee, Young Woo; Oh, Jang-Soo; Kim, Jong Hun; Koo, Yang Hyun

    2013-01-01

    Uranium mono-nitride (UN) is considered as a fuel material [1] for accident-tolerant fuel to compensate for the loss of fissile fuel material caused by adopting a thickened cladding such as SiC composites. Uranium nitride powders can be fabricated by a carbothermic reduction of the oxide powders, or the nitriding of metal uranium. Among them, a direct nitriding process of metal is more attractive because it has advantages in the mass production of high-purity powders and the reusing of expensive 15 N 2 gas. However, since metal uranium is usually fabricated in the form of bulk ingots, it has a drawback in the fabrication of fine powders. The Korea Atomic Energy Research Institute (KAERI) has a centrifugal atomisation technique to fabricate uranium and uranium alloy powders. In this study, a simple reaction method was tested to fabricate nitride fuel powders directly from uranium metal alloy powders. Spherical powder and flake of uranium metal alloys were fabricated using a centrifugal atomisation method. The nitride powders were obtained by thermal treating the metal particles under nitrogen containing gas. The phase and morphology evolutions of powders were investigated during the nitriding process. A phase analysis of nitride powders was also part of the present work. KAERI has developed the centrifugal rotating disk atomisation process to fabricate spherical uranium metal alloy powders which are used as advanced fuel materials for research reactors. The rotating disk atomisation system involves the tasks of melting, atomising, and collecting. A nozzle in the bottom of melting crucible introduces melt at the center of a spinning disk. The centrifugal force carries the melt to the edge of the disk and throws the melt off the edge. Size and shape of droplets can be controlled by changing the nozzle size, the disk diameter and disk speed independently or simultaneously. By adjusting the processing parameters of the centrifugal atomiser, a spherical and flake shape

  15. Surface chemistry and microscopy of food powders

    Science.gov (United States)

    Burgain, Jennifer; Petit, Jeremy; Scher, Joël; Rasch, Ron; Bhandari, Bhesh; Gaiani, Claire

    2017-12-01

    Despite high industrial and scientific interest, a comprehensive review of the surface science of food powders is still lacking. There is a real gap between scientific concerns of the field and accessible reviews on the subject. The global description of the surface of food powders by multi-scale microscopy approaches seems to be essential in order to investigate their complexity and take advantage of their high innovation potential. Links between these techniques and the interest to develop a multi-analytical approach to investigate scientific questions dealing with powder functionality are discussed in the second part of the review. Finally, some techniques used in others fields and showing promising possibilities in the food powder domain will be highlighted.

  16. Silicone-acrylic hybrid aqueous dispersions of core–shell particle structure and corresponding silicone-acrylic nanopowders designed for modification of powder coatings and plastics. Part III: Effect of modification with selected silicone-acrylic nanopowders on properties of polyurethane powder coatings

    Czech Academy of Sciences Publication Activity Database

    Pilch-Pitera, B.; Kozakiewicz, J.; Ofat, I.; Trzaskowska, J.; Špírková, Milena

    2015-01-01

    Roč. 78, January (2015), s. 429-436 ISSN 0300-9440 Institutional support: RVO:61389013 Keywords : polyurethanes * powder coatings * blocked polyisocyanates Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.632, year: 2015

  17. Quantitative studies on impact resistance of reinforced concrete panels with steel liners under impact loading. Part 1: Scaled model impact tests

    International Nuclear Information System (INIS)

    Tsubota, H.; Kasai, Y.; Koshika, N.; Morikawa, H.; Uchida, T.; Ohno, T.; Kogure, K.

    1993-01-01

    In recent years, extensive analytical and experimental studies have been carried out to establish a rational structural design method for nuclear power plants against local damage caused by various external missiles. Through these studies, several techniques for improving die impact resistance of reinforced concrete slabs have been proposed. Of these techniques, attaching a thin steel liner onto the impacted and/or rear face of the slab is considered to be one of the most effective methods. Muto et. al. carried out full-scale impact tests using actual aircraft engines and reported that a thin corrugated steel liner attached to the rear face of a concrete panel has a significant effect in preventing scattering of scabbed concrete debris from the rear face of the target. Based on many experimental and analytical studies, UKAEA reported that a steel liner attached to a reinforced concrete slab improves its perforation and scabbing resistance, and Walter et. al. proposed a formula for predicting the equivalent thickness of a slab with a steel liner attached. The object of this study was to evaluate quantitatively the effect of a steel liner attached to a reinforced concrete slab in preventing local damage caused by rigid missiles. To achieve the object, extensive impact tests were carried out. This paper summarizes the results of these tests

  18. Improving the prediction of the final part geometry in high strength steels U drawing by means of advanced material and friction models

    Science.gov (United States)

    de Argandoña, Eneko Saenz; Mendiguren, Joseba; Otero, Irune; Mugarra, Endika; Otegi, Nagore; Galdos, Lander

    2018-05-01

    Steel has been used in vehicles from the automotive industry's inception. Different steel grades are continually being developed in order to satisfy new fuel economy requirements. For example, advanced high strength steel grades (AHSS) are widely used due to their good strength/weight ratio. Because each steel grade has a different microstructure composition and hardness, they show different behaviors when they are subjected to different strain paths. Similarly, the friction behavior when using different contact pressures is considerably altered. In the present paper, four different steel grades, ZSt380, DP600, DP780 and Fortiform 1050 materials are deeply characterized using uniaxial and cyclic tension-compression tests. Coefficient of friction (COF) is also obtained using strip drawing tests. These results have been used to calibrate mixed kinematic-hardening material models as well as pressure dependent friction models. Finally, the geometrical accuracy of the different material and friction models has been evaluated by comparing the numerical predictions with experimental demonstrators obtained using a U-Drawing tester.

  19. Powder metallurgy bearings for advanced rocket engines

    Science.gov (United States)

    Fleck, J. N.; Killman, B. J.; Munson, H.E.

    1985-01-01

    Traditional ingot metallurgy was pushed to the limit for many demanding applications including antifriction bearings. New systems require corrosion resistance, better fatigue resistance, and higher toughness. With conventional processing, increasing the alloying level to achieve corrosion resistance results in a decrease in other properties such as toughness. Advanced powder metallurgy affords a viable solution to this problem. During powder manufacture, the individual particle solidifies very rapidly; as a consequence, the primary carbides are very small and uniformly distributed. When properly consolidated, this uniform structure is preserved while generating a fully dense product. Element tests including rolling contact fatigue, hot hardness, wear, fracture toughness, and corrosion resistance are underway on eleven candidate P/M bearing alloys and results are compared with those for wrought 440C steel, the current SSME bearing material. Several materials which offer the promise of a significant improvement in performance were identified.

  20. Pulsed Laser Cladding of Ni Based Powder

    Science.gov (United States)

    Pascu, A.; Stanciu, E. M.; Croitoru, C.; Roata, I. C.; Tierean, M. H.

    2017-06-01

    The aim of this paper is to optimize the operational parameters and quality of one step Metco Inconel 718 atomized powder laser cladded tracks, deposited on AISI 316 stainless steel substrate by means of a 1064 nm high power pulsed laser, together with a Precitec cladding head manipulated by a CLOOS 7 axes robot. The optimization of parameters and cladding quality has been assessed through Taguchi interaction matrix and graphical output. The study demonstrates that very good cladded layers with low dilution and increased mechanical proprieties could be fabricated using low laser energy density by involving a pulsed laser.

  1. Influence of laser power on microstructure of laser metal deposited 17-4 ph stainless steel

    CSIR Research Space (South Africa)

    Adeyemi, AA

    2017-09-01

    Full Text Available The influence of laser power on the microstructure of 17-4 PH stainless steel produced by laser metal deposition was investigated. Multiple-trackof 17-4 stainless steel powder was deposited on 316 stainless steel substrate using laser metal...

  2. Microstructural Development during Welding of TRIP steels

    NARCIS (Netherlands)

    Amirthalingam, M.

    2010-01-01

    The Advanced High Strength Steels (AHSS) are promising solutions for the production of lighter automobiles which reduce fuel consumption and increase passenger safety by improving crash-worthiness. Transformation Induced Plasticity Steel (TRIP) are part of the advanced high strength steels which

  3. The effect of potential on the high-temperature fatigue crack growth response of low alloy steels: Part II, electrochemical results

    International Nuclear Information System (INIS)

    Moshier, W.C.; James, L.A.

    1997-01-01

    Environmentally assisted cracking (EAC) in low alloy steels was found to be dependent on externally applied potential in low sulfur steels in high temperature water. EAC could be turned on when the specimen was polarized anodically above a critical potential. However, hydrogen (H) additions inhibited the ability of potential to affect EAC. The behavior was related to formation of H ions during H oxidation at the crack mouth. A mechanism based on formation of H sulfide at the crack tip and H ions at the crack mouth is presented to describe the process by which sulfides and H ions affect the critical sulfide concentration at the crack tip

  4. Novel Amalgams for In-Space Fabrication of Replacement Parts

    Science.gov (United States)

    Cochran, Calvin T.; Van Hoose, James R.; Grugel, R. N.

    2012-01-01

    Being able to fabricate replacement parts during extended space flight missions precludes the weight, storage volume, and speculation necessary to accommodate spares. Amalgams, widely used in dentistry, are potential candidates for fabricating parts in microgravity environments as they are moldable, do not require energy for melting, and do not pose fluid handling problems. Unfortunately, amalgams have poor tensile strength and the room temperature liquid component is mercury. To possibly resolve these issues a gallium-indium alloy was substituted for mercury and small steel fibers were mixed in with the commercial alloy powder. Subsequent microscopic examination of the novel amalgam revealed complete bonding of the components, and mechanical testing of comparable samples showed those containing steel fibers to have a significant improvement in strength. Experimental procedures, microstructures, and test results are presented and discussed in view of further improving properties.

  5. POWDER COAT APPLICATIONS

    Science.gov (United States)

    The report discusses an investigation of critical factors that affect the use of powder coatings on the environment, cost, quality, and production. The investigation involved a small business representative working with the National Defense Center for Environmental Excellence (ND...

  6. OIL SOLUTIONS POWDER

    Science.gov (United States)

    Technical product bulletin: aka OIL SOLUTIONS POWDER, SPILL GREEN LS, this miscellaneous oil spill control agent used in cleanups initially behaves like a synthetic sorbent, then as a solidifier as the molecular microencapsulating process occurs.

  7. Cold formability of steels

    International Nuclear Information System (INIS)

    Lafond, G.; Leclerq, G.; Moliexe, F.; Namdar, R.; Roesch, L.; Sanz, G.

    1977-01-01

    This work was essentially aimed to the study of the following three questions. Is it possible to assess the cold formability of steels using simple material properties as criteria. What values of mechanical properties can one expect to reach in cold formed parts. Are there simple ways of characterizing the speroidization treatments carried out on steels before cold forming operations. The present report describes the results obtained during this investigation. It is logically divided into three separate parts. Experimental study of cold formability in wire drawing. Influence of metallurgical variables on mechanical properties of high carbon cold drawn wires. Contribution to the study of characterization methods of cold forming steels subjected to a spheroidization heat treatment

  8. AISI/DOE Advanced Process Control Program Vol. 3 of 6: MICROSTRUCTURAL ENGINEERING IN HOT-STRIP MILLS Part 2 of 2: Constitutive Behavior Modeling of Steels Under Hot-Rolling Conditions; FINAL

    International Nuclear Information System (INIS)

    Yi-Wen Cheng; Patrick Purtscher

    1999-01-01

    This report describes the development of models for predicting (1) constitutive behaviors and (2) mechanical properties of hot-rolled steels as functions of chemical composition, microstructural features, and processing variables. The study includes the following eight steels: A36, DQSK, HSLA-V, HSLA-Nb, HSLA-50/Ti-Nb, and two interstitial-free (IF) grades. These developed models have been integrated into the Hot-Strip Mill Model (HSMM), which simulates the hot strip rolling mills and predicts the mechanical properties of hot-rolled products. The HSMM model has been developed by the University of British Columbia-Canada as a part of project on the microstructural engineering in hot-strip mills

  9. Magnetically responsive enzyme powders

    Energy Technology Data Exchange (ETDEWEB)

    Pospiskova, Kristyna, E-mail: kristyna.pospiskova@upol.cz [Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 11, 783 71 Olomouc (Czech Republic); Safarik, Ivo, E-mail: ivosaf@yahoo.com [Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 11, 783 71 Olomouc (Czech Republic); Department of Nanobiotechnology, Institute of Nanobiology and Structural Biology of GCRC, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic)

    2015-04-15

    Powdered enzymes were transformed into their insoluble magnetic derivatives retaining their catalytic activity. Enzyme powders (e.g., trypsin and lipase) were suspended in various liquid media not allowing their solubilization (e.g., saturated ammonium sulfate and highly concentrated polyethylene glycol solutions, ethanol, methanol, 2-propanol) and subsequently cross-linked with glutaraldehyde. Magnetic modification was successfully performed at low temperature in a freezer (−20 °C) using magnetic iron oxides nano- and microparticles prepared by microwave-assisted synthesis from ferrous sulfate. Magnetized cross-linked enzyme powders were stable at least for two months in water suspension without leakage of fixed magnetic particles. Operational stability of magnetically responsive enzymes during eight repeated reaction cycles was generally without loss of enzyme activity. Separation of magnetically modified cross-linked powdered enzymes from reaction mixtures was significantly simplified due to their magnetic properties. - Highlights: • Cross-linked enzyme powders were prepared in various liquid media. • Insoluble enzymes were magnetized using iron oxides particles. • Magnetic iron oxides particles were prepared by microwave-assisted synthesis. • Magnetic modification was performed under low (freezing) temperature. • Cross-linked powdered trypsin and lipase can be used repeatedly for reaction.

  10. Characteristics of Inconel Powders for Powder-Bed Additive Manufacturing

    Directory of Open Access Journals (Sweden)

    Quy Bau Nguyen

    2017-10-01

    Full Text Available In this study, the flow characteristics and behaviors of virgin and recycled Inconel powder for powder-bed additive manufacturing (AM were studied using different powder characterization techniques. The results revealed that the particle size distribution (PSD for the selective laser melting (SLM process is typically in the range from 15 μm to 63 μm. The flow rate of virgin Inconel powder is around 28 s·(50 g−1. In addition, the packing density was found to be 60%. The rheological test results indicate that the virgin powder has reasonably good flowability compared with the recycled powder. The inter-relation between the powder characteristics is discussed herein. A propeller was successfully printed using the powder. The results suggest that Inconel powder is suitable for AM and can be a good reference for researchers who attempt to produce AM powders.

  11. Combating Wear of ASTM A36 Steel by Surface Modification Using Thermally Sprayed Cermet Coatings

    Directory of Open Access Journals (Sweden)

    Vineet Shibe

    2016-01-01

    Full Text Available Thermal spray coatings can be applied economically on machine parts to enhance their requisite surface properties like wear, corrosion, erosion resistance, and so forth. Detonation gun (D-Gun thermal spray coatings can be applied on the surface of carbon steels to improve their wear resistance. In the present study, alloy powder cermet coatings WC-12% Co and Cr3C2-25% NiCr have been deposited on ASTM A36 steel with D-Gun thermal spray technique. Sliding wear behavior of uncoated ASTM A36 steel and D-Gun sprayed WC-12% Co and Cr3C2-25% NiCr coatings on base material is observed on a Pin-On-Disc Wear Tester. Sliding wear performance of WC-12% Co coating is found to be better than the Cr3C2-25% NiCr coating. Wear performance of both these cermet coatings is found to be better than uncoated ASTM A36 steel. Thermally sprayed WC-12% Co and Cr3C2-25% NiCr cermet coatings using D-Gun thermal spray technique is found to be very useful in improving the sliding wear resistance of ASTM A36 steel.

  12. Weldability of powder-metallurgy molybdenum with low oxygen content

    International Nuclear Information System (INIS)

    Hiraoka, Yutaka; Okada, Masatoshi

    1987-01-01

    Relationships between the formation of weld pores and the chemical compositions in powder-metallurgy molybdenum were investigated. It is suggested that almost 100% of Ca and Mg form oxides. In contrast, Fe, Ni, Cr and Al, Si only partly form oxides. A powder-metallurgy molybdenum containing less than 84 at.ppm oxygen did not show any large weld pores. The reduction of the oxygen content was achieved by purifying the molybdenum powder. (orig.) [de

  13. Production of titanium alloy powders by vacuum fusion-centrifugation

    International Nuclear Information System (INIS)

    Decours, Jacques; Devillard, Jacques; Sainfort, G.

