Two-nucleon Hulthen-type interactions for few higher partial waves
Indian Academy of Sciences (India)
The Hamiltonian hierarchy problems in SQM lead to the addition of appropriate centrifugal barriers and consequently, higher partial wave potentials are ... the partial waves l > 0 one needs to improve the parameters involved in calculations. The present paper addresses itself to compute higher partial wave scattering phase ...
Mathematical Modeling of Partial-Porous Circular Cylinders with Water Waves
Directory of Open Access Journals (Sweden)
Min-Su Park
2015-01-01
Full Text Available The interaction of water waves with partially porous-surfaced circular cylinders was investigated. A three-dimensional numerical modeling was developed based on the complete mathematical formulation of the eigenfunction expansion method in the potential flow. Darcy’s law was applied to describe the porous boundary. The partial-porous cylinder is composed of a porous-surfaced body near the free surface, and an impermeable-surfaced body with an end-capped rigid bottom below the porous region. The optimal ratio of the porous portion to the impermeable portion can be adopted to design an effective ocean structure with minimal hydrodynamic impact. To scrutinize the hydrodynamic interactions in N partial-porous circular cylinders, the computational fluid domain is divided into three regions: an exterior region, N inner porous body regions, and N regions beneath the body. Wave excitation forces and wave run-up on multibodied partial-porous cylinders are calculated and compared for various porous-portion ratios and wave conditions, all of which significantly influence the hydrodynamic property.
Directory of Open Access Journals (Sweden)
Jong-In Lee
2014-01-01
Full Text Available This study presents wave height distribution in terms of stem wave evolution phenomena on partially perforated wall structures through three-dimensional laboratory experiments. The plain and partially perforated walls were tested to understand their effects on the stem wave evolution under the monochromatic and random wave cases with the various wave conditions, incident angle (from 10 to 40 degrees, and configurations of front and side walls. The partially perforated wall reduced the relative wave heights more effectively compared to the plain wall structure. Partially perforated walls with side walls showed a better performance in terms of wave height reduction compared to the structure without the side wall. Moreover, the relative wave heights along the wall were relatively small when the relative chamber width is large, within the range of the chamber width in this study. The wave spectra showed a frequency dependency of the wave energy dissipation. In most cases, the existence of side wall is a more important factor than the porosity of the front wall in terms of the wave height reduction even if the partially perforated wall was still effective compared to the plain wall.
Barrelet zeros and elastic π+p partial waves
International Nuclear Information System (INIS)
Chew, D.M.; Urban, M.
1976-06-01
A procedure is proposed for constructing low-order partial-wave amplitudes from a knowledge of Barrelet zeros near the physical region. The method is applied to the zeros already obtained for elastic π + p scattering data between 1.2 and 2.2 GeV cm energies. The partial waves emerge with errors that are straight-forwardly related to the accuracy of the data and satisfy unitarity without any constraint being imposed. There are significant differences from the partial waves obtained by other methods; this can be partially explained by the fact that no previous partial-wave analysis has been able to solve the discrete ambiguity. The cost of the analysis is much less
Partial wave analysis using graphics processing units
Energy Technology Data Exchange (ETDEWEB)
Berger, Niklaus; Liu Beijiang; Wang Jike, E-mail: nberger@ihep.ac.c [Institute of High Energy Physics, Chinese Academy of Sciences, 19B Yuquan Lu, Shijingshan, 100049 Beijing (China)
2010-04-01
Partial wave analysis is an important tool for determining resonance properties in hadron spectroscopy. For large data samples however, the un-binned likelihood fits employed are computationally very expensive. At the Beijing Spectrometer (BES) III experiment, an increase in statistics compared to earlier experiments of up to two orders of magnitude is expected. In order to allow for a timely analysis of these datasets, additional computing power with short turnover times has to be made available. It turns out that graphics processing units (GPUs) originally developed for 3D computer games have an architecture of massively parallel single instruction multiple data floating point units that is almost ideally suited for the algorithms employed in partial wave analysis. We have implemented a framework for tensor manipulation and partial wave fits called GPUPWA. The user writes a program in pure C++ whilst the GPUPWA classes handle computations on the GPU, memory transfers, caching and other technical details. In conjunction with a recent graphics processor, the framework provides a speed-up of the partial wave fit by more than two orders of magnitude compared to legacy FORTRAN code.
Parametrization of the scattering wave functions of the Paris potential
International Nuclear Information System (INIS)
Loiseau, B.; Mathelitsch, L.
1996-10-01
The neutron-proton scattering wave functions of the Paris nucleon-nucleon potential are parametrized for partial waves of total angular momenta less than 5. The inner parts of the wave functions are approximated by polynomials with a continuous transition to the outer parts, which are given by the asymptotic regime and determined by the respective phase shifts. The scattering wave functions can then be calculated at any given energy below 400 MeV. Special attention is devoted to the zero-energy limit of the low partial waves. An easy-to-use FORTRAN program, which allows the user to calculate these parametrized wave functions, is available via electronic mail. (author)
Surface wave energy absorption by a partially submerged bio-inspired canopy.
Nové-Josserand, C; Castro Hebrero, F; Petit, L-M; Megill, W M; Godoy-Diana, R; Thiria, B
2018-03-27
Aquatic plants are known to protect coastlines and riverbeds from erosion by damping waves and fluid flow. These flexible structures absorb the fluid-borne energy of an incoming fluid by deforming mechanically. In this paper we focus on the mechanisms involved in these fluid-elasticity interactions, as an efficient energy harvesting system, using an experimental canopy model in a wave tank. We study an array of partially-submerged flexible structures that are subjected to the action of a surface wave field, investigating in particular the role of spacing between the elements of the array on the ability of our system to absorb energy from the flow. The energy absorption potential of the canopy model is examined using global wave height measurements for the wave field and local measurements of the elastic energy based on the kinematics of each element of the canopy. We study different canopy arrays and show in particular that flexibility improves wave damping by around 40%, for which half is potentially harvestable.
ALFVEN WAVES IN A PARTIALLY IONIZED TWO-FLUID PLASMA
Energy Technology Data Exchange (ETDEWEB)
Soler, R.; Ballester, J. L.; Terradas, J. [Departament de Fisica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Carbonell, M., E-mail: roberto.soler@uib.es, E-mail: joseluis.ballester@uib.es, E-mail: jaume.terradas@uib.es, E-mail: marc.carbonell@uib.es [Departament de Matematiques i Informatica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain)
2013-04-20
Alfven waves are a particular class of magnetohydrodynamic waves relevant in many astrophysical and laboratory plasmas. In partially ionized plasmas the dynamics of Alfven waves is affected by the interaction between ionized and neutral species. Here we study Alfven waves in a partially ionized plasma from the theoretical point of view using the two-fluid description. We consider that the plasma is composed of an ion-electron fluid and a neutral fluid, which interact by means of particle collisions. To keep our investigation as general as possible, we take the neutral-ion collision frequency and the ionization degree as free parameters. First, we perform a normal mode analysis. We find the modification due to neutral-ion collisions of the wave frequencies and study the temporal and spatial attenuation of the waves. In addition, we discuss the presence of cutoff values of the wavelength that constrain the existence of oscillatory standing waves in weakly ionized plasmas. Later, we go beyond the normal mode approach and solve the initial-value problem in order to study the time-dependent evolution of the wave perturbations in the two fluids. An application to Alfven waves in the low solar atmospheric plasma is performed and the implication of partial ionization for the energy flux is discussed.
Symmetrized partial-wave method for density-functional cluster calculations
International Nuclear Information System (INIS)
Averill, F.W.; Painter, G.S.
1994-01-01
The computational advantage and accuracy of the Harris method is linked to the simplicity and adequacy of the reference-density model. In an earlier paper, we investigated one way the Harris functional could be extended to systems outside the limits of weakly interacting atoms by making the charge density of the interacting atoms self-consistent within the constraints of overlapping spherical atomic densities. In the present study, a method is presented for augmenting the interacting atom charge densities with symmetrized partial-wave expansions on each atomic site. The added variational freedom of the partial waves leads to a scheme capable of giving exact results within a given exchange-correlation approximation while maintaining many of the desirable convergence and stability properties of the original Harris method. Incorporation of the symmetry of the cluster in the partial-wave construction further reduces the level of computational effort. This partial-wave cluster method is illustrated by its application to the dimer C 2 , the hypothetical atomic cluster Fe 6 Al 8 , and the benzene molecule
MAGNETOACOUSTIC WAVES IN A PARTIALLY IONIZED TWO-FLUID PLASMA
Energy Technology Data Exchange (ETDEWEB)
Soler, Roberto; Ballester, Jose Luis [Departament de Física, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Carbonell, Marc, E-mail: roberto.soler@uib.es, E-mail: joseluis.ballester@uib.es, E-mail: marc.carbonell@uib.es [Departament de Matemàtiques i Informàtica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain)
2013-11-01
Compressible disturbances propagate in a plasma in the form of magnetoacoustic waves driven by both gas pressure and magnetic forces. In partially ionized plasmas the dynamics of ionized and neutral species are coupled due to ion-neutral collisions. As a consequence, magnetoacoustic waves propagating through a partially ionized medium are affected by ion-neutral coupling. The degree to which the behavior of the classic waves is modified depends on the physical properties of the various species and on the relative value of the wave frequency compared to the ion-neutral collision frequency. Here, we perform a comprehensive theoretical investigation of magnetoacoustic wave propagation in a partially ionized plasma using the two-fluid formalism. We consider an extensive range of values for the collision frequency, ionization ratio, and plasma β, so that the results are applicable to a wide variety of astrophysical plasmas. We determine the modification of the wave frequencies and study the frictional damping due to ion-neutral collisions. Approximate analytic expressions for the frequencies are given in the limit case of strongly coupled ions and neutrals, while numerically obtained dispersion diagrams are provided for arbitrary collision frequencies. In addition, we discuss the presence of cutoffs in the dispersion diagrams that constrain wave propagation for certain combinations of parameters. A specific application to propagation of compressible waves in the solar chromosphere is given.
MAGNETOACOUSTIC WAVES IN A PARTIALLY IONIZED TWO-FLUID PLASMA
International Nuclear Information System (INIS)
Soler, Roberto; Ballester, Jose Luis; Carbonell, Marc
2013-01-01
Compressible disturbances propagate in a plasma in the form of magnetoacoustic waves driven by both gas pressure and magnetic forces. In partially ionized plasmas the dynamics of ionized and neutral species are coupled due to ion-neutral collisions. As a consequence, magnetoacoustic waves propagating through a partially ionized medium are affected by ion-neutral coupling. The degree to which the behavior of the classic waves is modified depends on the physical properties of the various species and on the relative value of the wave frequency compared to the ion-neutral collision frequency. Here, we perform a comprehensive theoretical investigation of magnetoacoustic wave propagation in a partially ionized plasma using the two-fluid formalism. We consider an extensive range of values for the collision frequency, ionization ratio, and plasma β, so that the results are applicable to a wide variety of astrophysical plasmas. We determine the modification of the wave frequencies and study the frictional damping due to ion-neutral collisions. Approximate analytic expressions for the frequencies are given in the limit case of strongly coupled ions and neutrals, while numerically obtained dispersion diagrams are provided for arbitrary collision frequencies. In addition, we discuss the presence of cutoffs in the dispersion diagrams that constrain wave propagation for certain combinations of parameters. A specific application to propagation of compressible waves in the solar chromosphere is given
ALFVÉN WAVES IN A PARTIALLY IONIZED TWO-FLUID PLASMA
International Nuclear Information System (INIS)
Soler, R.; Ballester, J. L.; Terradas, J.; Carbonell, M.
2013-01-01
Alfvén waves are a particular class of magnetohydrodynamic waves relevant in many astrophysical and laboratory plasmas. In partially ionized plasmas the dynamics of Alfvén waves is affected by the interaction between ionized and neutral species. Here we study Alfvén waves in a partially ionized plasma from the theoretical point of view using the two-fluid description. We consider that the plasma is composed of an ion-electron fluid and a neutral fluid, which interact by means of particle collisions. To keep our investigation as general as possible, we take the neutral-ion collision frequency and the ionization degree as free parameters. First, we perform a normal mode analysis. We find the modification due to neutral-ion collisions of the wave frequencies and study the temporal and spatial attenuation of the waves. In addition, we discuss the presence of cutoff values of the wavelength that constrain the existence of oscillatory standing waves in weakly ionized plasmas. Later, we go beyond the normal mode approach and solve the initial-value problem in order to study the time-dependent evolution of the wave perturbations in the two fluids. An application to Alfvén waves in the low solar atmospheric plasma is performed and the implication of partial ionization for the energy flux is discussed.
Shear Wave Generation by Decoupled and Partially Coupled Explosions
National Research Council Canada - National Science Library
Stevens, Jeffry L; Xu, Heming; Baker, G. E
2008-01-01
The objective of this project is to investigate the sources of shear wave generation by decoupled and partially coupled explosions, and the differences in shear wave generation between tamped and decoupled explosions...
Numerical method for wave forces acting on partially perforated caisson
Jiang, Feng; Tang, Xiao-cheng; Jin, Zhao; Zhang, Li; Chen, Hong-zhou
2015-04-01
The perforated caisson is widely applied to practical engineering because of its great advantages in effectively wave energy consumption and cost reduction. The attentions of many scientists were paid to the fluid-structure interaction between wave and perforated caisson studies, but until now, most concerns have been put on theoretical analysis and experimental model set up. In this paper, interaction between the wave and the partial perforated caisson in a 2D numerical wave flume is investigated by means of the renewed SPH algorithm, and the mathematical equations are in the form of SPH numerical approximation based on Navier-Stokes equations. The validity of the SPH mathematical method is examined and the simulated results are compared with the results of theoretical models, meanwhile the complex hydrodynamic characteristics when the water particles flow in or out of a wave absorbing chamber are analyzed and the wave pressure distribution of the perforated caisson is also addressed here. The relationship between the ratio of total horizontal force acting on caisson under regular waves and its influence factors is examined. The data show that the numerical calculation of the ratio of total horizontal force meets the empirical regression equation very well. The simulations of SPH about the wave nonlinearity and breaking are briefly depicted in the paper, suggesting that the advantages and great potentiality of the SPH method is significant compared with traditional methods.
International Nuclear Information System (INIS)
Workman, R. L.; Tiator, L.; Wunderlich, Y.; Doring, M.; Haberzettl, H.
2017-01-01
Here, we compare the methods of amplitude reconstruction, for a complete experiment and a truncated partial-wave analysis, applied to the photoproduction of pseudoscalar mesons. The approach is pedagogical, showing in detail how the amplitude reconstruction (observables measured at a single energy and angle) is related to a truncated partial-wave analysis (observables measured at a single energy and a number of angles).
Crichton ambiguities with infinitely many partial waves
Atkinson, D.; Kok, L.P.; de Roo, M.
We construct families of spin less two-particle unitary cross sections that possess a nontrivial discrete phase-shift ambiguity, with in general an infinite number of nonvanishing partial waves. A numerical investigation reveals that some of the previously known finite Crichton ambiguities are
Nucleon-nucleon partial-wave analysis to 1100 MeV
International Nuclear Information System (INIS)
Arndt, R.A.; Hyslop, J.S. III; Roper, L.D.
1987-01-01
Comprehensive analyses of nucleon-nucleon elastic-scattering data below 1100 MeV laboratory kinetic energy are presented. The data base from which an energy-dependent solution and 22 single-energy solutions are obtained consists of 7223 pp and 5474 np data. A resonancelike structure is found to occur in the 1 D 2 , 3 F 3 , 3 P 2 - 3 F 2 , and 3 F 4 - 3 H 4 partial waves; this behavior is associated with poles in the complex energy plane. The pole positions and residues are obtained by analytic continuation of the ''production'' piece of the T matrix obtained in the energy-dependent solution. The new phases differ somewhat from previously published VPIandSU solutions, especially in I = 0 waves above 500 MeV, where np data are very sparse. The partial waves are, however, based upon a significantly larger data base and reflect correspondingly smaller errors. The full data base and solution files can be obtained through a computer scattering analysis interactive dial-in (SAID) system at VPIandSU, which also exists at many institutions around the world and which can be transferred to any site with a suitable computer system. The SAID system can be used to modify solutions, plan experiments, and obtain any of the multitude of predictions which derive from partial-wave analyses of the world data base
Barrelet zeros in partial wave analysis
International Nuclear Information System (INIS)
Baker, R.D.
1976-01-01
The formalism of Barrelet zeros is discussed. Spinless scattering is described to introduce the idea, then the more usual case of 0 - 1/2 + → 0 - 1/2 + scattering. The zeros are regarded here only as a means to an end, viz the partial waves. The extraction of these is given in detail, and ambiguities are discussed at length. (author)
Treatment of Ion-Atom Collisions Using a Partial-Wave Expansion of the Projectile Wavefunction
Wong, T. G.; Foster, M.; Colgan, J.; Madison, D. H.
2009-01-01
We present calculations of ion-atom collisions using a partial-wave expansion of the projectile wavefunction. Most calculations of ion-atom collisions have typically used classical or plane-wave approximations for the projectile wavefunction, since partial-wave expansions are expected to require prohibitively large numbers of terms to converge…
Crichton ambiguities with infinitely many partial waves
International Nuclear Information System (INIS)
Atkinson, D.; Kok, L.P.; de Roo, M.
1978-01-01
We construct families of spinless two-particle unitary cross sections that possess a nontrivial discrete phase-shift ambiguity, with in general an infinite number of nonvanishing partial waves. A numerical investigation reveals that some of the previously known finite Crichton ambiguities are merely special cases of the newly constructed examples
Wave propagations of curvilinear motors driven by partially laminated piezoelectric actuators
International Nuclear Information System (INIS)
Smithmaitrie, Pruittikorn; Suybangdum, Panumas; Muensit, Supasarote; Tzou, Horn-Sen
2008-01-01
A piezoelectric arc stator is the key component delivering driving actions to an ultrasonic curvilinear motor. The arc stator drives the rotor along the arc structure to any specific angular position. Usually conventional stators in ultrasonic motors are fully bounded with piezoelectric patch actuators. To reduce production costs while maintaining similar driving characteristics, an arc stator partially bonded with piezoelectric actuators is proposed and its dynamic characteristics are analyzed in this study. The effect of actuator locations on the wave propagation is investigated. Both analytical and finite element results demonstrate similar dynamic responses. That is, the response of the wave propagation depends on specific locations of piezoelectric actuators. One of the two configurations investigated shows that the partially laminated piezoelectric actuator pattern can also generate rather steady traveling waves on the stator with consistent wave amplitude. This implies that the partially laminated actuator technique could be an alternative actuator pattern to the fully laminated actuators in the design of ultrasonic curvilinear motors or other finite-length ultrasonic motors
SLAC three-body partial wave analysis system
International Nuclear Information System (INIS)
Aston, D.; Lasinski, T.A.; Sinervo, P.K.
1985-10-01
We present a heuristic description of the SLAC-LBL three-meson partial wave model, and describe how we have implemented it at SLAC. The discussion details the assumptions of the model and the analysis, and emphasizes the methods we have used to prepare and fit the data. 28 refs., 12 figs., 1 tab
Direct Calculation of the Scattering Amplitude Without Partial Wave Analysis
Shertzer, J.; Temkin, A.; Fisher, Richard R. (Technical Monitor)
2001-01-01
Two new developments in scattering theory are reported. We show, in a practical way, how one can calculate the full scattering amplitude without invoking a partial wave expansion. First, the integral expression for the scattering amplitude f(theta) is simplified by an analytic integration over the azimuthal angle. Second, the full scattering wavefunction which appears in the integral expression for f(theta) is obtained by solving the Schrodinger equation with the finite element method (FEM). As an example, we calculate electron scattering from the Hartree potential. With minimal computational effort, we obtain accurate and stable results for the scattering amplitude.
Extracting scattering phase shifts in higher partial waves from lattice QCD calculations
Energy Technology Data Exchange (ETDEWEB)
Luu, Thomas; Savage, Martin J.
2011-06-01
Lüscher’s method is routinely used to determine meson-meson, meson-baryon, and baryon-baryon s-wave scattering amplitudes below inelastic thresholds from lattice QCD calculations—presently at unphysical light-quark masses. In this work we review the formalism and develop the requisite expressions to extract phase shifts describing meson-meson scattering in partial waves with angular momentum l≤6 and l=9. The implications of the underlying cubic symmetry, and strategies for extracting the phase shifts from lattice QCD calculations, are presented, along with a discussion of the signal-to-noise problem that afflicts the higher partial waves.
Partial Stator Overlap in a Linear Generator for Wave Power: An Experimental Study
Directory of Open Access Journals (Sweden)
Anna E. Frost
2017-11-01
Full Text Available This paper presents a study on how the power absorption and damping in a linear generator for wave energy conversion are affected by partial overlap between stator and translator. The theoretical study shows that the electrical power as well as the damping coefficient change quadratically with partial stator overlap, if inductance, friction and iron losses are assumed independent of partial stator overlap or can be neglected. Results from onshore experiments on a linear generator for wave energy conversion cannot reject the quadratic relationship. Measurements were done on the inductance of the linear generator and no dependence on partial stator overlap could be found. Simulations of the wave energy converter’s operation in high waves show that entirely neglecting partial stator overlap will overestimate the energy yield and underestimate the peak forces in the line between the buoy and the generator. The difference between assuming a linear relationship instead of a quadratic relationship is visible but small in the energy yield in the simulation. Since the theoretical deduction suggests a quadratic relationship, this is advisable to use during modeling. However, a linear assumption could be seen as an acceptable simplification when modeling since other relationships can be computationally costly.
MAGNETOHYDRODYNAMIC WAVES IN A PARTIALLY IONIZED FILAMENT THREAD
International Nuclear Information System (INIS)
Soler, R.; Oliver, R.; Ballester, J. L.
2009-01-01
Oscillations and propagating waves are commonly seen in high-resolution observations of filament threads, i.e., the fine-structures of solar filaments/prominences. Since the temperature of prominences is typically of the order of 10 4 K, the prominence plasma is only partially ionized. In this paper, we study the effect of neutrals on the wave propagation in a filament thread modeled as a partially ionized homogeneous magnetic flux tube embedded in an homogeneous and fully ionized coronal plasma. Ohmic and ambipolar magnetic diffusion are considered in the basic resistive magnetohydrodynamic (MHD) equations. We numerically compute the eigenfrequencies of kink, slow, and Alfven linear MHD modes and obtain analytical approximations in some cases. We find that the existence of propagating modes is constrained by the presence of critical values of the longitudinal wavenumber. In particular, the lower and upper frequency cutoffs of kink and Alfven waves owe their existence to magnetic diffusion parallel and perpendicular to magnetic field lines, respectively. The slow mode only has a lower frequency cutoff, which is caused by perpendicular magnetic diffusion and is significantly affected by the ionization degree. In addition, ion-neutral collision is the most efficient damping mechanism for short wavelengths, while ohmic diffusion dominates in the long-wavelength regime.
Alfven wave propagation in a partially ionized plasma
International Nuclear Information System (INIS)
Watts, Christopher; Hanna, Jeremy
2004-01-01
Results from a laboratory study of the dispersion relation of Alfven waves propagating through a partially ionized plasma are presented. The plasma is generated using a helicon source, creating a high density, current-free discharge, where the source can be adjusted to one of several modes with varying neutral fraction. Depending on the neutral fraction, the measured dispersion curve of shear Alfven waves can change significantly. Measurement results are compared with theoretical predictions of the effect of neutral particles on Alfven wave propagation. In fitting the theory, the neutral fraction is independently estimated using two simple particle transport models, one collisionless, the other collisional. The two models predict comparable neutral fractions, and agree well with the neutral fraction required for the Alfven dispersion theory
Nonlinear acoustic waves in partially ionized collisional plasmas
International Nuclear Information System (INIS)
Rao, N.N.; Kaup, D.J.; Shukla, P.K.
1991-01-01
Nonlinear propagation of acoustic-type waves in a partially ionized three-component collisional plasma consisting of electrons, ions and neutral particles is investigated. For bidirectional propagation, it is shown that the small- but finite-amplitude waves are governed by the Boussinesq equation, which for unidirectional propagation near the acoustic speed reduces to the usual Korteweg-de Vries equation. For large-amplitude waves, it is demonstrated that the relevant fluid equations are integrable in a stationary frame, and the parameter values for the existence of finite-amplitude solutions are explicitly obtained. In both cases, the different temperatures of the individual species, are taken into account. The relevance of the results to the earth's ionospheric plasma in the lower altitude ranges is pointed out. (author)
Effective constants for wave propagation through partially saturated porous media
International Nuclear Information System (INIS)
Berryman, J.G.; Thigpen, L.
1985-01-01
The multipole scattering coefficients for elastic wave scattering from a spherical inhomogeneity in a fluid-saturated porous medium have been calculated. These coefficients may be used to obtain estimates of the effective macroscopic constants for long-wavelength propagation of elastic waves through partially saturated media. If the volume average of the single scattering from spherical bubbles of gas and liquid is required to vanish, the resulting equations determine the effective bulk modulus, density, and viscosity of the multiphase fluid filling the pores. The formula for the effective viscosity during compressional wave excitation is apparently new
Partial wave analysis of anti pp → anti ΛΛ
International Nuclear Information System (INIS)
Bugg, D.V.
2004-01-01
A partial wave analysis of PS185 data for anti pp → anti ΛΛ is presented. A 3 S 1 cusp is identified in the inverse process anti ΛΛ→ anti p p at threshold, using detailed balance to deduce cross sections from anti pp → anti ΛΛ. Partial wave amplitudes for anti pp 3 P 0 , 3 F 3 , 3 D 3 and 3 G 3 exhibit a behaviour very similar to resonances observed in Crystal Barrel data. With this identification, the anti pp → anti ΛΛ data then provide evidence for a new I=0, J PC =1 - resonance with mass M = 2290 ±20 MeV, Γ= 275 ±35 MeV, coupling to both 3 S 1 and 3 D 1 . (orig.)
Superconformal partial waves in Grassmannian field theories
Energy Technology Data Exchange (ETDEWEB)
Doobary, Reza; Heslop, Paul [Department of Mathematical Sciences, Durham University,South Road, Durham, DH1 3LE United Kingdom (United Kingdom)
2015-12-23
We derive superconformal partial waves for all scalar four-point functions on a super Grassmannian space Gr(m|n,2m|2n) for all m,n. This family of four-point functions includes those of all (arbitrary weight) half BPS operators in both N=4 SYM (m=n=2) and in N=2 superconformal field theories in four dimensions (m=2,n=1) on analytic superspace. It also includes four-point functions of all (arbitrary dimension) scalar fields in non-supersymmetric conformal field theories (m=2,n=0) on Minkowski space, as well as those of a certain class of representations of the compact SU(2n) coset spaces. As an application we then specialise to N=4 SYM and use these results to perform a detailed superconformal partial wave analysis of the four-point functions of arbitrary weight half BPS operators. We discuss the non-trivial separation of protected and unprotected sectors for the 〈2222〉, 〈2233〉 and 〈3333〉 cases in an SU(N) gauge theory at finite N. The 〈2233〉 correlator predicts a non-trivial protected twist four sector for 〈3333〉 which we can completely determine using the knowledge that there is precisely one such protected twist four operator for each spin.
Analytic perturbation theory for screened Coulomb potential: full continuum wave function
International Nuclear Information System (INIS)
Bechler, A.; Ennan, Mc J.; Pratt, R.H.
1979-01-01
An analytic perturbation theory developed previously is used to find a continuum screened-Coulomb wave function characterized by definite asymptotic momentum. This wave function satisfies an inhomogeneous partial differential equation which is solved in parabolic coordinates; the solution depends on both parabolic variables. We calculate partial wave projections of this solution and show that we can choose to add a solution of the homogeneous equation such that the partial wave projections become equal to the normalized continuum radial function found previously. However, finding the unique solution with given asymptotic linear momentum will require either using boundary conditions to determine the unique needed solution of the homogeneous equation or equivalently specifying the screened-Coulomb phase-shifts. (author)
New results on the Roper resonance and the P{sub 11} partial wave
Energy Technology Data Exchange (ETDEWEB)
Sarantsev, A.V. [Helmholtz-Institut fuer Strahlen- und Kernphysik der Universitaet Bonn (Germany); Petersburg Nuclear Physics Institute, Gatchina (Russian Federation); Fuchs, M. [Helmholtz-Institut fuer Strahlen- und Kernphysik der Universitaet Bonn (Germany); Kotulla, M. [Physikalisches Institut, Universitaet Basel (Switzerland); II. Physikalisches Institut, Universitaet Giessen (Germany); Thoma, U. [Helmholtz-Institut fuer Strahlen- und Kernphysik der Universitaet Bonn (Germany); II. Physikalisches Institut, Universitaet Giessen (Germany); Ahrens, J. [Institut fuer Kernphysik, Universitaet Mainz (Germany); Annand, J.R.M. [Department of Physics and Astronomy, University of Glasgow (United Kingdom); Anisovich, A.V. [Helmholtz-Institut fuer Strahlen- und Kernphysik der Universitaet Bonn (Germany); Petersburg Nuclear Physics Institute, Gatchina (Russian Federation); Anton, G. [Physikalisches Institut, Universitaet Erlangen (Germany); Bantes, R. [Physikalisches Institut, Universitaet Bonn (Germany); Bartholomy, O. [Helmholtz-Institut fuer Strahlen- und Kernphysik der Universitaet Bonn (Germany); Beck, R. [Helmholtz-Institut fuer Strahlen- und Kernphysik der Universitaet Bonn (Germany); Institut fuer Kernphysik, Universitaet Mainz (Germany); Beloglazov, Yu. [Petersburg Nuclear Physics Institute, Gatchina (Russian Federation); Castelijns, R. [KVI, Groningen (Netherlands); Crede, V. [Helmholtz-Institut fuer Strahlen- und Kernphysik der Universitaet Bonn (Germany); Department of Physics, Florida State University (United States); Ehmanns, A.; Ernst, J.; Fabry, I. [Helmholtz-Institut fuer Strahlen- und Kernphysik der Universitaet Bonn (Germany); Flemming, H. [Physikalisches Institut, Universitaet Bochum (Germany); Foesel, A. [Physikalisches Institut, Universitaet Erlangen (Germany); Funke, Chr. [Helmholtz-Institut fuer Strahlen- und Kernphysik der Universitaet Bonn (Germany)] (and others)
2008-01-17
Properties of the Roper resonance, the first scalar excitation of the nucleon, are determined. Pole positions and residues of the P{sub 11} partial wave are studied in a combined analysis of pion- and photo-induced reactions. We find the Roper pole at {l_brace}(1371{+-}7)-i(92{+-}10){r_brace} MeV and an elasticity of 0.61{+-}0.03. The largest decay coupling is found for the N{sigma} ({sigma}=({pi}{pi})-S-wave). The analysis is based on new data on {gamma}p{yields}p{pi}{sup 0}{pi}{sup 0} for photons in the energy range from the two-pion threshold to 820 MeV from TAPS at Mainz and from 0.4 to 1.3 GeV from Crystal Barrel at Bonn and includes further data from other experiments. The partial wave analysis excludes the possibility that the Roper resonance is split into two states with different partial decay widths.
Lamb, George L
1995-01-01
INTRODUCTORY APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS. With Emphasis on Wave Propagation and Diffusion. This is the ideal text for students and professionals who have some familiarity with partial differential equations, and who now wish to consolidate and expand their knowledge. Unlike most other texts on this topic, it interweaves prior knowledge of mathematics and physics, especially heat conduction and wave motion, into a presentation that demonstrates their interdependence. The result is a superb teaching text that reinforces the reader's understanding of both mathematics and physic
International Nuclear Information System (INIS)
Garibotti, C.R.; Grinstein, F.F.
1978-01-01
Previous theorems on the convergence of the [n,n+m] punctual Pade approximants to the scattering amplitude are extended. The new proofs include the cases of nonforward and backward scattering corresponding to potentials having 1/r and 1/r 2 long-range behaviors, for which the partial wave expansions are divergent and oscillatory, respectively. In this way, the ability of the approximation scheme as a summation method is established for all of the long-range potentials of interest in potential scattering
International Nuclear Information System (INIS)
Garibotti, C.R.; Grinstein, F.F.
1978-01-01
Previous theorems on the convergence of the [n, n+m] Punctual Pade Approximants to the scattering amplitude are extended. The new proofs include the cases of non-forward and backward scattering corresponding to potentials having 1/r and 1/r 2 long range behaviours, for which the partial wave expansions are divergent and oscillatory, respectively. In this way, the ability of the approximation scheme as a summation method is established for all of the long range potentials of interest in potential scattering [pt
Energy Technology Data Exchange (ETDEWEB)
Ditsche, Christoph; Hoferichter, Martin; Kubis, Bastian [Helmholtz-Institut fuer Strahlen- und Kernphysik (Theorie), Universitaet Bonn (Germany); Bethe Center for Theoretical Physics, Bonn (Germany); Meissner, Ulf G. [Helmholtz-Institut fuer Strahlen- und Kernphysik (Theorie), Universitaet Bonn (Germany); Institut fuer Kernphysik (Theorie), Institute for Advanced Simulations, and Juelich Center for Hadron Physics, Forschungszentrum Juelich, D-52425 Juelich (Germany); Bethe Center for Theoretical Physics, Bonn (Germany)
2011-07-01
Starting from (subtracted) hyperbolic dispersion relations for {pi}N scattering, which are based on the general principles of Lorentz invariance, unitarity, crossing and analyticity as well as isospin symmetry, we propose a closed system of (subtracted) hyperbolic partial wave dispersion relations for the partial waves f{sup I}{sub l{+-}}({radical}(s)) of the s-channel reaction {pi}N{yields}{pi}N and the partial waves f{sup J}{sub {+-}}(t) of the t-channel reaction {pi}{pi}{yields} anti NN in the spirit of Roy and Steiner. A key step to the ultimate goal of solving this Roy-Steiner system is to first solve the corresponding (subtracted) Muskhelishvili-Omnes problem with inelasticities and a finite matching point for the lowest t-channel partial waves f{sup 0}{sub +}(t), f{sup 1}{sub {+-}}(t). The recent status of this ongoing effort is presented.
A chiral quark model for meson electroproduction in the S11 partial wave
International Nuclear Information System (INIS)
Golli, B.; Sirca, S.
2011-01-01
We calculate the meson scattering and electroproduction amplitudes in the S11 partial wave in a coupled-channel approach that incorporates quasi-bound quark-model states. Using the quark wave functions and the quark-meson interaction from the Cloudy Bag Model, we obtain a good overall agreement with the available experimental results for the partial widths of the N(1535) and the N(1650) resonances as well as for the pion, eta and kaon electroproduction amplitudes. Our model is consistent with the N(1535) resonance being dominantly a genuine three-quark state rather than a quasi-bound state of mesons and baryons. (orig.)
Partial Differential Equations and Solitary Waves Theory
Wazwaz, Abdul-Majid
2009-01-01
"Partial Differential Equations and Solitary Waves Theory" is a self-contained book divided into two parts: Part I is a coherent survey bringing together newly developed methods for solving PDEs. While some traditional techniques are presented, this part does not require thorough understanding of abstract theories or compact concepts. Well-selected worked examples and exercises shall guide the reader through the text. Part II provides an extensive exposition of the solitary waves theory. This part handles nonlinear evolution equations by methods such as Hirota’s bilinear method or the tanh-coth method. A self-contained treatment is presented to discuss complete integrability of a wide class of nonlinear equations. This part presents in an accessible manner a systematic presentation of solitons, multi-soliton solutions, kinks, peakons, cuspons, and compactons. While the whole book can be used as a text for advanced undergraduate and graduate students in applied mathematics, physics and engineering, Part II w...
DEFF Research Database (Denmark)
Ilic, C; Chadwick, A; Helm-Petersen, Jacob
2000-01-01
, non-phased locked methods are more appropriate. In this paper, the accuracy of two non-phased locked methods of directional analysis, the maximum likelihood method (MLM) and the Bayesian directional method (BDM) have been quantitatively evaluated using numerical simulations for the case...... of multidirectional waves with partial reflections. It is shown that the results are influenced by the ratio of distance from the reflector (L) to the length of the time series (S) used in the spectral analysis. Both methods are found to be capable of determining the incident and reflective wave fields when US > 0......Recent studies of advanced directional analysis techniques have mainly centred on incident wave fields. In the study of coastal structures, however, partially reflective wave fields are commonly present. In the near structure field, phase locked methods can be successfully applied. In the far field...
Calculation of the Full Scattering Amplitude without Partial Wave Decomposition II
Shertzer, J.; Temkin, A.
2003-01-01
As is well known, the full scattering amplitude can be expressed as an integral involving the complete scattering wave function. We have shown that the integral can be simplified and used in a practical way. Initial application to electron-hydrogen scattering without exchange was highly successful. The Schrodinger equation (SE) can be reduced to a 2d partial differential equation (pde), and was solved using the finite element method. We have now included exchange by solving the resultant SE, in the static exchange approximation. The resultant equation can be reduced to a pair of coupled pde's, to which the finite element method can still be applied. The resultant scattering amplitudes, both singlet and triplet, as a function of angle can be calculated for various energies. The results are in excellent agreement with converged partial wave results.
Complex space source theory of partially coherent light wave.
Seshadri, S R
2010-07-01
The complex space source theory is used to derive a general integral expression for the vector potential that generates the extended full Gaussian wave in terms of the input value of the vector potential of the corresponding paraxial beam. The vector potential and the fields are assumed to fluctuate on a time scale that is large compared to the wave period. The Poynting vector in the propagation direction averaged over a wave period is expressed in terms of the cross-spectral density of the fluctuating vector potential across the input plane. The Schell model is assumed for the cross-spectral density. The radiation intensity distribution and the power radiated are determined. The effect of spatial coherence on the radiation intensity distribution and the radiated power are investigated for different values of the physical parameters. Illustrative numerical results are provided to bring out the effect of spatial coherence on the propagation characteristics of the fluctuating light wave.
International Nuclear Information System (INIS)
Nikolopoulos, L. A. A.; Kjeldsen, T. K.; Madsen, L. B.
2007-01-01
We present a method for spectral (bound and continuum) and partial-wave analysis of a three-dimensional time-dependent wave function, defined on a grid, without projecting onto the field-free eigenstates of the system. The method consists of propagating the time-dependent Schroedinger equation to obtain its autocorrelation function C(t)= after the end of the interaction, at time T, of the system with an external time-dependent field. The Fourier spectrum of this correlation function is directly related to the expansion coefficients of the wave function on the field-free bound and continuum energy eigenstates of the system. By expanding on a spherical harmonics basis we show how to calculate the contribution of the various partial waves to the total photoelectron energy spectrum
Study on the electromagnetic waves propagation characteristics in partially ionized plasma slabs
Directory of Open Access Journals (Sweden)
Zhi-Bin Wang
2016-05-01
Full Text Available Propagation characteristics of electromagnetic (EM waves in partially ionized plasma slabs are studied in this paper. Such features are significant to applications in plasma antennas, blackout of re-entry flying vehicles, wave energy injection to plasmas, and etc. We in this paper developed a theoretical model of EM wave propagation perpendicular to a plasma slab with a one-dimensional density inhomogeneity along propagation direction to investigate essential characteristics of EM wave propagation in nonuniform plasmas. Particularly, the EM wave propagation in sub-wavelength plasma slabs, where the geometric optics approximation fails, is studied and in comparison with thicker slabs where the geometric optics approximation applies. The influences of both plasma and collisional frequencies, as well as the width of the plasma slab, on the EM wave propagation characteristics are discussed. The results can help the further understanding of propagation behaviours of EM waves in nonuniform plasma, and applications of the interactions between EM waves and plasmas.
Bulk elastic wave propagation in partially saturated porous solids
International Nuclear Information System (INIS)
Berryman, J.G.; Thigpen, L.; Chin, R.C.Y.
1988-01-01
The linear equations of motion that describe the behavior of small disturbances in a porous solid containing both liquid and gas are solved for bulk wave propagation. The equations have been simplified by neglecting effects due to changes in capillary pressure. With this simplifying assumption, the equations reduce to two coupled (vector) equations of the form found in Biot's equations (for full saturation) but with more complicated coefficients. As in fully saturated solids, two shear waves with the same speed but different polarizations exist as do two compressional waves with distinct speeds. Attenuation effects can be enhanced in the partially saturated solid, depending on the distribution of gas in the pore space. Two models of the liquid/gas spatial distribution are considered: a segregated-fluids model and a mixed-fluids model. The two models predict comparable attentuation when the gas saturation is low, but the segregated-fluids model predicts a more rapid roll-off of attenuation as the gas saturation increases
El Koussaifi, R; Tikan, A; Toffoli, A; Randoux, S; Suret, P; Onorato, M
2018-01-01
Rogue waves are extreme and rare fluctuations of the wave field that have been discussed in many physical systems. Their presence substantially influences the statistical properties of a partially coherent wave field, i.e., a wave field characterized by a finite band spectrum with random Fourier phases. Their understanding is fundamental for the design of ships and offshore platforms. In many meteorological conditions waves in the ocean are characterized by the so-called Joint North Sea Wave Project (JONSWAP) spectrum. Here we compare two unique experimental results: the first one has been performed in a 270 m wave tank and the other in optical fibers. In both cases, waves characterized by a JONSWAP spectrum and random Fourier phases have been launched at the input of the experimental device. The quantitative comparison, based on an appropriate scaling of the two experiments, shows a very good agreement between the statistics in hydrodynamics and optics. Spontaneous emergence of heavy tails in the probability density function of the wave amplitude is observed in both systems. The results demonstrate the universal features of rogue waves and provide a fundamental and explicit bridge between two important fields of research. Numerical simulations are also compared with experimental results.
El Koussaifi, R.; Tikan, A.; Toffoli, A.; Randoux, S.; Suret, P.; Onorato, M.
2018-01-01
Rogue waves are extreme and rare fluctuations of the wave field that have been discussed in many physical systems. Their presence substantially influences the statistical properties of a partially coherent wave field, i.e., a wave field characterized by a finite band spectrum with random Fourier phases. Their understanding is fundamental for the design of ships and offshore platforms. In many meteorological conditions waves in the ocean are characterized by the so-called Joint North Sea Wave Project (JONSWAP) spectrum. Here we compare two unique experimental results: the first one has been performed in a 270 m wave tank and the other in optical fibers. In both cases, waves characterized by a JONSWAP spectrum and random Fourier phases have been launched at the input of the experimental device. The quantitative comparison, based on an appropriate scaling of the two experiments, shows a very good agreement between the statistics in hydrodynamics and optics. Spontaneous emergence of heavy tails in the probability density function of the wave amplitude is observed in both systems. The results demonstrate the universal features of rogue waves and provide a fundamental and explicit bridge between two important fields of research. Numerical simulations are also compared with experimental results.
Plante, David T; Goldstein, Michael R; Cook, Jesse D; Smith, Richard; Riedner, Brady A; Rumble, Meredith E; Jelenchick, Lauren; Roth, Andrea; Tononi, Giulio; Benca, Ruth M; Peterson, Michael J
2016-02-01
Changes in slow waves during non-rapid eye movement (NREM) sleep in response to acute total sleep deprivation are well-established measures of sleep homeostasis. This investigation utilized high-density electroencephalography (hdEEG) to examine topographic changes in slow waves during repeated partial sleep deprivation. Twenty-four participants underwent a 6-day sleep restriction protocol. Spectral and period-amplitude analyses of sleep hdEEG data were used to examine changes in slow wave energy, count, amplitude, and slope relative to baseline. Changes in slow wave energy were dependent on the quantity of NREM sleep utilized for analysis, with widespread increases during sleep restriction and recovery when comparing data from the first portion of the sleep period, but restricted to recovery sleep if the entire sleep episode was considered. Period-amplitude analysis was less dependent on the quantity of NREM sleep utilized, and demonstrated topographic changes in the count, amplitude, and distribution of slow waves, with frontal increases in slow wave amplitude, numbers of high-amplitude waves, and amplitude/slopes of low amplitude waves resulting from partial sleep deprivation. Topographic changes in slow waves occur across the course of partial sleep restriction and recovery. These results demonstrate a homeostatic response to partial sleep loss in humans. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Plateau Waves of Intracranial Pressure and Partial Pressure of Cerebral Oxygen.
Lang, Erhard W; Kasprowicz, Magdalena; Smielewski, Peter; Pickard, John; Czosnyka, Marek
2016-01-01
This study investigates 55 intracranial pressure (ICP) plateau waves recorded in 20 patients after severe traumatic brain injury (TBI) with a focus on a moving correlation coefficient between mean arterial pressure (ABP) and ICP, called PRx, which serves as a marker of cerebrovascular reactivity, and a moving correlation coefficient between ABP and cerebral partial pressure of oxygen (pbtO2), called ORx, which serves as a marker for cerebral oxygen reactivity. ICP and ICPamplitude increased significantly during the plateau waves, whereas CPP and pbtO2 decreased significantly. ABP, ABP amplitude, and heart rate remained unchanged. In 73 % of plateau waves PRx increased during the wave. ORx showed an increase during and a decrease after the plateau waves, which was not statistically significant. Our data show profound cerebral vasoparalysis on top of the wave and, to a lesser extent, impairment of cerebral oxygen reactivity. The different behavior of the indices may be due to the different latencies of the cerebral blood flow and oxygen level control mechanisms. While cerebrovascular reactivity is a rapidly reacting mechanism, cerebral oxygen reactivity is slower.
Partial wave analysis of ι/η(1430) from DM2
International Nuclear Information System (INIS)
Augustin, J.E.; Cosme, G.; Couchot, F.; Fulda, F.; Grosdidier, G.; Jean-Marie, B.; Lepeltier, V.; Mane, M.; Szklarz, G.; Jousset, J.; Ajaltouni, Z.; Falvard, A.; Michel, B.; Montret, J.C.
1989-12-01
A Partial Wave Analysis of the ι/η (1430) region from the study of the radiative decays J/Ψ → γ K S 0 K ± π -+ and J/Ψ → γ K ± K -+ π 0 is presented. Pseudoscalar dominance appears clearly with two dynamical components. The main one which proceeds via δ/a 0 (980) π is centered at 1460 MeV/c 2 , while the second one with K*(892) K dynamics is peaked at a lower mass (1420 MeV/c 2 ) close to its kinematical threshold. In addition, the higher part of the mass spectrum contains a significant contribution from the 1 ++ K*(892)K wave
Wave Energy Potential in the Latvian EEZ
Beriņš, J.; Beriņš, J.; Kalnačs, J.; Kalnačs, A.
2016-06-01
The present article deals with one of the alternative forms of energy - sea wave energy potential in the Latvian Exclusice Economic Zone (EEZ). Results have been achieved using a new method - VEVPP. Calculations have been performed using the data on wave parameters over the past five years (2010-2014). We have also considered wave energy potential in the Gulf of Riga. The conclusions have been drawn on the recommended methodology for the sea wave potential and power calculations for wave-power plant pre-design stage.
Bofill, Josep Maria; Quapp, Wolfgang; Caballero, Marc
2012-12-11
The potential energy surface (PES) of a molecule can be decomposed into equipotential hypersurfaces. We show in this article that the hypersurfaces are the wave fronts of a certain hyperbolic partial differential equation, a wave equation. It is connected with the gradient lines, or the steepest descent, or the steepest ascent lines of the PES. The energy seen as a reaction coordinate plays the central role in this treatment.
Witten, Matthew
1983-01-01
Hyperbolic Partial Differential Equations, Volume 1: Population, Reactors, Tides and Waves: Theory and Applications covers three general areas of hyperbolic partial differential equation applications. These areas include problems related to the McKendrick/Von Foerster population equations, other hyperbolic form equations, and the numerical solution.This text is composed of 15 chapters and begins with surveys of age specific population interactions, populations models of diffusion, nonlinear age dependent population growth with harvesting, local and global stability for the nonlinear renewal eq
Two-nucleon higher partial-wave scattering from lattice QCD
Directory of Open Access Journals (Sweden)
Evan Berkowitz
2017-02-01
Full Text Available We present a determination of nucleon-nucleon scattering phase shifts for ℓ≥0. The S, P, D and F phase shifts for both the spin-triplet and spin-singlet channels are computed with lattice Quantum ChromoDynamics. For ℓ>0, this is the first lattice QCD calculation using the Lüscher finite-volume formalism. This required the design and implementation of novel lattice methods involving displaced sources and momentum-space cubic sinks. To demonstrate the utility of our approach, the calculations were performed in the SU(3-flavor limit where the light quark masses have been tuned to the physical strange quark mass, corresponding to mπ=mK≈800 MeV. In this work, we have assumed that only the lowest partial waves contribute to each channel, ignoring the unphysical partial wave mixing that arises within the finite-volume formalism. This assumption is only valid for sufficiently low energies; we present evidence that it holds for our study using two different channels. Two spatial volumes of V≈(3.5 fm3 and V≈(4.6 fm3 were used. The finite-volume spectrum is extracted from the exponential falloff of the correlation functions. Said spectrum is mapped onto the infinite volume phase shifts using the generalization of the Lüscher formalism for two-nucleon systems.
Robustness, Death of Spiral Wave in the Network of Neurons under Partial Ion Channel Block
International Nuclear Information System (INIS)
Jun, Ma; Long, Huang; Chun-Ni, Wang; Zhong-Sheng, Pu
2013-01-01
The development of spiral wave in a two-dimensional square array due to partial ion channel block (Potassium, Sodium) is investigated, the dynamics of the node is described by Hodgkin—Huxley neuron and these neurons are coupled with nearest neighbor connection. The parameter ratio x Na (and x K ), which defines the ratio of working ion channel number of sodium (potassium) to the total ion channel number of sodium (and potassium), is used to measure the shift conductance induced by channel block. The distribution of statistical variable R in the two-parameter phase space (parameter ratio vs. poisoning area) is extensively calculated to mark the parameter region for transition of spiral wave induced by partial ion channel block, the area with smaller factors of synchronization R is associated the parameter region that spiral wave keeps alive and robust to the channel poisoning. Spiral wave keeps alive when the poisoned area (potassium or sodium) and degree of intoxication are small, distinct transition (death, several spiral waves coexist or multi-arm spiral wave emergence) occurs under moderate ratio x Na (and x K ) when the size of blocked area exceeds certain thresholds. Breakup of spiral wave occurs and multi-arm of spiral waves are observed when the channel noise is considered. (interdisciplinary physics and related areas of science and technology)
Yuan, Na
2018-04-01
With the aid of the symbolic computation, we present an improved ( G ‧ / G ) -expansion method, which can be applied to seek more types of exact solutions for certain nonlinear evolution equations. In illustration, we choose the (3 + 1)-dimensional potential Yu-Toda-Sasa-Fukuyama equation to demonstrate the validity and advantages of the method. As a result, abundant explicit and exact nontraveling wave solutions are obtained including two solitary waves solutions, nontraveling wave solutions and dromion soliton solutions. Some particular localized excitations and the interactions between two solitary waves are researched. The method can be also applied to other nonlinear partial differential equations.
Microstrip natural wave spectrum mathematical model using partial inversion method
International Nuclear Information System (INIS)
Pogarsky, S.A.; Litvinenko, L.N.; Prosvirnin, S.L.
1995-01-01
It is generally agreed that both microstrip lines itself and different discontinuities based on microstrips are the most difficult problem for accurate electrodynamic analysis. Over the last years much has been published about principles and accurate (or full wave) methods of microstrip lines investigations. The growing interest for this problem may be explained by the microstrip application in the millimeter-wave range for purpose of realizing interconnects and a variety of passive components. At these higher operating rating frequencies accurate component modeling becomes more critical. A creation, examination and experimental verification of the accurate method for planar electrodynamical structures natural wave spectrum investigations are the objects of this manuscript. The moment method with partial inversion operator method using may be considered as a basical way for solving this problem. This method is outlook for accurate analysis of different planar discontinuities in microstrip: such as step discontinuities, microstrip turns, Y- and X-junctions and etc., substrate space steps dielectric constants and other anisotropy types
Shertzer, Janine; Temkin, A.
2003-01-01
As is well known, the full scattering amplitude can be expressed as an integral involving the complete scattering wave function. We have shown that the integral can be simplified and used in a practical way. Initial application to electron-hydrogen scattering without exchange was highly successful. The Schrodinger equation (SE), which can be reduced to a 2d partial differential equation (pde), was solved using the finite element method. We have now included exchange by solving the resultant SE, in the static exchange approximation, which is reducible to a pair of coupled pde's. The resultant scattering amplitudes, both singlet and triplet, calculated as a function of energy are in excellent agreement with converged partial wave results.
Properties of partial-wave amplitudes in conformal invariant field theories
Ferrara, Sergio; Grillo, A F
1975-01-01
Analyticity properties of partial-wave amplitudes of the conformal group O/sub D,2/ (D not necessarily integer) in configuration space are investigated. The presence of Euclidean singularities in the Wilson expansion in conformal invariant field theories is discussed, especially in connection with the program of formulating dynamical bootstrap conditions coming from the requirement of causality. The exceptional case of D-2 is discussed in detail. (18 refs).
Introduction to partial differential equations
Greenspan, Donald
2000-01-01
Designed for use in a one-semester course by seniors and beginning graduate students, this rigorous presentation explores practical methods of solving differential equations, plus the unifying theory underlying the mathematical superstructure. Topics include basic concepts, Fourier series, second-order partial differential equations, wave equation, potential equation, heat equation, approximate solution of partial differential equations, and more. Exercises appear at the ends of most chapters. 1961 edition.
New results on the Roper resonance and the P-11 partial wave
Sarantsev, A. V.; Fuchs, M.; Kotulla, M.; Thoma, U.; Ahrens, J.; Annand, J. R. M.; Anisovich, A. V.; Anton, G.; Bantes, R.; Bartholomy, O.; Beck, R.; Beloglazov, Yu.; Castelijns, R.; Crede, V.; Ehmanns, A.; Ernst, J.; Fabry, I.; Flemming, H.; Foesel, A.; Funke, Chr.; Gothe, R.; Gridnev, A.; Gutz, E.; Hoeffgen, St.; Horn, I.; Hoessl, J.; Hornidge, D.; Janssen, S.; Junkersfeld, J.; Kalinowsky, H.; Klein, F.; Klempt, E.; Koch, H.; Konrad, M.; Kopf, B.; Krusche, B.; Langheinrich, J.; Loehner, H.; Lopatin, I.; Lotz, J.; McGeorge, J. C.; MacGregor, I. J. D.; Matthaey, H.; Menze, D.; Messchendorp, J. G.; Metag, V.; Nikonov, V. A.; Novinski, D.; Novotny, R.; Ostrick, M.; van Pee, H.; Pfeiffer, M.; Radkov, A.; Rosner, G.; Rost, M.; Schmidt, C.; Schoch, B.; Suft, G.; Sumachev, V.; Szczepanek, T.; Walther, D.; Watts, D. P.; Weinheimer, Chr.
2008-01-01
Properties of the Roper resonance, the first scalar excitation of the nucleon, are determined. Pole positions and residues of the P-11 partial wave are studied in a combined analysis of pion- and photo-induced reactions. We find the Roper pole at {(1371 +/- 7) - i(92 +/- 10)} MeV and an elasticity
Eikonal Approximation in AdS/CFT: Conformal Partial Waves and Finite N Four-Point Functions
Cornalba, L; Penedones, J; Schiappa, R; Cornalba, Lorenzo; Costa, Miguel S.; Penedones, Joao; Schiappa, Ricardo
2007-01-01
We introduce the impact-parameter representation for conformal field theory correlators of the form A ~ . This representation is appropriate in the eikonal kinematical regime, and approximates the conformal partial-wave decomposition in the limit of large spin and dimension of the exchanged primary. Using recent results on the two-point function _{shock} in the presence of a shock wave in Anti-de Sitter, and its relation to the discontinuity of the four-point amplitude A across a kinematical branch-cut, we find the high spin and dimension conformal partial- wave decomposition of all tree-level Anti-de Sitter Witten diagrams. We show that, as in flat space, the eikonal kinematical regime is dominated by the T-channel exchange of the massless particle with highest spin (graviton dominance). We also compute the anomalous dimensions of the high-spin O_1 O_2 composites. Finally, we conjecture a formula re-summing crossed-ladder Witten diagrams to all orders in the gravitational coupling.
Directory of Open Access Journals (Sweden)
Colin Morningstar
2017-11-01
Full Text Available An implementation of estimating the two-to-two K-matrix from finite-volume energies based on the Lüscher formalism and involving a Hermitian matrix known as the “box matrix” is described. The method includes higher partial waves and multiple decay channels. Two fitting procedures for estimating the K-matrix parameters, which properly incorporate all statistical covariances, are discussed. Formulas and software for handling total spins up to S=2 and orbital angular momenta up to L=6 are obtained for total momenta in several directions. First tests involving ρ-meson decay to two pions include the L=3 and L=5 partial waves, and the contributions from these higher waves are found to be negligible in the elastic energy range.
