WorldWideScience

Sample records for potential pharmacological agents

  1. Pharmacological stress agents in nuclear cardiology

    International Nuclear Information System (INIS)

    Buscombe, J.R.

    2004-01-01

    Treadmill test combined with myocardial perfusion scintigraphy (MPS) is a commonly used technique in the assessment of coronary artery disease. However there are a group of patients who may not be able to undergo treadmill tests. Patients with underlying conditions like neuromuscular disease, musculoskeletal disorder, heart failure and end-stage renal disease (ESRD) on renal dialysis would find it difficult to perform exercise on a treadmill or bicycle ergometer. These conditions prevent them from performing adequate exercise. Such patients would benefit from pharmacological stress procedures combined with MPS. Nuclear medicine departments use various pharmacological agents while performing stress tests on cardiac patients. The most commonly used pharmacological agents for cardiac stress are coronary vasodilators and catecholamines. In addition to these agents, adjuvant use of nitrates and atropine is also a common practice in nuclear cardiology. This review addresses various physiological and pharmacological properties of the commonly used pharmacological stress agents in MPS and critically analyses their advantages and disadvantages, as well as their safety and efficacy. (author)

  2. Local analgesia in paediatric dentistry: a systematic review of techniques and pharmacologic agents.

    Science.gov (United States)

    Klingberg, G; Ridell, K; Brogårdh-Roth, S; Vall, M; Berlin, H

    2017-10-01

    To evaluate the evidence supporting effects and adverse effects of local analgesia using different pharmacological agents and injection techniques during dental treatment in children and adolescents aged 3-19 years. A systematic literature search of databases including PubMed, Cochrane, and Scopus was conducted in November 2016. The PRISMA-statement was followed. Two review authors independently assessed the selected randomised control trials for risk of bias and quality. 725 scientific papers were identified. 89 papers were identified to be read in full text of which 80 were excluded. Finally, 9 papers were evaluated for quality and risk of bias. Many of the included papers had methodological shortcomings affecting the possibility to draw conclusions. Information about ethical clearance and consent were missing in some of the included papers. No alarming adverse effects were identified. One study was assessed as having low risk of bias. This reported inferior alveolar nerve block to be more effective than buccal infiltration for dental treatment of mandibular molars, while no differences were found regarding pharmacological agents. At present, there is insufficient evidence in support of any pharmacologic agent or injection technique as being superior compared to others. There is a need for more rigorous studies which also handle the ethical issues of including children in potentially painful studies.

  3. Clinical Pharmacology of Chemotherapy Agents in Older People with Cancer

    Directory of Open Access Journals (Sweden)

    Xiaoye He

    2011-01-01

    Full Text Available Populations around the world are aging, and the associated increase in cancer incidence has led to the recognition of the importance of geriatric oncology. Chronological age is a poor determinant of pharmacological response to cancer chemotherapy agents. Age-associated changes in physiology and organ function have a significant impact on the clinical pharmacology of cancer chemotherapy agents used in cancer treatment. Altered response to medicines in older people is a consequence of changes in body composition, organ function, concomitant pathophysiology, multiple medications, genetic determinants of drug response, and patient's clinical status. These issues highlight the need to individualize the management of cancer in the older people with consideration of age-related changes in the clinical pharmacology of cancer drugs, analgesics, and adjunctive therapies.

  4. Pharmacology of dimethanesulfonate alkylating agents: busulfan and treosulfan.

    Science.gov (United States)

    Galaup, Ariane; Paci, Angelo

    2013-03-01

    Among the dimethanesulfonates, busulfan, in combination with other alkylating agents or nucleoside analogues, is the cornerstone of high-dose chemotherapy. It is used, and followed hematopoietic stem cell transplantation, for the treatment of various hematologic malignancies and immunodeficiencies. Treosulfan, which is a hydrophilic analogue of busulfan, was the first dimethanesufonate registered for the treatment of ovarian cancer. Recently, treosulfan has been investigated for the treatment of hematologic malignancies in combination with the same second agents before hematopoietic stem cell transplantation. This work reviews the pharmacological data of these two dimethanesulfonates alkylating agents. Specifically, the article looks at their chemistry, metabolism, anticancer activity, and their pharmacokinetics and pharmacodynamics. Busulfan has been investigated widely for more than three decades leading to a large and precise handling of this agent with numerous studies on activity and pharmacokinetics and pharmacodynamics. In contrast, the behavior of treosulfan is still under investigation and not fully described. The complexity of treosulfan's metabolism and mechanism of action gives rise to the need of a deeper understanding of its pharmacological activity in a context of high-dose chemotherapy. Specifically, there is a great need to better understand its pharmacokinetics/pharmacodynamics relationship.

  5. Supercapacitive transport of pharmacologic agents using nanoporous gold electrodes.

    Science.gov (United States)

    Gittard, Shaun D; Pierson, Bonnie E; Ha, Cindy M; Wu, Chung-An Max; Narayan, Roger J; Robinson, David B

    2010-02-01

    In this study, nanoporous gold supercapacitors were produced by electrochemical dealloying of gold-silver alloy. Scanning electron microscopy and energy dispersive X-ray spectroscopy confirmed completion of the dealloying process and generation of a porous gold material with approximately 10 nm diameter pores. Cyclic voltammetry and chronoamperometry of the nanoporous gold electrodes indicated that these materials exhibited supercapacitor behavior. The storage capacity of the electrodes measured by chronoamperometry was approximately 3 mC at 200 mV. Electrochemical storage and voltage-controlled delivery of two model pharmacologic agents, benzylammonium and salicylic acid, was demonstrated. These results suggest that capacitance-based storage and delivery of pharmacologic agents may serve as an alternative to conventional drug delivery methods.

  6. Potential New Pharmacological Agents Derived From Medicinal Plants for the Treatment of Pancreatic Cancer.

    Science.gov (United States)

    Azimi, Haniye; Khakshur, Ali Asghar; Abdollahi, Mohammad; Rahimi, Roja

    2015-01-01

    In the present article, we reviewed plants and phytochemical compounds demonstrating beneficial effects in pancreatic cancer to find new sources of pharmaceutical agents. For this purpose, Scopus, PubMed, Web of Science, and Google scholar were searched for plants or herbal components with beneficial effects in the treatment of pancreatic cancer. Data were collected up to January 2013. The search terms were "plant," "herb," "herbal therapy," or "phytotherapy" and "pancreatic cancer" or "pancreas." All of the human in vivo and in vitro studies were included. According to studies, among diverse plants and phytochemicals, 12 compounds including apigenin, genistein, quercetin, resveratrol, epigallocatechin gallate, benzyl isothiocyanate, sulforaphane, curcumin, thymoquinone, dihydroartemisinin, cucurbitacin B, and perillyl alcohol have beneficial action against pancreatic cancer cells through 4 or more mechanisms. Applying their plausible synergistic effects can be an imperative approach for finding new efficient pharmacological agents in the treatment of pancreatic cancer.

  7. The use of monoamine pharmacological agents in the treatment of sexual dysfunction: evidence in the literature.

    Science.gov (United States)

    Moll, Jennifer L; Brown, Candace S

    2011-04-01

    The monoamine neurotransmitters serotonin, dopamine, and norepinephrine play an important role in many medical and psychological conditions, including sexual responsiveness and behavior. Pharmacological agents that modulate monoamines may help alleviate sexual dysfunction. To provide an overview of pharmacological agents that modulate monoamines and their use in the treatment of sexual dysfunction. EMBASE and PubMed search for articles published between 1950 and 2010 using key words "sexual dysfunction,"monoamines,"monoaminergic receptors," and "generic names for pharmacological agents." To assess the literature evaluating the efficacy of monoamine pharmacologic agents used in the treatment of sexual dysfunction. The literature primarily cites the use of monoaminergic agents to treat sexual side effects from serotonergic reuptake inhibitors (SSRIs), with bupropion, buspirone and ropinirole providing the most convincing evidence. Controlled trials have shown that bupropion improves overall sexual dysfunction, but not frequency of sexual activity in depressed and nondepressed patients. Nefazodone and apomorphine have been used to treat sexual dysfunction, but their use is limited by significant side effect and safety profiles. New research on pharmacologic agents with subtype selectivity at dopaminergic and serotonergic receptors and those that possess dual mechanisms of action are being investigated. There has been tremendous progress over the past 50 years in understanding the role of monoamines in sexual function and the effect of pharmacologic agents which stimulate or antagonize monoaminergic receptors on sexual dysfunction. Nevertheless, large, double-blind, placebo-controlled studies evaluating the efficacy of currently available agents in populations without comorbid disorders are limited, preventing adequate interpretation of data. Continued research on sexual function and specific receptor subtypes will result in the development of more selective

  8. The pharmacology and toxicology of three new biologic agents used in pulmonary medicine.

    Science.gov (United States)

    Albertson, T E; Walby, W F; Allen, R P; Tharratt, R S

    1995-01-01

    Biological agents have played an important role in the evolution of modern medical therapeutics. Recent advances in biologicals have in part been stimulated by the biotechnology revolution seen over the last several years. Toxicologists need to be aware of the proposed mechanisms and approved and experimental uses of these new biologic agents. Further, controversies about their use, efficacy, cost issues and potential toxicities should be known. Often these drugs are designed for small patient populations thus limiting the availability of human toxicological data bases. This paper reviews the pharmacology and toxicology of three new biologics (recombinant human DNase I, alpha 1-protease inhibitor, and nitric oxide). These agents appear to have important roles in treating specific diseases or disease states seen in pulmonary medicine.

  9. Acid-Sensing Ion Channels as Potential Pharmacological Targets in Peripheral and Central Nervous System Diseases.

    Science.gov (United States)

    Radu, Beatrice Mihaela; Banciu, Adela; Banciu, Daniel Dumitru; Radu, Mihai

    2016-01-01

    Acid-sensing ion channels (ASICs) are widely expressed in the body and represent good sensors for detecting protons. The pH drop in the nervous system is equivalent to ischemia and acidosis, and ASICs are very good detectors in discriminating slight changes in acidity. ASICs are important pharmacological targets being involved in a variety of pathophysiological processes affecting both the peripheral nervous system (e.g., peripheral pain, diabetic neuropathy) and the central nervous system (e.g., stroke, epilepsy, migraine, anxiety, fear, depression, neurodegenerative diseases, etc.). This review discusses the role played by ASICs in different pathologies and the pharmacological agents acting on ASICs that might represent promising drugs. As the majority of above-mentioned pathologies involve not only neuronal dysfunctions but also microvascular alterations, in the next future, ASICs may be also considered as potential pharmacological targets at the vasculature level. Perspectives and limitations in the use of ASICs antagonists and modulators as pharmaceutical agents are also discussed. © 2016 Elsevier Inc. All rights reserved.

  10. Effects of various pharmacological agents on exposed heart of uromastix hardwickii

    International Nuclear Information System (INIS)

    Qureshi, M.A.; Mahmood, A.

    2011-01-01

    Background: The pharmacological and physiological studies on cardiac activity of reptiles specifically of Uromastix hardwickii are scarcely available in literature, as well as the effects of parasympathetic and sympathetic agonists together are also not available. Therefore, the mechanical and electrophysiological effects of pharmacological agents, like Physostigmine and its effects before and after Adrenaline administration were observed on the exposed and intact heart of a reptile, Uromastix hardwickii. Method: To work on exposed heart of Uromastix hardwickii, Physostigmine and Adrenaline were prepared by dissolving 0.01 gm in 10 ml of distilled water. Oscillograph was used to record the mechanical and electrical activity of intact heart through isotonic transducer. Result: Physostigmine was found to produce significant effect on Systolic Force (SF), Duration of cardiac cycle (DCC) and Duration of Phase 4 (DP4). Significant effect of Physostigmine was also observed on heart rate (HR) before Adrenaline administration and on DP4 after Adrenaline administration. Conclusion: It was confirmed that Physostigmine does not exhibit its normal effect on Amplitude of Action Potential, cardiac cycle (CC), Duration of action potential (DAP), Plateau Duration and DP4. Physostigmine is affecting the cardiac activity of this reptile without inhibiting the cholinesterase and not accumulating the Acetylcholine. It modulates the effects of Adrenaline when used before the administration of Adrenaline. (author)

  11. Pharmacological toxicological studies on certain drugs subjected to radiation or used radioprotective agents

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, S H.M. [Durng Research Dept., National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, (Egypt)

    1995-10-01

    The present study represents two main subjects. The first encounters the effect of radiosterilization of certain pharmaceretical preparations such as antihistaminics (cimetidine), anticonvulsants (diazepam), beta and calcium channel blacker (propranolol and verapamil) on their pharmacological activity. Results of this study revealed that the previously mentioned drugs can be effectively and safely sterilized by gamma irradiation without deleterious effect on their pharmacological activity. The other subject presented in this study is essentially a pharmacological subject encountering toxicological problems. Data of this study demonstrated that chemical radiation protection has been successfully reported using single drug administration has been successfully reported using single drug administration such as imidazole, and Sh-bearing compounds. In the present work, the radioprotective effect of imidazole was demonstrated on the cardiovascular and respiratory systems. Furthermore, combined drug administration was found to exert more protective action with less toxicity and therefore minimize the side effects of the radioprotective drugs. Thus, combination of imidazole and serotonin showed potential protective effect on blood gases was also reported. In addition, combination of cysteine and vitamin E afforded a better protection on adrenocortical function in rats than either agent alone. 4 figs., 1 tab.

  12. Pharmacological toxicological studies on certain drugs subjected to radiation or used radioprotective agents

    International Nuclear Information System (INIS)

    Hassan, S.H.M.

    1995-01-01

    The present study represents two main subjects. The first encounters the effect of radiosterilization of certain pharmaceretical preparations such as antihistaminics (cimetidine), anticonvulsants (diazepam), beta and calcium channel blacker (propranolol and verapamil) on their pharmacological activity. Results of this study revealed that the previously mentioned drugs can be effectively and safely sterilized by gamma irradiation without deleterious effect on their pharmacological activity. The other subject presented in this study is essentially a pharmacological subject encountering toxicological problems. Data of this study demonstrated that chemical radiation protection has been successfully reported using single drug administration has been successfully reported using single drug administration such as imidazole, and Sh-bearing compounds. In the present work, the radioprotective effect of imidazole was demonstrated on the cardiovascular and respiratory systems. Furthermore, combined drug administration was found to exert more protective action with less toxicity and therefore minimize the side effects of the radioprotective drugs. Thus, combination of imidazole and serotonin showed potential protective effect on blood gases was also reported. In addition, combination of cysteine and vitamin E afforded a better protection on adrenocortical function in rats than either agent alone. 4 figs., 1 tab

  13. Scopolamine provocation-based pharmacological MRI model for testing procognitive agents.

    Science.gov (United States)

    Hegedűs, Nikolett; Laszy, Judit; Gyertyán, István; Kocsis, Pál; Gajári, Dávid; Dávid, Szabolcs; Deli, Levente; Pozsgay, Zsófia; Tihanyi, Károly

    2015-04-01

    There is a huge unmet need to understand and treat pathological cognitive impairment. The development of disease modifying cognitive enhancers is hindered by the lack of correct pathomechanism and suitable animal models. Most animal models to study cognition and pathology do not fulfil either the predictive validity, face validity or construct validity criteria, and also outcome measures greatly differ from those of human trials. Fortunately, some pharmacological agents such as scopolamine evoke similar effects on cognition and cerebral circulation in rodents and humans and functional MRI enables us to compare cognitive agents directly in different species. In this paper we report the validation of a scopolamine based rodent pharmacological MRI provocation model. The effects of deemed procognitive agents (donepezil, vinpocetine, piracetam, alpha 7 selective cholinergic compounds EVP-6124, PNU-120596) were compared on the blood-oxygen-level dependent responses and also linked to rodent cognitive models. These drugs revealed significant effect on scopolamine induced blood-oxygen-level dependent change except for piracetam. In the water labyrinth test only PNU-120596 did not show a significant effect. This provocational model is suitable for testing procognitive compounds. These functional MR imaging experiments can be paralleled with human studies, which may help reduce the number of false cognitive clinical trials. © The Author(s) 2015.

  14. Pharmacological interactions of anti-microbial agents in odontology.

    Science.gov (United States)

    Gómez-Moreno, Gerardo; Guardia, Javier; Cutando, Antonio; Calvo-Guirado, José-Luis

    2009-03-01

    In this third article we describe the pharmacological interactions resulting from the use of anti-microbial agents. Although the antimicrobials prescribed in odontology are generally safe they can produce interactions with other medicaments which can give rise to serious adverse reactions which are well documented in clinical studies. Antibiotics with grave and dangerous life threatening consequences are erythromycin, clarithromycin and metronidazol and the anti-fungal agents are ketoconazol and itraconazol. Regarding the capacity of the anti-microbials to reduce the efficacy of oral anti-contraceptives the clinical studies to date are inconclusive, however, it would be prudent for the oral cavity specialist to point out the risk of a possible interaction. Therefore the specialist should be aware of possible interactions as a consequence of administering an antibiotic together with other medicaments the patient may be taking.

  15. Pharmacological characterization of Tc-99m(CN-t-butyl)/sub 6//sup +/: A potential heart agent

    International Nuclear Information System (INIS)

    Pendleton, D.B.; Delano, M.L.; Sands, H.; Gallagher, B.M.; Liteplo, M.P.; Camin, L.L.; Subramanyam, V.

    1984-01-01

    The authors have investigated the pharmacological behavior of hexakis (t-butylisonitrile)Tc(I) and evaluated it as a potential myocardial perfusion radiopharmaceutical. This complex produces good to excellent heart images in rats, guinea pigs, rabbits, cats, dogs, pigs and baboons. Good heart uptake in guinea pigs, cats and pigs may be predictive of good myocardial imaging in man, since the hearts of these three species extract Tl-201, but not Tc-99m(dmpe)/sub 2/-Cl/sub 2//sup +/ (similar to man, but unlike other animal species). Biodistribution studies reveal initial heart uptake of 1.3 to 2.2% of the injected activity. Imaging and biodistribution show significant initial lung activity which clears substantially during the first hour after injection. Little or no myocardial washout is observed. In rabbits with ischemia induced by coronary artery ligation, the complex distributes as a function of blood flow. Simultaneous injection of Tl-201 and Tc-99m (CN-t-butyl)/sub 6//sup +/ with subsequent dual isotope imaging shows that their initial distribution is a similar. The complex is extracted 100% by isolated rabbit and guinea pig hearts perfused with buffer. When human blood is mixed and co-injected with the complex, myocardial extraction is reduced, but remains high (73-75%). Uptake of the complex by rat myocytes in culture is not inhibited by either ouabain or K/sup +/. These results suggest that this complex may be a promising myocardial perfusion agent and should be tested in man

  16. Medicinal, Pharmacological and Phytochemical Potentials of ...

    African Journals Online (AJOL)

    Medicinal, Pharmacological and Phytochemical Potentials of Annona Comosus linn. ... Therapeutic plants, and the drugs derived from them, are the most important ... also as treatment to: diarrhea, indigestion, pneumonia, bronchitis, arthritis, ...

  17. Pharmacological studies of dopamine transporter imaging agent 125/131I-β-CIT

    International Nuclear Information System (INIS)

    Ding Shiyu; Zhou Xiang; Chen Zhengping; Wu Chunying; Lin Yansong; Ji Shuren; Lu Chunxiong; Fang Ping; Tang Jun; Wang Feng

    2001-01-01

    To prepare 125/131 I-β-CIT (2β-carbomethoxy-3β-(4-iodophenyl) tropane) as an imaging agent for dopamine transporter (DAT), the labelling method from tributylstannyl precursor with peracetic acid has been reported. The radiochemical purity (RCP) of the labelled compound was over 95% determined by HPLC and TLC. The stability, partition coefficients were also determined. The pharmacological studies of the imaging agent were performed in rats, mice, rabbits and normal monkey. The ligand showed preferable uptake in brain (1.9% ID/organ in rats and 4.5% ID/organ in mice at 5 min). The ratios of striatum/cerebellum, hippocampus/cerebellum and cortex/cerebellum were 28.9, 3.97 and 4.75 at 6 h in rats, and 8.52, 2.99 and 3.06 at 6 h in mice, respectively. In monkey brain imaging the ratios of striatum/frontal cortex (ST/FC) and striatum/occipital cortex (ST/OC) were 5.14 and 5.97 at 4h, respectively. All of above showed the high affinity of the ligand to DAT. The compound was primarily metabolized in liver because the hepatic uptake was much higher than other organs (75.4% ID/organ at 18h). The half-life of blood elimination was 5 min. The dose received by mice was 2500 times as high as that received by human in the test of undue toxicity, which evaluated the safety of the agent. All the results suggest that β-CIT can be used as a potential DAT imaging agent

  18. Pharmacological Inhibitors of NAD Biosynthesis as Potential An ticancer Agents.

    Science.gov (United States)

    Lucas, Stephanie; Soave, Claire; Nabil, Ghazal; Ahmed, Zainab Sabry Othman; Chen, Guohua; El-Banna, Hossny Awad; Dou, Q Ping; Wang, Jian

    2017-01-01

    Alteration of cellular metabolism is a hallmark of cancer, which underlies exciting opportunities to develop effective, anti-cancer therapeutics through inhibition of cancer metabolism. Nicotinamide Adenine Dinucleotide (NAD+), an essential coenzyme of energy metabolism and a signaling molecule linking cellular energy status to a spectrum of molecular regulation, has been shown to be in high demand in a variety of cancer cells. Depletion of NAD+ by inhibition of its key biosynthetic enzymes has become an attractive strategy to target cancer. The main objective of this article is to review the recent patents which develop and implicate the chemical inhibitors of the key NAD+ biosynthetic enzymes for cancer treatment. We first discuss the biological principles of NAD+ metabolism in normal and malignant cells, with a focus on the feasibility of selectively targeting cancer cells by pharmacological inhibition of nicotinamide phosphoribosyltransferase (NAMPT) and indoleamine/tryptophan 2,3-dioxygenases (IDO/TDO), the rate-limiting salvage and de novo NAD+ biosynthetic enzymes, respectively. We then analyze a series of recent patents on development and optimization of chemical scaffolds for inhibiting NAMPT or IDO/TDO enzymes as potential anticancer drugs. Conclusion and Results: We have reviewed 16 relevant patents published since 2015, and summarized the chemical properties, mechanisms of action and proposed applications of the patented compounds. Without a better understanding of the properties of these compounds, their utility for further optimization and clinical use is unknown. For the compounds that have been tested using cell and mouse models of cancer, results look promising and clinical trials are currently ongoing to see if these results translate to improved cancer treatments. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Pharmacological potential and conservation prospect of the genus Eucomis (Hyacinthaceae) endemic to southern Africa.

    Science.gov (United States)

    Masondo, Nqobile A; Finnie, Jeffrey F; Van Staden, Johannes

    2014-01-01

    The genus Eucomis (Hyacinthaceae) consists of 10 species that are extensively used in African traditional medicine. This review is an appraisal of current information on the distribution and morphology, traditional uses, pharmacology, toxicology and approaches devised to enhance the conservation of the genus. A systematic and comprehensive literature search using electronic searches such as Scopus, Google Scholar, Web of Science and ethnobotanical books was conducted. Evidence from traditional medicine usage shows wide utilization of this genus for ailments such as respiratory, venereal diseases, rheumatism as well as kidney and bladder infections. Pharmacological screening reported antimicrobial, antiplasmodial, antitumor, cytotoxic, phytotoxic and anti-inflammatory properties. The potential of the genus Eucomis especially in terms of pharmacology cannot be overemphasized. Apart from the anti-inflammatory properties, the antifungal activity of Eucomis remains a valuable reservoir with potential application in the agriculture sector as a source of an affordable biocontrol agent. Based on the speculated toxic constituents in the genus Eucomis, it will be valuable to conduct detailed toxicological studies. Extensive utilization of members of the genus Eucomis is causing severe strain on wild populations. Although conventional propagation has been relatively effective in the alleviation of the declining status, micropropagation of members may be vital to guarantee the conservation of wild populations. © 2013 Elsevier Ireland Ltd. All rights reserved.

  20. Pharmacological Analysis of Vorinostat Analogues as Potential Anti-tumor Agents Targeting Human Histone Deacetylases: an Epigenetic Treatment Stratagem for Cancers.

    Science.gov (United States)

    Praseetha, Sugathan; Bandaru, Srinivas; Nayarisseri, Anuraj; Sureshkumar, Sivanpillai

    2016-01-01

    Alteration of the acetylation status of chromatin and other non-histone proteins by HDAC inhibitors has evolved as an excellent epigenetic strategy in treatment of cancers. The present study was sought to identify compounds with positive pharmacological profiles targeting HDAC1. Analogues of Vorinostat synthesized by Cai et al, 2015 formed the test compounds for the present pharmacological evaluation. Hydroxamte analogue 6H showed superior pharmacological profile in comparison to all the compounds in the analogue dataset owing to its better electrostatic interactions and hydrogen bonding patterns. In order to identify compounds with even better high affinity and pharmacological profile than 6H and Vorinostat, virtual screening was performed. A total of 83 compounds similar to Vorinostat and 154 compounds akin to analogue 6H were retrieved. SCHEMBL15675695 (PubCid: 15739209) and AKOS019005527 (PubCid: 80442147) similar to Vorinostat and 6H, were the best docked compounds among the virtually screened compounds. However, in spite of having good affinity, none of the virtually screened compounds had better affinity than that of 6H. In addition SCHEMBL15675695 was predicted to be a carcinogen while AKOS019005527 is Ames toxic. From, our extensive analysis involving binding affinity analysis, ADMET properties predictions and pharmacophoric mappings, we report Vorinostat hydroxamate analogue 6H to be a potential candidate for HDAC inhibition in treatment of cancers through an epigenetic strategy.

  1. Synthesis and Pharmacological Evaluation of Novel Benzenesulfonamide Derivatives as Potential Anticonvulsant Agents

    Directory of Open Access Journals (Sweden)

    Zhiming Wang

    2015-09-01

    Full Text Available A novel series of benzenesulfonamide derivatives containing 4-aminobenzenesul-fonamide and α-amides branched valproic acid or 2,2-dimethylcyclopropanecarboxylic acid moieties were synthesized and screened for their anticonvulsant activities in mice maximal electroshock seizure (MES and subcutaneous pentylenetetrazole (scPTZ test. The activity experimental study showed that 2,2-dipropyl-N1-(4-sulfamoylphenylmalonamide (18b had the lowest median effective dose (ED50 of 16.36 mg/kg in MES test, and 2,2-dimethyl-N-(4-sulfamoylphenylcyclopropane-1,1-dicarboxamide (12c had the lowest ED50 of 22.50 mg/kg in scPTZ test, which resulted in the protective indexe (PI of 24.8 and 20.4, respectively. These promising data suggest the new compounds have good potential as new class of anticonvulsant agents with high effectiveness and low toxicity for the treatment of epilepsy.

  2. Pharmacologic therapy for acute pancreatitis

    Science.gov (United States)

    Kambhampati, Swetha; Park, Walter; Habtezion, Aida

    2014-01-01

    While conservative management such as fluid, bowel rest, and antibiotics is the mainstay of current acute pancreatitis management, there is a lot of promise in pharmacologic therapies that target various aspects of the pathogenesis of pancreatitis. Extensive review of preclinical studies, which include assessment of therapies such as anti-secretory agents, protease inhibitors, anti-inflammatory agents, and anti-oxidants are discussed. Many of these studies have shown therapeutic benefit and improved survival in experimental models. Based on available preclinical studies, we discuss potential novel targeted pharmacologic approaches that may offer promise in the treatment of acute pancreatitis. To date a variety of clinical studies have assessed the translational potential of animal model effective experimental therapies and have shown either failure or mixed results in human studies. Despite these discouraging clinical studies, there is a great clinical need and there exist several preclinical effective therapies that await investigation in patients. Better understanding of acute pancreatitis pathophysiology and lessons learned from past clinical studies are likely to offer a great foundation upon which to expand future therapies in acute pancreatitis. PMID:25493000

  3. Current trends and future development in pharmacologic stress testing

    International Nuclear Information System (INIS)

    Bae, Jin Ho; Lee, Jae Tae

    2005-01-01

    Pharmacologic stress testing for myocardial perfusion imaging is a widely used noninvasive method for the evaluation of known or suspected coronary artery disease. The use of exercise for cardiac stress has been practiced for over 60 years and clinicians are familiar with its using. However, there are inevitable situations in which exercise stress is inappropriate. A large number of patients with cardiac problems are unable to exercise to their full potential due to comorbidity such as osteoarthritis, vascular disease and pulmonary disease and a standard exercise stress test for myocardial perfusion imaging is suboptimal means for assessment of coronary artery disease. This problem has led to the development of the pharmacologic stress test and to a great increase in its popularity. All of the currently used pharmacologic agents have well-documented diagnostic value. This review deals the physiological actions, clinical protocols, safety, nuclear imaging applications of currently available stress agents and future development of new vasodilating agents

  4. Structure, function, pharmacology and therapeutic potential of the G protein, Gα/q,11

    Directory of Open Access Journals (Sweden)

    Danielle eKamato

    2015-03-01

    Full Text Available G protein coupled receptors are one of the major classes of cell surface receptors and are associated with a group of G proteins consisting of 3 subunits termed alpha, beta and gamma. G proteins are classified into four families according to their α subunit; Gαi, Gαs, Gα12/13 and Gαq. There are several downstream pathways of Gαq of which the best known is upon activation via GTP, Gαq activates phospholipase Cβ, hydrolysing phosphatidylinositol 4,5-biphosphate into diacylglycerol and inositol triphosphate and activating protein kinase C and increasing calcium efflux from the endoplasmic recticulum. Although G proteins, in particular the Gαq/11 are central elements in GPCR signalling, their actual roles have not yet been thoroughly investigated. The lack of research of the role on Gαq/11 in cell biology is partially due to the obscure nature of the available pharmacological agents. YM-254890 is the most useful Gαq-selective inhibitor with antiplatelet, antithrombotic and thrombolytic effects. YM-254890 inhibits Gαq signalling pathways by preventing the exchange of GDP for GTP. UBO-QIC is a structurally similar compound to YM-254890 which can inhibit platelet aggregation and cause vasorelaxation in rats. Many agents are available for the study of signalling downstream of Gαq/11. The role of G proteins could potentially represents a novel therapeutic target to block all G protein dependent mechanisms. This review will explore the range of pharmacological and molecular tools available for the study of the role of Gαq/11 in GPCR signalling.

  5. Pharmacokinetics of cotinine in rats: a potential therapeutic agent for disorders of cognitive function.

    Science.gov (United States)

    Li, Pei; Beck, Wayne D; Callahan, Patrick M; Terry, Alvin V; Bartlett, Michael G

    2015-06-01

    Attention has been paid to cotinine (COT), one of the major metabolites of nicotine (NIC), for its pro-cognitive effects and potential therapeutic activities against Alzheimer's disease (AD) and other types of cognitive impairment. In order to facilitate pharmacological and toxicological studies on COT for its pro-cognitive activities, we conducted a pharmacokinetic (PK) study of COT in rats, providing important oral and intravenously (iv) PK information. In this study, plasma samples were obtained up to 48 h after COT was dosed to rats orally and iv at a dose of 3mg/kg. Plasma samples were prepared and analyzed using a sensitive liquid chromatography tandem mass spectrometry (LC-MS/MS) bioanalytical method, providing concentration profiles of COT and metabolites after oral and iv administrations. The data were fitted into a one-compartment model and a two-compartment model for the oral and iv groups, respectively, providing important PK information for COT including PK profiles, half-life, clearance and bioavailability. The results suggested fast absorption, slow elimination and high bioavailability of COT in rats. Several important facts about the PK properties in rats suggested COT could be a potential pro-cognitive agent. Information about the pharmacokinetics of COT in rats revealed in this study is of great importance for the future studies on COT or potential COT analogs as agents for improving cognition. Copyright © 2014 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  6. Hemodynamic effects of a novel pharmacologic stress agent, Higemine

    International Nuclear Information System (INIS)

    Zhang, X.L.; Liu, X.J.; Tao, Z.H.; Shi, R.F.

    2002-01-01

    Objective: Higenamine (dl-demethylcodaurine) (HG), which was isolated from aconitum japonicum. This study was to evaluate the hemodynamic effects of HG in animal study. Methods: We compared the hemodynamic effects of HG (0.5-4μg/min/kg) with Dobutamine (Dob) (5-30μg/min/kg) in 6 dogs: heart rate (HR), blood pressure (BP), coronary blood flow (CBF), myocardial oxygen consumption (MOC) were measured. Tolerability and safety of HG (1-500μg/mg/min) were evaluated in 8 dogs. Results: Comparison of hemodynamic effects between Dob an HG was presented. SBP: systolic blood pressure; DP: diastolic blood pressure; P<0.01; P<0.05. Diastolic BP slightly decreased, but systolic BP did not change significantly during HG infusion. There was no significant ECG abnormalities and side effects during HG infusion. Conclusion: HG might be a safe and useful pharmacologic stress agent, especially for patients with severe hypertension

  7. Cultivation of the red algae Kappaphycus alvarezii in Brazil and its pharmacological potential

    Directory of Open Access Journals (Sweden)

    Leila Hayashi

    2012-04-01

    Full Text Available Kappaphycus alvarezii (Rhodophyta, Gigartinales is a red algae widely cultivated as the main source of raw material for the carrageenan industry. This hydrocolloid is normally used in the food industry as a gelling and stabilizing agent. The facility of its commercial farming based on vegetative propagation promoted the success of the aquaculture of this macroalgae that consequently stimulated studies focusing on new potential uses of this resource. This work presents a brief review of the studies related to K. alvarezii cultivation in southern and southeastern Brazil, the latest discoveries in the world concerning pharmacological studies with this species and the advantages of the use of carrageenan as a source of dietary fiber, cholesterol reducer, and antioxidant, anti-viral and anti-cancer compounds, as well as the effects in hemagglutination activity.

  8. Cultivation of the red algae Kappaphycus alvarezii in Brazil and its pharmacological potential

    Directory of Open Access Journals (Sweden)

    Leila Hayashi

    2012-08-01

    Full Text Available Kappaphycus alvarezii (Rhodophyta, Gigartinales is a red algae widely cultivated as the main source of raw material for the carrageenan industry. This hydrocolloid is normally used in the food industry as a gelling and stabilizing agent. The facility of its commercial farming based on vegetative propagation promoted the success of the aquaculture of this macroalgae that consequently stimulated studies focusing on new potential uses of this resource. This work presents a brief review of the studies related to K. alvarezii cultivation in southern and southeastern Brazil, the latest discoveries in the world concerning pharmacological studies with this species and the advantages of the use of carrageenan as a source of dietary fiber, cholesterol reducer, and antioxidant, anti-viral and anti-cancer compounds, as well as the effects in hemagglutination activity.

  9. The Role of Pharmacology in Ureteral Physiology and Expulsive Therapy

    Science.gov (United States)

    Jerde, Travis J.; Nakada, Stephen Y.

    2007-04-01

    Research in the field of ureteral physiology and pharmacology has traditionally been directed toward relaxation of ureteral spasm as a mechanism of analgesia during painful ureteral obstruction, most often stone-induced episodes. However, interest in this field has expanded greatly in recent years with the expanded use of alpha-blocker therapy for inducing stone passage, a usage now termed "medical expulsive therapy". While most clinical reports involving expulsive therapy have focused on alpha receptor or calcium channel blockade, there are diverse studies investigating pharmacological ureteral relaxation with novel agents including cyclooxygenase inhibitors, small molecule beta receptor agonists, neurokinin antagonists, and phosphodiesterase inhibitors. In addition, cutting edge molecular biology research is revealing promising potential therapeutic targets aimed at specific molecular changes that occur during the acute obstruction that accompanies stone disease. The purpose of this report is to review the use of pharmacological agents as ureteral smooth muscle relaxants clinically, and to look into the future of expulsive therapy by reviewing the available literature of ureteral physiology and pharmacology research.

  10. A Quantitative Ethnopharmacological Documentation of Natural Pharmacological Agents Used by Pediatric Patients in Mauritius

    Directory of Open Access Journals (Sweden)

    M. Fawzi Mahomoodally

    2014-01-01

    Full Text Available The pediatric population constitutes the most vulnerable patients due to a dearth of approved drugs. Consequently, there is a pressing need to probe novel natural pharmacological agents in an endeavour to develop new drugs to address pediatric illnesses. To date, no studies have explored the use of natural therapies for pediatric health care in Mauritius. Parents (n=325 from different regions of the island were interviewed. Quantitative indexes such as fidelity level (FL, informant consensus factor (FIC, and use-value (UV were calculated. Thirty-two plants were reported to be used by pediatric patients. Gastrointestinal disorders (FIC=0.97 encompassing regurgitation, infantile colic, and stomach aches were the most common ailments managed with herbs. Matricaria chamomilla used for infantile colic and its pharmacological properties has previously been documented for pediatric patients. Product from A. mellifera (UV = 0.75 was the most utilized zootherapy for managing cough. Most plants and animal products reported in this study have bioactive constituents supported by existing scientific literature but their use for the pediatric population is scant. The present ethnopharmacological study has opened new perspectives for further research into their pharmacology, which can subsequently support and facilitate timely pediatric medicinal product development.

  11. Methamphetamine-induced hyperthermia and dopaminergic neurotoxicity in mice: pharmacological profile of protective and nonprotective agents.

    Science.gov (United States)

    Albers, D S; Sonsalla, P K

    1995-12-01

    Neurotoxic doses of methamphetamine (METH) can cause hyperthermia in experimental animals. Damage sustained to dopaminergic nerve terminals by this stimulant can be reduced by environmental cooling or by pharmacological manipulation which attenuates the hyperthermia. Many pharmacological agents with very diverse actions protect against METH-induced neuropathology. Several of these compounds, as well as drugs which do not protect, were investigated to determine if there was a relationship between protection and METH-induced hyperthermia. Mice received METH with or without concurrent administration of other drugs and core (i.e., colonic) temperature was monitored during treatment. The animals were sacrificed > or = 5 days later and neostriatal tyrosine hydroxylase activity and dopamine were measured. Core temperature was significantly elevated (> or = 2 degrees C) in mice treated with doses of METH which produced > or = 90% losses in striatal dopamine but not in mice less severally affected (only 50% loss of dopamine). Concurrent treatment of mice with METH and pharmacological agents which protected partially or completely from METH-induced toxicity also prevented the hyperthermic response (i.e., dopamine receptor antagonists, fenfluramine, dizocilpine, alpha-methyl-p-tyrosine, phenytoin, aminooxyacetic acid and propranol). These findings are consistent with the hypothesis that the hyperthermia produced by METH contributes to its neuropathology. However, studies with reserpine, a compound which dramatically lowers core temperature, demonstrated that hyperthermia per se is not a requirement for METH-induced neurotoxicity. Although core temperature was elevated in reserpinized mice treated with METH as compared with reserpinized control mice, their temperatures remained significantly lower than in nonreserpinized control mice. However, the hypothermic state produced in the reserpinized mice did not provide protection from METH-induced toxicity. These data demonstrate

  12. Tioconazole, a new imidazole-antifungal agent for the treatment of dermatomycoses. Antifungal and pharmacologic properties.

    Science.gov (United States)

    Marriott, M S; Baird, J R; Brammer, K W; Faulkner, J K; Halliwell, G; Jevons, S; Tarbit, M H

    1983-01-01

    Tioconazole is a new imidazole antifungal agent with broad-spectrum activity. Its in vitro activity against common dermal pathogens is generally better than miconazole by a factor of 2-8. This activity is paralleled by good topical efficacy in a guinea pig dermatomycosis model. Pharmacokinetic studies in animals have demonstrated minimal systemic exposure following dermal application. Acute general pharmacology studies have shown that the compound is well tolerated in animals and unlikely to produce side-effects in man.

  13. Nutraceutical or Pharmacological Potential of Moringa oleifera Lam.

    Science.gov (United States)

    Kou, Xianjuan; Li, Biao; Olayanju, Julia B; Drake, Justin M; Chen, Ning

    2018-03-12

    Moringa oleifera Lam. ( M. oleifera ), which belongs to the Moringaceae family, is a perennial deciduous tropical tree, and native to the south of the Himalayan Mountains in northern India. M. oleifera is rich in proteins, vitamin A, minerals, essential amino acids, antioxidants, and flavonoids, as well as isothiocyanates. The extracts from M. oleifera exhibit multiple nutraceutical or pharmacological functions including anti-inflammatory, antioxidant, anti-cancer, hepatoprotective, neuroprotective, hypoglycemic, and blood lipid-reducing functions. The beneficial functions of M. oleifera are strongly associated with its phytochemicals such as flavonoids or isothiocyanates with bioactivity. In this review, we summarize the research progress related to the bioactivity and pharmacological mechanisms of M. oleifera in the prevention and treatment of a series of chronic diseases-including inflammatory diseases, neuro-dysfunctional diseases, diabetes, and cancers-which will provide a reference for its potential application in the prevention and treatment of chronic diseases or health promotion.

  14. Pharmacological exploration of the resting membrane potential reserve

    DEFF Research Database (Denmark)

    van der Heyden, Marcel A G; Jespersen, Thomas

    2016-01-01

    as well as by exchangers and pumps. This review will focus on the relative and regulated contribution of IK1, IK,ACh and IK,Ca, and on pharmacological modification of the channels underlying these currents in respect to the resting membrane potential, Na(+) channel availability and atrial......The cardiac action potential arises and spreads throughout the myocardium as a consequence of highly organized spatial and temporal expression of ion channels conducting Na(+), Ca(2+) or K(+) currents. The cardiac Na(+) current is responsible for the initiation and progression of the action...... potential. Altered Na(+) current has been found implicated in a number of different arrhythmias, including atrial fibrillation. In the atrium, the resting membrane potential is more depolarized than in the ventricles, and as cardiac Na(+) channels undergo voltage-dependent inactivation close...

  15. DIVERSE POTENTIAL AND PHARMACOLOGICAL STUDIES OF ARGININE

    Directory of Open Access Journals (Sweden)

    Anju Meshram

    2015-09-01

    Full Text Available Arginine is metabolically flexible amino acid with major role in protein synthesis and detoxification of ammonia. It is involved in several metabolic pathways for the production of biologically active compounds such as creatine, nitric oxide, ornithine, glutamate, agmatine, citrulline and polyamines. Regarding this all, we review the crucial role of arginine in metabolism, diversified prospective uses and pharmacological applications. Arginine plays an important role in the treatment of tumorigenesis, asthama, gastric, erectile dysfunction, apoptosis, melanoma and congestive heart failure. Ability to produce nitric oxide offers various applications as in the prevention of age and hair loss. It serves as a precursor of creatine with ergogenic potential. The ability to increase endogenous growth hormone makes arginine a preferred supplement for the improvement of physical performance. In the present study details about the pharmacological applications of arginine based on modern scientific investigations have been discussed. There are immense properties hidden in arginine that need to be explored using the scientific investigations to make it beneficial for the medicine and human health. More research is needed to evaluate the role of arginine supplementation on exercise performance and training adaptations in healthy and diseased populations before taking any conclusions.

  16. Current Approaches and New Developments in the Pharmacological Management of Tourette Syndrome.

    Science.gov (United States)

    Quezada, Julio; Coffman, Keith A

    2018-01-01

    Tourette syndrome (TS) is a neurodevelopmental disorder of unknown etiology characterized by spontaneous, involuntary movements and vocalizations called tics. Once thought to be rare, TS affects 0.3-1% of the population. Tics can cause physical discomfort, emotional distress, social difficulties, and can interfere with education and desired activities. The pharmacologic treatment of TS is particularly challenging, as currently the genetics, neurophysiology, and neuropathology of this disorder are still largely unknown. However, clinical experience gained from treating TS has helped us better understand its pathogenesis and, as a result, derive treatment options. The strongest data exist for the antipsychotic agents, both typical and atypical, although their use is often limited in children and adolescents due to their side-effect profiles. There are agents in a variety of other pharmacologic categories that have evidence for the treatment of TS and whose side-effect profiles are more tolerable than the antipsychotics; these include clonidine, guanfacine, baclofen, topiramate, botulinum toxin A, tetrabenazine, and deutetrabenazine. A number of new agents are being developed and tested as potential treatments for TS. These include valbenazine, delta-9-tetrahydrocannabidiol, and ecopipam. Additionally, there are agents with insufficient data for efficacy, as well as agents that have been shown to be ineffective. Those without sufficient data for efficacy include clonazepam, ningdong granule, 5-ling granule, omega-3 fatty acids, and n-acetylcysteine. The agents that have been shown to be ineffective include pramipexole and metoclopramide. We will review all of the established pharmacologic treatments, and discuss those presently in development.

  17. Identification of novel anti-inflammatory agents from Ayurvedic medicine for prevention of chronic diseases: "reverse pharmacology" and "bedside to bench" approach.

    Science.gov (United States)

    Aggarwal, Bharat B; Prasad, Sahdeo; Reuter, Simone; Kannappan, Ramaswamy; Yadev, Vivek R; Park, Byoungduck; Kim, Ji Hye; Gupta, Subash C; Phromnoi, Kanokkarn; Sundaram, Chitra; Prasad, Seema; Chaturvedi, Madan M; Sung, Bokyung

    2011-10-01

    Inflammation, although first characterized by Cornelius Celsus, a physician in first Century Rome, it was Rudolf Virchow, a German physician in nineteenth century who suggested a link between inflammation and cancer, cardiovascular diseases, diabetes, pulmonary diseases, neurological diseases and other chronic diseases. Extensive research within last three decades has confirmed these observations and identified the molecular basis for most chronic diseases and for the associated inflammation. The transcription factor, Nuclear Factor-kappaB (NF-kappaB) that controls over 500 different gene products, has emerged as major mediator of inflammation. Thus agents that can inhibit NF-kappaB and diminish chronic inflammation have potential to prevent or delay the onset of the chronic diseases and further even treat them. In an attempt to identify novel anti-inflammatory agents which are safe and effective, in contrast to high throughput screen, we have turned to "reverse pharmacology" or "bed to benchside" approach. We found that Ayurveda, a science of long life, almost 6,000 years old, can serve as a "goldmine" for novel anti-inflammatory agents used for centuries to treat chronic diseases. The current review is an attempt to provide description of various Ayurvedic plants currently used for treatment, their active chemical components, and the inflammatory pathways that they inhibit.

  18. Pharmacological treatment of bowel obstruction in cancer patients.

    LENUS (Irish Health Repository)

    O'Connor, Brenda

    2012-02-01

    INTRODUCTION: Malignant bowel obstruction (MBO) is a common complication of advanced cancer, occurring most frequently in gynaecological and colorectal cancer. Its management remains complex and variable. This is in part due to the lack of evidence-based guidelines for the clinicians involved. Although surgery should be considered the primary treatment, this may not be feasible in patients with a poor performance status or advanced disease. Advances have been made in the medical management of MBO which can lead to a considerable improvement in symptom management and overall quality of life. AREAS COVERED: This review emphasizes the importance of a prompt diagnosis of MBO with early introduction of pharmacological agents to optimize symptom control. The authors summarize the treatment options available for bowel obstruction in those patients for whom surgical intervention is not a feasible option. The authors also explore the complexities involved in the introduction of parenteral hydration and total parenteral nutrition in this group of patients. EXPERT OPINION: It is not always easy to distinguish reversible from irreversible bowel obstruction. Early and aggressive management with the introduction of pharmacological agents including corticosteroids, octreotide and anti-cholinergic agents have the potential to maintain bowel patency, and allow for more rapid recovery of bowel transit. A combination of analgesics, anti-emetics and anti-cholinergics with or without anti-secretory agents can successfully improve symptom control in patients with irreversible bowel obstruction.

  19. Osthole: A Review on Its Bioactivities, Pharmacological Properties, and Potential as Alternative Medicine

    Directory of Open Access Journals (Sweden)

    Zhong-Rong Zhang

    2015-01-01

    Full Text Available This paper reviews the latest understanding of biological and pharmacological properties of osthole (7-methoxy-8-(3-methyl-2-butenyl-2H-1-benzopyran-2-one, a natural product found in several medicinal plants such as Cnidium monnieri and Angelica pubescens. In vitro and in vivo experimental results have revealed that osthole demonstrates multiple pharmacological actions including neuroprotective, osteogenic, immunomodulatory, anticancer, hepatoprotective, cardiovascular protective, and antimicrobial activities. In addition, pharmacokinetic studies showed osthole uptake and utilization are fast and efficient in body. Moreover, the mechanisms of multiple pharmacological activities of osthole are very likely related to the modulatory effect on cyclic adenosine monophosphate (cAMP and cyclic adenosine monophosphate (cGMP level, though some mechanisms remain unclear. This review aims to summarize the pharmacological properties of osthole and give an overview of the underlying mechanisms, which showcase its potential as a multitarget alternative medicine.

  20. Assessing the effects of pharmacological agents on respiratory dynamics using time-series modeling.

    Science.gov (United States)

    Wong, Kin Foon Kevin; Gong, Jen J; Cotten, Joseph F; Solt, Ken; Brown, Emery N

    2013-04-01

    Developing quantitative descriptions of how stimulant and depressant drugs affect the respiratory system is an important focus in medical research. Respiratory variables-respiratory rate, tidal volume, and end tidal carbon dioxide-have prominent temporal dynamics that make it inappropriate to use standard hypothesis-testing methods that assume independent observations to assess the effects of these pharmacological agents. We present a polynomial signal plus autoregressive noise model for analysis of continuously recorded respiratory variables. We use a cyclic descent algorithm to maximize the conditional log likelihood of the parameters and the corrected Akaike's information criterion to choose simultaneously the orders of the polynomial and the autoregressive models. In an analysis of respiratory rates recorded from anesthetized rats before and after administration of the respiratory stimulant methylphenidate, we use the model to construct within-animal z-tests of the drug effect that take account of the time-varying nature of the mean respiratory rate and the serial dependence in rate measurements. We correct for the effect of model lack-of-fit on our inferences by also computing bootstrap confidence intervals for the average difference in respiratory rate pre- and postmethylphenidate treatment. Our time-series modeling quantifies within each animal the substantial increase in mean respiratory rate and respiratory dynamics following methylphenidate administration. This paradigm can be readily adapted to analyze the dynamics of other respiratory variables before and after pharmacologic treatments.

  1. Pharmacologic management of chronic neuropathic pain

    Science.gov (United States)

    Mu, Alex; Weinberg, Erica; Moulin, Dwight E.; Clarke, Hance

    2017-01-01

    Abstract Objective To provide family physicians with a practical clinical summary of the Canadian Pain Society (CPS) revised consensus statement on the pharmacologic management of neuropathic pain. Quality of evidence A multidisciplinary interest group within the CPS conducted a systematic review of the literature on the current treatments of neuropathic pain in drafting the revised consensus statement. Main message Gabapentinoids, tricyclic antidepressants, and serotonin-norepinephrine reuptake inhibitors are the first-line agents for treating neuropathic pain. Tramadol and other opioids are recommended as second-line agents, while cannabinoids are newly recommended as third-line agents. Other anticonvulsants, methadone, tapentadol, topical lidocaine, and botulinum toxin are recommended as fourth-line agents. Conclusion Many pharmacologic analgesics exist for the treatment of neuropathic pain. Through evidence-based recommendations, the CPS revised consensus statement helps guide family physicians in the management of patients with neuropathic pain. PMID:29138154

  2. Complement-induced histamine release from human basophils. III. Effect of pharmacologic agents.

    Science.gov (United States)

    Hook, W A; Siraganian, R P

    1977-02-01

    Human serum activated with zymosan generates a factor (C5a) that releases histamine from autologous basophils. Previously we have presented evidence that this mechanism for C5a-induced release differs from IgE-mediated reactions. The effect of several pharmacologic agents known to alter IgE-mediated release was studied to determine whether they have a similar action on serum-induced release. Deuterium oxide (D2O), which enhances allergic release, inhibited in a concentration-dependent fashion the serum-induced reaction at incubation temperatures of 25 and 32 degrees C. The colchicine-induced inhibition was not reversed by D2O. Cytochalasin B, which gives a variable enhancement of IgE-mediated release, had a marked enhancing effect on the serum-induced reaction in all subjects tested. The following agents known to inhibit the IgE-mediated reaction also inhibited serum-induced release at 25 degrees C: colchicine, dibutyryl cyclic AMP, aminophylline, isoproterenol, cholera toxin, chlorphenesin, diethylcarbamazine, and 2-deoxy-D-glucose. These results suggest that the serum-induced release is modulated by intracellular cyclic AMP, requires energy, and is enhanced by the disruption of microfilaments. The lack of an effect by D2O would suggest that microtubular stabilization is not required. The data can be interpreted to indicate that IgE- and C5a-mediated reactions diverge at a late stage in the histamine release pathway.

  3. Botany, phytochemistry, pharmacology, and potential application of Polygonum cuspidatum Sieb.et Zucc.: a review.

    Science.gov (United States)

    Peng, Wei; Qin, Rongxin; Li, Xiaoli; Zhou, Hong

    2013-07-30

    Polygonum cuspidatum Sieb. et Zucc. (Polygonum cuspidatum), also known as Reynoutria japonica Houtt and Huzhang in China, is a traditional and popular Chinese medicinal herb. Polygonum cuspidatum with a wide spectrum of pharmacological effects has been used for treatment of inflammation, favus, jaundice, scald, and hyperlipemia, etc. The present paper reviews the traditional applications as well as advances in botany, phytochemistry, pharmacodynamics, pharmacokinetics and toxicology of this plant. Finally, the tendency and perspective for future investigation of this plant are discussed, too. A systematic review of literature about Polygonum cuspidatum is carried out using resources including classic books about Chinese herbal medicine, and scientific databases including Pubmed, SciFinder, Scopus, the Web of Science and others. Polygonum cuspidatum is widely distributed in the world and has been used as a traditional medicine for a long history in China. Over 67 compounds including quinones, stilbenes, flavonoids, counmarins and ligans have been isolated and identified from this plant. The root of this plant is used as the effective agent in pre-clinical and clinical practice for regulating lipids, anti-endotoxic shock, anti-infection and anti-inflammation, anti-cancer and other diseases in China and Japan. As an important traditional Chinese medicine, Polygonum cuspidatum has been used for treatment of hyperlipemia, inflammation, infection and cancer, etc. Because there is no enough systemic data about the chemical constituents and their pharmacological effects or toxicities, it is important to investigate the pharmacological effects and molecular mechanisms of this plant based on modern realization of diseases' pathophysiology. Drug target-guided and bioactivity-guided isolation and purification of the chemical constituents from this plant and subsequent evaluation of their pharmacologic effects will promote the development of new drug and make sure which

  4. Pharmacological effects and potential therapeutic targets of DT-13.

    Science.gov (United States)

    Khan, Ghulam Jilany; Rizwan, Mohsin; Abbas, Muhammad; Naveed, Muhammad; Boyang, Yu; Naeem, Muhammad Ahsan; Khan, Sara; Yuan, Shengtao; Baig, Mirza Muhammad Faran Ashraf; Sun, Li

    2018-01-01

    DT-13 is an isolated compound from Dwarf lillytruf tuber and currently among active research drugs by National Natural Science foundation of China for its several potential effects. The drug has been reported for its multiple pharmacological actions however no thorough review studies are available on it. Our present study is highlighting the pros and cons of DT-13 focusing on its potential pharmacological actions, therapeutic utilization and further exploration for novel targets. The drug possesses very low toxicity profile, quick onset and long duration of action with slow elimination that combinely makes it favorable for the clinical studies. In vivo and in vitro studies show that the drug regulates multiple cellular functions for its several pharmacological effects including, anti-adhesive effects via regulation of tissue factor and transforming growth factor; anti-migratory effects through indirect regulation of NM-IIA in the tumor microenvironment, Tissue factor, down-regulation of CCR5-CCL5 axis and MMP-2/9 inhibition; anti-metastatic effects via regulation of MMPs and tissue factor; pro-apoptotic effects by modulation of endocytosis of EGF receptor; anti-angiogenic effects via regulation of HIF-1α,ERK, Akt signalling and autophagy inducing characteristics by regulating PI3K/Akt/mTOR signalling pathway. In addition to anti-tumor activities, DT-13 has significant anti-inflammatory, cardioprotective, hepatoprotective and immunomodulating effects. Pharmaceutical dosage form and targeted drug delivery system for DT-13 has not been established yet. Moreover, DT-13, has not been studied for its action on brain, colorectal, hepatic, pancreatic, prostate and blood cancers. Similarly the effects of drug on carbohydrate and glucose metabolism is another niche yet to be explored. In some traditional therapies, crude drug from the plant is used against diabetic and neurological disorders that are not reported in scientific literature, however due to profound effects of

  5. Molecular and clinical pharmacology of intranasal corticosteroids: clinical and therapeutic implications.

    Science.gov (United States)

    Derendorf, H; Meltzer, E O

    2008-10-01

    Intranasal corticosteroids (INSs) are effective treatments for allergic rhinitis, rhinosinusitis, and nasal polyposis. In recent years, increased understanding of corticosteroid and glucocorticoid receptor pharmacology has enabled the development of molecules designed specifically to achieve potent, localized activity with minimal risk of systemic exposure. Pharmacologic potency studies using affinity and other assessments have produced similar rank orders of potency, with the most potent being mometasone furoate, fluticasone propionate, and its modification, fluticasone furoate. The furoate and propionate ester side chains render these agents highly lipophilic, which may facilitate their absorption through nasal mucosa and uptake across phospholipid cell membranes. These compounds demonstrate negligible systemic absorption. Systemic absorption rates are higher among the older corticosteroids (flunisolide, beclomethasone dipropionate, triamcinolone acetonide, and budesonide), which have bioavailabilities in the range of 34-49%. Studies, including 1-year studies with mometasone furoate, fluticasone propionate, and budesonide that evaluated potential systemic effects of INSs in children have generally found no adverse effects on hypothalamic-pituitary-adrenal axis function or growth. Clinical data suggest no significant differences in efficacy between the INSs. Theoretically, newer agents with lower systemic availability may be preferable, and may come closer to the pharmacokinetic/pharmacologic criteria for the ideal therapeutic choice.

  6. Pharmacological chaperoning: a primer on mechanism and pharmacology.

    Science.gov (United States)

    Leidenheimer, Nancy J; Ryder, Katelyn G

    2014-05-01

    Approximately forty percent of diseases are attributable to protein misfolding, including those for which genetic mutation produces misfolding mutants. Intriguingly, many of these mutants are not terminally misfolded since native-like folding, and subsequent trafficking to functional locations, can be induced by target-specific, small molecules variably termed pharmacological chaperones, pharmacoperones, or pharmacochaperones (PCs). PC targets include enzymes, receptors, transporters, and ion channels, revealing the breadth of proteins that can be engaged by ligand-assisted folding. The purpose of this review is to provide an integrated primer of the diverse mechanisms and pharmacology of PCs. In this regard, we examine the structural mechanisms that underlie PC rescue of misfolding mutants, including the ability of PCs to act as surrogates for defective intramolecular interactions and, at the intermolecular level, overcome oligomerization deficiencies and dominant negative effects, as well as influence the subunit stoichiometry of heteropentameric receptors. Not surprisingly, PC-mediated structural correction of misfolding mutants normalizes interactions with molecular chaperones that participate in protein quality control and forward-trafficking. A variety of small molecules have proven to be efficacious PCs and the advantages and disadvantages of employing orthostatic antagonists, active-site inhibitors, orthostatic agonists, and allosteric modulator PCs are considered. Also examined is the possibility that several therapeutic agents may have unrecognized activity as PCs, and this chaperoning activity may mediate/contribute to therapeutic action and/or account for adverse effects. Lastly, we explore evidence that pharmacological chaperoning exploits intrinsic ligand-assisted folding mechanisms. Given the widespread applicability of PC rescue of mutants associated with protein folding disorders, both in vitro and in vivo, the therapeutic potential of PCs is vast

  7. α-Mangostin from Garcinia mangostana Linn: An updated review of its pharmacological properties

    Directory of Open Access Journals (Sweden)

    Mohamed Yousif Ibrahim

    2016-05-01

    Full Text Available Over the past decades, various studies have highlighted the pure natural compound, α-mangostin as their main topic. The compound’s pre-clinical and pharmacological properties have been recognized and defined in these studies. α-Mangostin shows strong pharmacological effects in in vitro and in vivo model systems by targeting a number of vital cellular factors through various mechanisms of action. Despite its important molecular versatility, the α-mangostin still has limited clinical application. In order to optimize the conditions of this compound as a chemotherapeutic and chemopreventive agent, for instance in diseases such as cancer, obesity, diabetes as well as inflammatory disorders, the recent tendency is to limit the range of its pharmacological properties. The present work reviews recent studies on the central and potential pharmacological principles as well as the preclinical applications of the α-mangostin.

  8. Cannabis Pharmacology: The Usual Suspects and a Few Promising Leads.

    Science.gov (United States)

    Russo, Ethan B; Marcu, Jahan

    2017-01-01

    The golden age of cannabis pharmacology began in the 1960s as Raphael Mechoulam and his colleagues in Israel isolated and synthesized cannabidiol, tetrahydrocannabinol, and other phytocannabinoids. Initially, THC garnered most research interest with sporadic attention to cannabidiol, which has only rekindled in the last 15 years through a demonstration of its remarkably versatile pharmacology and synergy with THC. Gradually a cognizance of the potential of other phytocannabinoids has developed. Contemporaneous assessment of cannabis pharmacology must be even far more inclusive. Medical and recreational consumers alike have long believed in unique attributes of certain cannabis chemovars despite their similarity in cannabinoid profiles. This has focused additional research on the pharmacological contributions of mono- and sesquiterpenoids to the effects of cannabis flower preparations. Investigation reveals these aromatic compounds to contribute modulatory and therapeutic roles in the cannabis entourage far beyond expectations considering their modest concentrations in the plant. Synergistic relationships of the terpenoids to cannabinoids will be highlighted and include many complementary roles to boost therapeutic efficacy in treatment of pain, psychiatric disorders, cancer, and numerous other areas. Additional parts of the cannabis plant provide a wide and distinct variety of other compounds of pharmacological interest, including the triterpenoid friedelin from the roots, canniprene from the fan leaves, cannabisin from seed coats, and cannflavin A from seed sprouts. This chapter will explore the unique attributes of these agents and demonstrate how cannabis may yet fulfil its potential as Mechoulam's professed "pharmacological treasure trove." © 2017 Elsevier Inc. All rights reserved.

  9. A Recent History of HNO (Nitroxyl) Chemistry, Pharmacology and Therapeutic Potential.

    Science.gov (United States)

    Fukuto, Jon M

    2018-06-02

    Due to the excitement surrounding the discovery of nitric oxide (NO) as an endogenously generated signaling molecule, numerous other nitrogen oxides were also investigated as possible physiological mediators. Among these was nitroxyl (HNO). Over the past 25 years or so, a significant amount of work by this lab and many others has discovered that HNO possesses unique chemical properties and important pharmacological utility. Indeed, the pharmacological potential for HNO as a treatment for heart failure, among other uses, has garnered this curious molecule tremendous recent attention. This review thus summarizes the events that led to this recent attention as well as pose remaining questions that are important to answer with regards to understanding the chemistry and biology of HNO. This article is protected by copyright. All rights reserved.

  10. Oxidative stress protection by newly synthesized nitrogen compounds with pharmacological potential.

    Science.gov (United States)

    Silva, João P; Areias, Filipe M; Proença, Fernanda M; Coutinho, Olga P

    2006-02-09

    In this study we used new nitrogen compounds obtained by organic synthesis whose structure predicted an antioxidant potential and then an eventual development as molecules of pharmacological interest in diseases involving oxidative stress. The compounds, identified as FMA4, FMA5, FMA7 and FMA8 differ in the presence of hydroxyl groups located in the C-3 and/or C-4 position of a phenolic unit, which is possibly responsible for their free radicals' buffering capacity. Data from the DPPH discoloration method confirm the high antiradical efficiency of the compounds. The results obtained with cellular models (L929 and PC12) show that they are not toxic and really protect from membrane lipid peroxidation induced by the ascorbate-iron oxidant pair. The level of protection correlates with the drug's lipophilic profile and is sometimes superior to trolox and equivalent to that observed for alpha-tocopherol. The compounds FMA4 and FMA7 present also a high protection from cell death evaluated in the presence of a staurosporine apoptotic stimulus. That protection results in a significant reduction of caspase-3 activity induced by staurosporine which by its turn seems to result from a protection observed in the membrane receptor pathway (caspase-8) together with a protection observed in the mitochondrial pathway (caspase-9). Taken together the results obtained with the new compounds, with linear chains, open up perspectives for their use as therapeutical agents, namely as antioxidants and protectors of apoptotic pathways. On the other hand the slight pro-oxidant profile obtained with the cyclic structures suggests a different therapeutic potential that is under current investigation.

  11. Glycosides from Medicinal Plants as Potential Anticancer Agents: Emerging Trends towards Future Drugs.

    Science.gov (United States)

    Khan, Haroon; Saeedi, Mina; Nabavi, Seyed Mohammad; Mubarak, Mohammad S; Bishayee, Anupam

    2018-04-03

    Cancer continues to be a global burden, despite the advancement of various technological and pharmaceutical improvements over the past two decades. Methods for treating cancer include surgery, radiotherapy and chemotherapy in addition to other specialized techniques. On the other hand, medicinal plants have been traditionally employed either as the complementary medicine or dietary agents in the treatment and management of cancer. Medicinal plants are a rich source of secondary metabolites with interesting biological and pharmacological activities. Among these metabolites, glycosides are naturally occurring substances and have outstanding therapeutic potential and clinical utility. Different medical research engines such GoogleScholar, PubMed, SpringerLink, ScienceDirect were used to collect related literature on the subject matter. In this regard, only peer reviewed journals were considered. Emerging results showed that numerous glycosides isolated from various plants possessed marked anticancer activity against a variety of cancer cell lines. Accordingly, the aim of the present review is to shed light on the anticancer effects of glycosides, analyze possible mechanisms of action, and highlight the role of these natural agents as complementary and alternative medicine in combating and managing cancer. The glycosides isolated from different plants demonstrated potent cytotoxic effects against various cancer cell lines in initial preclinical studies. The anticancer effect was mediated through multiple mechanisms; however further detail studies are needed to understand the full potential of glycosides for clinical utility. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Ayahuasca: Pharmacology, neuroscience and therapeutic potential.

    Science.gov (United States)

    Domínguez-Clavé, Elisabet; Soler, Joaquim; Elices, Matilde; Pascual, Juan C; Álvarez, Enrique; de la Fuente Revenga, Mario; Friedlander, Pablo; Feilding, Amanda; Riba, Jordi

    2016-09-01

    Ayahuasca is the Quechua name for a tea obtained from the vine Banisteriopsis caapi, and used for ritual purposes by the indigenous populations of the Amazon. The use of a variation of the tea that combines B. caapi with the leaves of the shrub Psychotria viridis has experienced unprecedented expansion worldwide for its psychotropic properties. This preparation contains the psychedelic 5-HT 2A receptor agonist N,N-dimethyltryptamine (DMT) from P. viridis, plus β-carboline alkaloids with monoamine-oxidase-inhibiting properties from B. caapi. Acute administration induces a transient modified state of consciousness characterized by introspection, visions, enhanced emotions and recollection of personal memories. A growing body of evidence suggests that ayahuasca may be useful to treat substance use disorders, anxiety and depression. Here we review the pharmacology and neuroscience of ayahuasca, and the potential psychological mechanisms underlying its therapeutic potential. We discuss recent findings indicating that ayahuasca intake increases certain mindfulness facets related to acceptance and to the ability to take a detached view of one's own thoughts and emotions. Based on the available evidence, we conclude that ayahuasca shows promise as a therapeutic tool by enhancing self-acceptance and allowing safe exposure to emotional events. We postulate that ayahuasca could be of use in the treatment of impulse-related, personality and substance use disorders and also in the handling of trauma. More research is needed to assess the full potential of ayahuasca in the treatment of these disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Fraxinus: A Plant with Versatile Pharmacological and Biological Activities.

    Science.gov (United States)

    Sarfraz, Iqra; Rasul, Azhar; Jabeen, Farhat; Younis, Tahira; Zahoor, Muhammad Kashif; Arshad, Muhammad; Ali, Muhammad

    2017-01-01

    Fraxinus , a member of the Oleaceae family, commonly known as ash tree is found in northeast Asia, north America, east and western France, China, northern areas of Pakistan, India, and Afghanistan. Chemical constituents of Fraxinus plant include various secoiridoids, phenylethanoids, flavonoids, coumarins, and lignans; therefore, it is considered as a plant with versatile biological and pharmacological activities. Its tremendous range of pharmacotherapeutic properties has been well documented including anticancer, anti-inflammatory, antioxidant, antimicrobial, and neuroprotective. In addition, its bioactive phytochemicals and secondary metabolites can be effectively used in cosmetic industry and as a competent antiaging agent. Fraxinus presents pharmacological effectiveness by targeting the novel targets in several pathological conditions, which provide a spacious therapeutic time window. Our aim is to update the scientific research community with recent endeavors with specifically highlighting the mechanism of action in different diseases. This potentially efficacious pharmacological drug candidate should be used for new drug discovery in future. This review suggests that this plant has extremely important medicinal utilization but further supporting studies and scientific experimentations are mandatory to determine its specific intracellular targets and site of action to completely figure out its pharmacological applications.

  14. Neuroprotective "agents" in surgery. Secret "agent" man, or common "agent" machine?

    Science.gov (United States)

    Andrews, R. J.

    1999-01-01

    The search for clinically-effective neuroprotective agents has received enormous support in recent years--an estimated $200 million by pharmaceutical companies on clinical trials for traumatic brain injury alone. At the same time, the pathophysiology of brain injury has proved increasingly complex, rendering the likelihood of a single agent "magic bullet" even more remote. On the other hand, great progress continues with technology that makes surgery less invasive and less risky. One example is the application of endovascular techniques to treat coronary artery stenosis, where both the invasiveness of sternotomy and the significant neurological complication rate (due to microemboli showering the cerebral vasculature) can be eliminated. In this paper we review aspects of intraoperative neuroprotection both present and future. Explanations for the slow progress on pharmacologic neuroprotection during surgery are presented. Examples of technical advances that have had great impact on neuroprotection during surgery are given both from coronary artery stenosis surgery and from surgery for Parkinson's disease. To date, the progress in neuroprotection resulting from such technical advances is an order of magnitude greater than that resulting from pharmacologic agents used during surgery. The progress over the last 20 years in guidance during surgery (CT and MRI image-guidance) and in surgical access (endoscopic and endovascular techniques) will soon be complemented by advances in our ability to evaluate biological tissue intraoperatively in real-time. As an example of such technology, the NASA Smart Probe project is considered. In the long run (i.e., in 10 years or more), pharmacologic "agents" aimed at the complex pathophysiology of nervous system injury in man will be the key to true intraoperative neuroprotection. In the near term, however, it is more likely that mundane "agents" based on computers, microsensors, and microeffectors will be the major impetus to improved

  15. Contrast agents in magnetic resonance imaging

    International Nuclear Information System (INIS)

    Karadjian, V.

    1987-01-01

    The origine of nuclear magnetic resonance signal is reminded and different ways for contrast enhancement in magnetic resonance imaging are presented, especially, modifications of tissus relaxation times. Investigations have focused on development of agents incorporating either paramagnetic ions or stable free radicals. Pharmacological and toxicological aspects are developed. The diagnostic potential of these substances is illustrated by the example of gadolinium complexes [fr

  16. Is rivastigmine safe as pretreatment against nerve agents poisoning? A pharmacological, physiological and cognitive assessment in healthy young adult volunteers.

    Science.gov (United States)

    Lavon, Ophir; Eisenkraft, Arik; Blanca, Merav; Raveh, Lily; Ramaty, Erez; Krivoy, Amir; Atsmon, Jacob; Grauer, Ettie; Brandeis, Rachel

    2015-07-01

    Rivastigmine, a reversible cholinesterase inhibitor, approved as a remedy in Alzheimer's disease, was suggested as pretreatment against nerve agents poisoning. We evaluated the pharmacokinetic, pharmacodynamic, physiologic, cognitive and emotional effects of repeated rivastigmine in young healthy male adults, in a double blind, placebo controlled crossover trial. Three groups completed 3 treatment periods: 0, 1.5 and 3mg twice a day, for a total of 5 intakes. Parameters monitored were: vital signs, ECG, laboratory tests, sialometry, visual accommodation, inspiratory peak flow, and cognitive function tests. Adverse reactions were mild. Peak blood levels and peak cholinesterase inhibition increased with repeated intakes, and high variability and non-linear pharmacokinetics were demonstrated. In addition, two cognitive functions were affected (perceptual speed and dynamic tracking). The complicated pharmacological profile and the high inter-personal variability limit the potential use of rivastigmine as pretreatment for war fighters and first responders. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. The Potential of Tetrandrine as a Protective Agent for Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    Sheng-Hong Tseng

    2011-09-01

    Full Text Available Stroke is one of the leading causes of mortality, with a high incidence of severe morbidity in survivors. The treatment to minimize tissue injury after stroke is still unsatisfactory and it is mandatory to develop effective treatment strategies for stroke. The pathophysiology of ischemic stroke is complex and involves many processes including energy failure, loss of ion homeostasis, increased intracellular calcium level, platelet aggregation, production of reactive oxygen species, disruption of blood brain barrier, and inflammation and leukocyte infiltration, etc. Tetrandrine, a bisbenzylisoquinoline alkaloid, has many pharmacologic effects including anti-inflammatory and cytoprotective effects. In addition, tetrandrine has been found to protect the liver, heart, small bowel and brain from ischemia/reperfusion injury. It is a calcium channel blocker, and can inhibit lipid peroxidation, reduce generation of reactive oxygen species, suppress the production of cytokines and inflammatory mediators, inhibit neutrophil recruitment and platelet aggregation, which are all devastating factors during ischemia/reperfusion injury of the brain. Because tetrandrine can counteract these important pathophysiological processes of ischemic stroke, it has the potential to be a protective agent for ischemic stroke.

  18. Polymeric drugs: Advances in the development of pharmacologically active polymers

    Science.gov (United States)

    Li, Jing; Yu, Fei; Chen, Yi; Oupický, David

    2015-01-01

    Synthetic polymers play a critical role in pharmaceutical discovery and development. Current research and applications of pharmaceutical polymers are mainly focused on their functions as excipients and inert carriers of other pharmacologically active agents. This review article surveys recent advances in alternative pharmaceutical use of polymers as pharmacologically active agents known as polymeric drugs. Emphasis is placed on the benefits of polymeric drugs that are associated with their macromolecular character and their ability to explore biologically relevant multivalency processes. We discuss the main therapeutic uses of polymeric drugs as sequestrants, antimicrobials, antivirals, and anticancer and anti-inflammatory agents. PMID:26410809

  19. New Potential Pharmacological Functions of Chinese Herbal Medicines via Regulation of Autophagy

    Directory of Open Access Journals (Sweden)

    Betty Yuen Kwan Law

    2016-03-01

    Full Text Available Autophagy is a universal catabolic cellular process for quality control of cytoplasm and maintenance of cellular homeostasis upon nutrient deprivation and environmental stimulus. It involves the lysosomal degradation of cellular components such as misfolded proteins or damaged organelles. Defects in autophagy are implicated in the pathogenesis of diseases including cancers, myopathy, neurodegenerations, infections and cardiovascular diseases. In the recent decade, traditional drugs with new clinical applications are not only commonly found in Western medicines, but also highlighted in Chinese herbal medicines (CHM. For instance, pharmacological studies have revealed that active components or fractions from Chaihu (Radix bupleuri, Hu Zhang (Rhizoma polygoni cuspidati, Donglingcao (Rabdosia rubesens, Hou po (Cortex magnoliae officinalis and Chuan xiong (Rhizoma chuanxiong modulate cancers, neurodegeneration and cardiovascular disease via autophagy. These findings shed light on the potential new applications and formulation of CHM decoctions via regulation of autophagy. This article reviews the roles of autophagy in the pharmacological actions of CHM and discusses their new potential clinical applications in various human diseases.

  20. Averrhoa bilimbi Linn.: A review of its ethnomedicinal uses, phytochemistry, and pharmacology

    Directory of Open Access Journals (Sweden)

    Alhassan Muhammad Alhassan

    2016-01-01

    Full Text Available Averrhoa bilimbi Linn. is principally cultivated for medicinal purposes in many tropical and subtropical countries of the world. Literature survey about this plant shows that A. bilimbi is mainly used as a folk medicine in the treatment of diabetes mellitus, hypertension, and as an antimicrobial agent. The prime objective of this review is to accumulate and organize literature based on traditional claims and correlate those with current findings on the use of A. bilimbi in the management of different ailments. Through interpreting already published scientific manuscripts (1995 through 2015 retrieved from the different scientific search engines, namely Medline, PubMed, EMBASE, and Science Direct databases, published articles and reports covering traditional and scientific literature related to A. bilimbi's potential role against various ailments have been thoroughly evaluated, interpreted, and discussed. Several pharmacological studies have demonstrated the ability of this plant to act as antidiabetic, antihypertensive, thrombolytic, antimicrobial, antioxidant, hepatoprotective, and hypolipidemic agent. A. bilimbi holds great value in the complementary and alternative medicine as evidenced by the substantial amount of research on it. Therefore, we aimed to compile an up-to-date and comprehensive review of A. bilimbi that covers its traditional and folk medicine uses, phytochemistry, and pharmacology. Hence, this paper presents an up-to-date and comprehensive review of the ethnomedicinal uses, different chemical constituents, and pharmacological activities of A. bilimbi. So far, the biologically active agents have not been isolated from this plant and this can be a good scientific study for the future antidiabetic, antihypertensive, and antimicrobial implications. Hence, this review targets at emphasizing the diverse traditional claims and pharmacological activities of A. bilimbi with respect to carrying out more scientific studies to isolate

  1. Approved and Off-Label Uses of Obesity Medications, and Potential New Pharmacologic Treatment Options

    Directory of Open Access Journals (Sweden)

    Fernando Cordido

    2010-01-01

    Full Text Available Available anti-obesity pharmacotherapy options remain very limited and development of more effective drugs has become a priority. The potential strategies to achieve weight loss are to reduce energy intake by stimulating anorexigenic signals or by blocking orexigenic signals, and to increase energy expenditure. This review will focus on approved obesity medications, as well as potential new pharmacologic treatment options.