    1975-01-01

    This work presents a method of preparing powdered TA6V and TA6Z5D alloys by fusion-centrifugation under electron bombardment. An industrial capacity apparatus for the production of metallic powders is described and the characteristics of the powders obtained are presented. Solid parts were shaped by sintering and drawing at temperatures between 850 and 1100 deg C. The structure and mechanical properties of the cold densified products before and after heat treatment are compared [fr

  14. Metal release in a stainless steel pulsed electric field (PEF) system Part II. The treatment of orange juice; related to legislation and treatment chamber lifetime

    NARCIS (Netherlands)

    Roodenburg, B.; Morren, J.; Berg, H.E.; Haan, S.W.H.de

    2005-01-01

    In the last decennia, there is an increasing interest in pulsed electric field (PEF) treatment. The product is often treated in a continuous flow treatment chamber with stainless steel electrodes and exposed to short pulsed electric fields, typically 2-4 kV mm-1 during 1-10 μs. Due to direct contact

  15. Structural performance evaluation on aging underground reinforced concrete structures. Part 6. An estimation method of threshold value in performance verification taking reinforcing steel corrosion

    International Nuclear Information System (INIS)

    Matsuo, Toyofumi; Matsumura, Takuro; Miyagawa, Yoshinori

    2009-01-01

    This paper discusses applicability of material degradation model due to reinforcing steel corrosion for RC box-culverts with corroded reinforcement and an estimation method for threshold value in performance verification reflecting reinforcing steel corrosion. First, in FEM analyses, loss of reinforcement section area and initial tension strain arising from reinforcing steel corrosion, and deteriorated bond characteristics between reinforcement and concrete were considered. The full-scale loading tests using corroded RC box-culverts were numerically analyzed. As a result, the analyzed crack patterns and load-strain relationships were in close agreement with the experimental results within the maximum corrosion ratio 15% of primary reinforcement. Then, we showed that this modeling could estimate the load carrying capacity of corroded RC box-culverts. Second, a parametric study was carried out for corroded RC box culverts with various sizes, reinforcement ratios and levels of steel corrosion, etc. Furthermore, as an application of analytical results and various experimental investigations, we suggested allowable degradation ratios for a modification of the threshold value, which corresponds to the chloride induced deterioration progress that is widely accepted in maintenance practice for civil engineering reinforced concrete structures. Finally, based on these findings, we developed two estimation methods for threshold value in performance verification: 1) a structural analysis method using nonlinear FEM included modeling of material degradation, 2) a practical method using a threshold value, which is determined by structural analyses of RC box-culverts in sound condition, is multiplied by the allowable degradation ratio. (author)

  16. Effect of Built-Up Edge Formation during Stable State of Wear in AISI 304 Stainless Steel on Machining Performance and Surface Integrity of the Machined Part.

    Science.gov (United States)

    Ahmed, Yassmin Seid; Fox-Rabinovich, German; Paiva, Jose Mario; Wagg, Terry; Veldhuis, Stephen Clarence

    2017-10-25

    During machining of stainless steels at low cutting -speeds, workpiece material tends to adhere to the cutting tool at the tool-chip interface, forming built-up edge (BUE). BUE has a great importance in machining processes; it can significantly modify the phenomenon in the cutting zone, directly affecting the workpiece surface integrity, cutting tool forces, and chip formation. The American Iron and Steel Institute (AISI) 304 stainless steel has a high tendency to form an unstable BUE, leading to deterioration of the surface quality. Therefore, it is necessary to understand the nature of the surface integrity induced during machining operations. Although many reports have been published on the effect of tool wear during machining of AISI 304 stainless steel on surface integrity, studies on the influence of the BUE phenomenon in the stable state of wear have not been investigated so far. The main goal of the present work is to investigate the close link between the BUE formation, surface integrity and cutting forces in the stable sate of wear for uncoated cutting tool during the cutting tests of AISI 304 stainless steel. The cutting parameters were chosen to induce BUE formation during machining. X-ray diffraction (XRD) method was used for measuring superficial residual stresses of the machined surface through the stable state of wear in the cutting and feed directions. In addition, surface roughness of the machined surface was investigated using the Alicona microscope and Scanning Electron Microscopy (SEM) was used to reveal the surface distortions created during the cutting process, combined with chip undersurface analyses. The investigated BUE formation during the stable state of wear showed that the BUE can cause a significant improvement in the surface integrity and cutting forces. Moreover, it can be used to compensate for tool wear through changing the tool geometry, leading to the protection of the cutting tool from wear.

  17. Biaxially textured articles formed by powder metallurgy

    Science.gov (United States)

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2003-07-29

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100} orientation texture; and further having a Curie temperature less than that of pure Ni.

  18. Sinterability and microstructure evolution during sintering of ferrous powder mixtures

    Directory of Open Access Journals (Sweden)

    Kétner Bendo Demétrio

    2013-01-01

    Full Text Available The present work is focused on ferrous powder metallurgy and presents some results of a development of a suitable masteralloy for use as an additive to iron powder for the production of sintered steels. The masteralloy was produced by melting a powder mixture containing approximately Fe + 20% Ni + 20% Mn + 20% Si + 1% C (wt%, in order to obtain a cast billet that was converted into fine powder by crushing and milling. It was observed presence of SiC in the masteralloy after melting that is undesirable in the alloy. Si element should be introduced by using ferrosilicon. Sintered alloys with distinct contents of alloying elements were prepared by mixing the masteralloy powder to plain iron powder. Samples were produced by die compaction of the powder mixtures and sintering at 1200 °C in a differential dilatometer in order to record their linear dimensional behaviour during heating up and isothermal sintering, aiming at studying the sinterability of the compacts. Microstructure development during sintering was studied by SEM, XRD and microprobe analyses.

  19. Radiological impact on the UK population of industries which use or produce materials containing enhanced levels of naturally occurring radionuclides. Part II: the steel production industry

    International Nuclear Information System (INIS)

    Crockett, G.M.; Smith, K.R.; Oatway, W.B.; Mobbs, S.F.

    2003-01-01

    This report contains an assessment of the radiological impact on the UK population of the steel production industry within the UK. The radiological impact of the primary industry, the waste streams produced and the use of by-product slag have been considered. Individual doses from atmospheric releases from ail currently operating integrated steel plants in the UK are less than 10 μSv y -1 for all age groups. The per caput dose rate in the UK population from 500 years of continuous steel production at the current levels is estimated to be 0.1 μSv y -1 . Estimated maximum doses to workers at the steel production plant, landfill workers, and workers manufacturing and using building materials containing slag were generally less than 20 μSv y -1 . The estimated radon concentrations in buildings constructed from concrete containing slag depend upon the radon emanation fraction assumed for the material. Experimental data in this area is sparse, and thus a range was considered. The estimated radon concentrations in buildings constructed from concrete containing slag ranged between 7.0 and 10.8 Bq m -3 , compared with 9.9 Bq m -3 when slag-free concrete is assumed. The estimated dose from radon exposure ranges between 363 μSv y -1 and 559 μSv y -1 , compared with 510 μSv y -1 when slag-free concrete is used. The estimated external dose to an individual in a house constructed using concrete containing slag is 790 μSv y -1 compared with 758 μSv y -1 for slag-free concrete. The overall effect of the use of the slag in building materials therefore ranges between a reduction in dose of 115 μSv y -1 and an increase of 81 μSv y -1 . Other scenarios involving exposure of members of the public to slag resulted in doses of less than 5 μSv y -1 . The estimated peak individual risk from landfill disposal of steel industry waste is less than approximately 1 10 -8 y -1 . Currently, radiological controls on the operation of steel production sites are confined to the

  20. Physical properties and microstructure study of stainless steel 316L alloy fabricated by selective laser melting

    Science.gov (United States)

    Islam, Nurul Kamariah Md Saiful; Harun, Wan Sharuzi Wan; Ghani, Saiful Anwar Che; Omar, Mohd Asnawi; Ramli, Mohd Hazlen; Ismail, Muhammad Hussain

    2017-12-01

    Selective Laser Melting (SLM) demonstrates the 21st century's manufacturing infrastructure in which powdered raw material is melted by a high energy focused laser, and built up layer-by-layer until it forms three-dimensional metal parts. SLM process involves a variation of process parameters which affects the final material properties. 316L stainless steel compacts through the manipulation of building orientation and powder layer thickness parameters were manufactured by SLM. The effect of the manipulated parameters on the relative density and dimensional accuracy of the 316L stainless steel compacts, which were in the as-build condition, were experimented and analysed. The relationship between the microstructures and the physical properties of fabricated 316L stainless steel compacts was investigated in this study. The results revealed that 90° building orientation has higher relative density and dimensional accuracy than 0° building orientation. Building orientation was found to give more significant effect in terms of dimensional accuracy, and relative density of SLM compacts compare to build layer thickness. Nevertheless, the existence of large number and sizes of pores greatly influences the low performances of the density.

  1. Influence of Ti addition on fracture behaviour of HSLA steel using TIG melting technique

    Science.gov (United States)

    Musa, M. H. A.; Maleque, M. A.; Ali, M. Y.

    2017-03-01

    The welding process is a critical stage in the production of structural parts and the microstructure and mechanical properties of the welded joints must be appropriate in order to guarantee the reliability and durability of the components. The fracture toughness behaviour, which accounts for the residual strength of the component in the presence of flaws or cracks, is one of the most important properties to be evaluated in terms of microstructure and mechanical properties. In this present study, the surface of high strength low alloy (HSLA) steel was surface modified with the preplacement of pure Titanium (Ti) powder using a tungsten inert gas (TIG) arc heat source, at 100 ampere current with a voltage 30 V and a constant traversing speed of 1.0 mm/s using Argon shielded gas. The effect of preplaced Ti powder on the strength and toughness properties of the modified HSLA steel surface was investigated. The results indicated that the tensile and yield strength of HSLA steel decreased by ∼12% and ∼14%, respectively. While the impact toughness increased by ∼33% and the ductility decreased by ∼50%. The fractography analysis results by scanning electron microscopy (SEM) were also presented in this paper.

  2. Ultrafine hydrogen storage powders

    Science.gov (United States)

    Anderson, Iver E.; Ellis, Timothy W.; Pecharsky, Vitalij K.; Ting, Jason; Terpstra, Robert; Bowman, Robert C.; Witham, Charles K.; Fultz, Brent T.; Bugga, Ratnakumar V.

    2000-06-13

    A method of making hydrogen storage powder resistant to fracture in service involves forming a melt having the appropriate composition for the hydrogen storage material, such, for example, LaNi.sub.5 and other AB.sub.5 type materials and AB.sub.5+x materials, where x is from about -2.5 to about +2.5, including x=0, and the melt is gas atomized under conditions of melt temperature and atomizing gas pressure to form generally spherical powder particles. The hydrogen storage powder exhibits improved chemcial homogeneity as a result of rapid solidfication from the melt and small particle size that is more resistant to microcracking during hydrogen absorption/desorption cycling. A hydrogen storage component, such as an electrode for a battery or electrochemical fuel cell, made from the gas atomized hydrogen storage material is resistant to hydrogen degradation upon hydrogen absorption/desorption that occurs for example, during charging/discharging of a battery. Such hydrogen storage components can be made by consolidating and optionally sintering the gas atomized hydrogen storage powder or alternately by shaping the gas atomized powder and a suitable binder to a desired configuration in a mold or die.

  3. A process model for the heat-affected zone microstructure evolution in duplex stainless steel weldments: Part II. Application to electron beam welding

    Science.gov (United States)

    Hemmer, H.; Grong, Ø.; Klokkehaug, S.

    2000-03-01

    In the present investigation, a process model for electron beam (EB) welding of different grades of duplex stainless steels (i.e. SAF 2205 and 2507) has been developed. A number of attractive features are built into the original finite element code, including (1) a separate module for prediction of the penetration depth and distribution of the heat source into the plate, (2) adaptive refinement of the three-dimensional (3-D) element mesh for quick and reliable solution of the differential heat flow equation, and (3) special subroutines for calculation of the heat-affected zone (HAZ) microstructure evolution. The process model has been validated by comparison with experimental data obtained from in situ thermocouple measurements and optical microscope examinations. Subsequently, its aptness to alloy design and optimization of welding conditions for duplex stainless steels is illustrated in different numerical examples and case studies pertaining to EB welding of tubular joints.

  4. Creep-fatigue evaluation method for weld joint of Mod.9Cr-1Mo steel Part II: Plate bending test and proposal of a simplified evaluation method

    Energy Technology Data Exchange (ETDEWEB)

    Ando, Masanori, E-mail: ando.masanori@jaea.go.jp; Takaya, Shigeru, E-mail: takaya.shigeru@jaea.go.jp

    2016-12-15

    Highlights: • Creep-fatigue evaluation method for weld joint of Mod.9Cr-1Mo steel is proposed. • A simplified evaluation method is also proposed for the codification. • Both proposed evaluation method was validated by the plate bending test. • For codification, the local stress and strain behavior was analyzed. - Abstract: In the present study, to develop an evaluation procedure and design rules for Mod.9Cr-1Mo steel weld joints, a method for evaluating the creep-fatigue life of Mod.9Cr-1Mo steel weld joints was proposed based on finite element analysis (FEA) and a series of cyclic plate bending tests of longitudinal and horizontal seamed plates. The strain concentration and redistribution behaviors were evaluated and the failure cycles were estimated using FEA by considering the test conditions and metallurgical discontinuities in the weld joints. Inelastic FEA models consisting of the base metal, heat-affected zone and weld metal were employed to estimate the elastic follow-up behavior caused by the metallurgical discontinuities. The elastic follow-up factors determined by comparing the elastic and inelastic FEA results were determined to be less than 1.5. Based on the estimated elastic follow-up factors obtained via inelastic FEA, a simplified technique using elastic FEA was proposed for evaluating the creep-fatigue life in Mod.9Cr-1Mo steel weld joints. The creep-fatigue life obtained using the plate bending test was compared to those estimated from the results of inelastic FEA and by a simplified evaluation method.

  5. Creep-fatigue evaluation method for weld joint of Mod.9Cr-1Mo steel Part II: Plate bending test and proposal of a simplified evaluation method

    International Nuclear Information System (INIS)

    Ando, Masanori; Takaya, Shigeru

    2016-01-01

    Highlights: • Creep-fatigue evaluation method for weld joint of Mod.9Cr-1Mo steel is proposed. • A simplified evaluation method is also proposed for the codification. • Both proposed evaluation method was validated by the plate bending test. • For codification, the local stress and strain behavior was analyzed. - Abstract: In the present study, to develop an evaluation procedure and design rules for Mod.9Cr-1Mo steel weld joints, a method for evaluating the creep-fatigue life of Mod.9Cr-1Mo steel weld joints was proposed based on finite element analysis (FEA) and a series of cyclic plate bending tests of longitudinal and horizontal seamed plates. The strain concentration and redistribution behaviors were evaluated and the failure cycles were estimated using FEA by considering the test conditions and metallurgical discontinuities in the weld joints. Inelastic FEA models consisting of the base metal, heat-affected zone and weld metal were employed to estimate the elastic follow-up behavior caused by the metallurgical discontinuities. The elastic follow-up factors determined by comparing the elastic and inelastic FEA results were determined to be less than 1.5. Based on the estimated elastic follow-up factors obtained via inelastic FEA, a simplified technique using elastic FEA was proposed for evaluating the creep-fatigue life in Mod.9Cr-1Mo steel weld joints. The creep-fatigue life obtained using the plate bending test was compared to those estimated from the results of inelastic FEA and by a simplified evaluation method.

  6. Extrusions and intrusions in fatigued metals. Part 2. AFM and EBSD study of the early growth of extrusions and intrusions in 316L steel fatigued at room temperature

    Czech Academy of Sciences Publication Activity Database

    Man, Jiří; Klapetek, P.; Man, O.; Weidner, A.; Obrtlík, Karel; Polák, Jaroslav

    2009-01-01

    Roč. 89, č. 16 (2009), s. 1337-1372 ISSN 1478-6435 R&D Projects: GA ČR GA106/06/1096; GA ČR GA101/07/1500; GA AV ČR 1QS200410502 Institutional research plan: CEZ:AV0Z20410507 Keywords : 316L steel * fatigue * AFM Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.273, year: 2009

  7. Powder Characterization and Optimization for Additive Manufacturing

    NARCIS (Netherlands)

    Cordova, Laura; Campos, Mónica; Tinga, Tiedo

    2017-01-01

    Achieving the optimal quality for Additive Manufactured (AM) parts does not only depend on setting the right process parameters. Material feedstock also plays an important role when aiming for high performance products. The metal AM processes that are most applicable to industry, Powder Bed Fusion

  8. Laboratory Powder Metallurgy Makes Tough Aluminum Sheet

    Science.gov (United States)

    Royster, D. M.; Thomas, J. R.; Singleton, O. R.

    1993-01-01

    Aluminum alloy sheet exhibits high tensile and Kahn tear strengths. Rapid solidification of aluminum alloys in powder form and subsequent consolidation and fabrication processes used to tailor parts made of these alloys to satisfy such specific aerospace design requirements as high strength and toughness.

  9. Weighing fluidized powder

    International Nuclear Information System (INIS)

    Adomitis, J.T.; Larson, R.I.