Wave energy potential in Galicia (NW Spain)
Energy Technology Data Exchange (ETDEWEB)
Iglesias, G.; Lopez, M.; Carballo, R.; Castro, A. [University of Santiago de Compostela, Hydraulic Engineering, E.P.S., Campus Universitario s/n, 27002 Lugo (Spain); Fraguela, J.A. [University of A Coruna, E.P.S., Campus de Esteiro s/n, Ferrol (Spain); Frigaard, P. [University of Aalborg, Sohngaardsholmsvej 57, DK 9000 (Denmark)
2009-11-15
Wave power presents significant advantages with regard to other CO{sub 2}-free energy sources, among which the predictability, high load factor and low visual and environmental impact stand out. Galicia, facing the Atlantic on the north-western corner of the Iberian Peninsula, is subjected to a very harsh wave climate; in this work its potential for energy production is assessed based on three-hourly data from a third generation ocean wave model (WAM) covering the period 1996-2005. Taking into account the results of this assessment along with other relevant considerations such as the location of ports, navigation routes, and fishing and aquaculture zones, an area is selected for wave energy exploitation. The transformation of the offshore wave field as it propagates into this area is computed by means of a nearshore wave model (SWAN) in order to select the optimum locations for a wave farm. Two zones emerge as those with the highest potential for wave energy exploitation. The large modifications in the available wave power resulting from relatively small changes of position are made apparent in the process. (author)
Plane waves and spherical means applied to partial differential equations
John, Fritz
2004-01-01
Elementary and self-contained, this heterogeneous collection of results on partial differential equations employs certain elementary identities for plane and spherical integrals of an arbitrary function, showing how a variety of results on fairly general differential equations follow from those identities. The first chapter deals with the decomposition of arbitrary functions into functions of the type of plane waves. Succeeding chapters introduce the first application of the Radon transformation and examine the solution of the initial value problem for homogeneous hyperbolic equations with con
Partial wave expansions for arbitrary spin and the role of non-central forces
International Nuclear Information System (INIS)
Johnson, R.C.
1976-09-01
The partial wave expansion of the amplitudes used by Hooton and Johnson for the scattering of particles of arbitrary spin is derived. A discussion is given of the extent to which effects arising from transition matrix elements that are diagonal and nondiagonal in orbital angular momentum can be distinguished in observables
On continuous ambiguities in model-independent partial wave analysis - 1
International Nuclear Information System (INIS)
Nikitin, I.N.
1995-01-01
A problem of amplitude reconstruction in terms of the given angular distribution is considered. Solution of this problem is not unique. A class of amplitudes, correspondent to one and the same angular distribution, forms a region in projection onto a finite set of spherical harmonics. An explicit parametrization of a boundary of the region is obtained. A shape of the region of ambiguities is studied in particular example. A scheme of partial-wave analysis, which describes all solutions in the limits of the region, is proposed. 5 refs., 5 figs
Eikonal approximation in AdS/CFT: Conformal partial waves and finite N four-point functions
International Nuclear Information System (INIS)
Cornalba, Lorenzo; Costa, Miguel S.; Penedones, Joao; Schiappa, Ricardo
2007-01-01
We introduce the impact parameter representation for conformal field theory correlators of the form A∼ 1 O 2 O 1 O 2 >. This representation is appropriate in the eikonal kinematical regime, and approximates the conformal partial wave decomposition in the limit of large spin and dimension of the exchanged primary. Using recent results on the two-point function 1 O 1 > shock in the presence of a shock wave in anti-de Sitter, and its relation to the discontinuity of the four-point amplitude A across a kinematical branch cut, we find the high spin and dimension conformal partial wave decomposition of all tree-level anti-de Sitter Witten diagrams. We show that, as in flat space, the eikonal kinematical regime is dominated by the T-channel exchange of the massless particle with highest spin (graviton dominance). We also compute the anomalous dimensions of the high spin O 1 O 2 composites. Finally, we conjecture a formula re-summing crossed-ladder Witten diagrams to all orders in the gravitational coupling
Salvat, Francesc; Jablonski, Aleksander; Powell, Cedric J.
2005-01-01
The FORTRAN 77 code system ELSEPA for the calculation of elastic scattering of electrons and positrons by atoms, positive ions and molecules is presented. These codes perform relativistic (Dirac) partial-wave calculations for scattering by a local central interaction potential V(r). For atoms and ions, the static-field approximation is adopted, with the potential set equal to the electrostatic interaction energy between the projectile and the target, plus an approximate local exchange interaction when the projectile is an electron. For projectiles with kinetic energies up to 10 keV, the potential may optionally include a semiempirical correlation-polarization potential to describe the effect of the target charge polarizability. Also, for projectiles with energies less than 1 MeV, an imaginary absorptive potential can be introduced to account for the depletion of the projectile wave function caused by open inelastic channels. Molecular cross sections are calculated by means of a single-scattering independent-atom approximation in which the electron density of a bound atom is approximated by that of the free neutral atom. Elastic scattering by individual atoms in solids is described by means of a muffin-tin model potential. Partial-wave calculations are feasible on modest personal computers for energies up to about 5 MeV. The ELSEPA code also implements approximate factorization methods that allow the fast calculation of elastic cross sections for much higher energies. The interaction model adopted in the calculations is defined by the user by combining the different options offered by the code. The nuclear charge distribution can be selected among four analytical models (point nucleus, uniformly charged sphere, Fermi's distribution and Helm's uniform-uniform distribution). The atomic electron density is handled in numerical form. The distribution package includes data files with electronic densities of neutral atoms of the elements hydrogen to lawrencium ( Z=1
Partial wave expansions for arbitrary spin and the role of non-central forces
International Nuclear Information System (INIS)
Johnson, R.C.
1977-01-01
The partial wave expansion of the amplitudes used by Hooton and Johnson for the scattering of particles of arbitrary spin is derived. A discussion is given of the extent to which effects arising from transition matrix elements that are diagonal and non-diagonal in orbital angular momentum can be distinguished in observables. (Auth.)
Partial wave analysis of KKPI system in D and E/IOTA region
International Nuclear Information System (INIS)
Chung, S.U.; Fernow, R.; Kirk, H.
1985-01-01
A partial wave analysis and a Dalitz plot analysis of high-statistics data from reaction π - p → K + K/sub S/π - n at 8.0 GeV/c show that the D(1285) is a J/sup PG/ = 1 ++ state and the E(1420) a J/sup PG/ = 0 -+ state both with a substantial deltaπ decay mode. The 1 ++ K*anti K wave exhibits a rapid rise near threshold but no evidence of a resonance in the E region. The assignment of J/sup PG/ = O -+ to the E is confirmed from a Dalitz-plot analysis of the reaction pp → K + K/sub S/π - X 0 . 11 refs., 5 figs
Gravitational Waves from Oscillons with Cuspy Potentials.
Liu, Jing; Guo, Zong-Kuan; Cai, Rong-Gen; Shiu, Gary
2018-01-19
We study the production of gravitational waves during oscillations of the inflaton around the minimum of a cuspy potential after inflation. We find that a cusp in the potential can trigger copious oscillon formation, which sources a characteristic energy spectrum of gravitational waves with double peaks. The discovery of such a double-peak spectrum could test the underlying inflationary physics.
New multidimensional partially integrable generalization of S-integrable N-wave equation
International Nuclear Information System (INIS)
Zenchuk, A. I.
2007-01-01
This paper develops a modification of the dressing method based on the inhomogeneous linear integral equation with integral operator having nonempty kernel. The method allows one to construct the systems of multidimensional partial differential equations having differential polynomial structure in any dimension n. The associated solution space is not full, although it is parametrized by certain number of arbitrary functions of (n-1) variables. We consider four-dimensional generalization of the classical (2+1)-dimensional S-integrable N-wave equation as an example
Wave power potential in Malaysian territorial waters
Asmida Mohd Nasir, Nor; Maulud, Khairul Nizam Abdul
2016-06-01
Up until today, Malaysia has used renewable energy technology such as biomass, solar and hydro energy for power generation and co-generation in palm oil industries and also for the generation of electricity, yet, we are still far behind other countries which have started to optimize waves for similar production. Wave power is a renewable energy (RE) transported by ocean waves. It is very eco-friendly and is easily reachable. This paper presents an assessment of wave power potential in Malaysian territorial waters including waters of Sabah and Sarawak. In this research, data from Malaysia Meteorology Department (MetMalaysia) is used and is supported by a satellite imaginary obtained from National Aeronautics and Space Administration (NASA) and Malaysia Remote Sensing Agency (ARSM) within the time range of the year 1992 until 2007. There were two types of analyses conducted which were mask analysis and comparative analysis. Mask analysis of a research area is the analysis conducted to filter restricted and sensitive areas. Meanwhile, comparative analysis is an analysis conducted to determine the most potential area for wave power generation. Four comparative analyses which have been carried out were wave power analysis, comparative analysis of wave energy power with the sea topography, hot-spot area analysis and comparative analysis of wave energy with the wind speed. These four analyses underwent clipping processes using Geographic Information System (GIS) to obtain the final result. At the end of this research, the most suitable area to develop a wave energy converter was found, which is in the waters of Terengganu and Sarawak. Besides that, it was concluded that the average potential energy that can be generated in Malaysian territorial waters is between 2.8kW/m to 8.6kW/m.
Baryon Spectroscopy Through Partial-Wave Analysis and Meson Photoproduction
International Nuclear Information System (INIS)
Manley, D. Mark
2016-01-01
The principal goal of this project is the experimental and phenomenological study of baryon spectroscopy. The PI's group consists of himself and three graduate students. This final report summarizes research activities by the PI's group during the period 03/01/2015 to 08/14/2016. During this period, the PI co-authored 11 published journal papers and one proceedings article and presented three invited talks. The PI's general interest is the investigation of the baryon resonance spectrum up to masses of ~ 2 GeV. More detail is given on two research projects: Neutral Kaon Photoproduction and Partial-Wave Analyses of γp → η p, γn → η n, and γp → K"+ Λ.
Partially hydrolyzed guar gum as a potential prebiotic source.
Mudgil, Deepak; Barak, Sheweta; Patel, Ami; Shah, Nihir
2018-06-01
Guar galactomannan was enzymatically hydrolyzed to obtain partially hydrolyzed guar gum which can be utilized as prebiotic source. In present study, growth of probiotics (Lactic Acid Bacteria strains) were studied with glucose, partially hydrolyzed guar gum and native guar gum. All the six strains were galactose &/or mannose positive using the API CHl 50 test. Almost all these strains showed an ability to assimilate partially hydrolyzed guar gum with respect to increase in optical density and viable cell count with concomitant decrease in the pH of the growth medium. Streptococcus thermophilus MD2 exhibited higher growth (7.78 log cfu/ml) while P. parvulus AI1 showed comparatively less growth (7.24 log cfu/ml) as compared to used lactobacillus and Weissella strains. Outcomes of the current study suggest that partially hydrolyzed guar can be considered as potential prebiotic compound that may further stimulate the growth of potentially probiotic bacteria or native gut microflora. Copyright © 2018 Elsevier B.V. All rights reserved.
Surface-wave potential for triggering tectonic (nonvolcanic) tremor
Hill, D.P.
2010-01-01
Source processes commonly posed to explain instances of remote dynamic triggering of tectonic (nonvolcanic) tremor by surface waves include frictional failure and various modes of fluid activation. The relative potential for Love- and Rayleigh-wave dynamic stresses to trigger tectonic tremor through failure on critically stressed thrust and vertical strike-slip faults under the Coulomb-Griffith failure criteria as a function of incidence angle is anticorrelated over the 15- to 30-km-depth range that hosts tectonic tremor. Love-wave potential is high for strike-parallel incidence on low-angle reverse faults and null for strike-normal incidence; the opposite holds for Rayleigh waves. Love-wave potential is high for both strike-parallel and strike-normal incidence on vertical, strike-slip faults and minimal for ~45?? incidence angles. The opposite holds for Rayleigh waves. This pattern is consistent with documented instances of tremor triggered by Love waves incident on the Cascadia mega-thrust and the San Andreas fault (SAF) in central California resulting from shear failure on weak faults (apparent friction, ????? 0.2). However, documented instances of tremor triggered by surface waves with strike-parallel incidence along the Nankai megathrust beneath Shikoku, Japan, is associated primarily with Rayleigh waves. This is consistent with the tremor bursts resulting from mixed-mode failure (crack opening and shear failure) facilitated by near-lithostatic ambient pore pressure, low differential stress, with a moderate friction coefficient (?? ~ 0.6) on the Nankai subduction interface. Rayleigh-wave dilatational stress is relatively weak at tectonic tremor source depths and seems unlikely to contribute significantly to the triggering process, except perhaps for an indirect role on the SAF in sustaining tremor into the Rayleigh-wave coda that was initially triggered by Love waves.
Baryon Spectroscopy Through Partial-Wave Analysis and Meson Photoproduction
Energy Technology Data Exchange (ETDEWEB)
Manley, D. Mark [Kent State Univ., Kent, OH (United States)
2016-09-08
The principal goal of this project is the experimental and phenomenological study of baryon spectroscopy. The PI's group consists of himself and three graduate students. This final report summarizes research activities by the PI's group during the period 03/01/2015 to 08/14/2016. During this period, the PI co-authored 11 published journal papers and one proceedings article and presented three invited talks. The PI's general interest is the investigation of the baryon resonance spectrum up to masses of ~ 2 GeV. More detail is given on two research projects: Neutral Kaon Photoproduction and Partial-Wave Analyses of γp → η p, γn → η n, and γp → K⁺ Λ.
Shebloski, Barbara; Conger, Katherine J; Widaman, Keith F
2005-12-01
This study examined reciprocal links between parental differential treatment, siblings' perception of partiality, and self-worth with 3 waves of data from 384 adolescent sibling dyads. Results suggest that birth-order status was significantly associated with self-worth and perception of maternal and paternal differential treatment. There was a consistent across-time effect of self-worth on perception of parental partiality for later born siblings, but not earlier born siblings, and a consistent effect of differential treatment on perception of partiality for earlier born but not later born siblings. The results contribute new insight into the associations between perception of differential parenting and adolescents' adjustment and the role of birth order. Copyright 2006 APA, all rights reserved).
Reliability-based Calibration of Partial Safety Factors for Wave Energy Converters
DEFF Research Database (Denmark)
Ambühl, Simon; Kramer, Morten Mejlhede; Sørensen, John Dalsgaard
2015-01-01
of partial safety factors for design of welded details for wave energy converter applications is presented in this paper using probabilistic methods. The paper presents an example with focus on the Wavestar device. SN curves and Rainflow counting are used to model fatigue without considering inspections....... The influence of inspections is modelled using a fracture mechanics approach, which is calibrated by the SN curve approach. Furthermore, the paper assesses the influence of the inspection quality. The results show that with multiple inspections during the lifetime of the device and by applying a good inspection...
Scattering and absorption of electromagnetic waves by a Schwarzschild black hole
International Nuclear Information System (INIS)
Fabbri, R.
1975-01-01
The scattering and absorption of electromagnetic waves by a spherically symmetric nonrotating black hole is studied in the Schwarzschild background, by means of the known expansion of the modified Debye potentials in partial waves. The power reflection coefficients and the phase shifts of the partial waves are evaluated at both high and low frequencies. Then the scattering and absorption cross sections of the black hole are determined. It is shown that the black hole is almost unable to absorb electromagnetic waves when the wave length of the radiation is greater than the Schwarzschild radius
Study of the potential of wave energy in Malaysia
Tan, Wan Ching; Chan, Keng Wai; Ooi, Heivin
2017-07-01
Renewable energy is generally defined as energy harnessed from resources which are naturally replenished. It is an alternative to the current conventional energy sources such as natural gas, oil and coal, which are nonrenewable. Besides being nonrenewable, the harnessing of these resources generally produce by-products which could be potentially harmful to the environment. On the contrary, the generation from renewable energy does not pose environmental degradation. Some examples of renewable energy sources are sunlight, wind, tides, waves and geothermal heat. Wave energy is considered as one of the most promising marine renewable resources and is becoming commercially viable quicker than other renewable technologies at an astonishing growth rate. This paper illustrates the working principle of wave energy converter (WEC) and the availability of wave energy in Malaysia oceans. A good understanding of the behaviour of ocean waves is important for designing an efficient WEC as the characteristics of the waves in shallow and deep water are different. Consequently, wave energy converters are categorized into three categories on shore, near shore and offshore. Therefore, the objectives of this study is ought to be carried out by focusing on the formation of waves and wave characteristics in shallow as well as in deep water. The potential sites for implementation of wave energy harvesting technology in Malaysia and the wave energy available in the respective area were analysed. The potential of wave energy in Malaysia were tabulated and presented with theoretical data. The interaction between motion of waves and heave buoys for optimum phase condition by using the mass and diameter as the variables were investigated.
Re-ionization of a partially ionized plasma by an Alfven wave of moderate amplitude
International Nuclear Information System (INIS)
Brennan, M.H.; Sawley, M.L.
1980-01-01
The use of forced magnetic-acoustic oscillations to investigate the effect of a torsional hydromagnetic (Alfven) wave pulse of moderate amplitude on the properties of a partially ionized afterglow helium plasma is reported. Observations of the magnetic flux associated with the oscillations, measured at a number of frequencies are used to determine radial density profiles and to provide estimates of plasma temperature. The torsional wave is shown to cause significant re-ionization of the plasma with no corresponding increase in the plasma temperature. The presence of a number of energetic particles is evidenced by the production of a significant number of doubly charged helium ions. (author)
PyPWA: A partial-wave/amplitude analysis software framework
Salgado, Carlos
2016-05-01
The PyPWA project aims to develop a software framework for Partial Wave and Amplitude Analysis of data; providing the user with software tools to identify resonances from multi-particle final states in photoproduction. Most of the code is written in Python. The software is divided into two main branches: one general-shell where amplitude's parameters (or any parametric model) are to be estimated from the data. This branch also includes software to produce simulated data-sets using the fitted amplitudes. A second branch contains a specific realization of the isobar model (with room to include Deck-type and other isobar model extensions) to perform PWA with an interface into the computer resources at Jefferson Lab. We are currently implementing parallelism and vectorization using the Intel's Xeon Phi family of coprocessors.
Poles of the Zagreb analysis partial-wave T matrices
Batinić, M.; Ceci, S.; Švarc, A.; Zauner, B.
2010-09-01
The Zagreb analysis partial-wave T matrices included in the Review of Particle Physics [by the Particle Data Group (PDG)] contain Breit-Wigner parameters only. As the advantages of pole over Breit-Wigner parameters in quantifying scattering matrix resonant states are becoming indisputable, we supplement the original solution with the pole parameters. Because of an already reported numeric error in the S11 analytic continuation [Batinić , Phys. Rev. CPRVCAN0556-281310.1103/PhysRevC.57.1004 57, 1004(E) (1997); arXiv:nucl-th/9703023], we declare the old BATINIC 95 solution, presently included by the PDG, invalid. Instead, we offer two new solutions: (A) corrected BATINIC 95 and (B) a new solution with an improved S11 πN elastic input. We endorse solution (B).
Partial wave analysis of DM2 data in the η(1430) energy range
International Nuclear Information System (INIS)
Augustin, J.E.; Cosme, G.; Couchot, F.; Fulda, F.; Grosdidier, G.; Jean-Marie, B.; Lepeltier, V.; Szklarz, G.; Bisello, D.; Busetto, G.; Castro, A.; Pescara, L.; Sartori, P.; Stanco, L.; Ajaltouni, Z.; Falvard, A.; Jousset, J.; Michel, B.; Montret, J.C.
1990-10-01
Partial Wave Analysis of the J/ψ → γK S 0 K ± π -+ , γK ± K -+ π 0 decays in the ι/η(1430) mass range shows a clear pseudoscalar dominance, with two dynamical components. The main one, centered at ∼ 1460 MeV/c 2 , proceeds via a 0 (980)π dynamics, while the second one with K*(892)K dynamics is peaked at ∼ 1420 MeV/c 2 , close to its threshold. In addition, the higher part of the mass spectrum contains a significant contribution from the 1 ++ K*(892)K wave. In the PWA of the J/ψ → γηπ + π - channel a resonant a 0 π production is observed slightly below 1400 MeV/c 2
A vector field method on the distorted Fourier side and decay for wave equations with potentials
Donninger, Roland
2016-01-01
The authors study the Cauchy problem for the one-dimensional wave equation \\partial_t^2 u(t,x)-\\partial_x^2 u(t,x)+V(x)u(t,x)=0. The potential V is assumed to be smooth with asymptotic behavior V(x)\\sim -\\tfrac14 |x|^{-2}\\mbox{ as } |x|\\to \\infty. They derive dispersive estimates, energy estimates, and estimates involving the scaling vector field t\\partial_t+x\\partial_x, where the latter are obtained by employing a vector field method on the âeoedistortedâe Fourier side. In addition, they prove local energy decay estimates. Their results have immediate applications in the context of geometric evolution problems. The theory developed in this paper is fundamental for the proof of the co-dimension 1 stability of the catenoid under the vanishing mean curvature flow in Minkowski space; see Donninger, Krieger, Szeftel, and Wong, âeoeCodimension one stability of the catenoid under the vanishing mean curvature flow in Minkowski spaceâe, preprint arXiv:1310.5606 (2013).
Study of NΣ cusp in p+p → p+K{sup +}+Λ with partial wave analysis
Energy Technology Data Exchange (ETDEWEB)
Lu, S.; Muenzer, R.; Epple, E.; Fabbietti, L. [Excellenz Cluster Universe, Technische Universitaet Muenchen (Germany); Ritman, J.; Roderburg, E.; Hauenstein, F. [FZ Juelich (Germany); Collaboration: Hades and FOPI Collaboration
2016-07-01
In the last years, an analysis of exclusive reaction of p+p → p+K{sup +}+Λ has been carried out using Bonn-Gatchina Partial Wave Analysis. In a combined analysis of data from Hades, Fopi, Disto and Cosy-TOF, an energy dependent production process is determined. This analysis has shown that a sufficient description of the p+p → p+K{sup +}+Λ is quite challenging due to the presence of resonances N* and interference, which requires Partial Wave Analysis. A pronounced narrow structure is observed in its projection on the pΛ-invariant mass. This peak structure, which appears around the NΣ threshold, has a strongly asymmetric structure and is interpreted a NΣ cusp effect. In this talk, the results from a combined analysis will be shown, with a special focus on the NΣ cusp structure and a description using Flatte parametrization.
Lang, Erhard W; Kasprowicz, Magdalena; Smielewski, Peter; Pickard, John; Czosnyka, Marek
2015-08-01
Plateau waves in intracranial pressure (ICP) are frequently recorded in neuro intensive care and are not yet fully understood. To further investigate this phenomenon, we analyzed partial pressure of cerebral oxygen (pbtO2) and a moving correlation coefficient between ICP and mean arterial blood pressure (ABP), called PRx, along with the cerebral oxygen reactivity index (ORx), which is a moving correlation coefficient between cerebral perfusion pressure (CPP) and pbtO2 in an observational study. We analyzed 55 plateau waves in 20 patients after severe traumatic brain injury. We calculated ABP, ABP pulse amplitude (ampABP), ICP, CPP, pbtO2, heart rate (HR), ICP pulse amplitude (ampICP), PRx, and ORx, before, during, and after each plateau wave. The analysis of variance with Bonferroni post hoc test was used to compare the differences in the variables before, during, and after the plateau wave. We considered all plateau waves, even in the same patient, independent because they are separated by long intervals. We found increases for ICP and ampICP according to our operational definitions for plateau waves. PRx increased significantly (p = 0.00026), CPP (p pressure remains stable in ICP plateau waves, while cerebral autoregulatory indices show distinct changes, which indicate cerebrovascular reactivity impairment at the top of the wave. PbtO2 decreases during the waves and may show a slight overshoot after normalization. We assume that this might be due to different latencies of the cerebral blood flow and oxygen level control mechanisms. Other factors may include baseline conditions, such as pre-plateau wave cerebrovascular reactivity or pbtO2 levels, which differ between studies.
Effect of H-wave polarization on laser radar detection of partially convex targets in random media.
El-Ocla, Hosam
2010-07-01
A study on the performance of laser radar cross section (LRCS) of conducting targets with large sizes is investigated numerically in free space and random media. The LRCS is calculated using a boundary value method with beam wave incidence and H-wave polarization. Considered are those elements that contribute to the LRCS problem including random medium strength, target configuration, and beam width. The effect of the creeping waves, stimulated by H-polarization, on the LRCS behavior is manifested. Targets taking large sizes of up to five wavelengths are sufficiently larger than the beam width and are sufficient for considering fairly complex targets. Scatterers are assumed to have analytical partially convex contours with inflection points.
Solitary wave dynamics in time-dependent potentials
International Nuclear Information System (INIS)
Abou Salem, Walid K.
2008-01-01
The long time dynamics of solitary wave solutions of the nonlinear Schroedinger equation in time-dependent external potentials is rigorously studied. To set the stage, the well-posedness of the Cauchy problem for a generalized nonautonomous nonlinear Schroedinger equation with time-dependent nonlinearities and potential is established. Afterward, the dynamics of NLS solitary waves in time-dependent potentials is studied. It is shown that in the space-adiabatic regime where the external potential varies slowly in space compared to the size of the soliton, the dynamics of the center of the soliton is described by Hamilton's equations, plus terms due to radiation damping. Finally, two physical applications are discussed: the first is adiabatic transportation of solitons and the second is the Mathieu instability of trapped solitons due to time-periodic perturbations
Partial wave analyses of scattering below 2 GeV. Progress report, May 1, 1984-April 30, 1985
International Nuclear Information System (INIS)
Arndt, R.A.; Roper, L.D.
1985-08-01
Progress is reported in the partial wave analysis of nucleon-nucleon elastic scattering, pion-nucleon elastic scattering, and kaon plus-nucleon elastic scattering. Activities are also reported with respect to the Scattering Analysis Interactive Dial-in (SAID) facility
Wave energy potential in Galicia (NW Spain)
DEFF Research Database (Denmark)
Iglesias, Gregorio; López, Mario; Carballo, Rodrigo
2009-01-01
Wave power presents significant advantages with regard to other CO2-free energy sources, among which the predictability, high load factor and low visual and environmental impact stand out. Galicia, facing the Atlantic on the north-western corner of the Iberian Peninsula, is subjected to a very...... harsh wave climate; in this work its potential for energy production is assessed based on three-hourly data from a third generation ocean wave model (WAM) covering the period 1996 - 2005. Taking into account the results of this assessment along with other relevant considerations such as the location...
Ionizing potential waves and high-voltage breakdown streamers.
Albright, N. W.; Tidman, D. A.
1972-01-01
The structure of ionizing potential waves driven by a strong electric field in a dense gas is discussed. Negative breakdown waves are found to propagate with a velocity proportional to the electric field normal to the wavefront. This causes a curved ionizing potential wavefront to focus down into a filamentary structure, and may provide the reason why breakdown in dense gases propagates in the form of a narrow leader streamer instead of a broad wavefront.
Energy Technology Data Exchange (ETDEWEB)
Martínez-Gómez, David; Soler, Roberto; Terradas, Jaume, E-mail: david.martinez@uib.es [Departament de Física, Universitat de les Illes Balears, E-07122, Palma de Mallorca (Spain)
2017-03-01
The presence of neutral species in a plasma has been shown to greatly affect the properties of magnetohydrodynamic waves. For instance, the interaction between ions and neutrals through momentum transfer collisions causes the damping of Alfvén waves and alters their oscillation frequency and phase speed. When the collision frequencies are larger than the frequency of the waves, single-fluid magnetohydrodynamic approximations can accurately describe the effects of partial ionization, since there is a strong coupling between the various species. However, at higher frequencies, the single-fluid models are not applicable and more complex approaches are required. Here, we use a five-fluid model with three ionized and two neutral components, which takes into consideration Hall’s current and Ohm’s diffusion in addition to the friction due to collisions between different species. We apply our model to plasmas composed of hydrogen and helium, and allow the ionization degree to be arbitrary. By analyzing the corresponding dispersion relation and numerical simulations, we study the properties of small-amplitude perturbations. We discuss the effect of momentum transfer collisions on the ion-cyclotron resonances and compare the importance of magnetic resistivity, and ion–neutral and ion–ion collisions on the wave damping at various frequency ranges. Applications to partially ionized plasmas of the solar atmosphere are performed.
Analytic structure of the wave function for a hydrogen atom in an analytic potential
International Nuclear Information System (INIS)
Hill, R.N.
1984-01-01
The rate of convergence of an approximate method for solving Schroedinger's equation depends on the ability of the approximating sequence to mimic the analytic structure of the unknown exact wave function. Thus a knowledge of the analytic structure of the wave function can be of great value when approximation schemes are designed. Consider the Schroedinger equation [- 1/2 del 2 -r -1 +V(r)]Psi(r) = EPsi(r) for a hydrogen atom in a potential V(r). The general theory of elliptic partial differential equations implies that Psi is analytic at regular points, but no general theory is available at singular points. The present paper investigates the Coulomb singular point at r = 0 and shows that, if V(r) = V 1 (x, y, z)+rV 2 (x, y, z) where V 1 and V 2 are analytic functions of x, y, z at x = y = z = 0, then the wave function has the form Psi(r) = Psi 1 (x, y, z)+rPsi 2 (x, y, z) where Psi 1 and Psi 2 are analytic functions of x, y, z at x = y = z = 0
The potential-free approach to the construction of the NN-wave functions
International Nuclear Information System (INIS)
Troitsky, V.E.
1984-01-01
The traditional approaches to the nonrelativistic NN-interaction use local and nonlocal potentials of the kind defined by different dynamical speculations. The wave functions are obtained then from the Schroedinger equation with the chosen potential. Here the author obtains the wave functions (scattering wave function and bound state wave function) directly from the scattering phases in the frame of a dispersion approach without use of potential. (Auth.)
Vector potential quantization and the photon wave-particle representation
International Nuclear Information System (INIS)
Meis, C; Dahoo, P R
2016-01-01
The quantization procedure of the vector potential is enhanced at a single photon state revealing the possibility for a simultaneous representation of the wave-particle nature of the photon. Its relationship to the quantum vacuum results naturally. A vector potential amplitude operator is defined showing the parallelism with the Hamiltonian of a massless particle. It is further shown that the quantized vector potential satisfies both the wave propagation equation and a linear time-dependent Schrödinger-like equation. (paper)
Role of peripheral partial waves in the angle scattering of nuclei
Energy Technology Data Exchange (ETDEWEB)
Aleixo, A N.F.; Canto, L F; Carrilho, P; Hussein, M S
1984-12-01
Properties of the elastic excitation function at 180 produced by deviations from the usual strong absorption S-matrix are studied. Deviations S-tilde are considered, with the shape of windows in l-space centered around a value l-tilde corresponding to a peripheral collision, and our analysis is concentrated on the interference of the partial waves neighbouring l-tilde. The conditions for constructive and destructive interference and the effect of odd-even staggering factors are investigated, in the presence and in the absence of Coulomb and nuclear refraction. The consequences of such interference on the anomalous behaviour of the 180 excitation functions for the elastic scattering of some n- nuclei are discussed, in connection with results of other works.
DEFF Research Database (Denmark)
Morningstar, Colin; Bulava, John; Singha, Bijit
2017-01-01
An implementation of estimating the two-to-two $K$-matrix from finite-volume energies based on the L\\"uscher formalism and involving a Hermitian matrix known as the "box matrix" is described. The method includes higher partial waves and multiple decay channels. Two fitting procedures for estimating...
Partial-wave analysis of π-π0π0 events at 18 GeV/c
International Nuclear Information System (INIS)
Brown, D.S.
1998-01-01
A partial-wave analysis has been performed on 170 K π - π 0 π 0 events produced in the reaction π - p→pπ - π 0 π 0 , and the results of the mass-independent fits are presented. The objective was to confirm the existence of the π(1800) and the exotic J PC =1 -+ object, reported by VES. copyright 1998 American Institute of Physics
Determination of wave energy potential of black sea
Bingölbali, Bilal; Akpınar, Adem; van Vledder, G.P.; Lynett, P.
2016-01-01
This study aims to assess wave energy potential and its long-term spatial and temporal characteristics in the Black Sea within the TUBITAK research project (Akpınar et al., 2015). With this purpose, a wave model (SWAN model version 41.01 driven by the CFSR winds) over the entire Black Sea was
Photoelectron wave function in photoionization: plane wave or Coulomb wave?
Gozem, Samer; Gunina, Anastasia O; Ichino, Takatoshi; Osborn, David L; Stanton, John F; Krylov, Anna I
2015-11-19
The calculation of absolute total cross sections requires accurate wave functions of the photoelectron and of the initial and final states of the system. The essential information contained in the latter two can be condensed into a Dyson orbital. We employ correlated Dyson orbitals and test approximate treatments of the photoelectron wave function, that is, plane and Coulomb waves, by comparing computed and experimental photoionization and photodetachment spectra. We find that in anions, a plane wave treatment of the photoelectron provides a good description of photodetachment spectra. For photoionization of neutral atoms or molecules with one heavy atom, the photoelectron wave function must be treated as a Coulomb wave to account for the interaction of the photoelectron with the +1 charge of the ionized core. For larger molecules, the best agreement with experiment is often achieved by using a Coulomb wave with a partial (effective) charge smaller than unity. This likely derives from the fact that the effective charge at the centroid of the Dyson orbital, which serves as the origin of the spherical wave expansion, is smaller than the total charge of a polyatomic cation. The results suggest that accurate molecular photoionization cross sections can be computed with a modified central potential model that accounts for the nonspherical charge distribution of the core by adjusting the charge in the center of the expansion.
Energy Technology Data Exchange (ETDEWEB)
Wunderlich, Y.; Afzal, F.; Thiel, A.; Beck, R. [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik, Bonn (Germany)
2017-05-15
This work presents a simple method to determine the significant partial wave contributions to experimentally determined observables in pseudoscalar meson photoproduction. First, fits to angular distributions are presented and the maximum orbital angular momentum L{sub max} needed to achieve a good fit is determined. Then, recent polarization measurements for γp → π{sup 0}p from ELSA, GRAAL, JLab and MAMI are investigated according to the proposed method. This method allows us to project high-spin partial wave contributions to any observable as long as the measurement has the necessary statistical accuracy. We show, that high precision and large angular coverage in the polarization data are needed in order to be sensitive to high-spin resonance states and thereby also for the finding of small resonance contributions. This task can be achieved via interference of these resonances with the well-known states. For the channel γp → π{sup 0}p, those are the N(1680)(5)/(2){sup +} and Δ(1950)(7)/(2){sup +}, contributing to the F-waves. (orig.)
Theory of wave propagation in partially saturated double-porosity rocks: a triple-layer patchy model
Sun, Weitao; Ba, Jing; Carcione, José M.
2016-04-01
Wave-induced local fluid flow is known as a key mechanism to explain the intrinsic wave dissipation in fluid-saturated rocks. Understanding the relationship between the acoustic properties of rocks and fluid patch distributions is important to interpret the observed seismic wave phenomena. A triple-layer patchy (TLP) model is proposed to describe the P-wave dissipation process in a double-porosity media saturated with two immiscible fluids. The double-porosity rock consists of a solid matrix with unique host porosity and inclusions which contain the second type of pores. Two immiscible fluids are considered in concentric spherical patches, where the inner pocket and the outer sphere are saturated with different fluids. The kinetic and dissipation energy functions of local fluid flow (LFF) in the inner pocket are formulated through oscillations in spherical coordinates. The wave propagation equations of the TLP model are based on Biot's theory and the corresponding Lagrangian equations. The P-wave dispersion and attenuation caused by the Biot friction mechanism and the local fluid flow (related to the pore structure and the fluid distribution) are obtained by a plane-wave analysis from the Christoffel equations. Numerical examples and laboratory measurements indicate that P-wave dispersion and attenuation are significantly influenced by the spatial distributions of both, the solid heterogeneity and the fluid saturation distribution. The TLP model is in reasonably good agreement with White's and Johnson's models. However, differences in phase velocity suggest that the heterogeneities associated with double-porosity and dual-fluid distribution should be taken into account when describing the P-wave dispersion and attenuation in partially saturated rocks.
Highly directive Fabry-Perot leaky-wave nanoantennas based on optical partially reflective surfaces
Energy Technology Data Exchange (ETDEWEB)
Lorente-Crespo, M.; Mateo-Segura, C., E-mail: C.Mateo-Segura@hw.ac.uk [Institute of Sensors, Signals and Systems, Heriot-Watt University, EH14 4AS Edinburgh (United Kingdom)
2015-05-04
Nanoantennas enhance the conversion between highly localized electromagnetic fields and far-field radiation. Here, we investigate the response of a nano-patch partially reflective surface backed with a silver mirror to an optical source embedded at the centre of the structure. Using full wave simulations, we demonstrate a two orders of magnitude increased directivity compared to the isotropic radiator, 50% power confinement to a 13.8° width beam and a ±16 nm bandwidth. Our antenna does not rely on plasmonic phenomena thus reducing non-radiative losses and conserving source coherence.
s -wave scattering length of a Gaussian potential
Jeszenszki, Peter; Cherny, Alexander Yu.; Brand, Joachim
2018-04-01
We provide accurate expressions for the s -wave scattering length for a Gaussian potential well in one, two, and three spatial dimensions. The Gaussian potential is widely used as a pseudopotential in the theoretical description of ultracold-atomic gases, where the s -wave scattering length is a physically relevant parameter. We first describe a numerical procedure to compute the value of the s -wave scattering length from the parameters of the Gaussian, but find that its accuracy is limited in the vicinity of singularities that result from the formation of new bound states. We then derive simple analytical expressions that capture the correct asymptotic behavior of the s -wave scattering length near the bound states. Expressions that are increasingly accurate in wide parameter regimes are found by a hierarchy of approximations that capture an increasing number of bound states. The small number of numerical coefficients that enter these expressions is determined from accurate numerical calculations. The approximate formulas combine the advantages of the numerical and approximate expressions, yielding an accurate and simple description from the weakly to the strongly interacting limit.
Xiaoxing Zhang; Guozhi Zhang; Yalong Li; Jian Zhang; Rui Huang
2017-01-01
This study analyzed the transformer electromagnetic gap propagation characteristics. The influence of gap size is also analyzed, and the results experimentally verified. The obtained results indicated that the gap propagation characteristics of electromagnetic wave signals radiated by the partial discharge (PD) source in different directions are substantially different. The intensity of the electromagnetic wave in the gap reaches a maximum at a gap height of 1 cm; and inside the gap, the inte...
On wave-packet dynamics in a decaying quadratic potential
DEFF Research Database (Denmark)
Møller, Klaus Braagaard; Henriksen, Niels Engholm
1997-01-01
We consider the time-dependent Schrodinger equation for a quadratic potential with an exponentially decaying force constant. General analytical solutions are presented and we highlight in particular, the signatures of classical mechanics in the wave packet dynamics.......We consider the time-dependent Schrodinger equation for a quadratic potential with an exponentially decaying force constant. General analytical solutions are presented and we highlight in particular, the signatures of classical mechanics in the wave packet dynamics....
Energy Technology Data Exchange (ETDEWEB)
Deta, U. A., E-mail: utamaalan@yahoo.co.id [Theoretical Physics Group, Physics Department of Post Graduate Program, Sebelas Maret University, Jl. Ir. Sutami 36A, Surakarta 57126, Indonesia and Physics Department, State University of Surabaya, Jl. Ketintang, Surabaya 60231 (Indonesia); Suparmi,; Cari,; Husein, A. S.; Yuliani, H.; Khaled, I. K. A.; Luqman, H.; Supriyanto [Theoretical Physics Group, Physics Department of Post Graduate Program, Sebelas Maret University, Jl. Ir. Sutami 36A, Surakarta 57126 (Indonesia)
2014-09-30
The Energy Spectra and Wave Function of Schrodinger equation in D-Dimensions for trigonometric Rosen-Morse potential were investigated analytically using Nikiforov-Uvarov method. This potential captures the essential traits of the quark-gluon dynamics of Quantum Chromodynamics. The approximate energy spectra are given in the close form and the corresponding approximate wave function for arbitrary l-state (l ≠ 0) in D-dimensions are formulated in the form of differential polynomials. The wave function of this potential unnormalizable for general case. The wave function of this potential unnormalizable for general case. The existence of extra dimensions (centrifugal factor) and this potential increase the energy spectra of system.
Partial wave analysis for folded differential cross sections
Machacek, J. R.; McEachran, R. P.
2018-03-01
The value of modified effective range theory (MERT) and the connection between differential cross sections and phase shifts in low-energy electron scattering has long been recognized. Recent experimental techniques involving magnetically confined beams have introduced the concept of folded differential cross sections (FDCS) where the forward (θ ≤ π/2) and backward scattered (θ ≥ π/2) projectiles are unresolved, that is the value measured at the angle θ is the sum of the signal for particles scattered into the angles θ and π - θ. We have developed an alternative approach to MERT in order to analyse low-energy folded differential cross sections for positrons and electrons. This results in a simplified expression for the FDCS when it is expressed in terms of partial waves and thereby enables one to extract the first few phase shifts from a fit to an experimental FDCS at low energies. Thus, this method predicts forward and backward angle scattering (0 to π) using only experimental FDCS data and can be used to determine the total elastic cross section solely from experimental results at low-energy, which are limited in angular range.
AN INVESTIGATION OF WAVE ENERGY POTENTIAL IN WESTERN BLACK SEA REGION
Directory of Open Access Journals (Sweden)
İlyas UYGUR
2006-01-01
Full Text Available The main energy sources which are natural, clean, environmentally friendly, and renewable are wind power, solar energy, biomass energy, hydro energy, and wave energy. The wave energy has no cost except for the first investment and maintenance. There is also no cost for input energy. Besides these, it has no pollution effect on the environment, it is cheap and there is a huge potential all around the world. Wave energy is a good opportunity to solve the energy problem for Turkey which is surrounded by seas. Concerning all these facts, it has been conducted some studies which included five years of observation in the Western Black Sea Region (Akçakoca. The wave energy potential has also been calculated. From this sutdy results, it can be concluded that the wave energy potential of this region is inefficient. It is believed that by the improvement of the new energy converter devices in future, this low potential can be used more efficiently and as a result this study might be used as a basis for the future researches.
Assessment of wave energy potential along the south coast of Java Island
Song, Qingyang; Mayerle, Roberto
2018-04-01
The south coast of Java Island has a great potential for wave energy. A long-term analysis of a 10-year wave dataset obtained from the ERA-Interim database is performed for preliminary wave energy assessment in this area, and it was seen that the annual median power is expected to exceed 20kW/m along the coast. A coastal wave model with an unstructured grid was run to reveal the wave conditions and to assess the wave energy potential along the coast in detail. The effect of swells and local wind on the wave conditions is investigated. Annual median wave power, water depth and distance from the coast are selected as criteria for the identification of suitable locations for wave energy conversion. Two zones within the study area emerge to be suitable for wave energy extraction. Swells from the southwest turned out to be the major source of wave energy and highest monthly median wave power reached about 33kW/m.
PIPIT: a momentum space optical potential code for pions
Energy Technology Data Exchange (ETDEWEB)
Eisenstein, R A [Carnegie-Mellon Univ., Pittsburgh, Pa. (USA). Dept. of Physics; Tabakin, F [Pittsburgh Univ., Pa. (USA). Dept. of Physics
1976-11-01
Angular distributions for the elastic scattering of pions are generated by summing a partial wave series. The elastic T-matrix elements for each partial wave are obtained by solving a relativistic Lippmann-Schwinger equation in momentum space using a matrix inversion technique. Basically the Coulomb interaction is included exactly using the method of Vincent and Phatak. The ..pi..N amplitude is obtained from phase shift information on-shell and incorporates a separable off-shell form factor to ensure a physically reasonable off-shell extrapolation. The ..pi..N interaction is of finite range and a kinematic transformation procedure is used to express the ..pi..N amplitude in the ..pi.. nucleus frame. A maximum of 30 partial waves can be used in the present version of the program to calculate the cross section. The Lippmann-Schwinger equation is presently solved for each partial wave by inverting a 34x34 supermatrix. At very high energies, larger dimensions may be required. The present version of the code uses a separable non-local ..pi..N potential of finite range; other types of non-localities, or non-separable potentials, may be of physical interest.
Energy Technology Data Exchange (ETDEWEB)
Salgado, Carlos W. [Norfolk State University, Norfolk, VA (United States) and Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Weygand, Dennis P. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)
2014-04-01
Meson spectroscopy is going through a revival with the advent of high statistics experiments and new advances in the theoretical predictions. The Constituent Quark Model (CQM) is finally being expanded considering more basic principles of field theory and using discrete calculations of Quantum Chromodynamics (lattice QCD). These new calculations are approaching predictive power for the spectrum of hadronic resonances and decay modes. It will be the task of the new experiments to extract the meson spectrum from the data and compare with those predictions. The goal of this report is to describe one particular technique for extracting resonance information from multiparticle final states. The technique described here, partial wave analysis based on the helicity formalism, has been used at Brookhaven National Laboratory (BNL) using pion beams, and Jefferson Laboratory (Jlab) using photon beams. In particular this report broaden this technique to include production experiments using linearly polarized real photons or quasi-real photons. This article is of a didactical nature. We describe the process of analysis, detailing assumptions and formalisms, and is directed towards people interested in starting partial wave analysis.
Bowen, LI; Zhibin, WANG; Qiuyue, NIE; Xiaogang, WANG; Fanrong, KONG; Zhenyu, WANG
2018-01-01
Intensive collisions between electrons and neutral particles in partially ionized plasmas generated in atmospheric/sub-atmospheric pressure environments can sufficiently affect the propagation characteristics of electromagnetic waves, particularly in the sub-wavelength regime. To investigate the collisional effect in such plasmas, we introduce a simplified plasma slab model with a thickness on the order of the wavelength of the incident electromagnetic wave. The scattering matrix method (SMM) is applied to solve the wave equation in the plasma slab with significant nonuniformity. Results show that the collisions between the electrons and the neutral particles, as well as the incident angle and the plasma thickness, can disturb the transmission and reduce reflection significantly.
Electromagnetic waves in dusty magnetoplasmas using two-potential theory
International Nuclear Information System (INIS)
Zubia, K.; Jamil, M.; Salimullah, M.
2009-01-01
The low-frequency long wavelength electromagnetic waves, viz., shear Alfven waves in a cold dusty plasma, have been examined employing two-potential theory and plasma fluid model. The presence of the unmagnetized dust particles and magnetized plasma components gives rise to a new ion-dust lower hybrid cutoff frequency for the electromagnetic shear Alfven wave propagation. The importance and relevance of the present work to the space dusty plasma environments are also pointed out.
Solitary wave exchange potential and nucleon-nucleon interaction
International Nuclear Information System (INIS)
Prema, K.; Raghavan, S.S.; Sekhar Raghavan
1986-11-01
Nucleon-nucleon interaction is studied using a phenomenological potential model called solitary wave exchange potential model. It is shown that this simple model reproduces the singlet and triplet scattering data and the deuteron parameters reasonably well. (author). 6 refs, 2 figs, 1 tab
Kim, Choong-Ki; Toft, Jodie E.; Papenfus, Michael; Verutes, Gregory; Guerry, Anne D.; Ruckelshaus, Marry H.; Arkema, Katie K.; Guannel, Gregory; Wood, Spencer A.; Bernhardt, Joanna R.; Tallis, Heather; Plummer, Mark L.; Halpern, Benjamin S.; Pinsky, Malin L.; Beck, Michael W.; Chan, Francis; Chan, Kai M. A.; Levin, Phil S.; Polasky, Stephen
2012-01-01
Many hope that ocean waves will be a source for clean, safe, reliable and affordable energy, yet wave energy conversion facilities may affect marine ecosystems through a variety of mechanisms, including competition with other human uses. We developed a decision-support tool to assist siting wave energy facilities, which allows the user to balance the need for profitability of the facilities with the need to minimize conflicts with other ocean uses. Our wave energy model quantifies harvestable wave energy and evaluates the net present value (NPV) of a wave energy facility based on a capital investment analysis. The model has a flexible framework and can be easily applied to wave energy projects at local, regional, and global scales. We applied the model and compatibility analysis on the west coast of Vancouver Island, British Columbia, Canada to provide information for ongoing marine spatial planning, including potential wave energy projects. In particular, we conducted a spatial overlap analysis with a variety of existing uses and ecological characteristics, and a quantitative compatibility analysis with commercial fisheries data. We found that wave power and harvestable wave energy gradually increase offshore as wave conditions intensify. However, areas with high economic potential for wave energy facilities were closer to cable landing points because of the cost of bringing energy ashore and thus in nearshore areas that support a number of different human uses. We show that the maximum combined economic benefit from wave energy and other uses is likely to be realized if wave energy facilities are sited in areas that maximize wave energy NPV and minimize conflict with existing ocean uses. Our tools will help decision-makers explore alternative locations for wave energy facilities by mapping expected wave energy NPV and helping to identify sites that provide maximal returns yet avoid spatial competition with existing ocean uses. PMID:23144824
Kim, Choong-Ki; Toft, Jodie E; Papenfus, Michael; Verutes, Gregory; Guerry, Anne D; Ruckelshaus, Marry H; Arkema, Katie K; Guannel, Gregory; Wood, Spencer A; Bernhardt, Joanna R; Tallis, Heather; Plummer, Mark L; Halpern, Benjamin S; Pinsky, Malin L; Beck, Michael W; Chan, Francis; Chan, Kai M A; Levin, Phil S; Polasky, Stephen
2012-01-01
Many hope that ocean waves will be a source for clean, safe, reliable and affordable energy, yet wave energy conversion facilities may affect marine ecosystems through a variety of mechanisms, including competition with other human uses. We developed a decision-support tool to assist siting wave energy facilities, which allows the user to balance the need for profitability of the facilities with the need to minimize conflicts with other ocean uses. Our wave energy model quantifies harvestable wave energy and evaluates the net present value (NPV) of a wave energy facility based on a capital investment analysis. The model has a flexible framework and can be easily applied to wave energy projects at local, regional, and global scales. We applied the model and compatibility analysis on the west coast of Vancouver Island, British Columbia, Canada to provide information for ongoing marine spatial planning, including potential wave energy projects. In particular, we conducted a spatial overlap analysis with a variety of existing uses and ecological characteristics, and a quantitative compatibility analysis with commercial fisheries data. We found that wave power and harvestable wave energy gradually increase offshore as wave conditions intensify. However, areas with high economic potential for wave energy facilities were closer to cable landing points because of the cost of bringing energy ashore and thus in nearshore areas that support a number of different human uses. We show that the maximum combined economic benefit from wave energy and other uses is likely to be realized if wave energy facilities are sited in areas that maximize wave energy NPV and minimize conflict with existing ocean uses. Our tools will help decision-makers explore alternative locations for wave energy facilities by mapping expected wave energy NPV and helping to identify sites that provide maximal returns yet avoid spatial competition with existing ocean uses.
Partial wave analysis of the 18O(p,α0)15N reaction
International Nuclear Information System (INIS)
Wild, L.W.J.; Spicer, B.M.
1979-01-01
A partial wave analysis of the differential cross sections for the 18 O(p,α 0 ) 15 N reaction has been carried out applying the formalism of Blatt and Biedenharn (1952), made specific for this reaction. The differential cross sections, measured at 200 keV intervals from 6.6 to 10.4 MeV bombarding energy, were subjected to least-squares fitting to this specific analytic expression. Two resonances were given by the analysis, the 19 F states being at 14.71+-0.07 MeV (1/2 - ) and 14.80 + 0.07 MeV (1/2) +
Scattering in a spherical potential: Motion of complex-plane poles and zeros
International Nuclear Information System (INIS)
Arndt, R.A.; Roper, L.D.
1989-01-01
Scattering of spinless nucleons in a spherical potential is examined with the use of a computer graphics simulation VSCAT. The potential is defined stepwise and the Schroedinger equation is solved to obtain wavefunctions, scattering phases, partial-wave total cross sections, and differential cross sections, which are then displayed graphically. For the particular case of a square well, partial-wave amplitudes are displayed over the complex momentum plane in a three-dimensional plot. The well depth is then varied to follow the motion of poles in the complex momentum plane as they become resonances and then are bound states. Also displayed are the partial-wave zeros, which are required to satisfy Levinson's theorem for multiple states. The requirement on well depth is developed to produce a specified number of bound states and enumerate the energies which, at a given well depth, create equal scattering phases in adjoining partial waves δ/sub l//sub -1/ = δ/sub l/ = δ/sub l//sub +1/. This symmetry of scattering phases exists for both repulsive and attractive square potentials. A square repulsive core is also studied, which has the same triple-point symmetry as the square well
5-D interpolation with wave-front attributes
Xie, Yujiang; Gajewski, Dirk
2017-11-01
Most 5-D interpolation and regularization techniques reconstruct the missing data in the frequency domain by using mathematical transforms. An alternative type of interpolation methods uses wave-front attributes, that is, quantities with a specific physical meaning like the angle of emergence and wave-front curvatures. In these attributes structural information of subsurface features like dip and strike of a reflector are included. These wave-front attributes work on 5-D data space (e.g. common-midpoint coordinates in x and y, offset, azimuth and time), leading to a 5-D interpolation technique. Since the process is based on stacking next to the interpolation a pre-stack data enhancement is achieved, improving the signal-to-noise ratio (S/N) of interpolated and recorded traces. The wave-front attributes are determined in a data-driven fashion, for example, with the Common Reflection Surface (CRS method). As one of the wave-front-attribute-based interpolation techniques, the 3-D partial CRS method was proposed to enhance the quality of 3-D pre-stack data with low S/N. In the past work on 3-D partial stacks, two potential problems were still unsolved. For high-quality wave-front attributes, we suggest a global optimization strategy instead of the so far used pragmatic search approach. In previous works, the interpolation of 3-D data was performed along a specific azimuth which is acceptable for narrow azimuth acquisition but does not exploit the potential of wide-, rich- or full-azimuth acquisitions. The conventional 3-D partial CRS method is improved in this work and we call it as a wave-front-attribute-based 5-D interpolation (5-D WABI) as the two problems mentioned above are addressed. Data examples demonstrate the improved performance by the 5-D WABI method when compared with the conventional 3-D partial CRS approach. A comparison of the rank-reduction-based 5-D seismic interpolation technique with the proposed 5-D WABI method is given. The comparison reveals that
Universal potential-barrier penetration by initially confined wave packets
International Nuclear Information System (INIS)
Granot, Er'el; Marchewka, Avi
2007-01-01
The dynamics of an initially sharp-boundary wave packet in the presence of an arbitrary potential barrier is investigated. It is shown that the penetration through the barrier is universal in the sense that it depends only on the values of the wave function and its derivatives at the boundary. The dependence on the derivatives vanishes at long distances from the barrier, where the dynamics is governed solely by the initial value of the wave function at the boundary
Universal potential-barrier penetration by initially confined wave packets
Granot, Er'El; Marchewka, Avi
2007-07-01
The dynamics of an initially sharp-boundary wave packet in the presence of an arbitrary potential barrier is investigated. It is shown that the penetration through the barrier is universal in the sense that it depends only on the values of the wave function and its derivatives at the boundary. The dependence on the derivatives vanishes at long distances from the barrier, where the dynamics is governed solely by the initial value of the wave function at the boundary.
Oh, Ju-Won
2016-07-04
Multiparameter full waveform inversion (FWI) applied to an elastic orthorhombic model description of the subsurface requires in theory a nine-parameter representation of each pixel of the model. Even with optimal acquisition on the Earth surface that includes large offsets, full azimuth, and multicomponent sensors, the potential for trade-off between the elastic orthorhombic parameters are large. The first step to understanding such trade-off is analysing the scattering potential of each parameter, and specifically, its scattering radiation patterns. We investigate such radiation patterns for diffraction and for scattering from a horizontal reflector considering a background isotropic model. The radiation patterns show considerable potential for trade-off between the parameters and the potentially limited resolution in their recovery. The radiation patterns of C11, C22, and C33 are well separated so that we expect to recover these parameters with limited trade-offs. However, the resolution of their recovery represented by recovered range of model wavenumbers varies between these parameters. We can only invert for the short wavelength components (reflection) of C33 while we can mainly invert for the long wavelength components (transmission) of the elastic coefficients C11 and C22 if we have large enough offsets. The elastic coefficients C13, C23, and C12 suffer from strong trade-offs with C55, C44, and C66, respectively. The trade-offs between C13 and C55, as well as C23 and C44, can be partially mitigated if we acquire P–SV and SV–SV waves. However, to reduce the trade-offs between C12 and C66, we require credible SH–SH waves. The analytical radiation patterns of the elastic constants are supported by numerical gradients of these parameters.