  2. Enhancement of the photo-electric effect with pharmacological agents in synchrotron radiation based anti-cancer radiotherapy: a methodological study

    International Nuclear Information System (INIS)

    Corde, Stephanie

    2002-01-01

    Anti-cancer therapy rests on three main principles: 1) anatomic confinement of irradiation; 2) temporal fractioning of treatment; 3) treatment of tissues that are more sensitive to radiation than surrounding healthy tissue. Under those principles hides the goal of radiotherapy: to deposit more of the X-ray energy in the tumor while preserving the surrounding healthy tissues. This goal is hard to reach since one of the causes of the failures in radiotherapy is the continuing evolution of the tumor. Could synchrotron radiation be more effective as an X-ray source for radiotherapy? The variation of the radiation-matter interaction cross-sections as a function of X-ray energy and atomic number of the medium show that certain energies and certain elements are more suitable to obtain the largest number of interactions and the largest amount of deposited energy. Synchrotron radiation allows to select precisely those energies because of its high spectral intensity. Its spectral characteristics (energy of the photons between 10 and 100 keV) allow to trigger the photoelectric effect with a maximum of probability on heavy elements introduced close to cancerous cells. It has been shown that: 1) synchrotron radiation based tomodensitometry is a quantitative imaging technique, potentially powerful for radiotherapy since it insures in-vivo the measurement of intra-tumoral concentration of contrast agent (I or Gd); 2) in the presence of iodinated contrast agent the lethal effect of X-rays on cell survival is increased and the gain in radio sensitivity depends on X-ray energy; 3) at the cellular scale the lethality of irradiation can be optimised again by transporting heavy atoms (I, Pt) inside the DNA, which is the biological target of the irradiation. This reinforcement of the killing efficiency of low energy X-rays using a physical mechanism aimed at a pharmacological agent is an original concept in anti-cancer radiotherapy. (author) [fr

  3. Pharmacological Profile of Xanthohumol, a Prenylated Flavonoid from Hops (Humulus lupulus

    Directory of Open Access Journals (Sweden)

    Ming Liu

    2015-01-01

    Full Text Available The female inflorescences of hops (Humulus lupulus L., a well-known bittering agent used in the brewing industry, have long been used in traditional medicines. Xanthohumol (XN is one of the bioactive substances contributing to its medical applications. Among foodstuffs XN is found primarily in beer and its natural occurrence is surveyed. In recent years, XN has received much attention for its biological effects. The present review describes the pharmacological aspects of XN and summarizes the most interesting findings obtained in the preclinical research related to this compound, including the pharmacological activity, the pharmacokinetics, and the safety of XN. Furthermore, the potential use of XN as a food additive considering its many positive biological effects is discussed.

  4. Non-radiological contrast agents (MRI)

    International Nuclear Information System (INIS)

    Bonnemain, B.; Lautrou, J.; Meyer, D.; Doucet, D.

    1987-01-01

    Over the past few years, extensive research has been carried out in an attempt to develop contrast agents that could help improve both the performance (acquisition times) and the diagnostic efficacy of Magnetic Resonance Imaging (MRI) techniques. On the basis of physicochemical and pharmacological criteria discussed in this presentation, a few efficacious, well-tolerated compounds could be developed. Two of them, the gadolinium complexes Gd-DOTA and Gd-DTPA, are currently being tried in man. This first generation of contrast agents, which are aspecific markers of the intravascular space, has been shown to have good diagnostic potential in conventional MRI procedures. The diagnostic contribution of these contrast agents will probably be a most essential factor in new MRI techniques using low field strengh or fast imaging sequences [fr

  5. The potential effects of Ocimum basilicum on health: a review of pharmacological and toxicological studies.

    Science.gov (United States)

    Sestili, Piero; Ismail, Tariq; Calcabrini, Cinzia; Guescini, Michele; Catanzaro, Elena; Turrini, Eleonora; Layla, Anam; Akhtar, Saeed; Fimognari, Carmela

    2018-06-11

    Basil (Ocimum basilicum L., OB) is a plant world widely used as a spice and a typical ingredient of the healthy Mediterranean diet. In traditional medicine, OB is indicated for many maladies and conditions; OB-containing nutritional supplements are increasingly sold. Conversely, safety concerns have been raised about the promutagens and procarcinogens alkenylbenzenes contained in OB. Areas covered: A critical review of the current status of OB as a nutraceutical, the pharmacology of its bioactive components, the rationale for its indications, and its safety. Expert opinion: Due to the polyphenolic and flavonoidic content, OB can be considered as an important ingredient in healthy diets; OB preparations may be effective as chemopreventive agents or adjunctive therapy in the treatment of different clinical conditions. From a toxicological perspective, since the tumorigenic potential of alkenylbenzenes is counteracted by other OB constituents such as nevadensin, it can be concluded that OB consumption in food and preparations is safe. The only concern relates to OB essential oils: in this case, a concentration limit for alkenylbenzenes should be precautionary defined, and the use of plant chemotypes with no or low levels of these alkylbenzenes for the preparation of essential oils should be made compulsory.

  6. Pharmacologic study of calcium influx pathways in rabbit aortic smooth muscle

    International Nuclear Information System (INIS)

    Lukeman, D.S.

    1987-01-01

    Functional characteristics and pharmacologic domains of receptor-operated and potential-sensitive calcium (Ca 2+ ) channels (ROCs and PSCs, respectively) were derived via measurements of 45 Ca 2+ influx (M/sup Ca/) during activation by the neurotransmitters norepinephrine (NE), histamine (HS), and serotonin (5-HT) and by elevated extracellular potassium (K + ) in the individual or combined presence of organic Ca 2+ channel antagonists (CAts), calmodulin antagonists (Calm-ants), lanthanum (La 3+ ), and agents that increase intracellular levels of cyclic AMP

  7. A new manganese-based oral contrast agent (CMC-001) for liver MRI. Pharmacological and pharmaceutical aspects

    International Nuclear Information System (INIS)

    Joergensen, Jan Troest; Rief, Matthias; Wagner, Moritz; Brismar, Torkel B.; Albiin, Nils

    2012-01-01

    Manganese is one of the most abundant metals on earth and is found as a component of more than 100 different minerals. Besides being an essential trace element in relation to the metabolic processes in the body, manganese is also a paramagnetic metal that possesses similar characteristics to gadolinium with regards to T1-weighted (T1-w) magnetic resonance imaging (MRI). Manganese, in the form of manganese (II) chloride tetrahydrate, is the active substance in a new targeted oral contrast agent, currently known as CMC-001, indicated for hepatobiliary MRI. Under physiological circumstances manganese is poorly absorbed from the intestine after oral intake, but by the use of specific absorption promoters, L-alanine and vitamin D3, it is possible to obtain a sufficiently high concentration in the liver in order to achieve a significant signal enhancing effect. In the liver manganese is exposed to a very high first-pass effect, up to 98 %, which prevents the metal from reaching the systemic circulation, thereby reducing the number of systemic side-effects. Manganese is one of the least toxic trace elements, and due to its favorable safety profile it may be an attractive alternative to gadolinium-based contrast agents for patients undergoing an MRI evaluation for liver metastases in the future. In this review the basic pharmacological and pharmaceutical aspects of this new targeted oral hepatobiliary specific contrast agent will be discussed

  8. Chelating agents in pharmacology, toxicology and therapeutics

    International Nuclear Information System (INIS)

    1988-01-01

    The proceedings contain 71 abstracts of papers. Fourteen abstracts were inputted in INIS. The topics covered include: the effects of chelating agents on the retention of 63 Ni, 109 Cd, 203 Hg, 144 Ce, 95 Nb and the excretion of 210 Po, 63 Ni, 48 V, 239 Pu, 241 Am, 54 Mn; the applications of tracer techniques for studies of the efficacy of chelation therapy in patients with heart and brain disorders; and the treatment of metal poisoning with chelating agents. (J.P.)

  9. Potential functional and pathological side effects related to off-target pharmacological activity.

    Science.gov (United States)

    Lynch, James J; Van Vleet, Terry R; Mittelstadt, Scott W; Blomme, Eric A G

    2017-09-01

    Most pharmaceutical companies test their discovery-stage proprietary molecules in a battery of in vitro pharmacology assays to try to determine off-target interactions. During all phases of drug discovery and development, various questions arise regarding potential side effects associated with such off-target pharmacological activity. Here we present a scientific literature curation effort undertaken to determine and summarize the most likely functional and pathological outcomes associated with interactions at 70 receptors, enzymes, ion channels and transporters with established links to adverse effects. To that end, the scientific literature was reviewed using an on-line database, and the most commonly reported effects were summarized in tabular format. The resultant table should serve as a practical guide for research scientists and clinical investigators for the prediction and interpretation of adverse side effects associated with molecules interacting with components of this screening battery. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Botulinum Neurotoxins: Biology, Pharmacology, and Toxicology.

    Science.gov (United States)

    Pirazzini, Marco; Rossetto, Ornella; Eleopra, Roberto; Montecucco, Cesare

    2017-04-01

    The study of botulinum neurotoxins (BoNT) is rapidly progressing in many aspects. Novel BoNTs are being discovered owing to next generation sequencing, but their biologic and pharmacological properties remain largely unknown. The molecular structure of the large protein complexes that the toxin forms with accessory proteins, which are included in some BoNT type A1 and B1 pharmacological preparations, have been determined. By far the largest effort has been dedicated to the testing and validation of BoNTs as therapeutic agents in an ever increasing number of applications, including pain therapy. BoNT type A1 has been also exploited in a variety of cosmetic treatments, alone or in combination with other agents, and this specific market has reached the size of the one dedicated to the treatment of medical syndromes. The pharmacological properties and mode of action of BoNTs have shed light on general principles of neuronal transport and protein-protein interactions and are stimulating basic science studies. Moreover, the wide array of BoNTs discovered and to be discovered and the production of recombinant BoNTs endowed with specific properties suggest novel uses in therapeutics with increasing disease/symptom specifity. These recent developments are reviewed here to provide an updated picture of the biologic mechanism of action of BoNTs, of their increasing use in pharmacology and in cosmetics, and of their toxicology. Copyright © 2017 by The Author(s).

  11. A New Pharmacological Agent (AKB-4924) Stabilizes Hypoxia Inducible Factor (HIF) and Increases Skin Innate Defenses Against Bacterial Infection

    Science.gov (United States)

    Okumura, Cheryl Y.M.; Hollands, Andrew; Tran, Dan N.; Olson, Joshua; Dahesh, Samira; von Köckritz-Blickwede, Maren; Thienphrapa, Wdee; Corle, Courtney; Jeung, Seung Nam; Kotsakis, Anna; Shalwitz, Robert A.; Johnson, Randall S.; Nizet, Victor

    2013-01-01

    Hypoxia inducible factor-1 (HIF-1) is a transcription factor that is a major regulator of energy homeostasis and cellular adaptation to low oxygen stress. HIF-1 is also activated in response to bacterial pathogens and supports the innate immune response of both phagocytes and keratinocytes. In this work, we show that a new pharmacological compound AKB-4924 (Akebia Therapeutics) increases HIF-1α levels and enhances the antibacterial activity of phagocytes and keratinocytes against both methicillin-sensitive and -resistant strains of Staphylococcus aureus in vitro. AKB-4924 is also effective in stimulating the killing capacity of keratinocytes against the important opportunistic skin pathogens Pseudomonas aeruginosa and Acinitobacter baumanii. The effect of AKB-4924 is mediated through the activity of host cells, as the compound exerts no direct antimicrobial activity. Administered locally as a single agent, AKB-4924 limits S. aureus proliferation and lesion formation in a mouse skin abscess model. This approach to pharmacologically boost the innate immune response via HIF-1 stabilization may serve as a useful adjunctive treatment for antibiotic-resistant bacterial infections. PMID:22371073

  12. Medicinal Cannabis: History, Pharmacology, And Implications for the Acute Care Setting

    OpenAIRE

    Bridgeman, Mary Barna; Abazia, Daniel T.

    2017-01-01

    The authors review the historical use of medicinal cannabis and discuss the agent?s pharmacology and pharmacokinetics, select evidence on medicinal uses, and the implications of evolving regulations on the acute care hospital setting.

  13. Pharmacological options in the management of orthostatic hypotension in older adults.

    LENUS (Irish Health Repository)

    Kearney, Fiona

    2009-11-01

    Orthostatic hypotension (OH) is a common disorder in older adults with potentially serious clinical consequences. Understanding the key underlying pathophysiological processes that predispose individuals to OH is essential when making treatment decisions for this group of patients. In this article, we discuss the key antihypotensive agents used in the management of OH in older adults. Commonly, midodrine is used as a first-line agent, given its supportive data in randomized, controlled trials. Fludrocortisone has been evaluated in open-label trials and has long-established usage in clinical practice. Other agents are available and in clinical use, either alone or in combination, but larger randomized trial evaluations are yet to be published. It is important to bear in mind that a patient may be taking medications that predispose to or exacerbate the symptoms of OH. Withdrawal of such medications, where possible, should be considered before commencing other pharmacological agents that attenuate the symptoms of OH.

  14. Radiographic scanning agent

    International Nuclear Information System (INIS)

    Tofe, A.J.

    1976-01-01

    A stable radiographic scanning agent on a sup(99m)Tc basis has been developed. The substance contains a pertechnetate reduction agent, tin(II)-chloride, chromium(II)-chloride, or iron(II)-sulphate, as well as an organospecific carrier and ascorbic acid or a pharmacologically admissible salt or ester of ascorbic acid. (VJ) [de

  15. Silicon-zinc-glycerol hydrogel, a potential immunotropic agent for topical application.

    Science.gov (United States)

    Khonina, Tat'yana G; Ivanenko, Maria V; Chupakhin, Oleg N; Safronov, Alexander P; Bogdanova, Ekaterina A; Karabanalov, Maxim S; Permikin, Vasily V; Larionov, Leonid P; Drozdova, Lyudmila I

    2017-09-30

    Nanoparticles synthesized using sol-gel method are promising agents for biomedical applications, in particular for the therapy and diagnosis of various diseases. Using silicon and zinc glycerolates as biocompatible precursors we synthesized by the sol-gel method a new bioactive silicon-zinc-containing glycerohydrogel combining the positive pharmacological properties of the precursors. In the present work the structural features of silicon-zinc-containing glycerohydrogel and its immunotropic properties were studied. The advanced physical methods, including XRD, TEM, dynamic and electrophoretic light scattering, were used for studying the structural features of the gel. Hydrolysis of zinc monoglycerolate was investigated under gelation conditions. Evaluation of the efficiency of silicon-zinc-containing glycerohydrogel in providing immune functions was carried out using a model of the complicated wound process behind immunosuppression induced by hydrocortisone administration in the Wistar rats. It has been shown that zinc monoglycerolate exists in the state of amorphous nanoparticles in the cells of 3D-network formed due to incomplete hydrolysis of silicon glycerolates and subsequent silanol condensation. Zinc monoglycerolate is not hydrolyzed and does not enter 3D-network of the gel with the formation of Zn-O-Si groups, but it forms a separate phase. Immunotropic action of silicon-zinc-containing glycerohydrogel was revealed by the histology and immunohistochemistry methods. Amorphous nanoparticles of zinc monoglycerolate, water-soluble silicon glycerolates, and products of their hydrolytic transformations, which are present in a aqueous-glycerol medium, are in the first place responsible for the pharmacological activity of hydrogel. The results obtained allow us to consider silicon-zinc-containing glycerohydrogel as a promising immunotropic agent for topical application. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. GABA uptake inhibitors. Design, molecular pharmacology and therapeutic aspects

    DEFF Research Database (Denmark)

    Krogsgaard-Larsen, P; Frølund, B; Frydenvang, Karla Andrea

    2000-01-01

    demonstrated that neuronal and glial GABA transport mechanisms have dissimilar substrate specificities. With GABA transport mechanisms as pharmacological targets, strategies for pharmacological interventions with the purpose of stimulating GABA neurotransmission seem to be (1) effective blockade of neuronal......, tiagabine (49) containing (R)-nipecotic acid (24) as the GABA transport carrier-recognizing structure element, is now marketed as an antiepileptic agent....

  17. Potential Therapeutic Effects of Curcumin, the Anti-inflammatory Agent, Against Neurodegenerative, Cardiovascular, Pulmonary, Metabolic, Autoimmune and Neoplastic Diseases

    Science.gov (United States)

    Aggarwal, Bharat B.; Harikumar, Kuzhuvelil B.

    2009-01-01

    Although safe in most cases, ancient treatments are ignored because neither their active component nor their molecular targets are well defined. This is not the case, however, with curcumin, a yellow-pigment substance and component of turmeric (Curcuma longa), which was identified more than a century ago. For centuries it has been known that turmeric exhibits anti-inflammatory activity, but extensive research performed within the past two decades has shown that the this activity of turmeric is due to curcumin, a diferuloylmethane. This agent has been shown to regulate numerous transcription factors, cytokines, protein kinases, adhesion molecules, redox status and enzymes that have been linked to inflammation. The process of inflammation has been shown to play a major role in most chronic illnesses, including neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. In the current review, we provide evidence for the potential role of curcumin in the prevention and treatment of various pro-inflammatory chronic diseases. These features, combined with the pharmacological safety and negligible cost, render curcumin an attractive agent to explore further. PMID:18662800

  18. Behavior analysis and the growth of behavioral pharmacology

    OpenAIRE

    Laties, Victor G.

    2003-01-01

    Psychologists, particularly those influenced by the work of B. F. Skinner, played a major part in the development of behavioral pharmacology in the 1950s and 1960s. Revolutionary changes in pharmacology and psychiatry, including the discovery of powerful therapeutic agents such as chlorpromazine and reserpine, had produced a surge of interest in drug research. Pharmaceutical companies began hiring psychologists with operant conditioning backgrounds so as to compete successfully in the search ...

  19. Comparison of the oncogenic potential of several chemotherapeutic agents

    International Nuclear Information System (INIS)

    Miller, R.C.; Hall, E.J.; Osmak, R.S.

    1981-01-01

    Several chemotherapeutic drugs that have been routinely used in cancer treatment were tested for their carcinogenic potential. Two antitumor antibiotics (adriamycin and vincristine), an alkalating agent (melphalan), 5-azacytidine and the bifunctional agent cis-platinum that mimics alkylating agents and/or binds Oxygen-6 or Nitrogen-7 atoms of quanine were tested. Cell killing and cancer induction was assessed using in vitro transformation system. C3H/10T 1/2 cells, while normally exhibiting contact inhibition, can undergo transformation from normal contact inhibited cells to tumorgenic cells when exposed to chemical carcinogens. These cells have been used in the past by this laboratory to study oncogenic transformation of cells exposed to ionizing radiation and electron affinic compounds that sensitize hypoxic cells to x-rays. The endpoints of cell killing and oncogenic transformation presented here give an estimate of the carcinogenic potential of these agents

  20. Evidence-Based Pharmacologic Treatment of Pediatric Bipolar Disorder.

    Science.gov (United States)

    Findling, Robert L

    2016-01-01

    Pharmacotherapy is an important component of treatment for children and adolescents with bipolar disorder. The body of evidence supporting safe and effective treatments in this population is growing. Available data provide information on the risks and benefits of pharmacologic agents used for acute manic, mixed, and depressive episodes as well as for maintenance treatment. Lithium, anticonvulsants, and antipsychotics comprise the armamentarium for treating pediatric bipolar disorder. When selecting treatment, clinicians must consider the efficacy and side effect profile of potential pharmacotherapies, as well as the patient's history, including the presence of comorbidities, in order to develop a treatment plan that will ensure optimal outcomes. © Copyright 2016 Physicians Postgraduate Press, Inc.

  1. Computer-aided discovery of antimicrobial agents as potential enoyl ...

    African Journals Online (AJOL)

    Computer-aided discovery of antimicrobial agents as potential enoyl acyl carrier protein reductase inhibitors. ... Conclusion: Overall, the newly discovered hits can act as a good starting point in the future for the development of safe and potent antibacterial agents. Keywords: Enoyl acyl carrier protein reductase, saFabI, ...

  2. Perinatal pharmacology: applications for neonatal neurology.

    Science.gov (United States)

    Smits, Anne; Allegaert, Karel

    2011-11-01

    The principles of clinical pharmacology also apply to neonates, but their characteristics warrant a tailored approach. We focus on aspects of both developmental pharmacokinetics (concentration/time relationship) and developmental pharmacodynamics (concentration/effect relationship) in neonates. We hereby aimed to link concepts used in clinical pharmacology with compound-specific observations (anti-epileptics, analgosedatives) in the field of neonatal neurology. Although in part anecdotal, we subsequently illustrate the relevance of developmental pharmacology in the field of neonatal neurology by a specific intervention (e.g. whole body cooling), specific clinical presentations (e.g. short and long term outcome following fetal exposure to antidepressive agents, the development of new biomarkers for fetal alcohol syndrome) and specific clinical needs (e.g. analgosedation in neonates, excitocytosis versus neuro-apoptosis/impaired synaptogenesis). Copyright © 2011 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  3. Neuro-pharmacological potentials of Buchholzia coriacea (Engl.) seeds in laboratory rodents.

    Science.gov (United States)

    Onasanwo, S A; Obembe, O O; Faborode, S O; Elufioye, T O; Adisa, R A

    2013-06-01

    Buchholzia coriacea, taken by elderly, has phytochemicals that have neuro-active metabolites, and the folklore documented its use in neuro-behavioural despairs. This study was conducted to investigate the neuro-pharmacological potentials of Buchholzia coriacea (MEBC) seed extract in the laboratory rodents. Methanol extract of the seeds on B. coriacea (MEBC) was evaluated for its antidepressant (Forced Swimming Test and Tail Suspension Test), anxiolytic (Light-Dark Test, Hole Board Test and Elevated Plus Maze), antinociceptive (Hot-Plate and Tail Flick test) and motor coordination (Rota Rod) functions in mice. Our findings showed antidepressant activity (P neuro-physiological disorders like depression, anxiety and pain.

  4. Meeting Report: High-Throughput Technologies for In Vivo Imaging Agents

    Directory of Open Access Journals (Sweden)

    Robert J. Gillies

    2005-04-01

    Full Text Available Combinatorial chemistry and high-throughput screening have become standard tools for discovering new drug candidates with suitable pharmacological properties. Now, those same technologies are starting to be applied to the problem of discovering novel in vivo imaging agents. Important differences in the biological and pharmacological properties needed for imaging agents, compared to those for a therapeutic agent, require new screening methods that emphasize those characteristics, such as optimized residence time and tissue specificity, that make for a good imaging agent candidate.

  5. Pharmacological treatment of diabetic neuropathic pain.

    Science.gov (United States)

    Smith, Howard S; Argoff, Charles E

    2011-03-26

    Neuropathic pain continues to be a difficult and challenging clinical issue to deal with effectively. Painful diabetic polyneuropathy is a complex pain condition that occurs with reasonable frequency in the population and it may be extremely difficult for clinicians to provide patients with effective analgesia. Chronic neuropathic pain may occur in approximately one of every four diabetic patients. The pain may be described as burning or a deep-seated ache with sporadic paroxysms of lancinating painful exacerbations. The pain is often constant, moderate to severe in intensity, usually primarily involves the feet and generally tends to worsen at night. Treatment may be multimodal but largely involves pharmacological approaches. Pharmacological therapeutic options include antidepressants (tricyclic antidepressants, serotonin-norepinephrine reuptake inhibitors), α2δ ligands and topical (5%) lidocaine patch. Other agents may be different antiepileptic drugs (carbamazepine, lamotrigine, topiramate), topical capsaicin, tramadol and other opioids. Progress continues with respect to understanding various mechanisms that may contribute to painful diabetic neuropathy. Agents that may hold some promise include neurotrophic factors, growth factors, immunomodulators, gene therapy and poly (adenosine diphosphate-ribose) polymerase inhibitors. It is hoped that in the future clinicians will be able to assess patient pathophysiology, which may help them to match optimal therapeutic agents to target individual patient aberrant mechanisms.

  6. Evaluation of an Epitypified Ophiocordyceps formosana (Cordyceps s.l.) for Its Pharmacological Potential

    Science.gov (United States)

    Wang, Yen-Wen; Hong, Tzu-Wen; Tai, Yu-Ling; Wang, Ying-Jing; Tsai, Sheng-Hong; Lien, Pham Thi Kim; Chou, Tzu-Ho; Lai, Jui-Ya; Chu, Richard; Ding, Shih-Torng; Irie, Kenji; Li, Tsai-Kun; Tzean, Shean-Shong; Shen, Tang-Long

    2015-01-01

    The substantial merit of Cordyceps s.l. spp. in terms of medicinal benefits is largely appreciated. Nevertheless, only few studies have characterized and examined the clinical complications of the use of health tonics containing these species. Here, we epitypified C. formosana isolates that were collected and characterized as Ophiocordyceps formosana based on morphological characteristics, molecular phylogenetic analyses, and metabolite profiling. Thus, we renamed and transferred C. formosana to the new protologue Ophiocordyceps formosana (Kobayasi & Shimizu) Wang, Tsai, Tzean & Shen comb. nov. Additionally, the pharmacological potential of O. formosana was evaluated based on the hot-water extract from its mycelium. The relative amounts of the known bioactive ingredients that are unique to Cordyceps s.l. species in O. formosana were found to be similar to the amounts in O. sinensis and C. militaris, indicating the potential applicability of O. formosana for pharmacological uses. Additionally, we found that O. formosana exhibited antioxidation activities in vitro and in vivo that were similar to those of O. sinensis and C. militaris. Furthermore, O. formosana also displayed conspicuously effective antitumor activity compared with the tested Cordyceps s.l. species. Intrinsically, O. formosana exhibited less toxicity than the other Cordyceps species. Together, our data suggest that the metabolites of O. formosana may play active roles in complementary medicine. PMID:26451152

  7. Pharmacological Aspects of Neuro-Immune Interactions.

    Science.gov (United States)

    Tarasov, Vadim V; Kudryashov, Nikita V; Chubarev, Vladimir N; Kalinina, Tatiana S; Barreto, George E; Ashraf, Ghulam Md; Aliev, Gjumrakch

    2018-01-01

    The use of systematic approach for the analysis of mechanism of action of drugs at different levels of biological organization of organisms is an important task in experimental and clinical pharmacology for drug designing and increasing the efficacy and safety of drugs. The analysis of published data on pharmacological effects of psychotropic drugs possessing immunomodulatory and/or antiviral properties have shown a correlation between central effects of examined drugs associated with the impact on the processes of neurogenesis of adult brain and survival of neurons, and their ability to alter levels of key proinflammatory cytokines. The changes that occur as a result of the influence of pharmacological agents at one of the systems should inevitably lead to the functional reorganization at another. Integrative mechanisms underlying the neuro-immune interactions may explain the "pleiotropic" pharmacological effects of some antiviral and immunomodulatory drugs. Amantadine, which was originally considered as an antiviral agent, was approved as anti-parkinsonic drug after its wide medical use. The prolonged administration of interferon alpha caused depression in 30-45% of patients, thus limiting its clinical use. The antiviral drug "Oseltamivir" may provoke the development of central side effects, including abnormal behavior, delirium, impaired perception and suicides. Anti-herpethetical drug "Panavir" shows pronounced neuroprotective properties. The purpose of this review is to analyze the experimental and clinical data related to central effects of drugs with antiviral or/and immunotropic activity, and to discover the relationship of these effects with changes in reactivity of immune system and proinflammatory response. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Allosteric Binding in the Serotonin Transporter - Pharmacology, Structure, Function and Potential Use as a Novel Drug Target

    DEFF Research Database (Denmark)

    Loland, Claus J.; Sanchez, Connie; Plenge, Per

    2017-01-01

    The serotonin transporter (SERT) is an important drug target and the majority of currently used antidepressants are potent inhibitors of SERT, binding primarily to the substrate binding site. However, even though the existence of an allosteric modulator site was realized more than 30 years ago......, the research into this mechanism is still in its early days. The current knowledge about the allosteric site with respect to pharmacology, structure and function, and pharmacological tool compounds, is reviewed and a perspective is given on its potential as a drug target....

  9. The Role of Potential Agents in Making Spatial Perspective Taking Social

    Directory of Open Access Journals (Sweden)

    Amy M Clements-Stephens

    2013-09-01

    Full Text Available A striking relationship between visual spatial perspective taking (VSPT and social skills has been demonstrated for perspective-taking tasks in which the target of the imagined or inferred perspective is a potential agent, suggesting that the presence of a potential agent may create a social context for the seemingly spatial task of imagining a novel visual perspective. In a series of studies, we set out to investigate how and when a target might be viewed as sufficiently agent-like to incur a social influence on VSPT performance. By varying the perceptual and conceptual features that defined the targets as potential agents, we find that even something as simple as suggesting animacy for a simple wooden block may be sufficient. More critically, we found that experience with one potential agent influenced the performance with subsequent targets, either by inducing or eliminating the influence of social skills on VSPT performance. These carryover effects suggest that the relationship between social skills and VSPT performance is mediated by a complex relationship that includes the task, the target, and the context in which that target is perceived. These findings highlight potential problems that arise when identifying a task as belonging exclusively to a single cognitive domain and stress instead the highly interactive nature of cognitive domains and their susceptibility to cross-domain individual differences.

  10. A Network-Based Pharmacology Study of the Herb-Induced Liver Injury Potential of Traditional Hepatoprotective Chinese Herbal Medicines.

    Science.gov (United States)

    Hong, Ming; Li, Sha; Tan, Hor Yue; Cheung, Fan; Wang, Ning; Huang, Jihan; Feng, Yibin

    2017-04-14

    Herbal medicines are widely used for treating liver diseases and generally regarded as safe due to their extensive use in Traditional Chinese Medicine practice for thousands of years. However, in recent years, there have been increased concerns regarding the long-term risk of Herb-Induced Liver Injury (HILI) in patients with liver dysfunction. Herein, two representative Chinese herbal medicines: one-Xiao-Chai-Hu-Tang (XCHT)-a composite formula, and the other- Radix Polygoni Multiflori (Heshouwu) -a single herb, were analyzed by network pharmacology study. Based on the network pharmacology framework, we exploited the potential HILI effects of XCHT and Heshouwu by predicting the molecular mechanisms of HILI and identified the potential hepatotoxic ingredients in XCHT and Heshouwu . According to our network results, kaempferol and thymol in XCHT and rhein in Heshouwu exhibit the largest number of liver injury target connections, whereby CASP3, PPARG and MCL1 may be potential liver injury targets for these herbal medicines. This network pharmacology assay might serve as a useful tool to explore the underlying molecular mechanism of HILI. Based on the theoretical predictions, further experimental verification should be performed to validate the accuracy of the predicted interactions between herbal ingredients and protein targets in the future.

  11. Pharmacological therapy for analgesia and sedation in the newborn.

    Science.gov (United States)

    Anand, K J S; Hall, R W

    2006-11-01

    Rapid advances have been made in the use of pharmacological analgesia and sedation for newborns requiring neonatal intensive care. Practical considerations for the use of systemic analgesics (opioids, non-steroidal anti-inflammatory agents, other drugs), local and topical anaesthetics, and sedative or anaesthetic agents (benzodiazepines, barbiturates, other drugs) are summarised using an evidence-based medicine approach, while avoiding mention of the underlying basic physiology or pharmacology. These developments have inspired more humane approaches to neonatal intensive care. Despite these advances, little is known about the clinical effectiveness, immediate toxicity, effects on special patient populations, or long-term effects after neonatal exposure to analgesics or sedatives. The desired or adverse effects of drug combinations, interactions with non-pharmacological interventions or use for specific conditions also remain unknown. Despite the huge gaps in our knowledge, preliminary evidence for the use of neonatal analgesia and sedation is available, but must be combined with a clear definition of clinical goals, continuous physiological monitoring, evaluation of side effects or tolerance, and consideration of long-term clinical outcomes.

  12. Agent-Based Modeling in Systems Pharmacology.

    Science.gov (United States)

    Cosgrove, J; Butler, J; Alden, K; Read, M; Kumar, V; Cucurull-Sanchez, L; Timmis, J; Coles, M

    2015-11-01

    Modeling and simulation (M&S) techniques provide a platform for knowledge integration and hypothesis testing to gain insights into biological systems that would not be possible a priori. Agent-based modeling (ABM) is an M&S technique that focuses on describing individual components rather than homogenous populations. This tutorial introduces ABM to systems pharmacologists, using relevant case studies to highlight how ABM-specific strengths have yielded success in the area of preclinical mechanistic modeling.

  13. A new pharmacological agent (AKB-4924) stabilizes hypoxia inducible factor-1 (HIF-1) and increases skin innate defenses against bacterial infection.

    Science.gov (United States)

    Okumura, Cheryl Y M; Hollands, Andrew; Tran, Dan N; Olson, Joshua; Dahesh, Samira; von Köckritz-Blickwede, Maren; Thienphrapa, Wdee; Corle, Courtney; Jeung, Seung Nam; Kotsakis, Anna; Shalwitz, Robert A; Johnson, Randall S; Nizet, Victor

    2012-09-01

    Hypoxia inducible factor-1 (HIF-1) is a transcription factor that is a major regulator of energy homeostasis and cellular adaptation to low oxygen stress. HIF-1 is also activated in response to bacterial pathogens and supports the innate immune response of both phagocytes and keratinocytes. In this work, we show that a new pharmacological compound AKB-4924 increases HIF-1 levels and enhances the antibacterial activity of phagocytes and keratinocytes against both methicillin-sensitive and methicillin-resistant strains of Staphylococcus aureus in vitro. AKB-4924 is also effective in stimulating the killing capacity of keratinocytes against the important opportunistic skin pathogens Pseudomonas aeruginosa and Acinetobacter baumanii. The effect of AKB-4924 is mediated through the activity of host cells, as the compound exerts no direct antimicrobial activity. Administered locally as a single agent, AKB-4924 limits S. aureus proliferation and lesion formation in a mouse skin abscess model. This approach to pharmacologically boost the innate immune response via HIF-1 stabilization may serve as a useful adjunctive treatment for antibiotic-resistant bacterial infections.

  14. Pharmacological Evaluation of Chrozophora tinctoria as Wound Healing Potential in Diabetic Rat’s Model

    Directory of Open Access Journals (Sweden)

    Harikesh Maurya

    2016-01-01

    Full Text Available Objective. The study was designed to evaluate pharmacological potential of hydroalcoholic leaves extract of Chrozophora tinctoria intended for wound healing in diabetic rats’ model. Methods. The method used to evaluate the pharmacological potential of hydroalcoholic leave extract was physical incision rat model. In this model, cutting of the skin and/or other tissues with a sharp blade has been made and the rapid disruption of tissue integrity with minimal collateral damage was observed shortly. Animals used in the study were divided into four groups that consist of six animals in each group. Group I serves as normal control, Group II serves as disease control, Group III was used as standard treatment (Povidone iodine 50 mg/kg b.w., and Group IV was used for test drug (C. tinctoria 50 mg/kg b.w.. Result. The hydroalcoholic leave extract of Chrozophora tinctoria has been significantly observed to heal the wound (98% in diabetic rats within 21 days, while standard drug (Povidone iodine healed the wound about 95% in the same condition. The oral dose (50 mg/kg b.w. of Chrozophora tinctoria was also found to improve the elevated blood glucose level in comparison to disease control group, which increased after the oral administration of Streptozotocin. Conclusion. The Chrozophora tinctoria has significant wound healing potential in the animal having physically damaged tissue in diabetic condition.

  15. Myocardial perfusion scintigraphy with exercise and pharmacological stress

    Energy Technology Data Exchange (ETDEWEB)

    Sundram, F X [General Hospital of Singapore, Dept. of Nuclear Medicine (Senegal)

    1996-12-31

    Cardiac studies including myocardial perfusion scintigraphy was begun in the Singapore General Hospital, nuclear medicine department in 1983. From a few patients per year using planar imaging, we have in 1994 studied 1500 patients for myocardial perfusion, using mainly SPECT (single-photon emission computerised tomography) and radionuclides such as Thallium-201, Technetium-99m sestamibi and Tc-99m tetrofosmin. Patients have been stressed using treadmill exercise or pharmacological agents; we have used dipyridamole, and dobutamine for pharmacological stress but have no experience with intravenous adenosine.

  16. Myocardial perfusion scintigraphy with exercise and pharmacological stress

    International Nuclear Information System (INIS)

    Sundram, F.X.

    1995-01-01

    Cardiac studies including myocardial perfusion scintigraphy was begun in the Singapore General Hospital, nuclear medicine department in 1983. From a few patients per year using planar imaging, we have in 1994 studied 1500 patients for myocardial perfusion, using mainly SPECT (single-photon emission computerised tomography) and radionuclides such as Thallium-201, Technetium-99m sestamibi and Tc-99m tetrofosmin. Patients have been stressed using treadmill exercise or pharmacological agents; we have used dipyridamole, and dobutamine for pharmacological stress but have no experience with intravenous adenosine

  17. Pharmacologic pre- and postconditioning for stroke: Basic mechanisms and translational opportunity

    Directory of Open Access Journals (Sweden)

    Elga Esposito

    2015-01-01

    Full Text Available Beyond reperfusion therapies, there are still no widely effective therapies for ischemic stroke. Although much progress has been made to define the molecular pathways involved, targeted neuroprotective strategies have often failed in clinical trials. An emerging hypothesis suggests that focusing on single targets and mechanisms may not work since ischemic stroke triggers multiple pathways in multiple cell types. In this review, we briefly survey and assess the opportunities that may be afforded by pre- and postconditioning therapies, with particular attention to pharmacologic pre- and postconditioning. Pharmacologic conditioning may be defined as the use of chemical agents either before or shortly after stroke onset to trigger mechanisms of endogenous tolerance that are thought to involve evolutionarily conserved signals that offer broad protection against ischemia. Importantly, many of the pharmacologic agents may also have been previously used in humans, thus providing hope for translating basic mechanisms into clinical applications.

  18. The Effect of the Prosthetic Group on the Pharmacologic Properties of 18F-labeled Rhodamine B, a Potential Myocardial Perfusion Agent for PET

    Science.gov (United States)

    Bartholomä, Mark D.; Gottumukkala, Vijay; Zhang, Shaohui; Baker, Amanda; Dunning, Patricia; Fahey, Frederic H.; Treves, S. Ted; Packard, Alan B.

    2013-01-01

    We recently reported the development of the 2-[18F]fluoroethyl ester of rhodamine B as a potential positron emission tomography (PET) tracer for myocardial perfusion imaging. This compound, which was prepared using a [18F]fluoroethyl prosthetic group, has significant uptake in the myocardium in rats, but also demonstrates relatively high liver uptake and is rapidly hydrolyzed in vivo in mice. We have now prepared 18F-labeled rhodamine B using three additional prosthetic groups (propyl, diethylene glycol, and triethylene glycol) and found that the prosthetic group has a significant effect on the in vitro and in vivo properties of these compounds. Of the esters prepared to date, the diethylene glycol ester is superior in terms of in vitro stability and pharmacokinetics. These observations suggest that the prosthetic group plays a significant role in determining the pharmacological properties of 18F-labeled compounds. They also support the value of continued investigation of 18F-labeled rhodamines as PET radiopharmaceuticals for myocardial perfusion imaging. PMID:23210516

  19. Trials of Pharmacological Interventions for Tourette Syndrome: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Karen Waldon

    2013-01-01

    Full Text Available Introduction: Gilles de la Tourette Syndrome (GTS is a childhood-onset hyperkinetic movement disorder defined by the chronic presence of multiple motor tics and at least one vocal tic and often complicated by co-morbid behavioural problems. The pharmacological treatment of GTS focuses on the modulation of monoaminergic pathways within the cortico-striato-thalamo-cortical circuitry. This paper aims to evaluate the efficacy and safety profiles of pharmacological agents used in the treatment of tics in patients with GTS, in order to provide clinicians with an evidence-based rationale for the pharmacological treatment in GTS.

  20. Biological agents with potential for misuse: a historical perspective and defensive measures

    International Nuclear Information System (INIS)

    Bhalla, Deepak K.; Warheit, David B.

    2004-01-01

    Biological and chemical agents capable of producing serious illness or mortality have been used in biowarfare from ancient times. Use of these agents has progressed from crude forms in early and middle ages, when snakes and infected cadavers were used as weapons in battles, to sophisticated preparations for use during and after the second World War. Cults and terrorist organizations have attempted the use of biological agents with an aim to immobilize populations or cause serious harm. The reasons for interest in these agents by individuals and organizations include relative ease of acquisition, potential for causing mass casualty or panic, modest financing requirement, availability of technology, and relative ease of delivery. The Centers for Disease Control and Prevention has classified Critical Biological Agents into three major categories. This classification was based on several criteria, which include severity of impact on human health, potential for delivery in a weapon, capacity to cause panic and special needs for development, and stockpiling of medication. Agents that could cause the greatest harm following deliberate use were placed in category A. Category B included agents capable of producing serious harm and significant mortality but of lower magnitude than category A agents. Category C included emerging pathogens that could be developed for mass dispersion in future and their potential as a major health threat. A brief description of the category A bioagents is included and the pathophysiology of two particularly prominent agents, namely anthrax and smallpox, is discussed in detail. The potential danger from biological agents and their ever increasing threat to human populations have created a need for developing technologies for their early detection, for developing treatment strategies, and for refinement of procedures to ensure survival of affected individuals so as to attain the ultimate goal of eliminating the threat from intentional use of

  1. Biological agents with potential for misuse: a historical perspective and defensive measures.

    Science.gov (United States)

    Bhalla, Deepak K; Warheit, David B

    2004-08-15

    Biological and chemical agents capable of producing serious illness or mortality have been used in biowarfare from ancient times. Use of these agents has progressed from crude forms in early and middle ages, when snakes and infected cadavers were used as weapons in battles, to sophisticated preparations for use during and after the second World War. Cults and terrorist organizations have attempted the use of biological agents with an aim to immobilize populations or cause serious harm. The reasons for interest in these agents by individuals and organizations include relative ease of acquisition, potential for causing mass casualty or panic, modest financing requirement, availability of technology, and relative ease of delivery. The Centers for Disease Control and Prevention has classified Critical Biological Agents into three major categories. This classification was based on several criteria, which include severity of impact on human health, potential for delivery in a weapon, capacity to cause panic and special needs for development, and stockpiling of medication. Agents that could cause the greatest harm following deliberate use were placed in category A. Category B included agents capable of producing serious harm and significant mortality but of lower magnitude than category A agents. Category C included emerging pathogens that could be developed for mass dispersion in future and their potential as a major health threat. A brief description of the category A bioagents is included and the pathophysiology of two particularly prominent agents, namely anthrax and smallpox, is discussed in detail. The potential danger from biological agents and their ever increasing threat to human populations have created a need for developing technologies for their early detection, for developing treatment strategies, and for refinement of procedures to ensure survival of affected individuals so as to attain the ultimate goal of eliminating the threat from intentional use of

  2. Pharmacological treatment and therapeutic perspectives of metabolic syndrome.

    Science.gov (United States)

    Lim, Soo; Eckel, Robert H

    2014-12-01

    Metabolic syndrome is a disorder based on insulin resistance. Metabolic syndrome is diagnosed by a co-occurrence of three out of five of the following medical conditions: abdominal obesity, elevated blood pressures, elevated glucose, high triglycerides, and low high-density lipoprotein-cholesterol (HDL-C) levels. Clinical implication of metabolic syndrome is that it increases the risk of developing type 2 diabetes and cardiovascular diseases. Prevalence of the metabolic syndrome has increased globally, particularly in the last decade, to the point of being regarded as an epidemic. The prevalence of metabolic syndrome in the USA is estimated to be 34% of adult population. Moreover, increasing rate of metabolic syndrome in developing countries is dramatic. One can speculate that metabolic syndrome is going to induce huge impact on our lives. The metabolic syndrome cannot be treated with a single agent, since it is a multifaceted health problem. A healthy lifestyle including weight reduction is likely most effective in controlling metabolic syndrome. However, it is difficult to initiate and maintain healthy lifestyles, and in particular, with the recidivism of obesity in most patients who lose weight. Next, pharmacological agents that deal with obesity, diabetes, hypertension, and dyslipidemia can be used singly or in combination: anti-obesity drugs, thiazolidinediones, metformin, statins, fibrates, renin-angiotensin system blockers, glucagon like peptide-1 agonists, sodium glucose transporter-2 inhibitors, and some antiplatelet agents such as cilostazol. These drugs have not only their own pharmacologic targets on individual components of metabolic syndrome but some other properties may prove beneficial, i.e. anti-inflammatory and anti-oxidative. This review will describe pathophysiologic features of metabolic syndrome and pharmacologic agents for the treatment of metabolic syndrome, which are currently available.

  3. The presence of comorbidity in Tourette syndrome increases the need for pharmacological treatment

    DEFF Research Database (Denmark)

    Debes, Nanette M M M; Hjalgrim, Helle; Skov, Liselotte

    2009-01-01

    to a better insight into the common practice in Scandinavia. Furthermore, we wanted to elaborate the influence of the presence of comorbidities and of the severity of tics on pharmacological treatment. We have examined the frequency, art, and reason for pharmacological treatment in a Danish clinical cohort...... of 314 children with Tourette syndrome. In total, 60.5% of the children once had received pharmacological treatment. Mostly, the treatment was started because of tics or ADHD. If ADHD or obsessive-compulsive disorder were present, more children received pharmacological treatment and more different agents...... were tried. The children who received pharmacological treatment had more severe tics than those without medication....

  4. Pharmacological prevention of reperfusion injury in acute myocardial infarction. A potential role for adenosine as a therapeutic agent.

    Science.gov (United States)

    Quintana, Miguel; Kahan, Thomas; Hjemdahl, Paul

    2004-01-01

    The concept of reperfusion injury, although first recognized from animal studies, is now recognized as a clinical phenomenon that may result in microvascular damage, no-reflow phenomenon, myocardial stunning, myocardial hibernation and ischemic preconditioning. The final consequence of this event is left ventricular (LV) systolic dysfunction leading to increased morbidity and mortality. The typical clinical case of reperfusion injury occurs in acute myocardial infarction (MI) with ST segment elevation in which an occlusion of a major epicardial coronary artery is followed by recanalization of the artery. This may occur either spontaneously or by means of thrombolysis and/or by primary percutaneous coronary intervention (PCI) with efficient platelet inhibition by aspirin (acetylsalicylic acid), clopidogrel and glycoprotein IIb/IIIa inhibitors. Although the pathophysiology of reperfusion injury is complex, the major role that neutrophils play in this process is well known. Neutrophils generate free radicals, degranulation products, arachidonic acid metabolites and platelet-activating factors that interact with endothelial cells, inducing endothelial injury and neutralization of nitrous oxide vasodilator capacity. Adenosine, through its multi-targeted pharmacological actions, is able to inhibit some of the above-mentioned detrimental effects. The net protective of adenosine in in vivo models of reperfusion injury is the reduction of the infarct size, the improvement of the regional myocardial blood flow and of the regional function of the ischemic area. Additionally, adenosine preserves the post-ischemic coronary flow reserve, coronary blood flow and the post-ischemic regional contractility. In small-scale studies in patients with acute MI, treatment with adenosine has been associated with smaller infarcts, less no-reflow phenomenon and improved LV function. During elective PCI adenosine reduced ST segment shifts, lactate production and ischemic symptoms. During the

  5. Preemptive analgesia I: physiological pathways and pharmacological modalities.

    LENUS (Irish Health Repository)

    Kelly, D J

    2012-02-03

    PURPOSE: This two-part review summarizes the current knowledge of physiological mechanisms, pharmacological modalities and controversial issues surrounding preemptive analgesia. SOURCE: Articles from 1966 to present were obtained from the MEDLINE databases. Search terms included: analgesia, preemptive; neurotransmitters; pain, postoperative; hyperalgesia; sensitization, central nervous system; pathways, nociception; anesthetic techniques; analgesics, agents. Principal findings: The physiological basis of preemptive analgesia is complex and involves modification of the pain pathways. The pharmacological modalities available may modify the physiological responses at various levels. Effective preemptive analgesic techniques require multi-modal interception of nociceptive input, increasing threshold for nociception, and blocking or decreasing nociceptor receptor activation. Although the literature is controversial regarding the effectiveness of preemptive analgesia, some general recommendations can be helpful in guiding clinical care. Regional anesthesia induced prior to surgical trauma and continued well into the postoperative period is effective in attenuating peripheral and central sensitization. Pharmacologic agents such as NSAIDs (non-steroidal anti-inflammatory drugs) opioids, and NMDA (N-methyl-D-aspartate) - and alpha-2-receptor antagonists, especially when used in combination, act synergistically to decrease postoperative pain. CONCLUSION: The variable patient characteristics and timing of preemptive analgesia in relation to surgical noxious input requires individualization of the technique(s) chosen. Multi-modal analgesic techniques appear most effective.

  6. Pharmacological Treatment of Neonatal Opiate Withdrawal: Between the Devil and the Deep Blue Sea

    Directory of Open Access Journals (Sweden)

    Anthony Liu

    2011-01-01

    Full Text Available Illicit drug use with opiates in pregnancy is a major global health issue with neonatal withdrawal being a common complication. Morphine is the main pharmacological agent administered for the treatment of neonatal withdrawal. In the past, morphine has been considered by and large inert in terms of its long-term effects on the central nervous system. However, recent animal and clinical studies have demonstrated that opiates exhibit significant effects on the growing brain. This includes direct dose-dependent effects on reduction in brain size and weight, protein, DNA, RNA, and neurotransmitters—possibly as a direct consequence of a number of opiate-mediated systems that influence neural cell differentiation, proliferation, and apoptosis. At this stage, we are stuck between the devil and the deep blue sea. There are no real alternatives to pharmacological treatment with opiates and other drugs for neonatal opiate withdrawal and opiate addiction in pregnant women. However, pending further rigorous studies examining the potential harmful effects of opiate exposure in utero and the perinatal period, prolonged use of these agents in the neonatal period should be used judiciously, with caution, and avoided where possible.

  7. Pharmacology Portal: An Open Database for Clinical Pharmacologic Laboratory Services.

    Science.gov (United States)

    Karlsen Bjånes, Tormod; Mjåset Hjertø, Espen; Lønne, Lars; Aronsen, Lena; Andsnes Berg, Jon; Bergan, Stein; Otto Berg-Hansen, Grim; Bernard, Jean-Paul; Larsen Burns, Margrete; Toralf Fosen, Jan; Frost, Joachim; Hilberg, Thor; Krabseth, Hege-Merete; Kvan, Elena; Narum, Sigrid; Austgulen Westin, Andreas

    2016-01-01

    More than 50 Norwegian public and private laboratories provide one or more analyses for therapeutic drug monitoring or testing for drugs of abuse. Practices differ among laboratories, and analytical repertoires can change rapidly as new substances become available for analysis. The Pharmacology Portal was developed to provide an overview of these activities and to standardize the practices and terminology among laboratories. The Pharmacology Portal is a modern dynamic web database comprising all available analyses within therapeutic drug monitoring and testing for drugs of abuse in Norway. Content can be retrieved by using the search engine or by scrolling through substance lists. The core content is a substance registry updated by a national editorial board of experts within the field of clinical pharmacology. This ensures quality and consistency regarding substance terminologies and classification. All laboratories publish their own repertoires in a user-friendly workflow, adding laboratory-specific details to the core information in the substance registry. The user management system ensures that laboratories are restricted from editing content in the database core or in repertoires within other laboratory subpages. The portal is for nonprofit use, and has been fully funded by the Norwegian Medical Association, the Norwegian Society of Clinical Pharmacology, and the 8 largest pharmacologic institutions in Norway. The database server runs an open-source content management system that ensures flexibility with respect to further development projects, including the potential expansion of the Pharmacology Portal to other countries. Copyright © 2016 Elsevier HS Journals, Inc. All rights reserved.

  8. Synthesis and serotonin transporter activity of sulphur-substituted alpha-alkyl phenethylamines as a new class of anticancer agents

    DEFF Research Database (Denmark)

    Cloonan, Suzanne M.; Keating, John J.; Butler, Stephen G.

    2009-01-01

    The discovery that some serotonin reuptake transporter (SERT) ligands have the potential to act as pro-apoptotic agents in the treatment of cancer adds greatly to their diverse pharmacological application. 4-Methylthioamphetamine (MTA) is a selective ligand for SERT over other monoamine...

  9. Network pharmacology-based screening of the active ingredients and potential targets of the genus of Pithecellobium marthae (Britton & Killip) Niezgoda & Nevl for application to Alzheimer's disease.

    Science.gov (United States)

    Zhang, Han; Yan, Zhi-Yang; Wang, Yu-Xi; Bai, Ming; Wang, Xiao-Bo; Huang, Xiao-Xiao; Song, Shao-Jiang

    2018-02-16

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder associated with synaptic dysfunction, pathological accumulation of β-amyloid (Aβ), and neuronal loss. Given the prevalence of AD and the lack of effective long-term therapies, there is a pressing need to discover viable leads that can be developed into clinically approved drugs with disease-modifying effects. The analysis of current reported literatures confirms the importance of the plants of Pithecellobium genus as candidate against AD. Hence, it is necessary to identify selective anti-dementia agents from this genus. To explore potential compounds with marked effect on AD in Pithecellobium genus, a compound database based on the methods of network pharmacology prediction was established in this paper by constructing the compound-disease target network. The result showed that the most effective compound in the plants of this genus might be (7'R,8'R)-7'-methoxyl strebluslignanol, and the most potential target might be Macrophage colony-stimulating factor 1 receptor.

  10. Pharmacological study of 99mTc-CO-MIBI, a new mycoardial perfusion imaging agent comparison to 99mTc-MIBI

    International Nuclear Information System (INIS)

    Zhao Jiandong; Wang Jincheng; Mi Hongzhi

    2004-01-01

    For many years, 99m Tc-MIBI has been widely used for the diagnosis of ischemic heart disease. Although it has been regarded as a successful myocardial imaging agent, it has a notable defect of high liver radioactivities due to high uptake and slowly excrete. Recently, researchers had developed a new intermediate [ 99m Tc(CO) 3 (OH 2 ) 3 ] + , considering 99m Tc-MIBI excellent biodistribution, they synthesized a new class of compound- 99m Tc-CO-MIBI with [ 99m Tc(CO) 3 ] + core and ligand MIBI. Previous studies have preliminary demonstrated the following favorable properties: rapid blood-pool clearance, high myocardial extraction and rapid clearance kinetics from liver that indicated 99m Tc-CO-MIBI a promising new myocardial perfusion imaging agent. Furthermore, researchers separated the compound by changing liquid pH value and prepared single alkaline component 99m Tc-CO-MIBI. The pharmacological experiments in rat have provided better results on its biodistribution in vivo and much faster clearance kinetics from liver compared to 99mTc-MIBI. To evaluate the potential application of 99m Tc-CO-MIBI, further investigations are necessary to determine the evidence for enhanced ability in clinical decision making as a novel new myocardial perfusion imaging agent. Objective: Here, perform pharmacological experiment of 99m Tc-CO-MIBI, a new technetium-99m-labeled myocardial imaging agent compared to 99m Tc-MIBI in canines. To identify whether it is feasible in clinical application as a novel myocardial imaging agent, or not. Results: Accordingly, prepared the single alkaline component of 99m Tc-CO-MIBI. The complex was stable up to at least 7 hours after synthesized in vitro at either room temperature or 37 degree C water bath. Labeling yield and radiochemical purity (RCP) of the complex were evaluated by TLC and HPLC, the labeling percent was 93%-97% and the RCP was over 90%. Then administer 555MBq to every dog each times. A total of 5 dogs were involved. The data of

  11. Pharmacologic Treatments for Binge-Eating Disorder.

    Science.gov (United States)

    McElroy, Susan L

    2017-01-01

    Binge-eating disorder (BED) is the most common eating disorder and is associated with poor physical and mental health outcomes. Psychological and behavioral interventions have been a mainstay of treatment for BED, but as understanding of this disorder has grown, pharmacologic agents have become promising treatment options for some patients. At this time, only one drug-the stimulant prodrug lisdexamfetamine-is approved for the treatment of BED. Numerous classes of medications including antidepressants, anticonvulsants, and antiobesity drugs have been explored as off-label treatments for BED with variable success. Although not all patients with BED may be suitable candidates for pharmacotherapy, all patients should be considered for and educated about pharmacologic treatment options. © Copyright 2017 Physicians Postgraduate Press, Inc.

  12. Potential biocontrol agents for biofouling on artificial structures.

    Science.gov (United States)

    Atalah, Javier; Newcombe, Emma M; Hopkins, Grant A; Forrest, Barrie M

    2014-09-01

    The accumulation of biofouling on coastal structures can lead to operational impacts and may harbour problematic organisms, including non-indigenous species. Benthic predators and grazers that can supress biofouling, and which are able to be artificially enhanced, have potential value as augmentative biocontrol agents. The ability of New Zealand native invertebrates to control biofouling on marina pontoons and wharf piles was tested. Caging experiments evaluated the ability of biocontrol to mitigate established biofouling, and to prevent fouling accumulation on defouled surfaces. On pontoons, the gastropods Haliotis iris and Cookia sulcata reduced established biofouling cover by >55% and largely prevented the accumulation of new biofouling over three months. On wharf piles C. sulcata removed 65% of biofouling biomass and reduced its cover by 73%. C. sulcata also had better retention and survival rates than other agents. Augmentative biocontrol has the potential to be an effective method to mitigate biofouling on marine structures.

  13. Corn silk (Stigma maydis) in healthcare: a phytochemical and pharmacological review.

    Science.gov (United States)

    Hasanudin, Khairunnisa; Hashim, Puziah; Mustafa, Shuhaimi

    2012-08-13

    Corn silk (Stigma maydis) is an important herb used traditionally by the Chinese, and Native Americans to treat many diseases. It is also used as traditional medicine in many parts of the world such as Turkey, United States and France. Its potential antioxidant and healthcare applications as diuretic agent, in hyperglycemia reduction, as anti-depressant and anti-fatigue use have been claimed in several reports. Other uses of corn silk include teas and supplements to treat urinary related problems. The potential use is very much related to its properties and mechanism of action of its plant's bioactive constituents such as flavonoids and terpenoids. As such, this review will cover the research findings on the potential applications of corn silk in healthcare which include its phytochemical and pharmacological activities. In addition, the botanical description and its toxicological studies are also included.

  14. Introduction/overview: gender-based differences in pharmacologic and toxicologic responses.

    Science.gov (United States)

    Christian, M S

    2001-01-01

    Gender may be the most important factor in mammalian development and response to exogenous agents. From believing sex-related differences required sheltering women to protect their reproductive capacity (Victorians thought exercise, education, train travel, and certain music neuro- and reprotoxic to females) to legislating a status of essential equality of the sexes may have increased women's health issues. Men and women often respond differently to drugs. Inclusion of women in phase I/II clinical trials is insufficient to identify gender-based differences in response; rather, animal models should be the basis for predicting gender-based differences in pharmacologic and toxicologic effects. Unfortunately, current animal models do not consistently demonstrate such differences. Use of commonly used species (e.g., rats and dogs) does not necessarily result in relevant evaluation of an agent in a species at appropriate development (age), physiological state, anatomy, metabolism, or kinetics for estimation of human risks. The need to test agents in relevant animal models and advances in metabolic, pharmacokinetic, and pharmacodynamic capabilities challenge us to improve methods by using the most relevant models for estimating human risk. We need to be concerned about gender-related differences and the dynamics of gender-based growth and development over the entire life cycle. We must also consider potential interactions of dietary supplements and other exogenous agents that can act as drugs or modulate the potential effects of drugs differently in men, women, and developing children of both sexes. To this end, the health benefits of genistein and the effects of this dietary agent in a multigeneration study in rats will be described. It is envisioned that this symposium will assist in re-recognition of the importance of gender-related differences in use and response to pharmaceuticals and result in optimization of nonclinical testing procedures to identify benefits and

  15. Testing of selected pharmacological agents for capturing waterfowl [Annual Progress Report

    Science.gov (United States)

    Cline, D.R.

    1970-01-01

    The response of game-farm mallards (Frost strain) to seven pharmacological immobilizing agents was evaluated in Phase I of a planned four-phase study. A limited amount of testing was also done with wild mallards. Single dosages were administered to determine the mean effective dose (ED50) and mean lethal dose (LD50), The therapeutic index, or safety factor (LD50/ED50), and palatability were also established. Optimum dosage rates of compounds administered orally on baits were not considered in this phase of the study. Compounds were-administered by intubation and calculated in terms of mg/kg. All except one compound produced narcosis within 5 minutes at the effective dose rate.Immobilization periods for the seven compounds ranged from 7-24 minutes, and recovery periods from 1.0-6.5 hours. Such wide variations in actions of the compounds can be attributed to a compound's rate of absorption, the ease with which it passes the blood-brain barrier, its solubility in tissues, and its rate of metabolism in the liver and kidneys. Length of both the immobilization and recovery periods were extended when dosages were increased. There was no delayed mortality among survivors with any of the seven compounds at either the ED50 or LD50. Females were generally more sensitive to the anesthetizing agents than males. The ED50 for wild mallards was substantially higher than that for the experimental game-farm birds for the two compounds on which this was tested.Tribromoethanol (Avertin of Winthrop Laboratories) satisfied all test criteria an Phase I and will be subjected to more intensive investigation in ensuing tests. Thiopental sodium (Pentothal of Amdal Company) and pentobarbital sodium (Nembutal of Abbott Laboratories) were judged to be marginal. Although their therapeutic indexes were good (5.00), recovery periods were prolonged and toxic convulsions occurred at medium to high dose rates as the LD50 was approached.Alpha-chloralose (Fisher Scientific) proved least promising of

  16. Pharmacologic and nonpharmacologic options for the management of HIV infection during pregnancy

    Directory of Open Access Journals (Sweden)

    Carmen D Zorrilla

    2009-12-01

    Full Text Available Carmen D Zorrilla, Vivian Tamayo-AgraitDepartment of Obstetrics and Gynecology, University of Puerto Rico School of Medicine, Maternal Infant Studies Center (CEMI, San Juan, Puerto RicoAbstract: Over the past decade, significant advances have been made in the treatment of HIV-1 infection using both pharmacologic and nonpharmacologic strategies to prevent mother-to-child transmission (MTCT. Optimal prevention of the MTCT of HIV requires antiretroviral drugs (ARV during pregnancy, during labor, and to the infant. ARVs reduce viral replication, lowering maternal plasma viral load and thus the likelihood of MTCT. Postexposure prophylaxis of ARV agents in newborns protect against infection following potential exposure to maternal HIV during birth. In general, the choice of an ARV for treatment of HIV-infected women during pregnancy is complicated by the need to consider the effectiveness of the therapy for the maternal disease as well as the teratogenic or teratotoxic potential of these drugs. Clinicians managing HIV in pregnancy need to discuss the potential risks and benefits of available therapy options so that mothers can make informed decisions in choosing the best treatment regimen for themselves and for their children.Keywords: HIV, pregnancy, acquired immunodeficiency syndrome, antiretroviral agents

  17. Pharmacological Profile of Quinoxalinone

    Directory of Open Access Journals (Sweden)

    Youssef Ramli

    2014-01-01

    Full Text Available Quinoxalinone and its derivatives are used in organic synthesis for building natural and designed synthetic compounds and they have been frequently utilized as suitable skeletons for the design of biologically active compound. This review covers updated information on the most active quinoxalinone derivatives that have been reported to show considerable pharmacological actions such as antimicrobial, anti-inflammatory, antidiabetic, antiviral, antitumor, and antitubercular activity. It can act as an important tool for chemists to develop newer quinoxalinone derivatives that may prove to be better agents in terms of efficacy and safety.

  18. Pharmacological strategies for protection of extrahepatic islet transplantation.

    Science.gov (United States)

    Omori, K; Komatsu, H; Rawson, J; Mullen, Y

    2015-06-01

    The safety and effectiveness of islet transplantation has been proven through world-wide trials. However, acute and chronic islet loss has hindered the ultimate objective of becoming a widely used treatment option for type 1 diabetes. A large islet loss is attributed, in part, to the liver being a less-than-optimal site for transplantation. Over half of the transplanted islets are destroyed shortly after transplantation due to direct exposure to blood and non-specific inflammation. Successfully engrafted islets are continuously exposed to the liver micro-environment, a unique immune system, low oxygen tension, toxins and high glucose, which is toxic to islets, leading to premature islet dysfunction/death. Investigations have continued to search for alternate sites to transplant islets that provide a better environment for prolonged function and survival. This article gathers courses and conditions that lead to islet loss, from organ procurement through islet transplantation, with special emphasis on hypoxia, oxidative stress, and antigen non-specific inflammation, and reviews strategies using pharmacological agents that have shown effectiveness in protecting islets, including a new treatment approach utilizing siRNA. Pharmacological agents that support islet survival and promote β-cell proliferation are also included. Treatment of donor pancreata and/or islets with these agents should increase the effectiveness of islets transplanted into extrahepatic sites. Furthermore, the development of methods designed to release these agents over an extended period, will further increase their efficacy. This requires the combined efforts of both islet transplant biologists and bioengineers.

  19. Polysaccharides from the Marine Environment with Pharmacological, Cosmeceutical and Nutraceutical Potential

    Directory of Open Access Journals (Sweden)

    Nadia Ruocco

    2016-04-01

    Full Text Available Carbohydrates, also called saccharides, are molecules composed of carbon, hydrogen, and oxygen. They are the most abundant biomolecules and essential components of many natural products and have attracted the attention of researchers because of their numerous human health benefits. Among carbohydrates the polysaccharides represent some of the most abundant bioactive substances in marine organisms. In fact, many marine macro- and microorganisms are good resources of carbohydrates with diverse applications due to their biofunctional properties. By acting on cell proliferation and cycle, and by modulating different metabolic pathways, marine polysaccharides (including mainly chitin, chitosan, fucoidan, carrageenan and alginate also have numerous pharmaceutical activities, such as antioxidative, antibacterial, antiviral, immuno-stimulatory, anticoagulant and anticancer effects. Moreover, these polysaccharides have many general beneficial effects for human health, and have therefore been developed into potential cosmeceuticals and nutraceuticals. In this review we describe current advances in the development of marine polysaccharides for nutraceutical, cosmeceutical and pharmacological applications. Research in this field is opening new doors for harnessing the potential of marine natural products.

  20. Thiophene Scaffold as Prospective Central Nervous System Agent: A Review.

    Science.gov (United States)

    Deep, Aakash; Narasimhan, Balasubramanian; Aggarwal, Swati; Kaushik, Dhirender; Sharma, Arun K

    2016-01-01

    Heterocyclic compounds are extensively dispersed in nature and are vital for life. Various investigational approaches towards Structural Activity Relationship that focus upon the exploration of optimized candidates have become vastly important. Literature studies tell that for a series of compounds that are imperative in industrial and medicinal chemistry, thiophene acts as parent. Among various classes of heterocyclic compounds that have potential central nervous system activity, thiophene is the most important one. In the largely escalating chemical world of heterocyclic compounds showing potential pharmacological character, thiophene nucleus has been recognized as the budding entity. Seventeen Papers were included in this review article to define the central nervous system potential of thiophene. This review article enlightens the rationalized use and scope of thiophene scaffold as novel central nervous system activity such as anticonvulsant, acetylcholinesterase inhibitor, cyclin-dependent kinase 5 (cdk5/p25) inhibitors, CNS depressant, capability to block norepinephrine, serotonin and dopamine reuptake by their respective transporters etc. The Finding of this review confirm the importance of thiophene scaffold as potential central nervous system agents. From this outcome, ideas for future molecular modifications leading to the novel derivatives with better constructive pharmacological potential may be derived.

  1. In vivo evaluation of potential Tc-99m brain perfusion agents using brain uptake index determination and biodistribution

    International Nuclear Information System (INIS)

    Rajeckas, A.J.; Watson, A.D.; Subramanyam, V.; Williams, S.J.; Belonga, B.Q.; de Nemours, E.I.D.

    1985-01-01

    In order to evaluate the pharmacological properties of various Tc-99m complexes as potential brain perfusion agents, the authors have employed both biodistribution techniques as well as modified Oldendorf procedure for the determination of the brain uptake index (BUI). A typical BUI determination involves the coinjection of 1 microcurie each of I-125 iodoantipyrine and the Tc-99m complex into the left carotid artery of a pentabarbitol anesthetized rat. The animal is sacrificed at 10 seconds; the right and left hemispheres of the brain are removed and counted for each isotope in a gamma well counter. Biodistribution studies are performed using tail-vein injections in unanesthetized rats. In the evaluation of a series of Tc-99m N/sub 2/S/sub 2/ (diamine dithiol) complexes, they have observed that compounds with a low BUI (less than 50) also have a low brain concentration (less than 1% ID) at 30 seconds post injection

  2. The clinical pharmacology of alkylating agents in high-dose chemotherapy

    NARCIS (Netherlands)

    Huitema, A. D.; Smits, K. D.; Mathôt, R. A.; Schellens, J. H.; Rodenhuis, S.; Beijnen, J. H.

    2000-01-01

    Alkylating agents are widely used in high-dose chemotherapy regimens in combination with hematological support. Knowledge about the pharmacokinetics and pharmacodynamics of these agents administered in high doses is critical for the safe and efficient use of these regimens. The aim of this review is

  3. Synthesis, SAR and pharmacological characterization of novel anthraquinone cation compounds as potential anticancer agents.

    Science.gov (United States)

    Zheng, Yanyan; Zhu, Li; Fan, Lulu; Zhao, Wenna; Wang, Jianlong; Hao, Xianxiao; Zhu, Yunhui; Hu, Xiufang; Yuan, Yaofeng; Shao, Jingwei; Wang, Wenfeng

    2017-01-05

    Emodin, a natural anthraquinone derivative isolated from Rheum palmatum L., has been demonstrated to exhibit good anti-cancer effect. In this study, a series of novel quaternary ammonium salts of emodin, anthraquinone and anthrone were synthesized and their anticancer activities were tested in vitro. The effects of emodin quaternary ammonium salts on cell viability, apoptosis, intracellular ROS, and mitochondrial membrane potential were investigated in A375, BGC-823, HepG2 and HELF cells. The results demonstrated that compound 4a induced morphological changes and decreased cell viability. Apoptosis triggered by compound 4a was visualized using DAPI staining and Annexin V-FITC/PI staining. Compound 4a-induced apoptosis of A375 cells were showed to be associated with the dissipation of mitochondrial membrane potential (ΔΨm) as a result of the up-regulation of P53 and Caspase-3. When cancer cells were treated with emodin derivative, their ability to generate reactive oxygen species (ROS) rose significantly and the mitochondrial membrane potential decreased. Additionally, confocal microscopy assay confirmed that compound 4a was primarily located in the mitochondria of A375 cells. These results suggested that compound 4a has the potential for use in cancer therapy. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  4. Medicinal Cannabis: History, Pharmacology, And Implications for the Acute Care Setting.

    Science.gov (United States)

    Bridgeman, Mary Barna; Abazia, Daniel T

    2017-03-01

    The authors review the historical use of medicinal cannabis and discuss the agent's pharmacology and pharmacokinetics, select evidence on medicinal uses, and the implications of evolving regulations on the acute care hospital setting.

  5. Clinacanthus nutans: A review of the medicinal uses, pharmacology and phytochemistry.

    Science.gov (United States)

    Alam, Ariful; Ferdosh, Sahena; Ghafoor, Kashif; Hakim, Abdul; Juraimi, Abdul Shukor; Khatib, Alfi; Sarker, Zaidul I

    2016-04-01

    Clinacanthus nutans Lindau is known as snake grass belonging to the Acanthaceae family. This plant has diverse and potential medicinal uses in traditional herbal medicine for treating skin rashes, insects and snake bites, lesions caused by herpes simplex virus, diabetes, and gout in Malaysia, Indonesia, Thailand and China. Phytochemical investigations documented the varied contents of bioactive compounds from this plant namely flavonoids, glycosides, glycoglycerolipids, cerebrosides and monoacylmonogalatosylglycerol. The pharmacological experiment proved that various types of extracts and pure compounds from this species exhibited a broad range of biological properties such as anti-inflammatory, antiviral, antioxidant, and anti-diabetic activities. The findings of toxicity study showed that extracts from this plant did not show any toxicity thus it can be used as strong therapeutic agents for specific diseased conditions. However, further experiments on chemical components and their mode of action showing biological activities are required to elucidate the complete phytochemical profile and assess to confirm their suitability for future drugs. This review summarizes the medicinal uses, phytochemistry and pharmacology of this plant in order to explore its therapeutic potential and gaps necessitating for prospected research work. Copyright © 2016 Hainan Medical College. Production and hosting by Elsevier B.V. All rights reserved.

  6. Preparation and preclinical pharmacological study on a novel bone imaging agent 99mTc-EMIDP

    International Nuclear Information System (INIS)

    Lin Jianguo; Luo Shineng; Chen Chuanqing; Qiu Ling; Wang Yan; Cheng Wen; Ye Wanzhong; Xia Yongmei

    2010-01-01

    A novel zoledronic acid (ZL) derivative, 1-hydroxy-2-(2-ethyl-4-methyl-1H-imidazol-1-yl)ethane-1,1-diyldiphosphonic acid (EMIDP), was prepared and labeled with 99m Tc successfully in a high labeling yield and good stability in vitro. The preclinical pharmacological properties of 99m Tc-EMIDP were investigated and compared with 99m Tc-MDP and 99m Tc-ZL. The studies of biodistribution in mice and SPECT bone imaging of the rabbit suggest that 99m Tc-EMIDP has highly selective uptake in the skeletal system and rapid clearance in the soft tissues. The present findings indicate that 99m Tc-EMIDP holds great potential for bone scintigraphy.

  7. Screening of pharmacologically active small molecule compounds identifies antifungal agents against Candida biofilms

    Directory of Open Access Journals (Sweden)

    Takao eWatamoto

    2015-12-01

    Full Text Available Candida species have emerged as important and common opportunistic human pathogens, particularly in immunocompromised individuals. The current antifungal therapies either have toxic side effects or are insufficiently effect. The aim of this study is develop new small-molecule antifungal compounds by library screening methods using C. albicans, and to evaluate their antifungal effects on Candida biofilms and cytotoxic effects on human cells. Wild-type C. albicans strain SC5314 was used in library screening. To identify antifungal compounds, we screened a small-molecule library of 1,280 pharmacologically active compounds (LOPAC1280TM using an antifungal susceptibility test (AST. To investigate the antifungal effects of the hit compounds, ASTs were conducted using Candida strains in various growth modes, including biofilms. We tested the cytotoxicity of the hit compounds using human gingival fibroblast (hGF cells to evaluate their clinical safety. Only 35 compounds were identified by screening, which inhibited the metabolic activity of C. albicans by >50%. Of these, 26 compounds had fungistatic effects and 9 compounds had fungicidal effects on C. albicans. Five compounds, BAY11-7082, BAY11-7085, sanguinarine chloride hydrate, ellipticine and CV-3988, had strong fungicidal effects and could inhibit the metabolic activity of Candida biofilms. However, BAY11-7082, BAY11-7085, sanguinarine chloride hydrate and ellipticine were cytotoxic to hGF cells at low concentrations. CV-3988 showed no cytotoxicity at a fungicidal concentration.Four of the compounds identified, BAY11-7082, BAY11-7085, sanguinarine chloride hydrate and ellipticine, had toxic effects on Candida strains and hGF cells. In contrast, CV-3988 had fungicidal effects on Candida strains, but low cytotoxic effects on hGF cells. Therefore, this screening reveals agent, CV-3988 that was previously unknown to be antifungal agent, which could be a novel therapies for superficial mucosal

  8. Cynaropicrin: a comprehensive research review and therapeutic potential as an anti- hepatitis C virus agent

    Directory of Open Access Journals (Sweden)

    Mahmoud Fahmi Elsebai

    2016-12-01

    Full Text Available The different pharmacologic properties of plants-containing cynaropicrin, especially artichokes, have been known for many centuries. More recently, cynaropicrin exhibited a potential activity against all genotypes of hepatitis C virus (HCV. Cynaropicrin has also shown a wide range of other pharmacologic properties such as anti-hyperlipidemic, anti-trypanosomal, anti-malarial, antifeedant, antispasmodic, anti-photoaging, and anti-tumor action, as well as activation of bitter sensory receptors, and anti-inflammatory properties (e.g., associated with the suppression of the key pro-inflammatory NF-κB pathway. These pharmacological effects are very supportive factors to its outstanding activity against HCV. Structurally, cynaropicrin might be considered as a potential drug candidate, since it has no violations for the rule of five and its water-solubility could allow formulation as therapeutic injections. Moreover, cynaropicrin is a small molecule that can be easily synthesized and as the major constituent of the edible plant artichoke, which has a history of safe dietary use. In summary, cynaropicrin is a promising bioactive natural product that, with minor hit-to-lead optimization, might be developed as a drug for HCV.

  9. Drosophila melanogaster "a potential model organism" for identification of pharmacological properties of plants/plant-derived components.

    Science.gov (United States)

    Panchal, Komal; Tiwari, Anand K

    2017-05-01

    Plants/plant-derived components have been used from ancient times to treat/cure several human diseases. Plants and their parts possess several chemical components that play the vital role in the improvement of human health and their life expectancy. Allopathic medicines have been playing a key role in the treatment of several diseases. Though allopathic medicines provide fast relief, long time consumption cause serious health concerns such as hyperallergic reactions, liver damage, etc. So, the study of medicinal plants which rarely cause any side effect is very important to mankind. Plants contain many health benefit properties like antioxidant, anti-aging, neuroprotective, anti-genotoxic, anti-mutagenic and bioinsecticidal activity. Thus, identification of pharmacological properties of plants/plant-derived components are of utmost importance to be explored. Several model organisms have been used to identify the pharmacological properties of the different plants or active components therein and Drosophila is one of them. Drosophila melanogaster "fruit fly" is a well understood, high-throughput model organism being used more than 110 years to study the different biological aspects related to the development and diseases. Most of the developmental and cell signaling pathways and ∼75% human disease-related genes are conserved between human and Drosophila. Using Drosophila, one can easily analyze the pharmacological properties of plants/plant-derived components by performing several assays available with flies such as survivorship, locomotor, antioxidant, cell death, etc. The current review focuses on the potential of Drosophila melanogaster for the identification of medicinal/pharmacological properties associated with plants/plant-derived components. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. Development of assay platforms for in vitro screening of Treg modulating potential of pharmacological compounds

    DEFF Research Database (Denmark)

    Pedersen, Anders Elm; Holmstrøm, Kim; Jørgensen, Flemming

    2015-01-01

    that investigates Treg modulation by current drugs. For such research as well as for novel cell based therapies based on Treg infusions, rapid in vitro assays as well as functional assays based on inhibitory capacity of Tregs are required. Here, we report on such assays using highly pure fluorescence-activated cell...... and TNF-α. In conclusion, these assays have the potential for use in pharmacological screening and discovery in relation to drug development in immunology....

  11. Factors Affecting the Pharmacology of Antibody–Drug Conjugates

    Directory of Open Access Journals (Sweden)

    Andrew T. Lucas

    2018-02-01

    Full Text Available Major advances in therapeutic proteins, including antibody–drug conjugates (ADCs, have created revolutionary drug delivery systems in cancer over the past decade. While these immunoconjugate agents provide several advantages compared to their small-molecule counterparts, their clinical use is still in its infancy. The considerations in their development and clinical use are complex, and consist of multiple components and variables that can affect the pharmacologic characteristics. It is critical to understand the mechanisms employed by ADCs in navigating biological barriers and how these factors affect their biodistribution, delivery to tumors, efficacy, and toxicity. Thus, future studies are warranted to better understand the complex pharmacology and interaction between ADC carriers and biological systems, such as the mononuclear phagocyte system (MPS and tumor microenvironment. This review provides an overview of factors that affect the pharmacologic profiles of ADC therapies that are currently in clinical use and development.