    1980-01-01

    Fluidized powder is discharged from a fluidizing vessel into a container. Accurate metering is achieved by opening and closing the valve to discharge the powder in a series of short-duration periods until a predetermined weight is measured by a load cell. The duration of the discharge period may be increased in inverse proportion to the amount of powder in the vessel. Preferably the container is weighed between the discharge periods to prevent fluctuations resulting from dynamic effects. The gas discharged into the container causes the pressures in the vessel and container to equalize thereby decreasing the rate of discharge and increasing the accuracy of metering as the weight reaches the predetermined value. (author)

  10. The Shrinkage Cracking Behavior in Reinforced Reactive Powder Concrete Walls

    Directory of Open Access Journals (Sweden)

    Samir A. Al-Mashhadi

    2017-07-01

    Full Text Available In this study, the reduced scale wall models were used (they are believed to resemble as much as possible the field conditions to study the shrinkage behavior of reactive powder concrete (RPC base restrained walls. Six base restrained RPC walls were casted in different length/height ratios of two ratios of steel fiber by volume in Summer. These walls were restrained by reinforced concrete bases to provide the continuous base restraint to the walls. The mechanical properties of reactive powder concrete investigated were; compressive strength between (75.3 – 140.1 MPa, splitting tensile strength between (5.7 – 13.9 MPa, flexural tensile strength (7.7 – 24.5 MPa, and static modulus of elasticity (32.7 – 47.1GPa. Based on the observations of this work, it was found that the cracks did not develop in the reduced scale of the reactive powder concrete (RPC walls restrained from movement at their bases for different L/H ratios (2, 5, and 10 and for two ratio of steel fiber (1% & 2% during 90 days period of drying conditions. Moreover, the shrinkage values increase toward the edges. Based on the results of this work, the increase in the maximum shrinkage values of walls with 1% steel fiber were (29%, 28%, 28% of the maximum shrinkage values of walls with 2% steel fiber of length/height ratios of (2, 5, and 10 respectively. The experimental observation in beam specimens showed that the free shrinkage, tensile strain capacity and elastic tensile strain capacity (at date of cracking of beams with 1% steel fiber were higher than the beams with 2% steel fiber by about (24%, (45% and (42% respectively

  11. Effects of sulfur addition on pitting corrosion and machinability behavior of super duplex stainless steel containing rare earth metals: Part 2

    International Nuclear Information System (INIS)

    Jeon, Soon-Hyeok; Kim, Soon-Tae; Lee, In-Sung; Park, Yong-Soo

    2010-01-01

    Research highlights: → The mechanisms on the effects of rare earth metals (REM) and sulfur (S) additions on the initiation and propagation of pitting corrosion and machinabillity of a super duplex stainless steel (SDSS) were elucidated → It was found that, in consideration of the ratio of lifetime (the resistance to pitting corrosion) to cost (machining and raw material), a costly austenitic stainless steel with high Ni , medium Mo and low N can be replaced by the high S and REM added SDSS with 7 wt.% Ni-4 wt% Mo-0.3 wt.% N → The resistance to pitting corrosion of the tested super duplex stainless steel was affected by the type of inclusions, the preferential interface areas between inclusions and the substrate, and the PREN difference between the γ-phase and the α-phase for the initiation and propagation of the pitting corrosion. - Abstract: To elucidate the effects of sulfur addition on pitting corrosion and machinability behavior of alloys containing rare earth metals, a potentiostatic polarization test, a critical pitting temperature test, a SEM-EDS analysis of inclusions, and a tool life test were conducted. As sulfur content increased, the resistance to pitting corrosion decreased due to the formation of numerous manganese sulfides deteriorating the corrosion resistance and an increase in the preferential interface areas for the initiation of the pitting corrosion. With an increase in sulfur content, the tool life increased due to the lubricating films of manganese sulfides adhering to tool surface.

  12. Baking Powder Wars

    OpenAIRE

    Civitello, Linda

    2017-01-01

    How did a mid-nineteenth century American invention, baking powder, replace yeast as a leavening agent and create a culinary revolution as profound as the use of yeast thousands of years ago?The approach was two-pronged and gendered: business archives, U.S. government records and lawsuits revealed how baking powder was created, marketed, and regulated. Women’s diaries and cookbooks—personal, corporate, community, ethnic—from the eighteenth century to internet blogs showed the use women made o...

  13. Debinding properties' study of a 316-L stainless steel feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Rei, M.; Schaeffer, L. [Metal Forming Lab., Univ. Federal do Rio Grande do Sul, Porto Alegre (Brazil); Souza, J.P. [Extraction Lab., Univ. Federal do Rio Grande do Sul, Porto Alegre (Brazil)

    2001-07-01

    This paper describes the behavior of a 316-L stainless steel feedstock's front low pressure injection molding process steps (MIM). The qualitative composition is 316-L stainless steel powder, ethylene and vinyl acetate copolymer (EVA), 140-macrocrystalline paraffin, carnauba wax and stearic acid. Thermogravimetric analyses were used to determine the quantitative composition of the binder system, while the quantitative composition of feedstock was determined by the knowledge of the mixture's critical loading. The feedstock was molded by low pressure injection molding in a MIGL-33 machine and submitted to a wicking debinding process, or immersed in carbon tetrachloride or in carbon dioxide under supercritical conditions. After the above mentioned procedure, the parts were submitted to thermal extraction. (orig.)

  14. Hydrothermal Valorization of Steel Slags—Part I: Coupled H{sub 2} Production and CO{sub 2} Mineral Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Crouzet, Camille [University Grenoble Alpes, University Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, Grenoble (France); LRCS and RS2E, CNRS-UMR7314, University Picardie Jules Verne, Amiens (France); Aix Marseille University, CNRS, Centrale Marseille, M2P2, Marseille (France); Brunet, Fabrice, E-mail: fabrice.brunet@univ-grenoble-alpes.fr; Montes-Hernandez, German [University Grenoble Alpes, University Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, Grenoble (France); Recham, Nadir [LRCS and RS2E, CNRS-UMR7314, University Picardie Jules Verne, Amiens (France); Findling, Nathaniel [University Grenoble Alpes, University Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, Grenoble (France); Ferrasse, Jean-Henry [Aix Marseille University, CNRS, Centrale Marseille, M2P2, Marseille (France); Goffé, Bruno [Aix-Marseille University, CNRS, IRD, Coll. de France, CEREGE, Aix-en-Provence (France)

    2017-10-30

    A new process route for the valorization of BOF steel slags combining H{sub 2} production and CO{sub 2} mineral sequestration is investigated at 300°C (HT) under hydrothermal conditions. A BOF steel slag stored several weeks outdoor on the production site was used as starting material. To serve as a reference, room temperature (RT) carbonation of the same BOF steel slag has been monitored with in situ Raman spectroscopy and by measuring pH and P{sub CO2} on a time-resolved basis. CO{sub 2} uptake under RT and HT are, respectively, 243 and 327 kg CO{sub 2}/t of fresh steel slag, which add up with the 63 kg of atmospheric CO{sub 2} per ton already uptaken by the starting steel slag on the storage site. The CO{sub 2} gained by the sample at HT is bounded to the carbonation of brownmillerite. H{sub 2} yield decreased by about 30% in comparison to the same experiment performed without added CO{sub 2}, due to sequestration of ferrous iron in a Mg-rich siderite phase. Ferric iron, initially present in brownmillerite, is partitioned between an Fe-rich clay mineral of saponite type and metastable hematite. Saponite is likely stabilized by the presence of Al, whereas hematite may represent a metastable product of brownmillerite carbonation. Mg-rich wüstite is involved in at least two competing reactions, i.e., oxidation into magnetite and carbonation into siderite. Results of both water-slag and water-CO{sub 2}-slag experiments after 72 h are consistent with a kinetics enhancement of the former reaction when a CO{sub 2} partial pressure imposes a pH between 5 and 6. Three possible valorization routes, (1) RT carbonation prior to hydrothermal oxidation, (2) RT carbonation after hydrothermal treatment, and (3) combined HT carbonation and oxidation are discussed in light of the present results and literature data.

  15. A Mathematical Model for the Multiphase Transport and Reaction Kinetics in a Ladle with Bottom Powder Injection

    Science.gov (United States)

    Lou, Wentao; Zhu, Miaoyong

    2017-12-01

    A computation fluid dynamics-population balance model-simultaneous reaction model (CFD-PBM-SRM) coupled model has been proposed to study the multiphase flow behavior and refining reaction kinetics in a ladle with bottom powder injection, and some new and important phenomena and mechanisms are presented. For the multiphase flow behavior, the effects of bubbly plume flow, powder particle motion, particle-particle collision and growth, particle-bubble collision and adhesion, and powder particle removal into top slag are considered. For the reaction kinetics, the mechanisms of multicomponent simultaneous reactions, including Al, S, Si, Mn, Fe, and O, at the multi-interface, including top slag-liquid steel interface, air-liquid steel interface, powder droplet-liquid steel interface, and bubble-liquid steel interface, are presented, and the effect of sulfur solubility in the powder droplet on the desulfurization is also taken into account. Model validation is carried out using hot tests in a 2-t induction furnace with bottom powder injection. The result shows that the powder particles gradually disperse in the entire furnace; in the vicinity of the bottom slot plugs, the desulfurization product CaS is liquid phase, while in the upper region of the furnace, the desulfurization product CaS is solid phase. The predicted sulfur contents by the present model agree well with the measured data in the 2-t furnace with bottom powder injection.

  16. Application of a powder sintering-extrusion process to the fabrication of U-Al and UO{sub 2}-stainless steel dispersed fuel elements; Application de frittage-filage de poudres a la fabrication d'elements combustibles disperses U-Al et UO{sub 2} inox

    Energy Technology Data Exchange (ETDEWEB)

    Meny, L.; Buffet, J.; Sauve, Ch.

    1962-07-01

    Within the scope of an investigation of dispersion-type fuel elements, the fabrication by extrusion and sintering of cladded bars and tubes with core of either uranium-aluminum or uranium oxide-stainless steel fuel was investigated. The powder mixtures are first pre-densified in a 'pot', whereupon the sheathed compact is degassed and sealed in a vacuum by electron-beam welding. The subsequent co-extrusion is performed at low temperature and with slow pressure application in the case of U-Al dispersions; and at high temperature with rapid pressure application, using the Ugine-Sejournet process, in the case of UO{sub 2}-stainless steel dispersions. The procedure permits the production of practically fully dense bars and tubes more than 1 m. in length and 10-30 mm in diameter, the wall thickness of the tubes ranging from 2-5 mm. The physical and mechanical characteristics of the dispersion, as well as the mechanical characteristics of the cladded elements, were investigated as a function of the uranium content and the temperature. (authors) [French] Dans le cadre de l'etude des elements combustibles disperses, nous avons etudie la fabrication par frittage-filage de barreaux et de tubes gaines renfermant un noyau combustible soit en uranium-aluminium, soit en UO{sub 2}-inox. Les melanges de poudres sont comprimes dans un 'pot'. La billette composite ainsi obtenue est degazee, fermee et soudee sous vide par bombardement electronique. Le cofilage est ensuite effectue, a basse temperature et sur presse lente pour les disperses U-Al, a haute temperature et sur presse rapide par le procede Ugine-Sejournet pour les disperses UO{sub 2}-inox. Nous avons ainsi obtenu des barres et des tubes de porosite pratiquement nulle de plus de 1 metre de longueur et de 10 a 30 mm de diametre; les epaisseurs des tubes sont comprises entre 2 et 5 mm. Les proprietes physiques et mecaniques des disperses ainsi que les proprietes mecaniques des ensembles gaines, ont ete etudiees en fonction de

  17. Enabling lightweight designs by a new laser based approach for joining aluminum to steel

    Science.gov (United States)

    Brockmann, Rüdiger; Kaufmann, Sebastian; Kirchhoff, Marc; Candel-Ruiz, Antonio; Müllerschön, Oliver; Havrilla, David

    2015-03-01

    As sustainability is an essential requirement, lightweight design becomes more and more important, especially for mobility. Reduced weight ensures more efficient vehicles and enables better environmental impact. Besides the design, new materials and material combinations are one major trend to achieve the required weight savings. The use of Carbon Fiber Reinforced Plastics (abbr. CFRP) is widely discussed, but so far high volume applications are rarely to be found. This is mainly due to the fact that parts made of CFRP are much more expensive than conventional parts. Furthermore, the proper technologies for high volume production are not yet ready. Another material with a large potential for lightweight design is aluminum. In comparison to CFRP, aluminum alloys are generally more affordable. As aluminum is a metallic material, production technologies for high volume standard cutting or joining applications are already developed. In addition, bending and deep-drawing can be applied. In automotive engineering, hybrid structures such as combining high-strength steels with lightweight aluminum alloys retain significant weight reduction but also have an advantage over monolithic aluminum - enhanced behavior in case of crash. Therefore, since the use of steel for applications requiring high mechanical properties is unavoidable, methods for joining aluminum with steel parts have to be further developed. Former studies showed that the use of a laser beam can be a possibility to join aluminum to steel parts. In this sense, the laser welding process represents a major challenge, since both materials have different thermal expansion coefficients and properties related to the behavior in corrosive media. Additionally, brittle intermetallic phases are formed during welding. A promising approach to welding aluminum to steel is based on the use of Laser Metal Deposition (abbr. LMD) with deposit materials in the form of powders. Within the present work, the advantages of this

  18. Tool steels

    DEFF Research Database (Denmark)

    Højerslev, C.

    2001-01-01

    On designing a tool steel, its composition and heat treatment parameters are chosen to provide a hardened and tempered martensitic matrix in which carbides are evenly distributed. In this condition the matrix has an optimum combination of hardness andtoughness, the primary carbides provide...... resistance against abrasive wear and secondary carbides (if any) increase the resistance against plastic deformation. Tool steels are alloyed with carbide forming elements (Typically: vanadium, tungsten, molybdenumand chromium) furthermore some steel types contains cobalt. Addition of alloying elements...... serves primarily two purpose (i) to improve the hardenabillity and (ii) to provide harder and thermally more stable carbides than cementite. Assuming proper heattreatment, the properties of a tool steel depends on the which alloying elements are added and their respective concentrations....

  19. Characterization of ceramic powder compacts

    International Nuclear Information System (INIS)

    Yanai, K.; Ishimoto, S.; Kubo, T.; Ito, K.; Ishikawa, T.; Hayashi, H.

    1995-01-01

    UO 2 and Al 2 O 3 powder packing structures in cylindrical powder compacts are observed by scanning electron microscopy using polished cross sections of compacts fixed by low viscosity epoxy resin. Hard aggregates which are not destroyed during powder compaction are observed in some of the UO 2 powder compacts. A technique to measure local density in powder compacts is developed based on counting characteristic X-ray intensity by energy dispersive X-ray analysis (EDX). The local density of the corner portion of the powder compact fabricated by double-acting dry press is higher than that of the inner portion. ((orig.))

  20. The processing and characterization of animal-derived bone to yield materials with biomedical applications. Part II: milled bone powders, reprecipitated hydroxyapatite and the potential uses of these materials.

    Science.gov (United States)

    Johnson, G S; Mucalo, M R; Lorier, M A; Gieland, U; Mucha, H

    2000-11-01

    Further studies on the processing and use of animal-bone-derived calcium phosphate materials in biomedical applications are presented. Bone powders sourced either from the direct crushing and milling of bovine, ovine and cervine bone or after being subjected to defatting and acid digestion/NaOH reprecipitation and sodium hypochlorite hydrogen peroxide treatment of animal bones were characterized using Fourier transform infra-red (FTIR) spectroscopy, 13C solid state magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy, atomic absorption (AA) and inductively coupled plasma (ICP) spectrometric techniques. Bone powders were trialled for their potential use as a substrate for phosphine coupling and enzyme immobilization as well as a feedstock powder for plasma spraying on titanium metal substrates. Results indicated that enzyme immobilization by phosphine coupling could be successfully achieved on milled cervine bone with the immobilized enzyme retaining some activity. It was found that the presence of impurities normally carried down with the processing of the bone materials (viz., fat and collagen) played an important role in influencing the adsorbency and reactivity of the powders. Plasma spraying studies using reprecipitated bovine-derived powders produced highly adherent coatings on titanium metal, the composition of which was mostly hydroxyapatite (Ca10(PO4)6(OH)2) with low levels of alpha-tricalcium phosphate (alpha-Ca3(PO4)2) and tetracalcium phosphate (Ca4P2O9) also detected. In general, animal derived calcium phosphate materials constitute a potentially cheaper source of calcium phosphate materials for biomedical applications and make use of a largely under-utilized resource from abattoir wastes. Copyright 2000 Kluwer Academic Publishers

  1. Magnetically responsive enzyme powders

    Czech Academy of Sciences Publication Activity Database

    Pospišková, K.; Šafařík, Ivo

    2015-01-01

    Roč. 380, APR 2015 (2015), s. 197-200 ISSN 0304-8853 R&D Projects: GA MŠk(CZ) LD13021 Institutional support: RVO:67179843 Keywords : enzyme powders * cross-linking * magnetic modification * magnetic separation * magnetic iron oxides particles * microwave-assisted synthesis Subject RIV: CE - Biochemistry Impact factor: 2.357, year: 2015

  2. Powder neutron diffractometers

    International Nuclear Information System (INIS)

    Adib, M.