Almabadi, Huda; Sahay, Peeyush; Nagesh, Prashanth K. B.; Yallapu, Murali M.; Jaggi, Meena; Chauhan, Subhash C.; Pradhan, Prabhakar
Mesoscopic physics based partial wave spectroscopy (PWS) was recently introduced to quantify nanoscale structural disorder in weakly disordered optical media such as biological cells. The degree of structural disorder (Ld) , defined as Ld = 〈 dn2 〉 ×lc is quantified in terms of strength of refractive index fluctuation (〈 dn2 〉) in the system and its correlation length (lc) .With nanoscale sensitivity,Ldhas been shown to have potential to be used in cancer diagnostics. In this work, we analyze the hierarchy of different stages of prostate cancer cells by quantifying their intracellular refractive index fluctuations in terms of Ld parameter. We observe that the increase in tumorigenicity levels inside these prostate cancer cells results in proportionally higherLdvalues. For a weakly disordered optical media like biological cells, this result suggests that the progression of carcinogenesis or the increase in the tumorigenicity level is associated with increased 〈 dn2 〉 and/or lcvalues for the samples. Furthermore, we also examined the applicability of Ld parameter in analyzing the effect of drug on these prostate cancer cells. In accordance with the hypothesis that the cancer cells which survives the drug, becomes more aggressive, we found increased Ldvalues for all the drug resistant prostate cells studied.
Decaying states as physically nonisolable partial systems
International Nuclear Information System (INIS)
Szasz, G.I.
1976-01-01
Presently the investigations of decaying quantum mechanical systems lack a well-founded concept, which is reflected by several formal difficulties of the corresponding mathematical treatment. In order to clarify in some respect the situation, it is investigated, within the framework of nonrelativistic quantum mechanics, the resonant scattering of an initially well localized partial wave packet. If the potential decreases sufficiently fast for r→infinite, the wave packet can be expressed at sufficiently long time after the scattering has taken place, as the sum of a term describing the direct scattering and a function of the resonant solution with complex 'momentum'. From such a heuristic relation one can deduce not only the probability for the creation of unstable particles but also obtain some hints to a connection between decaying states and physically nonisolable partial systems. On the other hand, this connection can perhaps display the inadequacy of attempts which suggest to solve the problem of decaying states within the usual Hilbert space methods. (author)
Langmuir instability in partially spin polarized bounded degenerate plasma
Iqbal, Z.; Jamil, M.; Murtaza, G.
2018-04-01
Some new features of waves inside the cylindrical waveguide on employing the separated spin evolution quantum hydrodynamic model are evoked. Primarily, the instability of Langmuir wave due to the electron beam in a partially spin polarized degenerate plasma considering a nano-cylindrical geometry is discussed. Besides, the evolution of a new spin-dependent wave (spin electron acoustic wave) due to electron spin polarization effects in the real wave spectrum is elaborated. Analyzing the growth rate, it is found that in the absence of Bohm potential, the electron spin effects or exchange interaction reduce the growth rate as well as k-domain but the inclusion of Bohm potential increases both the growth rate and k-domain. Further, we investigate the geometry effects expressed by R and pon and find that they have opposite effects on the growth rate and k-domain of the instability. Additionally, how the other parameters like electron beam density or streaming speed of beam electrons influence the growth rate is also investigated. This study may find its applications for the signal analysis in solid state devices at nanoscales.
Constant-intensity waves and their modulation instability in non-Hermitian potentials
Makris, K. G.; Musslimani, Z. H.; Christodoulides, D. N.; Rotter, S.
2015-07-01
In all of the diverse areas of science where waves play an important role, one of the most fundamental solutions of the corresponding wave equation is a stationary wave with constant intensity. The most familiar example is that of a plane wave propagating in free space. In the presence of any Hermitian potential, a wave's constant intensity is, however, immediately destroyed due to scattering. Here we show that this fundamental restriction is conveniently lifted when working with non-Hermitian potentials. In particular, we present a whole class of waves that have constant intensity in the presence of linear as well as of nonlinear inhomogeneous media with gain and loss. These solutions allow us to study the fundamental phenomenon of modulation instability in an inhomogeneous environment. Our results pose a new challenge for the experiments on non-Hermitian scattering that have recently been put forward.
S-Matrix to potential inversion of low-energy α-12C phase shifts
Cooper, S. G.; Mackintosh, R. S.
1990-10-01
The IP S-matrix to potential inversion procedure is applied to phase shifts for selected partial waves over a range of energies below the inelastic threshold for α-12C scattering. The phase shifts were determined by Plaga et al. Potentials found by Buck and Rubio to fit the low-energy alpha cluster resonances need only an increased attraction in the surface to accurately reproduce the phase-shift behaviour. Substantial differences between the potentials for odd and even partial waves are necessary. The surface tail of the potential is postulated to be a threshold effect.
Zodiatis, George; Galanis, George; Nikolaidis, Andreas; Stylianoy, Stavros; Liakatas, Aristotelis
2015-04-01
The use of wave energy as an alternative renewable is receiving attention the last years under the shadow of the economic crisis in Europe and in the light of the promising corresponding potential especially for countries with extended coastline. Monitoring and studying the corresponding resources is further supported by a number of critical advantages of wave energy compared to other renewable forms, like the reduced variability and the easier adaptation to the general grid, especially when is jointly approached with wind power. Within the framework, a number of countries worldwide have launched research and development projects and a significant number of corresponding studies have been presented the last decades. However, in most of them the impact of wave-sea surface currents interaction on the wave energy potential has not been taken into account neglecting in this way a factor of potential importance. The present work aims at filling this gap for a sea area with increased scientific and economic interest, the Eastern Mediterranean Sea. Based on a combination of high resolution numerical modeling approach with advanced statistical tools, a detailed analysis is proposed for the quantification of the impact of sea surface currents, which produced from downscaling the MyOcean-FO regional data, to wave energy potential. The results although spatially sensitive, as expected, prove beyond any doubt that the wave- sea surface currents interaction should be taken into account for similar resource analysis and site selection approaches since the percentage of impact to the available wave power may reach or even exceed 20% at selected areas.
International Nuclear Information System (INIS)
Forozani, G.
2004-01-01
The magnitude of four independent amplitudes are obtained pion photoproduction in the energy range of 1300 to 2100 MeV incident photon. Different cross section and three polarization parameters are required for such amplitudes reconstruction at different pion scattering angles. Results of the direct amplitudes reconstruction have been compared with the solution of partial wave analysis SM95 and SM00K at all energies. This analysis indicates that we have a fair agreement between the present work and the results of partial wave analysis at many angles
International Nuclear Information System (INIS)
Forozani, G.
2004-01-01
The magnitude of four independent amplitudes are obtained in neutral pion photoproduction in the energy range of 1300 to 2100 MeV incident photon. Differential gross section and three polarization parameters are required for such amplitudes reconstruction at different pion scattering angles. Results of the direct amplitudes reconstruction have been compared with the solution of partial wave analysis SM95 and SM00K at all energies. This analysis indicates that we have a fair agreement between the present work and the results of partial wave analysis at meny angles (Author)
Evolution of a wave packet scattered by a one-dimensional potential
International Nuclear Information System (INIS)
Khachatrian, A Zh; Alexanyan, Al G; Khoetsyan, V A; Alexanyan, N A
2013-01-01
We consider the evolution of a wave packet that is made up of a group of the wave functions describing the stationary scattering process and tunnels through a one-dimensional potential of arbitrary form. As the main characteristics of the time difference of the tunnelling process, use is made of the propagation speed of the wave-packet maximum. We show that the known Hartman formula for the tunnelling time corresponds to the wave packet with a wavenumber-uniform spectral composition in the case, when the phase and transmission coefficient modulus dispersions are taken into account only in the linear approximation. The amplitude of the main peak of the transmitted wave intensity is proven to be independent of the tunnelling time and is determined by the transmission coefficient of the spectral component at the carrier frequency and the spectral width of the wave packet. In the limit of an infinitely wide potential barrier the amplitude of the wave-packet maximum is shown to tend to zero slower than the tunnelling time tends to its asymptotic value, i.e., indeed we deal with the paradox of an infinitely large propagation speed of a wave disturbance through the barrier. (propagation of wave fronts)
Evolution of a wave packet scattered by a one-dimensional potential
Energy Technology Data Exchange (ETDEWEB)
Khachatrian, A Zh; Alexanyan, Al G; Khoetsyan, V A; Alexanyan, N A
2013-06-30
We consider the evolution of a wave packet that is made up of a group of the wave functions describing the stationary scattering process and tunnels through a one-dimensional potential of arbitrary form. As the main characteristics of the time difference of the tunnelling process, use is made of the propagation speed of the wave-packet maximum. We show that the known Hartman formula for the tunnelling time corresponds to the wave packet with a wavenumber-uniform spectral composition in the case, when the phase and transmission coefficient modulus dispersions are taken into account only in the linear approximation. The amplitude of the main peak of the transmitted wave intensity is proven to be independent of the tunnelling time and is determined by the transmission coefficient of the spectral component at the carrier frequency and the spectral width of the wave packet. In the limit of an infinitely wide potential barrier the amplitude of the wave-packet maximum is shown to tend to zero slower than the tunnelling time tends to its asymptotic value, i.e., indeed we deal with the paradox of an infinitely large propagation speed of a wave disturbance through the barrier. (propagation of wave fronts)
Coherent wave packet dynamics in a double-well potential in cavity
Zheng, Li; Li, Gang; Ding, Ming-Song; Wang, Yong-Liang; Zhang, Yun-Cui
2018-02-01
We investigate the coherent wave packet dynamics of a two-level atom trapped in a symmetric double-well potential in a near-resonance cavity. Prepared on one side of the double-well potential, the atom wave packet oscillates between the left and right wells, while recoil induced by the emitted photon from the atom entangles the atomic internal and external degrees of freedom. The collapse and revival of the tunneling occurs. Adjusting the width of the wave packets, one can modify the tunneling frequency and suppress the tunneling.
Directory of Open Access Journals (Sweden)
Hasibun Naher
2012-01-01
Full Text Available We construct new analytical solutions of the (3+1-dimensional modified KdV-Zakharov-Kuznetsev equation by the Exp-function method. Plentiful exact traveling wave solutions with arbitrary parameters are effectively obtained by the method. The obtained results show that the Exp-function method is effective and straightforward mathematical tool for searching analytical solutions with arbitrary parameters of higher-dimensional nonlinear partial differential equation.
Matter-wave bright solitons in effective bichromatic lattice potentials
Indian Academy of Sciences (India)
Matter-wave bright solitons in bichromatic lattice potentials are considered and their dynamics for different lattice environments are studied. Bichromatic potentials are created from superpositions of (i) two linear optical lattices and (ii) a linear and a nonlinear optical lattice. Effective potentials are found for the solitons in both ...
International Nuclear Information System (INIS)
Ross, N.; Kostylev, M.; Stamps, R. L.
2014-01-01
Standing spin wave mode frequencies and linewidths in partially disordered perpendicular magnetized arrays of sub-micron Permalloy discs are measured using broadband ferromagnetic resonance and compared to analytical results from a single, isolated disc. The measured mode structure qualitatively reproduces the structure expected from the theory. Fitted demagnetizing parameters decrease with increasing array disorder. The frequency difference between the first and second radial modes is found to be higher in the measured array systems than predicted by theory for an isolated disc. The relative frequencies between successive spin wave modes are unaffected by reduction of the long-range ordering of discs in the array. An increase in standing spin wave resonance linewidth at low applied magnetic fields is observed and grows more severe with increased array disorder.
Quasifree electron mobility by the method of partial waves in liquid hydrocarbons and in fluid argon
International Nuclear Information System (INIS)
Vertes, A.
1983-01-01
Applicability of the fluctuation model was tested in the case of n-hexane, n-pentane, c-hexane, 2,2-dimethylbutane, 2,2,4,4-tetramethylpentane, iso-octane, and neopentane. In our model, the quasifree electrons have been assumed to be scattered by the conduction state energy fluctuations of the liquid. These fluctuations are, in turn, described as a consequence of density fluctuations. The scattering potential is supposed to be square well like and the cross section is calculated in terms of partial waves. Averages due to the density fluctuations and the electron kinetic energy distribution are determined numerically. Except for the first three materials, the calculation reproduced the experimental mobilities with reasonable values of the square well radius, which is the only fitting parameters. Further extension of the description concerning the density dependence of the low field mobility of fluid argon has been performed. The estimated fluctuation size as a function of density increases monotonically at the minimum of the mobility in accordance with the monotonic behavior of the isothermal compressibility in the same region
Fast solution of elliptic partial differential equations using linear combinations of plane waves.
Pérez-Jordá, José M
2016-02-01
Given an arbitrary elliptic partial differential equation (PDE), a procedure for obtaining its solution is proposed based on the method of Ritz: the solution is written as a linear combination of plane waves and the coefficients are obtained by variational minimization. The PDE to be solved is cast as a system of linear equations Ax=b, where the matrix A is not sparse, which prevents the straightforward application of standard iterative methods in order to solve it. This sparseness problem can be circumvented by means of a recursive bisection approach based on the fast Fourier transform, which makes it possible to implement fast versions of some stationary iterative methods (such as Gauss-Seidel) consuming O(NlogN) memory and executing an iteration in O(Nlog(2)N) time, N being the number of plane waves used. In a similar way, fast versions of Krylov subspace methods and multigrid methods can also be implemented. These procedures are tested on Poisson's equation expressed in adaptive coordinates. It is found that the best results are obtained with the GMRES method using a multigrid preconditioner with Gauss-Seidel relaxation steps.
S-matrix to potential inversion of low-energy. alpha. - sup 12 C phase shifts
Energy Technology Data Exchange (ETDEWEB)
Cooper, S.G.; Mackintosh, R.S. (Open Univ., Milton Keynes (UK). Dept. of Physics)
1990-10-22
The IP S-matrix to potential inversion procedure is applied to phase shifts for selected partial waves over a range of energies below the inelastic threshold for {alpha}-{sup 12}C scattering. The phase shifts were determined by Plaga et al. Potentials found by Buck and Rubio to fit the low-energy alpha cluster resonances need only an increased attraction in the surface to accurately reproduce the phase-shift behaviour. Substantial differences between the potentials for odd and even partial waves are necessary. The surface tail of the potential is postulated to be a threshold effect. (orig.).
Transfer of a wave packet in double-well potential
Yang, Hai-Feng; Hu, Yao-Hua; Tan, Yong-Gang
2018-04-01
Energy potentials with double-well structures are typical in atoms and molecules systems. A manipulation scheme using Half Cycles Pulses (HCPs) is proposed to transfer a Gaussian wave packet between the two wells. On the basis of quantum mechanical simulations, the time evolution and the energy distribution of the wave packet are evaluated. The effect of time parameters, amplitude, and number of HCPs on spatial and energy distribution of the final state and transfer efficiency are investigated. After a carefully tailored HCPs sequence is applied to the initial wave packet localized in one well, the final state is a wave packet localized in the other well and populated at the lower energy levels with narrower distribution. The present scheme could be used to control molecular reactions and to prepare atoms with large dipole moments.
Energy Technology Data Exchange (ETDEWEB)
Ivanov, S.T.; Nikolov, N.A.
1979-01-01
The problem of the excitation of microwaves during the propagation of a relativistic electron beam through a waveguide which is partially filled with a dielectric is solved using Maxwell equations and relativistic magnetic hydrodynamics. Two cases are found in which the beam-excited wave has a single mode (it is coherent). For one of the coherent waves, the saturation amplitude and the efficiency of converting the beam energy into electomagnetic field energy are determined.
A semiclassical study of optical potentials - potential resonances -
International Nuclear Information System (INIS)
Lee, S.Y.; Takigawa, N.; Marty, C.
1977-01-01
A semiclassical method is used to analyze resonances produced by complex potentials. The absorption plays a central role: when it is not too great, resonances manifest themselves by enhancement of cross sections near π. The reverse is not necessarily true, for instance the anomalous large angle scattering for α-Ca is due to a coherent superposition of many partial waves
Power absorption of high-frequency electromagnetic waves in a partially ionized magnetized plasma
International Nuclear Information System (INIS)
Guo Bin; Wang Xiaogang
2005-01-01
Power absorption of high-frequency electromagnetic waves in a uniformly magnetized plasma layer covering a highly conducting surface is studied under atmosphere conditions. It is assumed that the system consists of not only electrons and positive ions but negative ions as well. By a general formula derived in our previous work [B. Guo and X. G. Wang, Plasma Sci. Tech. 7, 2645 (2005)], the total power absorption in the plasma layer with multiple reflections between an air-plasma interface and the conducting surface is computed. The results show that although the existence of negative ions greatly reduces the total power absorption, the magnetization of the plasma can, however, partially enhance it. Parameter dependence of the effects is calculated and discussed
On the Quantum Potential and Pulsating Wave Packet in the Harmonic Oscillator
International Nuclear Information System (INIS)
Dubois, Daniel M.
2008-01-01
A fundamental mathematical formalism related to the Quantum Potential factor, Q, is presented in this paper. The Schroedinger equation can be transformed to two equations depending on a group velocity and a density of presence of the particle. A factor, in these equations, was called ''Quantum Potential'' by D. Bohm and B. Hiley. In 1999, I demonstrated that this Quantum Potential, Q, can be split in two Quantum Potentials, Q 1 , and Q 2 , for which the relation, Q=Q 1 +Q 2 , holds. These two Quantum Potentials depend on a fundamental new variable, what I called a phase velocity, u, directly related to the probability density of presence of the wave-particle, given by the modulus of the wave function. This paper gives some further developments for explaining the Quantum Potential for oscillating and pulsating Gaussian wave packets in the Harmonic Oscillator. It is shown that the two Quantum Potentials play a central role in the interpretation of quantum mechanics. A breakthrough in the formalism of the Quantum Mechanics could be provoked by the physical properties of these Quantum Potentials. The probability density of presence of the oscillating and pulsating Gaussian wave packets in the Harmonic Oscillator is directly depending on the ratio Q 2 /Q 1 of the two Quantum Potentials. In the general case, the energy of these Gaussian wave packets is not constant, but is oscillating. The energy is given by the sum of the kinetic energy, T, the potential energy, V, and the two Quantum Potentials: E=T+V+Q 1 +Q 2 . For some conditions, given in the paper, the energy can be a constant. The first remarkable result is the fact that the first Quantum Potential, Q 1 , is related to the ground state energy, E 0 , of the Quantum Harmonic Oscillator: Q 1 =h-bar ω/2=E 0 . The second result is related to the property of the second Quantum Potential, Q 2 , which plays the role of an anti-potential, Q 2 =-V(x), where V is the harmonic oscillator potential. This Quantum Potential
Nucleon-Nucleon Potentials and Computation of Scattering Phase Shifts
Directory of Open Access Journals (Sweden)
Jhasaketan Bhoi
2015-12-01
Full Text Available By judicious exploitation of supersymmetry formalism of quantum mechanics higher partial wave nucleon-nucleon potentials are generated from its ground state interactions. The nuclear Hulthen potential and the corresponding ground state wave function with the parameters of Arnold and MacKellar are used as the starting point of our calculation. We compute the scattering phase shifts for our constructed potentials through Phase Function Method to examine the merit of our approach to the problem.
Directory of Open Access Journals (Sweden)
Gabriel Djedovic
2014-01-01
Full Text Available Extracorporeal shock wave therapy (ESWT enhances tissue vascularization and neoangiogenesis. Recent animal studies showed improved soft tissue regeneration using ESWT. In most cases, deep partial-thickness burns require skin grafting; the outcome is often unsatisfactory in function and aesthetic appearance. The aim of this study was to demonstrate the effect of ESWT on skin regeneration after deep partial-thickness burns. Under general anesthesia, two standardized deep partial-thickness burns were induced on the back of 30 male Wistar rats. Immediately after the burn, ESWT was given to rats of group 1 (N=15, but not to group 2 (N=15. On days 5, 10, and 15, five rats of each group were analyzed. Reepithelialization rate was defined, perfusion units were measured, and histological analysis was performed. Digital photography was used for visual documentation. A wound score system was used. ESWT enhanced the percentage of wound closure in group 1 as compared to group 2 (P<0.05. The reepithelialization rate was improved significantly on day 15 (P<0.05. The wound score showed a significant increase in the ESWT group. ESWT improves skin regeneration of deep partial-thickness burns in rats. It may be a suitable and cost effective treatment alternative in this type of burn wounds in the future.
Time-Averaged Adiabatic Potentials: Versatile Matter-Wave Guides and Atom Traps
International Nuclear Information System (INIS)
Lesanovsky, Igor; Klitzing, Wolf von
2007-01-01
We demonstrate a novel class of trapping potentials, time-averaged adiabatic potentials (TAAP), which allows the generation of a large variety of traps for quantum gases and matter-wave guides for atom interferometers. Examples include stacks of pancakes, rows of cigars, and multiple rings or sickles. The traps can be coupled through controllable tunneling barriers or merged altogether. We present analytical expressions for pancake-, cigar-, and ring-shaped traps. The ring geometry is of particular interest for guided matter-wave interferometry as it provides a perfectly smooth waveguide of widely tunable diameter and thus adjustable sensitivity of the interferometer. The flexibility of the TAAP would make possible the use of Bose-Einstein condensates as coherent matter waves in large-area atom interferometers
Variational and potential formulation for stochastic partial differential equations
International Nuclear Information System (INIS)
Munoz S, A G; Ojeda, J; Sierra D, P; Soldovieri, T
2006-01-01
Recently there has been interest in finding a potential formulation for stochastic partial differential equations (SPDEs). The rationale behind this idea lies in obtaining all the dynamical information of the system under study from one single expression. In this letter we formally provide a general Lagrangian formalism for SPDEs using the Hojman et al method. We show that it is possible to write the corresponding effective potential starting from an s-equivalent Lagrangian, and that this potential is able to reproduce all the dynamics of the system once a special differential operator has been applied. This procedure can be used to study the complete time evolution and spatial inhomogeneities of the system under consideration, and is also suitable for the statistical mechanics description of the problem. (letter to the editor)
Resonant tunneling of spin-wave packets via quantized states in potential wells.
Hansen, Ulf-Hendrik; Gatzen, Marius; Demidov, Vladislav E; Demokritov, Sergej O
2007-09-21
We have studied the tunneling of spin-wave pulses through a system of two closely situated potential barriers. The barriers represent two areas of inhomogeneity of the static magnetic field, where the existence of spin waves is forbidden. We show that for certain values of the spin-wave frequency corresponding to the quantized spin-wave states existing in the well formed between the barriers, the tunneling has a resonant character. As a result, transmission of spin-wave packets through the double-barrier structure is much more efficient than the sequent tunneling through two single barriers.
A high-resolution assessment of wind and wave energy potentials in the Red Sea
Langodan, Sabique
2016-08-24
This study presents an assessment of the potential for harvesting wind and wave energy from the Red Sea based on an 18-year high-resolution regional atmospheric reanalysis recently generated using the Advanced Weather Research Forecasting model. This model was initialized with ERA-Interim global data and the Red Sea reanalysis was generated using a cyclic three-dimensional variational approach assimilating available data in the region. The wave hindcast was generated using WAVEWATCH III on a 5 km resolution grid, forced by the Red Sea reanalysis surface winds. The wind and wave products were validated against data from buoys, scatterometers and altimeters. Our analysis suggests that the distribution of wind and wave energy in the Red Sea is inhomogeneous and is concentrated in specific areas, characterized by various meteorological conditions including weather fronts, mesoscale vortices, land and sea breezes and mountain jets. A detailed analysis of wind and wave energy variation was performed at three hotspots representing the northern, central and southern parts of the Red Sea. Although there are potential sites for harvesting wind energy from the Red Sea, there are no potential sites for harvesting wave energy because wave energy in the Red Sea is not strong enough for currently available wave energy converters. Wave energy should not be completely ignored, however, at least from the perspective of hybrid wind-wave projects. (C) 2016 Elsevier Ltd. All rights reserved.
Codina, R.; Ambrosini, D.
2018-03-01
For the last few decades, the effects of blast loading on structures have been studied by many researchers around the world. Explosions can be caused by events such as industrial accidents, military conflicts or terrorist attacks. Urban centers have been prone to various threats including car bombs, suicide attacks, and improvised explosive devices. Partially vented constructions subjected to external blast loading represent an important topic in protective engineering. The assessment of blast survivability inside structures and the development of design provisions with respect to internal elements require the study of the propagation and leakage of blast waves inside buildings. In this paper, full-scale tests are performed to study the effects of the leakage of blast waves inside a partially vented room that is subjected to different external blast loadings. The results obtained may be useful for proving the validity of different methods of calculation, both empirical and numerical. Moreover, the experimental results are compared with those computed using the empirical curves of the US Defense report/manual UFC 3-340. Finally, results of the dynamic response of the front masonry wall are presented in terms of accelerations and an iso-damage diagram.
Directory of Open Access Journals (Sweden)
Xiaoxing Zhang
2017-10-01
Full Text Available This study analyzed the transformer electromagnetic gap propagation characteristics. The influence of gap size is also analyzed, and the results experimentally verified. The obtained results indicated that the gap propagation characteristics of electromagnetic wave signals radiated by the partial discharge (PD source in different directions are substantially different. The intensity of the electromagnetic wave in the gap reaches a maximum at a gap height of 1 cm; and inside the gap, the intensity of the electromagnetic wave depicted an increasing trend at the tail area of the gap. Finally, from the obtained results, some suggestions on where to install sensors in practical systems for ultra high frequency (UHF PD signal detection in the transformer gap are provided. The obtained results confirmed the feasibility of using this approach. These results can be seen as a benchmark and a challenge for further research in this field.
DEFF Research Database (Denmark)
Bhuiyan, Tanveer Ahmed; Graff, Claus; Thomsen, Morten Bækgaard
2012-01-01
of the action potential under the effect of the IKr blocker sertindole and associated these changes to concurrent changes in the morphology of electrocardiographic T-waves in dogs. We show that, under the effect of sertindole, the peak changes in the morphology of action potentials occur at time points similar......It has been proposed that triangulation on the cardiac action potential manifests as a broadened, more flat and notched T-wave on the ECG but to what extent such morphology characteristics are indicative of triangulation is more unclear. In this paper, we have analyzed the morphological changes...... to those observed for the peak changes in T-wave morphology on the ECG. We further show that the association between action potential shape and ECG shape is dose-dependent and most prominent at the time corresponding to phase 3 of the action potential....
Wave Energy Potential in the North-West of Sardinia (Italy)
DEFF Research Database (Denmark)
Vicinanza, Diego; Contestabile, P.; Ferrante, V.
2013-01-01
Sardinia (Italy) is the second largest island in the Mediterranean Sea and its economy is penalized by high costs of electricity, which is double compared to the continental Italian regions, and triple compared to the EU average. In this research, the wave energy potential of the north......, a Wave Energy Converter with maximum efficiency in the ranges of significant wave heights between 3.5 and 4.5 m (energy periods 9.5-11 s) and 4-6 m (energy periods 9.5-11.5 s) respectively should be selected. In order to find a concrete solution to the problem of harvesting wave energy in this area......, the characterization of waves providing energy is considered along with additional considerations, such as installation and operational costs, institutional factors, environmental sensitivity and interferences with others human activities. On the basis of the information available and the identified circumstances...
Ballester, J. L.; Carbonell, M.; Soler, R.; Terradas, J.
2018-01-01
Context. During heating or cooling processes in prominences, the plasma microscopic parameters are modified due to the change of temperature and ionization degree. Furthermore, if waves are excited on this non-stationary plasma, the changing physical conditions of the plasma also affect wave dynamics. Aims: Our aim is to study how temporal variation of temperature and microscopic plasma parameters modify the behaviour of magnetohydrodynamic (MHD) waves excited in a prominence-like hydrogen plasma. Methods: Assuming optically thin radiation, a constant external heating, the full expression of specific internal energy, and a suitable energy equation, we have derived the profiles for the temporal variation of the background temperature. We have computed the variation of the ionization degree using a Saha equation, and have linearized the single-fluid MHD equations to study the temporal behaviour of MHD waves. Results: For all the MHD waves considered, the period and damping time become time dependent. In the case of Alfvén waves, the cut-off wavenumbers also become time dependent and the attenuation rate is completely different in a cooling or heating process. In the case of slow waves, while it is difficult to distinguish the slow wave properties in a cooling partially ionized plasma from those in an almost fully ionized plasma, the period and damping time of these waves in both plasmas are completely different when the plasma is heated. The temporal behaviour of the Alfvén and fast wave is very similar in the cooling case, but in the heating case, an important difference appears that is related with the time damping. Conclusions: Our results point out important differences in the behaviour of MHD waves when the plasma is heated or cooled, and show that a correct interpretation of the observed prominence oscillations is very important in order to put accurate constraints on the physical situation of the prominence plasma under study, that is, to perform prominence
Boshier, Malcolm; Ryu, Changhyun; Blackburn, Paul; Blinova, Alina; Henderson, Kevin
2014-05-01
The painted potential is a time-averaged optical dipole potential which is able to create arbitrary and dynamic two dimensional potentials for Bose Einstein condensates (BECs). This poster reports three recent experiments using this technique. First, we have realized the dc atom SQUID geometry of a BEC in a toroidal trap with two Josephson junctions. We observe Josephson effects, measure the critical current of the junctions, and find dynamic behavior that is in good agreement with the simple Josephson equations for a tunnel junction with the ideal sinusoidal current-phase relation expected for the parameters of the experiment. Second, we have used free expansion of a rotating toroidal BEC to create matter wave Bessel beams, which are of interest because perfect Bessel beams (plane waves with amplitude profiles described by Bessel functions) propagate without diffraction. Third, we have realized the basic circuit elements necessary to create complex matter wave circuits. We launch BECs at arbitrary velocity along straight waveguides, propagate them around curved waveguides and stadium-shaped waveguide traps, and split them coherently at y-junctions that can also act as switches. Supported by LANL/LDRD.
Compact solitary waves in linearly elastic chains with non-smooth on-site potential
Energy Technology Data Exchange (ETDEWEB)
Gaeta, Giuseppe [Dipartimento di Matematica, Universita di Milano, Via Saldini 50, 20133 Milan (Italy); Gramchev, Todor [Dipartimento di Matematica e Informatica, Universita di Cagliari, Via Ospedale 72, 09124 Cagliari (Italy); Walcher, Sebastian [Lehrstuhl A Mathematik, RWTH Aachen, 52056 Aachen (Germany)
2007-04-27
It was recently observed by Saccomandi and Sgura that one-dimensional chains with nonlinear elastic interaction and regular on-site potential can support compact solitary waves, i.e. travelling solitary waves with strictly compact support. In this paper, we show that the same applies to chains with linear elastic interaction and an on-site potential which is continuous but non-smooth at minima. Some different features arise; in particular, the speed of compact solitary waves is not uniquely fixed by the equation. We also discuss several generalizations of our findings.
International Nuclear Information System (INIS)
Goodrich, C.C.; Scudder, J.D.
1984-01-01
In collisionless magnetosonic shock waves, ions are commonly thought to be decelerated by dc electrostatic cross-shock electric field along the shock normal n. In a frame where ions are normally incident to the shock the change in the potential energy [qphi/sup N/] in the quasi-perpendicular geommetry is of the order of the change of the energy of normal ion flow: [qphi/sup N/]roughly-equal[1/2m/sub i/(V/sub i//sup N/xn) 2 ], which is approximately 200-500 eV at the earth's bow shock. We show that the electron energy gain, typically 1/10 this number, is consistent with such a large potential jump in this geometry. Key facts are the different paths taken by electrons an ions through the shock wave and the frame dependence of the potential jump in the geometry. In the normal incidence frame, electrons lose energy by doing work against the solar wind motional electric field E/sub M//sup N/, which partially offsets the energy gain from the cross-shock electrostatic potential energy [ephi/sub asterisk//sup N/]. In the de Hoffman-Teller frame the motional electric field vanishes; the elctrons gain the full electrostatic potential energy jump e[phi/sub asterisk//sup H//sup T/] of that frame, which is not, however, equal to the electrostatic potential energy jump e[phi/sub asterisk//sup N/] of that frame, which is not, however, equal to the electrostatic potential energy jump e[phi/sub asterisk//sup N/] in the normal incidence frame
Soliton solution for nonlinear partial differential equations by cosine-function method
International Nuclear Information System (INIS)
Ali, A.H.A.; Soliman, A.A.; Raslan, K.R.
2007-01-01
In this Letter, we established a traveling wave solution by using Cosine-function algorithm for nonlinear partial differential equations. The method is used to obtain the exact solutions for five different types of nonlinear partial differential equations such as, general equal width wave equation (GEWE), general regularized long wave equation (GRLW), general Korteweg-de Vries equation (GKdV), general improved Korteweg-de Vries equation (GIKdV), and Coupled equal width wave equations (CEWE), which are the important soliton equations
Exergy of partially coherent thermal radiation
International Nuclear Information System (INIS)
Wijewardane, S.; Goswami, Yogi
2012-01-01
Exergy of electromagnetic radiation has been studied by a number of researchers for well over four decades in order to estimate the maximum conversion efficiencies of thermal radiation. As these researchers primarily dealt with solar and blackbody radiation, which have a low degree of coherence, they did not consider the partial coherence properties of thermal radiation. With the recent development of surface structures, which can emit radiation with high degree of coherence, the importance of considering the partial coherent properties in exergy calculation has become a necessity as the coherence properties directly influence the entropy of the wave field. Here in this paper we derive an expression for the exergy of quasi-monochromatic radiation using statistical thermodynamics and show that it is identical with the expressions derived using classical thermodynamics. We also present a method to calculate the entropy, thereby the exergy of partially coherent radiation using statistical thermodynamics and a method called matrix treatment of wave field. -- Highlights: ► Considered partial coherence of radiation for the first time to calculate exergy. ► The importance of this method is emphasized with energy conversion examples. ► Derived an expression for the exergy of radiation using statistical thermodynamics. ► Adopted a method to calculate intensity of statistically independent principle wave.
Cheng, Xiangle; Blanchard, Antoine; Tan, Chin An; Lu, Huancai; Bergman, Lawrence A.; McFarland, D. Michael; Vakakis, Alexander F.
2017-12-01
The free and forced vibrations of a linear string with a local spring-damper on a partial elastic foundation, as well as a linear string on a viscoelastic foundation conceptualized as a continuous distribution of springs and dampers, are studied in this paper. Exact, analytical results are obtained for the free and forced response to a harmonic excitation applied at one end of the string. Relations between mode complexity and energy confinement with the dispersion in the string system are examined for the steady-state forced vibration, and numerical methods are applied to simulate the transient evolution of energy propagation. Eigenvalue loci veering and normal mode localization are observed for weakly coupled subsystems, when the foundation stiffness is sufficiently large, for both the spatially symmetric and asymmetric systems. The forced vibration results show that nonproportional damping-induced mode complexity, for which there are co-existing regions of purely traveling waves and standing waves, is attainable for the dispersive string system. However, this wave transition phenomenon depends strongly on the location of the attached discrete spring-damper relative to the foundation and whether the excitation frequency Ω is above or below the cutoff frequency ωc. When Ωcontrol strategies.
International Nuclear Information System (INIS)
Dolbeau, Jean.
1976-01-01
The partial wave analysis of 91314 π + -p→Nππ events at nine CM energies between 1.38 and 1.74GeV was performed using the generalized isobar model and assuming the coherent production of Δ, rho and sigma in the final state. A coupled channel analysis (K-matrix formalism) led to the determination of the arbitrary phase at each energy and to smooth the partial wave amplitudes. The paramaters (mass, total and partial widths, signs of coupling constants) of sixteen resonances, among which two new ones, are determined by two different methods. Those results help in classifying the lower-mass excited states of the nucleon in the frame of unitary symmetries, as SU6 [fr
Bound and scattering wave functions for a velocity-dependent Kisslinger potential for l>0
International Nuclear Information System (INIS)
Jaghoub, M.I.
2002-01-01
Using formal scattering theory, the scattering wave functions are extrapolated to negative energies corresponding to bound-state poles. It is shown that the ratio of the normalized scattering and the corresponding bound-state wave functions, at a bound-state pole, is uniquely determined by the bound-state binding energy. This simple relation is proved analytically for an arbitrary angular momentum quantum number l>0, in the presence of a velocity-dependent Kisslinger potential. The extrapolation relation is tested analytically by solving the Schroedinger equation in the p-wave case exactly for the scattering and the corresponding bound-state wave functions when the Kisslinger potential has the form of a square well. A numerical resolution of the Schroedinger equation in the p-wave case and of a square-well Kisslinger potential is carried out to investigate the range of validity of the extrapolated connection. It is found that the derived relation is satisfied best at low energies and short distances. (orig.)
Langmuir wave dispersion relation in non-Maxwellian plasmas
International Nuclear Information System (INIS)
Ouazene, M.; Annou, R.
2010-01-01
The Langmuir wave dispersion relation is derived in partially ionized plasmas, where free electrons are confined to move in a nearest neighbor ions' potential well. The equilibrium velocity distribution function experiences then, a departure from Maxwell distribution function. The effect of the non-Maxwellian character of the distribution function on the Langmuir phase and group velocities as well as the phase matching conditions and the nonlinear growth rate of decay instability is investigated. The proposed Langmuir wave dispersion relation is relevant to dense and cryogenic plasmas.
The linear potential propagator via wave function expansion
International Nuclear Information System (INIS)
Nassar, Antonio B.; Cattani, Mauro S.D.
2002-01-01
We evaluate the quantum propagator for the motion of a particle in a linear potential via a recently developed formalism [A.B. Nassar et al., Phys. Rev. E56, 1230, (1997)]. In this formalism, the propagator comes about as a type of expansion of the wave function over the space of the initial velocities. (author)
Multiple scattering theory for space filling potentials
International Nuclear Information System (INIS)
Butler, W.H.; Brown, R.G.; Nesbet, R.K.
1990-01-01
Multiple scattering theory (MST) provides an efficient technique for solving the wave equation for the special case of muffin-tin potentials. Here MST is extended to treat space filling non-muffin tin potentials and its validity, accuracy and efficiency are tested by application of the two dimensional empty lattice test. For this test it is found that the traditional formulation of MST does not coverage as the number of partial waves is increased. A simple modification of MST, however, allows this problem to be solved exactly and efficiently. 15 refs., 3 tabs
Rainbow-shift mechanism behind discrete optical-potential ambiguities
International Nuclear Information System (INIS)
Brandan, M.E.; McVoy, K.W.
1991-01-01
Some years ago, Drisko et al. suggested that the discrete ambiguity often encountered for elastic scattering optical potentials could be understood as being due to the interior or small-l S-matrix elements for two ''equivalent'' potentials differing in phase by 2π, l-by-l. We point out that the absence of this phase change for peripheral partial waves is equally essential, and suggest that a deeper understanding of the ambiguity may be achieved by viewing it as a consequence of a farside interference between interior and peripheral partial waves. It is this interference which produces the broad ''Airy maxima'' of a nuclear rainbow, and we show that a Drisko-type phase-shift increment δ l →(δ l +π) for low-l phases relative to the high-l ones is exactly what is needed to shift a farside rainbow pattern by one Airy maximum, thus providing an equivalent ''rainbow-shift'' interpretation of the discrete ambiguity. The physical importance of both interpretations lies in the fact that the existence of discrete ambiguities (as well as of nuclear rainbows) is explicit evidence for low-l transparency in nucleus-nucleus collisions. The essential role played by low partial waves explains why peripheral reactions have generally not proven helpful in resolving this ambiguity
Litchfield, P J; Baillon, Paul; Putzer, A; Schleich, H
1974-01-01
A partial-wave analysis has been carried out on the reaction K/sup -/p to Lambda (1520) pi to K/sup -/p pi /sup 0/. The Sigma (2030) is observed with an amplitude at resonance of 0.14+or-0.03. Evidence is also presented for the formation of the /sup 3///sub 2//sup -/ Sigma (1940). (14 refs).
Coherent transport of matter waves in disordered optical potentials
Energy Technology Data Exchange (ETDEWEB)
Kuhn, Robert
2007-07-01
The development of modern techniques for the cooling and the manipulation of atoms in recent years, and the possibility to create Bose-Einstein condensates and degenerate Fermi gases and to load them into regular optical lattices or disordered optical potentials, has evoked new interest for the disorder-induced localization of ultra-cold atoms. This work studies the transport properties of matter waves in disordered optical potentials, which are also known as speckle potentials. The effect of correlated disorder on localization is first studied numerically in the framework of the Anderson model. The relevant transport parameters in the configuration average over many different realizations of the speckle potential are then determined analytically, using self-consistent diagrammatic perturbation techniques. This allows to make predictions for a possible experimental observation of coherent transport phenomena for cold atoms in speckle potentials. Of particular importance are the spatial correlations of the speckle fluctuations, which are responsible for the anisotropic character of the single scattering processes in the effective medium. Coherent multiple scattering leads to quantum interference effects, which entail a renormalization of the diffusion constant as compared to the classical description. This so-called weak localization of matter waves is studied as the underlying mechanism for the disorder-driven transition to the Anderson-localization regime, explicitly taking into account the correlations of the speckle fluctuations. (orig.)
Coherent transport of matter waves in disordered optical potentials
International Nuclear Information System (INIS)
Kuhn, Robert
2007-01-01
The development of modern techniques for the cooling and the manipulation of atoms in recent years, and the possibility to create Bose-Einstein condensates and degenerate Fermi gases and to load them into regular optical lattices or disordered optical potentials, has evoked new interest for the disorder-induced localization of ultra-cold atoms. This work studies the transport properties of matter waves in disordered optical potentials, which are also known as speckle potentials. The effect of correlated disorder on localization is first studied numerically in the framework of the Anderson model. The relevant transport parameters in the configuration average over many different realizations of the speckle potential are then determined analytically, using self-consistent diagrammatic perturbation techniques. This allows to make predictions for a possible experimental observation of coherent transport phenomena for cold atoms in speckle potentials. Of particular importance are the spatial correlations of the speckle fluctuations, which are responsible for the anisotropic character of the single scattering processes in the effective medium. Coherent multiple scattering leads to quantum interference effects, which entail a renormalization of the diffusion constant as compared to the classical description. This so-called weak localization of matter waves is studied as the underlying mechanism for the disorder-driven transition to the Anderson-localization regime, explicitly taking into account the correlations of the speckle fluctuations. (orig.)
Bifurcation of space-charge wave in a plasma waveguide including the wake potential effect
Energy Technology Data Exchange (ETDEWEB)
Lee, Myoung-Jae [Department of Physics and Research Institute for Natural Sciences, Hanyang University, Seoul 04763 (Korea, Republic of); Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr [Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 15588, South Korea and Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180-3590 (United States)
2016-09-15
The wake potential effects on the propagation of the space-charge dust ion-acoustic wave are investigated in a cylindrically bounded dusty plasma with the ion flow. The results show that the wake potential would generate the double frequency modes in a cylindrically bounded dusty plasma. It is found that the upper mode of the wave frequency with the root of higher-order is smaller than that with the root of lower-order in intermediate wave number domains. However, the lower mode of the scaled wave frequency with the root of higher-order is found to be greater than that with the root of lower-order. It is found that the influence in the order of the root of the Bessel function on the wave frequency of the space-charge dust-ion-acoustic wave in a cylindrically confined dusty plasma decreases with an increase in the propagation wave number. It is also found that the double frequency modes increase with increasing Mach number due to the ion flow in a cylindrical dusty plasma. In addition, it is found that the upper mode of the group velocity decreases with an increase in the scaled radius of the plasma cylinder. However, it is shown that the lower mode of the scaled group velocity of the space-charge dust ion acoustic wave increases with an increase in the radius of the plasma cylinder. The variation of the space-charge dust-ion-acoustic wave due to the wake potential and geometric effects is also discussed.
International Nuclear Information System (INIS)
Yang Zonghang
2007-01-01
We find new exact travelling wave solutions for two potential KdV equations which are presented by Foursov [Foursov MV. J Math Phys 2000;41:6173-85]. Compared with the extended tanh-function method, the algorithm used in our paper can obtain some new kinds of exact travelling wave solutions. With the aid of symbolic computation, some novel exact travelling wave solutions of the potential KdV equations are constructed
A Solitary Wave-Based Sensor to Monitor the Setting of Fresh Concrete
Directory of Open Access Journals (Sweden)
Piervincenzo Rizzo
2014-07-01
Full Text Available We present a proof-of-principle study about the use of a sensor for the nondestructive monitoring of strength development in hydrating concrete. The nondestructive evaluation technique is based on the propagation of highly nonlinear solitary waves (HNSWs, which are non-dispersive mechanical waves that can form and travel in highly nonlinear systems, such as one-dimensional particle chains. A built-in transducer is adopted to excite and detect the HNSWs. The waves are partially reflected at the transducer/concrete interface and partially transmitted into the concrete. The time-of-flight and the amplitude of the waves reflected at the interface are measured and analyzed with respect to the hydration time, and correlated to the initial and final set times established by the penetration test (ASTM C 403. The results show that certain features of the HNSWs change as the concrete curing progresses indicating that it has the potential of being an efficient, cost-effective tool for monitoring strengths/stiffness development.
International Nuclear Information System (INIS)
Tovey, S.N.; Hansen, J.D.; Paler, K.; Shah, T.P.; Borg, A.; Denegri, D.; Pons, Y.; Spiro, M.
1975-01-01
The reactions K - p→K - π + π - and K - p→ antikaon-neutral π - π 0 p at 14.3GeV/c has been studied using respectively 15992 and 3723 events. Partial wave analysis of the region 1.0 + but that the partial wave substrates have very different branching ratios into (rho) and K*π, the K*π component of the 1 + state being similar to the 1 + state of the 3π system produced in the reaction πp→(3π)p [fr
Partial wave analysis of the π-π-π+ and π-π0π0 systems and the search for a JPC=1-+ meson
International Nuclear Information System (INIS)
Dzierba, A.R.; Mitchell, R.; Scott, E.; Shepherd, M.R.; Smith, P.; Swat, M.; Teige, S.; Szczepaniak, A.P.; Denisov, S.P.; Dorofeev, V.; Kachaev, I.; Lipaev, V.; Popov, A.V.; Ryabchikov, D.I.; Bodyagin, V.A.; Demianov, A.
2006-01-01
A partial wave analysis (PWA) of the π - π - π + and π - π 0 π 0 systems produced in the reaction π - p→(3π) - p at 18 GeV/c was carried out using an isobar model assumption. This analysis is based on 3.0 M π - π 0 π 0 events and 2.6 M π - π - π + events and shows production of the a 1 (1260), a 2 (1320), π 2 (1670), and a 4 (2040) resonances. Results of detailed studies of the stability of partial wave fits are presented. An earlier analysis of 250 K π - π - π + events from the same experiment showed possible evidence for a J PC =1 -+ exotic meson with a mass of ∼1.6 GeV/c 2 decaying into ρπ. In this analysis of a higher statistics sample of the (3π) - system in two charged modes we find no evidence of an exotic meson
Directory of Open Access Journals (Sweden)
Jun Zhang
2018-01-01
Full Text Available The single scattering of P- and SV-waves by a cylindrical fiber with a partially imperfect bonding to the surrounding matrix is investigated, which benefits the characterization of the behavior of elastic waves in composite materials. The imperfect interface is modelled by the spring model. To solve the corresponding single scattering problem, a collocation point (CP method is introduced. Based on this method, influence of various aspects of the imperfect interface on the scattering of P- and SV-waves is studied. Results indicate that (i the total scattering cross section (SCS is almost symmetric about the axis α=π/2 with respect to the location (α of the imperfect interface, (ii imperfect interfaces located at α=0 and α=π highly reduce the total SCS under a P-wave incidence and imperfect interfaces located at α=π/2 reduce the total SCS most significantly under SV-incidence, and (iii under a P-wave incidence the SCS has a high sensitivity to the bonding level of imperfect interfaces when α is small, while it becomes more sensitive to the bonding level when α is larger under SV-wave incidence.
In-medium P-wave quarkonium from the complex lattice QCD potential
International Nuclear Information System (INIS)
Burnier, Yannis; Kaczmarek, Olaf; Rothkopf, Alexander
2016-01-01
We extend our lattice QCD potential based study http://dx.doi.org/10.1007/JHEP12(2015)101 of the in-medium properties of heavy quark bound states to P-wave bottomonium and charmonium. Similar to the behavior found in the S-wave channel their spectra show a characteristic broadening, as well as mass shifts to lower energy with increasing temperature. In contrast to the S-wave states, finite angular momentum leads to the survival of spectral peaks even at temperatures, where the continuum threshold reaches below the bound state remnant mass. We elaborate on the ensuing challenges in defining quarkonium dissolution and present estimates of melting temperatures for the spin averaged χ b and χ c states. As an application to heavy-ion collisions we further estimate the contribution of feed down to S-wave quarkonium through the P-wave states after freezeout.
In-medium P-wave quarkonium from the complex lattice QCD potential
Energy Technology Data Exchange (ETDEWEB)
Burnier, Yannis [Institute of Theoretical Physics, EPFL,CH-1015 Lausanne (Switzerland); Kaczmarek, Olaf [Fakultät für Physik, Universität Bielefeld,D-33615 Bielefeld (Germany); Rothkopf, Alexander [Institute for Theoretical Physics, Heidelberg University,Philosophenweg 16, 69120 Heidelberg (Germany)
2016-10-07
We extend our lattice QCD potential based study http://dx.doi.org/10.1007/JHEP12(2015)101 of the in-medium properties of heavy quark bound states to P-wave bottomonium and charmonium. Similar to the behavior found in the S-wave channel their spectra show a characteristic broadening, as well as mass shifts to lower energy with increasing temperature. In contrast to the S-wave states, finite angular momentum leads to the survival of spectral peaks even at temperatures, where the continuum threshold reaches below the bound state remnant mass. We elaborate on the ensuing challenges in defining quarkonium dissolution and present estimates of melting temperatures for the spin averaged χ{sub b} and χ{sub c} states. As an application to heavy-ion collisions we further estimate the contribution of feed down to S-wave quarkonium through the P-wave states after freezeout.
A partial wave analysis of world data for the reaction π-p → K0Λ from threshold to 2350 MeV/c
International Nuclear Information System (INIS)
Baker, R.D.; Blissett, J.A.; Bloodworth, I.J.
1977-06-01
All available world data for the reaction π - p → K 0 Λ up to 2350 MeV/c incident momentum have been analysed using both the Barrelet (Nuovo Cimento; 8A:331 (1972)) zero technique and a conventional energy-dependent fit. The results of the two methods are in good agreement. Resonances are required in the S 11 , P 11 , P 13 and D 13 partial waves. There is also an enhancement in the D 15 wave around 1900 MeV. No other resonances are required. (author)
International Nuclear Information System (INIS)
Suemoto, Tohru; Nakajima, Makoto; Matsuoka, Taira; Yasukawa, Keizo; Koyama, Takeshi
2007-01-01
The wave packet dynamics on adiabatic potential surfaces studied by means of time-resolved luminescence spectroscopy is reviewed and the advantages of this method are discussed. In quasi-one-dimensional bromine-bridged platinum complexes, a movie representing the time evolution of the wave packet motion and shape was constructed. A two-dimensional Lissajous-like motion of the wave packet was suggested in the same material at low temperature. In F-centers in KI, evidence for tunneling of the wave packet between the adjacent adiabatic potential surfaces was found. Selective observation of the wave packet motion on the excited state was demonstrated for F-centers in KBr and compared with the results from pump-and-probe experiments in literature
Data-driven discovery of partial differential equations.
Rudy, Samuel H; Brunton, Steven L; Proctor, Joshua L; Kutz, J Nathan
2017-04-01
We propose a sparse regression method capable of discovering the governing partial differential equation(s) of a given system by time series measurements in the spatial domain. The regression framework relies on sparsity-promoting techniques to select the nonlinear and partial derivative terms of the governing equations that most accurately represent the data, bypassing a combinatorially large search through all possible candidate models. The method balances model complexity and regression accuracy by selecting a parsimonious model via Pareto analysis. Time series measurements can be made in an Eulerian framework, where the sensors are fixed spatially, or in a Lagrangian framework, where the sensors move with the dynamics. The method is computationally efficient, robust, and demonstrated to work on a variety of canonical problems spanning a number of scientific domains including Navier-Stokes, the quantum harmonic oscillator, and the diffusion equation. Moreover, the method is capable of disambiguating between potentially nonunique dynamical terms by using multiple time series taken with different initial data. Thus, for a traveling wave, the method can distinguish between a linear wave equation and the Korteweg-de Vries equation, for instance. The method provides a promising new technique for discovering governing equations and physical laws in parameterized spatiotemporal systems, where first-principles derivations are intractable.
Coherent patterning of matter waves with subwavelength localization
International Nuclear Information System (INIS)
Mompart, J.; Ahufinger, V.; Birkl, G.
2009-01-01
We propose the subwavelength localization via adiabatic passage (SLAP) technique to coherently achieve state-selective patterning of matter waves well beyond the diffraction limit. The SLAP technique consists in coupling two partially overlapping and spatially structured laser fields to three internal levels of the matter wave yielding state-selective localization at those positions where the adiabatic passage process does not occur. We show that by means of this technique matter wave localization down to the single nanometer scale can be achieved. We analyze in detail the potential implementation of the SLAP technique for nanolithography with an atomic beam of metastable Ne* and for coherent patterning of a two-component 87 Rb Bose-Einstein condensate.
Noboru, HIROSHIGE; Faculty of Economics, Hannan University
1996-01-01
An energy-dependent partial-wave analysis of πd elastic scattering has been performed in the region T_L=65～294 MeV for currently available experimental data, including the recent vector analyzing power iT_ and composite observables τ_. We have obtained a solution which is in good agreement with the experimental data. The ^3P_1,^3P_2,^3D_3 and ^3D_2 amplitudes abtained show counter-clockwise rotating behaviors.
International Nuclear Information System (INIS)
Fernandez-Varea, J.M.; Salvat, F.; Liljequist, D.
1994-09-01
The details of a Monte Carlo code for computing the penetration and energy loss of electrons and positrons in solids are described. The code, intended for electrons and positrons with energies from ∼ 100 eV to ∼ 100 keV, is based on the simulation of individual elastic and inelastic collisions. Elastic collisions are simulated using differential cross sections computed by the relativistic partial wave method applied to a muffin-tin Dirac-Hartree-Fock-Slater potential. Inelastic collisions are simulated by means of a model based on optical and photoelectric data, which are extended to the non-zero momentum transfer region by means of somewhat different algorithms for valence electron excitations and inner-shell excitations. This report focuses on the description of detailed formulae and sampling methods. 10 refs, 3 figs, 8 tabs
Interactions of solitary waves and compression/expansion waves in core-annular flows
Maiden, Michelle; Anderson, Dalton; El, Gennady; Franco, Nevil; Hoefer, Mark
2017-11-01
The nonlinear hydrodynamics of an initial step leads to the formation of rarefaction waves and dispersive shock waves in dispersive media. Another hallmark of these media is the soliton, a localized traveling wave whose speed is amplitude dependent. Although compression/expansion waves and solitons have been well-studied individually, there has been no mathematical description of their interaction. In this talk, the interaction of solitons and shock/rarefaction waves for interfacial waves in viscous, miscible core-annular flows are modeled mathematically and explored experimentally. If the interior fluid is continuously injected, a deformable conduit forms whose interfacial dynamics are well-described by a scalar, dispersive nonlinear partial differential equation. The main focus is on interactions of solitons with dispersive shock waves and rarefaction waves. Theory predicts that a soliton can either be transmitted through or trapped by the extended hydrodynamic state. The notion of reciprocity is introduced whereby a soliton interacts with a shock wave in a reciprocal or dual fashion as with the rarefaction. Soliton reciprocity, trapping, and transmission are observed experimentally and are found to agree with the modulation theory and numerical simulations. This work was partially supported by NSF CAREER DMS-1255422 (M.A.H.) and NSF GRFP (M.D.M.).
Wave-power potential along the coast of the province of Buenos Aires, Argentina
Energy Technology Data Exchange (ETDEWEB)
Lanfredi, N.W. (Comision de Investigaciones Cientificas de la Provincia de Buenos Aires (CIC), La Plata (Argentina) Facultad de Ciencias Naturales y Museo, UNLP, La Plata (Argentina)); Pousa, J.L. (Consejo Nacional de Investigaciones Cientificas y Tecnicas, Buenos Aires (Argentina) Facultad de Ciencias Naturales y Museo, UNLP, La Plata (Argentina)); Mazio, C.A.; Dragani, W.C. (Servicio de Hidrografia Naval, Buenos Aires (Argentina). Dept. Oceanografia)
1992-11-01
The coast of the Province of Buenos Aires, Argentina, has been studied to determine the wave-power potential. Using wave data (4 yr) from accelerometers, pressure sensors (1 yr) and a visual observation program (10 yr), the wave-power density was calculated at five locations. The annual average increases southwards, ranging between 2.3 kW/m at Mar de Ajo and 7.5 kW/m at Puerto Quequen. Annual averages of maximum wave power give 69 and 61.3 kW/m for Punta Medanos and Puerto Quequen, respectively. (Author).