  12. Trends in GPCR drug discovery: new agents, targets and indications

    DEFF Research Database (Denmark)

    Hauser, Alexander Sebastian; Gloriam, David E.; Attwood, Misty M.

    2017-01-01

    current trends across molecule types, drug targets and therapeutic indications, including showing that 475 drugs (~34% of all drugs approved by the US Food and Drug Administration (FDA)) act at 108 unique GPCRs. Approximately 321 agents are currently in clinical trials, of which ~20% target 66 potentially...... are also highly represented. The 224 (56%) non-olfactory GPCRs that have not yet been explored in clinical trials have broad untapped therapeutic potential, particularly in genetic and immune system disorders. Finally, we provide an interactive online resource to analyse and infer trends in GPCR drug......G protein-coupled receptors (GPCRs) are the most intensively studied drug targets, mostly due to their substantial involvement in human pathophysiology and their pharmacological tractability. Here, we report an up-to-date analysis of all GPCR drugs and agents in clinical trials, which reveals...

  13. Effect of the prosthetic group on the pharmacologic properties of 18F-labeled rhodamine B, a potential myocardial perfusion agent for positron emission tomography (PET).

    Science.gov (United States)

    Bartholomä, Mark D; Gottumukkala, Vijay; Zhang, Shaohui; Baker, Amanda; Dunning, Patricia; Fahey, Frederic H; Treves, S Ted; Packard, Alan B

    2012-12-27

    We recently reported the development of the 2-[(18)F]fluoroethyl ester of rhodamine B as a potential positron emission tomography (PET) tracer for myocardial perfusion imaging. This compound, which was prepared using a [(18)F]fluoroethyl prosthetic group, has significant uptake in the myocardium in rats but also demonstrates relatively high liver uptake and is rapidly hydrolyzed in vivo in mice. We have now prepared (18)F-labeled rhodamine B using three additional prosthetic groups (propyl, diethylene glycol, and triethylene glycol) and found that the prosthetic group has a significant effect on the in vitro and in vivo properties of these compounds. Of the esters prepared to date, the diethylene glycol ester is superior in terms of in vitro stability and pharmacokinetics. These observations suggest that the prosthetic group plays a significant role in determining the pharmacological properties of (18)F-labeled compounds. They also support the value of continued investigation of (18)F-labeled rhodamines as PET radiopharmaceuticals for myocardial perfusion imaging.

  14. Primary screen for potential sheep scab control agents.

    Science.gov (United States)

    Dunn, J A; Prickett, J C; Collins, D A; Weaver, R J

    2016-07-15

    The efficacy of potential acaricidal agents were assessed against the sheep scab mite Psoroptes ovis using a series of in vitro assays in modified test arenas designed initially to maintain P. ovis off-host. The mortality effects of 45 control agents, including essential oils, detergents, desiccants, growth regulators, lipid synthesis inhibitors, nerve action/energy metabolism disruptors and ecdysteroids were assessed against adults and nymphs. The most effective candidates were the desiccants (diatomaceous earth, nanoclay and sorex), the growth regulators (buprofezin, hexythiazox and teflubenzuron), the lipid synthesis inhibitors (spirodiclofen, spirotetramat and spiromesifen) and the nerve action and energy metabolism inhibitors (fenpyroximate, spinosad, tolfenpyrad, and chlorantraniliprole). Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  15. Phage Therapy: Eco-Physiological Pharmacology

    Directory of Open Access Journals (Sweden)

    Stephen T. Abedon

    2014-01-01

    Full Text Available Bacterial virus use as antibacterial agents, in the guise of what is commonly known as phage therapy, is an inherently physiological, ecological, and also pharmacological process. Physiologically we can consider metabolic properties of phage infections of bacteria and variation in those properties as a function of preexisting bacterial states. In addition, there are patient responses to pathogenesis, patient responses to phage infections of pathogens, and also patient responses to phage virions alone. Ecologically, we can consider phage propagation, densities, distribution (within bodies, impact on body-associated microbiota (as ecological communities, and modification of the functioning of body “ecosystems” more generally. These ecological and physiological components in many ways represent different perspectives on otherwise equivalent phenomena. Comparable to drugs, one also can view phages during phage therapy in pharmacological terms. The relatively unique status of phages within the context of phage therapy as essentially replicating antimicrobials can therefore result in a confluence of perspectives, many of which can be useful towards gaining a better mechanistic appreciation of phage therapy, as I consider here. Pharmacology more generally may be viewed as a discipline that lies at an interface between organism-associated phenomena, as considered by physiology, and environmental interactions as considered by ecology.

  16. Pharmacological characterization of human excitatory amino acid transporters EAAT1, EAAT2 and EAAT3 in a fluorescence-based membrane potential assay

    DEFF Research Database (Denmark)

    Jensen, Anders A.; Bräuner-Osborne, Hans

    2004-01-01

    We have expressed the human excitatory amino acid transporters EAAT1, EAAT2 and EAAT3 stably in HEK293 cells and characterized the transporters pharmacologically in a conventional [(3) H]-d-aspartate uptake assay and in a fluorescence-based membrane potential assay, the FLIPR Membrane Potential...... (FMP) assay. The K(m) and K(i) values obtained for 12 standard EAAT ligands at EAAT1, EAAT2 and EAAT3 in the FMP assay correlated well with the K(i) values obtained in the [(3) H]-d-aspartate assay (r(2) values of 0.92, 0.92, and 0.95, respectively). Furthermore, the pharmacological characteristics...

  17. Potential of probiotics as biotherapeutic agents targeting the innate ...

    African Journals Online (AJOL)

    Potential of probiotics as biotherapeutic agents targeting the innate immune system. ... Some of the positive effects of probiotics are: growth promotion of farm animals, protection of host from intestinal infections, alleviation of lactose intolerance, relief of constipation, anticarcinogenic effect, anticholesterolaemic effects, ...

  18. Cymbopogon Species; Ethnopharmacology, Phytochemistry and the Pharmacological Importance

    Directory of Open Access Journals (Sweden)

    Opeyemi Avoseh

    2015-04-01

    Full Text Available Cymbopogon genus is a member of the family of Gramineae which are herbs known worldwide for their high essential oil content. They are widely distributed across all continents where they are used for various purposes. The commercial and medicinal uses of the various species of Cymbopogon are well documented. Ethnopharmacology evidence shows that they possess a wide array of properties that justifies their use for pest control, in cosmetics and as anti-inflammation agents. These plants may also hold promise as potent anti-tumor and chemopreventive drugs. The chemo-types from this genus have been used as biomarkers for their identification and classification. Pharmacological applications of Cymbopogon citratus are well exploited, though studies show that other species may also useful pharmaceutically. Hence this literature review intends to discuss these species and explore their potential economic importance.

  19. Pharmacological effects of biotin.

    Science.gov (United States)

    Fernandez-Mejia, Cristina

    2005-07-01

    In the last few decades, more vitamin-mediated effects have been discovered at the level of gene expression. Increasing knowledge on the molecular mechanisms of these vitamins has opened new perspectives that form a connection between nutritional signals and the development of new therapeutic agents. Besides its role as a carboxylase prosthetic group, biotin regulates gene expression and has a wide repertoire of effects on systemic processes. The vitamin regulates genes that are critical in the regulation of intermediary metabolism: Biotin has stimulatory effects on genes whose action favors hypoglycemia (insulin, insulin receptor, pancreatic and hepatic glucokinase); on the contrary, biotin decreases the expression of hepatic phosphoenolpyruvate carboxykinase, a key gluconeogenic enzyme that stimulates glucose production by the liver. The findings that biotin regulates the expression of genes that are critical in the regulation of intermediary metabolism are in agreement with several observations that indicate that biotin supply is involved in glucose and lipid homeostasis. Biotin deficiency has been linked to impaired glucose tolerance and decreased utilization of glucose. On the other hand, the diabetic state appears to be ameliorated by pharmacological doses of biotin. Likewise, pharmacological doses of biotin appear to decrease plasma lipid concentrations and modify lipid metabolism. The effects of biotin on carbohydrate metabolism and the lack of toxic effects of the vitamin at pharmacological doses suggest that biotin could be used in the development of new therapeutics in the treatment of hyperglycemia and hyperlipidemia, an area that we are actively investigating.

  20. Pharmacological therapy of spondyloarthritis.

    Science.gov (United States)

    Palazzi, Carlo; D'Angelo, Salvatore; Gilio, Michele; Leccese, Pietro; Padula, Angela; Olivieri, Ignazio

    2015-01-01

    The current pharmacological therapy of spondyloarthritis (SpA) includes several drugs: Non-steroidal anti-inflammatory drugs, corticosteroids, traditional disease-modifying antirheumatic drugs and biologic drugs. A systematic literature search was completed using the largest electronic databases (Medline, Embase and Cochrane), starting from 1995, with the aim to review data on traditional and biologic agents commercialised for SpA treatment. Randomised controlled trials and large observational studies were considered. In addition, studies performed in SpA patients treated with other, still unapproved, drugs (rituximab, anti-IL6 agents, apremilast, IL17 inhibitors and anakinra) were also taken into account. Biologic agents, especially anti-TNF drugs, have resulted in significant progress in improving clinical symptoms and signs, reducing inflammatory features in laboratory tests and imaging findings, and recovering all functional indexes. Anti-TNF drugs have radically changed the evolution of radiographic progression in peripheral joints; the first disappointing data concerning their efficacy on new bone formation of axial SpA has been recently challenged by studies enrolling patients who have been earlier diagnosed and treated. The opportunity to extend the interval of administration or to reduce the doses of anti-TNF agents can favourably influence the costs. Ustekinumab, the first non-anti-TNF biologic drug commercialised for psoriatic arthritis, offers new chances to patients that are unresponsive to anti-TNF.

  1. Botany, traditional uses, phytochemistry and pharmacology of Apocynum venetum L. (Luobuma): A review.

    Science.gov (United States)

    Xie, Wenyan; Zhang, Xiaoying; Wang, Tian; Hu, Jianjun

    2012-05-07

    Apocynum venetum L. (Apocynaceae, Luobuma ) has a long history as a Chinese traditional medicine with uses to calm the liver, soothe the nerves, dissipate heat, and promote diuresis. Recently, Luobuma tea has been commercialized as a sedative and anti-aging supplement that has become increasingly popular in North American and East Asian health food markets. The aim of this review is to provide an up-to-date and comprehensive overview of the botany, chemical constituents, traditional uses, pharmacological activities and safety aspects of Apocynum venetum in order to assess its ethnopharmacological use and to explore its therapeutic potentials and future opportunities for research. The accessible literature on Apocynum venetum written in English, Chinese and Japanese were collected and analyzed. The literatures included ancient Chinese herbal classics, pharmacopoeias and articles that included in Pubmed, Web of Science, Google Scholar and Wanfang. Modern pharmacological studies demonstrated that Apocynum venetum possess wide pharmacological activities that include antihypertensive, cardiotonic, hepatoprotective, antioxidant, lipid-lowering, antidepressant and anxiolytic effects, which can be explained by the presence of various flavonoid compounds in this plant. The traditional (Lop Nor region) use of Apocynum venetum with tobacco as an agent to detoxify nicotine may receive interest as a possible therapeutic option to detoxify the body from smoking. Based on animal studies and clinical trials, Apocynum venetum causes no severe side effects, even in a stable daily dosage (50mg/person/day) for more than three years. Apocynum venetum potentially has therapeutic potential in the prevention and treatment for the cardiovascular and neurological diseases, especially for high blood pressure, high cholesterol, neurasthenia, depression and anxiety. Further investigations are needed to explore individual bioactive compounds responsible for these in vitro and in vivo

  2. Pharmacological therapy for amblyopia

    Directory of Open Access Journals (Sweden)

    Anupam Singh

    2017-01-01

    Full Text Available Amblyopia is the most common cause of preventable blindness in children and young adults. Most of the amblyopic visual loss is reversible if detected and treated at appropriate time. It affects 1.0 to 5.0% of the general population. Various treatment modalities have been tried like refractive correction, patching (both full time and part time, penalization and pharmacological therapy. Refractive correction alone improves visual acuity in one third of patients with anisometropic amblyopia. Various drugs have also been tried of which carbidopa & levodopa have been popular. Most of these agents are still in experimental stage, though levodopa-carbidopa combination therapy has been widely studied in human amblyopes with good outcomes. Levodopa therapy may be considered in cases with residual amblyopia, although occlusion therapy remains the initial treatment choice. Regression of effect after stoppage of therapy remains a concern. Further studies are therefore needed to evaluate the full efficacy and side effect profile of these agents.

  3. Pharmacological therapy for amblyopia

    Science.gov (United States)

    Singh, Anupam; Nagpal, Ritu; Mittal, Sanjeev Kumar; Bahuguna, Chirag; Kumar, Prashant

    2017-01-01

    Amblyopia is the most common cause of preventable blindness in children and young adults. Most of the amblyopic visual loss is reversible if detected and treated at appropriate time. It affects 1.0 to 5.0% of the general population. Various treatment modalities have been tried like refractive correction, patching (both full time and part time), penalization and pharmacological therapy. Refractive correction alone improves visual acuity in one third of patients with anisometropic amblyopia. Various drugs have also been tried of which carbidopa & levodopa have been popular. Most of these agents are still in experimental stage, though levodopa-carbidopa combination therapy has been widely studied in human amblyopes with good outcomes. Levodopa therapy may be considered in cases with residual amblyopia, although occlusion therapy remains the initial treatment choice. Regression of effect after stoppage of therapy remains a concern. Further studies are therefore needed to evaluate the full efficacy and side effect profile of these agents. PMID:29018759

  4. Combined-modality treatment of solid tumors using radiotherapy and molecular targeted agents.

    Science.gov (United States)

    Ma, Brigette B Y; Bristow, Robert G; Kim, John; Siu, Lillian L

    2003-07-15

    Molecular targeted agents have been combined with radiotherapy (RT) in recent clinical trials in an effort to optimize the therapeutic index of RT. The appeal of this strategy lies in their potential target specificity and clinically acceptable toxicity. This article integrates the salient, published research findings into the underlying molecular mechanisms, preclinical efficacy, and clinical applicability of combining RT with molecular targeted agents. These agents include inhibitors of intracellular signal transduction molecules, modulators of apoptosis, inhibitors of cell cycle checkpoints control, antiangiogenic agents, and cyclo-oxygenase-2 inhibitors. Molecular targeted agents can have direct effects on the cytoprotective and cytotoxic pathways implicated in the cellular response to ionizing radiation (IR). These pathways involve cellular proliferation, DNA repair, cell cycle progression, nuclear transcription, tumor angiogenesis, and prostanoid-associated inflammation. These pathways can also converge to alter RT-induced apoptosis, terminal growth arrest, and reproductive cell death. Pharmacologic modulation of these pathways may potentially enhance tumor response to RT though inhibition of tumor repopulation, improvement of tumor oxygenation, redistribution during the cell cycle, and alteration of intrinsic tumor radiosensitivity. Combining RT and molecular targeted agents is a rational approach in the treatment of solid tumors. Translation of this approach from promising preclinical data to clinical trials is actively underway.

  5. Pills or push-ups? Effectiveness and public perception of pharmacological and non-pharmacological cognitive enhancement

    Directory of Open Access Journals (Sweden)

    Lucius eCaviola

    2015-12-01

    Full Text Available We review work on the effectiveness of different forms of cognitive enhancement, both pharmacological and non-pharmacological. We consider caffeine, methylphenidate, and modafinil for pharmacological cognitive enhancement (PCE and computer training, physical exercise, and sleep for non-pharmacological cognitive enhancement (NPCE. We find that all of the techniques described can produce significant beneficial effects on cognitive performance. However, effect sizes are moderate, and consistently dependent on individual and situational factors as well as the cognitive domain in question. Although meta-analyses allowing a quantitative comparison of effectiveness across techniques are lacking to date, we can conclude that PCE is not more effective than NPCE. We discuss the physiological reasons for this limited effectiveness.We then propose that even though their actual effectiveness seems similar, in the general public PCE is perceived as fundamentally different from NPCE, in terms of effectiveness, but also in terms of acceptability. We illustrate the potential consequences such a misperception of PCE can have.

  6. Molecular Pharmacology of Rosmarinic and Salvianolic Acids: Potential Seeds for Alzheimer’s and Vascular Dementia Drugs

    Directory of Open Access Journals (Sweden)

    Solomon Habtemariam

    2018-02-01

    Full Text Available Both caffeic acid and 3,4-dihydroxyphenyllactic acid (danshensu are synthesized through two distinct routs of the shikimic acid biosynthesis pathway. In many plants, especially the rosemary and sage family of Lamiaceae, these two compounds are joined through an ester linkage to form rosmarinic acid (RA. A further structural diversity of RA derivatives in some plants such as Salvia miltiorrhiza Bunge is a form of RA dimer, salvianolic acid-B (SA-B, that further give rise to diverse salvianolic acid derivatives. This review provides a comprehensive perspective on the chemistry and pharmacology of these compounds related to their potential therapeutic applications to dementia. The two common causes of dementia, Alzheimer’s disease (AD and stroke, are employed to scrutinize the effects of these compounds in vitro and in animal models of dementia. Key pharmacological mechanisms beyond the common antioxidant and anti-inflammatory effects of polyphenols are highlighted with emphasis given to amyloid beta (Aβ pathologies among others and neuronal regeneration from stem cells.

  7. Disulfiram attenuates osteoclast differentiation in vitro: a potential antiresorptive agent.

    Directory of Open Access Journals (Sweden)

    Hua Ying

    Full Text Available Disulfiram (DSF, a cysteine modifying compound, has long been clinically employed for the treatment of alcohol addiction. Mechanistically, DSF acts as a modulator of MAPK and NF-κB pathways signaling pathways. While these pathways are crucial for osteoclast (OC differentiation, the potential influence of DSF on OC formation and function has not been directly assessed. Here, we explore the pharmacological effects of DSF on OC differentiation, activity and the modulation of osteoclastogenic signaling cascades. We first analyzed cytotoxicity of DSF on bone marrow monocytes isolated from C57BL/6J mice. Upon the establishment of optimal dosage, we conducted osteoclastogenesis and bone resorption assays in the presence or absence of DSF treatment. Luciferase assays in RAW264.7 cells were used to examine the effects of DSF on major transcription factors activation. Western blot, reverse transcription polymerase chain reaction, intracellular acidification and proton influx assays were employed to further dissect the underlying mechanism. DSF treatment dose-dependently inhibited both mouse and human osteoclastogenesis, especially at early stages of differentiation. This inhibition correlated with a decrease in the expression of key osteoclastic marker genes including CtsK, TRAP, DC-STAMP and Atp6v0d2 as well as a reduction in bone resorption in vitro. Suppression of OC differentiation was found to be due, at least in part, to the blockade of several key receptor activators of nuclear factor kappa-B ligand (RANKL-signaling pathways including ERK, NF-κB and NFATc1. On the other hand, DSF failed to suppress intracellular acidification and proton influx in mouse and human osteoclasts using acridine orange quenching and microsome-based proton transport assays. Our findings indicate that DSF attenuates OC differentiation via the collective suppression of several key RANKL-mediated signaling cascades, thus making it an attractive agent for the treatment of OC

  8. Targeting ligand-gated ion channels in neurology and psychiatry: is pharmacological promiscuity an obstacle or an opportunity?

    Science.gov (United States)

    Bianchi, Matt T; Botzolakis, Emmanuel J

    2010-03-02

    The traditional emphasis on developing high specificity pharmaceuticals ("magic bullets") for the treatment of Neurological and Psychiatric disorders is being challenged by emerging pathophysiology concepts that view disease states as abnormal interactions within complex networks of molecular and cellular components. So-called network pharmacology focuses on modifying the behavior of entire systems rather than individual components, a therapeutic strategy that would ideally employ single pharmacological agents capable of interacting with multiple targets ("magic shotguns"). For this approach to be successful, however, a framework for understanding pharmacological "promiscuity"--the ability of individual agents to modulate multiple molecular targets--is needed. Pharmacological promiscuity is more often the rule than the exception for drugs that target the central nervous system (CNS). We hypothesize that promiscuity is an important contributor to clinical efficacy. Modulation patterns of existing therapeutic agents may provide critical templates for future drug discovery in Neurology and Psychiatry. To demonstrate the extent of pharmacological promiscuity and develop a framework for guiding drug screening, we reviewed the ability of 170 therapeutic agents and endogenous molecules to directly modulate neurotransmitter receptors, a class of historically attractive therapeutic targets in Neurology and Psychiatry. The results are summarized in the form of 1) receptor-centric maps that illustrate the degree of promiscuity for GABA-, glycine-, serotonin-, and acetylcholine-gated ion channels, and 2) drug-centric maps that illustrated how characterization of promiscuity can guide drug development. Developing promiscuity maps of approved neuro-pharmaceuticals will provide therapeutic class-based templates against which candidate compounds can be screened. Importantly, compounds previously rejected in traditional screens due to poor specificity could be reconsidered in this

  9. Novel Pharmacological Approaches for Treatment of Neurotoxicity Induced by Chronic Exposure to Depleted Uranium

    National Research Council Canada - National Science Library

    Lasley, Stephen M

    2008-01-01

    .... This hypothesis is consistent with previous observations ensuing from chronic intramuscular DU pellet implants in rats, and is based on the anticipation that specific pharmacological agents will...

  10. Pharmacological Intervention through Dietary Nutraceuticals in Gastrointestinal Neoplasia.

    Science.gov (United States)

    Ullah, Mohammad F; Bhat, Showket H; Husain, Eram; Abu-Duhier, Faisel; Hadi, S M; Sarkar, Fazlul H; Ahmad, Aamir

    2016-07-03

    Neoplastic conditions associated with gastrointestinal (GI) tract are common worldwide with colorectal cancer alone accounting for the third leading rate of cancer incidence. Other GI malignancies such as esophageal carcinoma have shown an increasing trend in the last few years. The poor survival statistics of these fatal cancer diseases highlight the need for multiple alternative treatment options along with effective prophylactic strategies. Worldwide geographical variation in cancer incidence indicates a correlation between dietary habits and cancer risk. Epidemiological studies have suggested that populations with high intake of certain dietary agents in their regular meals have lower cancer rates. Thus, an impressive embodiment of evidence supports the concept that dietary factors are key modulators of cancer including those of GI origin. Preclinical studies on animal models of carcinogenesis have reflected the pharmacological significance of certain dietary agents called as nutraceuticals in the chemoprevention of GI neoplasia. These include stilbenes (from red grapes and red wine), isoflavones (from soy), carotenoids (from tomatoes), curcuminoids (from spice turmeric), catechins (from green tea), and various other small plant metabolites (from fruits, vegetables, and cereals). Pleiotropic action mechanisms have been reported for these diet-derived chemopreventive agents to retard, block, or reverse carcinogenesis. This review presents a prophylactic approach to primary prevention of GI cancers by highlighting the translational potential of plant-derived nutraceuticals from epidemiological, laboratory, and clinical studies, for the better management of these cancers through consumption of nutraceutical rich diets and their intervention in cancer therapeutics.

  11. Molecular catchers for pharmacologically active substances in wastewaters, a theoretical study

    International Nuclear Information System (INIS)

    Salazar Valencia, P J; Pérez Merchancano, S T; Bolívar Marinez, L E; Paredes, H

    2016-01-01

    A basic and pressing need in the treatment of residual waste waters for urban and rural centers is the removal of pharmacological active residues from them, these resides are originated in a wide array of domestic, agricultural and industrial sources and can't be removed in the residual waters treatment plants by conventional methods, the result is the incorporation of them into the ecosystem altering the physiology and behavior of living organisms. Among the most active pharmacological substances found in very high concentration in residual waters is paracetamol, an analgesic of very wide excessive use due to its ease of access and low cost [1]. No pharmacological substance is entirely absorbed by the human organism and therefore a wide family of molecular residues is excreted by the urinary tract. In this work we have used the AM1 (Austin Model 1), PM3 (Parametric Method 3) and ZINDO/CI semiempirical methods, from the NDO (Neglect Differential Overlap) family [2] to study and observe the structural, electronic and optical characteristics of paracetamol while immersed in different basic and acidic aqueous environments, either alone or interacting with lignosulphonates. We have previously found that lignosulphonates, a lignin derivatives of wide industrial applications, can be engineered as a binding and flocculant agent and acts as molecular catchers therefore showing the potential to be used as a mean to filter and eliminate molecular residues from the residual waters [3]. (paper)

  12. Podophyllotoxin: a novel potential natural anticancer agent

    Directory of Open Access Journals (Sweden)

    Hamidreza Ardalani

    2017-06-01

    Full Text Available Objective: The aim of the present review is to give an overview about the role, biosynthesis, and characteristics of Podophyllotoxin (PTOX as a potential antitumor agent with particular emphasis on key biosynthesis processes, function of related enzymes and characterization of genes encoding the enzymes. Materials and Methods: Google scholar, PubMed and Scopus were searched for literatures which have studied identification, characterization, fermentation and therapeutic effects of PTOX and published in English language until end of 2016. Results: PTOX is an important plant-derived natural product, has derivatives such as etoposide and teniposide, which have been used as therapies for cancers and venereal wart. PTOX structure is closely related to the aryltetralin lactone lignans that have antineoplastic and antiviral activities. Podophyllum emodi Wall. (syn. P. hexandrum and Podophyllum peltatum L. (Berberidaceae are the major sources of PTOX. It has been shown that ferulic acid and methylenedioxy substituted cinnamic acid are the enzymes involved in PTOX synthesis. PTOX prevents cell growth via polymerization of tubulin, leading to cell cycle arrest and suppression of the formation of the mitotic-spindles microtubules.   Conclusion: Several investigations have been performed in biosynthesis of PTOX such as cultivation of these plants, though they were unsuccessful. Thus, it is important to find alternative sources to satisfy the pharmaceutical demand for PTOX. Moreover, further preclinical studies are warranted to explore the molecular mechanisms of these agents in treatment of cancer and their possible potential to overcome chemoresistance of tumor cells.

  13. Podophyllotoxin: a novel potential natural anticancer agent

    Science.gov (United States)

    Ardalani, Hamidreza; Avan, Amir; Ghayour-Mobarhan, Majid

    2017-01-01

    Objective: The aim of the present review is to give an overview about the role, biosynthesis, and characteristics of Podophyllotoxin (PTOX) as a potential antitumor agent with particular emphasis on key biosynthesis processes, function of related enzymes and characterization of genes encoding the enzymes. Materials and Methods: Google scholar, PubMed and Scopus were searched for literatures which have studied identification, characterization, fermentation and therapeutic effects of PTOX and published in English language until end of 2016. Results: PTOX is an important plant-derived natural product, has derivatives such as etoposide and teniposide, which have been used as therapies for cancers and venereal wart. PTOX structure is closely related to the aryltetralin lactone lignans that have antineoplastic and antiviral activities. Podophyllum emodi Wall. (syn. P. hexandrum) and Podophyllum peltatum L. (Berberidaceae) are the major sources of PTOX. It has been shown that ferulic acid and methylenedioxy substituted cinnamic acid are the enzymes involved in PTOX synthesis. PTOX prevents cell growth via polymerization of tubulin, leading to cell cycle arrest and suppression of the formation of the mitotic-spindles microtubules. Conclusion: Several investigations have been performed in biosynthesis of PTOX such as cultivation of these plants, though they were unsuccessful. Thus, it is important to find alternative sources to satisfy the pharmaceutical demand for PTOX. Moreover, further preclinical studies are warranted to explore the molecular mechanisms of these agents in treatment of cancer and their possible potential to overcome chemoresistance of tumor cells. PMID:28884079

  14. Pharmacists' and general practitioners' pharmacology knowledge and pharmacotherapy skills

    NARCIS (Netherlands)

    Keijsers, Carolina J P W; Leendertse, Anne J; Faber, Adrianne; Brouwers, Jacobus R B J; de Wildt, Dick J; Jansen, Paul A F

    Understanding differences in the pharmacology knowledge and pharmacotherapy skills of pharmacists and physicians is vital to optimizing interprofessional collaboration and education. This study investigated these differences and the potential influence of work experience. The pharmacology knowledge

  15. Bifunctional chelates of Rh-105 and Au-199 as potential radiotherapeutic agents

    International Nuclear Information System (INIS)

    Troutner, D.E.; Schlemper, E.O.

    1990-01-01

    Since last year we have: continued the synthesis of pentadentate bifunctional chelating agents based on diethylene triamine; studied the chelation Rh-105, Au-198 (as model for Au-199) and Tc-99m with these agents as well as chelation of Pd-109, Cu-67, In-111, and Co-57 with some of them; synthesized a new class of potential bifunctional chelating agents based on phenylene diamine; investigated the behavior of Au-198 as a model for Au-199; begun synthesis of bifunctional chelating agents based on terpyridly and similar ligands; and continued attempts to produce tetradentate bifunctional chelates based on diaminopropane. Each of these will be addressed in this report

  16. Pharmacology of midazolam.

    Science.gov (United States)

    Pieri, L; Schaffner, R; Scherschlicht, R; Polc, P; Sepinwall, J; Davidson, A; Möhler, H; Cumin, R; Da Prada, M; Burkard, W P; Keller, H H; Müller, R K; Gerold, M; Pieri, M; Cook, L; Haefely, W

    1981-01-01

    8-Chloro-6-(2-fluorophenyl)-1-methyl-4H-imidazo[1,5-a][1,4]benzodiazepine (midazolam, Ro 21-3981, Dormicum) is an imidazobenzodiazepine whose salts are soluble and stable in aqueous solution. It has a quick onset and, due to rapid metabolic inactivation, a rather short duration of action in all species studied. Midazolam has a similar pharmacologic potency and broad therapeutic range as diazepam. It produces all the characteristic effects of the benzodiazepine class, i.e., anticonvulsant, anxiolytic, sleep-inducing, muscle relaxant, and "sedative" effects. The magnitude of the anticonflict effect of midazolam is smaller than that of diazepam in rats and squirrel monkeys, probably because a more pronounced sedative component interferes with the increase of punished responses. In rodents, surgical anaesthesia is not attained with midazolam alone even in high i.v. doses, whereas this state is obtained in monkeys. The drug potentiates the effect of various central depressant agents. Midazolam is virtually free of effects on the cardiovascular system in conscious animals and produces only slight decreases in cardiac performance in dogs anaesthetized with barbiturates. No direct effects of the drugs on autonomic functions were found, however, stress-induced autonomic disturbances are prevented, probably by an effect on central regulatory systems. All animal data suggest the usefulness of midazolam as a sleep-inducer and i.v. anaesthetic of rapid onset and short duration.

  17. Pharmacological experiment of 13N-ammonia as PET imaging agent

    International Nuclear Information System (INIS)

    Wang Mingfang; Tang Ganghua; Gao Xiao; Li Zhi; Wu Hubing; Huang Zuhan; Jiang Hong; Zhong Jinmei; Wang Quanshi

    2002-01-01

    Objective: To study the pharmacological characteristics of 13 N-ammonia, the clinical PET imaging methods of 13 N-ammonia, and its application in myocardial blood flow perfusion. Methods: The uptakes of 13 N-ammonia in the myocardium and other organs in dogs were measured by whole body scanning and chest dynamic PET scanning. The regional myocardial blood flow (rMBF) in healthy volunteers was also measured by the dynamic and static PET imaging following intravenous bolus administration of 13 N-ammonia. Results: The heart and lungs were the first-pass organs that was found out by PET imaging with 13 N-ammonia in dogs and human volunteers, the highest uptake of 13 N-ammonia in the myocardium was also observed. At 30 s after injection the radioactivity in the blood pool of left and right ventricles reached its peak, at 1 min it began to drop, and at 4-20 min after injection the lower radioactivity was kept on. Regional analysis of PET imaging showed that the myocardial uptake of 13 N-ammonia began at 10 s after injection, and the uptake in the septum wall was higher than that in the lateral wall; but in the septum wall was slightly higher than in the lateral wall at 2 min after injection. The radioactivity in the liver and lungs reached its peak at 30 s and was sharply declined hereafter. The uptake of 13 N-ammonia in the liver and lungs remained at the lower levels and the heart-to-blood, heart-to-liver and heart-to-lung ratios were above 2.0 after 5 min. Whole-body PET scanning for dogs showed that 13 N-ammonia was distributed primarily in the organs with rich blood flow and its clearance was observed in the kidney. The images of regional myocardial blood flow (rMBF) acquired from the dynamic or static PET imaging following intravenous bolus administration of 13 N-ammonia were of no difference. Conclusions: The analysis of distribution of 13 N-ammonia indicates that the heart-to-blood, heart-to-liver and heat-to-lung ratios were high and the PET images were clear

  18. Corn Silk (Stigma Maydis in Healthcare: A Phytochemical and Pharmacological Review

    Directory of Open Access Journals (Sweden)

    Shuhaimi Mustafa

    2012-08-01

    Full Text Available Corn silk (Stigma maydis is an important herb used traditionally by the Chinese, and Native Americans to treat many diseases. It is also used as traditional medicine in many parts of the world such as Turkey, United States and France. Its potential antioxidant and healthcare applications as diuretic agent, in hyperglycemia reduction, as anti-depressant and anti-fatigue use have been claimed in several reports. Other uses of corn silk include teas and supplements to treat urinary related problems. The potential use is very much related to its properties and mechanism of action of its plant’s bioactive constituents such as flavonoids and terpenoids. As such, this review will cover the research findings on the potential applications of corn silk in healthcare which include its phytochemical and pharmacological activities. In addition, the botanical description and its toxicological studies are also included.

  19. Stable Flocking of Multiple Agents Based on Molecular Potential Field and Distributed Receding Horizon Control

    International Nuclear Information System (INIS)

    Zhang Yun-Peng; Duan Hai-Bin; Zhang Xiang-Yin

    2011-01-01

    A novel distributed control scheme to generate stable flocking motion for a group of agents is proposed. In this control scheme, a molecular potential field model is applied as the potential field function because of its smoothness and unique shape. The approach of distributed receding horizon control is adopted to drive each agent to find its optimal control input to lower its potential at every step. Experimental results show that this proposed control scheme can ensure that all agents eventually converge to a stable flocking formation with a common velocity and the collisions can also be avoided at the same time. (general)

  20. Alkaloids from piper: a review of its phytochemistry and pharmacology.

    Science.gov (United States)

    Gutierrez, Rosa Martha Perez; Gonzalez, Adriana Maria Neira; Hoyo-Vadillo, Carlos

    2013-02-01

    Piper has been used for long timelike condiment and food, but also in traditional medicine around of the world. This work resumes the available and up to date work done on members of the Piperaceae family and their uses for therapeutic purposes. Information on Piper genus was gathered via internet using scientific databases such as Scirus, Google Scholar, CAB-abstracts, MedlinePlus, Pubmed, SciFinder, Scopus and Web of Science. The largeleafed perennial plant Piper is used for its spicy aromatic scent and flavor. It has an important presence in the cuisine of different cultures. Another quality of these plants is their known medicinal properties. It has been used as emollient, antirheumatic, diuretic, stimulant, abortifacient, anti-inflammatory, antibacterial, antifungal and antidermatophytic. A survey of the literature shows that the genus Piper is mainly known for its alkaloids with cytotoxic, chemopreventive, antimetastatic and antitumor properties in several types of cancer. Studies of its alkaloids highlight the existence of various potential leads to develop new anti-cancer agents. Modern pharmacology studies have demonstrated that its crude extracts and active compounds possess wide pharmacological activities, especially asantioxidant, anti-depressive, hepatoprotective, antimicrobial, anti-obesity, neuropharmacological, to treat cognitive disorders, anti-hyperlipidemic, anti-feedant, cardioactive, immuno-enhancing, and anti-inflamatory. All this evidence supporting its traditional uses. This review summarizes the up-to-date and comprehensive information concerning the botany, traditional use, phytochemistry and pharmacology of Piper together with its toxicology, and discusses the possible trend and scope for further research on Piper in the future.

  1. A Review of Pharmacologic Treatment for Compulsive Buying Disorder.

    Science.gov (United States)

    Soares, Célia; Fernandes, Natália; Morgado, Pedro

    2016-04-01

    At present, no treatment recommendations can be made for compulsive buying disorder. Recent studies have found evidence for the efficacy of psychotherapeutic options, but less is known regarding the best pharmacologic treatment. The purpose of this review is to present and analyze the available published evidence on the pharmacological treatment of compulsive buying disorder. To achieve this, we conducted a review of studies focusing on the pharmacological treatment of compulsive buying by searching the PubMed/MEDLINE database. Selection criteria were applied, and 21 studies were identified. Pharmacological classes reported included antidepressants, mood stabilizers, opioid antagonists, second-generation antipsychotics, and N-methyl-D-aspartate receptor antagonists. We found only placebo-controlled trials for fluvoxamine; none showed effectiveness against placebo. Three open-label trials reported clinical improvement with citalopram; one was followed by a double-blind discontinuation. Escitalopram was effective in an open-label trial but did not show efficacy in the double-blind phase. Memantine was identified as effective in a pilot open-label study. Fluoxetine, bupropion, nortriptyline, clomipramine, topiramate and naltrexone were only reported to be effective in clinical cases. According to the available literature, there is no evidence to propose a specific pharmacologic agent for compulsive buying disorder. Future research is required for a better understanding of both pathogenesis and treatment of this disorder.

  2. Brivaracetam: review of its pharmacology and potential use as adjunctive therapy in patients with partial onset seizures [Corrigendum

    OpenAIRE

    Russo, Emilio; Mumoli,Laura; Palleria,Caterina; Gasparini,Sara; Citraro,Rita; Labate,Angelo; Ferlazzo,Edoardo; Gambardella,Antonio; De Sarro,Giovambattista

    2015-01-01

    Brivaracetam: review of its pharmacology and potential use as adjunctive therapy in patients with partial onset seizures [Corrigendum] Mumoli L, Palleria C, Gasparini S, et al. Drug Des Devel Ther. 2015;9:5719–5725.   The authors advise several errors in the paper that are corrected in Corrigendum. View the original article by Mumoli et al.

  3. Brivaracetam: review of its pharmacology and potential use as adjunctive therapy in patients with partial onset seizures [Corrigendum

    Directory of Open Access Journals (Sweden)

    Mumoli L

    2015-12-01

    Full Text Available Brivaracetam: review of its pharmacology and potential use as adjunctive therapy in patients with partial onset seizures [Corrigendum] Mumoli L, Palleria C, Gasparini S, et al. Drug Des Devel Ther. 2015;9:5719–5725.   The authors advise several errors in the paper that are corrected in Corrigendum. View the original article by Mumoli et al.

  4. Pharmacological potential of tocotrienols: a review.

    Science.gov (United States)

    Ahsan, Haseeb; Ahad, Amjid; Iqbal, Jahangir; Siddiqui, Waseem A

    2014-01-01

    Tocotrienols, members of the vitamin E family, are natural compounds found in a number of vegetable oils, wheat germ, barley, and certain types of nuts and grains. Like tocopherols, tocotrienols are also of four types viz. alpha, beta, gamma and delta. Unlike tocopherols, tocotrienols are unsaturated and possess an isoprenoid side chain. Tocopherols are lipophilic in nature and are found in association with lipoproteins, fat deposits and cellular membranes and protect the polyunsaturated fatty acids from peroxidation reactions. The unsaturated chain of tocotrienol allows an efficient penetration into tissues that have saturated fatty layers such as the brain and liver. Recent mechanistic studies indicate that other forms of vitamin E, such as γ-tocopherol, δ-tocopherol, and γ-tocotrienol, have unique antioxidant and anti-inflammatory properties that are superior to those of α-tocopherol against chronic diseases. These forms scavenge reactive nitrogen species, inhibit cyclooxygenase- and 5-lipoxygenase-catalyzed eicosanoids and suppress proinflammatory signalling, such as NF-κB and STAT. The animal and human studies show tocotrienols may be useful against inflammation-associated diseases. Many of the functions of tocotrienols are related to its antioxidant properties and its varied effects are due to it behaving as a signalling molecule. Tocotrienols exhibit biological activities that are also exhibited by tocopherols, such as neuroprotective, anti-cancer, anti-inflammatory and cholesterol lowering properties. Hence, effort has been made to compile the different functions and properties of tocotrienols in experimental model systems and humans. This article constitutes an in-depth review of the pharmacology, metabolism, toxicology and biosafety aspects of tocotrienols. Tocotrienols are detectable at appreciable levels in the plasma after supplementations. However, there is inadequate data on the plasma concentrations of tocotrienols that are sufficient to

  5. Plants' Metabolites as Potential Antiobesity Agents

    Directory of Open Access Journals (Sweden)

    Najla Gooda Sahib

    2012-01-01

    Full Text Available Obesity and obesity-related complications are on the increase both in the developed and developing world. Since existing pharmaceuticals fail to come up with long-term solutions to address this issue, there is an ever-pressing need to find and develop new drugs and alternatives. Natural products, particularly medicinal plants, are believed to harbor potential antiobesity agents that can act through various mechanisms either by preventing weight gain or promoting weight loss amongst others. The inhibition of key lipid and carbohydrate hydrolyzing and metabolizing enzymes, disruption of adipogenesis, and modulation of its factors or appetite suppression are some of the plethora of targeted approaches to probe the antiobesity potential of medicinal plants. A new technology such as metabolomics, which deals with the study of the whole metabolome, has been identified to be a promising technique to probe the progression of diseases, elucidate their pathologies, and assess the effects of natural health products on certain pathological conditions. This has been applied to drug research, bone health, and to a limited extent to obesity research. This paper thus endeavors to give an overview of those plants, which have been reported to have antiobesity effects and highlight the potential and relevance of metabolomics in obesity research.

  6. Pharmacological treatment of sexual offenders in German outpatient treatment centers.

    Science.gov (United States)

    Turner, Daniel; Gregório Hertz, Priscilla; Sauter, Julia; Briken, Peer; Rettenberger, Martin

    2018-05-04

    In Germany, depending on a sexual offender's culpability and the severity of the offence, he/she can be placed either in the forensic-psychiatric or the correctional system. Numbers related to the pharmacological treatment of sexual offenders for the correctional system are missing so far. In sexual offenders, the pharmacological treatment of paraphilic disorders is of special importance. The present study aimed at assessing the prevalence of pharmacological sexual offender treatment in German outpatient treatment centers supervising mainly clients from the correctional sector. An online questionnaire was sent to 112 outpatient treatment centers and 21 provided data relevant for the present study. The included institutions reported about a total of 813 sexual offenders, of whom 200 (24.6%) were treated with pharmacological agents, most frequently antipsychotics (14.8%) and selective-serotonin-reuptake-inhibitors (7.1%). Of the total sample, 26.7% of sexual offenders were diagnosed with a paraphilic - mainly with a pedophilic - disorder. Only 2% were treated with androgen-deprivation therapy. Compared with forensic-psychiatric institutions, only a minority of sexual offenders are treated with medication specifically addressing paraphilic symptomatology. However, the prevalence of paraphilic disorders found in the present study suggests that pharmacological treatment of paraphilic fantasies and behaviors could be of great importance in the correctional sector as well.

  7. Allelopathic potential of some biocontrol agents for the control of ...

    African Journals Online (AJOL)

    The adverse effect of synthetic pesticides on human health and the natural ecosystem necessitate the need to explore natural mechanisms of disease control in plants. This study evaluated the allelopathic potential of five biocontrol agents: Trichoderma longibrachiatum, Trichoderma asperellum, Bacillus subtilis, Bacillus ...

  8. Treatment of adolescents with morbid obesity with bariatric procedures and anti-obesity pharmacological agents

    Directory of Open Access Journals (Sweden)

    Um SS

    2011-12-01

    Full Text Available Scott S Um1, Wendelin Slusser2, Daniel A DeUgarte11Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; 2Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USAAbstract: Adolescent obesity is a growing health concern that can have immense physical and psychological impact. Treatment of morbidly obese adolescents should include a multidisciplinary team to address medical comorbidities, diet, physical activity, mental health, and behavior modification. Anti-obesity pharmacologic agents have a limited role in the treatment of adolescents because of concerns with side effects, safety, and efficacy. Orlistat (GlaxoSmithKline, Moon Township, PA is the only approved medication for weight-loss in adolescents. However, it is associated with gastrointestinal side effects and its long-term efficacy is unknown. Bariatric surgery is the most effective therapy to treat morbid obesity. However, adolescents must meet rigorous criteria and have appropriate cognitive, psychological, and social clearance before being considered for surgical intervention. Gastric bypass remains the gold standard bariatric operation. The adjustable gastric band is not FDA-approved for use in patients under 18 years of age. Sleeve gastrectomy is a promising procedure for adolescents because it avoids an intestinal bypass and the implantation of a foreign body. Prospective longitudinal assessment of bariatric surgery procedures is required to determine long-term outcomes. In this manuscript, we review the treatment options, efficacy, and impact on quality of life for morbidly obese adolescents.Keywords: bariatric surgery, morbid obesity, weight loss, adolescent

  9. Perspectives in the development of hybrid bifunctional antitumour agents.

    Science.gov (United States)

    Musso, Loana; Dallavalle, Sabrina; Zunino, Franco

    2015-08-15

    In spite of the development of a large number of novel target-specific antitumour agents, the single-agent therapy is in general not able to provide an effective durable control of the malignant process. The limited efficacy of the available agents (both conventional cytotoxic and novel target-specific) reflects not only the expression of defence mechanisms, but also the complexity of tumour cell alterations and the redundancy of survival pathways, thus resulting in tumour cell ability to survive under stress conditions. A well-established strategy to improve the efficacy of antitumour therapy is the rational design of drug combinations aimed at achieving synergistic effects and overcoming drug resistance. An alternative strategy could be the use of agents designed to inhibit simultaneously multiple cellular targets relevant to tumour growth/survival. Among these novel agents are hybrid bifunctional drugs, i.e. compounds resulting by conjugation of different drugs or containing the pharmocophores of different drugs. This strategy has been pursued using various conventional or target-specific agents (with DNA damaging agents and histone deacetylase inhibitors as the most exploited compounds). A critical overview of the most representative compounds is provided with emphasis on the HDAC inhibitor-based hybrid agents. In spite of some promising results, the actual pharmacological advantages of the hybrid agents remain to be defined. This commentary summarizes the recent advances in this field and highlights the pharmacological basis for a rational design of hybrid bifunctional agents. Copyright © 2015. Published by Elsevier Inc.

  10. Ionization Potentials of Chemical Warfare Agents and Related Compounds Determined with Density Functional Theory

    National Research Council Canada - National Science Library

    Wright, J

    2000-01-01

    ...) agents at contaminated sites. Reported herein are theoretical ionization potentials for CW agents and their related compounds calculated using density functional theory at the B3LYP/6-311+G(2d,p) level of theory...

  11. Pharmacological ascorbate and ionizing radiation (IR increase labile iron in pancreatic cancer

    Directory of Open Access Journals (Sweden)

    Justin C. Moser

    2014-01-01

    Full Text Available Labile iron, i.e. iron that is weakly bound and is relatively unrestricted in its redox activity, has been implicated in both the pathogenesis as well as treatment of cancer. Two cancer treatments where labile iron may contribute to their mechanism of action are pharmacological ascorbate and ionizing radiation (IR. Pharmacological ascorbate has been shown to have tumor-specific toxic effects due to the formation of hydrogen peroxide. By catalyzing the oxidation of ascorbate, labile iron can enhance the rate of formation of hydrogen peroxide; labile iron can also react with hydrogen peroxide. Here we have investigated the magnitude of the labile iron pool in tumor and normal tissue. We also examined the ability of pharmacological ascorbate and IR to change the size of the labile iron pool. Although a significant amount of labile iron was seen in tumors (MIA PaCa-2 cells in athymic nude mice, higher levels were seen in murine tissues that were not susceptible to pharmacological ascorbate. Pharmacological ascorbate and irradiation were shown to increase the labile iron in tumor homogenates from this murine model of pancreatic cancer. As both IR and pharmacological ascorbate may rely on labile iron for their effects on tumor tissues, our data suggest that pharmacological ascorbate could be used as a radio-sensitizing agent for some radio-resistant tumors.

  12. Pharmacological interventions for agitation in patients with traumatic brain injury: protocol for a systematic review and meta-analysis

    Directory of Open Access Journals (Sweden)

    David R. Williamson

    2016-11-01

    Full Text Available Abstract Background Traumatic brain injury (TBI is a worldwide leading cause of mortality and disability. Among TBI complications, agitation is a frequent behavioural problem. Agitation causes potential harm to patients and caregivers, interferes with treatments, leads to unnecessary chemical and physical restraints, increases hospital length of stay, delays rehabilitation, and impedes functional independence. Pharmacological treatments are often considered for agitation management following TBI. Several types of agents have been proposed for the treatment of agitation. However, the benefit and safety of these agents in TBI patients as well as their differential effects and interactions are uncertain. In addition, animal studies and observational studies have suggested impaired cognitive function with the use of certain antipsychotics and benzodiazepines. Hence, a safe and effective treatment for agitation, which does not interfere with neurological recovery, remains to be identified. Methods/design With the help of Health Sciences librarian, we will design a search strategy in the following databases: PubMed, Ovid MEDLINE®, EMBASE, CINAHL, PsycINFO, Cochrane Library, Google Scholar, Directory of Open Access Journals, LILACS, Web of Science, and Prospero. A grey literature search will be performed using the resources suggested in CADTH’s Grey Matters. We will include all randomized controlled, quasi-experimental, and observational studies with control groups. The population of interest is all patients, including children and adults, who have suffered a TBI. We will include studies in which agitation, not further defined, was the presenting symptom or one of the presenting symptoms. We will also include studies where agitation was not the presenting symptom but was measured as an outcome variable and studies assessing the safety of these pharmacological interventions in TBI patients. We will include studies evaluating all pharmacological

  13. Pharmacological cardioversion of atrial fibrillation with vernakalant: evidence in support of the ESC Guidelines.

    Science.gov (United States)

    Savelieva, Irene; Graydon, Richard; Camm, A John

    2014-02-01

    Pharmacological rhythm control (often including electrical or pharmacological cardioversion) is an integral part of therapy for atrial fibrillation (AF) worldwide. Antiarrhythmic drug strategies would be preferred in many patients provided effective and safe antiarrhythmic agents are available. Also, pharmacological cardioversion could be the preferred option if the limitations of currently available drugs, such as restriction to patients without structural heart disease (flecainide and propafenone), risk of torsade de pointes (ibutilide), and slow onset of action (amiodarone), were overcome. The intravenous formulation of vernakalant (Brinavess, Cardiome) has been approved for pharmacological cardioversion of recent-onset AF (≤7 days) and early (≤3 days) post-operative AF in the European Union, Iceland, and Norway. Vernakalant has a high affinity to ion channels specifically involved in repolarization of atrial tissue and has minimal effects in the ventricles and thus, is thought to have a low proarrhythmic potential. Vernakalant is administered as a 10 min infusion of 3 mg/kg, and if AF persists after 15 min, an additional dose of 2 mg/kg can be given. The efficacy and safety of the drug has been extensively investigated in randomized controlled trials against placebo and an active comparator (amiodarone). The placebo-extracted efficacy of vernakalant is ∼47%. A significant advantage is a rapid effect, with the median to conversion ranging between 8 and 14 min, with the majority of patients (75-82%) converting after the first dose. Vernakalant retained its efficacy in subgroups of patients with associated cardiovascular disease such as hypertension and ischaemic heart disease, but its benefit may be lower and risk of adverse effects is higher in patients with heart failure. In the post-market reports, cardioversion rates with vernakalant are 65-70%. This review focuses on the role of vernakalant in pharmacological cardioversion for AF.

  14. Pharmacology profiling of chemicals and proteins

    DEFF Research Database (Denmark)

    Kringelum, Jens Vindahl

    between pharmaceuticals and proteins in vivo potential leads to unwanted adverse effects, toxicity and reduced half-life, but can also lead to novel therapeutic effects of already approved pharmaceuticals. Hence identification of in vivo targets is of importance in discovery, development and repurposing....... This limitation complicates adverse effect assessment in the early drug-development phase, thus contributing to drugattrition. Prediction models offer the possibility to close these gaps and provide more complete pharmacology profiles, however improvements in performances are required for these tools to serve...... to its nonself origin, which potentially alters the pharmacology profile of the substance. The neutralization of biopharmaceuticals by antidrug antibodies (ADAs) is an important element in the immune response cascade, however studies of ADA binding site on biopharmaceuticals, referred to as B...

  15. Pharmacologic Considerations for Pediatric Sedation and Anesthesia Outside the Operating Room: A Review for Anesthesia and Non-Anesthesia Providers.

    Science.gov (United States)

    Khurmi, Narjeet; Patel, Perene; Kraus, Molly; Trentman, Terrence

    2017-10-01

    Understanding the pharmacologic options for pediatric sedation outside the operating room will allow practitioners to formulate an ideal anesthetic plan, allaying anxiety and achieving optimal immobilization while ensuring rapid and efficient recovery. The authors identified relevant medical literature by searching PubMed, MEDLINE, Embase, Scopus, Web of Science, and Google Scholar databases for English language publications covering a period from 1984 to 2017. Search terms included pediatric anesthesia, pediatric sedation, non-operating room sedation, sedation safety, and pharmacology. As a narrative review of common sedation/anesthesia options, the authors elected to focus on studies, reviews, and case reports that show clinical relevance to modern day sedation/anesthesia practice. A variety of pharmacologic agents are available for sedation/anesthesia in pediatrics, including midazolam, fentanyl, ketamine, dexmedetomidine, etomidate, and propofol. Dosing ranges reported are a combination of what is discussed in the reviewed literature and text books along with personal recommendations based on our own practice. Several reports reveal that ketofol (a combination of ketamine and propofol) is quite popular for short, painful procedures. Fospropofol is a newer-generation propofol that may confer advantages over regular propofol. Remimazolam combines the pharmacologic effects of remifentanil and midazolam. A variety of etomidate derivatives such as methoxycarbonyl-etomidate, carboetomidate, methoxycarbonyl-carboetomidate, and cyclopropyl-methoxycarbonyl metomidate are in development stages. The use of nitrous oxide as a mild sedative, analgesic, and amnestic agent is gaining popularity, especially in the ambulatory setting. Utilizing a dedicated and experienced team to provide sedation enhances safety. Furthermore, limiting sedation plans to single-agent pharmacy appears to be safer than using multi-agent plans.

  16. Zebrafish neurotransmitter systems as potential pharmacological and toxicological targets.

    Science.gov (United States)

    Rico, E P; Rosemberg, D B; Seibt, K J; Capiotti, K M; Da Silva, R S; Bonan, C D

    2011-01-01

    Recent advances in neurobiology have emphasized the study of brain structure and function and its association with numerous pathological and toxicological events. Neurotransmitters are substances that relay, amplify, and modulate electrical signals between neurons and other cells. Neurotransmitter signaling mediates rapid intercellular communication by interacting with cell surface receptors, activating second messenger systems and regulating the activity of ion channels. Changes in the functional balance of neurotransmitters have been implicated in the failure of central nervous system function. In addition, abnormalities in neurotransmitter production or functioning can be induced by several toxicological compounds, many of which are found in the environment. The zebrafish has been increasingly used as an animal model for biomedical research, primarily due to its genetic tractability and ease of maintenance. These features make this species a versatile tool for pre-clinical drug discovery and toxicological investigations. Here, we present a review regarding the role of different excitatory and inhibitory neurotransmitter systems in zebrafish, such as dopaminergic, serotoninergic, cholinergic, purinergic, histaminergic, nitrergic, glutamatergic, glycinergic, and GABAergic systems, and emphasizing their features as pharmacological and toxicological targets. The increase in the global knowledge of neurotransmitter systems in zebrafish and the elucidation of their pharmacological and toxicological aspects may lead to new strategies and appropriate research priorities to offer insights for biomedical and environmental research. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Perioperative pharmacological management of pulmonary hypertensive crisis during congenital heart surgery.

    Science.gov (United States)

    Brunner, Nathan; de Jesus Perez, Vinicio A; Richter, Alice; Haddad, François; Denault, André; Rojas, Vanessa; Yuan, Ke; Orcholski, Mark; Liao, Xiaobo

    2014-03-01

    Pulmonary hypertensive crisis is an important cause of morbidity and mortality in patients with pulmonary arterial hypertension secondary to congenital heart disease (PAH-CHD) who require cardiac surgery. At present, prevention and management of perioperative pulmonary hypertensive crisis is aimed at optimizing cardiopulmonary interactions by targeting prostacyclin, endothelin, and nitric oxide signaling pathways within the pulmonary circulation with various pharmacological agents. This review is aimed at familiarizing the practitioner with the current pharmacological treatment for dealing with perioperative pulmonary hypertensive crisis in PAH-CHD patients. Given the life-threatening complications associated with pulmonary hypertensive crisis, proper perioperative planning can help anticipate cardiopulmonary complications and optimize surgical outcomes in this patient population.

  18. Screening of effective pharmacological treatments for MELAS syndrome using yeasts, fibroblasts and cybrid models of the disease.

    Science.gov (United States)

    Garrido-Maraver, Juan; Cordero, Mario D; Moñino, Irene Domínguez; Pereira-Arenas, Sheila; Lechuga-Vieco, Ana V; Cotán, David; De la Mata, Mario; Oropesa-Ávila, Manuel; De Miguel, Manuel; Bautista Lorite, Juan; Rivas Infante, Eloy; Alvarez-Dolado, Manuel; Navas, Plácido; Jackson, Sandra; Francisci, Silvia; Sánchez-Alcázar, José A

    2012-11-01

    MELAS (mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes) is a mitochondrial disease most usually caused by point mutations in tRNA genes encoded by mitochondrial DNA (mtDNA). Approximately 80% of cases of MELAS syndrome are associated with a m.3243A > G mutation in the MT-TL1 gene, which encodes the mitochondrial tRNALeu (UUR). Currently, no effective treatments are available for this chronic progressive disorder. Treatment strategies in MELAS and other mitochondrial diseases consist of several drugs that diminish the deleterious effects of the abnormal respiratory chain function, reduce the presence of toxic agents or correct deficiencies in essential cofactors. We evaluated the effectiveness of some common pharmacological agents that have been utilized in the treatment of MELAS, in yeast, fibroblast and cybrid models of the disease. The yeast model harbouring the A14G mutation in the mitochondrial tRNALeu(UUR) gene, which is equivalent to the A3243G mutation in humans, was used in the initial screening. Next, the most effective drugs that were able to rescue the respiratory deficiency in MELAS yeast mutants were tested in fibroblasts and cybrid models of MELAS disease. According to our results, supplementation with riboflavin or coenzyme Q(10) effectively reversed the respiratory defect in MELAS yeast and improved the pathologic alterations in MELAS fibroblast and cybrid cell models. Our results indicate that cell models have great potential for screening and validating the effects of novel drug candidates for MELAS treatment and presumably also for other diseases with mitochondrial impairment. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.

  19. Reappraisal of GIP Pharmacology for Metabolic Diseases

    DEFF Research Database (Denmark)

    Finan, Brian; Müller, Timo D; Clemmensen, Christoffer

    2016-01-01

    Glucagon-like peptide-1 (GLP-1) analogs are considered the best current medicines for type 2 diabetes (T2D) and obesity due to their actions in lowering blood glucose and body weight. Despite similarities to GLP-1, glucose-dependent insulinotropic polypeptide (GIP) has not been extensively pursue...... be beneficial for metabolic diseases. However, a growing body of new evidence - including data based on refined genetically modified models and improved pharmacological agents - suggests a paradigm shift on how the GIP system should be manipulated for metabolic benefits....

  20. Tri-partite complex for axonal transport drug delivery achieves pharmacological effect

    Directory of Open Access Journals (Sweden)

    Frederickson Martyn

    2010-01-01

    Full Text Available Abstract Background Targeted delivery of pharmaceutical agents into selected populations of CNS (Central Nervous System neurons is an extremely compelling goal. Currently, systemic methods are generally used for delivery of pain medications, anti-virals for treatment of dermatomal infections, anti-spasmodics, and neuroprotectants. Systemic side effects or undesirable effects on parts of the CNS that are not involved in the pathology limit efficacy and limit clinical utility for many classes of pharmaceuticals. Axonal transport from the periphery offers a possible selective route, but there has been little progress towards design of agents that can accomplish targeted delivery via this intraneural route. To achieve this goal, we developed a tripartite molecular construction concept involving an axonal transport facilitator molecule, a polymer linker, and a large number of drug molecules conjugated to the linker, then sought to evaluate its neurobiology and pharmacological behavior. Results We developed chemical synthesis methodologies for assembling these tripartite complexes using a variety of axonal transport facilitators including nerve growth factor, wheat germ agglutinin, and synthetic facilitators derived from phage display work. Loading of up to 100 drug molecules per complex was achieved. Conjugation methods were used that allowed the drugs to be released in active form inside the cell body after transport. Intramuscular and intradermal injection proved effective for introducing pharmacologically effective doses into selected populations of CNS neurons. Pharmacological efficacy with gabapentin in a paw withdrawal latency model revealed a ten fold increase in half life and a 300 fold decrease in necessary dose relative to systemic administration for gabapentin when the drug was delivered by axonal transport using the tripartite vehicle. Conclusion Specific targeting of selected subpopulations of CNS neurons for drug delivery by axonal

  1. Traditional uses, phytochemistry and pharmacology of wild banana (Musa acuminata Colla): A review.

    Science.gov (United States)

    Mathew, Nimisha Sarah; Negi, Pradeep Singh

    2017-01-20

    role of M. acuminata plant parts used by various tribes and ethnic groups across the geographical areas of the world. This review presents information on phytochemicals and pharmacological activities of M. acuminata plant parts. Pharmacological studies support the traditional uses of the plant, and probably validate the uses of M. acuminata by the indigenous people to treat and heal many infections and diseases. Some studies on animal models have been carried out, which also provide evidence of efficacy of the M. acuminata plant as a therapeutic agent. These observations suggest that M. acuminata plant parts possesses pluripharmacological properties, and can be used in designing potent therapeutic agents. However, individual bioactive constituent(s) from different parts of this plant need further investigations to confirm various pharmacological claims, and to explore the potential of M. acuminata in the development of drugs and use in functional foods. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Pharmacology of Myopia and Potential Role for Intrinsic Retinal Circadian Rhythms

    Science.gov (United States)

    Stone, Richard A.; Pardue, Machelle T.; Iuvone, P. Michael; Khurana, Tejvir S.

    2013-01-01

    Despite the high prevalence and public health impact of refractive errors, the mechanisms responsible for ametropias are poorly understood. Much evidence now supports the concept that the retina is central to the mechanism(s) regulating emmetropization and underlying refractive errors. Using a variety of pharmacologic methods and well-defined experimental eye growth models in laboratory animals, many retinal neurotransmitters and neuromodulators have been implicated in this process. Nonetheless, an accepted framework for understanding the molecular and/or cellular pathways that govern postnatal eye development is lacking. Here, we review two extensively studied signaling pathways whose general roles in refractive development are supported by both experimental and clinical data: acetylcholine signaling through muscarinic and/or nicotinic acetylcholine receptors and retinal dopamine pharmacology. The muscarinic acetylcholine receptor antagonist atropine was first studied as an anti-myopia drug some two centuries ago, and much subsequent work has continued to connect muscarinic receptors to eye growth regulation. Recent research implicates a potential role of nicotinic acetycholine receptors; and the refractive effects in population surveys of passive exposure to cigarette smoke, of which nicotine is a constituent, support clinical relevance. Reviewed here, many puzzling results inhibit formulating a mechanistic framework that explains acetylcholine’s role in refractive development. How cholinergic receptor mechanisms might be used to develop acceptable approaches to normalize refractive development remains a challenge. Retinal dopamine signaling not only has a putative role in refractive development, its upregulation by light comprises an important component of the retinal clock network and contributes to the regulation of retinal circadian physiology. During postnatal development, the ocular dimensions undergo circadian and/or diurnal fluctuations in magnitude

  3. Trends in GPCR drug discovery: new agents, targets and indications.

    Science.gov (United States)

    Hauser, Alexander S; Attwood, Misty M; Rask-Andersen, Mathias; Schiöth, Helgi B; Gloriam, David E

    2017-12-01

    G protein-coupled receptors (GPCRs) are the most intensively studied drug targets, mostly due to their substantial involvement in human pathophysiology and their pharmacological tractability. Here, we report an up-to-date analysis of all GPCR drugs and agents in clinical trials, which reveals current trends across molecule types, drug targets and therapeutic indications, including showing that 475 drugs (~34% of all drugs approved by the US Food and Drug Administration (FDA)) act at 108 unique GPCRs. Approximately 321 agents are currently in clinical trials, of which ~20% target 66 potentially novel GPCR targets without an approved drug, and the number of biological drugs, allosteric modulators and biased agonists has increased. The major disease indications for GPCR modulators show a shift towards diabetes, obesity and Alzheimer disease, although several central nervous system disorders are also highly represented. The 224 (56%) non-olfactory GPCRs that have not yet been explored in clinical trials have broad untapped therapeutic potential, particularly in genetic and immune system disorders. Finally, we provide an interactive online resource to analyse and infer trends in GPCR drug discovery.

  4. Clinical pharmacology profile of vorinostat, a histone deacetylase inhibitor.

    Science.gov (United States)

    Iwamoto, Marian; Friedman, Evan J; Sandhu, Punam; Agrawal, Nancy G B; Rubin, Eric H; Wagner, John A

    2013-09-01

    Vorinostat is a histone deacetylase inhibitor that has demonstrated preclinical activity in numerous cancer models. Clinical activity has been demonstrated in patients with a variety of malignancies. Vorinostat is presently indicated for the treatment of patients with advanced cutaneous T cell lymphoma (CTCL). Clinical investigation is ongoing for therapy of other solid tumors and hematological malignancies either as monotherapy or in combination with other chemotherapeutic agents. This review summarizes the pharmacokinetic properties of vorinostat. Monotherapy pharmacokinetic data across a number of pharmacokinetic studies were reviewed, and data are presented. In addition, literature review was performed to obtain published Phase I and II pharmacokinetic combination therapy data to identify and characterize potential drug interactions with vorinostat. Pharmacokinetic data in special populations were also reviewed. The clinical pharmacology profile of vorinostat is favorable, exhibiting dose-proportional pharmacokinetics and modest food effect. There appear to be no major differences in the pharmacokinetics of vorinostat in special populations, including varying demographics and hepatic dysfunction. Combination therapy pharmacokinetic data indicate that vorinostat has a low propensity for drug interactions. Vorinostat's favorable clinical pharmacology and drug interaction profile aid in the ease of administration of vorinostat for the treatment of advanced CTCL and will be beneficial in continued assessment for other oncologic indications. Although a number of studies have been conducted to elucidate the detailed pharmacokinetic profile of vorinostat, more rigorous assessment of vorinostat pharmacokinetics, including clinical drug interaction studies, will be informative.

  5. Orexin receptor antagonists as therapeutic agents for insomnia

    Directory of Open Access Journals (Sweden)

    Ana Clementina Equihua

    2013-12-01

    Full Text Available Insomnia is a common clinical condition characterized by difficulty initiating or maintaining sleep, or non-restorative sleep with impairment of daytime functioning.Currently, treatment for insomnia involves a combination of cognitive behavioral therapy and pharmacological therapy. Among pharmacological interventions, the most evidence exists for benzodiazepine receptor agonist drugs (GABAA receptor, although concerns persist regarding their safety and their limited efficacy. The use of these hypnotic medications must be carefully monitored for adverse effects.Orexin (hypocretin neuropeptides have been shown to regulate transitions between wakefulness and sleep by promoting cholinergic/monoaminergic neural pathways. This has led to the development of a new class of pharmacological agents that antagonize the physiological effects of orexin. The development of these agents may lead to novel therapies for insomnia without the side effect profile of hypnotics (e.g. impaired cognition, disturbed arousal, and motor balance difficulties. However, antagonizing a system that regulates the sleep-wake cycle may create an entirely different side effect profile. In this review, we discuss the role of orexin and its receptors on the sleep-wake cycle and that of orexin antagonists in the treatment of insomnia.

  6. Pharmacologically directed strategies in academic anticancer drug discovery based on the European NCI compounds initiative.

    Science.gov (United States)

    Hendriks, Hans R; Govaerts, Anne-Sophie; Fichtner, Iduna; Burtles, Sally; Westwell, Andrew D; Peters, Godefridus J

    2017-07-11

    The European NCI compounds programme, a joint initiative of the EORTC Research Branch, Cancer Research Campaign and the US National Cancer Institute, was initiated in 1993. The objective was to help the NCI in reducing the backlog of in vivo testing of potential anticancer compounds, synthesised in Europe that emerged from the NCI in vitro 60-cell screen. Over a period of more than twenty years the EORTC-Cancer Research Campaign panel reviewed ∼2000 compounds of which 95 were selected for further evaluation. Selected compounds were stepwise developed with clear go/no go decision points using a pharmacologically directed programme. This approach eliminated quickly compounds with unsuitable pharmacological properties. A few compounds went into Phase I clinical evaluation. The lessons learned and many of the principles outlined in the paper can easily be applied to current and future drug discovery and development programmes. Changes in the review panel, restrictions regarding numbers and types of compounds tested in the NCI in vitro screen and the appearance of targeted agents led to the discontinuation of the European NCI programme in 2017 and its transformation into an academic platform of excellence for anticancer drug discovery and development within the EORTC-PAMM group. This group remains open for advice and collaboration with interested parties in the field of cancer pharmacology.

  7. Pharmacological management of obesity in pediatric patients.

    Science.gov (United States)

    Boland, Cassie L; Harris, John Brock; Harris, Kira B

    2015-02-01

    To review current evidence of pharmacological options for managing pediatric obesity and provide potential areas for future research. A MEDLINE search (1966 to October 2014) was conducted using the following keywords: exenatide, liraglutide, lorcaserin, metformin, obesity, orlistat, pediatric, phentermine, pramlintide, topiramate, weight loss, and zonisamide. Identified articles were evaluated for inclusion, with priority given to randomized controlled trials with orlistat, metformin, glucagon-like peptide-1 agonists, topiramate, and zonisamide in human subjects and articles written in English. References were also reviewed for additional trials. Whereas lifestyle modification is considered first-line therapy for obese pediatric patients, severe obesity may benefit from pharmacotherapy. Orlistat is the only Food and Drug Administration (FDA)-approved medication for pediatric obesity and reduced body mass index (BMI) by 0.5 to 4 kg/m(2), but gastrointestinal (GI) adverse effects may limit use. Metformin has demonstrated BMI reductions of 0.17 to 1.8 kg/m(2), with mild GI adverse effects usually managed with dose titration. Exenatide reduced BMI by 1.1 to 1.7 kg/m(2) and was well-tolerated with mostly transient or mild GI adverse effects. Topiramate and zonisamide reduced weight when used in the treatment of epilepsy. Future studies should examine efficacy and safety of pharmacological agents in addition to lifestyle modifications for pediatric obesity. Lifestyle interventions remain the treatment of choice in pediatric obesity, but concomitant pharmacotherapy may be beneficial in some patients. Orlistat should be considered as second-line therapy for pediatric obesity. Evidence suggests that other diabetes and antiepileptic medications may also provide weight-loss benefits, but safety should be further evaluated. © The Author(s) 2014.

  8. Jatropha gossypiifolia L. (Euphorbiaceae: A Review of Traditional Uses, Phytochemistry, Pharmacology, and Toxicology of This Medicinal Plant

    Directory of Open Access Journals (Sweden)

    Juliana Félix-Silva

    2014-01-01

    Full Text Available Jatropha gossypiifolia L. (Euphorbiaceae, widely known as “bellyache bush,” is a medicinal plant largely used throughout Africa and America. Several human and veterinary uses in traditional medicine are described for different parts and preparations based on this plant. However, critical reviews discussing emphatically its medicinal value are missing. This review aims to provide an up-to-date overview of the traditional uses, as well as the phytochemistry, pharmacology, and toxicity data of J. gossypiifolia species, in view of discussing its medicinal value and potential application in complementary and alternative medicine. Pharmacological studies have demonstrated significant action of different extracts and/or isolated compounds as antimicrobial, anti-inflammatory, antidiarrheal, antihypertensive, and anticancer agents, among others, supporting some of its popular uses. No clinical trial has been detected to date. Further studies are necessary to assay important folk uses, as well as to find new bioactive molecules with pharmacological relevance based on the popular claims. Toxicological studies associated with phytochemical analysis are important to understand the eventual toxic effects that could reduce its medicinal value. The present review provides insights for future research aiming for both ethnopharmacological validation of its popular use and its exploration as a new source of herbal drugs and/or bioactive natural products.

  9. Measurement of the effects and safety of Higenamine, a Chinese herbal medicine on cardiovascular system: Could it represent a new pharmacological myocardial stress agent?

    International Nuclear Information System (INIS)

    Zhang, Z.; Tao, Z.H.; Shi, R.F.; Zhang, X.; Liu, Y.Z.; He, Z.-X.; Chen, B.; Liu, X.J.

    2003-01-01

    Higenamine (HG) is a derivative of the medicinal herb, aconite root, that has been in use for several decades as a traditional medicine in the treatment of heart disease. The aim of this study was to investigate Higenamine as an alternative pharmacological agent to dobutamine (DB) for use in cardiac stress studies. Six dogs were infused intravenously with Higenamine in escalating doses of 1, 2 and 4 μg per kg of body weight per minute, each dose being given for a duration of 5 minutes and compared with dobutamine doses of 5, 10, and 20 μg/kg/min. Heart rate, blood pressure (systolic and diastolic), cardiac output, or aortic blood flow, myocardial oxygen consumption and coronary blood flow were measured with the physiological and electromagnetic flow devices at the beginning of the test and by the end of each dose-infusion. Left ventricular ejection fraction (LVEF) was measured with radionuclide ventriculography. ECG was monitored during the study. Another 8 dogs were administered Higenamine in escalating doses ranging from 1μg/kg/min and up to 500 μg/kg/min in order to observe the tolerability and safety of Higenamine. Heart rate, blood pressure and ECG were monitored during the test. Intravenous administration of Higenamine resulted in significant inotropic and chronotropic effects on the heart. Heart rate, myocardial oxygen consumption, cardiac output, coronary blood flow and LVEF all increased in a dose-dependent manner in both Higenamine and dobutamine tests. Higenamine did not cause significant change in systolic blood pressure, but a slight decrease in diastolic blood pressure was noted. Heart rate increased rapidly to the peak value, and then maintained a plateau level. No significant ECG abnormalities were demonstrated except for few occasional premature ventricular beats. None of the dogs died during the study. Hemodynamic studies demonstrated that Higenamine could be used as a pharmacologic cardiac stress agent with remarkable tolerability and safety

  10. Fluoroscopy-guided hydrostatic reduction of intussusception in infancy: role of pharmacological premedication.

    Science.gov (United States)

    Esposito, Francesco; Ambrosio, Concetta; De Fronzo, Simona; Panico, Maria Rita; D'Aprano, Marilena; Giugliano, Anna Marcella; Noviello, Domenico; Oresta, Patrizia

    2015-06-01

    Intussusception is one of the most common causes of paediatric emergency. Fluoroscopy-guided hydrostatic reduction is a common nonoperative management strategy for the treatment of intussusception. The role of pharmacological premedication in increasing the success rate of hydrostatic reduction is still controversial. The purpose of this study was to verify the presence of a possible correlation between pharmacological premedication and the percentage of hydrostatic reduction of intussusception in paediatric patients. This study considered children with a diagnosis of idiopathic intussusception treated at our hospital between January 2007 and June 2013. One group of patients underwent hydrostatic reduction by barium enema without any preliminary therapy. A second group of patients received pharmacological premedication with both a sedative and an anti-oedematous agent before the procedure. A total of 398 patients were treated with barium enema for therapeutic purposes. In the group of patients who received no premedication (n = 254), 165 (65 %) children achieved hydrostatic reduction of the intussusception. Among the patients who received pharmacological premedication prior to barium enema (n = 144), 122 (85 %) children achieved resolution of the intussusception. Our study shows that the use of pharmacological premedication is effective for the reduction of the intussusception, as its limit patient stress, fluoroscopic time and radiation dose.

  11. Preclinical pharmacological studies of 99Tcm-TRODAT-1 as a dopamine transporter imaging agent

    International Nuclear Information System (INIS)

    Fang Ping; Wan Weixing; Liu Zhenguo; Wu Chunying; Chen Shengdi; Chen Zhengping; Zhou Xiang; Ji Shuren

    2001-01-01

    Objective: To develop a 99 Tc m labelled dopamine transporter (DAT) imaging agent, 99 Tc m -TRODAT-1 [TRODAT-1: 2β-([N,N'-bis(2-mercaptoethyl) ethylene diamino] methyl), 3β-(4-chlorophenyl) tropane], for evaluating the variation of DAT in patients with Parkinson's disease. Methods: 99 Tc m -TRODAT-1 was successfully prepared on a kit basis. Preclinical pharmacological studies were performed in rats, mice, rabbits, monkeys and a volunteer with diagnosed Parkinson disease (PD). Results: Radiochemical purity of 99 Tc m -TRODAT-1 was over 90%, and remained stable for 6 hours. The specific uptake in striatum was significantly diminished, from 3.45 to 0.12 at 2 h by pretreating rats with a dose of DAT competing ligand, β-CIT [1 mg/kg, 2β-carbomethoxy-3β-(4-iodophenyl) tropane]. Blood clearance kinetics was studied in rabbits, and the initial half-life was of 1.2 min, the elimination half-life was of 368 min. Images of normal monkey's brain exhibited an excellent accumulation in basal ganglia region, where dopamine neurons were concentrated. In hemi parkinsonism model monkeys, the ratio of normal ST/CB and lesioned ST/CB were 1.56 and 0.94, respectively. Brain imaging studies in volunteer indicated that uptake and retention in the basal ganglia, the ratio of normal striatal uptake to lesioned one's was 1.15 measured by SPECT imaging at 2 h. The result of imaging was conformable with his clinical symptoms. Conclusions: The stable, neutral and lipophilic complex, 99 Tc m -TRODAT-1, can be accumulated in the striatal area, where DAT is concentrated, high quality images can be obtained. It suggests that 99 Tc m -TRODAT-1 might be a safe and effective tracer for monitoring the variation in DAT which is associated with various neurodegenerative diseases

  12. Biologic activities of molecular chaperones and pharmacologic chaperone imidazole-containing dipeptide-based compounds: natural skin care help and the ultimate challenge: implication for adaptive responses in the skin.