    2002-01-01

    Basic properties and applications of powder neutron Diffractometers are described for optimum use of the continuous neutron beams. These instruments are equipped with position sensitive detectors, neutron guide tubes, and both high intensity and high resolution modes of operation are possible .The principles of both direct and Fourier reverse time-of-flight neutron Diffractometers are also given

  3. Low Temperature Powder Coating

    Science.gov (United States)

    2011-02-09

    of volatile organic compounds (VOCs) and hazardous air pollutants (HAPs) • Legacy primers contain hexavalent chrome • Conventional powder coatings...coatings both in laboratory and field service evaluations • LTCPC allows environmental cost reductions through VOC/HAP elimination and hexavalent ... chrome reduction. • The LTCPC process greatly shortens the coating operation (LTCPC cures much more rapidly then conventional wet coatings) resulting in

  4. Laser cladding with powder

    NARCIS (Netherlands)

    Schneider, M.F.; Schneider, Marcel Fredrik

    1998-01-01

    This thesis is directed to laser cladding with powder and a CO2 laser as heat source. The laser beam intensity profile turned out to be an important pa6 Summary rameter in laser cladding. A numerical model was developed that allows the prediction of the surface temperature distribution that is

  5. Ultrasonic assisted hot metal powder compaction.

    Science.gov (United States)

    Abedini, Rezvan; Abdullah, Amir; Alizadeh, Yunes

    2017-09-01

    Hot pressing of metal powders is used in production of parts with similar properties to wrought materials. During hot pressing processes, particle rearrangement, plastic deformation, creep, and diffusion are of the most effective powder densification mechanisms. Applying ultrasonic vibration is thought to result in great rates of densification and therefore higher efficiency of the process is expected. This paper deals with the effects of power ultrasonic on the densification of AA1100 aluminum powder under constant applied stress. The effects of particle size and process temperature on the densification behavior are discussed. The results show that applying ultrasonic vibration leads to an improved homogeneity and a higher relative density. Also, it is found that the effect of ultrasonic vibration is greater for finer particles. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Microstructure characteristics of high borated stainless steel fabricated by hot-pressing sintering

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xuan; Wang, Mingjia, E-mail: mingjiawangysu@126.com; Zhao, Hongchang

    2016-04-25

    The present study investigated the microstructure of powder metallurgy (P/M) high borated stainless steel through hot-pressing sintering in a temperature range of 1000–1150 °C within 30 min under 30 MPa. Microstructure and phase examinations were carried out by applying scanning electron microscope, electron backscatter diffraction and X-ray diffraction analysis. The results of as-atomized powders demonstrated that many powders kept egg-type structure with an austenite outer layer and the eutectic borides were much finer than those in traditional cast products. Microstructure studies revealed that borides suffered Ostwald ripening and were significantly influenced by the sintering temperature. Orientation maps indicated that the inter-particle contact areas consisted of equiaxed grains and the regions consisting of large elongated grains partly inherited the microstructure characteristics of as-atomized powder particles. Furthermore, the mechanisms governing the morphological changes in microstructure were discussed. - Highlights: • Near-complete densification could be obtained through hot-pressing sintering. • There was no phase transformation and present phases were M{sub 2}B and austenite. • Borides suffered Ostwald ripening and were significantly influenced by temperature. • Inter-particle contact areas consisted of equiaxed grains for recrystallization. • Deformation-free zones exhibited elongated grains for dendritic arms coarsening.

  7. Optimisation of the mechanical alloying process for odsferritic steels for generation IV reactors application

    International Nuclear Information System (INIS)

    Stanciulescu, M.; Carlan, P.; Mihalache, M.; Abrudeanu, M.

    2016-01-01

    ODS ferritic steels appear as promising materials for fusion and Gen IV fission reactors, offering high temperature performance, corrosion and irradiation resistance and meeting low activation criteria. Mechanical alloying (MA) is a powder metallurgy technique efficient for fabricating advanced materials, and has been used for strengthening structural materials including Fe-Cr alloys. In this paper a high-energy ball mill is used to study the microstructural evolution of 14YW alloy during the mechanical alloying process. The elemental powders are milled at a rotation speed of 250rot/min in cycles of 10min milling and 5min pause, with a ball-to-powder ration of 10:1 and in argon protective atmosphere. After 72 hours milling, the morphology and element distribution of the MA powders is investigated by scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analysis, respectively. It is observed that the particles size increases in the first milling stages and then decreases with the milling time. Changes in the material composition are analysed by X-ray diffraction (DRX). It seems that after milling part of the W remains non-dissolved in the Fe-Cr matrix retarding the solid solution formation. (authors)

  8. Methodology for calculating the thickness free of sigma phase in duplex stainless steels large section parts during hiperquenching; Metodologia para el calculo de espesores limite libres de fase sigma durante el hipertemple en piezas de aceros duplex de gran seccion

    Energy Technology Data Exchange (ETDEWEB)

    Jimbert, P.; Guraya, T.; Torregary, A.; Bravo, P.

    2013-06-01

    To achieve the mechanical properties and corrosion resistance desired by duplex stainless steels used by the petrochemical and nuclear industry, parts are subjected to a hiperquenching heat treatment from about 1050 degree centigrade. This avoids the risk of intermetallic precipitation which drastically reduces the properties of these materials. However with increasing depth to which the deposits are present, the thicknesses for such pipes have been increased, resulting in higher levels of demand on all its manufacturing process, including the heat treatment. To avoid the precipitation of intermetallic phases such as sigma phase it is necessary to know the cooling profile in the center of the work piece and for this purpose to know the value of the Surface Heat Transfer Coefficient (h) is essential. This coefficient changes during the hiperquenching and its value is determined experimentally as it depends on several process parameters. Studies reveal that its value is stabilized within a few seconds. We can then assume that to know the cooling profile in the center of large sections it is only necessary to know the stabilized value of h. However, all the studies found in the literature are referred to diameters smaller than 100 mm. This paper has developed a methodology to predict the precipitation of intermetallic phases in duplex stainless steel parts with large thicknesses in industrial facilities from the calculation of h. This methodology allows us to calculate the cooling profiles without wasting any work piece using one or more sensorized patterns with thermocouples and a subsequent simulation with ANSYS. (Author)

  9. Development and applications of ultrafine aluminium powders

    International Nuclear Information System (INIS)

    Kearns, Martin

    2004-01-01

    Over the last 20 years or so, a variety of new technologies has been developed to produce sub-micron powders. Among the products attracting interest is nanoaluminium which is being evaluated in specialist propulsion and exothermic end-uses. This paper examines the advances made in 'nanopowder' production in the context of the existing aluminium powder industry where finest commercial grades have a median size of ∼6 μm (one or two orders of magnitude coarser than nanopowders) and which today supplies the markets being targeted by nanopowders with coarser, but effective products. Are there genuine market opportunities for nanoaluminium and if so, how will they be produced? One the one hand there are the novel nanopowder production methods which are high yielding but generally slow and costly, while on the other, there is the very fine fraction from conventional atomising routes which generate a very low yield of sub-micron powder but which nevertheless can translate into a meaningful rate as part of the bulk production. Can conventional routes ever hope to make sufficient volumes of nanopowders cost effectively and which will be the favoured routes in future? Moreover, what of the 'ultrafine' size range (∼0.5-5 μm) which is of more immediate potential interest to today's powder users. This paper seeks to identify the near term opportunities for application of low volume/high value ultrafine and nano powders

  10. Nanocrystalline TiAl powders synthesized by high-energy ball milling: effects of milling parameters on yield and contamination

    International Nuclear Information System (INIS)

    Bhattacharya, Prajina; Bellon, Pascal; Averback, Robert S.; Hales, Stephen J.

    2004-01-01

    High-energy ball milling was employed to produce nanocrystalline Ti-Al powders. As sticking of the powders can be sufficiently severe to result in a near zero yield, emphasis was placed on varying milling conditions so as to increase the yield, while avoiding contamination of the powders. The effects of milling parameters such as milling tools, initial state of the powders and addition of process control agents (PCA's) were investigated. Cyclohexane, stearic acid and titanium hydride were used as PCA's. Milling was conducted either in a Cr-steel vial with C-steel balls, or in a tungsten carbide (WC) vial with WC balls, using either elemental or pre-alloyed powders. Powder samples were characterized using X-ray diffraction, scanning and transmission electron microscopy. In the absence of PCA's mechanical alloying in a WC vial and attrition milling in a Cr-steel vial were shown to lead to satisfactory yields, about 65-80%, without inducing any significant contamination of the powders. The results suggest that sticking of the powders on to the milling tools is correlated with the phase evolution occurring in these powders during milling

  11. Strontium-90 and cesium-137 in milk (powdered milk)

    International Nuclear Information System (INIS)

    1984-01-01

    Sr-90 and Cs-137 in powdered milk were determined using radiochemical analysis. Six brands of commercial milk were purchased as samples in consuming districts in December 1984. Milk in a stainless steel pan or a porcelain dish was evaporated to dryness followed by carbonization and ashing. The maximum values of Sr-90 and Cs-137 were 33 +- 1.0 pCi/kg and 140 +- 2 pCi/kg, respectively, in skim milk manufactured by Meiji. (Namekawa, K.)

  12. Method to blend separator powders

    Science.gov (United States)

    Guidotti, Ronald A.; Andazola, Arthur H.; Reinhardt, Frederick W.

    2007-12-04

    A method for making a blended powder mixture, whereby two or more powders are mixed in a container with a liquid selected from nitrogen or short-chain alcohols, where at least one of the powders has an angle of repose greater than approximately 50 degrees. The method is useful in preparing blended powders of Li halides and MgO for use in the preparation of thermal battery separators.

  13. Carbon steel corrosion under anaerobic-aerobic cycling conditions in near-neutral pH saline solutions - Part 1: Long term corrosion behaviour

    International Nuclear Information System (INIS)

    Sherar, B.W.A.; Keech, P.G.; Shoesmith, D.W.

    2011-01-01

    Highlights: → Anaerobic-aerobic cycling on pipeline steel forms two distinct surface morphologies. → Seventy-five percentage of the surface was covered by a black, compact layer ∼4.5 μm thick. → A tubercle, ∼3 to 4 mm in cross section, covered the remaining 25% of surface. → The tubercle cross section showed a single large pit ∼275 μm deep. - Abstract: The influence of anaerobic-aerobic cycling on pipeline steel corrosion was investigated in near-neutral carbonate/sulphate/chloride solution (pH 9) over 238 days. The corrosion rate increased and decreased as exposure conditions were switched between redox conditions. Two distinct corrosion morphologies were observed. The majority of the surface corroded uniformly to produce a black magnetite/maghemite layer approximately 4.5 μm thick. The remaining surface was covered with an orange tubercle, approximately 3-4 mm in cross section. Analysis of the tubercle cross section revealed a single large pit approximately 275 μm deep. Repeated anaerobic-aerobic cycling localized the corrosion process within this tubercle-covered pit.

  14. Crack growth behaviour of low-alloy steels for pressure boundary components under transient light water reactor operating conditions - CASTOC, Part I: BWR/NWC conditions

    International Nuclear Information System (INIS)

    Ritter, S.; Seifert, H.P.; Devrient, B.; Roth, A.; Ehrnsten, U.; Ernestova, M.; Zamboch, M.; Foehl, J.; Weissenberg, T.; Gomez-Briceno, D.; Lapena, J.

    2004-01-01

    One of the ageing phenomena of pressure boundary components of light water reactors (LWR) is environmentally-assisted cracking (EAC). The project CASTOC (5. Framework Programme of the EU) was launched September 2000 with six European partners and terminated August 2003. It was focused in particular on the EAC behaviour of low-alloy steels (LAS) and to some extent to weld metal, heat affected zone and the influence of an austenitic cladding. The main objective was directed to the clarification of EAC crack growth behaviour/mechanism of LAS in high-temperature water under steady-state power operation (constant load) and transient operating conditions (e.g., start-up/shut-down, transients in water chemistry and load). Autoclave tests were performed with Western and Russian type reactor pressure vessel steels under simulated boiling water reactor (BWR)/normal water chemistry (NWC) and pressurised water reactor (VVER) conditions. The investigations were performed with fracture mechanics specimens of different sizes and geometries. The applied loading comprised cyclic loads, static loads and load spectra where the static load was periodically interrupted by partial unloading. With regard to water chemistry, the oxygen content (VVER) and impurities of sulphate and chlorides (BWR) were varied beyond allowable limits for continuous operation. The current paper summarises the most important crack growth results obtained under simulated BWR/NWC conditions. The results are discussed in the context of the current crack growth rate curves in the corresponding nuclear codes. (authors)

  15. Crack growth behaviour of low-alloy steels for pressure boundary components under transient light water reactor operating conditions - CASTOC, Part I: BWR/NWC conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, S.; Seifert, H.P. [Paul Scherrer Institute, PSI, Villigen (Switzerland); Devrient, B.; Roth, A. [Framatome ANP GmbH, Erlangen (Germany); Ehrnsten, U. [VTT Industrial Systems, Espoo (Finland); Ernestova, M.; Zamboch, M. [Nuclear Research Institute, NRI, Rez (Czech Republic); Foehl, J.; Weissenberg, T. [Staatliche Materialpruefungsanstalt, MPA, Stuttgart (Germany); Gomez-Briceno, D.; Lapena, J. [Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, CIEMAT, Madrid (Spain)

    2004-07-01

    One of the ageing phenomena of pressure boundary components of light water reactors (LWR) is environmentally-assisted cracking (EAC). The project CASTOC (5. Framework Programme of the EU) was launched September 2000 with six European partners and terminated August 2003. It was focused in particular on the EAC behaviour of low-alloy steels (LAS) and to some extent to weld metal, heat affected zone and the influence of an austenitic cladding. The main objective was directed to the clarification of EAC crack growth behaviour/mechanism of LAS in high-temperature water under steady-state power operation (constant load) and transient operating conditions (e.g., start-up/shut-down, transients in water chemistry and load). Autoclave tests were performed with Western and Russian type reactor pressure vessel steels under simulated boiling water reactor (BWR)/normal water chemistry (NWC) and pressurised water reactor (VVER) conditions. The investigations were performed with fracture mechanics specimens of different sizes and geometries. The applied loading comprised cyclic loads, static loads and load spectra where the static load was periodically interrupted by partial unloading. With regard to water chemistry, the oxygen content (VVER) and impurities of sulphate and chlorides (BWR) were varied beyond allowable limits for continuous operation. The current paper summarises the most important crack growth results obtained under simulated BWR/NWC conditions. The results are discussed in the context of the current crack growth rate curves in the corresponding nuclear codes. (authors)

  16. Feed rate affecting surface roughness and tool wear in dry hard turning of AISI 4140 steel automotive parts using TiN+AlCrN coated inserts

    Science.gov (United States)

    Paengchit, Phacharadit; Saikaew, Charnnarong

    2018-02-01

    This work aims to investigate the effects of feed rate on surface roughness (Ra) and tool wear (VB) and to obtain the optimal operating condition of the feed rate in dry hard turning of AISI 4140 chromium molybdenum steel for automotive industry applications using TiN+AlCrN coated inserts. AISI 4140 steel bars were employed in order to carry out the dry hard turning experiments by varying the feed rates of 0.06, 0.08 and 0.1 mm/rev based on experimental design technique that can be analyzed by analysis of variance (ANOVA). In addition, the cutting tool inserts were examined after machining experiments by SEM to evaluate the effect of turning operations on tool wear. The results showed that averages Ra and VB were significantly affected by the feed rate at the level of significance of 0.05. Averages Ra and VB values at the feed rate of 0.06 mm/rev were lowest compared to average values at the feed rates of 0.08 and 0.1 mm/rev, based on the main effect plot.

  17. Plasma technology for powder particles

    Energy Technology Data Exchange (ETDEWEB)

    Kranz, E. (Technische Hochschule, Ilmenau (German Democratic Republic))

    1983-03-01

    A survey is given of principles and applications of plasma spraying and of powder transformation and generation in plasma considering spheroidization, grain size transformation, powder particle formation, powder reduction, and melting within the power range of 10/sup 3/ to 10/sup 7/ W. The products are applied in many industrial fields such as nuclear engineering, hard metal production, metallurgy, catalysis, and semiconductor techniques.

  18. Energy Consumption and Saving Analysis for Laser Engineered Net Shaping of Metal Powders

    Directory of Open Access Journals (Sweden)

    Zhichao Liu

    2016-09-01

    Full Text Available With the increasing awareness of environmental protection and sustainable manufacturing, the environmental impact of laser additive manufacturing (LAM technology has been attracting more and more attention. Aiming to quantitatively analyze the energy consumption and extract possible ways to save energy during the LAM process, this investigation studies the effects of input variables including laser power, scanning speed, and powder feed rate on the overall energy consumption during the laser deposition processes. Considering microhardness as a standard quality, the energy consumption of unit deposition volume (ECUDV, in J/mm3 is proposed as a measure for the average applied energy of the fabricated metal part. The potential energy-saving benefits of the ultrasonic vibration–assisted laser engineering net shaping (LENS process are also examined in this paper. The experimental results suggest that the theoretical and actual values of the energy consumption present different trends along with the same input variables. It is possible to reduce the energy consumption and, at the same time, maintain a good part quality and the optimal combination of the parameters referring to Inconel 718 as a material is laser power of 300 W, scanning speed of 8.47 mm/s and powder feed rate of 4 rpm. When the geometry shaping and microhardness are selected as evaluating criterions, American Iron and Steel Institute (AISI 4140 powder will cause the largest energy consumption per unit volume. The ultrasonic vibration–assisted LENS process cannot only improve the clad quality, but can also decrease the energy consumption to a considerable extent.