Wave and offshore wind potential for the island of Tenerife
International Nuclear Information System (INIS)
Veigas, M.; Iglesias, G.
2013-01-01
Highlights: • The island aims to reduce its carbon footprint by developing renewable energy. • The substantial wave and offshore wind resources around the island are examined. • One area is appropriate for installing a hybrid wave–offshore wind farm. - Abstract: The island of Tenerife, a UNESCO Biosphere Reserve in the Atlantic Ocean, aims to be energy self-sufficient in order to reduce its carbon footprint. To accomplish this goal it should develop the renewable sources, in particular wave and offshore wind energy. The objectives of this work are twofold; (i) to characterize the wave and offshore wind power distribution around the island and (ii) to determine which offshore area is best suited for their exploitation, taking into account the resource and other conditioning factors such as the bathymetry, distance to the coastline and ports, and offshore zoning. To carry out this research, hindcast wave and wind data obtained with numerical models are used alongside observations from meteorological stations. One area, in the vicinity of Puerto de la Cruz, is identified as having great potential for installing a hybrid floating wave–wind farm. Both resources are characterized for the area selected: the wave resource in terms of wave directions, significant wave heights and energy periods; the offshore wind resource in terms of directions and speeds in addition to the seasonality for the both resources. It is found that most of the wave resource is provided by N and NNW waves with significant wave heights between 1.5 m and 3.0 m and energy periods between 10 s and 14 s. It follows that the Wave Energy Converters deployed in the area should have maximum efficiency in those ranges. As for the offshore wind resource, most of the energy corresponds to NNE and NE winds with speeds between 9 and 14 m s −1 , which should be taken into account when selecting the offshore wind turbines
On the imaginary part of the S-wave pion-nucleus optical potential
International Nuclear Information System (INIS)
Germond, J.F.; Lombard, R.J.
1991-01-01
The contribution of pion absorption to the imaginary part of the S-wave pion-nucleus optical potential is calculated with Slater determinantal antisymmetrized nuclear wave funtions, taking fully into accout the spin and isospin degrees of freedom. The potential obtained has an explicit dependence on the proton and neutron nuclear densities whose coefficients are directly related to the two-nucleon absorption coupling constants. The values of these coefficients extracted from mesic atoms data are in good agreement with those deduced from exclusive pion absorption experiments in 3 He, but larger than the predictions of the pion rescattering model. (orig.)
Partial differential equations of mathematical physics
Sobolev, S L
1964-01-01
Partial Differential Equations of Mathematical Physics emphasizes the study of second-order partial differential equations of mathematical physics, which is deemed as the foundation of investigations into waves, heat conduction, hydrodynamics, and other physical problems. The book discusses in detail a wide spectrum of topics related to partial differential equations, such as the theories of sets and of Lebesgue integration, integral equations, Green's function, and the proof of the Fourier method. Theoretical physicists, experimental physicists, mathematicians engaged in pure and applied math
Partial differential equations
Evans, Lawrence C
2010-01-01
This text gives a comprehensive survey of modern techniques in the theoretical study of partial differential equations (PDEs) with particular emphasis on nonlinear equations. The exposition is divided into three parts: representation formulas for solutions; theory for linear partial differential equations; and theory for nonlinear partial differential equations. Included are complete treatments of the method of characteristics; energy methods within Sobolev spaces; regularity for second-order elliptic, parabolic, and hyperbolic equations; maximum principles; the multidimensional calculus of variations; viscosity solutions of Hamilton-Jacobi equations; shock waves and entropy criteria for conservation laws; and, much more.The author summarizes the relevant mathematics required to understand current research in PDEs, especially nonlinear PDEs. While he has reworked and simplified much of the classical theory (particularly the method of characteristics), he primarily emphasizes the modern interplay between funct...
Total and partial recombination cross sections for F6+
International Nuclear Information System (INIS)
Mitnik, D.M.; Pindzola, M.S.; Badnell, N.R.
1999-01-01
Total and partial recombination cross sections for F 6+ are calculated using close-coupling and distorted-wave theory. For total cross sections, close-coupling and distorted-wave results, which include interference between the radiative and dielectronic pathways, are found to be in good agreement with distorted-wave results based on a sum of independent processes. Total cross sections near zero energy are dominated by contributions from low-energy dielectronic recombination resonances. For partial cross sections, the close-coupling and distorted-wave theories predict strong interference for recombination into the final recombined ground state 1s 2 2s 21 S 0 of F 5+ , but only weak interference for recombination into the levels of the 1s 2 2s2p configuration. copyright 1999 The American Physical Society
Negative refractions by triangular lattice sonic crystals in partial band gaps
International Nuclear Information System (INIS)
Alagoz, S.; Sahin, A.; Alagoz, B. B.; Nur, S.
2015-01-01
This study numerically demonstrates the effects of partial band gaps on the negative refraction properties of sonic crystal. The partial band gap appearing at the second band edge leads to the efficient transmissions of scattered wave envelopes in the transverse directions inside triangular lattice sonic crystal, and therefore enhances the refraction property of sonic crystal. Numerical simulation results indicate a diagonal guidance of coupled scattered wave envelopes inside crystal structure at the partial band gap frequencies and then output waves are restored in the vicinity of the output interface of sonic crystal by combining phase coherent scattered waves according to Huygens’ principles. This mechanism leads to two operations for wavefront engineering: one is spatial wavefront shifting operation and the other is convex–concave wavefront inversion operation. The effects of this mechanism on the negative refraction and wave focalization are investigated by using the finite difference time domain (FDTD) simulations. This study contributes to a better understanding of negative refraction and wave focusing mechanisms at the band edge frequencies, and shows the applications of the slab corner beam splitting and SC-air multilayer acoustic system. (paper)
Wave packet dynamics and photofragmentation in time-dependent quadratic potentials
DEFF Research Database (Denmark)
Møller, Klaus Braagaard; Henriksen, Niels Engholm
1996-01-01
We study the dynamics of generalized harmonic oscillator states in time-dependent quadratic potentials and derive analytical expressions for the momentum space and the Wigner phase space representation of these wave packets. Using these results we consider a model for the rotational excitation...
Continuity Conditions on Schrodinger Wave Functions at Discontinuities of the Potential.
Branson, David
1979-01-01
Several standard arguments which attempt to show that the wave function and its derivative must be continuous across jump discontinuities of the potential are reviewed and their defects discussed. (Author/HM)
International Nuclear Information System (INIS)
Yang Pei; Li Zhibin; Chen Yong
2010-01-01
In this paper, the short-wave model equations are investigated, which are associated with the Camassa-Holm (CH) and Degasperis-Procesi (DP) shallow-water wave equations. Firstly, by means of the transformation of the independent variables and the travelling wave transformation, the partial differential equation is reduced to an ordinary differential equation. Secondly, the equation is solved by homotopy analysis method. Lastly, by the transformations back to the original independent variables, the solution of the original partial differential equation is obtained. The two types of solutions of the short-wave models are obtained in parametric form, one is one-cusp soliton for the CH equation while the other one is one-loop soliton for the DP equation. The approximate analytic solutions expressed by a series of exponential functions agree well with the exact solutions. It demonstrates the validity and great potential of homotopy analysis method for complicated nonlinear solitary wave problems. (general)
Litchfield, P J; Baillon, Paul; Albrecht, A; Putzer, A
1974-01-01
A partial-wave analysis has been carried out on the reaction K/sup -/p to K/sup -/ Delta /sup +/(1230) to K/sup -/p pi /sup 0/ in the centre of mass energy region 1915-2170 MeV. The Sigma (2030) is observed with an amplitude at resonance of 0.16+or-0.03. Strong formation of the /sup 3///sub 2//sup -/ Sigma (1940) is also indicated. (9 refs).
Review on Millimeter Wave Antennas- Potential Candidate for 5G Enabled Applications
Directory of Open Access Journals (Sweden)
M. A. Matin
2016-12-01
Full Text Available The millimeter wave (mmWave band is considered as the potential candidate for high speed communication services in 5G networks due to its huge bandwidth. Moreover, mmWave frequencies lead to miniaturization of RF front end including antennas. In this article, we provide an overview of recent research achievements of millimeter-wave antenna design along with the design considerations for compact antennas and antennas in package/on chip, mostly in the 60 GHz band is described along with their inherent benefits and challenges. A comparative analysis of various designs is also presented. The antennas with wide bandwidth, high-gain, compact size and low profile with easiness of integration in-package or on-chip with other components are required for 5G enabled applications.
Assessment of the Joint Development Potential of Wave and Wind Energy in the South China Sea
Directory of Open Access Journals (Sweden)
Yong Wan
2018-02-01
Full Text Available The South China Sea is a major shipping hub between the West Pacific and Indian Oceans. In this region, the demand for energy is enormous, both for residents’ daily lives and for economic development. Wave energy and wind energy are two major clean and low-cost ocean sources of renewable energy. The reasonable development and utilization of these energy sources can provide a stable energy supply for coastal cities and remote islands of China. Before wave energy and wind energy development, however, we must assess the potential of each of these sources. Based on high-resolution and high-accuracy wave field data and wind field data obtained by ERA-Interim reanalysis for the recent 38-year period from 1979–2016, the joint development potential of wave energy and wind energy was assessed in detail for offshore and nearshore areas in the South China Sea. Based on potential installed capacity, the results revealed three promising areas for the joint development of nearshore wave energy and wind energy, including the Taiwan Strait, Luzon Strait and the sea southeast of the Indo-China Peninsula. For these three dominant areas (key stations, the directionality of wave energy and wind energy propagation were good in various seasons; the dominant wave conditions and the dominant wind conditions were the same, which is advantageous for the joint development of wave and wind energy. Existing well-known wave energy converters (WECs are not suitable for wave energy development in the areas of interest. Therefore, we must consider the distributions of wave conditions and develop more suitable WECs for these areas. The economic and environmental benefits of the joint development of wave and wind energy are high in these promising areas. The results described in this paper can provide references for the joint development of wave and wind energy in the South China Sea.
DEFF Research Database (Denmark)
Kasiulis, E; Punys, P; Kofoed, Jens Peter
2015-01-01
is evaluated using available multi-year visual observation data. A brief review of European wave energy resources, focusing more on semi-enclosed seas, is provided, as well as a comparison between wave energy potential and conventional hydropower potential in European countries. A conventional hydrological...
Nakkasyan, A
1975-01-01
Cross sections of the reaction K/sup -/p to pi /sup +/ pi /sup -/ pi /sup 0/ Lambda are determined in a bubble chamber study at 10 incoming beam momenta between 1.425 GeV/c and 1.800 GeV/c. For the subsample K /sup -/p to omega Lambda , cross sections and angular distributions are presented together with their legendre polynomial expansions and those of the single and joint density matrix elements. An energy dependent partial-wave analysis is performed including earlier data. The data is well fitted by constant background amplitudes in the outgoing S, P and D waves plus two I=0 resonances in this region, the well established G/sub 7/ Lambda (2100) and the P/sub 3/ Lambda (1870) . (14 refs).
Hydroelectromechanical modelling of a piezoelectric wave energy converter
Renzi, E.
2016-11-01
We investigate the hydroelectromechanical-coupled dynamics of a piezoelectric wave energy converter. The converter is made of a flexible bimorph plate, clamped at its ends and forced to motion by incident ocean surface waves. The piezoceramic layers are connected in series and transform the elastic motion of the plate into useful electricity by means of the piezoelectric effect. By using a distributed-parameter analytical approach, we couple the linear piezoelectric constitutive equations for the plate with the potential-flow equations for the surface water waves. The resulting system of governing partial differential equations yields a new hydroelectromechanical dispersion relation, whose complex roots are determined with a numerical approach. The effect of the piezoelectric coupling in the hydroelastic domain generates a system of short- and long-crested weakly damped progressive waves travelling along the plate. We show that the short-crested flexural wave component gives a dominant contribution to the generated power. We determine the hydroelectromechanical resonant periods of the device, at which the power output is significant.
International Nuclear Information System (INIS)
Takahashi, K; Kaneko, T; Hatakeyama, R; Fukuyama, A
2009-01-01
Characteristics of electromagnetic waves of azimuthal mode number m = ±1 are investigated experimentally, analytically and numerically when the waves triggering the field-aligned and transverse plasma-potential structure modification near an electron cyclotron resonance (ECR) point are injected into an inhomogeneously magnetized plasma with high-speed ion flow. The waves of m = +1 and -1 modes generate an electric double layer near the ECR point at the radially central and peripheral areas of the plasma column, respectively, and the transverse electric fields are consequently formed. At these areas the waves have a right-handed polarization and are absorbed through the ECR mechanism, where the experimental and analytical results do show the polarization reversal along the radial axis. The numerical results by plasma analysis by finite element method (FEM)/wave analysis by FEM (PAF/WF) code show that the wave-absorption area is localized at the radially central and peripheral areas for m = +1 and -1 mode waves, respectively, being consistent with the experimental and analytical ones.
International Nuclear Information System (INIS)
Nihan Onder; Alberto Teyssedou; Danila Roubtsov
2005-01-01
Full text of publication follows: In CANDU reactors the fuel channels are connected to inlet and outlet headers by feeder-pipes that consist of vertical and horizontal legs. In some feeders, orifices are installed for flow adjustment. During a postulated Loss of Coolant Accidents, the emergency cooling water injected into the inlet and outlet headers enters the fuel channels through the feeder pipes. Steam produced in the feeders and in the fuel channels may flow in the direction opposite to that of the water, thereby creating vertical to horizontal Counter-Current Flow (CCF). The rate at which the cooling water enters the fuel channel may be substantially limited by the flooding phenomena that entrains the water in the same direction as the steam flow. Steam flowing in the direction opposite to the cooling water can bring about the formation of slug flow. Long slugs of liquid moving at relatively high speed are transported back towards the headers by the steam. This phenomenon substantially reduces the amount of cooling water that can reach the reactor core. We conducted CCF experiments using a vertical-to-horizontal test section connected by 90 deg. elbows, with an orifice installed in the horizontal leg. Four different orifices were used to carry out the experiments. We have observed that soliton-type waves generated close to the elbow propagate in the horizontal leg towards the orifice, where a partial reflection takes place. Without an orifice, the soliton waves are reflected from the second elbow. The reflected waves move in the opposite direction to that of the incident wave. Since soliton-type waves are periodically generated, the incident and reflected waves interfere at some place in the horizontal leg. If the amplitude of the interference wave is high enough, the bridging of the tubes occur, which generates the slugs. During the experiments the water and air flow rates, pressures and void fraction distributions were measured. The slug propagation
Bonitati, Joey; Slimmer, Ben; Li, Weichuan; Potel, Gregory; Nunes, Filomena
2017-09-01
The calculable form of the R-matrix method has been previously shown to be a useful tool in approximately solving the Schrodinger equation in nuclear scattering problems. We use this technique combined with the Gauss quadrature for the Lagrange-mesh method to efficiently solve for the wave functions of projectile nuclei in low energy collisions (1-100 MeV) involving an arbitrary number of channels. We include the local Woods-Saxon potential, the non-local potential of Perey and Buck, a Coulomb potential, and a coupling potential to computationally solve for the wave function of two nuclei at short distances. Object oriented programming is used to increase modularity, and parallel programming techniques are introduced to reduce computation time. We conclude that the R-matrix method is an effective method to predict the wave functions of nuclei in scattering problems involving both multiple channels and non-local potentials. Michigan State University iCER ACRES REU.
Excitation of density waves at the Lindblad and corotation resonances by an external potential
International Nuclear Information System (INIS)
Goldreich, P.; Tremaine, S.
1979-01-01
We calculate the linear response of a differentially rotating two-dimensional gas disk to a rigidly rotating external potential. The main assumptions are that the sound speed is much smaller than the orbital velocity and that the external potential varies on the scale of the disk radius. We investigate disks both with and without self-gravity.The external potential exerts torques on the disk only at the Lindblad and corotation resonances. The torque is positive at the outer Lindblad resonance and negative at the inner Lindblad resonance; at corotation the torque has the sign of the radial gradient of vorticity per unit surface density. The torques are of the same order of magnitude at both types of resonance and are independent of the sound speed in the disk.The external potential also excites density waves in the vicinity of the Lindblad and corotation resonances. The long trailing wave is excited at a Lindblad resonance. It transports away from the resonance all of the angular momentum which is deposited there by the external torque. Short trailing waves are excited at the corotation resonance. The amplitudes of the excited waves are the same on both sides of the resonance and are small unless the disk is almost gravitationally unstable. No net angular momentum is transported away from the corotation region by the waves. Thus the angular momentum deposited there by the external torque accumulates in the gas.We briefly discuss the behavior of particle disks and prove that the external torques on particle disks are identical to those on gas disks
The role of peripheral partial waves in the anomalous large angle scattering of n-α nuclei
International Nuclear Information System (INIS)
Aleixo, A.N.F.; Canto, L.F.; Carrilho, P.; Hussein, M.S.
1984-01-01
Properties of the elastic excitation function at 180 0 produced by deviations from the usual strong absorption S-matrix are studied. Deviations S approx. with the shape of windows in l-space, centered around a value l approx. corresponding to a peripheral collision are considered and the analysis is concentrated in the interference of the partial waves neighbouring l approx.. The conditions for constructive and destructive interference and the effect of odd-even staggering factors are investigated, in the presence and in the absence of Coulomb and nuclear refraction. The consequences of such interference on the anomalous behaviour of the 180 0 excitation function for the elastic scattering of some n-α nuclei are discussed, in connection with results of other works. (Author) [pt
Czech Academy of Sciences Publication Activity Database
Agakishiev, G.; Arnold, O.; Belver, D.; Belyaev, A.; Krása, Antonín; Křížek, Filip; Kugler, Andrej; Sobolev, Yuri, G.; Tlustý, Pavel; Wagner, Vladimír
2015-01-01
Roč. 742, MAR (2015), s. 242-248 ISSN 0370-2693 R&D Projects: GA MŠk LG12007; GA ČR GA13-06759S Institutional support: RVO:61389005 Keywords : kaonic nuclei * anti-kaon-nucleon physics * ppK(-) * low energy * QCD * partial wave analysis Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 4.787, year: 2015
Three-dimensional freak waves and higher-order wave-wave resonances
Badulin, S. I.; Ivonin, D. V.; Dulov, V. A.
2012-04-01
Quite often the freak wave phenomenon is associated with the mechanism of modulational (Benjamin-Feir) instability resulted from resonances of four waves with close directions and scales. This weakly nonlinear model reflects some important features of the phenomenon and is discussing in a great number of studies as initial stage of evolution of essentially nonlinear water waves. Higher-order wave-wave resonances attract incomparably less attention. More complicated mathematics and physics explain this disregard partially only. The true reason is a lack of adequate experimental background for the study of essentially three-dimensional water wave dynamics. We start our study with the classic example of New Year Wave. Two extreme events: the famous wave 26.5 meters and one of smaller 18.5 meters height (formally, not freak) of the same record, are shown to have pronounced features of essentially three-dimensional five-wave resonant interactions. The quasi-spectra approach is used for the data analysis in order to resolve adequately frequencies near the spectral peak fp ≈ 0.057Hz and, thus, to analyze possible modulations of the dominant wave component. In terms of the quasi-spectra the above two anomalous waves show co-existence of the peak harmonic and one at frequency f5w = 3/2fp that corresponds to maximum of five-wave instability of weakly nonlinear waves. No pronounced marks of usually discussed Benjamin-Feir instability are found in the record that is easy to explain: the spectral peak frequency fp corresponds to the non-dimensional depth parameter kD ≈ 0.92 (k - wavenumber, D ≈ 70 meters - depth at the Statoil platform Draupner site) that is well below the shallow water limit of the instability kD = 1.36. A unique data collection of wave records of the Marine Hydrophysical Institute in the Katsiveli platform (Black Sea) has been analyzed in view of the above findings of possible impact of the five-wave instability on freak wave occurrence. The data cover
Energy Technology Data Exchange (ETDEWEB)
Lee, Myoung-Jae [Department of Physics, Hanyang University, Seoul 04763 (Korea, Republic of); Research Institute for Natural Sciences, Hanyang University, Seoul 04763 (Korea, Republic of); Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr [Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 15588 (Korea, Republic of); Department of Electrical and Computer Engineering, MC 0407, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0407 (United States)
2017-02-12
High frequency electrostatic wave propagation in a dense and semi-bounded electron quantum plasma is investigated with consideration of the Bohm potential. The dispersion relation for the surface mode of quantum plasma is derived and numerically analyzed. We found that the quantum effect enhances the frequency of the wave especially in the high wave number regime. However, the frequency of surface wave is found to be always lower than that of the bulk wave for the same quantum wave number. The group velocity of the surface wave for various quantum wave number is also obtained. - Highlights: • High frequency electrostatic wave propagation is investigated in a dense semi-bounded quantum plasma. • The dispersion relation for the surface mode of quantum plasma is derived and numerically analyzed. • The quantum effect enhances the frequency of the wave especially in the high wave number regime. • The frequency of surface wave is found to be always lower than that of the bulk wave. • The group velocity of the surface wave for various quantum wave number is also obtained.
Rimza, Tripti; Sharma, Prerana
2017-05-01
The dispersion properties of lower hybrid wave are studied in electron-iondegenerate plasma with exchange effect in non-relativistic regime. It is found that the combined effect of Bohm potential and exchange correlation potential significantly modifies the dispersion properties of lower hybrid wave. The graphical results explicitly show the influence of degeneracy pressure, Bohm force and exchange correlation potential on the frequency of the lower hybrid mode. Present work should be of relevance for the dense astrophysical environments like white dwarfs and for laboratory experiments.
Directory of Open Access Journals (Sweden)
Mehdi Raoofian Naeeni
2016-12-01
Full Text Available The problem of propagation of plane wave including body and surface waves propagating in a transversely isotropic half-space with a depth-wise axis of material symmetry is investigated in details. Using the advantage of representation of displacement fields in terms of two complete scalar potential functions, the coupled equations of motion are uncoupled and reduced to two independent equations for potential functions. In this paper, the secular equations for determination of body and surface wave velocities are derived in terms of both elasticity coefficients and the direction of propagation. In particular, the longitudinal, transverse and Rayleigh wave velocities are determined in explicit forms. It is also shown that in transversely isotropic materials, a Rayleigh wave may propagate in different manner from that of isotropic materials. Some numerical results for synthetic transversely isotropic materials are also illustrated to show the behavior of wave motion due to anisotropic nature of the problem.
Dynamics of partial differential equations
Wayne, C Eugene
2015-01-01
This book contains two review articles on the dynamics of partial differential equations that deal with closely related topics but can be read independently. Wayne reviews recent results on the global dynamics of the two-dimensional Navier-Stokes equations. This system exhibits stable vortex solutions: the topic of Wayne's contribution is how solutions that start from arbitrary initial conditions evolve towards stable vortices. Weinstein considers the dynamics of localized states in nonlinear Schrodinger and Gross-Pitaevskii equations that describe many optical and quantum systems. In this contribution, Weinstein reviews recent bifurcations results of solitary waves, their linear and nonlinear stability properties, and results about radiation damping where waves lose energy through radiation. The articles, written independently, are combined into one volume to showcase the tools of dynamical systems theory at work in explaining qualitative phenomena associated with two classes of partial differential equ...
Teaching Modeling with Partial Differential Equations: Several Successful Approaches
Myers, Joseph; Trubatch, David; Winkel, Brian
2008-01-01
We discuss the introduction and teaching of partial differential equations (heat and wave equations) via modeling physical phenomena, using a new approach that encompasses constructing difference equations and implementing these in a spreadsheet, numerically solving the partial differential equations using the numerical differential equation…
Energy Technology Data Exchange (ETDEWEB)
Cutkosky, R E; Hicks, H R; Sandusky, J; Shih, C C [Carnegie-Mellon Univ., Pittsburgh, Pa. (USA); Kelly, R L [California Univ., Livermore (USA). Lawrence Livermore Lab.; Miller, R C; Yokosawa, A [Argonne National Lab., Ill. (USA)
1976-01-05
K/sup +/p cross-section and polarization data have been analyzed in the momentum range 0.78-2.53 GeV/c. Single energy fits were made using an ACE parametrization which had no cutoff in J, was analytic and has Regge-asymptotic behaviour in the cut cos theta plane, and contained explicit contributions from P, rho, A2, ..lambda.., ..sigma.., and low-mass di-pion exchange. Direct channel analyticity constraints were imposed by a partial wave dispersion relation interpolation procedure, fitting expansions in regulated-norm optimal bases to each partial wave which entered as a search parameter in the single energy fits. Output from these two programs was then used for a simultaneous fit by a linearized least squares program which provided input for another iterative fitting cycle. No strong evidence for the existence of exotic resonances was found. The method of analytic smoothing, in comparison with 'shortest path' methods, is found to allow more significant threshold structure to appear in the amplitudes.
Numerical Study of Frequency-dependent Seismoelectric Coupling in Partially-saturated Porous Media
Directory of Open Access Journals (Sweden)
Djuraev Ulugbek
2017-01-01
Full Text Available The seismoelectric phenomenon associated with propagation of seismic waves in fluid-saturated porous media has been studied for many decades. The method has a great potential to monitor subsurface fluid saturation changes associated with production of hydrocarbons. Frequency of the seismic source has a significant impact on measurement of the seismoelectric effects. In this paper, the effects of seismic wave frequency and water saturation on the seismoelectric response of a partially-saturated porous media is studied numerically. The conversion of seismic wave to electromagnetic wave was modelled by extending the theoretically developed seismoelectric coupling coefficient equation. We assumed constant values of pore radius and zeta-potential of 80 micrometers and 48 microvolts, respectively. Our calculations of the coupling coefficient were conducted at various water saturation values in the frequency range of 10 kHz to 150 kHz. The results show that the seismoelectric coupling is frequency-dependent and decreases exponentially when frequency increases. Similar trend is seen when water saturation is varied at different frequencies. However, when water saturation is less than about 0.6, the effect of frequency is significant. On the other hand, when the water saturation is greater than 0.6, the coupling coefficient shows monotonous trend when water saturation is increased at constant frequency.
Kasimov, Aslan R.; Faria, Luiz; Rosales, Rodolfo R.
2013-01-01
: steady traveling wave solutions, instability of such solutions, and the onset of chaos. Our model is the first (to our knowledge) to describe chaos in shock waves by a scalar first-order partial differential equation. The chaos arises in the equation
Elements of partial differential equations
Sneddon, Ian Naismith
1957-01-01
Geared toward students of applied rather than pure mathematics, this volume introduces elements of partial differential equations. Its focus is primarily upon finding solutions to particular equations rather than general theory.Topics include ordinary differential equations in more than two variables, partial differential equations of the first and second orders, Laplace's equation, the wave equation, and the diffusion equation. A helpful Appendix offers information on systems of surfaces, and solutions to the odd-numbered problems appear at the end of the book. Readers pursuing independent st
Hemingway, Richard J; Harmsen D M; Kiesling, C; Petersen, J O; Plane, D E; Putzer, A; Wittex, W; Eades, J no 1; Harmsen D M no 1; Hemingway, R J no 1; Kiesling, C no 3; Petersen, J O no 1; Plane, D E no 3; Putzer, A no 2; Wittex, W no 3
1975-01-01
The angular distributions of the reactions K/sup -/p to K/sup -/p and K/sup -/p to K/sup 0/n have been measured at 23 incident K/sup -/ momenta between 1.136 and 1.798 GeV/c using the bubble chamber technique. These data, together with other published data on the same reactions, including K/sup -/p polarisations, KN total cross sections and measurements of Re f(0)/Im f(0), have been analysed in terms of partial-wave amplitudes. Resonance behaviour is confirmed for the P /sub 03/ partial wave at 1890 MeV. The resonance parameters of the F /sub 15/(1915), F/sub 17/(2030) and G/sub 07/(2100) have been redetermined. No evidence has been found for new resonances coupling significantly to KN in the energy region explored. (24 refs).
Partial Discharge Monitoring in Power Transformers Using Low-Cost Piezoelectric Sensors.
Castro, Bruno; Clerice, Guilherme; Ramos, Caio; Andreoli, André; Baptista, Fabricio; Campos, Fernando; Ulson, José
2016-08-10
Power transformers are crucial in an electric power system. Failures in transformers can affect the quality and cause interruptions in the power supply. Partial discharges are a phenomenon that can cause failures in the transformers if not properly monitored. Typically, the monitoring requires high-cost corrective maintenance or even interruptions of the power system. Therefore, the development of online non-invasive monitoring systems to detect partial discharges in power transformers has great relevance since it can reduce significant maintenance costs. Although commercial acoustic emission sensors have been used to monitor partial discharges in power transformers, they still represent a significant cost. In order to overcome this drawback, this paper presents a study of the feasibility of low-cost piezoelectric sensors to identify partial discharges in mineral insulating oil of power transformers. The analysis of the feasibility of the proposed low-cost sensor is performed by its comparison with a commercial acoustic emission sensor commonly used to detect partial discharges. The comparison between the responses in the time and frequency domain of both sensors was carried out and the experimental results indicate that the proposed piezoelectric sensors have great potential in the detection of acoustic waves generated by partial discharges in insulation oil, contributing for the popularization of this noninvasive technique.
Partial Discharge Monitoring in Power Transformers Using Low-Cost Piezoelectric Sensors
Directory of Open Access Journals (Sweden)
Bruno Castro
2016-08-01
Full Text Available Power transformers are crucial in an electric power system. Failures in transformers can affect the quality and cause interruptions in the power supply. Partial discharges are a phenomenon that can cause failures in the transformers if not properly monitored. Typically, the monitoring requires high-cost corrective maintenance or even interruptions of the power system. Therefore, the development of online non-invasive monitoring systems to detect partial discharges in power transformers has great relevance since it can reduce significant maintenance costs. Although commercial acoustic emission sensors have been used to monitor partial discharges in power transformers, they still represent a significant cost. In order to overcome this drawback, this paper presents a study of the feasibility of low-cost piezoelectric sensors to identify partial discharges in mineral insulating oil of power transformers. The analysis of the feasibility of the proposed low-cost sensor is performed by its comparison with a commercial acoustic emission sensor commonly used to detect partial discharges. The comparison between the responses in the time and frequency domain of both sensors was carried out and the experimental results indicate that the proposed piezoelectric sensors have great potential in the detection of acoustic waves generated by partial discharges in insulation oil, contributing for the popularization of this noninvasive technique.
International Nuclear Information System (INIS)
Vandenbroucke, B.; De Rijcke, S.; Schroyen, J.; Jachowicz, N.
2013-01-01
Simulation codes for galaxy formation and evolution take on board as many physical processes as possible beyond the standard gravitational and hydrodynamical physics. Most of this extra physics takes place below the resolution level of the simulations and is added in a ''sub-grid'' fashion. However, these sub-grid processes affect the macroscopic hydrodynamical properties of the gas and thus couple to the ''on-grid'' physics that is explicitly integrated during the simulation. In this paper, we focus on the link between partial ionization and the hydrodynamical equations. We show that the energy stored in ions and free electrons constitutes a potential energy term which breaks the linear dependence of the internal energy on temperature. Correctly taking into account ionization hence requires modifying both the equation of state and the energy-temperature relation. We implemented these changes in the cosmological simulation code GADGET2. As an example of the effects of these changes, we study the propagation of Sedov-Taylor shock waves through an ionizing medium. This serves as a proxy for the absorption of supernova feedback energy by the interstellar medium. Depending on the density and temperature of the surrounding gas, we find that up to 50% of the feedback energy is spent ionizing the gas rather than heating it. Thus, it can be expected that properly taking into account ionization effects in galaxy evolution simulations will drastically reduce the effects of thermal feedback. To the best of our knowledge, this potential energy term is not used in current simulations of galaxy formation and evolution.
Tapping of Love waves in an isotropic surface waveguide by surface-to-bulk wave transduction.
Tuan, H.-S.; Chang, C.-P.
1972-01-01
A theoretical study of tapping a Love wave in an isotropic microacoustic surface waveguide is given. The surface Love wave is tapped by partial transduction into a bulk wave at a discontinuity. It is shown that, by careful design of the discontinuity, the converted bulk wave power and the radiation pattern may be controlled. General formulas are derived for the calculation of these important characteristics from a relatively general surface contour deformation.
Wave Energy Potential in the Eastern Mediterranean Levantine Basin. An Integrated 10-year Study
2014-01-01
SUBTITLE Wave energy potential in the Eastern Mediterranean Levantine Basin. An integrated 10-year study 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c... Cardone CV, Ewing JA, et al. The WAM model e a third generation ocean wave prediction model. J Phys Oceanogr 1988;18(12):1775e810. [70] Varinou M
Influence of Four-Wave Mixing and Walk-Off on the Self-Focusing of Coupled Waves
DEFF Research Database (Denmark)
Bergé, L.; Bang, Ole; Krolikowski, W.
2000-01-01
Four-wave mixing and walk-off between two optical beams are! investigated For focusing Kerr media. It is shown that four-wave mixing reinforces the self-focusing of mutually trapped waves by lowering their power threshold for collapse, only when their phase mismatch is small. On the contrary, walk......-off inhibits the collapse by detrapping the beams, whose partial centroids experience nonlinear oscillations....
Uncertainty principle and informational entropy for partially coherent light
Bastiaans, M.J.
1986-01-01
It is shown that, among all partially coherent wave fields having the same informational entropy, the product of the effective widths of the intensity functions in the space and the spatial-frequency domains takes its minimum value for a wave field with a Gaussian-shaped cross-spectral density
International Nuclear Information System (INIS)
Kuwert, T.; Stodieck, S.R.G.; Puskas, C.; Diehl, B.; Puskas, Z.; Schuierer, G.; Vollet, B.; Schober, O.
1996-01-01
Imaging cerebral GABA A receptor density (GRD) with single-photon emission tomography (SPET) and iodine-123 iomazenil is highly accurate in lateralizing epileptogenic foci in patients with complex partial seizures of temporal origin. Limited knowledge exists on how iomazenil SPET compares with magnetic resonance imaging (MRI) in this regard. We present a patient with complex partial seizures in whom MRI had identified an arachnoid cyst anterior to the tip of the left temporal lobe. Contralaterally to this structural abnormality, interictal electroencephalography (EEG) performed after sleep deprivation disclosed an intermittent frontotemporal dysrhythmic focus with slow and sharp waves. On iomazenil SPET images GRD was significantly reduced in the right temporal lobe and thus contralaterally to the MRI abnormality, but ipsilaterally to the pathological EEG findings. These data suggest that iomazenil SPET may significantly contribute to the presurgical evaluation of epileptic patients even when MRI identifies potentialy epileptogenic structural lesions. (orig.)
Optimal reflection-free complex absorbing potentials for quantum propagation of wave packets
International Nuclear Information System (INIS)
Shemer, Oded; Brisker, Daria; Moiseyev, Nimrod
2005-01-01
The conditions for optimal reflection-free complex-absorbing potentials (CAPs) are discussed. It is shown that the CAPs as derived from the smooth-exterior-scaling transformation of the Hamiltonian [J. Phys. B 31, 1431 (1998)] serve as optimal reflection-free CAPs (RF CAPs) in wave-packet propagation calculations of open systems. The initial wave packet, Φ(t=0), can be located in the interaction region (as in half collision experiments) where the CAPs have vanished or in the asymptote where V CAP ≠0. As we show, the optimal CAPs can be introduced also in the region where the physical potential has not vanished. The unavoided reflections due to the use of a finite number of grid points (or basis functions) are discussed. A simple way to reduce the 'edge-grid' reflection effect is described
International Nuclear Information System (INIS)
Faletič, Sergej
2015-01-01
Interviews with students suggest that even though they understand the formalism and the formal nature of quantum theory, they still often desire a mental picture of what the equations describe and some tangible experience with the wavefunctions. Here we discuss a mechanical wave system capable of reproducing correctly a mechanical equivalent of a quantum system in a potential, and the resulting waveforms in principle of any form. We have successfully reproduced the finite potential well, the potential barrier and the parabolic potential. We believe that these mechanical waveforms can provide a valuable experience base for introductory students to start from. We aim to show that mechanical systems that are described with the same mathematics as quantum mechanical, indeed behave in the same way. We believe that even if treated purely as a wave phenomenon, the system provides much insight into wave mechanics. This can be especially useful for physics teachers and others who often need to resort to concepts and experience rather than mathematics when explaining physical phenomena. (paper)
International Nuclear Information System (INIS)
Araujo Junior, C.F. de; Adhikari, S.K.; Tomio, L.
1993-10-01
Complex Kohn variational principle is applied to the numerical solution of the fully off-shell Lippmann-Schwinger equation for nucleon-nucleon scattering for various partial waves including the coupled 3 S 1 - 3 D 1 channel. Analytic expressions are obtained for all the integrals in the method for a suitable choice of expansion functions. Calculations with the partial waves 1 S 0 , 1 P 1 , 1 D 2 , and 3 S 1 - 3 D 1 of the Reid soft core potential show that the method converges faster than other solution schemes not only for the phase shift but also for the off-shell t matrix elements. It is also shown that its is trivial to modify this variational principle in order to make it suitable for bound-stage calculations. The bound-state approach is illustrated for the 3 S 1 - 3 D 1 channel of the Reid soft-core potential for calculating the deuteron binding, wave function and the D state asymptotic parameters. (author)
Metamaterials, from electromagnetic waves to water waves, bending waves and beyond
Dupont, G.
2015-08-04
We will review our recent work on metamaterials for different types of waves. Transposition of transform optics to water waves and bending waves on plates will be considered with potential applications of cloaking to water waves protection and anti-vibrating systems.
Coherence for vectorial waves and majorization
Luis, Alfredo
2016-01-01
We show that majorization provides a powerful approach to the coherence conveyed by partially polarized transversal electromagnetic waves. Here we present the formalism, provide some examples and compare with standard measures of polarization and coherence of vectorial waves.
An energy dependent partial wave analysis of π+ p→ K+ σ+ between threshold and 2.35 GeV
International Nuclear Information System (INIS)
Candlin, D.J.; Lowe, D.C.; Peach, K.J.
1983-11-01
An energy dependent partial wave analysis of the reaction π + p → K + Σ + has been carried out between threshold and 2.35 GeV centre of mass energy using recently published, high statistical precision data. A single solution giving a satisfactory fit to the data has been found. In the region below 2 GeV the resonant features of the solution are compared with the QCD based model of Koniuk and Isgur. Above 2 GeV the states listed in the Particle Data group tables with two or more stars are observed but none of the dubious one star states is confirmed Significant SU(3) breaking is observed in some amplitudes. (author)
Quantum mechanics of lattice gas automata: One-particle plane waves and potentials
International Nuclear Information System (INIS)
Meyer, D.A.
1997-01-01
Classical lattice gas automata effectively simulate physical processes, such as diffusion and fluid flow (in certain parameter regimes), despite their simplicity at the microscale. Motivated by current interest in quantum computation we recently defined quantum lattice gas automata; in this paper we initiate a project to analyze which physical processes these models can effectively simulate. Studying the single particle sector of a one-dimensional quantum lattice gas we find discrete analogs of plane waves and wave packets, and then investigate their behavior in the presence of inhomogeneous potentials. copyright 1997 The American Physical Society
Physics of partially ionized plasmas
Krishan, Vinod
2016-01-01
Plasma is one of the four fundamental states of matter; the other three being solid, liquid and gas. Several components, such as molecular clouds, diffuse interstellar gas, the solar atmosphere, the Earth's ionosphere and laboratory plasmas, including fusion plasmas, constitute the partially ionized plasmas. This book discusses different aspects of partially ionized plasmas including multi-fluid description, equilibrium and types of waves. The discussion goes on to cover the reionization phase of the universe, along with a brief description of high discharge plasmas, tokomak plasmas and laser plasmas. Various elastic and inelastic collisions amongst the three particle species are also presented. In addition, the author demonstrates the novelty of partially ionized plasmas using many examples; for instance, in partially ionized plasma the magnetic induction is subjected to the ambipolar diffusion and the Hall effect, as well as the usual resistive dissipation. Also included is an observation of kinematic dynam...
Feist, B. E.; Fuller, E.; Plummer, M. L.
2016-12-01
Conversion to renewable energy sources is a logical response to increasing pressure to reduce greenhouse gas emissions. Ocean wave energy is the least developed renewable energy source, despite having the highest energy per unit area. While many hurdles remain in developing wave energy, assessing potential conflicts and evaluating tradeoffs with existing uses is essential. Marine planning encompasses a broad array of activities that take place in and affect large marine ecosystems, making it an ideal tool for evaluating wave energy resource use conflicts. In this study, we focus on the potential conflicts between wave energy conversion (WEC) facilities and existing marine uses in the context of marine planning, within the California Current Large Marine Ecosystem. First, we evaluated wave energy facility development using the Wave Energy Model (WEM) of the Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) toolkit. Second, we ran spatial analyses on model output to identify conflicts with existing marine uses including AIS based vessel traffic, VMS and observer based measures of commercial fishing effort, and marine conservation areas. We found that regions with the highest wave energy potential were distant from major cities and that infrastructure limitations (cable landing sites) restrict integration with existing power grids. We identified multiple spatial conflicts with existing marine uses; especially shipping vessels and various commercial fishing fleets, and overlap with marine conservation areas varied by conservation designation. While wave energy generation facilities may be economically viable in the California Current, this viability must be considered within the context of the costs associated with conflicts that arise with existing marine uses. Our analyses can be used to better inform placement of WEC devices (as well as other types of renewable energy facilities) in the context of marine planning by accounting for economic tradeoffs
Partial-Wave Analysis of Centrally Produced Two-Pseudoscalar Final States in pp Reactions at COMPASS
Austregesilo, Alexander
2014-01-01
COMPASS is a fixed-target experiment at the CERN SPS which focused on light-quark hadron spectroscopy during the data taking periods in 2008 and 2009. A world-leading data set was collected with a 190GeV/c hadron beam impinging on a liquid hydrogen target in order to study, inter alia, the central exclusive production of glueball candidates in the light-meson sector. Especially the double-Pomeron exchange mechanism is well suited for the production of mesons without valence quark content. We select centrally produced systems with two pseudo-scalar mesons in the final state from the COMPASS data set recorded with an incoming proton. The decay of this system is decomposed in terms of partial waves, where particular attention is paid to the inherent mathematical ambiguities of the amplitude analysis. Furthermore, we show that simple parametrisations are able to describe the mass dependence of the fit results with sensible Breit-Wigner parameters.
Electromagnetic solitary waves in magnetized plasmas
International Nuclear Information System (INIS)
Hazeltine, R.D.; Holm, D.D.; Morrison, P.J.
1985-03-01
A Hamiltonian formulation, in terms of noncanonical Poisson bracket, is presented for a nonlinear fluid system that includes reduced magnetohydrodynamics and the Hasegawa-Mima equation as limiting cases. The single-helicity and axisymmetric versions possess three nonlinear Casimir invariants, from which a generalized potential can be constructed. Variation of the generalized potential yields a description of exact nonlinear stationary states. The new equilibria, allowing for plasma flow as well as partial electron adiabaticity, are distinct from those found in conventional magnetohydrodynamic theory. They differ from electrostatic stationary states in containing plasma current and magnetic field excitation. One class of steady-state solutions is shown to provide a simple electromagnetic generalization of drift-solitary waves
Solitary heat waves in nonlinear lattices with squared on-site potential
Indian Academy of Sciences (India)
A model Hamiltonian is proposed for heat conduction in a nonlinear lattice with squared on-site potential using the second quantized operators and averaging the same using a suitable wave function, equations are derived in discrete form for the field amplitude and the properties of heat transfer are examined theoretically.
Energy-Dependent microscopic optical potential for p+{sup 9}Be elastic scattering
Energy Technology Data Exchange (ETDEWEB)
Maridi, H. M., E-mail: h.maridi@gmail.com [Physics Department, Faculty of Science, Cairo University, Giza 12613 (Egypt); Physics Department, Faculty of Applied Science, Taiz University, Taiz (Yemen); Farag, M. Y. H., E-mail: yehiafarag@cu.edu.eg; Esmael, E. H. [Physics Department, Faculty of Applied Science, Taiz University, Taiz (Yemen)
2016-06-10
The p+{sup 9}Be elastic scattering at an energy range up to 200 MeV/nucleon is analyzed using the single-folding model. The density- and isospin-dependent M3Y-Paris nucleon-nucleon (NN) interaction is used for the real part and the NN-scattering amplitude of the high-energy approximation for the imaginary one. The analysis reveals that the cross-section data are reproduced well at energies up to 100 MeV/nucleon by use of the partial-wave expansion. For higher energies, the eikonal approximation give results better than the partial-wave expansion calculations. The volume integrals of the optical-potential parts have systematic energy dependencies, and they are parameterized in empirical formulas.
Model-independent partial wave analysis using a massively-parallel fitting framework
Sun, L.; Aoude, R.; dos Reis, A. C.; Sokoloff, M.
2017-10-01
The functionality of GooFit, a GPU-friendly framework for doing maximum-likelihood fits, has been extended to extract model-independent {\\mathscr{S}}-wave amplitudes in three-body decays such as D + → h + h + h -. A full amplitude analysis is done where the magnitudes and phases of the {\\mathscr{S}}-wave amplitudes are anchored at a finite number of m 2(h + h -) control points, and a cubic spline is used to interpolate between these points. The amplitudes for {\\mathscr{P}}-wave and {\\mathscr{D}}-wave intermediate states are modeled as spin-dependent Breit-Wigner resonances. GooFit uses the Thrust library, with a CUDA backend for NVIDIA GPUs and an OpenMP backend for threads with conventional CPUs. Performance on a variety of platforms is compared. Executing on systems with GPUs is typically a few hundred times faster than executing the same algorithm on a single CPU.
Liu, Lei; Tian, Bo; Wu, Xiao-Yu; Sun, Yan
2018-02-01
Under investigation in this paper is the higher-order rogue wave-like solutions for a nonautonomous nonlinear Schrödinger equation with external potentials which can be applied in the nonlinear optics, hydrodynamics, plasma physics and Bose-Einstein condensation. Based on the Kadomtsev-Petviashvili hierarchy reduction, we construct the Nth order rogue wave-like solutions in terms of the Gramian under the integrable constraint. With the help of the analytic and graphic analysis, we exhibit the first-, second- and third-order rogue wave-like solutions through the different dispersion, nonlinearity and linear potential coefficients. We find that only if the dispersion and nonlinearity coefficients are proportional to each other, heights of the background of those rogue waves maintain unchanged with time increasing. Due to the existence of complex parameters, such nonautonomous rogue waves in the higher-order cases have more complex features than those in the lower.
Van Strien, Jan W.; Isbell, Lynne A.
2017-01-01
Studies of event-related potentials in humans have established larger early posterior negativity (EPN) in response to pictures depicting snakes than to pictures depicting other creatures. Ethological research has recently shown that macaques and wild vervet monkeys respond strongly to partially exposed snake models and scale patterns on the snake skin. Here, we examined whether snake skin patterns and partially exposed snakes elicit a larger EPN in humans. In Task 1, we employed pictures with close-ups of snake skins, lizard skins, and bird plumage. In task 2, we employed pictures of partially exposed snakes, lizards, and birds. Participants watched a random rapid serial visual presentation of these pictures. The EPN was scored as the mean activity (225–300 ms after picture onset) at occipital and parieto-occipital electrodes. Consistent with previous studies, and with the Snake Detection Theory, the EPN was significantly larger for snake skin pictures than for lizard skin and bird plumage pictures, and for lizard skin pictures than for bird plumage pictures. Likewise, the EPN was larger for partially exposed snakes than for partially exposed lizards and birds. The results suggest that the EPN snake effect is partly driven by snake skin scale patterns which are otherwise rare in nature. PMID:28387376
Energy Technology Data Exchange (ETDEWEB)
Vandenbroucke, B.; De Rijcke, S.; Schroyen, J. [Department of Physics and Astronomy, Ghent University, Krijgslaan 281, S9, B-9000 Gent (Belgium); Jachowicz, N. [Department of Physics and Astronomy, Ghent University, Proeftuinstraat 86, B-9000 Gent (Belgium)
2013-07-01
Simulation codes for galaxy formation and evolution take on board as many physical processes as possible beyond the standard gravitational and hydrodynamical physics. Most of this extra physics takes place below the resolution level of the simulations and is added in a ''sub-grid'' fashion. However, these sub-grid processes affect the macroscopic hydrodynamical properties of the gas and thus couple to the ''on-grid'' physics that is explicitly integrated during the simulation. In this paper, we focus on the link between partial ionization and the hydrodynamical equations. We show that the energy stored in ions and free electrons constitutes a potential energy term which breaks the linear dependence of the internal energy on temperature. Correctly taking into account ionization hence requires modifying both the equation of state and the energy-temperature relation. We implemented these changes in the cosmological simulation code GADGET2. As an example of the effects of these changes, we study the propagation of Sedov-Taylor shock waves through an ionizing medium. This serves as a proxy for the absorption of supernova feedback energy by the interstellar medium. Depending on the density and temperature of the surrounding gas, we find that up to 50% of the feedback energy is spent ionizing the gas rather than heating it. Thus, it can be expected that properly taking into account ionization effects in galaxy evolution simulations will drastically reduce the effects of thermal feedback. To the best of our knowledge, this potential energy term is not used in current simulations of galaxy formation and evolution.
Solitary heat waves in nonlinear lattices with squared on-site potential
Indian Academy of Sciences (India)
Abstract. A model Hamiltonian is proposed for heat conduction in a nonlinear lattice with squared on-site potential using the second quantized operators and averaging the same using a suitable wave function, equations are derived in discrete form for the field amplitude and the prop- erties of heat transfer are examined ...
Group Velocity for Leaky Waves
Rzeznik, Andrew; Chumakova, Lyubov; Rosales, Rodolfo
2017-11-01
In many linear dispersive/conservative wave problems one considers solutions in an infinite medium which is uniform everywhere except for a bounded region. In general, localized inhomogeneities of the medium cause partial internal reflection, and some waves leak out of the domain. Often one only desires the solution in the inhomogeneous region, with the exterior accounted for by radiation boundary conditions. Formulating such conditions requires definition of the direction of energy propagation for leaky waves in multiple dimensions. In uniform media such waves have the form exp (d . x + st) where d and s are complex and related by a dispersion relation. A complex s is required since these waves decay via radiation to infinity, even though the medium is conservative. We present a modified form of Whitham's Averaged Lagrangian Theory along with modulation theory to extend the classical idea of group velocity to leaky waves. This allows for solving on the bounded region by representing the waves as a linear combination of leaky modes, each exponentially decaying in time. This presentation is part of a joint project, and applications of these results to example GFD problems will be presented by L. Chumakova in the talk ``Leaky GFD Problems''. This work is partially supported by NSF Grants DMS-1614043, DMS-1719637, and 1122374, and by the Hertz Foundation.
Claisse, J.; Pondella, D.; Love, M.; Zahn, L.; Williams, C.; Bull, A. S.
2016-02-01
When oil and gas platforms become obsolete they go through a decommissioning process. This may include partial removal (from the surface to 26 m depth) or complete removal of the platform structure. While complete removal would likely eliminate most of the existing fish biomass and associated secondary production, we find that the potential impacts of partial removal would likely be limited on all but one platform off the coast of California. On average 80% of fish biomass and 86% of secondary fish production would be retained after partial removal, with above 90% retention expected for both metrics on many platforms. Partial removal would likely result in the loss of fish biomass and production for species typically found residing in the shallow portions of the platform structure. However, these fishes generally represent a small proportion of the fishes associated with these platforms. More characteristic of platform fauna are the primarily deeper-dwelling rockfishes (genus Sebastes). "Shell mounds" are biogenic reefs that surround some of these platforms resulting from an accumulation of mollusk shells that have fallen from the shallow areas of the platforms mostly above the depth of partial removal. We found that shell mounds are moderately productive fish habitats, similar to or greater than natural rocky reefs in the region at comparable depths. The complexity and areal extent of these biogenic habitats, and the associated fish biomass and production, will likely be reduced after either partial or complete platform removal. Habitat augmentation by placing the partially removed platform superstructure or some other additional habitat enrichment material (e.g., rock boulders) on the seafloor adjacent to the base of partially removed platforms provides additional options to enhance fish production, potentially mitigating reductions in shell mound habitat.
Auxiliary equation method for solving nonlinear partial differential equations
International Nuclear Information System (INIS)
Sirendaoreji,; Jiong, Sun
2003-01-01
By using the solutions of an auxiliary ordinary differential equation, a direct algebraic method is described to construct several kinds of exact travelling wave solutions for some nonlinear partial differential equations. By this method some physically important nonlinear equations are investigated and new exact travelling wave solutions are explicitly obtained with the aid of symbolic computation
International Nuclear Information System (INIS)
Suzuki, Hiroshi; Enjoji, Hiroshi; Kawaguchi, Motoichi; Noritake, Toshiya
1984-01-01
A theoretical treatment of the acceleration of cluster ions for additional heating of fusion plasma using the trapping effect in an accelerated potential wave is described. The conceptual design of the accelerator is the same as that by Enjoji, and the potential wave used is sinusoidal. For simplicity, collisions among cluster ions and the resulting breakups are neglected. The masses of the cluster ions are specified to range from 100 m sub(D) to 1000 m sub(D) (m sub(D): mass of a deuterium atom). Theoretical treatment is carried out only for the injection velocity which coincides with the phase velocity of the applied wave at the entrance of the accelerator. An equation describing the rate for successful acceleration of ions with a certain mass is deduced for the continuous injection of cluster ions. Computation for a typical mass distribution shows that more than 70% of the injected particles are effectively accelerated. (author)
Localization of Matter Waves in Two-Dimensional Disordered Optical Potentials
International Nuclear Information System (INIS)
Kuhn, R.C.; Miniatura, C.; Delande, D.; Sigwarth, O.; Mueller, C.A.
2005-01-01
We consider ultracold atoms in 2D disordered optical potentials and calculate microscopic quantities characterizing matter wave quantum transport in the noninteracting regime. We derive the diffusion constant as a function of all relevant microscopic parameters and show that coherent multiple scattering induces significant weak localization effects. In particular, we find that even the strong localization regime is accessible with current experimental techniques and calculate the corresponding localization length
Conservation laws of wave action and potential enstrophy for Rossby waves in a stratified atmosphere
Straus, D. M.
1983-01-01
The evolution of wave energy, enstrophy, and wave motion for atmospheric Rossby waves in a variable mean flow are discussed from a theoretical and pedagogic standpoint. In the absence of mean flow gradients, the wave energy density satisfies a local conservation law, with the appropriate flow velocity being the group velocity. In the presence of mean flow variations, wave energy is not conserved, but wave action is, provided the mean flow is independent of longitude. Wave enstrophy is conserved for arbitrary variations of the mean flow. Connections with Eliassen-Palm flux are also discussed.
A note on the Lie symmetries of complex partial differential
Indian Academy of Sciences (India)
Folklore suggests that the split Lie-like operators of a complex partial differential equation are symmetries of the split system of real partial differential equations. However, this is not the case generally. We illustrate this by using the complex heat equation, wave equation with dissipation, the nonlinear Burgers equation and ...
Wave propagation in electromagnetic media
International Nuclear Information System (INIS)
Davis, J.L.
