WorldWideScience

Sample records for potential ligand-binding residues

  1. Potential ligand-binding residues in rat olfactory receptors identified by correlated mutation analysis

    Science.gov (United States)

    Singer, M. S.; Oliveira, L.; Vriend, G.; Shepherd, G. M.

    1995-01-01

    A family of G-protein-coupled receptors is believed to mediate the recognition of odor molecules. In order to identify potential ligand-binding residues, we have applied correlated mutation analysis to receptor sequences from the rat. This method identifies pairs of sequence positions where residues remain conserved or mutate in tandem, thereby suggesting structural or functional importance. The analysis supported molecular modeling studies in suggesting several residues in positions that were consistent with ligand-binding function. Two of these positions, dominated by histidine residues, may play important roles in ligand binding and could confer broad specificity to mammalian odor receptors. The presence of positive (overdominant) selection at some of the identified positions provides additional evidence for roles in ligand binding. Higher-order groups of correlated residues were also observed. Each group may interact with an individual ligand determinant, and combinations of these groups may provide a multi-dimensional mechanism for receptor diversity.

  2. LigandRFs: random forest ensemble to identify ligand-binding residues from sequence information alone

    KAUST Repository

    Chen, Peng; Huang, Jianhua Z; Gao, Xin

    2014-01-01

    Protein-ligand binding is important for some proteins to perform their functions. Protein-ligand binding sites are the residues of proteins that physically bind to ligands. Despite of the recent advances in computational prediction

  3. LigandRFs: random forest ensemble to identify ligand-binding residues from sequence information alone

    KAUST Repository

    Chen, Peng

    2014-12-03

    Background Protein-ligand binding is important for some proteins to perform their functions. Protein-ligand binding sites are the residues of proteins that physically bind to ligands. Despite of the recent advances in computational prediction for protein-ligand binding sites, the state-of-the-art methods search for similar, known structures of the query and predict the binding sites based on the solved structures. However, such structural information is not commonly available. Results In this paper, we propose a sequence-based approach to identify protein-ligand binding residues. We propose a combination technique to reduce the effects of different sliding residue windows in the process of encoding input feature vectors. Moreover, due to the highly imbalanced samples between the ligand-binding sites and non ligand-binding sites, we construct several balanced data sets, for each of which a random forest (RF)-based classifier is trained. The ensemble of these RF classifiers forms a sequence-based protein-ligand binding site predictor. Conclusions Experimental results on CASP9 and CASP8 data sets demonstrate that our method compares favorably with the state-of-the-art protein-ligand binding site prediction methods.

  4. Relationship between hot spot residues and ligand binding hot spots in protein-protein interfaces.

    Science.gov (United States)

    Zerbe, Brandon S; Hall, David R; Vajda, Sandor; Whitty, Adrian; Kozakov, Dima

    2012-08-27

    In the context of protein-protein interactions, the term "hot spot" refers to a residue or cluster of residues that makes a major contribution to the binding free energy, as determined by alanine scanning mutagenesis. In contrast, in pharmaceutical research, a hot spot is a site on a target protein that has high propensity for ligand binding and hence is potentially important for drug discovery. Here we examine the relationship between these two hot spot concepts by comparing alanine scanning data for a set of 15 proteins with results from mapping the protein surfaces for sites that can bind fragment-sized small molecules. We find the two types of hot spots are largely complementary; the residues protruding into hot spot regions identified by computational mapping or experimental fragment screening are almost always themselves hot spot residues as defined by alanine scanning experiments. Conversely, a residue that is found by alanine scanning to contribute little to binding rarely interacts with hot spot regions on the partner protein identified by fragment mapping. In spite of the strong correlation between the two hot spot concepts, they fundamentally differ, however. In particular, while identification of a hot spot by alanine scanning establishes the potential to generate substantial interaction energy with a binding partner, there are additional topological requirements to be a hot spot for small molecule binding. Hence, only a minority of hot spots identified by alanine scanning represent sites that are potentially useful for small inhibitor binding, and it is this subset that is identified by experimental or computational fragment screening.

  5. Consensus of sample-balanced classifiers for identifying ligand-binding residue by co-evolutionary physicochemical characteristics of amino acids

    KAUST Repository

    Chen, Peng

    2013-01-01

    Protein-ligand binding is an important mechanism for some proteins to perform their functions, and those binding sites are the residues of proteins that physically bind to ligands. So far, the state-of-the-art methods search for similar, known structures of the query and predict the binding sites based on the solved structures. However, such structural information is not commonly available. In this paper, we propose a sequence-based approach to identify protein-ligand binding residues. Due to the highly imbalanced samples between the ligand-binding sites and non ligand-binding sites, we constructed several balanced data sets, for each of which a random forest (RF)-based classifier was trained. The ensemble of these RF classifiers formed a sequence-based protein-ligand binding site predictor. Experimental results on CASP9 targets demonstrated that our method compared favorably with the state-of-the-art. © Springer-Verlag Berlin Heidelberg 2013.

  6. Variation in one residue associated with the metal ion-dependent adhesion site regulates αIIbβ3 integrin ligand binding affinity.

    Directory of Open Access Journals (Sweden)

    Joel Raborn

    Full Text Available The Asp of the RGD motif of the ligand coordinates with the β I domain metal ion dependent adhesion site (MIDAS divalent cation, emphasizing the importance of the MIDAS in ligand binding. There appears to be two distinct groups of integrins that differ in their ligand binding affinity and adhesion ability. These differences may be due to a specific residue associated with the MIDAS, particularly the β3 residue Ala(252 and corresponding Ala in the β1 integrin compared to the analogous Asp residue in the β2 and β7 integrins. Interestingly, mutations in the adjacent to MIDAS (ADMIDAS of integrins α4β7 and αLβ2 increased the binding and adhesion abilities compared to the wild-type, while the same mutations in the α2β1, α5β1, αVβ3, and αIIbβ3 integrins demonstrated decreased ligand binding and adhesion. We introduced a mutation in the αIIbβ3 to convert this MIDAS associated Ala(252 to Asp. By combination of this mutant with mutations of one or two ADMIDAS residues, we studied the effects of this residue on ligand binding and adhesion. Then, we performed molecular dynamics simulations on the wild-type and mutant αIIbβ3 integrin β I domains, and investigated the dynamics of metal ion binding sites in different integrin-RGD complexes. We found that the tendency of calculated binding free energies was in excellent agreement with the experimental results, suggesting that the variation in this MIDAS associated residue accounts for the differences in ligand binding and adhesion among different integrins, and it accounts for the conflicting results of ADMIDAS mutations within different integrins. This study sheds more light on the role of the MIDAS associated residue pertaining to ligand binding and adhesion and suggests that this residue may play a pivotal role in integrin-mediated cell rolling and firm adhesion.

  7. Consensus of sample-balanced classifiers for identifying ligand-binding residue by co-evolutionary physicochemical characteristics of amino acids

    KAUST Repository

    Chen, Peng

    2013-01-01

    Protein-ligand binding is an important mechanism for some proteins to perform their functions, and those binding sites are the residues of proteins that physically bind to ligands. So far, the state-of-the-art methods search for similar, known

  8. Ensemble Architecture for Prediction of Enzyme-ligand Binding Residues Using Evolutionary Information.

    Science.gov (United States)

    Pai, Priyadarshini P; Dattatreya, Rohit Kadam; Mondal, Sukanta

    2017-11-01

    Enzyme interactions with ligands are crucial for various biochemical reactions governing life. Over many years attempts to identify these residues for biotechnological manipulations have been made using experimental and computational techniques. The computational approaches have gathered impetus with the accruing availability of sequence and structure information, broadly classified into template-based and de novo methods. One of the predominant de novo methods using sequence information involves application of biological properties for supervised machine learning. Here, we propose a support vector machines-based ensemble for prediction of protein-ligand interacting residues using one of the most important discriminative contributing properties in the interacting residue neighbourhood, i. e., evolutionary information in the form of position-specific- scoring matrix (PSSM). The study has been performed on a non-redundant dataset comprising of 9269 interacting and 91773 non-interacting residues for prediction model generation and further evaluation. Of the various PSSM-based models explored, the proposed method named ROBBY (pRediction Of Biologically relevant small molecule Binding residues on enzYmes) shows an accuracy of 84.0 %, Matthews Correlation Coefficient of 0.343 and F-measure of 39.0 % on 78 test enzymes. Further, scope of adding domain knowledge such as pocket information has also been investigated; results showed significant enhancement in method precision. Findings are hoped to boost the reliability of small-molecule ligand interaction prediction for enzyme applications and drug design. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Identification in the mu-opioid receptor of cysteine residues responsible for inactivation of ligand binding by thiol alkylating and reducing agents.

    Science.gov (United States)

    Gaibelet, G; Capeyrou, R; Dietrich, G; Emorine, L J

    1997-05-19

    Inactivation by thiol reducing and alkylating agents of ligand binding to the human mu-opioid receptor was examined. Dithiothreitol reduced the number of [3H]diprenorphine binding sites. Replacement by seryl residues of either C142 or C219 in extracellular loops 1 and 2 of the mu receptor resulted in a complete loss of opioid binding. A disulfide bound linking C142 to C219 may thus be essential to maintain a functional conformation of the receptor. We also demonstrated that inactivation of ligand binding upon alkylation by N-ethylmaleimide occurred at two sites. Alteration of the more sensitive (IC50 = 20 microM) did not modify antagonists binding but decreased agonist affinity almost 10-fold. Modification of the less reactive site (IC50 = 2 mM) decreased the number of both agonist and antagonist binding sites. The alkylation site of higher sensitivity to N-ethylmaleimide was shown by mutagenesis experiments to be constituted of both C81 and C332 in transmembrane domains 1 and 7 of the mu-opioid receptor.

  10. Ligand binding and antigenic properties of a human neonatal Fc receptor with mutation of two unpaired cysteine residues

    DEFF Research Database (Denmark)

    Andersen, Jan T; Justesen, Sune; Fleckenstein, Burkhard

    2008-01-01

    knowledge gives incentives for the design of IgG and albumin-based diagnostics and therapeutics. To study FcRn in vitro and to select and characterize FcRn binders, large quantities of soluble human FcRn are needed. In this report, we explored the impact of two free cysteine residues (C48 and C251......) of the FcRn heavy chain on the overall structure and function of soluble human FcRn and described an improved bacterial production strategy based on removal of these residues, yielding approximately 70 mg.L(-1) of fermentation of refolded soluble human FcRn. The structural and functional integrity...... was proved by CD, surface plasmon resonance and MALDI-TOF peptide mapping analyses. The strategy may generally be translated to the large-scale production of other major histocompatibility complex class I-related molecules with nonfunctional unpaired cysteine residues. Furthermore, the anti-FcRn response...

  11. LIBRA: LIgand Binding site Recognition Application.

    Science.gov (United States)

    Hung, Le Viet; Caprari, Silvia; Bizai, Massimiliano; Toti, Daniele; Polticelli, Fabio

    2015-12-15

    In recent years, structural genomics and ab initio molecular modeling activities are leading to the availability of a large number of structural models of proteins whose biochemical function is not known. The aim of this study was the development of a novel software tool that, given a protein's structural model, predicts the presence and identity of active sites and/or ligand binding sites. The algorithm implemented by ligand binding site recognition application (LIBRA) is based on a graph theory approach to find the largest subset of similar residues between an input protein and a collection of known functional sites. The algorithm makes use of two predefined databases for active sites and ligand binding sites, respectively, derived from the Catalytic Site Atlas and the Protein Data Bank. Tests indicate that LIBRA is able to identify the correct binding/active site in 90% of the cases analyzed, 90% of which feature the identified site as ranking first. As far as ligand binding site recognition is concerned, LIBRA outperforms other structure-based ligand binding sites detection tools with which it has been compared. The application, developed in Java SE 7 with a Swing GUI embedding a JMol applet, can be run on any OS equipped with a suitable Java Virtual Machine (JVM), and is available at the following URL: http://www.computationalbiology.it/software/LIBRAv1.zip. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. Solution structure of the twelfth cysteine-rich ligand-binding repeat in rat megalin

    International Nuclear Information System (INIS)

    Wolf, Christian A.; Dancea, Felician; Shi Meichen; Bade-Noskova, Veronika; Rueterjans, Heinz; Kerjaschki, Dontscho; Luecke, Christian

    2007-01-01

    Megalin, an approx. 600 kDa transmembrane glycoprotein that acts as multi-ligand transporter, is a member of the low density lipoprotein receptor gene family. Several cysteine-rich repeats, each consisting of about 40 residues, are responsible for the multispecific binding of ligands. The solution structure of the twelfth cysteine-rich ligand-binding repeat with class A motif found in megalin features two short β-strands and two helical turns, yielding the typical fold with a I-III, II-V and IV-VI disulfide bridge connectivity pattern and a calcium coordination site at the C-terminal end. The resulting differences in electrostatic surface potential compared to other ligand-binding modules of this gene family, however, may be responsible for the functional divergence

  13. Identification of amino acid residues in the ligand-binding domain of the aryl hydrocarbon receptor causing the species-specific response to omeprazole: possible determinants for binding putative endogenous ligands.

    Science.gov (United States)

    Shiizaki, Kazuhiro; Ohsako, Seiichiroh; Kawanishi, Masanobu; Yagi, Takashi

    2014-02-01

    Omeprazole (OME) induces the expression of genes encoding drug-metabolizing enzymes, such as CYP1A1, via activation of the aryl hydrocarbon receptor (AhR) both in vivo and in vitro. However, the precise mechanism of OME-mediated AhR activation is still under investigation. While elucidating species-specific susceptibility to dioxin, we found that OME-mediated AhR activation was mammalian species specific. Moreover, we previously reported that OME has inhibitory activity toward CYP1A1 enzymes. From these observations, we speculated that OME-mediated AhR target gene transcription is due to AhR activation by increasing amounts of putative AhR ligands in serum by inhibition of CYP1A1 activity. We compared the amino acid sequences of OME-sensitive rabbit AhR and nonsensitive mouse AhR to identify the residues responsible for the species-specific response. Chimeric AhRs were constructed by exchanging domains between mouse and rabbit AhRs to define the region required for the response to OME. OME-mediated transactivation was observed only with the chimeric AhR that included the ligand-binding domain (LBD) of the rabbit AhR. Site-directed mutagenesis revealed three amino acids (M328, T353, and F367) in the rabbit AhR that were responsible for OME-mediated transactivation. Replacing these residues with those of the mouse AhR abolished the response of the rabbit AhR. In contrast, substitutions of these amino acids with those of the rabbit AhR altered nonsensitive mouse AhR to become sensitive to OME. These results suggest that OME-mediated AhR activation requires a specific structure within LBD that is probably essential for binding with enigmatic endogenous ligands.

  14. Phosphorylation of threonine residues on Shc promotes ligand binding and mediates crosstalk between MAPK and Akt pathways in breast cancer cells

    KAUST Repository

    Suen, K.M.

    2017-12-06

    Scaffold proteins play important roles in regulating signalling network fidelity, the absence of which is often the basis for diseases such as cancer. In the present work, we show that the prototypical scaffold protein Shc is phosphorylated by the extracellular signal-regulated kinase, Erk. In addition, Shc threonine phosphorylation is specifically up-regulated in two selected triple-negative breast cancer (TNBC) cell lines. To explore how Erk-mediated threonine phosphorylation on Shc might play a role in the dysregulation of signalling events, we investigated how Shc affects pathways downstream of EGF receptor. Using an in vitro model and biophysical analysis, we show that Shc threonine phosphorylation is responsible for elevated Akt and Erk signalling, potentially through the recruitment of the 14-3-3 ζ and Pin-1 proteins.

  15. Phosphorylation of threonine residues on Shc promotes ligand binding and mediates crosstalk between MAPK and Akt pathways in breast cancer cells

    KAUST Repository

    Suen, K.M.; Lin, C.C.; Seiler, C.; George, R.; Poncet-Montange, G.; Biter, A.B.; Ahmed, Z.; Arold, Stefan T.; Ladbury, J.E.

    2017-01-01

    Scaffold proteins play important roles in regulating signalling network fidelity, the absence of which is often the basis for diseases such as cancer. In the present work, we show that the prototypical scaffold protein Shc is phosphorylated by the extracellular signal-regulated kinase, Erk. In addition, Shc threonine phosphorylation is specifically up-regulated in two selected triple-negative breast cancer (TNBC) cell lines. To explore how Erk-mediated threonine phosphorylation on Shc might play a role in the dysregulation of signalling events, we investigated how Shc affects pathways downstream of EGF receptor. Using an in vitro model and biophysical analysis, we show that Shc threonine phosphorylation is responsible for elevated Akt and Erk signalling, potentially through the recruitment of the 14-3-3 ζ and Pin-1 proteins.

  16. Molecular dynamics simulations suggest ligand's binding to nicotinamidase/pyrazinamidase.

    Science.gov (United States)

    Zhang, Ji-Long; Zheng, Qing-Chuan; Li, Zheng-Qiang; Zhang, Hong-Xing

    2012-01-01

    The research on the binding process of ligand to pyrazinamidase (PncA) is crucial for elucidating the inherent relationship between resistance of Mycobacterium tuberculosis and PncA's activity. In the present study, molecular dynamics (MD) simulation methods were performed to investigate the unbinding process of nicotinamide (NAM) from two PncA enzymes, which is the reverse of the corresponding binding process. The calculated potential of mean force (PMF) based on the steered molecular dynamics (SMD) simulations sheds light on an optimal binding/unbinding pathway of the ligand. The comparative analyses between two PncAs clearly exhibit the consistency of the binding/unbinding pathway in the two enzymes, implying the universality of the pathway in all kinds of PncAs. Several important residues dominating the pathway were also determined by the calculation of interaction energies. The structural change of the proteins induced by NAM's unbinding or binding shows the great extent interior motion in some homologous region adjacent to the active sites of the two PncAs. The structure comparison substantiates that this region should be very important for the ligand's binding in all PncAs. Additionally, MD simulations also show that the coordination position of the ligand is displaced by one water molecule in the unliganded enzymes. These results could provide the more penetrating understanding of drug resistance of M. tuberculosis and be helpful for the development of new antituberculosis drugs.

  17. Molecular dynamics simulations suggest ligand's binding to nicotinamidase/pyrazinamidase.

    Directory of Open Access Journals (Sweden)

    Ji-Long Zhang

    Full Text Available The research on the binding process of ligand to pyrazinamidase (PncA is crucial for elucidating the inherent relationship between resistance of Mycobacterium tuberculosis and PncA's activity. In the present study, molecular dynamics (MD simulation methods were performed to investigate the unbinding process of nicotinamide (NAM from two PncA enzymes, which is the reverse of the corresponding binding process. The calculated potential of mean force (PMF based on the steered molecular dynamics (SMD simulations sheds light on an optimal binding/unbinding pathway of the ligand. The comparative analyses between two PncAs clearly exhibit the consistency of the binding/unbinding pathway in the two enzymes, implying the universality of the pathway in all kinds of PncAs. Several important residues dominating the pathway were also determined by the calculation of interaction energies. The structural change of the proteins induced by NAM's unbinding or binding shows the great extent interior motion in some homologous region adjacent to the active sites of the two PncAs. The structure comparison substantiates that this region should be very important for the ligand's binding in all PncAs. Additionally, MD simulations also show that the coordination position of the ligand is displaced by one water molecule in the unliganded enzymes. These results could provide the more penetrating understanding of drug resistance of M. tuberculosis and be helpful for the development of new antituberculosis drugs.

  18. Singular Value Decomposition and Ligand Binding Analysis

    Directory of Open Access Journals (Sweden)

    André Luiz Galo

    2013-01-01

    Full Text Available Singular values decomposition (SVD is one of the most important computations in linear algebra because of its vast application for data analysis. It is particularly useful for resolving problems involving least-squares minimization, the determination of matrix rank, and the solution of certain problems involving Euclidean norms. Such problems arise in the spectral analysis of ligand binding to macromolecule. Here, we present a spectral data analysis method using SVD (SVD analysis and nonlinear fitting to determine the binding characteristics of intercalating drugs to DNA. This methodology reduces noise and identifies distinct spectral species similar to traditional principal component analysis as well as fitting nonlinear binding parameters. We applied SVD analysis to investigate the interaction of actinomycin D and daunomycin with native DNA. This methodology does not require prior knowledge of ligand molar extinction coefficients (free and bound, which potentially limits binding analysis. Data are acquired simply by reconstructing the experimental data and by adjusting the product of deconvoluted matrices and the matrix of model coefficients determined by the Scatchard and McGee and von Hippel equation.

  19. Ligand binding by PDZ domains

    DEFF Research Database (Denmark)

    Chi, Celestine N.; Bach, Anders; Strømgaard, Kristian

    2012-01-01

    , for example, are particularly rich in these domains. The general function of PDZ domains is to bring proteins together within the appropriate cellular compartment, thereby facilitating scaffolding, signaling, and trafficking events. The many functions of PDZ domains under normal physiological as well...... as pathological conditions have been reviewed recently. In this review, we focus on the molecular details of how PDZ domains bind their protein ligands and their potential as drug targets in this context....

  20. A sequence-based dynamic ensemble learning system for protein ligand-binding site prediction

    KAUST Repository

    Chen, Peng

    2015-12-03

    Background: Proteins have the fundamental ability to selectively bind to other molecules and perform specific functions through such interactions, such as protein-ligand binding. Accurate prediction of protein residues that physically bind to ligands is important for drug design and protein docking studies. Most of the successful protein-ligand binding predictions were based on known structures. However, structural information is not largely available in practice due to the huge gap between the number of known protein sequences and that of experimentally solved structures

  1. A sequence-based dynamic ensemble learning system for protein ligand-binding site prediction

    KAUST Repository

    Chen, Peng; Hu, ShanShan; Zhang, Jun; Gao, Xin; Li, Jinyan; Xia, Junfeng; Wang, Bing

    2015-01-01

    Background: Proteins have the fundamental ability to selectively bind to other molecules and perform specific functions through such interactions, such as protein-ligand binding. Accurate prediction of protein residues that physically bind to ligands is important for drug design and protein docking studies. Most of the successful protein-ligand binding predictions were based on known structures. However, structural information is not largely available in practice due to the huge gap between the number of known protein sequences and that of experimentally solved structures

  2. Muscarinic acetylcholine receptors: location of the ligand binding site

    International Nuclear Information System (INIS)

    Hulme, E.; Wheatley, M.; Curtis, C.; Birdsall, N.

    1987-01-01

    The key to understanding the pharmacological specificity of muscarinic acetylcholine receptors (mAChR's) is the location within the receptor sequence of the amino acid residues responsible for ligand binding. To approach this problem, they have purified mAChR's from rat brain to homogeneity by sequential ion-exchange chromatography, affinity chromatography and molecular weight fractionation. Following labelling of the binding site with an alkylating affinity label, 3 H-propylbenzilycholine mustard aziridinium ion ( 3 H-PrBCM), the mAChR was digested with a lysine-specific endoproteinase, and a ladder of peptides of increasing molecular weight, each containing the glycosylated N-terminus, isolated by chromatography on wheat-germ agglutinin sepharose. The pattern of labelling showed that a residue in the peptides containing transmembrane helices 2 and/or 3 of the mAChR was alkylated. The linkage was cleaved by 1 M hydroxylamine, showing that 3 H-PrBCM was attached to an acidic residue, whose properties strongly suggested it to be embedded in a hydrophobic intramembrane region of the mAChR. Examination of the cloned sequence of the mAChR reveals several candidate residues, the most likely of which is homologous to an aspartic acid residue thought to protonate the retinal Schiff's base in the congeneric protein rhodopsin

  3. Evaluation of several two-step scoring functions based on linear interaction energy, effective ligand size, and empirical pair potentials for prediction of protein-ligand binding geometry and free energy.

    Science.gov (United States)

    Rahaman, Obaidur; Estrada, Trilce P; Doren, Douglas J; Taufer, Michela; Brooks, Charles L; Armen, Roger S

    2011-09-26

    The performances of several two-step scoring approaches for molecular docking were assessed for their ability to predict binding geometries and free energies. Two new scoring functions designed for "step 2 discrimination" were proposed and compared to our CHARMM implementation of the linear interaction energy (LIE) approach using the Generalized-Born with Molecular Volume (GBMV) implicit solvation model. A scoring function S1 was proposed by considering only "interacting" ligand atoms as the "effective size" of the ligand and extended to an empirical regression-based pair potential S2. The S1 and S2 scoring schemes were trained and 5-fold cross-validated on a diverse set of 259 protein-ligand complexes from the Ligand Protein Database (LPDB). The regression-based parameters for S1 and S2 also demonstrated reasonable transferability in the CSARdock 2010 benchmark using a new data set (NRC HiQ) of diverse protein-ligand complexes. The ability of the scoring functions to accurately predict ligand geometry was evaluated by calculating the discriminative power (DP) of the scoring functions to identify native poses. The parameters for the LIE scoring function with the optimal discriminative power (DP) for geometry (step 1 discrimination) were found to be very similar to the best-fit parameters for binding free energy over a large number of protein-ligand complexes (step 2 discrimination). Reasonable performance of the scoring functions in enrichment of active compounds in four different protein target classes established that the parameters for S1 and S2 provided reasonable accuracy and transferability. Additional analysis was performed to definitively separate scoring function performance from molecular weight effects. This analysis included the prediction of ligand binding efficiencies for a subset of the CSARdock NRC HiQ data set where the number of ligand heavy atoms ranged from 17 to 35. This range of ligand heavy atoms is where improved accuracy of predicted ligand

  4. Ligand Binding Domain Protein in Tetracycline-Inducible Expression

    African Journals Online (AJOL)

    Purpose: To investigate tetracycline-inducible expression system for producing clinically usable, highquality liver X receptor ligand-binding domain recombinant protein. Methods: In this study, we have expressed and purified the recombinant liver X receptor β-ligand binding domain proteins in E. coli using a tetracycline ...

  5. Extreme sequence divergence but conserved ligand-binding specificity in Streptococcus pyogenes M protein.

    Directory of Open Access Journals (Sweden)

    2006-05-01

    Full Text Available Many pathogenic microorganisms evade host immunity through extensive sequence variability in a protein region targeted by protective antibodies. In spite of the sequence variability, a variable region commonly retains an important ligand-binding function, reflected in the presence of a highly conserved sequence motif. Here, we analyze the limits of sequence divergence in a ligand-binding region by characterizing the hypervariable region (HVR of Streptococcus pyogenes M protein. Our studies were focused on HVRs that bind the human complement regulator C4b-binding protein (C4BP, a ligand that confers phagocytosis resistance. A previous comparison of C4BP-binding HVRs identified residue identities that could be part of a binding motif, but the extended analysis reported here shows that no residue identities remain when additional C4BP-binding HVRs are included. Characterization of the HVR in the M22 protein indicated that two relatively conserved Leu residues are essential for C4BP binding, but these residues are probably core residues in a coiled-coil, implying that they do not directly contribute to binding. In contrast, substitution of either of two relatively conserved Glu residues, predicted to be solvent-exposed, had no effect on C4BP binding, although each of these changes had a major effect on the antigenic properties of the HVR. Together, these findings show that HVRs of M proteins have an extraordinary capacity for sequence divergence and antigenic variability while retaining a specific ligand-binding function.

  6. Two unique ligand-binding clamps of Rhizopus oryzae starch binding domain for helical structure disruption of amylose.

    Directory of Open Access Journals (Sweden)

    Ting-Ying Jiang

    Full Text Available The N-terminal starch binding domain of Rhizopus oryzae glucoamylase (RoSBD has a high binding affinity for raw starch. RoSBD has two ligand-binding sites, each containing a ligand-binding clamp: a polyN clamp residing near binding site I is unique in that it is expressed in only three members of carbohydrate binding module family 21 (CBM21 members, and a Y32/F58 clamp located at binding site II is conserved in several CBMs. Here we characterized different roles of these sites in the binding of insoluble and soluble starches using an amylose-iodine complex assay, atomic force microscopy, isothermal titration calorimetry, site-directed mutagenesis, and structural bioinformatics. RoSBD induced the release of iodine from the amylose helical cavity and disrupted the helical structure of amylose type III, thereby significantly diminishing the thickness and length of the amylose type III fibrils. A point mutation in the critical ligand-binding residues of sites I and II, however, reduced both the binding affinity and amylose helix disruption. This is the first molecular model for structure disruption of the amylose helix by a non-hydrolytic CBM21 member. RoSBD apparently twists the helical amylose strands apart to expose more ligand surface for further SBD binding. Repeating the process triggers the relaxation and unwinding of amylose helices to generate thinner and shorter amylose fibrils, which are more susceptible to hydrolysis by glucoamylase. This model aids in understanding the natural roles of CBMs in protein-glycan interactions and contributes to potential molecular engineering of CBMs.

  7. The ligand-binding domain of the cell surface receptor for urokinase-type plasminogen activator

    DEFF Research Database (Denmark)

    Behrendt, N; Ploug, M; Patthy, L

    1991-01-01

    with the internal repeats of u-PAR constitute the extracellular part of Ly-6 antigens and of the squid glycoprotein Sgp-2. Like u-PAR, these proteins are attached to the membrane by a glycosyl-phosphatidylinositol anchor. The hydrophilic, ligand-binding u-PAR domain identified in the present study has potential...

  8. Exploring the composition of protein-ligand binding sites on a large scale.

    Directory of Open Access Journals (Sweden)

    Nickolay A Khazanov

    Full Text Available The residue composition of a ligand binding site determines the interactions available for diffusion-mediated ligand binding, and understanding general composition of these sites is of great importance if we are to gain insight into the functional diversity of the proteome. Many structure-based drug design methods utilize such heuristic information for improving prediction or characterization of ligand-binding sites in proteins of unknown function. The Binding MOAD database if one of the largest curated sets of protein-ligand complexes, and provides a source of diverse, high-quality data for establishing general trends of residue composition from currently available protein structures. We present an analysis of 3,295 non-redundant proteins with 9,114 non-redundant binding sites to identify residues over-represented in binding regions versus the rest of the protein surface. The Binding MOAD database delineates biologically-relevant "valid" ligands from "invalid" small-molecule ligands bound to the protein. Invalids are present in the crystallization medium and serve no known biological function. Contacts are found to differ between these classes of ligands, indicating that residue composition of biologically relevant binding sites is distinct not only from the rest of the protein surface, but also from surface regions capable of opportunistic binding of non-functional small molecules. To confirm these trends, we perform a rigorous analysis of the variation of residue propensity with respect to the size of the dataset and the content bias inherent in structure sets obtained from a large protein structure database. The optimal size of the dataset for establishing general trends of residue propensities, as well as strategies for assessing the significance of such trends, are suggested for future studies of binding-site composition.