  19. TRANSITION METAL OXIDES AS MATERIALS FOR ADDITIVE LASER MARKING ON STAINLESS STEEL

    Directory of Open Access Journals (Sweden)

    Mihail Stoyanov Mihalev

    2017-09-01

    Full Text Available The product information plays an important role in the improvement of the manufacturing, allowing the tracking of the part through the full life cycle. Laser marking is one of the most versatile techniques for this purpose. In this paper, a modification of the powder bed selective laser melting for additive laser marking of stainless steel parts is presented. This modification is based on the use of only one transition metal oxide chemically bonded to the stainless steel substrate, without using any additional materials and cleaning substances. The resulting additive coatings, produced from initial MoO3 and WO3 powders, show strong adhesion, high hardness, long durability and a high optical contrast. For estimation of the chemical and structural properties, the Raman and X-Ray Diffraction (XRD spectroscopy have been implemented. A computer model of the process of the laser melting and re-solidification has been developed as well. A comparative analysis of the properties of both (MoO3 and WO3 additive coatings has been performed. An attempt for a qualitative explanation of the thermo-chemical phenomena during the marking process has been undertaken.

  20. Dispersing powders in liquids

    CERN Document Server

    Nelson, RD

    1988-01-01

    This book provides powder technologists with laboratory procedures for selecting dispersing agents and preparing stable dispersions that can then be used in particle size characterization instruments. Its broader goal is to introduce industrial chemists and engineers to the phenomena, terminology, physical principles, and chemical considerations involved in preparing and handling dispersions on a commercial scale. The book introduces novices to: - industrial problems due to improper degree of dispersion; - the nomenclature used in describing particles; - the basic physica

  1. Laser Processing Technology using Metal Powders

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jeong-Hwan; Moon, Young-Hoon [Pusan National University, Busan (Korea, Republic of)

    2012-03-15

    The purpose of this paper is to review the state of laser processing technology using metal powders. In recent years, a series of research and development efforts have been undertaken worldwide to develop laser processing technologies to fabricate metal-based parts. Layered manufacturing by the laser melting process is gaining ground for use in manufacturing rapid prototypes (RP), tools (RT) and functional end products. Selective laser sintering / melting (SLS/SLM) is one of the most rapidly growing rapid prototyping techniques. This is mainly due to the processes's suitability for almost any materials, including polymers, metals, ceramics and many types of composites. The interaction between the laser beam and the powder material used in the laser melting process is one of the dominant phenomena defining feasibility and quality. In the case of SLS, the powder is not fully melted during laser scanning, therefore the SLS-processed parts are not fully dense and have relatively low strength. To overcome this disadvantage, SLM and laser cladding (LC) processes have been used to enable full melting of the powder. Further studies on the laser processing technology will be continued due to the many potential applications that the technology offers.

  2. Experimental evaluation of tool wear throughout a continuous stroke blanking process of quenched 22MnB5 ultra-high-strength steel

    Science.gov (United States)

    Vogt, S.; Neumayer, F. F.; Serkyov, I.; Jesner, G.; Kelsch, R.; Geile, M.; Sommer, A.; Golle, R.; Volk, W.

    2017-09-01

    Steel is the most common material used in vehicles’ chassis, which makes its research an important topic for the automotive industry. Recently developed ultra-high-strength steels (UHSS) provide extreme tensile strength up to 1,500 MPa and combine great crashworthiness with good weight reduction potential. However, in order to reach the final shape of sheet metal parts additional cutting steps such as trimming and piercing are often required. The final trimming of quenched metal sheets presents a huge challenge to a conventional process, mainly because of the required extreme cutting force. The high cutting impact, due to the materials’ brittleness, causes excessive tool wear or even sudden tool failure. Therefore, a laser is commonly used for the cutting process, which is time and energy consuming. The purpose of this paper is to demonstrate the capability of a conventional blanking tool design in a continuous stroke piercing process using boron steel 22MnB5 sheets. Two different types of tool steel were tested for their suitability as active cutting elements: electro-slag remelted (ESR) cold work tool steel Bohler K340 ISODUR and powder-metallurgic (PM) high speed steel Bohler S390 MICROCLEAN. A FEM study provided information about an optimized punch design, which withstands buckling under high cutting forces. The wear behaviour of the process was assessed by the tool wear of the active cutting elements as well as the quality of cut surfaces.

  3. Steel containment buckling

    International Nuclear Information System (INIS)

    Butler, T.A.; Baker, W.E.

    1986-01-01

    Two aspects of buckling of a free-standing nuclear steel containment building were investigated in a combined experimental and analytical program. In the first part of the study, the response of a scale model of a containment building to dynamic base excitation is investigated. A simple harmonic signal was used for preliminary studies followed by experiments with scaled earthquake signals as the excitation source. The experiments and accompanying analyses indicate that the scale model response to earthquake-type excitations is very complex and that current analytical methods may require a dynamic capacity reduction factor to be incorporated. The second part of the study quantified the effects of framing at large penetrations on the static buckling capacity of scale model containments. Results show little effect from the framing for the scale models constructed from the polycarbonate, Lexan. However, additional studies with a model constructed of the prototypic steel material are suggested

  4. Steel alloys

    International Nuclear Information System (INIS)

    Bloom, E.E.; Stiegler, J.O.; Rowcliffe, A.F.; Leitnaker, J.M.

    1977-01-01

    The invention deals with a fuel element for fast breeder reactors. It consits essentially of a uranium oxide, nitride, or carbide or a mixture of these fuels with a plutonium or thorium oxide, nitride, or carbide. The fuel elements are coated with an austenitic stainless steel alloy. Inside the fuel elements, vacancies or small cavities are produced by neutron effects which causes the steel coating to swell. According to the invention, swelling is prevented by a modification of type 304, 316, 321, or 12 K 72HV commercial steels. They consist mainly of Fe, Cr, and Ni in a ratio determined by a temary diagram. They may also contain 1.8 to 2.3% by weight of Mo and a fraction of Si (0.7 to 2% by weight) and Ti(0.10 to 0.5% by weight) to prevent cavity formation. They are structurally modified by cold working. (IHOE) [de

  5. Container for nuclear fuel powders

    International Nuclear Information System (INIS)

    Etheredge, B.F.; Larson, R.I.

    1982-01-01

    A critically safe container is disclosed for the storage and rapid discharge of enriched nuclear fuel material in powder form is disclosed. The container has a hollow, slab-shaped container body that has one critically safe dimension. A powder inlet is provided on one side wall of the body adjacent to a corner thereof and a powder discharge port is provided at another corner of the body approximately diagonal the powder inlet. Gas plenum for moving the powder during discharge are located along the side walls of the container adjacent the discharge port

  6. Irradiation embrittlement of pressure vessel steels

    International Nuclear Information System (INIS)

    Brumovsky, M.; Vacek, M.

    1975-01-01

    A Standard Research Programme on Irradiation Embrittlement of Pressure Vessel Steels was approved by the Coordinating Meeting on the 12th May 1972 at the Working Group on Engineering Aspects of Irradiation Embrittlement of Pressure Vessel Steels. This Working Group was set up by the International Atomic Energy Agency in Vienna. Seven countries with their research institutes agreed on doing irradiation experiments according to the approved programme on steel A533 B from the U.S. HSST Programme. The Czechoslovak contribution covering tensile and impact testing of non-irradiated steel and steel irradiated at 280degC to 1.3 x 10 23 n/m 2 (E above 1 MeV) is presented in this report. As an additional part the same set of experiments was carried out on two additional steels - A 542 and A 543, made in SKODA Works for comparison of their irradiation embrittlement and hardening with A533 B steel. (author)

  7. Electrocoagulation applied to the decontamination of stainless steel parts contaminated with uranium; Electrocoagulacion aplicada a la descontaminacion de piezas de acero inoxidable contaminadas con uranio

    Energy Technology Data Exchange (ETDEWEB)

    Pujol P, A. A.; Monroy G, F. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Bustos B, E., E-mail: apujol@cideteq.mx [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, S. C., Parque Sanfandila s/n, Pedro Escobedo, 76703 Santiago de Queretaro, Qro. (Mexico)

    2017-09-15

    The decontamination of non-compact able radioactive waste, such as tools and equipment, has the purpose of removing surface radioactive waste from waste, in order to reduce its volume to be conditioned and stored. The application of treatment techniques based on electrochemistry, such as electro-coagulation (Ec) in the decontamination of waste or non-compact able radioactive materials of stainless steel containing uranium, was studied in the present work and its technical feasibility was evaluated. For this, tests were carried out, first with stainless steel plates coated with WO{sub 3}, to simulate a fixed contamination and to determine the best conditions of tungsten removal by Ec as: ph, support electrolyte, cell potential, type of counter electrode material and distance between the anode/cathode electrodes. In addition, different arrangements of configurations were tested for a rectangular acrylic cell and for a circular configuration cell, using flat plate electrodes and cylindrical electrodes to perform the removal process of the contaminant with the best conditions. In the case of the Ec, the mechanism that occurs is an electrodisolution of the iron plate, with the release of oxygen at the anode and detachment of the WO{sub 3} layer, all the material passing to the solution with the formation of iron hydroxides. Subsequently, from the best experimental conditions to remove WO{sub 3}, UO{sub 2} (NO{sub 3}) {sub 2} was used as radioactive contaminant to evaluate the feasibility of the decontamination process. Removal efficiencies of 90% uranium were obtained in 1 hour, ph = 1, using a molar solution of H{sub 2}SO{sub 4} as support electrolyte and potential of 2.4 V. Finally, after testing the different electrochemical cell (Ec) arrays at the laboratory level, radioactive decontamination of real pieces contaminated with U-238 was performed using the circular configuration arrangement under the best experimental conditions previously determined. (Author)

  8. Crack growth behaviour of low-alloy steels for pressure boundary components under transient light water reactor operating conditions - CASTOC, Part II: WWER conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ernestova, M.; Zamboch, M. [Nuclear Research Institute, NRI, Rez (Czech Republic); Devrient, B.; Roth, A. [Framatome ANP GmbH, Erlangen (Germany); Ehrnsten, U. [VTT Industrial Systems, Espoo (Finland); Foehl, J.; Weissenberg, T. [Staatliche Materialpruefungsanstalt, MPA, Stuttgart (Germany); Gomez-Briceno, D.; Lapena, J. [Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, CIEMAT, Madrid (Spain); Ritter, S.; Seifert, H.P. [Paul Scherrer Institute, PSI, Villigen (Switzerland)

    2004-07-01

    One of the ageing phenomena of pressure boundary components of light water reactors (LWRs) is environmentally-assisted cracking (EAC). The project CASTOC (5. Framework Programme of the EU) was launched September 2000 with six European partners and terminated August 2003. It focused in particular on the EAC behaviour of low-alloy steels (LAS) and to some extent to weld metal, heat affected zone and the influence of an austenitic cladding. The main objective was directed to the clarification of crack growth behavior of LAS in high-temperature water due to EAC under constant load (steady-state power operation), to study the effect of transient conditions (during operation or start-up/shut-down of a plant) using their impact on time-based and cycle-based crack growth rates and to a more detailed understanding of the acting mechanisms. Autoclave tests were performed with Western and Russian type reactor pressure vessel steels under simulated boiling water reactor (BWR)/normal water chemistry (NWC) and pressurized water reactor (WWER) conditions. The investigations were performed with fracture mechanics specimens of different sizes and geometries. The applied loading comprised cyclic loads, static loads and load spectra where the static load was periodically interrupted by partial unloading. With regard to water chemistry, the oxygen content (WWER) and impurities of sulphate and chlorides (BWR) were varied beyond allowable limits for continuous operation. The current paper summarizes the most important crack growth results obtained under simulated WWER conditions. The influence of oxygen content and the effect of specimen size (C(T)25 versus C(T)50 specimens) on the crack growth rates are shown. The results are discussed in the context of the current crack growth rate curves in the corresponding nuclear codes. (authors)

  9. Crack growth behaviour of low-alloy steels for pressure boundary components under transient light water reactor operating conditions - CASTOC, Part II: WWER conditions

    International Nuclear Information System (INIS)

    Ernestova, M.; Zamboch, M.; Devrient, B.; Roth, A.; Ehrnsten, U.; Foehl, J.; Weissenberg, T.; Gomez-Briceno, D.; Lapena, J.; Ritter, S.; Seifert, H.P.

    2004-01-01

    One of the ageing phenomena of pressure boundary components of light water reactors (LWRs) is environmentally-assisted cracking (EAC). The project CASTOC (5. Framework Programme of the EU) was launched September 2000 with six European partners and terminated August 2003. It focused in particular on the EAC behaviour of low-alloy steels (LAS) and to some extent to weld metal, heat affected zone and the influence of an austenitic cladding. The main objective was directed to the clarification of crack growth behavior of LAS in high-temperature water due to EAC under constant load (steady-state power operation), to study the effect of transient conditions (during operation or start-up/shut-down of a plant) using their impact on time-based and cycle-based crack growth rates and to a more detailed understanding of the acting mechanisms. Autoclave tests were performed with Western and Russian type reactor pressure vessel steels under simulated boiling water reactor (BWR)/normal water chemistry (NWC) and pressurized water reactor (WWER) conditions. The investigations were performed with fracture mechanics specimens of different sizes and geometries. The applied loading comprised cyclic loads, static loads and load spectra where the static load was periodically interrupted by partial unloading. With regard to water chemistry, the oxygen content (WWER) and impurities of sulphate and chlorides (BWR) were varied beyond allowable limits for continuous operation. The current paper summarizes the most important crack growth results obtained under simulated WWER conditions. The influence of oxygen content and the effect of specimen size (C(T)25 versus C(T)50 specimens) on the crack growth rates are shown. The results are discussed in the context of the current crack growth rate curves in the corresponding nuclear codes. (authors)

  10. Preparation of superconductor precursor powders

    Science.gov (United States)

    Bhattacharya, Raghunath

    1998-01-01

    A process for the preparation of a precursor metallic powder composition for use in the subsequent formation of a superconductor. The process comprises the steps of providing an electrodeposition bath comprising an electrolyte medium and a cathode substrate electrode, and providing to the bath one or more soluble salts of one or more respective metals which are capable of exhibiting superconductor properties upon subsequent appropriate treatment. The bath is continually energized to cause the metallic and/or reduced particles formed at the electrode to drop as a powder from the electrode into the bath, and this powder, which is a precursor powder for superconductor production, is recovered from the bath for subsequent treatment. The process permits direct inclusion of all metals in the preparation of the precursor powder, and yields an amorphous product mixed on an atomic scale to thereby impart inherent high reactivity. Superconductors which can be formed from the precursor powder include pellet and powder-in-tube products.

  11. Japan steel mill perspective

    Energy Technology Data Exchange (ETDEWEB)

    Murase, K. [Kobe Steel Ltd., Tokyo (Japan)

    2004-07-01

    The international and Japan's steel industry, the coking coal market, and Japan's expectations from Canada's coal industry are discussed. Japan's steel mills are operating at full capacity. Crude steel production for the first half of 2004 was 55.8 million tons. The steel mills are profitable, but costs are high, and there are difficulties with procuring raw materials. Japan is trying to enhance the quality of coke, in order to achieve higher productivity in the production of pig iron. Economic growth is rising disproportionately in the BRICs (Brazil, Russia, India, and China), with a large increase in coking coal demand from China. On the supply side, there are several projects underway in Australia and Canada to increase production. These include new developments by Elk Valley Coal Corporation, Grande Cache Coal, Western Canadian Coal, and Northern Energy and Mining in Canada. The Elga Mine in the far eastern part of Russia is under development. But the market is expected to remain tight for some time. Japan envisions Canadian coal producers will provide a stable coal supply, expansion of production and infrastructure capabilities, and stabilization of price. 16 slides/overheads are included.

  12. Powder Metallurgy Fabrication of Molybdenum Accelerator Target Disks

    Energy Technology Data Exchange (ETDEWEB)

    Lowden, Richard Andrew [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kiggans Jr., James O. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Nunn, Stephen D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Parten, Randy J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-07-01

    Powder metallurgy approaches for the fabrication of accelerator target disks are being examined to support the development of Mo-99 production by NorthStar Medical Technologies, LLC. An advantage of powder metallurgy is that very little material is wasted and, at present, dense, quality parts are routinely produced from molybdenum powder. The proposed targets, however, are thin wafers, 29 mm in diameter with a thickness of 0.5 mm, with very stringent dimensional tolerances. Although tooling can be machined to very high tolerance levels, the operations of powder feed, pressing and sintering involve complicated mechanisms, each of which affects green density and shrinkage, and therefore the dimensions and shape of the final product. Combinations of powder morphology, lubricants and pressing technique have been explored to produce target disks with minimal variations in thickness and little or no distortion. In addition, sintering conditions that produce densities for optimum target dissolvability are being determined.

  13. Introduction to powder metallurgy processes for titanium manufacturing

    International Nuclear Information System (INIS)

    Esteban, P. G.; Bolzoni, L.; Ruiz-Navas, E. M.; Gordo, E.

    2011-01-01

    The development of new extraction processes to produce titanium in powder form leads Powder Metallurgy to an advantage position among the manufacturing processes for titanium. The cost reduction of base material, coupled with the economy of the powder metallurgy processes, give titanium industry the chance to diversify its products, which could lead to production volumes able to stabilise the price of the metal. This work reviews some of the Powder Metallurgy techniques for the manufacturing of titanium parts, and describes the two typical approaches for titanium manufacturing: Blending Elemental and Prealloyed Powders. Among others, conventional pressing and sintering are described, which are compared with cold and hot isostatic pressing techniques. Real and potential applications are described. (Author) 71 refs.