1990-01-01
This book is concerned with wave propagation in reacting media, specifically in electromagnetic materials. An account is presented of the mathematical methods of wave phenomena in electromagnetic materials. The author presents the theory of time-varying electromagnetic fields, which involves a discussion of Faraday's laws, Maxwell's equations and their application to electromagnetic wave propagation under a variety of conditions. The author gives a discussion of magnetohydrodynamics and plasma physics. Chapters are included on quantum mechanics and the theory of relativity. The mathematical foundation of electromagnetic waves vis a vis partial differential equations is discussed
Benoit, Michel; Yates, Marissa L.; Raoult, Cécile
2017-04-01
Efficient and accurate numerical models simulating wave propagation are required for a variety of engineering projects including the evaluation of coastal risks, the design of protective coastal structures, and the estimation of the potential for marine renewable energy devices. Nonlinear and dispersive effects are particularly significant in the coastal zone where waves interact with the bottom, the shoreline, and coastal structures. The main challenge in developing a numerical models is finding a compromise between computational efficiency and the required accuracy of the simulated wave field. Here, a potential approach is selected and the (fully nonlinear) water wave problem is formulated using the Euler-Zakharov equations (Zakharov, 1968) describing the temporal evolution of the free surface elevation and velocity potential. The proposed model (Yates and Benoit, 2015) uses a spectral approach in the vertical (i.e. the vertical variation of the potential is approximated by a linear combination of the first NT+1 Chebyshev polynomials, following the work of Tian and Sato (2008)). The Zakharov equations are integrated in time using a fourth-order Runge-Kutta scheme with a constant time step. At each sub-timestep, the Laplace Boundary Value Problem (BVP) is solved to estimate the free surface vertical velocity using the spectral approach, with typical values of NT between 5 to 8 for practical applications. The 1DH version of the code is validated with comparisons to the experimental data set of Becq-Girard et al. (1999), which studied the propagation of irregular waves over a beach profile with a submerged bar. The nonlinear and dispersive capacities of the model are verified with the correct representation of wave-wave interactions, in particular the transfer of energy between different harmonic components during wave propagation (analysis of the transformation of the variance spectrum along the channel). Evolution of wave skewness, asymmetry and kurtosis along the
Optimal synthesis of tunable elastic wave-guides
DEFF Research Database (Denmark)
Evgrafov, Anton; Rupp, Cory J.; Dunn, Martin L.
2008-01-01
Topology optimization, or control in the coefficients of partial differential equations, has been successfully utilized for designing wave-guides with precisely tailored functionalities. For many applications it would be desirable to have the possibility of drastically altering the wave...
Hayati, Yazdan; Eskandari-Ghadi, Morteza
2018-02-01
An asymmetric three-dimensional thermoelastodynamic wave propagation with scalar potential functions is presented for an isotropic half-space, in such a way that the wave may be originated from an arbitrary either traction or heat flux applied on a patch at the free surface of the half-space. The displacements, stresses and temperature are presented within the framework of Biot's coupled thermoelasticity formulations. By employing a complete representation for the displacement and temperature fields in terms of two scalar potential functions, the governing equations of coupled thermoelasticity are uncoupled into a sixth- and a second-order partial differential equation in cylindrical coordinate system. By virtue of Fourier expansion and Hankel integral transforms, the angular and radial variables are suppressed respectively, and a 6{th}- and a 2{nd}-order ordinary differential equation in terms of depth are received, which are solved readily, from which the displacement, stresses and temperature fields are derived in transformed space by satisfying both the regularity and boundary conditions. By applying the inverse Hankel integral transforms, the displacements and temperature are numerically evaluated to determine the solutions in the real space. The numerical evaluations are done for three specific cases of vertical and horizontal time-harmonic patch traction and a constant heat flux passing through a circular disc on the surface of the half-space. It has been previously proved that the potential functions used in this paper are applicable from elastostatics to thermoelastodynamics. Thus, the analytical solutions presented in this paper are verified by comparing the results of this study with two specific problems reported in the literature, which are an elastodynamic problem and an axisymmetric quasi-static thermoelastic problem. To show the accuracy of numerical results, the solution of this study is also compared with the solution for elastodynamics exists in
Assessing wave energy effects on biodiversity: the wave hub experience.
Witt, M J; Sheehan, E V; Bearhop, S; Broderick, A C; Conley, D C; Cotterell, S P; Crow, E; Grecian, W J; Halsband, C; Hodgson, D J; Hosegood, P; Inger, R; Miller, P I; Sims, D W; Thompson, R C; Vanstaen, K; Votier, S C; Attrill, M J; Godley, B J
2012-01-28
Marine renewable energy installations harnessing energy from wind, wave and tidal resources are likely to become a large part of the future energy mix worldwide. The potential to gather energy from waves has recently seen increasing interest, with pilot developments in several nations. Although technology to harness wave energy lags behind that of wind and tidal generation, it has the potential to contribute significantly to energy production. As wave energy technology matures and becomes more widespread, it is likely to result in further transformation of our coastal seas. Such changes are accompanied by uncertainty regarding their impacts on biodiversity. To date, impacts have not been assessed, as wave energy converters have yet to be fully developed. Therefore, there is a pressing need to build a framework of understanding regarding the potential impacts of these technologies, underpinned by methodologies that are transferable and scalable across sites to facilitate formal meta-analysis. We first review the potential positive and negative effects of wave energy generation, and then, with specific reference to our work at the Wave Hub (a wave energy test site in southwest England, UK), we set out the methodological approaches needed to assess possible effects of wave energy on biodiversity. We highlight the need for national and international research clusters to accelerate the implementation of wave energy, within a coherent understanding of potential effects-both positive and negative.
The Potential for Ambient Plasma Wave Propulsion
Gilland, James H.; Williams, George J.
2016-01-01
A truly robust space exploration program will need to make use of in-situ resources as much as possible to make the endeavor affordable. Most space propulsion concepts are saddled with one fundamental burden; the propellant needed to produce momentum. The most advanced propulsion systems currently in use utilize electric and/or magnetic fields to accelerate ionized propellant. However, significant planetary exploration missions in the coming decades, such as the now canceled Jupiter Icy Moons Orbiter, are restricted by propellant mass and propulsion system lifetimes, using even the most optimistic projections of performance. These electric propulsion vehicles are inherently limited in flexibility at their final destination, due to propulsion system wear, propellant requirements, and the relatively low acceleration of the vehicle. A few concepts are able to utilize the environment around them to produce thrust: Solar or magnetic sails and, with certain restrictions, electrodynamic tethers. These concepts focus primarily on using the solar wind or ambient magnetic fields to generate thrust. Technically immature, quasi-propellantless alternatives lack either the sensitivity or the power to provide significant maneuvering. An additional resource to be considered is the ambient plasma and magnetic fields in solar and planetary magnetospheres. These environments, such as those around the Sun or Jupiter, have been shown to host a variety of plasma waves. Plasma wave propulsion takes advantage of an observed astrophysical and terrestrial phenomenon: Alfven waves. These are waves that propagate in the plasma and magnetic fields around and between planets and stars. The generation of Alfven waves in ambient magnetic and plasma fields to generate thrust is proposed as a truly propellantless propulsion system which may enable an entirely new matrix of exploration missions. Alfven waves are well known, transverse electromagnetic waves that propagate in magnetized plasmas at
Laundy, David; Alcock, Simon G.; Alianelli, Lucia; Sutter, John P.; Sawhney, Kawal J. S.; Chubar, Oleg
2014-09-01
A full wave propagation of X-rays from source to sample at a storage ring beamline requires simulation of the electron beam source and optical elements in the beamline. The finite emittance source causes the appearance of partial coherence in the wave field. Consequently, the wavefront cannot be treated exactly with fully coherent wave propagation or fully incoherent ray tracing. We have used the wavefront code Synchrotron Radiation Workshop (SRW) to perform partially coherent wavefront propagation using a parallel computing cluster at the Diamond Light Source. Measured mirror profiles have been used to correct the wavefront for surface errors.
Shear flow instability in a partially-ionized plasma sheath around a fast-moving vehicle
International Nuclear Information System (INIS)
Sotnikov, V. I.; Mudaliar, S.; Genoni, T. C.; Rose, D. V.; Oliver, B. V.; Mehlhorn, T. A.
2011-01-01
The stability of ion acoustic waves in a sheared-flow, partially-ionized compressible plasma sheath around a fast-moving vehicle in the upper atmosphere, is described and evaluated for different flow profiles. In a compressible plasma with shear flow, instability occurs for any velocity profile, not just for profiles with an inflection point. A second-order differential equation for the electrostatic potential of excited ion acoustic waves in the presence of electron and ion collisions with neutrals is derived and solved numerically using a shooting method with boundary conditions appropriate for a finite thickness sheath in contact with the vehicle. We consider three different velocity flow profiles and find that in all cases that neutral collisions can completely suppress the instability.
DEFF Research Database (Denmark)
Addassi, Mouadh; Schreyer, Lynn; Johannesson, Björn
2016-01-01
Here we illustrate the usefulness of using the chemical potential as the primary unknown by modeling isothermal vapor transport through a partially saturated cylindrically symmetric capillary tube of variable cross-sectional area using a single equation. There are no fitting parameters and the nu......Here we illustrate the usefulness of using the chemical potential as the primary unknown by modeling isothermal vapor transport through a partially saturated cylindrically symmetric capillary tube of variable cross-sectional area using a single equation. There are no fitting parameters...... and the numerical solutions to the equation are compared with experimental results with excellent agreement. We demonstrate that isothermal vapor transport can be accurately modeled without modeling the details of the contact angle, microscale temperature fluctuations, or pressure fluctuations using a modification...
Partial Safety Factors for Rubble Mound Breakwaters
DEFF Research Database (Denmark)
Sørensen, John Dalsgaard; Burcharth, H. F.; Christiani, E.
1995-01-01
On the basis of the failure modes formulated in the various subtasks calibration of partial safety factors are described in this paper. The partial safety factors can be used to design breakwaters under quite different design conditions, namely probabilities of failure from 0.01 to 0.4, design...... lifetimes from 20 to 100 years and different qualities of wave data. A code of practice where safety is taken into account using partial safety factors is called a level I code. The partial safety factors are calibrated using First Order Reliability Methods (FORM, see Madsen et al. [1]) where...... in section 3. First Order Reliability Methods are described in section 4, and in section 5 it is shown how partial safety factors can be introduced and calibrated. The format of a code for design and analysis of rubble mound breakwaters is discussed in section 6. The mathematical formulation of the limit...
Nonlinear Scattering from Partially Closed Cracks and Imperfect Interfaces
International Nuclear Information System (INIS)
Pecorari, Claudio
2004-05-01
This project has investigated the potential offered by nonlinear scattering phenomena to detect stress-corrosion, surface-breaking cracks, and regions of extended interfaces which are often invisible to conventional inspection methods because of their partial closure and/or the high background noise generated by the surrounding microstructure. The investigation has looked into the basic physics of the interaction between ultrasonic waves and rough surfaces in contact, since the latter offers a prototypical example of a mechanical system which is characterized by a dynamics similar to that of a partially closed crack. To this end, three fundamental mechanisms which may be activated by an inspecting ultrasonic wave have been considered. The first mechanism is described by the Hertz force law which governs the interaction between asperities in contact that are subjected to a normal load. The second mechanism considers the dynamics of two spherical asperities subjected to an oscillating tangential load. To this end, the model developed by Mindlin and Deresiewizc has been used. The third mechanism accounts for the effect of forces of adhesion, and can be described by a model developed by Greenwood and Johnson. The validity of this model is rather general and covers the extreme cases of very soft and very rigid contacts. This model aims at describing the effect of fluid layers with thickness of atomic size, which may be present within a crack. Statistical models accounting for the topography of the two rough surfaces in contact have been developed, and the macroscopic stiffness of the interface recovered. These results have been used to formulate effective boundary conditions to be enforced at the interface, and the reflection and transmission problem has been solved in a variety of situations of experimental significance. The main conclusion of this part of the project is that the second harmonic component is the dominant feature of the nonlinear response of an
Mathematical Methods in Wave Propagation: Part 2--Non-Linear Wave Front Analysis
Jeffrey, Alan
1971-01-01
The paper presents applications and methods of analysis for non-linear hyperbolic partial differential equations. The paper is concluded by an account of wave front analysis as applied to the piston problem of gas dynamics. (JG)
Construction of high-quality NN potential models
International Nuclear Information System (INIS)
Stoks, V.G.J.; Klomp, R.A.M.; Terheggen, C.P.F.; de Swart, J.J.
1994-01-01
We present an updated version (Nijm93) of the Nijmegen soft-core potential, which gives a much better description of the np data than the older version (Nijm78). The χ 2 per datum is 1.87. The configuration-space and momentum-space versions of this potential are exactly equivalent, a unique feature among meson-theoretical potentials. We also present three new NN potential models: a nonlocal Reid-like Nijmegen potential (Nijm I), a local version (Nijm II), and an updated regularized version (Reid 93) of the Reid soft-core potential. These three potentials all have a nearly optimal χ 2 per datum and can therefore be considered as alternative partial-wave analyses. All potentials contain the proper charge-dependent one-pion-exchange tail
Energy Technology Data Exchange (ETDEWEB)
Kuwert, T. [Dept. of Nuclear Medicine, Muenster Univ. (Germany); Stodieck, S.R.G. [Dept. of Neurology, Muenster Univ. (Germany); Puskas, C. [Dept. of Nuclear Medicine, Muenster Univ. (Germany); Diehl, B. [Dept. of Neurology, Muenster Univ. (Germany); Puskas, Z. [Inst. of Clinical Radiology, Muenster Univ. (Germany); Schuierer, G. [Inst. of Clinical Radiology, Muenster Univ. (Germany); Vollet, B. [Dept. of Nuclear Medicine, Muenster Univ. (Germany); Schober, O. [Dept. of Nuclear Medicine, Muenster Univ. (Germany)
1996-01-01
Imaging cerebral GABA{sub A} receptor density (GRD) with single-photon emission tomography (SPET) and iodine-123 iomazenil is highly accurate in lateralizing epileptogenic foci in patients with complex partial seizures of temporal origin. Limited knowledge exists on how iomazenil SPET compares with magnetic resonance imaging (MRI) in this regard. We present a patient with complex partial seizures in whom MRI had identified an arachnoid cyst anterior to the tip of the left temporal lobe. Contralaterally to this structural abnormality, interictal electroencephalography (EEG) performed after sleep deprivation disclosed an intermittent frontotemporal dysrhythmic focus with slow and sharp waves. On iomazenil SPET images GRD was significantly reduced in the right temporal lobe and thus contralaterally to the MRI abnormality, but ipsilaterally to the pathological EEG findings. These data suggest that iomazenil SPET may significantly contribute to the presurgical evaluation of epileptic patients even when MRI identifies potentialy epileptogenic structural lesions. (orig.)
Waves in periodic medium. Atomic matter waves in light crystals
International Nuclear Information System (INIS)
Oberthaler, M. K.
1997-07-01
This work deals with the propagation of matter waves inside a periodic potential. In analogy to photon optics a potential can be described by a refractive index for matter waves. A real potential leads to a refractive spatial structure while an imaginary potential leads to an absorptive structure. A general theoretical description is given in the framework of Floquet theory. The equivalent approach of dynamical diffraction theory will be treated in detail. The analytic solution for weak potentials are given in a general form so that they are applicable for every kind of wave and medium. For our experiments an open two level atom (metastable Argon) propagating inside a standing light wave was used. Detuning the frequency of the light wave from the atomic resonance leads to a real (refractive) periodic potential. Tuning the laser exact on resonance gives rise to a pure imaginary (absorptive) periodic potential. In analogy to solid state crystals in X-ray and neutron optics we call a standing light wave a light crystal. Tuning the standing light field on resonance we demonstrated experimentally the Borrmann effect. This effect describes the increase of the total transmission through a crystal for Bragg incidence. Furthermore, we confirmed that this effect is coherent and that a sinusoidal wave field is formed inside the crystal. The nodes of the wave field were found to coincide with the maxima of absorption. For a detuned standing light field a refractive crystal was realized, for which the expected Pendelloesung effect was demonstrated. In this case the maximum of the wave field inside the crystal was found at the steepest gradient of the potential as predicted by dynamical diffraction theory. Superposing an absorptive and a refractive light crystal a complex light crystal was realized. With such a crystal the violation of Friedel's law was demonstrated in a very clear way. (author)
Travelling Waves in Hybrid Chemotaxis Models
Franz, Benjamin
2013-12-18
Hybrid models of chemotaxis combine agent-based models of cells with partial differential equation models of extracellular chemical signals. In this paper, travelling wave properties of hybrid models of bacterial chemotaxis are investigated. Bacteria are modelled using an agent-based (individual-based) approach with internal dynamics describing signal transduction. In addition to the chemotactic behaviour of the bacteria, the individual-based model also includes cell proliferation and death. Cells consume the extracellular nutrient field (chemoattractant), which is modelled using a partial differential equation. Mesoscopic and macroscopic equations representing the behaviour of the hybrid model are derived and the existence of travelling wave solutions for these models is established. It is shown that cell proliferation is necessary for the existence of non-transient (stationary) travelling waves in hybrid models. Additionally, a numerical comparison between the wave speeds of the continuum models and the hybrid models shows good agreement in the case of weak chemotaxis and qualitative agreement for the strong chemotaxis case. In the case of slow cell adaptation, we detect oscillating behaviour of the wave, which cannot be explained by mean-field approximations. © 2013 Society for Mathematical Biology.
Perturbed Partial Cavity Drag Reduction at High Reynolds Numbers
Makiharju, Simo; Elbing, Brian; Wiggins, Andrew; Dowling, David; Perlin, Marc; Ceccio, Steven
2010-11-01
Ventilated partial cavities were investigated at Reynolds numbers to 80 million. These cavities could be suitable for friction drag reduction on ocean going vessels and thereby lead to environmental and economical benefits. The test model was a 3.05 m wide by 12.9 m long flat plate, with a 0.18 m backward-facing step and a cavity-terminating beach, which had an adjustable slope, tilt and height. The step and beach trapped a ventilated partial cavity over the longitudinal mid-section of the model. Large-scale flow perturbations, mimicking the effect of ambient ocean waves were investigated. For the conditions tested a cavity could be maintained under perturbed flow conditions when the gas flux supplied was greater than the minimum required to maintain a cavity under steady conditions, with larger perturbations requiring more excess gas flux to maintain the cavity. High-speed video was used to observe the unsteady three dimensional cavity closure, the overall cavity shape, and the cavity oscillations. Cavities with friction drag reduction exceeding 95% were attained at optimal conditions. A simplified energy cost-benefit analysis of partial cavity drag reduction was also performed. The results suggest that PCDR could potentially lead to energy savings.
Fear Extinction Memory Consolidation Requires Potentiation of Pontine-Wave Activity during REM Sleep
Datta, Subimal; O'Malley, Matthew W .
2013-01-01
Sleep plays an important role in memory consolidation within multiple memory systems including contextual fear extinction memory, but little is known about the mechanisms that underlie this process. Here, we show that fear extinction training in rats, which extinguished conditioned fear, increased both slow-wave sleep and rapid-eye movement (REM) sleep. Surprisingly, 24 h later, during memory testing, only 57% of the fear-extinguished animals retained fear extinction memory. We found that these animals exhibited an increase in phasic pontine-wave (P-wave) activity during post-training REM sleep, which was absent in the 43% of animals that failed to retain fear extinction memory. The results of this study provide evidence that brainstem activation, specifically potentiation of phasic P-wave activity, during post-training REM sleep is critical for consolidation of fear extinction memory. The results of this study also suggest that, contrary to the popular hypothesis of sleep and memory, increased sleep after training alone does not guarantee consolidation and/or retention of fear extinction memory. Rather, the potentiation of specific sleep-dependent physiological events may be a more accurate predictor for successful consolidation of fear extinction memory. Identification of this unique mechanism will significantly improve our present understanding of the cellular and molecular mechanisms that underlie the sleep-dependent regulation of emotional memory. Additionally, this discovery may also initiate development of a new, more targeted treatment method for clinical disorders of fear and anxiety in humans that is more efficacious than existing methods such as exposure therapy that incorporate only fear extinction. PMID:23467372
Preconditioners based on windowed Fourier frames applied to elliptic partial differential equations
Bhowmik, S.K.; Stolk, C.C.
2011-01-01
We investigate the application of windowed Fourier frames to the numerical solution of partial differential equations, focussing on elliptic equations. The action of a partial differential operator (PDO) on a windowed plane wave is close to a multiplication, where the multiplication factor is given
Are the gravitational waves quantised?
International Nuclear Information System (INIS)
Lovas, I.
1998-01-01
The question whether gravitational waves are quantised or not can be investigated by the help of correlation measurements. If the gravitational waves are classical objects then the value of their correlation function is 1. However, if they are quantised, then there exist two possibilities: the gravitational waves are either completely coherent, then the correlation function is again 1, or they are partially coherent, then the correlation function is expected to deviate from 1. If the gravitational waves are generated by the change of the background metrics then they can be in a squeezed state. In a squeezed state there is a chance for the correlation between the phase of the wave and the quantum fluctuations. (author)
Coulomb singularities in scattering wave functions of spin-orbit-coupled states
International Nuclear Information System (INIS)
Bogdanski, P.; Ouerdane, H.
2011-01-01
We report on our analysis of the Coulomb singularity problem in the frame of the coupled channel scattering theory including spin-orbit interaction. We assume that the coupling between the partial wave components involves orbital angular momenta such that Δl= 0, ±2. In these conditions, the two radial functions, components of a partial wave associated to two values of the angular momentum l, satisfy a system of two second-order ordinary differential equations. We examine the difficulties arising in the analysis of the behavior of the regular solutions near the origin because of this coupling. First, we demonstrate that for a singularity of the first kind in the potential, one of the solutions is not amenable to a power series expansion. The use of the Lippmann-Schwinger equations confirms this fact: a logarithmic divergence arises at the second iteration. To overcome this difficulty, we introduce two auxilliary functions which, together with the two radial functions, satisfy a system of four first-order differential equations. The reduction of the order of the differential system enables us to use a matrix-based approach, which generalizes the standard Frobenius method. We illustrate our analysis with numerical calculations of coupled scattering wave functions in a solid-state system.
Odd and even partial waves of ηπ− and η′π− in π−p→η(′)π−p at 191 GeV/c
Adolph, C.; Akhunzyanov, R.; Alexeev, M. G.; Alexeev, G. D.; Amoroso, A.; Andrieux, V.; Anosov, V.; Austregesilo, A.; Badelek, B.; Balestra, F.; Barth, J.; Baum, G.; Beck, R.; Bedfer, Y.; Berlin, A.; Bernhard, J.; Bicker, K.; Bielert, E. R.; Bieling, J.; Birsa, R.; Bisplinghoff, J.; Bodlak, M.; Boer, M.; Bordalo, P.; Bradamante, F.; Braun, C.; Bressan, A.; Buechele, M.; Burtin, E.; Capozza, L.; Chiosso, M.; Chung, S. U.; Cicuttin, A.; Crespo, M. L.; Curiel, Q.; Torre, S. Dalla; Dasgupta, S. S.; Dasgupta, S.; Denisov, O. Yu; Donskov, S. V.; Doshita, N.; Duic, V.; Duennweber, W.; Dziewiecki, M.; Efremov, A.; Elia, C.; Eversheim, P. D.; Eyrich, W.; Faessler, M.; Ferrero, A.; Filin, A.; Finger, M.; jr, M. Finger; Fischer, H.; Franco, C.; Hohenesche, N. du Fresne von; Friedrich, J. M.; Frolov, V.; Gautheron, F.; Gavrichtchouk, O. P.; Gerassimov, S.; Geyer, R.; Gnesi, I.; Gobbo, B.; Goertz, S.; Gorzellik, M.; Grabmueller, S.; Grasso, A.; Grube, B.; Grussenmeyer, T.; Guskov, A.; Haas, F.; Harrach, D. von; Hahne, D.; Hashimoto, R.; Heinsius, F. H.; Herrmann, F.; Hinterberger, F.; Hoeppner, Ch; Horikawa, N.; d'Hose, N.; Huber, S.; Ishimoto, S.; Ivanov, A.; Ivanshin, Yu; Iwata, T.; Jahn, R.; Jary, V.; Jasinski, P.; Joerg, P.; Joosten, R.; Kabuss, E.; Ketzer, B.; Khaustov, G. V.; Khokhlov, Yu A.; Kisselev, Yu; Klein, F.; Klimaszewski, K.; Koivuniemi, J. H.; Kolosov, V. N.; Kondo, K.; Koenigsmann, K.; Konorov, I.; Konstantinov, V. F.; Kotzinian, A. M.; Kouznetsov, O.; Kraemer, M.; Kroumchtein, Z. V.; Kuchinski, N.; Kunne, F.; Kurek, K.; Kurjata, R. P.; Lednev, A. A.; Lehmann, A.; Levillain, M.; Levorato, S.; Lichtenstadt, J.; Maggiora, A.; Magnon, A.; Makke, N.; Mallot, G. K.; Marchand, C.; Martin, A.; Marzec, J.; Matousek, J.; Matsuda, H.; Matsuda, T.; Meshcheryakov, G.; Meyer, W.; Michigami, T.; Mikhailov, Yu V.; Miyachi, Y.; Nagaytsev, A.; Nagel, T.; Nerling, F.; Neubert, S.; Neyret, D.; Nikolaenko, V. I.; Novy, J.; Nowak, W. -D.; Nunes, A. S.; Olshevsky, A. G.; Orlov, I.; Ostrick, M.; Panknin, R.; Panzieri, D.; Parsamyan, B.; Paul, S.; Peshekhonov, D. V.; Platchkov, S.; Pochodzalla, J.; Polyakov, V. A.; Pretz, J.; Quaresma, M.; Quintans, C.; Ramos, S.; Regali, C.; Reicherz, G.; Rocco, E.; Rossiyskaya, N. S.; Ryabchikov, D. I.; Rychter, A.; Samoylenko, V. D.; Sandacz, A.; Sarkar, S.; Savin, I. A.; Sbrizzai, G.; Schiavon, P.; Schill, C.; Schlueter, T.; Schmidt, K.; Schmieden, H.; Schoenning, K.; Schopferer, S.; Schott, M.; Shevchenko, O. Yu; Silva, L.; Sinha, L.; Sirtl, S.; Slunecka, M.; Sosio, S.; Sozzi, F.; Srnka, A.; Steiger, L.; Stolarski, M.; Sulc, M.; Sulej, R.; Suzuki, H.; Szabelski, A.; Szameitat, T.; Sznajder, P.; Takekawa, S.; Wolbeek, J. ter; Tessaro, S.; Tessarotto, F.; Thibaud, F.; Uhl, S.; Uman, I.; Virius, M.; Wang, L.; Weisrock, T.; Wilfert, M.; Windmolders, R.; Wollny, H.; Zaremba, K.; Zavertyaev, M.; Zemlyanichkina, E.; Ziembicki, M.; Zink, A.
2015-01-01
Exclusive production of ηπ− and η′π− has been studied with a 191 GeV/cπ− beam impinging on a hydrogen target at COMPASS (CERN). Partial-wave analyses reveal different odd/even angular momentum (L ) characteristics in the inspected invariant mass range up to 3 GeV/c2. A striking similarity between
International Nuclear Information System (INIS)
Hu Qianglin; Liu Shibing; Jiang, Y.J.; Zhang Jie
2005-01-01
The enhancement and redistribution of a self-generated quasistatic magnetic field, due to the presence of the polarization field induced by partially ionized atoms, are analytically revealed when a linearly polarized intense and short pulse laser propagates in a partially stripped plasma with higher density. In particular, the shorter wavelength of the laser pulse can evidently intensify the amplitude of the magnetic field. These enhancement and redistribution of the magnetic field are considered physically as a result of the competition of the electrostatic field (electron-ion separation) associated with the plasma wave, the atomic polarization field, and the pondoromotive potential associated with the laser field. This competition leads to the generation of a positive, large amplitude magnetic field in the zone of the pulse center, which forms a significant difference in partially and fully stripped plasmas. The numerical result shows further that the magnetic field is resonantly modulated by the plasma wave when the pulse length is the integer times the plasma wavelength. This apparently implies that the further enhancement and restructure of the large amplitude self-magnetic field can evidently impede the acceleration and stable transfer of the hot-electron beam
Nonclassical Symmetries for Nonlinear Partial Differential Equations via Compatibility
International Nuclear Information System (INIS)
El-Sabbagh, Mostafa F.; Ahmad, Ali T.
2011-01-01
The determining equations for the nonclassical symmetry reductions of nonlinear partial differential equations with arbitrary order can be obtained by requiring the compatibility between the original equations and the invariant surface conditions. The (2+1)-dimensional shallow water wave equation, Boussinesq equation, and the dispersive wave equations in shallow water serve as examples illustrating how compatibility leads quickly and easily to the determining equations for their nonclassical symmetries. (general)
Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on Aquatic Environments
Energy Technology Data Exchange (ETDEWEB)
Čada, Glenn F.
2007-04-01
A new generation of hydropower technologies, the kinetic hydro and wave energy conversion devices, offers the possibility of generating electricity from the movements of water, without the need for dams and diversions. The Energy Policy Act of 2005 encouraged the development of these sources of renewable energy in the United States, and there is growing interest in deploying them globally. The technologies that would extract electricity from free-flowing streams, estuaries, and oceans have not been widely tested. Consequently, the U.S. Department of Energy convened a workshop to (1) identify the varieties of hydrokinetic energy and wave energy conversion devices and their stages of development, (2) identify where these technologies can best operate, (3) identify the potential environmental issues associated with these technologies and possible mitigation measures, and (4) develop a list of research needs and/or practical solutions to address unresolved environmental issues. The article reviews the results of that workshop, focusing on potential effects on freshwater, estuarine, and marine ecosystems, and we describe recent national and international developments.
Ockendon, Hilary
2016-01-01
Now in its second edition, this book continues to give readers a broad mathematical basis for modelling and understanding the wide range of wave phenomena encountered in modern applications. New and expanded material includes topics such as elastoplastic waves and waves in plasmas, as well as new exercises. Comprehensive collections of models are used to illustrate the underpinning mathematical methodologies, which include the basic ideas of the relevant partial differential equations, characteristics, ray theory, asymptotic analysis, dispersion, shock waves, and weak solutions. Although the main focus is on compressible fluid flow, the authors show how intimately gasdynamic waves are related to wave phenomena in many other areas of physical science. Special emphasis is placed on the development of physical intuition to supplement and reinforce analytical thinking. Each chapter includes a complete set of carefully prepared exercises, making this a suitable textbook for students in applied mathematics, ...
ICRF-enhanced plasma potentials in the SOL of Alcator C-Mod
Energy Technology Data Exchange (ETDEWEB)
Ochoukov, R.; Whyte, D. G.; Brunner, D.; LaBombard, B.; Lipschultz, B.; Terry, J. L.; Wukitch, S. J. [PSFC MIT, NW17, 175 Albany Street, Cambridge, MA 02139 (United States); D' Ippolito, D. A.; Myra, J. R. [Lodestar Research Corporation, 2400 Central Avenue, Boulder, Colorado 80301 (United States)
2014-02-12
We performed an extensive survey of the plasma potential in the scrape-off layer (SOL) of Ion Cyclotron Range-of Frequencies (ICRF)-heated discharges on Alcator C-Mod. Our results show that plasma potentials are enhanced in the presence of ICRF power and plasma potential values of >100 V are often observed. Such potentials are high enough to induce sputtering of high-Z molybdenum (Mo) plasma facing components by deuterium ions on C-Mod. For comparison, the plasma potential in Ohmic discharges is typically less than 10 V, well below the threshold needed to induce Mo sputtering by deuterium ions. ICRF-enhanced plasma potentials are observed in the SOL regions that both magnetically map and do not map to active ICRF antennas. Regions that magnetically map to active ICRF antennas are accessible to slow waves directly launched by the antennas and these regions experience plasma potential enhancement that is partially consistent with the slow wave rectification mechanism. One of the most defining features of the slow wave rectification is a threshold appearance of significant plasma potentials (>100 V) when the dimensionless rectification parameter Λ{sub −o} is above unity and this trend is observed experimentally. We also observe ICRF-enhanced plasma potentials >100 V in regions that do not magnetically map to the active antennas and, hence, are not accessible for slow waves launched directly by the active antennas. However, unabsorbed fast waves can reach these regions. The general trend that we observe in these 'un-mapped' regions is that the plasma potential scales with the strength of the local RF wave fields with the fast wave polarization and the highest plasma potentials are observed in discharges with the highest levels of unabsorbed ICRF power. Similarly, we find that core Mo levels scale with the level of unabsorbed ICRF power suggesting a link between plasma potentials in the SOL and the strength of the impurity source.
New travelling wave solutions for nonlinear stochastic evolution ...
Indian Academy of Sciences (India)
expansion method to look for travelling wave solutions of nonlinear partial differential equations. It is interesting to mention that, in this method the sign of the parameters can be used to judge the numbers and types of travelling wave solutions.
Are the gravitational waves quantised?
International Nuclear Information System (INIS)
Lovas, Istvan
1997-01-01
If the gravitational waves are classical objects then the value of their correlation function is 1. If they are quantised, then there exist two possibilities: the gravitational waves are either completely coherent, then their correlation function is again 1, or they are only partially coherent, then their correlation function is expected to deviate from 1. Unfortunately such a deviation is not a sufficient proof for the quantised character of the gravitational waves. If the gravitational waves are quantised and generated by the change of the background metrical then they can be in a squeezed state. In a squeezed state there is a chance for the correlation between the phase of the wave and the quantum fluctuations. The observation of such a correlation would be a genuine proof of the quantised character of the gravitational wave
The Potential for Wave Energy in the North Sea
DEFF Research Database (Denmark)
Sørensen, H. C.; Chozas, Julia Fernandez
2010-01-01
The North Sea has not yet been regarded as prime area for wave energy development in Europe except in Denmark, Benelux and Germany. The reason is the relatively low intensity of waves (12-17kW/m) compared to the Atlantic with a wave climate of 24-48kW/m. Further on the design wave load is almost ...... is resulting in a prediction of a yearly production of 23TWh; the latter is estimating a yearly production of 77TWh. This equals to 6% of the electricity demand around the North Sea, where the annual electricity consumption is about 1,300TWh.......The North Sea has not yet been regarded as prime area for wave energy development in Europe except in Denmark, Benelux and Germany. The reason is the relatively low intensity of waves (12-17kW/m) compared to the Atlantic with a wave climate of 24-48kW/m. Further on the design wave load is almost...... as in the Atlantic and the distance to shore relatively long compared to sites with good wave climate like Ireland, Portugal, Spain and the west coast of UK. The increasing activities within offshore wind in the North Sea and the attempt to build a super grid connecting the wind sites with the major consumers around...
Solitary wave and periodic wave solutions for the thermally forced gravity waves in atmosphere
International Nuclear Information System (INIS)
Li Ziliang
2008-01-01
By introducing a new transformation, a new direct and unified algebraic method for constructing multiple travelling wave solutions of general nonlinear evolution equations is presented and implemented in a computer algebraic system, which extends Fan's direct algebraic method to the case when r > 4. The solutions of a first-order nonlinear ordinary differential equation with a higher degree nonlinear term and Fan's direct algebraic method of obtaining exact solutions to nonlinear partial differential equations are applied to the combined KdV-mKdV-GKdV equation, which is derived from a simple incompressible non-hydrostatic Boussinesq equation with the influence of thermal forcing and is applied to investigate internal gravity waves in the atmosphere. As a result, by taking advantage of the new first-order nonlinear ordinary differential equation with a fifth-degree nonlinear term and an eighth-degree nonlinear term, periodic wave solutions associated with the Jacobin elliptic function and the bell and kink profile solitary wave solutions are obtained under the effect of thermal forcing. Most importantly, the mechanism of propagation and generation of the periodic waves and the solitary waves is analysed in detail according to the values of the heating parameter, which show that the effect of heating in atmosphere helps to excite westerly or easterly propagating periodic internal gravity waves and internal solitary waves in atmosphere, which are affected by the local excitation structures in atmosphere. In addition, as an illustrative sample, the properties of the solitary wave solution and Jacobin periodic solution are shown by some figures under the consideration of heating interaction
ORBITALES. A program for the calculation of wave functions with an analytical central potential
International Nuclear Information System (INIS)
Yunta Carretero; Rodriguez Mayquez, E.
1974-01-01
In this paper is described the objective, basis, carrying out in FORTRAN language and use of the program ORBITALES. This program calculate atomic wave function in the case of ths analytical central potential (Author) 8 refs
Soloviev, A.; Dean, C.
2017-12-01
The artificial upwelling system consisting of the wave-inertia pumps driven by surface waves can produce flow of cold deep water to the surface. One of the recently proposed potential applications of the artificial upwelling system is the hurricane intensity mitigation. Even relatively small reduction of intensity may provide significant benefits. The ocean heat content (OHC) is the "fuel" for hurricanes. The OHC can be reduced by mixing of the surface layer with the cold water produced by wave-inertia pumps. Implementation of this system for hurricane mitigation has several oceanographic and air-sea interaction aspects. The cold water brought to the surface from a deeper layer has higher density than the surface water and, therefore, tends to sink back down. The mixing of the cold water produced by artificial upwelling depends on environmental conditions such as stratification, regional ocean circulation, and vertical shear. Another aspect is that as the sea surface temperature drops below the air temperature, the stable stratification develops in the atmospheric boundary layer. The stable atmospheric stratification suppresses sensible and latent heat air-sea fluxes and reduces the net longwave irradiance from the sea surface. As a result, the artificial upwelling may start increasing the OHC (though still reducing the sea surface temperature). In this work, the fate of the cold water in the stratified environment with vertical shear has been studied using computational fluid dynamics (CFD) tools. A 3D large eddy simulation model is initialized with observational temperature, salinity, and current velocity data from a sample location in the Straits of Florida. A periodic boundary condition is set along the direction of the current, which allows us to simulate infinite fetch. The model results indicate that the cold water brought to the sea surface by a wave-inertia pump forms a convective jet. This jet plunges into the upper ocean mixed layer and penetrates the
A high-resolution assessment of wind and wave energy potentials in the Red Sea
Langodan, Sabique; Viswanadhapalli, Yesubabu; Dasari, Hari Prasad; Knio, Omar; Hoteit, Ibrahim
2016-01-01
This study presents an assessment of the potential for harvesting wind and wave energy from the Red Sea based on an 18-year high-resolution regional atmospheric reanalysis recently generated using the Advanced Weather Research Forecasting model
Experimental Measurement of Wave Field Variations around Wave Energy Converter Arrays
O'Boyle, Louise; Elsäßer, Björn; Whittaker, Trevor
2017-01-01
Wave energy converters (WECs) inherently extract energy from incident waves. For wave energy to become a significant power provider in the future, large farms of WECs will be required. This scale of energy extraction will increase the potential for changes in the local wave field and coastal environment. Assessment of these effects is necessary to inform decisions on the layout of wave farms for optimum power output and minimum environmental impact, as well as on potential site selection. An ...
Energy Technology Data Exchange (ETDEWEB)
Kato, Tsuyoshi; Ide, Yoshihiro; Yamanouchi, Kaoru [Department of Chemistry, School of Science, The University of Tokyo, 7-3-1, Hongo Bunkyo-ku, Tokyo, 113-0033 (Japan)
2015-12-31
We first calculate the ground-state molecular wave function of 1D model H{sub 2} molecule by solving the coupled equations of motion formulated in the extended multi-configuration time-dependent Hartree-Fock (MCTDHF) method by the imaginary time propagation. From the comparisons with the results obtained by the Born-Huang (BH) expansion method as well as with the exact wave function, we observe that the memory size required in the extended MCTDHF method is about two orders of magnitude smaller than in the BH expansion method to achieve the same accuracy for the total energy. Second, in order to provide a theoretical means to understand dynamical behavior of the wave function, we propose to define effective adiabatic potential functions and compare them with the conventional adiabatic electronic potentials, although the notion of the adiabatic potentials is not used in the extended MCTDHF approach. From the comparison, we conclude that by calculating the effective potentials we may be able to predict the energy differences among electronic states even for a time-dependent system, e.g., time-dependent excitation energies, which would be difficult to be estimated within the BH expansion approach.
Potential of Partially Superconducting Generators for Large Direct-Drive Wind Turbines
DEFF Research Database (Denmark)
Liu, Dong; Polinder, Henk; Abrahamsen, Asger Bech
2017-01-01
This paper aims at assessing the potential of partially superconducting generators for 10 MW direct-drive wind turbines by investigating their performance for a very wide range of excitation currents. Performance indicators such as shear stress and efficiency and other generator characteristics...... are compared for 12 different generator topologies. To be sufficiently attractive, superconducting generators must have significant advantages over permanent magnet direct-drive generators, which typically have shear stresses of the order of 53 kPa and efficiencies of 96%. Therefore, we investigate what...... they achieve this performance. By examining the maximum magnetic flux density at the location of the superconducting field winding, feasible superconductors can be chosen according to their engineering current density capabilities. It is found that high- and low-temperature superconductors can meet...
Pietrzak, Robert H.; Goldstein, Risë B.; Southwick, Steven M.; Grant, Bridget F.
2010-01-01
Background While it is well known that personality disorders are associated with trauma exposure and PTSD, limited nationally representative data are available on DSM-IV personality disorders that co-occur with posttraumatic stress disorder (PTSD) and partial PTSD. Methods Face-to-face interviews were conducted with 34,653 adults participating in the Wave 2 National Epidemiologic Survey on Alcohol and Related Conditions. Logistic regression analyses controlling for sociodemographics and additional psychiatric comorbidity evaluated associations of PTSD and partial PTSD with personality disorders. Results Prevalence rates of lifetime PTSD and partial PTSD were 6.4% and 6.6%, respectively. After adjustment for sociodemographic characteristics and additional psychiatric comorbidity, respondents with full PTSD were more likely than trauma controls to meet criteria for schizotypal, narcissistic, and borderline personality disorders (ORs=2.1–2.5); and respondents with partial PTSD were more likely than trauma controls to meet diagnostic criteria for borderline (OR=2.0), schizotypal (OR=1.8), and narcissistic (OR=1.6) PDs. Women with PTSD were more likely than controls to have obsessive-compulsive PD. Women with partial PTSD were more likely than controls to have antisocial PD; and men with partial PTSD were less likely than women with partial PTSD to have avoidant PD. Conclusions PTSD and partial PTSD are associated with borderline, schizotypal, and narcissistic personality disorders. Modestly higher rates of obsessive-compulsive PD were observed among women with full PTSD, and of antisocial PD among women with partial PTSD. PMID:20950823
Wave propagation in electromagnetic media
Davis, Julian L
1990-01-01
This is the second work of a set of two volumes on the phenomena of wave propagation in nonreacting and reacting media. The first, entitled Wave Propagation in Solids and Fluids (published by Springer-Verlag in 1988), deals with wave phenomena in nonreacting media (solids and fluids). This book is concerned with wave propagation in reacting media-specifically, in electro magnetic materials. Since these volumes were designed to be relatively self contained, we have taken the liberty of adapting some of the pertinent material, especially in the theory of hyperbolic partial differential equations (concerned with electromagnetic wave propagation), variational methods, and Hamilton-Jacobi theory, to the phenomena of electromagnetic waves. The purpose of this volume is similar to that of the first, except that here we are dealing with electromagnetic waves. We attempt to present a clear and systematic account of the mathematical methods of wave phenomena in electromagnetic materials that will be readily accessi...
Pietrzak, Robert H.; Goldstein, Risë B.; Southwick, Steven M.; Grant, Bridget F.
2010-01-01
The present study used data from the Wave 2 National Epidemiologic Survey on Alcohol and Related Conditions (n=34,653) to examine lifetime Axis I psychiatric comorbidity of posttraumatic stress disorder (PTSD) in a nationally representative sample of U.S. adults. Lifetime prevalences±standard errors of PTSD and partial PTSD were 6.4%±0.18 and 6.6%±0.18, respectively. Rates of PTSD and partial PTSD were higher among women (8.6%±0.26 and 8.6%±0.26) than men (4.1%±0.19 and 4.5%±0.21). Respondents with both PTSD and partial PTSD most commonly reported unexpected death of someone close, serious illness or injury to someone close, and sexual assault as their worst stressful experiences. PTSD and partial PTSD were associated with elevated lifetime rates of mood, anxiety, and substance use disorders, and suicide attempts. Respondents with partial PTSD generally had intermediate odds of comorbid Axis I disorders and psychosocial impairment relative to trauma controls and full PTSD. PMID:21168991
Assessing the standard Molybdenum projector augmented wave VASP potentials
Energy Technology Data Exchange (ETDEWEB)
Mattsson, Ann E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Multi-Scale Science
2014-07-01
Density Functional Theory (DFT) based Equation of State (EOS) construction is a prominent part of Sandia’s capabilities to support engineering sciences. This capability is based on augmenting experimental data with information gained from computational investigations, especially in those parts of the phase space where experimental data is hard, dangerous, or expensive to obtain. A key part of the success of the Sandia approach is the fundamental science work supporting the computational capability. Not only does this work enhance the capability to perform highly accurate calculations but it also provides crucial insight into the limitations of the computational tools, providing high confidence in the results even where results cannot be, or have not yet been, validated by experimental data. This report concerns the key ingredient of projector augmented-wave (PAW) potentials for use in pseudo-potential computational codes. Using the tools discussed in SAND2012-7389 we assess the standard Vienna Ab-initio Simulation Package (VASP) PAWs for Molybdenum.
Singh, K
2015-01-01
Mobile phone (MP) is commonly used communication tool. Electromagnetic waves (EMWs) emitted from MP may have potential health hazards. So, it was planned to study the effect of electromagnetic waves (EMWs) emitted from the mobile phone on brainstem auditory evoked potential (BAEP) in male subjects in the age group of 20-40 years. BAEPs were recorded using standard method of 10-20 system of electrode placement and sound click stimuli of specified intensity, duration and frequency.Right ear was exposed to EMW emitted from MP for about 10 min. On comparison of before and after exposure to MP in right ear (found to be dominating ear), there was significant increase in latency of II, III (p potential.
Theoretical study of ghost imaging with cold atomic waves under the condition of partial coherence
International Nuclear Information System (INIS)
Chen, Jun; Liu, Yun-Xian
2014-01-01
A matter wave ghost imaging mechanism is proposed and demonstrated theoretically. This mechanism is based on the Talbot-Lau effect. Periodic gratings of matter wave density, which appear as a result of interference of atoms diffracted by pulses of an optical standing wave, are utilized to produce the reference wave and the signal wave simultaneously for the ghost imaging. An advantage of this mechanism is that during the imaging process, the beam-splitter is not needed, which highly simplifies the experimental setup and makes the ghost imaging possible in the field of matter wave
Wave Dragon Wave Energy Converters Used as Coastal Protection
DEFF Research Database (Denmark)
Nørgaard, Jørgen Harck; Andersen, Thomas Lykke; Kofoed, Jens Peter
2011-01-01
This paper deals with wave energy converters used to reduce the wave height along shorelines. For this study the Wave Dragon wave energy converter is chosen. The wave height reduction from a single device has been evaluated from physical model tests in scale 1:51.8 of the 260 x 150 m, 24 kW/m model...... Spain, to evaluate the potential for reducing wave heights close the shore by means of Wave Dragons....
Maximization of wave motion within a hydrocarbon reservoir for wave-based enhanced oil recovery
Jeong, C.; Kallivokas, L.F.; Kucukcoban, S.; Deng, W.; Fathi, A.
2015-01-01
the mathematical framework necessary for identifying optimal wave source signals that can maximize a desired motion metric (kinetic energy, particle acceleration, etc.) at the target region of interest. We use the apparatus of partial-differential-equation (PDE
Ultrasonic partial discharge monitoring method on instrument transformers
Directory of Open Access Journals (Sweden)
Kartalović Nenad
2012-01-01
Full Text Available Sonic and ultrasonic partial discharge monitoring have been applied since the early days of these phenomena monitoring. Modern measurement and partial discharge acoustic (ultrasonic and sonic monitoring method has been rapidly evolving as a result of new electronic component design, information technology and updated software solutions as well as the development of knowledge in the partial discharge diagnosis. Electrical discharges in the insulation system generate voltage-current pulses in the network and ultrasonic waves that propagate through the insulation system and structure. Amplitude-phase-frequency analysis of these signals reveals information about the intensity, type and location of partial discharges. The paper discusses the possibility of ultrasonic method selectivity improvement and the increase of diagnosis reliability in the field. Measurements were performed in the laboratory and in the field while a number of transformers were analysed for dissolved gases in the oil. A comparative review of methods for the partial discharge detection is also presented in this paper.
An ansatz for solving nonlinear partial differential equations in mathematical physics.
Akbar, M Ali; Ali, Norhashidah Hj Mohd
2016-01-01
In this article, we introduce an ansatz involving exact traveling wave solutions to nonlinear partial differential equations. To obtain wave solutions using direct method, the choice of an appropriate ansatz is of great importance. We apply this ansatz to examine new and further general traveling wave solutions to the (1+1)-dimensional modified Benjamin-Bona-Mahony equation. Abundant traveling wave solutions are derived including solitons, singular solitons, periodic solutions and general solitary wave solutions. The solutions emphasize the nobility of this ansatz in providing distinct solutions to various tangible phenomena in nonlinear science and engineering. The ansatz could be more efficient tool to deal with higher dimensional nonlinear evolution equations which frequently arise in many real world physical problems.
Green function iterative solution of ground state wave function for Yukawa potential
International Nuclear Information System (INIS)
Zhang Zhao
2003-01-01
The newly developed single trajectory quadrature method is applied to solve central potentials. First, based on the series expansion method an exact analytic solution of the ground state for Hulthen potential and an approximate solution for Yukawa potential are obtained respectively. Second, the newly developed iterative method based on Green function defined by quadratures along the single trajectory is applied to solve Yukawa potential using the Coulomb solution and Hulthen solution as the trial functions respectively. The results show that a more proper choice of the trial function will give a better convergence. To further improve the convergence the iterative method is combined with the variational method to solve the ground state wave function for Yukawa potential, using variational solutions of the Coulomb and Hulthen potentials as the trial functions. The results give much better convergence. Finally, the obtained critical screen coefficient is applied to discuss the dissociate temperature of J/ψ in high temperature QGP
International Nuclear Information System (INIS)
Chiang, E.P.; Zainal, Z.A.; Aswatha Narayana, P.A.; Seetharamu, K.N.
2006-01-01
The world wide estimated wave resource is more than 2 TW. Offshore wind speeds are generally higher than wind speeds over land, hence higher available energy resource. The estimated offshore wind potential in European waters alone is in excess of 2500 TWh/annum. Offshore area also provides larger area for deploying wind energy devices. In recent year efforts to promote these two types of renewable and green energy sources have been intensify. Using the data obtained from the Malaysia Meteorological Service (MMS) analysis was conducted for the potential of wave energy and wind energy along the coastline of Malaysia facing the South China Sea. Maps of wave power potential were produced. The mean vector wind speed and direction were tabulated
Czech Academy of Sciences Publication Activity Database
Tichý, V.; Kuběna, Aleš Antonín; Skála, L.
2012-01-01
Roč. 90, č. 6 (2012), s. 503-513 ISSN 0008-4204 Institutional support: RVO:67985556 Keywords : Schroninger equation * partial differential equation * analytic solution * anharmonic oscilator * double-well Subject RIV: BE - Theoretical Physics Impact factor: 0.902, year: 2012 http://library.utia.cas.cz/separaty/2012/E/kubena-analytic energies and wave functions of the two-dimensional schrodinger equation.pdf
2018-04-18
This project makes a computer modeling study on vulnerability of coastal bridges in New York City (NYC) metropolitan region to storm surges and waves. Prediction is made for potential surges and waves in the region and consequent hydrodynamic load an...
Schönberger, Jan; Draguhn, Andreas; Both, Martin
2014-01-01
The mammalian hippocampus expresses highly organized patterns of neuronal activity which form a neuronal correlate of spatial memories. These memory-encoding neuronal ensembles form on top of different network oscillations which entrain neurons in a state- and experience-dependent manner. The mechanisms underlying activation, timing and selection of participating neurons are incompletely understood. Here we studied the synaptic mechanisms underlying one prominent network pattern called sharp wave-ripple complexes (SPW-R) which are involved in memory consolidation during sleep. We recorded SPW-R with extracellular electrodes along the different layers of area CA1 in mouse hippocampal slices. Contribution of glutamatergic excitation and GABAergic inhibition, respectively, was probed by local application of receptor antagonists into s. radiatum, pyramidale and oriens. Laminar profiles of field potentials show that GABAergic potentials contribute substantially to sharp waves and superimposed ripple oscillations in s. pyramidale. Inhibitory inputs to s. pyramidale and s. oriens are crucial for action potential timing by ripple oscillations, as revealed by multiunit-recordings in the pyramidal cell layer. Glutamatergic afferents, on the other hand, contribute to sharp waves in s. radiatum where they also evoke a fast oscillation at ~200 Hz. Surprisingly, field ripples in s. radiatum are slightly slower than ripples in s. pyramidale, resulting in a systematic shift between dendritic and somatic oscillations. This complex interplay between dendritic excitation and perisomatic inhibition may be responsible for the precise timing of discharge probability during the time course of SPW-R. Together, our data illustrate a complementary role of spatially confined excitatory and inhibitory transmission during highly ordered network patterns in the hippocampus.
Effects of Rubber Loading on the Ultrasonic Backward Radiation Profile of Leaky Lamb Wave
International Nuclear Information System (INIS)
Song, Sung Jin; Jung, Min Ho; Kim, Young H.; Kwon, Sung Duk
2002-01-01
The characterization of adhesive property in multi-layer materials has been hot issue for a long time. In order to evaluate adhesive properties, we constructed fully automated system for the backward radiation of leaky Lamb wave. The backward radiation profiles were obtained for the bare steel plate and plates with rubber-loading. The rf waveforms and frequency spectra of backward radiation show the characteristics of involved leaky Lamb wave modes. As the thickness of rubber-loading increased, the amplitude of profile at the incident angle of 13.4' exponentially decreased. Scanning the incident position over the partially rubber-loaded specimen shows good agreement with the actual rubber-loading. The backward radiation of leaky Lamb wave has great potential to evaluate the adhesive condition as well as material properties of plates
SCATTERING OF SPIN WAVES BY MAGNETIC DEFECTS
Energy Technology Data Exchange (ETDEWEB)
Callaway, Joseph
1962-12-15
The scattering of spin waves by magnetic point defects is considered using a Green's function method. A partial wave expansion for the scattering amplitude is derived. An expression for the cross section is determined that includes the effect of resonant states. Application is made to the calculation of the thermal conductivity of an insulating ferromagnet. (auth)
Arbitrary l-wave solutions of the Schroedinger equation for the screen Coulomb potential
International Nuclear Information System (INIS)
Dong, Shishan; Sun, Guohua; Dong, Shihai
2013-01-01
Using improved approximate schemes for centrifugal term and the singular factor 1/r appearing in potential itself, we solve the Schroedinger equation with the screen Coulomb potential for arbitrary angular momentum state l. The bound state energy levels are obtained. A closed form of normalization constant of the wave functions is also found. The numerical results show that our results are in good agreement with those obtained by other methods. The key issue is how to treat two singular points in this quantum system. (author)
Distorted-wave Born approximation in the case of an optical scattering potential
International Nuclear Information System (INIS)
Mytnichenko, Sergey V.
2005-01-01
Application of the distorted-wave Born approximation in the conventional form developed for the case of a real scattering potential is shown to cause significant errors in calculating X-ray diffuse scattering from non-ideal crystals, superlattices, multilayers and other objects if energy dissipation (photoabsorption, inelastic scattering, and so on) is not negligible, or in other words, in the case of an optical (complex) scattering potential. We show how a correct expression for the X-ray diffuse-scattering cross-section can be obtained in this case. Generally, the diffuse-scattering cross-section from an optical potential is not T-invariant, i.e. the reciprocity principle is violated. Violations of T-invariance are more evident when the dynamical nature of the diffraction is more critical
Nouri-Nigjeh, Eslam; Permentier, Hjalmar P.; Bischoff, Rainer; Bruins, Andries P.
2011-01-01
Electrochemistry combined with mass spectrometry (EC-MS) is an emerging analytical technique in the imitation of oxidative drug metabolism at the early stages of new drug development. Here, we present the benefits of electrochemical oxidation by square-wave potential pulses for the oxidation of
Single-peak solitary wave solutions for the variant Boussinesq ...
Indian Academy of Sciences (India)
ear dispersive waves in shallow water. This equation has attracted a lot of attention ... which is a model for water waves (a = 0), where u(x, t) is the velocity, H(x, t) is the total depth and the subscripts denote partial ... cusped solitary wave solutions of the osmosis K(2, 2) equation. Zhang and Chen [6] obtained new types of ...
Partial differential equations mathematical techniques for engineers
Epstein, Marcelo
2017-01-01
This monograph presents a graduate-level treatment of partial differential equations (PDEs) for engineers. The book begins with a review of the geometrical interpretation of systems of ODEs, the appearance of PDEs in engineering is motivated by the general form of balance laws in continuum physics. Four chapters are devoted to a detailed treatment of the single first-order PDE, including shock waves and genuinely non-linear models, with applications to traffic design and gas dynamics. The rest of the book deals with second-order equations. In the treatment of hyperbolic equations, geometric arguments are used whenever possible and the analogy with discrete vibrating systems is emphasized. The diffusion and potential equations afford the opportunity of dealing with questions of uniqueness and continuous dependence on the data, the Fourier integral, generalized functions (distributions), Duhamel's principle, Green's functions and Dirichlet and Neumann problems. The target audience primarily comprises graduate s...