  9. Engineering cofactor and ligand binding in an artificial neuroglobin

    Science.gov (United States)

    Zhang, Lei

    HP-7 is one artificial mutated oxygen transport protein, which operates via a mechanism akin to human neuroglobin and cytoglobin. This protein destabilizes one of two heme-ligating histidine residues by coupling histidine side chain ligation with the burial of three charged glutamate residues on the same helix. Replacement of these glutamate residues with alanine, which has a neutral hydrophobicity, slows gaseous ligand binding 22-fold, increases the affinity of the distal histidine ligand by a factor of thirteen, and decreases the binding affinity of carbon monoxide, a nonreactive oxygen analogue, three-fold. Paradoxically, it also decreases heme binding affinity by a factor of three in the reduced state and six in the oxidized state. Application of a two-state binding model, in which an initial pentacoordinate binding event is followed by a protein conformational change to hexacoordinate, provides insight into the mechanism of this seemingly counterintuitive result: the initial pentacoordinate encounter complex is significantly destabilized by the loss of the glutamate side chains, and the increased affinity for the distal histidine only partially compensates. These results point to the importance of considering each oxidation and conformational state in the design of functional artificial proteins. We have also examined the effects these mutations have on function. The K d of the nonnreactive oxygen analogue carbon monoxide (CO) is only decreased three-fold, despite the large increase in distal histidine affinity engendered by the 22-fold decrease in the histidine ligand off-rate. This is a result of the four-fold increase in affinity for CO binding to the pentacoordinate state. Oxygen binds to HP7 with a Kd of 117 µM, while the mutant rapidly oxidizes when exposed to oxygen. EPR analysis of both ferric hemoproteins demonstrates that the mutation increases disorder at the heme binding site. NMR-detected deuterium exchange demonstrates that the mutation causes a

  10. GluR2 ligand-binding core complexes

    DEFF Research Database (Denmark)

    Kasper, C; Lunn, M-L; Liljefors, T

    2002-01-01

    X-ray structures of the GluR2 ligand-binding core in complex with (S)-Des-Me-AMPA and in the presence and absence of zinc ions have been determined. (S)-Des-Me-AMPA, which is devoid of a substituent in the 5-position of the isoxazolol ring, only has limited interactions with the partly hydrophobic...

  11. The thermodynamic principles of ligand binding in chromatography and biology

    DEFF Research Database (Denmark)

    Mollerup, Jørgen

    2007-01-01

    the general thermodynamic principles of ligand binding. Models of the multi-component adsorption in ion-exchange and hydrophobic chromatography, HIC and RPLC, are developed. The parameters in the models have a well-defined physical significance. The models are compared to the Langmuir model...

  12. Biosensors engineered from conditionally stable ligand-binding domains

    Science.gov (United States)

    Church, George M.; Feng, Justin; Mandell, Daniel J.; Baker, David; Fields, Stanley; Jester, Benjamin Ward; Tinberg, Christine Elaine

    2017-09-19

    Disclosed is a biosensor engineered to conditionally respond to the presence of specific small molecules, the biosensors including conditionally stable ligand-binding domains (LBDs) which respond to the presence of specific small molecules, wherein readout of binding is provided by reporter genes or transcription factors (TFs) fused to the LBDs.

  13. Using chemical shift perturbation to characterise ligand binding.

    Science.gov (United States)

    Williamson, Mike P

    2013-08-01

    Chemical shift perturbation (CSP, chemical shift mapping or complexation-induced changes in chemical shift, CIS) follows changes in the chemical shifts of a protein when a ligand is added, and uses these to determine the location of the binding site, the affinity of the ligand, and/or possibly the structure of the complex. A key factor in determining the appearance of spectra during a titration is the exchange rate between free and bound, or more specifically the off-rate koff. When koff is greater than the chemical shift difference between free and bound, which typically equates to an affinity Kd weaker than about 3μM, then exchange is fast on the chemical shift timescale. Under these circumstances, the observed shift is the population-weighted average of free and bound, which allows Kd to be determined from measurement of peak positions, provided the measurements are made appropriately. (1)H shifts are influenced to a large extent by through-space interactions, whereas (13)Cα and (13)Cβ shifts are influenced more by through-bond effects. (15)N and (13)C' shifts are influenced both by through-bond and by through-space (hydrogen bonding) interactions. For determining the location of a bound ligand on the basis of shift change, the most appropriate method is therefore usually to measure (15)N HSQC spectra, calculate the geometrical distance moved by the peak, weighting (15)N shifts by a factor of about 0.14 compared to (1)H shifts, and select those residues for which the weighted shift change is larger than the standard deviation of the shift for all residues. Other methods are discussed, in particular the measurement of (13)CH3 signals. Slow to intermediate exchange rates lead to line broadening, and make Kd values very difficult to obtain. There is no good way to distinguish changes in chemical shift due to direct binding of the ligand from changes in chemical shift due to allosteric change. Ligand binding at multiple sites can often be characterised, by

  14. LIGAND-BINDING SITES ON THE MYCOBACTERIUM TUBERCULOSIS UREASE

    Directory of Open Access Journals (Sweden)

    Lisnyak Yu. V.

    2017-10-01

    Full Text Available Introduction. Mycobacterium tuberculosis is the causative agent of tuberculosis that remains a serious medical and social health problem. Despite intensive efforts have been made in the past decade, there are no new efficient anti-tuberculosis drugs today, and that need is growing due to the spread of drug-resistant strains of M.tuberculosis. M. tuberculosis urease (MTU, being an important factor of the bacterium viability and virulence, is an attractive target for anti-tuberculosis drugs acting by inhibition of urease activity. However, the commercially available urease inhibitors are toxic and unstable, that prevent their clinical use. Therefore, new more potent anti-tuberculosis drugs inhibiting new targets are urgently needed. A useful tool for the search of novel inhibitors is a computational drug design. The inhibitor design is significantly easier if binding sites on the enzyme are identified in advance. This paper aimed to determine the probable ligand binding sites on the surface of M. tuberculosis urease. Methods. To identify ligand binding sites on MTU surface, сomputational solvent mapping method FTSite was applied by the use of MTU homology model we have built earlier. The method places molecular probes (small organic molecules containing various functional groups on a dense grid defined around the enzyme, and for each probe finds favorable positions. The selected poses are refined by free energy minimization, the low energy conformations are clustered, and the clusters are ranked on the basis of the average free energy. FTSite server outputs the protein residues delineating a binding sites and the probe molecules representing each cluster. To predict allosteric pockets on MTU, AlloPred and AlloSite servers were applied. AlloPred uses the normal mode analysis (NMA and models how the dynamics of a protein would be altered in the presence of a modulator at a specific pocket. Pockets on the enzyme are predicted using the Fpocket

  15. Calculation of protein-ligand binding affinities.

    Science.gov (United States)

    Gilson, Michael K; Zhou, Huan-Xiang

    2007-01-01

    Accurate methods of computing the affinity of a small molecule with a protein are needed to speed the discovery of new medications and biological probes. This paper reviews physics-based models of binding, beginning with a summary of the changes in potential energy, solvation energy, and configurational entropy that influence affinity, and a theoretical overview to frame the discussion of specific computational approaches. Important advances are reported in modeling protein-ligand energetics, such as the incorporation of electronic polarization and the use of quantum mechanical methods. Recent calculations suggest that changes in configurational entropy strongly oppose binding and must be included if accurate affinities are to be obtained. The linear interaction energy (LIE) and molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) methods are analyzed, as are free energy pathway methods, which show promise and may be ready for more extensive testing. Ultimately, major improvements in modeling accuracy will likely require advances on multiple fronts, as well as continued validation against experiment.

  16. Cloud computing for protein-ligand binding site comparison.

    Science.gov (United States)

    Hung, Che-Lun; Hua, Guan-Jie

    2013-01-01

    The proteome-wide analysis of protein-ligand binding sites and their interactions with ligands is important in structure-based drug design and in understanding ligand cross reactivity and toxicity. The well-known and commonly used software, SMAP, has been designed for 3D ligand binding site comparison and similarity searching of a structural proteome. SMAP can also predict drug side effects and reassign existing drugs to new indications. However, the computing scale of SMAP is limited. We have developed a high availability, high performance system that expands the comparison scale of SMAP. This cloud computing service, called Cloud-PLBS, combines the SMAP and Hadoop frameworks and is deployed on a virtual cloud computing platform. To handle the vast amount of experimental data on protein-ligand binding site pairs, Cloud-PLBS exploits the MapReduce paradigm as a management and parallelizing tool. Cloud-PLBS provides a web portal and scalability through which biologists can address a wide range of computer-intensive questions in biology and drug discovery.

  17. A molecular dynamics investigation of CDK8/CycC and ligand binding: conformational flexibility and implication in drug discovery

    Science.gov (United States)

    Cholko, Timothy; Chen, Wei; Tang, Zhiye; Chang, Chia-en A.

    2018-05-01

    Abnormal activity of cyclin-dependent kinase 8 (CDK8) along with its partner protein cyclin C (CycC) is a common feature of many diseases including colorectal cancer. Using molecular dynamics (MD) simulations, this study determined the dynamics of the CDK8-CycC system and we obtained detailed breakdowns of binding energy contributions for four type-I and five type-II CDK8 inhibitors. We revealed system motions and conformational changes that will affect ligand binding, confirmed the essentialness of CycC for inclusion in future computational studies, and provide guidance in development of CDK8 binders. We employed unbiased all-atom MD simulations for 500 ns on twelve CDK8-CycC systems, including apoproteins and protein-ligand complexes, then performed principal component analysis (PCA) and measured the RMSF of key regions to identify protein dynamics. Binding pocket volume analysis identified conformational changes that accompany ligand binding. Next, H-bond analysis, residue-wise interaction calculations, and MM/PBSA were performed to characterize protein-ligand interactions and find the binding energy. We discovered that CycC is vital for maintaining a proper conformation of CDK8 to facilitate ligand binding and that the system exhibits motion that should be carefully considered in future computational work. Surprisingly, we found that motion of the activation loop did not affect ligand binding. Type-I and type-II ligand binding is driven by van der Waals interactions, but electrostatic energy and entropic penalties affect type-II binding as well. Binding of both ligand types affects protein flexibility. Based on this we provide suggestions for development of tighter-binding CDK8 inhibitors and offer insight that can aid future computational studies.

  18. Structural basis for the ligand-binding specificity of fatty acid-binding proteins (pFABP4 and pFABP5) in gentoo penguin.

    Science.gov (United States)

    Lee, Chang Woo; Kim, Jung Eun; Do, Hackwon; Kim, Ryeo-Ok; Lee, Sung Gu; Park, Hyun Ho; Chang, Jeong Ho; Yim, Joung Han; Park, Hyun; Kim, Il-Chan; Lee, Jun Hyuck

    2015-09-11

    Fatty acid-binding proteins (FABPs) are involved in transporting hydrophobic fatty acids between various aqueous compartments of the cell by directly binding ligands inside their β-barrel cavities. Here, we report the crystal structures of ligand-unbound pFABP4, linoleate-bound pFABP4, and palmitate-bound pFABP5, obtained from gentoo penguin (Pygoscelis papua), at a resolution of 2.1 Å, 2.2 Å, and 2.3 Å, respectively. The pFABP4 and pFABP5 proteins have a canonical β-barrel structure with two short α-helices that form a cap region and fatty acid ligand binding sites in the hydrophobic cavity within the β-barrel structure. Linoleate-bound pFABP4 and palmitate-bound pFABP5 possess different ligand-binding modes and a unique ligand-binding pocket due to several sequence dissimilarities (A76/L78, T30/M32, underlining indicates pFABP4 residues) between the two proteins. Structural comparison revealed significantly different conformational changes in the β3-β4 loop region (residues 57-62) as well as the flipped Phe60 residue of pFABP5 than that in pFABP4 (the corresponding residue is Phe58). A ligand-binding study using fluorophore displacement assays shows that pFABP4 has a relatively strong affinity for linoleate as compared to pFABP5. In contrast, pFABP5 exhibits higher affinity for palmitate than that for pFABP4. In conclusion, our high-resolution structures and ligand-binding studies provide useful insights into the ligand-binding preferences of pFABPs based on key protein-ligand interactions. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Nuclear receptor ligand-binding domains: reduction of helix H12 dynamics to favour crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Nahoum, Virginie; Lipski, Alexandra; Quillard, Fabien; Guichou, Jean-François [INSERM, U554, 34090 Montpellier (France); Université de Montpellier, CNRS, UMR5048, Centre de Biochimie Structurale (CBS), 34090 Montpellier (France); Boublik, Yvan [CNRS, UMR5237, Centre de Recherche de Biochimie Macromoléculaire (CRBM), 34293 Montpellier (France); Pérez, Efrèn [Universidade de Vigo, Departamento de Quimica Organica, Facultad de Química, 36310 Vigo (Spain); Germain, Pierre [Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), BP 10142, 67404 Illkirch CEDEX (France); Lera, Angel R. de [Universidade de Vigo, Departamento de Quimica Organica, Facultad de Química, 36310 Vigo (Spain); Bourguet, William, E-mail: bourguet@cbs.cnrs.fr [INSERM, U554, 34090 Montpellier (France); Université de Montpellier, CNRS, UMR5048, Centre de Biochimie Structurale (CBS), 34090 Montpellier (France)

    2008-07-01

    Attempts have been made to crystallize the ligand-binding domain of the human retinoid X receptor in complex with a variety of newly synthesized ligands. An inverse correlation was observed between the ‘crystallizability’ and the structural dynamics of the various receptor–ligand complexes. Crystallization trials of the human retinoid X receptor α ligand-binding domain (RXRα LBD) in complex with various ligands have been carried out. Using fluorescence anisotropy, it has been found that when compared with agonists these small-molecule effectors enhance the dynamics of the RXRα LBD C-terminal helix H12. In some cases, the mobility of this helix could be dramatically reduced by the addition of a 13-residue co-activator fragment (CoA). In keeping with these observations, crystals have been obtained of the corresponding ternary RXRα LBD–ligand–CoA complexes. In contrast, attempts to crystallize complexes with a highly mobile H12 remained unsuccessful. These experimental observations substantiate the previously recognized role of co-regulator fragments in facilitating the crystallization of nuclear receptor LBDs.

  20. Essential role of conformational selection in ligand binding.

    Science.gov (United States)

    Vogt, Austin D; Pozzi, Nicola; Chen, Zhiwei; Di Cera, Enrico

    2014-02-01

    Two competing and mutually exclusive mechanisms of ligand recognition - conformational selection and induced fit - have dominated our interpretation of ligand binding in biological macromolecules for almost six decades. Conformational selection posits the pre-existence of multiple conformations of the macromolecule from which the ligand selects the optimal one. Induced fit, on the other hand, postulates the existence of conformational rearrangements of the original conformation into an optimal one that are induced by binding of the ligand. In the former case, conformational transitions precede the binding event; in the latter, conformational changes follow the binding step. Kineticists have used a facile criterion to distinguish between the two mechanisms based on the dependence of the rate of relaxation to equilibrium, kobs, on the ligand concentration, [L]. A value of kobs decreasing hyperbolically with [L] has been seen as diagnostic of conformational selection, while a value of kobs increasing hyperbolically with [L] has been considered diagnostic of induced fit. However, this simple conclusion is only valid under the rather unrealistic assumption of conformational transitions being much slower than binding and dissociation events. In general, induced fit only produces values of kobs that increase with [L] but conformational selection is more versatile and is associated with values of kobs that increase with, decrease with or are independent of [L]. The richer repertoire of kinetic properties of conformational selection applies to kinetic mechanisms with single or multiple saturable relaxations and explains the behavior of nearly all experimental systems reported in the literature thus far. Conformational selection is always sufficient and often necessary to account for the relaxation kinetics of ligand binding to a biological macromolecule and is therefore an essential component of any binding mechanism. On the other hand, induced fit is never necessary and

  1. Rapid, radiochemical-ligand binding assay for methotrexate

    International Nuclear Information System (INIS)

    Caston, J.D.

    1976-01-01

    A radiochemical ligand binding assay for methotrexate is provided. A binder factor comprising a partially purified dihydrofolic acid reductase preparation is employed. The binder factor is conveniently prepared by homogenizing a factor containing animal organ such as liver, and extracting with isotonic saline and ammonium sulfate. A binder cofactor, NADPH 2 , is also employed in the binding reaction. The procedure contemplates both direct and sequential assay techniques, and it is not interfered with by vast excesses of many natural folate derivatives. 12 claims, 6 drawing figures

  2. Real-Time Ligand Binding Pocket Database Search Using Local Surface Descriptors

    Science.gov (United States)

    Chikhi, Rayan; Sael, Lee; Kihara, Daisuke

    2010-01-01

    Due to the increasing number of structures of unknown function accumulated by ongoing structural genomics projects, there is an urgent need for computational methods for characterizing protein tertiary structures. As functions of many of these proteins are not easily predicted by conventional sequence database searches, a legitimate strategy is to utilize structure information in function characterization. Of a particular interest is prediction of ligand binding to a protein, as ligand molecule recognition is a major part of molecular function of proteins. Predicting whether a ligand molecule binds a protein is a complex problem due to the physical nature of protein-ligand interactions and the flexibility of both binding sites and ligand molecules. However, geometric and physicochemical complementarity is observed between the ligand and its binding site in many cases. Therefore, ligand molecules which bind to a local surface site in a protein can be predicted by finding similar local pockets of known binding ligands in the structure database. Here, we present two representations of ligand binding pockets and utilize them for ligand binding prediction by pocket shape comparison. These representations are based on mapping of surface properties of binding pockets, which are compactly described either by the two dimensional pseudo-Zernike moments or the 3D Zernike descriptors. These compact representations allow a fast real-time pocket searching against a database. Thorough benchmark study employing two different datasets show that our representations are competitive with the other existing methods. Limitations and potentials of the shape-based methods as well as possible improvements are discussed. PMID:20455259

  3. G-LoSA for Prediction of Protein-Ligand Binding Sites and Structures.

    Science.gov (United States)

    Lee, Hui Sun; Im, Wonpil

    2017-01-01

    Recent advances in high-throughput structure determination and computational protein structure prediction have significantly enriched the universe of protein structure. However, there is still a large gap between the number of available protein structures and that of proteins with annotated function in high accuracy. Computational structure-based protein function prediction has emerged to reduce this knowledge gap. The identification of a ligand binding site and its structure is critical to the determination of a protein's molecular function. We present a computational methodology for predicting small molecule ligand binding site and ligand structure using G-LoSA, our protein local structure alignment and similarity measurement tool. All the computational procedures described here can be easily implemented using G-LoSA Toolkit, a package of standalone software programs and preprocessed PDB structure libraries. G-LoSA and G-LoSA Toolkit are freely available to academic users at http://compbio.lehigh.edu/GLoSA . We also illustrate a case study to show the potential of our template-based approach harnessing G-LoSA for protein function prediction.

  4. Ligand Binding Site Detection by Local Structure Alignment and Its Performance Complementarity

    Science.gov (United States)

    Lee, Hui Sun; Im, Wonpil

    2013-01-01

    Accurate determination of potential ligand binding sites (BS) is a key step for protein function characterization and structure-based drug design. Despite promising results of template-based BS prediction methods using global structure alignment (GSA), there is a room to improve the performance by properly incorporating local structure alignment (LSA) because BS are local structures and often similar for proteins with dissimilar global folds. We present a template-based ligand BS prediction method using G-LoSA, our LSA tool. A large benchmark set validation shows that G-LoSA predicts drug-like ligands’ positions in single-chain protein targets more precisely than TM-align, a GSA-based method, while the overall success rate of TM-align is better. G-LoSA is particularly efficient for accurate detection of local structures conserved across proteins with diverse global topologies. Recognizing the performance complementarity of G-LoSA to TM-align and a non-template geometry-based method, fpocket, a robust consensus scoring method, CMCS-BSP (Complementary Methods and Consensus Scoring for ligand Binding Site Prediction), is developed and shows improvement on prediction accuracy. The G-LoSA source code is freely available at http://im.bioinformatics.ku.edu/GLoSA. PMID:23957286

  5. Prediction of GPCR-Ligand Binding Using Machine Learning Algorithms

    Directory of Open Access Journals (Sweden)

    Sangmin Seo

    2018-01-01

    Full Text Available We propose a novel method that predicts binding of G-protein coupled receptors (GPCRs and ligands. The proposed method uses hub and cycle structures of ligands and amino acid motif sequences of GPCRs, rather than the 3D structure of a receptor or similarity of receptors or ligands. The experimental results show that these new features can be effective in predicting GPCR-ligand binding (average area under the curve [AUC] of 0.944, because they are thought to include hidden properties of good ligand-receptor binding. Using the proposed method, we were able to identify novel ligand-GPCR bindings, some of which are supported by several studies.

  6. SVM prediction of ligand-binding sites in bacterial lipoproteins employing shape and physio-chemical descriptors.

    Science.gov (United States)

    Kadam, Kiran; Prabhakar, Prashant; Jayaraman, V K

    2012-11-01

    Bacterial lipoproteins play critical roles in various physiological processes including the maintenance of pathogenicity and numbers of them are being considered as potential candidates for generating novel vaccines. In this work, we put forth an algorithm to identify and predict ligand-binding sites in bacterial lipoproteins. The method uses three types of pocket descriptors, namely fpocket descriptors, 3D Zernike descriptors and shell descriptors, and combines them with Support Vector Machine (SVM) method for the classification. The three types of descriptors represent shape-based properties of the pocket as well as its local physio-chemical features. All three types of descriptors, along with their hybrid combinations are evaluated with SVM and to improve classification performance, WEKA-InfoGain feature selection is applied. Results obtained in the study show that the classifier successfully differentiates between ligand-binding and non-binding pockets. For the combination of three types of descriptors, 10 fold cross-validation accuracy of 86.83% is obtained for training while the selected model achieved test Matthews Correlation Coefficient (MCC) of 0.534. Individually or in combination with new and existing methods, our model can be a very useful tool for the prediction of potential ligand-binding sites in bacterial lipoproteins.

  7. Laboratory automation of high-quality and efficient ligand-binding assays for biotherapeutic drug development.

    Science.gov (United States)

    Wang, Jin; Patel, Vimal; Burns, Daniel; Laycock, John; Pandya, Kinnari; Tsoi, Jennifer; DeSilva, Binodh; Ma, Mark; Lee, Jean

    2013-07-01

    Regulated bioanalytical laboratories that run ligand-binding assays in support of biotherapeutics development face ever-increasing demand to support more projects with increased efficiency. Laboratory automation is a tool that has the potential to improve both quality and efficiency in a bioanalytical laboratory. The success of laboratory automation requires thoughtful evaluation of program needs and fit-for-purpose strategies, followed by pragmatic implementation plans and continuous user support. In this article, we present the development of fit-for-purpose automation of total walk-away and flexible modular modes. We shared the sustaining experience of vendor collaboration and team work to educate, promote and track the use of automation. The implementation of laboratory automation improves assay performance, data quality, process efficiency and method transfer to CRO in a regulated bioanalytical laboratory environment.

  8. pMD-Membrane: A Method for Ligand Binding Site Identification in Membrane-Bound Proteins.

    Directory of Open Access Journals (Sweden)

    Priyanka Prakash

    2015-10-01

    Full Text Available Probe-based or mixed solvent molecular dynamics simulation is a useful approach for the identification and characterization of druggable sites in drug targets. However, thus far the method has been applied only to soluble proteins. A major reason for this is the potential effect of the probe molecules on membrane structure. We have developed a technique to overcome this limitation that entails modification of force field parameters to reduce a few pairwise non-bonded interactions between selected atoms of the probe molecules and bilayer lipids. We used the resulting technique, termed pMD-membrane, to identify allosteric ligand binding sites on the G12D and G13D oncogenic mutants of the K-Ras protein bound to a negatively charged lipid bilayer. In addition, we show that differences in probe occupancy can be used to quantify changes in the accessibility of druggable sites due to conformational changes induced by membrane binding or mutation.

  9. Sampling protein motion and solvent effect during ligand binding

    Science.gov (United States)

    Limongelli, Vittorio; Marinelli, Luciana; Cosconati, Sandro; La Motta, Concettina; Sartini, Stefania; Mugnaini, Laura; Da Settimo, Federico; Novellino, Ettore; Parrinello, Michele

    2012-01-01

    An exhaustive description of the molecular recognition mechanism between a ligand and its biological target is of great value because it provides the opportunity for an exogenous control of the related process. Very often this aim can be pursued using high resolution structures of the complex in combination with inexpensive computational protocols such as docking algorithms. Unfortunately, in many other cases a number of factors, like protein flexibility or solvent effects, increase the degree of complexity of ligand/protein interaction and these standard techniques are no longer sufficient to describe the binding event. We have experienced and tested these limits in the present study in which we have developed and revealed the mechanism of binding of a new series of potent inhibitors of Adenosine Deaminase. We have first performed a large number of docking calculations, which unfortunately failed to yield reliable results due to the dynamical character of the enzyme and the complex role of the solvent. Thus, we have stepped up the computational strategy using a protocol based on metadynamics. Our approach has allowed dealing with protein motion and solvation during ligand binding and finally identifying the lowest energy binding modes of the most potent compound of the series, 4-decyl-pyrazolo[1,5-a]pyrimidin-7-one. PMID:22238423

  10. Receptor-ligand binding sites and virtual screening.

    Science.gov (United States)

    Hattotuwagama, Channa K; Davies, Matthew N; Flower, Darren R

    2006-01-01

    Within the pharmaceutical industry, the ultimate source of continuing profitability is the unremitting process of drug discovery. To be profitable, drugs must be marketable: legally novel, safe and relatively free of side effects, efficacious, and ideally inexpensive to produce. While drug discovery was once typified by a haphazard and empirical process, it is now increasingly driven by both knowledge of the receptor-mediated basis of disease and how drug molecules interact with receptors and the wider physiome. Medicinal chemistry postulates that to understand a congeneric ligand series, or set thereof, is to understand the nature and requirements of a ligand binding site. Likewise, structural molecular biology posits that to understand a binding site is to understand the nature of ligands bound therein. Reality sits somewhere between these extremes, yet subsumes them both. Complementary to rules of ligand design, arising through decades of medicinal chemistry, structural biology and computational chemistry are able to elucidate the nature of binding site-ligand interactions, facilitating, at both pragmatic and conceptual levels, the drug discovery process.

  11. Structural insights into human peroxisome proliferator activated receptor delta (PPAR-delta selective ligand binding.

    Directory of Open Access Journals (Sweden)

    Fernanda A H Batista

    Full Text Available Peroxisome proliferator activated receptors (PPARs δ, α and γ are closely related transcription factors that exert distinct effects on fatty acid and glucose metabolism, cardiac disease, inflammatory response and other processes. Several groups developed PPAR subtype specific modulators to trigger desirable effects of particular PPARs without harmful side effects associated with activation of other subtypes. Presently, however, many compounds that bind to one of the PPARs cross-react with others and rational strategies to obtain highly selective PPAR modulators are far from clear. GW0742 is a synthetic ligand that binds PPARδ more than 300-fold more tightly than PPARα or PPARγ but the structural basis of PPARδ:GW0742 interactions and reasons for strong selectivity are not clear. Here we report the crystal structure of the PPARδ:GW0742 complex. Comparisons of the PPARδ:GW0742 complex with published structures of PPARs in complex with α and γ selective agonists and pan agonists suggests that two residues (Val312 and Ile328 in the buried hormone binding pocket play special roles in PPARδ selective binding and experimental and computational analysis of effects of mutations in these residues confirms this and suggests that bulky substituents that line the PPARα and γ ligand binding pockets as structural barriers for GW0742 binding. This analysis suggests general strategies for selective PPARδ ligand design.

  12. Is the isolated ligand binding domain a good model of the domain in the native receptor?

    Science.gov (United States)

    Deming, Dustin; Cheng, Qing; Jayaraman, Vasanthi

    2003-05-16

    Numerous studies have used the atomic level structure of the isolated ligand binding domain of the glutamate receptor to elucidate the agonist-induced activation and desensitization processes in this group of proteins. However, no study has demonstrated the structural equivalence of the isolated ligand binding fragments and the protein in the native receptor. In this report, using visible absorption spectroscopy we show that the electronic environment of the antagonist 6-cyano-7-nitro-2,3-dihydroxyquinoxaline is identical for the isolated protein and the native glutamate receptors expressed in cells. Our results hence establish that the local structure of the ligand binding site is the same in the two proteins and validate the detailed structure-function relationships that have been developed based on a comparison of the structure of the isolated ligand binding domain and electrophysiological consequences in the native receptor.

  13. LIGSITEcsc: predicting ligand binding sites using the Connolly surface and degree of conservation

    Directory of Open Access Journals (Sweden)

    Schroeder Michael

    2006-09-01

    Full Text Available Abstract Background Identifying pockets on protein surfaces is of great importance for many structure-based drug design applications and protein-ligand docking algorithms. Over the last ten years, many geometric methods for the prediction of ligand-binding sites have been developed. Results We present LIGSITEcsc, an extension and implementation of the LIGSITE algorithm. LIGSITEcsc is based on the notion of surface-solvent-surface events and the degree of conservation of the involved surface residues. We compare our algorithm to four other approaches, LIGSITE, CAST, PASS, and SURFNET, and evaluate all on a dataset of 48 unbound/bound structures and 210 bound-structures. LIGSITEcsc performs slightly better than the other tools and achieves a success rate of 71% and 75%, respectively. Conclusion The use of the Connolly surface leads to slight improvements, the prediction re-ranking by conservation to significant improvements of the binding site predictions. A web server for LIGSITEcsc and its source code is available at scoppi.biotec.tu-dresden.de/pocket.