    Science.gov (United States)

    Babizhayev, Mark A; Nikolayev, Gennady M; Nikolayeva, Juliana G; Yegorov, Yegor E

    2012-03-01

    Accumulation of molecular damage and increased molecular heterogeneity are hallmarks of photoaged skin and pathogenesis of human cutaneous disease. Growing evidence demonstrates the ability of molecular chaperone proteins and of pharmacologic chaperones to decrease the environmental stress and ameliorate the oxidation stress-related and glycation disease phenotypes, suggesting that the field of chaperone therapy might hold novel treatments for skin diseases and aging. In this review, we examine the evidence suggesting a role for molecular chaperone proteins in the skin and their inducer and protecting agents: pharmacologic chaperone imidazole dipeptide-based agents (carcinine and related compounds) in cosmetics and dermatology. Furthermore, we discuss the use of chaperone therapy for the treatment of skin photoaging diseases and other skin pathologies that have a component of increased glycation and/or free radical-induced oxidation in their genesis. We examine biologic activities of molecular and pharmacologic chaperones, including strategies for identifying potential chaperone compounds and for experimentally demonstrating chaperone activity in in vitro and in vivo models of human skin disease. This allows the protein to function and traffic to the appropriate location in the skin, thereby increasing protein activity and cellular function and reducing stress on skin cells. The benefits of imidazole dipeptide antioxidants with transglycating activity (such as carcinine) in skin care are that they help protect and repair cell membrane damage and help retain youthful, younger-looking skin. All skin types will benefit from daily, topical application of pharmacologic chaperone antioxidants, anti-irritants, in combination with water-binding protein agents that work to mimic the structure and function of healthy skin. General strategies are presented addressing ground techniques to improve absorption of usually active chaperone proteins and dipeptide compounds, include

  13. Synthetic Ni3S2/Ni hybrid architectures as potential contrast agents in MRI

    International Nuclear Information System (INIS)

    Ma, J; Chen, K

    2016-01-01

    Traditional magnetic resonance imaging (MRI) contrast agents mainly include superparamagnetic (SPM) iron oxide nanoparticle as T 2 contrast agent for liver and paramagnetic Gd (III)-chelate as T 1 contrast agent for all organs. In this work, weak ferromagnetic kale-like and SPM cabbage-like Ni 3 S 2 @Ni hybrid architectures were synthesized and evaluated as potential T 1 MRI contrast agents. Their relatively small r 2 /r 1 ratios of 2.59 and 2.38, and high r 1 values of 11.27 and 4.89 mmol −1 L s −1 (for the kale-like and cabbage-like Ni 3 S 2 @Ni, respectively) will shed some light on the development of new-type MRI contrast agents. (paper)

  14. Natural Product-Derived Treatments for Attention-Deficit/Hyperactivity Disorder: Safety, Efficacy, and Therapeutic Potential of Combination Therapy

    Science.gov (United States)

    Ahn, James; Ahn, Hyung Seok; Cheong, Jae Hoon; dela Peña, Ike

    2016-01-01

    Typical treatment plans for attention-deficit/hyperactivity disorder (ADHD) utilize nonpharmacological (behavioral/psychosocial) and/or pharmacological interventions. Limited accessibility to behavioral therapies and concerns over adverse effects of pharmacological treatments prompted research for alternative ADHD therapies such as natural product-derived treatments and nutritional supplements. In this study, we reviewed the herbal preparations and nutritional supplements evaluated in clinical studies as potential ADHD treatments and discussed their performance with regard to safety and efficacy in clinical trials. We also discussed some evidence suggesting that adjunct treatment of these agents (with another botanical agent or pharmacological ADHD treatments) may be a promising approach to treat ADHD. The analysis indicated mixed findings with regard to efficacy of natural product-derived ADHD interventions. Nevertheless, these treatments were considered as a “safer” approach than conventional ADHD medications. More comprehensive and appropriately controlled clinical studies are required to fully ascertain efficacy and safety of natural product-derived ADHD treatments. Studies that replicate encouraging findings on the efficacy of combining botanical agents and nutritional supplements with other natural product-derived therapies and widely used ADHD medications are also warranted. In conclusion, the risk-benefit balance of natural product-derived ADHD treatments should be carefully monitored when used as standalone treatment or when combined with other conventional ADHD treatments. PMID:26966583

  15. Pharmacological properties of oral antibiotics for the treatment of uncomplicated urinary tract infections.

    Science.gov (United States)

    Novelli, Andrea; Rosi, Elia

    2017-12-01

    The therapeutic management of uncomplicated bacterial urinary tract infections (UTIs) is based on short-term courses of oral antibiotics. The preferred drugs are nitrofurantoin trimethoprim-sulfamethoxazole, fosfomycin trometamol, fluoroquinolones and β-lactam agents. The choice of agent for treating uncomplicated UTIs should be based on the pharmacokinetic characteristics of the molecule so that clinical benefit is optimized and the risk of antibacterial resistance is minimized. This article discusses the general pharmacokinetic-pharmacodynamic (PK/PD) aspects of antimicrobial chemotherapy, the PK/PD characteristics of oral antimicrobial agents for the treatment of uncomplicated UTIs and the pharmacological and therapeutic strategies for limiting or preventing bacterial resistance.

  16. Are pharmacological interventions between conception and birth effective in improving reproductive outcomes in North American swine?

    Science.gov (United States)

    Wessels, J M; Khalaj, K; Kridli, R T; Edwards, A K; Bidarimath, M; Tayade, C

    2014-08-01

    The objective of this review is to evaluate the effectiveness of using pharmacological compounds on reproductive outcomes, particularly litter size, in North American swine. While the opportunity to improve reproduction in North American pigs exists, numerous hurdles need to be overcome in order to achieve measureable results. In the swine industry, the majority of piglet losses are incurred during pregnancy and around farrowing. Over the last 20 years, a reduction in losses has been achieved through genetic selection and nutritional management; however, these topics are the focus of other reviews. This review will evaluate attempts to improve litter size by reducing losses at various stages of the reproductive process, from the time of conception to the time of farrowing, using pharmacological compounds. Generally, these compounds are used to either alter physiological processes related to fertilization, embryonic attachment or uterine capacity, etc., or to facilitate management aspects of the breeding females such as inducing parturition. Although some of the pharmacological agents reviewed here show some positive effects on improving reproductive parameters, the inconsistent results and associated risks usually outweigh the benefits gained. Thus, at the present time, the use of pharmacological agents to enhance reproduction in North American swine may only be recommended for herds with low fertility and presents an avenue of research that could be further explored. © 2014 Blackwell Verlag GmbH.

  17. Assessing the anticancer effects associated with food products and/or nutraceuticals using in vitro and in vivo preclinical development-related pharmacological tests.

    Science.gov (United States)

    Lefranc, Florence; Tabanca, Nurhayat; Kiss, Robert

    2017-10-01

    This review is part of a special issue entitled "Role of dietary pattern, foods, nutrients and nutraceuticals in supporting cancer prevention and treatment" and describes a pharmacological strategy to determine the potential contribution of food-related components as anticancer agents against established cancer. Therefore, this review does not relate to chemoprevention, which is analysed in several other reviews in the current special issue, but rather focuses on the following: i) the biological events that currently represent barriers against the treatment of certain types of cancers, primarily metastatic cancers; ii) the in vitro and in vivo pharmacological pre-clinical tests that can be used to analyse the potential anticancer effects of food-related components; and iii) several examples of food-related components with anticancer effects. This review does not represent a catalogue-based listing of food-related components with more or less anticancer activity. By contrast, this review proposes an original pharmacological strategy that researchers can use to analyse the potential anticancer activity of any food-related component-e.g., by considering the crucial characteristics of cancer biological aggressiveness. This review also highlights that cancer patients undergoing chemotherapy should restrict the use of "food complements" without supervision by a medical nutritionist. By contrast, an equilibrated diet that includes the food-related components listed herein would be beneficial for cancer patients who are not undergoing chemotherapy. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  18. Sugammadex to reverse neuromuscular blockade and provide optimal conditions for motor-evoked potential monitoring

    Directory of Open Access Journals (Sweden)

    Mehdi Trifa

    2017-01-01

    Full Text Available Sugammadex is a novel pharmacologic agent, which reverses neuromuscular blockade (NMB via a mechanism that differs completely from acetylcholinesterase inhibitors. By encapsulating rocuronium, sugammadex can provide recovery of neuromuscular function even when there is a profound degree of NMB. We report anecdotal experience with the use of sugammadex to reverse NMB to facilitate intraoperative neurophysiological monitoring (motor evoked potentials in an adolescent with scoliosis during posterior spinal fusion. Its potential application in this unique clinical scenario is discussed, and potential dosing schemes are reviewed.

  19. KCN1, a novel synthetic sulfonamide anticancer agent: in vitro and in vivo anti-pancreatic cancer activities and preclinical pharmacology.

    Directory of Open Access Journals (Sweden)

    Wei Wang

    Full Text Available The purpose of the present study was to determine the in vitro and in vivo anti-cancer activity and pharmacological properties of 3,4-dimethoxy-N-[(2,2-dimethyl-2H-chromen-6-ylmethyl]-N-phenylbenzenesulfonamide, KCN1. In the present study, we investigated the in vitro activity of KCN1 on cell proliferation and cell cycle distribution of pancreatic cancer cells, using the MTT and BrdUrd assays, and flow cytometry. The in vivo anti-cancer effects of KCN1 were evaluated in two distinct xenograft models of pancreatic cancer. We also developed an HPLC method for the quantitation of the compound, and examined its stability in mouse plasma, plasma protein binding, and degradation by mouse S9 microsomal enzymes. Furthermore, we examined the pharmacokinetics of KCN1 following intravenous or intraperitoneal injection in mice. Results showed that, in a dose-dependent manner, KCN1 inhibited cell growth and induced cell cycle arrest in human pancreatic cancer cells in vitro, and showed in vivo anticancer efficacy in mice bearing Panc-1 or Mia Paca-2 tumor xenografts. The HPLC method provided linear detection of KCN1 in all of the matrices in the range from 0.1 to 100 µM, and had a lower limit of detection of 0.085 µM in mouse plasma. KCN1 was very stable in mouse plasma, extensively plasma bound, and metabolized by S9 microsomal enzymes. The pharmacokinetic studies indicated that KCN1 could be detected in all of the tissues examined, most for at least 24 h. In conclusion, our preclinical data indicate that KCN1 is a potential therapeutic agent for pancreatic cancer, providing a basis for its future development.

  20. Synthesis and pharmacological evaluation of pyrazolo[4,3-c]cinnoline derivatives as potential anti-inflammatory and antibacterial agents.

    Science.gov (United States)

    Tonk, Rajiv Kumar; Bawa, Sandhya; Chawla, Gita; Deora, Girdhar Singh; Kumar, Suresh; Rathore, Vandana; Mulakayala, Naveen; Rajaram, Azad; Kalle, Arunasree M; Afzal, Obaid

    2012-11-01

    A series of pyrazolo[4,3-c]cinnoline derivatives was synthesized, characterized and evaluated for anti-inflammatory and antibacterial activity. Test compounds that exhibited good anti-inflammatory activity were further screened for their ulcerogenic and lipid peroxidation activity. Compounds 4d and 4l showed promising anti-inflammatory activity with reduced ulcerogenic and lipid peroxidation activity when compared to naproxen. Docking results of these two compounds with COX-2 (PDB ID: 1CX2) also exhibited a strong binding profile. Among the test derivatives, compound 4i displayed significant antibacterial property against gram-negative (Escherichia coli and Pseudomonas aeruginosa) and gram-positive (Staphylococcus aureus) bacteria. However, compound 4b emerged as the best dual anti-inflammatory-antibacterial agent in the present study. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  1. A Review of Botanical Characteristics, Traditional Usage, Chemical Components, Pharmacological Activities, and Safety of Pereskia bleo (Kunth DC

    Directory of Open Access Journals (Sweden)

    Sogand Zareisedehizadeh

    2014-01-01

    Full Text Available Pereskia bleo, a leafy cactus, is a medicinal plant native to West and South America and distributed in tropical and subtropical areas. It is traditionally used as a dietary vegetable, barrier hedge, water purifier, and insect repellant and for maintaining health, detoxification, prevention of cancer, and/or treatment of cancer, hypertension, diabetes, stomach ache, muscle pain, and inflammatory diseases such as dermatitis and rheumatism. The aim of this paper was to provide an up-to-date and comprehensive review of the botanical characteristics, traditional usage, phytochemistry, pharmacological activities, and safety of P. bleo. A literature search using MEDLINE (via PubMed, Science direct, Scopus and Google scholar and China Academic Journals Full-Text Database (CNKI and available eBooks and books in the National University of Singapore libraries in English and Chinese was conducted. The following keywords were used: Pereskia bleo, Pereskia panamensis, Pereskia corrugata, Rhodocacus corrugatus, Rhodocacus bleo, Cactus panamensis, Cactus bleo, Spinach cactus, wax rose, Perescia, and Chinese rose. This review revealed the association between the traditional usage of P. bleo and reported pharmacological properties in the literature. Further investigation on the pharmacological properties and phytoconstituents of P. bleo is warranted to further exploit its potentials as a source of novel therapeutic agents or lead compounds.

  2. A Review of Botanical Characteristics, Traditional Usage, Chemical Components, Pharmacological Activities, and Safety of Pereskia bleo (Kunth) DC.

    Science.gov (United States)

    Zareisedehizadeh, Sogand; Tan, Chay-Hoon; Koh, Hwee-Ling

    2014-01-01

    Pereskia bleo, a leafy cactus, is a medicinal plant native to West and South America and distributed in tropical and subtropical areas. It is traditionally used as a dietary vegetable, barrier hedge, water purifier, and insect repellant and for maintaining health, detoxification, prevention of cancer, and/or treatment of cancer, hypertension, diabetes, stomach ache, muscle pain, and inflammatory diseases such as dermatitis and rheumatism. The aim of this paper was to provide an up-to-date and comprehensive review of the botanical characteristics, traditional usage, phytochemistry, pharmacological activities, and safety of P. bleo. A literature search using MEDLINE (via PubMed), Science direct, Scopus and Google scholar and China Academic Journals Full-Text Database (CNKI) and available eBooks and books in the National University of Singapore libraries in English and Chinese was conducted. The following keywords were used: Pereskia bleo, Pereskia panamensis, Pereskia corrugata, Rhodocacus corrugatus, Rhodocacus bleo, Cactus panamensis, Cactus bleo, Spinach cactus, wax rose, Perescia, and Chinese rose. This review revealed the association between the traditional usage of P. bleo and reported pharmacological properties in the literature. Further investigation on the pharmacological properties and phytoconstituents of P. bleo is warranted to further exploit its potentials as a source of novel therapeutic agents or lead compounds.

  3. A review on the ethnomedicinal uses, phytochemistry and pharmacology of Alpinia officinarum Hance.

    Science.gov (United States)

    Abubakar, Ibrahim Babangida; Malami, Ibrahim; Yahaya, Yakubu; Sule, Sahabi Manga

    2018-05-25

    Alpinia officinarum Hance is a perennial plant that has been traditionally used for many decades to treat several ailments including inflammation, pain, stomach-ache, cold, amongst others. Pharmacological studies over the years have demonstrated remarkable bioactivities that could be further explored for development of new therapeutic agents against various ailments. The paper critically reviewed the ethno-medicinal uses, pharmacology, and phytochemistry of A. officinarum. Keywords including A. officinarum and its synonyms were searched using electronic databases including ISI web of knowledge, Science direct, Scopus, PubMed, Google scholar and relevant database for Masters and Doctoral theses. A. officinarum is prepared in Asia, Turkey, Morocco and Iran as a decoction, infusion or juice as a single preparation or in combination with other herbs, food or drinks for the treatment of general health problems including cold, inflammation, digestive disorders, etc. Pharmacological studies revealed the potent in vitro and in vivo bioactivities of various parts of A. officinarum that include anti-inflammatory, cytotoxicity, homeostasis, lipid regulation, antioxidant, antiviral, antimicrobial, antiosteoporosis, etc. Over 90 phytochemical constituents have been identified and isolated from A. officinarum comprising vastly of phenolic compounds especially diarylheptanoids isolated from the rhizome and considered the most active bioactive components. In vitro and in vivo studies have confirmed the potency of A. officinarum. However, further studies are required to establish the mechanisms mediating its bioactivities in relation to the medicinal uses as well as investigating any potential toxicity for future clinical studies. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Drug discrimination: A versatile tool for characterization of CNS safety pharmacology and potential for drug abuse.

    Science.gov (United States)

    Swedberg, Michael D B

    2016-01-01

    Drug discrimination studies for assessment of psychoactive properties of drugs in safety pharmacology and drug abuse and drug dependence potential evaluation have traditionally been focused on testing novel compounds against standard drugs for which drug abuse has been documented, e.g. opioids, CNS stimulants, cannabinoids etc. (e.g. Swedberg & Giarola, 2015), and results are interpreted such that the extent to which the test drug causes discriminative effects similar to those of the standard training drug, the test drug would be further characterized as a potential drug of abuse. Regulatory guidance for preclinical assessment of abuse liability by the European Medicines Agency (EMA, 2006), the U.S. Food and Drug Administration (FDA, 2010), the International Conference of Harmonization (ICH, 2009), and the Japanese Ministry of Health Education and Welfare (MHLW, 1994) detail that compounds with central nervous system (CNS) activity, whether by design or not, need abuse and dependence liability assessment. Therefore, drugs with peripheral targets and a potential to enter the CNS, as parent or metabolite, are also within scope (see Swedberg, 2013, for a recent review and strategy). Compounds with novel mechanisms of action present a special challenge due to unknown abuse potential, and should be carefully assessed against defined risk criteria. Apart from compounds sharing mechanisms of action with known drugs of abuse, compounds intended for indications currently treated with drugs with potential for abuse and or dependence are also within scope, regardless of mechanism of action. Examples of such compounds are analgesics, anxiolytics, cognition enhancers, appetite control drugs, sleep control drugs and drugs for psychiatric indications. Recent results (Swedberg et al., 2014; Swedberg & Raboisson, 2014; Swedberg, 2015) on the metabotropic glutamate receptor type 5 (mGluR5) antagonists demonstrate that compounds causing hallucinatory effects in humans did not exhibit

  5. Pharmacology of pediatric resuscitation.

    Science.gov (United States)

    Ushay, H M; Notterman, D A

    1997-02-01

    The resuscitation of children from cardiac arrest and shock remains a challenging goal. The pharmacologic principles underlying current recommendations for intervention in pediatric cardiac arrest have been reviewed. Current research efforts, points of controversy, and accepted practices that may not be most efficacious have been described. Epinephrine remains the most effective resuscitation adjunct. High-dose epinephrine is tolerated better in children than in adults, but its efficacy has not received full analysis. The preponderance of data continues to point toward the ineffectiveness and possible deleterious effects of overzealous sodium bicarbonate use. Calcium chloride is useful in the treatment of ionized hypocalcemia but may harm cells that have experienced asphyxial damage. Atropine is an effective agent for alleviating bradycardia induced by increased vagal tone, but because most bradycardia in children is caused by hypoxia, improved oxygenation is the intervention of choice. Adenosine is an effective and generally well-tolerated agent for the treatment of supraventricular tachycardia. Lidocaine is the drug of choice for ventricular dysrhythmias, and bretylium, still relatively unexplored, is in reserve. Many pediatricians use dopamine for shock in the postresuscitative period, but epinephrine is superior. Most animal research on cardiac arrest is based on models with ventricular fibrillation that probably are not reflective of cardiac arrest situations most often seen in pediatrics.

  6. Chinese Herbal Medicines Attenuate Acute Pancreatitis: Pharmacological Activities and Mechanisms

    Directory of Open Access Journals (Sweden)

    Dong Shang

    2017-04-01

    Full Text Available Acute pancreatitis (AP is a commonly occurring gastrointestinal disorder. An increase in the annual incidence of AP has been observed, and it causes acute hospitalization and high mortality. The diagnosis and treatment guidelines for AP recommend conservative medical treatments focused on reducing pancreatic secretion and secondary injury, as a primary therapeutic approach. Unfortunately, the existing treatment options have limited impact on the incidence and severity of AP due to the complex and multifaceted pathological process of this disease. In recent decades, Chinese herbal medicines (CHMs have been used as efficient therapeutic agents to attenuate AP in Asian countries. Despite early cell culture, animal models, and clinical trials, CHMs are capable of interacting with numerous molecular targets participating in the pathogenesis of AP; however, comprehensive, up-to-date communication in this field is not yet available. This review focuses on the pharmacological activities of CHMs against AP in vitro and in vivo and the underlying mechanisms. A computational prediction of few selected and promising plant-derived molecules (emodin, baicalin, resveratrol, curcumin, ligustrazine, and honokiol to target numerous proteins or networks involved in AP was initially established based on a network pharmacology simulation. Moreover, we also summarized some potential toxic natural products for pancreas in order to more safe and reasonable medication. These breakthrough findings may have important implications for innovative drug research and the future development of treatments for AP.

  7. Plectranthus amboinicus (Lour. Spreng: Botanical, Phytochemical, Pharmacological and Nutritional Significance

    Directory of Open Access Journals (Sweden)

    Greetha Arumugam

    2016-03-01

    Full Text Available Plectranthus amboinicus (Lour. Spreng. is a perennial herb belonging to the family Lamiaceae which occurs naturally throughout the tropics and warm regions of Africa, Asia and Australia. This herb has therapeutic and nutritional properties attributed to its natural phytochemical compounds which are highly valued in the pharmaceutical industry. Besides, it has horticultural properties due to its aromatic nature and essential oil producing capability. It is widely used in folk medicine to treat conditions like cold, asthma, constipation, headache, cough, fever and skin diseases. The leaves of the plant are often eaten raw or used as flavoring agents, or incorporated as ingredients in the preparation of traditional food. The literature survey revealed the occurrence 76 volatiles and 30 non-volatile compounds belonging to different classes of phytochemicals such as monoterpenoids, diterpenoids, triterpenoids, sesquiterpenoids, phenolics, flavonoids, esters, alcohols and aldehydes. Studies have cited numerous pharmacological properties including antimicrobial, antiinflammatory, antitumor, wound healing, anti-epileptic, larvicidal, antioxidant and analgesic activities. Also, it has been found to be effective against respiratory, cardiovascular, oral, skin, digestive and urinary diseases. Yet, scientific validation of many other traditional uses would be appreciated, mainly to discover and authenticate novel bioactive compounds from this herb. This review article provides comprehensive information on the botany, phytochemistry, pharmacology and nutritional importance of P. amboinicus essential oil and its various solvent extracts. This article allows researchers to further explore the further potential of this multi-utility herb for various biomedical applications.

  8. Plectranthus amboinicus (Lour.) Spreng: Botanical, Phytochemical, Pharmacological and Nutritional Significance.

    Science.gov (United States)

    Arumugam, Greetha; Swamy, Mallappa Kumara; Sinniah, Uma Rani

    2016-03-30

    Plectranthus amboinicus (Lour.) Spreng. is a perennial herb belonging to the family Lamiaceae which occurs naturally throughout the tropics and warm regions of Africa, Asia and Australia. This herb has therapeutic and nutritional properties attributed to its natural phytochemical compounds which are highly valued in the pharmaceutical industry. Besides, it has horticultural properties due to its aromatic nature and essential oil producing capability. It is widely used in folk medicine to treat conditions like cold, asthma, constipation, headache, cough, fever and skin diseases. The leaves of the plant are often eaten raw or used as flavoring agents, or incorporated as ingredients in the preparation of traditional food. The literature survey revealed the occurrence 76 volatiles and 30 non-volatile compounds belonging to different classes of phytochemicals such as monoterpenoids, diterpenoids, triterpenoids, sesquiterpenoids, phenolics, flavonoids, esters, alcohols and aldehydes. Studies have cited numerous pharmacological properties including antimicrobial, antiinflammatory, antitumor, wound healing, anti-epileptic, larvicidal, antioxidant and analgesic activities. Also, it has been found to be effective against respiratory, cardiovascular, oral, skin, digestive and urinary diseases. Yet, scientific validation of many other traditional uses would be appreciated, mainly to discover and authenticate novel bioactive compounds from this herb. This review article provides comprehensive information on the botany, phytochemistry, pharmacology and nutritional importance of P. amboinicus essential oil and its various solvent extracts. This article allows researchers to further explore the further potential of this multi-utility herb for various biomedical applications.

  9. The Potential of Bdellovibrio For the Biocontrol of the Infectious Agent Vibrio cholerae

    Directory of Open Access Journals (Sweden)

    Natalia Olsson Markelova

    2015-12-01

    Full Text Available Members of the genus Bdellovibrio are small and highly motile Gram-negative predators of other Gram-negative bacteria. Bdellovibrio enters the prey cell, transforming it into a structure that is referred to as a bdelloplast. It then grows and divides inside the bdelloplast, ending in lysis and the release of the Bdellovibrio progeny. Because of this capability, Bdellovibrio is a potential antibacterial agent. In this article, we report the results of studies on the interactions of Bdellovibrio with actively growing and viable but nonculturable (VBNC Vibrio cholerae. A significant observation was that Bdellovibrio attacked both VBNC and actively growing V. cholerae. These results indicate that Bdellovibrio, a “living antibiotic,” has potential as an antibacterial agent in environmental and public health bioprotection.

  10. Identification of Novel G Protein-Coupled Receptor 143 Ligands as Pharmacologic Tools for Investigating X-Linked Ocular Albinism.

    Science.gov (United States)

    De Filippo, Elisabetta; Manga, Prashiela; Schiedel, Anke C

    2017-06-01

    GPR143 regulates melanosome biogenesis and organelle size in pigment cells. The mechanisms underlying receptor function remain unclear. G protein-coupled receptors (GPCRs) are excellent pharmacologic targets; thus, we developed and applied a screening approach to identify potential GPR143 ligands and chemical modulators. GPR143 interacts with β-arrestin; we therefore established a β-arrestin recruitment assay to screen for compounds that modulate activity. Because GPR143 is localized intracellularly, screening with the wild-type receptor would be restricted to agents absorbed by the cell. For the screen we used a mutant receptor, which shows similar basal activity as the wild type but traffics to the plasma membrane. We tested two compound libraries and investigated validated hits for their effects on melanocyte pigmentation. GPR143, which showed high constitutive activity in the β-arrestin assay, was inhibited by several compounds. The three validated inhibitors (pimozide, niclosamide, and ethacridine lactate) were assessed for impact on melanocytes. Pigmentation and expression of tyrosinase, a key melanogenic enzyme, were reduced by all compounds. Because GPR143 appears to be constitutively active, these compounds may turn off its activity. X-linked ocular albinism type I, characterized by developmental eye defects, results from GPR143 mutations. Identifying pharmacologic agents that modulate GPR143 activity will contribute significantly to our understanding of its function and provide novel tools with which to study GPCRs in melanocytes and retinal pigment epithelium. Pimozide, one of three GPR143 inhibitors identified in this study, maybe be a good lead structure for development of more potent compounds and provide a platform for design of novel therapeutic agents.

  11. A Review of Promising Natural Chemopreventive Agents for Head and Neck Cancer.

    Science.gov (United States)

    Crooker, Kyle; Aliani, Rana; Ananth, Megha; Arnold, Levi; Anant, Shrikant; Thomas, Sufi Mary

    2018-03-30

    Head and neck squamous cell carcinoma (HNSCC) accounts for 300,000 deaths per year worldwide and overall survival rates have shown little improvement over the past three decades. Current treatment methods including surgery, chemotherapy, and radiotherapy leave patients with secondary morbidities. Thus, treatment of HNSCC may benefit from exploration of natural compounds as chemopreventive agents. With excellent safety profiles, reduced toxicities, antioxidant properties, and general acceptance for use as dietary supplements, natural compounds are viewed as a desirable area of investigation for chemoprevention. Though most of the field is early in development, numerous studies display the potential utility of natural compounds against HNSCC. These compounds face additional challenges such as low bioavailability for systemic delivery, potential toxicities when consumed in pharmacological doses, and acquired resistance. However, novel delivery vehicles and synthetic analogs have shown overcome some of these challenges. This review covers eleven promising natural compounds in the chemoprevention of HNSCC including vitamin A, curcumin, isothiocyanate, green tea, luteolin, resveratrol, genistein, lycopene, bitter melon, withaferin A, and guggulsterone. The review discusses the therapeutic potential and associated challenges of these agents in the chemopreventive efforts against HNSCC. Copyright ©2018, American Association for Cancer Research.

  12. Improving the Clinical Pharmacologic Assessment of Abuse Potential: Part 1: Regulatory Context and Risk Management.

    Science.gov (United States)

    Sellers, Edward M

    2018-02-01

    This article brings to the attention of drug developers the Food and Drug Administration's (FDA's) recent final Guidance to Industry on Assessment of Abuse Potential and provides practical suggestions about compliance with the Guidance. The Guidance areas are reviewed, analyzed, and placed in the context of current scientific knowledge and best practices to mitigate regulatory risk. The Guidance provides substantial new detail on what needs to be done at all stages of drug development for central nervous system-active drugs. However, because many psychopharmacologic agents have unique preclinical and clinical features, the plan for each agent needs to be not only carefully prepared but also reviewed and approved by the FDA. Examples are provided where assumptions about interpretation of the Guidance can delay development. If the expertise and experience needed for assessing abuse potential during drug development do not exist within a company, external preclinical and clinical expert should be involved. Consultation with the FDA is encouraged and important because the specific requirements for each drug will vary.

  13. Clinically Relevant Pharmacological Strategies That Reverse MDMA-Induced Brain Hyperthermia Potentiated by Social Interaction.

    Science.gov (United States)

    Kiyatkin, Eugene A; Ren, Suelynn; Wakabayashi, Ken T; Baumann, Michael H; Shaham, Yavin

    2016-01-01

    MDMA-induced hyperthermia is highly variable, unpredictable, and greatly potentiated by the social and environmental conditions of recreational drug use. Current strategies to treat pathological MDMA-induced hyperthermia in humans are palliative and marginally effective, and there are no specific pharmacological treatments to counteract this potentially life-threatening condition. Here, we tested the efficacy of mixed adrenoceptor blockers carvedilol and labetalol, and the atypical antipsychotic clozapine, in reversing MDMA-induced brain and body hyperthermia. We injected rats with a moderate non-toxic dose of MDMA (9 mg/kg) during social interaction, and we administered potential treatment drugs after the development of robust hyperthermia (>2.5 °C), thus mimicking the clinical situation of acute MDMA intoxication. Brain temperature was our primary focus, but we also simultaneously recorded temperatures from the deep temporal muscle and skin, allowing us to determine the basic physiological mechanisms of the treatment drug action. Carvedilol was modestly effective in attenuating MDMA-induced hyperthermia by moderately inhibiting skin vasoconstriction, and labetalol was ineffective. In contrast, clozapine induced a marked and immediate reversal of MDMA-induced hyperthermia via inhibition of brain metabolic activation and blockade of skin vasoconstriction. Our findings suggest that clozapine, and related centrally acting drugs, might be highly effective for reversing MDMA-induced brain and body hyperthermia in emergency clinical situations, with possible life-saving results.

  14. Ethnobotanical, phytochemical and pharmacological properties of ...

    African Journals Online (AJOL)

    Purpose: To present an overview of the ethnobotany, phytochemistry and pharmacology of Crinum bulbispermum so as to understand its importance and potential in primary healthcare systems. Methods: A review of the literature was undertaken and an in-depth analysis of previous research on ethnobotany, phytochemistry ...

  15. Marine Algae as a Potential Source for Anti-Obesity Agents

    Directory of Open Access Journals (Sweden)

    Chu Wan-Loy

    2016-12-01

    Full Text Available Obesity is a major epidemic that poses a worldwide threat to human health, as it is also associated with metabolic syndrome, type 2 diabetes and cardiovascular disease. Therapeutic intervention through weight loss drugs, accompanied by diet and exercise, is one of the options for the treatment and management of obesity. However, the only approved anti-obesity drug currently available in the market is orlistat, a synthetic inhibitor of pancreatic lipase. Other anti-obesity drugs are still being evaluated at different stages of clinical trials, while some have been withdrawn due to their severe adverse effects. Thus, there is a need to look for new anti-obesity agents, especially from biological sources. Marine algae, especially seaweeds are a promising source of anti-obesity agents. Four major bioactive compounds from seaweeds which have the potential as anti-obesity agents are fucoxanthin, alginates, fucoidans and phlorotannins. The anti-obesity effects of such compounds are due to several mechanisms, which include the inhibition of lipid absorption and metabolism (e.g., fucoxanthin and fucoidans, effect on satiety feeling (e.g., alginates, and inhibition of adipocyte differentiation (e.g., fucoxanthin. Further studies, especially testing bioactive compounds in long-term human trials are required before any new anti-obesity drugs based on algal products can be developed.

  16. Safety and efficacy of pharmacologic thromboprophylaxis following blunt head injury: a systematic review.

    Science.gov (United States)

    Reeves, Fairleigh; Batty, Lachlan; Pitt, Veronica; Chau, Marisa; Pattuwage, Loyal; Gruen, Russell L

    2013-10-01

    Patients with blunt head injury are at high risk of venous thromboembolism. However, pharmacologic thromboprophylaxis (PTP) may cause progression of intracranial hemorrhage, and clinicians must often weigh up the risks and benefits. This review aimed to determine whether adding PTP to mechanical prophylaxis confers net benefit or harm and the optimal timing, dose, and agent for PTP in patients with blunt head injury. We searched MEDLINE, EMBASE, The Cochrane Library Central Register of Controlled Trials (CENTRAL), and www.clinicaltrials.gov on April 24, 2013, to identify controlled studies and ongoing trials that assessed the efficacy or safety of thromboprophylaxis interventions in the early management of head-injured patients. Studies were classified based on types of interventions and comparisons, and the quality of included studies was assessed using Cochrane risk-of-bias tool and the Newcastle-Ottawa Quality Assessment Scale. We intended to undertake a meta-analysis if studies were sufficiently similar. Sixteen studies met the inclusion criteria, including four randomized controlled trials. At least two randomized controlled trials were at high risk of bias owing to inadequate randomization and concealment of allocation, and observational studies were potentially confounded by substantial differences between comparison groups. Heterogeneity of included studies precluded meta-analysis. Results were mixed, with some studies supporting and others refuting addition of PTP to mechanical interventions. Little evidence was available about dose or choice of agent. The safety and efficacy of early PTP in patients without early progression of hemorrhage is unclear. There is currently insufficient evidence to guide thromboprophylaxis in patients with blunt head injury. Standardized definitions and outcome measurements would facilitate comparison of outcomes across future studies. Studies in mixed populations should report head-injured specific subgroup data. Future

  17. Potential production of palm oil-based foaming agent as fire extinguisher of peatlands in Indonesia: Literature review

    Science.gov (United States)

    Subekti, P.; Hambali, E.; Suryani, A.; Suryadarma, P.

    2017-05-01

    This study aims to analyze the potential aplication of of palm oil-based foaming agent as peat fires fighter in Indonesia. From literature review, it has been known that the foaming agent able to form foam to extinguish fire, wrap and refrigerate the burning peat. It is necessary to develop the production and application of foaming agent in Indonesia because peat fires occur almost every year that caused smoke haze. Potential raw material for the production of environmental friendly foaming agent as foam extinguishing for peat fires in Indonesia aong other is palm oil due to abundant availability, sustainable, and foam product easily degraded in the environment of the burnt areas. Production of foaming agent as fire-fighting in Indonesia is one alternative to reduce the time to control the fire and smog disaster impact. Application of palm oil as a raw material for fire-fighting is contribute to increase the value added and the development of palm oil downstream industry.

  18. In vitro contractile effects of agents used in the clinical management of postpartum haemorrhage.

    Science.gov (United States)

    Morrison, John J; Crosby, David A; Crankshaw, Denis J

    2016-10-15

    Uterine atony is a major cause of postpartum haemorrhage and maternal mortality. However, the comparative pharmacology of agents used to treat this condition is poorly understood. This study evaluates, using human pregnant myometrium in vitro, a range of contractile parameters for agents used in the clinical treatment of atonic postpartum haemorrhage. The effects of oxytocin, carbetocin, ergometrine, carboprost, syntometrine and misoprostol were investigated in 146 myometrial strips from 19 donors. The potency and maximal response values were obtained, and compared, using both maximal amplitude and mean contractile force as indices of contraction. Single, EC50 concentrations of the agents were administered and both force and contraction peak parameters were compared during a 15-min exposure. Differences were considered significant when Poxytocin and carbetocin being the most potent. The most important difference between the agents was in their ability to increase the mean contractile force, with oxytocin superior to all agents except syntometrine. In single dose experiments, mean contractile force was the parameter that separated the agents. In this respect, oxytocin was not statistically different from carboprost or syntometrine, but was superior to all other agents. These findings support a clear role for oxytocin as the first line agent for treatment of postpartum haemorrhage and raise doubts about the potential clinical usefulness of misoprostol. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Arformoterol Tartrate: A Review of Pharmacology, Analysis and ...

    African Journals Online (AJOL)

    Erah

    suggest the potentially enhanced efficacy of this drug in the treatment of COPD including ... pharmacology, pharmacokinetics, clinical studies, analytical techniques, drug-drug interactions, ..... accordance with the United States Food and. Drug ...

  20. Recommendations for the pharmacologic management of allergic rhinitis.

    Science.gov (United States)

    Hoyte, Flavia C L; Meltzer, Eli O; Ostrom, Nancy K; Nelson, Harold S; Bensch, Greg W; Spangler, Dennis L; Storms, William W; Weinstein, Steven F; Katial, Rohit K

    2014-01-01

    Allergic rhinitis (AR) affects at least 60 million people in the United States each year, resulting in a major impact on patient quality of life, productivity, and direct and indirect costs. As new therapies, data, and literature emerge in the management of AR, there is a need to communicate and disseminate important information to health care professionals to advance the practice of medicine and lessen the disease burden from AR. Treatment recommendations for AR have not been updated since the 2012 Food and Drug Administration approval of nonaqueous intranasal aerosol agents using hydrofluoroalkane propellants and the first aqueous intranasal combination product. Here, we present an updated algorithm for the pharmacologic treatment of AR that includes these new treatment options. Treatment recommendations are categorized by disease severity (mild versus moderate/severe) and duration of symptoms (episodic versus nonepisodic, with episodic defined as well as alternative options for consideration by clinicians in the context of individual patient needs. This recommendation article also outlines the importance of treatment monitoring, which can be conducted using the recently developed Rhinitis Control Assessment Test. Successful therapeutic outcomes depend on multiple factors, including use of the most effective pharmacologic agents as well as patient adherence to therapy. Therefore, it is imperative that rhinitis patients not only receive the most effective therapeutic options, but that they also understand and are able to adhere to the comprehensive treatment regimen. Successful treatment, with all of these considerations in mind, results in better disease outcomes, improved quality of life for patients, and greater economic productivity in the home and workplace.

  1. Recent Pharmacology Studies on the International Space Station

    Science.gov (United States)

    Wotring, Virginia

    2014-01-01

    The environment on the International Space Station (ISS) includes a variety of potential stressors including the absence of Earth's gravity, elevated exposure to radiation, confined living and working quarters, a heavy workload, and high public visibility. The effects of this extreme environment on pharmacokinetics, pharmacodynamics, and even on stored medication doses, are not yet understood. Dr. Wotring will discuss recent analyses of medication doses that experienced long duration storage on the ISS and a recent retrospective examination of medication use during long-duration spaceflights. She will also describe new pharmacology experiments that are scheduled for upcoming ISS missions. Dr. Virginia E. Wotring is a Senior Scientist in the Division of Space Life Sciences in the Universities Space Research Association, and Pharmacology Discipline Lead at NASA's Johnson Space Center, Human Heath and Countermeasures Division. She received her doctorate in Pharmacological and Physiological Science from Saint Louis University after earning a B.S. in Chemistry at Florida State University. She has published multiple studies on ligand gated ion channels in the brain and spinal cord. Her research experience includes drug mechanisms of action, drug receptor structure/function relationships and gene & protein expression. She joined USRA (and spaceflight research) in 2009. In 2012, her book reviewing pharmacology in spaceflight was published by Springer: Space Pharmacology, Space Development Series.

  2. 2011 Annual Meeting of the Safety Pharmacology Society: an overview.

    Science.gov (United States)

    Cavero, Icilio

    2012-03-01

    The keynote address of 2011 Annual Meeting of the Safety Pharmacology Society examined the known and the still to be known on drug-induced nephrotoxicity. The nominee of the Distinguished Service Award Lecture gave an account of his career achievements particularly on the domain of chronically instrumented animals for assessing cardiovascular safety. The value of Safety Pharmacology resides in the benefits delivered to Pharma organizations, regulators, payers and patients. Meticulous due diligence concerning compliance of Safety Pharmacology studies to best practices is an effective means to ensure that equally stringent safety criteria are applied to both in-licensed and in-house compounds. Innovative technologies of great potential for Safety Pharmacology presented at the meeting are organs on chips (lung, heart, intestine) displaying mechanical and biochemical features of native organs, electrical field potential (MEA) or impedance (xCELLigence Cardio) measurements in human induced pluripotent stem cell-derived cardiomyocytes for unveiling cardiac electrophysiological and mechanical liabilities, functional human airway epithelium (MucilAir™) preparations with unique 1-year shelf-life for acute and chronic in vitro evaluation of drug efficacy and toxicity. Custom-designed in silico and in vitro assay platforms defining the receptorome space occupied by chemical entities facilitate, throughout the drug discovery phase, the selection of candidates with optimized safety profile on organ function. These approaches can now be complemented by advanced computational analysis allowing the identification of compounds with receptorome, or clinically adverse effect profiles, similar to those of the drug candidate under scrutiny for extending the safety assessment to potential liability targets not captured by classical approaches. Nonclinical data supporting safety can be quite reassuring for drugs with a discovered signal of risk. However, for marketing authorization

  3. Brivaracetam: review of its pharmacology and potential use as adjunctive therapy in patients with partial onset seizures

    Directory of Open Access Journals (Sweden)

    Mumoli L

    2015-10-01

    central nervous system and include fatigue, dizziness, and somnolence; these apparently disappear during treatment. In this review, we analyzed BRV, focusing on the current evidences from experimental animal models to clinical studies with particular interest on potential use in clinical practice. Finally, pharmacological properties of BRV are summarized with a description of its pharmacokinetics, safety, and potential/known drug–drug interactions. Keywords: brivaracetam, epilepsy, partial seizure, adjunctive therapy, antiepileptic drugs

  4. Quality management of pharmacology and safety pharmacology studies

    DEFF Research Database (Denmark)

    Spindler, Per; Seiler, Jürg P

    2002-01-01

    to safety pharmacology studies, and, when indicated, to secondary pharmacodynamic studies, does not influence the scientific standards of studies. However, applying formal GLP standards will ensure the quality, reliability and integrity of studies, which reflect sound study management. It is important...... to encourage a positive attitude among researchers and academics towards these lines, whenever possible. GLP principles applied to the management of non-clinical safety studies are appropriate quality standards when studies are used in the context of protecting public health, and these quality standards...... of pharmacology studies (ICH S7A): primary pharmacodynamic, secondary pharmacodynamic and safety pharmacology studies, and guidance on the quality standards (expectations for GLP conformity) for these study types have been provided. Primary pharmacodynamic studies are the only study types that are fully exempt...

  5. Emerging protein targets for metal-based pharmaceutical agents : An update

    NARCIS (Netherlands)

    de Almeida, Andreia; Oliveira, Bruno L.; Correia, Joao D. G.; Soveral, Graca; Casini, Angela

    2013-01-01

    The peculiar chemical properties of metal-based drugs impart innovative pharmacological profiles to this class of therapeutic and diagnostic agents, most likely in relation to novel molecular mechanisms still poorly understood. However, inorganic drugs have been scarcely considered for medicinal

  6. A Quantitative Analysis of Undisclosed Conflicts of Interest in Pharmacology Textbooks.

    Science.gov (United States)

    Piper, Brian J; Telku, Hassenet M; Lambert, Drew A

    2015-01-01

    Disclosure of potential conflicts of interest (CoI) is a standard practice for many biomedical journals but not for educational materials. The goal of this investigation was to determine whether the authors of pharmacology textbooks have undisclosed financial CoIs and to identify author characteristics associated with CoIs. The presence of potential CoIs was evaluated by submitting author names (N = 403; 36.3% female) to a patent database (Google Scholar) as well as a database that reports on the compensation ($USD) received from 15 pharmaceutical companies (ProPublica's Dollars for Docs). All publications (N = 410) of the ten highest compensated authors from 2009 to 2013 and indexed in Pubmed were also examined for disclosure of additional companies that the authors received research support, consulted, or served on speaker's bureaus. A total of 134 patents had been awarded (Maximum = 18/author) to textbook authors. Relative to DiPiro's Pharmacotherapy: A Pathophysiologic Approach, contributors to Goodman and Gilman's Pharmacological Basis of Therapeutics and Katzung's Basic and Clinical Pharmacology were more frequently patent holders (OR = 6.45, P 1 patent (OR = 0.15, P < .0005). A total of $2,411,080 USD (28.3% for speaking, 27.0% for consulting, and 23.9% for research), was received by 53 authors (Range = $299 to $310,000/author). Highly compensated authors were from multiple fields including oncology, psychiatry, neurology, and urology. The maximum number of additional companies, not currently indexed in the Dollars for Docs database, for which an author had potential CoIs was 73. Financial CoIs are common among the authors of pharmacology and pharmacotherapy textbooks. Full transparency of potential CoIs, particularly patents, should become standard procedure for future editions of educational materials in pharmacology.

  7. Pharmacological agents and impairment of fracture healing: what is the evidence?

    NARCIS (Netherlands)

    Pountos, I.; Georgouli, T.; Blokhuis, T.J.; Pape, H.C.; Giannoudis, P.V.

    2008-01-01

    Bone healing is an extremely complex process which depends on the coordinated action of several cell lineages on a cascade of biological events, and has always been a major medical concern. The use of several drugs such as corticosteroids, chemotherapeutic agents, non-steroidal anti-inflammatory

  8. Physio-pharmacological Investigations About the Anti-inflammatory and Antinociceptive Efficacy of (+)-Limonene Epoxide.

    Science.gov (United States)

    de Almeida, Antonia Amanda Cardoso; Silva, Renan Oliveira; Nicolau, Lucas Antonio Duarte; de Brito, Tarcísio Vieira; de Sousa, Damião Pergentino; Barbosa, André Luiz Dos Reis; de Freitas, Rivelilson Mendes; Lopes, Luciano da Silva; Medeiros, Jand-Venes Rolim; Ferreira, Paulo Michel Pinheiro

    2017-04-01

    D-limonene epoxidation generates (+)-limonene epoxide, an understudied compound in the pharmacologically point of view. Herein, we investigated the anti-inflammatory and antinociceptive potentialities of (+)-limonene epoxide and suggested a mechanism of action. The anti-inflammatory potential was analyzed using agents to induce paw edema, permeability, and myeloperoxidase (MPO) activity. Pro-inflammatory cytokines and cell migration of peritoneal cells were also assessed. Antinociceptive effects were evaluated by writhing test induced by acetic acid, formalin, and hot plate assays and contribution of opioid pathways. Pretreated animals with (+)-limonene epoxide showed reduced carrageenan-induced paw edema in all doses (25, 50, and 75 mg/kg) (P Limonene epoxide diminished abdominal contortions induced by acetic acid (78.9%) and paw licking times in both 1 (41.8%) and 2 (51.5%) phases and a pretreatment with naloxone (3 mg/kg) reverted the antinociceptive action in morphine- and (+)-limonene epoxide-treated groups (P limonene epoxide inhibited release/activity of inflammatory mediators, vascular permeability, migration of neutrophils and displayed systemic and peripheral analgesic-dependent effects of the opioid system.

  9. Metal-oxo containing polymer nanobeads as potential contrast agents for magnetic resonance imaging

    Science.gov (United States)

    Pablico, Michele Huelar

    Magnetic resonance imaging (MRI) has greatly revolutionized the way diseases are detected and treated, as it is a non-invasive imaging modality solely based on the interaction of radiowaves and hydrogen nuclei in the presence of an external magnetic field. It is widely used today for the diagnosis of diseases as it offers an efficient method of mapping structure and function of soft tissues in the body. Most MRI examinations utilize paramagnetic materials known as contrast agents, which enhance the MR signal by decreasing the longitudinal (T1) and transverse (T2) relaxation times of the surrounding water protons in biological systems. This results into increased signal intensity differences thereby allowing better interpretation and analysis of pathological tissues. Contrast agents function by lowering the T1 or lowering the T2, resulting into bright and dark contrasts, respectively. The most common MRI contrast agents that are in clinical use today are gadolinium chelates and superparamagnetic iron oxide nanoparticles, both of which have their own advantages in terms of contrast enhancement properties. In the past few years, however, there has been interest in utilizing metal-containing clusters for MRI contrast enhancement as these materials bridge the gap between the constrained structure and magnetic properties of the gadolinium chelates with the superparamagnetic behavior of the iron oxide nanoparticles. Recently, metallic clusters containing Mn and Fe metal centers have received increased attention mainly because of their potential for high spin states and benign nature. In the quest to further develop novel imaging agents, this research has focused on investigating the use of metal-oxo clusters as potential contrast agents for MRI. The primary goal of this project is to identify clusters that meet the following criteria: high paramagnetic susceptibility, water-soluble, stable, cheap, contain environmentally benign metals, and easily derivatized. This work is

  10. Delirium in the elderly: A systematic review of pharmacological and non-pharmacological treatments

    Directory of Open Access Journals (Sweden)

    Cecília Carboni Tardelli Cerveira

    Full Text Available ABSTRACT Delirium is a common disorder associated with poor prognosis, especially in the elderly. The impact of different treatment approaches for delirium on morbimortality and long-term welfare is not completely understood. OBJECTIVE: To determine the efficacy of pharmacological and non-pharmacological treatments in elderly patients with delirium. METHODS: This systematic review compared pharmacological and non-pharmacological treatments in patients over 60 years old with delirium. Databases used were: MEDLINE (PubMed, EMBASE, Cochrane CENTRAL and LILACS from inception to January 6th, 2016. RESULTS: A total of ten articles were selected. The six non-pharmacological intervention studies showed no impact on duration of delirium, mortality or institutionalization, but a decrease in severity of delirium and improvement in medium-term cognitive function were observed. The most commonly used interventions were temporal-spatial orientation, orientation to self and others, early mobilization and sleep hygiene. The four studies with pharmacological interventions found that rivastigmine reduced the duration of delirium, improved cognitive function and reduced caregiver burden; olanzapine and haloperidol decreased the severity of delirium; droperidol reduced length of hospitalization and improved delirium remission rate. CONCLUSION: Although the pharmacological approach has been used in the treatment of delirium among elderly, there have been few studies assessing its efficacy, involving a small number of patients. However, the improvements in delirium duration and severity suggest these drugs are effective in treating the condition. Once delirium has developed, non-pharmacological treatment seems less effective in controlling symptoms, and there is a lack of studies describing different non-pharmacological interventions.

  11. A Preclinical Evaluation of Antimycin A as a Potential Antilung Cancer Stem Cell Agent

    Directory of Open Access Journals (Sweden)

    Chi-Tai Yeh

    2013-01-01

    Full Text Available Drug resistance and tumor recurrence are major obstacles in treating lung cancer patients. Accumulating evidence considers lung cancer stem cells (CSCs as the major contributor to these clinical challenges. Agents that can target lung CSCs could potentially provide a more effective treatment than traditional chemotherapy. Here, we utilized the side-population (SP method to isolate lung CSCs from A549 and PC-9 cell lines. Subsequently, a high throughput platform, connectivity maps (CMAPs, was used to identify potential anti-CSC agents. An antibiotic, antimycin A (AMA, was identified as a top candidate. SP A549 cells exhibited an elevated stemness profile, including Nanog, β-catenin, Sox2, and CD133, and increased self-renewal ability. AMA treatment was found to suppress β-catenin signaling components and tumor sphere formation. Furthermore, AMA treatment decreased the proliferation of gefitinib-resistant PC-9/GR cells and percentage of SP population. AMA demonstrated synergistic suppression of PC-9/GR cell viability when combined with gefitinib. Finally, AMA treatment suppressed tumorigenesis in mice inoculated with A549 SP cells. Collectively, we have identified AMA using CMAP as a novel antilung CSC agent, which acts to downregulate β-catenin signaling. The combination of AMA and targeted therapeutic agents could be considered for overcoming drug resistance and relapse in lung cancer patients.

  12. Pharmacological modulations of cardiac ultra-rapid and slowly activating delayed rectifier currents: potential antiarrhythmic approaches.

    Science.gov (United States)

    Islam, Mohammed A

    2010-01-01

    Despite the emerging new insights into our understandings of the cellular mechanisms underlying cardiac arrhythmia, medical therapy for this disease remains unsatisfactory. Atrial fibrillation (AF), the most prevalent arrhythmia, is responsible for significant morbidity and mortality. On the other hand, ventricular fibrillation results in sudden cardiac deaths in many instances. Prolongation of cardiac action potential (AP) is a proven principle of antiarrhythmic therapy. Class III antiarrhythmic agents prolong AP and QT interval by blocking rapidly activating delayed rectifier current (I(Kr)). However, I(Kr) blocking drugs carry the risk of life-threatening proarrhythmia. Recently, modulation of atrial-selective ultra-rapid delayed rectifier current (I(Kur)), has emerged as a novel therapeutic approach to treat AF. A number of I(Kur) blockers are being evaluated for the treatment of AF. The inhibition of slowly activating delayed rectifier current (I(Ks)) has also been proposed as an effective and safer antiarrhythmic approach because of its distinguishing characteristics that differ in remarkable ways from other selective class III agents. Selective I(Ks) block may prolong AP duration (APD) at rapid rates without leading to proarrhythmia. This article reviews the pathophysiological roles of I(Kur) and I(Ks) in cardiac repolarization and the implications of newly developed I(Kur) and I(Ks) blocking agents as promising antiarrhythmic approaches. Several recent patents pertinent to antiarrhythmic drug development have been discussed. Further research will be required to evaluate the efficacy and safety of these agents in the clinical setting.

  13. The acquisition of dangerous biological materials: Technical facts sheets to assist risk assessments of 46 potential BW agents

    Energy Technology Data Exchange (ETDEWEB)

    Aceto, Donato Gonzalo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Astuto-Gribble, Lisa M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gaudioso, Jennifer M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2007-11-01

    Numerous terrorist organizations have openly expressed interest in producing and deploying biological weapons. However, a limiting factor for many terrorists has been the acquisition of dangerous biological agents, as evidenced by the very few successful instances of biological weapons use compared to the number of documented hoaxes. Biological agents vary greatly in their ability to cause loss of life and economic damage. Some agents, if released properly, can kill many people and cause an extensive number of secondary infections; other agents will sicken only a small number of people for a short period of time. Consequently, several biological agents can potentially be used to perpetrate a bioterrorism attack but few are likely capable of causing a high consequence event. It is crucial, from a US national security perspective, to more deeply understand the likelihood that terrorist organizations can acquire the range of these agents. Few studies have attempted to comprehensively compile the technical information directly relevant to the acquisition of dangerous bacteria, viruses and toxins. In this report, technical fact sheets were assembled for 46 potentially dangerous biological agents. Much of the information was taken from various research sources which could ultimately and significantly expedite and improve bioterrorism threat assessments. By systematically examining a number of specific agent characteristics included in these fact sheets, it may be possible to detect, target, and implement measures to thwart future terrorist acquisition attempts. In addition, the information in these fact sheets may be used as a tool to help laboratories gain a rudimentary understanding of how attractive a method laboratory theft is relative to other potential acquisition modes.

  14. Insights on the neuromodulatory propensity of Selaginella (Sanjeevani) and its potential pharmacological applications.

    Science.gov (United States)

    Chandran, Girish; Muralidhara

    2014-02-01

    Exploiting the potential of natural compounds to attenuate endogenous redox status to achieve neuroprotection is a novel concept in human disease therapy. This has necessitated a need to identify newer efficient phytochemicals possessing propensity to act on various biochemical therapeutic targets with low or no toxicity. Selaginella is a lithophytic pteridophyte which grows on constantly irrigated rocks in high altitude zones in different parts of the world. It is appraised to be "Sanjeevani" (the resurrection herb) based on its mythological reference in the Indian epic "Ramayana". Due to the presence of a unique disaccharide, trehalose, most species of Selaginella can survive severe drought conditions, maintaining the plant's structural stability and resurrect during rains. Several species of the genus are used in ethnic medicine for the therapy of jaundice, chronic trachitis, lung cancer, labor pain and wound healing. The major natural compounds in the genus Selaginella are characteristic flavonoid-dimers, called 'biflavonoids'. Although various biological effects of Selaginella have been documented in vitro, studies on its neuromodulatory properties are nonexisting despite the presence of potentially therapeutic biflavonoids. We have reviewed the existing literature on the possible pharmacological properties of Selaginella. Further, recent evidence gathered from our laboratory on the neuromodulatory propensity of S. delicatula employing in vivo models of chemically induced neurodegenerative diseases in rodents and Drosophila are discussed. Our findings point to a mechanism which modulates redox status and mitochondrial dysfunction suggesting their possible therapeutic use in oxidative stress-mediated neurodegenerative diseases including Parkinson's disease.

  15. Double pharmacological challenge on repolarization opens new avenues for drug safety research

    DEFF Research Database (Denmark)

    Thomsen, Morten Bækgaard

    2007-01-01

    pointes (TdP) arrhythmia. Both the pharmaceutical industry and the regulatory bodies are neglecting the available proarrhythmia models. In vitro studies have suggested that combined pharmacological hits on repolarization will produce a superior substrate for in vivo proarrhythmia, compared to the single......-drug assessment. By using consecutive pharmacological challenges, a simple model is proposed, in which combinatorial pharmacology is employed to provoke TdP in the conscious dog. The pharmaceutical industry interested in evaluating the proarrhythmic potential of their present and future drugs now has a simple...

  16. PET studies of potential chemotherapeutic agents: Pt. 10

    International Nuclear Information System (INIS)

    Conway, T.; Diksic, M.; McGill Univ., Montreal, PQ

    1991-01-01

    Carbon-11-labeled HECNU [1-(2-chloroethyl)-1-nitroso-3-(2-hydroxyethyl) urea] a potential chemotherapeutic agent, has been prepared by the nitrosation of the corresponding carbon-11-labeled urea, HECU, [1-(2-chloroethyl)-3-(2-hydroxyethyl) urea]. The isomeric byproduct of nitrosation, 1-(2-chloroethyl)-3-nitroso-3-(2-hydroxyethyl) urea can be efficiently removed by preparative scale HPLC on a Partisil column. ( 11 C)-HECU was prepared by reacting ethanolamine with ( 11 C)-2-chloroethyl-isocyanate which was itself prepared by reacting ( 11 C)-phosgene with 2-chloroethylamine hydrochloride suspended in dioxane at 60-65 o C. This synthesis yielded ( 11 C)-HECNU with an average radiochemical purity of 98% in an average radiochemical yield of 18% relative to the radioactivity measured at the end of the 11 C-phosgene introduction. (author)

  17. Occurrence of biflavonoids in Clusiaceae: chemical and pharmacological aspects

    International Nuclear Information System (INIS)

    Ferreira, Rafaela Oliveira; Carvalho, Mario Geraldo de; Silva, Tania Maria Sarmento da

    2012-01-01

    This work describes the biflavonoids found in species of Clusiaceae, particularly the genera Garcinia and Calophyllum, emphasizing the importance of these metabolites as chemical markers of this family, their contribution to the pharmacological potential of these species, besides the promising potential of these compounds in the search for new drugs. (author)

  18. Imidazopyridines as a source of biological activity and their pharmacological potentials-Infrared and Raman spectroscopic evidence of their content in pharmaceuticals and plant materials.

    Science.gov (United States)

    Dymińska, Lucyna

    2015-09-15

    Derivatives of imidazopyridine are used in medicinal chemistry due to their biological and pharmaceutical properties. This review article presents imidazopyridine pharmacological activity as antiinflammatory, anticancer, antiviral, antiosteoporotic, antiparasitic, and antihypertensive agents by studying its various synthesized derivatives. Some of compounds with imidazopyridine skeleton are used in psychiatry and autoimmune disorders. The presented data suggest that IR and Raman spectra measurements are a good methods for identification and characterization of the compounds containing imidazopyridine core. Two stretching vibrations: νas(Φ) and νs(Φ) are of a diagnostic importance. The appearance of these bands in the IR and Raman spectra of some plants, tissues and pharmaceuticals confirms the presence of imidazopyridine skeleton in these substances. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Syndecans as modulators and potential pharmacological targets in cancer progression

    Directory of Open Access Journals (Sweden)

    Despoina eBarbouri

    2014-02-01

    Full Text Available Extracellular matrix (ECM components form a dynamic network of key importance for cell function and properties. Key macromolecules in this interplay are syndecans (SDCs, a family of transmembrane heparan sulfate proteoglycans (HSPGs. Specifically, heparan sulfate (HS chains with their different sulfation pattern have the ability to interact with growth factors and their receptors in tumor microenvironment, promoting the activation of different signaling cascades that regulate tumor cell behavior. The affinity of HS chains with ligands is altered during malignant conditions because of the modification of chain sequence/sulfation pattern. Furthermore, matrix degradation enzymes derived from the tumor itself or the tumor microenvironment, like heparanase and matrix metalloproteinases (MMPs, ADAM as well as ADΑMTS are involved in the cleavage of SDCs ectodomain at the HS and protein core level, respectively. Such released soluble syndecans shed syndecans in the extracellular matrix interact in an autocrine or paracrine manner with the tumor or/and stromal cells. Shed syndecans, upon binding to several matrix effectors, such as growth factors, chemokines and cytokines, have the ability to act as competitive inhibitors for membrane PGs, and modulate the inflammatory microenvironment of cancer cells. It is notable that syndecans and their soluble counterparts may affect either the behavior of cancer cells and/or their microenvironment during cancer progression. The importance of these molecules has been highlighted since HSPGs have been proposed as prognostic markers of solid tumors and hematopoietic malignancies. Going a step further down the line, the multi-actions of syndecans in many levels make them appealing as potential pharmacological targets, either by targeting directly the tumor or indirectly the adjacent stroma.

  20. In Vitro Characterization of the Pharmacological Properties of the Anti-Cancer Chelator, Bp4eT, and Its Phase I Metabolites.

    Directory of Open Access Journals (Sweden)

    Eliška Potůčková

    Full Text Available Cancer cells have a high iron requirement and many experimental studies, as well as clinical trials, have demonstrated that iron chelators are potential anti-cancer agents. The ligand, 2-benzoylpyridine 4-ethyl-3-thiosemicarbazone (Bp4eT, demonstrates both potent anti-neoplastic and anti-retroviral properties. In this study, Bp4eT and its recently identified amidrazone and semicarbazone metabolites were examined and compared with respect to their anti-proliferative activity towards cancer cells (HL-60 human promyelocytic leukemia, MCF-7 human breast adenocarcinoma, HCT116 human colon carcinoma and A549 human lung adenocarcinoma, non-cancerous cells (H9c2 neonatal rat-derived cardiomyoblasts and 3T3 mouse embryo fibroblasts and their interaction with intracellular iron pools. Bp4eT was demonstrated to be a highly potent and selective anti-neoplastic agent that induces S phase cell cycle arrest, mitochondrial depolarization and apoptosis in MCF-7 cells. Both semicarbazone and amidrazone metabolites showed at least a 300-fold decrease in cytotoxic activity than Bp4eT towards both cancer and normal cell lines. The metabolites also lost the ability to: (1 promote the redox cycling of iron; (2 bind and mobilize iron from labile intracellular pools; and (3 prevent 59Fe uptake from 59Fe-labeled transferrin by MCF-7 cells. Hence, this study demonstrates that the highly active ligand, Bp4eT, is metabolized to non-toxic and pharmacologically inactive analogs, which most likely contribute to its favorable pharmacological profile. These findings are important for the further development of this drug candidate and contribute to the understanding of the structure-activity relationships of these agents.

  1. [The development of neurotoxic agents as chemical weapons during the National Socialist period in Germany].

    Science.gov (United States)

    López-Muñoz, F; Alamo, C; Guerra, J A; García-García, P

    The discovery and development of the so-called 'nerve agents' (neurotoxic substances to be used as weapons) took place in the Third Reich, largely thanks to the vast amount of progress being made in pharmacology in Germany at that time, both in academic and industrial terms. Furthermore, successive National Socialist governments set up a collaborative network made up of the academia, the chemical industry and military chiefs that also favoured this line of research. The first neurotoxic substance to be incorporated into the category of 'chemical warfare agent' did so almost wholly by chance. As part of the work being carried out on organophosphate-type pesticides and insecticides, Gerald Schrader, a chemist at the I.G. Farben company, synthesised tabun (ethyl N,N-dimethylphosphoramidocyanidate) and an incident involving accidental contamination of laboratory staff with this substance highlighted its potential toxicity. The same group of researchers later synthesised another substance with the same properties, sarin (isopropyl methylphosphonofluoridate). Both agents were studied for use as chemical weapons by Wolfgang Wirth. At the same time, a group led by Richard Kuhn, who won the Nobel Prize in Chemistry in 1938, synthesised pinacolyl methylphosphonofluoridate, otherwise known as soman. Pharmacological studies confirmed that the neurotoxic mechanism of action of these substances was the irreversible inhibition of the enzyme acetylcholinesterase, which is responsible for metabolising acetylcholine. Results also showed that an excess of this neurotransmitter led to a continuous over-stimulation of the cholinergic (nicotinic and muscarinic) receptors, which is what triggers the appearance of the wide range of symptoms of poisoning and their swift fatal effect.

  2. Potential applications of biosurfactant rhamnolipids in agriculture and biomedicine.

    Science.gov (United States)

    Chen, Jianwei; Wu, Qihao; Hua, Yi; Chen, Jun; Zhang, Huawei; Wang, Hong

    2017-12-01

    Rhamnolipids have recently emerged as promising bioactive molecules due to their novel structures, diverse and versatile biological functions, lower toxicity, higher biodegradability, as well as production from renewable resources. The advantages of rhamnolipids make them attractive targets for research in a wide variety of applications. Especially rhamnolipids are likely to possess potential applications of the future in areas such as biomedicine, therapeutics, and agriculture. The purpose of this mini review is to provide a comprehensive prospective of biosurfactant rhamnolipids as potential antimicrobials, immune modulators, and virulence factors, and anticancer agents in the field of biomedicine and agriculture that may meet the ever-increasing future pharmacological treatment and food safety needs in human health.

  3. Synthesis and Evaluation of Some Coumarin Containing Potential Antimicrobial Agents

    Directory of Open Access Journals (Sweden)

    Sayali D. Kudale

    2012-01-01

    Full Text Available A series of the Schiff’s bases incorporating coumarin and chalcone moeities, 3-(4-(4-(substituted phenylprop-1-ene-3-one phenylimino methyl-4-chloro-2h-chromen-2-one 4(a-g were synthesized as potential antimicrobial agents. These compounds were characterized on the basis of their spectral (IR, 1H NMR data and evaluated for antimicrobial activity in vitro against gram positive and gram negative bacteria and fungi. Compound 4b was found to be most active with an MIC of 20 µg/mL against all the tested organisms.

  4. Ayahuasca: Psychological And Physiologic Effects, Pharmacology And Potential Uses In Addiction And Mental Illness.

    Science.gov (United States)

    Hamill, Jonathan; Hallak, Jaime; Dursun, Serdar M; Baker, Glen

    2018-01-24

    Ayahuasca, a traditional Amazonian decoction with psychoactive properties, is made from bark of the Banisteriopsis caapi vine (contains beta-carboline alkaloids) and leaves of the Psychotria viridis bush (supply the hallucinogen N,N-dimethyltryptamine (DMT)). Originally used by indigenous shamans for the purposes of spirit communication, magical experiences, healing, and religious rituals, across several South American countries ayahuasca has been incorporated into folk medicine and spiritual healing, and several Brazilian churches use it routinely to foster spiritual experience. More recently it is being used in Europe and North America, not only for religious or healing reasons, but also for recreation. To review ayahuasca's behavioral effects, possible adverse effects, proposed mechanisms of action and potential clinical uses in mental illness. We searched Medline, in English, using the terms ayahuasca, dimethytryptamine, Banisteriopsis caapi, and Psychotria viridis and reviewed the relevant publications. The following aspects of ayahuasca are summarized: Political and legal factors; acute and chronic psychological effects; electrophysiological studies and imaging; physiological effects, safety and adverse effects; pharmacology; potential psychiatric uses. Many years of shamanic wisdom have indicated potential therapeutic uses for ayahuasca, and many present day studies suggest that it may be useful for treating various psychiatric disorders and addictions. The side effect profile appears to be relatively mild, but more detailed studies need to be done. Several prominent researchers feel that government regulations with regard to ayahuasca should be relaxed so that it could be provided more readily to recognized credible researchers to conduct comprehensive clinical trials. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Pharmacology and toxicology of the novel investigational agent Cantrixil (TRX-E-002-1).

    Science.gov (United States)

    Saif, Muhammad Wasif; Heaton, Andrew; Lilischkis, Kimberley; Garner, James; Brown, David M

    2017-02-01

    Recurrent, chemo-resistant ovarian cancer is thought to be due to a subgroup of slow-growing, drug-resistant cancer cells with stem-like properties and a high capacity for tumour repair. Cantrixil targets this sub-population of cells and is being developed as an intraperitoneal therapy to be used as first-line therapy in combination with carboplatin for epithelial ovarian cancer. The studies presented here justify further development. A GLP dog CV study using a 4 × 4 Latin Square Crossover study was conducted using telemetric ECG recordings from dogs post IP administration to assess for cardiac abnormalities. Mutagenic potential was assessed using the bacterial reverse mutation assay. Clastogenicity was assessed by determining micronuclei formation in the bone marrow of SPF Arc(S) Swiss mice dosed at clinical concentrations. TRX-E-002-1 toxicology was evaluated in GLP-compliant MTD and 28-day repeat-dose studies in rats and dogs. In vitro TRX-E-002-1 has potent cytotoxic activity against human cancer cells including CD44+/MyD88+ ovarian cancer stem cells. TRX-E-002-1 increased phosphorylated c-Jun levels in these cancer cells resulting in caspase-mediated apoptosis. In vivo, Cantrixil was active in a model of disseminated ovarian cancer as a monotherapy and in combination with Cisplatin. Cantrixil was active as maintenance therapy in a model of drug-resistant, recurrent ovarian cancer and in an orthotopic model of pancreatic cancer. In animals, this clinical formulation and route of administration of Cantrixil demonstrated acceptable activity, safety pharmacology, genotoxicity and toxicology profile and constituted a successful Investigational New Drug application to the US Food and Drug Administration.

  6. Pharmacological targeting of exercise adaptations in skeletal muscle: Benefits and pitfalls.

    Science.gov (United States)

    Weihrauch, Martin; Handschin, Christoph

    2018-01-01

    Exercise exerts significant effects on the prevention and treatment of many diseases. However, even though some of the key regulators of training adaptation in skeletal muscle have been identified, this biological program is still poorly understood. Accordingly, exercise-based pharmacological interventions for many muscle wasting diseases and also for pathologies that are triggered by a sedentary lifestyle remain scarce. The most efficacious compounds that induce muscle hypertrophy or endurance are hampered by severe side effects and are classified as doping. In contrast, dietary supplements with a higher safety margin exert milder outcomes. In recent years, the design of pharmacological agents that activate the training program, so-called "exercise mimetics", has been proposed, although the feasibility of such an approach is highly debated. In this review, the most recent insights into key regulatory factors and therapeutic approaches aimed at leveraging exercise adaptations are discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Sensitivity of Quantitative Signal Detection in Regards to Pharmacological Neuroenhancement

    Directory of Open Access Journals (Sweden)

    Maximilian Gahr

    2017-01-01

    Full Text Available Pharmacological neuroenhancement (PNE is a form of abuse and has not yet been addressed by methods of pharmacovigilance. In the present study, we tested if quantitative signal detection may be sensitive in regards to PNE. We evaluated the risk of drug abuse and dependence (DAAD related to substances that are known to be used for PNE and divided this group into agents with (methylphenidate and without a known abuse potential outside the field of PNE (atomoxetine, modafinil, acetylcholine esterase inhibitors, and memantine. Reporting odds ratios (RORs were calculated using a case/non-case approach based on global and country-specific drug safety data from the Uppsala Monitoring Centre (UMC. Both control substances (diazepam and lorazepam and methylphenidate were statistically associated with DAAD in all datasets (except methylphenidate in Italy. Modafinil was associated with DAAD in the total dataset (ROR, 2.7 (95% confidence interval (CI, 2.2–3.3, Germany (ROR, 4.6 (95% CI, 1.8–11.5, and the USA (ROR, 2.0 (95% CI, 1.6–2.5. Atomoxetine was associated with DAAD in the total dataset (ROR, 1.3 (95% CI, 1.2–1.5 and in the UK (ROR, 3.3 (95% CI, 1.8–6.1. Apart from memantine, which was associated with DAAD in Germany (ROR, 1.8 (95% CI, 1.0–3.2, no other antidementia drug was associated with DAAD. Quantitative signal detection is suitable to detect agents with a risk for DAAD. Its sensitivity regarding PNE is limited, although atomoxetine and modafinil, which do not have a known abuse potential outside PNE, and no antidementia drugs, whose use in PNE is presumably low, were associated with DAAD in our analysis.

  8. From boron analogues of amino acids to boronated DNA: potential new pharmaceuticals and neutron capture agents

    International Nuclear Information System (INIS)

    Spielvogel, B.F.; Sood, Anup; Duke Univ., Durham, NC; Shaw, B.R.; Hall, I.H.

    1991-01-01

    Isoelectronic and isostructural boron analogues of the α-amino acids ranging from simple glycine analogues such as H 3 NBH 2 COOH and Me 2 NHBH 2 COOH to alanine analogues have been synthesised. A diverse variety of analogues, including precursors and derivatives (such as peptides) have potent pharmacological activity, including anticancer, antiinflammatory, analgesic, and hypolipidemic activity in animal model studies and in vitro cell cultures. Boronated nucleosides and (oligo)nucleotides, synthetic oligonucleotide analogues of ''antisense'' agents interact with a complementary nucleic acid sequence blocking the biological effect of the target sequence. Nucleosides boronated on the pyrimidine and purine bases have been prepared. It has been established that an entirely new class of nucleic acid derivatives is feasible in which one of the non-bridging oxygens in the internucleotide phosphodiester linkage can be replaced by an isoelectronic analogue, the borane group, (BH 3 ). The boronated oligonucleotides can be viewed as hybrids of the normal oxygen oligonucleotides and the methylphosphonate oligonucleotides. (author)

  9. Traditional Uses, Phytochemistry, and Pharmacology of Olea europaea (Olive)

    Science.gov (United States)

    Hashmi, Muhammad Ali; Khan, Afsar; Hanif, Muhammad; Farooq, Umar; Perveen, Shagufta

    2015-01-01

    Aim of the Review. To grasp the fragmented information available on the botany, traditional uses, phytochemistry, pharmacology, and toxicology of Olea europaea to explore its therapeutic potential and future research opportunities. Material and Methods. All the available information on O. europaea was collected via electronic search (using Pubmed, Scirus, Google Scholar, and Web of Science) and a library search. Results. Ethnomedical uses of O. europaea are recorded throughout the world where it has been used to treat various ailments. Phytochemical research had led to the isolation of flavonoids, secoiridoids, iridoids, flavanones, biophenols, triterpenes, benzoic acid derivatives, isochromans, and other classes of secondary metabolites from O. europaea. The plant materials and isolated components have shown a wide spectrum of in vitro and in vivo pharmacological activities like antidiabetic, anticonvulsant, antioxidant, anti-inflammatory, immunomodulatory, analgesic, antimicrobial, antiviral, antihypertensive, anticancer, antihyperglycemic, antinociceptive, gastroprotective, and wound healing activities. Conclusions. O. europaea emerged as a good source of traditional medicine for the treatment of various ailments. The outcomes of phytochemical and pharmacological studies reported in this review will further expand its existing therapeutic potential and provide a convincing support to its future clinical use in modern medicine. PMID:25802541

  10. Traditional Uses, Phytochemistry, and Pharmacology of Olea europaea (Olive

    Directory of Open Access Journals (Sweden)

    Muhammad Ali Hashmi

    2015-01-01

    Full Text Available Aim of the Review. To grasp the fragmented information available on the botany, traditional uses, phytochemistry, pharmacology, and toxicology of Olea europaea to explore its therapeutic potential and future research opportunities. Material and Methods. All the available information on O. europaea was collected via electronic search (using Pubmed, Scirus, Google Scholar, and Web of Science and a library search. Results. Ethnomedical uses of O. europaea are recorded throughout the world where it has been used to treat various ailments. Phytochemical research had led to the isolation of flavonoids, secoiridoids, iridoids, flavanones, biophenols, triterpenes, benzoic acid derivatives, isochromans, and other classes of secondary metabolites from O. europaea. The plant materials and isolated components have shown a wide spectrum of in vitro and in vivo pharmacological activities like antidiabetic, anticonvulsant, antioxidant, anti-inflammatory, immunomodulatory, analgesic, antimicrobial, antiviral, antihypertensive, anticancer, antihyperglycemic, antinociceptive, gastroprotective, and wound healing activities. Conclusions. O. europaea emerged as a good source of traditional medicine for the treatment of various ailments. The outcomes of phytochemical and pharmacological studies reported in this review will further expand its existing therapeutic potential and provide a convincing support to its future clinical use in modern medicine.

  11. Anthraquinones As Pharmacological Tools and Drugs.

    Science.gov (United States)

    Malik, Enas M; Müller, Christa E

    2016-07-01

    Anthraquinones (9,10-dioxoanthracenes) constitute an important class of natural and synthetic compounds with a wide range of applications. Besides their utilization as colorants, anthraquinone derivatives have been used since centuries for medical applications, for example, as laxatives and antimicrobial and antiinflammatory agents. Current therapeutic indications include constipation, arthritis, multiple sclerosis, and cancer. Moreover, biologically active anthraquinones derived from Reactive Blue 2 have been utilized as valuable tool compounds for biochemical and pharmacological studies. They may serve as lead structures for the development of future drugs. However, the presence of the quinone moiety in the structure of anthraquinones raises safety concerns, and anthraquinone laxatives have therefore been under critical reassessment. This review article provides an overview of the chemistry, biology, and toxicology of anthraquinones focusing on their application as drugs. © 2016 Wiley Periodicals, Inc.

  12. Pharmacological modulation of the BOLD response: a study of acetazolamide and glyceryl trinitrate in humans

    DEFF Research Database (Denmark)

    Asghar, Mohammed Sohail; Hansen, Adam E; Pedersen, Simon

    2011-01-01

    To examine the effect of acetazolamide, known to increase cerebral blood flow (CBF) and glyceryl trinitrate (GTN), known to increase cerebral blood volume (CBV) on the blood oxygenation level-dependent (BOLD) response in humans using 3 T magnetic resonance imaging (MRI), and to evaluate how...... pharmacological agents may modulate cerebral hemodynamic and thereby possibly the BOLD signal....