Applied partial differential equations
Logan, J David
2004-01-01
This primer on elementary partial differential equations presents the standard material usually covered in a one-semester, undergraduate course on boundary value problems and PDEs. What makes this book unique is that it is a brief treatment, yet it covers all the major ideas: the wave equation, the diffusion equation, the Laplace equation, and the advection equation on bounded and unbounded domains. Methods include eigenfunction expansions, integral transforms, and characteristics. Mathematical ideas are motivated from physical problems, and the exposition is presented in a concise style accessible to science and engineering students; emphasis is on motivation, concepts, methods, and interpretation, rather than formal theory. This second edition contains new and additional exercises, and it includes a new chapter on the applications of PDEs to biology: age structured models, pattern formation; epidemic wave fronts, and advection-diffusion processes. The student who reads through this book and solves many of t...
DEFF Research Database (Denmark)
Bhuiyan, Tanveer Ahmed; Graff, Claus; Kanters, J.K.
2013-01-01
Drug-induced triangulation of the cardiac action potential is associated with increased risk of arrhythmic events. It has been suggested that triangulation causes a flattening of the electrocardiographic T-wave but the relationship between triangulation, T-wave flattening and onset of arrhythmia ...
Experimental Measurement of Wave Field Variations around Wave Energy Converter Arrays
Directory of Open Access Journals (Sweden)
Louise O’Boyle
2017-01-01
Full Text Available Wave energy converters (WECs inherently extract energy from incident waves. For wave energy to become a significant power provider in the future, large farms of WECs will be required. This scale of energy extraction will increase the potential for changes in the local wave field and coastal environment. Assessment of these effects is necessary to inform decisions on the layout of wave farms for optimum power output and minimum environmental impact, as well as on potential site selection. An experimental campaign to map, at high resolution, the wave field variation around arrays of 5 oscillating water column WECs and a methodology for extracting scattered and radiated waves is presented. The results highlight the importance of accounting for the full extent of the WEC behavior when assessing impacts on the wave field. The effect of radiated waves on the wave field is not immediately apparent when considering changes to the entire wave spectrum, nor when observing changes in wave climate due to scattered and radiated waves superimposed together. The results show that radiated waves may account for up to 50% of the effects on wave climate in the near field in particular operating conditions.
Garfinkel, C. I.; Oman, L. D.
2018-01-01
The effect of small islands in the Southern Ocean on the atmospheric circulation in the Southern Hemisphere is considered with a series of simulations using the NASA Goddard Earth Observing System Chemistry-Climate Model in which the gravity wave stress generated by these islands is increased to resemble observed values. The enhanced gravity wave drag leads to a 2 K warming of the springtime polar stratosphere, partially ameliorating biases in this region. Resolved wave drag declines in the stratospheric region in which the added orographic gravity waves deposit their momentum, such that changes in gravity waves are partially compensated by changes in resolved waves, though resolved wave drag increases further poleward. The orographic drag from these islands has impacts for surface climate, as biases in tropospheric jet position are also partially ameliorated. These results suggest that these small islands are likely contributing to the missing drag near 60 degrees S in the upper stratosphere evident in many data assimilation products.
Potential for the Vishniac instability in ionizing shock waves propagating into cold gases
Robinson, A. P. L.; Pasley, J.
2018-05-01
The Vishniac instability was posited as an instability that could affect supernova remnants in their late stage of evolution when subject to strong radiative cooling, which can drive the effective ratio of specific heats below 1.3. The potential importance of this instability to these astrophysical objects has motivated a number of laser-driven laboratory studies. However, the Vishniac instability is essentially a dynamical instability that should operate independently of whatever physical processes happen to reduce the ratio of specific heats. In this paper, we examine the possibility that ionization and molecular dissociation processes can achieve this, and we show that this is possible for a certain range of shock wave Mach numbers for ionizing/dissociating shock waves propagating into cold atomic and molecular gases.
Potential-vorticity inversion and the wave-turbulence jigsaw: some recent clarifications
Directory of Open Access Journals (Sweden)
M. E. McIntyre
2008-06-01
Full Text Available Two key ideas stand out as crucial to understanding atmosphere-ocean dynamics, and the dynamics of other planets including the gas giants. The first key idea is the invertibility principle for potential vorticity (PV. Without it, one can hardly give a coherent account of even so important and elementary a process as Rossby-wave propagation, going beyond the simplest textbook cases. Still less can one fully understand nonlinear processes like the self-sharpening or narrowing of jets – the once-mysterious "negative viscosity" phenomenon. The second key idea, also crucial to understanding jets, might be summarized in the phrase "there is no such thing as turbulence without waves", meaning Rossby waves especially. Without this idea one cannot begin to make sense of, for instance, momentum budgets and eddy momentum transports in complex large-scale flows. Like the invertibility principle the idea has long been recognized, or at least adumbrated. However, it is worth articulating explicitly if only because it can be forgotten when, in the usual way, we speak of "turbulence" and "turbulence theory" as if they were autonomous concepts. In many cases of interest, such as the well-studied terrestrial stratosphere, reality is more accurately described as a highly inhomogeneous "wave-turbulence jigsaw puzzle" in which wavelike and turbulent regions fit together and crucially affect each other's evolution. This modifies, for instance, formulae for the Rhines scale interpreted as indicating the comparable importance of wavelike and turbulent dynamics. Also, weakly inhomogeneous turbulence theory is altogether inapplicable. For instance there is no scale separation. Eddy scales are not much smaller than the sizes of the individual turbulent regions in the jigsaw. Here I review some recent progress in clarifying these ideas and their implications.
Pietrzak, Robert H.; Goldstein, Risë B.; Southwick, Steven M.; Grant, Bridget F.
2011-01-01
Objective This study examined associations between lifetime trauma exposures, PTSD and partial PTSD, and past-year medical conditions in a nationally representative sample of U.S. adults. Methods Face-to-face interviews were conducted with 34,653 participants in the Wave 2 National Epidemiologic Survey on Alcohol and Related Conditions. Logistic regression analyses evaluated associations of trauma exposure, PTSD and partial PTSD with respondent-reported medical diagnoses. Results After adjustment for sociodemographic characteristics and comorbid Axis I and II disorders, respondents with full PTSD were more likely than traumatized respondents without full or partial PTSD (comparison group) to report diagnoses of diabetes mellitus, noncirrhotic liver disease, angina pectoris, tachycardia, hypercholesterolemia, other heart disease, stomach ulcer, HIV seropositivity, gastritis, and arthritis (odds ratios [ORs]=1.2-2.5). Respondents with partial PTSD were more likely than the comparison group to report past-year diagnoses of stomach ulcer, angina pectoris, tachycardia, and arthritis (ORs=1.3-1.6). Men with full and partial PTSD were more likely than controls to report diagnoses of hypertension (both ORs=1.6), and both men and women with PTSD (ORs=1.8 and 1.6, respectively), and men with partial PTSD (OR=2.0) were more likely to report gastritis. Total number of lifetime traumatic event types was associated with many assessed medical conditions (ORs=1.04-1.16), reducing the magnitudes and rendering non-significant some of the associations between PTSD status and medical conditions. Conclusions Greater lifetime trauma exposure and PTSD are associated with numerous medical conditions, many of which are stress-related and chronic, in U.S. adults. Partial PTSD is associated with intermediate odds of some of these conditions. PMID:21949429
πN → πN and KN → KN low energy data and partial wave analyses recent results and new directions
International Nuclear Information System (INIS)
Kelly, R.L.
1975-07-01
This review deals with πN → πN and KN → KN physics below about 3 GeV/c. An attempt is made to convey the state of the art, and to point out what appear to be promising directions for future research. The situation as of about one year ago is summarized in the 1974 Review of Particle Properties and in London conference talks so more recent developments are considered. A comprehensive survey of πN → πN data between the Δ region and 3 GeV/c is given. Problems associated with spin-rotation experiments are discussed, and the current πN → πN partial wave analyses. I = 1 and I = 0 KN → KN analyses, respectively, are considered
What Do s- and p-Wave Neutron Average Radiative Widths Reveal
Energy Technology Data Exchange (ETDEWEB)
Mughabghab, S.F.
2010-04-30
A first observation of two resonance-like structures at mass numbers 92 and 112 in the average capture widths of the p-wave neutron resonances relative to the s-wave component is interpreted in terms of a spin-orbit splitting of the 3p single-particle state into P{sub 3/2} and P{sub 1/2} components at the neutron separation energy. A third structure at about A = 124, which is not correlated with the 3p-wave neutron strength function, is possibly due to the Pygmy Dipole Resonance. Five significant results emerge from this investigation: (i) The strength of the spin-orbit potential of the optical-model is determined as 5.7 {+-} 0.5 MeV, (ii) Non-statistical effects dominate the p-wave neutron-capture in the mass region A = 85 - 130, (iii) The background magnitude of the p-wave average capture-width relative to that of the s-wave is determined as 0.50 {+-} 0.05, which is accounted for quantitatively in tenns of the generalized Fermi liquid model of Mughabghab and Dunford, (iv) The p-wave resonances arc partially decoupled from the giant-dipole resonance (GDR), and (v) Gamma-ray transitions, enhanced over the predictions of the GDR, are observed in the {sup 90}Zr - {sup 98}Mo and Sn-Ba regions.
Scattering of accelerated wave packets
Longhi, S.; Horsley, S. A. R.; Della Valle, G.
2018-03-01
Wave-packet scattering from a stationary potential is significantly modified when the wave packet is subject to an external time-dependent force during the interaction. In the semiclassical limit, wave-packet motion is simply described by Newtonian equations, and the external force can, for example, cancel the potential force, making a potential barrier transparent. Here we consider wave-packet scattering from reflectionless potentials, where in general the potential becomes reflective when probed by an accelerated wave packet. In the particular case of the recently introduced class of complex Kramers-Kronig potentials we show that a broad class of time-dependent forces can be applied without inducing any scattering, while there is a breakdown of the reflectionless property when there is a broadband distribution of initial particle momentum, involving both positive and negative components.
The Potential Energy Density in Transverse String Waves Depends Critically on Longitudinal Motion
Rowland, David R.
2011-01-01
The question of the correct formula for the potential energy density in transverse waves on a taut string continues to attract attention (e.g. Burko 2010 "Eur. J. Phys." 31 L71), and at least three different formulae can be found in the literature, with the classic text by Morse and Feshbach ("Methods of Theoretical Physics" pp 126-127) stating…
A boundary element model for diffraction of water waves on varying water depth
Energy Technology Data Exchange (ETDEWEB)
Poulin, Sanne
1997-12-31
In this thesis a boundary element model for calculating diffraction of water waves on varying water depth is presented. The varying water depth is approximated with a perturbed constant depth in the mild-slope wave equation. By doing this, the domain integral which is a result of the varying depth is no longer a function of the unknown wave potential but only a function of position and the constant depth wave potential. The number of unknowns is the resulting system of equations is thus reduced significantly. The integration procedures in the model are tested very thoroughly and it is found that a combination of analytical integration in the singular region and standard numerical integration outside works very well. The gradient of the wave potential is evaluated successfully using a hypersingular integral equation. Deviations from the analytical solution are only found on the boundary or very close to, but these deviations have no significant influence on the accuracy of the solution. The domain integral is evaluated using the dual reciprocity method. The results are compared with a direct integration of the integral, and the accuracy is quite satisfactory. The problem with irregular frequencies is taken care of by the CBIEM (or CHIEF-method) together with a singular value decomposition technique. This method is simple to implement and works very well. The model is verified using Homma`s island as a test case. The test cases are limited to shallow water since the analytical solution is only valid in this region. Several depth ratios are examined, and it is found that the accuracy of the model increases with increasing wave period and decreasing depth ratio. Short waves, e.g. wind generated waves, can allow depth variations up to approximately 2 before the error exceeds 10%, while long waves can allow larger depth ratios. It is concluded that the perturbation idea is highly usable. A study of (partially) absorbing boundary conditions is also conducted. (EG)
Hamiltonian partial differential equations and applications
Nicholls, David; Sulem, Catherine
2015-01-01
This book is a unique selection of work by world-class experts exploring the latest developments in Hamiltonian partial differential equations and their applications. Topics covered within are representative of the field’s wide scope, including KAM and normal form theories, perturbation and variational methods, integrable systems, stability of nonlinear solutions as well as applications to cosmology, fluid mechanics and water waves. The volume contains both surveys and original research papers and gives a concise overview of the above topics, with results ranging from mathematical modeling to rigorous analysis and numerical simulation. It will be of particular interest to graduate students as well as researchers in mathematics and physics, who wish to learn more about the powerful and elegant analytical techniques for Hamiltonian partial differential equations.
The Multi-Wave Method for Exact Solutions of Nonlinear Partial Differential Equations
Directory of Open Access Journals (Sweden)
Yusuf Pandir
2018-02-01
Full Text Available In this research, we use the multi-wave method to obtain new exact solutions for generalized forms of 5th order KdV equation and fth order KdV (fKdV equation with power law nonlinearity. Computations are performed with the help of the mathematics software Mathematica. Then, periodic wave solutions, bright soliton solutions and rational function solutions with free parameters are obtained by this approach. It is shown that this method is very useful and effective.
Introduction to partial differential equations
Borthwick, David
2016-01-01
This modern take on partial differential equations does not require knowledge beyond vector calculus and linear algebra. The author focuses on the most important classical partial differential equations, including conservation equations and their characteristics, the wave equation, the heat equation, function spaces, and Fourier series, drawing on tools from analysis only as they arise.Within each section the author creates a narrative that answers the five questions: (1) What is the scientific problem we are trying to understand? (2) How do we model that with PDE? (3) What techniques can we use to analyze the PDE? (4) How do those techniques apply to this equation? (5) What information or insight did we obtain by developing and analyzing the PDE? The text stresses the interplay between modeling and mathematical analysis, providing a thorough source of problems and an inspiration for the development of methods.
Fermi wave vector for the partially spin-polarized composite-fermion Fermi sea
Balram, Ajit C.; Jain, J. K.
2017-12-01
The fully spin-polarized composite-fermion (CF) Fermi sea at the half-filled lowest Landau level has a Fermi wave vector kF*=√{4 π ρe } , where ρe is the density of electrons or composite fermions, supporting the notion that the interaction between composite fermions can be treated perturbatively. Away from ν =1 /2 , the area is seen to be consistent with kF*=√{4 π ρe } for ν 1 /2 , where ρh is the density of holes in the lowest Landau level. This result is consistent with particle-hole symmetry in the lowest Landau level. We investigate in this article the Fermi wave vector of the spin-singlet CF Fermi sea (CFFS) at ν =1 /2 , for which particle-hole symmetry is not a consideration. Using the microscopic CF theory, we find that for the spin-singlet CFFS the Fermi wave vectors for up- and down-spin CFFSs at ν =1 /2 are consistent with kF*↑,↓=√{4 π ρe↑,↓ } , where ρe↑=ρe↓=ρe/2 , which implies that the residual interactions between composite fermions do not cause a nonperturbative correction for spin-singlet CFFS either. Our results suggest the natural conjecture that for arbitrary spin polarization the CF Fermi wave vectors are given by kF*↑=√{4 π ρe↑ } and kF*↓=√{4 π ρe↓ } .
DEFF Research Database (Denmark)
Ibsen, Lars Bo
2008-01-01
Estimates for the amount of potential wave energy in the world range from 1-10 TW. The World Energy Council estimates that a potential 2TW of energy is available from the world’s oceans, which is the equivalent of twice the world’s electricity production. Whilst the recoverable resource is many...... times smaller it remains very high. For example, whilst there is enough potential wave power off the UK to supply the electricity demands several times over, the economically recoverable resource for the UK is estimated at 25% of current demand; a lot less, but a very substantial amount nonetheless....
Adolph, C.; Alexeev, M.G.; Alexeev, G.D.; Amoroso, A.; Andrieux, V.; Anosov, V.; Austregesilo, A.; Badelek, B.; Balestra, F.; Barth, J.; Baum, G.; Beck, R.; Bedfer, Y.; Berlin, A.; Bernhard, J.; Bicker, K.; Bielert, E.R.; Bieling, J.; Birsa, R.; Bisplinghoff, J.; Bodlak, M.; Boer, M.; Bordalo, P.; Bradamante, F.; Braun, C.; Bressan, A.; Buchele, M.; Burtin, E.; Capozza, L.; Chiosso, M.; Chung, S.U.; Cicuttin, A.; Crespo, M.L.; Curiel, Q.; Dalla Torre, S.; Dasgupta, S.S.; Dasgupta, S.; Denisov, O.Yu.; Donskov, S.V.; Doshita, N.; Duic, V.; Dunnweber, W.; Dziewiecki, M.; Efremov, A.; Elia, C.; Eversheim, P.D.; Eyrich, W.; Faessler, M.; Ferrero, A.; Finger, M.; M. Finger jr; Fischer, H.; Franco, C.; von Hohenesche, N. du Fresne; Friedrich, J.M.; Frolov, V.; Gautheron, F.; Gavrichtchouk, O.P.; Gerassimov, S.; Geyer, R.; Gnesi, I.; Gobbo, B.; Goertz, S.; Gorzellik, M.; Grabmuller, S.; Grasso, A.; Grube, B.; Grussenmeyer, T.; Guskov, A.; Haas, F.; von Harrach, D.; Hahne, D.; Hashimoto, R.; Heinsius, F.H.; Herrmann, F.; Hinterberger, F.; Hoppner, Ch.; Horikawa, N.; d'Hose, N.; Huber, S.; Ishimoto, S.; Ivanov, A.; Ivanshin, Yu.; Iwata, T.; Jahn, R.; Jary, V.; Jasinski, P.; Jorg, P.; Joosten, R.; Kabuss, E.; Ketzer, B.; Khaustov, G.V.; Khokhlov, Yu. A.; Kisselev, Yu.; Klein, F.; Klimaszewski, K.; Koivuniemi, J.H.; Kolosov, V.N.; Kondo, K.; Konigsmann, K.; Konorov, I.; Konstantinov, V.F.; Kotzinian, A.M.; Kouznetsov, O.; Kramer, M.; Kroumchtein, Z.V.; Kuchinski, N.; Kunne, F.; Kurek, K.; Kurjata, R.P.; Lednev, A.A.; Lehmann, A.; Levillain, M.; Levorato, S.; Lichtenstadt, J.; Maggiora, A.; Magnon, A.; Makke, N.; Mallot, G.K.; Marchand, C.; Martin, A.; Marzec, J.; Matousek, J.; Matsuda, H.; Matsuda, T.; Meshcheryakov, G.; Meyer, W.; Michigami, T.; Mikhailov, Yu. V.; Miyachi, Y.; Nagaytsev, A.; Nagel, T.; Nerling, F.; Neubert, S.; Neyret, D.; Novy, J.; Nowak, W.D.; Nunes, A.S.; Olshevsky, A.G.; Orlov, I.; Ostrick, M.; Panknin, R.; Panzieri, D.; Parsamyan, B.; Paul, S.; Peshekhonov, D.V.; Platchkov, S.; Pochodzalla, J.; Polyakov, V.A.; Pretz, J.; Quaresma, M.; Quintans, C.; Ramos, S.; Regali, C.; Reicherz, G.; Rocco, E.; Rossiyskaya, N.S.; Ryabchikov, D.I.; Rychter, A.; Samoylenko, V.D.; Sandacz, A.; Sarkar, S.; Savin, I.A.; Sbrizzai, G.; Schiavon, P.; Schill, C.; Schluter, T.; Schmidt, K.; Schmieden, H.; Schonning, K.; Schopferer, S.; Schott, M.; Shevchenko, O.Yu.; Silva, L.; Sinha, L.; Sirtl, S.; Slunecka, M.; Sosio, S.; Sozzi, F.; Srnka, A.; Steiger, L.; Stolarski, M.; Sulc, M.; Sulej, R.; Suzuki, H.; Szabelski, A.; Szameitat, T.; Sznajder, P.; Takekawa, S.; Wolbeek, J. ter; Tessaro, S.; Tessarotto, F.; Thibaud, F.; Uhl, S.; Uman, I.; Virius, M.; Wang, L.; Weisrock, T.; Wilfert, M.; Windmolders, R.; Wollny, H.; Zaremba, K.; Zavertyaev, M.; Zemlyanichkina, E.; Ziembicki, M.; Zink, A.
2015-01-01
Exclusive production of $\\eta\\pi^-$ and $\\eta'\\pi^-$ has been studied with a $191\\,\\textrm{GeV}/c$ $\\pi^-$ beam impinging on a hydrogen target at COMPASS (CERN). Partial-wave analyses reveal different odd/even angular momentum ($L$) characteristics in the inspected invariant mass range up to $3\\,\\textrm{GeV}/c^2$. A striking similarity between the two systems is observed for the $L=2,4,6$ intensities (scaled by kinematical factors) and the relative phases. The known resonances $a_2(1320)$ and $a_4(2040)$ are in line with this similarity. In contrast, a strong enhancement of $\\eta'\\pi^-$ over $\\eta\\pi^-$ is found for the $L=1,3,5$ waves, which carry non-$q\\bar q$ quantum numbers. The $L=1$ intensity peaks at $1.7\\,\\textrm{GeV}/c^2$ in $\\eta'\\pi^-$ and at $1.4\\,\\textrm{GeV}/c^2$ in $\\eta\\pi^-$, the corresponding phase motions with respect to $L=2$ are different.
Potential and limitations of wave intensity analysis in coronary arteries
Siebes, M.; Kolyva, C.; Verhoeff, B.J.; Piek, J.J.; Spaan, J.A.
2009-01-01
Wave intensity analysis (WIA) is beginning to be applied to the coronary circulation both to better understand coronary physiology and as a diagnostic tool. Separation of wave intensity (WI) into forward and backward traveling components requires knowledge of pulse wave velocity at the point of
International Nuclear Information System (INIS)
Ali, S.; Nasim, M.H.; Murtaza, G.
2003-01-01
The expressions for the Debye and the wake potential are derived by incorporating dust-charge fluctuations of a single projectile, as well as of an array of dust grain projectiles, propagating through a partially ionized dusty plasma with a constant velocity. Numerically, the effects of the dust-charge fluctuations and the dust-neutral collisions on the electrostatic potential for a single, three, six and ten projectiles are examined. The dust-charge relaxation rate modifies the shape of the Debye as well as the wake potential. For smaller values of the relaxation rates a potential well is formed instead of Debye potential
General partial wave analysis of the decay of a hyperon of spin 1/2
International Nuclear Information System (INIS)
Lee, T.D.; Yang, C.N.
1983-01-01
This note is to consider the general problem of the decay of a hyperon of spin 1/2 into a pion and a nucleon under the general assumption of possible violations of parity conservation, charge-conjugation invariance, and time-reversal invariance. The discussion is in essence a partial wave analysis of the decay phenomena and is independent of the dynamics of the decay. Nonrelativistic approximations are not made on either of the decay products. In the reference system in which the hyperon is at rest there are two possible final states of the pion-nucleon system:s/sub 1/2/ and p/sub 1/2/. Denoting the amplitudes of these two states by A and B, one observes that the decay is physically characterized by three real constants specifying the magnitudes and the relative phase between these amplitudes. One of these constants can be taken to be absolute value a 2 + absolute value B 2 , and is evidently proportional to the decay probability per unit time. The other two constants are best defined in terms of experimentally measurable quantities. They discuss three types of experiments: (a) The angular distribution of the decay pion from a completely polarized hyperon at rest. (b) The longitudinal polarization of the nucleon emitted in the decay of unpolarized hyperons at rest. (c) Transverse polarization of the nucleon emitted in a given direction in the decay of a polarized hyperon
Electromagnetic waves in gravitational wave spacetimes
International Nuclear Information System (INIS)
Haney, M.; Bini, D.; Ortolan, A.; Fortini, P.
2013-01-01
We have considered the propagation of electromagnetic waves in a space-time representing an exact gravitational plane wave and calculated the induced changes on the four-potential field Aμ of a plane electromagnetic wave. By choosing a suitable photon round-trip in a Michelson interferometer, we have been able to identify the physical effects of the exact gravitational wave on the electromagnetic field, i.e. phase shift, change of the polarization vector, angular deflection and delay. These results have been exploited to study the response of an interferometric gravitational wave detector beyond the linear approximation of the general theory of relativity. A much more detailed examination of this problem can be found in our paper recently published in Classical and Quantum Gravity (28 (2011) 235007).
Partial-wave analysis for positronium-xenon collisions in the ultralow-energy region
Shibuya, Kengo; Saito, Haruo
2018-05-01
We propose a method to convert measured positronium annihilation rates in gaseous xenon into total and differential cross sections of positronium-xenon collisions in an ultralow-energy region of less than 80 meV where their experimental determinations as functions of the positronium kinetic energy are extremely difficult. This method makes it possible to determine not only the s -wave collisional parameters but also the p -wave and d -wave parameters. We have found a small positive value of the scattering length, A0=2.06 ±0.10 a0 , which indicates that the positronium-xenon interaction in this energy region is repulsive and suggests that it is dominated by the scattering amplitude of the positron rather than that of the electron. An extrapolation of the analytical result into the experimentally inaccessible energy regions from 80 meV to 1.0 eV indicates that there should not be a Ramsauer-Townsend minimum but rather a peak in the total cross section at an energy of approximately 0.4 eV.
To the complete integrability of long-wave short-wave interaction equations
International Nuclear Information System (INIS)
Roy Chowdhury, A.; Chanda, P.K.
1984-10-01
We show that the non-linear partial differential equations governing the interaction of long and short waves are completely integrable. The methodology we use is that of Ablowitz et al. though in the last section of our paper we have discussed the problem also in the light of the procedure due to Weiss et al. and have obtained a Baecklund transformation. (author)
International Nuclear Information System (INIS)
Tian, F.; Tian, H.; Whitmore, L.; Ye, L.Y.
2015-01-01
The energy dependent on volume of hexagonal close-packed (hcp) nickel with different magnetism is calculated by full-potential linearized augmented plane wave method. Based on the calculation ferromagnetic state is found to be the most stable state. The magnetic moment of hcp Ni is calculated and compared to those calculated by different pseudo-potential methods. Furthermore, it is also compared to that of face-centered cubic (fcc) one with the reason discussed
Energy Technology Data Exchange (ETDEWEB)
Scholes, H.; Millar, D.L.; Eyre, J.M.; Dibley, R.; Davey, G.; Haywood, M.
2004-07-01
This report summarises the findings of a project investigating the potential use of abandoned mine shafts in Cornwall as oscillating water column wave power generation devices, and assesses the Waveshaft concept in phase 1 prior to further examination of selected sites in phase 2. Details are given of the criteria for the mine shafts, identification of candidate shafts, remediation/enhancement requirements, and wave climate along with power conversion issues, overall estimated waveshaft resource in Cornwall, environmental impacts and legal protection, and an economic appraisal. Inspection and safety protocols, mine location maps, and wave power data are presented in appendices.
International Nuclear Information System (INIS)
Mitri, F.G.
2014-01-01
The axial and transverse radiation forces on a fluid sphere placed arbitrarily in the acoustical field of Bessel beams of standing waves are evaluated. The three-dimensional components of the time-averaged force are expressed in terms of the beam-shape coefficients of the incident field and the scattering coefficients of the fluid sphere using a partial-wave expansion (PWE) method. Examples are chosen for which the standing wave field is composed of either a zero-order (non-vortex) Bessel beam, or a first-order Bessel vortex beam. It is shown here, that both transverse and axial forces can push or pull the fluid sphere to an equilibrium position depending on the chosen size parameter ka (where k is the wave-number and a the sphere’s radius). The corresponding results are of particular importance in biophysical applications for the design of lab-on-chip devices operating with Bessel beams standing wave tweezers. Moreover, potential investigations in acoustic levitation and related applications in particle rotation in a vortex beam may benefit from the results of this study. -- Highlights: •The axial and transverse forces on a fluid sphere in acoustical Bessel beams tweezers are evaluated. •The attraction or repulsion to an equilibrium position in the standing wave field is examined. •Potential applications are in particle manipulation using standing waves
Energy Technology Data Exchange (ETDEWEB)
Mitri, F.G., E-mail: mitri@chevron.com
2014-03-15
The axial and transverse radiation forces on a fluid sphere placed arbitrarily in the acoustical field of Bessel beams of standing waves are evaluated. The three-dimensional components of the time-averaged force are expressed in terms of the beam-shape coefficients of the incident field and the scattering coefficients of the fluid sphere using a partial-wave expansion (PWE) method. Examples are chosen for which the standing wave field is composed of either a zero-order (non-vortex) Bessel beam, or a first-order Bessel vortex beam. It is shown here, that both transverse and axial forces can push or pull the fluid sphere to an equilibrium position depending on the chosen size parameter ka (where k is the wave-number and a the sphere’s radius). The corresponding results are of particular importance in biophysical applications for the design of lab-on-chip devices operating with Bessel beams standing wave tweezers. Moreover, potential investigations in acoustic levitation and related applications in particle rotation in a vortex beam may benefit from the results of this study. -- Highlights: •The axial and transverse forces on a fluid sphere in acoustical Bessel beams tweezers are evaluated. •The attraction or repulsion to an equilibrium position in the standing wave field is examined. •Potential applications are in particle manipulation using standing waves.
Silaev, A. A.; Romanov, A. A.; Vvedenskii, N. V.
2018-03-01
In the numerical solution of the time-dependent Schrödinger equation by grid methods, an important problem is the reflection and wrap-around of the wave packets at the grid boundaries. Non-optimal absorption of the wave function leads to possible large artifacts in the results of numerical simulations. We propose a new method for the construction of the complex absorbing potentials for wave suppression at the grid boundaries. The method is based on the use of the multi-hump imaginary potential which contains a sequence of smooth and symmetric humps whose widths and amplitudes are optimized for wave absorption in different spectral intervals. We show that this can ensure a high efficiency of absorption in a wide range of de Broglie wavelengths, which includes wavelengths comparable to the width of the absorbing layer. Therefore, this method can be used for high-precision simulations of various phenomena where strong spreading of the wave function takes place, including the phenomena accompanying the interaction of strong fields with atoms and molecules. The efficiency of the proposed method is demonstrated in the calculation of the spectrum of high-order harmonics generated during the interaction of hydrogen atoms with an intense infrared laser pulse.
Frustrated Brownian Motion of Nonlocal Solitary Waves
International Nuclear Information System (INIS)
Folli, V.; Conti, C.
2010-01-01
We investigate the evolution of solitary waves in a nonlocal medium in the presence of disorder. By using a perturbational approach, we show that an increasing degree of nonlocality may largely hamper the Brownian motion of self-trapped wave packets. The result is valid for any kind of nonlocality and in the presence of nonparaxial effects. Analytical predictions are compared with numerical simulations based on stochastic partial differential equations.
Pure Quasi-P-wave calculation in transversely isotropic media using a hybrid method
Wu, Zedong
2018-04-12
The acoustic approximation for anisotropic media is widely used in current industry imaging and inversion algorithms mainly because P-waves constitute the majority of the energy recorded in seismic exploration. The resulting acoustic formulas tend to be simpler, resulting in more efficient implementations, and depend on fewer medium parameters. However, conventional solutions of the acoustic wave equation with higher-order derivatives suffer from shear wave artifacts. Thus, we derive a new acoustic wave equation for wave propagation in transversely isotropic (TI) media, which is based on a partially separable approximation of the dispersion relation for TI media and free of shear wave artifacts. Even though our resulting equation is not a partial differential equation, it is still a linear equation. Thus, we propose to implement this equation efficiently by combining the finite difference approximation with spectral evaluation of the space-independent parts. The resulting algorithm provides solutions without the constrain of ε ≥ δ. Numerical tests demonstrate the effectiveness of the approach.
Pure Quasi-P-wave calculation in transversely isotropic media using a hybrid method
Wu, Zedong; Liu, Hongwei; Alkhalifah, Tariq Ali
2018-01-01
The acoustic approximation for anisotropic media is widely used in current industry imaging and inversion algorithms mainly because P-waves constitute the majority of the energy recorded in seismic exploration. The resulting acoustic formulas tend to be simpler, resulting in more efficient implementations, and depend on fewer medium parameters. However, conventional solutions of the acoustic wave equation with higher-order derivatives suffer from shear wave artifacts. Thus, we derive a new acoustic wave equation for wave propagation in transversely isotropic (TI) media, which is based on a partially separable approximation of the dispersion relation for TI media and free of shear wave artifacts. Even though our resulting equation is not a partial differential equation, it is still a linear equation. Thus, we propose to implement this equation efficiently by combining the finite difference approximation with spectral evaluation of the space-independent parts. The resulting algorithm provides solutions without the constrain of ε ≥ δ. Numerical tests demonstrate the effectiveness of the approach.
Recent Ultrasonic Guided Wave Inspection Development Efforts
International Nuclear Information System (INIS)
Rose, Joseph L.; Tittmann, Bernhard R.
2001-01-01
The recognition of such natural wave guides as plates, rods, hollow cylinders, multi-layer structures or simply an interface between two materials combined with an increased understanding of the physics and wave mechanics of guided wave propagation has led to a significant increase in the number of guided wave inspection applications being developed each year. Of primary attention Is the ability to inspect partially hidden structures, hard to access areas, and treated or insulated structures. An introduction to some physical consideration of guided waves followed by some sample problem descriptions in pipe, ice detection, fouling detection in the foods industry, aircraft, tar coated structures and acoustic microscopy is presented in this paper. A sample problem in Boundary Element Modeling is also presented to illustrate the move in guided wave analysis beyond detection and location analysis to quantification
The arbitrary l continuum states of the hyperbolic molecular potential
Energy Technology Data Exchange (ETDEWEB)
Wei, Gao-Feng, E-mail: fgwei_2000@163.com [School of Physics and Mechatronics Engineering, Xi' an University of Arts and Science, Xi' an 710065 (China); Chen, Wen-Li, E-mail: physwlchen@163.com [Department of Basic Science, Xi' an Peihua University, Xi' an 710065 (China); Dong, Shi-Hai, E-mail: dongsh2@yahoo.com [Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Edificio 9, Unidad Profesional Adolfo López Mateos, Mexico D.F. 07738 (Mexico); Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803-4001 (United States)
2014-06-27
Within the framework of partial-wave method, we study in this Letter the arbitrary l continuum states of the Schrödinger equation with the hyperbolic molecular potential in terms of an improved approximation to the centrifugal term. We present the normalized radial wave functions and obtain analytical formula of phase shifts. In addition, the corresponding bound states are also discussed by studying the analytical properties of the scattering amplitude. We calculate the energy spectra and scattering phase shifts by the improved, previous approximations and the accurate methods, respectively and find that the improved approximation is better than the previous one since the present results are in better agreement with the accurate ones. - Highlights: • The hyperbolic potential with arbitrary l state is solved. • Improved approximation to centrifugal term is used. • Phase shift formula is derived analytically. • Accurate results are compared with the present results.
Lin, Cheng-Horng
2016-12-23
There are more than 7 million people living near the Tatun volcano group in northern Taiwan. For the safety of the Taipei metropolis, in particular, it has been debated for decades whether or not these volcanoes are active. Here I show evidence of a deep magma reservoir beneath the Taipei metropolis from both S-wave shadows and P-wave delays. The reservoir is probably composed of either a thin magma layer overlay or many molten sills within thick partially molten rocks. Assuming that 40% of the reservoir is partially molten, its total volume could be approximately 350 km 3 . The exact location and geometry of the magma reservoir will be obtained after dense seismic arrays are deployed in 2017-2020.
Geometrical and wave optics of paraxial beams.
Meron, M; Viccaro, P J; Lin, B
1999-06-01
Most calculational techniques used to evaluate beam propagation are geared towards either fully coherent or fully incoherent beams. The intermediate partial-coherence regime, while in principle known for a long time, has received comparably little attention so far. The resulting shortage of adequate calculational techniques is currently being felt in the realm of x-ray optics where, with the advent of third generation synchrotron light sources, partially coherent beams become increasingly common. The purpose of this paper is to present a calculational approach which, utilizing a "variance matrix" representation of paraxial beams, allows for a straightforward evaluation of wave propagation through an optical system. Being capable of dealing with an arbitrary degree of coherence, this approach covers the whole range from wave to ray optics, in a seamless fashion.
Application of the DC potential drop and the partial unloading methods to fracture mechanics tests
International Nuclear Information System (INIS)
Heerens, J.; Schwalbe, K.H.; Hellmann, D.; Knaack, J.; Mueller-Roos, J.
1985-01-01
The ability of the DC potential drop method and the partial unloading technique to measure crack growth and to detect initation of crack growth has been investigated using a number of steels and aluminium alloys. It was found that within the range of parameters investigated both of these methods can be recommended for the determination of the R-curve; however, since at small amounts of crack growth the DC potential drop method gave more consistent results it is therefore considered to be superior. The initation values J(0) of J determined by fractography were compared with J(Ic) as obtained by current practice. It was found that J(Ic) is poorly related to initation or to specific amount of crack growth. A modification of the J(Ic) procedure is proposed. Two contacting arrangements of the DC potential drop method were checked for initation detection: one indicates initation by a potential minimum (related to a J value J(min)), the other by the intersection of the R-curve with the blunting line (related to a J value J(int)). (orig.) [de
Coaxial end-launched and microstrip to partial H-plane waveguide transitions
CSIR Research Space (South Africa)
Kloke, KH
2015-08-01
Full Text Available Conventional rectangular waveguides are commonly used for high power and other microwave and millimeter wave applications. Their use at lower frequencies has been limited by their bulky nature. A new type of compact waveguide called a partial H...
Resonances and analyticity of scattering wave function for square-well-type potentials
International Nuclear Information System (INIS)
Weber, T.A.; Hammer, C.L.; Zidell, V.S.
1982-01-01
In this paper we extend our previous analysis of the scattering of wave packets in one dimension to the case of the square-well potential. The analytic properties of the general scattering solution are emphasized thereby making the analysis useful as introductory material for a more sophisticated S-matrix treatment. The square-well model is particularly interesting because of its application to the deuteron problem. Resonance scattering, barrier penetration, time delay, and line shape are discussed at the level of the first-year graduate student
Hulthén potential models for α−α and α−He3 elastic scattering
Indian Academy of Sciences (India)
2017-02-09
Feb 9, 2017 ... considered between each pair of particles, is a finite- depth central potential. As the α-particles are tightly bound, the low-lying states of such systems can be determined fairly well through the relative motion of α-particles. The general procedure to understand such a system is to make use of the partial wave ...
A Rectangular Planar Spiral Antenna for GIS Partial Discharge Detection
Directory of Open Access Journals (Sweden)
Xiaoxing Zhang
2014-01-01
Full Text Available A rectangular planar spiral antenna sensor was designed for detecting the partial discharge in gas insulation substations (GIS. It can expediently receive electromagnetic waves leaked from basin-type insulators and can effectively suppress low frequency electromagnetic interference from the surrounding environment. Certain effective techniques such as rectangular spiral structure, bow-tie loading, and back cavity structure optimization during the antenna design process can miniaturize antenna size and optimize voltage standing wave ratio (VSWR characteristics. Model calculation and experimental data measured in the laboratory show that the antenna possesses a good radiating performance and a multiband property when working in the ultrahigh frequency (UHF band. A comparative study between characteristics of the designed antenna and the existing quasi-TEM horn antenna was made. Based on the GIS defect simulation equipment in the laboratory, partial discharge signals were detected by the designed antenna, the available quasi-TEM horn antenna, and the microstrip patch antenna, and the measurement results were compared.
An oxygen pressure sensor using surface acoustic wave devices
Leighty, Bradley D.; Upchurch, Billy T.; Oglesby, Donald M.
1993-01-01
Surface acoustic wave (SAW) piezoelectric devices are finding widespread applications in many arenas, particularly in the area of chemical sensing. We have developed an oxygen pressure sensor based on coating a SAW device with an oxygen binding agent which can be tailored to provide variable sensitivity. The coating is prepared by dissolving an oxygen binding agent in a toluene solution of a copolymer which is then sprayed onto the surface of the SAW device. Experimental data shows the feasibility of tailoring sensors to measure the partial pressure of oxygen from 2.6 to 67 KPa (20 to 500 torr). Potential applications of this technology are discussed.
Faddeev wave function decomposition using bipolar harmonics
International Nuclear Information System (INIS)
Friar, J.L.; Tomusiak, E.L.; Gibson, B.F.; Payne, G.L.
1981-01-01
The standard partial wave (channel) representation for the Faddeev solution to the Schroedinger equation for the ground state of 3 nucleons is written in terms of functions which couple the interacting pair and spectator angular momenta to give S, P, and D waves. For each such coupling there are three terms, one for each of the three cyclic permutations of the nucleon coordinates. A series of spherical harmonic identities is developed which allows writing the Faddeev solution in terms of a basis set of 5 bipolar harmonics: 1 for S waves; 1 for P waves; and 3 for D waves. The choice of a D-wave basis is largely arbitrary, and specific choices correspond to the decomposition schemes of Derrick and Blatt, Sachs, Gibson and Schiff, and Bolsterli and Jezak. The bipolar harmonic form greatly simplifies applications which utilize the wave function, and we specifically discuss the isoscalar charge (or mass) density and the 3 He Coulomb energy
Tang, Zheng
2018-05-15
We investigate the crustal and upper-mantle shear-velocity structure of Saudi Arabia by fundamental-mode Rayleigh-wave group-velocity tomography and shear-wave velocity inversion. The seismic dataset is compiled using ∼140 stations of the Saudi National Seismic Network (SNSN) operated by the Saudi Geological Survey (SGS). We measure Rayleigh-wave group-velocities at periods of 8–40 s from regional earthquakes. After obtaining 1-D shear-wave velocity models by inverting group-velocities at each grid node, we construct a 3-D shear-velocity model for Saudi Arabia and adjacent regions by interpolating the 1-D models. Our 3-D model indicates significant lateral variations in crustal and lithospheric thickness, as well as in the shear-wave velocity over the study region. In particular, we identify zones of reduced shear-wave speed at crustal levels beneath the Cenozoic volcanic fields in the Arabian Shield. The inferred reductions of 2–5% in shear-wave speed may be interpreted as possibly indicating the presence of partial melts. However, their precise origin we can only speculate about. Our study also reveals an upper-mantle low velocity zone (LVZ) below the Arabian Shield, supporting the model of lateral mantle flow from the Afar plume. Further geophysical experiments are needed to confirm (or refute) the hypothesis that partial melts may exist below the Cenozoic volcanism in western Saudi Arabia, and to build a comprehensive geodynamic–geological model for the evolution and present state of the lithosphere of the Arabian Plate and the Red Sea.
Tang, Zheng; Mai, Paul Martin; Chang, Sung-Joon; Zahran, Hani
2018-01-01
We investigate the crustal and upper-mantle shear-velocity structure of Saudi Arabia by fundamental-mode Rayleigh-wave group-velocity tomography and shear-wave velocity inversion. The seismic dataset is compiled using ∼140 stations of the Saudi National Seismic Network (SNSN) operated by the Saudi Geological Survey (SGS). We measure Rayleigh-wave group-velocities at periods of 8–40 s from regional earthquakes. After obtaining 1-D shear-wave velocity models by inverting group-velocities at each grid node, we construct a 3-D shear-velocity model for Saudi Arabia and adjacent regions by interpolating the 1-D models. Our 3-D model indicates significant lateral variations in crustal and lithospheric thickness, as well as in the shear-wave velocity over the study region. In particular, we identify zones of reduced shear-wave speed at crustal levels beneath the Cenozoic volcanic fields in the Arabian Shield. The inferred reductions of 2–5% in shear-wave speed may be interpreted as possibly indicating the presence of partial melts. However, their precise origin we can only speculate about. Our study also reveals an upper-mantle low velocity zone (LVZ) below the Arabian Shield, supporting the model of lateral mantle flow from the Afar plume. Further geophysical experiments are needed to confirm (or refute) the hypothesis that partial melts may exist below the Cenozoic volcanism in western Saudi Arabia, and to build a comprehensive geodynamic–geological model for the evolution and present state of the lithosphere of the Arabian Plate and the Red Sea.
Harmonic analysis, partial differential equations and applications in honor of Richard L. Wheeden
Franchi, Bruno; Lu, Guozhen; Perez, Carlos; Sawyer, Eric
2017-01-01
This is a collection of contributed papers by many eminent Harmonic Analysts and specialists of Partial Differential equations. The papers focus on weighted norm equalities for singular integrals, focusing wave equations, degenerate elliptic equations, Navier-Stokes flow in two dimensions and Poincare-Sobolev inequalities in the setting of metric spaces equipped with measures among others. Many topics considered in this volume stem from the interests of Richard L. Wheeden whose contributions to Potential Theory, singular integral theory and degenerate elliptic PDE theory this volume honors. Luis Caffarelli, Sagun Chanillo, Bruno Franchi, Cristian Guttierez, Xiaojun Huang, Carlos Kenig, Ermanno Lanconelli, Eric Sawyer and Alexander Volberg, are some of the many contributors to this volume. .
Ye, H.; Liu, F.; Turner, I.; Anh, V.; Burrage, K.
2013-09-01
Fractional partial differential equations with more than one fractional derivative in time describe some important physical phenomena, such as the telegraph equation, the power law wave equation, or the Szabo wave equation. In this paper, we consider two- and three-dimensional multi-term time and space fractional partial differential equations. The multi-term time-fractional derivative is defined in the Caputo sense, whose order belongs to the interval (1,2],(2,3],(3,4] or (0, m], and the space-fractional derivative is referred to as the fractional Laplacian form. We derive series expansion solutions based on a spectral representation of the Laplacian operator on a bounded region. Some applications are given for the two- and three-dimensional telegraph equation, power law wave equation and Szabo wave equation.
Non-linear partial differential equations an algebraic view of generalized solutions
Rosinger, Elemer E
1990-01-01
A massive transition of interest from solving linear partial differential equations to solving nonlinear ones has taken place during the last two or three decades. The availability of better computers has often made numerical experimentations progress faster than the theoretical understanding of nonlinear partial differential equations. The three most important nonlinear phenomena observed so far both experimentally and numerically, and studied theoretically in connection with such equations have been the solitons, shock waves and turbulence or chaotical processes. In many ways, these phenomen
Conceptual Design of Wave Plane
DEFF Research Database (Denmark)
Frigaard, Peter; Trewers, Andrew; Kofoed, Jens Peter
The Wave Plane is a patented Wave Energy device of the overtopping type, designed to capture potential as well as kinetic energy. This is as such different to other overtopping devices, who usually only focus on potential energy. If Wave Plane A/S can deliver the turbine technology to utilize both...
A partial wave analysis of the (3π)0 system from the charge exchange reaction π+n→π+π-π0p at 4 GeV/c
International Nuclear Information System (INIS)
Emms, M.J.; Jones, G.T.; Kinson, J.B.; Stacey, B.J.; Votruba, M.F.; Woodworth, P.L.; Bell, I.G.; Dale, M.; Major, J.V.; Charlesworth, J.A.; Crennell, D.J.; Sekulin, R.L.
1975-10-01
From a partial wave analysis of the (3π) 0 state in the charge exchange reaction π + n→π + π - π 0 p, strong unnatural parity is observed as well as natural parity production. The observed natural parity states are identified with well-established resonances. The unnatural parity production is consistent with Reggeized Deck model predictions, with the exception of the I = 1 Jsup(p) = 1 + state. Here there is no evidence for A 1 production at approximately 1.1 GeV, but the data could support resonance production at higher masses. (author)
EEG and CT findings of infant partial seizures
International Nuclear Information System (INIS)
Kajitani, Takashi; Kumanomido, Yoshiaki; Nakamura, Makoto; Ueoka, Kiyotaka
1981-01-01
Examination of EEG and cranial CT were performed in 19 cases of partial seizures with elementary symptomatology (PSES), 6 cases of partial seizures with complex symptomatology (PSCS), and 17 cases of benign focal pilepsy of childhood with Rolandic spikes (BFECRS). The results were as follows. 1) In 16 of 19 cases of PSES (84%), various abnormal CT findings such as localized cerebral atrophy (7 cases), localized cerebral atrophy complicated with porencephaly (4 cases), porencephaly alone (2 cases), and diffuse cerebral atrophy (3 cases) were found. 2) Of 6 cases of PSCS localized cerebral atrophy was found in 3 cases, porencephaly in one case, and localized calcification in one case. Normal CT findings were obtained in one case. 3) In comparison of EEG findings with CT findings in 25 cases of partial seizures CT findings correlated with the basic waves rather than the paroxysmal ones. 4) The fact that CT findings in patients with BFECRS were mostly normal suggests the functional origin of the seizures. 5) CT was valuable in partial seizures for detecting underlying disorders and predicting the prognosis. (Ueda, J.)
The potential for very high-frequency gravitational wave detection
International Nuclear Information System (INIS)
Cruise, A M
2012-01-01
The science case for observing gravitational waves at frequencies in the millihertz-kilohertz range using LIGO, VIRGO, GEO600 or LISA is very strong and the first results are expected at these frequencies. However, as gravitational wave astronomy progresses beyond the first detections, other frequency bands may be worth exploring. Early predictions of gravitational wave emission from discrete sources at very much higher frequencies (megahertz and above) have been published and more recent studies of cosmological signals from inflation, Kaluza-Klein modes from gravitational interactions in brane worlds and plasma instabilities surrounding violent astrophysical events, are all possible sources. This communication examines current observational possibilities and the detector technology required to make meaningful observations at these frequencies. (paper)
Computational partial differential equations using Matlab
Li, Jichun
2008-01-01
Brief Overview of Partial Differential Equations The parabolic equations The wave equations The elliptic equations Differential equations in broader areasA quick review of numerical methods for PDEsFinite Difference Methods for Parabolic Equations Introduction Theoretical issues: stability, consistence, and convergence 1-D parabolic equations2-D and 3-D parabolic equationsNumerical examples with MATLAB codesFinite Difference Methods for Hyperbolic Equations IntroductionSome basic difference schemes Dissipation and dispersion errors Extensions to conservation lawsThe second-order hyperbolic PDE
Stability of post-fertilization traveling waves
Flores, Gilberto; Plaza, Ramón G.
This paper studies the stability of a family of traveling wave solutions to the system proposed by Lane et al. [D.C. Lane, J.D. Murray, V.S. Manoranjan, Analysis of wave phenomena in a morphogenetic mechanochemical model and an application to post-fertilization waves on eggs, IMA J. Math. Appl. Med. Biol. 4 (4) (1987) 309-331], to model a pair of mechanochemical phenomena known as post-fertilization waves on eggs. The waves consist of an elastic deformation pulse on the egg's surface, and a free calcium concentration front. The family is indexed by a coupling parameter measuring contraction stress effects on the calcium concentration. This work establishes the spectral, linear and nonlinear orbital stability of these post-fertilization waves for small values of the coupling parameter. The usual methods for the spectral and evolution equations cannot be applied because of the presence of mixed partial derivatives in the elastic equation. Nonetheless, exponential decay of the directly constructed semigroup on the complement of the zero eigenspace is established. We show that small perturbations of the waves yield solutions to the nonlinear equations decaying exponentially to a phase-modulated traveling wave.
Demonstration of a robust magnonic spin wave interferometer.
Kanazawa, Naoki; Goto, Taichi; Sekiguchi, Koji; Granovsky, Alexander B; Ross, Caroline A; Takagi, Hiroyuki; Nakamura, Yuichi; Inoue, Mitsuteru
2016-07-22
Magnonics is an emerging field dealing with ultralow power consumption logic circuits, in which the flow of spin waves, rather than electric charges, transmits and processes information. Waves, including spin waves, excel at encoding information via their phase using interference. This enables a number of inputs to be processed in one device, which offers the promise of multi-input multi-output logic gates. To realize such an integrated device, it is essential to demonstrate spin wave interferometers using spatially isotropic spin waves with high operational stability. However, spin wave reflection at the waveguide edge has previously limited the stability of interfering waves, precluding the use of isotropic spin waves, i.e., forward volume waves. Here, a spin wave absorber is demonstrated comprising a yttrium iron garnet waveguide partially covered by gold. This device is shown experimentally to be a robust spin wave interferometer using the forward volume mode, with a large ON/OFF isolation value of 13.7 dB even in magnetic fields over 30 Oe.
Teaching graphical simulations of Fourier series expansion of some periodic waves using spreadsheets
Singh, Iqbal; Kaur, Bikramjeet
2018-05-01
The present article demonstrates a way of programming using an Excel spreadsheet to teach Fourier series expansion in school/colleges without the knowledge of any typical programming language. By using this, a student learns to approximate partial sum of the n terms of Fourier series for some periodic signals such as square wave, saw tooth wave, half wave rectifier and full wave rectifier signals.
Initial-value problem for the Gardner equation applied to nonlinear internal waves
Rouvinskaya, Ekaterina; Kurkina, Oxana; Kurkin, Andrey; Talipova, Tatiana; Pelinovsky, Efim
2017-04-01
The Gardner equation is a fundamental mathematical model for the description of weakly nonlinear weakly dispersive internal waves, when cubic nonlinearity cannot be neglected. Within this model coefficients of quadratic and cubic nonlinearity can both be positive as well as negative, depending on background conditions of the medium, where waves propagate (sea water density stratification, shear flow profile) [Rouvinskaya et al., 2014, Kurkina et al., 2011, 2015]. For the investigation of weakly dispersive behavior in the framework of nondimensional Gardner equation with fixed (positive) sign of quadratic nonlinearity and positive or negative cubic nonlinearity {eq1} partial η/partial t+6η( {1± η} )partial η/partial x+partial ^3η/partial x^3=0, } the series of numerical experiments of initial-value problem was carried out for evolution of a bell-shaped impulse of negative polarity (opposite to the sign of quadratic nonlinear coefficient): {eq2} η(x,t=0)=-asech2 ( {x/x0 } ), for which amplitude a and width x0 was varied. Similar initial-value problem was considered in the paper [Trillo et al., 2016] for the Korteweg - de Vries equation. For the Gardner equation with different signs of cubic nonlinearity the initial-value problem for piece-wise constant initial condition was considered in detail in [Grimshaw et al., 2002, 2010]. It is widely known, for example, [Pelinovsky et al., 2007], that the Gardner equation (1) with negative cubic nonlinearity has a family of classic solitary wave solutions with only positive polarity,and with limiting amplitude equal to 1. Therefore evolution of impulses (2) of negative polarity (whose amplitudes a were varied from 0.1 to 3, and widths at the level of a/2 were equal to triple width of solitons with the same amplitude for a 1) was going on a universal scenario with the generation of nonlinear Airy wave. For the Gardner equation (1) with the positive cubic nonlinearity coefficient there exist two one-parametric families of
Multiscale Simulation of Breaking Wave Impacts
DEFF Research Database (Denmark)
Lindberg, Ole
compare reasonably well. The incompressible and inviscid ALE-WLS model is coupled with the potential flow model of Engsig-Karup et al. [2009], to perform multiscale calculation of breaking wave impacts on a vertical breakwater. The potential flow model provides accurate calculation of the wave...... with a potential flow model to provide multiscale calculation of forces from breaking wave impacts on structures....
Russo, Emilio; Mumoli,Laura; Palleria,Caterina; Gasparini,Sara; Citraro,Rita; Labate,Angelo; Ferlazzo,Edoardo; Gambardella,Antonio; De Sarro,Giovambattista
2015-01-01
Brivaracetam: review of its pharmacology and potential use as adjunctive therapy in patients with partial onset seizures [Corrigendum] Mumoli L, Palleria C, Gasparini S, et al. Drug Des Devel Ther. 2015;9:5719–5725. The authors advise several errors in the paper that are corrected in Corrigendum. View the original article by Mumoli et al.
Directory of Open Access Journals (Sweden)
Mumoli L
2015-12-01
Full Text Available Brivaracetam: review of its pharmacology and potential use as adjunctive therapy in patients with partial onset seizures [Corrigendum] Mumoli L, Palleria C, Gasparini S, et al. Drug Des Devel Ther. 2015;9:5719–5725. The authors advise several errors in the paper that are corrected in Corrigendum. View the original article by Mumoli et al.
International Nuclear Information System (INIS)
Shuvalov, V.A.