  14. CavityPlus: a web server for protein cavity detection with pharmacophore modelling, allosteric site identification and covalent ligand binding ability prediction.

    Science.gov (United States)

    Xu, Youjun; Wang, Shiwei; Hu, Qiwan; Gao, Shuaishi; Ma, Xiaomin; Zhang, Weilin; Shen, Yihang; Chen, Fangjin; Lai, Luhua; Pei, Jianfeng

    2018-05-10

    CavityPlus is a web server that offers protein cavity detection and various functional analyses. Using protein three-dimensional structural information as the input, CavityPlus applies CAVITY to detect potential binding sites on the surface of a given protein structure and rank them based on ligandability and druggability scores. These potential binding sites can be further analysed using three submodules, CavPharmer, CorrSite, and CovCys. CavPharmer uses a receptor-based pharmacophore modelling program, Pocket, to automatically extract pharmacophore features within cavities. CorrSite identifies potential allosteric ligand-binding sites based on motion correlation analyses between cavities. CovCys automatically detects druggable cysteine residues, which is especially useful to identify novel binding sites for designing covalent allosteric ligands. Overall, CavityPlus provides an integrated platform for analysing comprehensive properties of protein binding cavities. Such analyses are useful for many aspects of drug design and discovery, including target selection and identification, virtual screening, de novo drug design, and allosteric and covalent-binding drug design. The CavityPlus web server is freely available at http://repharma.pku.edu.cn/cavityplus or http://www.pkumdl.cn/cavityplus.

  15. β-lactoglobulin's conformational requirements for ligand binding at the calyx and the dimer interphase: a flexible docking study.

    Directory of Open Access Journals (Sweden)

    Lenin Domínguez-Ramírez

    Full Text Available β-lactoglobulin (BLG is an abundant milk protein relevant for industry and biotechnology, due significantly to its ability to bind a wide range of polar and apolar ligands. While hydrophobic ligand sites are known, sites for hydrophilic ligands such as the prevalent milk sugar, lactose, remain undetermined. Through the use of molecular docking we first, analyzed the known fatty acid binding sites in order to dissect their atomistic determinants and second, predicted the interaction sites for lactose with monomeric and dimeric BLG. We validated our approach against BLG structures co-crystallized with ligands and report a computational setup with a reduced number of flexible residues that is able to reproduce experimental results with high precision. Blind dockings with and without flexible side chains on BLG showed that: i 13 experimentally-determined ligands fit the calyx requiring minimal movement of up to 7 residues out of the 23 that constitute this binding site. ii Lactose does not bind the calyx despite conformational flexibility, but binds the dimer interface and an alternate Site C. iii Results point to a probable lactolation site in the BLG dimer interface, at K141, consistent with previous biochemical findings. In contrast, no accessible lysines are found near Site C. iv lactose forms hydrogen bonds with residues from both monomers stabilizing the dimer through a claw-like structure. Overall, these results improve our understanding of BLG's binding sites, importantly narrowing down the calyx residues that control ligand binding. Moreover, our results emphasize the importance of the dimer interface as an insufficiently explored, biologically relevant binding site of particular importance for hydrophilic ligands. Furthermore our analyses suggest that BLG is a robust scaffold for multiple ligand-binding, suitable for protein design, and advance our molecular understanding of its ligand sites to a point that allows manipulation to control

  16. The structure of a mixed GluR2 ligand-binding core dimer in complex with (S)-glutamate and the antagonist (S)-NS1209

    DEFF Research Database (Denmark)

    Kasper, Christina; Pickering, Darryl S; Mirza, Osman

    2006-01-01

    domains has been observed. (S)-NS1209 adopts a novel binding mode, including hydrogen bonding to Tyr450 and Gly451 of D1. Parts of (S)-NS1209 occupy new areas of the GluR2 ligand-binding cleft, and bind near residues that are not conserved among receptor subtypes. The affinities of (RS)-NS1209 at the Glu....... The thermodynamics of binding of the antagonists (S)-NS1209, DNQX and (S)-ATPO to the GluR2 ligand-binding core have been determined by displacement isothermal titration calorimetry. The displacement of (S)-glutamate by all antagonists was shown to be driven by enthalpy....

  17. Dynamic factors affecting gaseous ligand binding in an artificial oxygen transport protein.

    Science.gov (United States)

    Zhang, Lei; Andersen, Eskil M E; Khajo, Abdelahad; Magliozzo, Richard S; Koder, Ronald L

    2013-01-22

    We report the functional analysis of an artificial hexacoordinate oxygen transport protein, HP7, which operates via a mechanism similar to that of human neuroglobin and cytoglobin: the destabilization of one of two heme-ligating histidine residues. In the case of HP7, this is the result of the coupling of histidine side chain ligation with the burial of three charged glutamate residues on the same helix. Here we compare gaseous ligand binding, including rates, affinities, and oxyferrous state lifetimes, of both heme binding sites in HP7. We find that despite the identical sequence of helices in both binding sites, there are differences in oxygen affinity and oxyferrous state lifetime that may be the result of differences in the freedom of motion imposed by the candelabra fold on the two sites of the protein. We further examine the effect of mutational removal of the buried glutamates on function. Heme iron in the ferrous state of this mutant is rapidly oxidized when exposed to oxygen. Compared to that of HP7, the distal histidine affinity is increased by a 22-fold decrease in the histidine ligand off rate. Electron paramagnetic resonance comparison of these ferric hemoproteins demonstrates that the mutation increases the level of disorder at the heme binding site. Nuclear magnetic resonance-detected deuterium exchange demonstrates that the mutation greatly increases the degree of penetration of water into the protein core. The inability of the mutant protein to bind oxygen may be due to an increased level of water penetration, the large decrease in binding rate caused by the increase in distal histidine affinity, or a combination of the two factors. Together, these data underline the importance of the control of protein dynamics in the design of functional artificial proteins.

  18. Dynamic Factors Affecting Gaseous Ligand Binding in an Artificial Oxygen Transport Protein‡

    Science.gov (United States)

    Zhang, Lei; Andersen, Eskil M.E.; Khajo, Abdelahad; Magliozzo, Richard S.; Koder, Ronald L.

    2013-01-01

    We report the functional analysis of an artificial hexacoordinate oxygen transport protein, HP7, which operates via a mechanism similar to that of human neuroglobin and cytoglobin: the destabilization of one of two heme-ligating histidine residues. In the case of HP7 this is the result of the coupling of histidine side chain ligation with the burial of three charged glutamate residues on the same helix. Here we compare gaseous ligand binding, including rates, affinities and oxyferrous state lifetimes, of both heme binding sites in HP7. We find that despite the identical sequence of helices in both binding sites, there are differences in oxygen affinity and oxyferrous state lifetime which may be the result of differences in the freedom of motion imposed by the candelabra fold on the two sites of the protein. We further examine the effect of mutational removal of the buried glutamates on function. Heme iron in the ferrous state of this mutant is rapidly oxidized when when exposed to oxygen. Compared to HP7, distal histidine affinity is increased by a 22-fold decrease in the histidine ligand off-rate. EPR comparison of these ferric hemoproteins demonstrates that the mutation increases disorder at the heme binding site. NMR-detected deuterium exchange demonstrates that the mutation greatly increases water penetration into the protein core. The inability of the mutant protein to bind oxygen may be due to increased water penetration, the large decrease in binding rate caused by the increase in distal histidine affinity, or a combination of the two factors. Together these data underline the importance of the control of protein dynamics in the design of functional artificial proteins. PMID:23249163

  19. Molecular Properties of Globin Channels and Pores: Role of Cholesterol in Ligand Binding and Movement

    Directory of Open Access Journals (Sweden)

    Gene A Morrill

    2016-09-01

    Full Text Available ABSTRACT: Globins contain one or more cavities that control or affect such functions as ligand movement and ligand binding. Here we report that the extended globin family [cytoglobin (Cygb; neuroglobin (Ngb; myoglobin (Mb; hemoglobin (Hb subunits Hba(α and Hbb(β] contain either a transmembrane (TM helix or pore-lining region as well as internal cavities. Protein motif/domain analyses indicate that Ngb and Hbb each contain 5 cholesterol-binding (CRAC/CARC domains and 1 caveolin binding motif, whereas the Cygb dimer has 6 cholesterol-binding domains but lacks caveolin-binding motifs. Mb and Hba each exhibit 2 cholesterol-binding domains and also lack caveolin-binding motifs. The Hb αβ-tetramer contains 14 cholesterol-binding domains. Computer algorithms indicate that Cygb and Ngb cavities display multiple partitions and C-terminal pore-lining regions, whereas Mb has three major cavities plus a C-terminal pore-lining region. The Hb tetramer exhibits a large internal cavity but the subunits differ in that they contain a C-terminal TM helix (Hba and pore-lining region (Hbb. The cavities include 43 of 190 Cygb residues, 38 of 151 of Ngb residues, 55 of 154 Mb residues and 137 of 688 residues in the Hb tetramer. Each cavity complex includes 6 to 8 residues of the TM helix or pore-lining region and CRAC/CARC domains exist within all cavities. Erythrocyte Hb αβ-tetramers are largely cytosolic but also bind to a membrane anion exchange protein, band 3, which contains a large internal cavity and 12 TM helices (5 being pore-lining regions. The Hba TM helix may be the erythrocyte membrane band 3 attachment site. Band 3 contributes 4 caveolin binding motifs and 10 CRAC/CARC domains. Cholesterol binding may create lipid-disordered phases that alter globin cavities and facilitate ligand movement, permitting ion channel formation and conformational changes that orchestrate anion and ligand (O2, CO2, NO movement within the large internal cavities and

  20. The green hemoproteins of bovine erythrocytes. II. Spectral, ligand-binding, and electrochemical properties.

    Science.gov (United States)

    DeFilippi, L J; Hultquist, D E

    1978-05-10

    The two green hemoproteins isolated from bovine erythrocytes (form I and form II) have been characterized as to spectral, electrochemical, and chemical properties. The absorption spectra of the isolated hemoproteins are typical of high spin ferric states. Reduction of the hemoproteins yields high spin ferrohemoproteins. Complexation of the ferrohemoproteins with CO and the ferrihemoproteins with cyanide yields low spin complexes, demonstrating the presence of an exchangeable weak field ligand in both the ferrous and ferric states of the hemoproteins. The differences in position and intensity of the absorption peaks of the visible spectra allow the two forms to be distinguished from one another. The midpoint potential of forms I and II were found to be +0.075 and +0.019 V, respectively, at pH 6.4 and +0.038 and -0.005 V, respectively, at pH 7.0. This is consistent with the gaining of 1 proton/electron during the reduction. The Nernst plot reveals an unusual 0.5-electron transfer, whereas a quantitative titration demonstrates a 1-electron transfer. Form I binds cyanide more tightly than form II (KD of 84 and 252 micrometer, respectively). The observed spectral, electrochemical, and ligand-binding differences between forms I and II can be explained in terms of a greater electron-withdrawing ability of the side chains of the heme of form I relative to the heme of form II.

  1. A magnetic bead-based ligand binding assay to facilitate human kynurenine 3-monooxygenase drug discovery.

    Science.gov (United States)

    Wilson, Kris; Mole, Damian J; Homer, Natalie Z M; Iredale, John P; Auer, Manfred; Webster, Scott P

    2015-02-01

    Human kynurenine 3-monooxygenase (KMO) is emerging as an important drug target enzyme in a number of inflammatory and neurodegenerative disease states. Recombinant protein production of KMO, and therefore discovery of KMO ligands, is challenging due to a large membrane targeting domain at the C-terminus of the enzyme that causes stability, solubility, and purification difficulties. The purpose of our investigation was to develop a suitable screening method for targeting human KMO and other similarly challenging drug targets. Here, we report the development of a magnetic bead-based binding assay using mass spectrometry detection for human KMO protein. The assay incorporates isolation of FLAG-tagged KMO enzyme on protein A magnetic beads. The protein-bound beads are incubated with potential binding compounds before specific cleavage of the protein-compound complexes from the beads. Mass spectrometry analysis is used to identify the compounds that demonstrate specific binding affinity for the target protein. The technique was validated using known inhibitors of KMO. This assay is a robust alternative to traditional ligand-binding assays for challenging protein targets, and it overcomes specific difficulties associated with isolating human KMO. © 2014 Society for Laboratory Automation and Screening.

  2. Structure of the ligand-binding domain (LBD) of human androgen receptor in complex with a selective modulator LGD2226

    International Nuclear Information System (INIS)

    Wang, Feng; Liu, Xiao-qin; Li, He; Liang, Kai-ni; Miner, Jeffrey N.; Hong, Mei; Kallel, E. Adam; Oeveren, Arjan van; Zhi, Lin; Jiang, Tao

    2006-01-01

    Crystal structure of the ligand-binding domain of androgen receptor in complex with LGD2226. The androgen receptor (AR) is a ligand-inducible steroid hormone receptor that mediates androgen action, determining male sexual phenotypes and promoting spermatogenesis. As the androgens play a dominant role in male sexual development and function, steroidal androgen agonists have been used clinically for some years. However, there is a risk of potential side effects and most steroidal androgens cannot be dosed orally, which limits the use of these substances. 1,2-Dihydro-6-N,N-bis(2,2,2-trifluoroethyl) amino-4-trifluoromethyl-2-quinolinone (LGD2226) is a synthetic nonsteroidal ligand and a novel selective AR modulator. The crystal structure of the complex of LGD2226 with the androgen receptor ligand-binding domain (AR LBD) at 2.1 Å was solved and compared with the structure of the AR LBD–R1881 complex. It is hoped that this will aid in further explaining the selectivity of LGD2226 observed in in vitro and in vivo assays and in developing more selective and effective therapeutic agents

  3. Ligand binding and thermostability of different allosteric states of the insulin zinc-hexamer

    DEFF Research Database (Denmark)

    Huus, Kasper; Havelund, Svend; Olsen, Helle B

    2006-01-01

    The influence of ligand binding and conformation state on the thermostability of hexameric zinc-insulin was studied by differential scanning calorimetry (DSC). The insulin hexamer exists in equilibrium between the forms T6, T3R3, and R6. Phenolic ligands induce and stabilize the T3R3- and R6-stat...

  4. The interrelationship between ligand binding and self-association of the folate binding protein

    DEFF Research Database (Denmark)

    Holm, Jan; Schou, Christian; Babol, Linnea N.

    2011-01-01

    The folate binding protein (FBP) regulates homeostasis and intracellular trafficking of folic acid, a vitamin of decisive importance in cell division and growth. We analyzed whether interrelationship between ligand binding and self-association of FBP plays a significant role in the physiology of ...

  5. Thermodynamics of ligand binding to acyl-coenzyme A binding protein studied by titration calorimetry

    DEFF Research Database (Denmark)

    Færgeman, Nils J.; Sigurskjold, B W; Kragelund, B B

    1996-01-01

    Ligand binding to recombinant bovine acyl-CoA binding protein (ACBP) was examined using isothermal microcalorimetry. Microcalorimetric measurements confirm that the binding affinity of acyl-CoA esters for ACBP is strongly dependent on the length of the acyl chain with a clear preference for acyl-...

  6. Sampling and energy evaluation challenges in ligand binding protein design.

    Science.gov (United States)

    Dou, Jiayi; Doyle, Lindsey; Jr Greisen, Per; Schena, Alberto; Park, Hahnbeom; Johnsson, Kai; Stoddard, Barry L; Baker, David

    2017-12-01

    The steroid hormone 17α-hydroxylprogesterone (17-OHP) is a biomarker for congenital adrenal hyperplasia and hence there is considerable interest in development of sensors for this compound. We used computational protein design to generate protein models with binding sites for 17-OHP containing an extended, nonpolar, shape-complementary binding pocket for the four-ring core of the compound, and hydrogen bonding residues at the base of the pocket to interact with carbonyl and hydroxyl groups at the more polar end of the ligand. Eight of 16 designed proteins experimentally tested bind 17-OHP with micromolar affinity. A co-crystal structure of one of the designs revealed that 17-OHP is rotated 180° around a pseudo-two-fold axis in the compound and displays multiple binding modes within the pocket, while still interacting with all of the designed residues in the engineered site. Subsequent rounds of mutagenesis and binding selection improved the ligand affinity to nanomolar range, while appearing to constrain the ligand to a single bound conformation that maintains the same "flipped" orientation relative to the original design. We trace the discrepancy in the design calculations to two sources: first, a failure to model subtle backbone changes which alter the distribution of sidechain rotameric states and second, an underestimation of the energetic cost of desolvating the carbonyl and hydroxyl groups of the ligand. The difference between design model and crystal structure thus arises from both sampling limitations and energy function inaccuracies that are exacerbated by the near two-fold symmetry of the molecule. © 2017 The Authors Protein Science published by Wiley Periodicals, Inc. on behalf of The Protein Society.

  7. Leptospiral outer membrane protein microarray, a novel approach to identification of host ligand-binding proteins.

    Science.gov (United States)

    Pinne, Marija; Matsunaga, James; Haake, David A

    2012-11-01

    Leptospirosis is a zoonosis with worldwide distribution caused by pathogenic spirochetes belonging to the genus Leptospira. The leptospiral life cycle involves transmission via freshwater and colonization of the renal tubules of their reservoir hosts. Infection requires adherence to cell surfaces and extracellular matrix components of host tissues. These host-pathogen interactions involve outer membrane proteins (OMPs) expressed on the bacterial surface. In this study, we developed an Leptospira interrogans serovar Copenhageni strain Fiocruz L1-130 OMP microarray containing all predicted lipoproteins and transmembrane OMPs. A total of 401 leptospiral genes or their fragments were transcribed and translated in vitro and printed on nitrocellulose-coated glass slides. We investigated the potential of this protein microarray to screen for interactions between leptospiral OMPs and fibronectin (Fn). This approach resulted in the identification of the recently described fibronectin-binding protein, LIC10258 (MFn8, Lsa66), and 14 novel Fn-binding proteins, denoted Microarray Fn-binding proteins (MFns). We confirmed Fn binding of purified recombinant LIC11612 (MFn1), LIC10714 (MFn2), LIC11051 (MFn6), LIC11436 (MFn7), LIC10258 (MFn8, Lsa66), and LIC10537 (MFn9) by far-Western blot assays. Moreover, we obtained specific antibodies to MFn1, MFn7, MFn8 (Lsa66), and MFn9 and demonstrated that MFn1, MFn7, and MFn9 are expressed and surface exposed under in vitro growth conditions. Further, we demonstrated that MFn1, MFn4 (LIC12631, Sph2), and MFn7 enable leptospires to bind fibronectin when expressed in the saprophyte, Leptospira biflexa. Protein microarrays are valuable tools for high-throughput identification of novel host ligand-binding proteins that have the potential to play key roles in the virulence mechanisms of pathogens.

  8. AutoSite: an automated approach for pseudo-ligands prediction—from ligand-binding sites identification to predicting key ligand atoms

    Science.gov (United States)

    Ravindranath, Pradeep Anand; Sanner, Michel F.

    2016-01-01

    Motivation: The identification of ligand-binding sites from a protein structure facilitates computational drug design and optimization, and protein function assignment. We introduce AutoSite: an efficient software tool for identifying ligand-binding sites and predicting pseudo ligand corresponding to each binding site identified. Binding sites are reported as clusters of 3D points called fills in which every point is labelled as hydrophobic or as hydrogen bond donor or acceptor. From these fills AutoSite derives feature points: a set of putative positions of hydrophobic-, and hydrogen-bond forming ligand atoms. Results: We show that AutoSite identifies ligand-binding sites with higher accuracy than other leading methods, and produces fills that better matches the ligand shape and properties, than the fills obtained with a software program with similar capabilities, AutoLigand. In addition, we demonstrate that for the Astex Diverse Set, the feature points identify 79% of hydrophobic ligand atoms, and 81% and 62% of the hydrogen acceptor and donor hydrogen ligand atoms interacting with the receptor, and predict 81.2% of water molecules mediating interactions between ligand and receptor. Finally, we illustrate potential uses of the predicted feature points in the context of lead optimization in drug discovery projects. Availability and Implementation: http://adfr.scripps.edu/AutoDockFR/autosite.html Contact: sanner@scripps.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27354702

  9. Cloning, ligand-binding, and temporal expression of ecdysteroid receptors in the diamondback moth, Plutella xylostella

    Directory of Open Access Journals (Sweden)

    Tang Baozhen

    2012-10-01

    Full Text Available Abstract Background The diamondback moth, Plutella xylostella (L. (Lepidoptera: Plutellidae, is a devastating pest of cruciferous crops worldwide, and has developed resistance to a wide range of insecticides, including diacylhydrazine-based ecdysone agonists, a highly selective group of molt-accelerating biopesticides targeting the ecdysone receptors. Result In this study, we cloned and characterized the ecdysone receptors from P. xylostella, including the two isoforms of EcR and a USP. Sequence comparison and phylogenetic analysis showed striking conservations among insect ecdysone receptors, especially between P. xylostella and other lepidopterans. The binding affinity of ecdysteroids to in vitro-translated receptor proteins indicated that PxEcRB isoform bound specifically to ponasterone A, and the binding affinity was enhanced by co-incubation with PxUSP (Kd =3.0±1.7 nM. In contrast, PxEcRA did not bind to ponasterone A, even in the presence of PxUSP. The expression of PxEcRB were consistently higher than that of PxEcRA across each and every developmental stage, while the pattern of PxUSP expression is more or less ubiquitous. Conclusions Target site insensitivity, in which the altered binding of insecticides (ecdysone agonists to their targets (ecdysone receptors leads to an adaptive response (resistance, is one of the underlying mechanisms of diacylhydrazine resistance. Given the distinct differences at expression level and the ligand-binding capacity, we hypothesis that PxEcRB is the ecdysone receptor that controls the remodeling events during metamorphosis. More importantly, PxEcRB is the potential target site which is modified in the ecdysone agonist-resistant P. xylostella.

  10. Human Adenosine A2A Receptor: Molecular Mechanism of Ligand Binding and Activation

    Directory of Open Access Journals (Sweden)

    Byron Carpenter

    2017-12-01

    Full Text Available Adenosine receptors (ARs comprise the P1 class of purinergic receptors and belong to the largest family of integral membrane proteins in the human genome, the G protein-coupled receptors (GPCRs. ARs are classified into four subtypes, A1, A2A, A2B, and A3, which are all activated by extracellular adenosine, and play central roles in a broad range of physiological processes, including sleep regulation, angiogenesis and modulation of the immune system. ARs are potential therapeutic targets in a variety of pathophysiological conditions, including sleep disorders, cancer, and dementia, which has made them important targets for structural biology. Over a decade of research and innovation has culminated with the publication of more than 30 crystal structures of the human adenosine A2A receptor (A2AR, making it one of the best structurally characterized GPCRs at the atomic level. In this review we analyze the structural data reported for A2AR that described for the first time the binding of mode of antagonists, including newly developed drug candidates, synthetic and endogenous agonists, sodium ions and an engineered G protein. These structures have revealed the key conformational changes induced upon agonist and G protein binding that are central to signal transduction by A2AR, and have highlighted both similarities and differences in the activation mechanism of this receptor compared to other class A GPCRs. Finally, comparison of A2AR with the recently solved structures of A1R has provided the first structural insight into the molecular determinants of ligand binding specificity in different AR subtypes.

  11. The relationship between metal toxicity and biotic ligand binding affinities in aquatic and soil organisms: a review.

    Science.gov (United States)

    Ardestani, Masoud M; van Straalen, Nico M; van Gestel, Cornelis A M

    2014-12-01

    The biotic ligand model (BLM) is a theoretical, potentially mechanistic approach to assess metal bioavailability in soil and aquatic systems. In a BLM, toxicity is linked to the fraction of biotic ligand occupied, which in turn, depends on the various components of the solution, including activity of the metal. Bioavailability is a key factor in determining toxicity and uptake of metals in organisms. In this study, the present status of BLM development for soil and aquatic organisms is summarized. For all species and all metals, toxicity was correlated with the conditional biotic ligand binding constants. For almost all organisms, values for Ag, Cu, and Cd were higher than those for Zn and Ni. The constants derived for aquatic systems seem to be equally valid for soil organisms, but in the case of soils, bioavailability from the soil solution is greatly influenced by the presence of the soil solid phase. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Ligand Binding Affinities of Arctigenin and Its Demethylated Metabolites to Estrogen Receptor Alpha

    Directory of Open Access Journals (Sweden)

    Masao Hattori

    2013-01-01

    Full Text Available Phytoestrogens are defined as plant-derived compounds with estrogen-like activities according to their chemical structures and activities. Plant lignans are generally categorized as phytoestrogens. It was reported that (−-arctigenin, the aglycone of arctiin, was demethylated to (−-dihydroxyenterolactone (DHENL by Eubacterium (E. sp. ARC-2. Through stepwise demethylation, E. sp. ARC-2 produced six intermediates, three mono-desmethylarctigenins and three di-desmethylarctigenins. In the present study, ligand binding affinities of (−-arctigenin and its seven metabolites, including DHENL, were investigated for an estrogen receptor alpha, and found that demethylated metabolites had stronger binding affinities than (−-arctigenin using a ligand binding screen assay method. The IC50 value of (2R,3R-2-(4-hydroxy-3-methoxybenzyl-3-(3,4-dihydroxybenzyl-butyrolactone was 7.9 × 10−4 M.

  13. Computational Approaches to the Chemical Equilibrium Constant in Protein-ligand Binding.

    Science.gov (United States)

    Montalvo-Acosta, Joel José; Cecchini, Marco

    2016-12-01

    The physiological role played by protein-ligand recognition has motivated the development of several computational approaches to the ligand binding affinity. Some of them, termed rigorous, have a strong theoretical foundation but involve too much computation to be generally useful. Some others alleviate the computational burden by introducing strong approximations and/or empirical calibrations, which also limit their general use. Most importantly, there is no straightforward correlation between the predictive power and the level of approximation introduced. Here, we present a general framework for the quantitative interpretation of protein-ligand binding based on statistical mechanics. Within this framework, we re-derive self-consistently the fundamental equations of some popular approaches to the binding constant and pinpoint the inherent approximations. Our analysis represents a first step towards the development of variants with optimum accuracy/efficiency ratio for each stage of the drug discovery pipeline. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Structural and mechanistic investigations on Salmonella typhimurium acetate kinase (AckA: identification of a putative ligand binding pocket at the dimeric interface

    Directory of Open Access Journals (Sweden)

    Chittori Sagar

    2012-10-01

    Full Text Available Abstract Background Bacteria such as Escherichia coli and Salmonella typhimurium can utilize acetate as the sole source of carbon and energy. Acetate kinase (AckA and phosphotransacetylase (Pta, key enzymes of acetate utilization pathway, regulate flux of metabolites in glycolysis, gluconeogenesis, TCA cycle, glyoxylate bypass and fatty acid metabolism. Results Here we report kinetic characterization of S. typhimurium AckA (StAckA and structures of its unliganded (Form-I, 2.70 Å resolution and citrate-bound (Form-II, 1.90 Å resolution forms. The enzyme showed broad substrate specificity with kcat/Km in the order of acetate > propionate > formate. Further, the Km for acetyl-phosphate was significantly lower than for acetate and the enzyme could catalyze the reverse reaction (i.e. ATP synthesis more efficiently. ATP and Mg2+ could be substituted by other nucleoside 5′-triphosphates (GTP, UTP and CTP and divalent cations (Mn2+ and Co2+, respectively. Form-I StAckA represents the first structural report of an unliganded AckA. StAckA protomer consists of two domains with characteristic βββαβαβα topology of ASKHA superfamily of proteins. These domains adopt an intermediate conformation compared to that of open and closed forms of ligand-bound Methanosarcina thermophila AckA (MtAckA. Spectroscopic and structural analyses of StAckA further suggested occurrence of inter-domain motion upon ligand-binding. Unexpectedly, Form-II StAckA structure showed a drastic change in the conformation of residues 230–300 compared to that of Form-I. Further investigation revealed electron density corresponding to a citrate molecule in a pocket located at the dimeric interface of Form-II StAckA. Interestingly, a similar dimeric interface pocket lined with largely conserved residues could be identified in Form-I StAckA as well as in other enzymes homologous to AckA suggesting that ligand binding at this pocket may influence the function of these

  15. Thermodynamic fingerprints of ligand binding to human telomeric G-quadruplexes

    OpenAIRE

    Bon?ina, Matja?; Podlipnik, ?rtomir; Piantanida, Ivo; Eilmes, Julita; Teulade-Fichou, Marie-Paule; Vesnaver, Gorazd; Lah, Jurij

    2015-01-01

    Thermodynamic studies of ligand binding to human telomere (ht) DNA quadruplexes, as a rule, neglect the involvement of various ht-DNA conformations in the binding process. Therefore, the thermodynamic driving forces and the mechanisms of ht-DNA G-quadruplex-ligand recognition remain poorly understood. In this work we characterize thermodynamically and structurally binding of netropsin (Net), dibenzotetraaza[14]annulene derivatives (DP77, DP78), cationic porphyrin (TMPyP4) and two bisquinolini...

  16. Automatic generation of bioinformatics tools for predicting protein-ligand binding sites.

    Science.gov (United States)

    Komiyama, Yusuke; Banno, Masaki; Ueki, Kokoro; Saad, Gul; Shimizu, Kentaro

    2016-03-15

    Predictive tools that model protein-ligand binding on demand are needed to promote ligand research in an innovative drug-design environment. However, it takes considerable time and effort to develop predictive tools that can be applied to individual ligands. An automated production pipeline that can rapidly and efficiently develop user-friendly protein-ligand binding predictive tools would be useful. We developed a system for automatically generating protein-ligand binding predictions. Implementation of this system in a pipeline of Semantic Web technique-based web tools will allow users to specify a ligand and receive the tool within 0.5-1 day. We demonstrated high prediction accuracy for three machine learning algorithms and eight ligands. The source code and web application are freely available for download at http://utprot.net They are implemented in Python and supported on Linux. shimizu@bi.a.u-tokyo.ac.jp Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press.