  13. Process Pharmacology: A Pharmacological Data Science Approach to Drug Development and Therapy.

    Science.gov (United States)

    Lötsch, Jörn; Ultsch, Alfred

    2016-04-01

    A novel functional-genomics based concept of pharmacology that uses artificial intelligence techniques for mining and knowledge discovery in "big data" providing comprehensive information about the drugs' targets and their functional genomics is proposed. In "process pharmacology", drugs are associated with biological processes. This puts the disease, regarded as alterations in the activity in one or several cellular processes, in the focus of drug therapy. In this setting, the molecular drug targets are merely intermediates. The identification of drugs for therapeutic or repurposing is based on similarities in the high-dimensional space of the biological processes that a drug influences. Applying this principle to data associated with lymphoblastic leukemia identified a short list of candidate drugs, including one that was recently proposed as novel rescue medication for lymphocytic leukemia. The pharmacological data science approach provides successful selections of drug candidates within development and repurposing tasks. © 2016 The Authors CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.

  14. Pharmacological analyses of learning and memory in zebrafish (Danio rerio).

    Science.gov (United States)

    Bailey, Jordan M; Oliveri, Anthony N; Levin, Edward D

    2015-12-01

    Over the last decade, zebrafish (Danio rerio) have become valuable as a complementary model in behavioral pharmacology, opening a new avenue for understanding the relationships between drug action and behavior. This species offers a useful intermediate approach bridging the gap between in vitro studies and traditional mammalian models. Zebrafish offer great advantages of economy compared to their rodent counterparts, their complex brains and behavioral repertoire offer great translational potential relative to in vitro models. The development and validation of a variety of tests to measure behavior, including cognition, in zebrafish have set the stage for the use of this animal for behavioral pharmacology studies. This has led to research into the basic mechanisms of cognitive function as well as screening for potential cognition-improving drug therapies, among other lines of research. As with all models, zebrafish have limitations, which span pharmacokinetic challenges to difficulties quantifying behavior. The use, efficacy and limitations associated with a zebrafish model of cognitive function are discussed in this review, within the context of behavioral pharmacology. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Pharmacological treatment of tic disorders and Tourette Syndrome.

    Science.gov (United States)

    Roessner, Veit; Schoenefeld, Katja; Buse, Judith; Bender, Stephan; Ehrlich, Stefan; Münchau, Alexander

    2013-05-01

    The present review gives an overview of current pharmacological treatment options of tic disorders and Tourette Syndrome (TS). After a short summary on phenomenology, clinical course and comorbid conditions we review indications for pharmacological treatment in detail. Unfortunately, standardized and large enough drug trials in TS patients fulfilling evidence based medicine standards are still scarce. Treatment decisions are often guided by individual needs and personal experience of treating clinicians. The present recommendations for pharmacological tic treatment are therefore based on both scientific evidence and expert opinion. As first-line treatment of tics risperidone (best evidence level for atypical antipsychotics) or tiapride (largest clinical experience in Europe and low rate of adverse reactions) are recommended. Aripiprazole (still limited but promising data with low risk for adverse reactions) and pimozide (best evidence of the typical antipsychotics) are agents of second choice. In TS patients with comorbid attention deficit hyperactivity disorder (ADHD) atomoxetine, stimulants or clonidine should be considered, or, if tics are severe, a combination of stimulants and risperidone. When mild to moderate tics are associated with obsessive-compulsive symptoms, depression or anxiety sulpiride monotherapy can be helpful. In more severe cases the combination of risperidone and a selective serotonin reuptake inhibitor should be given. In summary, further studies, particularly randomized, double-blind, placebo-controlled trials including larger and/or more homogenous patient groups over longer periods are urgently needed to enhance the scientific basis for drug treatment in tic disorders. This article is part of the Special Issue entitled 'Neurodevelopmental Disorders'. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Non-pharmacological interventions for fatigue in rheumatoid arthritis

    DEFF Research Database (Denmark)

    Cramp, Fiona; Hewlett, Sarah; Almeida, Celia

    2013-01-01

    Fatigue is a common and potentially distressing symptom for people with rheumatoid arthritis with no accepted evidence based management guidelines. Non-pharmacological interventions, such as physical activity and psychosocial interventions, have been shown to help people with a range of other long...

  17. Acute Organophosphate Poisonings: Therapeutic Dilemmas and New Potential Therapeutic Agents

    International Nuclear Information System (INIS)

    Vucinic, S.; Jovanovic, D.; Vucinic, Z.; Todorovic, V.; Segrt, Z.

    2007-01-01

    It has been six decades since synthesis of organophosphates, but this chapter has not yet come to a closure. Toxic effects of organophosphates are well known and the current therapeutic scheme includes supportive therapy and antidotes. There is a dilemma on whether and when to apply gastric lavage and activated charcoal. According to Position Statement (by EAPCCT) it should be applied only if the patient presents within one hour of ingestion, with potentially lethal ingested dose. Atropine, a competitive antagonist of acetylcholine at m-receptors, which antagonizes bronchosecretion and bronchoconstriction, is the corner stone of acute organophosphate poisoning therapy. There were many attempts to find a more efficient drug, including glycopyrrolate which has been used even in clinical trials, but it still can not replace atropine. The only dilemma about atropine usage which still exists, concerns usage of high atropine dose and scheme of application. The most efficient atropinization is achieved with bolus doses of 1-2mg of atropine i.v push, with repeating the dose on each 5 minutes until signs of atropinization are registered. Diazepam, with its GABA stabilizing effect, reduces central nervous system damage and central respiratory weakness. Oximes reactivate phosphorylated acetylcholinesterase, which still has not gone ageing, reducing acetylcholine concentration and cholinergic crisis. These effects are clearly demonstrated in experimental conditions, but the clinical significance of oximes is still unclear and there are still those who question oxime therapy. For those who approve it, oxime dosage, duration of therapy, the choice of oxime for certain OP is still an open issue. We need new, more efficient antidotes, and those that are in use are only the small part of the therapy which could be used. Experimental studies show favorable therapeutic effect of many agents, but none of them has been introduced in standard treatment of OPI poisoning in the last 30

  18. Insights into the Antimicrobial Properties of Hepcidins: Advantages and Drawbacks as Potential Therapeutic Agents

    Directory of Open Access Journals (Sweden)

    Lisa Lombardi

    2015-04-01

    Full Text Available The increasing frequency of multi-drug resistant microorganisms has driven research into alternative therapeutic strategies. In this respect, natural antimicrobial peptides (AMPs hold much promise as candidates for the development of novel antibiotics. However, AMPs have some intrinsic drawbacks, such as partial degradation by host proteases or inhibition by host body fluid composition, potential toxicity, and high production costs. This review focuses on the hepcidins, which are peptides produced by the human liver with a known role in iron homeostasis, as well by numerous other organisms (including fish, reptiles, other mammals, and their potential as antibacterial and antifungal agents. Interestingly, the antimicrobial properties of human hepcidins are enhanced at acidic pH, rendering these peptides appealing for the design of new drugs targeting infections that occur in body areas with acidic physiological pH. This review not only considers current research on the direct killing activity of these peptides, but evaluates the potential application of these molecules as coating agents preventing biofilm formation and critically assesses technical obstacles preventing their therapeutic application.

  19. Novel kinin B1 receptor agonists with improved pharmacological profiles.

    Science.gov (United States)

    Côté, Jérôme; Savard, Martin; Bovenzi, Veronica; Bélanger, Simon; Morin, Josée; Neugebauer, Witold; Larouche, Annie; Dubuc, Céléna; Gobeil, Fernand

    2009-04-01

    There is some evidence to suggest that inducible kinin B1 receptors (B1R) may play beneficial and protecting roles in cardiovascular-related pathologies such as hypertension, diabetes, and ischemic organ diseases. Peptide B1R agonists bearing optimized pharmacological features (high potency, selectivity and stability toward proteolysis) hold promise as valuable therapeutic agents in the treatment of these diseases. In the present study, we used solid-phase methodology to synthesize a series of novel peptide analogues based on the sequence of Sar[dPhe(8)]desArg(9)-bradykinin, a relatively stable peptide agonist with moderate affinity for the human B1R. We evaluated the pharmacological properties of these peptides using (1) in vitro competitive binding experiments on recombinant human B1R and B2R (for index of selectivity determination) in transiently transfected human embryonic kidney 293 cells (HEK-293T cells), (2) ex vivo vasomotor assays on isolated human umbilical veins expressing endogenous human B1R, and (3) in vivo blood pressure tests using anesthetized lipopolysaccharide-immunostimulated rabbits. Key chemical modifications at the N-terminus, the positions 3 and 5 on Sar[dPhe(8)]desArg(9)-bradykinin led to potent analogues. For example, peptides 18 (SarLys[Hyp(3),Cha(5), dPhe(8)]desArg(9)-bradykinin) and 20 (SarLys[Hyp(3),Igl(5), dPhe(8)]desArg(9)-bradykinin) outperformed the parental molecule in terms of affinity, functional potency and duration of action in vitro and in vivo. These selective agonists should be valuable in future animal and human studies to investigate the potential benefits of B1R activation.

  20. The potential of TaqMan Array Cards for detection of multiple biological agents by real-time PCR.

    Directory of Open Access Journals (Sweden)

    Phillip A Rachwal

    Full Text Available The TaqMan Array Card architecture, normally used for gene expression studies, was evaluated for its potential to detect multiple bacterial agents by real-time PCR. Ten PCR assays targeting five biological agents (Bacillus anthracis, Burkholderia mallei, Burkholderia pseudomallei, Francisella tularensis, and Yersinia pestis were incorporated onto Array Cards. A comparison of PCR performance of each PCR in Array Card and singleplex format was conducted using DNA extracted from pure bacterial cultures. When 100 fg of agent DNA was added to Array Card channels the following levels of agent detection (where at least one agent PCR replicate returned a positive result were observed: Y. pestis 100%, B. mallei & F. tularensis 93%; B. anthracis 71%; B. pseudomallei 43%. For B. mallei & pseudomallei detection the BPM2 PCR, which detects both species, outperformed PCR assays specific to each organism indicating identification of the respective species would not be reproducible at the 100 fg level. Near 100% levels of detection were observed when 100 fg of DNA was added to each PCR in singleplex format with singleplex PCRs also returning sporadic positives at the 10 fg per PCR level. Before evaluating the use of Array Cards for the testing of environmental and clinical sample types, with potential levels of background DNA and PCR inhibitors, users would therefore have to accept a 10-fold reduction in sensitivity of PCR assays on the Array Card format, in order to benefit for the capacity to test multiple samples for multiple agents. A two PCR per agent strategy would allow the testing of 7 samples for the presence of 11 biological agents or 3 samples for 23 biological agents per card (with negative control channels.

  1. Spiperone dithiocarbamate- 99mTc kit - a potential diagnosis agent for dopaminergic D-2 brain pathologies - biodistribution

    International Nuclear Information System (INIS)

    Goncalves, M.M.

    1993-01-01

    Psycho pharmacology has been discovering much about the D 2 dopamine receptors and their interrelationship to brain pathologies such as Parkinson's Disease, Schizophrenia and Huntington Disease. Those biological receptors have got affinity with dopamine endogenous agent, so that they complex and, in non pathological individuals, the biological receptors contribute to bring the levels of dopamine and free acetylcholine into equilibrium. The Spiperon Dithiocarbamate (SPDC) from Spiperon is synthesized and its complexation with Technetium-99 m has been prepared with its reaction parameters after being studied and improved. The SPDC- 99m Tc complex biological distribution has been made in Wistar rats and the uptake of spleen, heart, liver, stomach, lung, kidney, blood, intestine and brain have been resolved. The plasmatic clearance curve has been based on Wistar rats data and the Know-how of the kit ( for label SPDC with 99m Tc) has been achieved. (author)

  2. Studies on polyaspartamide gadolinium complexes as potential magnetic resonance imaging contrast agents

    International Nuclear Information System (INIS)

    Yan Guoping; Liu Maili; Li Liyun

    2005-01-01

    Purpose: A series of polyaspartamide gadolinium complexes containing pyridoxamine groups were studied as the potential magnetic resonance imaging (MRI) contrast agents for liver enhancement. Methods: These polyaspartamide gadolinium complexes were prepared and evaluated by relaxivity, acute toxicity studies and magnetic resonance imaging of the liver in rats. Results: These polyaspartamide gadolinium complexes have higher relaxation effectiveness than that of the clinically used gadolinium diethylenetriaminepentaacetic acid and possess the low intravenous acute toxicities to Institute for Cancer Research (ICR) mice. Magnetic resonance imaging of the liver in rats indicated that they greatly enhance the contrast of magnetic resonance images and provide prolonged intravascular duration in the liver. Conclusion: These results indicated that the polyaspartamide gadolinium complexes containing pyridoxamine groups could be considered as the appropriate MRI contrast agents for liver enhancement

  3. The internet as a tool in clinical pharmacology

    Science.gov (United States)

    Castel, Josep-Maria; Figueras, Albert; Vigo, Joan-Miquel

    2006-01-01

    The invention of the internet and the world-wide web was a landmark that has affected many aspects of everyday life, but is so recent and dynamic that many of its potential uses are still being explored. Aside from its purely commercial use as a virtual pharmacy (e-commerce), the internet is useful in at least three aspects related to clinical pharmacology: communication, training and research. In this paper we briefly review several internet applications related to clinical pharmacology and describe, as an example, the logistics of a multicentre research collaboration related to the promotion of rational drug use in the prevention of postpartum haemorrhage. PMID:16722847

  4. Pharmacological approach to acute pancreatitis

    DEFF Research Database (Denmark)

    Bang, Ulrich-Christian; Semb, Synne; Nojgaard, Camilla

    2008-01-01

    -steroidal anti-inflammatory drugs (NSAID) indomethacin and diclofenac have in randomized studies showed potential as prophylaxis against PEP. Interleukin 10 (IL-10) is a cytokine with anti-inflammatory properties but two trials testing IL-10 as prophylaxis to PEP have returned conflicting results. Antibodies...... pharmacological treatment of AP is limited and studies on the effect of potent anti-inflammatory drugs are warranted....... against tumor necrosis factor-alpha (TNF-alpha) have a potential as rescue therapy but no clinical trials are currently being conducted. The antibiotics beta-lactams and quinolones reduce mortality when necrosis is present in pancreas and may also reduce incidence of infected necrosis. Evidence based...

  5. [Non-Pharmacological Interventions for Pregnancy-Related Sleep Disturbances].

    Science.gov (United States)

    Hung, Hsuan-Man; Chiang, Hsiao-Ching

    2017-02-01

    Most women experience the worse sleep quality of their life during pregnancy and the early postpartum period. Although pregnancy typically accounts for a relatively short part of a woman's life, the related sleep disturbances may have a significant and negative impact on her long-term health. Approximately 78-80% of pregnant women experience sleep disturbances, including interruptions in deep sleep, decreased total sleep time, poor subjective sleep quality, frequent night waking, and reduced sleep efficacy. Sleep disturbances during pregnancy start during the first trimester and become prevalent during the third trimester. Related factors include physiological and psychosocial changes and an unhealthy lifestyle. As non-pharmacological interventions have the potential to improve sleep quality in 70% to 80% of patients with insomnia, this is the main approached that is currently used to treat pregnancy-related sleep disturbances. Examples of these non-pharmacological interventions include music therapy, aerobic exercise, massage, progressive muscle relaxation, multi-modal interventions, and the use of a maternity support belt. The efficacy and safety of other related non-pharmacological interventions such as auricular acupressure, cognitive therapy, tai chi, and aromatherapy remain uncertain, with more empirical research required. Additionally, non-pharmacological interventions do not effectively treat sleep disturbances in all pregnant women.

  6. Studies on functional roles of the histaminergic neuron system by using pharmacological agents, knockout mice and positron emission tomography

    International Nuclear Information System (INIS)

    Watanabe, Takehiko; Yanai, Kazuhiko

    2001-01-01

    Since one of us, Takehiko Watanabe (TW), elucidated the location and distribution of the histaminergic neuron system in the brain with antibody raised against L-histidine decarboxylase (a histamine-forming enzyme, HDC) as a marker in 1984 and came to Tohoku University School of Medicine in Sendai, we have been collaborating on the functions of this neuron system by using pharmacological agents, knockout mice of the histamine-related genes, and, in some cases, positron emission tomography (PET). Many of our graduate students and colleagues have been actively involved in histamine research since 1985. Our extensive studies have clarified some of the functions of histamine neurons using methods from molecular techniques to non-invasive human PET imaging. Histamine neurons are involved in many brain functions, such as spontaneous locomotion, arousal in wake-sleep cycle, appetite control, seizures, learning and memory, aggressive behavior and emotion. Particularly, the histaminergic neuron system is one of the most important neuron systems to maintain and stimulate wakefulness. Histamine also functions as a biprotection system against various noxious and unfavorable stimuli (for examples, convulsion, nociception, drug sensitization, ischemic lesions, and stress). Although activators of histamine neurons have not been clinically available until now, we would like to point out that the activation of the histaminergic neuron system is important to maintain mental health. Here, we summarize the newly-discovered functions of histamine neurons mainly on the basis of results from our research groups. (author)

  7. Studies on functional roles of the histaminergic neuron system by using pharmacological agents, knockout mice and positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Takehiko; Yanai, Kazuhiko [Tohoku Univ., Sendai (Japan). Graduate School of Medicine

    2001-12-01

    Since one of us, Takehiko Watanabe (TW), elucidated the location and distribution of the histaminergic neuron system in the brain with antibody raised against L-histidine decarboxylase (a histamine-forming enzyme, HDC) as a marker in 1984 and came to Tohoku University School of Medicine in Sendai, we have been collaborating on the functions of this neuron system by using pharmacological agents, knockout mice of the histamine-related genes, and, in some cases, positron emission tomography (PET). Many of our graduate students and colleagues have been actively involved in histamine research since 1985. Our extensive studies have clarified some of the functions of histamine neurons using methods from molecular techniques to non-invasive human PET imaging. Histamine neurons are involved in many brain functions, such as spontaneous locomotion, arousal in wake-sleep cycle, appetite control, seizures, learning and memory, aggressive behavior and emotion. Particularly, the histaminergic neuron system is one of the most important neuron systems to maintain and stimulate wakefulness. Histamine also functions as a biprotection system against various noxious and unfavorable stimuli (for examples, convulsion, nociception, drug sensitization, ischemic lesions, and stress). Although activators of histamine neurons have not been clinically available until now, we would like to point out that the activation of the histaminergic neuron system is important to maintain mental health. Here, we summarize the newly-discovered functions of histamine neurons mainly on the basis of results from our research groups. (author)

  8. Therapeutic Uses and Pharmacological Properties of Garlic, Shallot, and Their Biologically Active Compounds

    Science.gov (United States)

    Mikaili, Peyman; Maadirad, Surush; Moloudizargari, Milad; Aghajanshakeri, Shahin; Sarahroodi, Shadi

    2013-01-01

    Objective(s): Garlic (Allium sativum L. family Liliaceae) is well known in Iran and its leaves, flowers, and cloves have been used in traditional medicine for a long time. Research in recent decades has shown widespread pharmacological effects of A. sativum and its organosulfur compounds especially Allicin. Studies carried out on the chemical composition of the plant show that the most important constituents of this plant are organosulfur compounds such as allicin, diallyl disulphide, S-allylcysteine, and diallyl trisulfide. Allicin represents one of the most studied among these naturally occurring compounds. In addition to A. sativum, these compounds are also present in A. hirtifolium (shallot) and have been used to treat various diseases. This article reviews the pharmacological effects and traditional uses of A. sativum, A. hirtifolium, and their active constituents to show whether or not they can be further used as potential natural sources for the development of novel drugs. Materials and Methods: For this purpose, the authors went through a vast number of sources and articles and all needed data was gathered. The findings were reviewed and classified on the basis of relevance to the topic and a summary of all effects were reported as tables. Conclusion: Garlic and shallots are safe and rich sources of biologically active compounds with low toxicity. Further studies are needed to confirm the safety and quality of the plants to be used by clinicians as therapeutic agents. PMID:24379960

  9. Gadolinium labeled pharmaceuticals as potential MRI contrast agents for liver and biliary tract

    International Nuclear Information System (INIS)

    Najafi, A.; Amparo, E.G.; Johnson, R.F. Jr.

    1987-01-01

    Three gadolinium-labeled compounds, potential nuclear magnetic resonance (NMR) imaging contrast agents for liver and biliary tract, were studied: 1) Gd-DISIDA, 2) Gd-DTPA-Liposomes, and 3) Gd-DTPA dihexadecylamide (Gd-diamide). In each case, ''Carrier Added'' Gd-153 with specific activity of about 5uCi/mg was used. Each labeled compound was evaluated in experimental animals. Gd-DISIDA proved unsatisfactory because of in vivo instability. Gd-DTPA-Liposomes demonstrated strong toxic effects probably due to pulmonary embolism when large amounts of this compound was administered intravenously. Gd-diamide showed good uptake in the hepatocytes with subsequent excretion into the biliary tract. Several rabbits were imaged in a 0.6T NMR imaging system before and after injection of Gd-diamide. Pulse sequences were chosen that would yield T1-weighted images and permit calculation of T1 relaxation times. This compound produced significant shortening of the T1 relaxation times of the liver and observable increase in intensity on the T1-weighted images. Gd-diamide shows promise as potential NMR contrast agent for liver and biliary tract imaging. (author)

  10. Pharmacological characterization of VIP and PACAP receptors in the human meningeal and coronary artery

    DEFF Research Database (Denmark)

    Chan, Kayi Y; Baun, Michael; de Vries, René

    2011-01-01

    We pharmacologically characterized pituitary adenylate cyclase-activating polypeptides (PACAPs), vasoactive intestinal peptide (VIP) and the VPAC(1), VPAC(2) and PAC(1) receptors in human meningeal (for their role in migraine) and coronary (for potential side effects) arteries.......We pharmacologically characterized pituitary adenylate cyclase-activating polypeptides (PACAPs), vasoactive intestinal peptide (VIP) and the VPAC(1), VPAC(2) and PAC(1) receptors in human meningeal (for their role in migraine) and coronary (for potential side effects) arteries....

  11. BPS Pharmacology 2014 - Drug Discovery Pathways symposium Report

    OpenAIRE

    Marsh, Andrew

    2015-01-01

    Report on BPS Pharmacology 2014, BPS Industry Committe and Learned Societies Drug Discovery Pathways Group symposium: "Realizing the potential of new approaches to target identification and validation" by Dr Andrew Marsh Associate Professor Department of Chemistry University of Warwick go.warwick.ac.uk/marshgroup Twitter @marshgroup

  12. The benefit of pharmacological venous thromboprophylaxis in foot ...

    African Journals Online (AJOL)

    The risks and benefits of pharmacological thromboprophylaxis are well documented in respect of total joint arthroplasty and hip fractures, but little is understood about the incidence of venous thromboembolism (VTE) or the potential risks and benefits of chemoprophylaxis in foot and ankle surgery. Objective. To determine ...

  13. Potential biological control agents for management of cogongrass (Cyperales: Poaceae) in the southeastern USA

    Science.gov (United States)

    Cogongrass, Imperata cylindrica (L.) Palisot de Beauvois (Cyperales: Poaceae), is a noxious invasive weed in the southeastern USA. Surveys for potential biological control agents of cogongrass were conducted in Asia and East Africa from 2013 to 2016. Several insect herbivores were found that may hav...

  14. Potentials and Challenges for Arterial Spin Labeling in Pharmacological Magnetic Resonance Imaging

    OpenAIRE

    Wang, Danny J. J.; Chen, Yufen; Fernández-Seara, María A.; Detre, John A.

    2011-01-01

    Pharmacological magnetic resonance imaging (phMRI) is increasingly being used in drug discovery and development to speed the translation from the laboratory to the clinic. The two primary methods in phMRI include blood-oxygen-level-dependent (BOLD) contrast and arterial spin-labeled (ASL) perfusion MRI. BOLD contrast has been widely applied in existing phMRI studies. However, because of the lack of absolute quantification and poor reproducibility over time scales longer than hours or across s...

  15. Radioprotective Agents

    Directory of Open Access Journals (Sweden)

    Ilker Kelle

    2008-01-01

    Full Text Available Since1949, a great deal of research has been carried out on the radioprotective activity of various chemical substances. Thiol compounds, compounds which contain –SH radical, different classes of pharmacological agents and other compounds such as vitamine C and WR-2721 have been shown to reduce mortality when administered prior to exposure to a lethal dose of radiation. Recently, honey bee venom as well as that of its components melittin and histamine have shown to be valuable in reduction of radiation-induced damage and also provide prophylactic alternative treatment for serious side effects related with radiotherapy. It has been suggested that the radioprotective activity of bee venom components is related with the stimulation of the hematopoetic system.

  16. Brivaracetam: review of its pharmacology and potential use as adjunctive therapy in patients with partial onset seizures.

    Science.gov (United States)

    Mumoli, Laura; Palleria, Caterina; Gasparini, Sara; Citraro, Rita; Labate, Angelo; Ferlazzo, Edoardo; Gambardella, Antonio; De Sarro, Giovambattista; Russo, Emilio

    2015-01-01

    Brivaracetam (BRV), a high-affinity synaptic vesicle protein 2A ligand, reported to be 10-30-fold more potent than levetiracetam (LEV), is highly effective in a wide range of experimental models of focal and generalized seizures. BRV and LEV similarly bind to synaptic vesicle protein 2A, while differentiating for other pharmacological effects; in fact, BRV does not inhibit high voltage Ca(2+) channels and AMPA receptors as LEV. Furthermore, BRV apparently exhibits inhibitory activity on neuronal voltage-gated sodium channels playing a role as a partial antagonist. BRV is currently waiting for approval both in the United States and the European Union as adjunctive therapy for patients with partial seizures. In patients with photosensitive epilepsy, BRV showed a dose-dependent effect in suppressing or attenuating the photoparoxysmal response. In well-controlled trials conducted to date, adjunctive BRV demonstrated efficacy and good tolerability in patients with focal epilepsy. BRV has a linear pharmacokinetic profile. BRV is extensively metabolized and excreted by urine (only 8%-11% unchanged). The metabolites of BRV are inactive, and hydrolysis of the acetamide group is the mainly involved metabolic pathway; hepatic impairment probably requires dose adjustment. BRV does not seem to influence other antiepileptic drug plasma levels. Six clinical trials have so far been completed indicating that BRV is effective in controlling seizures when used at doses between 50 and 200 mg/d. The drug is generally well-tolerated with only mild-to-moderate side effects; this is confirmed by the low discontinuation rate observed in these clinical studies. The most common side effects are related to central nervous system and include fatigue, dizziness, and somnolence; these apparently disappear during treatment. In this review, we analyzed BRV, focusing on the current evidences from experimental animal models to clinical studies with particular interest on potential use in clinical

  17. Regulative effects of curcumin spice administration on gut microbiota and its pharmacological implications

    OpenAIRE

    Shen, Liang; Liu, Lu; Ji, Hong-Fang

    2017-01-01

    ABSTRACT Curcumin, the major active component of turmeric (Curcuma longa), is widely used as a spice and food-coloring agent, and also exhibits multiple biological activities. However, as curcumin has poor systemic bioavailability its pharmacology remains to be elucidated. Owing to the high concentration of curcumin in the gastrointestinal tract after oral administration, we hypothesize that it may exert regulative effects on the gut microbiota. We investigated the regulative effects of oral ...

  18. An access to a library of novel triterpene derivatives with a promising pharmacological potential by Ugi and Passerini multicomponent reactions.

    Science.gov (United States)

    Wiemann, Jana; Heller, Lucie; Csuk, René

    2018-04-25

    The promising combination of natural product leads and their derivatization by isocyanide-based multicomponent reactions (IMCRs) has gained interest in accessing diversity-oriented libraries with auspicious pharmacological potential. Therefore, a set of 34 Ugi and 3 Passerini products was successfully synthesized starting from naturally occurring triterpenoids, i.e. oleanolic acid (OA) and maslinic acid (MA), followed by a biological evaluation of the novel α-acylamino carboxamides and the α-acyloxy carboxamides in colorimetric SRB assays to determine their cytotoxic potential. Especially, the MA-Ugi products 6a, 6b and 7b showed a remarkable cytotoxicity for A2780 ovarian carcinoma cells in a low μM range. Compounds 6a and 7b induced programmed cell death in part through the apoptosis pathway. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  19. Lumbar puncture in patients using anticoagulants and antiplatelet agents

    Directory of Open Access Journals (Sweden)

    Renan Domingues

    2016-08-01

    Full Text Available ABSTRACT The use of anticoagulants and antiplatelet agents has largely increased. Diagnostic lumbar puncture in patients taking these drugs represents a challenge considering the opposing risks of bleeding and thrombotic complications. To date there are no controlled trials, specific guidelines, nor clear recommendations in this area. In the present review we make some recommendations about lumbar puncture in patients using these drugs. Our recommendations take into consideration the pharmacology of these drugs, the thrombotic risk according to the underlying disease, and the urgency in cerebrospinal fluid analysis. Evaluating such information and a rigorous monitoring of neurological symptoms after lumbar puncture are crucial to minimize the risk of hemorrhage associated neurological deficits. An individualized patient decision-making and an effective communication between the assistant physician and the responsible for conducting the lumbar puncture are essential to minimize potential risks.

  20. Biomedicines—Moving Biologic Agents into Approved Treatment Options

    Directory of Open Access Journals (Sweden)

    Kenneth Cornetta

    2013-03-01

    Full Text Available The development of biologic agents for therapeutic purposes, or biomedicines, has seen an active area of research both at the bench and in clinical trials. There is mounting evidence that biologic products can provide effective therapy for diseases that have been unresponsive to traditional pharmacologic approaches. Monoclonal antibody therapy for cancer and rheumatologic diseases has become a well accepted part of disease treatment plans. Gene therapy products have been approved in China and Europe. Bioengineering of new agents capitalizing on microRNA biology, nanoparticle technology, stem cell biology, and an increasing understanding of immunology predict a rich future for product development. [...

  1. Electronic cigarettes and nicotine clinical pharmacology

    OpenAIRE

    Schroeder, Megan J; Hoffman, Allison C

    2014-01-01

    Objective To review the available literature evaluating electronic cigarette (e-cigarette) nicotine clinical pharmacology in order to understand the potential impact of e-cigarettes on individual users, nicotine dependence and public health. Methods Literature searches were conducted between 1 October 2012 and 30 September 2013 using key terms in five electronic databases. Studies were included in the review if they were in English and publicly available; non-clinical studies, conference abst...

  2. Only connect: the merger of BMC Pharmacology and BMC Clinical Pharmacology.

    Science.gov (United States)

    Moylan, Elizabeth C; Morrey, Christopher; Appleford-Cook, Joanne M

    2012-08-13

    This editorial celebrates the launch of BMC Pharmacology and Toxicology within the BMC series of journals published by BioMed Central. The scope of the journal is interdisciplinary encompassing toxicology, experimental and clinical pharmacology including clinical trials. In this editorial we discuss the origins of this new journal and the ethos and policies under which it will operate.

  3. Opportunities for Web-based Drug Repositioning: Searching for Potential Antihypertensive Agents with Hypotension Adverse Events.

    Science.gov (United States)

    Wang, Kejian; Wan, Mei; Wang, Rui-Sheng; Weng, Zuquan

    2016-04-01

    Drug repositioning refers to the process of developing new indications for existing drugs. As a phenotypic indicator of drug response in humans, clinical side effects may provide straightforward signals and unique opportunities for drug repositioning. We aimed to identify drugs frequently associated with hypotension adverse reactions (ie, the opposite condition of hypertension), which could be potential candidates as antihypertensive agents. We systematically searched the electronic records of the US Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS) through the openFDA platform to assess the association between hypotension incidence and antihypertensive therapeutic effect regarding a list of 683 drugs. Statistical analysis of FAERS data demonstrated that those drugs frequently co-occurring with hypotension events were more likely to have antihypertensive activity. Ranked by the statistical significance of frequent hypotension reporting, the well-known antihypertensive drugs were effectively distinguished from others (with an area under the receiver operating characteristic curve > 0.80 and a normalized discounted cumulative gain of 0.77). In addition, we found a series of antihypertensive agents (particularly drugs originally developed for treating nervous system diseases) among the drugs with top significant reporting, suggesting the good potential of Web-based and data-driven drug repositioning. We found several candidate agents among the hypotension-related drugs on our list that may be redirected for lowering blood pressure. More important, we showed that a pharmacovigilance system could alternatively be used to identify antihypertensive agents and sustainably create opportunities for drug repositioning.

  4. Pharmacologic modeling of primary mitochondrial respiratory chain dysfunction in zebrafish.

    Science.gov (United States)

    Byrnes, James; Ganetzky, Rebecca; Lightfoot, Richard; Tzeng, Michael; Nakamaru-Ogiso, Eiko; Seiler, Christoph; Falk, Marni J

    2017-07-18

    Mitochondrial respiratory chain (RC) disease is a heterogeneous and highly morbid group of energy deficiency disorders for which no proven effective therapies exist. Robust vertebrate animal models of primary RC dysfunction are needed to explore the effects of variation in RC disease subtypes, tissue-specific manifestations, and major pathogenic factors contributing to each disorder, as well as their pre-clinical response to therapeutic candidates. We have developed a series of zebrafish (Danio rerio) models that inhibit, to variable degrees, distinct aspects of RC function, and enable quantification of animal development, survival, behaviors, and organ-level treatment effects as well as effects on mitochondrial biochemistry and physiology. Here, we characterize four pharmacologic inhibitor models of mitochondrial RC dysfunction in early larval zebrafish, including rotenone (complex I inhibitor), azide (complex IV inhibitor), oligomycin (complex V inhibitor), and chloramphenicol (mitochondrial translation inhibitor that leads to multiple RC complex dysfunction). A range of concentrations and exposure times of each RC inhibitor were systematically evaluated on early larval development, animal survival, integrated behaviors (touch and startle responses), organ physiology (brain death, neurologic tone, heart rate), and fluorescence-based analyses of mitochondrial physiology in zebrafish skeletal muscle. Pharmacologic RC inhibitor effects were validated by spectrophotometric analysis of Complex I, II and IV enzyme activities, or relative quantitation of ATP levels in larvae. Outcomes were prioritized that utilize in vivo animal imaging and quantitative behavioral assessments, as may optimally inform the translational potential of pre-clinical drug screens for future clinical study in human mitochondrial disease subjects. The RC complex inhibitors each delayed early embryo development, with short-term exposures of these three agents or chloramphenicol from 5 to 7 days

  5. A review of the medicinal uses, phytochemistry and pharmacology of the genus Sapium.

    Science.gov (United States)

    Al Muqarrabun, L M R; Ahmat, N; Aris, S Ruzaina S

    2014-08-08

    Several species from the genus Sapium possess a broad range of medicinal properties and they have been used as traditional medicines by indigenous groups in several regions such as Malaysia, Africa, Southern China and Bolivia. Most of the species reported to possess therapeutic effects which are used for the treatment of skin-related diseases such as eczema and dermatitis, but they may also be used for overstrain, lumbago, constipation and hernia. Species of this genus are also used to treat wounds and snake bites. In addition, the saps/latex of Sapium glandulosum, Sapium indicum and Sapium sebiferum have/has toxic effects and are used as bird and fish poisons. This review discusses the current knowledge of the medicinal uses, phytochemistry, biological activities and toxicities of species from the genus Sapium to reveal their therapeutic potentials and gaps offering opportunities for future research. This review is based on a literature study of scientific journals and books from libraries and electronic sources, such as ScienceDirect, PubMed and ACS. As many as 65 compounds are included in this review. They belong to different classes of compounds including flavonoids, terpenoids and several other types of compounds, such as alkaloids, phenolic acids and amides. The pharmacological studies revealed that various types of preparations, extracts and single compounds of species from this genus exhibited a broad spectrum of biological activities including antioxidant, antimicrobial, anti-inflammatory and cytotoxic activities. However, Sapium glandulosum, Sapium indicum and Sapium sebiferum were reported to possess toxic effects and Sapium sebiferum was found to contain phorbol esters acting as a tumor-promoting agent. The genus Sapium consists of 23 accepted (high confidence) species. However, only very few of species have been phytochemically and pharmacologically studied. There is great potential to discover new chemical constituents from this genus because only a

  6. Potential of radiosensitizing agents in cancer chemo-radiotherapy

    Directory of Open Access Journals (Sweden)

    Girdhani S

    2005-01-01

    Full Text Available Potential of herbs and other plant-based formulations have been increasingly recognized in prevention and treatment of human diseases including cancer. There exist enormous prospect for screening and evaluation of herbal/plant products for developing effective radiosensitization and radioprotection relevant to nuclear research program. Investigations in our laboratory have focused on the mechanism of activity of variety of anticancer and antioxidant agents, namely, Eugenol, (EU, Ellagic acid (EA, Triphala (TPL, Tocopherol Succinate (TOS and Arachidonic acid on normal and cancer cells with view to design effective protocols in practical radioprotection and cancer radiotherapy. This paper is mainly focused on studies on cytotoxic effects on cancer cell lines. Results have shown that these agents produced radiosensitizing action involving oxidative damage, membrane alteration and damage to nucleic acid in various human cell lines. Studies were performed employing fluorescence probes and electron spin resonance methods and gel electrophoresis protocols. It has been found that cytotoxic effect was induced by initiating membrane oxidative damage and by triggering intracellular generation of reactive oxygen species (ROS by gamma radiation in combination with phytochemicals like TPL, EA and TOS in tumor cell line Ehrlich Ascites (EAC, Human cervical (HeLa and breast (MCF-7 cells. Membrane damage and ROS generation was measured by DPH and DCF-FDA fluorescent probes respectively after exposure to low to moderate doses of gamma radiation. This talk will present the cytotoxic effects of phytochemicals in combination with ionizing radiation. It is emphasized that modulation of membrane peroxidative damage and intra cellular ROS may help achieve efficient killing of cancer cells which may provide a new approach to developing effective treatment of cancer.

  7. A novel nitroreductase-enhanced MRI contrast agent and its potential application in bacterial imaging

    Directory of Open Access Journals (Sweden)

    Yun Liu

    2018-05-01

    Full Text Available Nitroreductases (NTRs are known to be able to metabolize nitro-substituted compounds in the presence of reduced nicotinamide adenine dinucleotide (NADH as an electron donor. NTRs are present in a wide range of bacterial genera and, to a lesser extent, in eukaryotes hypoxic tumour cells and tumorous tissues, which makes it an appropriate biomarker for an imaging target to detect the hypoxic status of cancer cells and potential bacterial infections. To evaluate the specific activation level of NTR, great efforts have been devoted to the development of fluorescent probes to detect NTR activities using fluorogenic methods to probe its behaviour in a cellular context; however, NTR-responsive MRI contrast agents are still by far underexplored. In this study, para-nitrobenzyl substituted T1-weighted magnetic resonance imaging (MRI contrast agent Gd-DOTA-PNB (probe 1 has been designed and explored for the possible detection of NTR. Our experimental results show that probe 1 could serve as an MRI-enhanced contrast agent for monitoring NTR activity. The in vitro response and mechanism of the NTR catalysed reduction of probe 1 have been investigated through LC–MS and MRI. Para-nitrobenzyl substituted probe 1 was catalytically reduced by NTR to the intermediate para-aminobenzyl substituted probe which then underwent a rearrangement elimination reaction to Gd-DOTA, generating the enhanced T1-weighted MR imaging. Further, LC–MS and MRI studies of living Escherichia coli have confirmed the NTR activity detection ability of probe 1 at a cellular level. This method may potentially be used for the diagnosis of bacterial infections. KEY WORDS: Nitroreductase, MRI contrast agent, Smart imaging probes, Bacterial imaging, Bacterial infection

  8. A review on dronedarone: Pharmacological, pharmacodynamic and pharmacokinetic profile

    Directory of Open Access Journals (Sweden)

    Farah Iram

    2016-03-01

    Full Text Available Dronedarone, a benzofuran containing chemical compound, is a derivative of amiodarone which is classified as a Class III antiarrhythmic agent. It is prescribed to the cardiovascular patients who have paroxysmal or persistent atrial fibrillation to lower the chances of hospitalization. Amiodarone, sotalol, procainamide dofetilide, quinidine, ibutilide, flecainide, and propafenone are the other useful medicinal products used to treat atrial fibrillation or cardiac arrhythmia. Dronedarone was approved for clinical use in atrial fibrillation by the Food and Drug Administration in 2009. The generic name for dronedarone is Multaq (Sanofi Aventis. This article briefly highlights the important pharmacological, pharmacodynamic and pharmacokinetic properties of dronedarone.

  9. Evaluation of fluorine-18-labeled alkylating agents as potential synthons for the labeling of oligonucleotides

    NARCIS (Netherlands)

    de Vries, EFJ; Vroegh, J; Elsinga, PH; Vaalburg, W

    Six fluorine-18-labeled alkylating agents were selected as potentially suitable synthons for the labeling of antisense oligonucleotides. The selected synthons were evaluated in a model reaction with the monomer adenosine 5'-O-thiomonophosphate. Of these synthons,

  10. Cyclodextrins improving the physicochemical and pharmacological properties of antidepressant drugs: a patent review.

    Science.gov (United States)

    Diniz, Tâmara Coimbra; Pinto, Tiago Coimbra Costa; Menezes, Paula Dos Passos; Silva, Juliane Cabral; Teles, Roxana Braga de Andrade; Ximenes, Rosana Christine Cavalcanti; Guimarães, Adriana Gibara; Serafini, Mairim Russo; Araújo, Adriano Antunes de Souza; Quintans Júnior, Lucindo José; Almeida, Jackson Roberto Guedes da Silva

    2018-01-01

    Depression is a serious mood disorder and is one of the most common mental illnesses. Despite the availability of several classes of antidepressants, a substantial percentage of patients are unresponsive to these drugs, which have a slow onset of action in addition to producing undesirable side effects. Some scientific evidence suggests that cyclodextrins (CDs) can improve the physicochemical and pharmacological profile of antidepressant drugs (ADDs). The purpose of this paper is to disclose current data technology prospects involving antidepressant drugs and cyclodextrins. Areas covered: We conducted a patent review to evaluate the antidepressive activity of the compounds complexed in CDs, and we analyzed whether these complexes improved their physicochemical properties and pharmacological action. The present review used 8 specialized patent databases for patent research, using the term 'cyclodextrin' combined with 'antidepressive agents' and its related terms. We found 608 patents. In the end, considering the inclusion criteria, 27 patents reporting the benefits of complexation of ADDs with CDs were included. Expert opinion: The use of CDs can be considered an important tool for the optimization of physicochemical and pharmacological properties of ADDs, such as stability, solubility and bioavailability.

  11. Multiple sclerosis: general features and pharmacologic approach

    International Nuclear Information System (INIS)

    Nielsen Lagumersindez, Denis; Martinez Sanchez, Gregorio

    2009-01-01

    Multiple sclerosis is an autoimmune, inflammatory and desmyelinization disease central nervous system (CNS) of unknown etiology and critical evolution. There different etiological hypotheses talking of a close interrelation among predisposing genetic factors and dissimilar environmental factors, able to give raise to autoimmune response at central nervous system level. Hypothesis of autoimmune pathogeny is based on study of experimental models, and findings in biopsies of affected patients by disease. Accumulative data report that the oxidative stress plays a main role in pathogenesis of multiple sclerosis. Oxygen reactive species generated by macrophages has been involved as mediators of demyelinization and of axon damage, in experimental autoimmune encephalomyelitis and strictly in multiple sclerosis. Disease diagnosis is difficult because of there is not a confirmatory unique test. Management of it covers the treatment of acute relapses, disease modification, and symptoms management. These features require an individualized approach, base on evolution of this affection, and tolerability of treatments. In addition to diet, among non-pharmacologic treatments for multiple sclerosis it is recommended physical therapy. Besides, some clinical assays have been performed in which we used natural extracts, nutrition supplements, and other agents with promising results. Pharmacology allowed neurologists with a broad array of proved effectiveness drugs; however, results of research laboratories in past years make probable that therapeutical possibilities increase notably in future. (Author)

  12. Targeting Phosphatidylinositol 4-Kinase IIIα for Radiosensitization: A Potential Model of Drug Repositioning Using an Anti-Hepatitis C Viral Agent

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Jeanny [Department of Radiation Oncology, Graduate School of Medicine, Seoul National University, Seoul (Korea, Republic of); Kim, Dan Hyo; Park, Ji Min [Medical Science Research Institute, Seoul National University Bundang Hospital, Seongnam (Korea, Republic of); Park, Young Hee [Department of Radiation Oncology, Graduate School of Medicine, Seoul National University, Seoul (Korea, Republic of); Hwang, Yeo Hyun [Medical Science Research Institute, Seoul National University Bundang Hospital, Seongnam (Korea, Republic of); Wu, Hong-Gyun [Department of Radiation Oncology, Graduate School of Medicine, Seoul National University, Seoul (Korea, Republic of); Institute of Radiation Medicine, Seoul National University, Seoul (Korea, Republic of); Shin, Kyung Hwan [Department of Radiation Oncology, Graduate School of Medicine, Seoul National University, Seoul (Korea, Republic of); Kim, In Ah, E-mail: inah228@snu.ac.kr [Department of Radiation Oncology, Graduate School of Medicine, Seoul National University, Seoul (Korea, Republic of); Medical Science Research Institute, Seoul National University Bundang Hospital, Seongnam (Korea, Republic of); Institute of Radiation Medicine, Seoul National University, Seoul (Korea, Republic of); Cancer Research Institute, Seoul National University, Seoul (Korea, Republic of)

    2016-11-15

    Purpose: To investigate which isotype of phosphatidylinositol 4-kinase (PI4K) may affect radiosensitivity and examine whether anti–hepatitis C viral (HCV) agents, some of which have been shown to inhibit PI4K IIIα activity, could be repositioned as a radiosensitizer in human cancer cells. Methods and Materials: U251, BT474, and HepG2 cell lines and normal human astrocyte were used. Ribonucleic acid interference, clonogenic assays, Western blotting, immunofluorescence, annexin V assay, lysotracker staining, and β-galactosidase assay were performed. Results: Of the 4 PI4K isotypes, specific inhibition of IIIα increased radiosensitivity. For pharmacologic inhibition of PI4K IIIα, we screened 9 anti-HCV agents by half-maximal inhibitory concentration assay. Simeprevir was selected, and its inhibition of PI4K IIIα activity was confirmed. Combination of simeprevir treatment and radiation significantly attenuated expression of phospho-phospho-PKC and phospho-Akt and increased radiation-induced cell death in tested cell lines. Pretreatment with simeprevir prolonged γH2AX foci formation and down-regulation of phospho-DNA-PKcs, indicating impairment of nonhomologous end-joining repair. Cells pretreated with simeprevir exhibited mixed modes of cell death, including apoptosis and autophagy. Conclusion: These data demonstrate that targeting PI4K IIIα using an anti-HCV agent is a viable approach to enhance the therapeutic efficacy of radiation therapy in various human cancers, such as glioma, breast, and hepatocellular carcinoma.

  13. Management of Depression in Patients with Dementia: Is Pharmacological Treatment Justified?

    Science.gov (United States)

    Ford, Andrew H; Almeida, Osvaldo P

    2017-02-01

    Depression in the context of dementia is common and contributes to poorer outcomes in individuals and those who care for them. Non-pharmacological treatments are the preferred initial approach to managing these symptoms but data in support of these are scarce. There are a number of pharmacological treatment options available to clinicians but efficacy is uncertain and concern about potential side effects in an aging and vulnerable population needs to be taken into consideration. This review aims to provide a concise overview of pharmacological treatments for depression in dementia. Antidepressants are the mainstay of pharmacological treatment for clinically significant depression in the general population but evidence to support their use in dementia is mixed. Trials of antidepressants should generally be reserved for individuals with depression where the symptoms are distressing and surpass the threshold for major depression. Acetylcholinesterase inhibitors and memantine are effective in the symptomatic treatment of Alzheimer's disease but current evidence does not support their use to treat depressive symptoms in dementia. Similarly, antipsychotics and mood stabilizers have no proven efficacy for depression and the risk of adverse effects seems to outweigh any potential benefit. Pain can be a frequent problem in dementia and may have significant effects on behavior and mood. Preliminary evidence supports a role of adequate analgesia in improving mood in people with dementia.

  14. C-11-labeled octadecylamine, a potential agent for positron tomographic pulmonary metabolism studies

    International Nuclear Information System (INIS)

    Washburn, L.C.; Wallace, R.T.; Byrd, B.L.; Sun, T.T.; Coffey, J.L.; Hubner, K.F.

    1984-01-01

    C-11-Labeled straight-chain primary aliphatic amines are rapidly and selectively sequestered by lung endothelial cells, making these agents potentially useful for positron tomographic studies of the lung as a metabolic organ. However, because amines having straight chains containing 4 to 13 carbon atoms are rapidly catabolized in vivo with loss of radiolabel, quantitation of pulmonary concentration is difficult. The authors have studied the effect of structural changes on the uptake and retention of primary aliphatic amines in rat lung and found that the metabolic loss form the lung decreased with increasing length of the straight carbon chain. In fact, the lung concentration of octadecylamine, a straight-chain amine with 18 carbon atoms, was constant between 1 and 30 minutes after intravenous administration. This highly insoluble amine was solubilized using 3% aqueous human serum albumin. Unilateral, radiation-induced lung injury in the rat was used as a model to study the potential of C-11-labeled octadecylamine. Radiation-damaged (3000 and 5000 Rads) lungs had significantly lower 15-minute uptakes of the labeled amine than the corresponding nonirradiated lungs. However, at 8000 Rads the concentration in both lungs was greatly suppressed, indicating that the decrease in metabolism becomes systemic at high radiation doses. These results suggest that C-11-labeled octadecylamine is a potentially useful agent for quantitative evaluation of pulmonary metabolism by positron tomography

  15. PPARγ and Its Ligands: Potential Antitumor Agents in the Digestive System.

    Science.gov (United States)

    Shu, Linjing; Huang, Renhuan; Wu, Songtao; Chen, Zhaozhao; Sun, Ke; Jiang, Yan; Cai, Xiaoxiao

    2016-01-01

    Peroxisome proliferator-activated receptor γ (PPARγ) is a versatile member of the ligand-activated nuclear hormone receptor superfamily of transcription factors, with expression in several different cell lines, especially in the digestive system. After being activated by its ligand, PPARγ can suppress the growth of oral, esophageal, gastric, colorectal, liver, biliary, and pancreatic tumor cells, suggesting that PPARγ ligand is a potential anticancer agent in PPARγ-expressing tumors. This review highlights key advances in understanding the effects of PPARγ ligands in the treatment of tumors in the digestive system.

  16. The fabrication of novel nanobubble ultrasound contrast agent for potential tumor imaging

    Energy Technology Data Exchange (ETDEWEB)

    Xing Zhanwen; Ke Hengte; Yue Xiuli; Dai Zhifei [Nanobiotechnology Division, State Key Laboratory of Urban Water Resources and Environment, School of Sciences, Harbin Institute of Technology, Harbin 150080 (China); Wang Jinrui; Zhao Bo [Department of Ultrasonography, Peking University Third Hospital, Beijing 100083 (China); Liu Jibin, E-mail: zhifei.dai@hit.edu.cn, E-mail: ji-bin.liu@jefferson.edu [Ultrasound Research and Education Institute, Thomas Jefferson University, Philadelphia, PA 19107 (United States)

    2010-04-09

    Novel biocompatible nanobubbles were fabricated by ultrasonication of a mixture of Span 60 and polyoxyethylene 40 stearate (PEG40S) followed by differential centrifugation to isolate the relevant subpopulation from the parent suspensions. Particle sizing analysis and optical microscopy inspection indicated that the freshly generated micro/nanobubble suspension was polydisperse and the size distribution was bimodal with large amounts of nanobubbles. To develop a nano-sized contrast agent that is small enough to leak through tumor pores, a fractionation to extract smaller bubbles by variation in the time of centrifugation at 20g (relative centrifuge field, RCF) was suggested. The results showed that the population of nanobubbles with a precisely controlled mean diameter could be sorted from the initial polydisperse suspensions to meet the specified requirements. The isolated bubbles were stable over two weeks under the protection of perfluoropropane gas. The acoustic behavior of the nano-sized contrast agent was evaluated using power Doppler imaging in a normal rabbit model. An excellent power Doppler enhancement was found in vivo renal imaging after intravenous injection of the obtained nanobubbles. Given the broad spectrum of potential clinical applications, the nano-sized contrast agent may provide a versatile adjunct for ultrasonic imaging enhancement and/or treatment of tumors.

  17. The fabrication of novel nanobubble ultrasound contrast agent for potential tumor imaging

    International Nuclear Information System (INIS)

    Xing Zhanwen; Ke Hengte; Yue Xiuli; Dai Zhifei; Wang Jinrui; Zhao Bo; Liu Jibin

    2010-01-01

    Novel biocompatible nanobubbles were fabricated by ultrasonication of a mixture of Span 60 and polyoxyethylene 40 stearate (PEG40S) followed by differential centrifugation to isolate the relevant subpopulation from the parent suspensions. Particle sizing analysis and optical microscopy inspection indicated that the freshly generated micro/nanobubble suspension was polydisperse and the size distribution was bimodal with large amounts of nanobubbles. To develop a nano-sized contrast agent that is small enough to leak through tumor pores, a fractionation to extract smaller bubbles by variation in the time of centrifugation at 20g (relative centrifuge field, RCF) was suggested. The results showed that the population of nanobubbles with a precisely controlled mean diameter could be sorted from the initial polydisperse suspensions to meet the specified requirements. The isolated bubbles were stable over two weeks under the protection of perfluoropropane gas. The acoustic behavior of the nano-sized contrast agent was evaluated using power Doppler imaging in a normal rabbit model. An excellent power Doppler enhancement was found in vivo renal imaging after intravenous injection of the obtained nanobubbles. Given the broad spectrum of potential clinical applications, the nano-sized contrast agent may provide a versatile adjunct for ultrasonic imaging enhancement and/or treatment of tumors.

  18. The fabrication of novel nanobubble ultrasound contrast agent for potential tumor imaging

    Science.gov (United States)

    Xing, Zhanwen; Wang, Jinrui; Ke, Hengte; Zhao, Bo; Yue, Xiuli; Dai, Zhifei; Liu, Jibin

    2010-04-01

    Novel biocompatible nanobubbles were fabricated by ultrasonication of a mixture of Span 60 and polyoxyethylene 40 stearate (PEG40S) followed by differential centrifugation to isolate the relevant subpopulation from the parent suspensions. Particle sizing analysis and optical microscopy inspection indicated that the freshly generated micro/nanobubble suspension was polydisperse and the size distribution was bimodal with large amounts of nanobubbles. To develop a nano-sized contrast agent that is small enough to leak through tumor pores, a fractionation to extract smaller bubbles by variation in the time of centrifugation at 20g (relative centrifuge field, RCF) was suggested. The results showed that the population of nanobubbles with a precisely controlled mean diameter could be sorted from the initial polydisperse suspensions to meet the specified requirements. The isolated bubbles were stable over two weeks under the protection of perfluoropropane gas. The acoustic behavior of the nano-sized contrast agent was evaluated using power Doppler imaging in a normal rabbit model. An excellent power Doppler enhancement was found in vivo renal imaging after intravenous injection of the obtained nanobubbles. Given the broad spectrum of potential clinical applications, the nano-sized contrast agent may provide a versatile adjunct for ultrasonic imaging enhancement and/or treatment of tumors.

  19. Characterization of colloidal manganese hydroxylapatite: A potential magnetic resonance contrast agent

    Science.gov (United States)

    Dorshow, Richard B.; Kofi Adzamli, I.; Nosco, Dennis L.; Joslin, Frederick L.

    1996-03-01

    Particulate contrast agents for blood pool imaging need to be constructed with the appropriate particle size distribution (PSD), and need to be resistant to opsonization. Hence, the PSD of an aqueous colloidal suspension of polyethylene glycol (PEG)-stabilized manganese hydroxylapatite (potentially useful as a magnetic resonance contrast agent for blood pool imaging) has been investigated as a function of PEG concentration and molecular weight. At low PEG concentrations, dynamic light scattering (DLS) and sedimentation field flow fractionation measurements yield a broad PSD, with the largest particle diameters near 100nm. Flow field flow fractionation (FlFFF) measurements, however, yield a distinct population near 10nm, which is not readily detectable by the other two techniques. As the PEG concentration is increased, the PSD shifts toward the lower size population. At the highest PEG concentration employed, only particles of diameter 10nm remain, verified by both FlFFF and DLS. Thus, the search for an optimum PSD for blood pool imaging is facilitated by choice of PEG molecular weight and concentration, and by employing complementary use of light scattering and field flow fractionation techniques.

  20. African indigenous plants with chemotherapeutic potentials and ...

    African Journals Online (AJOL)

    Herbal-based and plant-derived products can be exploited with sustainable comparative and competitive advantage. This review presents some indigenous African plants with chemotherapeutic properties and possible ways of developing them into potent pharmacological agents using biotechnological approaches.

  1. Pharmacological management of spasticity in multiple sclerosis

    DEFF Research Database (Denmark)

    Otero-Romero, Susana; Sastre-Garriga, Jaume; Comi, Giancarlo

    2016-01-01

    Background and objectives: Treatment of spasticity poses a major challenge given the complex clinical presentation and variable efficacy and safety profiles of available drugs. We present a systematic review of the pharmacological treatment of spasticity in multiple sclerosis (MS) patients. Methods...... improvement is seen with the previous drugs. Nabiximols has a positive effect when used as add-on therapy in patients with poor response and/or tolerance to first-line oral treatments. Despite limited evidence, intrathecal baclofen and intrathecal phenol show a positive effect in severe spasticity...... and suboptimal response to oral drugs. Conclusion: The available studies on spasticity treatment offer some insight to guide clinical practice but are of variable methodological quality. Large, well-designed trials are needed to confirm the effectiveness of antispasticity agents and to produce evidence...

  2. Targeting HIV latency: pharmacologic strategies toward eradication

    Science.gov (United States)

    Xing, Sifei; Siliciano, Robert F.

    2013-01-01

    The latent reservoir for HIV-1 in resting CD4+ T cells remains a major barrier to HIV-1 eradication, even though highly active antiretroviral therapy (HAART) can successfully reduce plasma HIV-1 levels to below the detection limit of clinical assays and reverse disease progression. Proposed eradication strategies involve reactivation of this latent reservoir. Multiple mechanisms are believed to be involved in maintaining HIV-1 latency, mostly through suppression of transcription. These include cytoplasmic sequestration of host transcription factors and epigenetic modifications such as histone deacetylation, histone methylation and DNA methylation. Therefore, strategies targeting these mechanisms have been explored for reactivation of the latent reservoir. In this review, we discuss current pharmacological approaches toward eradication, focusing on small molecule latency-reversing agents, their mechanisms, advantages and limitations. PMID:23270785

  3. On the Use of Potential Denaturing Agents for Ethanol in Direct Ethanol Fuel Cells

    Directory of Open Access Journals (Sweden)

    Domnik Bayer

    2011-01-01

    Full Text Available Acidic or alkaline direct ethanol fuel cells (DEFCs can be a sustainable alternative for power generation if they are fuelled with bio-ethanol. However, in order to keep the fuel cheap, ethanol has to be exempted from tax on spirits by denaturing. In this investigation the potential denaturing agents fusel oil, tert-butyl ethyl ether, and Bitrex were tested with regard to their compatibility with fuel cells. Experiments were carried out both in sulphuric acid and potassium hydroxide solution. Beside, basic electrochemical tests, differential electrochemical mass spectrometry (DEMS and fuel cell tests were conducted. It was found that fusel oil is not suitable as denaturing agent for DEFC. However, tert-butyl ethyl ether does not seem to hinder the ethanol conversion as much. Finally, a mixture of tert-butyl ethyl ether and Bitrex can be proposed as promising candidate as denaturing agent for use in acidic and alkaline DEFC.

  4. Review of pharmacological interactions of oral anticancer drugs provided at pharmacy department

    Directory of Open Access Journals (Sweden)

    E. Sánchez Gómez

    2014-07-01

    Full Text Available Abstract: Objective: To identify the pharmacologic interactions of oral anti-cancer drugs provided at an outpatient clinic. Material and methods: Anti-cancer drugs included in the Phamacotherapeutic Guideline of the Hospital were identified. A literature search was carried out on the pharmacologic interactions in MEDLINE® and EMBASE® (with the filer language English or Spanish, and the descriptors: “name of the anti-cancer drug” AND (“drug interactions” OR “pharmacokinetic”, Up-to-date®, MICROMEDEX® and the drug information sheet for the EMA and the FDA. Information was also gathered from the abstract presented to European and Spanish scientific meetings for the last 4 years. When an interaction was analyzed and had clinical relevance, the best pharmacotherapeutic interaction-free alternative was sought. Results: Twenty-three drugs were identified, of which Chlorambucil, Fludarabine, Lenalidomide, Melphalan, and Thalidomide were the active compounds with the lowest likelihood of producing a pharmacologic interaction. Tyrosine kinase inhibitors (particularly Erlotinib, Imatinib, Lapatinib, and Pazopanib are the drugs with highest number of pharmacologic interactions described, many of them with severe clinical consequences, with increases and decreases of the plasma levels of anti-cancer drugs. The active compounds identified that may have pharmacologic interactions with anticancer drugs were mainly: Allopurinol, Amiodarone, Carbamazepine, Dabigatran, Digoxin, Spironolactone, Phenytoin, Itraconazol, Repaglinide, Silodosin, Tamoxifen, Verapamil, and Warfarin. Pharmacologic interactions through the cytochrome P450 1A2, 2D6, 2C8, 2C9, 3A4 were the most important for tyrosine kinase inhibitors. Other non-pharmacologic compounds, with an important potential of producing relevant pharmacologic interaction were immunomodulators (Echinacea extracts and Hypericum perforatum. Conclusions: Oral anticancer drugs have numerous pharmacologic

  5. Evaluation of respiration of mitochondria in cancer cells exposed to mitochondria-targeted agents.

    Czech Academy of Sciences Publication Activity Database

    Klučková, Katarína; Dong, L. F.; Bajziková, Martina; Rohlena, Jakub; Neužil, Jiří

    2015-01-01

    Roč. 1265, 07 Oct 2015 (2015), s. 181-194 ISSN 1940-6029 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:86652036 Keywords : Animals * Antineoplastic Agents * drug effects * *pharmacology Subject RIV: EB - Genetics ; Molecular Biology

  6. Antipsychotic agents: efficacy and safety in schizophrenia

    Directory of Open Access Journals (Sweden)

    de Araújo AN

    2012-11-01

    Full Text Available Arão Nogueira de Araújo,1 Eduardo Pondé de Sena,1,2 Irismar Reis de Oliveira,1,3 Mario F Juruena41Postgraduation Program in Interactive Processes of Organs and Systems, 2Department of Pharmacology, Institute of Health Sciences, 3Department of Neurosciences and Mental Health, School of Medicine, Federal University of Bahia, Salvador, Brazil; 4Stress and Affective Disorders Program, Department of Neuroscience and Behavior, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Sao Paulo, BrazilAbstract: Antipsychotics have provided a great improvement in the management of people with schizophrenia. The first generation antipsychotics could establish the possibility of managing many psychotic subjects in an outpatient setting. With the advent of the second (SGA and third generation antipsychotics (TGA, other psychiatric disorders such as bipolar depression, bipolar mania, autism, and major depressive disorder have now been approved for the use of these drugs for their treatment. Also, the administration of more specific assessment tools has allowed for better delineation of the repercussions of these drugs on symptoms and the quality of life of patients who use antipsychotic agents. In general, the SGA share similar mechanisms of action to achieve these results: dopamine-2 receptor antagonism plus serotonin-2A receptor antagonism. The TGA (eg, aripiprazole have partial agonist activity at the dopamine-2 receptor site, and are also called dopaminergic stabilizers. The pharmacological profile of SGA and TGA may provide better efficacy against negative symptoms, and are less likely to produce extrapyramidal symptoms; however, the SGA and TGA are associated with many other adverse events. The clinician has to balance the risks and benefits of these medications when choosing an antipsychotic for an individual patient.Keywords: antipsychotic agents, schizophrenia, pharmacology, safety

  7. Cannabidiol: Pharmacology and potential therapeutic role in epilepsy and other neuropsychiatric disorders

    Science.gov (United States)

    Devinsky, Orrin; Cilio, Maria Roberta; Cross, Helen; Fernandez-Ruiz, Javier; French, Jacqueline; Hill, Charlotte; Katz, Russell; Di Marzo, Vincenzo; Jutras-Aswad, Didier; Notcutt, William George; Martinez-Orgado, Jose; Robson, Philip J.; Rohrback, Brian G.; Thiele, Elizabeth; Whalley, Benjamin; Friedman, Daniel

    2015-01-01

    Objective To present a summary of current scientific evidence about the cannabinoid, cannabidiol (CBD) with regards to their relevance to epilepsy and other selected neuropsychiatric disorders. Methods We summarize the presentations from a conference in which invited participants reviewed relevant aspects of the physiology, mechanisms of action, pharmacology and data from studies with animal models and human subjects. Results Cannabis has been used to treat disease since ancient times. Δ9-THC is the major psychoactive ingredient and cannabidiol (CBD) is the major non-psychoactive ingredient in cannabis. Cannabis and Δ9-THC are anticonvulsant in most animal models but can be proconvulsant in some healthy animals. Psychotropic effects of Δ9-THC limit tolerability. CBD is anticonvulsant in many acute animal models but there is limited data in chronic models. The antiepileptic mechanisms of CBD are not known, but may include effects on the equilibrative nucleoside transporter; the orphan G-protein-coupled receptor GPR55; the transient receptor potential of melastatin type 8 channel; the 5-HT1a receptor; the α3 and α1 glycine receptors; and the transient receptor potential of ankyrin type 1 channel. CBD has neuroprotective and anti-inflammatory effects. CBD appears to be well tolerated in humans but small and methodologically limited studies of CBD in human epilepsy have been inconclusive. More recent anecdotal reports of high-ratio CBD:Δ9-THC medical marijuana have claimed efficacy, but studies were not controlled. Significance CBD bears investigation in epilepsy and other neuropsychiatric disorders, including anxiety, schizophrenia, addiction and neonatal hypoxic-ischemic encephalopathy. However, we lack data from well-powered double-blind randomized, controlled studies on the efficacy of pure CBD for any disorder. Initial dose-tolerability and double-blind randomized, controlled studies focusing on target intractable epilepsy populations such as patients with

  8. A Network Pharmacology Approach to Determine the Active Components and Potential Targets of Curculigo Orchioides in the Treatment of Osteoporosis.

    Science.gov (United States)

    Wang, Nani; Zhao, Guizhi; Zhang, Yang; Wang, Xuping; Zhao, Lisha; Xu, Pingcui; Shou, Dan

    2017-10-27

    BACKGROUND Osteoporosis is a complex bone disorder with a genetic predisposition, and is a cause of health problems worldwide. In China, Curculigo orchioides (CO) has been widely used as a herbal medicine in the prevention and treatment of osteoporosis. However, research on the mechanism of action of CO is still lacking. The aim of this study was to identify the absorbable components, potential targets, and associated treatment pathways of CO using a network pharmacology approach. MATERIAL AND METHODS We explored the chemical components of CO and used the five main principles of drug absorption to identify absorbable components. Targets for the therapeutic actions of CO were obtained from the PharmMapper server database. Pathway enrichment analysis was performed using the Comparative Toxicogenomics Database (CTD). Cytoscape was used to visualize the multiple components-multiple target-multiple pathways-multiple disease network for CO. RESULTS We identified 77 chemical components of CO, of which 32 components could be absorbed in the blood. These potential active components of CO regulated 83 targets and affected 58 pathways. Data analysis showed that the genes for estrogen receptor alpha (ESR1) and beta (ESR2), and the gene for 11 beta-hydroxysteroid dehydrogenase type 1, or cortisone reductase (HSD11B1) were the main targets of CO. Endocrine regulatory factors and factors regulating calcium reabsorption, steroid hormone biosynthesis, and metabolic pathways were related to these main targets and to ten corresponding compounds. CONCLUSIONS The network pharmacology approach used in our study has attempted to explain the mechanisms for the effects of CO in the prevention and treatment of osteoporosis, and provides an alternative approach to the investigation of the effects of this complex compound.

  9. Use of equilibrium constant expression for initial screening of potential antithyroid agents

    International Nuclear Information System (INIS)

    Fatima, I.; Nanawar, M.A.; Tasneem, A.

    2011-01-01

    Synthetic antithyroid agents act through inhibition of enzyme or by making stable charge transfer (CT) complex with iodine. Iodine acts as s-acceptor and the synthetic compound as n-donor. Study of CT complexation of various drugs with iodine using UV/visible spectroscopy has revealed a positive correlation between the formation constant (Kc) and in vivo an activity. Some alkyl derivatives of 9H-purine-6-thiol were synthesized and evaluated in vitro as well as in vivo for potential antithyroid effects. The compounds exhibited 1:1 charge transfer complexation with iodine and have quite high values of formation constants. The blood assays of rats treated with these compounds and histological study of the thyroid tissues indicated the hyperactivity of gland. These compounds are expected to have lesser side effects as the sulfa group, a cause of toxicity in many medicines, is blocked. Phenyl derivative proved to be the most potent antithyroid agent comparable with methimazole. (author)

  10. Cotinus coggygria Scop.: An overview of its chemical constituents, pharmacological and toxicological potential

    Directory of Open Access Journals (Sweden)

    Sanja Matić

    2016-07-01

    Full Text Available The Anacardiaceae Lindl. family comprises of many species which are used in nutrition and in traditional folk medicine for the treatment of several human diseases. Cotinus coggygria Scop. commonly known as “smoke tree”, is a commercial ornamental plant with high medicinal usages, belongs to the family Anacardiaceae. The present review provides a comprehensive report of empirical investigations on important pharmacological activities and phytochemical screening of essential oils and extracts. Relevant information was collected from scientific journals, books, and reports via library and electronic search using Medline, PubMed, Google Scholar, ScienceDirect, Web of Science, and Scopus. The plant has been extensively investigated in a broad range of studies to provide scientific evidence for folklore claims or to find new therapeutic uses. Numerous activities namely antioxidative, antibacterial, antifungal, antiviral, anticancer, antigenotoxic, hepatoprotective and anti-inflammatory have been demonstrated for all parts of these plants by in vivo and in vitro studies. Essential oils and extracts showed various pharmacological and biological properties which make them an effective remedy for various kinds of illnesses. Considering data from the literature, it could be demonstrated that C. coggygria possesses diverse bioactive properties and immense utilization in medicine, health care, cosmetics and as health supplements.

  11. Pyrimidine nucleoside analogues, potential chemotherapeutic agents, and substrates/inhibitors in various enzyme systems

    International Nuclear Information System (INIS)

    Kulikowski, T.; Bretner, M.; Felczak, K.; Drabikowska, A.; Shugar, D.

    1998-01-01

    Full text. Pyrimidine nucleoside analogues are an important class of compounds with antimetabolic (antitumor, antiparasitic and antiviral) properties. The synthesis of thiated nucleoside and nucleotide analogues, determination of structures, conformation and dissociation constans, their potential chemotherapeutic activities, and their substrate/inhibitor properties in various enzyme systems, with emphasis on enzymes related to chemotherapeutic activities, were investigated. In the series of thionated inhibitors of thymidylate synthase (TS), potential antitumor agents, regioselective syntheses were elaborated for 2- and 4-thio, and 2,4-dithio derivatives of 2'-deoxyuridine (dUrd), 5-fluoro-2'-deoxyuridine (FdUrd), and several other 5-fluoro-, 5-bromo- and 5-trifluoromethyl congeners, and the 2-thio derivatives of FdUrd and its α-anomer, which proved to be selective agents with high cytotoxicities correlated with the inhibitory activities vs TS of their corresponding 5'-monophosphates. Regioslective syntheses were also elaborated for 2'-deoxycytidin e and 5-fluoro-2'-deoxycitidine derivatives. Solution conformation of these nucleosides were deduced from high-resolution (500 MHz) 1 H NMR spectra. Substrate/inhibitor properties of 2-thio-2'-deoxycitidine (S 2 dCyd) and 5-fluoro-2-thio-2'-deoxycitidine ( S 2 FdCyd) with respect to human leukemic spleen deoxycytidine kinase have been examined. Both are substrates, and also good inhibitors, of phosphorylation of 2'-deoxycitidine and 2'-deoxyadenosine. Particular attention was directed to the specificity of t he NTP phosphate donor for several nucleoside kinases, and procedures have been developed for distinguishing between ATP and other NTP donors, a problem of importance in chemotherapy with nucleoside analogues. Biological properties of the newly synthetize d thiated pyrimidine 2',3'-dideoxy-3'-fluoronucleosides, S 2 ,3'-FddUrd and S 2 ,3'-FddThd, were also investigated. Thiated 3'-fluoronucleosides were moderate

  12. Nitric oxide donors attenuate clongenic potential in rat C6 glioma cells treated with alkylating chemotherapeutic agents.

    Science.gov (United States)

    Yang, Jir-Jei; Yin, Jiu-Haw; Yang, Ding-I

    2007-05-11

    1,3-Bis(2-chloroethyl)-1-nitrosourea (BCNU) kills tumor cells via multiple actions including alkylation and carbamoylation. Previously, we have reported that formation of S-nitrosoglutathione (GSNO) in glioma cells overexpressing inducible nitric oxide synthase (iNOS) contributed to nitric oxide (NO)-dependent carbamoylating chemoresistance against BCNU. To further characterize the effects of NO on alkylating cytotoxicity, colony formation assay was applied to evaluate the effects of various NO donors on rat C6 glioma cells challenged with alkylating agents. We demonstrate that NO donors including GSNO, diethylamine NONOate (DEA/NO), and sodium nitroprusside (SNP) substantially reduced the extent of colony formation in glioma cells treated with alkylating agents, namely methyl methanesulfonate (MMS), N-methyl-N-nitrosourea (MNU), and N-ethyl-N-nitrosourea (ENU). Without alkylating agents these NO-releasing agents alone had no effects on clongenic potential of rat C6 glioma cells. Among these three NO donors used, the effectiveness in potentiating alkylating cytotoxicity is in the order of "GSNO>DEA/NO>SNP" when applied at the same dosages. GSNO also exerted similar synergistic actions reducing the extents of colony formation when co-administrated with 1,2-bis(methylsulfonyl)-1-(2-chloroethyl)-hydrazine (compound #1), another alkylating agent that mimics the chloroethylating action of BCNU. Together with our previous findings, we propose that NO donors may be used as adjunct chemotherapy with alkylating agents for such malignant brain tumors as glioblastoma multiforme (GBM). In contrast, production of NO as a result of iNOS induction, such as that occurring after surgical resection of brain tumors, may compromise the efficacy of carbamoylating chemotherapy.

  13. Coumarin structure as a lead scaffold for antibacterial agents - molecular docking

    Directory of Open Access Journals (Sweden)

    Veselinović, J.B.

    2016-12-01

    Full Text Available Coumarins owe their class name to “Coumarou”, the vernacular name of the tonka bean (Dipteryx odorata Willd, Fabaceae, from which coumarin was isolated in 1820. Many molecules based on the coumarin structure have been synthesized utilizing innovative synthetic techniques. Various synthetic routes have led to interesting derivatives including the furanocoumarins, pyranocoumarins and coumarinsulfamates which have been found to be useful in photochemotherapy, antitumor and anti-HIV therapy, as stimulants for central nervous system, antiinflammatory therapy, as anti-coagulants, etc. One of important pharmacological activity of coumarin molecules is their potential as antibacterial agents since they show inhibitory activity toward isoleucyl-transfer RNA (tRNA synthetase. In the presented research molecular docking studies of selected coumarin compounds inside isoleucyltransfer RNA (tRNA synthetase active site were performed. Molecular docking scores of all studied compounds were obtained through score functions. Presented results indicate that from all studied coumarin compounds the strongest interactions with studied enzyme has 7,8-dihydroxy-4-phenyl coumarin followed by 5,7-dihydroxy-4-phenyl coumarin. Presented results are in accordance with in vitro obtained results for their antibacterial activity. Presented findings suggest that 4-phenyl hydroxycoumarins may be considered as good molecular templates for potential antibacterial agents and can be used for further chemical modifications for improving their antibacterial activity.

  14. Pharmacological Therapy of Vascular Malformations of the Gastrointestinal Tract

    Directory of Open Access Journals (Sweden)

    Andrew Szilagyi

    2006-01-01

    Full Text Available Vascular malformation (AVM in the gastrointestinal tract is an uncommon, but not rare, cause of bleeding and iron deficiency anemia, especially in an aging population. While endoscopic coagulative therapy is the method of choice for controlling bleeding, a substantial number of cases require additional therapy. Adjunctive or even primary phamacotherapy may be indicated in recurrent bleeding. However, there is little evidence-based proof of efficacy for any agent. The bulk of support is derived from anecdotal reports or case series. The present review compares the outcome of AVM after no intervention, coagulative therapy or focus on pharmacological agents. Most of the literature encompasses two common AVMs, angiodysplasia and hereditary hemorrhagic telangiectasia. Similarly, the bulk of information evaluates two therapies, hormones (estrogen and progesterone and the somatostatin analogue octreotide. Of these, the former is the only therapy evaluated in randomized trials, and the results are conflicting without clear guidelines. The latter therapy has been reported only as case reports and case series without prospective trials. In addition, other anecdotally used medications are discussed.

  15. Antioxidants as potential medical countermeasures for chemical warfare agents and toxic industrial chemicals.

    Science.gov (United States)

    McElroy, Cameron S; Day, Brian J

    2016-01-15

    The continuing horrors of military conflicts and terrorism often involve the use of chemical warfare agents (CWAs) and toxic industrial chemicals (TICs). Many CWA and TIC exposures are difficult to treat due to the danger they pose to first responders and their rapid onset that can produce death shortly after exposure. While the specific mechanism(s) of toxicity of these agents are diverse, many are associated either directly or indirectly with increased oxidative stress in affected tissues. This has led to the exploration of various antioxidants as potential medical countermeasures for CWA/TIC exposures. Studies have been performed across a wide array of agents, model organisms, exposure systems, and antioxidants, looking at an almost equally diverse set of endpoints. Attempts at treating CWAs/TICs with antioxidants have met with mixed results, ranging from no effect to nearly complete protection. The aim of this commentary is to summarize the literature in each category for evidence of oxidative stress and antioxidant efficacy against CWAs and TICs. While there is great disparity in the data concerning methods, models, and remedies, the outlook on antioxidants as medical countermeasures for CWA/TIC management appears promising. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Fuzzy pharmacology: theory and applications.