1986-01-01
The character of flow over a body, structure of the perturbed zone, and flow resistance in a supersonic flow of rarefied partially ionized gas are determined by the intrinsic magnetic field and surface potential of the body. There have been practically no experimental studies of the effect of intrinsic magnetic field on flow of a rarefied plasma. Studies of the effect of surface potential have been limited to the case R/λd 10 2 (where R is the characteristic dimension of the body and λd is the Debye radius). At the same time R/λd > 10 2 , the regime of flow over a large body, is of the greatest practical interest. The present study will consider the effect of potential and intrinsic magnetic field on resistance of a large (R/λd > 10 2 ) axisymmetric body (disk, sphere) in a supersonic flow of rarefield partially ionized gas
Energy Technology Data Exchange (ETDEWEB)
Laming, J. Martin, E-mail: laming@nrl.navy.mil [Space Science Division, Naval Research Laboratory, Code 7684, Washington, DC 20375 (United States)
2017-08-01
We investigate in more detail the origin of chromospheric Alfvén waves that give rise to the separation of ions and neutrals—the first ionization potential (FIP) effect—through the action of the ponderomotive force. In open field regions, we model the dependence of fractionation on the plasma upflow velocity through the chromosphere for both shear (or planar) and torsional Alfvén waves of photospheric origin. These differ mainly in their parametric coupling to slow mode waves. Shear Alfvén waves appear to reproduce observed fractionations for a wider range of model parameters and present less of a “fine-tuning” problem than do torsional waves. In closed field regions, we study the fractionations produced by Alfvén waves with photospheric and coronal origins. Waves with a coronal origin, at or close to resonance with the coronal loop, offer a significantly better match to observed abundances than do photospheric waves, with shear and torsional waves in such a case giving essentially indistinguishable fractionations. Such coronal waves are likely the result of a nanoflare coronal heating mechanism that, as well as heating coronal plasmas, releases Alfvén waves that can travel down to loop footpoints and cause FIP fractionation through the ponderomotive force as they reflect from the chromosphere back into the corona.
International Nuclear Information System (INIS)
Laming, J. Martin
2017-01-01
We investigate in more detail the origin of chromospheric Alfvén waves that give rise to the separation of ions and neutrals—the first ionization potential (FIP) effect—through the action of the ponderomotive force. In open field regions, we model the dependence of fractionation on the plasma upflow velocity through the chromosphere for both shear (or planar) and torsional Alfvén waves of photospheric origin. These differ mainly in their parametric coupling to slow mode waves. Shear Alfvén waves appear to reproduce observed fractionations for a wider range of model parameters and present less of a “fine-tuning” problem than do torsional waves. In closed field regions, we study the fractionations produced by Alfvén waves with photospheric and coronal origins. Waves with a coronal origin, at or close to resonance with the coronal loop, offer a significantly better match to observed abundances than do photospheric waves, with shear and torsional waves in such a case giving essentially indistinguishable fractionations. Such coronal waves are likely the result of a nanoflare coronal heating mechanism that, as well as heating coronal plasmas, releases Alfvén waves that can travel down to loop footpoints and cause FIP fractionation through the ponderomotive force as they reflect from the chromosphere back into the corona.
Cold atoms in singular potentials
International Nuclear Information System (INIS)
Denschlag, J. P.
1998-09-01
We studied both theoretically and experimentally the interaction between cold Li atoms from a magnetic-optical trap (MOT) and a charged or current-carrying wire. With this system, we were able to realize 1/r 2 and 1/r potentials in two dimensions and to observe the motion of cold atoms in both potentials. For an atom in an attractive 1/r 2 potential, there exist no stable trajectories, instead there is a characteristic class of trajectories for which atoms fall into the singularity. We were able to observe this falling of atoms into the center of the potential. Moreover, by probing the singular 1/r 2 potential with atomic clouds of varying size and temperature we extracted scaling properties of the atom-wire interaction. For very cold atoms, and very thin wires the motion of the atoms must be treated quantum mechanically. Here we predict that the absorption cross section for the 1/r 2 potential should exhibit quantum steps. These quantum steps are a manifestation of the quantum mechanical decomposition of plane waves into partial waves. For the second part of this work, we realized a two dimensional 1/r potential for cold atoms. If the potential is attractive, the atoms can be bound and follow Kepler-like orbits around the wire. The motion in the third dimension along the wire is free. We were able to exploit this property and constructed a novel cold atom guide, the 'Kepler guide'. We also demonstrated another type of atom guide (the 'side guide'), by combining the magnetic field of the wire with a homogeneous offset magnetic field. In this case, the atoms are held in a potential 'tube' on the side of the wire. The versatility, simplicity, and scaling properties of this guide make it an interesting technique. (author)
Nonlinear lattice waves in heterogeneous media
International Nuclear Information System (INIS)
Laptyeva, T V; Ivanchenko, M V; Flach, S
2014-01-01
We discuss recent advances in the understanding of the dynamics of nonlinear lattice waves in heterogeneous media, which enforce complete wave localization in the linear wave equation limit, especially Anderson localization for random potentials, and Aubry–André localization for quasiperiodic potentials. Additional nonlinear terms in the wave equations can either preserve the phase-coherent localization of waves, or destroy it through nonintegrability and deterministic chaos. Spreading wave packets are observed to show universal features in their dynamics which are related to properties of nonlinear diffusion equations. (topical review)
Chen, Jun; Yang, Jin; Li, Zhaoling; Fan, Xing; Zi, Yunlong; Jing, Qingshen; Guo, Hengyu; Wen, Zhen; Pradel, Ken C; Niu, Simiao; Wang, Zhong Lin
2015-03-24
With 70% of the earth's surface covered with water, wave energy is abundant and has the potential to be one of the most environmentally benign forms of electric energy. However, owing to lack of effective technology, water wave energy harvesting is almost unexplored as an energy source. Here, we report a network design made of triboelectric nanogenerators (TENGs) for large-scale harvesting of kinetic water energy. Relying on surface charging effect between the conventional polymers and very thin layer of metal as electrodes for each TENG, the TENG networks (TENG-NW) that naturally float on the water surface convert the slow, random, and high-force oscillatory wave energy into electricity. On the basis of the measured output of a single TENG, the TENG-NW is expected to give an average power output of 1.15 MW from 1 km(2) surface area. Given the compelling features, such as being lightweight, extremely cost-effective, environmentally friendly, easily implemented, and capable of floating on the water surface, the TENG-NW renders an innovative and effective approach toward large-scale blue energy harvesting from the ocean.
THE FUNDAMENTAL SOLUTIONS FOR MULTI-TERM MODIFIED POWER LAW WAVE EQUATIONS IN A FINITE DOMAIN
Jiang, H.; Liu, F.; Meerschaert, M. M.; McGough, R. J.
2013-01-01
Fractional partial differential equations with more than one fractional derivative term in time, such as the Szabo wave equation, or the power law wave equation, describe important physical phenomena. However, studies of these multi-term time-space or time fractional wave equations are still under development.
Kudryashov, Nikolay A.; Volkov, Alexandr K.
2017-01-01
We study a new nonlinear partial differential equation of the fifth order for the description of perturbations in the Fermi-Pasta-Ulam mass chain. This fifth-order equation is an expansion of the Gardner equation for the description of the Fermi-Pasta-Ulam model. We use the potential of interaction between neighbouring masses with both quadratic and cubic terms. The equation is derived using the continuous limit. Unlike the previous works, we take into account higher order terms in the Taylor series expansions. We investigate the equation using the Painlevé approach. We show that the equation does not pass the Painlevé test and can not be integrated by the inverse scattering transform. We use the logistic function method and the Laurent expansion method to find travelling wave solutions of the fifth-order equation. We use the pseudospectral method for the numerical simulation of wave processes, described by the equation.
International Nuclear Information System (INIS)
Yan, Zhenya
2011-01-01
The coupled nonlinear volatility and option pricing model presented recently by Ivancevic is investigated, which generates a leverage effect, i.e., stock volatility is (negatively) correlated to stock returns, and can be regarded as a coupled nonlinear wave alternative of the Black–Scholes option pricing model. In this Letter, we analytically propose vector financial rogue waves of the coupled nonlinear volatility and option pricing model without an embedded w-learning. Moreover, we exhibit their dynamical behaviors for chosen different parameters. The vector financial rogue wave (rogon) solutions may be used to describe the possible physical mechanisms for the rogue wave phenomena and to further excite the possibility of relative researches and potential applications of vector rogue waves in the financial markets and other related fields. -- Highlights: ► We investigate the coupled nonlinear volatility and option pricing model. ► We analytically present vector financial rogue waves. ► The vector financial rogue waves may be used to describe the extreme events in financial markets. ► This results may excite the relative researches and potential applications of vector rogue waves.
Comparison of local exchange potentials for electron--N2 scattering
International Nuclear Information System (INIS)
Rumble, J.R. Jr.; Truhlar, D.G.
1980-01-01
We consider vibrationally and electronically elastic electron scattering by N 2 at 2--30 eV impact energy. We consider static, static-exchange, and static--exchange-plus-polarization potentials, Cade--Sales--Wahl and INDO/1s wave functions, and semiclassical exchange and Hara free-electron--gas exchange potentials. We show that the semiclassical exchange approximation is too attractive at low energy for N 2 . We show quantitatively by consideration of partial and total integral cross sections how the effects of approximations to exchange become smaller as the incident energy is increased until these differences are about 8% for the total integral cross section at 30 eV
Stability of nonlinear waves and patterns and related topics
Ghazaryan, Anna; Lafortune, Stephane; Manukian, Vahagn
2018-04-01
Periodic and localized travelling waves such as wave trains, pulses, fronts and patterns of more complex structure often occur in natural and experimentally built systems. In mathematics, these objects are realized as solutions of nonlinear partial differential equations. The existence, dynamic properties and bifurcations of those solutions are of interest. In particular, their stability is important for applications, as the waves that are observable are usually stable. When the waves are unstable, further investigation is warranted of the way the instability is exhibited, i.e. the nature of the instability, and also coherent structures that appear as a result of an instability of travelling waves. A variety of analytical, numerical and hybrid techniques are used to study travelling waves and their properties. This article is part of the theme issue `Stability of nonlinear waves and patterns and related topics'.
Multi-fluid Approach to High-frequency Waves in Plasmas. III. Nonlinear Regime and Plasma Heating
Martínez-Gómez, David; Soler, Roberto; Terradas, Jaume
2018-03-01
The multi-fluid modeling of high-frequency waves in partially ionized plasmas has shown that the behavior of magnetohydrodynamic waves in the linear regime is heavily influenced by the collisional interaction between the different species that form the plasma. Here, we go beyond linear theory and study large-amplitude waves in partially ionized plasmas using a nonlinear multi-fluid code. It is known that in fully ionized plasmas, nonlinear Alfvén waves generate density and pressure perturbations. Those nonlinear effects are more pronounced for standing oscillations than for propagating waves. By means of numerical simulations and analytical approximations, we examine how the collisional interaction between ions and neutrals affects the nonlinear evolution. The friction due to collisions dissipates a fraction of the wave energy, which is transformed into heat and consequently raises the temperature of the plasma. As an application, we investigate frictional heating in a plasma with physical conditions akin to those in a quiescent solar prominence.
Potential of a polygonal prism and lamina; Takakuchu men no potential
Energy Technology Data Exchange (ETDEWEB)
Koyama, S
1996-05-01
With the use of rectangular coordinates O-XYZ, the potential of a calculation point P is expressed in the form of a triple repeated integral of a density {sigma} at point Q in the mass. The potential at the density {sigma} assumed to be 1 is named the potential of a polygonal prism. Further, a double repeated integral with an integral concerning Z removed from the triple integral is named the potential of polygonal lamina. This potential can be expressed in a quadratic form (linear form) with 2nd order partial derivative (1st order partial derivative) as a coefficient. On the contrary, in order to extract the 1st/2nd order partial derivatives from this potential by partial differential, it requires partial differentiation with these partial derivatives considered to be a constant. The reason that they can be realized is attributable to the zero result of the linear form which has as the coefficient a 3rd order partial derivative concerning the variable of integration in a primitive function. If this relation is used, the integral calculation and description may be simplified. An explanation was given with examples enumerated so that these conditions might be understood.
Three-wave electron vortex lattices for measuring nanofields.
Dwyer, C; Boothroyd, C B; Chang, S L Y; Dunin-Borkowski, R E
2015-01-01
It is demonstrated how an electron-optical arrangement consisting of two electron biprisms can be used to generate three-wave vortex lattices with effective lattice spacings between 0.1 and 1 nm. The presence of vortices in these lattices was verified by using a third biprism to perform direct phase measurements via off-axis electron holography. The use of three-wave lattices for nanoscale electromagnetic field measurements via vortex interferometry is discussed, including the accuracy of vortex position measurements and the interpretation of three-wave vortex lattices in the presence of partial spatial coherence. Copyright © 2014 Elsevier B.V. All rights reserved.
Shock and Rarefaction Waves in a Heterogeneous Mantle
Jordan, J.; Hesse, M. A.
2012-12-01
We explore the effect of heterogeneities on partial melting and melt migration during active upwelling in the Earth's mantle. We have constructed simple, explicit nonlinear models in one dimension to examine heterogeneity and its dynamic affects on porosity, temperature and the magnesium number in a partially molten, porous medium comprised of olivine. The composition of the melt and solid are defined by a closed, binary phase diagram for a simplified, two-component olivine system. The two-component solid solution is represented by a phase loop where concentrations 0 and 1 to correspond to fayalite and forsterite, respectively. For analysis, we examine an advective system with a Riemann initial condition. Chromatographic tools and theory have primarily been used to track large, rare earth elements as tracers. In our case, we employ these theoretical tools to highlight the importance of the magnesium number, enthalpy and overall heterogeneity in the dynamics of melt migration. We calculate the eigenvectors and eigenvalues in the concentration-enthalpy space in order to glean the characteristics of the waves emerging the Riemann step. Analysis on Riemann problems of this nature shows us that the composition-enthalpy waves can be represented by self-similar solutions. The eigenvalues of the composition-enthalpy system represent the characteristic wave propagation speeds of the compositions and enthalpy through the domain. Furthermore, the corresponding eigenvectors are the directions of variation, or ``pathways," in concentration-enthalpy space that the characteristic waves follow. In the two-component system, the Riemann problem yields two waves connected by an intermediate concentration-enthalpy state determined by the intersections of the integral curves of the eigenvectors emanating from both the initial and boundary states. The first wave, ``slow path," and second wave, ``fast path," follow the aformentioned pathways set by the eigenvectors. The slow path wave
Directory of Open Access Journals (Sweden)
Kyoung-Rok Lee
2013-12-01
Full Text Available A floating Oscillating Water Column (OWC wave energy converter, a Backward Bent Duct Buoy (BBDB, was simulated using a state-of-the-art, two-dimensional, fully-nonlinear Numerical Wave Tank (NWT technique. The hydrodynamic performance of the floating OWC device was evaluated in the time domain. The acceleration potential method, with a full-updated kernel matrix calculation associated with a mode decomposition scheme, was implemented to obtain accurate estimates of the hydrodynamic force and displacement of a freely floating BBDB. The developed NWT was based on the potential theory and the boundary element method with constant panels on the boundaries. The mixed Eulerian-Lagrangian (MEL approach was employed to capture the nonlinear free surfaces inside the chamber that interacted with a pneumatic pressure, induced by the time-varying airflow velocity at the air duct. A special viscous damping was applied to the chamber free surface to represent the viscous energy loss due to the BBDB's shape and motions. The viscous damping coefficient was properly selected using a comparison of the experimental data. The calculated surface elevation, inside and outside the chamber, with a tuned viscous damping correlated reasonably well with the experimental data for various incident wave conditions. The conservation of the total wave energy in the computational domain was confirmed over the entire range of wave frequencies.
Generalized Rosenbluth potentials
International Nuclear Information System (INIS)
Hassan, M.H.A.
1977-05-01
It is shown that the coefficients of friction and diffusion of the Balescu-Lenard equation can be derived from two ''generalized Rosenbluth potentials'', which reduce to the standard Rosenbluth potentials if wave effects are neglected. The potentials are evaluated explicitly in the case of Maxwellian field particles. The dominant contribution of wave effects to the potentials is due to the interaction of electron field particles with ion sound waves
CERN. Geneva
2005-01-01
We will present a brief introduction to the physics of gravitational waves and their properties. We will review potential astrophysical sources of gravitational waves, and the physics and astrophysics that can be learned from their study. We will survey the techniques and technologies for detecting gravitational waves for the first time, including bar detectors and broadband interferometers, and give a brief status report on the international search effort, with special emphasis on the LIGO detectors and search results.
Marston, Philip L; Zhang, Likun
2017-05-01
When investigating the radiation forces on spheres in complicated wave-fields, the interpretation of analytical results can be simplified by retaining the s-function notation and associated phase shifts imported into acoustics from quantum scattering theory. For situations in which dissipation is negligible, as taken to be the case in the present investigation, there is an additional simplification in that partial-wave phase shifts become real numbers that vanish when the partial-wave index becomes large and when the wave-number-sphere-radius product vanishes. By restricting attention to monopole and dipole phase shifts, transitions in the axial radiation force for axisymmetric wave-fields are found to be related to wave-field parameters for traveling and standing Bessel wave-fields by considering the ratio of the phase shifts. For traveling waves, the special force conditions concern negative forces while for standing waves, the special force conditions concern vanishing radiation forces. An intermediate step involves considering the functional dependence on phase shifts. An appendix gives an approximation for zero-force plane standing wave conditions. Connections with early investigations of acoustic levitation are mentioned and some complications associated with viscosity are briefly noted.
Poncelet, L C; Coppens, A G; Meuris, S I; Deltenre, P F
2000-11-01
To evaluate auditory maturation in puppies. Ten clinically normal Beagle puppies. Puppies were examined repeatedly from days 11 to 36 after birth (8 measurements). Click-evoked brain stem auditory-evoked potentials (BAEP) were obtained in response to rarefaction and condensation click stimuli from 90 dB normal hearing level to wave V threshold, using steps of 10 dB. Responses were added, providing an equivalent to alternate polarity clicks, and subtracted, providing the rarefaction-condensation differential potential (RCDP). Steps of 5 dB were used to determine thresholds of RCDP and wave V. Slope of the low-intensity segment of the wave V latency-intensity curve was calculated. The intensity range at which RCDP could not be recorded (ie, pre-RCDP range) was calculated by subtracting the threshold of wave V from threshold of RCDP RESULTS: Slope of the wave V latency-intensity curve low-intensity segment evolved with age, changing from (mean +/- SD) -90.8 +/- 41.6 to -27.8 +/- 4.1 micros/dB. Similar results were obtained from days 23 through 36. The pre-RCDP range diminished as puppies became older, decreasing from 40.0 +/- 7.5 to 20.5 +/- 6.4 dB. Changes in slope of the latency-intensity curve with age suggest enlargement of the audible range of frequencies toward high frequencies up to the third week after birth. Decrease in the pre-RCDP range may indicate an increase of the audible range of frequencies toward low frequencies. Age-related reference values will assist clinicians in detecting hearing loss in puppies.
Directory of Open Access Journals (Sweden)
Marta Molinas
2013-07-01
Full Text Available Fred Olsen is currently testing their latest wave energy converter (WEC, Lifesaver, outside of Falmouth Bay in England, preparing it for commercial operation at the Wavehub test site. Previous studies, mostly focusing on hydrodynamics and peak to average power reduction, have shown that this device has potential for increased power extraction using reactive control. This article extends those analyses, adding a detailed model of the all-electric power take-off (PTO system, consisting of a permanent magnet synchronous generator, inverter and DC-link. Time domain simulations are performed to evaluate the PTO capabilities of the modeled WEC. However, when tuned towards reactive control, the generator losses become large, giving a very low overall system efficiency. Optimal control with respect to electrical output power is found to occur with low added mass, and when compared to pure passive loading, a 1% increase in annual energy production is estimated. The main factor reducing the effect of reactive control is found to be the minimum load-force constraint of the device. These results suggest that the Lifesaver has limited potential for increased production by reactive control. This analysis is nevertheless valuable, as it demonstrates how a wave-to-wire model can be used for investigation of PTO potential, annual energy production estimations and evaluations of different control techniques for a given WEC device.
Wave energy: a Pacific perspective.
Paasch, Robert; Ruehl, Kelley; Hovland, Justin; Meicke, Stephen
2012-01-28
This paper illustrates the status of wave energy development in Pacific rim countries by characterizing the available resource and introducing the region's current and potential future leaders in wave energy converter development. It also describes the existing licensing and permitting process as well as potential environmental concerns. Capabilities of Pacific Ocean testing facilities are described in addition to the region's vision of the future of wave energy.
Research on partial coefficients for design of quarter-circular caisson breakwater
Qie, Luwen; Zhang, Xiang; Jiang, Xuelian; Qin, Yinan
2013-03-01
The quarter-circular caisson breakwater (QCB) is a new type of breakwater, and it can be applied in deepwater. The stability of QCB under wave force action can be enhanced, and the rubble mound engineering can be less than that of semi-circular breakwaters in deepwater. In order to study the wave force distribution acting on the QCB, to find wave force formula for this type of breakwater, firstly in this paper, the distribution characteristics of the horizontal force, the downward vertical force and the uplift force on the breakwater were gotten based on physical model wave flume experiments and on the analysis of the wave pressure experimental data. Based on a series of physical model tests acted by irregular waves, a kind of calculation method, which was modified by Goda formula, was proposed to carry out the wave force on the QCB. Secondly, the reliability method with correlated variables was adopted to analyze the QCB, considering the high correlation between wave forces or moments. Utilizing the observed wave data in engineering field, the reliability index and failure probability of QCB were obtained. Finally, a factor Q=0.9 is given to modify the zero pressure height above SWL of QCB, and wave force partial coefficient 1.34 to the design expressions of QCB for anti-sliding, as well as 1.67 for anti-overturning, were presented.
International Nuclear Information System (INIS)
Berggren, Karl-Fredrik; Yakimenko, Irina I; Hakanen, Jani
2010-01-01
A heuristic model for particle states and current flow in open ballistic two-dimensional (2D) quantum dots/wave billiards is proposed. The model makes use of complex potentials first introduced in phenomenological nuclear inelastic scattering theory (the optical model). Here we assume that external input and output leads connecting the system to the source and the drain regions may be represented by complex potentials. In this way, a current may be set up between the two 'pseudo-leads'. Probability densities and current flows for an open quantum dot are analyzed here numerically and the results are compared with the microwave measurements used to emulate the system. The model is of conceptual as well as practical interest. In addition to quantum billiards, it may be used as a tool per se to analyze transport in classical wave analogues, such as microwave resonators, acoustic resonators, effects of leakage on such systems, etc.
Electron Bernstein wave excitation by counterpropagating electromagnetic waves in a plasma
International Nuclear Information System (INIS)
Kumar, Asheel; Tripathi, V.K.
2005-01-01
Two high-power counterpropagating electromagnetic waves (ω 1 ,k 1 x) and (ω 2 ,-k 2 x) in a low-density plasma in the presence of a static magnetic field B s z, drive an electron Bernstein wave at the beat frequency ω=ω 1 -ω 2 and k=(k 1 +k 2 )x, when ω∼ω c 1 ,ω 2 and kρ≥1, where ω c is the electron cyclotron frequency and ρ is the Larmor radius. The electromagnetic waves exert a ponderomotive force on the electrons and resonantly drive the Bernstein mode(ω,k). When the pump waves have finite z extent, the Bernstein wave has an effective k z and a component of group velocity in the direction of the magnetic field, leaking it out of the interaction region, limiting the level of the Bernstein mode. Plasma inhomogeneity also introduces convection losses. However, the electron Bernstein mode potential could still be significantly greater than the ponderomotive potential
Maximization of wave motion within a hydrocarbon reservoir for wave-based enhanced oil recovery
Jeong, C.
2015-05-01
© 2015 Elsevier B.V. We discuss a systematic methodology for investigating the feasibility of mobilizing oil droplets trapped within the pore space of a target reservoir region by optimally directing wave energy to the region of interest. The motivation stems from field and laboratory observations, which have provided sufficient evidence suggesting that wave-based reservoir stimulation could lead to economically viable oil recovery.Using controlled active surface wave sources, we first describe the mathematical framework necessary for identifying optimal wave source signals that can maximize a desired motion metric (kinetic energy, particle acceleration, etc.) at the target region of interest. We use the apparatus of partial-differential-equation (PDE)-constrained optimization to formulate the associated inverse-source problem, and deploy state-of-the-art numerical wave simulation tools to resolve numerically the associated discrete inverse problem.Numerical experiments with a synthetic subsurface model featuring a shallow reservoir show that the optimizer converges to wave source signals capable of maximizing the motion within the reservoir. The spectra of the wave sources are dominated by the amplification frequencies of the formation. We also show that wave energy could be focused within the target reservoir area, while simultaneously minimizing the disturbance to neighboring formations - a concept that can also be exploited in fracking operations.Lastly, we compare the results of our numerical experiments conducted at the reservoir scale, with results obtained from semi-analytical studies at the granular level, to conclude that, in the case of shallow targets, the optimized wave sources are likely to mobilize trapped oil droplets, and thus enhance oil recovery.
Pietrzak, Robert H.; Goldstein, Risë B.; Southwick, Steven M.; Grant, Bridget F.
2011-01-01
Objectives To present findings on the prevalence, correlates, and psychiatric comorbidity of DSM-IV posttraumatic stress disorder (PTSD) and partial PTSD in a nationally representative sample of U.S. older adults. Design, Setting, and Participants Face-to-face interviews with 9,463 adults aged 60 years and older in the Wave 2 National Epidemiologic Survey on Alcohol and Related Conditions. Measurements Sociodemographic correlates, worst stressful experiences, comorbid lifetime mood, anxiety, substance use, and personality disorders, psychosocial functioning, and suicide attempts. Results Lifetime prevalences±standard errors of PTSD and partial PTSD were 4.5%±0.25 and 5.5%±0.27, respectively. Rates were higher in women (5.7%±0.37 and 6.5%±0.39) than men (3.1%±0.31 and 4.3%±0.37). Older adults with PTSD most frequently identified unexpected death of someone close, serious illness or injury to someone close, and own serious or life-threatening illness as their worst stressful events. Older adults exposed to trauma but without full or partial PTSD and respondents with partial PTSD most often identified unexpected death of someone close, serious illness or injury to someone close, and indirect experience of 9/11 as their worst events. PTSD was associated with elevated odds of lifetime mood, anxiety, drug use, and borderline and narcissistic personality disorders, and decreased psychosocial functioning. Partial PTSD was associated with elevated odds of mood, anxiety, and narcissistic and schizotypal personality disorders, and poorer psychosocial functioning relative to older adults exposed to trauma but without full or partial PTSD. Conclusions PTSD among older adults in the United States is slightly more prevalent than previously reported and associated with considerable psychiatric comorbidity and psychosocial dysfunction. Partial PTSD is associated with significant psychiatric comorbidity, particularly with mood and other anxiety disorders. PMID:22522959
International Nuclear Information System (INIS)
Inan, Ibrahim E.; Kaya, Dogan
2006-01-01
In this Letter by considering an improved tanh function method, we found some exact solutions of the potential Kadomtsev-Petviashvili equation. Some exact solutions of the system of the shallow water wave equation were also found
DEFF Research Database (Denmark)
Verbrugghe, Tim; Troch, Peter; Kortenhaus, Andreas
2016-01-01
Wave energy converters (WECs) need to be deployed in large numbers in an array layout in order to have a significant power production. Each WEC has an impact on the incoming wave field, diffracting, reflecting and radiating waves. Simulating the wave transformations within and around a WEC farm...... of a wave-structure interaction solver and a wave propagation model, both based on the potential flow theory. This paper discusses the coupling method and illustrates the functionality with a proof-of-concept. Additionally, a projection of the evolution of the numerical tool is given. It can be concluded...... is complex; it is difficult to simulate both near field and far field effects with a single numerical model, with relatively fast computing times. Within this research a numerical tool is developed to model near-field and far-field wave transformations caused by WECs. The tool is based on the coupling...
International Nuclear Information System (INIS)
Beklaryan, Leva A
2011-01-01
A finite difference analogue of the wave equation with potential perturbation is investigated, which simulates the behaviour of an infinite rod under the action of an external longitudinal force field. For a homogeneous rod, describing solutions of travelling wave type is equivalent to describing the full space of classical solutions to an induced one-parameter family of functional differential equations of point type, with the characteristic of the travelling wave as parameter. For an inhomogeneous rod, the space of solutions of travelling wave type is trivial, and their 'proper' extension is defined as solutions of 'quasitravelling' wave type. By contrast to the case of a homogeneous rod, describing the solutions of quasitravelling wave type is equivalent to describing the quotient of the full space of impulsive solutions to an induced one-parameter family of point-type functional differential equations by an equivalence relation connected with the definition of solutions of quasitravelling wave type. Stability of stationary solutions is analyzed. Bibliography: 9 titles.
Wave energy potential: A forecasting system for the Mediterranean basin
International Nuclear Information System (INIS)
Carillo, Adriana; Sannino, Gianmaria; Lombardi, Emanuele
2015-01-01
ENEA is performing ocean wave modeling activities with the aim of both characterizing the Italian sea energy resource and providing the information necessary for the experimental at sea and operational phases of energy converters. Therefore a forecast system of sea waves and of the associated energy available has been developed and has been operatively running since June 2013. The forecasts are performed over the entire Mediterranean basin and, at a higher resolution, over ten sub-basins around the Italian coasts. The forecast system is here described along with the validation of the wave heights, performed by comparing them with the measurements from satellite sensors. [it
Coordinate transformations and matter waves cloaking
International Nuclear Information System (INIS)
Mohammadi, G.R.; Moghaddam, A.G.; Mohammadkhani, R.
2016-01-01
Transformation method provides an efficient tool to control wave propagation inside the materials. Using the coordinate transformation approach, we study invisibility cloaks with sphere, cylinder and ellipsoid structures for electronic waves propagation. The underlying physics behind this investigation is the fact that Schrödinger equation with position dependent mass tensor and potentials has a covariant form which follows the coordinate transformation. Using this technique we obtain the exact spatial form of the mass tensor and potentials for a variety of cloaks with different shapes. - Highlights: • Invisibility cloaks for matter waves with three different geometries. • Exact analytical form of the effective mass tensor and potential. • Analogy between cloaking for quantum mechanical waves with classical electromagnetic waves. • Possible experimental realization in engineered semiconducting structures.
Jaffe, Lionel F
2008-04-12
Waves through living systems are best characterized by their speeds at 20 degrees C. These speeds vary from those of calcium action potentials to those of ultraslow ones which move at 1-10 and/or 10-20 nm s(-1). All such waves are known or inferred to be calcium waves. The two classes of calcium waves which include ones with important morphogenetic effects are slow waves that move at 0.2-2 microm s(-1) and ultraslow ones. Both may be propagated by cycles in which the entry of calcium through the plasma membrane induces subsurface contraction. This contraction opens nearby stretch-sensitive calcium channels. Calcium entry through these channels propagates the calcium wave. Many slow waves are seen as waves of indentation. Some are considered to act via cellular peristalsis; for example, those which seem to drive the germ plasm to the vegetal pole of the Xenopus egg. Other good examples of morphogenetic slow waves are ones through fertilizing maize eggs, through developing barnacle eggs and through axolotl embryos during neural induction. Good examples of ultraslow morphogenetic waves are ones during inversion in developing Volvox embryos and across developing Drosophila eye discs. Morphogenetic waves may be best pursued by imaging their calcium with aequorins.
DEFF Research Database (Denmark)
Bigoni, Daniele; Engsig-Karup, Allan Peter; Eskilsson, Claes
2016-01-01
A major challenge in next-generation industrial applications is to improve numerical analysis by quantifying uncertainties in predictions. In this work we present a formulation of a fully nonlinear and dispersive potential flow water wave model with random inputs for the probabilistic description...... at different points in the parameter space, allowing for the reuse of existing simulation software. The choice of the applied methods is driven by the number of uncertain input parameters and by the fact that finding the solution of the considered model is computationally intensive. We revisit experimental...... benchmarks often used for validation of deterministic water wave models. Based on numerical experiments and assumed uncertainties in boundary data, our analysis reveals that some of the known discrepancies from deterministic simulation in comparison with experimental measurements could be partially explained...
Directory of Open Access Journals (Sweden)
Yichao Liu
2017-01-01
Full Text Available Along with the commercialization of offshore wind energy in China, the South China Sea has been identified as ideal for constructing offshore wind farms, especially for farms consisting of floating wind turbines over deep waters. Since the wind profiles and wave spectra are somewhat primitive for the design of an offshore wind turbine, engineering models describing the wind and wave characteristics in the South China Sea area are necessary for the offshore wind energy exploitation given the meteorological, hydrological, and geographical differences between the South China Sea and the North/Norwegian Sea, where the commonly used wind profile and wave spectrum models were designated. In the present study; a series of numerical simulations were conducted to reveal the wave characteristics in the South China Sea under both typhoon and non-typhoon conditions. By analyzing the simulation results; the applicability of the Joint North Sea Wave Project (JONSWAP spectrum model; in terms of characterizing the wind-induced wave fields in the South China Sea; was discussed. In detail; the key parameters of the JONSWAP spectrum model; such as the Phillips constant; spectral width parameter; peak-enhancement factor, and high frequency tail decay; were investigated in the context of finding suitable values.
Level shifts induced by a short-range potential
International Nuclear Information System (INIS)
Karnakov, B.M.; Mur, V.D.
1984-01-01
Formulas are derived which express the shifts of levels with energies Esub(n)sup((0)) << rsub(c)sup(-2) in a field Vsub(f)(r) induced by a short-range potential U(r) of radius rsub(c) in terms of the low energy scattering parameters (scattering length and effective radius) with a moment l in the potential. If the interaction between the particle and center is nonresonant, the method developed is identical to perturbation theory on the scattering length. The theory is extended to systems with random degeneracy (Vsub(f) is the Coulomb potential). Formulas describing quasi-intersection of terms are obtained for the case of resonance interaction with the center in a partial wave with l not equal to 0 when energetically close levels are present in both U and Vsub(f). Some features of the level shift are mentioned for the case when the level possesses an anomalously small coupling energy and its coresponding wave function becomes delocalized with decrease of the coupling energy to zero. The problem is discussed of the level shift when the potential Vsub(f) is a potential well surrounded by a weaklyt penetrable barrier. Some applications of the theory to a particle in the field of two short-range potentials or in the field of a short-range and Coulomb centers are considered. Formulas are also obtained for the shifts and widths of the Landau levels and of the shallow level with an arbitrary moment which perturbs the Landau levels
Energy Technology Data Exchange (ETDEWEB)
Kanema, T [Chishitsu-Keisoku Co. Ltd., Tokyo (Japan)
1997-10-22
With an objective to elucidate change in velocity of elastic waves in association with water pressure increase in a sand bed below the groundwater level in a shallow portion of the ground, a measurement experiment was carried out on P-wave velocity in sand samples with partial air saturation. The experiment has used fine sand having an equivalent coefficient of 2.40, a soil particle density of 2.68 g/cm {sup 3} or 60%, and a grain size of 0.36 mm. Inside the water-filled sand sample, two accelerometers were embedded 20 cm apart from each other as vibration receivers. An electromagnetic hammer for P-wave was used as the vibration source. In the experiment, measurement was carried out on the P-wave velocity in association with increase in pore water pressure by applying water pressure afresh to the water-filled sample. As a result of the experiment, the following matters were disclosed: the P-wave velocity increases as the pore water pressure was increased, and a phenomenon was recognized that the dominant frequency changes into high frequency; the degree of increase in the P-wave velocity varies depending on initial saturation of the sample; and bubbles in the pore fluid have their volume decreased due to compression resulted from increased pore water pressure and dissolution of air into the pore water. 6 refs., 11 figs.
Statistical properties of nonlinear one-dimensional wave fields
Directory of Open Access Journals (Sweden)
D. Chalikov
2005-01-01
Full Text Available A numerical model for long-term simulation of gravity surface waves is described. The model is designed as a component of a coupled Wave Boundary Layer/Sea Waves model, for investigation of small-scale dynamic and thermodynamic interactions between the ocean and atmosphere. Statistical properties of nonlinear wave fields are investigated on a basis of direct hydrodynamical modeling of 1-D potential periodic surface waves. The method is based on a nonstationary conformal surface-following coordinate transformation; this approach reduces the principal equations of potential waves to two simple evolutionary equations for the elevation and the velocity potential on the surface. The numerical scheme is based on a Fourier transform method. High accuracy was confirmed by validation of the nonstationary model against known solutions, and by comparison between the results obtained with different resolutions in the horizontal. The scheme allows reproduction of the propagation of steep Stokes waves for thousands of periods with very high accuracy. The method here developed is applied to simulation of the evolution of wave fields with large number of modes for many periods of dominant waves. The statistical characteristics of nonlinear wave fields for waves of different steepness were investigated: spectra, curtosis and skewness, dispersion relation, life time. The prime result is that wave field may be presented as a superposition of linear waves is valid only for small amplitudes. It is shown as well, that nonlinear wave fields are rather a superposition of Stokes waves not linear waves. Potential flow, free surface, conformal mapping, numerical modeling of waves, gravity waves, Stokes waves, breaking waves, freak waves, wind-wave interaction.
Statistical properties of nonlinear one-dimensional wave fields
Chalikov, D.
2005-06-01
A numerical model for long-term simulation of gravity surface waves is described. The model is designed as a component of a coupled Wave Boundary Layer/Sea Waves model, for investigation of small-scale dynamic and thermodynamic interactions between the ocean and atmosphere. Statistical properties of nonlinear wave fields are investigated on a basis of direct hydrodynamical modeling of 1-D potential periodic surface waves. The method is based on a nonstationary conformal surface-following coordinate transformation; this approach reduces the principal equations of potential waves to two simple evolutionary equations for the elevation and the velocity potential on the surface. The numerical scheme is based on a Fourier transform method. High accuracy was confirmed by validation of the nonstationary model against known solutions, and by comparison between the results obtained with different resolutions in the horizontal. The scheme allows reproduction of the propagation of steep Stokes waves for thousands of periods with very high accuracy. The method here developed is applied to simulation of the evolution of wave fields with large number of modes for many periods of dominant waves. The statistical characteristics of nonlinear wave fields for waves of different steepness were investigated: spectra, curtosis and skewness, dispersion relation, life time. The prime result is that wave field may be presented as a superposition of linear waves is valid only for small amplitudes. It is shown as well, that nonlinear wave fields are rather a superposition of Stokes waves not linear waves. Potential flow, free surface, conformal mapping, numerical modeling of waves, gravity waves, Stokes waves, breaking waves, freak waves, wind-wave interaction.
International Nuclear Information System (INIS)
Xu, Siyao; Yan, Huirong; Lazarian, A.
2016-01-01
We study the damping processes of both incompressible and compressible magnetohydrodynamic (MHD) turbulence in a partially ionized medium. We start from the linear analysis of MHD waves, applying both single-fluid and two-fluid treatments. The damping rates derived from the linear analysis are then used in determining the damping scales of MHD turbulence. The physical connection between the damping scale of MHD turbulence and the cutoff boundary of linear MHD waves is investigated. We find two branches of slow modes propagating in ions and neutrals, respectively, below the damping scale of slow MHD turbulence, and offer a thorough discussion of their propagation and dissipation behavior. Our analytical results are shown to be applicable in a variety of partially ionized interstellar medium (ISM) phases and the solar chromosphere. The importance of neutral viscosity in damping the Alfvenic turbulence in the interstellar warm neutral medium and the solar chromosphere is demonstrated. As a significant astrophysical utility, we introduce damping effects to the propagation of cosmic rays in partially ionized ISM. The important role of turbulence damping in both transit-time damping and gyroresonance is identified.
Overview of shock waves in medicine
Cleveland, Robin O.
2003-10-01
A brief overview of three applications of shock waves is presented. Shock wave lithotripsy (SWL) has been in clinical use for more than 20 years. In the United States it is used to treat more than 80% of kidney stone cases and has wide acceptance with patients because it is a noninvasive procedure. Despite SWLs enormous success there is no agreement on how shock waves comminute stones. There is also a general acceptance that shock waves lead to trauma to the soft tissue of the kidney. Yet there has been little forward progress in developing lithotripters which provide comminution with less side-effects, indeed the original machine is still considered the gold standard. The last decade has seen the advent of new shock wave devices for treating principally musculoskeletal indications, such as plantar fasciitis, tennis elbow, and bone fractures that do not heal. This is referred to as shock wave therapy (SWT). The mechanisms by which SWT works are even less well understood than SWL and the consequences of bioeffects have also not been studied in detail. Shock waves have also been shown to be effective at enhancing drug delivery into cells and assisting with gene transfection. [Work partially supported by NIH.
International Nuclear Information System (INIS)
Kumar, D.; Barman, A.; Kłos, J. W.; Krawczyk, M.
2014-01-01
We present the observation of a complete bandgap and collective spin wave excitation in two-dimensional magnonic crystals comprised of arrays of nanoscale antidots and nanodots, respectively. Considering that the frequencies dealt with here fall in the microwave band, these findings can be used for the development of suitable magnonic metamaterials and spin wave based signal processing. We also present the application of a numerical procedure, to compute the dispersion relations of spin waves for any high symmetry direction in the first Brillouin zone. The results obtained from this procedure have been reproduced and verified by the well established plane wave method for an antidot lattice, when magnetization dynamics at antidot boundaries are pinned. The micromagnetic simulation based method can also be used to obtain iso–frequency contours of spin waves. Iso–frequency contours are analogous of the Fermi surfaces and hence, they have the potential to radicalize our understanding of spin wave dynamics. The physical origin of bands, partial and full magnonic bandgaps have been explained by plotting the spatial distribution of spin wave energy spectral density. Although, unfettered by rigid assumptions and approximations, which afflict most analytical methods used in the study of spin wave dynamics, micromagnetic simulations tend to be computationally demanding. Thus, the observation of collective spin wave excitation in the case of nanodot arrays, which can obviate the need to perform simulations, may also prove to be valuable
Ultrasonic Acoustic Velocities During Partial Melting of a Mantle Peridotite KLB-1
Weidner, Donald J.; Li, Li; Whitaker, Matthew L.; Triplett, Richard
2018-02-01
Knowledge of the elastic properties of partially molten rocks is crucial for understanding low-velocity regions in the interior of the Earth. Models of fluid and solid mixtures have demonstrated that significant decreases in seismic velocity are possible with small amounts of melt, but there is very little available data for testing these models, particularly with both P and S waves for mantle compositions. We report ultrasonic measurements of P and S velocities on a partially molten KLB-1 sample at mantle conditions using a multi-anvil device at a synchrotron facility. The P, S, and bulk sound velocities decrease as melting occurs. We find that the quantity, ∂lnVS/∂lnVB (where VB is the bulk sound velocity) is lower than mechanical models estimate. Instead, our data, as well as previous data in the literature, are consistent with a dynamic melting model in which melting and solidification interact with the stress field of the acoustic wave.
New Exact Travelling Wave and Periodic Solutions of Discrete Nonlinear Schroedinger Equation
International Nuclear Information System (INIS)
Yang Qin; Dai Chaoqing; Zhang Jiefang
2005-01-01
Some new exact travelling wave and period solutions of discrete nonlinear Schroedinger equation are found by using a hyperbolic tangent function approach, which was usually presented to find exact travelling wave solutions of certain nonlinear partial differential models. Now we can further extend the new algorithm to other nonlinear differential-different models.
International Nuclear Information System (INIS)
Anni, R.; Taffara, L.
1976-01-01
A fictitious scattering phenomenon between neutral heavy particles is analysed by using both the square-well and trapezoidal complex potentials. After a preliminary phenomenological discussion based on the behaviour of the exact scattering matrix and the trajectories of Regge poles and zeros as continuous functions of the imaginary part of the potential, the contributions to the scattering amplitude from the external and multiple internal reflections and from the ''surface waves'' are separated by using the Debye expansion of the S(lambda)-matrix. The most important first two terms of this expansion are then compared with the exact behaviour of both the partial-wave scattering amplitude and cross-section, and the results are discussed. In particular, for potentials with large imaginary parts, the first term of the Debye expansion, which is associated with the rays directly reflected by the surface, well approximates the exact scattering matrix for all angular momenta. In these cases, by applying to this first term the Watson transformation, one is able to separate the contributions from the reflected rays (saddle-point contribution in the background integral)from that of the surface waves(surface pole contribution) which are responsible for the diffraction phenomenon. Studies are in progress in order to extend this approach to the Saxon-Wood potential with Coulomb interaction
Guided Acoustic and Optical Waves in Silicon-on-Insulator for Brillouin Scattering and Optomechanics
2016-08-01
APL PHOTONICS 1, 071301 (2016) Guided acoustic and optical waves in silicon-on- insulator for Brillouin scattering and optomechanics Christopher J...is possible to simultaneously guide optical and acoustic waves in the technologically important silicon on insulator (SOI) material system. Thin...high sound velocity — makes guiding acoustic waves difficult, motivating the use of soft chalcogenide glasses and partial or complete releases (removal
Separable potential approach in the folding model. Pt. 2
International Nuclear Information System (INIS)
Lee, C.L.; Robson, D.
1982-01-01
A microscopic folding formalism using a separable potential approach is applied to the elastic scattering of the n-α system. Starting with a separable nucleon-nucleon (NN) potential model, a sum of separable nucleon-nucleus potentials is obtained. A simple structure of the α-particle is assumed and the Tabakin, the Doleschall and the Strobel NN potentials are considered. These phenomenological interactions are of Yukawa or gaussian form with variable parameters for each partial wave. Spin-orbit and tensor forces are included. The resulting potentials developed from our folding calculations give approximately the same ssub(1/2) phase shifts for the n-α elastic scattering. However, in the psub(1/2) and psub(3/2) phase-shift analysis, an effective interaction derived from the NN potential is necessary to reproduce the resonances. One free energy independent parameter is introduced in our approximate G-matrix concept to give a good fit for the phase shifts. Single-nucleon knockout exchange (SNKE) is considered throughout. (orig.)
Turbulent Spot Pressure Fluctuation Wave Packet Model
Energy Technology Data Exchange (ETDEWEB)
Dechant, Lawrence J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2017-05-01
Wave packet analysis provides a connection between linear small disturbance theory and subsequent nonlinear turbulent spot flow behavior. The traditional association between linear stability analysis and nonlinear wave form is developed via the method of stationary phase whereby asymptotic (simplified) mean flow solutions are used to estimate dispersion behavior and stationary phase approximation are used to invert the associated Fourier transform. The resulting process typically requires nonlinear algebraic equations inversions that can be best performed numerically, which partially mitigates the value of the approximation as compared to a more complete, e.g. DNS or linear/nonlinear adjoint methods. To obtain a simpler, closed-form analytical result, the complete packet solution is modeled via approximate amplitude (linear convected kinematic wave initial value problem) and local sinusoidal (wave equation) expressions. Significantly, the initial value for the kinematic wave transport expression follows from a separable variable coefficient approximation to the linearized pressure fluctuation Poisson expression. The resulting amplitude solution, while approximate in nature, nonetheless, appears to mimic many of the global features, e.g. transitional flow intermittency and pressure fluctuation magnitude behavior. A low wave number wave packet models also recover meaningful auto-correlation and low frequency spectral behaviors.
CERN. Geneva HR-RFA
2006-01-01
We will present a brief introduction to the physics of gravitational waves and their properties. We will review potential astrophysical sources of gravitational waves, and the physics and astrophysics that can be learned from their study. We will survey the techniques and technologies for detecting gravitational waves for the first time, including bar detectors and broadband interferometers, and give a brief status report on the international search effort.
A nonlocal potential form for s-wave α-α scattering
International Nuclear Information System (INIS)
Amos, K.; Bennett, M.T.
1997-01-01
Low energy s-wave α-α phase shifts that agree well with the measured set, have been extracted using a nonlocal interaction formed by folding (local real) nucleon -α particle interactions with density matrix elements of the (projectile) α particle. The resultant nonlocal s-wave α-α interaction is energy dependent and has a nonlocality range of about 2 fm
Energy Technology Data Exchange (ETDEWEB)
Garcia-Sanchez, P; Ramos, A [Dpto. de Electronica y Electromagnetismo, Universidad de Sevilla, 41012 Sevilla (Spain); Green, Nicolas G; Morgan, H [School of Electronics and Computer Science, University of Southampton, SO17 1BJ Southampton (United Kingdom)], E-mail: pablogarcia@us.es
2008-12-01
Net fluid flow of electrolytes driven on an array of microelectrodes subjected to a travelling-wave potential is presented. Two sizes of platinum microelectrodes have been studied. In both arrays, at low voltages the liquid flows according to the prediction given by ac electroosmotic theory. At voltages above a threshold the fluid flow is reversed. Measurements of the electrical current when the microelectrode array is pumping the liquid are also reported. Transient behaviours in both electrical current and fluid velocity have been observed.
International Nuclear Information System (INIS)
Garcia-Sanchez, P; Ramos, A; Green, Nicolas G; Morgan, H
2008-01-01
Net fluid flow of electrolytes driven on an array of microelectrodes subjected to a travelling-wave potential is presented. Two sizes of platinum microelectrodes have been studied. In both arrays, at low voltages the liquid flows according to the prediction given by ac electroosmotic theory. At voltages above a threshold the fluid flow is reversed. Measurements of the electrical current when the microelectrode array is pumping the liquid are also reported. Transient behaviours in both electrical current and fluid velocity have been observed.
Heating and ionization in MHD shock waves propagating into partially ionized plasma
International Nuclear Information System (INIS)
Bighel, L.; Collins, A.R.; Cramer, N.F.; Watson-Munro, C.N.
1975-09-01
A model of the structure of MHD switch-on shocks propagating in a partially ionized plasma, in which the primary dissipation mechanism is friction between ions and neutrals, is here compared favourably with experimental results. Four degrees of upstream ionization were studied, ranging from almost complete to very small ionization. (author)
Heating and ionization in MHD shock wave propagating into partially ionized plasma
International Nuclear Information System (INIS)
Bighel, L.; Collins, A.R.; Cramer, N.F.; Watson-Munro, C.N.
1975-09-01
A model of the structure of MHD switch-on shocks propagating in a partially ionized plasma, in which the primary dissipation mechanism is friction between ions and neutrals, is here compared favourably with experimental results. Four degrees of upstream ionization were studied, ranging from almost complete to very small ionization. (author)
Hoeke, Ron; Hemer, Mark; Contardo, Stephanie; Symonds, Graham; Mcinnes, Kathy
2016-04-01
As demonstrated by the Australian Wave Energy Atlas (AWavEA), the southern and western margins of the country possess considerable wave energy resources. The Australia Government has made notable investments in pre-commercial wave energy developments in these areas, however little is known about how this technology may impact local wave climate and subsequently affect neighbouring coastal environments, e.g. altering sediment transport, causing shoreline erosion or accretion. In this study, a network of in-situ wave measurement devices have been deployed surrounding the 3 wave energy converters of the Carnegie Wave Energy Limited's Perth Wave Energy Project. This data is being used to develop, calibrate and validate numerical simulations of the project site. Early stage results will be presented and potential simulation strategies for scaling-up the findings to larger arrays of wave energy converters will be discussed. The intended project outcomes are to establish zones of impact defined in terms of changes in local wave energy spectra and to initiate best practice guidelines for the establishment of wave energy conversion sites.
Potential health effects of standing waves generated by low frequency noise
Directory of Open Access Journals (Sweden)
Stanislav Ziaran
2013-01-01
Full Text Available The main aim is to present the available updated knowledge regarding the potential health effects of standing waves generated by low frequency noise (LFN from an open window in a moving car where the negative effects of LFN induced by heating components and/or heating, ventilation and air-conditioning are assessed. Furthermore, the assessment of noise in chosen enclosed spaces, such as rooms, offices, and classrooms, or other LFN sources and their effect on the human being were investigated. These types of noise are responsible for disturbance during relaxation, sleep, mental work, education, and concentration, which may reflect negatively on the comfort and health of the population and on the mental state of people such as scientific staff and students. The assessment points out the most exposed areas, and analyzes the conditions of standing wave generation in these rooms caused by outdoor and/or indoor sources. Measurements were made for three different enclosed spaces (office, flat, and passenger car and sources (traffic specific noise at intersections, noise induced by pipe vibration, and aerodynamic noise and their operating conditions. For the detection of LFN, the A-weighted sound pressure level and vibration were measured and a fast Fourier transform analysis was used. The LFN sources are specified and the direct effects on the human are reported. Finally, this paper suggests the possibilities for the assessment of LFN and some possible measures that can be taken to prevent or reduce them.
Partial discharge testing of in-situ power cable accessories
Energy Technology Data Exchange (ETDEWEB)
Orban, H. E.
2002-07-01
An overview of commercially available diagnostic methods for in-situ power cable accessories is given and relevant field experiences with these diagnostics are described. The discussion includes both PILC and polymeric insulated cables. Two major types of degradation are most frequently involved in cable systems. One is an overall condition caused by chemical aging and /or water treeing. Diagnostics for this type of aging include dissipation factor (loss angle), harmonic analysis, return voltage, isothermal relaxation current, dielectric response, or dc leakage current. The second type of degradation is discrete or incremental; condition assessment utilizes dissipation factor measurements or partial discharge (PD) level measurements. The focus in this paper is on PD diagnostics, especially off-line methods such as the 60 Hz test, the combined AC and VLF diagnostic, and the oscillating wave test system test. Among on-line diagnostics, ultrasonic detection of partial discharge and measurement of partial discharge by installing direct, capacitive or inductive couplers near cable accessories, are described. Overall, partial discharge detection and location in cable accessories is considered inadequate, since interpretation of results is difficult due to the number of variables involved. 28 refs., 1 tab.
Energy Technology Data Exchange (ETDEWEB)
Mohamadou, Alidou [Condensed Matter Laboratory, Department of Physics, Faculty of Science, University of Douala, P.O. Box 24157, Douala (Cameroon); Abdus Salam International Centre for Theoretical Physics, P.O. Box 538, Strada Costiera 11, I-34014 Trieste (Italy); Wamba, Etienne; Kofane, Timoleon C. [Laboratory of Mechanics, Department of Physics, Faculty of Science, University of Yaounde I, P.O. Box 812, Yaounde (Cameroon); Doka, Serge Y. [Higher Teacher Training College, University of Maroua, P.O. Box 55, Maroua (Cameroon); Ekogo, Thierry B. [Departement de Physique, Universite des Sciences et Techniques de Masuku, B.P. 943, Franceville (Gabonese Republic)
2011-08-15
We examine the generation of bright matter-wave solitons in the Gross-Pitaevskii equation describing Bose-Einstein condensates with a time-dependent complex potential, which is composed of a repulsive parabolic background potential and a gravitational field. By performing a modified lens-type transformation, an explicit expression for the growth rate of a purely growing modulational instability is presented and analyzed. We point out the effects of the gravitational field, as well as of the parameter related to the feeding or loss of atoms in the condensate, on the instability growth rate. It is evident from numerical simulations that the feeding with atoms and the magnetic trap have opposite effects on the dynamics of the system. It is shown that the feeding or loss parameter can be well used to control the instability domain. Our study shows that the gravitational field changes the condensate trail of the soliton trains during the propagation. We also perform a numerical analysis to solve the Gross-Pitaevskii equation with a time-dependent complicated potential. The numerical results on the effect of both the gravitational field and the parameter of feeding or loss of atoms in the condensate agree well with predictions of the linear stability analysis. Another result of the present work is the modification of the background wave function in the Thomas-Fermi approximation during the numerical simulations.
Bandyopadhyay, P.; Prasad, G.; Sen, A.; Kaw, P. K.
2016-01-01
The dispersion properties of low frequency dust acoustic waves in the strong coupling regime are investigated experimentally in an argon plasma embedded with a mixture of kaolin and $MnO_2$ dust particles. The neutral pressure is varied over a wide range to change the collisional properties of the dusty plasma. In the low collisional regime the turnover of the dispersion curve at higher wave numbers and the resultant region of $\\partial\\omega/\\partial k < 0$ are identified as signatures of du...
The physics of orographic gravity wave drag
Directory of Open Access Journals (Sweden)
Miguel A C Teixeira
2014-07-01
Full Text Available The drag and momentum fluxes produced by gravity waves generated in flow over orography are reviewed, focusing on adiabatic conditions without phase transitions or radiation effects, and steady mean incoming flow. The orographic gravity wave drag is first introduced in its simplest possible form, for inviscid, linearized, non-rotating flow with the Boussinesq and hydrostatic approximations, and constant wind and static stability. Subsequently, the contributions made by previous authors (primarily using theory and numerical simulations to elucidate how the drag is affected by additional physical processes are surveyed. These include the effect of orography anisotropy, vertical wind shear, total and partial critical levels, vertical wave reflection and resonance, non-hydrostatic effects and trapped lee waves, rotation and nonlinearity. Frictional and boundary layer effects are also briefly mentioned. A better understanding of all of these aspects is important for guiding the improvement of drag parametrization schemes.
Relativistic form factors for hadrons with quark-model wave functions
International Nuclear Information System (INIS)
Stanley, D.P.; Robson, D.