  17. Predicting Ligand Binding Sites on Protein Surfaces by 3-Dimensional Probability Density Distributions of Interacting Atoms

    Science.gov (United States)

    Jian, Jhih-Wei; Elumalai, Pavadai; Pitti, Thejkiran; Wu, Chih Yuan; Tsai, Keng-Chang; Chang, Jeng-Yih; Peng, Hung-Pin; Yang, An-Suei

    2016-01-01

    Predicting ligand binding sites (LBSs) on protein structures, which are obtained either from experimental or computational methods, is a useful first step in functional annotation or structure-based drug design for the protein structures. In this work, the structure-based machine learning algorithm ISMBLab-LIG was developed to predict LBSs on protein surfaces with input attributes derived from the three-dimensional probability density maps of interacting atoms, which were reconstructed on the query protein surfaces and were relatively insensitive to local conformational variations of the tentative ligand binding sites. The prediction accuracy of the ISMBLab-LIG predictors is comparable to that of the best LBS predictors benchmarked on several well-established testing datasets. More importantly, the ISMBLab-LIG algorithm has substantial tolerance to the prediction uncertainties of computationally derived protein structure models. As such, the method is particularly useful for predicting LBSs not only on experimental protein structures without known LBS templates in the database but also on computationally predicted model protein structures with structural uncertainties in the tentative ligand binding sites. PMID:27513851

  18. Comparison of the kinetics of different Markov models for ligand binding under varying conditions

    International Nuclear Information System (INIS)

    Martini, Johannes W. R.; Habeck, Michael

    2015-01-01

    We recently derived a Markov model for macromolecular ligand binding dynamics from few physical assumptions and showed that its stationary distribution is the grand canonical ensemble [J. W. R. Martini, M. Habeck, and M. Schlather, J. Math. Chem. 52, 665 (2014)]. The transition probabilities of the proposed Markov process define a particular Glauber dynamics and have some similarity to the Metropolis-Hastings algorithm. Here, we illustrate that this model is the stochastic analog of (pseudo) rate equations and the corresponding system of differential equations. Moreover, it can be viewed as a limiting case of general stochastic simulations of chemical kinetics. Thus, the model links stochastic and deterministic approaches as well as kinetics and equilibrium described by the grand canonical ensemble. We demonstrate that the family of transition matrices of our model, parameterized by temperature and ligand activity, generates ligand binding kinetics that respond to changes in these parameters in a qualitatively similar way as experimentally observed kinetics. In contrast, neither the Metropolis-Hastings algorithm nor the Glauber heat bath reflects changes in the external conditions correctly. Both converge rapidly to the stationary distribution, which is advantageous when the major interest is in the equilibrium state, but fail to describe the kinetics of ligand binding realistically. To simulate cellular processes that involve the reversible stochastic binding of multiple factors, our pseudo rate equation model should therefore be preferred to the Metropolis-Hastings algorithm and the Glauber heat bath, if the stationary distribution is not of only interest

  19. Comparison of the kinetics of different Markov models for ligand binding under varying conditions

    Energy Technology Data Exchange (ETDEWEB)

    Martini, Johannes W. R., E-mail: jmartin2@gwdg.de [Max Planck Institute for Developmental Biology, Tübingen (Germany); Felix Bernstein Institute for Mathematical Statistics in the Biosciences, University of Göttingen, Göttingen (Germany); Habeck, Michael, E-mail: mhabeck@gwdg.de [Felix Bernstein Institute for Mathematical Statistics in the Biosciences, University of Göttingen, Göttingen (Germany); Max Planck Institute for Biophysical Chemistry, Göttingen (Germany)

    2015-03-07

    We recently derived a Markov model for macromolecular ligand binding dynamics from few physical assumptions and showed that its stationary distribution is the grand canonical ensemble [J. W. R. Martini, M. Habeck, and M. Schlather, J. Math. Chem. 52, 665 (2014)]. The transition probabilities of the proposed Markov process define a particular Glauber dynamics and have some similarity to the Metropolis-Hastings algorithm. Here, we illustrate that this model is the stochastic analog of (pseudo) rate equations and the corresponding system of differential equations. Moreover, it can be viewed as a limiting case of general stochastic simulations of chemical kinetics. Thus, the model links stochastic and deterministic approaches as well as kinetics and equilibrium described by the grand canonical ensemble. We demonstrate that the family of transition matrices of our model, parameterized by temperature and ligand activity, generates ligand binding kinetics that respond to changes in these parameters in a qualitatively similar way as experimentally observed kinetics. In contrast, neither the Metropolis-Hastings algorithm nor the Glauber heat bath reflects changes in the external conditions correctly. Both converge rapidly to the stationary distribution, which is advantageous when the major interest is in the equilibrium state, but fail to describe the kinetics of ligand binding realistically. To simulate cellular processes that involve the reversible stochastic binding of multiple factors, our pseudo rate equation model should therefore be preferred to the Metropolis-Hastings algorithm and the Glauber heat bath, if the stationary distribution is not of only interest.

  20. Computational Biology Tools for Identifying Specific Ligand Binding Residues for Novel Agrochemical and Drug Design.

    Science.gov (United States)

    Neshich, Izabella Agostinho Pena; Nishimura, Leticia; de Moraes, Fabio Rogerio; Salim, Jose Augusto; Villalta-Romero, Fabian; Borro, Luiz; Yano, Inacio Henrique; Mazoni, Ivan; Tasic, Ljubica; Jardine, Jose Gilberto; Neshich, Goran

    2015-01-01

    The term "agrochemicals" is used in its generic form to represent a spectrum of pesticides, such as insecticides, fungicides or bactericides. They contain active components designed for optimized pest management and control, therefore allowing for economically sound and labor efficient agricultural production. A "drug" on the other side is a term that is used for compounds designed for controlling human diseases. Although drugs are subjected to much more severe testing and regulation procedures before reaching the market, they might contain exactly the same active ingredient as certain agrochemicals, what is the case described in present work, showing how a small chemical compound might be used to control pathogenicity of Gram negative bacteria Xylella fastidiosa which devastates citrus plantations, as well as for control of, for example, meningitis in humans. It is also clear that so far the production of new agrochemicals is not benefiting as much from the in silico new chemical compound identification/discovery as pharmaceutical production. Rational drug design crucially depends on detailed knowledge of structural information about the receptor (target protein) and the ligand (drug/agrochemical). The interaction between the two molecules is the subject of analysis that aims to understand relationship between structure and function, mainly deciphering some fundamental elements of the nanoenvironment where the interaction occurs. In this work we will emphasize the role of understanding nanoenvironmental factors that guide recognition and interaction of target protein and its function modifier, an agrochemical or a drug. The repertoire of nanoenvironment descriptors is used for two selected and specific cases we have approached in order to offer a technological solution for some very important problems that needs special attention in agriculture: elimination of pathogenicity of a bacterium which is attacking citrus plants and formulation of a new fungicide. Finally, we also briefly describe a workflow which might be useful when research requires that model structures of target proteins are firstly generated (starting from genome sequences), followed by identification of ligand-target sites at the surface of those modeled structures, then application of procedures that adequately prepare both protein and ligand structures (the latter also involving filtration that satisfies acceptable adsorption/desorption/metabolism/excretion/toxicity [ADMET] parameters) for virtual high throughput screening (involving docking of ligands to indicated sites) and terminating by ranking of best pairs: target protein with selected ligand.

  1. Interaction Entropy: A New Paradigm for Highly Efficient and Reliable Computation of Protein-Ligand Binding Free Energy.

    Science.gov (United States)

    Duan, Lili; Liu, Xiao; Zhang, John Z H

    2016-05-04

    Efficient and reliable calculation of protein-ligand binding free energy is a grand challenge in computational biology and is of critical importance in drug design and many other molecular recognition problems. The main challenge lies in the calculation of entropic contribution to protein-ligand binding or interaction systems. In this report, we present a new interaction entropy method which is theoretically rigorous, computationally efficient, and numerically reliable for calculating entropic contribution to free energy in protein-ligand binding and other interaction processes. Drastically different from the widely employed but extremely expensive normal mode method for calculating entropy change in protein-ligand binding, the new method calculates the entropic component (interaction entropy or -TΔS) of the binding free energy directly from molecular dynamics simulation without any extra computational cost. Extensive study of over a dozen randomly selected protein-ligand binding systems demonstrated that this interaction entropy method is both computationally efficient and numerically reliable and is vastly superior to the standard normal mode approach. This interaction entropy paradigm introduces a novel and intuitive conceptual understanding of the entropic effect in protein-ligand binding and other general interaction systems as well as a practical method for highly efficient calculation of this effect.

  2. Characterization of ligand binding to melanocortin 4 receptors using fluorescent peptides with improved kinetic properties.

    Science.gov (United States)

    Link, Reet; Veiksina, Santa; Rinken, Ago; Kopanchuk, Sergei

    2017-03-15

    Melanocortin 4 (MC 4 ) receptors are important drug targets as they regulate energy homeostasis, eating behaviour and sexual functions. The ligand binding process to these G protein-coupled receptors is subject to considerable complexity. Different steps in the complex dynamic regulation can be characterized by ligand binding kinetics. Optimization of these kinetic parameters in terms of on-rate and residence time can increase the rapid onset of drug action and reduce off-target effects. Fluorescence anisotropy (FA) is one of the homogeneous fluorescence-based assays that enable continuous online monitoring of ligand binding kinetics. FA has been implemented for the kinetic study of melanocortin MC 4 receptors expressed on budded baculoviruses. However, the slow dissociation of the fluorescently labelled peptide NDP-α-MSH does not enable reaching equilibrium nor enable more in-depth study of the binding mechanisms. To overcome this problem, two novel red-shifted fluorescent ligands were designed. These cyclized heptapeptide derivatives (UTBC101 and UTBC102) exhibited nanomolar affinity toward melanocortin MC 4 receptors but had relatively different kinetic properties. The dissociation half-lives of UTBC101 (τ 1/2 =160min) and UTBC102 (τ 1/2 =7min) were shorter compared to that what was previously reported for Cy3B-NDP-α-MSH (τ 1/2 =224min). The significantly shorter dissociation half-life of UTBC102 enables equilibrium in screening assays, whereas the higher affinity of UTBC101 helps to resolve a wider range of competitor potencies. These two ligands are suitable for further kinetic screening of novel melanocortin MC 4 receptor specific ligands and could complement each other in these studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Homology-modeled ligand-binding domains of medaka estrogen receptors and androgen receptors: A model system for the study of reproduction

    International Nuclear Information System (INIS)

    Cui Jianzhou; Shen Xueyan; Yan Zuowei; Zhao Haobin; Nagahama, Yoshitaka

    2009-01-01

    Estrogen and androgen and their receptors play critical roles in physiological processes such as sexual differentiation and development. Using the available structural models for the human estrogen receptors alpha and beta and androgen receptor as templates, we designed in silico agonist and antagonist models of medaka estrogen receptor (meER) alpha, beta-1, and beta-2, and androgen receptor (meAR) alpha and beta. Using these models, we studied (1) the structural relationship between the ligand-binding domains (LBDs) of ERs and ARs of human and medaka, and (2) whether medaka ER and AR can be potential models for studying the ligand-binding activities of various agonists and antagonists of these receptors by docking analysis. A high level of conservation was observed between the sequences of the ligand-binding domains of meERα and huERα, meERβ1 and huERβ, meERβ2, and huERβ with 62.8%, 66.4%, and 65.1% identity, respectively. The sequence conservation between meARα and huAR, meARβ, and huAR was found with 70.1% and 61.0% of identity, respectively. Thirty-three selected endocrine disrupting chemicals (EDCs), including both agonists and antagonists, were docked into the LBD of ER and AR, and the corresponding docking score for medaka models and human templates were calculated. In order to confirm the conservation of the overall geometry and the binding pocket, the backbone root mean square deviation (RMSD) for Cα atoms was derived from the structure superposition of all 10 medaka homology models to the six human templates. Our results suggested conformational conservation between the ERs and ARs of medaka and human, Thus, medaka could be highly useful as a model system for studies involving estrogen and androgen interaction with their receptors.

  4. Structural analysis of prolyl oligopeptidases using molecular docking and dynamics: insights into conformational changes and ligand binding.

    Directory of Open Access Journals (Sweden)

    Swati Kaushik

    Full Text Available Prolyl oligopeptidase (POP is considered as an important pharmaceutical target for the treatment of numerous diseases. Despite enormous studies on various aspects of POPs structure and function still some of the questions are intriguing like conformational dynamics of the protein and interplay between ligand entry/egress. Here, we have used molecular modeling and docking based approaches to unravel questions like differences in ligand binding affinities in three POP species (porcine, human and A. thaliana. Despite high sequence and structural similarity, they possess different affinities for the ligands. Interestingly, human POP was found to be more specific, selective and incapable of binding to a few planar ligands which showed extrapolation of porcine POP in human context is more complicated. Possible routes for substrate entry and product egress were also investigated by detailed analyses of molecular dynamics (MD simulations for the three proteins. Trajectory analysis of bound and unbound forms of three species showed differences in conformational dynamics, especially variations in β-propeller pore size, which was found to be hidden by five lysine residues present on blades one and seven. During simulation, β-propeller pore size was increased by ∼2 Å in porcine ligand-bound form which might act as a passage for smaller product movement as free energy barrier was reduced, while there were no significant changes in human and A. thaliana POPs. We also suggest that these differences in pore size could lead to fundamental differences in mode of product egress among three species. This analysis also showed some functionally important residues which can be used further for in vitro mutagenesis and inhibitor design. This study can help us in better understanding of the etiology of POPs in several neurodegenerative diseases.

  5. GPR17: Molecular modeling and dynamics studies of the 3-D structure and purinergic ligand binding features in comparison with P2Y receptors

    Directory of Open Access Journals (Sweden)

    Ranghino Graziella

    2008-06-01

    Full Text Available Abstract Background GPR17 is a G-protein-coupled receptor located at intermediate phylogenetic position between two distinct receptor families: the P2Y and CysLT receptors for extracellular nucleotides and cysteinyl-LTs, respectively. We previously showed that GPR17 can indeed respond to both classes of endogenous ligands and to synthetic compounds active at the above receptor families, thus representing the first fully characterized non-peptide "hybrid" GPCR. In a rat brain focal ischemia model, the selective in vivo knock down of GPR17 by anti-sense technology or P2Y/CysLT antagonists reduced progression of ischemic damage, thus highlighting GPR17 as a novel therapeutic target for stroke. Elucidation of the structure of GPR17 and of ligand binding mechanisms are the necessary steps to obtain selective and potent drugs for this new potential target. On this basis, a 3-D molecular model of GPR17 embedded in a solvated phospholipid bilayer and refined by molecular dynamics simulations has been the first aim of this study. To explore the binding mode of the "purinergic" component of the receptor, the endogenous agonist UDP and two P2Y receptor antagonists demonstrated to be active on GPR17 (MRS2179 and cangrelor were then modeled on the receptor. Results Molecular dynamics simulations suggest that GPR17 nucleotide binding pocket is similar to that described for the other P2Y receptors, although only one of the three basic residues that have been typically involved in ligand recognition is conserved (Arg255. The binding pocket is enclosed between the helical bundle and covered at the top by EL2. Driving interactions are H-bonds and salt bridges between the 6.55 and 6.52 residues and the phosphate moieties of the ligands. An "accessory" binding site in a region formed by the EL2, EL3 and the Nt was also found. Conclusion Nucleotide binding to GPR17 occurs on the same receptor regions identified for already known P2Y receptors. Agonist

  6. Nutritional potential of post extraction residues and silage from ...

    African Journals Online (AJOL)

    Nutritional potential of post extraction residues and silage from leaves of five cassava varieties as feed for ruminants. ... Results indicated that processing reduced (P < 0.05) the inherent nutrients of cassava leaf residues produced after the extraction of protein concentrate from cassava leaves with crude protein (CP) content ...

  7. Single-molecule photobleaching reveals increased MET receptor dimerization upon ligand binding in intact cells

    International Nuclear Information System (INIS)

    Dietz, Marina S; Haße, Daniel; Ferraris, Davide M; Göhler, Antonia; Niemann, Hartmut H; Heilemann, Mike

    2013-01-01

    The human receptor tyrosine kinase MET and its ligand hepatocyte growth factor/scatter factor are essential during embryonic development and play an important role during cancer metastasis and tissue regeneration. In addition, it was found that MET is also relevant for infectious diseases and is the target of different bacteria, amongst them Listeria monocytogenes that induces bacterial uptake through the surface protein internalin B. Binding of ligand to the MET receptor is proposed to lead to receptor dimerization. However, it is also discussed whether preformed MET dimers exist on the cell membrane. To address these issues we used single-molecule fluorescence microscopy techniques. Our photobleaching experiments show that MET exists in dimers on the membrane of cells in the absence of ligand and that the proportion of MET dimers increases significantly upon ligand binding. Our results indicate that partially preformed MET dimers may play a role in ligand binding or MET signaling. The addition of the bacterial ligand internalin B leads to an increase of MET dimers which is in agreement with the model of ligand-induced dimerization of receptor tyrosine kinases.

  8. Ligand photo-isomerization triggers conformational changes in iGluR2 ligand binding domain.

    Directory of Open Access Journals (Sweden)

    Tino Wolter

    Full Text Available Neurological glutamate receptors bind a variety of artificial ligands, both agonistic and antagonistic, in addition to glutamate. Studying their small molecule binding properties increases our understanding of the central nervous system and a variety of associated pathologies. The large, oligomeric multidomain membrane protein contains a large and flexible ligand binding domains which undergoes large conformational changes upon binding different ligands. A recent application of glutamate receptors is their activation or inhibition via photo-switchable ligands, making them key systems in the emerging field of optochemical genetics. In this work, we present a theoretical study on the binding mode and complex stability of a novel photo-switchable ligand, ATA-3, which reversibly binds to glutamate receptors ligand binding domains (LBDs. We propose two possible binding modes for this ligand based on flexible ligand docking calculations and show one of them to be analogues to the binding mode of a similar ligand, 2-BnTetAMPA. In long MD simulations, it was observed that transitions between both binding poses involve breaking and reforming the T686-E402 protein hydrogen bond. Simulating the ligand photo-isomerization process shows that the two possible configurations of the ligand azo-group have markedly different complex stabilities and equilibrium binding modes. A strong but slow protein response is observed after ligand configuration changes. This provides a microscopic foundation for the observed difference in ligand activity upon light-switching.

  9. Misuse of thermodynamics in the interpretation of isothermal titration calorimetry data for ligand binding to proteins.

    Science.gov (United States)

    Pethica, Brian A

    2015-03-01

    Isothermal titration calorimetry (ITC) has given a mass of data on the binding of small molecules to proteins and other biopolymers, with particular interest in drug binding to proteins chosen as therapeutic indicators. Interpretation of the enthalpy data usually follows an unsound protocol that uses thermodynamic relations in circumstances where they do not apply. Errors of interpretation include incomplete definitions of ligand binding and equilibrium constants and neglect of the non-ideality of the solutions under study, leading to unreliable estimates of standard free energies and entropies of binding. The mass of reported thermodynamic functions for ligand binding to proteins estimated from ITC enthalpies alone is consequently of uncertain thermodynamic significance and utility. ITC and related experiments to test the protocol assumptions are indicated. A thermodynamic procedure avoiding equilibrium constants or other reaction models and not requiring protein activities is given. The discussion draws attention to the fundamental but neglected relation between the thermodynamic activity and bioactivity of drugs and to the generally unknown thermodynamic status of ligand solutions, which for drugs relates directly to effective therapeutic dosimetry. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Nucleolin inhibits Fas ligand binding and suppresses Fas-mediated apoptosis in vivo via a surface nucleolin-Fas complex.

    Science.gov (United States)

    Wise, Jillian F; Berkova, Zuzana; Mathur, Rohit; Zhu, Haifeng; Braun, Frank K; Tao, Rong-Hua; Sabichi, Anita L; Ao, Xue; Maeng, Hoyoung; Samaniego, Felipe

    2013-06-06

    Resistance to Fas-mediated apoptosis is associated with poor cancer outcomes and chemoresistance. To elucidate potential mechanisms of defective Fas signaling, we screened primary lymphoma cell extracts for Fas-associated proteins that would have the potential to regulate Fas signaling. An activation-resistant Fas complex selectively included nucleolin. We confirmed the presence of nucleolin-Fas complexes in B-cell lymphoma cells and primary tissues, and the absence of such complexes in B-lymphocytes from healthy donors. RNA-binding domain 4 and the glycine/arginine-rich domain of nucleolin were essential for its association with Fas. Nucleolin colocalized with Fas on the surface of B-cell lymphoma cells. Nucleolin knockdown sensitized BJAB cells to Fas ligand (FasL)-induced and Fas agonistic antibody-induced apoptosis through enhanced binding, suggesting that nucleolin blocks the FasL-Fas interaction. Mice transfected with nucleolin were protected from the lethal effects of agonistic anti-mouse Fas antibody (Jo2) and had lower rates of hepatocyte apoptosis, compared with vector and a non-Fas-binding mutant of nucleolin. Our results show that cell surface nucleolin binds Fas, inhibits ligand binding, and thus prevents induction of Fas-mediated apoptosis in B-cell lymphomas and may serve as a new therapeutic target.

  11. Inhibition of αIIbβ3 Ligand Binding by an αIIb Peptide that Clasps the Hybrid Domain to the βI Domain of β3.

    Directory of Open Access Journals (Sweden)

    Wen Hwa Lee

    Full Text Available Agonist-stimulated platelet activation triggers conformational changes of integrin αIIbβ3, allowing fibrinogen binding and platelet aggregation. We have previously shown that an octapeptide, p1YMESRADR8, corresponding to amino acids 313-320 of the β-ribbon extending from the β-propeller domain of αIIb, acts as a potent inhibitor of platelet aggregation. Here we have performed in silico modelling analysis of the interaction of this peptide with αIIbβ3 in its bent and closed (not swing-out conformation and show that the peptide is able to act as a substitute for the β-ribbon by forming a clasp restraining the β3 hybrid and βI domains in a closed conformation. The involvement of species-specific residues of the β3 hybrid domain (E356 and K384 and the β1 domain (E297 as well as an intrapeptide bond (pE315-pR317 were confirmed as important for this interaction by mutagenesis studies of αIIbβ3 expressed in CHO cells and native or substituted peptide inhibitory studies on platelet functions. Furthermore, NMR data corroborate the above results. Our findings provide insight into the important functional role of the αIIb β-ribbon in preventing integrin αIIbβ3 head piece opening, and highlight a potential new therapeutic approach to prevent integrin ligand binding.

  12. Modelling the interdependence between the stoichiometry of receptor oligomerization and ligand binding for a coexisting dimer/tetramer receptor system.

    Science.gov (United States)

    Rovira, X; Vivó, M; Serra, J; Roche, D; Strange, P G; Giraldo, J

    2009-01-01

    Many G protein-coupled receptors have been shown to exist as oligomers, but the oligomerization state and the effects of this on receptor function are unclear. For some G protein-coupled receptors, in ligand binding assays, different radioligands provide different maximal binding capacities. Here we have developed mathematical models for co-expressed dimeric and tetrameric species of receptors. We have considered models where the dimers and tetramers are in equilibrium and where they do not interconvert and we have also considered the potential influence of the ligands on the degree of oligomerization. By analogy with agonist efficacy, we have considered ligands that promote, inhibit or have no effect on oligomerization. Cell surface receptor expression and the intrinsic capacity of receptors to oligomerize are quantitative parameters of the equations. The models can account for differences in the maximal binding capacities of radioligands in different preparations of receptors and provide a conceptual framework for simulation and data fitting in complex oligomeric receptor situations.

  13. Monovalent cation and amiloride analog modulation of adrenergic ligand binding to the unglycosylated alpha 2B-adrenergic receptor subtype

    International Nuclear Information System (INIS)

    Wilson, A.L.; Seibert, K.; Brandon, S.; Cragoe, E.J. Jr.; Limbird, L.E.

    1991-01-01

    The unglycosylated alpha 2B subtype of the alpha 2-adrenergic receptor found in NG-108-15 cells possesses allosteric regulation of adrenergic ligand binding by monovalent cations and 5-amino-substituted amiloride analogs. These findings demonstrate that allosteric modulation of adrenergic ligand binding is not a property unique to the alpha 2A subtype. The observation that amiloride analogs as well as monovalent cations can modulate adrenergic ligand binding to the nonglycosylated alpha 2B subtype indicates that charge shielding due to carbohydrate moieties does not play a role in this allosteric modulation but, rather, these regulatory effects result from interactions of cations and amiloride analogs with the protein moiety of the receptor. Furthermore, the observation that both alpha 2A and alpha 2B receptor subtypes are modulated by amiloride analogs suggests that structural domains that are conserved between the two are likely to be involved in this allosteric modulation

  14. Molecular characterization of the haptoglobin.hemoglobin receptor CD163. Ligand binding properties of the scavenger receptor cysteine-rich domain region

    DEFF Research Database (Denmark)

    Madsen, Mette; Møller, Holger J; Nielsen, Marianne Jensby

    2004-01-01

    binding to SRCR domain 3 exhibited effective inhibition of ligand binding. Furthermore, analysis of purified native CD163 revealed that proteolytic cleavage in SRCR domain 3 inactivates ligand binding. Calcium protects against cleavage in this domain. Analysis of the calcium sensitivity of ligand binding...... to CD163 demonstrated that optimal ligand binding requires physiological plasma calcium concentrations, and an immediate ligand release occurs at the low calcium concentrations measured in acidifying endosomes. In conclusion, SRCR domain 3 of CD163 is an exposed domain and a critical determinant...... for the calcium-sensitive coupling of haptoglobin.hemoglobin complexes....

  15. Biofertilizer potential of residual biomass of Akk (alotropis procera (Ait.))

    International Nuclear Information System (INIS)

    Ahmad, N.

    2016-01-01

    The biofertilizer potential of residual biomass, derived from two parts that is flowers and leaves of Akk,was investigated in terms of its applications as a substrate for phyto-beneficial bacterial growth and subsequent inorganic phosphate solubilizing agent. The residual biomass was obtained after the extraction of antioxidants from the leaves and flowers of Akk using different solvent systems. The treatment with residual biomass of Akk (RBA) significantly (p<0.05) enhanced the growth of Enterobacter sp. Fs-11 and Rhizobium sp. E-11 as compared to control (without residual biomass). Maximum microbial growth in terms of optical density (0.92-1.22) was observed for residual biomass sample extracted with aqueous acetone against the control (0.58-0.68). On the other hand, maximum phosphate solubilization (589.27-611.32 mu g mL-1) was recorded for aqueous ethanol extracted residual biomass while the minimum (246.31-382.15 micro g) for aqueous acetone extracted residual biomass against the control (576.65 micro g mL-1). The present study revealed that the tested RBA can be explored as an effective bio-inoculant to supplement synthetic inorganic phosphate fertilizers. However, some appropriate in-vitro assays should be conducted to optimize and standardize the quantity and mesh size of residual biomass prior to use in biofertilizer production as carrier material. (author)

  16. Different mechanisms are involved in the antibody mediated inhibition of ligand binding to the urokinase receptor

    DEFF Research Database (Denmark)

    List, K; Høyer-Hansen, G; Rønne, E

    1999-01-01

    Certain monoclonal antibodies are capable of inhibiting the biological binding reactions of their target proteins. At the molecular level, this type of effect may be brought about by completely different mechanisms, such as competition for common binding determinants, steric hindrance or interfer......Certain monoclonal antibodies are capable of inhibiting the biological binding reactions of their target proteins. At the molecular level, this type of effect may be brought about by completely different mechanisms, such as competition for common binding determinants, steric hindrance......) can be employed as a highly useful tool to characterize the inhibitory mechanism of specific antagonist antibodies. Two inhibitory antibodies against uPAR, mAb R3 and mAb R5, were shown to exhibit competitive and non-competitive inhibition, respectively, of ligand binding to the receptor. The former...

  17. Peptides identify multiple hotspots within the ligand binding domain of the TNF receptor 2

    Directory of Open Access Journals (Sweden)

    Lennick Michael

    2003-01-01

    Full Text Available Abstract Background Hotspots are defined as the minimal functional domains involved in protein:protein interactions and sufficient to induce a biological response. Results Here we describe the use of complex and high diversity phage display libraries to isolate peptides (called Hotspot Ligands or HSPLs which sub-divide the ligand binding domain of the tumor necrosis factor receptor 2 (TNFR2; p75 into multiple hotspots. We have shown that these libraries could generate HSPLs which not only subdivide hotspots on protein and non-protein targets but act as agonists or antagonists. Using this approach, we generated peptides which were specific for human TNFR2, could be competed by the natural ligands, TNFα and TNFβ and induced an unexpected biological response in a TNFR2-specific manner. Conclusions To our knowledge, this is the first report describing the dissection of the TNFR2 into biologically active hotspots with the concomitant identification of a novel and unexpected biological activity.

  18. Kinetic modeling of receptor-ligand binding applied to positron emission tomographic studies with neuroleptic tracers

    Energy Technology Data Exchange (ETDEWEB)

    Logan, J; Wolf, A P; Shiue, C Y; Fowler, J S

    1987-01-01

    Positron emission tomography (PET) with labeled neuroleptics has made possible the study of neurotransmitter-receptor systems in vivo. In this study we investigate the kinetics of the 3,4-dihydroxyphenylethylamine (dopamine) receptor-ligand binding using PET data from a series of experiments in the baboon with the /sup 18/F-labeled drugs spiperone, haloperidol, and benperidol. Models used to describe these systems are based on first-order kinetics which applies at high specific activity (low receptor occupancy). The parameters governing the uptake and loss of drug from the brain were found by fitting PET data from regions with little or no receptor concentration (cerebellum) and from experiments in which specific binding was blocked by pretreatment with the drug (+)-butaclamol. Receptor constants were determined by fitting data from receptor-containing structures. Correcting the arterial plasma activities (the model driving function) for the presence of drug metabolites was found to be important in the modeling of these systems.