    Science.gov (United States)

    Sproule, Beth A; Naranjo, Claudio A; Türksen, I Burhan

    2002-09-01

    Fuzzy pharmacology is a term coined to represent the application of fuzzy logic and fuzzy set theory to pharmacological problems. Fuzzy logic is the science of reasoning, thinking and inference that recognizes and uses the real world phenomenon that everything is a matter of degree. It is an extension of binary logic that is able to deal with complex systems because it does not require crisp definitions and distinctions for the system components. In pharmacology, fuzzy modeling has been used for the mechanical control of drug delivery in surgical settings, and work has begun evaluating its use in other pharmacokinetic and pharmacodynamic applications. Fuzzy pharmacology is an emerging field that, based on these initial explorations, warrants further investigation.

  17. Investigation of novel pharmacological chaperones for Gaucher Disease.

    Science.gov (United States)

    Yilmazer, Buge; Yagci, Z Begum; Bakar, Emre; Ozden, Burcu; Ulgen, Kutlu; Ozkirimli, Elif

    2017-09-01

    Beta-Glucocerebrosidase (GBA) is a lysosomal protein that is responsible for the hydrolysis of glycosylceramide into glucose and ceramide. Mutations in GBA lead to the accumulation of glycosylceramide in the lysosome causing an enlargement of the spleen and the liver and skeletal deformations. This disease is called Gaucher Disease. Enzyme replacement therapies and substrate reduction methods that are used to treat Gaucher Disease fail when the disease is neuropathic because they fail to pass the blood brain barrier. In this work, QSAR, virtual screening, docking and molecular dynamics simulations were performed to obtain a set of compounds that might be pharmacological chaperones for GBA. ZINC Database was screened using ligand-based and structure-based pharmacophore hypotheses. After docking of these molecules and filtration based on druglikeness, top ranking ligands were identified and their binding stabilities were examined using MD simulations. As a result, seven new compounds that can potentially cross the blood brain barrier were proposed as GBA inhibitors. Three of the seven compounds have a tricyclic pyrido-thieno-pyrimidine scaffold and one has the dioxino quinolone scaffold. Derivatives of these scaffolds have been reported as antiallergic agents, antibiotic and anticancer compounds. These results offer a new approach for the development of new drugs against neuropathic Gaucher Disease Type 2 and Type 3. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Modern industrial and pharmacological applications of indigo dye and its derivatives--a review.

    Science.gov (United States)

    Stasiak, Natalia; Kukuła-Koch, Wirginia; Głowniak, Kazimierz

    2014-01-01

    Plant sources, chemical properties, bioactivities, as well as the synthesis of indigo dye and its derivatives, are reviewed in this paper. These compounds were chosen because of their significant benefits and scope of application as both coloring agents in the textile industry and as pharmacologically active natural products. Their use in traditional chinese medicine (TCM) has directed the attention of European researchers and medical doctors alike. The preparation of indigoferous plants--Indigo naturalis is currently about to be introduced into the European Pharmacopoeia.

  19. Potencial terapéutico de los canabinoides como neuroprotectores Therapeutical potential of cannabinoids as neuroprotective agents

    Directory of Open Access Journals (Sweden)

    Laymi Martínez García

    2007-12-01

    Full Text Available La planta Cannabis sativa L. o cáñamo ha captado desde tiempos antiquísimos la atención del hombre en el campo de la salud y terapéutica humanas y todavía, a inicios del siglo XXI, continúa despertando polémicas en la comunidad científica como fuente natural y en el estudio y aplicación de sus derivados. Desde el punto de vista fitoquímico se han descrito más de 70 derivados de tipo canabinoide farmacológicamente activos sobre el sistema nervioso central. En la actualidad se han generado valiosísimas fuentes de información que relacionan la especie botánica Cannabis sativa L. y sus metabolitos secundarios con la medicina (tratamiento terapéutico, farmacología (modelos experimentales y química sintética (diseño y generación de nuevas estructuras, las cuales avalan la importancia del estudio de esta planta, sus extractos, metabolitos y precursores como fuente de agentes terapéuticos. Por tal motivo se presenta una revisión de la información existente sobre las potenciales implicaciones terapéuticas de sistemas moleculares canabinoidales (endógenos, naturales y sintéticos en el tratamiento de enfermedades neurodegenerativas del sistema nervioso central, que incluye: conceptos de tipos de canabinoides, sistemas de receptores canabinoides CB1 y CB2 y evidencias preclínicas de los efectos neuroprotectores de canabinoides desde 1970 hasta el 2005Cannabis sativa L. or cáñamo has focused man's attention for its therapeutical and medical application since ancient times, and yet, at the beginning of XXI century, this plant continues being polemic for the scientific community as a natural source and in the study and application of its derivatives. More than 70 cannabinoid compounds with pharmacological action on the central nervous system have been phytochemically described. At present, a great amount of valuable information and experimental data have been generated that correlate Cannabis sativa and its secondary metabolites

  20. Pharmacologic and non-pharmacologic treatments for chronic pain in individuals with HIV: a systematic review

    Science.gov (United States)

    Merlin, Jessica S.; Bulls, Hailey W.; Vucovich, Lee A.; Edelman, E. Jennifer; Starrels, Joanna L.

    2016-01-01

    Chronic pain occurs in as many as 85% of individuals with HIV and is associated with substantial functional impairment. Little guidance is available for HIV providers seeking to address their patients’ chronic pain. We conducted a systematic review to identify clinical trials and observational studies that examined the impact of pharmacologic or non-pharmacologic interventions on pain and/or functional outcomes among HIV-infected individuals with chronic pain in high-development countries. Eleven studies met inclusion criteria and were mostly low or very low quality. Seven examined pharmacologic interventions (gabapentin, pregabalin, capsaicin, analgesics including opioids) and four examined non-pharmacologic interventions (cognitive behavioral therapy, self-hypnosis, smoked cannabis). The only controlled studies with positive results were of capsaicin and cannabis, and had short-term follow-up (≤12 weeks). Among the seven studies of pharmacologic interventions, five had substantial pharmaceutical industry sponsorship. These findings highlight several important gaps in the HIV/chronic pain literature that require further research. PMID:27267445

  1. The pharmacology of regenerative medicine.

    Science.gov (United States)

    Christ, George J; Saul, Justin M; Furth, Mark E; Andersson, Karl-Erik

    2013-07-01

    Regenerative medicine is a rapidly evolving multidisciplinary, translational research enterprise whose explicit purpose is to advance technologies for the repair and replacement of damaged cells, tissues, and organs. Scientific progress in the field has been steady and expectations for its robust clinical application continue to rise. The major thesis of this review is that the pharmacological sciences will contribute critically to the accelerated translational progress and clinical utility of regenerative medicine technologies. In 2007, we coined the phrase "regenerative pharmacology" to describe the enormous possibilities that could occur at the interface between pharmacology, regenerative medicine, and tissue engineering. The operational definition of regenerative pharmacology is "the application of pharmacological sciences to accelerate, optimize, and characterize (either in vitro or in vivo) the development, maturation, and function of bioengineered and regenerating tissues." As such, regenerative pharmacology seeks to cure disease through restoration of tissue/organ function. This strategy is distinct from standard pharmacotherapy, which is often limited to the amelioration of symptoms. Our goal here is to get pharmacologists more involved in this field of research by exposing them to the tools, opportunities, challenges, and interdisciplinary expertise that will be required to ensure awareness and galvanize involvement. To this end, we illustrate ways in which the pharmacological sciences can drive future innovations in regenerative medicine and tissue engineering and thus help to revolutionize the discovery of curative therapeutics. Hopefully, the broad foundational knowledge provided herein will spark sustained conversations among experts in diverse fields of scientific research to the benefit of all.

  2. Biology of Leptoypha hospita (Hemiptera: Tingidae), a Potential Biological Control Agent of Chinese Privet

    Science.gov (United States)

    Yanzhuo Zhang; James L. Hanula; Scott Horn; Kristine Braman; Jianghua Sun

    2011-01-01

    The biology of Leptoypha hospita Drake et Poor (Hemiptera: Tingidae), a potential biological control agent from China for Chinese privet, Ligustrum sinense Lour., was studied in quarantine in the United States. Both nymphs and adults feed on Chinese privet mesophyll cells that lead to a bleached appearance of leaves and dieback of branch tips. L. hospita has five...

  3. Characterization of glioma stem cells through multiple stem cell markers and their specific sensitization to double-strand break-inducing agents by pharmacological inhibition of ataxia telangiectasia mutated protein.

    Science.gov (United States)

    Raso, Alessandro; Vecchio, Donatella; Cappelli, Enrico; Ropolo, Monica; Poggi, Alessandro; Nozza, Paolo; Biassoni, Roberto; Mascelli, Samantha; Capra, Valeria; Kalfas, Fotios; Severi, Paolo; Frosina, Guido

    2012-09-01

    Previous studies have shown that tumor-driving glioma stem cells (GSC) may promote radio-resistance by constitutive activation of the DNA damage response started by the ataxia telangiectasia mutated (ATM) protein. We have investigated whether GSC may be specifically sensitized to ionizing radiation by inhibiting the DNA damage response. Two grade IV glioma cell lines (BORRU and DR177) were characterized for a number of immunocytochemical, karyotypic, proliferative and differentiative parameters. In particular, the expression of a panel of nine stem cell markers was quantified by reverse transcription-polymerase chain reaction (RT-PCR) and flow cytometry. Overall, BORRU and DR177 displayed pronounced and poor stem phenotypes, respectively. In order to improve the therapeutic efficacy of radiation on GSC, the cells were preincubated with a nontoxic concentration of the ATM inhibitors KU-55933 and KU-60019 and then irradiated. BORRU cells were sensitized to radiation and radio-mimetic chemicals by ATM inhibitors whereas DR177 were protected under the same conditions. No sensitization was observed after cell differentiation or to drugs unable to induce double-strand breaks (DSB), indicating that ATM inhibitors specifically sensitize glioma cells possessing stem phenotype to DSB-inducing agents. In conclusion, pharmacological inhibition of ATM may specifically sensitize GSC to DSB-inducing agents while sparing nonstem cells. © 2012 The Authors; Brain Pathology © 2012 International Society of Neuropathology.

  4. Pharmacologic Therapy in Men's Health: Hypogonadism, Erectile Dysfunction, and Benign Prostatic Hyperplasia.

    Science.gov (United States)

    Berkseth, Kathryn E; Thirumalai, Arthi; Amory, John K

    2016-07-01

    This article reviews current pharmacologic treatment options for 3 common men's health concerns: hypogonadism, erectile dysfunction (ED), and benign prostatic hyperplasia (BPH). Specific topics addressed include: management of male hypogonadism using testosterone replacement therapy, use of oral phosphodiesterase inhibitors as first-line therapy for men with ED and the utility of intraurethral and intrapenile alprostadil injections for patients who do not respond to oral medications, and the role of alpha1-adrenergic antagonists, 5-alpha-reductase inhibitors, anticholinergic agents, and herbal therapies in the management of BPH. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Biomedicines?Moving Biologic Agents into Approved Treatment Options

    OpenAIRE

    Cornetta, Kenneth

    2013-01-01

    The development of biologic agents for therapeutic purposes, or biomedicines, has seen an active area of research both at the bench and in clinical trials. There is mounting evidence that biologic products can provide effective therapy for diseases that have been unresponsive to traditional pharmacologic approaches. Monoclonal antibody therapy for cancer and rheumatologic diseases has become a well accepted part of disease treatment plans. Gene therapy products have been approved in China and...

  6. Ethnobotany, phytochemistry and pharmacology of Stephania rotunda Lour.

    Science.gov (United States)

    Desgrouas, Camille; Taudon, Nicolas; Bun, Sok-Siya; Baghdikian, Beatrice; Bory, Sothavireak; Parzy, Daniel; Ollivier, Evelyne

    2014-07-03

    Stephania rotunda Lour. (Menispermaceae) is an important traditional medicinal plant that is grown in Southeast Asia. The stems, leaves, and tubers have been used in the Cambodian, Lao, Indian and Vietnamese folk medicine systems for years to treat a wide range of ailments, including asthma, headache, fever, and diarrhoea. To provide an up-to-date, comprehensive overview and analysis of the ethnobotany, phytochemistry, and pharmacology of Stephania rotunda for its potential benefits in human health, as well as to assess the scientific evidence of traditional use and provide a basis for future research directions. Peer-reviewed articles on Stephania rotunda were acquired via an electronic search of the major scientific databases (Pubmed, Google Scholar, and ScienceDirect). Data were collected from scientific journals, theses, and books. The traditional uses of Stephania rotunda were recorded in countries throughout Southeast Asia (Cambodia, Vietnam, Laos, and India). Different parts of Stephania rotunda were used in traditional medicine to treat about twenty health disorders. Phytochemical analyses identified forty alkaloids. The roots primarily contain l-tetrahydropalmatine (l-THP), whereas the tubers contain cepharanthine and xylopinine. Furthermore, the chemical composition differs from one region to another and according to the harvest period. The alkaloids exhibited approximately ten different pharmacological activities. The main pharmacological activities of Stephania rotunda alkaloids are antiplasmodial, anticancer, and immunomodulatory effects. Sinomenine, cepharanthine, and l-stepholidine are the most promising components and have been tested in humans. The pharmacokinetic parameters have been studied for seven compounds, including the three most promising compounds. The toxicity has been evaluated for liriodenine, roemerine, cycleanine, l-tetrahydropalmatine, and oxostephanine. Stephania rotunda is traditionally used for the treatment of a wide range of

  7. Biomedical potentials of crown ethers: prospective antitumor agents.

    Science.gov (United States)

    Kralj, Marijeta; Tusek-Bozić, Ljerka; Frkanec, Leo

    2008-10-01

    Crown ethers are of enormous interest and importance in chemistry, biochemistry, materials science, catalysis, separation, transport and encapsulated processes, as well as in the design and synthesis of various synthetic systems with specific properties, diverse capabilities, and programmable functions. Classical crown ethers are macrocyclic polyethers that contain 3-20 oxygen atoms separated from each other by two or more carbon atoms. They are exceptionally versatile in selectively binding a range of metal ions and a variety of organic neutral and ionic species. Crown ethers are currently being studied and used in a variety of applications beyond their traditional place in chemistry. This review presents additional applications and the ever-increasing biomedical potentials of these intriguing compounds, with particular emphasis on the prospects of their relevance as anticancer agents. We believe that further research in this direction should be encouraged, as crown compounds could either induce toxicities that are different from those of conventional antitumor drugs, or complement drugs in current use, thereby providing a valuable adjunct to therapy.

  8. Curcumin as potential therapeutic natural product: a nanobiotechnological perspective.

    Science.gov (United States)

    Shome, Soumitra; Talukdar, Anupam Das; Choudhury, Manabendra Dutta; Bhattacharya, Mrinal Kanti; Upadhyaya, Hrishikesh

    2016-12-01

    Nanotechnology-based drug delivery systems can resolve the poor bioavailability issue allied with curcumin. The therapeutic potential of curcumin can be enhanced by making nanocomposite preparation of curcumin with metal oxide nanoparticles, poly lactic-co-glycolic acid (PLGA) nanoparticles and solid lipid nanoparticles that increases its bioavailability in the tissue. Curcumin has manifold therapeutic effects which include antidiabetic, antihypertensive, anticancer, anti-inflammatory and antimicrobial properties. Curcumin can inhibit diabetes, heavy metal and stress-induced hypertension with its antioxidant, chelating and inhibitory effects on the pathways that lead to hypertension. Curcumin is an anticancer agent that can prevent abnormal cell proliferation. Nanocurcumin is an improved form of curcumin with enhanced therapeutic properties due to improved delivery to the diseased tissue, better internalization and reduced systemic elimination. Curcumin has multiple pharmacologic effects, but its poor bioavailability reduces its therapeutic effects. By conjugating curcumin to metal oxide nanoparticles or encapsulation in lipid nanoparticles, dendrimers, nanogels and polymeric nanoparticles, the water solubility and bioavailability of curcumin can be improved and thus increase its pharmacological effectiveness. © 2016 Royal Pharmaceutical Society.

  9. Activation of the chemosensing transient receptor potential channel A1 (TRPA1) by alkylating agents.

    Science.gov (United States)

    Stenger, Bernhard; Zehfuss, Franziska; Mückter, Harald; Schmidt, Annette; Balszuweit, Frank; Schäfer, Eva; Büch, Thomas; Gudermann, Thomas; Thiermann, Horst; Steinritz, Dirk

    2015-09-01

    The transient receptor potential ankyrin 1 (TRPA1) cation channel is expressed in different tissues including skin, lung and neuronal tissue. Recent reports identified TRPA1 as a sensor for noxious substances, implicating a functional role in the molecular toxicology. TRPA1 is activated by various potentially harmful electrophilic substances. The chemical warfare agent sulfur mustard (SM) is a highly reactive alkylating agent that binds to numerous biological targets. Although SM is known for almost 200 years, detailed knowledge about the pathophysiology resulting from exposure is lacking. A specific therapy is not available. In this study, we investigated whether the alkylating agent 2-chloroethyl-ethylsulfide (CEES, a model substance for SM-promoted effects) and SM are able to activate TRPA1 channels. CEES induced a marked increase in the intracellular calcium concentration ([Ca(2+)]i) in TRPA1-expressing but not in TRPA1-negative cells. The TRP-channel blocker AP18 diminished the CEES-induced calcium influx. HEK293 cells permanently expressing TRPA1 were more sensitive toward cytotoxic effects of CEES compared with wild-type cells. At low CEES concentrations, CEES-induced cytotoxicity was prevented by AP18. Proof-of-concept experiments using SM resulted in a pronounced increase in [Ca(2+)]i in HEK293-A1-E cells. Human A549 lung epithelial cells, which express TRPA1 endogenously, reacted with a transient calcium influx in response to CEES exposure. The CEES-dependent calcium response was diminished by AP18. In summary, our results demonstrate that alkylating agents are able to activate TRPA1. Inhibition of TRPA1 counteracted cellular toxicity and could thus represent a feasible approach to mitigate SM-induced cell damage.

  10. An audit of the pharmacological management of ischaemic stroke patients in a metropolitan Australian hospital.

    Science.gov (United States)

    Khalil, Viviane; Li, Matthew; Hua, Qiantong Amanda

    2015-02-01

    According to the Australian Bureau of Statistics, stroke is the second leading cause of death in Australia. The clinical Guidelines for stroke management published by the National Stroke Foundation provide a series of evidence based recommendations to assist clinicians in the management of stroke patients. Appropriate management of patients admitted to stroke units reduces death and disability by 20 %. Moreover, a multidisciplinary team approach also improves patient outcomes. To retrospectively review the pharmacological management of ischaemic stroke patients in a metropolitan Australian hospital, and to compare adherence with the guidelines for stroke management with the national stroke foundation data with and without pharmacist intervention. A retrospective audit of medical records was undertaken of all patients admitted to a large teaching hospital with the diagnosis of stroke or cerebral infarction from January 2013 to May 2013. A total of 124 patients were included in the study. Most patients were discharged on appropriate pharmacological intervention for the prevention of secondary stroke: antihypertensive agents (71 %), lipid lowering agents (67 %) and antithrombotic (85 %) medications. The majority of the cohort was discharged on the appropriate evidence based medications for the management of secondary stroke. Further improvement may be achieved by pharmacist intervening as part of a multidisciplinary team.

  11. The synthesis of radioiodinated carbohydrates and butyrothenones as potential imaging agents for computed tomography

    International Nuclear Information System (INIS)

    Waterhouse, R.N.

    1993-01-01

    Positron Emission tomography (PET) and Single Photon Emission Computed Tomography (SPECT) are two relatively new imaging techniques which allow for the non-invasive evaluation of biochemical processes in living subjects. Currently, SPECT is more widely accessible than PET, however, only a limited number of radiotracers have been successfully developed for imaging by SPECT. Two classes of radioiodinated compounds were developed as potential imaging agents for SPECT: (1) Radioiodinated carbohydrates for the assessment of glucose metabolism and (2) Radioiodinated butyrothienones for the evaluation of dopamine D 2 receptors in the brain. In both classes of compounds, the radioiodine was attached to an sp 2 hybridized carbon atom to provide radiotracers that were chemically and metabolically stable. Radioiodine incorporation was easily accomplished by radioiododestannylation of vinyl- and aryl-trialkylstannanes in the presence of an oxidizing agent. The incorporation of radioiodine into small molecules can have a significant effect on the biological activity of the resulting radiotracer because of the relatively large size and lipophilicity of the iodine atom. Preliminary evaluations of the effectiveness of the radioiodinated carbohydrates and butyrothienones as imaging agents are presented

  12. Future immunosuppressive agents in solid-organ transplantation.

    Science.gov (United States)

    Gabardi, Steven; Cerio, Jeffrey

    2004-06-01

    To review the pharmacology, pharmacokinetics, efficacy, and safety of mycophenolate sodium, everolimus, and FTY720. Clinical trials and abstracts evaluating mycophenolate sodium, everolimus, and FTY720 in solid-organ transplantation were considered for evaluation. English-language studies and published abstracts were selected for inclusion. Mycophenolate sodium has recently been approved by the Food and Drug Adminstration for marketing in the United States; everolimus and FTY720 are immunosuppressive agents that may soon be available in the United States. These agents have proven efficacy in reducing the incidence of acute rejection in solid-organ transplantation. Clinical trials have shown that these newer agents are relatively well tolerated. The most common adverse events associated with these agents were gastrointestinal and hematologic effects (mycophenolate sodium); hyperlipidemia, increased serum creatinine, and hematologic effects (everolimus): and gastrointestinal effects, headache, and bradycardia (FTY720). Mycophenolate sodium has been approved in some European countries and the United States. Everolimus has been approved in some European countries and a new drug application has been submitted to the Food and Drug Administration. FTY720 is currently in phase III clinical trials and submission to the Food and Drug Administration for approval is a few years away. The approval of these agents will furnish the transplant practitioner with even more options for immunosuppression.

  13. Chemical warfare agents.

    Science.gov (United States)

    Kuca, Kamil; Pohanka, Miroslav

    2010-01-01

    Chemical warfare agents are compounds of different chemical structures. Simple molecules such as chlorine as well as complex structures such as ricin belong to this group. Nerve agents, vesicants, incapacitating agents, blood agents, lung-damaging agents, riot-control agents and several toxins are among chemical warfare agents. Although the use of these compounds is strictly prohibited, the possible misuse by terrorist groups is a reality nowadays. Owing to this fact, knowledge of the basic properties of these substances is of a high importance. This chapter briefly introduces the separate groups of chemical warfare agents together with their members and the potential therapy that should be applied in case someone is intoxicated by these agents.

  14. Multi-targeting Andrographolide and its Natural Analogs as Potential Therapeutic Agents.

    Science.gov (United States)

    Kishore, V; Yarla, Nagendra Sastry; Bishayee, Anupam; Putta, Swathi; Malla, Ramarao; Neelapu, Nageswara Rao Reddy; Challa, Surekha; Das, Subhasish; Shiralgi, Yallappa; Hegde, Gurumurthy; Dhananjaya, Bhadrapura Lakkappa

    2017-01-01

    Andrographis paniculata (A. paniculata) is a medicinal plant used in the Indian and Chinese traditional medicinal systems for its various beneficial properties of therapeutics. This is due to the presence of a diterpene lactone called 'andrographolide'. Several biological activities like antiinflammatory, antitumour, anti-hyperglycaemic, anti-fertility, antiviral, cardio protective and hepatoprotective properties are attributed to andrographolide and its natural analogs. The studies have shown that not only this diterpene lactone (andrographolide), but also other related terpenoid analogs from A. paniculata could be exploited for disease prevention due to their structural similarity with diverse pharmacological activities. Several scientific groups are trying to unveil the underlying mechanisms involved in these biological actions brough aout by andrographolide and its analogs. This review aims at giving an overview on the therapeutical and/or pharmacological activities of andrographolide and its derivatives and also exemplify the underlying mechanisms involved. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Amphetamine, past and present--a pharmacological and clinical perspective.

    Science.gov (United States)

    Heal, David J; Smith, Sharon L; Gosden, Jane; Nutt, David J

    2013-06-01

    Amphetamine was discovered over 100 years ago. Since then, it has transformed from a drug that was freely available without prescription as a panacea for a broad range of disorders into a highly restricted Controlled Drug with therapeutic applications restricted to attention deficit hyperactivity disorder (ADHD) and narcolepsy. This review describes the relationship between chemical structure and pharmacology of amphetamine and its congeners. Amphetamine's diverse pharmacological actions translate not only into therapeutic efficacy, but also into the production of adverse events and liability for recreational abuse. Accordingly, the balance of benefit/risk is the key challenge for its clinical use. The review charts advances in pharmaceutical development from the introduction of once-daily formulations of amphetamine through to lisdexamfetamine, which is the first d-amphetamine prodrug approved for the management of ADHD in children, adolescents and adults. The unusual metabolic route for lisdexamfetamine to deliver d-amphetamine makes an important contribution to its pharmacology. How lisdexamfetamine's distinctive pharmacokinetic/pharmacodynamic profile translates into sustained efficacy as a treatment for ADHD and its reduced potential for recreational abuse is also discussed.

  16. Application of conjugated heparin-albumin microparticles with laser-balloon angioplasty: a potential method for reducing adverse biologic reactivity after angioplasty

    Science.gov (United States)

    Kundu, Sourav K.; McMath, Linda P.; Zaidan, Jonathan T.; Spears, J. Richard

    1991-05-01

    Laser-balloon angioplasty (LBA) may potentially be used for local application of pharmacologically active agents which will reduce thrombogenic and proliferative responses after the angioplasty. In this study, the feasibility of applying covalently conjugated heparin- albumin microparticles onto arterial luminal surface was demonstrated. The covalent linkages were formed by reaction with 1-ethyl-3-dimethyl-aminopropyl-carbodiimide (EDC), and the resultant conjugates were used for preparation of microparticles by employing standard emulsification and heat-crosslinking techniques. The heparin release rate from the microparticles was found to be dependent upon the degree of crosslinking. When a thin coagulum of a suspension of microparticles was formed with heat on a glass surface, the treated surface demonstrated resistance to clot formation in contact with non-anticoagulated blood. A suspension of the microparticles applied during laser-balloon angioplasty onto the luminal surface of dog carotid and femoral arteries showed persistence for up to one week without thrombus formation or occlusion of the vessel. Since the rate of biodegradation is primarily dictated by the extent of crosslinking, an optimal degree of thermal denaturation will permit longer persistence of the carrier while allowing adequate release of the entrapped pharmacologic agent. A variety of antithrombotic and antiinflammatory agents are being considered as candidate bioprotective materials for local application after angioplasty.

  17. Therapeutic neuroprotective agents for amyotrophic lateral sclerosis

    Science.gov (United States)

    Pandya, Rachna S.; Zhu, Haining; Li, Wei; Bowser, Robert; Friedlander, Robert M.

    2014-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal chronic neurodegenerative disease whose hallmark is proteinaceous, ubiquitinated, cytoplasmic inclusions in motor neurons and surrounding cells. Multiple mechanisms proposed as responsible for ALS pathogenesis include dysfunction of protein degradation, glutamate excitotoxicity, mitochondrial dysfunction, apoptosis, oxidative stress, and inflammation. It is therefore essential to gain a better understanding of the underlying disease etiology and search for neuroprotective agents that might delay disease onset, slow progression, prolong survival, and ultimately reduce the burden of disease. Because riluzole, the only Food and Drug Administration (FDA)-approved treatment, prolongs the ALS patient’s life by only 3 months, new therapeutic agents are urgently needed. In this review, we focus on studies of various small pharmacological compounds targeting the proposed pathogenic mechanisms of ALS and discuss their impact on disease progression. PMID:23864030

  18. Pharmacology of human experimental anxiety

    Directory of Open Access Journals (Sweden)

    F.G. Graeff

    2003-04-01

    Full Text Available This review covers the effect of drugs affecting anxiety using four psychological procedures for inducing experimental anxiety applied to healthy volunteers and patients with anxiety disorders. The first is aversive conditioning of the skin conductance responses to tones. The second is simulated public speaking, which consists of speaking in front of a video camera, with anxiety being measured with psychometric scales. The third is the Stroop Color-Word test, in which words naming colors are painted in the same or in a different shade, the incongruence generating a cognitive conflict. The last test is a human version of a thoroughly studied animal model of anxiety, fear-potentiated startle, in which the eye-blink reflex to a loud noise is recorded. The evidence reviewed led to the conclusion that the aversive conditioning and potentiated startle tests are based on classical conditioning of anticipatory anxiety. Their sensitivity to benzodiazepine anxiolytics suggests that these models generate an emotional state related to generalized anxiety disorder. On the other hand, the increase in anxiety determined by simulated public speaking is resistant to benzodiazepines and sensitive to drugs affecting serotonergic neurotransmission. This pharmacological profile, together with epidemiological evidence indicating its widespread prevalence, suggests that the emotional state generated by public speaking represents a species-specific response that may be related to social phobia and panic disorder. Because of scant pharmacological data, the status of the Stroop Color-Word test remains uncertain. In spite of ethical and economic constraints, human experimental anxiety constitutes a valuable tool for the study of the pathophysiology of anxiety disorders.

  19. Mechanisms of chemoresistance to alkylating agents in malignant glioma.

    Science.gov (United States)

    Sarkaria, Jann N; Kitange, Gaspar J; James, C David; Plummer, Ruth; Calvert, Hilary; Weller, Michael; Wick, Wolfgang

    2008-05-15

    Intrinsic or acquired chemoresistance to alkylating agents is a major cause of treatment failure in patients with malignant brain tumors. Alkylating agents, the mainstay of treatment for brain tumors, damage the DNA and induce apoptosis, but the cytotoxic activity of these agents is dependent on DNA repair pathways. For example, O6-methylguanine DNA adducts can cause double-strand breaks, but this is dependent on a functional mismatch repair pathway. Thus, tumor cell lines deficient in mismatch repair are resistant to alkylating agents. Perhaps the most important mechanism of resistance to alkylating agents is the DNA repair enzyme O6-methylguanine methyltransferase, which can eliminate the cytotoxic O6-methylguanine DNA adduct before it causes harm. Another mechanism of resistance to alkylating agents is the base excision repair (BER) pathway. Consequently, efforts are ongoing to develop effective inhibitors of BER. Poly(ADP-ribose)polymerase plays a pivotal role in BER and is an important therapeutic target. Developing effective strategies to overcome chemoresistance requires the identification of reliable preclinical models that recapitulate human disease and which can be used to facilitate drug development. This article describes the diverse mechanisms of chemoresistance operating in malignant glioma and efforts to develop reliable preclinical models and novel pharmacologic approaches to overcome resistance to alkylating agents.

  20. Chemopreventive agents attenuate rapid inhibition of gap junctional intercellular communication induced by environmental toxicants

    Czech Academy of Sciences Publication Activity Database

    Babica, Pavel; Čtveráčková, Lucie; Lenčešová, Zuzana; Trosko, J. E.; Upham, B. L.

    2016-01-01

    Roč. 68, č. 5 (2016), s. 827-837 ISSN 0163-5581 R&D Projects: GA MŠk LH12034 Institutional support: RVO:67985939 Keywords : gap junctional intercellular communication * chemopreventive agents * environmental toxicants Subject RIV: FR - Pharmacology ; Medidal Chemistry Impact factor: 2.447, year: 2016

  1. Facile Synthesis of Gd-Functionalized Gold Nanoclusters as Potential MRI/CT Contrast Agents

    Directory of Open Access Journals (Sweden)

    Wenjun Le

    2016-04-01

    Full Text Available Multi-modal imaging plays a key role in the earlier detection of disease. In this work, a facile bioinspired method was developed to synthesize Gd-functionalized gold nanoclusters (Gd-Au NCs. The Gd-Au NCs exhibit a uniform size, with an average size of 5.6 nm in dynamic light scattering (DLS, which is a bit bigger than gold clusters (3.74 nm, DLS, while the fluorescent properties of Gd-Au NCs are almost the same as that of Au NCs. Moreover, the Gd-Au NCs exhibit a high longitudinal relaxivity value (r1 of 22.111 s−1 per mM of Gd in phosphate-buffered saline (PBS, which is six times higher than that of commercial Magnevist (A complex of gadolinium with a chelating agent, diethylenetriamine penta-acetic acid, Gd-DTPA, r1 = 3.56 mM−1·s−1. Besides, as evaluated by nano single photon emission computed tomography (SPECT and computed tomography (CT the Gd-Au NCs have a potential application as CT contrast agents because of the Au element. Finally, the Gd-Au NCs show little cytotoxicity, even when the Au concentration is up to 250 μM. Thus, the Gd-Au NCs can act as multi-modal imaging contrast agents.

  2. Cuscuta chinensis Lam.: A systematic review on ethnopharmacology, phytochemistry and pharmacology of an important traditional herbal medicine.

    Science.gov (United States)

    Donnapee, Sineeporn; Li, Jin; Yang, Xi; Ge, Ai-hua; Donkor, Paul Owusu; Gao, Xiu-mei; Chang, Yan-xu

    2014-11-18

    Cuscuta chinensis Lam. has found its use as a traditional medicine in China, Korea, Pakistan, Vietnam, India and Thailand. It is commonly used as an anti-aging agent, anti-inflammatory agent, pain reliever and aphrodisiac. To provide an overview of the ethnopharmacology, phytochemistry, pharmacokinetics, pharmacology and clinical applications of Cuscuta chinensis, as well as being an evidence base for further research works of the plant. The present review covers the literature available from 1985 to 2014. The information was collected from journals, books, theses and electronic search (Google Scholar, PubMed, ScienceDirect, ESBCO, Springerlink and CNKI). Literature abstracts and full-text articles were analyzed and included in the review. Many phytochemicals have been isolated, identified and published to date, including: at least 18 flavonoids; 13 phenolic acids; 2 steroids; 1 hydroquinone; 10 volatile oils; 22 lignans; 9 polysaccharides; 2 resin glycosides; 16 fatty acids. These phytochemicals and plant extracts exhibit a range of pharmacological activities that include hepatoprotective, renoprotective, antiosteoporotic, antioxidant, anti-aging, antimutagenic, antidepressant, improve sexual function, abortifacient effects, etc. This present review offers primary information for further studies of Cuscuta chinensis. The in vitro studies and in vivo models have provided a bioscientific explanation for its various ethnopharmacological uses and pharmacological activities (most notably antioxidant effects) especially in the prevention of hepatic disease and renal failure. It is necessary and important to do more pharmacokinetic and toxicological research works on human subjects in order to inform the possible active compounds in the body and validate its safety in clinical uses. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. Anti‐aging pharmacology in cutaneous wound healing: effects of metformin, resveratrol, and rapamycin by local application

    OpenAIRE

    Zhao, Pan; Sui, Bing‐Dong; Liu, Nu; Lv, Ya‐Jie; Zheng, Chen‐Xi; Lu, Yong‐Bo; Huang, Wen‐Tao; Zhou, Cui‐Hong; Chen, Ji; Pang, Dan‐Lin; Fei, Dong‐Dong; Xuan, Kun; Hu, Cheng‐Hu; Jin, Yan

    2017-01-01

    Summary Cutaneous wounds are among the most common soft tissue injuries and are particularly hard to heal in aging. Caloric restriction (CR) is well documented to extend longevity; pharmacologically, profound rejuvenative effects of CR mimetics have been uncovered, especially metformin (MET), resveratrol (RSV), and rapamycin (RAPA). However, locally applied impacts and functional differences of these agents on wound healing remain to be established. Here, we discovered that chronic topical ad...

  4. Combining systems pharmacology, transcriptomics, proteomics, and metabolomics to dissect the therapeutic mechanism of Chinese herbal Bufei Jianpi formula for application to COPD

    Directory of Open Access Journals (Sweden)

    Zhao P

    2016-03-01

    Full Text Available Peng Zhao,1,2 Liping Yang,1,2 Jiansheng Li,1,2 Ya Li,1,2 Yange Tian,1,2 Suyun Li2,3 1Key Laboratory of Chinese Internal Medicine, Henan University of Traditional Chinese Medicine, 2Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment and Chinese Medicine Development of Henan Province, 3Department of Respiratory Diseases, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, People’s Republic of China Abstract: Bufei Jianpi formula (BJF has long been used as a therapeutic agent in the treatment of COPD. Systems pharmacology identified 145 active compounds and 175 potential targets of BJF in a previous study. Additionally, BJF was previously shown to effectively prevent COPD and its comorbidities, such as ventricular hypertrophy, by inhibition of inflammatory cytokine production, matrix metalloproteinases expression, and other cytokine production, in vivo. However, the system-level mechanism of BJF for the treatment of COPD is still unclear. The aim of this study was to gain insight into its system-level mechanisms by integrating transcriptomics, proteomics, and metabolomics together with systems pharmacology datasets. Using molecular function, pathway, and network analyses, the genes and proteins regulated in COPD rats and BJF-treated rats could be mainly attributed to oxidoreductase activity, antioxidant activity, focal adhesion, tight junction, or adherens junction. Furthermore, a comprehensive analysis of systems pharmacology, transcript, protein, and metabolite datasets is performed. The results showed that a number of genes, proteins, metabolites regulated in BJF-treated rats and potential target proteins of BJF were involved in lipid metabolism, cell junction, oxidative stress, and inflammatory response, which might be the system-level therapeutic mechanism of BJF treatment. Keywords: Bufei Jianpi formula, system-level therapeutic mechanism, transcriptomic, proteomic

  5. Anesthetic pharmacology

    National Research Council Canada - National Science Library

    Evers, Alex S; Maze, M; Kharasch, Evan D

    2011-01-01

    ...: Section 1 introduces the principles of drug action, Section 2 presents the molecular, cellular and integrated physiology of the target organ/functional system and Section 3 reviews the pharmacology...

  6. Gaultheria: Phytochemical and Pharmacological Characteristics

    Directory of Open Access Journals (Sweden)

    Ren-Bing Shi

    2013-09-01

    Full Text Available The genus Gaultheria, comprised of approximately 134 species, is mostly used in ethnic drugs to cure rheumatism and relieve pain. Phytochemical investigations of the genus Gaultheria have revealed the presence of methyl salicylate derivatives, C6-C3 constituents, organic acids, terpenoids, steroids, and other compounds. Methyl salicylate glycoside is considered as a characteristic ingredient in this genus, whose anti-rheumatic effects may have a new mechanism of action. In this review, comprehensive information on the phytochemistry, volatile components and the pharmacology of the genus Gaultheria is provided to explore its potential and advance research.

  7. New approaches for identifying and testing potential new anti-asthma agents.

    Science.gov (United States)

    Licari, Amelia; Castagnoli, Riccardo; Brambilla, Ilaria; Marseglia, Alessia; Tosca, Maria Angela; Marseglia, Gian Luigi; Ciprandi, Giorgio

    2018-01-01

    Asthma is a chronic disease with significant heterogeneity in clinical features, disease severity, pattern of underlying disease mechanisms, and responsiveness to specific treatments. While the majority of asthmatic patients are controlled by standard pharmacological strategies, a significant subgroup has limited therapeutic options representing a major unmet need. Ongoing asthma research aims to better characterize distinct clinical phenotypes, molecular endotypes, associated reliable biomarkers, and also to develop a series of new effective targeted treatment modalities. Areas covered: The expanding knowledge on the pathogenetic mechanisms of asthma has allowed researchers to investigate a range of new treatment options matched to patient profiles. The aim of this review is to provide a comprehensive and updated overview of the currently available, new and developing approaches for identifying and testing potential treatment options for asthma management. Expert opinion: Future therapeutic strategies for asthma require the identification of reliable biomarkers that can help with diagnosis and endotyping, in order to determine the most effective drug for the right patient phenotype. Furthermore, in addition to the identification of clinical and inflammatory phenotypes, it is expected that a better understanding of the mechanisms of airway remodeling will likely optimize asthma targeted treatment.

  8. Naturally Occurring Wound Healing Agents: An Evidence-Based Review.

    Science.gov (United States)

    Karapanagioti, E G; Assimopoulou, A N

    2016-01-01

    Nature constitutes a pool of medicines for thousands of years. Nowadays, trust in nature is increasingly growing, as many effective medicines are naturally derived. Over the last decades, the potential of plants as wound healing agents is being investigated. Wounds and ulcers affect the patients' life quality and often lead to amputations. Approximately 43,000,000 patients suffer from diabetic foot ulcers worldwide. Annually, $25 billion are expended for the treatment of chronic wounds, with the number growing due to aging population and increased incidents of diabetes and obesity. Therefore a timely, orderly and effective wound management and treatment is crucial. This paper aims to systematically review natural products, mainly plants, with scientifically well documented wound healing activity, focusing on articles based on animal and clinical studies performed worldwide and approved medicinal products. Moreover, a brief description of the wound healing mechanism is presented, to provide a better understanding. Although a plethora of natural products are in vitro and in vivo evaluated for wound healing activity, only a few go through clinical trials and even fewer launch the market as approved medicines. Most of them rely on traditional medicine, indicating that ethnopharmacology is a successful strategy for drug development. Since only 6% of plants have been systematically investigated pharmacologically, more intensified efforts and emerging advancements are needed to exploit the potentials of nature for the development of novel medicines. This paper aims to provide a reliable database and matrix for thorough further investigation towards the discovery of wound healing agents.

  9. Identification of Bioactive Agents and Immunomodulatory Factors from Seashells of the Persian Gulf

    Directory of Open Access Journals (Sweden)

    Arezoo Najafi

    2010-09-01

    Full Text Available Background: Research in marine pharmacology will promise new bioactive agents. The marine bioenvironment is the unique resource for bioactive agents that could not be found in terrestrial organisms. Methods: A total of known 611 seashells species in the Persian Gulf were investigated for synonymy in OBIS database. Then, all the species, including their synonymy were searched in PubMed database to find their isolated bioactive agents. Results: From 611 known seashells in the Persian Gulf, 172 genera/species had bioactive compounds. Bioactive agents were isolated and purified for 16 genera/ species. The crude or purified extracts from these seashells had immunomodulatory effects (6 seashells, anti-toxicologic effects (4 seashells, analgesic (1 seashell, cardiotonic and vasoactive agents (2 seashells, hypolipidemic agents (4 seashells, anti-osteoporotic and osteoblastic agents (2 seashells and anti-dermatitis effect (1 seashell. Conclusion: The known seashells from the Persian Gulf have bioactive and immunomodulatory compounds and increase in the efforts to isolate these agents will promise a treasure for novel anti-infective agents.

  10. Design, synthesis and development of novel indolocarbazole derivatives as potential anti-cancer agents

    OpenAIRE

    Pierce, Laurence Thomas

    2011-01-01

    This thesis describes work carried out on the design of new routes to a range of bisindolylmaleimide and indolo[2,3-a]carbazole analogs, and investigation of their potential as successful anti-cancer agents. Following initial investigation of classical routes to indolo[2,3-a]pyrrolo[3,4-c]carbazole aglycons, a new strategy employing base-mediated condensation of thiourea and guanidine with a bisindolyl β-ketoester intermediate afforded novel 5,6-bisindolylpyrimidin-4(3H)-ones in moderat...

  11. Metformin-like antidiabetic, cardio-protective and non-glycemic effects of naringenin: Molecular and pharmacological insights.

    Science.gov (United States)

    Nyane, Ntsoaki Annah; Tlaila, Thabiso Bethwel; Malefane, Tanki Gabriel; Ndwandwe, Dudu Edith; Owira, Peter Mark Oroma

    2017-05-15

    Metformin is a widely used drug for the treatment of type 2 diabetes (T2D). Its blood glucose-lowering effects are initially due to inhibition of hepatic glucose production and increased peripheral glucose utilization. Metformin has also been shown to have several beneficial effects on cardiovascular risk factors and it is the only oral antihyperglycaemic agent thus far associated with decreased macrovascular complications in patients with diabetes. Adenosine Monophosphate Activated-Protein Kinase (AMPK) is a major cellular regulator of lipid and glucose metabolism. Recent evidence shows that pharmacological activation of AMPK improves blood glucose homeostasis, lipid profiles, blood pressure and insulin-resistance making it a novel therapeutic target in the treatment of T2D. Naringenin a flavonoid found in high concentrations as its glycone naringin in citrus fruits, has been reported to have antioxidant, antiatherogenic, anti- dyslipidemic and anti-diabetic effects. It has been shown that naringenin exerts its anti-diabetic effects by inhibition of gluconeogenesis through upregulations of AMPK hence metformin-like effects. Naringin has further been shown to have non-glycemic affects like metformin that mitigate inflammation and cell proliferation. This review evaluates the potential of naringenin as anti-diabetic, anti-dyslipidemic anti-inflammatory and antineoplastic agent similar to metformin and proposes its further development for therapeutic use in clinical practice. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Pharmacological interventions in the treatment of the acute effects of cannabis: a systematic review of literature

    Directory of Open Access Journals (Sweden)

    Crippa José AS

    2012-01-01

    Full Text Available Abstract Background Cannabis intoxication is related to a number of physical and mental health risks with ensuing social costs. However, little attention has been given to the investigation of possible pharmacological interactions in this condition. Objective To review the available scientific literature concerning pharmacological interventions for the treatment of the acute effects of cannabis. Methods A search was performed on the Pubmed, Lilacs, and Scielo online databases by combining the terms cannabis, intoxication, psychosis, anxiety, and treatment. The articles selected from this search had their reference lists checked for additional publications related to the topic of the review. Results The reviewed articles consisted of case reports and controlled clinical trials and are presented according to interventions targeting the physiological, psychiatric, and cognitive symptoms provoked by cannabis. The pharmacological interventions reported in these studies include: beta-blockers, antiarrhythmic agents, antagonists of CB-1 and GABA-benzodiazepine receptors, antipsychotics, and cannabidiol. Conclusion Although scarce, the evidence on pharmacological interventions for the management of cannabis intoxication suggests that propanolol and rimonabant are the most effective compounds currently available to treat the physiological and subjective effects of the drug. Further studies are necessary to establish the real effectiveness of these two medications, as well as the effectiveness of other candidate compounds to counteract the effects of cannabis intoxication, such as cannabidiol and flumazenil.

  13. Phytochemical and pharmacological properties of essential oils from Cedrus species.

    Science.gov (United States)

    Saab, Antoine M; Gambari, Roberto; Sacchetti, Gianni; Guerrini, Alessandra; Lampronti, Ilaria; Tacchini, Massimo; El Samrani, Antoine; Medawar, Samir; Makhlouf, Hassane; Tannoury, Mona; Abboud, Jihad; Diab-Assaf, Mona; Kijjoa, Anake; Tundis, Rosa; Aoun, Jawad; Efferth, Thomas

    2018-06-01

    Natural products frequently exert pharmacological activities. The present review gives an overview of the ethnobotany, phytochemistry and pharmacology of the Cedrus genus, e.g. cytotoxic, spasmolytic immunomodulatory, antiallergic, anti-inflammatory and analgesic activities. Cancer patients frequently seek remedies from traditional medicinal plants that are believed to exert less side effects than conventional therapy with synthetic drugs. A long-lasting goal of anti-cancer and anti-microbial therapy research is to find compounds with reduced side effects compared to currently approved drugs. In this respect, Cedrus species might be of interest. The essential oil isolated from Cedrus libani leaves may bear potential for drug development due to its high concentrations of germacrene D and β-caryophyllene. The essential oils from Cedrus species also show bioactivity against bacteria and viruses. More preclinical analyses (e.g. in vivo experiments) as well as clinical trials are required to evaluate the potential of essential oils from Cedrus species for drug development.

  14. The genus Psiadia: Review of traditional uses, phytochemistry and pharmacology.

    Science.gov (United States)

    Mahadeo, Keshika; Grondin, Isabelle; Kodja, Hippolyte; Soulange Govinden, Joyce; Jhaumeer Laulloo, Sabina; Frederich, Michel; Gauvin-Bialecki, Anne

    2018-01-10

    The genus Psiadia Jacq. ex. Willd. belongs to the Asteraceae family and includes more than 60 species. This genus grows in tropical and subtropical regions, being especially well represented in Madagascar and the Mascarene Islands (La Réunion, Mauritius and Rodrigues). Several Psiadia species have been used traditionally for their medicinal properties in Africa and the Mascarene Islands. Based on traditional knowledge, various phytochemical and pharmacological studies have been conducted. However there are no recent papers that provide an overview of the medicinal potential of Psiadia species. Therefore, the aim of this review is to provide a comprehensive summary of the botany, phytochemistry and pharmacology of Psiadia and to highlight the gaps in our knowledge for future research opportunities. The available information on traditional uses, phytochemistry and biological activities of the genus Psiadia was collected from scientific databases through a search using the keyword 'Psiadia' in 'Google Scholar', 'Pubmed', 'Sciencedirect', 'SpringerLink', 'Web of Science', 'Wiley' and 'Scifinder'. Additionally, published books and unpublished Ph.D. and MSc. dissertations were consulted for botanical information and chemical composition. Historically, species of the genus Psiadia have been used to treat a wide range of ailments including abdominal pains, colds, fevers, bronchitis, asthma, rheumatoid arthritis, skin infections and liver disorders among others. Phytochemical works led to the isolation of flavonoids, phenylpropanoids, coumarins and terpenoids. Furthermore, phytochemical compositions of the essential oils of some species have been evaluated. Crude extracts, essential oils and isolated molecules showed in vitro pharmacological activities, such as antimicrobial, anti-viral, anti-inflammatory, antiplasmodial and antileishmanial activities. Crude extracts of Psiadia dentata and Psiadia arguta have specifically been found to be potentially useful for inhibition

  15. Neuropathic pain in people with cancer (part 2): pharmacological and non-pharmacological management.

    Science.gov (United States)

    Taverner, Tarnia

    2015-08-01

    The aim of this paper is to provide an overview of the management of neuropathic pain associated with cancer and to provide helpful clinical advice for nurses working with patients who may have neuropathic pain. While cancer pain is a mixed-mechanism pain, this article will focus only on neuropathic pain management. The impact of neuropathic pain on patients' quality of life is great and while many patients recover from their cancer, a significant number continue to suffer from a neuropathic pain syndrome. Management of neuropathic pain is significantly different from management of nociceptive pain with respect to pharmacological and non-pharmacological strategies. Neuropathic pain is complex, and as such requires complex management using pharmacological as well as non-pharmacological approaches. Specific drugs for neuropathic pain may be effective for some patients, but not all; therefore, ongoing and comprehensive assessment and management are required. Furthermore, these patients may require trials of several drugs before they find one that works for them. It is important for nurses to understand neuropathic pain, its manifestation, impact on quality of life and management when nursing patients with neuropathic pain associated with cancer.

  16. Pharmacological Targeting Of Neuronal Kv7.2/3 Channels: A Focus On Chemotypes And Receptor Sites.

    Science.gov (United States)

    Miceli, Francesco; Soldovieri, Maria Virginia; Ambrosino, Paolo; Manocchio, Laura; Medoro, Alessandro; Mosca, Ilaria; Taglialatela, Maurizio

    2017-10-12

    The Kv7 (KCNQ) subfamily of voltage-gated potassium channels consists of 5 members (Kv7.1-5) each showing a characteristic tissue distribution and physiological roles. Given their functional heterogeneity, Kv7 channels represent important pharmacological targets for development of new drugs for neuronal, cardiac and metabolic diseases. In the present manuscript, we focus on describing the pharmacological relevance and the potential therapeutic applications of drugs acting on neuronally-expressed Kv7.2/3 channels, placing particular emphasis on the different modulator chemotypes, and highlighting their pharmacodynamic and, whenever possible, pharmacokinetic peculiarities. The present work is based on an in-depth search of the currently available scientific literature, and on our own experience and knowledge in the field of neuronal Kv7 channel pharmacology. Space limitations impeded to describe the full pharmacological potential of Kv7 channels; thus, we have chosen to focus on neuronal channels composed of Kv7.2 and Kv7.3 subunits, and to mainly concentrate on their involvement in epilepsy. An astonishing heterogeneity in the molecular scaffolds exploitable to develop Kv7.2/3 modulators is evident, with important structural/functional peculiarities of distinct compound classes. In the present work we have attempted to show the current status and growing potential of the Kv7 pharmacology field. We anticipate a bright future for the field, and we express our hopes that the efforts herein reviewed will result in an improved treatment of hyperexcitability (or any other) diseases. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Pharmacology and toxicology of Cannabis derivatives and endocannabinoid agonists.

    Science.gov (United States)

    Gerra, Gilberto; Zaimovic, Amir; Gerra, Maria L; Ciccocioppo, Roberto; Cippitelli, Andrea; Serpelloni, Giovanni; Somaini, Lorenzo

    2010-01-01

    For centuries Cannabis sativa and cannabis extracts have been used in natural medicine. Delta(9)-tetrahydrocannabinol (THC) is the main active ingredient of Cannabis. THC seems to be responsible for most of the pharmacological and therapeutic actions of cannabis. In a few countries THC extracts (i.e. Sativex) or THC derivatives such as nabilone, and dronabinol are used in the clinic for the treatment of several pathological conditions like chemotherapy-induced nausea and vomiting, multiple sclerosis and glaucoma. On the other hand the severe side effects and the high abuse liability of these agents represent a serious limitation in their medical use. In addition, diversion in the use of these active ingredients for recreational purpose is a concern. Over recent years, alternative approaches using synthetic cannabinoid receptor agonists or agents acting as activators of the endocannabinoid systems are under scrutiny with the hope to develop more effective and safer clinical applications. Likely, in the near future few of these new molecules will be available for clinical use. The present article review recent study and patents with focus on the cannabinoid system as a target for the treatment of central nervous system disorders with emphasis on agonists.

  18. Histone deacetylase inhibitors (HDACIs): multitargeted anticancer agents.

    Science.gov (United States)

    Ververis, Katherine; Hiong, Alison; Karagiannis, Tom C; Licciardi, Paul V

    2013-01-01

    Histone deacetylase (HDAC) inhibitors are an emerging class of therapeutics with potential as anticancer drugs. The rationale for developing HDAC inhibitors (and other chromatin-modifying agents) as anticancer therapies arose from the understanding that in addition to genetic mutations, epigenetic changes such as dysregulation of HDAC enzymes can alter phenotype and gene expression, disturb homeostasis, and contribute to neoplastic growth. The family of HDAC inhibitors is large and diverse. It includes a range of naturally occurring and synthetic compounds that differ in terms of structure, function, and specificity. HDAC inhibitors have multiple cell type-specific effects in vitro and in vivo, such as growth arrest, cell differentiation, and apoptosis in malignant cells. HDAC inhibitors have the potential to be used as monotherapies or in combination with other anticancer therapies. Currently, there are two HDAC inhibitors that have received approval from the US FDA for the treatment of cutaneous T-cell lymphoma: vorinostat (suberoylanilide hydroxamic acid, Zolinza) and depsipeptide (romidepsin, Istodax). More recently, depsipeptide has also gained FDA approval for the treatment of peripheral T-cell lymphoma. Many more clinical trials assessing the effects of various HDAC inhibitors on hematological and solid malignancies are currently being conducted. Despite the proven anticancer effects of particular HDAC inhibitors against certain cancers, many aspects of HDAC enzymes and HDAC inhibitors are still not fully understood. Increasing our understanding of the effects of HDAC inhibitors, their targets and mechanisms of action will be critical for the advancement of these drugs, especially to facilitate the rational design of HDAC inhibitors that are effective as antineoplastic agents. This review will discuss the use of HDAC inhibitors as multitargeted therapies for malignancy. Further, we outline the pharmacology and mechanisms of action of HDAC inhibitors while

  19. An albumin-based gold nanocomposites as potential dual mode CT/MRI contrast agent

    Science.gov (United States)

    Zhao, Wenjing; Chen, Lina; Wang, Zhiming; Huang, Yuankui; Jia, Nengqin

    2018-02-01

    In pursuit of the biological detection applications, recent years have witnessed the prosperity of novel multi-modal nanoprobes. In this study, biocompatible bovine serum albumin (BSA)-coated gold nanoparticles (Au NPs) containing Gd (III) as the contrast agent for both X-ray CT and T1-weighted MR imaging is reported. Firstly, the Au NPs with BSA coating (Au@BSA) was prepared through a moderate one-pot reduction route in the presence of hydrazine hydrate as reducer. Sequentially, the BSA coating enables modification of diethylenetriaminepentaacetic acid (DTPA) as well as targeting reagent hyaluronic acid (HA), and further chelation of Gd (III) ions led to the formation of biomimetic nanoagent HA-targeted Gd-Au NPs (HA-targeted Au@BSA-Gd-DTPA). Several techniques were used to thoroughly characterize the formed HA-targeted Gd-Au NPs. As expected, the as-prepared nanoagent with mean diameter of 13.82 nm exhibits not only good colloid stablility and water dispersibility, but also satisfying low cytotoxicity and hemocompatibility in the tested concentration range. Additionally, for the CT phantoms, the obtained nanocomplex shows an improved contrast in CT scanning than that of Au@BSA as well as small molecule iodine-based CT contrast agents such as iopromide. Meanwhile, for the T1-weighted MRI images, there is a linear increase of contrast with concentration of Gd for the two cases of HA-targeted Gd-Au NPs and Magnevist. Strikingly, the nanoagent we explored displays a relatively higher r1 relaxivity than that of commercial MR contrast agents. Therefore, this newly constructed nanoagent could be used as contrast agents for synergistically enhanced X-ray CT and MR phantoms, holding promising potential for future biomedical applications.

  20. Novel Penicillin Analogues as Potential Antimicrobial Agents; Design, Synthesis and Docking Studies.

    Science.gov (United States)

    Ashraf, Zaman; Bais, Abdul; Manir, Md Maniruzzaman; Niazi, Umar

    2015-01-01

    A number of penicillin derivatives (4a-h) were synthesized by the condensation of 6-amino penicillinic acid (6-APA) with non-steroidal anti-inflammatory drugs as antimicrobial agents. In silico docking study of these analogues was performed against Penicillin Binding Protein (PDBID 1CEF) using AutoDock Tools 1.5.6 in order to investigate the antimicrobial data on structural basis. Penicillin binding proteins function as either transpeptidases or carboxypeptidases and in few cases demonstrate transglycosylase activity in bacteria. The excellent antibacterial potential was depicted by compounds 4c and 4e against Escherichia coli, Staphylococcus epidermidus and Staphylococcus aureus compared to the standard amoxicillin. The most potent penicillin derivative 4e exhibited same activity as standard amoxicillin against S. aureus. In the enzyme inhibitory assay the compound 4e inhibited E. coli MurC with an IC50 value of 12.5 μM. The docking scores of these compounds 4c and 4e also verified their greater antibacterial potential. The results verified the importance of side chain functionalities along with the presence of central penam nucleus. The binding affinities calculated from docking results expressed in the form of binding energies ranges from -7.8 to -9.2kcal/mol. The carboxylic group of penam nucleus in all these compounds is responsible for strong binding with receptor protein with the bond length ranges from 3.4 to 4.4 Ǻ. The results of present work ratify that derivatives 4c and 4e may serve as a structural template for the design and development of potent antimicrobial agents.

  1. Interprofessional education in pharmacology using high-fidelity simulation.

    Science.gov (United States)

    Meyer, Brittney A; Seefeldt, Teresa M; Ngorsuraches, Surachat; Hendrickx, Lori D; Lubeck, Paula M; Farver, Debra K; Heins, Jodi R

    2017-11-01

    This study examined the feasibility of an interprofessional high-fidelity pharmacology simulation and its impact on pharmacy and nursing students' perceptions of interprofessionalism and pharmacology knowledge. Pharmacy and nursing students participated in a pharmacology simulation using a high-fidelity patient simulator. Faculty-facilitated debriefing included discussion of the case and collaboration. To determine the impact of the activity on students' perceptions of interprofessionalism and their ability to apply pharmacology knowledge, surveys were administered to students before and after the simulation. Attitudes Toward Health Care Teams scale (ATHCT) scores improved from 4.55 to 4.72 on a scale of 1-6 (p = 0.005). Almost all (over 90%) of the students stated their pharmacology knowledge and their ability to apply that knowledge improved following the simulation. A simulation in pharmacology is feasible and favorably affected students' interprofessionalism and pharmacology knowledge perceptions. Pharmacology is a core science course required by multiple health professions in early program curricula, making it favorable for incorporation of interprofessional learning experiences. However, reports of high-fidelity interprofessional simulation in pharmacology courses are limited. This manuscript contributes to the literature in the field of interprofessional education by demonstrating that an interprofessional simulation in pharmacology is feasible and can favorably affect students' perceptions of interprofessionalism. This manuscript provides an example of a pharmacology interprofessional simulation that faculty in other programs can use to build similar educational activities. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Applications of stable isotopes in clinical pharmacology

    NARCIS (Netherlands)

    Schellekens, Reinout C A; Stellaard, Frans; Woerdenbag, Herman J; Frijlink, Henderik W; Kosterink, Jos G W

    2011-01-01

    This review aims to present an overview of the application of stable isotope technology in clinical pharmacology. Three main categories of stable isotope technology can be distinguished in clinical pharmacology. Firstly, it is applied in the assessment of drug pharmacology to determine the

  3. Evaluation of liquid-phase oxidation for the destruction of potential chemical terrorism agents

    Energy Technology Data Exchange (ETDEWEB)

    Thouin, G.; Harrison, S.; Li, K.; Kuang, W.; Volchek, K.; Fingas, M. [Environment Canada, Ottawa, ON (Canada). Emergencies Science Div; Potaraju, S.; Velicogna, D.; Obenauf, A. [SAIC Canada, Ottawa, ON (Canada)

    2005-07-01

    Although pesticides are designed to protect crops and livestock against insects, fungi or nuisance plants, the toxicity of these compounds is not limited to target species. Organophosphorus, organochlorine and carbamate pesticides all target the nervous systems of insects. This paper assessed the effectiveness of an enhanced oxidation process using peroxycarboxylic acids for the liquid-phase destruction of toxic industrial chemicals, considered to be potential agents of chemical terrorism. Peroxyacetic acid (PAA) and peroxypropionic acid (PPA) were tested as decontamination agents on organophosphorus, organochlorine and carbamate pesticides. The processes were reviewed in relation to the terms of percent agent destruction over time, with a target of 90 per cent destruction within 30 minutes. Effectiveness was also assessed on the accumulation of toxic by-products. A background of the pesticides was presented, as well as details of their various applications. The molecular structures of the compounds were also provided. Oxidation extraction procedures, materials and methods were also presented, as well as analytical techniques, method detection limits and issues concerning reproducibility. The pH profile of PAA and PPA as a function of the concentration in acid was studied in order to determine which was more likely to be corrosive. It was concluded that peroxycarboxylic acids are effective decontamination agents for organophosphorous and carbamate pesticides. PAA and PPA are equally effective in degrading the examined pesticides, however, greater amounts of toxic by-products are found with PPA than with PAA. Neither PAA nor PPA were able to degrade lindane, and more lindane was found in the treated samples than in the controls. It was noted that time profiles for lower concentrations of peroxycarboxylic acids and pH profiles are currently being developed. It was suggested that further research in this area included degradation experiments on various types of

  4. Pharmacological and therapeutic directions in ADHD: Specificity in the PFC

    Directory of Open Access Journals (Sweden)

    Levy Florence

    2008-02-01

    Full Text Available Abstract Background Recent directions in the treatment of ADHD have involved both a broadening of pharmacological perspectives to include nor-adrenergic as well as dopaminergic agents. A review of animal and human studies of pharmacological and therapeutic directions in ADHD suggests that the D1 receptor is a specific site for dopaminergic regulation of the PFC, but optimal levels of dopamine (DA are required for beneficial effects on working memory. Animal and human studies indicate that the alpha-2A receptor is also important for prefrontal regulation, leaving open the question of the relative importance of these receptor sites. The therapeutic effects of ADHD medications in the prefrontal cortex have focused attention on the development of working memory capacity in ADHD. Hypothesis The actions of dopaminergic vs noradrenergic agents, currently available for the treatment of ADHD have overlapping, but different actions in the prefrontal cortex (PFC and subcortical centers. While stimulants act on D1 receptors in the dorsolateral prefrontal cortex, they also have effects on D2 receptors in the corpus striatum and may also have serotonergic effects at orbitofrontal areas. At therapeutic levels, dopamine (DA stimulation (through DAT transporter inhibition decreases noise level acting on subcortical D2 receptors, while NE stimulation (through alpha-2A agonists increases signal by acting preferentially in the PFC possibly on DAD1 receptors. On the other hand, alpha-2A noradrenergic transmission is more limited to the prefrontal cortex (PFC, and thus less likely to have motor or stereotypic side effects, while alpha-2B and alpha-2C agonists may have wider cortical effects. The data suggest a possible hierarchy of specificity in the current medications used in the treatment of ADHD, with guanfacine likely to be most specific for the treatment of prefrontal attentional and working memory deficits. Stimulants may have broader effects on both vigilance

  5. REMINERALIZATION POTENTIAL OF A CARBAMIDE BLEACHING AGENT

    Directory of Open Access Journals (Sweden)

    Marinova-Takorova Borislavova Mirela

    2016-03-01

    Full Text Available Background: Bleaching has gradually became a popular procedure for people searching for aesthetic improvement. The aim of this in vitro study was to investigate the effect of bleaching with 45% carbamide peroxide on the level of mineralization of enamel, using laser fluorescence. Materials and methods: Sixty extracted human teeth were treated with 45% carbamid peroxide (Opalescence, Ultradent, 4 consecutive days for one hour each day. The effect of the bleaching agent on the level of mineralization of enamel was measured with DIAGNO dent pen. The statistical method we use was descriptive analysis. Results: The average values, measured before the applications of the carbamid peroxide were 6.33. On the first day they were 5.41, on the second 5.38, on the third 5.11 and 5.35 on the forth. Conclusion: There was observed a slight remineralization effect due to the incorporated Ca2+ and F- ions in the bleaching agent that we have used.

  6. Chemistry and Pharmacology of Citrus sinensis

    Directory of Open Access Journals (Sweden)

    Juan Manuel J. Favela-Hernández

    2016-02-01

    Full Text Available Presently the search for new drugs from natural resources is of growing interest to the pharmaceutical industry. Natural products have been the source of new drugs since ancient times. Plants are a good source of secondary metabolites which have been found to have beneficial properties. The present study is a review of the chemistry and pharmacology of Citrus sinensis. This review reveals the therapeutic potential of C. sinensis as a source of natural compounds with important activities that are beneficial for human health that could be used to develop new drugs.

  7. Sugammadex, a Neuromuscular Blockade Reversal Agent, Causes Neuronal Apoptosis in Primary Cultures

    Science.gov (United States)

    Palanca, José M.; Aguirre-Rueda, Diana; Granell, Manuel V.; Aldasoro, Martin; Garcia, Alma; Iradi, Antonio; Obrador, Elena; Mauricio, Maria Dolores; Vila, Jose; Gil-Bisquert, Anna; Valles, Soraya L.

    2013-01-01

    Sugammadex, a γ-cyclodextrin that encapsulates selectively steroidal neuromuscular blocking agents, such as rocuronium or vecuronium, has changed the face of clinical neuromuscular pharmacology. Sugammadex allows a rapid reversal of muscle paralysis. Sugammadex appears to be safe and well tolerated. Its blood-brain barrier penetration is poor (Sugammadex in neurons in primary culture. Here we show that clinically relevant sugammadex concentrations cause apoptotic/necrosis neuron death in primary cultures. Studies on the underlying mechanism revealed that sugammadex-induced activation of mitochondria-dependent apoptosis associates with depletion of neuronal cholesterol levels. Furthermore SUG increase CytC, AIF, Smac/Diablo and CASP-3 protein expression in cells in culture. Potential association of SUG-induced alteration in cholesterol homeostasis with oxidative stress and apoptosis activation occurs. Furthermore, resistance/sensitivity to oxidative stress differs between neuronal cell types. PMID:23983586

  8. PDTCM: a systems pharmacology platform of traditional Chinese medicine for psoriasis.

    Science.gov (United States)

    Wang, Dongmei; Gu, Jiangyong; Zhu, Wei; Luo, Fang; Chen, Lirong; Xu, Xiaojie; Lu, Chuanjian

    2017-12-01

    Psoriasis is a refractory skin disorder, and usually requires a lifetime control. Traditional Chinese medicine (TCM) is effective and safe for this disease. However, the cellular and molecular mechanisms of TCM remedies for psoriasis are still not fully understood. TCM contains numerous natural products. Natural products have historically been invaluable as a resource of therapeutic agents. Yet, there is no integrated information about active compounds of TCM for psoriasis. We use systems pharmacology methods to develop the Psoriasis Database of Traditional Chinese Medicine (PDTCM). The database covered a number of psoriasis-related information (formulas, TCM, compounds, target proteins, diseases and biomarkers). With these data information, an online platform was constructed Results: PDTCM comprises 38 empirical therapeutic formulas, 34373 compounds from 1424 medicinal plants, 44 psoriasis-related proteins and 76 biomarkers from 111 related diseases. On this platform, users can screen active compounds for a psoriasis-related target and explore molecular mechanisms of TCM. Accordingly, users can also download the retrieved structures and data information with a defined value set. In addition, it helps to get a better understanding of Chinese prescriptions in disease treatment. With the systems pharmacology-based data, PDTCM would become a valuable resource for TCM in psoriasis-related research. Key messages PDTCM platform comprises a great deal of data on TCM and psoriasis. On this platform, users can retrieve and get needed information with systems pharmacology methods, such as active compounds screening, target prediction and molecular mechanisms exploration. It is a tool for psoriasis-related research on natural drugs systematically.

  9. Peroxisome Proliferator-Activated Receptor-γ Ligands: Potential Pharmacological Agents for Targeting the Angiogenesis Signaling Cascade in Cancer

    Directory of Open Access Journals (Sweden)

    Costas Giaginis

    2008-01-01

    Full Text Available Peroxisome proliferator-activated receptor-γ (PPAR-γ has currently been considered as molecular target for the treatment of human metabolic disorders. Experimental data from in vitro cultures, animal models, and clinical trials have shown that PPAR-γ ligand activation regulates differentiation and induces cell growth arrest and apoptosis in a variety of cancer types. Tumor angiogenesis constitutes a multifaceted process implicated in complex downstream signaling pathways that triggers tumor growth, invasion, and metastasis. In this aspect, accumulating in vitro and in vivo studies have provided extensive evidence that PPAR-γ ligands can function as modulators of the angiogenic signaling cascade. In the current review, the crucial role of PPAR-γ ligands and the underlying mechanisms participating in tumor angiogenesis are summarized. Targeting PPAR-γ may prove to be a potential therapeutic strategy in combined treatments with conventional chemotherapy; however, special attention should be taken as there is also substantial evidence to support that PPAR-γ ligands can enhance angiogenic phenotype in tumoral cells.

  10. Angiotensin receptors in Dupuytren's disease: a target for pharmacological treatment?

    Science.gov (United States)

    Stephen, Christopher; Touil, Leila; Vaiude, Partha; Singh, Jaipaul; McKirdy, Stuart

    2018-02-01

    Attempts at the pharmacological treatment of Dupuytren's disease have so far been unsuccessful, and the disease is not yet fully understood on a cellular level. The Renin-Angiotensin System has long been understood to play a circulating hormonal role. However, there is much evidence showing Angiotensin II to play a local role in wound healing and fibrosis, with ACE inhibitors being widely used as an anti-fibrotic agent in renal and cardiac disease. This study was designed to investigate the presence of Angiotensin II receptors 1 (AT1) and 2 (AT2) in Dupuytren's tissue to form a basis for further study into the pharmacological treatment of this condition. Tissue was harvested from 11 patients undergoing surgery for Dupuytren's disease. Each specimen was processed into frozen sections and immunostaining was employed to identify AT1 and AT2 receptors. Immunostaining for AT1 receptors was mildly positive in one patient and negative in all the remaining patients. However, all specimens stained extensively for AT2 receptors. This suggests that the expression of AT2 receptors is more prominent than AT1 receptors in Dupuytren's disease. These findings have opened a new avenue for future research involving ACE inhibitors, AT2 agonists, and AT2 antagonists in Dupuytren's disease.

  11. The pharmacology of neurokinin receptors in addiction: prospects for therapy

    Directory of Open Access Journals (Sweden)

    Sandweiss AJ

    2015-09-01

    Full Text Available Alexander J Sandweiss, Todd W VanderahDepartment of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USAAbstract: Addiction is a chronic disorder in which consumption of a substance or a habitual behavior becomes compulsive and often recurrent, despite adverse consequences. Substance p (SP is an undecapeptide and was the first neuropeptide of the neurokinin family to be discovered. The subsequent decades of research after its discovery implicated SP and its neurokinin relatives as neurotransmitters involved in the modulation of the reward pathway. Here, we review the neurokinin literature, giving a brief historical perspective of neurokinin pharmacology, localization in various brain regions involved in addictive behaviors, and the functional aspects of neurokinin pharmacology in relation to reward in preclinical models of addiction that have shaped the rational drug design of neurokinin antagonists that could translate into human research. Finally, we will cover the clinical investigations using neurokinin antagonists and discuss their potential as a therapy for drug abuse.Keywords: reward, substance p, alcohol, morphine, cocaine, dopamine

  12. Amphetamine, past and present – a pharmacological and clinical perspective

    Science.gov (United States)

    Smith, Sharon L; Gosden, Jane; Nutt, David J

    2013-01-01

    Amphetamine was discovered over 100 years ago. Since then, it has transformed from a drug that was freely available without prescription as a panacea for a broad range of disorders into a highly restricted Controlled Drug with therapeutic applications restricted to attention deficit hyperactivity disorder (ADHD) and narcolepsy. This review describes the relationship between chemical structure and pharmacology of amphetamine and its congeners. Amphetamine’s diverse pharmacological actions translate not only into therapeutic efficacy, but also into the production of adverse events and liability for recreational abuse. Accordingly, the balance of benefit/risk is the key challenge for its clinical use. The review charts advances in pharmaceutical development from the introduction of once-daily formulations of amphetamine through to lisdexamfetamine, which is the first d-amphetamine prodrug approved for the management of ADHD in children, adolescents and adults. The unusual metabolic route for lisdexamfetamine to deliver d-amphetamine makes an important contribution to its pharmacology. How lisdexamfetamine’s distinctive pharmacokinetic/pharmacodynamic profile translates into sustained efficacy as a treatment for ADHD and its reduced potential for recreational abuse is also discussed. PMID:23539642

  13. Ficus Deltoidea: A potential source for new oral antidiabetic agent

    International Nuclear Information System (INIS)

    Zainah Adam; Juliana Mahamad Napiah; Shafii Khamis; Muhajir Hamid

    2012-01-01

    Ficus deltoidea or locally known as Mas Cotek is one of the common medicinal plant used in Malaysia. Ethno botanical approaches showed that this plant possess antidiabetic property. Previous study had shown that F. deltoidea reduced hyperglycemia in type I diabetic rats at different prandial state. This study was done to elucidate the possible antihyperglycemic mechanisms of F. deltoidea. The results showed that F. deltoidea significantly stimulated insulin secretion from pancreatic β-cells with the highest magnitude of stimulation was 7.31-fold (p 50 value was 4.15±0.25 mg/ml. Kinetic analysis of the enzyme activity revealed the F. deltoidea exhibited a mixed-type inhibition mechanism against sucrase activity. Such observations showed that F. deltoidea has the potential to be developed as new oral antidiabetic agent for the treatment of diabetes mellitus. (author)

  14. 4-Alkylated homoibotenic acid (HIBO) analogues: versatile pharmacological agents with diverse selectivity profiles towards metabotropic and ionotropic glutamate receptor subtypes

    DEFF Research Database (Denmark)

    Madsen, Ulf; Pickering, Darryl S; Nielsen, Birgitte

    2005-01-01

    4-Alkylated analogues of homoibotenic acid (HIBO) have previously shown high potency and selectivity at ionotropic and metabotropic glutamic acid receptor (iGluR and mGluR) subtypes. Compounds with different selectivity profiles are valuable pharmacological tools for neuropharmacological studies...

  15. State-dependent compound inhibition of Nav1.2 sodium channels using the FLIPR Vm dye: on-target and off-target effects of diverse pharmacological agents.

    Science.gov (United States)

    Benjamin, Elfrida R; Pruthi, Farhana; Olanrewaju, Shakira; Ilyin, Victor I; Crumley, Gregg; Kutlina, Elena; Valenzano, Kenneth J; Woodward, Richard M

    2006-02-01

    Voltage-gated sodium channels (NaChs) are relevant targets for pain, epilepsy, and a variety of neurological and cardiac disorders. Traditionally, it has been difficult to develop structure-activity relationships for NaCh inhibitors due to rapid channel kinetics and state-dependent compound interactions. Membrane potential (Vm) dyes in conjunction with a high-throughput fluorescence imaging plate reader (FLIPR) offer a satisfactory 1st-tier solution. Thus, the authors have developed a FLIPR Vm assay of rat Nav1.2 NaCh. Channels were opened by addition of veratridine, and Vm dye responses were measured. The IC50 values from various structural classes of compounds were compared to the resting state binding constant (Kr)and inactivated state binding constant (Ki)obtained using patch-clamp electrophysiology (EP). The FLIPR values correlated with Ki but not Kr. FLIPRIC50 values fell within 0.1-to 1.5-fold of EP Ki values, indicating that the assay generally reports use-dependent inhibition rather than resting state block. The Library of Pharmacologically Active Compounds (LOPAC, Sigma) was screened. Confirmed hits arose from diverse classes such as dopamine receptor antagonists, serotonin transport inhibitors, and kinase inhibitors. These data suggest that NaCh inhibition is inherent in a diverse set of biologically active molecules and may warrant counterscreening NaChs to avoid unwanted secondary pharmacology.

  16. Pharmacological Protection From Radiation ± Cisplatin-Induced Oral Mucositis

    International Nuclear Information System (INIS)

    Cotrim, Ana P.; Yoshikawa, Masanobu; Sunshine, Abraham N.; Zheng Changyu; Sowers, Anastasia L.; Thetford, Angela D.; Cook, John A.; Mitchell, James B.; Baum, Bruce J.

    2012-01-01

    Purpose: To evaluate if two pharmacological agents, Tempol and D-methionine (D-met), are able to prevent oral mucositis in mice after exposure to ionizing radiation ± cisplatin. Methods and Materials: Female C3H mice, ∼8 weeks old, were irradiated with five fractionated doses ± cisplatin to induce oral mucositis (lingual ulcers). Just before irradiation and chemotherapy, mice were treated, either alone or in combination, with different doses of Tempol (by intraperitoneal [ip] injection or topically, as an oral gel) and D-met (by gavage). Thereafter, mice were sacrificed and tongues were harvested and stained with a solution of Toluidine Blue. Ulcer size and tongue epithelial thickness were measured. Results: Significant lingual ulcers resulted from 5 × 8 Gy radiation fractions, which were enhanced with cisplatin treatment. D-met provided stereospecific partial protection from lingual ulceration after radiation. Tempol, via both routes of administration, provided nearly complete protection from lingual ulceration. D-met plus a suboptimal ip dose of Tempol also provided complete protection. Conclusions: Two fairly simple pharmacological treatments were able to markedly reduce chemoradiation-induced oral mucositis in mice. This proof of concept study suggests that Tempol, alone or in combination with D-met, may be a useful and convenient way to prevent the severe oral mucositis that results from head-and-neck cancer therapy.