1982-01-01
The relationship between relativistic form factors and quark-potential-model wave functions is examined using an improved version of an approach by Licht and Pagnamenta. Lorentz-contraction effects are expressed in terms of an effective hadron mass which varies as the square root of the number of quark constituents. The effective mass is calculated using the rest-frame wave functions from the mean-square momentum along the direction of the momentum transfer. Applications with the parameter-free approach are made to the elastic form factors of the pion, proton, and neutron using a Hamiltonian which simultaneously describes mesons and baryons. A comparison of the calculated radii for pions and kaons suggests that the measured kaon radius should be slightly smaller than the corresponding pion radius. The large negative squared charge radius for the neutron is partially explained via the quark model but a full description requires the inclusion of a small component of a pion ''cloud'' configuration. The problematic connection between the sizes of hadrons deduced from form factors and the ''measured'' values of average transverse momenta is reconciled in the present model
International Nuclear Information System (INIS)
Kho, T.H.; Lin, A.T.
1988-01-01
Cyclotron masers such as Gyrotrons and the Autoresonance Masers, are fast wave devices: the electromagnetic wave's phase velocity v rho , is greater than the electron beam velocity, v b . To be able to convert the beam kinetic energy into radiation in these devices the beam must have an initial transverse momentum, usually obtained by propagating the beam through a transverse wiggler magnet, or along a nonuniform guide magnetic field before entry into the interaction region. Either process introduces a significant amount of thermal spread in the beam which degrades the performance of the maser. However, if the wave phase velocity v rho v b , the beam kinetic energy can be converted directly into radiation without the requirement of an initial transverse beam momentum, making a slow wave cyclotron maser a potentially simpler and more compact device. The authors present the linear and nonlinear physics of the slow wave cyclotron maser and examine its potential for practical application
Directory of Open Access Journals (Sweden)
Reto Huber
2007-03-01
Full Text Available Sleep slow wave activity (SWA is thought to reflect sleep need, increasing in proportion to the length of prior wakefulness and decreasing during sleep. However, the process responsible for SWA regulation is not known. We showed recently that SWA increases locally after a learning task involving a circumscribed brain region, suggesting that SWA may reflect plastic changes triggered by learning.To test this hypothesis directly, we used transcranial magnetic stimulation (TMS in conjunction with high-density EEG in humans. We show that 5-Hz TMS applied to motor cortex induces a localized potentiation of TMS-evoked cortical EEG responses. We then show that, in the sleep episode following 5-Hz TMS, SWA increases markedly (+39.1+/-17.4%, p<0.01, n = 10. Electrode coregistration with magnetic resonance images localized the increase in SWA to the same premotor site as the maximum TMS-induced potentiation during wakefulness. Moreover, the magnitude of potentiation during wakefulness predicts the local increase in SWA during sleep.These results provide direct evidence for a link between plastic changes and the local regulation of sleep need.
De Broglie's Wavefunction and Wave-Particle Dualism
International Nuclear Information System (INIS)
Leydolt, Hans J.
2005-01-01
A different approach to wave mechanics is presented in accordance with de Broglie's original hypothesis applying the case of photons to all material particles. It derives propagating matter waves conceptually from a theory of evolution, and not by the formal setting of eigenvalue equations. The quality of explanation is at issue, and not the mere description of phenomena. A monoenergetic particle transport along two directions is described by a partial differential equation and by a random walk model. The dual description is applied to the particle picture and the wave picture; it leads with identical initial values to identical causal and timelike solutions in either picture. The partial differential equations are a Telegrapher equation in 1-d space and its analytic continuation, a modified Klein Gordon equation; the solutions represent a density distribution and an amplitude profile, respectively. However, only the corresponding random walk models - equivalent to Feynman's integral over all paths - derive the solutions as path-end distributions with the additional information about the flight direction. This allows following up momentum dissipation along two directions by means of two particle beams and their profiles. Thereby the total number of particles is divided up onto the two beams according to linear or squared fractions depending on the beam configuration putting up a 1-d or a 2-d space. This aspect escapes conventional descriptions but serves to describe the transport in the particle or in the wave picture in dependence on the knowledge/ignorance of the particle's flight direction
Risk analysis of breakwater caisson under wave attack using load surface approximation
Kim, Dong Hyawn
2014-12-01
A new load surface based approach to the reliability analysis of caisson-type breakwater is proposed. Uncertainties of the horizontal and vertical wave loads acting on breakwater are considered by using the so-called load surfaces, which can be estimated as functions of wave height, water level, and so on. Then, the first-order reliability method (FORM) can be applied to determine the probability of failure under the wave action. In this way, the reliability analysis of breakwaters with uncertainties both in wave height and in water level is possible. Moreover, the uncertainty in wave breaking can be taken into account by considering a random variable for wave height ratio which relates the significant wave height to the maximum wave height. The proposed approach is applied numerically to the reliability analysis of caisson breakwater under wave attack that may undergo partial or full wave breaking.
Self-accelerating parabolic cylinder waves in 1-D
Energy Technology Data Exchange (ETDEWEB)
Yuce, C., E-mail: cyuce@anadolu.edu.tr
2016-11-25
Highlights: • We find a new class of self-accelerating waves. • We show that parabolic cylinder waves self-accelerates in a parabolic potential. • We discuss that truncated parabolic cylinder waves propagates large distance without almost being non-diffracted in free space. - Abstract: We introduce a new self-accelerating wave packet solution of the Schrodinger equation in one dimension. We obtain an exact analytical parabolic cylinder wave for the inverted harmonic potential. We show that truncated parabolic cylinder waves exhibits their accelerating feature.
Kasimov, Aslan R.
2013-03-08
We propose the following model equation, ut+1/2(u2−uus)x=f(x,us) that predicts chaotic shock waves, similar to those in detonations in chemically reacting mixtures. The equation is given on the half line, x<0, and the shock is located at x=0 for any t≥0. Here, us(t) is the shock state and the source term f is taken to mimic the chemical energy release in detonations. This equation retains the essential physics needed to reproduce many properties of detonations in gaseous reactive mixtures: steady traveling wave solutions, instability of such solutions, and the onset of chaos. Our model is the first (to our knowledge) to describe chaos in shock waves by a scalar first-order partial differential equation. The chaos arises in the equation thanks to an interplay between the nonlinearity of the inviscid Burgers equation and a novel forcing term that is nonlocal in nature and has deep physical roots in reactive Euler equations.
International Nuclear Information System (INIS)
Bouri, C.; Selles, P.; Malegat, L.; Kwato Njock, M. G.
2006-01-01
Spherical and parabolic partial cross sections and asymmetry parameters, defined in the ejected electron frame, are presented for photoionization excitation of the helium atom at 0.1 eV above its double ionization threshold. A quantitative law giving the dominant spherical partial wave l dom for each excitation level n is obtained. The parabolic partial cross sections are shown to satisfy the same approximate selection rules as the related Rydberg series of doubly excited states (K,T) n A . The analysis of radial and angular correlations reveals the close relationship between double excitation, ionization excitation, and double ionization. Opposite to a widespread belief, the observed value of the asymmetry parameter is shown to result from the interplay of radial correlations and symmetry constraints, irrespective of angular correlations. Finally, the measurement of parabolic partial cross sections is proposed as a challenge to experimentalists
Orbital stability of standing waves for a class of Schrödinger equations with unbounded potential
Directory of Open Access Journals (Sweden)
2006-01-01
Full Text Available This paper is concerned with the nonlinear Schrödinger equation with an unbounded potential i ϕ t = − Δ ϕ + V ( x ϕ − μ | ϕ | p − 1 ϕ − λ | ϕ | q − 1 ϕ , x ∈ ℝ N , t ≥ 0 , where 0$"> μ > 0 , 0,$"> λ > 0 , and 1 < p < q < 1 + 4 / N . The potential V ( x is bounded from below and satisfies V ( x → ∞ as | x | → ∞ . From variational calculus and a compactness lemma, the existence of standing waves and their orbital stability are obtained.
International Nuclear Information System (INIS)
Wang Qi; Li Biao; Zhang Hongqing; Chen Yong
2005-01-01
Taking the (2+1)-dimensional Broer-Kaup-Kupershmidt system as a simple example, some families of rational form solitary wave solutions, triangular periodic wave solutions, and rational wave solutions are constructed by using the Riccati equation rational expansion method presented by us. The method can also be applied to solve more nonlinear partial differential equation or equations.
Electromagnetic Lead Screw for Potential Wave Energy Application
DEFF Research Database (Denmark)
Lu, Kaiyuan; Wu, Weimin
2014-01-01
This paper presents a new type electromagnetic lead screw (EMLS) intended for wave energy application. Similar to the mechanical lead screw, this electromagnetic version can transfer slow linear motion to high-rotational motion, offering gearing effects. Compared with the existing pure magnetic...
Shen, Yujia; Wen, Zichao; Yan, Zhenya; Hang, Chao
2018-04-01
We study the three-wave interaction that couples an electromagnetic pump wave to two frequency down-converted daughter waves in a quadratic optical crystal and P T -symmetric potentials. P T symmetric potentials are shown to modulate stably nonlinear modes in two kinds of three-wave interaction models. The first one is a spatially extended three-wave interaction system with odd gain-and-loss distribution in the channel. Modulated by the P T -symmetric single-well or multi-well Scarf-II potentials, the system is numerically shown to possess stable soliton solutions. Via adiabatical change of system parameters, numerical simulations for the excitation and evolution of nonlinear modes are also performed. The second one is a combination of P T -symmetric models which are coupled via three-wave interactions. Families of nonlinear modes are found with some particular choices of parameters. Stable and unstable nonlinear modes are shown in distinct families by means of numerical simulations. These results will be useful to further investigate nonlinear modes in three-wave interaction models.
Vatasescu, Mihaela
2012-05-01
We consider a specific wave packet preparation arising from the control of tunneling in the 0g-(6s,6p3/2) double well potential of a Cs2 cold molecule with chirped laser pulses. Such a possibility to manipulate the population dynamics in the 0g-(6s,6p3/2) potential appears in a pump-dump scheme designed to form cold molecules by photoassociation of two cold cesium atoms. The initial population in the 0g-(6s,6p3/2) double well is a wave packet prepared in the outer well at large interatomic distances (94 a0) by a photoassociation step with a first chirped pulse, being a superposition of several vibrational states whose energies surround the energy of a tunneling resonance. Our present work is focused on a second delayed chirped pulse, coupling the 0g-(6s,6p3/2) surface with the a3Σu+(6s,6s) one in the zone of the double well barrier (15 a0) and creating deeply bound cold molecules in the a3Σu+(6s,6s) state. We explore the parameters choice (intensity, duration, chirp rate and sign) for this second pulse, showing that picoseconds pulses with a negative chirp can lead to trapping of population in the inner well in strongly bound vibrational states, out of the resonant tunneling able to transfer it back to the outer well.
Potentiality of fast wave current drive in non-maxwellian plasmas
International Nuclear Information System (INIS)
Moreau, D.; O'Brien, M.R.; Cox, M.; Start, D.F.H.
1987-06-01
After a short analysis of the available experimental data on pure fast wave electron current drive we propose a theoretical scaling law for the wave absorption through combined electron Landau damping and transit time magnetic pumping. We then present the result of a fully relativistic calculation which we apply to a bi-Maxwellian electron distribution function and conclude on the requirements to be fulfilled by the energetic tail for obtaining significant damping in Tore-Supra
Shaarawi, Amr Mohamed
In this work, nondispersive wavepacket solutions to linear partial differential equations are investigated. These solutions are characterized by infinite energy content; otherwise they are continuous, nonsingular and propagate in free space without spreading out. Examples of such solutions are Berry and Balazs' Airy packet, MacKinnon's wave packet and Brittingham's Focus Wave Mode (FWM). It is demonstrated in this thesis that the infinite energy content is not a basic problem per se and that it can be dealt with in two distinct ways. First these wave packets can be used as bases to construct highly localized, slowly decaying, time-limited pulsed solutions. In the case of the FWMs, this path leads to the formulation of the bidirectional representation, a technique that provides the most natural basis for synthesizing Brittingham-like solutions. This representation is used to derive new exact solutions to the 3-D scalar wave equation. It is also applied to problems involving boundaries, in particular to the propagation of a localized pulse in a infinite acoustic waveguide and to the launchability of such a pulse from the opening of a semi-infinite waveguide. The second approach in dealing with the infinite energy content utilizes the bump-like structure of nondispersive solutions. With an appropriate choice of parameters, these bump fields have very large amplitudes around the centers, in comparison to their tails. In particular, the FWM solutions are used to model massless particles and are capable of providing an interesting interpretation to the results of Young's two slit experiment and to the wave-particle duality of light. The bidirectional representation provides, also, a systematic way of deriving packet solutions to the Klein-Gordon, the Schrodinger and the Dirac equations. Nondispersive solutions of the former two equations are compared to previously derived ones, e.g., the Airy packet and MacKinnon's wave packet.
Chen, C.; Liu, J.; Xu, S.; Xia, J.; ,
2004-01-01
Geophysical technologies are very effective in environmental, engineering and groundwater applications. Parameters of delineating nature of near-surface materials such as compressional-wave velocity, shear-wave velocity can be obtained using shallow seismic methods. Electric methods are primary approaches for investigating groundwater and detecting leakage. Both of methods are applied to detect embankment in hope of obtaining evidences of the strength and moisture inside the body. A technological experiment has done for detecting and discovering the hidden troubles in the embankment of Yangtze River, Songzi, Hubei, China in 2003. Surface-wave and DC multi-channel array resistivity sounding techniques were used to detect hidden trouble inside and under dike like pipe-seeps. This paper discusses the exploration strategy and the effect of geological characteristics. A practical approach of combining seismic and electric resistivity measurements was applied to locate potential pipe-seeps in embankment in the experiment. The method presents a potential leak factor based on the shear-wave velocity and the resistivity of the medium to evaluate anomalies. An anomaly found in a segment of embankment detected was verified, where occurred a pipe-seep during the 98' flooding.
s-wave scattering for deep potentials with attractive tails falling off faster than -1/r2
International Nuclear Information System (INIS)
Mueller, Tim-Oliver; Kaiser, Alexander; Friedrich, Harald
2011-01-01
For potentials with attractive tails, as occur in typical atomic interactions, we present a simple formula for the s-wave phase shift δ 0 . It exposes a universal dependence of δ 0 (E) on the potential tail and the influence of effects specific to a given potential, which enter via the scattering length a, or equivalently, the noninteger part Δ th of the threshold quantum number n th . The formula accurately reproduces δ 0 (E) from threshold up to the semiclassical regime, far beyond the validity of the effective-range expansion. We derive the tail functions occurring in the formula for δ 0 (E) and demonstrate the validity of the formula for attractive potential tails proportional to 1/r 6 or to 1/r 4 , and also for a mixed potential tail consisting of a 1/r 4 term together with a non-negligible 1/r 6 contribution.
On the wave energy potential along the southern coast of Brazil
Energy Technology Data Exchange (ETDEWEB)
Assis, Leandro Eduardo; Beluco, Alexandre; de Almeida, Luiz Emilio B. [Inst. Pesquisas Hidraulicas, Univ. Fed Rio Grande do Sul, Porto Alegre (Brazil)
2013-07-01
The ocean wave energy resource is a real alternative to supply part of the energy demand in various countries, since some locations have a remarkable capacity to generate electricity. The objective of this study is to evaluate the energy resource of ocean waves in the coast of Rio Grande do Sul, the southern state of Brazil. This note presents the first results. The wave data used were collected in the sea area near the Port of Rio Grande during the years 1996 to 1999, amounting to sixteen months of monitoring. The data set was treated and grouped resulting information monthly, seasonal and annual basis. The annual average was found to be 8.6 kW per meter of wave front, reaching 14.0 kW per meter for the month of May and 4.0 kW per meter for the month of January. The results indicate good perspectives in obtaining power supplies.
Effects of subsurface ocean dynamics on instability waves in the tropical Pacific
Lawrence, Sean P.; Allen, Myles R.; Anderson, David L. T.; Llewellyn-Jones, David T.
1998-08-01
Tropical instability waves in a primitive equation model of the tropical Pacific Ocean, forced with analyzed wind stresses updated daily, show unexpectedly close phase correspondence with observation through the latter half of 1992. This suggests that these waves are not pure instabilities developing from infinitesimal disturbances, but that their phases and phase speeds are at least partially determined by the wind stress forcing. To quantify and explain this observation, we perfomed several numerical experiments, which indicate that remotely forced Rossby waves can influence both the phase and phase speed of tropical instability waves. We suggest that a remote wind forcing determines the high model/observation phase correspondence of tropical instability waves through a relatively realistic simulation of equatorial Kelvin and Rossby wave activity.
International Nuclear Information System (INIS)
Michalicek, Gregor
2015-01-01
Density functional theory (DFT) is the most widely-used first-principles theory for analyzing, describing and predicting the properties of solids based on the fundamental laws of quantum mechanics. The success of the theory is a consequence of powerful approximations to the unknown exchange and correlation energy of the interacting electrons and of sophisticated electronic structure methods that enable the computation of the density functional equations on a computer. A widely used electronic structure method is the full-potential linearized augmented plane-wave (FLAPW) method, that is considered to be one of the most precise methods of its kind and often referred to as a standard. Challenged by the demand of treating chemically and structurally increasingly more complex solids, in this thesis this method is revisited and extended along two different directions: (i) precision and (ii) efficiency. In the full-potential linearized augmented plane-wave method the space of a solid is partitioned into nearly touching spheres, centered at each atom, and the remaining interstitial region between the spheres. The Kohn-Sham orbitals, which are used to construct the electron density, the essential quantity in DFT, are expanded into a linearized augmented plane-wave basis, which consists of plane waves in the interstitial region and angular momentum dependent radial functions in the spheres. In this thesis it is shown that for certain types of materials, e.g., materials with very broad electron bands or large band gaps, or materials that allow the usage of large space-filling spheres, the variational freedom of the basis in the spheres has to be extended in order to represent the Kohn-Sham orbitals with high precision over a large energy spread. Two kinds of additional radial functions confined to the spheres, so-called local orbitals, are evaluated and found to successfully eliminate this error. A new efficient basis set is developed, named linearized augmented lattice
Acoustic wave transmission through piezoelectric structured materials.
Lam, M; Le Clézio, E; Amorín, H; Algueró, M; Holc, Janez; Kosec, Marija; Hladky-Hennion, A C; Feuillard, G
2009-05-01
This paper deals with the transmission of acoustic waves through multilayered piezoelectric materials. It is modeled in an octet formalism via the hybrid matrix of the structure. The theoretical evolution with the angle and frequency of the transmission coefficients of ultrasonic plane waves propagating through a partially depoled PZT plate is compared to finite element calculations showing that both methods are in very good agreement. The model is then used to study a periodic stack of 0.65 PMN-0.35 PT/0.90 PMN-0.10 PT layers. The transmission spectra are interpreted in terms of a dispersive behavior of the critical angles of longitudinal and transverse waves, and band gap structures are analysed. Transmission measurements confirm the theoretical calculations and deliver an experimental validation of the model.
Partial digitization method of wave processes in rail lines on the discrete basis
International Nuclear Information System (INIS)
Tyurekhodzhaev, A.N.; Ibraev, A.G.
2006-01-01
Analytical solution of the problem about longitudinal vibration of the rail which lies on the ties taking into account contact dry friction between wheel and rail is provided by the method of partial digitization and Laplace dual integral transformation. (author)
Directory of Open Access Journals (Sweden)
Juana Andrea Ibacache
2014-01-01
Full Text Available The synthesis of a variety of 1-aryl-7-phenylaminoisoquinolinequinones from 1,4-benzoquinone and arylaldehydes via the respective 1-arylisoquinolinequinones is reported. The cyclic voltammograms of the new compounds exhibit two one-electron reduction waves to the corresponding radical-anion and dianion and two quasi-reversible oxidation peaks. The half-wave potential values (EI½ of the members of the series have proven sensitive to the electron-donor effect of the aryl group (phenyl, 2-thienyl, 2-furyl at the 1-position as well as to the phenylamino groups (anilino, p-anisidino at the 7-position. The antiproliferative activity of the new compounds was evaluated in vitro using the MTT colorimetric method against one normal cell line (MRC-5 lung fibroblasts and two human cancer cell lines: AGS human gastric adenocarcinoma and HL-60 human promyelocytic leukemia cells in 72-h drug exposure assays. Among the series, compounds 5a, 5b, 5g, 5h, 6a and 6d exhibited interesting antiproliferative activities against human gastric adenocarcinoma. The 1-arylisoquinolinequinone 6a was found to be the most promising active compound against the tested cancer cell lines in terms of IC50 values (1.19; 1.24 µM and selectivity index (IS: 3.08; 2.96, respect to the anti-cancer agent etoposide used as reference (IS: 0.57; 0.14.
International Nuclear Information System (INIS)
Yao Ruo-Xia; Wang Wei; Chen Ting-Hua
2014-01-01
Motivated by the widely used ansätz method and starting from the modified Riemann—Liouville derivative together with a fractional complex transformation that can be utilized to transform nonlinear fractional partial differential equations to nonlinear ordinary differential equations, new types of exact traveling wave solutions to three important nonlinear space- and time-fractional partial differential equations are obtained simultaneously in terms of solutions of a Riccati equation. The results are new and first reported in this paper. (general)
Extracorporeal shock-wave lithotripsy of bile duct stones
International Nuclear Information System (INIS)
Lee, Jong Tae; Kim, Myung Joon; Yoo, Hyung Sik; Suh, Jung Ho; Lee, Moo Sang; Jo, Jang Hwan; Kim, Byung Ro
1989-01-01
During the past one and half year, we performed ESWL therapy in 13 patients with common bile duct and intrahepatic duct stones, applying Lithostar-R (Siemens co. West Germany) and analyzed their results. In 13 patients, 9 residual common bile duct stones and 7 intrahepatic duct stones were selected postoperatively. The size of stones were ranged from 0.7 cm to 3.5 cm in diameter. 2 stones were multiple and the remained 14 were single in number. The visualization of stones were done with fluoroscopy after the injection of contrast media via cholangiographic T-tube or ERCP. ESWL were applied continuously until stone disintegration was visible, or upto maximum number of 3500 discharge of shock wave. If not disintegrated upto 3500, patients were underwent second or third lithotripsy session with interval of one week. Our results showed that among 9 common bile duct stones, 4 were completely disintegrated and passed out spontaneously, but 3 partially fragmented and removed by the additional procedure. 2 were failed. Among 7 intrahepatic stones, 3 completely and 2 partially were succeeded. One stone partially fragmented were retained without removal and other one were failed. Skin petechia in all patients were revealed on the entry port of shock wave, but no serous complication was not occurred
Extracorporeal shock-wave lithotripsy of bile duct stones
Energy Technology Data Exchange (ETDEWEB)
Lee, Jong Tae; Kim, Myung Joon; Yoo, Hyung Sik; Suh, Jung Ho; Lee, Moo Sang; Jo, Jang Hwan; Kim, Byung Ro [Yonsei University College of Medicine, Seoul (Korea, Republic of)
1989-12-15
During the past one and half year, we performed ESWL therapy in 13 patients with common bile duct and intrahepatic duct stones, applying Lithostar-R (Siemens co. West Germany) and analyzed their results. In 13 patients, 9 residual common bile duct stones and 7 intrahepatic duct stones were selected postoperatively. The size of stones were ranged from 0.7 cm to 3.5 cm in diameter. 2 stones were multiple and the remained 14 were single in number. The visualization of stones were done with fluoroscopy after the injection of contrast media via cholangiographic T-tube or ERCP. ESWL were applied continuously until stone disintegration was visible, or upto maximum number of 3500 discharge of shock wave. If not disintegrated upto 3500, patients were underwent second or third lithotripsy session with interval of one week. Our results showed that among 9 common bile duct stones, 4 were completely disintegrated and passed out spontaneously, but 3 partially fragmented and removed by the additional procedure. 2 were failed. Among 7 intrahepatic stones, 3 completely and 2 partially were succeeded. One stone partially fragmented were retained without removal and other one were failed. Skin petechia in all patients were revealed on the entry port of shock wave, but no serous complication was not occurred.
Directional nonlinear guided wave mixing: Case study of counter-propagating shear horizontal waves
Hasanian, Mostafa; Lissenden, Cliff J.
2018-04-01
While much nonlinear ultrasonics research has been conducted on higher harmonic generation, wave mixing provides the potential for sensitive measurements of incipient damage unencumbered by instrumentation nonlinearity. Studies of nonlinear ultrasonic wave mixing, both collinear and noncollinear, for bulk waves have shown the robust capability of wave mixing for early damage detection. One merit of bulk wave mixing lies in their non-dispersive nature, but guided waves enable inspection of otherwise inaccessible material and a variety of mixing options. Co-directional guided wave mixing was studied previously, but arbitrary direction guided wave mixing has not been addressed until recently. Wave vector analysis is applied to study variable mixing angles to find wave mode triplets (two primary waves and a secondary wave) resulting in the phase matching condition. As a case study, counter-propagating Shear Horizontal (SH) guided wave mixing is analyzed. SH wave interactions generate a secondary Lamb wave mode that is readily receivable. Reception of the secondary Lamb wave mode is compared for an angle beam transducer, an air coupled transducer, and a laser Doppler vibrometer (LDV). Results from the angle beam and air coupled transducers are quite consistent, while the LDV measurement is plagued by variability issues.
Khater, Mostafa M. A.; Seadawy, Aly R.; Lu, Dianchen
2018-06-01
In this research, we study new two techniques that called the extended simple equation method and the novel (G‧/G) -expansion method. The extended simple equation method depend on the auxiliary equation (dϕ/dξ = α + λϕ + μϕ2) which has three ways for solving depends on the specific condition on the parameters as follow: When (λ = 0) this auxiliary equation reduces to Riccati equation, when (α = 0) this auxiliary equation reduces to Bernoulli equation and when (α ≠ 0, λ ≠ 0, μ ≠ 0) we the general solutions of this auxiliary equation while the novel (G‧/G) -expansion method depends also on similar auxiliary equation (G‧/G)‧ = μ + λ(G‧/G) + (v - 1)(G‧/G) 2 which depend also on the value of (λ2 - 4 (v - 1) μ) and the specific condition on the parameters as follow: When (λ = 0) this auxiliary equation reduces to Riccati equation, when (μ = 0) this auxiliary equation reduces to Bernoulli equation and when (λ2 ≠ 4 (v - 1) μ) we the general solutions of this auxiliary equation. This show how both of these auxiliary equation are special cases of Riccati equation. We apply these methods on two dimensional nonlinear Kadomtsev-Petviashvili Burgers equation in quantum plasma and three-dimensional nonlinear modified Zakharov-Kuznetsov equation of ion-acoustic waves in a magnetized plasma. We obtain the exact traveling wave solutions of these important models and under special condition on the parameters, we get solitary traveling wave solutions. All calculations in this study have been established and verified back with the aid of the Maple package program. The executed method is powerful, effective and straightforward for solving nonlinear partial differential equations to obtain more and new solutions.
Kuznetsova, I E; Nedospasov, I A; Kolesov, V V; Qian, Z; Wang, B; Zhu, F
2018-05-01
The profiles of an acoustic field and electric potential of the forward and backward shear-horizontal (SH) acoustic waves of a higher order propagating in X-Y potassium niobate plate have been theoretically investigated. It has been shown that by changing electrical boundary conditions on a surface of piezoelectric plates, it is possible to change the distributions of an acoustic field and electric potential of the forward and backward acoustic waves. The dependencies of the distribution of a mechanical displacement and electrical potential over the plate thickness for electrically open and electrically shorted plates have been plotted. The influence of a layer with arbitrary conductivity placed on a one or on the both plate surfaces on the profiles under study, phase and group velocities of the forward and backward acoustic waves in X-Y potassium niobate has been also investigated. The obtained results can be useful for development of the method for control of a particle or electrical charge movement inside the piezoelectric plates, as well a sensor for definition of the thin film conductivity. Copyright © 2018 Elsevier B.V. All rights reserved.
Rac1 regulates neuronal polarization through the WAVE complex
DEFF Research Database (Denmark)
Tahirovic, Sabina; Hellal, Farida; Neukirchen, Dorothee
2010-01-01
the physiological function of Rac1 in neuronal development, we have generated a conditional knock-out mouse, in which Rac1 is ablated in the whole brain. Rac1-deficient cerebellar granule neurons, which do not express other Rac isoforms, showed impaired neuronal migration and axon formation both in vivo...... and in vitro. In addition, Rac1 ablation disrupts lamellipodia formation in growth cones. The analysis of Rac1 effectors revealed the absence of the Wiskott-Aldrich syndrome protein (WASP) family verprolin-homologous protein (WAVE) complex from the plasma membrane of knock-out growth cones. Loss of WAVE...... function inhibited axon growth, whereas overexpression of a membrane-tethered WAVE mutant partially rescued axon growth in Rac1-knock-out neurons. In addition, pharmacological inhibition of the WAVE complex effector Arp2/3 also reduced axon growth. We propose that Rac1 recruits the WAVE complex...
Newman, J. N.
1979-01-01
Discussed is the utilization of surface ocean waves as a potential source of power. Simple and large-scale wave power devices and conversion systems are described. Alternative utilizations, environmental impacts, and future prospects of this alternative energy source are detailed. (BT)
International Nuclear Information System (INIS)
Bhattacharyya, Somnath; Koch, Christoph T.; Ruehle, Manfred
2006-01-01
An iterative method for reconstructing the exit face wave function from a through focal series of transmission electron microscopy image line profiles across an interface is presented. Apart from high-resolution images recorded with small changes in defocus, this method works also well for a large defocus range as used for Fresnel imaging. Using the phase-object approximation the projected electrostatic as well as the absorptive potential profiles across an interface are determined from this exit face wave function. A new experimental image alignment procedure was developed in order to align images with large relative defocus shift. The performance of this procedure is shown to be superior to other image alignment procedures existing in the literature. The reconstruction method is applied to both simulated and experimental images
Coherent Wave Measurement Buoy Arrays to Support Wave Energy Extraction
Spada, F.; Chang, G.; Jones, C.; Janssen, T. T.; Barney, P.; Roberts, J.
2016-02-01
Wave energy is the most abundant form of hydrokinetic energy in the United States and wave energy converters (WECs) are being developed to extract the maximum possible power from the prevailing wave climate. However, maximum wave energy capture is currently limited by the narrow banded frequency response of WECs as well as extended protective shutdown requirements during periods of large waves. These limitations must be overcome in order to maximize energy extraction, thus significantly decreasing the cost of wave energy and making it a viable energy source. Techno-economic studies of several WEC devices have shown significant potential to improve wave energy capture efficiency through operational control strategies that incorporate real-time information about local surface wave motions. Integral Consulting Inc., with ARPA-E support, is partnering with Sandia National Laboratories and Spoondrift LLC to develop a coherent array of wave-measuring devices to relay and enable the prediction of wave-resolved surface dynamics at a WEC location ahead of real time. This capability will provide necessary information to optimize power production of WECs through control strategies, thereby allowing for a single WEC design to perform more effectively across a wide range of wave environments. The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award Number DE-AR0000514.
Analysis of Measured and Simulated Supraglottal Acoustic Waves.
Fraile, Rubén; Evdokimova, Vera V; Evgrafova, Karina V; Godino-Llorente, Juan I; Skrelin, Pavel A
2016-09-01
To date, although much attention has been paid to the estimation and modeling of the voice source (ie, the glottal airflow volume velocity), the measurement and characterization of the supraglottal pressure wave have been much less studied. Some previous results have unveiled that the supraglottal pressure wave has some spectral resonances similar to those of the voice pressure wave. This makes the supraglottal wave partially intelligible. Although the explanation for such effect seems to be clearly related to the reflected pressure wave traveling upstream along the vocal tract, the influence that nonlinear source-filter interaction has on it is not as clear. This article provides an insight into this issue by comparing the acoustic analyses of measured and simulated supraglottal and voice waves. Simulations have been performed using a high-dimensional discrete vocal fold model. Results of such comparative analysis indicate that spectral resonances in the supraglottal wave are mainly caused by the regressive pressure wave that travels upstream along the vocal tract and not by source-tract interaction. On the contrary and according to simulation results, source-tract interaction has a role in the loss of intelligibility that happens in the supraglottal wave with respect to the voice wave. This loss of intelligibility mainly corresponds to spectral differences for frequencies above 1500 Hz. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
Factorized distorted wave approximation for the (e,2e) reaction on atoms : coplanar symmetric
International Nuclear Information System (INIS)
Fuss, I.; McCarthy, I.E.; Noble, C.J.; Weigold, E.
1977-02-01
The coplanar symmetric (e,2e) cross section has been studied in the intermediate energy region for the valence states of the inert gases He, Ar and Ne. Experimental measurements at 200, 400, 800, and 1200eV for He, and at 400, 800 and 1200eV for Ne and Ar, are compared with calculations based on the factorized half-off-shell distorted-wave impulse approximation. Calculations are carried out using partial wave expanded optical model wave functions which describe elastic scattering for the distorted waves, the eikonal approximation, and the plane wave approximation. (Author)
International Nuclear Information System (INIS)
Matsui, Yoshiko
1999-01-01
In order to investigate the p-wave contribution from the 3+1-subamplitude in the S-wave phase shift for boson-triboson elastic scattering when the Yamaguchi potential for the two-body interaction is assumed, the Faddeev-Osborn equation for a system of four identical bosons in solved numerically by extending the previous calculation to include the p-wave component for the 3+1-subamplitude. The results obtained closely resemble the previous results. The calculated phase shift generally has the standard behavior of the two-body phase shift for a loosely bound state and has further characteristic behavior represented by a valley witha peak as fine structure. The phase shift obtained in the present calculation has a higher peak and a deeper valley than the previous one, while the positions of the peak and the valley in the two sets of results agree precisely. Thus the calculated resonance energies are the same as those obtained in the previous result. (author)
Teaching Graphical Simulations of Fourier Series Expansion of Some Periodic Waves Using Spreadsheets
Singh, Iqbal; Kaur, Bikramjeet
2018-01-01
The present article demonstrates a way of programming using an Excel spreadsheet to teach Fourier series expansion in school/colleges without the knowledge of any typical programming language. By using this, a student learns to approximate partial sum of the n terms of Fourier series for some periodic signals such as square wave, saw tooth wave,…
Numerical simulation of nonlinear wave force on a quasi-ellipse caisson
Wang, Yongxue; Ren, Xiaozhong; Wang, Guoyu
2011-09-01
A three dimensional numerical model of nonlinear wave action on a quasi-ellipse caisson in a time domain was developed in this paper. Navier-Stokes equations were solved by the finite difference method, and the volume of fluid (VOF) method was employed to trace the free surface. The partial cell method was used to deal with the irregular boundary typical of this type of problem during first-time wave interaction with the structure, and a satisfactory result was obtained. The numerical model was verified and used to investigate the effects of the relative wave height H/d, relative caisson width kD, and relative length-width ratio B/D on the wave forces of the quasi-ellipse caisson. It was shown that the relative wave height H/d has a significant effect on the wave forces of the caisson. Compared with the non-dimensional inline wave force, the relative length-width ratio B/D was shown to have significant influence on the non-dimensional transverse wave force.
Gravitational Waves from Oscillons after Inflation.
Antusch, Stefan; Cefalà, Francesco; Orani, Stefano
2017-01-06
We investigate the production of gravitational waves during preheating after inflation in the common case of field potentials that are asymmetric around the minimum. In particular, we study the impact of oscillons, comparatively long lived and spatially localized regions where a scalar field (e.g., the inflaton) oscillates with large amplitude. Contrary to a previous study, which considered a symmetric potential, we find that oscillons in asymmetric potentials associated with a phase transition can generate a pronounced peak in the spectrum of gravitational waves that largely exceeds the linear preheating spectrum. We discuss the possible implications of this enhanced amplitude of gravitational waves. For instance, for low scale inflation models, the contribution from the oscillons can strongly enhance the observation prospects at current and future gravitational wave detectors.
Liu, Dong-Hai; Huang, Xu; Guo, Xin; Meng, Xiang-Min; Wu, Yi-Song; Lu, Hong-Li; Zhang, Chun-Mei; Kim, Young-chul; Xu, Wen-Xie
2014-01-01
Partial obstruction of the small intestine causes obvious hypertrophy of smooth muscle cells and motility disorder in the bowel proximate to the obstruction. To identify electric remodeling of hypertrophic smooth muscles in partially obstructed murine small intestine, the patch-clamp and intracellular microelectrode recording methods were used to identify the possible electric remodeling and Western blot, immunofluorescence and immunoprecipitation were utilized to examine the channel protein expression and phosphorylation level changes in this research. After 14 days of obstruction, partial obstruction caused obvious smooth muscle hypertrophy in the proximally located intestine. The slow waves of intestinal smooth muscles in the dilated region were significantly suppressed, their amplitude and frequency were reduced, whilst the resting membrane potentials were depolarized compared with normal and sham animals. The current density of voltage dependent potassium channel (KV) was significantly decreased in the hypertrophic smooth muscle cells and the voltage sensitivity of KV activation was altered. The sensitivity of KV currents (IKV) to TEA, a nonselective potassium channel blocker, increased significantly, but the sensitivity of IKv to 4-AP, a KV blocker, stays the same. The protein levels of KV4.3 and KV2.2 were up-regulated in the hypertrophic smooth muscle cell membrane. The serine and threonine phosphorylation levels of KV4.3 and KV2.2 were significantly increased in the hypertrophic smooth muscle cells. Thus this study represents the first identification of KV channel remodeling in murine small intestinal smooth muscle hypertrophy induced by partial obstruction. The enhanced phosphorylations of KV4.3 and KV2.2 may be involved in this process.
Partial reflection data collection and processing using a small computer
Birley, M. H.; Sechrist, C. F., Jr.
1971-01-01
Online data collection of the amplitudes of circularly polarized radio waves, partially reflected from the D region of the earth's ionosphere, has enabled the calculation of an electron-density profile in the height region 60-90 km. A PDP 15/30 digital computer with an analog to digital converter and magnetic tape as an intermediary storage device are used. The computer configuration, the software developed, and the preliminary results are described.
The (′/-Expansion Method for Abundant Traveling Wave Solutions of Caudrey-Dodd-Gibbon Equation
Directory of Open Access Journals (Sweden)
Hasibun Naher
2011-01-01
Full Text Available We construct the traveling wave solutions of the fifth-order Caudrey-Dodd-Gibbon (CDG equation by the (/-expansion method. Abundant traveling wave solutions with arbitrary parameters are successfully obtained by this method and the wave solutions are expressed in terms of the hyperbolic, the trigonometric, and the rational functions. It is shown that the (/-expansion method is a powerful and concise mathematical tool for solving nonlinear partial differential equations.
Stratospheric gravity wave activities inferred through the GPS radio occultation technique
International Nuclear Information System (INIS)
Wrasse, Cristiano Max; Takahashi, Hisao; Fechine, Joaquim; Denardini, Clezio Marcos; Wickert, Jens
2007-01-01
Stratospheric gravity wave activities were deduced from GPS radio occultation temperature profiles obtained by CHAMP satellite between 2001 and 2005. Potential energy profiles are used to analyze the gravity wave activity over South America. The results showed an inter-annual variation of the potential energy integrated between 24 and 34 km of altitude. The gravity wave activity is more concentrated around the equatorial region. In order to evaluate the seasonal variation of the gravity wave activity, a mean potential energy was determined over (10 deg N-10 deg S) and (100 deg W-20 deg W). The results showed a lower gravity wave activity during winter time, while during spring time the mean potential energy showed an increase in the wave activity. The results of the mean potential energy also showed that the gravity wave activity in the lower stratosphere exhibits a higher wave activity during 2002 and 2004 and a lower wave activity during 2003 and 2005. (author)
Genetic determinants of P wave duration and PR segment
Verweij, Niek; Mateo Leach, Irene; van den Boogaard, Malou; van Veldhuisen, Dirk J.; Christoffels, Vincent M.; Hillege, Hans L.; van Gilst, Wiek H.; Barnett, Phil; de Boer, Rudolf A.; van der Harst, Pim
2014-01-01
The PR interval on the ECG reflects atrial depolarization and atrioventricular nodal delay which can be partially differentiated by P wave duration and PR segment, respectively. Genome-wide association studies have identified several genetic loci for PR interval, but it remains to be determined
Genetic Determinants of P Wave Duration and PR Segment
Verweij, Niek; Mateo Leach, Irene; van den Boogaard, Malou; van Veldhuisen, Dirk J.; Christoffels, Vincent M.; Hillege, Hans L.; van Gilst, Wiek H.; Barnett, Phil; de Boer, Rudolf A.; van der Harst, Pim
Background-The PR interval on the ECG reflects atrial depolarization and atrioventricular nodal delay which can be partially differentiated by P wave duration and PR segment, respectively. Genome-wide association studies have identified several genetic loci for PR interval, but it remains to be
Suppression of beam-excited electron waves by an externally applied RF signal
International Nuclear Information System (INIS)
Fukumasa, Osamu; Itatani, Ryohei
1980-11-01
Suppression of the beam-excited electron wave in a bounded system is investigated in connection with the beam distribution function. Wave suppression has two different processes depending on whether injected beams are reflected at the other end or not. In the absence of reflected beam electrons, deformation of the beam distribution function is observed in relation to the suppression of the electron wave. However, when beam electrons are reflected, the external wave suppresses the electron wave but distribution function shows no appreciable change. These experimental results show that nonlinear behaviors of beam electrons, namely behaviors of reflected beams, are quite important for wave suppression. By using the method of partial simulation, interaction between two waves in the bounded system including nonlinear motions of beam electrons is studied numerically. Qualitative agreement between experimental and numerical results is obtained. (author)
Efficient computations of wave loads on offshore structures
DEFF Research Database (Denmark)
Paulsen, Bo Terp
-toolbox OpenFoam R, the fully nonlinear potential flow solver OceanWave3D and finally a fully nonlinear domain decomposed solver, which was developed as part of this project. In the domain decomposed solver, the outer wave field is described by the potential flow solver, whereas the inner wave field...
Reentrant stability of Bose-Einstein-condensate standing-wave patterns
International Nuclear Information System (INIS)
Kalas, Ryan M.; Solenov, Dmitry; Timmermans, Eddy
2010-01-01
We describe standing-wave patterns induced by an attractive finite-ranged external potential inside a large Bose-Einstein Condensate (BEC). As the potential depth increases, the time-independent Gross-Pitaevskii equation develops pairs of solutions that have nodes in their wave function. We elucidate the nature of these states and study their dynamical stability. Although we study the problem in a two-dimensional BEC subject to a cylindrically symmetric square well potential of a radius that is comparable to the coherence length of the BEC, our analysis reveals general trends that are valid in two and three dimensions, independent of the symmetry of the localized potential well, and suggestive of the behavior in general short-range and large-range potentials. One set of nodal BEC wave functions resembles the single particle n-node bound-state wave function of the potential well, the other wave functions resemble the n-1-node bound-state wave function with a kink state pinned by the potential. The second state, though corresponding to the lower free energy value of the pair of n-node BEC states, is always unstable, whereas the first can be dynamically stable in intervals of the potential well depth, implying that the standing-wave BEC can evolve from being dynamically unstable to stable and back to unstable as the potential well is adiabatically deepened - a phenomenon that we refer to as 'reentrant dynamical stability'.
A mathematical framework for inverse wave problems in heterogeneous media
Blazek, K.D.; Stolk, C.; Symes, W.W.
2013-01-01
This paper provides a theoretical foundation for some common formulations of inverse problems in wave propagation, based on hyperbolic systems of linear integro-differential equations with bounded and measurable coefficients. The coefficients of these time-dependent partial differential equations
A separable approximation of the NN-Paris-potential in the framework of the Bethe-Salpeter equation
International Nuclear Information System (INIS)
Schwarz, K.; Haidenbauer, J.; Froehlich, J.
1985-09-01
The Bethe-Salpeter equation is solved with a separable kernel for the most important nucleon-nucleon partial wave states. We employ the Ernst Shakin-Thaler method in the framework of minimal relativity (Blankenbeckler-Sugar equation) to generate a separable representation of the meson-theoretical Paris potential. These separable interactions, which closely approximate the on-shell- and half-off-shell behaviour of the Paris potential, are then cast into a covariant form for application in the Bethe-Salpeter equation. The role of relativistic effects is discussed with respect to on-shell and off-shell properties of the NN-system. (Author)
International Nuclear Information System (INIS)
Kukhtin, V.V.; Kuzmenko, M.V.
2000-01-01
Complete text of publication follows. Recent studies (1) have shown that the Schroedinger nonrelativistic wave equation for a system of interacting particles is not a rigorously nonrelativistic one since it is based on the implicit assumption that the interaction propagation velocity is a finite value, which implies commutativity of the operators of coordinates and momenta of different particles. The refusal from this assumption implies their noncommutativity, which allows one to construct a truly nonrelativistic nonlinear self-consistent wave equation for a system of interacting particles. In the frame of the advanced wave equation, we investigate the spectrum of bound states for the two-body problem with the Yukawa potential V(r) = -V 0 a exp(-r/a)/r as a function of parameters of the potential. A peculiar feature of the spectrum is the presence of a critical value of V 0 (with the fixed parameter a), above which the given bound state cannot exist. In the ground state with l = 0 at a critical value of V 0 , the mean distance between particles takes the least value equal to the Compton wavelength of the particle with reduced mass. We estimate the parameter of noncommutativity ε for the operators of the coordinate of one particle and of the momentum of other one ([χ 1 , p 2x ] = i(h/2π)m 2 /M x ε) for the bound state of a deuteron, for which we consider the lowest state with l = 0 as its ground state. The parameter a of the Yukawa potential is taken to be equal to the Compton wavelength of a pion, 1.41 fm. In order to obtain the binding energy of a deuteron E = -2.22452 MeV, the parameter V 0 has to equal 51.23 MeV. In this case, the parameter of noncommutativity ε for the operators of the coordinate of one particle and of the momentum of other one ε = 0.0011, i.e., the commutator is nonzero even for such a weakly bound system as a deuteron where particles are located outside the region of action of nuclear forces for a significant fraction of time. Moreover
ERC Workshop on Geometric Partial Differential Equations
Novaga, Matteo; Valdinoci, Enrico
2013-01-01
This book is the outcome of a conference held at the Centro De Giorgi of the Scuola Normale of Pisa in September 2012. The aim of the conference was to discuss recent results on nonlinear partial differential equations, and more specifically geometric evolutions and reaction-diffusion equations. Particular attention was paid to self-similar solutions, such as solitons and travelling waves, asymptotic behaviour, formation of singularities and qualitative properties of solutions. These problems arise in many models from Physics, Biology, Image Processing and Applied Mathematics in general, and have attracted a lot of attention in recent years.
Bragg-Scattering Four-Wave Mixing in Nonlinear Fibers with Intracavity Frequency-Shifted Laser Pumps
Directory of Open Access Journals (Sweden)
Katarzyna Krupa
2012-01-01
Full Text Available We experimentally study four-wave mixing in highly nonlinear fibers using two independent and partially coherent laser pumps and a third coherent signal. We focus our attention on the Bragg-scattering frequency conversion. The two pumps were obtained by amplifying two Intracavity frequency-shifted feedback lasers working in a continuous wave regime.
On analyticity of linear waves scattered by a layered medium
Nicholls, David P.
2017-10-01
The scattering of linear waves by periodic structures is a crucial phenomena in many branches of applied physics and engineering. In this paper we establish rigorous analytic results necessary for the proper numerical analysis of a class of High-Order Perturbation of Surfaces methods for simulating such waves. More specifically, we prove a theorem on existence and uniqueness of solutions to a system of partial differential equations which model the interaction of linear waves with a multiply layered periodic structure in three dimensions. This result provides hypotheses under which a rigorous numerical analysis could be conducted for recent generalizations to the methods of Operator Expansions, Field Expansions, and Transformed Field Expansions.
Quadratic algebras in the noncommutative integration method of wave equation
International Nuclear Information System (INIS)
Varaksin, O.L.
1995-01-01
The paper deals with the investigation of applications of the method of noncommutative integration of linear differential equations by partial derivatives. Nontrivial example was taken for integration of three-dimensions wave equation with the use of non-Abelian quadratic algebras
International Nuclear Information System (INIS)
Drevillon, B.; Borenstein, S.; Chaurand, B.; Gago, J.M.; Salmeron, R.A.; Borg, A.; Denegri, D.; Pons, Y.; Spiro, M.; Comber, C.; Paler, K.; Tovey, S.N.; Shah, T.P.
1975-01-01
A partial wave analysis of spin-parity of the (antikaon-neutral π + π - ) system in the mass range M(antikaon-neutral π + π - ) - and 1 + states is found, the unatural spin-parity accounting for more than 3/4 of the events at 3.95GeV/c and for more than half at 14.3GeV/c. Natural parity exchange is dominant at both energies. A fit of the cross sections of several states to Psub(lab)sup(-n) gives n between 1.5 and 2.0 [fr
Kral, C.; Haumer, A.; Bogomolov, M.D.; Lomonova, E.
2012-01-01
This paper proposes a multi domain physical model of permanent magnet synchronous machines, considering electrical, magnetic, thermal and mechanical effects. For each component of the model, the main wave as well as lower and higher harmonic wave components of the magnetic flux and the magnetic
International Nuclear Information System (INIS)
Colle, R.; Simonucci, S.
1996-01-01
The theoretical framework of a method that utilizes a projected potential operator to construct scattering wave functions is presented. Theorems and spectral properties of a Hamiltonian with the potential energy operator represented in terms of L'2(R'3)-functions are derived. The computational advantages offered by the method for calculating spectroscopic quantities, like resonance energies, decay probabilities and photoionization cross-sections, are discussed
Nilpotent chiral superfield in N=2 supergravity and partial rigid supersymmetry breaking
Energy Technology Data Exchange (ETDEWEB)
Kuzenko, Sergei M. [School of Physics M013, The University of Western Australia,35 Stirling Highway, Crawley W.A. 6009 (Australia); Tartaglino-Mazzucchelli, Gabriele [Instituut voor Theoretische Fysica, KU Leuven,Celestijnenlaan 200D, B-3001 Leuven (Belgium)
2016-03-15
In the framework of N=2 conformal supergravity in four dimensions, we introduce a nilpotent chiral superfield suitable for the description of partial supersymmetry breaking in maximally supersymmetric spacetimes. As an application, we construct Maxwell-Goldstone multiplet actions for partial N=2→N=1 supersymmetry breaking on ℝ×S{sup 3}, AdS{sub 3}×S{sup 1} (or its covering AdS{sub 3}×ℝ), and a pp-wave spacetime. In each of these cases, the action coincides with a unique curved-superspace extension of the N=1 supersymmetric Born-Infeld action, which is singled out by the requirement of U(1) duality invariance.
Scaling observations of surface waves in the Beaufort Sea
Directory of Open Access Journals (Sweden)
Madison Smith
2016-04-01
Full Text Available Abstract The rapidly changing Arctic sea ice cover affects surface wave growth across all scales. Here, in situ measurements of waves, observed from freely-drifting buoys during the 2014 open water season, are interpreted using open water distances determined from satellite ice products and wind forcing time series measured in situ with the buoys. A significant portion of the wave observations were found to be limited by open water distance (fetch when the wind duration was sufficient for the conditions to be considered stationary. The scaling of wave energy and frequency with open water distance demonstrated the indirect effects of ice cover on regional wave evolution. Waves in partial ice cover could be similarly categorized as distance-limited by applying the same open water scaling to determine an ‘effective fetch’. The process of local wave generation in ice appeared to be a strong function of the ice concentration, wherein the ice cover severely reduces the effective fetch. The wave field in the Beaufort Sea is thus a function of the sea ice both locally, where wave growth primarily occurs in the open water between floes, and regionally, where the ice edge may provide a more classic fetch limitation. Observations of waves in recent years may be indicative of an emerging trend in the Arctic Ocean, where we will observe increasing wave energy with decreasing sea ice extent.
Kuznetsov, N.; Maz'ya, V.; Vainberg, B.
2002-08-01
This book gives a self-contained and up-to-date account of mathematical results in the linear theory of water waves. The study of waves has many applications, including the prediction of behavior of floating bodies (ships, submarines, tension-leg platforms etc.), the calculation of wave-making resistance in naval architecture, and the description of wave patterns over bottom topography in geophysical hydrodynamics. The first section deals with time-harmonic waves. Three linear boundary value problems serve as the approximate mathematical models for these types of water waves. The next section uses a plethora of mathematical techniques in the investigation of these three problems. The techniques used in the book include integral equations based on Green's functions, various inequalities between the kinetic and potential energy and integral identities which are indispensable for proving the uniqueness theorems. The so-called inverse procedure is applied to constructing examples of non-uniqueness, usually referred to as 'trapped nodes.'
Integrated coherent matter wave circuits
International Nuclear Information System (INIS)
Ryu, C.; Boshier, M. G.
2015-01-01
An integrated coherent matter wave circuit is a single device, analogous to an integrated optical circuit, in which coherent de Broglie waves are created and then launched into waveguides where they can be switched, divided, recombined, and detected as they propagate. Applications of such circuits include guided atom interferometers, atomtronic circuits, and precisely controlled delivery of atoms. We report experiments demonstrating integrated circuits for guided coherent matter waves. The circuit elements are created with the painted potential technique, a form of time-averaged optical dipole potential in which a rapidly moving, tightly focused laser beam exerts forces on atoms through their electric polarizability. Moreover, the source of coherent matter waves is a Bose-Einstein condensate (BEC). Finally, we launch BECs into painted waveguides that guide them around bends and form switches, phase coherent beamsplitters, and closed circuits. These are the basic elements that are needed to engineer arbitrarily complex matter wave circuitry
Travelling wave solutions to nonlinear physical models by means
Indian Academy of Sciences (India)
This paper presents the ﬁrst integral method to carry out the integration of nonlinear partial differential equations in terms of travelling wave solutions. For illustration, three important equations of mathematical physics are analytically investigated. Through the established ﬁrst integrals, exact solutions are successfully ...
Instantaneous wave emission model
International Nuclear Information System (INIS)
Kruer, W.L.
1970-12-01
A useful treatment of electrostatic wave emission by fast particles in a plasma is given. First, the potential due to a fast particle is expressed as a simple integration over the particle orbit; several interesting results readily follow. The potential in the wake of an accelerating particle is shown to be essentially that produced through local excitation of the plasma by the particle free-streaming about its instantaneous orbit. Application is made to one dimension, and it is shown that the wave emission and adsorption synchronize to the instantaneous velocity distribution function. Guided by these calculations, we then formulate a test particle model for computing the instantaneous wave emission by fast particles in a Vlasov plasma. This model lends itself to physical interpretation and provides a direct approach to many problems. By adopting a Fokker-Planck description for the particle dynamics, we calculate the broadening of the wave-particle resonance due to velocity diffusion and drag
Energy Technology Data Exchange (ETDEWEB)
Sathaye, Jayant; Makundi, Willy; Dale, Larry; Chan, Peter; Andrasko, Kenneth
2005-03-22
This paper reports on the global potential for carbonsequestration in forest plantations, and the reduction of carbonemissions from deforestation, in response to six carbon price scenariosfrom 2000 to 2100. These carbon price scenarios cover a range typicallyseen in global integrated assessment models. The world forest sector wasdisaggregated into tenregions, four largely temperate, developedregions: the European Union, Oceania, Russia, and the United States; andsix developing, mostly tropical, regions: Africa, Central America, China,India, Rest of Asia, and South America. Three mitigation options -- long-and short-rotation forestry, and the reduction of deforestation -- wereanalyzed using a global dynamic partial equilibrium model (GCOMAP). Keyfindings of this work are that cumulative carbon gain ranges from 50.9 to113.2 Gt C by 2100, higher carbon prices early lead to earlier carbongain and vice versa, and avoided deforestation accounts for 51 to 78percent of modeled carbon gains by 2100. The estimated present value ofcumulative welfare change in the sector ranges from a decline of $158billion to a gain of $81 billion by 2100. The decline is associated witha decrease in deforestation.
Relic gravity waves from braneworld inflation
International Nuclear Information System (INIS)
Sahni, Varun; Sami, M.; Souradeep, Tarun
2002-01-01
We discuss a scenario in which extra dimensional effects allow a scalar field with a steep potential to play the dual role of the inflaton as well as dark energy (quintessence). The post-inflationary evolution of the universe in this scenario is generically characterized by a 'kinetic regime' during which the kinetic energy of the scalar field greatly exceeds its potential energy resulting in a 'stiff' equation of state for scalar field matter P φ ≅ρ φ . The kinetic regime precedes the radiation dominated epoch and introduces an important new feature into the spectrum of relic gravity waves created quantum mechanically during inflation. The amplitude of the gravity wave spectrum increases with the wave number for wavelengths shorter than the comoving horizon scale at the commencement of the radiative regime. This 'blue tilt' is a generic feature of models with steep potentials and imposes strong constraints on a class of inflationary braneworld models. Prospects for detection of the gravity wave background by terrestrial and space-borne gravity wave observatories such as LIGO II and LISA are discussed