  14. Compresibility and sinterability of HCx PM steel diluted with stainless steels

    Directory of Open Access Journals (Sweden)

    Elena Gordo

    2003-12-01

    Full Text Available HCx powder metallurgy steel contains in its composition high contents of Cr and C, and significant quantities of alloy elements typical of tool steels (Mo, V, W, to provide the corrosion resistance of stainless steel with wear resistance of tool steels. HCx appears to be a suitable material for applications in aggressive environments, as valve seat inserts in automotive engines. However, this steel presents a low compressibility leading to high production costs. In this work, some results carried out to improve the compressibility of HCx are presented. The way to attempt this improvement is the dilution of base material with two stainless steels, the ferritic 430LHC and the austenitic 316L. The powder mixes prepared were uniaxially pressed to study the compressibility. The sinterability was study by determining of density, hardness, transverse rupture strength (TRS and microstructural evolution after vacuum sintering at different temperatures. As a result, better compressibility is observed in the mixes although not all of them present the properties required.

  15. Predictive Simulation of Process Windows for Powder Bed Fusion Additive Manufacturing: Influence of the Powder Bulk Density.

    Science.gov (United States)

    Rausch, Alexander M; Küng, Vera E; Pobel, Christoph; Markl, Matthias; Körner, Carolin

    2017-09-22

    The resulting properties of parts fabricated by powder bed fusion additive manufacturing processes are determined by their porosity, local composition, and microstructure. The objective of this work is to examine the influence of the stochastic powder bed on the process window for dense parts by means of numerical simulation. The investigations demonstrate the unique capability of simulating macroscopic domains in the range of millimeters with a mesoscopic approach, which resolves the powder bed and the hydrodynamics of the melt pool. A simulated process window reveals the influence of the stochastic powder layer. The numerical results are verified with an experimental process window for selective electron beam-melted Ti-6Al-4V. Furthermore, the influence of the powder bulk density is investigated numerically. The simulations predict an increase in porosity and surface roughness for samples produced with lower powder bulk densities. Due to its higher probability for unfavorable powder arrangements, the process stability is also decreased. This shrinks the actual parameter range in a process window for producing dense parts.

  16. Microstructure and Mechanical Properties of Long Ti-6Al-4V Rods Additively Manufactured by Selective Electron Beam Melting Out of a Deep Powder Bed and the Effect of Subsequent Hot Isostatic Pressing

    Science.gov (United States)

    Lu, S. L.; Tang, H. P.; Ning, Y. P.; Liu, N.; StJohn, D. H.; Qian, M.

    2015-09-01

    An array of eight long Ti-6Al-4V rods (diameter: 12 mm; height: 300 mm) have been additively manufactured, vertically and perpendicular to the powder bed, by selective electron beam melting (SEBM). The purpose was to identify and understand the challenges of fabricating Ti-6Al-4V samples or parts from a deep powder bed (more than 200-mm deep) by SEBM and the necessity of applying post heat treatment. The resulting microstructure and mechanical properties of these Ti-6Al-4V rods were characterized along their building ( i.e., axial) direction by dividing each rod into three segments (top, middle, and bottom), both before ( i.e., as-built) and after hot isostatic pressing (HIP). The as-built microstructure of each rod was inhomogeneous; it was coarsest in the top segment, which showed a near equilibrium α- β lamellar structure, and finest in the bottom segment, which featured a non-equilibrium mixed structure. The tensile properties varied along the rod axis, especially the ductility, but all tensile properties met the requirements specified by ASTM F3001-14. HIP increased the relative density from 99.03 pct of the theoretical density (TD) to 99.90 pct TD and homogenized the microstructure thereby leading to highly consistent tensile properties along the rod axis. The temperature of the stainless steel substrate used in the powder bed was monitored. The as-built inhomogeneous microstructure is attributed to the temperature gradient in the deep powder bed. Post heat treatment is thus necessary for Ti-6Al-4V samples or parts manufactured from a deep powder bed by SEBM. This differs from the additive manufacturing of small samples or parts from a shallow powder bed (less than 100-mm deep) by SEBM.

  17. Powder metallurgy of turbine disc alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ingesten, N.G. (Dep. of Engineering Metals)

    1981-03-01

    The first part embraced a study of carbide precipitated in IN 100 and astrology powders. The powder was heat treated at temperatures between 950/sup 0/C and 1150/sup 0/C. After aging at 950-1100/sup 0/C the MC-carbides formed during atomization were replaced by M/sub 23/C/sub 6/-carbides. After 1150/sup 0/C treatments the MC carbides were present again. Precipitation comparable with that obtained in HIP:ed specimens was not observed at free particle surfaces. However, powder particles which had agglomerated during atomization often exhibited considerable precipitation at contiguous surfaces. Obviously, contact between the particles must occur if coarse precipitation at particle surfaces is to develop. Reduced PPB-precipitation was obtained by pre-heat- treatment of powder before compaction. It is suggested that the carbon otherwise available for PPB-precipitation forms carbides in the interior of the powder particles. The aim of the second part was to ..gamma..-strengthen a Co-based super-alloy (Co-15Cr-3Mo-5Ti). Here the Ti-addition gives a coherent and ordered ..gamma..-phase Co/sub 3/Ti. However, upon ageing the alloy is unstable in order to increase the stability modifications of the alloy were prepared by: leaving out the Mo-content, adding 10 % Ni and by decreasing the Ti-content to 4.2 %. In addition, the effect of enhanced grain size and of deformation was investigated. Significant reduction of the transformation rate was only obtained by decresing the Ti-content while deformation of the alloy greatly increased the transformation rate.(author).

  18. Corrosion of steel in concrete in cooling water walls. Report part 1 - Literature survey; Korrosion paa staal i betong i kylvattenvaegar. Delrapport 1 - Litteraturgranskning

    Energy Technology Data Exchange (ETDEWEB)

    Lindmark, Sture; Sederholm, Bror

    2010-09-15

    The aim of the present literature study has been to collect knowledge about reported concentrations of chloride concentrations in concrete exposed to brackish water and also to get an overview of whether a critical threshold chloride concentration for chloride induced corrosion on steel embedded in concrete has been reported and/or accepted. Only five known reports present chloride concentrations in concrete that has been exposed to brackish water. All three refer to the Baltic sea or the Gulf of Bothnia. Reported chloride concentrations in the concrete is considerably higher (more than a factor of ten) than what would have been expected if the chloride had been present in the concrete only as sea water in the pore system. One reason why high chloride concentrations occur in certain zones of the concrete may be that in these zones, evaporation and capillary suction of salt water may occur alternately. Another reason is that chloride ions are physically and/or chemically bound to the cement paste structure. Chloride binding is reported to be dependent on pH value in the pore solution. In line with this, another report suggests that the pH value of the outer chloride solution (the exposure solution) may be affected by the test sample when tests are carried out in small beakers, like in the laboratory. The author of that report says this might be a reason why critical chloride concentrations with respect to steel corrosion measured in the laboratory and in the field will deviate. As for reported threshold levels, many different values have been reported, differing by more than a factor 100, irrespective of the way of reporting (chloride by cement weight, chloride to hydroxide ratio, chloride to pore solution volume, etc). Some authors claim that in fact no one, single critical chloride concentration exists, but that it will depend on several other factors such as humidity, oxygen availability, pH etc. Furthermore, there are different opinions on whether bound

  19. Diffraction. Powder, amorphous, liquid

    International Nuclear Information System (INIS)

    Sosnowska, I.M.

    1999-01-01

    Neutron powder diffraction is a unique tool to observe all possible diffraction effects appearing in crystal. High-resolution neutron diffractometers have to be used in this study. Analysis of the magnetic structure of polycrystalline materials requires the use of high-resolution neutron diffraction in the range of large interplanar distances. As distinguished from the double axis diffractometers (DAS), which show high resolution only at small interplanar distances, TOF (time-of-flight) diffractometry offers the best resolution at large interplanar distances. (K.A.)

  20. LARC powder prepreg system

    Science.gov (United States)

    Baucom, Robert M.; Marchello, Joseph M.

    1990-01-01

    Thermoplastic prepregs of LARC-TPI have been produced in a fluidized bed unit on spread continuous fiber tows. The powders are melted on the fibers by radiant heating to adhere the polymer to the fiber. This process produces tow prepreg uniformly without imposing severe stress on the fibers or requiring long high temperature residence times for the polymer. Unit design theory and operating correlations have been developed to provide the basis for scale up to commercial operation. Special features of the operation are the pneumatic tow spreader, fluidized bed and resin feed systems.

  1. Developing Characterization Procedures for Qualifying both Novel Selective Laser Sintering Polymer Powders and Recycled Powders

    Energy Technology Data Exchange (ETDEWEB)

    Bajric, Sendin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-12

    Selective laser sintering (SLS) is an additive technique which is showing great promise over conventional manufacturing techniques. SLS requires certain key material properties for a polymer powder to be successfully processed into an end-use part, and therefore limited selection of materials are available. Furthermore, there has been evidence of a powder’s quality deteriorating following each SLS processing cycle. The current investigation serves to build a path forward in identifying new SLS powder materials by developing characterization procedures for identifying key material properties as well as for detecting changes in a powder’s quality. Thermogravimetric analyses, differential scanning calorimetry, and bulk density measurements were investigated.

  2. Specific features of laser selective sintering of loose powder layers of metal-polymer type

    International Nuclear Information System (INIS)

    Tolochko, N.K.; Sobolenko, N.V.; Mozzharov, S.E.; Yadrojtsev, I.A.

    1996-01-01

    Experimental study was carried out into laser sintering of metal and polymer powder mixtures containing 75 vol.% of nickel base alloy (spherical particles 60-70 μm in diameter) and 25 vol.% of PEP-219 polymer (angular isometric particles 50-100 μm in size). The powder mixture was deposited on a stainless steel substrate and heated by continuous laser beam directed normally to powder layer. Geometrical and structural parameters of single and multilayer sintered products are shown to depend on both laser processing conditions and heat transfer. Some recommendations are given aimed at manufacturing articles of required shape, surface properties and material strength. 6 refs.; 4 figs

  3. Effect of processing variables on mechanical properties of sintered manganese steels Fe-3%Mn-0.8%C

    International Nuclear Information System (INIS)

    Sulowski, M.; Cias, A.

    1998-01-01

    The powder metallurgy route may allow sintered manganese steels to be made based on pure iron powder and ferromanganese powder with control over alloy microstructure. The factors that contribute to the mechanical properties of sintered Fe-3%Mn-0.8%C manganese steel, such as the sintering atmosphere, dew point, sintering temperature, cooling rate are summarised. The paper shows the influence of these parameters on the tensile strength, yield strength, transverse rupture strength, impact strength and hardness. It is showed that tensile high strength level higher than those of many present sintered steels can be obtained already in the as-sintered condition. (author)

  4. Improving composition of protective coatings for steel casting

    International Nuclear Information System (INIS)

    Kuz'kina, N.N.; Pegov, V.G.; Bogatenkov, V.F.; Shub, L.G.; Raspopova, N.A.

    1983-01-01

    A radically new fuel-free slag-forming mixture used as protective coating for steel casting is introduced. The lack of combustible powders precludes explosion and fire Lazard in mixture preparation. Usage of the new mixture in stainless steel casting of Kh18N10T type permitted to improve the ingot surface quality and reduce spoilage from 1.16 to 0.66%

  5. On the use of triazines as inhibitors of steel corrosion

    International Nuclear Information System (INIS)

    Sizaya, O.I.; Andrushko, A.P.

    2004-01-01

    A possibility of using substandard pesticides as a raw materials for synthesis of a set of triazines and also using them as a inhibitors of acidic corrosion of steel 20, as well as additions to epoxy powder coatings is considered. It is shown that triazines studied are inhibitors of acidic corrosion of steel 20. 2,4-di(ethylamino)-6-phenylhydrazono-1,3,5-triazine (In 4) has a maximum inhibiting effect among the studied compounds [ru

  6. The effect of residual thermal stresses on the fatigue crack growth of laser-surface-annealed AISI 304 stainless steel Part I: computer simulation

    International Nuclear Information System (INIS)

    Shiue, R.K.; Chang, C.T.; Young, M.C.; Tsay, L.W.

    2004-01-01

    The effect of residual thermal stresses on the fatigue crack growth of the laser-surface-annealed AISI 304 stainless steel, especially the effect of stress redistribution ahead of the crack tip was extensively evaluated in the study. Based on the finite element simulation, the longitudinal residual tensile stress field has a width of roughly 20 mm on the laser-irradiated surface and was symmetric with respect to the centerline of the laser-annealed zone (LAZ). Meanwhile, residual compressive stresses distributed over a wide region away from the LAZ. After introducing a notch perpendicular to the LAZ, the distribution of longitudinal residual stresses became unsymmetrical about the centerline of LAZ. High residual compressive stresses exist within a narrow range ahead of notch tip. The improved crack growth resistance of the laser-annealed specimen might be attributed to those induced compressive stresses. As the notch tip passed through the centerline of the LAZ, the residual stress ahead of the notch tip was completely reverted into residual tensile stresses. The existence of unanimous residual tensile stresses ahead of the notch tip was maintained, even if the notch tip extended deeply into the LAZ. Additionally, the presence of the residual tensile stress ahead of the notch tip did not accelerate the fatigue crack growth rate in the compact tension specimen

  7. Fatigue threshold studies in Fe, Fe-Si, and HSLA steel: Part II. thermally activated behavior of the effective stress intensity at threshold

    Science.gov (United States)

    Yu, W.; Esaklul, K.; Gerberich, W. W.

    1984-05-01

    It is shown that closure mechanisms alone cannot fully explain increasing fatigue thresholds with decreasing test temperature for a sequence of Fe-Si binary alloys and an HSLA steel. Implications are that fatigue crack propagation near threshold is a thermally activated process. The effective threshold stress intensity, which was obtained by subtracting the closure portion from the fatigue threshold, was examined. This effective stress intensity was found to correlate very well to the thermal component of the flow stress. A detailed fractographic study of the fatigue surface was performed. Water vapor in the room air was found to promote the formation of oxide and intergranular crack growth. At lower temperature, a brittle-type cyclic cleavage fatigue surface was observed but the ductile process persisted even at 123 K. Arrest marks were found on all three modes of fatigue crack growth. The regular spacings between these lines and dislocation modeling suggested that fatigue crack growth was controlled by the subcell structure near threshold. A model based on the slip-off of dislocations was examined. From this, it is shown that the effective fatigue threshold may be related to the square root of (one plus the strain rate sensitivity).

  8. Creep-rupture-test on the stainless steel X6CRNI1811 (DIN 1.4948) in the frame of the ''Extrapolation-Program''. (Part III)

    International Nuclear Information System (INIS)

    Solano, R.; Las Rivas, M. de; Barroso, S.

    1982-01-01

    The austenitic stainless steel X6CrNi1811 (DIN 1.4948) used as a structure material for the German Fast Breeder Reactor SNR 300 was creep tested in a temperature range of 550-650 deg under base material condition as well as welded material condition. The main point of this program (''Extrapolation-Program'') lies in the knowledge of the creep-rupture-strength and creepbehaviour up to 3 x 10 4 hours at higher temperatures in order to extrapolate up to >=10 5 hours for operating temperatures. In order to study the stress dependency of the minimum creep rate additional tests were carried out of 550 deg - 750 deg C. The present report describes the state in the running program with test-times of 23.000 hours and results from tests up to 55.000 hours belonging to other parallel programs are taken into account. Besides the creep-rupture behaviour it is also made a study of ductility between 550 and 750 deg C. Extensive metallographic examinations have been made to study the fracture behaviour and changes in structure. (author)

  9. Creep-rupture-test on the stainless steel X6crni1811 (Din 1.494.8) in the frame of the Extrapolation-Program. (Part III)

    International Nuclear Information System (INIS)

    Solano, R.; Schirra, M.; Rivas, M. de la; Barroso, S.; Seith, B.

    1982-01-01

    The austenitic stainless steel X6crni1811 (Din 1.4948) used as a structure material for the German Fast Breeder Reactor SNR 300 was creep tested in a temperature range of 550-650 degree centigree material condition as well as welded material condition. The main point of this program (Extrapolation-Program) lies in the knowledge of the creep-rupture-strength and creep-behaviour up to 3 x 10 4 hours higher temperatures in order to extrapolated up to ≥10 5 hours for operating temperatures. In order to study the stress dependency of the minimum creep rate additional tests were carried out of 550 degree centigree - 750 degree centigree. The present report describes the state in the running program with test-times of 23.000 hours and results from tests up to 55.000 hours belonging to other parallel programs are taken into account. Besides the creep-rupture behaviour it is also made a study of ductility between 550 and 750 degree centigree. Extensive metallographic examinations have been made to study the fracture behaviour and changes in structure. (Author)

  10. Application of physical and chemical characterization techniques to metallic powders

    International Nuclear Information System (INIS)

    Slotwinski, J. A.; Watson, S. S.; Stutzman, P. E.; Ferraris, C. F.; Peltz, M. A.; Garboczi, E. J.