  19. A2A adenosine receptor ligand binding and signalling is allosterically modulated by adenosine deaminase.

    Science.gov (United States)

    Gracia, Eduard; Pérez-Capote, Kamil; Moreno, Estefanía; Barkešová, Jana; Mallol, Josefa; Lluís, Carme; Franco, Rafael; Cortés, Antoni; Casadó, Vicent; Canela, Enric I

    2011-05-01

    A2ARs (adenosine A2A receptors) are highly enriched in the striatum, which is the main motor control CNS (central nervous system) area. BRET (bioluminescence resonance energy transfer) assays showed that A2AR homomers may act as cell-surface ADA (adenosine deaminase; EC 3.5.4.4)-binding proteins. ADA binding affected the quaternary structure of A2ARs present on the cell surface. ADA binding to adenosine A2ARs increased both agonist and antagonist affinity on ligand binding to striatal membranes where these proteins are co-expressed. ADA also increased receptor-mediated ERK1/2 (extracellular-signal-regulated kinase 1/2) phosphorylation. Collectively, the results of the present study show that ADA, apart from regulating the concentration of extracellular adenosine, may behave as an allosteric modulator that markedly enhances ligand affinity and receptor function. This powerful regulation may have implications for the physiology and pharmacology of neuronal A2ARs.

  20. Crystal structures of the ligand-binding region of uPARAP

    DEFF Research Database (Denmark)

    Yuan, Cai; Jürgensen, Henrik J; Engelholm, Lars H

    2016-01-01

    The proteins of the mannose receptor (MR) family share a common domain organization and have a broad range of biological functions. Urokinase plasminogen activator receptor-associated protein (uPARAP) (or Endo180) is a member of this family and plays an important role in extracellular matrix...... remodelling through interaction with its ligands, including collagens and urokinase plasminogen activator receptor (uPAR). We report the crystal structures of the first four domains of uPARAP (also named the ligand-binding region, LBR) at pH 7.4 in Ca(2+)-bound and Ca(2+)-free forms. The first domain....... These LLRs undergo a Ca(2+)-dependent conformational change, and this is likely to be the key structural determinant affecting the overall conformation of uPARAP. Our results provide a molecular mechanism to support the structural flexibility of uPARAP, and shed light on the structural flexibility of other...

  1. Estrogen receptor determination in endometrial carcinoma: ligand binding assay versus enzyme immunoassay

    DEFF Research Database (Denmark)

    Nyholm, H C; Nielsen, Anette Lynge; Lyndrup, J

    1995-01-01

    We compared concentrations of cytosolic estrogen receptors (ERc) measured in 35 postmenopausal endometrial carcinomas by ligand binding method (LBA) (dextran-coated charcoal assay) and enzyme immunoassay (EIA). Correlations between ERc, nuclear estrogen receptors (ERn) determined by EIA......, and cytosolic progesterone receptors (PR) measured by LBA were also studied. While ERc concentrations determined by LBA and EIA were highly correlated (r: 0.94), ERc values detected by LBA were approximately twice those found by EIA (median values of ERc: 155 vs. 64 fmol/mg cytosol protein, DCC vs. EIA......). The percentages of ERc positive tumors were 89% by LBA and 77% by EIA. The median fraction of total ER present as ERn was 63%. PR levels correlated positively with ERn concentrations (r: 0.73). We explore possible reasons why greater concentrations of ERc are determined by estradiol binding than by the ER-EIA kit...

  2. The potential for energy production from crop residues in Zimbabwe

    Energy Technology Data Exchange (ETDEWEB)

    Jingura, R.M.; Matengaifa, R. [School of Engineering Sciences and Technology, Chinhoyi University of Technology, P. Bag 7724, Chinhoyi (Zimbabwe)

    2008-12-15

    There is increasing interest in Zimbabwe in the use of renewable energy sources as a means of meeting the country's energy requirements. Biomass provides 47% of the gross energy consumption in Zimbabwe. Energy can be derived from various forms of biomass using various available conversion technologies. Crop residues constitute a large part of the biomass available from the country's agriculture-based economy. The potential for energy production of crop residues is examined using data such as estimates of the quantities of the residues and their energy content. The major crops considered are maize, sugarcane, cotton, soyabeans, groundnuts, wheat, sorghum, fruits and forestry plantations. Quantities of residues are estimated from crop yields by using conversion coefficients for the various crops. Long-term crop yields data from 1970 to 1999 were used. Total annual residue yields for crops, fruits and forestry plantations are 7.805 Mt, 378 kt and 3.05 Mt, respectively. The crops, fruits and forestry residues have energy potential of 81.5, 4.9 and 44.3 PJ per year, respectively. This represents about 44% of the gross energy consumption in Zimbabwe. The need to balance use of crop residues for both energy purposes and other purposes such as animal feeding and soil fertility improvement is also highlighted. (author)

  3. Ligand binding to telomeric G-quadruplex DNA investigated by funnel-metadynamics simulations.

    Science.gov (United States)

    Moraca, Federica; Amato, Jussara; Ortuso, Francesco; Artese, Anna; Pagano, Bruno; Novellino, Ettore; Alcaro, Stefano; Parrinello, Michele; Limongelli, Vittorio

    2017-03-14

    G-quadruplexes (G4s) are higher-order DNA structures typically present at promoter regions of genes and telomeres. Here, the G4 formation decreases the replicative DNA at each cell cycle, finally leading to apoptosis. The ability to control this mitotic clock, particularly in cancer cells, is fascinating and passes through a rational understanding of the ligand/G4 interaction. We demonstrate that an accurate description of the ligand/G4 binding mechanism is possible using an innovative free-energy method called funnel-metadynamics (FM), which we have recently developed to investigate ligand/protein interaction. Using FM simulations, we have elucidated the binding mechanism of the anticancer alkaloid berberine to the human telomeric G4 ( d [AG 3 (T 2 AG 3 ) 3 ]), computing also the binding free-energy landscape. Two ligand binding modes have been identified as the lowest energy states. Furthermore, we have found prebinding sites, which are preparatory to reach the final binding mode. In our simulations, the ions and the water molecules have been explicitly represented and the energetic contribution of the solvent during ligand binding evaluated. Our theoretical results provide an accurate estimate of the absolute ligand/DNA binding free energy ([Formula: see text] = -10.3 ± 0.5 kcal/mol) that we validated through steady-state fluorescence binding assays. The good agreement between the theoretical and experimental value demonstrates that FM is a most powerful method to investigate ligand/DNA interaction and can be a useful tool for the rational design also of G4 ligands.

  4. Mutation analysis and molecular modeling for the investigation of ligand-binding modes of GPR84.

    Science.gov (United States)

    Nikaido, Yoshiaki; Koyama, Yuuta; Yoshikawa, Yasushi; Furuya, Toshio; Takeda, Shigeki

    2015-05-01

    GPR84 is a G protein-coupled receptor for medium-chain fatty acids. Capric acid and 3,3'-diindolylmethane are specific agonists for GPR84. We built a homology model of a GPR84-capric acid complex to investigate the ligand-binding mode using the crystal structure of human active-state β2-adrenergic receptor. We performed site-directed mutagenesis to subject ligand-binding sites to our model using GPR84-Giα fusion proteins and a [(35)S]GTPγS-binding assay. We compared the activity of the wild type and mutated forms of GPR84 by [(35)S]GTPγS binding to capric acid and diindolylmethane. The mutations L100D `Ballesteros-Weinstein numbering: 3.32), F101Y (3.33) and N104Q (3.36) in the transmembrane helix III and N357D (7.39) in the transmembrane helix VII resulted in reduced capric acid activity but maintained the diindolylmethane responses. Y186F (5.46) and Y186H (5.46) mutations had no characteristic effect on capric acid but with diindolylmethane they significantly affected the G protein activation efficiency. The L100D (3.32) mutant responded to decylamine, a fatty amine, instead of a natural agonist, the fatty acid capric acid, suggesting that we have identified a mutated G protein-coupled receptor-artificial ligand pairing. Our molecular model provides an explanation for these results and interactions between GPR84 and capric acid. Further, from the results of a double stimulation assay, we concluded that diindolylmethane was a positive allosteric modulator for GPR84. © The Authors 2014. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  5. Interaction of cadmium with atrial natriuretic factor receptors: Ligand binding and cellular processing

    International Nuclear Information System (INIS)

    Giridhar, J.; Rathinavelu, A.; Isom, G.E.

    1990-01-01

    ANF is a peptide hormone secreted by the heart and produces potent diuresis and vascular smooth muscle relaxation. It is well known that Cd produces cardiovascular toxicity and is implicated in the pathogenesis of hypertension. Hence the effects of Cd on ANF receptor dynamics and ligand binding were studied in PC12 cells. Receptor internalization using 125 I-ANF as the ligand at 37 degree C displayed a decrease in endocytic rate constants (ERC) when either preincubated with Cd (500 μM for 30 min, ERC = 0.183/min) or coincubated with Cd (500 μM, ERC = 0.196) when compared to control value (ERC = 0.259/min). Ligand binding ( 125 I-ANF) was changed by Cd as reflected by a decrease in the number of binding sites/cell in both Cd preincubated (Kd = 3.81 x 10 -10 M, B max = 1 x 10 -10 M, binding sites/cell = 9333) and coincubated cells (Kd = 1.76 x 10 -10 M, B max = 3.92 x 10 -11 M, binding sites/cell = 5960) from control (Kd = 3.87 x 10 -10 M, B max = 9.58 x 10 -11 M, binding sites/cell = 12141). Photoaffinity labelling with 125 I-ANF as the ligand was used to measure receptor subtype binding. Coincubation of cells with Cd (500 μM) and ligand decreased both high and low mol. wt. receptor binding, whereas preincubation with Cd (500μM) for 60 min produced a slight decrease in binding of both receptor subtypes. These results indicate that the cardiovascular toxicity of Cd may be partially mediated by altered ANF receptor function

  6. Secbase: database module to retrieve secondary structure elements with ligand binding motifs.

    Science.gov (United States)

    Koch, Oliver; Cole, Jason; Block, Peter; Klebe, Gerhard

    2009-10-01

    Secbase is presented as a novel extension module of Relibase. It integrates the information about secondary structure elements into the retrieval facilities of Relibase. The data are accessible via the extended Relibase user interface, and integrated retrieval queries can be addressed using an extended version of Reliscript. The primary information about alpha-helices and beta-sheets is used as provided by the PDB. Furthermore, a uniform classification of all turn families, based on recent clustering methods, and a new helix assignment that is based on this turn classification has been included. Algorithms to analyze the geometric features of helices and beta-strands were also implemented. To demonstrate the performance of the Secbase implementation, some application examples are given. They provide new insights into the involvement of secondary structure elements in ligand binding. A survey of water molecules detected next to the N-terminus of helices is analyzed to show their involvement in ligand binding. Additionally, the parallel oriented NH groups at the alpha-helix N-termini provide special binding motifs to bind particular ligand functional groups with two adjacent oxygen atoms, e.g., as found in negatively charged carboxylate or phosphate groups, respectively. The present study also shows that the specific structure of the first turn of alpha-helices provides a suitable explanation for stabilizing charged structures. The magnitude of the overall helix macrodipole seems to have no or only a minor influence on binding. Furthermore, an overview of the involvement of secondary structure elements with the recognition of some important endogenous ligands such as cofactors shows some distinct preference for particular binding motifs and amino acids.

  7. Ligand binding affinity at the insulin receptor isoform A (IR-A and subsequent IR-A tyrosine phosphorylation kinetics are important determinants of mitogenic biological outcomes.

    Directory of Open Access Journals (Sweden)

    Harinda eRajapaksha

    2015-07-01

    Full Text Available The insulin receptor (IR is a tyrosine kinase receptor that can mediate both metabolic and mitogenic biological actions. The IR isoform-A (IR-A arises from alternative splicing of exon 11 and has different ligand binding and signalling properties compared to the IR isoform-B. The IR-A not only binds insulin but also insulin-like growth factor-II (IGF-II with high affinity. IGF-II acting through the IR-A promotes cancer cell proliferation, survival and migration by activating some unique signalling molecules compared to those activated by insulin. This observation led us to investigate whether the different IR-A signalling outcomes in response to IGF-II and insulin could be attributed to phosphorylation of a different subset of IR-A tyrosine residues or to the phosphorylation kinetics. We correlated IR-A phosphorylation to activation of molecules involved in mitogenic and metabolic signalling (MAPK and Akt and receptor internalisation rates (related to mitogenic signalling. We also extended this study to incorporate two ligands that are known to promote predominantly mitogenic ([His4, Tyr15, Thr49, Ile51] IGF-I, qIGF-I or metabolic (S597 peptide biological actions, to see if common mechanisms can be used to define mitogenic or metabolic signalling through the IR-A. The 3-fold lower mitogenic action of IGF-II compared to insulin was associated with a decreased potency in activation of Y960, Y1146, Y1150, Y1151, Y1316 and Y1322, in MAPK phosphorylation and in IR-A internalization. With the poorly mitogenic S597 peptide it was a decreased rate of tyrosine phosphorylation rather than potency that was associated with a low mitogenic potential. We conclude that both decreased affinity of IR-A binding and the kinetics of IR-A phosphorylation can independently lead to a lower mitogenic activity. None of the studied parameters could account for the lower metabolic activity of qIGF-I.

  8. Circular Dichroism of G-Quadruplex: A Laboratory Experiment for the Study of Topology and Ligand Binding

    Science.gov (United States)

    Carvalho, Josue´; Queiroz, João A.; Cruz, Carla

    2017-01-01

    Circular dichroism (CD) has emerged as one of the standard biophysical techniques for the study of guaninequadruplex (G4) folding, cation effect, and ligand binding. The utility of this technique is based on its robustness, ease of use, and requirement of only small quantities of nucleic acid. This experiment is also extendable to the classroom…

  9. Ligand Binding and Crystal Structures of the Substrate-Binding Domain of the ABC Transporter OpuA

    NARCIS (Netherlands)

    Wolters, Justina C.; Berntsson, Ronnie P-A.; Gul, Nadia; Karasawa, Akira; Thunnissen, Andy-Mark W. H.; Slotboom, Dirk-Jan; Poolman, Bert

    2010-01-01

    The ABC transporter OpuA from Lactococcus lactis transports glycine betaine upon activation by threshold values of ionic strength. In this study, the ligand binding characteristics of purified OpuA in a detergent-solubilized state and of its substrate-binding domain produced as soluble protein

  10. A tandem regression-outlier analysis of a ligand cellular system for key structural modifications around ligand binding.

    Science.gov (United States)

    Lin, Ying-Ting

    2013-04-30

    A tandem technique of hard equipment is often used for the chemical analysis of a single cell to first isolate and then detect the wanted identities. The first part is the separation of wanted chemicals from the bulk of a cell; the second part is the actual detection of the important identities. To identify the key structural modifications around ligand binding, the present study aims to develop a counterpart of tandem technique for cheminformatics. A statistical regression and its outliers act as a computational technique for separation. A PPARγ (peroxisome proliferator-activated receptor gamma) agonist cellular system was subjected to such an investigation. Results show that this tandem regression-outlier analysis, or the prioritization of the context equations tagged with features of the outliers, is an effective regression technique of cheminformatics to detect key structural modifications, as well as their tendency of impact to ligand binding. The key structural modifications around ligand binding are effectively extracted or characterized out of cellular reactions. This is because molecular binding is the paramount factor in such ligand cellular system and key structural modifications around ligand binding are expected to create outliers. Therefore, such outliers can be captured by this tandem regression-outlier analysis.

  11. Anaerobia Treatments of the domestic residual waters. Limitations potentialities

    International Nuclear Information System (INIS)

    Giraldo Gomez, Eugenio

    1993-01-01

    The quick growth of the Latin American cities has prevented that an appropriate covering of public services is achieved for the whole population, One of the undesirable consequences of this situation is the indiscriminate discharge from the domestic and industrial residual waters to the nearest bodies of water with its consequent deterioration and with disastrous consequences about the ecology and the public health. The developed countries have controlled this situation using systems of purification of the residual waters previously to their discharge in the receptor source. The same as the technology of the evacuation of the served waters, they have become numerous efforts for the application of the purification systems used in the countries developed to the socioeconomic, climatic and cultural conditions of our means. One of the results obtained in these efforts is the economic inability of the municipalities to pay the high investment costs and of operation of the traditional systems for the treatment of the residual waters. Contrary to another type of public services, the treatment of the residual waters needs of appropriate technological solutions for the Climatic and socioeconomic means of the developing countries, One of the technological alternatives for the purification of the residual waters that has had a great development in the last decades has been that of the biological treatments in t anaerobia ambient. The objective of this contribution is to present, to author's trial, the limitations and potentialities of this technology type with special emphasis in the case of the domestic residual waters

  12. Searching the protein structure database for ligand-binding site similarities using CPASS v.2

    Directory of Open Access Journals (Sweden)

    Caprez Adam

    2011-01-01

    Full Text Available Abstract Background A recent analysis of protein sequences deposited in the NCBI RefSeq database indicates that ~8.5 million protein sequences are encoded in prokaryotic and eukaryotic genomes, where ~30% are explicitly annotated as "hypothetical" or "uncharacterized" protein. Our Comparison of Protein Active-Site Structures (CPASS v.2 database and software compares the sequence and structural characteristics of experimentally determined ligand binding sites to infer a functional relationship in the absence of global sequence or structure similarity. CPASS is an important component of our Functional Annotation Screening Technology by NMR (FAST-NMR protocol and has been successfully applied to aid the annotation of a number of proteins of unknown function. Findings We report a major upgrade to our CPASS software and database that significantly improves its broad utility. CPASS v.2 is designed with a layered architecture to increase flexibility and portability that also enables job distribution over the Open Science Grid (OSG to increase speed. Similarly, the CPASS interface was enhanced to provide more user flexibility in submitting a CPASS query. CPASS v.2 now allows for both automatic and manual definition of ligand-binding sites and permits pair-wise, one versus all, one versus list, or list versus list comparisons. Solvent accessible surface area, ligand root-mean square difference, and Cβ distances have been incorporated into the CPASS similarity function to improve the quality of the results. The CPASS database has also been updated. Conclusions CPASS v.2 is more than an order of magnitude faster than the original implementation, and allows for multiple simultaneous job submissions. Similarly, the CPASS database of ligand-defined binding sites has increased in size by ~ 38%, dramatically increasing the likelihood of a positive search result. The modification to the CPASS similarity function is effective in reducing CPASS similarity scores

  13. Positive Modulatory Interactions of NMDA Receptor GluN1/2B Ligand Binding Domains Attenuate Antagonists Activity

    Directory of Open Access Journals (Sweden)

    Douglas Bledsoe

    2017-05-01

    Full Text Available N-methyl D-aspartate receptors (NMDAR play crucial role in normal brain function and pathogenesis of neurodegenerative and psychiatric disorders. Functional tetra-heteromeric NMDAR contains two obligatory GluN1 subunits and two identical or different non-GluN1 subunits that include six different gene products; four GluN2 (A–D and two GluN3 (A–B subunits. The heterogeneity of subunit combination facilities the distinct function of NMDARs. All GluN subunits contain an extracellular N-terminal Domain (NTD and ligand binding domain (LBD, transmembrane domain (TMD and an intracellular C-terminal domain (CTD. Interaction between the GluN1 and co-assembling GluN2/3 subunits through the LBD has been proven crucial for defining receptor deactivation mechanisms that are unique for each combination of NMDAR. Modulating the LBD interactions has great therapeutic potential. In the present work, by amino acid point mutations and electrophysiology techniques, we have studied the role of LBD interactions in determining the effect of well-characterized pharmacological agents including agonists, competitive antagonists, and allosteric modulators. The results reveal that agonists (glycine and glutamate potency was altered based on mutant amino acid sidechain chemistry and/or mutation site. Most antagonists inhibited mutant receptors with higher potency; interestingly, clinically used NMDAR channel blocker memantine was about three-fold more potent on mutated receptors (N521A, N521D, and K531A than wild type receptors. These results provide novel insights on the clinical pharmacology of memantine, which is used for the treatment of mild to moderate Alzheimer's disease. In addition, these findings demonstrate the central role of LBD interactions that can be exploited to develop novel NMDAR based therapeutics.

  14. Pyrophoric potential of plutonium-containing salt residues

    International Nuclear Information System (INIS)

    Haschke, John M.; Fauske, Hans K.; Phillips, Alan G.

    2000-01-01

    Ignition temperatures of plutonium and the pyrophoric potential of plutonium-containing pyrochemical salt residues are determined from differential thermal analysis (DTA) data and by modeling of thermal behavior. Exotherms observed at 90-200 deg. C for about 30% of the residues are attributed to reaction of plutonium with water from decomposition of hydrated salts. Exotherms observed near 300 deg. C are consistent with ignition of metal particles embedded in the salt. Onset of self-sustained reaction at temperatures as low as 90 deg. C is not precluded by these results and heat-balance models are developed and applied in predicting the static ignition point of massive metal and in evaluating salt pyrophoricity. Results show that ambient temperatures in excess of 200 deg. C are required for ignition of salt residues and that the most reactive salts cannot ignite at low temperatures because diffusion of oxidant to embedded metal is limited by low salt porosity

  15. The Greenland shark Somniosus microcephalus-Hemoglobins and ligand-binding properties.

    Directory of Open Access Journals (Sweden)

    Roberta Russo

    Full Text Available A large amount of data is currently available on the adaptive mechanisms of polar bony fish hemoglobins, but structural information on those of cartilaginous species is scarce. This study presents the first characterisation of the hemoglobin system of one of the longest-living vertebrate species (392 ± 120 years, the Arctic shark Somniosus microcephalus. Three major hemoglobins are found in its red blood cells and are made of two copies of the same α globin combined with two copies of three very similar β subunits. The three hemoglobins show very similar oxygenation and carbonylation properties, which are unaffected by urea, a very important compound in marine elasmobranch physiology. They display identical electronic absorption and resonance Raman spectra, indicating that their heme-pocket structures are identical or highly similar. The quaternary transition equilibrium between the relaxed (R and the tense (T states is more dependent on physiological allosteric effectors than in human hemoglobin, as also demonstrated in polar teleost hemoglobins. Similar to other cartilaginous fishes, we found no evidence for functional differentiation among the three isoforms. The very similar ligand-binding properties suggest that regulatory control of O2 transport may be at the cellular level and that it may involve changes in the cellular concentrations of allosteric effectors and/or variations of other systemic factors. The hemoglobins of this polar shark have evolved adaptive decreases in O2 affinity in comparison to temperate sharks.

  16. Regulation of Neurexin 1[beta] Tertiary Structure and Ligand Binding through Alternative Splicing

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Kaiser C.; Kuczynska, Dorota A.; Wu, Irene J.; Murray, Beverly H.; Sheckler, Lauren R.; Rudenko, Gabby (Michigan)

    2008-08-04

    Neurexins and neuroligins play an essential role in synapse function, and their alterations are linked to autistic spectrum disorder. Interactions between neurexins and neuroligins regulate inhibitory and excitatory synaptogenesis in vitro through a splice-insert signaling code. In particular, neurexin 1{beta} carrying an alternative splice insert at site SS{number_sign}4 interacts with neuroligin 2 (found predominantly at inhibitory synapses) but much less so with other neuroligins (those carrying an insert at site B and prevalent at excitatory synapses). The structure of neurexin 1{beta}+SS{number_sign}4 reveals dramatic rearrangements to the 'hypervariable surface', the binding site for neuroligins. The splice insert protrudes as a long helix into space, triggers conversion of loop {beta}10-{beta}11 into a helix rearranging the binding site for neuroligins, and rearranges the Ca{sup 2+}-binding site required for ligand binding, increasing its affinity. Our structures reveal the mechanism by which neurexin 1{beta} isoforms acquire neuroligin splice isoform selectivity.

  17. Thermodynamic fingerprints of ligand binding to human telomeric G-quadruplexes.

    Science.gov (United States)

    Bončina, Matjaž; Podlipnik, Črtomir; Piantanida, Ivo; Eilmes, Julita; Teulade-Fichou, Marie-Paule; Vesnaver, Gorazd; Lah, Jurij

    2015-12-02

    Thermodynamic studies of ligand binding to human telomere (ht) DNA quadruplexes, as a rule, neglect the involvement of various ht-DNA conformations in the binding process. Therefore, the thermodynamic driving forces and the mechanisms of ht-DNA G-quadruplex-ligand recognition remain poorly understood. In this work we characterize thermodynamically and structurally binding of netropsin (Net), dibenzotetraaza[14]annulene derivatives (DP77, DP78), cationic porphyrin (TMPyP4) and two bisquinolinium ligands (Phen-DC3, 360A-Br) to the ht-DNA fragment (Tel22) AGGG(TTAGGG)3 using isothermal titration calorimetry, CD and fluorescence spectroscopy, gel electrophoresis and molecular modeling. By global thermodynamic analysis of experimental data we show that the driving forces characterized by contributions of specific interactions, changes in solvation and conformation differ significantly for binding of ligands with low quadruplex selectivity over duplexes (Net, DP77, DP78, TMPyP4; KTel22 ≈ KdsDNA). These contributions are in accordance with the observed structural features (changes) and suggest that upon binding Net, DP77, DP78 and TMPyP4 select hybrid-1 and/or hybrid-2 conformation while Phen-DC3 and 360A-Br induce the transition of hybrid-1 and hybrid-2 to the structure with characteristics of antiparallel or hybrid-3 type conformation. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. The serotonin transporter: Examination of the changes in transporter affinity induced by ligand binding

    International Nuclear Information System (INIS)

    Humphreys, C.J.

    1989-01-01

    The plasmalemmal serotonin transporter uses transmembrane gradients of Na + , Cl - and K + to accumulate serotonin within blood platelets. Transport is competitively inhibited by the antidepressant imipramine. Like serotonin transport, imipramine binding requires Na + . Unlike serotonin, however, imipramine does not appear to be transported. To gain insight into the mechanism of serotonin transport the author have analyzed the influences of Na + and Cl - , the two ions cotransported with serotonin, on both serotonin transport and the interaction of imipramine and other antidepressant drugs with the plasmalemmal serotonin transporter of human platelets. Additionally, the author have synthesized, purified and characterized the binding of 2-iodoimipramine to the serotonin transporter. Finally, the author have conducted a preliminary study of the inhibition of serotonin transport and imipramine binding produced by dicyclohexylcarbodiimide. My results reveal many instances of positive heterotropic cooperativity in ligand binding to the serotonin transporter. Na + binding enhances the transporters affinity for imipramine and several other antidepressant drugs, and also increases the affinity for Cl - . Cl - enhances the transporters affinity for imipramine, as well as for Na + . At concentrations in the range of its K M for transport serotonin is a competitive inhibitor of imipramine binding. At much higher concentrations, however, serotonin also inhibits imipramines dissociation rate constant. This latter effect which is Na + -independent and species specific, is apparently produced by serotonin binding at a second, low affinity site on, or near, the transporter complex. Iodoimipramine competitively inhibit both [ 3 H]imipramine binding and [ 3 H]serotonin transport

  19. Optimizing the protein switch: altering nuclear import and export signals, and ligand binding domain

    Science.gov (United States)

    Kakar, Mudit; Davis, James R.; Kern, Steve E.; Lim, Carol S.

    2007-01-01

    Ligand regulated localization controllable protein constructs were optimized in this study. Several constructs were made from a classical nuclear export signal (HIV-rev, MAPKK, or progesterone receptor) in combination with a SV40 T-antigen type nuclear import signal. Different ligand binding domains (LBDs from glucocorticoid receptor or progesterone receptor) were also tested for their ability to impart control over localization of proteins. This study was designed to create constructs which are cytoplasmic in the absence of ligand and nuclear in the presence of ligand, and also to regulate the amount of protein translocating to the nucleus on ligand induction. The balance between the strengths of import and export signals was critical for overall localization of proteins. The amount of protein entering the nucleus was also affected by the dose of ligand (10-100nM). However, the overall import characteristics were determined by the strengths of localization signals and the inherent localization properties of the LBD used. This study established that the amount of protein present in a particular compartment can be regulated by the use of localization signals of various strengths. These optimized localization controllable protein constructs can be used to correct for diseases due to aberrant localization of proteins. PMID:17574289

  20. Expression and Purification of Functional Ligand-binding Domains of T1R3 Taste Receptors

    Energy Technology Data Exchange (ETDEWEB)

    Nie,Y.; Hobbs, J.; Vigues, S.; Olson, W.; Conn, G.; Munger, S.

    2006-01-01

    Chemosensory receptors, including odor, taste, and vomeronasal receptors, comprise the largest group of G protein-coupled receptors (GPCRs) in the mammalian genome. However, little is known about the molecular determinants that are critical for the detection and discrimination of ligands by most of these receptors. This dearth of understanding is due in part to difficulties in preparing functional receptors suitable for biochemical and biophysical analyses. Here we describe in detail two strategies for the expression and purification of the ligand-binding domain of T1R taste receptors, which are constituents of the sweet and umami taste receptors. These class C GPCRs contain a large extracellular N-terminal domain (NTD) that is the site of interaction with most ligands and that is amenable to expression as a separate polypeptide in heterologous cells. The NTD of mouse T1R3 was expressed as two distinct fusion proteins in Escherichia coli and purified by column chromatography. Spectroscopic analysis of the purified NTD proteins shows them to be properly folded and capable of binding ligands. This methodology should not only facilitate the characterization of T1R ligand interactions but may also be useful for dissecting the function of other class C GPCRs such as the large family of orphan V2R vomeronasal receptors.

  1. Comparison of the ligand binding properties of two homologous rat apocellular retinol-binding proteins expressed in Escherichia coli.