  17. Macromolecular agents with antimicrobial potentialities: A drive to combat antimicrobial resistance.

    Science.gov (United States)

    Bilal, Muhammad; Rasheed, Tahir; Iqbal, Hafiz M N; Hu, Hongbo; Wang, Wei; Zhang, Xuehong

    2017-10-01

    In recent years, the antimicrobial resistance (AMR) or multidrug resistance (MDR) has become a serious health concern and major challenging issue, worldwide. After decades of negligence, the AMR has now captured global attention. The increasing number of antibiotic-resistant strains has threatened the achievements of science and medicine since it inactivates conventional antimicrobial therapeutics. Scientists are trying to respond to AMR/MDR threat by exploring innovative platforms and new therapeutic strategies to tackle infections from these resistant strains and bypass treatment limitations related to these pathologies. The present review focuses on the utilization of bio-inspired novel constructs and their potential applications as novel antimicrobial agents. The first part of the review describes plant-based biological macromolecules containing an immense variety of secondary metabolites, which could be potentially used as alternative strategies to combat antimicrobial resistance. The second part discusses the potential of metal-based macromolecules as effective antimicrobial platforms for preventing infections from resistant strains. The third part comprehensively elucidates how nanoparticles, in particular, metal-integrated nanoparticles can overcome this AMR or MDR issue. Towards the end, information is given with critical concluding remarks, gaps, and finally envisioned with future considerations. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Potential of Icariin Metabolites from Epimedium koreanum Nakai as Antidiabetic Therapeutic Agents

    Directory of Open Access Journals (Sweden)

    Da Hye Kim

    2017-06-01

    Full Text Available The therapeutic properties of Epimedium koreanum are presumed to be due to the flavonoid component icariin, which has been reported to have broad pharmacological potential and has demonstrated anti-diabetic, anti-Alzheimer’s disease, anti-tumor, and hepatoprotective activities. Considering these therapeutic properties of icariin, its deglycosylated icaritin and glycosylated flavonoids (icaeriside II, epimedin A, epimedin B, and epimedin C were evaluated for their ability to inhibit protein tyrosine phosphatase 1B (PTP1B and α-glucosidase. The results show that icaritin and icariside II exhibit potent inhibitory activities, with 50% inhibition concentration (IC50 values of 11.59 ± 1.39 μM and 9.94 ± 0.15 μM against PTP1B and 74.42 ± 0.01 and 106.59 ± 0.44 μM against α-glucosidase, respectively. With the exceptions of icaritin and icariside II, glycosylated flavonoids did not exhibit any inhibitory effects in the two assays. Enzyme kinetics analyses revealed that icaritin and icariside II demonstrated noncompetitive-type inhibition against PTP1B, with inhibition constant (Ki values of 11.41 and 11.66 μM, respectively. Moreover, molecular docking analysis confirmed that icaritin and icariside II both occupy the same site as allosteric ligand. Thus, the molecular docking simulation results were in close agreement with the experimental data with respect to inhibition activity. In conclusion, deglycosylated metabolites of icariin from E. koreanum might offer therapeutic potential for the treatment of type 2 diabetes mellitus.

  19. [Alkylating agents].

    Science.gov (United States)

    Pourquier, Philippe

    2011-11-01

    With the approval of mechlorethamine by the FDA in 1949 for the treatment of hematologic malignancies, alkylating agents are the oldest class of anticancer agents. Even though their clinical use is far beyond the use of new targeted therapies, they still occupy a major place in specific indications and sometimes represent the unique option for the treatment of refractory diseases. Here, we are reviewing the major classes of alkylating agents and their mechanism of action, with a particular emphasis for the new generations of alkylating agents. As for most of the chemotherapeutic agents used in the clinic, these compounds are derived from natural sources. With a complex but original mechanism of action, they represent new interesting alternatives for the clinicians, especially for tumors that are resistant to conventional DNA damaging agents. We also briefly describe the different strategies that have been or are currently developed to potentiate the use of classical alkylating agents, especially the inhibition of pathways that are involved in the repair of DNA lesions induced by these agents. In this line, the development of PARP inhibitors is a striking example of the recent regain of interest towards the "old" alkylating agents.

  20. Antimicrobial peptides as potential anti-biofilm agents against multidrug-resistant bacteria.

    Science.gov (United States)

    Chung, Pooi Yin; Khanum, Ramona

    2017-08-01

    Bacterial resistance to commonly used drugs has become a global health problem, causing increased infection cases and mortality rate. One of the main virulence determinants in many bacterial infections is biofilm formation, which significantly increases bacterial resistance to antibiotics and innate host defence. In the search to address the chronic infections caused by biofilms, antimicrobial peptides (AMP) have been considered as potential alternative agents to conventional antibiotics. Although AMPs are commonly considered as the primitive mechanism of immunity and has been extensively studied in insects and non-vertebrate organisms, there is now increasing evidence that AMPs also play a crucial role in human immunity. AMPs have exhibited broad-spectrum activity against many strains of Gram-positive and Gram-negative bacteria, including drug-resistant strains, and fungi. In addition, AMPs also showed synergy with classical antibiotics, neutralize toxins and are active in animal models. In this review, the important mechanisms of action and potential of AMPs in the eradication of biofilm formation in multidrug-resistant pathogen, with the goal of designing novel antimicrobial therapeutics, are discussed. Copyright © 2017. Published by Elsevier B.V.

  1. A Potential Adjuvant Agent of Chemotherapy: Sepia Ink Polysaccharides

    Directory of Open Access Journals (Sweden)

    Fangping Li

    2018-03-01

    Full Text Available Sepia ink polysaccharide (SIP isolated from squid and cuttlefish ink is a kind of acid mucopolysaccharide that has been identified in three types of primary structures from squid (Illex argentinus and Ommastrephes bartrami, cuttlefish Sepiella maindroni, and cuttlefish Sepia esculenta ink. Although SIP has been proved to be multifaceted, most of the reported evidence has illuminated its chemopreventive and antineoplastic activities. As a natural product playing a role in cancer treatment, SIP may be used as chemotherapeutic ancillary agent or functional food. Based on the current findings on SIP, we have summarized four topics in this review, including: chemopreventive, antineoplastic, chemosensitive, and procoagulant and anticoagulant activities, which are correlative closely with the actions of anticancer agents on cancer patients, such as anticancer, toxicity and thrombogenesis, with the latter two actions being common causes of death in cancer cases exposed to chemotherapeutic agents.

  2. Pharmacological Tool Compounds for the Free Fatty Acid Receptor 4 (FFA4/GPR120)

    DEFF Research Database (Denmark)

    Hansen, Steffen V F; Ulven, Trond

    2017-01-01

    -obesity activity, and is progressively appearing as an attractive potential target for the treatment of metabolic dysfunctions such as obesity, type 2 diabetes and inflammatory disorders. Ongoing investigations of the pharmacological functions of FFA4 and validation of its potential as a therapeutic target depend...

  3. Benzofuran as a promising scaffold for the synthesis of antimicrobial and antibreast cancer agents: A review

    Directory of Open Access Journals (Sweden)

    Ghadamali Khodarahmi

    2015-01-01

    Full Text Available Benzofuran as an important heterocyclic compound is extensively found in natural products as well as synthetic materials. Since benzofuran drivatives display a diverse array of pharmacological activities, an interest in developing new biologically active agents from benzofuran is still under consideration. This review highlights recent findings on biological activities of benzofuran derivatives as antimicrobial and antibreast cancer agents and lays emphasis on the importance of benzofurans as a major source for drug design and development.

  4. Drug-drug interactions as a result of co-administering Δ9-THC and CBD with other psychotropic agents.

    Science.gov (United States)

    Rong, Carola; Carmona, Nicole E; Lee, Yena L; Ragguett, Renee-Marie; Pan, Zihang; Rosenblat, Joshua D; Subramaniapillai, Mehala; Shekotikhina, Margarita; Almatham, Fahad; Alageel, Asem; Mansur, Rodrigo; Ho, Roger C; McIntyre, Roger S

    2018-01-01

    To determine, via narrative, non-systematic review of pre-clinical and clinical studies, whether the effect of cannabis on hepatic biotransformation pathways would be predicted to result in clinically significant drug-drug interactions (DDIs) with commonly prescribed psychotropic agents. Areas covered: A non-systematic literature search was conducted using the following databases: PubMed, PsycInfo, and Scopus from inception to January 2017. The search term cannabis was cross-referenced with the terms drug interactions, cytochrome, cannabinoids, cannabidiol, and medical marijuana. Pharmacological, molecular, and physiologic studies evaluating the pharmacokinetics of Δ 9 -tetrahydrocannabinol (Δ 9 -THC) and cannabidiol (CBD), both in vitro and in vivo, were included. Bibliographies were also manually searched for additional citations that were relevant to the overarching aim of this paper. Expert opinion: Δ 9 -Tetrahydrocannabinol and CBD are substrates and inhibitors of cytochrome P450 enzymatic pathways relevant to the biotransformation of commonly prescribed psychotropic agents. The high frequency and increasing use of cannabis invites the need for healthcare providers to familiarize themselves with potential DDIs in persons receiving select psychotropic agents, and additionally consuming medical marijuana and/or recreational marijuana.

  5. Marketed nonsteroidal anti-inflammatory agents, antihypertensives, and human immunodeficiency virus protease inhibitors: as-yet-unused weapons of the oncologists’ arsenal

    Directory of Open Access Journals (Sweden)

    Papanagnou P

    2015-05-01

    Full Text Available Panagiota Papanagnou,1 Panagiotis Baltopoulos,2 Maria Tsironi1 1Department of Nursing, Faculty of Human Movement and Quality of Life Sciences, University of Peloponnese, Sparta, 2Department of Sports Medicine and Biology of Physical Activity, Faculty of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece Abstract: Experimental data indicate that several pharmacological agents that have long been used for the management of various diseases unrelated to cancer exhibit profound in vitro and in vivo anticancer activity. This is of major clinical importance, since it would possibly aid in reassessing the therapeutic use of currently used agents for which clinicians already have experience. Further, this would obviate the time-consuming process required for the development and the approval of novel antineoplastic drugs. Herein, both pre-clinical and clinical data concerning the antineoplastic function of distinct commercially available pharmacological agents that are not currently used in the field of oncology, ie, nonsteroidal anti-inflammatory drugs, antihypertensive agents, and anti-human immunodeficiency virus agents inhibiting viral protease, are reviewed. The aim is to provide integrated information regarding not only the molecular basis of the antitumor function of these agents but also the applicability of the reevaluation of their therapeutic range in the clinical setting. Keywords: repositioning, tumorigenesis, pleiotropy, exploitation

  6. Randomised controlled trials of psychological & pharmacological treatments for body dysmorphic disorder: A systematic review.

    Science.gov (United States)

    Phillipou, Andrea; Rossell, Susan L; Wilding, Helen E; Castle, David J

    2016-11-30

    Treatment for body dysmorphic disorder (BDD) often involves a combination of psychological and pharmacological interventions. However, only a small number of randomised controlled trials (RCTs) have been undertaken examining the efficacy of different therapeutic interventions. The aim of this study was to systematically review the RCTs involving psychological and pharmacological interventions for the treatment of BDD. The literature was searched to June 2015, and studies were included if they were written in English, empirical research papers published in peer-review journals, specifically assessed BDD patients, and involved a RCT assessing BDD symptoms pre- and post-intervention. Nine studies were identified: six involving psychological and three involving pharmacological interventions. Cognitive behaviour therapy, metacognitive therapy and selective serotonin reuptake inhibitors were identified as treatments with potential benefit. The small number of RCTs and the heterogeneity of findings emphasises the need for more high quality RCTs assessing both psychological and pharmacological interventions for BDD. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Foeniculum vulgare: A comprehensive review of its traditional use, phytochemistry, pharmacology, and safety

    Directory of Open Access Journals (Sweden)

    Manzoor A. Rather

    2016-11-01

    Full Text Available Foeniculum vulgare (Apiaceae commonly known as fennel is a well known and important medicinal and aromatic plant widely used as carminative, digestive, lactogogue and diuretic and in treating respiratory and gastrointestinal disorders. Its seeds are used as flavourings in baked goods, meat and fish dishes, ice cream, alcoholic beverages and herb mixtures. Phenols, phenolic glycosides and volatile aroma compounds such as trans-anethole, estragole and fenchone have been reported as the major phytoconstituents of this species. Different pharmacological experiments in a number of in vitro and in vivo models have convincingly demonstrated the ability of F. vulgare to exhibit antifungal, antibacterial, antioxidant, antithrombotic and hepatoprotective activities, lending support to the rationale behind several of its therapeutic uses. Phenolic compounds isolated from F. vulgare are considered to be responsible for its antioxidant activity while the volatile aroma compounds make it an excellent flavouring agent. The present review is an up-to-date and comprehensive analysis of the chemistry, pharmacology, traditional uses and safety of F. vulgare.

  8. Where current pharmacological therapies fall short in COPD: symptom control is not enough

    Directory of Open Access Journals (Sweden)

    N. Roche

    2007-09-01

    Full Text Available Chronic obstructive pulmonary disease (COPD is a common and progressive condition that is currently the fourth leading cause of death worldwide. There is now a large body of evidence indicating that both pulmonary and systemic inflammation are present in patients with stable COPD and may underlie both respiratory symptoms and common comorbidities of this disease. Smoking cessation and long-term oxygen therapy have been shown to change the course of COPD and recent results obtained with the combination of fluticasone and salmeterol have indicated that it could decrease mortality and slow the decline in lung function in patients with this disease. However, some pharmacological treatments can significantly improve dyspnoea, exercise tolerance, limitations in activity, rate of exacerbations and quality of life (e.g. long-acting bronchodilators and inhaled corticosteroids combined with a long-acting beta2-agonist. The ability of these agents to modify the rate of disease progression remains to be firmly established in large-scale, long-term trials. The concept of disease modification itself in COPD may need to be revisited and more precisely defined in terms of markers and clinical outcomes, including extrarespiratory manifestations: agents that durably affect symptoms, activities, exacerbations and quality of life should probably be considered as disease modifiers. It is also reasonable to suggest that early diagnosis and treatment of patients with COPD might be the first and potentially most important disease-modifying intervention. There is clearly a need for new therapies that directly target the specific inflammatory processes underlying chronic obstructive pulmonary disease and its pulmonary and extrapulmonary manifestations.

  9. Education and non-pharmacological approaches for gout.

    Science.gov (United States)

    Abhishek, Abhishek; Doherty, Michael

    2018-01-01

    The objectives of this review are as follows: to highlight the gaps in patient and physician knowledge of gout and how this might impede optimal disease management; to provide recommended core knowledge points that should be conveyed to people with gout; and to review non-pharmacological interventions that can be used in gout management. MeSH terms were used to identify eligible studies examining patients' and health-care professionals' knowledge about gout and its management. A narrative review of non-pharmacological management of gout is provided. Many health-care professionals have significant gaps in their knowledge about gout that have the potential to impede optimal management. Likewise, people with gout and the general population lack knowledge about causes, consequences and treatment of this condition. Full explanation about gout, including the potential benefits of urate-lowering treatment (ULT), motivates people with gout to want to start such treatment, and there is evidence, albeit limited, that educational interventions can improve uptake and adherence to ULT. Additionally, several non-pharmacological approaches, such as rest and topical ice application for acute attacks, avoidance of risk factors that can trigger acute attacks, and dietary interventions that may reduce gout attack frequency (e.g. cherry or cherry juice extract, skimmed milk powder or omega-3 fatty acid intake) or lower serum uric acid (e.g. vitamin C), can be used as adjuncts to ULT. There is a pressing need to educate health-care professionals, people with gout and society at large to remove the negative stereotypes associated with gout, which serve as barriers to optimal gout management, and to perceive gout as a significant medical condition. Moreover, there is a paucity of high-quality trial evidence on whether certain simple individual dietary and lifestyle factors can reduce the risk of recurrent gout attacks, and further studies are required in this field. © The Author 2018

  10. Novel Penicillin Analogues as Potential Antimicrobial Agents; Design, Synthesis and Docking Studies.

    Directory of Open Access Journals (Sweden)

    Zaman Ashraf

    Full Text Available A number of penicillin derivatives (4a-h were synthesized by the condensation of 6-amino penicillinic acid (6-APA with non-steroidal anti-inflammatory drugs as antimicrobial agents. In silico docking study of these analogues was performed against Penicillin Binding Protein (PDBID 1CEF using AutoDock Tools 1.5.6 in order to investigate the antimicrobial data on structural basis. Penicillin binding proteins function as either transpeptidases or carboxypeptidases and in few cases demonstrate transglycosylase activity in bacteria. The excellent antibacterial potential was depicted by compounds 4c and 4e against Escherichia coli, Staphylococcus epidermidus and Staphylococcus aureus compared to the standard amoxicillin. The most potent penicillin derivative 4e exhibited same activity as standard amoxicillin against S. aureus. In the enzyme inhibitory assay the compound 4e inhibited E. coli MurC with an IC50 value of 12.5 μM. The docking scores of these compounds 4c and 4e also verified their greater antibacterial potential. The results verified the importance of side chain functionalities along with the presence of central penam nucleus. The binding affinities calculated from docking results expressed in the form of binding energies ranges from -7.8 to -9.2kcal/mol. The carboxylic group of penam nucleus in all these compounds is responsible for strong binding with receptor protein with the bond length ranges from 3.4 to 4.4 Ǻ. The results of present work ratify that derivatives 4c and 4e may serve as a structural template for the design and development of potent antimicrobial agents.

  11. Small Scaffolds, Big Potential: Developing Miniature Proteins as Therapeutic Agents.

    Science.gov (United States)

    Holub, Justin M

    2017-09-01

    Preclinical Research Miniature proteins are a class of oligopeptide characterized by their short sequence lengths and ability to adopt well-folded, three-dimensional structures. Because of their biomimetic nature and synthetic tractability, miniature proteins have been used to study a range of biochemical processes including fast protein folding, signal transduction, catalysis and molecular transport. Recently, miniature proteins have been gaining traction as potential therapeutic agents because their small size and ability to fold into defined tertiary structures facilitates their development as protein-based drugs. This research overview discusses emerging developments involving the use of miniature proteins as scaffolds to design novel therapeutics for the treatment and study of human disease. Specifically, this review will explore strategies to: (i) stabilize miniature protein tertiary structure; (ii) optimize biomolecular recognition by grafting functional epitopes onto miniature protein scaffolds; and (iii) enhance cytosolic delivery of miniature proteins through the use of cationic motifs that facilitate endosomal escape. These objectives are discussed not only to address challenges in developing effective miniature protein-based drugs, but also to highlight the tremendous potential miniature proteins hold for combating and understanding human disease. Drug Dev Res 78 : 268-282, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  12. Effects of drug pharmacokinetic/pharmacodynamic properties, characteristics of medication use, and relevant pharmacological interventions on fall risk in elderly patients.

    Science.gov (United States)

    Chen, Ying; Zhu, Ling-Ling; Zhou, Quan

    2014-01-01

    Falls among the elderly are an issue internationally and a public health problem that brings substantial economic and quality-of-life burdens to individuals and society. Falls prevention is an important measure of nursing quality and patient safety. Numerous studies have evaluated the association of medication use with fall risk in elderly patients. However, an up-to-date review has not been available to summarize the multifaceted pharmaceutical concerns in the prevention of medication-related falls. Relevant literature was identified by performing searches in PubMed, Web of Science, and the Cochrane Library, covering the period until February 2014. We included studies that described an association between medications and falls, and effects of drug pharmacokinetic/pharmacodynamic properties, characteristics of medication use, and pharmacological interventions on fall risk in elderly patients. The full text of each included article was critically reviewed, and data interpretation was performed. Fall-risk-increasing drugs (FRIDs) include central nervous system-acting agents, cough preparations, nonsteroidal anti-inflammatory drugs, anti-Alzheimer's agents, antiplatelet agents, calcium antagonists, diuretics, α-blockers, digoxin, hypoglycemic drugs, neurotoxic chemotherapeutic agents, nasal preparations, and antiglaucoma ophthalmic preparations. The degree of medication-related fall risk was dependent on one or some of the following factors: drug pharmacokinetic/pharmacodynamic properties (eg, elimination half-life, metabolic pathway, genetic polymorphism, risk rating of medications despite belonging to the same therapeutic class) and/or characteristics of medication use (eg, number of medications and drug-drug interactions, dose strength, duration of medication use and time since stopping, medication change, prescribing appropriateness, and medication adherence). Pharmacological interventions, including withdrawal of FRIDs, pharmacist-conducted clinical medication

  13. Preclinical therapeutic potential of a nitrosylating agent in the treatment of ovarian cancer.

    Directory of Open Access Journals (Sweden)

    Shailendra Giri

    Full Text Available This study examines the role of s-nitrosylation in the growth of ovarian cancer using cell culture based and in vivo approaches. Using the nitrosylating agent, S-nitrosoglutathione (GSNO, a physiological nitric oxide molecule, we show that GSNO treatment inhibited proliferation of chemoresponsive and chemoresistant ovarian cancer cell lines (A2780, C200, SKVO3, ID8, OVCAR3, OVCAR4, OVCAR5, OVCAR7, OVCAR8, OVCAR10, PE01 and PE04 in a dose dependent manner. GSNO treatment abrogated growth factor (HB-EGF induced signal transduction including phosphorylation of Akt, p42/44 and STAT3, which are known to play critical roles in ovarian cancer growth and progression. To examine the therapeutic potential of GSNO in vivo, nude mice bearing intra-peritoneal xenografts of human A2780 ovarian carcinoma cell line (2 × 10(6 were orally administered GSNO at the dose of 1 mg/kg body weight. Daily oral administration of GSNO significantly attenuated tumor mass (p<0.001 in the peritoneal cavity compared to vehicle (phosphate buffered saline treated group at 4 weeks. GSNO also potentiated cisplatin mediated tumor toxicity in an A2780 ovarian carcinoma nude mouse model. GSNO's nitrosylating ability was reflected in the induced nitrosylation of various known proteins including NFκB p65, Akt and EGFR. As a novel finding, we observed that GSNO also induced nitrosylation with inverse relationship at tyrosine 705 phosphorylation of STAT3, an established player in chemoresistance and cell proliferation in ovarian cancer and in cancer in general. Overall, our study underlines the significance of S-nitrosylation of key cancer promoting proteins in modulating ovarian cancer and proposes the therapeutic potential of nitrosylating agents (like GSNO for the treatment of ovarian cancer alone or in combination with chemotherapeutic drugs.

  14. Potential of Biological Agents in Decontamination of Agricultural Soil

    Directory of Open Access Journals (Sweden)

    Muhammad Kashif Javaid

    2016-01-01

    Full Text Available Pesticides are widely used for the control of weeds, diseases, and pests of cultivated plants all over the world, mainly since the period after the Second World War. The use of pesticides is very extensive to control harm of pests all over the globe. Persistent nature of most of the synthetic pesticides causes serious environmental concerns. Decontamination of these hazardous chemicals is very essential. This review paper elaborates the potential of various biological agents in decontamination of agricultural soils. The agricultural crop fields are contaminated by the periodic applications of pesticides. Biodegradation is an ecofriendly, cost-effective, highly efficient approach compared to the physical and chemical methods which are expensive as well as unfriendly towards environment. Biodegradation is sensitive to the concentration levels of hydrogen peroxide and nitrogen along with microbial community, temperature, and pH changes. Experimental work for optimum conditions at lab scale can provide very fruitful results about specific bacterial, fungal strains. This study revealed an upper hand of bioremediation over physicochemical approaches. Further studies should be carried out to understand mechanisms of biotransformation.

  15. Potential of Biological Agents in Decontamination of Agricultural Soil.

    Science.gov (United States)

    Javaid, Muhammad Kashif; Ashiq, Mehrban; Tahir, Muhammad

    2016-01-01

    Pesticides are widely used for the control of weeds, diseases, and pests of cultivated plants all over the world, mainly since the period after the Second World War. The use of pesticides is very extensive to control harm of pests all over the globe. Persistent nature of most of the synthetic pesticides causes serious environmental concerns. Decontamination of these hazardous chemicals is very essential. This review paper elaborates the potential of various biological agents in decontamination of agricultural soils. The agricultural crop fields are contaminated by the periodic applications of pesticides. Biodegradation is an ecofriendly, cost-effective, highly efficient approach compared to the physical and chemical methods which are expensive as well as unfriendly towards environment. Biodegradation is sensitive to the concentration levels of hydrogen peroxide and nitrogen along with microbial community, temperature, and pH changes. Experimental work for optimum conditions at lab scale can provide very fruitful results about specific bacterial, fungal strains. This study revealed an upper hand of bioremediation over physicochemical approaches. Further studies should be carried out to understand mechanisms of biotransformation.

  16. Phytochemical and pharmacological review of Lagenaria sicereria.

    Science.gov (United States)

    Prajapati, Rakesh P; Kalariya, Manisha; Parmar, Sachin K; Sheth, Navin R

    2010-10-01

    Lagenaria siceraria (Molina) standley (LS) (Family: Cucurbitaceae) is an annual herbaceous climbing plant with a long history of traditional medicinal uses in many countries, especially in tropical and subtropical regions. Since ancient times the climber has been known for its curative properties, and has been utilized for treatment of various ailments, including jaundice, diabetes, ulcer, piles, colitis, insanity, hypertension, congestive cardiac failure (CCF), and skin diseases. Its fruit pulp is used both as an emetic and purgative, and for its cooling, diuretic, antibilious, and pectoral properties. Boiled in oil this pulp is used to treat rheumatism and insomnia. A wide range of chemical compounds including sterols, terpenoids, flavonoids, and saponins have been isolated from the species. Its extracts have been found to possess various pharmacological activities. Below, we give a comprehensive review of its ethnomedical uses, chemical constituents, and pharmacological profile as a medicinal plant. Particular attention is given to its analgesic, anti-inflammatory, antihyperlipidemic, diuretic, hepatoprotective, anthelmintic, and antibacterial effects so that its potential uses in pharmaceutics can be better evaluated.

  17. Phytochemical and pharmacological review of Lagenaria sicereria

    Directory of Open Access Journals (Sweden)

    Rakesh P Prajapati

    2010-01-01

    Full Text Available Lagenaria siceraria (Molina standley (LS (Family: Cucurbitaceae is an annual herbaceous climbing plant with a long history of traditional medicinal uses in many countries, especially in tropical and subtropical regions. Since ancient times the climber has been known for its curative properties, and has been utilized for treatment of various ailments, including jaundice, diabetes, ulcer, piles, colitis, insanity, hypertension, congestive cardiac failure (CCF, and skin diseases. Its fruit pulp is used both as an emetic and purgative, and for its cooling, diuretic, antibilious, and pectoral properties. Boiled in oil this pulp is used to treat rheumatism and insomnia. A wide range of chemical compounds including sterols, terpenoids, flavonoids, and saponins have been isolated from the species. Its extracts have been found to possess various pharmacological activities. Below, we give a comprehensive review of its ethnomedical uses, chemical constituents, and pharmacological profile as a medicinal plant. Particular attention is given to its analgesic, anti-inflammatory, antihyperlipidemic, diuretic, hepatoprotective, anthelmintic, and antibacterial effects so that its potential uses in pharmaceutics can be better evaluated.

  18. A Review on Ethnopharmacological Applications, Pharmacological Activities, and Bioactive Compounds of Mangifera indica (Mango)

    Science.gov (United States)

    2017-01-01

    Mangifera indica (family Anacardiaceae), commonly known as mango, is a pharmacologically, ethnomedically, and phytochemically diverse plant. Various parts of M. indica tree have been used in traditional medicine for the treatment of different ailments, and a number of bioactive phytochemical constituents of M. indica have been reported, namely, polyphenols, terpenes, sterols, carotenoids, vitamins, and amino acids, and so forth. Several studies have proven the pharmacological potential of different parts of mango trees such as leaves, bark, fruit peel and flesh, roots, and flowers as anticancer, anti-inflammatory, antidiabetic, antioxidant, antibacterial, antifungal, anthelmintic, gastroprotective, hepatoprotective, immunomodulatory, antiplasmodial, and antihyperlipemic. In the present review, a comprehensive study on ethnopharmacological applications, pharmacological activities, and bioactive compounds of M. indica has been described. PMID:29456572

  19. A Review on Ethnopharmacological Applications, Pharmacological Activities, and Bioactive Compounds of Mangifera indica (Mango

    Directory of Open Access Journals (Sweden)

    Meran Keshawa Ediriweera

    2017-01-01

    Full Text Available Mangifera indica (family Anacardiaceae, commonly known as mango, is a pharmacologically, ethnomedically, and phytochemically diverse plant. Various parts of M. indica tree have been used in traditional medicine for the treatment of different ailments, and a number of bioactive phytochemical constituents of M. indica have been reported, namely, polyphenols, terpenes, sterols, carotenoids, vitamins, and amino acids, and so forth. Several studies have proven the pharmacological potential of different parts of mango trees such as leaves, bark, fruit peel and flesh, roots, and flowers as anticancer, anti-inflammatory, antidiabetic, antioxidant, antibacterial, antifungal, anthelmintic, gastroprotective, hepatoprotective, immunomodulatory, antiplasmodial, and antihyperlipemic. In the present review, a comprehensive study on ethnopharmacological applications, pharmacological activities, and bioactive compounds of M. indica has been described.

  20. Characteristics of gadolinium-DTPA complex: a potential NMR contrast agent

    International Nuclear Information System (INIS)

    Weinmann, H.J.; Brasch, R.C.; Press, W.R.; Wesbey, G.E.

    1984-01-01

    Chelation of the rare-earth element gadolinium (Gd) with diethylenetriaminepentaacetic acid (DTPA) results in a strongly paramagnetic, stable complex that is well tolerated in animals. The strongly paramagnetic gadolinium complex reduces hydrogen-proton relaxation times even in low concentrations (less than 0.01 mmol/L). The pharmacokinetic behavior of intravenously delivered Gd-DTPA is similar to the well known iodinated contrast agents used in urography and angiography; excretion is predominately through the kidneys with greater than 90% recovery in 24 hr. The intravenous LD 50 of the meglumine salt of Gd-DTPA is 10 mmol/kg for the rat; in vivo there is no evidence of dissociation of the gadolinium ion from the DTPA ligand. The combination of strong proton relaxation, in-vivo stability, rapid urinary excretion, and high tolerance favors the further development and the potential clinical application of gadolinium-DTPA as a contrast enhancer in magnetic resonance imaging

  1. [Potential of cell penetrating peptides for cell drug delivery].

    Science.gov (United States)

    Poillot, Cathy; De Waard, Michel

    2011-05-01

    The interest of the scientific community for cell penetrating peptides (CPP) has been growing exponentially for these last years, and the list of novel CPP is increasing. These peptides are powerful tools for the delivery of cargoes to their site of action. Indeed, several drugs that cannot translocate through the cell plasma membrane have been successfully delivered into cells when grafted to a CPP. Various cargoes have been linked to CPP, such as oligonucleotides, pharmacologically active drugs, contrast agents for imaging, or nanoparticles as platforms for multigrafting purposes… This review illustrates the fabulous potential of CPP and the diversity of their use, but their most interesting application appears their future clinical use for the treatment of various pathological conditions. © 2011 médecine/sciences - Inserm / SRMS.

  2. [Contribution of animal experimentation to pharmacology].

    Science.gov (United States)

    Sassard, Jean; Hamon, Michel; Galibert, Francis

    2009-11-01

    Animal experimentation is of considerable importance in pharmacology and cannot yet be avoided when studying complex, highly integrated physiological functions. The use of animals has been drastically reduced in the classical phases of pharmacological research, for example when comparing several compounds belonging to the same pharmacological class. However, animal experiments remain crucial for generating and validating new therapeutic concepts. Three examples of such research, conducted in strict ethical conditions, will be used to illustrate the different ways in which animal experimentation has contributed to human therapeutics.

  3. On the Use of Potential Denaturing Agents for Ethanol in Direct Ethanol Fuel Cells

    OpenAIRE

    Domnik Bayer; Florina Jung; Birgit Kintzel; Martin Joos; Carsten Cremers; Dierk Martin; Jörg Bernard; Jens Tübke

    2011-01-01

    Acidic or alkaline direct ethanol fuel cells (DEFCs) can be a sustainable alternative for power generation if they are fuelled with bio-ethanol. However, in order to keep the fuel cheap, ethanol has to be exempted from tax on spirits by denaturing. In this investigation the potential denaturing agents fusel oil, tert-butyl ethyl ether, and Bitrex were tested with regard to their compatibility with fuel cells. Experiments were carried out both in sulphuric acid and potassium hydroxide solution...

  4. Bargaining agents based system for automatic classification of potential allergens in recipes

    Directory of Open Access Journals (Sweden)

    José ALEMANY

    2016-11-01

    Full Text Available The automatic recipe recommendation which take into account the dietary restrictions of users (such as allergies or intolerances is a complex and open problem. Some of the limitations of the problem is the lack of food databases correctly labeled with its potential allergens and non-unification of this information by companies in the food sector. In the absence of an appropriate solution, people affected by food restrictions cannot use recommender systems, because this recommend them inappropriate recipes. In order to resolve this situation, in this article we propose a solution based on a collaborative multi-agent system, using negotiation and machine learning techniques, is able to detect and label potential allergens in recipes. The proposed system is being employed in receteame.com, a recipe recommendation system which includes persuasive technologies, which are interactive technologies aimed at changing users’ attitudes or behaviors through persuasion and social influence, and social information to improve the recommendations.

  5. Radioprotection: mechanism and radioprotective agents including honeybee venom

    Energy Technology Data Exchange (ETDEWEB)

    Varanda, E.A.; Tavares, D.C. [UNESP, Araraquara, SP (Brazil). Escola de Ciencias Farmaceuticas. Dept. de Ciencias Biologicas

    1998-07-01

    Since 1949, a great deal of research has been carried on the radioprotective action of chemical substances. These substances have shown to reduce mortality when administered to animals prior to exposure to a lethal dose of radiation. This fact is of considerable importance since it permits reduction of radiation-induced damage and provides prophylactic treatment for the damaging effects produced by radiotherapy. The following radioprotection mechanisms were proposed: free radical scavenger, repair by hydrogen donation to target molecules formation of mixed disulfides, delay of cellular division and induction of hypoxia in the tissues. Radioprotective agents have been divided into four major groups: the thiol compounds, other sulfur compounds, pharmacological agents (anesthetic drugs, analgesics, tranquilizers, etc.) and other radioprotective agents (WR-1065, WR-2721, vitamins C and E, glutathione, etc.). Several studies revealed the radioprotective action of Apis mellifera honeybee venom as well as that of its components mellitin and histamine. Radioprotective activity of bee venom involves mainly the stimulation of the hematopoietic system. In addition, release of histamine and reduction in oxygen tension also contribute to the radioprotective action of bee venom. (author)

  6. Radioprotection: mechanism and radioprotective agents including honeybee venom

    International Nuclear Information System (INIS)

    Varanda, E.A.; Tavares, D.C.

    1998-01-01

    Since 1949, a great deal of research has been carried on the radioprotective action of chemical substances. These substances have shown to reduce mortality when administered to animals prior to exposure to a lethal dose of radiation. This fact is of considerable importance since it permits reduction of radiation-induced damage and provides prophylactic treatment for the damaging effects produced by radiotherapy. The following radioprotection mechanisms were proposed: free radical scavenger, repair by hydrogen donation to target molecules formation of mixed disulfides, delay of cellular division and induction of hypoxia in the tissues. Radioprotective agents have been divided into four major groups: the thiol compounds, other sulfur compounds, pharmacological agents (anesthetic drugs, analgesics, tranquilizers, etc.) and other radioprotective agents (WR-1065, WR-2721, vitamins C and E, glutathione, etc.). Several studies revealed the radioprotective action of Apis mellifera honeybee venom as well as that of its components mellitin and histamine. Radioprotective activity of bee venom involves mainly the stimulation of the hematopoietic system. In addition, release of histamine and reduction in oxygen tension also contribute to the radioprotective action of bee venom. (author)

  7. Physician attitudes towards pharmacological cognitive enhancement: safety concerns are paramount.

    Directory of Open Access Journals (Sweden)

    Opeyemi C Banjo

    2010-12-01

    Full Text Available The ethical dimensions of pharmacological cognitive enhancement have been widely discussed in academic circles and the popular media, but missing from the conversation have been the perspectives of physicians - key decision makers in the adoption of new technologies into medical practice. We queried primary care physicians in major urban centers in Canada and the United States with the aim of understanding their attitudes towards cognitive enhancement. Our primary hypothesis was that physicians would be more comfortable prescribing cognitive enhancers to older patients than to young adults. Physicians were presented with a hypothetical pharmaceutical cognitive enhancer that had been approved by the regulatory authorities for use in healthy adults, and was characterized as being safe, effective, and without significant adverse side effects. Respondents overwhelmingly reported increasing comfort with prescribing cognitive enhancers as the patient age increased from 25 to 65. When asked about their comfort with prescribing extant drugs that might be considered enhancements (sildenafil, modafinil, and methylphenidate or our hypothetical cognitive enhancer to a normal, healthy 40 year old, physicians were more comfortable prescribing sildenafil than any of the other three agents. When queried as to the reasons they answered as they did, the most prominent concerns physicians expressed were issues of safety that were not offset by the benefit afforded the individual, even in the face of explicit safety claims. Moreover, many physicians indicated that they viewed safety claims with considerable skepticism. It has become routine for safety to be raised and summarily dismissed as an issue in the debate over pharmacological cognitive enhancement; the observation that physicians were so skeptical in the face of explicit safety claims suggests that such a conclusion may be premature. Thus, physician attitudes suggest that greater weight be placed upon the

  8. Non Pharmacological Cognitive Enhancers - Current Perspectives.

    Science.gov (United States)

    Sachdeva, Ankur; Kumar, Kuldip; Anand, Kuljeet Singh

    2015-07-01

    Cognition refers to the mental processes involved in thinking, knowing, remembering, judging, and problem solving. Cognitive dysfunctions are an integral part of neuropsychiatric disorders as well as in healthy ageing. Cognitive Enhancers are molecules that help improve aspects of cognition like memory, intelligence, motivation, attention and concentration. Recently, Non Pharmacological Cognitive Enhancers have gained popularity as effective and safe alternative to various established drugs. Many of these Non Pharmacological Cognitive Enhancers seem to be more efficacious compared to currently available Pharmacological Cognitive Enhancers. This review describes and summarizes evidence on various Non Pharmacological Cognitive Enhancers such as physical exercise, sleep, meditation and yoga, spirituality, nutrients, computer training, brain stimulation, and music. We also discuss their role in ageing and different neuro-psychiatric disorders, and current status of Cochrane database recommendations. We searched the Pubmed database for the articles and reviews having the terms 'non pharmacological and cognitive' in the title, published from 2000 till 2014. A total of 11 results displayed, out of which 10 were relevant to the review. These were selected and reviewed. Appropriate cross-references within the articles along with Cochrane reviews were also considered and studied.

  9. Medicinal importance, pharmacological activities, and analytical aspects of aloin: A concise report

    Directory of Open Access Journals (Sweden)

    Kanika Patel

    2013-01-01

    Full Text Available Natural products such as pure phytoconstituents and plant extracts offer limitless opportunities for the new drug development due to its unmatched chemical diversity. Plants play an important role in the medicinal preparations for both preventive and curative purpose. Some of the currently available drugs i.e. aspirin, digitalis, anti-malarial (quinine and anti-cancer (vincristine, vinblastine were derived from the plant sources. Aloin (C21H22O9, a yellow colour compound is a mixture of two diastereoisomers, aloin A and aloin B. Aloin is an anthrone C-glucoside having molecular weight 418, and it is the main phytoconstituents of aloes. Aloin is used for various pharmacological purposes such as laxative agent. It is also used as ingredients of various laxative pharmaceutical preparations. So far, varieties of analytical methods have been developed for the estimation of aloin in aloes product, which are mainly based on HPLC and TLC techniques. In the present review, pharmacological activities and analytical aspects of aloin were highlighted along with some useful tissue culture techniques. This review could be helpful to the researcher for the investigation of new molecule from aloin in the future.

  10. Ficus deltoidea Jack: A Review on Its Phytochemical and Pharmacological Importance

    Directory of Open Access Journals (Sweden)

    Hamidun Bunawan

    2014-01-01

    Full Text Available Ficus deltoidea Jack (Moraceae has had a long history of use in traditional medicine among the Malays to alleviate and heal ailments such as sores, wounds, and rheumatism and as an after-birth tonic and an antidiabetic drug. Modern pharmacological studies demonstrated that this plant has a wide variety of beneficial attributes for human health. Despite its importance, a review of this species has not been published in the scientific literature to date. Here, we review and summarize the historic and current literature concerning the botany, traditional uses, phytochemistry, pharmacological effects, and toxicity of this wonder plant. This summary could be beneficial for future research aiming to exploit the therapeutic potential of this useful, medicinal species.

  11. Interaction of Ulocladium atrum, a Potential Biological Control Agent, with Botrytis cinerea and Grapevine Plantlets

    Directory of Open Access Journals (Sweden)

    Sébastien Ronseaux

    2013-09-01

    Full Text Available The effectiveness of biological control agent, Ulocladium atrum (isolates U13 and U16 in protecting Vitis vinifera L. cv. Chardonnay against gray mold disease caused by Botrytis cinerea, and simulation of the foliar defense responses was investigated. A degraded mycelium structure during cultural assay on potato dextrose agar revealed that U. atrum isolates U13 and U16 were both antagonistic to B. cinerea, mainly when isolates were inoculated two days before Botrytis. Under in vitro conditions, foliar application of U. atrum protected grapevine leaves against gray mold disease. An increase in chitinase activity was induced by the presence of U. atrum isolates indicating that the biological control agents triggered plant defense mechanisms. Moreover, U13 has the potential to colonize the grapevine plantlets and to improve their growth. The ability of U. atrum isolates to exhibit an antagonistic effect against B. cinerea in addition to their aptitude to induce plant resistance and to promote grapevine growth may explain a part of their biological activity. Hence, this study suggests that U. atrum provides a suitable biocontrol agent against gray mold in grapevines.

  12. The Relationship Between Dopamine Neurotransmitter Dynamics and the Blood-Oxygen-Level-Dependent (BOLD Signal: A Review of Pharmacological Functional Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Tyler J. Bruinsma

    2018-04-01

    Full Text Available Functional magnetic resonance imaging (fMRI is widely used in investigations of normal cognition and brain disease and in various clinical applications. Pharmacological fMRI (pharma-fMRI is a relatively new application, which is being used to elucidate the effects and mechanisms of pharmacological modulation of brain activity. Characterizing the effects of neuropharmacological agents on regional brain activity using fMRI is challenging because drugs modulate neuronal function in a wide variety of ways, including through receptor agonist, antagonist, and neurotransmitter reuptake blocker events. Here we review current knowledge on neurotransmitter-mediated blood-oxygen-level dependent (BOLD fMRI mechanisms as well as recently updated methodologies aimed at more fully describing the effects of neuropharmacologic agents on the BOLD signal. We limit our discussion to dopaminergic signaling as a useful lens through which to analyze and interpret neurochemical-mediated changes in the hemodynamic BOLD response. We also discuss the need for future studies that use multi-modal approaches to expand the understanding and application of pharma-fMRI.

  13. Using Caenorhabditis elegans as a Model for Obesity Pharmacology Development.

    Science.gov (United States)

    Zheng, Jolene; Vasselli, Joseph R; King, Jason F; King, Michael L; We, Wenqian; Fitzpatrick, Zachary; Johnson, William D; Finley, John W; Martin, Roy J; Keenan, Michael J; Enright, Frederic M; Greenway, Frank L

    The Caenorhabditis elegans model is a rapid and inexpensive method to address pharmacologic questions. We describe the use of C. elegans to explore 2 pharmacologic questions concerning candidate antiobesity drugs and illustrate its potential usefulness in pharmacologic research: (1) to determine a ratio of betahistine-olanzapine that blocks the olanzapine-induced intestinal fat deposition (IFD) as detected by Nile red staining and (2) to identify the mechanism of action of a pharmaceutical candidate AB-101 that reduces IFD. Olanzapine (53 μg/mL) increased the IFD (12.1 ± 0.1%, P < 0.02), which was blocked by betahistine (763 μg/mL, 39.3 ± 0.01%, P < 0.05) in wild-type C. elegans (N2). AB-101 (1.0%) reduced the IFD in N2 (P < 0.05), increased the pharyngeal pumping rate (P < 0.05), and reversed the elevated IFD induced by protease inhibitors atazanavir and ritonavir (P < 0.05). AB-101 did not affect IFD in a ACS null mutant strain acs-4(ok2872) III/hT2[bli-4(e937) let-?(q782) qIs48](I;III) suggesting an involvement of the lipid oxidation pathway and an upregulation of CPT-1. Our studies suggest that C. elegans may be used as a resource in pharmacologic research. This article is intended to stimulate a greater appreciation of its value in the development of new pharmaceutical interventions.

  14. The Dutch vision of clinical pharmacology

    NARCIS (Netherlands)

    Schellens, J H M; Grouls, R; Guchelaar, H J; Touw, D J; Rongen, G A; de Boer, A; Van Bortel, L M

    Recent position papers addressing the profession of clinical pharmacology have expressed concerns about the decline of interest in the field among clinicians and medical educators in the United Kingdom and other Western countries, whether clinical pharmacology is actually therapeutics, and whether

  15. Assessing the potential of brachiaria decumbens as remediation agent for soil contaminated wit oil sludge

    International Nuclear Information System (INIS)

    Latiffah Norddin; Ahmad Nazrul Abd Wahid; Hazlina Abdullah; Abdul Razak Ruslan

    2005-01-01

    Bioremediation is a method of treatment of soil or water contaminated with toxic materials, involving the use of living organisms. Oil or petroleum sludge is a waste product of the petroleum refining industry, and is now accumulating at a fast rate at petroleum refinery sites in the country. Common components of oil sludge are mud and sand, containing toxic materials from hydrocarbons, heavy metals and radioactive elements from the seabed. In the present study, the oil sludge samples were obtained from barrels of the materials stored at the Radioactive Waste Treatment Centre, MINT. The samples were analysed of their compounds, elemental and radioactive contents. Trials on microbial degradation of the sludge materials were ongoing. This paper discusses the potential of a grass to remediate soils contaminated with petroleum sludge. Remediation of soils contaminated with organic compounds and heavy metals using plants, including grasses, including Vetiver, Lolium and Agrostis have been carried out in many countries. A greenhouse pot trial was conducted to assess the suitability of the pasture grass Brachiaria decumbens Stapf. and its mutant Brachiaria decumbens KLUANG Comel as a remediation agent for oil sludge contaminated soil. Samples of grasses and soils before planting, during growth stage and at end of experiment were analysed for the different toxicity. Although the grasses were promoted for use in pasture, and KLUANG Comel has good potential as an ornamental plant, too, their other potentials, including as phytoremediation agents need to be explored. (Author)

  16. Pharmacological factors in the saliva of blood-feeding insects. Implications for vesicular stomatitis epidemiology.

    Science.gov (United States)

    Tabachnick, W J

    2000-01-01

    Vesicular stomatitis (VS) epizootics in the Western United States have caused substantial economic losses to U.S. livestock industries in 1995, 1997, and 1998. The role of arthropods in transmitting VS to U.S. livestock is unclear. In particular, the impact of arthropod salivary gland factors in VS infections in livestock needs study. Pharmacological effects of arthropod salivary gland factors on animals are reviewed. The potential effects of arthropod saliva on the transmission and spread of VS virus to livestock in the Western U.S. is presented with emphasis on the biting midge, Culicoides sonorensis. Information is discussed with attention to vector potential of C. sonorensis, and its use as a model for evaluating insect salivary gland pharmacology on livestock response to VS.

  17. Silibinin, dexamethasone, and doxycycline as potential therapeutic agents for treating vesicant-inflicted ocular injuries

    International Nuclear Information System (INIS)

    Tewari-Singh, Neera; Jain, Anil K.; Inturi, Swetha; Ammar, David A.; Agarwal, Chapla; Tyagi, Puneet; Kompella, Uday B.; Enzenauer, Robert W.; Petrash, J. Mark; Agarwal, Rajesh

    2012-01-01

    There are no effective and approved therapies against devastating ocular injuries caused by vesicating chemical agents sulfur mustard (SM) and nitrogen mustard (NM). Herein, studies were carried out in rabbit corneal cultures to establish relevant ocular injury biomarkers with NM for screening potential efficacious agents in laboratory settings. NM (100 nmol) exposure of the corneas for 2 h (cultured for 24 h), showed increases in epithelial thickness, ulceration, apoptotic cell death, epithelial detachment microbullae formation, and the levels of VEGF, cyclooxygenase-2 (COX-2) and matrix metalloproteinase-9 (MMP-9). Employing these biomarkers, efficacy studies were performed with agent treatments 2 h and every 4 h thereafter, for 24 h following NM exposure. Three agents were evaluated, including prescription drugs dexamethasone (0.1%; anti-inflammatory steroid) and doxycycline (100 nmol; antibiotic and MMP inhibitor) that have been studied earlier for treating vesicant-induced eye injuries. We also examined silibinin (100 μg), a non-toxic natural flavanone found to be effective in treating SM analog-induced skin injuries in our earlier studies. Treatments of doxycycline + dexamethasone, and silibinin were more effective than doxycycline or dexamethasone alone in reversing NM-induced epithelial thickening, microbullae formation, apoptotic cell death, and MMP-9 elevation. However, dexamethasone and silibinin alone were more effective in reversing NM-induced VEGF levels. Doxycycline, dexamethasone and silibinin were all effective in reversing NM-induced COX-2 levels. Apart from therapeutic efficacy of doxycycline and dexamethasone, these results show strong multifunctional efficacy of silibinin in reversing NM-induced ocular injuries, which could help develop effective and safe therapeutics against ocular injuries by vesicants. -- Highlights: ► Established injury biomarkers in rabbit corneal culture with nitrogen mustard (NM) ► This NM model is a cost effective

  18. Silibinin, dexamethasone, and doxycycline as potential therapeutic agents for treating vesicant-inflicted ocular injuries

    Energy Technology Data Exchange (ETDEWEB)

    Tewari-Singh, Neera, E-mail: Neera.Tewari-Singh@ucdenver.edu [Department of Pharmaceutical Sciences, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO 80045 (United States); Jain, Anil K., E-mail: Anil.Jain@ucdenver.edu [Department of Pharmaceutical Sciences, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO 80045 (United States); Inturi, Swetha, E-mail: Swetha.Inturi@ucdenver.edu [Department of Pharmaceutical Sciences, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO 80045 (United States); Ammar, David A., E-mail: David.Ammar@ucdenver.edu [Department of Ophthalmology, University of Colorado School of Medicine, Aurora, CO 80045 (United States); Agarwal, Chapla, E-mail: Chapla.Agarwal@ucdenver.edu [Department of Pharmaceutical Sciences, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO 80045 (United States); Tyagi, Puneet, E-mail: Puneet.Tyagi@ucdenver.edu [Department of Pharmaceutical Sciences, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO 80045 (United States); Kompella, Uday B., E-mail: Uday.Kompella@ucdenver.edu [Department of Pharmaceutical Sciences, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO 80045 (United States); Enzenauer, Robert W., E-mail: Robert.Enzenauer@ucdenver.edu [Department of Ophthalmology, University of Colorado School of Medicine, Aurora, CO 80045 (United States); Petrash, J. Mark, E-mail: Mark.Petrash@ucdenver.edu [Department of Ophthalmology, University of Colorado School of Medicine, Aurora, CO 80045 (United States); Agarwal, Rajesh, E-mail: Rajesh.Agarwal@ucdenver.edu [Department of Pharmaceutical Sciences, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO 80045 (United States)

    2012-10-01

    There are no effective and approved therapies against devastating ocular injuries caused by vesicating chemical agents sulfur mustard (SM) and nitrogen mustard (NM). Herein, studies were carried out in rabbit corneal cultures to establish relevant ocular injury biomarkers with NM for screening potential efficacious agents in laboratory settings. NM (100 nmol) exposure of the corneas for 2 h (cultured for 24 h), showed increases in epithelial thickness, ulceration, apoptotic cell death, epithelial detachment microbullae formation, and the levels of VEGF, cyclooxygenase-2 (COX-2) and matrix metalloproteinase-9 (MMP-9). Employing these biomarkers, efficacy studies were performed with agent treatments 2 h and every 4 h thereafter, for 24 h following NM exposure. Three agents were evaluated, including prescription drugs dexamethasone (0.1%; anti-inflammatory steroid) and doxycycline (100 nmol; antibiotic and MMP inhibitor) that have been studied earlier for treating vesicant-induced eye injuries. We also examined silibinin (100 μg), a non-toxic natural flavanone found to be effective in treating SM analog-induced skin injuries in our earlier studies. Treatments of doxycycline + dexamethasone, and silibinin were more effective than doxycycline or dexamethasone alone in reversing NM-induced epithelial thickening, microbullae formation, apoptotic cell death, and MMP-9 elevation. However, dexamethasone and silibinin alone were more effective in reversing NM-induced VEGF levels. Doxycycline, dexamethasone and silibinin were all effective in reversing NM-induced COX-2 levels. Apart from therapeutic efficacy of doxycycline and dexamethasone, these results show strong multifunctional efficacy of silibinin in reversing NM-induced ocular injuries, which could help develop effective and safe therapeutics against ocular injuries by vesicants. -- Highlights: ► Established injury biomarkers in rabbit corneal culture with nitrogen mustard (NM) ► This NM model is a cost effective

  19. Curcumin: An age-old anti-inflammatory and anti-neoplastic agent

    Directory of Open Access Journals (Sweden)

    Matthew C. Fadus

    2017-07-01

    Full Text Available Curcumin is a natural anti-inflammatory agent that has been used for treating medical conditions for many years. Several experimental and pharmacologic trials have demonstrated its efficacy in the role as an anti-inflammatory agent. Curcumin has been shown to be effective in treating chronic conditions like rheumatoid arthritis, inflammatory bowel disease, Alzheimer's and common malignancies like colon, stomach, lung, breast, and skin cancers. As treatments in medicine become more and more complex, the answer may be something simpler. This is a review article written with the objective to systematically analyze the wealth of information regarding the medical use of curcumin, the “curry spice”, and to understand the existent gaps which have prevented its widespread application in the medical community.

  20. New Oral Hypoglycemic Agents and Cardiovascular Risk. Crossing the Metabolic Border.

    Science.gov (United States)

    Dalama, Belén; Mesa, Jordi

    2016-11-01

    Sodium-glucose cotransporter 2 inhibitors are a novel pharmacological class of oral hypoglycemic agents that lower glucose levels by increasing renal glucose excretion in an insulin-independent manner. However, this seemingly simple mechanism has more complex indirect metabolic effects. The results of randomized clinical trials have shown that these inhibitors effectively lower blood glucose and glycated hemoglobin levels without increasing the risk of hypoglycemia and, at the same time, also reduce bodyweight and systolic blood pressure. In this review, we describe the mechanism of action, efficacy, and safety of currently marketed drugs, as well as other risk factors besides glucose that can potentially be modulated positively. Recent data on empagliflozin showing a significant cardiovascular benefit have compelled us to update knowledge of this new therapeutic class for the treatment of type 2 diabetes. Copyright © 2016 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  1. Screening for potential anti-infective agents towards Burkholderia pseudomallei infection

    Science.gov (United States)

    Eng, Su Anne; Nathan, Sheila

    2014-09-01

    The established treatment for melioidosis is antibiotic therapy. However, a constant threat to this form of treatment is resistance development of the causative agent, Burkholderia pseudomallei, towards antibiotics. One option to circumvent this threat of antibiotic resistance is to search for new alternative anti-infectives which target the host innate immune system and/or bacterial virulence. In this study, 29 synthetic compounds were evaluated for their potential to increase the lifespan of an infected host. The nematode Caenorhabditis elegans was adopted as the infection model as its innate immune pathways are homologous to humans. Screens were performed in a liquid-based survival assay containing infected worms exposed to individual compounds and survival of untreated and compound-treated worms were compared. A primary screen identified nine synthetic compounds that extended the lifespan of B. pseudomallei-infected worms. Subsequently, a disc diffusion test was performed on these selected compounds to delineate compounds into those that enhanced the survival of worms via antimicrobial activity i.e. reducing the number of infecting bacteria, or into those that did not target pathogen viability. Out of the nine hits selected, two demonstrated antimicrobial effects on B. pseudomallei. Therefore, the findings from this study suggest that the other seven identified compounds are potential anti-infectives which could protect a host against B. pseudomallei infection without developing the risk of drug resistance.

  2. Electronic cigarettes and nicotine clinical pharmacology.

    Science.gov (United States)

    Schroeder, Megan J; Hoffman, Allison C

    2014-05-01

    To review the available literature evaluating electronic cigarette (e-cigarette) nicotine clinical pharmacology in order to understand the potential impact of e-cigarettes on individual users, nicotine dependence and public health. Literature searches were conducted between 1 October 2012 and 30 September 2013 using key terms in five electronic databases. Studies were included in the review if they were in English and publicly available; non-clinical studies, conference abstracts and studies exclusively measuring nicotine content in e-cigarette cartridges were excluded from the review. Nicotine yields from automated smoking machines suggest that e-cigarettes deliver less nicotine per puff than traditional cigarettes, and clinical studies indicate that e-cigarettes deliver only modest nicotine concentrations to the inexperienced e-cigarette user. However, current e-cigarette smokers are able to achieve systemic nicotine and/or cotinine concentrations similar to those produced from traditional cigarettes. Therefore, user experience is critically important for nicotine exposure, and may contribute to the products' ability to support and maintain nicotine dependence. Knowledge about e-cigarette nicotine pharmacology remains limited. Because a user's e-cigarette experience may significantly impact nicotine delivery, future nicotine pharmacokinetic and pharmacodynamic studies should be conducted in experienced users to accurately assess the products' impact on public health.

  3. Electronic cigarettes and nicotine clinical pharmacology

    Science.gov (United States)

    Schroeder, Megan J; Hoffman, Allison C

    2014-01-01

    Objective To review the available literature evaluating electronic cigarette (e-cigarette) nicotine clinical pharmacology in order to understand the potential impact of e-cigarettes on individual users, nicotine dependence and public health. Methods Literature searches were conducted between 1 October 2012 and 30 September 2013 using key terms in five electronic databases. Studies were included in the review if they were in English and publicly available; non-clinical studies, conference abstracts and studies exclusively measuring nicotine content in e-cigarette cartridges were excluded from the review. Results Nicotine yields from automated smoking machines suggest that e-cigarettes deliver less nicotine per puff than traditional cigarettes, and clinical studies indicate that e-cigarettes deliver only modest nicotine concentrations to the inexperienced e-cigarette user. However, current e-cigarette smokers are able to achieve systemic nicotine and/or cotinine concentrations similar to those produced from traditional cigarettes. Therefore, user experience is critically important for nicotine exposure, and may contribute to the products’ ability to support and maintain nicotine dependence. Conclusions Knowledge about e-cigarette nicotine pharmacology remains limited. Because a user's e-cigarette experience may significantly impact nicotine delivery, future nicotine pharmacokinetic and pharmacodynamic studies should be conducted in experienced users to accurately assess the products’ impact on public health. PMID:24732160

  4. Harnessing Big Data for Systems Pharmacology.

    Science.gov (United States)

    Xie, Lei; Draizen, Eli J; Bourne, Philip E

    2017-01-06

    Systems pharmacology aims to holistically understand mechanisms of drug actions to support drug discovery and clinical practice. Systems pharmacology modeling (SPM) is data driven. It integrates an exponentially growing amount of data at multiple scales (genetic, molecular, cellular, organismal, and environmental). The goal of SPM is to develop mechanistic or predictive multiscale models that are interpretable and actionable. The current explosions in genomics and other omics data, as well as the tremendous advances in big data technologies, have already enabled biologists to generate novel hypotheses and gain new knowledge through computational models of genome-wide, heterogeneous, and dynamic data sets. More work is needed to interpret and predict a drug response phenotype, which is dependent on many known and unknown factors. To gain a comprehensive understanding of drug actions, SPM requires close collaborations between domain experts from diverse fields and integration of heterogeneous models from biophysics, mathematics, statistics, machine learning, and semantic webs. This creates challenges in model management, model integration, model translation, and knowledge integration. In this review, we discuss several emergent issues in SPM and potential solutions using big data technology and analytics. The concurrent development of high-throughput techniques, cloud computing, data science, and the semantic web will likely allow SPM to be findable, accessible, interoperable, reusable, reliable, interpretable, and actionable.

  5. Systems pharmacology-based drug discovery for marine resources: an example using sea cucumber (Holothurians).

    Science.gov (United States)

    Guo, Yingying; Ding, Yan; Xu, Feifei; Liu, Baoyue; Kou, Zinong; Xiao, Wei; Zhu, Jingbo

    2015-05-13

    Sea cucumber, a kind of marine animal, have long been utilized as tonic and traditional remedies in the Middle East and Asia because of its effectiveness against hypertension, asthma, rheumatism, cuts and burns, impotence, and constipation. In this study, an overall study performed on sea cucumber was used as an example to show drug discovery from marine resource by using systems pharmacology model. The value of marine natural resources has been extensively considered because these resources can be potentially used to treat and prevent human diseases. However, the discovery of drugs from oceans is difficult, because of complex environments in terms of composition and active mechanisms. Thus, a comprehensive systems approach which could discover active constituents and their targets from marine resource, understand the biological basis for their pharmacological properties is necessary. In this study, a feasible pharmacological model based on systems pharmacology was established to investigate marine medicine by incorporating active compound screening, target identification, and network and pathway analysis. As a result, 106 candidate components of sea cucumber and 26 potential targets were identified. Furthermore, the functions of sea cucumber in health improvement and disease treatment were elucidated in a holistic way based on the established compound-target and target-disease networks, and incorporated pathways. This study established a novel strategy that could be used to explore specific active mechanisms and discover new drugs from marine sources. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Pharmacology of dextromethorphan: Relevance to dextromethorphan/quinidine (Nuedexta®) clinical use.

    Science.gov (United States)

    Taylor, Charles P; Traynelis, Stephen F; Siffert, Joao; Pope, Laura E; Matsumoto, Rae R

    2016-08-01

    Dextromethorphan (DM) has been used for more than 50years as an over-the-counter antitussive. Studies have revealed a complex pharmacology of DM with mechanisms beyond blockade of N-methyl-d-aspartate (NMDA) receptors and inhibition of glutamate excitotoxicity, likely contributing to its pharmacological activity and clinical potential. DM is rapidly metabolized to dextrorphan, which has hampered the exploration of DM therapy separate from its metabolites. Coadministration of DM with a low dose of quinidine inhibits DM metabolism, yields greater bioavailability and enables more specific testing of the therapeutic properties of DM apart from its metabolites. The development of the drug combination DM hydrobromide and quinidine sulfate (DM/Q), with subsequent approval by the US Food and Drug Administration for pseudobulbar affect, led to renewed interest in understanding DM pharmacology. This review summarizes the interactions of DM with brain receptors and transporters and also considers its metabolic and pharmacokinetic properties. To assess the potential clinical relevance of these interactions, we provide an analysis comparing DM activity from in vitro functional assays with the estimated free drug DM concentrations in the brain following oral DM/Q administration. The findings suggest that DM/Q likely inhibits serotonin and norepinephrine reuptake and also blocks NMDA receptors with rapid kinetics. Use of DM/Q may also antagonize nicotinic acetylcholine receptors, particularly those composed of α3β4 subunits, and cause agonist activity at sigma-1 receptors. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Trends in the use of stable isotopes in biochemistry and pharmacology

    International Nuclear Information System (INIS)

    Matwiyoff, N.A.; Walker, T.E.

    1977-01-01

    Recent trends in the use of the stable isotopes 13 C, 15 N and 18 O in biochemistry and pharmacology are reviewed with emphasis on the studies that have employed nuclear magnetic resonance (nmr) spectroscopy and mass spectrometry as analytical techniques. Pharmacological studies with drugs and other compounds labelled with stable isotopes have developed in parallel with the rapid progress in the enhancement of sensitivity and selectivity of gas chromatography - mass spectrometric analyses, and have been directed largely to an evaluation of pharmako-kinetics and drug metabolic pathways. In these studies, illustrated with selected samples, isotopically labelled compounds have been used to advantage as internal standards for the mass spectrometric analyses and as in vivo tracers for metabolites. In the broader discipline of biochemistry, stable isotopes and isotopically labelled compounds have been used increasingly in conjuction with both nmr spectroscopy and mass spectrometry in tracer and structural studies. The more recent trends in the use of stable isotopes in these biochemical studies are discussed in the context of the improvements in analytical techniques. Specific examples will be drawn from investigations of the biosynthesis of natural products by micro-organisms; the protein, fat and carbohydrate fluxes in humans; and the structure and function of enzymes, membranes and other macro-molecular assemblages. The potential for the future development of stable isotopes in biochemistry and pharmacology are considered briefly, together with some of the problems that must be solved if their considerable potential is to be realized. (author)

  8. Protein redox chemistry: post-translational cysteine modifications that regulate signal transduction and drug pharmacology

    Directory of Open Access Journals (Sweden)

    Revati eWani

    2014-10-01

    Full Text Available The perception of reactive oxygen species (ROS has evolved over the past decade from agents of cellular damage to secondary messengers which modify signaling proteins in physiology and the disease state (e.g. cancer. New protein targets of specific oxidation are rapidly being identified. One emerging class of redox modification occurs to the thiol side chain of cysteine residues which can produce multiple chemically-distinct alterations to the protein (e.g. sulfenic/sulfinic/sulfonic acid, disulfides. These post-translational modifications (PTM are shown to affect the protein structure and function. Because redox-sensitive proteins can traffic between subcellular compartments that have different redox environments, cysteine oxidation enables a spatio-temporal control to signaling. Understanding ramifications of these oxidative modifications to the functions of signaling proteins is crucial for understanding cellular regulation as well as for informed-drug discovery process. The effects of EGFR oxidation of Cys797 on inhibitor pharmacology are presented to illustrate the principle. Taken together, cysteine redox PTM can impact both cell biology and drug pharmacology.

  9. Potential of Pest and Host Phenological Data in the Attribution of Regional Forest Disturbance Detection Maps According to Causal Agent

    Science.gov (United States)

    Spruce, Joseph; Hargrove, William; Norman Steve; Christie, William

    2014-01-01

    Near real time forest disturbance detection maps from MODIS NDVI phenology data have been produced since 2010 for the conterminous U.S., as part of the on-line ForWarn national forest threat early warning system. The latter has been used by the forest health community to identify and track many regional forest disturbances caused by multiple biotic and abiotic damage agents. Attribution of causal agents for detected disturbances has been a goal since project initiation in 2006. Combined with detailed cover type maps, geospatial pest phenology data offer a potential means for narrowing the candidate causal agents responsible for a given biotic disturbance. U.S. Aerial Detection Surveys (ADS) employ such phenology data. Historic ADS products provide general locational data on recent insect-induced forest type specific disturbances that may help in determining candidate causal agents for MODIS-based disturbance maps, especially when combined with other historic geospatial disturbance data (e.g., wildfire burn scars and drought maps). Historic ADS disturbance detection polygons can show severe and extensive regional forest disturbances, though they also can show polygons with sparsely scattered or infrequent disturbances. Examples will be discussed that use various historic disturbance data to help determine potential causes of MODIS-detected regional forest disturbance anomalies.

  10. Botanical drugs, synergy, and network pharmacology: forth and back to intelligent mixtures.

    Science.gov (United States)

    Gertsch, Jürg

    2011-07-01

    For centuries the science of pharmacognosy has dominated rational drug development until it was gradually substituted by target-based drug discovery in the last fifty years. Pharmacognosy stems from the different systems of traditional herbal medicine and its "reverse pharmacology" approach has led to the discovery of numerous pharmacologically active molecules and drug leads for humankind. But do botanical drugs also provide effective mixtures? Nature has evolved distinct strategies to modulate biological processes, either by selectively targeting biological macromolecules or by creating molecular promiscuity or polypharmacology (one molecule binds to different targets). Widely claimed to be superior over monosubstances, mixtures of bioactive compounds in botanical drugs allegedly exert synergistic therapeutic effects. Despite evolutionary clues to molecular synergism in nature, sound experimental data are still widely lacking to support this assumption. In this short review, the emerging concept of network pharmacology is highlighted, and the importance of studying ligand-target networks for botanical drugs is emphasized. Furthermore, problems associated with studying mixtures of molecules with distinctly different pharmacodynamic properties are addressed. It is concluded that a better understanding of the polypharmacology and potential network pharmacology of botanical drugs is fundamental in the ongoing rationalization of phytotherapy. © Georg Thieme Verlag KG Stuttgart · New York.

  11. The potential of agent-based modelling for verification of people trajectories based on smartphone sensor data

    International Nuclear Information System (INIS)

    Hillen, F; Ehlers, M; Höfle, B; Reinartz, P

    2014-01-01

    In this paper the potential of smartphone sensor data for verification of people trajectories derived from airborne remote sensing data are investigated and discussed based on simulated test recordings in the city of Osnabrueck, Germany. For this purpose, the airborne imagery is simulated by images taken from a high building with a typical single lens reflex camera. The smartphone data required for the analysis of the potential is simultaneously recorded by test persons on the ground. In a second step, the quality of the smartphone sensor data is evaluated regarding the integration into simulation and modelling approaches. In this context we studied the potential of the agent-based modelling technique concerning the verification of people trajectories

  12. Ventilatory function assessment in safety pharmacology: Optimization of rodent studies using normocapnic or hypercapnic conditions

    International Nuclear Information System (INIS)

    Goineau, Sonia; Rompion, Sonia; Guillaume, Philippe; Picard, Sandra

    2010-01-01

    Although the whole body plethysmography for unrestrained animals is the most widely used method to assess the respiratory risk of new drugs in safety pharmacology, non-appropriate experimental conditions may mask deleterious side effects of some substances. If stimulant or bronchodilatory effects can be easily evidenced in rodents under standard experimental conditions, i.e. normal air breathing and diurnal phase, drug-induced respiratory depression remains more difficult to detect. This study was aimed at comparing the responsiveness of Wistar rats, Duncan Hartley guinea-pigs or BALB/c mice to the respiratory properties of theophylline (50 or 100 mg/kg p.o.) or morphine (30 mg/kg i.p.) under varying conditions (100% air versus 5% CO 2 -enriched air, light versus dark day phase), in order to select the most appropriate experimental conditions to each species for safety airway investigations. Our results showed that under normocapnia the ventilatory depressant effects of morphine can be easily evidenced in mice, slightly observed in guinea-pigs and not detected in rats in any day phase. Slight hypercapnic conditions enhanced the responsiveness of rats to morphine but not that of guinea-pigs and importantly they did not blunt the airway responsiveness of rats to the stimulation and bronchodilation evoked by theophylline, the most widely used reference agent in safety pharmacology studies. In conclusion, hypercapnic conditions associated with the non-invasive whole body plethysmography should be considered for optimizing the assessment of both the ventilatory depressant potential of morphine-like substances or the respiratory stimulant effects of new drugs in the rat, the most extensively used species in rodent safety and toxicological investigations.

  13. Direct Fibrinolytic Snake Venom Metalloproteinases Affecting Hemostasis: Structural, Biochemical Features and Therapeutic Potential.

    Science.gov (United States)

    Sanchez, Eladio F; Flores-Ortiz, Renzo J; Alvarenga, Valeria G; Eble, Johannes A

    2017-12-05

    Snake venom metalloproteinases (SVMPs) are predominant in viperid venoms, which provoke hemorrhage and affect hemostasis and thrombosis. P-I class enzymes consist only of a single metalloproteinase domain. Despite sharing high sequence homology, only some of them induce hemorrhage. They have direct fibrin(ogen)olytic activity. Their main biological substrate is fibrin(ogen), whose Aα-chain is degraded rapidly and independently of activation of plasminogen. It is important to understand their biochemical and physiological mechanisms, as well as their applications, to study the etiology of some human diseases and to identify sites of potential intervention. As compared to all current antiplatelet therapies to treat cardiovascular events, the SVMPs have outstanding biochemical attributes: (a) they are insensitive to plasma serine proteinase inhibitors; (b) they have the potential to avoid bleeding risk; (c) mechanistically, they are inactivated/cleared by α2-macroglobulin that limits their range of action in circulation; and (d) few of them also impair platelet aggregation that represent an important target for therapeutic intervention. This review will briefly highlight the structure-function relationships of these few direct-acting fibrinolytic agents, including, barnettlysin-I, isolated from Bothrops barnetti venom, that could be considered as potential agent to treat major thrombotic disorders. Some of their pharmacological advantages are compared with plasmin.

  14. Direct Fibrinolytic Snake Venom Metalloproteinases Affecting Hemostasis: Structural, Biochemical Features and Therapeutic Potential

    Directory of Open Access Journals (Sweden)

    Eladio F. Sanchez

    2017-12-01

    Full Text Available Snake venom metalloproteinases (SVMPs are predominant in viperid venoms, which provoke hemorrhage and affect hemostasis and thrombosis. P-I class enzymes consist only of a single metalloproteinase domain. Despite sharing high sequence homology, only some of them induce hemorrhage. They have direct fibrin(ogenolytic activity. Their main biological substrate is fibrin(ogen, whose Aα-chain is degraded rapidly and independently of activation of plasminogen. It is important to understand their biochemical and physiological mechanisms, as well as their applications, to study the etiology of some human diseases and to identify sites of potential intervention. As compared to all current antiplatelet therapies to treat cardiovascular events, the SVMPs have outstanding biochemical attributes: (a they are insensitive to plasma serine proteinase inhibitors; (b they have the potential to avoid bleeding risk; (c mechanistically, they are inactivated/cleared by α2-macroglobulin that limits their range of action in circulation; and (d few of them also impair platelet aggregation that represent an important target for therapeutic intervention. This review will briefly highlight the structure–function relationships of these few direct-acting fibrinolytic agents, including, barnettlysin-I, isolated from Bothrops barnetti venom, that could be considered as potential agent to treat major thrombotic disorders. Some of their pharmacological advantages are compared with plasmin.

  15. Evaluation of potential gastrointestinal contrast agents for echoplanar MR imaging

    International Nuclear Information System (INIS)

    Reimer, P.; Schmitt, F.; Ladebeck, R.; Graessner, J.; Schaffer, B.

    1993-01-01

    The purpose of this study was to investigate approved aqueous gastrointestinal contrast agents for use in abdominal EPI. Conventional and echoplanar MR imaging experiments were performed with 1.0 Tesla whole body systems. Phantom measurements of Gastrografin, barium sulfate suspension, oral gadopentetate dimeglumine, water, and saline were performed. Signal intensity (SI) of aqueous oral barium sulfate and iodine based CT contrast agents was lower on conventional spin-echo (SE), Flash, and Turbo-Flush images than on EP images. The contrast agents exhibited higher SI on T2-weighted SE PE images and TI-time dependence on inversion recovery EP-images. The barium sulfate suspension was administered in volunteers to obtain information about bowel lumen enhancement and susceptibility artifacts. Oral administration of the aqueous barium sulfate suspension increased bowel lumen signal and reduced susceptibility artifacts. (orig.)

  16. Reclassifying Anaphylaxis to Neuromuscular Blocking Agents Based on the Presumed Patho-Mechanism: IgE-Mediated, Pharmacological Adverse Reaction or “Innate Hypersensitivity”?

    Directory of Open Access Journals (Sweden)

    David Spoerl

    2017-06-01

    Full Text Available Approximately 60% of perioperative anaphylactic reactions are thought to be immunoglobulin IgE mediated, whereas 40% are thought to be non-IgE mediated hypersensitivity reactions (both considered non-dose-related type B adverse drug reactions. In both cases, symptoms are elicited by mast cell degranulation. Also, pharmacological reactions to drugs (type A, dose-related may sometimes mimic symptoms triggered by mast cell degranulation. In case of hypotension, bronchospasm, or urticarial rash due to mast cell degranulation, identification of the responsible mechanism is complicated. However, determination of the type of the underlying adverse drug reaction is of paramount interest for the decision of whether the culprit drug may be re-administered. Neuromuscular blocking agents (NMBA are among the most frequent cause of perioperative anaphylaxis. Recently, it has been shown that NMBA may activate mast cells independently from IgE antibodies via the human Mas-related G-protein-coupled receptor member X2 (MRGPRX2. In light of this new insight into the patho-mechanism of pseudo-allergic adverse drug reactions, in which as drug-receptor interaction results in anaphylaxis like symptoms, we critically reviewed the literature on NMBA-induced perioperative anaphylaxis. We challenge the dogma that NMBA mainly cause IgE-mediated anaphylaxis via an IgE-mediated mechanism, which is based on studies that consider positive skin test to be specific for IgE-mediated hypersensitivity. Finally, we discuss the question whether MRGPRX2 mediated pseudo-allergic reactions should be re-classified as type A adverse reactions.

  17. Pharmacological interactions of vasoconstrictors.

    Science.gov (United States)

    Gómez-Moreno, Gerardo; Guardia, Javier; Cutando, Antonio; Calvo-Guirado, José Luis

    2009-01-01

    This article is the first of a series on pharmacological interactions involving medicaments commonly prescribed and/or used in odontology: vasoconstrictors in local anaesthetics and anti-inflammatory and anti-microbial analgesics. The necessity for the odontologist to be aware of adverse reactions as a result of the pharmacological interactions is due to the increase in medicament consumption by the general population. There is a demographic change with greater life expectancy and patients have increased chronic health problems and therefore have increased medicament intake. The presence of adrenaline (epinephrine) and other vasoconstrictors in local odontological anaesthetics is beneficial in relation to the duration and depth of anaesthesia and reduces bleeding and systemic toxicity of the local anaesthetic. However, it might produce pharmacological interactions between the injected vasoconstrictors and the local anaesthetic and adrenergic medicament administered exogenically which the odontologist should be aware of, especially because of the risk of consequent adverse reactions. Therefore the importance of conducting a detailed clinical history of the general state of health and include all medicaments, legal as well as illegal, taken by the patient.

  18. The Pharmacological Basis of Cannabis Therapy for Epilepsy.

    Science.gov (United States)

    Reddy, Doodipala Samba; Golub, Victoria M

    2016-04-01

    Recently, cannabis has been suggested as a potential alternative therapy for refractory epilepsy, which affects 30% of epilepsy, both adults and children, who do not respond to current medications. There is a large unmet medical need for new antiepileptics that would not interfere with normal function in patients with refractory epilepsy and conditions associated with refractory seizures. The two chief cannabinoids are Δ-9-tetrahyrdrocannabinol, the major psychoactive component of marijuana, and cannabidiol (CBD), the major nonpsychoactive component of marijuana. Claims of clinical efficacy in epilepsy of CBD-predominant cannabis or medical marijuana come mostly from limited studies, surveys, or case reports. However, the mechanisms underlying the antiepileptic efficacy of cannabis remain unclear. This article highlights the pharmacological basis of cannabis therapy, with an emphasis on the endocannabinoid mechanisms underlying the emerging neurotherapeutics of CBD in epilepsy. CBD is anticonvulsant, but it has a low affinity for the cannabinoid receptors CB1 and CB2; therefore the exact mechanism by which it affects seizures remains poorly understood. A rigorous clinical evaluation of pharmaceutical CBD products is needed to establish the safety and efficacy of their use in the treatment of epilepsy. Identification of mechanisms underlying the anticonvulsant efficacy of CBD is also critical for identifying other potential treatment options. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  19. Marine bioactives and potential application in sports.