    2014-01-01

    Systematic studies have been carried out on two different powder materials used for additive manufacturing: stainless steel and cobalt-chrome. The characterization of these powders is important in NIST efforts to develop appropriate measurements and standards for additive materials and to document the property of powders used in a NIST-led additive manufacturing material round robin. An extensive array of characterization techniques was applied to these two powders, in both virgin and recycled states. The physical techniques included laser diffraction particle size analysis, X-ray computed tomography for size and shape analysis, and optical and scanning electron microscopy. Techniques sensitive to chemistry, including X-ray diffraction and energy dispersive analytical X-ray analysis using the X-rays generated during scanning electron microscopy, were also employed. Results of these analyses will be used to shed light on the question: how does virgin powder change after being exposed to and recycled from one or more additive manufacturing build cycles? In addition, these findings can give insight into the actual additive manufacturing process

  11. Copper infiltrated high speed steels based composites

    International Nuclear Information System (INIS)

    Madej, M.; Lezanski, J.

    2003-01-01

    High hardness, mechanical strength, heat resistance and wear resistance of M3/2 high speed steel (HSS) make it an attractive material. Since technological and economical considerations are equally important, infiltration of high-speed steel skeleton with liquid cooper has proved to be a suitable technique whereby fully dense material is produced at low cost. Attempts have been made to describe the influence of the production process parameters and alloying additives, such as tungsten carbide on the microstructure and mechanical properties of copper infiltrated HSS based composites. The compositions of powder mixtures are 100% M3/2, M3/2+10% Wc, M3/2=30% WC. The powders were uniaxially cold compacted in a cylindrical die at 800 MPa. The green compacts were sintered in vacuum at 1150 o C for 60 minutes. Thereby obtained porous skeletons were subsequently infiltrated with cooper, by gravity method, in vacuum furnace at 1150 o C for 15 minutes. (author)

  12. Direct laser sintering of metal powders: Mechanism, kinetics and microstructural features

    International Nuclear Information System (INIS)

    Simchi, A.

    2006-01-01

    In the present work, the densification and microstructural evolution during direct laser sintering of metal powders were studied. Various ferrous powders including Fe, Fe-C, Fe-Cu, Fe-C-Cu-P, 316L stainless steel, and M2 high-speed steel were used. The empirical sintering rate data was related to the energy input of the laser beam according to the first order kinetics equation to establish a simple sintering model. The equation calculates the densification of metal powders during direct laser sintering process as a function of operating parameters including laser power, scan rate, layer thickness and scan line spacing. It was found that when melting/solidification approach is the mechanism of sintering, the densification of metals powders (D) can be expressed as an exponential function of laser specific energy input (ψ) as ln(1 - D) = -Kψ. The coefficient K is designated as 'densification coefficient'; a material dependent parameter that varies with chemical composition, powder particle size, and oxygen content of the powder material. The mechanism of particle bonding and microstructural features of the laser sintered powders are addressed

  13. Development of new metal matrix composite electrodes for electrical discharge machining through powder metallurgy process

    Directory of Open Access Journals (Sweden)

    C. Mathalai Sundaram

    2014-12-01

    Full Text Available Electrical discharge machining (EDM is one of the widely used nontraditional machining methods to produce die cavities by the erosive effect of electrical discharges. This method is popular due to the fact that a relatively soft electrically conductive tool electrode can machine hard work piece. Copper electrode is normally used for machining process. Electrode wear rate is the major drawback for EDM researchers. This research focus on fabrication of metal matrix composite (MMC electrode by mixing copper powder with titanium carbide (TiC and Tungsten carbide (WC powder through powder metallurgy process, Copper powder is the major amount of mixing proportion with TiC and WC. However, this paper focus on the early stage of the project where powder metallurgy route was used to determine suitable mixing time, compaction pressure and sintering and compacting process in producing EDM electrode. The newly prepared composite electrodes in different composition are tested in EDM for OHNS steel.

  14. Microstructure and mechanical properties of nickel coated multi walled carbon nanotube reinforced stainless steel 316L matrix composites by laser sintering process

    Science.gov (United States)

    Mahanthesha, P.; Mohankumar, G. C.

    2018-04-01

    Electroless Ni coated Multi-walled Carbon nanotubes reinforced with Stainless Steel 316L matrix composite was developed by Direct Metal Laser Sintering process (DMLS). Homogeneous mixture of Stainless Steel 316L powder and carbon nanotubes in different vol. % was obtained by using double cone blender machine. Characterization of electroless Ni coated carbon nanotubes was done by using X-ray diffraction, FESEM and EDS. Test samples were fabricated at different laser scan speeds. Effect of process parameters and CNT vol. % content on solidification microstructure and mechanical properties of test samples was investigated by using Optical microscopy, FESEM, and Hounsfield tensometer. Experimental results reveal DMLS process parameters affect the density and microstructure of sintered parts. Dense parts with minimum porosity when processed at low laser scan speeds and low CNT vol. %. Tensile fractured surface of test specimens evidences the survival of carbon nanotubes under high temperature processing condition.

  15. Integration of Heat Treatment with Shot Peening of 17-4 Stainless Steel Fabricated by Direct Metal Laser Sintering

    Science.gov (United States)

    AlMangour, Bandar; Yang, Jenn-Ming

    2017-11-01

    Direct metal laser sintering (DMLS) is a promising powder-based additive manufacturing process for fabrication of near-net-shape parts. However, the typically poor fatigue performance of DMLS parts must be addressed for use in demanding industrial applications. Post-treatment can be applied to enhance the performance of such components. Earlier attempts at inducing grain refinement through severe plastic deformation of part surfaces using shot peening improved the physical and mechanical properties of metals without chemical alteration. However, heat treatment can modify the surface-hardening effects attained by shot peening. Hence, we examined the feasibility of applying shot peening combined with heat treatment to improve the performance of DMLS-fabricated 17-4 stainless steel parts through microstructural evolution studies and hardness measurements. Compared to a specimen treated only by shot peening, the sample exposed to additional heat treatment showed increased hardness due to aging of the dominant phase.

  16. Fractography of Sinteraustempered and Sinterhardened Fe-3Mn-0.8C PM Steels

    Directory of Open Access Journals (Sweden)

    Tenerowicz M.

    2016-12-01

    Full Text Available Sintered steels with the addition of manganese are widely used in industry because of their attractive mechanical properties. The main problem of using manganese in powder metallurgy steel production is its high affinity for oxygen. The choice of proper sintering parameters can significantly improve the properties of the final product.

  17. Microstructural characterization of cermet-steel interface in rock drilling tool

    International Nuclear Information System (INIS)

    Ybarra, L.A.C.; Molisani, A.L.; Yoshimura, H.N.

    2010-01-01

    Rock drilling tools basically present a WC cermet bonded to a steel shank. The interface cermet-steel plays fundamental role during drilling operation, since the fracture of this interface is the main failure mode of the tools. In this work, the microstructure of this interface in crown samples (type A), prepared in an industrial like process, was evaluated. In this process, a WC-containing powder was infiltrated with a copper alloy at 1100 deg C in a graphite mold previously mounted with a 1020 steel tube. The powder was characterized by XRD analysis and the cross-section microstructure of cermet-steel was analyzed using SEM-EDS. It was observed that Ni and small amount of Cu from cermet matrix diffused into the superficial region of the steel, and the Cu alloy dissolved and penetrated along the steel grain boundaries, resulting in good metallurgical bonding of the interface.(author)

  18. Analysis of natural milk and milk powder samples by NAA

    International Nuclear Information System (INIS)

    Al-Jobori, S. M.; Itawi, R. K.; Saad, A; Shihab, K. M.; Jalil, M.; Farhan, S. S.

    1993-01-01

    As a part of the Iraqi food analysis program (IFAP) the concentration of Na, Mg, P, Cl, K, Ca, Zn, Se, Br, Rb, and I in natural milk collected from different regions of Iraq, and in milk powder samples have been determined by using the NAA techniques. It was found that except for the elements I, Rb, and Br the concentrations of the elements was approximately identical in both the natural milk and milk powder. (author)

  19. Analysis of natural milk and milk powder samples by NAA

    International Nuclear Information System (INIS)

    Al-Jobori, S.M.; Itawi, R.K.; Saad, A.; Shihab, K.M.; Jalil, M.; Farhan, S.S.

    1990-01-01

    As a part of the Iraqi Food Analysis Programme the concentration of Na, Mg, P, Cl, K, Ca, Zn, Se, Br, Rb and I in natural milk collected from different regions of Iraq, and in milk powder samples was determined by NAA technique. It was found that except for the elements I, Rb and Br the concentration of the elements was approximately identical in both natural milk and milk powders. (author) 4 refs.; 3 figs.; 5 tabs

  20. Topic 1. Steels for light water reactor pressure vessels

    International Nuclear Information System (INIS)

    Brumovsky, M.; Brynda, J.; Kepka, M.; Barackova, L.; Vacek, M.; Havel, S.; Cukr, B.; Protiva, K.; Petrman, I.; Tvrdy, M.; Hyspecka, L.; Mazanec, K.; Kupca, L.; Brezina, M.

    1980-01-01

    Part 1 of the Proceedings consists of papers on the criteria for the selection and comparison of the properties of steel for pressure vessels and on the metallurgy of the said steels, the selection of suitable material for internal tubing systems, the manufacture of high-alloy steels for WWER components, the mechanical and metallurgical properties of steel 22K for WWER 440 pressure components, and of steel 10MnNi2Mo for the WWER primary coolant circuit, and the metallographic assessment of steel 0Kh18N10T. (J.P.)

  1. Low-Cobalt Powder-Metallurgy Superalloy

    Science.gov (United States)

    Harf, F. H.

    1986-01-01

    Highly-stressed jet-engine parts made with less cobalt. Udimet 700* (or equivalent) is common nickel-based superalloy used in hot sections of jet engines for many years. This alloy, while normally used in wrought condition, also gas-atomized into prealloyed powder-metallurgy (PM) product. Product can be consolidated by hot isostatically pressing (HIPPM condition) and formed into parts such as turbine disk. Such jet-engine disks "see" both high stresses and temperatures to 1,400 degrees F (760 degrees C).

  2. Advanced cold rolled steels for automotive applications

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, Harald; Mattissen, Dorothea; Schaumann, Thomas Wilhelm [ThyssenKrupp Steel AG, Center of Materials Excellence, Dortmund (Germany)

    2009-01-15

    Advanced high-strength steels offer a great potential for the further development of automobile bodies-in-white due to their combined mechanical properties of high formability and strength. They represent the first choice in material selection for strength and crash-relevant parts with challenging geometries. The intensive development of multiphase steels by ThyssenKrupp Steel has led to hot dip galvanizing concepts with an outstanding forming potential. Hot rolled, hot dip galvanized complex-phase steels are currently produced in addition to cold rolled dual phase (DP) and retained austenite (RA) or transformation induced plasticity (TRIP) steels. New continuously annealed grades of steel are being developed with tensile strength levels of up to 1000 MPa in combination with sufficient ductility for the high demands of structural automobile components. These steels make use of the classic advantages of microalloying as well as the principles of DP steels and RA / TRIP steels. Further improvement of properties will be reached by the new class of high manganese alloyed steels. (orig.)

  3. Metallurgy of steels for PWR pressure vessels

    International Nuclear Information System (INIS)

    Kepka, M.; Mocek, J.; Barackova, L.

    1980-01-01

    A survey and the chemical compositions are presented of reactor pressure vessel steels. The metallurgy is described of steel making for pressure vessels in Japan and the USSR. Both acidic and alkaline open-hearth steel is used for the manufacture of ingots. The leading world manufacturers of forging ingots for pressure vessels, however, exclusively use electric steel. Vacuum casting techniques are exclusively used. Experience is shown gained with the introduction of the manufacture of forging ingots for pressure vessels at SKODA, Plzen. The metallurgical procedure was tested utilizing alkaline open hearths, electric arc furnaces and facilities for vacuum casting of steel. Pure charge raw materials should be used for securing high steel purity. Prior to forging pressure vessel rings, not only should sufficiently big bottoms and heads be removed but also the ingot middle part should be scrapped showing higher contents of impurities and nonhomogeneous structure. (B.S.)

  4. Metallurgy of steels for PWR pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Kepka, M; Mocek, J; Barackova, L [Skoda, Plzen (Czechoslovakia)

    1980-09-01

    A survey and the chemical compositions are presented of reactor pressure vessel steels. The metallurgy is described of steel making for pressure vessels in Japan and the USSR. Both acidic and alkaline open-hearth steel is used for the manufacture of ingots. The leading world manufacturers of forging ingots for pressure vessels, however, exclusively use electric steel. Vacuum casting techniques are exclusively used. Experience is shown gained with the introduction of the manufacture of forging ingots for pressure vessels at SKODA, Plzen. The metallurgical procedure was tested utilizing alkaline open hearths, electric arc furnaces and facilities for vacuum casting of steel. Pure charge raw materials should be used for securing high steel purity. Prior to forging pressure vessel rings, not only should sufficiently big bottoms and heads be removed but also the ingot middle part should be scrapped showing higher contents of impurities and nonhomogeneous structure.

  5. Micro-powder injection moulding of tungsten

    International Nuclear Information System (INIS)

    Zeep, B.

    2007-12-01

    For He-cooled Divertors as integral components of future fusion power plants, about 300000 complex shaped tungsten components are to be fabricated. Tungsten is the favoured material because of its excellent properties (high melting point, high hardness, high sputtering resistance, high thermal conductivity). However, the material's properties cause major problems for large scale production of complex shaped components. Due to the resistance of tungsten to mechanical machining, new fabrication technologies have to be developed. Powder injection moulding as a well established shaping technology for a large scale production of complex or even micro structured parts might be a suitable method to produce tungsten components for fusion applications but is not yet commercially available. The present thesis is dealing with the development of a powder injection moulding process for micro structured tungsten components. To develop a suitable feedstock, the powder particle properties, the binder formulation and the solid load were optimised. To meet the requirements for a replication of micro patterned cavities, a special target was to define the smallest powder particle size applicable for micro-powder injection moulding. To investigate the injection moulding performance of the developed feedstocks, experiments were successfully carried out applying diverse cavities with structural details in micro dimension. For debinding of the green bodies, a combination of solvent debinding and thermal debinding has been adopted for injection moulded tungsten components. To develop a suitable debinding strategy, a variation of the solvent debinding time, the heating rate and the binder formulation was performed. For investigating the thermal consolidation behaviour of tungsten components, sinter experiments were carried out applying tungsten powders suitable for micro-powder injection moulding. First mechanical tests of the sintered samples showed promising material properties such as a

  6. Empleo de la cáscara de arroz en la fundición de piezas de acero al carbono//Using of rice husk in the carbon steel casting parts process

    Directory of Open Access Journals (Sweden)

    Juan Carlos Cruz-Pérez

    2012-05-01

    Full Text Available Los materiales auxiliares desempeñan un papel importante en el aumento de la eficiencia tecnológica del proceso de fundición de piezas de acero al carbono. En este artículo se exponen los primeros resultados del empleo de la cáscara de arroz como material termoaislante en la obtención de piezas fundidas de acero al carbono. En los experimentos se evaluó la influencia  de seis combinaciones de las variables espesor de pared del casquillo y capa de cobertura. En la confección de los casquillos se utilizó cáscara de arroz triturada, la que posteriormente fue aglutinada con silicato de sodio, apisonada y endurecida con CO2, mientras que la cobertura se utilizó sin procesamiento previo. El mayor nivel de entrega de acero se obtuvo al emplear un espesor de casquillo de 65 mm y una altura de cobertura de 85 mm. El valor del ASAF generado por las variantes experimentales resultó igual o inferior a 0,48. Palabras claves: casquillo termoaislante, polvo de cobertura, cáscara de arroz, acero fundido.______________________________________________________________________________ Abstract Feeding auxiliary materials perform a very important role in improves technological efficiency of carbon steel casting parts process. In this article are exposing the first results in the rice husk using as an insulating material in such process. The variables sleeve thickness and covering thickness’ influence were evaluated in six combinations by means of experiments. In sleeves preparation was used crushed rice husk, which was agglutinated with sodium silicate, compacted and hardened with CO2, meanwhile as covering it was uses without previous preparation. The mayor liquid steel delivering level was get employing 65 mm sleeve thickness and 85 mm covering thickness. The ASAF value generated for experimental variants was equal or inferior to 0.48. Key words: insulating sleeve, riser sleeve, hot topping, rice husk, steel cast.

  7. Effect of temperature on sintered austeno-ferritic stainless steel microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Munez, C.J. [Departamento de Ciencia e Ingenieria de Materiales, Escuela Superior de Ciencias Experimentales y Tecnologia, Universidad Rey Juan Carlos, 28933 Mostoles, Madrid (Spain)], E-mail: claudio.munez@urjc.es; Utrilla, M.V.; Urena, A. [Departamento de Ciencia e Ingenieria de Materiales, Escuela Superior de Ciencias Experimentales y Tecnologia, Universidad Rey Juan Carlos, 28933 Mostoles, Madrid (Spain)

    2008-09-08

    The influence of temperature on microstructural changes of sintered austeno-ferritic steels has been investigated. PM stainless steels have been obtained by sintering mixtures of austenitic and ferritic stainless steel powders. Only temperature-induced phase transformation was observed in austenite, as a result of elements interdiffusion between both phases. Microstructural characterization was completed with atomic force microscopy (AFM) and micro- and nano-indentation test, it is revealed an increase in the hardness with respect to the solutionized materials.