    Science.gov (United States)

    Levin, M S; Locke, B; Yang, N C; Li, E; Gordon, J I

    1988-11-25

    Cellular retinol-binding protein (CRBP) and cellular retinol-binding protein II (CRBP II) are 132-residue cytosolic proteins which have 56% amino acid sequence identity and bind all-trans-retinol as their endogenous ligand. They belong to a family of cytoplasmic proteins which have evolved to bind distinct hydrophobic ligands. Their patterns of tissue-specific and developmental regulation are distinct. We have compared the ligand binding properties of rat apo-CRBP and apo-CRBP II that have been expressed in Escherichia coli. Several observations indicate that the E. coli-derived apoproteins are structurally similar to the native rat proteins: they co-migrate on isoelectric focusing gels; and when complexed with all-trans-retinol, their absorption and excitation/emission spectra are nearly identical to those of the authentic rat holoproteins. Comparative lifetime and acrylamide quenching studies suggest that there are differences in the conformations of apo-CRBP and apo-CRBP II. The interaction of E. coli-derived apo-CRBP and apo-CRBP II with a variety of retinoids was analyzed using spectroscopic techniques. Both apoproteins formed high affinity complexes with all-trans-retinol (K'd approximately 10 nM). In direct binding assays, all-trans-retinal bound to both apoproteins (K'd approximately 50 nM for CRBP; K'd approximately 90 nM for CRBP II). However, all-trans-retinal could displace all-trans-retinol bound to CRBP II but not to CRBP. These observations suggests that there is a specific yet distinct interaction between these two proteins and all-trans-retinal. Apo-CRBP and apo-CRBP II did not demonstrate significant binding to either retinoic acid or methyl retinoate, an uncharged derivative of all-trans-retinoic acid. This indicates that the carboxymethyl group of methyl retinoate cannot be sterically accommodated in their binding pockets and that failure to bind retinoic acid probably is not simply due to the negative charge of its C-15 carboxylate group

  2. The thermodynamic signature of ligand binding to histone deacetylase-like amidohydrolases is most sensitive to the flexibility in the L2-loop lining the active site pocket.

    Science.gov (United States)

    Meyners, Christian; Krämer, Andreas; Yildiz, Özkan; Meyer-Almes, Franz-Josef

    2017-07-01

    The analysis of the thermodynamic driving forces of ligand-protein binding has been suggested to be a key component for the selection and optimization of active compounds into drug candidates. The binding enthalpy as deduced from isothermal titration calorimetry (ITC) is usually interpreted assuming single-step binding of a ligand to one conformation of the target protein. Although successful in many cases, these assumptions are oversimplified approximations of the reality with flexible proteins and complicated binding mechanism in many if not most cases. The relationship between protein flexibility and thermodynamic signature of ligand binding is largely understudied. Directed mutagenesis, X-ray crystallography, enzyme kinetics and ITC methods were combined to dissect the influence of loop flexibility on the thermodynamics and mechanism of ligand binding to histone deacetylase (HDAC)-like amidohydrolases. The general ligand-protein binding mechanism comprises an energetically demanding gate opening step followed by physical binding. Increased flexibility of the L2-loop in HDAC-like amidohydrolases facilitates access of ligands to the binding pocket resulting in predominantly enthalpy-driven complex formation. The study provides evidence for the great importance of flexibility adjacent to the active site channel for the mechanism and observed thermodynamic driving forces of molecular recognition in HDAC like enzymes. The flexibility or malleability in regions adjacent to binding pockets should be given more attention when designing better drug candidates. The presented case study also suggests that the observed binding enthalpy of protein-ligand systems should be interpreted with caution, since more complicated binding mechanisms may obscure the significance regarding potential drug likeness. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Prediction of N-Methyl-D-Aspartate Receptor GluN1-Ligand Binding Affinity by a Novel SVM-Pose/SVM-Score Combinatorial Ensemble Docking Scheme.

    Science.gov (United States)

    Leong, Max K; Syu, Ren-Guei; Ding, Yi-Lung; Weng, Ching-Feng

    2017-01-06

    The glycine-binding site of the N-methyl-D-aspartate receptor (NMDAR) subunit GluN1 is a potential pharmacological target for neurodegenerative disorders. A novel combinatorial ensemble docking scheme using ligand and protein conformation ensembles and customized support vector machine (SVM)-based models to select the docked pose and to predict the docking score was generated for predicting the NMDAR GluN1-ligand binding affinity. The predicted root mean square deviation (RMSD) values in pose by SVM-Pose models were found to be in good agreement with the observed values (n = 30, r 2  = 0.928-0.988,  = 0.894-0.954, RMSE = 0.002-0.412, s = 0.001-0.214), and the predicted pK i values by SVM-Score were found to be in good agreement with the observed values for the training samples (n = 24, r 2  = 0.967,  = 0.899, RMSE = 0.295, s = 0.170) and test samples (n = 13, q 2  = 0.894, RMSE = 0.437, s = 0.202). When subjected to various statistical validations, the developed SVM-Pose and SVM-Score models consistently met the most stringent criteria. A mock test asserted the predictivity of this novel docking scheme. Collectively, this accurate novel combinatorial ensemble docking scheme can be used to predict the NMDAR GluN1-ligand binding affinity for facilitating drug discovery.

  4. PK of immunoconjugate anticancer agent CMD-193 in rats: ligand-binding assay approach to determine in vivo immunoconjugate stability.

    Science.gov (United States)

    Hussain, Azher; Gorovits, Boris; Leal, Mauricio; Fluhler, Eric

    2014-01-01

    Antibody-drug conjugates (ADCs) are a new generation of anticancer therapeutics. The objective of this manuscript is to propose a methodology that can be used to assess the stability of the ADCs by using the PK data obtained by ligand-binding assays that measure various components of ADCs. The ligand-binding assays format of different components of ADCs provided unique valuable PK information. The mathematical manipulation of the bioanalytical data provided an insight into the in vivo integrity, indicating that the loading of the calicheamicin on the G193 antibody declines in an apparent slow first-order process. This report demonstrates the value of analyzing various components of the ADC and their PK profiles to better understand the disposition and in vivo stability of ADCs.

  5. Renewable energy potential from biomass residues in Egypt

    Energy Technology Data Exchange (ETDEWEB)

    Said, N.; Zamorano, M. [Civil Engineering Dept., Univ. of Granada, Campus de Fuentenueva, Granada (Spain); El-Shatoury, S.A. [Botany Dept., Faculty of Sciences, Suez Canal Univ., Ismailia (Egypt)

    2012-11-01

    Egypt has been one of the developing countries following successful programs for the development of renewable energy resources, with special emphasis on solar, wind and biomass. Utilization of biomass as a source of energy is important from energetic as well as environmental viewpoint. Furthermore, Egypt produces millions of biomass waste every year causing pollution and health problems. So, the incorporation of biomass with other renewable energy will increase the impact of solving energy and environmental problem. There is a good potential for the utilization of biomass energy resources in Egypt. Four main types of biomass energy sources are included in this study: agricultural residues, municipal solid wastes, animal wastes and sewage sludge. Analysis of the potential biomass resource quantity and its theoretical energy content has been computed according to literature review. The agriculture crop residue represents the main source of biomass waste with a high considerable amount of the theoretical potential energy in Egypt. Rice straw is considered one of the most important of such residue due to its high amount and its produced energy through different conversion techniques represent a suitable candidate for crop energy production in Egypt.

  6. Gentamicin binds to the megalin receptor as a competitive inhibitor using the common ligand binding motif of complement type repeats

    DEFF Research Database (Denmark)

    Dagil, Robert; O'Shea, Charlotte; Nykjær, Anders

    2013-01-01

    megalin and investigated its interaction with gentamicin. Using NMR titration data in HADDOCK, we have generated a three-dimensional model describing the complex between megalin and gentamicin. Gentamicin binds to megalin with low affinity and exploits the common ligand binding motif previously described...... to megalin is highly similar to gentamicin binding to calreticulin. We discuss the impact of this novel insight for the future structure-based design of gentamicin antagonists....

  7. eMatchSite: sequence order-independent structure alignments of ligand binding pockets in protein models.

    Directory of Open Access Journals (Sweden)

    Michal Brylinski

    2014-09-01

    Full Text Available Detecting similarities between ligand binding sites in the absence of global homology between target proteins has been recognized as one of the critical components of modern drug discovery. Local binding site alignments can be constructed using sequence order-independent techniques, however, to achieve a high accuracy, many current algorithms for binding site comparison require high-quality experimental protein structures, preferably in the bound conformational state. This, in turn, complicates proteome scale applications, where only various quality structure models are available for the majority of gene products. To improve the state-of-the-art, we developed eMatchSite, a new method for constructing sequence order-independent alignments of ligand binding sites in protein models. Large-scale benchmarking calculations using adenine-binding pockets in crystal structures demonstrate that eMatchSite generates accurate alignments for almost three times more protein pairs than SOIPPA. More importantly, eMatchSite offers a high tolerance to structural distortions in ligand binding regions in protein models. For example, the percentage of correctly aligned pairs of adenine-binding sites in weakly homologous protein models is only 4-9% lower than those aligned using crystal structures. This represents a significant improvement over other algorithms, e.g. the performance of eMatchSite in recognizing similar binding sites is 6% and 13% higher than that of SiteEngine using high- and moderate-quality protein models, respectively. Constructing biologically correct alignments using predicted ligand binding sites in protein models opens up the possibility to investigate drug-protein interaction networks for complete proteomes with prospective systems-level applications in polypharmacology and rational drug repositioning. eMatchSite is freely available to the academic community as a web-server and a stand-alone software distribution at http://www.brylinski.org/ematchsite.

  8. Aromatic interactions impact ligand binding and function at serotonin 5-HT2C G protein-coupled receptors: receptor homology modelling, ligand docking, and molecular dynamics results validated by experimental studies

    Science.gov (United States)

    Córdova-Sintjago, Tania; Villa, Nancy; Fang, Lijuan; Booth, Raymond G.

    2014-02-01

    The serotonin (5-hydroxytryptamine, 5-HT) 5-HT2 G protein-coupled receptor (GPCR) family consists of types 2A, 2B, and 2C that share ∼75% transmembrane (TM) sequence identity. Agonists for 5-HT2C receptors are under development for psychoses; whereas, at 5-HT2A receptors, antipsychotic effects are associated with antagonists - in fact, 5-HT2A agonists can cause hallucinations and 5-HT2B agonists cause cardiotoxicity. It is known that 5-HT2A TM6 residues W6.48, F6.51, and F6.52 impact ligand binding and function; however, ligand interactions with these residues at the 5-HT2C receptor have not been reported. To predict and validate molecular determinants for 5-HT2C-specific activation, results from receptor homology modelling, ligand docking, and molecular dynamics simulation studies were compared with experimental results for ligand binding and function at wild type and W6.48A, F6.51A, and F6.52A point-mutated 5-HT2C receptors.

  9. Ligand binding reduces SUMOylation of the peroxisome proliferator-activated receptor γ (PPARγ activation function 1 (AF1 domain.

    Directory of Open Access Journals (Sweden)

    Rolf Diezko

    Full Text Available Peroxisome proliferator-activated receptor gamma (PPARγ is a ligand-activated nuclear receptor regulating adipogenesis, glucose homeostasis and inflammatory responses. The activity of PPARγ is controlled by post-translational modifications including SUMOylation and phosphorylation that affects its biological and molecular functions. Several important aspects of PPARγ SUMOylation including SUMO isoform-specificity and the impact of ligand binding on SUMOylation remain unresolved or contradictory. Here, we present a comprehensive study of PPARγ1 SUMOylation. We show that PPARγ1 can be modified by SUMO1 and SUMO2. Mutational analyses revealed that SUMOylation occurs exclusively within the N-terminal activation function 1 (AF1 domain predominantly at lysines 33 and 77. Ligand binding to the C-terminal ligand-binding domain (LBD of PPARγ1 reduces SUMOylation of lysine 33 but not of lysine 77. SUMOylation of lysine 33 and lysine 77 represses basal and ligand-induced activation by PPARγ1. We further show that lysine 365 within the LBD is not a target for SUMOylation as suggested in a previous report, but it is essential for full LBD activity. Our results suggest that PPARγ ligands negatively affect SUMOylation by interdomain communication between the C-terminal LBD and the N-terminal AF1 domain. The ability of the LBD to regulate the AF1 domain may have important implications for the evaluation and mechanism of action of therapeutic ligands that bind PPARγ.

  10. Oxytocin receptor ligand binding in embryonic tissue and postnatal brain development of the C57BL/6J mouse

    Directory of Open Access Journals (Sweden)

    Elizabeth eHammock

    2013-12-01

    Full Text Available Oxytocin (OXT has drawn increasing attention as a developmentally relevant neuropeptide given its role in the brain regulation of social behavior. It has been suggested that OXT plays an important role in the infant brain during caregiver attachment in nurturing familial contexts, but there is incomplete experimental evidence. Mouse models of OXT system genes have been particularly informative for the role of the OXT system in social behavior, however, the developing brain areas that could respond to ligand activation of the OXT receptor (OXTR have yet to be identified in this species. Here we report new data revealing dynamic ligand-binding distribution of OXTR in the developing mouse brain. Using male and female C57BL/6J mice at postnatal days (P 0, 7, 14, 21, 35, and 60 we quantified OXTR ligand binding in several brain areas which changed across development. Further, we describe OXTR ligand binding in select tissues of the near-term whole embryo at E18.5. Together, these data aid in the interpretation of findings in mouse models of the OXT system and generate new testable hypotheses for developmental roles for OXT in mammalian systems. We discuss our findings in the context of developmental disorders (including autism, attachment biology, and infant physiological regulation.

  11. Characterization of two forms of mouse salivary androgen-binding protein (ABP): implications for evolutionary relationships and ligand-binding function.

    Science.gov (United States)

    Karn, Robert C; Laukaitis, Christina M

    2003-06-17

    Mouse salivary androgen-binding protein (ABP) is a member of the secretoglobin family produced in the submaxillary glands of house mice (Mus musculus). We report the cDNA sequences and amino acid sequences of the beta and gamma subunits of ABP from a mouse cDNA library, identifying the two subunits by their pIs and molecular weights. An anomalously high molecular weight of the alpha subunit is likely due to glycosylation at a single site. A phylogenetic comparison of the three subunits of ABP with the chains of other mammalian secretoglobins shows that ABP is most closely related to mouse lachrymal protein and to the major cat allergen Fel dI. An evaluation of the most conserved residues in ABP and the other secretoglobins, in light of structural data reported by others [Callebaut, I., Poupon, A., Bally, R., Demaret, J.-P., Housset, D., Delettre, J., Hossenlopp, P., and Mornon, J.-P. (2000) Ann. N.Y. Acad. Sci. 923, 90-112; Pattabiraman, N., Matthews, J., Ward, K., Mantile-Selvaggi, G., Miele, L., and Mukherjee, A. (2000) Ann. N.Y. Acad. Sci. 923, 113-127], allows us to draw conclusions about the critical residues important in ligand binding by the two different ABP dimers and to assess the importance of ligand binding in the function of the molecule. In addition to the cDNAs, which represent those of the musculus subspecies of Mus musculus, we also report the coding regions of the beta and gamma subunit cDNAs from two other mouse inbred strains which represent the other two subspecies: M. musculus domesticus and M. musculus castaneus. The high nonsynonymous/synonymous substitution rate ratios (K(a)/K(s)) for both the beta and gamma subunits suggest that these two proteins are evolving under strong directional selection, as has been reported for the alpha subunit [Hwang, J., Hofstetter, J., Bonhomme, F., and Karn, R. (1997) J. Hered. 88, 93-97; Karn, R., and Clements, M. (1999) Biochem. Genet. 37, 187-199].

  12. Insights on Structural Characteristics and Ligand Binding Mechanisms of CDK2

    Directory of Open Access Journals (Sweden)

    Yan Li

    2015-04-01

    Full Text Available Cyclin-dependent kinase 2 (CDK2 is a crucial regulator of the eukaryotic cell cycle. However it is well established that monomeric CDK2 lacks regulatory activity, which needs to be aroused by its positive regulators, cyclins E and A, or be phosphorylated on the catalytic segment. Interestingly, these activation steps bring some dynamic changes on the 3D-structure of the kinase, especially the activation segment. Until now, in the monomeric CDK2 structure, three binding sites have been reported, including the adenosine triphosphate (ATP binding site (Site I and two non-competitive binding sites (Site II and III. In addition, when the kinase is subjected to the cyclin binding process, the resulting structural changes give rise to a variation of the ATP binding site, thus generating an allosteric binding site (Site IV. All the four sites are demonstrated as being targeted by corresponding inhibitors, as is illustrated by the allosteric binding one which is targeted by inhibitor ANS (fluorophore 8-anilino-1-naphthalene sulfonate. In the present work, the binding mechanisms and their fluctuations during the activation process attract our attention. Therefore, we carry out corresponding studies on the structural characterization of CDK2, which are expected to facilitate the understanding of the molecular mechanisms of kinase proteins. Besides, the binding mechanisms of CDK2 with its relevant inhibitors, as well as the changes of binding mechanisms following conformational variations of CDK2, are summarized and compared. The summary of the conformational characteristics and ligand binding mechanisms of CDK2 in the present work will improve our understanding of the molecular mechanisms regulating the bioactivities of CDK2.

  13. Allosteric Regulation in the Ligand Binding Domain of Retinoic Acid Receptorγ.

    Directory of Open Access Journals (Sweden)

    Yassmine Chebaro

    Full Text Available Retinoic acid (RA plays key roles in cell differentiation and growth arrest through nuclear retinoic acid receptors (RARs, which are ligand-dependent transcription factors. While the main trigger of RAR activation is the binding of RA, phosphorylation of the receptors has also emerged as an important regulatory signal. Phosphorylation of the RARγ N-terminal domain (NTD is known to play a functional role in neuronal differentiation. In this work, we investigated the phosphorylation of RARγ ligand binding domain (LBD, and present evidence that the phosphorylation status of the LBD affects the phosphorylation of the NTD region. We solved the X-ray structure of a phospho-mimetic mutant of the LBD (RARγ S371E, which we used in molecular dynamics simulations to characterize the consequences of the S371E mutation on the RARγ structural dynamics. Combined with simulations of the wild-type LBD, we show that the conformational equilibria of LBD salt bridges (notably R387-D340 are affected by the S371E mutation, which likely affects the recruitment of the kinase complex that phosphorylates the NTD. The molecular dynamics simulations also showed that a conservative mutation in this salt bridge (R387K affects the dynamics of the LBD without inducing large conformational changes. Finally, cellular assays showed that the phosphorylation of the NTD of RARγ is differentially regulated by retinoic acid in RARγWT and in the S371N, S371E and R387K mutants. This multidisciplinary work highlights an allosteric coupling between phosphorylations of the LBD and the NTD of RARγ and supports the importance of structural dynamics involving electrostatic interactions in the regulation of RARs activity.

  14. CARF and WYL domains: ligand-binding regulators of prokaryotic defense systems

    Directory of Open Access Journals (Sweden)

    Kira eMakarova

    2014-04-01

    Full Text Available CRISPR-Cas adaptive immunity systems of bacteria and archaea insert fragments of virus or plasmid DNA as spacer sequences into CRISPR repeat loci. Processed transcripts encompassing these spacers guide the cleavage of the cognate foreign DNA or RNA. Most CRISPR-Cas loci, in addition to recognized cas genes, also include genes that are not directly implicated in spacer acquisition, CRISPR transcript processing or interference. Here we comprehensively analyze sequences, structures and genomic neighborhoods of one of the most widespread groups of such genes that encode proteins containing a predicted nucleotide-binding domain with a Rossmann-like fold, which we denote CARF (CRISPR-associated Rossmann fold. Several CARF protein structures have been determined but functional characterization of these proteins is lacking. The CARF domain is most frequently combined with a C-terminal winged helix-turn-helix DNA-binding domain and effector domains most of which are predicted to possess DNase or RNase activity. Divergent CARF domains are also found in RtcR proteins, sigma-54 dependent regulators of the rtc RNA repair operon. CARF genes frequently co-occur with those coding for proteins containing the WYL domain with the Sm-like SH3 β-barrel fold, which is also predicted to bind ligands. CRISPR-Cas and possibly other defense systems are predicted to be transcriptionally regulated by multiple ligand-binding proteins containing WYL and CARF domains which sense modified nucleotides and nucleotide derivatives generated during virus infection. We hypothesize that CARF domains also transmit the signal from the bound ligand to the fused effector domains which attack either alien or self nucleic acids, resulting, respectively, in immunity complementing the CRISPR-Cas action or in dormancy/programmed cell death.

  15. Crystallization and preliminary crystal structure analysis of the ligand-binding domain of PqsR (MvfR), the Pseudomonas quinolone signal (PQS) responsive quorum-sensing transcription factor of Pseudomonas aeruginosa

    International Nuclear Information System (INIS)

    Xu, Ningna; Yu, Shen; Moniot, Sébastien; Weyand, Michael; Blankenfeldt, Wulf

    2012-01-01

    The ligand-binding domain of the transcription factor PqsR from P. aeruginosa has been crystallized and initial phases have been obtained using SAD data from seleno-l-methionine-labelled crystals. The opportunistic bacterial pathogen Pseudomonas aeruginosa employs three transcriptional regulators, LasR, RhlR and PqsR, to control the transcription of a large subset of its genes in a cell-density-dependent process known as quorum sensing. Here, the recombinant production, crystallization and structure solution of the ligand-binding domain of PqsR (MvfR), the LysR-type transcription factor that responds to the Pseudomonas quinolone signal (PQS), a quinolone-based quorum-sensing signal that is unique to P. aeruginosa and possibly a small number of other bacteria, is reported. PqsR regulates the expression of many virulence genes and may therefore be an interesting drug target. The ligand-binding domain (residues 91–319) was produced as a fusion with SUMO, and hexagonal-shaped crystals of purified PqsR-91–319 were obtained using the vapour-diffusion method. Crystallization in the presence of a PQS precursor allowed data collection to 3.25 Å resolution on a synchrotron beamline, and initial phases have been obtained using single-wavelength anomalous diffraction data from seleno-l-methionine-labelled crystals, revealing the space group to be P6 5 22, with unit-cell parameters a = b = 116–120, c = 115–117 Å

  16. Molecular modeling and docking studies of human 5-hydroxytryptamine 2A (5-HT2A) receptor for the identification of hotspots for ligand binding.

    Science.gov (United States)

    Kanagarajadurai, Karuppiah; Malini, Manoharan; Bhattacharya, Aditi; Panicker, Mitradas M; Sowdhamini, Ramanathan

    2009-12-01

    The serotonergic system has been implicated in emotional and cognitive function. In particular, 5-HT(2A) (5-hydroxytrytamine receptor 2A) is attributed to a number of disorders like schizophrenia, depression, eating disorders and anxiety. 5-HT(2A), being a GPCR (G-protein coupled receptor), is important in the pharmaceutical industry as a proven target for these disorders. Despite their extensive clinical importance, the structural studies of this protein is lacking due to difficulties in determining its crystal structure. We have performed sequence analysis and molecular modeling of 5-HT(2A) that has revealed a set of conserved residues and motifs considered to play an important role in maintaining structural integrity and function of the receptor. The analysis also revealed a set of residues specific to the receptor which distinguishes them from other members of the subclass and their orthologs. Further, starting from the model structure of human 5-HT(2A) receptor, docking studies were attempted to envisage how it might interact with eight of its ligands (such as serotonin, dopamine, DOI, LSD, haloperidol, ketanserin, risperidone and clozapine). The binding studies of dopamine to 5-HT(2A) receptor can bring up better understanding in the etiology of a number of neurological disorders involving both these two receptors. Our sequence analysis and study of interactions of this receptor with other ligands reveal additional residue hotspots such as Asn 363 and Tyr 370. The function of these residues can be further analyzed by rational design of site-directed mutagenesis. Two distinct binding sites are identified which could play important roles in ligand binding and signaling.

  17. Estimating bioenergy potentials of common African agricultural residues

    DEFF Research Database (Denmark)

    Thomsen, Sune Tjalfe; Kádár, Zsófia; Schmidt, Jens Ejbye

    , North America or Brazil. For that reason, it is difficult to estimate bioenergy potentials in the African region. As a part of an on‐going research collaboration investigating production of 2g biofuels in Ghana, this study have analysed 13 common African agricultural residues: yam peelings, cassava...... peelings, cassava stalks, plantain peelings, plantain trunks, plantain leaves, cocoa husks, cocoa pods, maize cobs, maize stalks, rice straw, groundnut straw and oil palm empty fruit bunches (EFB). This was done to establish detailed compositional mass balances, enabling estimations of accurate bioenergy...

  18. L-Asp is a useful tool in the purification of the ionotropic glutamate receptor A2 ligand-binding domain

    DEFF Research Database (Denmark)

    Krintel, Christian; Frydenvang, Karla; Ceravalls de Rabassa, Anna

    2014-01-01

    In purification of the ionotropic glutamate receptor A2 (GluA2) ligand-binding domain (LBD), L-Glu supplemented buffers have previously been used for protein stabilization during the procedure. This sometimes hampers structural studies of low affinity ligands because L-Glu is difficult to displace...... crystallized as a mixed dimer with L-Glu present in one subunit while neither L-Asp nor L-Glu were found in the other subunit. Thus, residual L-Glu is still present from the expression. On the other hand, only L-Asp was found at the binding site when using 50 mM or 250 mM L-Asp for crystallization. The binding...... mode observed for L-Asp at the GluA2 LBD is very similar to that described for L-Glu. Taken together, we have shown that L-Asp can be used instead of L-Glu for ligand-dependent stabilization of the GluA2 LBD during purification. This will enable structural studies of low affinity ligands for lead...

  19. Effects of Mutations and Ligands on the Thermostability of the l-Arginine/Agmatine Antiporter AdiC and Deduced Insights into Ligand-Binding of Human l-Type Amino Acid Transporters

    Directory of Open Access Journals (Sweden)

    Hüseyin Ilgü

    2018-03-01

    Full Text Available The l-arginine/agmatine transporter AdiC is a prokaryotic member of the SLC7 family, which enables pathogenic enterobacteria to survive the extremely acidic gastric environment. Wild-type AdiC from Escherichia coli, as well as its previously reported point mutants N22A and S26A, were overexpressed homologously and purified to homogeneity. A size-exclusion chromatography-based thermostability assay was used to determine the melting temperatures (Tms of the purified AdiC variants in the absence and presence of the selected ligands l-arginine (Arg, agmatine, l-arginine methyl ester, and l-arginine amide. The resulting Tms indicated stabilization of AdiC variants upon ligand binding, in which Tms and ligand binding affinities correlated positively. Considering results from this and previous studies, we revisited the role of AdiC residue S26 in Arg binding and proposed interactions of the α-carboxylate group of Arg exclusively with amide groups of the AdiC backbone. In the context of substrate binding in the human SLC7 family member l-type amino acid transporter-1 (LAT1; SLC7A5, an analogous role of S66 in LAT1 to S26 in AdiC is discussed based on homology modeling and amino acid sequence analysis. Finally, we propose a binding mechanism for l-amino acid substrates to LATs from the SLC7 family.

  20. Effects of Mutations and Ligands on the Thermostability of the l-Arginine/Agmatine Antiporter AdiC and Deduced Insights into Ligand-Binding of Human l-Type Amino Acid Transporters.

    Science.gov (United States)

    Ilgü, Hüseyin; Jeckelmann, Jean-Marc; Colas, Claire; Ucurum, Zöhre; Schlessinger, Avner; Fotiadis, Dimitrios

    2018-03-20

    The l-arginine/agmatine transporter AdiC is a prokaryotic member of the SLC7 family, which enables pathogenic enterobacteria to survive the extremely acidic gastric environment. Wild-type AdiC from Escherichia coli, as well as its previously reported point mutants N22A and S26A, were overexpressed homologously and purified to homogeneity. A size-exclusion chromatography-based thermostability assay was used to determine the melting temperatures ( T m s) of the purified AdiC variants in the absence and presence of the selected ligands l-arginine (Arg), agmatine, l-arginine methyl ester, and l-arginine amide. The resulting T m s indicated stabilization of AdiC variants upon ligand binding, in which T m s and ligand binding affinities correlated positively. Considering results from this and previous studies, we revisited the role of AdiC residue S26 in Arg binding and proposed interactions of the α-carboxylate group of Arg exclusively with amide groups of the AdiC backbone. In the context of substrate binding in the human SLC7 family member l-type amino acid transporter-1 (LAT1; SLC7A5), an analogous role of S66 in LAT1 to S26 in AdiC is discussed based on homology modeling and amino acid sequence analysis. Finally, we propose a binding mechanism for l-amino acid substrates to LATs from the SLC7 family.