    Science.gov (United States)

    Gammone, Maria Alessandra; Gemello, Eugenio; Riccioni, Graziano; D'Orazio, Nicolantonio

    2014-04-30

    An enriched diet with antioxidants, such as vitamin E, vitamin C, β-carotene and phenolic compounds, has always been suggested to improve oxidative stress, preventing related diseases. In this respect, marine natural product (MNP), such as COX inhibitors, marine steroids, molecules interfering with factors involved in the modulation of gene expression (such as NF-κB), macrolides, many antioxidant agents, thermogenic substances and even substances that could help the immune system and that result in the protection of cartilage, have been recently gaining attention. The marine world represents a reserve of bioactive ingredients, with considerable potential as functional food. Substances, such as chitin, chitosan, n-3 oils, carotenoids, vitamins, minerals and bioactive peptides, can provide several health benefits, such as the reduction of cardiovascular diseases, anti-inflammatory and anticarcinogenic activities. In addition, new marine bioactive substances with potential anti-inflammatory, antioxidant and thermogenic capacity may provide health benefits and performance improvement, especially in those who practice physical activity, because of their increased free radical and Reacting Oxygen Species (ROS) production during exercise, and, particularly, in athletes. The aim of this review is to examine the potential pharmacological properties and application of many marine bioactive substances in sports.

  20. Evaluation of 18F-labeled icotinib derivatives as potential PET agents for tumor imaging

    International Nuclear Information System (INIS)

    Hongyu Ren; Hongyu Ning; Jin Chang; Mingxia Zhao; Yong He; Yan Chong; Chuanmin Qi

    2016-01-01

    In this study, three 18 F-labeled crown ether fused anilinoquinazoline derivatives ([ 18 F]11a-c) were synthesized and evaluated as potential tumor imaging probes. The biodistribution results of [ 18 F]11b were good. Compared with [ 18 F]-fludeoxyglucose and l-[ 18 F]-fluoroethyltyrosine in the same animal model, [ 18 F]11b had better tumor/brain, tumor/muscle, and tumor/blood uptake ratios. Overall, these results suggest that [ 18 F]11b is promising as a tumor imaging agent for positron emission tomography. (author)

  1. Enhanced Fructose Utilization Mediated by SLC2A5 Is a Unique Metabolic Feature of Acute Myeloid Leukemia with Therapeutic Potential.

    Science.gov (United States)

    Chen, Wen-Lian; Wang, Yue-Ying; Zhao, Aihua; Xia, Li; Xie, Guoxiang; Su, Mingming; Zhao, Linjing; Liu, Jiajian; Qu, Chun; Wei, Runmin; Rajani, Cynthia; Ni, Yan; Cheng, Zhen; Chen, Zhu; Chen, Sai-Juan; Jia, Wei

    2016-11-14

    Rapidly proliferating leukemic progenitor cells consume substantial glucose, which may lead to glucose insufficiency in bone marrow. We show that acute myeloid leukemia (AML) cells are prone to fructose utilization with an upregulated fructose transporter GLUT5, which compensates for glucose deficiency. Notably, AML patients with upregulated transcription of the GLUT5-encoding gene SLC2A5 or increased fructose utilization have poor outcomes. Pharmacological blockage of fructose uptake ameliorates leukemic phenotypes and potentiates the cytotoxicity of the antileukemic agent, Ara-C. In conclusion, this study highlights enhanced fructose utilization as a metabolic feature of AML and a potential therapeutic target. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Mitochondrial pharmacology: electron transport chain bypass as strategies to treat mitochondrial dysfunction.

    Science.gov (United States)

    Atamna, Hani; Mackey, Jeanette; Dhahbi, Joseph M

    2012-01-01

    Mitochondrial dysfunction (primary or secondary) is detrimental to intermediary metabolism. Therapeutic strategies to treat/prevent mitochondrial dysfunction could be valuable for managing metabolic and age-related disorders. Here, we review strategies proposed to treat mitochondrial impairment. We then concentrate on redox-active agents, with mild-redox potential, who shuttle electrons among specific cytosolic or mitochondrial redox-centers. We propose that specific redox agents with mild redox potential (-0.1 V; 0.1 V) improve mitochondrial function because they can readily donate or accept electrons in biological systems, thus they enhance metabolic activity and prevent reactive oxygen species (ROS) production. These agents are likely to lack toxic effects because they lack the risk of inhibiting electron transfer in redox centers. This is different from redox agents with strong negative (-0.4 V; -0.2 V) or positive (0.2 V; 0.4 V) redox potentials who alter the redox status of redox-centers (i.e., become permanently reduced or oxidized). This view has been demonstrated by testing the effect of several redox active agents on cellular senescence. Methylene blue (MB, redox potential ≅10 mV) appears to readily cycle between the oxidized and reduced forms using specific mitochondrial and cytosolic redox centers. MB is most effective in delaying cell senescence and enhancing mitochondrial function in vivo and in vitro. Mild-redox agents can alter the biochemical activity of specific mitochondrial components, which then in response alters the expression of nuclear and mitochondrial genes. We present the concept of mitochondrial electron-carrier bypass as a potential result of mild-redox agents, a method to prevent ROS production, improve mitochondrial function, and delay cellular aging. Thus, mild-redox agents may prevent/delay mitochondria-driven disorders. Copyright © 2012 International Union of Biochemistry and Molecular Biology, Inc.

  3. Pharmacological Fingerprints of Contextual Uncertainty.

    Directory of Open Access Journals (Sweden)

    Louise Marshall

    2016-11-01

    Full Text Available Successful interaction with the environment requires flexible updating of our beliefs about the world. By estimating the likelihood of future events, it is possible to prepare appropriate actions in advance and execute fast, accurate motor responses. According to theoretical proposals, agents track the variability arising from changing environments by computing various forms of uncertainty. Several neuromodulators have been linked to uncertainty signalling, but comprehensive empirical characterisation of their relative contributions to perceptual belief updating, and to the selection of motor responses, is lacking. Here we assess the roles of noradrenaline, acetylcholine, and dopamine within a single, unified computational framework of uncertainty. Using pharmacological interventions in a sample of 128 healthy human volunteers and a hierarchical Bayesian learning model, we characterise the influences of noradrenergic, cholinergic, and dopaminergic receptor antagonism on individual computations of uncertainty during a probabilistic serial reaction time task. We propose that noradrenaline influences learning of uncertain events arising from unexpected changes in the environment. In contrast, acetylcholine balances attribution of uncertainty to chance fluctuations within an environmental context, defined by a stable set of probabilistic associations, or to gross environmental violations following a contextual switch. Dopamine supports the use of uncertainty representations to engender fast, adaptive responses.

  4. Antitumoral, antioxidant, and antimelanogenesis potencies of Hawthorn, a potential natural agent in the treatment of melanoma.

    Science.gov (United States)

    Mustapha, Nadia; Mokdad-Bzéouich, Imèn; Maatouk, Mouna; Ghedira, Kamel; Hennebelle, Thierry; Chekir-Ghedira, Leila

    2016-06-01

    The lack of an efficient agent that does not have the disadvantage of low activity (kojic acid), high cytotoxicity, and mutagenicity (hydroquinone), poor skin penetration (arbutin), or low stability in formulation (glabridin) led us to continue our research on new antipigmentation/skin-lightening agents. Therefore, research of natural products that can modulate the metabolism of pigmentation is of great interest. Otherwise, malignant melanoma is one of the most aggressive forms of skin cancer, with high metastatic potential, and currently, there is no effective chemotherapy against invasive melanoma. Therefore, it is necessary to develop new drugs with potent activity and weak side effects against melanoma. The in-vitro anticancer effect of hawthorn was analyzed against B16F10 melanoma cells using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The effect of isolated compounds from hawthorn on melanogenesis in B16F10 melanoma cells was investigated by measuring the amounts of melanin and tyrosinase spectrophotometrically at 475 nm. Balb/c mice models inoculated with B16F10 mouse tumor cells were used to evaluate the in-vivo antitumoral potential of hawthorn by assessing its effect on the growth of transplanted tumors. The antioxidant potential of tested samples was evaluated in B16F10 and primary human keratinocyte cells using a cellular antioxidant activity assay. Hawthorn tested samples inhibited effectively the growth of melanoma cells in vitro. Furthermore, it appears that tested samples from hawthorn reduced melanogenesis by inhibiting the tyrosinase activity of B16F10 cells in a dose-dependent manner. In-vivo studies showed that hawthorn total oligomer flavonoids extract treatment at a dose of 150 mg/kg body weight for 21 days in implanted tumor mice resulted in significant inhibition of the tumor growth volume and weight. In addition, tested samples showed significant cellular antioxidant capacity against the reactive oxygen species

  5. Design, synthesis, and biological evaluation of the first podophyllotoxin analogues as potential vascular-disrupting agents.

    Science.gov (United States)

    Labruère, Raphaël; Gautier, Benoît; Testud, Marlène; Seguin, Johanne; Lenoir, Christine; Desbène-Finck, Stéphanie; Helissey, Philippe; Garbay, Christiane; Chabot, Guy G; Vidal, Michel; Giorgi-Renault, Sylviane

    2010-12-03

    We designed and synthesized two novel series of azapodophyllotoxin analogues as potential antivascular agents. A linker was inserted between the trimethoxyphenyl ring E and the tetracyclic ABCD moiety of the 4-aza-1,2-didehydropodophyllotoxins. In the first series, the linker enables free rotation between the two moieties; in the second series, conformational restriction of the E nucleus was considered. We have identified several new compounds with inhibitory activity toward tubulin polymerization similar to that of CA-4 and colchicine, while displaying low cytotoxic activity against normal and/or cancer cells. An aminologue and a methylenic analogue were shown to disrupt endothelial cell cords on Matrigel at subtoxic concentrations, and an original assay of drug washout allowed us to demonstrate the rapid reversibility of this effect. These two new analogues are promising leads for the development of vascular-disrupting agents in the podophyllotoxin series.

  6. Improving recruitment to pharmacological trials for illicit opioid use: findings from a qualitative focus group study.

    Science.gov (United States)

    Neale, Joanne; Tompkins, Charlotte N E; McDonald, Rebecca; Strang, John

    2018-06-01

    To explore potential study participants' views on willingness to join clinical trials of pharmacological interventions for illicit opioid use to inform and improve future recruitment strategies. Qualitative focus group study [six groups: oral methadone (two groups); buprenorphine tablets (two groups); injectable opioid agonist treatment (one group); and former opioid agonist treatment (one group)]. Drug and alcohol services and a peer support recovery service (London, UK). Forty people with experience of opioid agonist treatment for heroin dependence (26 males, 14 females; aged 33-66 years). Data collection was facilitated by a topic guide that explored willingness to enrol in clinical pharmacological trials. Groups were audio-recorded and transcribed. Transcribed data were analysed inductively via Iterative Categorization. Participants' willingness to join pharmacological trials of medications for opioid dependence was affected by factors relating to study burden, study drug, study design, study population and study relationships. Participants worried that the trial drug might be worse than, or interfere with, their current treatment. They also misunderstood aspects of trial design despite the researchers' explanations. Recruitment of participants for clinical trials of pharmacological interventions for illicit opioid use could be improved if researchers became better at explaining clinical trials to potential participants, dispelling misconceptions about trials and increasing trust in the research process and research establishment. A checklist of issues to consider when designing pharmacological trials for illicit opioid use is proposed. © 2018 The Authors. Addiction published by John Wiley & Sons Ltd on behalf of Society for the Study of Addiction.

  7. Gadolinium-porphyrins: new potential magnetic resonance imaging contrast agents for melanoma detection

    Directory of Open Access Journals (Sweden)

    Daryoush Shahbazi-Gahrouei

    2006-11-01

    Full Text Available BACKGROUND: Two new porphyrin-based magnetic resonance imaging (MRI contrast agents, Gd-hematoporphyrin (Gd-H and Gd-tetra-carboranylmethoxyphenyl-porphyrin (Gd-TCP were synthesized and tested in nude mice with human melanoma (MM-138 xenografts as new melanoma contrast agents. METHODS: Subcutaneous xenografts of human melanoma cells (MM-138 were studied in 30 (five groups of six nude mice. The effect of different contrast agents (Gd-TCP, Gd-H, GdCl3 and Gd-DTPA on proton relaxation times was measured in tumors and other organs. T1 values, signal enhancement and the Gd concentration for different contrast agent solutions were also investigated. RESULTS: The porphyrin agents showed higher relaxivity compared to the clincal agent, Gd-DTPA. A significant 16% and 21% modification in T1 relaxation time of the water in human melanoma tumors grafted in the nude mice was revealed 24 hours after injection of Gd-TCP and Gd-H, respectively. The percentage of injected Gd localized to the tumor measured by inductively coupled plasma atomic emission spectrometry (ICP-AES was approximately 21% for Gd-TCP and 28% for Gd-H which were higher than that of Gd-DTPA (10%. CONCLUSIONS: The high concentration of Gd in the tumor is indicative of a selective retention of the compounds and indicates that Gd-TCP and Gd-H are promising MR imaging contrast agents for melanoma detection. Gd-porphyrins have considerable promise for further diagnostic applications in magnetic resonance imaging. KEY WORDS: MRI, porphyrin-based contrast agent, hematoporphyrin, melanoma.

  8. Pharmacological and Structure-Activity Relationship Evaluation of 4-aryl-1-Diphenylacetyl(thiosemicarbazides

    Directory of Open Access Journals (Sweden)

    Monika Wujec

    2014-04-01

    Full Text Available This article describes the synthesis of six 4-aryl-(thiosemicarbazides (series a and b linked with diphenylacetyl moiety along with their pharmacological evaluation on the central nervous system in mice and computational studies, including conformational analysis and electrostatic properties. All thiosemicarbazides (series b were found to exhibit strong antinociceptive activity in the behavioural model. Among them, compound 1-diphenylacetyl-4-(4-methylphenylthiosemicarbazide 1b was found to be the most potent analgesic agent, whose activity is connected with the opioid system. For compounds from series a significant anti-serotonergic effect, especially for compound 1-diphenylacetyl-4-(4-methoxyphenylsemicarbazide 2b was observed. The computational studies strongly support the obtained results.

  9. Introduction to the Theme "New Methods and Novel Therapeutic Approaches in Pharmacology and Toxicology".

    Science.gov (United States)

    Insel, Paul A; Amara, Susan G; Blaschke, Terrence F; Meyer, Urs A

    2017-01-06

    Major advances in scientific discovery and insights can result from the development and use of new techniques, as exemplified by the work of Solomon Snyder, who writes a prefatory article in this volume. The Editors have chosen "New Methods and Novel Therapeutic Approaches in Pharmacology and Toxicology" as the Theme for a number of articles in this volume. These include ones that review the development and use of new experimental tools and approaches (e.g., nanobodies and techniques to explore protein-protein interactions), new types of therapeutics (e.g., aptamers and antisense oligonucleotides), and systems pharmacology, which assembles (big) data derived from omics studies together with information regarding drugs and patients. The application of these new methods and therapeutic approaches has the potential to have a major impact on basic and clinical research in pharmacology and toxicology as well as on patient care.

  10. A review on ethnobotany, pharmacology and phytochemistry of Tabernaemontana corymbosa.

    Science.gov (United States)

    Abubakar, Ibrahim Babangida; Loh, Hwei-San

    2016-04-01

    Tabernaemontana is a genus from the plant family, Apocynaceae with vast medicinal application and widespread distribution in the tropics and subtropics of Africa, Americas and Asia. The objective of this study is to critically evaluate the ethnobotany, medicinal uses, pharmacology and phytochemistry of the species, Tabernaemontana corymbosa (Roxb. ex Wall.) and provide information on the potential future application of alkaloids isolated from different parts of the plant. T. corymbosa (Roxb. ex Wall.) parts are used as poultice, boiled juice, decoctions and infusions for treatment against ulceration, fracture, post-natal recovery, syphilis, fever, tumours and orchitis in Malaysia, China, Thailand and Bangladesh. Studies recorded alkaloids as the predominant phytochemicals in addition to phenols, saponins and sterols with vast bioactivities such as antimicrobial, analgesic, anthelmintic, vasorelaxation, antiviral and cytotoxicity. An evaluation of scientific data and traditional medicine revealed the medicinal uses of different parts of T. corymbosa (Roxb. ex Wall.) across Asia. Future studies exploring the structure-bioactivity relationship of alkaloids such as jerantinine and vincamajicine among others could potentially improve the future application towards reversing anticancer drug resistance. © 2016 Royal Pharmaceutical Society, Journal of Pharmacy and Pharmacology.

  11. Pharmacology Goes Concept-Based: Course Design, Implementation, and Evaluation.

    Science.gov (United States)

    Lanz, Amelia; Davis, Rebecca G

    Although concept-based curricula are frequently discussed in the nursing education literature, little information exists to guide the development of a concept-based pharmacology course. Traditionally, nursing pharmacology courses are taught with an emphasis on drug class where a prototype drug serves as an exemplar. When transitioning pharmacology to a concept-based course, special considerations are in order. How can educators successfully integrate essential pharmacological content into a curriculum structured around nursing concepts? This article presents one approach to the design and implementation of a concept-based undergraduate pharmacology course. Planning methods, supportive teaching strategies, and course evaluation procedures are discussed.

  12. Diosgenin: Recent Highlights on Pharmacology and Analytical Methodology.

    Science.gov (United States)

    Jesus, Mafalda; Martins, Ana P J; Gallardo, Eugenia; Silvestre, Samuel

    2016-01-01

    Diosgenin, a steroidal sapogenin, occurs abundantly in plants such as Dioscorea alata , Smilax China, and Trigonella foenum graecum . This bioactive phytochemical not only is used as an important starting material for the preparation of several steroidal drugs in the pharmaceutical industry, but has revealed also high potential and interest in the treatment of various types of disorders such as cancer, hypercholesterolemia, inflammation, and several types of infections. Due to its pharmacological and industrial importance, several extraction and analytical procedures have been developed and applied over the years to isolate, detect, and quantify diosgenin, not only in its natural sources and pharmaceutical compositions, but also in animal matrices for pharmacodynamic, pharmacokinetic, and toxicological studies. Within these, HPLC technique coupled to different detectors is the most commonly analytical procedure described for this compound. However, other alternative methods were also published. Thus, the present review aims to provide collective information on the most recent pharmacological data on diosgenin and on the most relevant analytical techniques used to isolate, detect, and quantify this compound as well.

  13. Diosgenin: Recent Highlights on Pharmacology and Analytical Methodology

    Directory of Open Access Journals (Sweden)

    Mafalda Jesus

    2016-01-01

    Full Text Available Diosgenin, a steroidal sapogenin, occurs abundantly in plants such as Dioscorea alata, Smilax China, and Trigonella foenum graecum. This bioactive phytochemical not only is used as an important starting material for the preparation of several steroidal drugs in the pharmaceutical industry, but has revealed also high potential and interest in the treatment of various types of disorders such as cancer, hypercholesterolemia, inflammation, and several types of infections. Due to its pharmacological and industrial importance, several extraction and analytical procedures have been developed and applied over the years to isolate, detect, and quantify diosgenin, not only in its natural sources and pharmaceutical compositions, but also in animal matrices for pharmacodynamic, pharmacokinetic, and toxicological studies. Within these, HPLC technique coupled to different detectors is the most commonly analytical procedure described for this compound. However, other alternative methods were also published. Thus, the present review aims to provide collective information on the most recent pharmacological data on diosgenin and on the most relevant analytical techniques used to isolate, detect, and quantify this compound as well.

  14. Electrospun alginate nanofibres as potential bio-sorption agent of heavy metals in water treatment

    CSIR Research Space (South Africa)

    Mokhena, Teboho C

    2017-03-01

    Full Text Available nanofibres as potential bio-sorption agent of heavy metals in water treatment T.C. Mokhena1,2, N.V Jacobs1,3, A.S. Luyt4* 1 CSIR Materials Science and Manufacturing, Polymers and Composites, Port Elizabeth, South Africa 2 Department of Chemistry...-303 (2011). http://dx.doi.org/10.1016/j.jare.2011.01.008 [2] Taha A.A., Wu Y.-N., Wang H., Li F.: Preparation and application of functionalized cellulose acetate/silica composite nanofibrous membrane via electrospinning for Cr (VI) ion removal from...

  15. Plaque biology: interesting science or pharmacological treasure trove?

    Science.gov (United States)

    Loftus, I; Thompson, M

    2008-11-01

    Our understanding of the events that occur within atherosclerotic plaques has improved dramatically over the last 2 decades, particularly with regard to the role of plaque destabilisation and the onset of clinical ischaemic syndromes. Many potential targets have been identified for therapeutic intervention aimed at disease prevention, plaque stabilisation and regression. Furthermore, many potential biomarkers of vascular disease have generated interest in terms of monitoring disease activity and the effect of therapeutic agents. However, despite much scientific promise with in vitro cell and animal models, there has been much less success in modulation of these processes in clinical practice. This review will highlight the local and systemic factors associated with disease progression and acute plaque destabilisation, the current role of therapeutic agents and the potential for targeted plaque modification.

  16. Rational Discovery of (+) (S) Abscisic Acid as a Potential Antifungal Agent: a Repurposing Approach.

    Science.gov (United States)

    Khedr, Mohammed A; Massarotti, Alberto; Mohamed, Maged E

    2018-06-04

    Fungal infections are spreading widely worldwide, and the types of treatment are limited due to the lack of diverse therapeutic agents and their associated side effects and toxicity. The discovery of new antifungal classes is vital and critical. We discovered the antifungal activity of abscisic acid through a rational drug design methodology that included the building of homology models for fungal chorismate mutases and a pharmacophore model derived from a transition state inhibitor. Ligand-based virtual screening resulted in some hits that were filtered using molecular docking and molecular dynamic simulations studies. Both in silico methods and in vitro antifungal assays were used as tools to select and validate the abscisic acid repurposing. Abscisic acid inhibition assays confirmed the inhibitory effect of abscisic acid on chorismate mutase through the inhibition of phenylpyruvate production. The repositioning of abscisic acid, the well-known and naturally occurring plant growth regulator, as a potential antifungal agent because of its suggested action as an inhibitor to several fungal chorismate mutases was the main result of this work.

  17. Potential of Microbispora sp. V2 as biocontrol agent against Sclerotium rolfsii, the causative agent of southern blight of Zea mays L (Baby corn)--in vitro studies.

    Science.gov (United States)

    Patil, N N; Waghmode, M S; Gaikwad, P S; Gajbhiye, M H; Gunjal, A B; Nawani, N N; Kapadnis, B P

    2014-11-01

    The study was undertaken with the aim of exploring novel and beneficial agro activities of rare actinomycetes like Microbispora sp. V2. The antagonistic activity of Microbispora sp. V2 was evaluated as a biocontrol agents against Sclerotium rolfsii, a soil-borne fungal plant pathogen. The methodology performed for evaluation of biocontrol agent was in vitro evaluation assay which comprised of three tests viz., cellophane overlay technique, seed germination test and Thiram (fungicide) tolerance of Microbispora sp. V2. The isolate was found to inhibit the fungal pathogen Sclerotium rolfsii to 91.43% in cellophane assay. In seed germination assay, Microbispora sp. V2 treated seeds resulted in 25.75% increased germination efficiency, as compared to seeds infected by Sclerotium rolfsii. The isolate Microbispora sp. V2 could tolerate 1000 microg mL(-1) of Thiram (fungicide). The in vitro assay studies proved that Microbispora sp. V2 can be used as antifungal antagonist and thus posses' great potential as biocontrol agent against southern blight caused by Sclerotium rolfsii in Zea mays L (Baby corn) which causes large economical losses.

  18. Vibrotactile stimulation: A non-pharmacological intervention for opioid-exposed newborns.

    Directory of Open Access Journals (Sweden)

    Ian Zuzarte

    Full Text Available To examine the therapeutic potential of stochastic vibrotactile stimulation (SVS as a complementary non-pharmacological intervention for withdrawal in opioid-exposed newborns.A prospective, within-subjects single-center study was conducted in 26 opioid-exposed newborns (>37 weeks; 16 male hospitalized since birth and treated pharmacologically for Neonatal Abstinence Syndrome. A specially-constructed mattress delivered low-level SVS (30-60Hz, 10-12μm RMS, alternated in 30-min intervals between continuous vibration (ON and no vibration (OFF over a 6-8 hr session. Movement activity, heart rate, respiratory rate, axillary temperature and blood-oxygen saturation were calculated separately for ON and OFF.There was a 35% reduction in movement activity with SVS (p30 sec duration for ON than OFF (p = 0.003. Incidents of tachypneic breaths and tachycardic heart beats were each significantly reduced with SVS, whereas incidents of eupneic breaths and eucardic heart beats each significantly increased with SVS (p<0.03. Infants maintained body temperature and arterial-blood oxygen level independent of stimulation condition.SVS reduced hyperirritability and pathophysiological instabilities commonly observed in pharmacologically-managed opioid-exposed newborns. SVS may provide an effective complementary therapeutic intervention for improving autonomic function in newborns with Neonatal Abstinence Syndrome.

  19. In silico and in vivo characterization of cabralealactone, solasodin and salvadorin in a rat model: potential anti-inflammatory agents

    Directory of Open Access Journals (Sweden)

    Malik A

    2018-05-01

    Full Text Available Arif Malik,1 Mahwish Arooj,2 Tariq Tahir Butt,3 Sara Zahid,4 Fatima Zahid,1 Tassadaq Hussain Jafar,1 Sulayman Waquar,1 Siew Hua Gan,5 Sarfraz Ahmad,1 Muhammad Usman Mirza6 1Institute of Molecular Biology and Biotechnology (IMBB, University of Lahore, Lahore, Pakistan; 2University College of Medicine and Dentistry (UCMD, University of Lahore, Lahore, Pakistan; 3Khawaja Muhammad Safdar Medical College, Sialkot, Pakistan; 4Faculty of Pharmacy, University of Lahore, Lahore, Pakistan; 5School of Pharmacy, Monash University Malaysia, Subang Jaya, Malaysia; 6Department of Pharmaceutical and Pharmacological Sciences, Rega Institute for Medical Research, Medicinal Chemistry, University of Leuven, Leuven, Belgium Background: The present study investigates the hepato- and DNA-protective effects of standardized extracts of Cleome brachycarpa (cabralealactone, Solanum incanum (solasodin, and Salvadora oleioides (salvadorin in rats. Materials and methods: Hepatotoxicity was induced with intraperitoneal injection of carbon tetrachloride (CCl4 (1 mL/kg b.wt. once a week for 12 weeks. The hepato- and DNA protective effects of the extracts in different combinations were compared with that of a standard drug Clavazin (200 mg/kg b.wt.. Tissue alanine aminotransferase, alpha-fetoprotein, tumor necrosis factor alpha (TNF-α, isoprostanes-2α, malondialdehyde, and 8-hydroxydeoxyguanosine, the significant hallmarks of oxidative stress, were studied. Results: Histopathological findings of the liver sections from the rat group which received CCl4+cabralealactone, solasodin, and salvadorin demonstrated improved centrilobular hepatocyte regeneration with moderate areas of congestion and infiltration comparable with Clavazin. For in silico study, the identified compounds were subjected to molecular docking with cyclooxygenase-2 and TNF-α followed by a molecular dynamics study, which indicated their potential as anti-inflammatory agents. Conclusion: Cabralealactone

  20. Parameter trajectory analysis to identify treatment effects of pharmacological interventions.

    Directory of Open Access Journals (Sweden)

    Christian A Tiemann

    Full Text Available The field of medical systems biology aims to advance understanding of molecular mechanisms that drive disease progression and to translate this knowledge into therapies to effectively treat diseases. A challenging task is the investigation of long-term effects of a (pharmacological treatment, to establish its applicability and to identify potential side effects. We present a new modeling approach, called Analysis of Dynamic Adaptations in Parameter Trajectories (ADAPT, to analyze the long-term effects of a pharmacological intervention. A concept of time-dependent evolution of model parameters is introduced to study the dynamics of molecular adaptations. The progression of these adaptations is predicted by identifying necessary dynamic changes in the model parameters to describe the transition between experimental data obtained during different stages of the treatment. The trajectories provide insight in the affected underlying biological systems and identify the molecular events that should be studied in more detail to unravel the mechanistic basis of treatment outcome. Modulating effects caused by interactions with the proteome and transcriptome levels, which are often less well understood, can be captured by the time-dependent descriptions of the parameters. ADAPT was employed to identify metabolic adaptations induced upon pharmacological activation of the liver X receptor (LXR, a potential drug target to treat or prevent atherosclerosis. The trajectories were investigated to study the cascade of adaptations. This provided a counter-intuitive insight concerning the function of scavenger receptor class B1 (SR-B1, a receptor that facilitates the hepatic uptake of cholesterol. Although activation of LXR promotes cholesterol efflux and -excretion, our computational analysis showed that the hepatic capacity to clear cholesterol was reduced upon prolonged treatment. This prediction was confirmed experimentally by immunoblotting measurements of SR-B1

  1. [PROFESSOR VLADIMIR V. NIKOLAEV AND RUSSIAN PHARMACOLOGY.

    Science.gov (United States)

    Bondarchuk, N G; Fisenko, V P

    2016-01-01

    Various stages of scientific research activity of Prof. Vladimir V. Nikolaev are analyzed. The importance of Prof. Nikolaev's discovery of the two-neuron parasympathetic nervous system and some new methods of pharmacological substances evaluation is shown. Prof. Nikolaev is known as the editor of the first USSR Pharmacopoeia. Peculiarities of pharmacology teaching at the First Moscow Medical institute under conditions of changing social demands are described. Successful research of Prof. Nikolaev with colleagues in studying new mechanisms of drug action and developing original pharmacological substances is summarized.

  2. Cadmium-containing nanoparticles: Perspectives on pharmacology and toxicology of quantum dots

    International Nuclear Information System (INIS)

    Rzigalinski, Beverly A.; Strobl, Jeannine S.

    2009-01-01

    The field of nanotechnology is rapidly expanding with the development of novel nanopharmaceuticals that have potential for revolutionizing medical treatment. The rapid pace of expansion in this field has exceeded the pace of pharmacological and toxicological research on the effects of nanoparticles in the biological environment. The development of cadmium-containing nanoparticles, known as quantum dots, show great promise for treatment and diagnosis of cancer and targeted drug delivery, due to their size-tunable fluorescence and ease of functionalization for tissue targeting. However, information on pharmacology and toxicology of quantum dots needs much further development, making it difficult to assess the risks associated with this new nanotechnology. Further, nanotechnology poses yet another risk for toxic cadmium, which will now enter the biological realm in nano-form. In this review, we discuss cadmium-containing quantum dots and their physicochemical properties at the nano-scale. We summarize the existing work on pharmacology and toxicology of cadmium-containing quantum dots and discuss perspectives in their utility in disease treatment. Finally, we identify critical gaps in our knowledge of cadmium quantum dot toxicity, and how these gaps need to be assessed to enable quantum dot nanotechnology to transit safely from bench to bedside.

  3. Review of the Chemistry and Pharmacology of 7-Methyljugulone ...

    African Journals Online (AJOL)

    Review of the Chemistry and Pharmacology of 7-Methyljugulone. ... Methods: The chemical and pharmacological data were retrieved from the well-known scientific websites such as Pubmed, Google Scholar, Reaxys, Scirus, Scopus, ... Keywords: 7-methyljugulone; biosynthesis; in vitro synthesis; pharmacology

  4. Pharmacological Correction of Stress-Induced Gastric Ulceration by Novel Small-Molecule Agents with Antioxidant Profile

    Directory of Open Access Journals (Sweden)

    Konstantin V. Kudryavtsev

    2014-01-01

    Full Text Available This study was designed to determine novel small-molecule agents influencing the pathogenesis of gastric lesions induced by stress. To achieve this goal, four novel organic compounds containing structural fragments with known antioxidant activity were synthesized, characterized by physicochemical methods, and evaluated in vivo at water immersion restraint conditions. The levels of lipid peroxidation products and activities of antioxidative system enzymes were measured in gastric mucosa and correlated with the observed gastroprotective activity of the active compounds. Prophylactic single-dose 1 mg/kg treatment with (2-hydroxyphenylthioacetyl derivatives of L-lysine and L-proline efficiently decreases up to 86% stress-induced stomach ulceration in rats. Discovered small-molecule antiulcer agents modulate activities of gastric mucosa tissue superoxide dismutase, catalase, and xanthine oxidase in concerted directions. Gastroprotective effect of (2-hydroxyphenylthioacetyl derivatives of L-lysine and L-proline at least partially depends on the correction of gastric mucosa oxidative balance.

  5. VIP as a potential therapeutic agent in gram negative sepsis.

    Science.gov (United States)

    Ibrahim, Hiba; Barrow, Paul; Foster, Neil

    2012-12-01

    Gram negative sepsis remains a high cause of mortality and places a great burden on public health finance in both the developed and developing world. Treatment of sepsis, using antibiotics, is often ineffective since pathology associated with the disease occurs due to dysregulation of the immune system (failure to return to steady state conditions) which continues after the bacteria, which induced the immune response, have been cleared. Immune modulation is therefore a rational approach to the treatment of sepsis but to date no drug has been developed which is highly effective, cheap and completely safe to use. One potential therapeutic agent is VIP, which is a natural peptide and is highly homologous in all vertebrates. In this review we will discuss the effect of VIP on components of the immune system, relevant to gram negative sepsis, and present data from animal models. Furthermore we will hypothesise on how these studies could be improved in future and speculate on the possible different ways in which VIP could be used in clinical medicine.

  6. Potential Use of Phenolic Acids as Anti-Candida Agents: A Review

    Science.gov (United States)

    Teodoro, Guilherme R.; Ellepola, Kassapa; Seneviratne, Chaminda J.; Koga-Ito, Cristiane Y.

    2015-01-01

    There has been a sharp rise in the occurrence of Candida infections and associated mortality over the last few years, due to the growing body of immunocompromised population. Limited number of currently available antifungal agents, undesirable side effects and toxicity, as well as emergence of resistant strains pose a considerable clinical challenge for the treatment of candidiasis. Therefore, molecules that derived from natural sources exhibiting considerable antifungal properties are a promising source for the development of novel anti-candidal therapy. Phenolic compounds isolated from natural sources possess antifungal properties of interest. Particularly, phenolic acids have shown promising in vitro and in vivo activity against Candida species. However, studies on their mechanism of action alone or in synergism with known antifungals are still scarce. This review attempts to discuss the potential use, proposed mechanisms of action and limitations of the phenolic acids in anti-candidal therapy. PMID:26733965

  7. Effects of drug pharmacokinetic/pharmacodynamic properties, characteristics of medication use, and relevant pharmacological interventions on fall risk in elderly patients

    Science.gov (United States)

    Chen, Ying; Zhu, Ling-Ling; Zhou, Quan

    2014-01-01

    Background Falls among the elderly are an issue internationally and a public health problem that brings substantial economic and quality-of-life burdens to individuals and society. Falls prevention is an important measure of nursing quality and patient safety. Numerous studies have evaluated the association of medication use with fall risk in elderly patients. However, an up-to-date review has not been available to summarize the multifaceted pharmaceutical concerns in the prevention of medication-related falls. Materials and methods Relevant literature was identified by performing searches in PubMed, Web of Science, and the Cochrane Library, covering the period until February 2014. We included studies that described an association between medications and falls, and effects of drug pharmacokinetic/pharmacodynamic properties, characteristics of medication use, and pharmacological interventions on fall risk in elderly patients. The full text of each included article was critically reviewed, and data interpretation was performed. Results Fall-risk-increasing drugs (FRIDs) include central nervous system-acting agents, cough preparations, nonsteroidal anti-inflammatory drugs, anti-Alzheimer’s agents, antiplatelet agents, calcium antagonists, diuretics, α-blockers, digoxin, hypoglycemic drugs, neurotoxic chemotherapeutic agents, nasal preparations, and antiglaucoma ophthalmic preparations. The degree of medication-related fall risk was dependent on one or some of the following factors: drug pharmacokinetic/pharmacodynamic properties (eg, elimination half-life, metabolic pathway, genetic polymorphism, risk rating of medications despite belonging to the same therapeutic class) and/or characteristics of medication use (eg, number of medications and drug–drug interactions, dose strength, duration of medication use and time since stopping, medication change, prescribing appropriateness, and medication adherence). Pharmacological interventions, including withdrawal of

  8. Ethnobotany, phytochemistry, and pharmacology of the genus Litsea: An update.

    Science.gov (United States)

    Wang, Yun-Song; Wen, Zheng-Qi; Li, Bi-Tao; Zhang, Hong-Bin; Yang, Jing-Hua

    2016-04-02

    The genus Litsea is one of the most diverse genera of evergreen trees or shrubs belong to Lauraceae, and comprises roughly 400 species of tree that are distributed abundantly throughout tropical and subtropical Asia, North and South America. Litsea species have been used globally in traditional medicine for the treatment of various diseases including influenza, stomach aches, diarrhea, diabetes, vomiting, bone pain, inflammation, illness related to the central nervous system and other ailments. The purpose of this review is to provide updated, comprehensive and categorized information on the ethnobotany, phytochemistry and pharmacological research of Litsea species in order to explore their therapeutic potential and evaluate future research opportunities. All the available information on Litsea species was actualised by systematically searching the scientific literatures including Chinese, Korean, Japanese, Indian, and South American herbal classics, library catalogs and scientific databases (PubMed, SciFinder, Web of Science, Google Scholar, VIP and Wanfang). The Plant List, International Plant Name index and Scientific Database of China Plant Species were used to validate scientific names. 407 secondary metabolites have been reported from Litsea species. Litsea Species are sources of secondary metabolites with interesting chemical structures (alkaloids, lactones, sesquiterpenes, flavonoids, lignans, and essential oils) and significant bioactivities. Crude extracts, fractions and phytochemical constituents isolated from Litsea show a wide spectrum of in vitro and in vivo pharmacological activities including anticancer, anti-inflammatory, antimicrobial, antioxidant, antidiabetic, anti-HIV, insecticidal, etc. From data collected in this review, the genus Litsea comprises a wide range of therapeutically promising and valuable plants, and has attracted much attention owing to its multiple functions. Many traditional uses of Litsea species have now been validated by

  9. Exposure of hospital operating room personnel to potentially harmful environmental agents

    International Nuclear Information System (INIS)

    Sass-Kortsak, A.M.; Purdham, J.T.; Bozek, P.R.; Murphy, J.H.

    1992-01-01

    Epidemiologic studies of risk to reproductive health arising from the operating room environment have been inconclusive and lack quantitative exposure information. This study was undertaken to quantify exposure of operating room (OR) personnel to anesthetic agents, x-radiation, methyl methacrylate, and ethylene oxide and to determine how exposure varies with different operating room factors. Exposures of anesthetists and nurses to these agents were determined in selected operating rooms over three consecutive days. Each subject was asked to wear an x-radiation dosimeter for 1 month. Exposure to anesthetic agents was found to be influenced by the age of the OR facility, type of surgical service, number of procedures carried out during the day, type of anesthetic circuitry, and method of anesthesia delivery. Anesthetists were found to have significantly greater exposures than OR nurses. Exposure of OR personnel to ethylene oxide, methyl methacrylate, and x-radiation were well within existing standards. Exposure of anesthetists and nurses to anesthetic agents, at times, was in excess of Ontario exposure guidelines, despite improvements in the control of anesthetic pollution

  10. A review of traditional pharmacological uses, phytochemistry, and pharmacological activities of Tribulus terrestris.

    Science.gov (United States)

    Zhu, Wenyi; Du, Yijie; Meng, Hong; Dong, Yinmao; Li, Li

    2017-07-11

    Tribulus terrestris L. (TT) is an annual plant of the family Zygophyllaceae that has been used for generations to energize, vitalize, and improve sexual function and physical performance in men. The fruits and roots of TT have been used as a folk medicine for thousands of years in China, India, Sudan, and Pakistan. Numerous bioactive phytochemicals, such as saponins and flavonoids, have been isolated and identified from TT that are responsible alone or in combination for various pharmacological activities. This review provides a comprehensive overview of the traditional applications, phytochemistry, pharmacology and overuse of TT and provides evidence for better medicinal usage of TT.

  11. A Review of Agents for Palliative Sedation/Continuous Deep Sedation: Pharmacology and Practical Applications.

    Science.gov (United States)

    Bodnar, John

    2017-03-01

    Continuous deep sedation at the end of life is a specific form of palliative sedation requiring a care plan that essentially places and maintains the patient in an unresponsive state because their symptoms are refractory to any other interventions. Because this application is uncommon, many providers may lack practical experience in this specialized area and resources they can access are outdated, nonspecific, and/or not comprehensive. The purpose of this review is to provide an evidence- and experience-based reference that specifically addresses those medications and regimens and their practical applications for this very narrow, but vital, aspect of hospice care. Patient goals in a hospital and hospice environments are different, so the manner in which widely used sedatives are dosed and applied can differ greatly as well. Parameters applied in end-of-life care that are based on experience and a thorough understanding of the pharmacology of those medications will differ from those applied in an intensive care unit or other medical environments. By recognizing these different goals and applying well-founded regimens geared specifically for end-of-life sedation, we can address our patients' symptoms in a more timely and efficacious manner.

  12. Preparation and Evaluation of Multiple Nanoemulsions Containing Gadolinium (III) Chelate as a Potential Magnetic Resonance Imaging (MRI) Contrast Agent.

    Science.gov (United States)

    Sigward, Estelle; Corvis, Yohann; Doan, Bich-Thuy; Kindsiko, Kadri; Seguin, Johanne; Scherman, Daniel; Brossard, Denis; Mignet, Nathalie; Espeau, Philippe; Crauste-Manciet, Sylvie

    2015-09-01

    The objective was to develop, characterize and assess the potentiality of W1/O/W2 self-emulsifying multiple nanoemulsions to enhance signal/noise ratio for Magnetic Resonance Imaging (MRI). For this purpose, a new formulation, was designed for encapsulation efficiency and stability. Various methods were used to characterize encapsulation efficiency ,in particular calorimetric methods (Differential Scanning Calorimetry (DSC), thermogravimetry analysis) and ultrafiltration. MRI in vitro relaxivities were assessed on loaded DTPA-Gd multiple nanoemulsions. Characterization of the formulation, in particular of encapsulation efficiency was a challenge due to interactions found with ultrafiltration method. Thanks to the specifically developed DSC protocol, we were able to confirm the formation of multiple nanoemulsions, differentiate loaded from unloaded nanoemulsions and measure the encapsulation efficiency which was found to be quite high with a 68% of drug loaded. Relaxivity studies showed that the self-emulsifying W/O/W nanoemulsions were positive contrast agents, exhibiting higher relaxivities than those of the DTPA-Gd solution taken as a reference. New self-emulsifying multiple nanoemulsions that were able to load satisfactory amounts of contrasting agent were successfully developed as potential MRI contrasting agents. A specific DSC protocol was needed to be developed to characterize these complex systems as it would be useful to develop these self-formation formulations.

  13. Review of therapeutic agents for burns pruritus and protocols for management in adult and paediatric patients using the GRADE classification

    Directory of Open Access Journals (Sweden)

    Goutos Ioannis

    2010-10-01

    Full Text Available To review the current evidence on therapeutic agents for burns pruritus and use the Grading of Recommendations, Assessment, Development and Evaluation (GRADE classification to propose therapeutic protocols for adult and paediatric patients. All published interventions for burns pruritus were analysed by a multidisciplinary panel of burns specialists following the GRADE classification to rate individual agents. Following the collation of results and panel discussion, consensus protocols are presented. Twenty-three studies appraising therapeutic agents in the burns literature were identified. The majority of these studies (16 out of 23 are of an observational nature, making an evidence-based approach to defining optimal therapy not feasible. Our multidisciplinary approach employing the GRADE classification recommends the use of antihistamines (cetirizine and cimetidine and gabapentin as the first-line pharmacological agents for both adult and paediatric patients. Ondansetron and loratadine are the second-line medications in our protocols. We additionally recommend a variety of non-pharmacological adjuncts for the perusal of clinicians in order to maximise symptomatic relief in patients troubled with postburn itch. Most studies in the subject area lack sufficient statistical power to dictate a ′gold standard′ treatment agent for burns itch. We encourage clinicians to employ the GRADE system in order to delineate the most appropriate therapeutic approach for burns pruritus until further research elucidates the most efficacious interventions. This widely adopted classification empowers burns clinicians to tailor therapeutic regimens according to current evidence, patient values, risks and resource considerations in different medical environments.

  14. Neuroprotective and Cognitive Enhancement Potentials of Baicalin: A Review

    Directory of Open Access Journals (Sweden)

    Kandhasamy Sowndhararajan

    2018-06-01

    Full Text Available Neurodegenerative diseases are a heterogeneous group of disorders that are characterized by the gradual loss of neurons. The development of effective neuroprotective agents to prevent and control neurodegenerative diseases is specifically important. Recently, there has been an increasing interest in selecting flavonoid compounds as potential neuroprotective agents, owing to their high effectiveness with low side effects. Baicalin is one of the important flavonoid compounds, which is mainly isolated from the root of Scutellaria baicalensis Georgi (an important Chinese medicinal herb. In recent years, a number of studies have shown that baicalin has a potent neuroprotective effect in various in vitro and in vivo models of neuronal injury. In particular, baicalin effectively prevents neurodegenerative diseases through various pharmacological mechanisms, including antioxidative stress, anti-excitotoxicity, anti-apoptotic, anti-inflammatory, stimulating neurogenesis, promoting the expression of neuronal protective factors, etc. This review mainly focuses on the neuroprotective and cognitive enhancement effects of baicalin. The aim of the present review is to compile all information in relation to the neuroprotective and cognitive enhancement effects of baicalin and its molecular mechanisms of action in various in vitro and in vivo experimental models.

  15. Pharmacologic treatment of depression in multiple sclerosis

    NARCIS (Netherlands)

    Koch, Marcus W.; Glazenborg, Arjon; Uyttenboogaart, Maarten; Mostert, Jop; De Keyser, Jacques

    2011-01-01

    Background Depression is a common problem in patients with multiple sclerosis (MS). It is unclear which pharmacologic treatment is the most effective and the least harmful. Objectives To investigate the efficacy and tolerability of pharmacologic treatments for depression in patients with MS. Search

  16. Pharmacology national board examinations: factors that may influence performance.

    Science.gov (United States)

    Neidle, E A; Kahn, N

    1977-12-01

    Data from a survey of pharmacology courses in 60 dental schools were used to determine whether certain teaching variables affect performance in pharmacology National Board examinations. In addition, three-year class-averaged pharmacology scores and, rarely, one-year averaged scores were correlated with several admissions variables. While correlations between some admissions variables and pharmacology scores were quite good, the averaged pharmacology scores were not powerfully affected by course length, placement of the course in the curriculum, length of the curriculum, or the presence of a dentally trained pharmacologist in the department. It is suggested that other factors, related to the student and his capabilities, influence performance on National Boards. Dental pharmacology courses should be designed to given students the best possible exposure to an important basic science, not to make them perform well on National Boards, because student performance on National Boards may be independent of the nature of the didactic courses.

  17. Efficacy and safety of a novel pharmacological stress test agent-higenamine in radionuclide myocardial perfusion imaging: phase Ⅱ clinical trial

    International Nuclear Information System (INIS)

    Du Yanrong; Li Fang; Wang Qian; Li Dianfu; Long Mingqing; Liu Yimin; Li Bilu

    2014-01-01

    of diastolic blood pressure. Either HG or Ad induced significantly increased HR during administration and 5 min after administration. The clinical laboratory profile (hematology,serum chemistry, and urinalysis) was either normal or with no significant change. A total of 176 side effects (e.g, dyspnea, short breath, palpitation, dizziness,headache) were found related to HG (69.2%, 83/120) and Ad (77.5%, 93/120) administration (χ 2 =2.1307, P>0.05), which were mostly mild and transient. Conclusion: HG is a safe and effective pharmacological stress test agent as compared to adenosine for the detection of CAD with SPECT perfusion imaging. (authors)

  18. Vasorelaxant activity of extracts obtained from Apium graveolens:Possible source for vasorelaxant molecules isolation with potential antihypertensive effect

    Institute of Scientific and Technical Information of China (English)

    Vergara-Galicia Jorge; Jimenez-Ramirez Luis ngel; Tun-Suarez Adrin; Aguirre-Crespo Francisco; Salazar-Gmez Anuar; Estrada-Soto Samuel; Sierra-Ovando ngel; Hernandez-Nuez Emmanuel

    2013-01-01

    Objective:To investigate the vasorelaxant effect of organic extracts from Apium graveolens (A. graveolens) which is a part of a group of plants subjected to pharmacological and phytochemical study with the purpose of offering it as an ideal source for obtaining lead compounds for designing new therapeutic agents with potential vasorelaxant and antihypertensive effects. Methods:An ex vivo method was employed to assess the vasorelaxant activity. This consisted of using rat aortic rings with and without endothelium precontracted with norepinephrine. Results:All extracts caused concentration-dependent relaxation in precontracted aortic rings with and without endothelium;the most active extracts were Dichloromethane and Ethyl Acetate extracts from A. graveolens. These results suggested that secondary metabolites responsible for the vasorelaxant activity belong to a group of compounds of medium polarity. Also, our evidence showed that effect induced by dichloromethane and ethyl acetate extracts from A. graveolens is mediated probably by calcium antagonism. Conclusions: A. graveolens represents an ideal source for obtaining lead compounds for designing new therapeutic agents with potential vasorelaxant and antihypertensive effects.

  19. Cisplatin and radiation in the treatment of tumors of the central nervous system: Pharmacological considerations and results of early studies

    International Nuclear Information System (INIS)

    Stewart, D.J.; Molepo, J.M.; Eapen, L.; Montpetit, V.A.J.; Goel, R.; Wong, P.T.T.; Popovic, P.; Taylor, K.D.; Raaphorst, G.P.

    1994-01-01

    The purpose of this study was to review the human central nervous system pharmacology of cisplatin, factors that affect cisplatin uptake in tumors, and use alone and with radiation for the treatment of primary brain tumors. The authors review their own prior published and unpublished experience and data published by other groups on the above issues. Cisplatin is one of the most active chemotherapy drugs available for the treatment of solid tumors. It is synergistic with several other agents, including radiation. While it attains only low concentrations in the normal central nervous system, concentrations and plasma-tissue transfer constants for human intracerebral tumors are comparable to those in extracerebral tumors. Tumor type appears to be a more important determinant of platinum concentration than is tumor location, and gliomas do achieve lower concentrations than do other intracerebral or extracerebral tumors. Several other factors have also been identified that correlate with concentrations of cisplatin achieved in human tumors. While cisplatin alone and in combination with other drugs does have some degree of efficacy against primary brain tumors, combining it with cranial irradiation has generally not resulted in any substantial improvement in outcome to date, although some individual studies have been somewhat encouraging. New approaches are currently under investigation. Human pharmacology studies provide a rationale for use of cisplatin in the treatment of human brain tumors, and human and in vitro studies suggest some manipulations that might potentially further augment tumor platinum concentrations. While clinical studies suggest that cisplatin combinations may be of some value vs. human primary brain tumors and brain metastases, and while in vitro studies suggest that cisplatin potentiates radiation efficacy, no combination of cisplatin plus radiation yet tested has appeared to be superior to radiation alone. 123 refs., 5 tabs

  20. Pharmacological activities of Vitex agnus-castus extracts in vitro.

    Science.gov (United States)

    Meier, B; Berger, D; Hoberg, E; Sticher, O; Schaffner, W

    2000-10-01

    The pharmacological effects of ethanolic Vitex agnus-castus fruit-extracts (especially Ze 440) and various extract fractions of different polarities were evaluated both by radioligand binding studies and by superfusion experiments. A relative potent binding inhibition was observed for dopamine D2 and opioid (micro and kappa subtype) receptors with IC50 values of the native extract between 20 and 70 mg/mL. Binding, neither to the histamine H1, benzodiazepine and OFQ receptor, nor to the binding-site of the serotonin (5-HT) transporter, was significantly inhibited. The lipophilic fractions contained the diterpenes rotun-difuran and 6beta,7beta-diacetoxy-13-hydroxy-labda-8,14-dien . They exhibited inhibitory actions on dopamine D2 receptor binding. While binding inhibition to mu and kappa opioid receptors was most pronounced in lipophilic fractions, binding to delta opioid receptors was inhibited mainly by a aqueous fraction. Standardised Ze 440 extracts of different batches were of constant pharmacological quality according to their potential to inhibit the binding to D2 receptors. In superfusion experiments, the aqueous fraction of a methanolic extract inhibited the release of acetylcholine in a concentration-dependent manner. In addition, the potent D2 receptor antagonist spiperone antagonised the effect of the extract suggesting a dopaminergic action mediated by D2 receptor activation. Our results indicate a dopaminergic effect of Vitex agnus-castus extracts and suggest additional pharmacological actions via opioid receptors.

  1. Spice drugs are more than harmless herbal blends: a review of the pharmacology and toxicology of synthetic cannabinoids.

    Science.gov (United States)

    Seely, Kathryn A; Lapoint, Jeff; Moran, Jeffery H; Fattore, Liana

    2012-12-03

    "K2" and "Spice" drugs (collectively hereafter referred to as Spice) represent a relatively new class of designer drugs that have recently emerged as popular alternatives to marijuana, otherwise characterized as "legal highs". These drugs are readily available on the Internet and sold in many head shops and convenience stores under the disguise of innocuous products like herbal blends, incense, or air fresheners. Although package labels indicate "not for human consumption", the number of intoxicated people presenting to emergency departments is dramatically increasing. The lack of validated and standardized human testing procedures and an endless supply of potential drugs of abuse are primary reasons why researchers find it difficult to fully characterize clinical consequences associated with Spice. While the exact chemical composition and toxicology of Spice remains to be determined, there is mounting evidence identifying several synthetic cannabinoids as causative agents responsible for psychoactive and adverse physical effects. This review provides updates of the legal status of common synthetic cannabinoids detected in Spice and analytical procedures used to test Spice products and human specimens collected under a variety of clinical circumstances. The pharmacological and toxicological consequences of synthetic cannabinoid abuse are also reviewed to provide a future perspective on potential short- and long-term implications. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Pharmacological screening technologies for venom peptide discovery.

    Science.gov (United States)

    Prashanth, Jutty Rajan; Hasaballah, Nojod; Vetter, Irina

    2017-12-01

    Venomous animals occupy one of the most successful evolutionary niches and occur on nearly every continent. They deliver venoms via biting and stinging apparatuses with the aim to rapidly incapacitate prey and deter predators. This has led to the evolution of venom components that act at a number of biological targets - including ion channels, G-protein coupled receptors, transporters and enzymes - with exquisite selectivity and potency, making venom-derived components attractive pharmacological tool compounds and drug leads. In recent years, plate-based pharmacological screening approaches have been introduced to accelerate venom-derived drug discovery. A range of assays are amenable to this purpose, including high-throughput electrophysiology, fluorescence-based functional and binding assays. However, despite these technological advances, the traditional activity-guided fractionation approach is time-consuming and resource-intensive. The combination of screening techniques suitable for miniaturization with sequence-based discovery approaches - supported by advanced proteomics, mass spectrometry, chromatography as well as synthesis and expression techniques - promises to further improve venom peptide discovery. Here, we discuss practical aspects of establishing a pipeline for venom peptide drug discovery with a particular emphasis on pharmacology and pharmacological screening approaches. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.' Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Clozapine-resistant schizophrenia – non pharmacological augmentation methods

    Directory of Open Access Journals (Sweden)

    Gałaszkiewicz Joanna

    2017-12-01

    Full Text Available Clozapine is the drug of choice for drug-resistant schizophrenia, but despite its use, 30-40% patients fail to achieve satisfactory therapeutic effects. In such situations, augmentation attempts are made by both pharmacological and non-pharmacological methods. To date, most of the work has been devoted to pharmacological strategies, much less to augemantation of clozapine with electroconvulsive therapy (C+ECT, transcranial direct current stimulation (tDCS or transcranial magnetic stimulation (TMS.

  4. Cardiac action potential repolarization revisited: early repolarization shows all-or-none behaviour.

    Science.gov (United States)

    Trenor, Beatriz; Cardona, Karen; Saiz, Javier; Noble, Denis; Giles, Wayne

    2017-11-01

    In healthy mammalian hearts the action potential (AP) waveform initiates and modulates each contraction, or heartbeat. As a result, AP height and duration are key physiological variables. In addition, rate-dependent changes in ventricular AP duration (APD), and variations in APD at a fixed heart rate are both reliable biomarkers of electrophysiological stability. Present guidelines for the likelihood that candidate drugs will increase arrhythmias rely on small changes in APD and Q-T intervals as criteria for safety pharmacology decisions. However, both of these measurements correspond to the final repolarization of the AP. Emerging clinical evidence draws attention to the early repolarization phase of the action potential (and the J-wave of the ECG) as an additional important biomarker for arrhythmogenesis. Here we provide a mechanistic background to this early repolarization syndrome by summarizing the evidence that both the initial depolarization and repolarization phases of the cardiac action potential can exhibit distinct time- and voltage-dependent thresholds, and also demonstrating that both can show regenerative all-or-none behaviour. An important consequence of this is that not all of the dynamics of action potential repolarization in human ventricle can be captured by data from single myocytes when these results are expressed as 'repolarization reserve'. For example, the complex pattern of cell-to-cell current flow that is responsible for AP conduction (propagation) within the mammalian myocardium can change APD and the Q-T interval of the electrocardiogram alter APD stability, and modulate responsiveness to pharmacological agents (such as Class III anti-arrhythmic drugs). © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  5. Complex Pharmacology of Free Fatty Acid Receptors

    DEFF Research Database (Denmark)

    Milligan, Graeme; Shimpukade, Bharat; Ulven, Trond

    2017-01-01

    pharmacology have shaped understanding of the complex pharmacology of receptors that recognize and are activated by nonesterified or "free" fatty acids (FFAs). The FFA family of receptors is a recently deorphanized set of GPCRs, the members of which are now receiving substantial interest as novel targets...

  6. Theoretical Studies Applied to the Evaluation of the DFPase Bioremediation Potential against Chemical Warfare Agents Intoxication

    Directory of Open Access Journals (Sweden)

    Flávia V. Soares

    2018-04-01

    Full Text Available Organophosphorus compounds (OP are part of a group of compounds that may be hazardous to health. They are called neurotoxic agents because of their action on the nervous system, inhibiting the acetylcholinesterase (AChE enzyme and resulting in a cholinergic crisis. Their high toxicity and rapid action lead to irreversible damage to the nervous system, drawing attention to developing new treatment methods. The diisopropyl fluorophosphatase (DFPase enzyme has been considered as a potent biocatalyst for the hydrolysis of toxic OP and has potential for bioremediation of this kind of intoxication. In order to investigate the degradation process of the nerve agents Tabun, Cyclosarin and Soman through the wild-type DFPase, and taking into account their stereochemistry, theoretical studies were carried out. The intermolecular interaction energy and other parameters obtained from the molecular docking calculations were used to construct a data matrix, which were posteriorly treated by statistical analyzes of chemometrics, using the PCA (Principal Components Analysis multivariate analysis. The analyzed parameters seem to be quite important for the reaction mechanisms simulation (QM/MM. Our findings showed that the wild-type DFPase enzyme is stereoselective in hydrolysis, showing promising results for the catalytic degradation of the neurotoxic agents under study, with the degradation mechanism performed through two proposed pathways.

  7. Differences in pharmacology of tumor necrosis factor (TNF antagonists

    Directory of Open Access Journals (Sweden)

    S. Bombardieri

    2011-09-01

    Full Text Available The commercially available inhibitors of TNF are constituted by two classes of molecules: the soluble receptors (Etanercept: Amgen Inc. Wyeth and the monoclonal antibodies (Adalimumab: Abbott Laboratories and Infliximab: Centocor, Inc.. The differences in their molecular structure, mechanism of action, pharmacokinetics (PK and pharmacodynamics (PD are discussed, along with the differences concerning dose, administration regimens, drug concentrations and pharmacological interactions. In order to explain the clinical differences observed when these agents are used in the “real world”, which can arise from the respective PK characteristics (kinetics, route and frequency of administration, type of TNF binding, effects on cytokines and PD responses and peculiar mechanisms of action, with distinctive immune function (LFTa inactivation; apoptosis induction, TNF immunoprecipitation, C1q binding and CDC induction; Fcg cross-linking and ADCC induction, the dynamics of interaction of the two classes of neutralizing molecules with TNF, and the ability in restoring TNF homeostasis, are outlined.

  8. Role of Chemokine Network in the Development and Progression of Ovarian Cancer: A Potential Novel Pharmacological Target

    Directory of Open Access Journals (Sweden)

    Federica Barbieri

    2010-01-01

    Full Text Available Ovarian cancer is the most common type of gynecologic malignancy. Despite advances in surgery and chemotherapy, the survival rate is still low since most ovarian cancers relapse and become drug-resistant. Chemokines are small chemoattractant peptides mainly involved in the immune responses. More recently, chemokines were also demonstrated to regulate extra-immunological functions. It was shown that the chemokine network plays crucial functions in the tumorigenesis in several tissues. In particular the imbalanced or aberrant expression of CXCL12 and its receptor CXCR4 strongly affects cancer cell proliferation, recruitment of immunosuppressive cells, neovascularization, and metastasization. In the last years, several molecules able to target CXCR4 or CXCL12 have been developed to interfere with tumor growth, including pharmacological inhibitors, antagonists, and specific antibodies. This chemokine ligand/receptor pair was also proposed to represent an innovative therapeutic target for the treatment of ovarian cancer. Thus, a thorough understanding of ovarian cancer biology, and how chemokines may control these different biological activities might lead to the development of more effective therapies. This paper will focus on the current biology of CXCL12/CXCR4 axis in the context of understanding their potential role in ovarian cancer development.

  9. A Review of the Phytochemistry and Pharmacological Activities of Raphani Semen

    Directory of Open Access Journals (Sweden)

    Tung-Ting Sham

    2013-01-01

    Full Text Available The dried ripe seed of Raphanus sativus L., commonly known as radish seed (or Raphani Semen, is used as traditional Chinese medicine (TCM to treat constipation, chronic tracheitis, and hypertension. The major active compounds in Raphani Semen are alkaloids, glucosinolates, brassinosteroids, and flavonoids. Fatty acids are its main nutritional contents. Raphani Semen has been demonstrated to have beneficial effects on hypertension, obesity, diabetes mellitus, constipation, and cough. So far, there is no report about the adverse/toxic effects of this herb on humans. However, Raphani Semen processed by roasting was reported to exhibit some adverse effects on mice. Additionally, erucic acid, the main fatty acid in Raphani Semen, was shown to enhance the toxicity of doxorubicin. Thus, Raphani Semen has a potential risk of causing toxicity and drug interaction. In summary, Raphani Semen is a valuable TCM herb with multiple pharmacological effects. More studies on Raphani Semen could help better understand its pharmacological mechanisms so as to provide clear scientific evidence to explain its traditional uses, to identify its therapeutic potential on other diseases, and to understand its possible harmful effects.

  10. Pharmacologic Approaches Against Advanced Glycation End Products (AGEs) in Diabetic Cardiovascular Disease.

    Science.gov (United States)

    Nenna, Antonio; Nappi, Francesco; Avtaar Singh, Sanjeet Singh; Sutherland, Fraser W; Di Domenico, Fabio; Chello, Massimo; Spadaccio, Cristiano

    2015-05-01

    Advanced Glycation End-Products (AGEs) are signaling proteins associated to several vascular and neurological complications in diabetic and non-diabetic patients. AGEs proved to be a marker of negative outcome in both diabetes management and surgical procedures in these patients. The reported role of AGEs prompted the development of pharmacological inhibitors of their effects, giving rise to a number of both preclinical and clinical studies. Clinical trials with anti-AGEs drugs have been gradually developed and this review aimed to summarize most relevant reports. Evidence acquisition process was performed using PubMed and ClinicalTrials.gov with manually checked articles. Pharmacological approaches in humans include aminoguanidine, pyridoxamine, benfotiamine, angiotensin converting enzyme inhibitors, angiotensin receptor blockers, statin, ALT-711 (alagebrium) and thiazolidinediones. The most recent promising anti-AGEs agents are statins, alagebrium and thiazolidinediones. The role of AGEs in disease and new compounds interfering with their effects are currently under investigation in preclinical settings and these newer anti-AGEs drugs would undergo clinical evaluation in the next years. Compounds with anti-AGEs activity but still not available for clinical scenarios are ALT-946, OPB-9195, tenilsetam, LR-90, TM2002, sRAGE and PEDF. Despite most studies confirm the efficacy of these pharmacological approaches, other reports produced conflicting evidences; in almost any case, these drugs were well tolerated. At present, AGEs measurement has still not taken a precise role in clinical practice, but its relevance as a marker of disease has been widely shown; therefore, it is important for clinicians to understand the value of new cardiovascular risk factors. Findings from the current and future clinical trials may help in determining the role of AGEs and the benefits of anti-AGEs treatment in cardiovascular disease.

  11. Pharmacological treatment for memory disorder in multiple sclerosis.

    Science.gov (United States)

    He, Dian; Zhang, Yun; Dong, Shuai; Wang, Dongfeng; Gao, Xiangdong; Zhou, Hongyu

    2013-12-17

    This is an update of the Cochrane review "Pharmacologic treatment for memory disorder in multiple sclerosis" (first published in The Cochrane Library 2011, Issue 10).Multiple sclerosis (MS) is a chronic immune-mediated, inflammatory, demyelinating, neurodegenerative disorder of the central nervous system (CNS) and can cause both neurological and neuropsychological disability. Both demyelination and axonal and neuronal loss are believed to contribute to MS-related cognitive impairment. Memory disorder is one of the most frequent cognitive dysfunctions and presents a considerable burden to people with MS and to society due to the negative impact on function. A number of pharmacological agents have been evaluated in many existing randomised controlled trials for their efficacy on memory disorder in people with MS but the results were not consistent. To assess the absolute and comparative efficacy, tolerability and safety of pharmacological treatments for memory disorder in adults with MS. We searched the Cochrane Multiple Sclerosis and Rare Diseases of the Central Nervous System Group Trials Register (24 July 2013), PsycINFO (January 1980 to 26 June 2013) and CBMdisc (1978 to 24 June 2013), and checked reference lists of identified articles, searched some relevant journals manually, registers of clinical trials and published abstracts of conference proceedings. All double-blind, randomised controlled parallel trials on pharmacological treatment versus placebo or one or more pharmacological treatments in adults with MS who had at least mild memory impairment (at 0.5 standard deviations below age- and sex-based normative data on a validated memory scale). We placed no restrictions regarding dose, route of administration and frequency; however, we only included trials with an administration duration of 12 weeks or greater. Two review authors independently assessed trial quality and extracted data. We discussed disagreements and resolved them by consensus among review

  12. Lippia citrodora: a review on its phytochemistry and pharmacological activities

    Directory of Open Access Journals (Sweden)

    2017-11-01

    Full Text Available Background and objectives: Lippia citrodora commonly known as lemon verbena is a species of flowering plant in the verbena family, native to western South America. With its antioxidant effects, it is mostly used in folk medicine to treat anti-inflammatory diseases, and diseases associated with oxidative stress. This review has presented a summary on L. citordora’s phytochemistry and its pharmacological activities. It will also discuss gaps and challenges needed to be solved. Methods: Electronic database including Web of Science, PubMed, Science Direct and Google Scholar were searched for articles published between 1973 and 2017 regarding the phytochemistry and biological activities of L. citodora. Results: Traditional uses of this plant were specially related to coagulation system, digestive system and brain. Phytochemical investigations identified flavonoids, terpenes, iridois, lignins, phenylethanoid, as the main components of the plant. Antimicrobial, neuroprotective, antinociceptive, anti hyperpropulsive, sedative, anticolitis, anxiolytic, anticonvulsant, antihyperalgesic, and anticancer properties were among the pharmacological activities of L. citriodora. The plant extract and essential oil had also demonstrated high antioxidant activity. Conclusion: Modern pharmacological studies have now validated many traditional uses of L. citrodora. The data reviewed here revealed that this plant is a potential source for the treatment of a wide range of diseases specially inflammatory diseases and neurological dysfunctions. Future human studies are needed for further confirmation of the therapeutic activities of L. citriodora.

  13. Key Questions for Translation of FFA Receptors: From Pharmacology to Medicines.

    Science.gov (United States)

    Suckow, Arthur T; Briscoe, Celia P

    2017-01-01

    The identification of fatty acids as ligands for the G-protein coupled free fatty acid (FFA) receptor family over 10 years ago led to intensive chemistry efforts to find small-molecule ligands for this class of receptors. Identification of potent, selective modulators of the FFA receptors and their utility in medicine has proven challenging, in part due to their complex pharmacology. Nevertheless, ligands have been identified that are sufficient for exploring the therapeutic potential of this class of receptors in rodents and, in the case of FFA1, FFA2, FFA4, and GPR84, also in humans. Expression profiling, the phenotyping of FFA receptor knockout mice, and the results of studies exploring the effects of these ligands in rodents have uncovered a number of indications where engagement of one or a combination of FFA receptors might provide some clinical benefit in areas including diabetes, inflammatory bowel syndrome, Alzheimer's, pain, and cancer. In this chapter, we will review the clinical potential of modulating FFA receptors based on preclinical and in some cases clinical studies with synthetic ligands. In particular, key aspects and challenges associated with small-molecule ligand identification and FFA receptor pharmacology will be addressed with a view of the hurdles that need to be overcome to fully understand the potential of the receptors as therapeutic targets.

  14. Efficacy of Neurofeedback Versus Pharmacological Support in Subjects with ADHD.

    Science.gov (United States)

    González-Castro, Paloma; Cueli, Marisol; Rodríguez, Celestino; García, Trinidad; Álvarez, Luis

    2016-03-01

    Behavioral training in neurofeedback has proven to be an essential complement to generalize the effects of pharmacological support in subjects who have attention deficit with hyperactivity disorder (ADHD). Therefore, this investigation attempts to analyze the efficacy of neurofeedback compared with pharmacological support and the combination of both. Participants were 131 students, classified into four groups: control (did not receive neurofeedback or pharmacological support), neurofeedback group, pharmacological support group, and combined group (neurofeedback + pharmacological support). Participants' executive control and cortical activation were assessed before and after treatment. Results indicate that the combined group obtained more benefits and that the neurofeedback group improved to a greater extent in executive control than the pharmacological support group. It is concluded that this kind of training may be an alternative to stimulate activation in subjects with ADHD.

  15. PMI: a ΔΨm independent pharmacological regulator of mitophagy.

    Science.gov (United States)

    East, Daniel A; Fagiani, Francesca; Crosby, James; Georgakopoulos, Nikolaos D; Bertrand, Hélène; Schaap, Marjolein; Fowkes, Adrian; Wells, Geoff; Campanella, Michelangelo

    2014-11-20

    Mitophagy is central to mitochondrial and cellular homeostasis and operates via the PINK1/Parkin pathway targeting mitochondria devoid of membrane potential (ΔΨm) to autophagosomes. Although mitophagy is recognized as a fundamental cellular process, selective pharmacologic modulators of mitophagy are almost nonexistent. We developed a compound that increases the expression and signaling of the autophagic adaptor molecule P62/SQSTM1 and forces mitochondria into autophagy. The compound, P62-mediated mitophagy inducer (PMI), activates mitophagy without recruiting Parkin or collapsing ΔΨm and retains activity in cells devoid of a fully functional PINK1/Parkin pathway. PMI drives mitochondria to a process of quality control without compromising the bio-energetic competence of the whole network while exposing just those organelles to be recycled. Thus, PMI circumvents the toxicity and some of the nonspecific effects associated with the abrupt dissipation of ΔΨm by ionophores routinely used to induce mitophagy and represents a prototype pharmacological tool to investigate the molecular mechanisms of mitophagy.

  16. Problems of pharmacological supply of disaster medicine

    International Nuclear Information System (INIS)

    Sabaev, V.V.; Il'ina, S.L.

    1995-01-01

    The paper reviews a number of pharmacological problems, being important for the disaster medicine, of theoretical and practical nature, the settlement of which would promote more efficient rendering emergency medical aid to the injured persons in the conditions of emergency situations and further expert medical care. On the example of radiation accidents there are studied methodical approaches to organization of drug prophylaxis and therapy of the injured persons in emergency situations. The authors have proved the necessity of arranging proper pharmacological supply of disaster medicine which is to settle the whole complex of scientific-applied and organizational questions relating to the competence of pharmacology and pharmacy. 17 refs

  17. Developments in harmine pharmacology--implications for ayahuasca use and drug-dependence treatment.

    Science.gov (United States)

    Brierley, Daniel I; Davidson, Colin

    2012-12-03

    Ayahuasca is a hallucinogenic botanical mixture originating in the Amazon area where it is used ritually, but is now being taken globally. The 2 main constituents of ayahuasca are N,N-dimethyltryptamine (DMT), a hallucinogen, and harmine, a monoamine oxidase inhibitor (MAOI) which attenuates the breakdown of DMT, which would otherwise be broken down very quickly after oral consumption. Recent developments in ayahuasca use include the sale of these compounds on the internet and the substitution of related botanical (anahuasca) or synthetic (pharmahuasca) compounds to achieve the same desired hallucinogenic effects. One intriguing result of ayahuasca use appears to be improved mental health and a reduction in recidivism to alternate (alcohol, cocaine) drug use. In this review we discuss the pharmacology of ayahuasca, with a focus on harmine, and suggest pharmacological mechanisms for the putative reduction in recidivism to alcohol and cocaine misuse. These pharmacological mechanisms include MAOI, effects at 5-HT(2A) and imidazoline receptors and inhibition of dual-specificity tyrosine-phosphorylation regulated kinase 1A (DYRK1A) and the dopamine transporter. We also speculate on the therapeutic potential of harmine in other CNS conditions. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Pharmacology and function of melatonin receptors

    International Nuclear Information System (INIS)

    Dubocovich, M.L.

    1988-01-01

    The hormone melatonin is secreted primarily from the pineal gland, with highest levels occurring during the dark period of a circadian cycle. This hormone, through an action in the brain, appears to be involved in the regulation of various neural and endocrine processes that are cued by the daily change in photoperiod. This article reviews the pharmacological characteristics and function of melatonin receptors in the central nervous system, and the role of melatonin in mediating physiological functions in mammals. Melatonin and melatonin agonists, at picomolar concentrations, inhibit the release of dopamine from retina through activation of a site that is pharmacologically different from a serotonin receptor. These inhibitory effects are antagonized by the novel melatonin receptor antagonist luzindole (N-0774), which suggests that melatonin activates a presynaptic melatonin receptor. In chicken and rabbit retina, the pharmacological characteristics of the presynaptic melatonin receptor and the site labeled by 2-[125I]iodomelatonin are identical. It is proposed that 2-[125I]iodomelatonin binding sites (e.g., chicken brain) that possess the pharmacological characteristics of the retinal melatonin receptor site (order of affinities: 2-iodomelatonin greater than 6-chloromelatonin greater than or equal to melatonin greater than or equal to 6,7-di-chloro-2-methylmelatonin greater than 6-hydroxymelatonin greater than or equal to 6-methoxymelatonin greater than N-acetyltryptamine greater than or equal to luzindole greater than N-acetyl-5-hydroxytryptamine greater than 5-methoxytryptamine much greater than 5-hydroxytryptamine) be classified as ML-1 (melatonin 1). The 2-[125I]iodomelatonin binding site of hamster brain membranes possesses different binding and pharmacological characteristics from the retinal melatonin receptor site and should be classified as ML-2. 64 references

  19. Cardiocladius oliffi (Diptera: Chironomidae as a potential biological control agent against Simulium squamosum (Diptera: Simuliidae

    Directory of Open Access Journals (Sweden)

    Wilson Michael D

    2009-04-01

    Full Text Available Abstract Background The control of onchocerciasis in the African region is currently based mainly on the mass drug administration of ivermectin. Whilst this has been found to limit morbidity, it does not stop transmission. In the absence of a macrofilaricide, there is a need for an integrated approach for disease management, which includes vector control. Vector control using chemical insecticides is expensive to apply, and therefore the use of other measures such as biological control agents is needed. Immature stages of Simulium squamosum, reared in the laboratory from egg masses collected from the field at Boti Falls and Huhunya (River Pawnpawn in Ghana, were observed to be attacked and fed upon by larvae of the chironomid Cardiocladius oliffi Freeman, 1956 (Diptera: Chironomidae. Methods Cardiocladius oliffi was successfully reared in the rearing system developed for S. damnosum s.l. and evaluated for its importance as a biological control agent in the laboratory. Results Even at a ratio of one C. oliffi to five S. squamosum, they caused a significant decrease in the number of adult S. squamosum emerging from the systems (treatments. Predation was confirmed by the amplification of Simulium DNA from C. oliffi observed to have fed on S. squamosum pupae. The study also established that the chironomid flies could successfully complete their development on a fish food diet only. Conclusion Cardiocladius oliffi has been demonstrated as potential biological control agent against S. squamosum.

  20. The potential effect of taurine as a radioprotective agent

    International Nuclear Information System (INIS)

    Sharoud, M.N.M.

    2010-01-01

    People can be exposed to irradiation either external or internal. The potential effects of radiation on health depend in part on the radiation dose delivered and the rate of delivery causing oxidation and free radical formation. The main purpose of the present study was to asses the effect of taurine administration in modulating some biochemical and hematological parameters in female rats exposed to 6 gray γ-irradiation. The data showed in this study that the ionizing γradiation (6 Gy) induced a significant (p<0.05) increment in the levels of serum lipid profile (cholesterol, triglycerides, HDL and LDL) and elevation of cardiac enzyme activities (LDH, CK and AST) and elevation in the activities of serum AST , ALT and ALP. on the other hand , the ionizing radiation induced a significant (p < 0.05) decline in the concentrations of serum total protein and albumin . In case of exposing female rat to gamma ray, the level of MDA was significantly elevated compared to their corresponding normal control group. Whereas, the drastic decrease were observed in hematological parameters (Hb, RBCs, WBCs and Hct). A significant correction was occurred in all previous parameters after the irradiated rats were intraperitoneally (i.p) injected with taurine (500 mg/100 g body weigh / day for one month). Leading to the conclusion that taurine is considered as antioxidant and a radio-protector agent.