  8. Laser photothermal non-destructive metrology of cracks in un-sintered powder metallurgy manufactured automotive transmission sprockets

    International Nuclear Information System (INIS)

    Tolev, J; Mandelis, A

    2010-01-01

    A non-contact and non-intrusive method of revealing crack presence in un-sintered (green) automotive transmission parts (sprockets), manufactured by means of a powder metallurgy technology based on analysis of photo-thermal radiometric (PTR) signals and their statistical analysis was developed. The inspection methodology relies on the interaction of a modulated laser generated thermal wave with the potential crack and the resulting change in amplitude and phase of the detected signal [1-5]. The crack existence at points in high stress regions of a group of green (unsintered) sprockets was evaluated through frequency scans. The results were validated by independent destructive cross-sectioning of the sprockets following sintering and polishing. Examination of the sectioned sprockets under a microscope at the locations where signal changes was used for correlation with the PTR signals. Statistical analysis confirmed the capabilities of the method to detect the presence of hairline cracks (∼5 - 10 μm size) with excellent sensitivity (91%) and good accuracy (78%) and specificity (61%). This measurement technique and the associated statistical analysis can be used as a simple and reliable on-line inspection methodology of industrial powder metallurgy manufactured steel products for non-destructive quality and feedback control of the parts forming process.

  9. Magnetic flux gradient observation during fatigue crack propagation: A case study of SAE 1045 carbon steel used for automotive transmission parts

    Directory of Open Access Journals (Sweden)

    Ahmad S.R.

    2017-01-01

    Full Text Available The objective of this study is to evaluate the application of the metal magnetic memory (MMM technique for investigations on fatigue crack propagation in a ferromagnetic material. Fatigue failure caused by stress concentration is serious in practical engineering. However, early fatigue damages cannot be detected by using traditional nondestructive testing (NDT methods. Therefore this paper study about NDT method called metal magnetic memory (MMM that has potentials for evaluating the fatigue damage at the early damage and critical fracture stages. While its capacity to evaluate the distribution of self-magnetic leakage field signals on the component’s surface is well-established, there remains a need to scrutinize the physical mechanism and quantitative analysis aspects of this method. To begin with, a fatigue test involving a loading of 7kN was conducted on a SAE 1045 carbon steel specimen. This material is frequently used in the manufacturing of automotive transmission components that include the axle and spline shaft. MMM signals were measured along a scanning distance of 100 mm and analysed during the propagation stage. Other than revealing that the value of the magnetic flux gradient signals dH(y/dx increased in tandem with the crack length, the results also led to the detection of the crack growth location. It was anticipated that the dH(y/dx value will also exhibit an upward trend with a rise in the fatigue growth rate of da/dN. A modified Paris equation was utilized to correlate dH(y/dx with da/dn through the replacement of the stress intensity factor range ΔK. This resulted in the log-log plot of da/dN versus dH(y/dx portraying an inclination similar to the log-log plot of da/dN versus ΔK. A linear relationship was established between dH(y/dx and ΔK with the R2 value as 0.96. Players in the automotive industry can benefit from the disclosure that dH(y/dx can effectively replace ΔK for the monitoring of fatigue crack growth

  10. Comparison of Magnetic Characteristics of Powder Magnetic Core and Evaluation of Motor Characteristics

    Science.gov (United States)

    Enomoto, Yuji; Ito, Motoya; Masaki, Ryozo; Yamazaki, Katsuyuki; Asaka, Kazuo; Ishihara, Chio; Ohiwa, Syoji

    A magnetic characteristic measurement, a motor characteristic forecast, and an experimental evaluation of various powder magnetic cores were performed aiming at a fixed quantity grasp when the powder magnetic core was applied to the motor core as the magnetic material. The manufacturing conditions were changed, and magnetic characteristic compares a direct current magnetization characteristic and an iron disadvantageous characteristic with the silicon steel board for a different powder magnetic core. Therefore, though some permeabilities are low, characteristics almost equal to those of a silicon steel board were obtained in the maximum saturation magnetic induction, which confirms that the powder magnetic core in disadvantageous iron in a certain frequency domain, and to confirm disadvantageous iron lowers. Moreover, it has been shown to obtain characteristics almost equal to the silicon steel board when compared in terms of motor efficiency, though some disadvantageous iron increases since the effect when applying to the motor is verified the silicon steel board and the comparison evaluation for the surface type permanent magnet motor.

  11. Effects of zinc powder addition to Villa Gloss and Silka Lux marine ...

    African Journals Online (AJOL)

    The anti - corrosion properties of paints can be optimised when adequate proportion of the paint constituents are used. Effect of zinc powder addition to Villa Gloss and Silka Lux Marine Enamel paints on corrosion resistance of mild steel was studied. Quantitative Analysis and Potentiodynamic Polarisation Technique were ...

  12. Prediction of microstructure, residual stress, and deformation in laser powder bed fusion process

    Science.gov (United States)

    Yang, Y. P.; Jamshidinia, M.; Boulware, P.; Kelly, S. M.

    2017-12-01

    Laser powder bed fusion (L-PBF) process has been investigated significantly to build production parts with a complex shape. Modeling tools, which can be used in a part level, are essential to allow engineers to fine tune the shape design and process parameters for additive manufacturing. This study focuses on developing modeling methods to predict microstructure, hardness, residual stress, and deformation in large L-PBF built parts. A transient sequentially coupled thermal and metallurgical analysis method was developed to predict microstructure and hardness on L-PBF built high-strength, low-alloy steel parts. A moving heat-source model was used in this analysis to accurately predict the temperature history. A kinetics based model which was developed to predict microstructure in the heat-affected zone of a welded joint was extended to predict the microstructure and hardness in an L-PBF build by inputting the predicted temperature history. The tempering effect resulting from the following built layers on the current-layer microstructural phases were modeled, which is the key to predict the final hardness correctly. It was also found that the top layers of a build part have higher hardness because of the lack of the tempering effect. A sequentially coupled thermal and mechanical analysis method was developed to predict residual stress and deformation for an L-PBF build part. It was found that a line-heating model is not suitable for analyzing a large L-PBF built part. The layer heating method is a potential method for analyzing a large L-PBF built part. The experiment was conducted to validate the model predictions.

  13. Prediction of microstructure, residual stress, and deformation in laser powder bed fusion process

    Science.gov (United States)

    Yang, Y. P.; Jamshidinia, M.; Boulware, P.; Kelly, S. M.

    2018-05-01

    Laser powder bed fusion (L-PBF) process has been investigated significantly to build production parts with a complex shape. Modeling tools, which can be used in a part level, are essential to allow engineers to fine tune the shape design and process parameters for additive manufacturing. This study focuses on developing modeling methods to predict microstructure, hardness, residual stress, and deformation in large L-PBF built parts. A transient sequentially coupled thermal and metallurgical analysis method was developed to predict microstructure and hardness on L-PBF built high-strength, low-alloy steel parts. A moving heat-source model was used in this analysis to accurately predict the temperature history. A kinetics based model which was developed to predict microstructure in the heat-affected zone of a welded joint was extended to predict the microstructure and hardness in an L-PBF build by inputting the predicted temperature history. The tempering effect resulting from the following built layers on the current-layer microstructural phases were modeled, which is the key to predict the final hardness correctly. It was also found that the top layers of a build part have higher hardness because of the lack of the tempering effect. A sequentially coupled thermal and mechanical analysis method was developed to predict residual stress and deformation for an L-PBF build part. It was found that a line-heating model is not suitable for analyzing a large L-PBF built part. The layer heating method is a potential method for analyzing a large L-PBF built part. The experiment was conducted to validate the model predictions.

  14. Irradiation testing of stainless steel plate material and weldments. Report on ITER Task T14, Part B. Tensile properties after 0.5 and 5 dpa at 350 and 500 K

    International Nuclear Information System (INIS)

    Rensman, J.W.; Boskeljon, J.; Horsten, M.G.; De Vries, M.I.

    1997-10-01

    The tensile properties of unirradiated and neutron irradiated type 316L(N)-SPH stainless steel plate, EB weldments, 16-8 TIG-weldments, and full 16-8 TIG-deposits have been measured. Miniature 4 mm diameter test specimens of the European Reference Heat 1 and 2 (ERH), and 4 mm and some 8 mm diameter specimens of the weldments mentioned above, were irradiated in the High Flux Reactor (HFR) in Petten, The Netherlands, simulating the first wall conditions by a combination of high displacement damage with high amounts of helium. The irradiation conditions were 0.5 and 5 displacements per atom (dpa) at 350K and 0.5 and 5 dpa at 500K. Testing temperatures ranged from 300K to 850K. This work was performed as part of the European Fusion Technology Programme for ITER as 'Irradiation testing of stainless steel' The report contains the experimental conditions and summarises the results. The tensile properties of the unirradiated ERH's 1 and 2 plate materials were found to differ slightly but significantly: ERH2 has a lower UTS, but higher yield strength and ductility than ERH1. The plate materials have lower yield strength in the unirradiated condition than all of the weldments (EB, TIG-weld and TIG-deposit), accompanied by a higher ductility of the plate materials. When irradiated at 350K the differences in strength between the plate and weld materials decrease, but the ductility of the plate remains higher than that of the weldments. A saturation of irradiation damage has taken place already at about 0.5 dpa. When irradiated at 500K the plate material continuously hardens up to 5 dpa, where it has lost all uniform plastic ductility. The weldments show similar but less dramatic hardening and loss of ductility as the plate material for both irradiation conditions. 54 figs., 17 tabs., 21 refs

  15. [Study on biocompatibility of MIM 316L stainless steel].

    Science.gov (United States)

    Wang, Guohui; Zhu, Shaihong; Li, Yiming; Zhao, Yanzhong; Zhou, Kechao; Huang, Boyun

    2007-04-01

    This study was aimed to evaluate the biocompatibility of metal powder injection molding (MIM) 316L stainless steel. The percentage of S-period cells was detected by flow cytometry after L929 cells being incubated with extraction of MIM 316L stainless steel, and titanium implant materials for clinical application were used as control. In addition, both materials were implanted in animals and the histopathological evaluations were carried out. The statistical analyses show that there are no significant differences between the two groups (P > 0.05), which demonstrate that MIM 316L stainless steel has good biocompatibility.

  16. Preparation of 50Ni-45Ti-5Zr powders by high-energy ball milling and hot pressing

    Energy Technology Data Exchange (ETDEWEB)

    Marinzeck de Alcantara Abdala, Julia, E-mail: juabdala@yahoo.com.b [Instituto de Pesquisa e Desenvolvimento, Universidade do Vale do Paraiba, Av. Shishima Hifumi, 2911, 12244-000 Sao Jose dos Campos (Brazil); Bacci Fernandes, Bruno, E-mail: brunobacci@yahoo.com.b [Divisao de Engenharia Mecanica, Instituto Tecnologico de Aeronautica, Praca Marechal-do-Ar Eduardo Gomes, 50, 12228-904 Sao Jose dos Campos (Brazil); Santos, Dalcy Roberto dos, E-mail: dalcy@iae.cta.b [Instituto de Aeronautica e Espaco, Centro Tecnologico Aeroespacial, Praca Marechal-do-Ar Eduardo Gomes, 50, 12228-904 Sao Jose dos Campos (Brazil); Rodrigues Henriques, Vinicius Andre, E-mail: vinicius@iae.cta.b [Instituto de Aeronautica e Espaco, Centro Tecnologico Aeroespacial, Praca Marechal-do-Ar Eduardo Gomes, 50, 12228-904 Sao Jose dos Campos (Brazil); Moura Neto, Carlos de, E-mail: mneto@ita.b [Divisao de Engenharia Mecanica, Instituto Tecnologico de Aeronautica, Praca Marechal-do-Ar Eduardo Gomes, 50, 12228-904 Sao Jose dos Campos (Brazil); Saraiva Ramos, Alfeu, E-mail: alfeu@univap.b [Instituto de Pesquisa e Desenvolvimento, Universidade do Vale do Paraiba, Av. Shishima Hifumi, 2911, 12244-000 Sao Jose dos Campos (Brazil)

    2010-04-16

    This study reports on the preparation of the 50Ni-45Ti-5Zr (at.%) alloy by high-energy ball milling and hot pressing. The elemental powder mixture was processed in silicon nitride and hardened steel vials, and samples were collected after different milling times. To recover the previous powders in addition wet milling isopropyl alcohol (for 20 min) was adopted. The mechanically alloyed powders were hot-pressed under vacuum at 900 {sup o}C for 1 h using pressure levels close to 200 MPa. The milled powders were characterized by means of scanning electron microscopy, X-ray diffraction, and energy dispersive spectrometry techniques. It was noted that the ductile starting powders were continuously cold-welded during ball milling. This fact was more pronounced during the processing of 50Ni-45Ti-5Zr powders in hardened steel vial. After milling for 5 h, the results suggested that amorphous and nanocrystalline structures were achieved. The complete consolidation was found after hot pressing of mechanically alloyed 50Ni-45Ti-5Zr powders, and a large amount of the B2-NiTi phase was formed mainly after processing in stainless steel balls and vial.

  17. Nuclear fuel powder transfer device

    International Nuclear Information System (INIS)

    Komono, Akira

    1998-01-01

    A pair of parallel rails are laid between a receiving portion to a molding portion of a nuclear fuel powder transfer device. The rails are disposed to the upper portion of a plurality of parallel support columns at the same height. A powder container is disposed while being tilted in the inside of the vessel main body of a transfer device, and rotational shafts equipped with wheels are secured to right and left external walls. A nuclear powder to be mixed, together with additives, is supplied to the powder container of the transfer device. The transfer device engaged with the rails on the receiving side is transferred toward the molding portion. The wheels are rotated along the rails, and the rotational shafts, the vessel main body and the powder container are rotated. The nuclear powder in the tilted powder container disposed is rotated right and left and up and down by the rotation, and the powder is mixed satisfactory when it reaches the molding portion. (I.N.)

  18. Superconductors by powder metallurgy techniques

    International Nuclear Information System (INIS)

    Pickus, M.R.; Wang, J.L.F.

    1976-05-01

    Fabrication methods for Nb 3 Sn type compounds are described. Information is included on the Bell Telephone process, the General Electric tape process, superconductor stability, the bronze process, powder metallurgy multifilamentary tapes and wires, and current assessment of powder metallurgy superconducting wire

  19. Investigation of the Dependences of the Attenuation Properties of Cryogenic Metal-Powder Filters on the Preparation Method

    Science.gov (United States)

    Lee, Sung Hoon; Lee, Soon-Gul

    2018-04-01

    We fabricated low-pass metal powder filters for use in low-noise measurements at cryogenic temperatures and investigated their attenuation characteristics for different wire-turn densities, metalpowder shapes, and preparation methods at frequencies up to 20 GHz. We used nominally 30-μmsized stainless-steel 304L powder and mixed it with low-temperature binders. The low-temperature binders used were Stycast 2850FT (Emerson and Cumming) with catalyst 23LV and GE-7031 varnish. A 0.1-mm insulated copper wire was wound on preformed powder-mixture bobbins in the shape of a circular rod and was encapsulated in metal tubes with the powder mixture. All the fabricated powder filters showed a large attenuation at high frequencies with a cut-off frequency near 1 GHz. For filters of the same wire length, a lower wiring density showed a larger attenuation, which implies that the amount of powder in close contact with the wire determines the attenuation. Filters made of a powder/varnish mixture showed significantly larger attenuations than those of a powder/stycast mixture, and the attenuation improved with increasing powder ratio in the mixture. The low-temperature thermal conductivities of a 2 : 1 powder/Stycast mixture and a 5 : 1 powder/varnish mixture showed similar values at temperatures up to 4.2 K.

  20. Corrosão de refratários utilizados na siderurgia. Parte III: caracterização de refratários comerciais Corrosion of refractories used in steel metallurgy. Part III: characterization of commercial refractories

    Directory of Open Access Journals (Sweden)

    S. R. Bragança

    2013-03-01

    Full Text Available Foi realizada uma revisão dos principais aspectos encontrados na literatura especializada sobre corrosão de refratários, avaliando-se a viabilidade de determinados ensaios e relacionando-se com resultados experimentais. As propriedades físicas e microestruturais de refratários comerciais foram estudadas, considerando-se as diferenças entre elas e implicações com a qualidade e provável vida útil do refratário. Assim, investigou-se os diversos tipos de refratários utilizados como revestimento em uma panela de aço, como de sobre-linha (freeboard, linha de escória e linha de metal. Os refratários magnésia-carbono e doloma-carbono foram avaliados, destacando-se também as diferenças entre eles. Os materiais analisados mostraram características favoráveis a uma elevada resistência ao processo de corrosão, apresentando uma série de propriedades a serem escolhidas de acordo com a prática industrial.The main aspects found in the literature about refractories corrosion were reviewed, evaluating the feasibility of certain tests and relating them with experimental results. The physical properties and microstructure of commercial refractories were analyzed, considering the differences between them and the quality implications and probable life of the refractory. Thus, this study comprised various types of refractories used as lining on steel ladle, as on freeboard, slag line and metal line. Magnesia-carbon and doloma-carbon refractories were analyzed, highlighting the differences between them. The examined materials showed characteristics favoring high resistance to corrosion process, presenting a series of properties to be selected in accordance with industry practice.