  1. How to deal with multiple binding poses in alchemical relative protein-ligand binding free energy calculations.

    Science.gov (United States)

    Kaus, Joseph W; Harder, Edward; Lin, Teng; Abel, Robert; McCammon, J Andrew; Wang, Lingle

    2015-06-09

    Recent advances in improved force fields and sampling methods have made it possible for the accurate calculation of protein–ligand binding free energies. Alchemical free energy perturbation (FEP) using an explicit solvent model is one of the most rigorous methods to calculate relative binding free energies. However, for cases where there are high energy barriers separating the relevant conformations that are important for ligand binding, the calculated free energy may depend on the initial conformation used in the simulation due to the lack of complete sampling of all the important regions in phase space. This is particularly true for ligands with multiple possible binding modes separated by high energy barriers, making it difficult to sample all relevant binding modes even with modern enhanced sampling methods. In this paper, we apply a previously developed method that provides a corrected binding free energy for ligands with multiple binding modes by combining the free energy results from multiple alchemical FEP calculations starting from all enumerated poses, and the results are compared with Glide docking and MM-GBSA calculations. From these calculations, the dominant ligand binding mode can also be predicted. We apply this method to a series of ligands that bind to c-Jun N-terminal kinase-1 (JNK1) and obtain improved free energy results. The dominant ligand binding modes predicted by this method agree with the available crystallography, while both Glide docking and MM-GBSA calculations incorrectly predict the binding modes for some ligands. The method also helps separate the force field error from the ligand sampling error, such that deviations in the predicted binding free energy from the experimental values likely indicate possible inaccuracies in the force field. An error in the force field for a subset of the ligands studied was identified using this method, and improved free energy results were obtained by correcting the partial charges assigned to the

  2. How To Deal with Multiple Binding Poses in Alchemical Relative Protein–Ligand Binding Free Energy Calculations

    Science.gov (United States)

    2016-01-01

    Recent advances in improved force fields and sampling methods have made it possible for the accurate calculation of protein–ligand binding free energies. Alchemical free energy perturbation (FEP) using an explicit solvent model is one of the most rigorous methods to calculate relative binding free energies. However, for cases where there are high energy barriers separating the relevant conformations that are important for ligand binding, the calculated free energy may depend on the initial conformation used in the simulation due to the lack of complete sampling of all the important regions in phase space. This is particularly true for ligands with multiple possible binding modes separated by high energy barriers, making it difficult to sample all relevant binding modes even with modern enhanced sampling methods. In this paper, we apply a previously developed method that provides a corrected binding free energy for ligands with multiple binding modes by combining the free energy results from multiple alchemical FEP calculations starting from all enumerated poses, and the results are compared with Glide docking and MM-GBSA calculations. From these calculations, the dominant ligand binding mode can also be predicted. We apply this method to a series of ligands that bind to c-Jun N-terminal kinase-1 (JNK1) and obtain improved free energy results. The dominant ligand binding modes predicted by this method agree with the available crystallography, while both Glide docking and MM-GBSA calculations incorrectly predict the binding modes for some ligands. The method also helps separate the force field error from the ligand sampling error, such that deviations in the predicted binding free energy from the experimental values likely indicate possible inaccuracies in the force field. An error in the force field for a subset of the ligands studied was identified using this method, and improved free energy results were obtained by correcting the partial charges assigned to the

  3. Improved Interaction Potentials for Charged Residues in Proteins

    DEFF Research Database (Denmark)

    Kepp, Kasper Planeta

    2008-01-01

    Electrostatic interactions dominate the structure and free energy of biomolecules. To obtain accurate free energies involving charged groups from molecular simulations, OPLS-AA parameters have been reoptimized using Monte Carlo free energy perturbation. New parameters fit a self-consistent, exper......Electrostatic interactions dominate the structure and free energy of biomolecules. To obtain accurate free energies involving charged groups from molecular simulations, OPLS-AA parameters have been reoptimized using Monte Carlo free energy perturbation. New parameters fit a self......, TIP4P or TIP3P; i.e., each water model requires specific water-charged molecule interaction potentials. New models (models 1 and 3) are thus described for both water models. Uncertainties in relative free energies of charged residues are ~2 kcal/mol with the new parameters, due to variations in system...

  4. Structural model of a putrescine-cadaverine permease from Trypanosoma cruzi predicts residues vital for transport and ligand binding

    NARCIS (Netherlands)

    Soysa, R.; Venselaar, H.; Poston, J.; Ullman, B.; Hasne, M.P.

    2013-01-01

    The TcPOT1.1 gene from Trypanosoma cruzi encodes a high affinity putrescine-cadaverine transporter belonging to the APC (amino acid/polyamine/organocation) transporter superfamily. No experimental three-dimensional structure exists for any eukaryotic member of the APC family, and thus the structural

  5. Ligand binding to the human MT2 melatonin receptor: The role of residues in transmembrane domains 3, 6, and 7

    Czech Academy of Sciences Publication Activity Database

    Mazna, Petr; Berka, K.; Jelínková, Irena; Balík, Aleš; Svoboda, Petr; Obšilová, Veronika; Obšil, T.; Teisinger, Jan

    2005-01-01

    Roč. 332, č. 3 (2005), s. 726-734 ISSN 0006-291X R&D Projects: GA AV ČR(CZ) KJB5011308; GA ČR(CZ) GA309/02/1479; GA ČR(CZ) GA204/03/0714; GA ČR(CZ) GA309/04/0496 Institutional research plan: CEZ:AV0Z5011922 Keywords : MT2 melatonin receptor * homology modeling * binding study Subject RIV: FR - Pharmacology ; Medidal Chemistry Impact factor: 3.000, year: 2005

  6. The Fifth Transmembrane Domain of Angiotensin II Type 1 Receptor Participates in the Formation of the Ligand-binding Pocket and Undergoes a Counterclockwise Rotation upon Receptor Activation*

    Science.gov (United States)

    Domazet, Ivana; Martin, Stéphane S.; Holleran, Brian J.; Morin, Marie-Ève; Lacasse, Patrick; Lavigne, Pierre; Escher, Emanuel; Leduc, Richard; Guillemette, Gaétan

    2009-01-01

    The octapeptide hormone angiotensin II exerts a wide variety of cardiovascular effects through the activation of the angiotensin II Type 1 (AT1) receptor, which belongs to the G protein-coupled receptor superfamily. Like other G protein- coupled receptors, the AT1 receptor possesses seven transmembrane domains that provide structural support for the formation of the ligand-binding pocket. The role of the fifth transmembrane domain (TMD5) was investigated using the substituted cysteine accessibility method. All of the residues within Thr-190 to Leu-217 region were mutated one at a time to cysteine, and after expression in COS-7 cells, the mutant receptors were treated with the sulfhydryl-specific alkylating agent methanethiosulfonate-ethylammonium (MTSEA). MTSEA reacts selectively with water-accessible, free sulfhydryl groups of endogenous or introduced point mutation cysteines. If a cysteine is found in the binding pocket, the covalent modification will affect the binding kinetics of the ligand. MTSEA substantially decreased the binding affinity of L197C-AT1, N200C-AT1, I201C-AT1, G203C-AT1, and F204C-AT1 mutant receptors, which suggests that these residues orient themselves within the water-accessible binding pocket of the AT1 receptor. Interestingly, this pattern of acquired MTSEA sensitivity was altered for TMD5 reporter cysteines engineered in a constitutively active N111G-AT1 receptor background. Indeed, mutant I201C-N111G-AT1 became more sensitive to MTSEA, whereas mutant G203C-N111G-AT1 lost some sensitivity. Our results suggest that constitutive activation of AT1 receptor causes an apparent counterclockwise rotation of TMD5 as viewed from the extracellular side. PMID:19773549

  7. The fifth transmembrane domain of angiotensin II Type 1 receptor participates in the formation of the ligand-binding pocket and undergoes a counterclockwise rotation upon receptor activation.

    Science.gov (United States)

    Domazet, Ivana; Martin, Stéphane S; Holleran, Brian J; Morin, Marie-Eve; Lacasse, Patrick; Lavigne, Pierre; Escher, Emanuel; Leduc, Richard; Guillemette, Gaétan

    2009-11-13

    The octapeptide hormone angiotensin II exerts a wide variety of cardiovascular effects through the activation of the angiotensin II Type 1 (AT(1)) receptor, which belongs to the G protein-coupled receptor superfamily. Like other G protein- coupled receptors, the AT(1) receptor possesses seven transmembrane domains that provide structural support for the formation of the ligand-binding pocket. The role of the fifth transmembrane domain (TMD5) was investigated using the substituted cysteine accessibility method. All of the residues within Thr-190 to Leu-217 region were mutated one at a time to cysteine, and after expression in COS-7 cells, the mutant receptors were treated with the sulfhydryl-specific alkylating agent methanethiosulfonate-ethylammonium (MTSEA). MTSEA reacts selectively with water-accessible, free sulfhydryl groups of endogenous or introduced point mutation cysteines. If a cysteine is found in the binding pocket, the covalent modification will affect the binding kinetics of the ligand. MTSEA substantially decreased the binding affinity of L197C-AT(1), N200C-AT(1), I201C-AT(1), G203C-AT(1), and F204C-AT(1) mutant receptors, which suggests that these residues orient themselves within the water-accessible binding pocket of the AT(1) receptor. Interestingly, this pattern of acquired MTSEA sensitivity was altered for TMD5 reporter cysteines engineered in a constitutively active N111G-AT(1) receptor background. Indeed, mutant I201C-N111G-AT(1) became more sensitive to MTSEA, whereas mutant G203C-N111G-AT(1) lost some sensitivity. Our results suggest that constitutive activation of AT(1) receptor causes an apparent counterclockwise rotation of TMD5 as viewed from the extracellular side.

  8. Molecular cloning and characterization of rhesus monkey platelet glycoprotein Ibα, a major ligand-binding subunit of GPIb-IX-V complex.

    Science.gov (United States)

    Qiao, Jianlin; Shen, Yang; Shi, Meimei; Lu, Yanrong; Cheng, Jingqiu; Chen, Younan

    2014-05-01

    Through binding to von Willebrand factor (VWF), platelet glycoprotein (GP) Ibα, the major ligand-binding subunit of the GPIb-IX-V complex, initiates platelet adhesion and aggregation in response to exposed VWF or elevated fluid-shear stress. There is little data regarding non-human primate platelet GPIbα. This study cloned and characterized rhesus monkey (Macaca Mullatta) platelet GPIbα. DNAMAN software was used for sequence analysis and alignment. N/O-glycosylation sites and 3-D structure modelling were predicted by online OGPET v1.0, NetOGlyc 1.0 Server and SWISS-MODEL, respectively. Platelet function was evaluated by ADP- or ristocetin-induced platelet aggregation. Rhesus monkey GPIbα contains 2,268 nucleotides with an open reading frame encoding 755 amino acids. Rhesus monkey GPIbα nucleotide and protein sequences share 93.27% and 89.20% homology respectively, with human. Sequences encoding the leucine-rich repeats of rhesus monkey GPIbα share strong similarity with human, whereas PEST sequences and N/O-glycosylated residues vary. The GPIbα-binding residues for thrombin, filamin A and 14-3-3ζ are highly conserved between rhesus monkey and human. Platelet function analysis revealed monkey and human platelets respond similarly to ADP, but rhesus monkey platelets failed to respond to low doses of ristocetin where human platelets achieved 76% aggregation. However, monkey platelets aggregated in response to higher ristocetin doses. Monkey GPIbα shares strong homology with human GPIbα, however there are some differences in rhesus monkey platelet activation through GPIbα engagement, which need to be considered when using rhesus monkey platelet to investigate platelet GPIbα function. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. On the analysis and comparison of conformer-specific essential dynamics upon ligand binding to a protein

    International Nuclear Information System (INIS)

    Grosso, Marcos; Kalstein, Adrian; Parisi, Gustavo; Fernandez-Alberti, Sebastian; Roitberg, Adrian E.

    2015-01-01

    The native state of a protein consists of an equilibrium of conformational states on an energy landscape rather than existing as a single static state. The co-existence of conformers with different ligand-affinities in a dynamical equilibrium is the basis for the conformational selection model for ligand binding. In this context, the development of theoretical methods that allow us to analyze not only the structural changes but also changes in the fluctuation patterns between conformers will contribute to elucidate the differential properties acquired upon ligand binding. Molecular dynamics simulations can provide the required information to explore these features. Its use in combination with subsequent essential dynamics analysis allows separating large concerted conformational rearrangements from irrelevant fluctuations. We present a novel procedure to define the size and composition of essential dynamics subspaces associated with ligand-bound and ligand-free conformations. These definitions allow us to compare essential dynamics subspaces between different conformers. Our procedure attempts to emphasize the main similarities and differences between the different essential dynamics in an unbiased way. Essential dynamics subspaces associated to conformational transitions can also be analyzed. As a test case, we study the glutaminase interacting protein (GIP), composed of a single PDZ domain. Both GIP ligand-free state and glutaminase L peptide-bound states are analyzed. Our findings concerning the relative changes in the flexibility pattern upon binding are in good agreement with experimental Nuclear Magnetic Resonance data

  10. On the analysis and comparison of conformer-specific essential dynamics upon ligand binding to a protein

    Energy Technology Data Exchange (ETDEWEB)

    Grosso, Marcos; Kalstein, Adrian; Parisi, Gustavo; Fernandez-Alberti, Sebastian, E-mail: sfalberti@gmail.com [Universidad Nacional de Quilmes, Roque Saenz Peña 352, B1876BXD Bernal (Argentina); Roitberg, Adrian E. [Departments of Physics and Chemistry, University of Florida, Gainesville, Florida 32611 (United States)

    2015-06-28

    The native state of a protein consists of an equilibrium of conformational states on an energy landscape rather than existing as a single static state. The co-existence of conformers with different ligand-affinities in a dynamical equilibrium is the basis for the conformational selection model for ligand binding. In this context, the development of theoretical methods that allow us to analyze not only the structural changes but also changes in the fluctuation patterns between conformers will contribute to elucidate the differential properties acquired upon ligand binding. Molecular dynamics simulations can provide the required information to explore these features. Its use in combination with subsequent essential dynamics analysis allows separating large concerted conformational rearrangements from irrelevant fluctuations. We present a novel procedure to define the size and composition of essential dynamics subspaces associated with ligand-bound and ligand-free conformations. These definitions allow us to compare essential dynamics subspaces between different conformers. Our procedure attempts to emphasize the main similarities and differences between the different essential dynamics in an unbiased way. Essential dynamics subspaces associated to conformational transitions can also be analyzed. As a test case, we study the glutaminase interacting protein (GIP), composed of a single PDZ domain. Both GIP ligand-free state and glutaminase L peptide-bound states are analyzed. Our findings concerning the relative changes in the flexibility pattern upon binding are in good agreement with experimental Nuclear Magnetic Resonance data.

  11. Localization of the fourth membrane spanning domain as a ligand binding site in the human platelet α2-adrenergic receptor

    International Nuclear Information System (INIS)

    Matsui, Hiroaki; Lefkowitz, R.J.; Caron, M.G.; Regan, J.W.

    1989-01-01

    The human platelet α 2 -adrenergic receptor is an integral membrane protein which binds epinephrine. The gene for this receptor has been cloned, and the primary structure is thus known. A model of its secondary structure predicts that the receptor has seven transmembrane spanning domains. By covalent labeling and peptide mapping, the authors have identified a region of the receptor that is directly involved with ligand binding. Partially purified preparations of the receptor were covalently radiolabeled with either of two specific photoaffinity ligands: [ 3 H]SKF 102229 (an antagonist) or p-azido[ 3 H]clonidine (an agonist). The radiolabeled receptors were then digested with specific endopeptidases, and peptides containing the covalently bound radioligands were identified. Lysylendopeptidase treatment of [ 3 H]SKF 102229 labeled receptor yielded one peptide of M r 2400 as the product of a complete digest. Endopeptidase Arg-C gave a labeled peptide of M r 4000, which was further digested to the M r 2400 peptide by additional treatment with lysylendopeptidase. Using p-azido[ 3 H]clonidine-labeled receptor, a similar M r 2400 peptide was obtained by lysylendopeptidase cleavage. This M r 2400 peptide corresponds to the fourth transmembrane spanning domain of the receptor. These data suggest that this region forms part of the ligand binding domain of the human platelet α 2 -adrenergic receptor

  12. Generation of Affibody ligands binding interleukin-2 receptor alpha/CD25.

    Science.gov (United States)

    Grönwall, Caroline; Snelders, Eveline; Palm, Anna Jarelöv; Eriksson, Fredrik; Herne, Nina; Ståhl, Stefan

    2008-06-01

    Affibody molecules specific for human IL-2Ralpha, the IL-2 (interleukin-2) receptor alpha subunit, also known as CD25, were selected by phage-display technology from a combinatorial protein library based on the 58-residue Protein A-derived Z domain. The IL-2R system plays a major role in T-cell activation and the regulation of cellular immune responses. Moreover, CD25 has been found to be overexpressed in organ rejections, a number of autoimmune diseases and T-cell malignancies. The phage-display selection using Fc-fused target protein generated 16 unique Affibody molecules targeting CD25. The two most promising binders were characterized in more detail using biosensor analysis and demonstrated strong and selective binding to CD25. Kinetic biosensor analysis revealed that the two monomeric Affibody molecules bound to CD25 with apparent affinities of 130 and 240 nM respectively. The Affibody molecules were, on biosensor analysis, found to compete for the same binding site as the natural ligand IL-2 and the IL-2 blocking monoclonal antibody 2A3. Hence the Affibody molecules were assumed to have an overlapping binding site with IL-2 and antibodies targeting the IL-2 blocking Tac epitope (for example, the monoclonal antibodies Daclizumab and Basiliximab, both of which have been approved for therapeutic use). Furthermore, immunofluorescence microscopy and flow-cytometric analysis of CD25-expressing cells demonstrated that the selected Affibody molecules bound to CD4+ CD25+ PMBCs (peripheral-blood mononuclear cells), the IL-2-dependent cell line NK92 and phytohaemagglutinin-activated PMBCs. The potential use of the CD25-binding Affibody molecules as targeting agents for medical imaging and for therapeutic applications is discussed.

  13. Multiple ligand-binding modes in bacterial R67 dihydrofolate reductase

    Science.gov (United States)

    Alonso, Hernán; Gillies, Malcolm B.; Cummins, Peter L.; Bliznyuk, Andrey A.; Gready, Jill E.

    2005-03-01

    R67 dihydrofolate reductase (DHFR), a bacterial plasmid-encoded enzyme associated with resistance to the drug trimethoprim, shows neither sequence nor structural homology with the chromosomal DHFR. It presents a highly symmetrical toroidal structure, where four identical monomers contribute to the unique central active-site pore. Two reactants (dihydrofolate, DHF), two cofactors (NADPH) or one of each (R67•DHF•NADPH) can be found simultaneously within the active site, the last one being the reactive ternary complex. As the positioning of the ligands has proven elusive to empirical determination, we addressed the problem from a theoretical perspective. Several potential structures of the ternary complex were generated using the docking programs AutoDock and FlexX. The variability among the final poses, many of which conformed to experimental data, prompted us to perform a comparative scoring analysis and molecular dynamics simulations to assess the stability of the complexes. Analysis of ligand-ligand and ligand-protein interactions along the 4 ns trajectories of eight different structures allowed us to identify important inter-ligand contacts and key protein residues. Our results, combined with published empirical data, clearly suggest that multipe binding modes of the ligands are possible within R67 DHFR. While the pterin ring of DHF and the nicotinamide ring of NADPH assume a stacked endo-conformation at the centre of the pore, probably assisted by V66, Q67 and I68, the tails of the molecules extend towards opposite ends of the cavity, adopting multiple configurations in a solvent rich-environment where hydrogen-bond interactions with K32 and Y69 may play important roles.

  14. A web server for analysis, comparison and prediction of protein ligand binding sites.

    Science.gov (United States)

    Singh, Harinder; Srivastava, Hemant Kumar; Raghava, Gajendra P S

    2016-03-25

    One of the major challenges in the field of system biology is to understand the interaction between a wide range of proteins and ligands. In the past, methods have been developed for predicting binding sites in a protein for a limited number of ligands. In order to address this problem, we developed a web server named 'LPIcom' to facilitate users in understanding protein-ligand interaction. Analysis, comparison and prediction modules are available in the "LPIcom' server to predict protein-ligand interacting residues for 824 ligands. Each ligand must have at least 30 protein binding sites in PDB. Analysis module of the server can identify residues preferred in interaction and binding motif for a given ligand; for example residues glycine, lysine and arginine are preferred in ATP binding sites. Comparison module of the server allows comparing protein-binding sites of multiple ligands to understand the similarity between ligands based on their binding site. This module indicates that ATP, ADP and GTP ligands are in the same cluster and thus their binding sites or interacting residues exhibit a high level of similarity. Propensity-based prediction module has been developed for predicting ligand-interacting residues in a protein for more than 800 ligands. In addition, a number of web-based tools have been integrated to facilitate users in creating web logo and two-sample between ligand interacting and non-interacting residues. In summary, this manuscript presents a web-server for analysis of ligand interacting residue. This server is available for public use from URL http://crdd.osdd.net/raghava/lpicom .

  15. A microscopic insight from conformational thermodynamics to functional ligand binding in proteins.

    Science.gov (United States)

    Sikdar, Samapan; Chakrabarti, J; Ghosh, Mahua

    2014-12-01

    We show that the thermodynamics of metal ion-induced conformational changes aid to understand the functions of protein complexes. This is illustrated in the case of a metalloprotein, alpha-lactalbumin (aLA), a divalent metal ion binding protein. We use the histograms of dihedral angles of the protein, generated from all-atom molecular dynamics simulations, to calculate conformational thermodynamics. The thermodynamically destabilized and disordered residues in different conformational states of a protein are proposed to serve as binding sites for ligands. This is tested for β-1,4-galactosyltransferase (β4GalT) binding to the Ca(2+)-aLA complex, in which the binding residues are known. Among the binding residues, the C-terminal residues like aspartate (D) 116, glutamine (Q) 117, tryptophan (W) 118 and leucine (L) 119 are destabilized and disordered and can dock β4GalT onto Ca(2+)-aLA. No such thermodynamically favourable binding residues can be identified in the case of the Mg(2+)-aLA complex. We apply similar analysis to oleic acid binding and predict that the Ca(2+)-aLA complex can bind to oleic acid through the basic histidine (H) 32 of the A2 helix and the hydrophobic residues, namely, isoleucine (I) 59, W60 and I95, of the interfacial cleft. However, the number of destabilized and disordered residues in Mg(2+)-aLA are few, and hence, the oleic acid binding to Mg(2+)-bound aLA is less stable than that to the Ca(2+)-aLA complex. Our analysis can be generalized to understand the functionality of other ligand bound proteins.

  16. Ligand-specific conformational changes in the alpha1 glycine receptor ligand-binding domain

    DEFF Research Database (Denmark)

    Pless, Stephan Alexander; Lynch, Joseph W

    2009-01-01

    , and by the antagonist, strychnine. Voltage-clamp fluorometry involves labeling introduced cysteines with environmentally sensitive fluorophores and inferring structural rearrangements from ligand-induced fluorescence changes. In the inner beta-sheet, we labeled residues in loop 2 and in binding domain loops D and E....... At each position, strychnine and glycine induced distinct maximal fluorescence responses. The pre-M1 domain responded similarly; at each of four labeled positions glycine produced a strong fluorescence signal, whereas strychnine did not. This suggests that glycine induces conformational changes...... in the inner beta-sheet and pre-M1 domain that may be important for activation, desensitization, or both. In contrast, most labeled residues in loops C and F yielded fluorescence changes identical in magnitude for glycine and strychnine. A notable exception was H201C in loop C. This labeled residue responded...

  17. Reversibly Switchable, pH-Dependent Peptide Ligand Binding via 3,5-Diiodotyrosine Substitutions.

    Science.gov (United States)

    Ngambenjawong, Chayanon; Sylvestre, Meilyn; Gustafson, Heather H; Pineda, Julio Marco B; Pun, Suzie H

    2018-04-20

    Cell type-specific targeting ligands utilized in drug delivery applications typically recognize receptors that are overexpressed on the cells of interest. Nonetheless, these receptors may also be expressed, to varying extents, on off-target cells, contributing to unintended side effects. For the selectivity profile of targeting ligands in cancer therapy to be improved, stimuli-responsive masking of these ligands with acid-, redox-, or enzyme-cleavable molecules has been reported, whereby the targeting ligands are exposed in specific environments, e.g., acidic tumor hypoxia. One possible drawback of these systems lies in their one-time, permanent trigger, which enables the "demasked" ligands to bind off-target cells if released back into the systemic circulation. A promising strategy to address the aforementioned problem is to design ligands that show selective binding based on ionization state, which may be microenvironment-dependent. In this study, we report a systematic strategy to engineer low pH-selective targeting peptides using an M2 macrophage-targeting peptide (M2pep) as an example. 3,5-Diiodotyrosine mutagenesis into native tyrosine residues of M2pep confers pH-dependent binding behavior specific to acidic environment (pH 6) when the amino acid is protonated into the native tyrosine-like state. At physiological pH of 7.4, the hydroxyl group of 3,5-diiodotyrosine on the peptide is deprotonated leading to interruption of the peptide native binding property. Our engineered pH-responsive M2pep (Ac-Y-Î-Î) binds target M2 macrophages more selectively at pH 6 than at pH 7.4. In addition, 3,5-diiodotyrosine substitutions also improve serum stability of the peptide. Finally, we demonstrate pH-dependent reversibility in target binding via a postbinding peptide elution study. The strategy presented here should be applicable for engineering pH-dependent functionality of other targeting peptides with potential applications in physiology-dependent in vivo targeting

  18. Structural ordering of disordered ligand-binding loops of biotin protein ligase into active conformations as a consequence of dehydration.

    Directory of Open Access Journals (Sweden)

    Vibha Gupta

    Full Text Available Mycobacterium tuberculosis (Mtb, a dreaded pathogen, has a unique cell envelope composed of high fatty acid content that plays a crucial role in its pathogenesis. Acetyl Coenzyme A Carboxylase (ACC, an important enzyme that catalyzes the first reaction of fatty acid biosynthesis, is biotinylated by biotin acetyl-CoA carboxylase ligase (BirA. The ligand-binding loops in all known apo BirAs to date are disordered and attain an ordered structure only after undergoing a conformational change upon ligand-binding. Here, we report that dehydration of Mtb-BirA crystals traps both the apo and active conformations in its asymmetric unit, and for the first time provides structural evidence of such transformation. Recombinant Mtb-BirA was crystallized at room temperature, and diffraction data was collected at 295 K as well as at 120 K. Transfer of crystals to paraffin and paratone-N oil (cryoprotectants prior to flash-freezing induced lattice shrinkage and enhancement in the resolution of the X-ray diffraction data. Intriguingly, the crystal lattice rearrangement due to shrinkage in the dehydrated Mtb-BirA crystals ensued structural order of otherwise flexible ligand-binding loops L4 and L8 in apo BirA. In addition, crystal dehydration resulted in a shift of approximately 3.5 A in the flexible loop L6, a proline-rich loop unique to Mtb complex as well as around the L11 region. The shift in loop L11 in the C-terminal domain on dehydration emulates the action responsible for the complex formation with its protein ligand biotin carboxyl carrier protein (BCCP domain of ACCA3. This is contrary to the involvement of loop L14 observed in Pyrococcus horikoshii BirA-BCCP complex. Another interesting feature that emerges from this dehydrated structure is that the two subunits A and B, though related by a noncrystallographic twofold symmetry, assemble into an asymmetric dimer representing the ligand-bound and ligand-free states of the protein, respectively. In

  19. Characterisation of the zebrafish serotonin transporter functionally links TM10 to the ligand binding site

    DEFF Research Database (Denmark)

    Severinsen, Kasper; Müller, Heidi Kaastrup; Wiborg, Ove

    2008-01-01

    and [(3)H]-escitalopram binding in transiently transfected human embryonic kidney cells; HEK-293-MSR. Residues responsible for altered affinities inhibitors were pinpointed by generating cross-species chimeras and subsequent point mutations by site directed mutagenesis. drSERT has a higher affinity...

  20. Characterization, cell-surface expression and ligand-binding properties of different truncated N-terminal extracellular domains of the ionotropic glutamate receptor subunit GluR1.

    Science.gov (United States)

    McIlhinney, R A; Molnár, E

    1996-04-01

    To identify the location of the first transmembrane segment of the GluR1 glutamate receptor subunit artificial stop codons have been introduced into the N-terminal domain at amino acid positions 442, 510, and 563, namely just before and spanning the proposed first two transmembrane regions. The resultant truncated N-terminal fragments of GluR1, termed NT1, NT2, and NT3 respectively were expressed in Cos-7 cells and their cellular distribution and cell-surface expression analysed using an N-terminal antibody to GluR1. All of the fragments were fully glycosylated and were found to be associated with cell membranes but none was secreted. Differential extraction of the cell membranes indicated that both NT1 and NT2 behave as peripheral membrane proteins. In contrast NT3, like the full subunit, has integral membrane protein properties. Furthermore only NT3 is expressed at the cell surface as determined by immunofluorescence and cell-surface biotinylation. Protease protection assays indicated that only NT3 had a cytoplasmic tail. Binding studies using the selective ligand [(3)H]alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate ([(3)H]AMPA) demonstrated that NT3 does not bind ligand. Together these results indicate that the first transmembrane domain of the GluR1 subunit lies between residues 509 and 562, that the N-terminal domain alone cannot form a functional ligand-binding site and that this domain can be targeted to the cell surface provided that it has a transmembrane-spanning region.

  1. Thermodynamic Characterization of New Positive Allosteric Modulators Binding to the Glutamate Receptor A2 Ligand-Binding Domain

    DEFF Research Database (Denmark)

    Nørholm, Ann-Beth; Francotte, Pierre; Goffin, Eric

    2014-01-01

    , and 5a (5-F) and 5b (6-F) are entropy driven. For 5d (8-F), both quantities were equal in size. Thermodynamic integration (TI) and one-step perturbation (OSP) were used to calculate the relative binding affinity of the modulators. The OSP calculations had a higher predictive power than those from TI......,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxides. Measurements of ligand binding by isothermal titration calorimetry (ITC) showed similar binding affinities for the modulator series at the GluA2 LBD but differences in the thermodynamic driving forces. Binding of 5c (7-F) and 6 (no-F) is enthalpy driven......, and combined with the shorter total simulation time, we found the OSP method to be more effective for this setup. Furthermore, from the molecular dynamics simulations, we extracted the enthalpies and entropies, and along with the ITC data, this suggested that the differences in binding free energies...

  2. Detection of ligand binding hot spots on protein surfaces via fragment-based methods: application to DJ-1 and glucocerebrosidase

    Energy Technology Data Exchange (ETDEWEB)

    Landon, Melissa R.; Lieberman, Raquel L.; Hoang, Quyen Q.; Ju, Shulin; Caaveiro, Jose M.M.; Orwig, Susan D.; Kozakov, Dima; Brenke, Ryan; Chuang, Gwo-Yu; Beglov, Dmitry; Vajda, Sandor; Petsko, Gregory A.; Ringe, Dagmar; (BU-M); (Brandeis); (GIT)

    2010-08-04

    The identification of hot spots, i.e., binding regions that contribute substantially to the free energy of ligand binding, is a critical step for structure-based drug design. Here we present the application of two fragment-based methods to the detection of hot spots for DJ-1 and glucocerebrosidase (GCase), targets for the development of therapeutics for Parkinson's and Gaucher's diseases, respectively. While the structures of these two proteins are known, binding information is lacking. In this study we employ the experimental multiple solvent crystal structures (MSCS) method and computational fragment mapping (FTMap) to identify regions suitable for the development of pharmacological chaperones for DJ-1 and GCase. Comparison of data derived via MSCS and FTMap also shows that FTMap, a computational method for the identification of fragment binding hot spots, is an accurate and robust alternative to the performance of expensive and difficult crystallographic experiments.

  3. A Critical Review of Validation, Blind Testing, and Real- World Use of Alchemical Protein-Ligand Binding Free Energy Calculations.

    Science.gov (United States)

    Abel, Robert; Wang, Lingle; Mobley, David L; Friesner, Richard A

    2017-01-01

    Protein-ligand binding is among the most fundamental phenomena underlying all molecular biology, and a greater ability to more accurately and robustly predict the binding free energy of a small molecule ligand for its cognate protein is expected to have vast consequences for improving the efficiency of pharmaceutical drug discovery. We briefly reviewed a number of scientific and technical advances that have enabled alchemical free energy calculations to recently emerge as a preferred approach, and critically considered proper validation and effective use of these techniques. In particular, we characterized a selection bias effect which may be important in prospective free energy calculations, and introduced a strategy to improve the accuracy of the free energy predictions. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. A generic template for automated bioanalytical ligand-binding assays using modular robotic scripts in support of discovery biotherapeutic programs.

    Science.gov (United States)

    Duo, Jia; Dong, Huijin; DeSilva, Binodh; Zhang, Yan J

    2013-07-01

    Sample dilution and reagent pipetting are time-consuming steps in ligand-binding assays (LBAs). Traditional automation-assisted LBAs use assay-specific scripts that require labor-intensive script writing and user training. Five major script modules were developed on Tecan Freedom EVO liquid handling software to facilitate the automated sample preparation and LBA procedure: sample dilution, sample minimum required dilution, standard/QC minimum required dilution, standard/QC/sample addition, and reagent addition. The modular design of automation scripts allowed the users to assemble an automated assay with minimal script modification. The application of the template was demonstrated in three LBAs to support discovery biotherapeutic programs. The results demonstrated that the modular scripts provided the flexibility in adapting to various LBA formats and the significant time saving in script writing and scientist training. Data generated by the automated process were comparable to those by manual process while the bioanalytical productivity was significantly improved using the modular robotic scripts.

  5. Signaling-sensitive amino acids surround the allosteric ligand binding site of the thyrotropin receptor.

    Science.gov (United States)

    Kleinau, Gunnar; Haas, Ann-Karin; Neumann, Susanne; Worth, Catherine L; Hoyer, Inna; Furkert, Jens; Rutz, Claudia; Gershengorn, Marvin C; Schülein, Ralf; Krause, Gerd

    2010-07-01

    The thyrotropin receptor [thyroid-stimulating hormone receptor (TSHR)], a G-protein-coupled receptor (GPCR), is endogenously activated by thyrotropin, which binds to the extracellular region of the receptor. We previously identified a low-molecular-weight (LMW) agonist of the TSHR and predicted its allosteric binding pocket within the receptor's transmembrane domain. Because binding of the LMW agonist probably disrupts interactions or leads to formation of new interactions among amino acid residues surrounding the pocket, we tested whether mutation of residues at these positions would lead to constitutive signaling activity. Guided by molecular modeling, we performed site-directed mutagenesis of 24 amino acids in this spatial region, followed by functional characterization of the mutant receptors in terms of expression and signaling, measured as cAMP accumulation. We found that mutations V421I, Y466A, T501A, L587V, M637C, M637W, S641A, Y643F, L645V, and Y667A located in several helices exhibit constitutive activity. Of note is mutation M637W at position 6.48 in transmembrane helix 6, which has a significant effect on the interaction of the receptor with the LMW agonist. In summary, we found that a high proportion of residues in several helices surrounding the allosteric binding site of LMW ligands in the TSHR when mutated lead to constitutively active receptors. Our findings of signaling-sensitive residues in this region of the transmembrane bundle may be of general importance as this domain appears to be evolutionarily retained among GPCRs.

  6. Abscisic Acid Regulates Inflammation via Ligand-binding Domain-independent Activation of Peroxisome Proliferator-activated Receptor γ*

    Science.gov (United States)

    Bassaganya-Riera, Josep; Guri, Amir J.; Lu, Pinyi; Climent, Montse; Carbo, Adria; Sobral, Bruno W.; Horne, William T.; Lewis, Stephanie N.; Bevan, David R.; Hontecillas, Raquel

    2011-01-01

    Abscisic acid (ABA) has shown efficacy in the treatment of diabetes and inflammation; however, its molecular targets and the mechanisms of action underlying its immunomodulatory effects remain unclear. This study investigates the role of peroxisome proliferator-activated receptor γ (PPAR γ) and lanthionine synthetase C-like 2 (LANCL2) as molecular targets for ABA. We demonstrate that ABA increases PPAR γ reporter activity in RAW 264.7 macrophages and increases ppar γ expression in vivo, although it does not bind to the ligand-binding domain of PPAR γ. LANCL2 knockdown studies provide evidence that ABA-mediated activation of macrophage PPAR γ is dependent on lancl2 expression. Consistent with the association of LANCL2 with G proteins, we provide evidence that ABA increases cAMP accumulation in immune cells. ABA suppresses LPS-induced prostaglandin E2 and MCP-1 production via a PPAR γ-dependent mechanism possibly involving activation of PPAR γ and suppression of NF-κB and nuclear factor of activated T cells. LPS challenge studies in PPAR γ-expressing and immune cell-specific PPAR γ null mice demonstrate that ABA down-regulates toll-like receptor 4 expression in macrophages and T cells in vivo through a PPAR γ-dependent mechanism. Global transcriptomic profiling and confirmatory quantitative RT-PCR suggest novel candidate targets and demonstrate that ABA treatment mitigates the effect of LPS on the expression of genes involved in inflammation, metabolism, and cell signaling, in part, through PPAR γ. In conclusion, ABA decreases LPS-mediated inflammation and regulates innate immune responses through a bifurcating pathway involving LANCL2 and an alternative, ligand-binding domain-independent mechanism of PPAR γ activation. PMID:21088297

  7. Abscisic acid regulates inflammation via ligand-binding domain-independent activation of peroxisome proliferator-activated receptor gamma.

    Science.gov (United States)

    Bassaganya-Riera, Josep; Guri, Amir J; Lu, Pinyi; Climent, Montse; Carbo, Adria; Sobral, Bruno W; Horne, William T; Lewis, Stephanie N; Bevan, David R; Hontecillas, Raquel

    2011-01-28

    Abscisic acid (ABA) has shown efficacy in the treatment of diabetes and inflammation; however, its molecular targets and the mechanisms of action underlying its immunomodulatory effects remain unclear. This study investigates the role of peroxisome proliferator-activated receptor γ (PPAR γ) and lanthionine synthetase C-like 2 (LANCL2) as molecular targets for ABA. We demonstrate that ABA increases PPAR γ reporter activity in RAW 264.7 macrophages and increases ppar γ expression in vivo, although it does not bind to the ligand-binding domain of PPAR γ. LANCL2 knockdown studies provide evidence that ABA-mediated activation of macrophage PPAR γ is dependent on lancl2 expression. Consistent with the association of LANCL2 with G proteins, we provide evidence that ABA increases cAMP accumulation in immune cells. ABA suppresses LPS-induced prostaglandin E(2) and MCP-1 production via a PPAR γ-dependent mechanism possibly involving activation of PPAR γ and suppression of NF-κB and nuclear factor of activated T cells. LPS challenge studies in PPAR γ-expressing and immune cell-specific PPAR γ null mice demonstrate that ABA down-regulates toll-like receptor 4 expression in macrophages and T cells in vivo through a PPAR γ-dependent mechanism. Global transcriptomic profiling and confirmatory quantitative RT-PCR suggest novel candidate targets and demonstrate that ABA treatment mitigates the effect of LPS on the expression of genes involved in inflammation, metabolism, and cell signaling, in part, through PPAR γ. In conclusion, ABA decreases LPS-mediated inflammation and regulates innate immune responses through a bifurcating pathway involving LANCL2 and an alternative, ligand-binding domain-independent mechanism of PPAR γ activation.

  8. Ligand binding and crystal structures of the substrate-binding domain of the ABC transporter OpuA.

    Directory of Open Access Journals (Sweden)

    Justina C Wolters

    2010-04-01

    Full Text Available The ABC transporter OpuA from Lactococcus lactis transports glycine betaine upon activation by threshold values of ionic strength. In this study, the ligand binding characteristics of purified OpuA in a detergent-solubilized state and of its substrate-binding domain produced as soluble protein (OpuAC was characterized.The binding of glycine betaine to purified OpuA and OpuAC (K(D = 4-6 microM did not show any salt dependence or cooperative effects, in contrast to the transport activity. OpuAC is highly specific for glycine betaine and the related proline betaine. Other compatible solutes like proline and carnitine bound with affinities that were 3 to 4 orders of magnitude lower. The low affinity substrates were not noticeably transported by membrane-reconstituted OpuA. OpuAC was crystallized in an open (1.9 A and closed-liganded (2.3 A conformation. The binding pocket is formed by three tryptophans (Trp-prism coordinating the quaternary ammonium group of glycine betaine in the closed-liganded structure. Even though the binding site of OpuAC is identical to that of its B. subtilis homolog, the affinity for glycine betaine is 4-fold higher.Ionic strength did not affect substrate binding to OpuA, indicating that regulation of transport is not at the level of substrate binding, but rather at the level of translocation. The overlap between the crystal structures of OpuAC from L.lactis and B.subtilis, comprising the classical Trp-prism, show that the differences observed in the binding affinities originate from outside of the ligand binding site.

  9. Tritium NMR spectroscopy of ligand binding to maltose-binding protein

    International Nuclear Information System (INIS)

    Gehring, K.; Williams, P.G.; Pelton, J.G.; Morimoto, H.; Wemmer, D.E.

    1991-01-01

    Tritium-labeled α- and β-maltodextrins have been used to study their complexes with maltose-binding protein (MBP), a 40-kDa bacterial protein. Five substrates, from maltose to maltohexaose, were labeled at their reducing ends and their binding studied. Tritium NMR specctroscopy of the labeled sugars showed large upfield chamical shift changes upon binding and strong anomeric specficity. At 10 degrees C, MBP bound α-maltose with 2.7 ± 0.5-fold higher affinity than β-maltose, and, for longer maltodextrins, the ratio of affinities was even larger. The maximum chemical shift change was 2.2 ppm, suggesting that the reducing end of bound α-maltodextrin makes close contact with an aromatic residue in the MBP-binding site. Experiments with maltotriose (and longer maltodextrins) also revealed the presence of two bound β-maltotriose resonances in rapid exchange. The authors interpret these two resonances as arising from two distinct sugar-protein complexes. In one complex, the β-maltodextrin is bound by its reducing end, and, in the other complex, the β-maltodextrin is bound by the middle glucose residue(s). This interpretation also suggests how MBP is able to bind both linear and circular maltodextrins

  10. Conformational changes and allosteric communications in human serum albumin due to ligand binding.

    Science.gov (United States)

    Ahalawat, Navjeet; Murarka, Rajesh K

    2015-01-01

    It is well recognized that knowledge of structure alone is not sufficient to understand the fundamental mechanism of biomolecular recognition. Information of dynamics is necessary to describe motions involving relevant conformational states of functional importance. We carried out principal component analysis (PCA) of structural ensemble, derived from 84 crystal structures of human serum albumin (HSA) with different ligands and/or different conditions, to identify the functionally important collective motions, and compared with the motions along the low-frequency modes obtained from normal mode analysis of the elastic network model (ENM) of unliganded HSA. Significant overlap is observed in the collective motions derived from PCA and ENM. PCA and ENM analysis revealed that ligand selects the most favored conformation from accessible equilibrium structures of unliganded HSA. Further, we analyzed dynamic network obtained from molecular dynamics simulations of unliganded HSA and fatty acids- bound HSA. Our results show that fatty acids-bound HSA has more robust community network with several routes to communicate among different parts of the protein. Critical nodes (residues) identified from dynamic network analysis are in good agreement with allosteric residues obtained from sequence-based statistical coupling analysis method. This work underscores the importance of intrinsic structural dynamics of proteins in ligand recognition and can be utilized for the development of novel drugs with optimum activity.

  11. Feeding potential of summer grain crop residues for woolled sheep ...

    African Journals Online (AJOL)

    of 80:20 for the first collection on maize residues. Schoonraad (1985) did not pick up the cobs, so much more grain was available. Crude protein content. Changes in percentage crude protein in oesophageal samples are shown in Figure 2. With all crops, CP content of oesophageal samples was initially high but decreased ...

  12. Specific interactions between DNA and regulatory protein controlled by ligand-binding: Ab initio molecular simulation

    International Nuclear Information System (INIS)

    Matsushita, Y.; Murakawa, T.; Shimamura, K.; Oishi, M.; Ohyama, T.; Kurita, N.

    2015-01-01

    The catabolite activator protein (CAP) is one of the regulatory proteins controlling the transcription mechanism of gene. Biochemical experiments elucidated that the complex of CAP with cyclic AMP (cAMP) is indispensable for controlling the mechanism, while previous molecular simulations for the monomer of CAP+cAMP complex revealed the specific interactions between CAP and cAMP. However, the effect of cAMP-binding to CAP on the specific interactions between CAP and DNA is not elucidated at atomic and electronic levels. We here considered the ternary complex of CAP, cAMP and DNA in solvating water molecules and investigated the specific interactions between them at atomic and electronic levels using ab initio molecular simulations based on classical molecular dynamics and ab initio fragment molecular orbital methods. The results highlight the important amino acid residues of CAP for the interactions between CAP and cAMP and between CAP and DNA

  13. Specific interactions between DNA and regulatory protein controlled by ligand-binding: Ab initio molecular simulation

    Energy Technology Data Exchange (ETDEWEB)

    Matsushita, Y., E-mail: kurita@cs.tut.ac.jp; Murakawa, T., E-mail: kurita@cs.tut.ac.jp; Shimamura, K., E-mail: kurita@cs.tut.ac.jp; Oishi, M., E-mail: kurita@cs.tut.ac.jp; Ohyama, T., E-mail: kurita@cs.tut.ac.jp; Kurita, N., E-mail: kurita@cs.tut.ac.jp [Department of Computer Science and Engineering, Toyohashi University of Technology, Tempaku-cho, Toyohashi, Aichi, 441-8580 (Japan)

    2015-02-27

    The catabolite activator protein (CAP) is one of the regulatory proteins controlling the transcription mechanism of gene. Biochemical experiments elucidated that the complex of CAP with cyclic AMP (cAMP) is indispensable for controlling the mechanism, while previous molecular simulations for the monomer of CAP+cAMP complex revealed the specific interactions between CAP and cAMP. However, the effect of cAMP-binding to CAP on the specific interactions between CAP and DNA is not elucidated at atomic and electronic levels. We here considered the ternary complex of CAP, cAMP and DNA in solvating water molecules and investigated the specific interactions between them at atomic and electronic levels using ab initio molecular simulations based on classical molecular dynamics and ab initio fragment molecular orbital methods. The results highlight the important amino acid residues of CAP for the interactions between CAP and cAMP and between CAP and DNA.

  14. Determination of ligand binding modes in weak protein–ligand complexes using sparse NMR data

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, Biswaranjan; Williams, Martin L.; Doak, Bradley C.; Vazirani, Mansha; Ilyichova, Olga [Monash University, Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences (Australia); Wang, Geqing [La Trobe University, La Trobe Institute for Molecular Bioscience (Australia); Bermel, Wolfgang [Bruker Biospin GmbH (Germany); Simpson, Jamie S.; Chalmers, David K. [Monash University, Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences (Australia); King, Glenn F. [The University of Queensland, Institute for Molecular Bioscience (Australia); Mobli, Mehdi, E-mail: m.mobli@uq.edu.au [The University of Queensland, Centre for Advanced Imaging (Australia); Scanlon, Martin J., E-mail: martin.scanlon@monash.edu [Monash University, Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences (Australia)

    2016-11-15

    We describe a general approach to determine the binding pose of small molecules in weakly bound protein–ligand complexes by deriving distance constraints between the ligand and methyl groups from all methyl-containing residues of the protein. We demonstrate that using a single sample, which can be prepared without the use of expensive precursors, it is possible to generate high-resolution data rapidly and obtain the resonance assignments of Ile, Leu, Val, Ala and Thr methyl groups using triple resonance scalar correlation data. The same sample may be used to obtain Met {sup ε}CH{sub 3} assignments using NOESY-based methods, although the superior sensitivity of NOESY using [U-{sup 13}C,{sup 15}N]-labeled protein makes the use of this second sample more efficient. We describe a structural model for a weakly binding ligand bound to its target protein, DsbA, derived from intermolecular methyl-to-ligand nuclear Overhauser enhancements, and demonstrate that the ability to assign all methyl resonances in the spectrum is essential to derive an accurate model of the structure. Once the methyl assignments have been obtained, this approach provides a rapid means to generate structural models for weakly bound protein–ligand complexes. Such weak complexes are often found at the beginning of programs of fragment based drug design and can be challenging to characterize using X-ray crystallography.

  15. COMPARATIVE MODELLING AND LIGAND BINDING SITE PREDICTION OF A FAMILY 43 GLYCOSIDE HYDROLASE FROM Clostridium thermocellum

    Directory of Open Access Journals (Sweden)

    Shadab Ahmed

    2012-06-01

    Full Text Available The phylogenetic analysis of Clostridium thermocellum family 43 glycoside hydrolase (CtGH43 showed close evolutionary relation with carbohydrate binding family 6 proteins from C. cellulolyticum, C. papyrosolvens, C. cellulyticum, and A. cellulyticum. Comparative modeling of CtGH43 was performed based on crystal structures with PDB IDs 3C7F, 1YIF, 1YRZ, 2EXH and 1WL7. The structure having lowest MODELLER objective function was selected. The three-dimensional structure revealed typical 5-fold beta–propeller architecture. Energy minimization and validation of predicted model with VERIFY 3D indicated acceptability of the proposed atomic structure. The Ramachandran plot analysis by RAMPAGE confirmed that family 43 glycoside hydrolase (CtGH43 contains little or negligible segments of helices. It also showed that out of 301 residues, 267 (89.3% were in most favoured region, 23 (7.7% were in allowed region and 9 (3.0% were in outlier region. IUPred analysis of CtGH43 showed no disordered region. Active site analysis showed presence of two Asp and one Glu, assumed to form a catalytic triad. This study gives us information about three-dimensional structure and reaffirms the fact that it has the similar core 5-fold beta–propeller architecture and so probably has the same inverting mechanism of action with the formation of above mentioned catalytic triad for catalysis of polysaccharides.

  16. Anions mediate ligand binding in Adineta vaga glutamate receptor ion channels.

    Science.gov (United States)

    Lomash, Suvendu; Chittori, Sagar; Brown, Patrick; Mayer, Mark L

    2013-03-05

    AvGluR1, a glutamate receptor ion channel from the primitive eukaryote Adineta vaga, is activated by alanine, cysteine, methionine, and phenylalanine, which produce lectin-sensitive desensitizing responses like those to glutamate, aspartate, and serine. AvGluR1 LBD crystal structures reveal an unusual scheme for binding dissimilar ligands that may be utilized by distantly related odorant/chemosensory receptors. Arginine residues in domain 2 coordinate the γ-carboxyl group of glutamate, whereas in the alanine, methionine, and serine complexes a chloride ion acts as a surrogate ligand, replacing the γ-carboxyl group. Removal of Cl(-) lowers affinity for these ligands but not for glutamate or aspartate nor for phenylalanine, which occludes the anion binding site and binds with low affinity. AvGluR1 LBD crystal structures and sedimentation analysis also provide insights into the evolutionary link between prokaryotic and eukaryotic iGluRs and reveal features unique to both classes, emphasizing the need for additional structure-based studies on iGluR-ligand interactions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. NMRKIN: Simulating line shapes from two-dimensional spectra of proteins upon ligand binding

    International Nuclear Information System (INIS)

    Guenther, Ulrich L.; Schaffhausen, Brian

    2002-01-01

    The analysis of the shape of signals in NMR spectra is a powerful tool to study exchange and reaction kinetics. Line shapes in two-dimensional spectra of proteins recorded for titrations with ligands provide information about binding rates observed at individual residues. Here we describe a fast method to simulate a series of line shapes derived from two-dimensional spectra of a protein during a ligand titration. This procedure, which takes the mutual effects of two dimensions into account, has been implemented in MATLAB as an add-on to NMRLab (Guenther et al., 2000). In addition, more complex kinetic models, including sequential and parallel reactions, were simulated to demonstrate common features of more complex line shapes which could be encountered in protein-ligand interactions. As an example of this method, we describe its application to line shapes obtained for a titration of the p85 N-SH2 domain of PI3-kinase with a peptide derived from polyomavirus middle T antigen (MT)

  18. Large scale free energy calculations for blind predictions of protein-ligand binding: the D3R Grand Challenge 2015.

    Science.gov (United States)

    Deng, Nanjie; Flynn, William F; Xia, Junchao; Vijayan, R S K; Zhang, Baofeng; He, Peng; Mentes, Ahmet; Gallicchio, Emilio; Levy, Ronald M

    2016-09-01

    We describe binding free energy calculations in the D3R Grand Challenge 2015 for blind prediction of the binding affinities of 180 ligands to Hsp90. The present D3R challenge was built around experimental datasets involving Heat shock protein (Hsp) 90, an ATP-dependent molecular chaperone which is an important anticancer drug target. The Hsp90 ATP binding site is known to be a challenging target for accurate calculations of ligand binding affinities because of the ligand-dependent conformational changes in the binding site, the presence of ordered waters and the broad chemical diversity of ligands that can bind at this site. Our primary focus here is to distinguish binders from nonbinders. Large scale absolute binding free energy calculations that cover over 3000 protein-ligand complexes were performed using the BEDAM method starting from docked structures generated by Glide docking. Although the ligand dataset in this study resembles an intermediate to late stage lead optimization project while the BEDAM method is mainly developed for early stage virtual screening of hit molecules, the BEDAM binding free energy scoring has resulted in a moderate enrichment of ligand screening against this challenging drug target. Results show that, using a statistical mechanics based free energy method like BEDAM starting from docked poses offers better enrichment than classical docking scoring functions and rescoring methods like Prime MM-GBSA for the Hsp90 data set in this blind challenge. Importantly, among the three methods tested here, only the mean value of the BEDAM binding free energy scores is able to separate the large group of binders from the small group of nonbinders with a gap of 2.4 kcal/mol. None of the three methods that we have tested provided accurate ranking of the affinities of the 147 active compounds. We discuss the possible sources of errors in the binding free energy calculations. The study suggests that BEDAM can be used strategically to discriminate

  19. Calculation of absolute protein-ligand binding free energy using distributed replica sampling.

    Science.gov (United States)

    Rodinger, Tomas; Howell, P Lynne; Pomès, Régis

    2008-10-21

    Distributed replica sampling [T. Rodinger et al., J. Chem. Theory Comput. 2, 725 (2006)] is a simple and general scheme for Boltzmann sampling of conformational space by computer simulation in which multiple replicas of the system undergo a random walk in reaction coordinate or temperature space. Individual replicas are linked through a generalized Hamiltonian containing an extra potential energy term or bias which depends on the distribution of all replicas, thus enforcing the desired sampling distribution along the coordinate or parameter of interest regardless of free energy barriers. In contrast to replica exchange methods, efficient implementation of the algorithm does not require synchronicity of the individual simulations. The algorithm is inherently suited for large-scale simulations using shared or heterogeneous computing platforms such as a distributed network. In this work, we build on our original algorithm by introducing Boltzmann-weighted jumping, which allows moves of a larger magnitude and thus enhances sampling efficiency along the reaction coordinate. The approach is demonstrated using a realistic and biologically relevant application; we calculate the standard binding free energy of benzene to the L99A mutant of T4 lysozyme. Distributed replica sampling is used in conjunction with thermodynamic integration to compute the potential of mean force for extracting the ligand from protein and solvent along a nonphysical spatial coordinate. Dynamic treatment of the reaction coordinate leads to faster statistical convergence of the potential of mean force than a conventional static coordinate, which suffers from slow transitions on a rugged potential energy surface.

  20. Photoaffinity labeling of mammalian α1-adrenergic receptors: identification of the ligand binding subunit with a high affinity radioiodinated probe

    International Nuclear Information System (INIS)

    Leeb-Lundberg, L.M.F.; Dickinson, K.E.J.; Heald, S.L.

    1984-01-01

    A description is given of the synthesised and characterization of a novel high affinity radioiodinated α 1 -adrenergic receptor photoaffinity probe, 4-amino-6,7-dimethoxy-2-[4-[5-(4-azido-3-[ 125 I]iodophenyl)pentanoyl]-1-piperazinyl] quinazoline. In the absence of light, this ligand binds with high affinity (K/sub d/ = 130 pm) in a reverisble and saturable manner to sites in rat hepatic plasma membranes. The binding is stereoselective and competitively inhibited by adrenergic agonists and antagonists with an α 1 -adrenergic specificity. Upon photolysis, this ligand incorporates irreversibly into plasma membranes prepared from several mammalian tissues including rat liver, rat, guinea pig, and rabbit spleen, rabbit lung, and rabbit aorta vascular smooth muscle cells, also with typical α 1 -adrenergic specificity. Autoradiograms of such membrane samples subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis reveal a major specifically labeled polypeptide at M/sub 4/ = 78,000-85,000, depending on the tissue used, in addition to some lower molecular weight peptides. Protease inhibitors, in particular EDTA, a metalloprotease inhibitor, dramatically increases the predominance of the M/sub r/ = 78,000-85,000 polypeptide while attenuating the labeling of the lower molecular weight bands. This new high affinity radioiodinated photoaffinity probe should be of great value for the molecular characterization of the α 1 -adrenergic receptor

  1. Calculations for Adjusting Endogenous Biomarker Levels During Analytical Recovery Assessments for Ligand-Binding Assay Bioanalytical Method Validation.

    Science.gov (United States)

    Marcelletti, John F; Evans, Cindy L; Saxena, Manju; Lopez, Adriana E

    2015-07-01

    It is often necessary to adjust for detectable endogenous biomarker levels in spiked validation samples (VS) and in selectivity determinations during bioanalytical method validation for ligand-binding assays (LBA) with a matrix like normal human serum (NHS). Described herein are case studies of biomarker analyses using multiplex LBA which highlight the challenges associated with such adjustments when calculating percent analytical recovery (%AR). The LBA test methods were the Meso Scale Discovery V-PLEX® proinflammatory and cytokine panels with NHS as test matrix. The NHS matrix blank exhibited varied endogenous content of the 20 individual cytokines before spiking, ranging from undetectable to readily quantifiable. Addition and subtraction methods for adjusting endogenous cytokine levels in %AR calculations are both used in the bioanalytical field. The two methods were compared in %AR calculations following spiking and analysis of VS for cytokines having detectable endogenous levels in NHS. Calculations for %AR obtained by subtracting quantifiable endogenous biomarker concentrations from the respective total analytical VS values yielded reproducible and credible conclusions. The addition method, in contrast, yielded %AR conclusions that were frequently unreliable and discordant with values obtained with the subtraction adjustment method. It is shown that subtraction of assay signal attributable to matrix is a feasible alternative when endogenous biomarkers levels are below the limit of quantitation, but above the limit of detection. These analyses confirm that the subtraction method is preferable over that using addition to adjust for detectable endogenous biomarker levels when calculating %AR for biomarker LBA.

  2. Functional significance of the oligomeric structure of the Na,K-pump from radiation inactivation and ligand binding

    International Nuclear Information System (INIS)

    Norby, J.G.; Jensen, J.

    1991-01-01

    The present article is concerned with the oligomeric structure and function of the Na,K-pump (Na,K-ATPase). The questions we have addressed, using radiation inactivation and target size analysis as well as ligand binding, are whether the minimal structural unit and the functional unit have more than one molecule of the catalytic subunit, alpha. The authors first discuss the fundamentals of the radiation inactivation method and emphasize the necessity for rigorous internal standardization with enzymes of known molecular mass. They then demonstrate that the radiation inactivation of Na,K-ATPase is a stepwise process which leads to intermediary fragments of the alpha-subunit with partial catalytic activity. From the target size analysis it is most likely that the membrane-bound Na,K-ATPase is structurally organized as a diprotomer containing two alpha-subunits. Determination of ADP- and ouabain-binding site stoichiometry favors a theory with one substrate site per (alpha beta) 2. 47 references

  3. Application of high resolution NMR, ESR, and gamma-ray scintillation spectroscopy to the study of ligand binding in proteins

    International Nuclear Information System (INIS)

    Lancione, G.V.

    1982-01-01

    Electron spin resonance spectroscopy has been employed to study the nature of the ligand binding site of alpha-1-antitrypsin. Spectra of spin-labeled alpha-1-antitrypsin were recorded at pH's ranging from 2.4 to 12.5. This data demonstrates the tight binding of the spin-label to the protease, and the sensitivity of the bound spin-label to informational changes in the protease inhibitor. A molecular dipstick approach has also been applied to this system and has yielded information on the geometry of the cleft accommodating the spin-label. 160 Terbium(III) exchange experiments have been performed on the acetylcholine receptor protein isolated from Torpedo californica, employing a specially designed flow dialysis apparatus constructed in the laboratory. The apparatus is designed to allow continuous monitoring of 160 Tb(III) gamma-ray emission from the protein compartment of the flow dialysis cell. Nicotinic ligand-induced displacement of 160 Tb(III) from the nicotinic binding site of the receptor was monitored as a funtion of (1) the concentration of nicotinic ligand in the washout buffer, and (2) the nature of the nicotinic ligand in the buffer. Measured 160 Tb(III) exchange half-lives indicate (1) a direct relationship between 160 Tb(III) displacement and nicotinic ligand concentration in the wash-out buffer, and (2) an enhanced 160 Tb(III) displacement for nicotinic agents possessing quaternary ammonium functions

  4. A Multi-Factor Analysis of Sustainable Agricultural Residue Removal Potential

    Energy Technology Data Exchange (ETDEWEB)

    Jared Abodeely; David Muth; Paul Adler; Eleanor Campbell; Kenneth Mark Bryden

    2012-10-01

    Agricultural residues have significant potential as a near term source of cellulosic biomass for bioenergy production, but sustainable removal of agricultural residues requires consideration of the critical roles that residues play in the agronomic system. Previous work has developed an integrated model to evaluate sustainable agricultural residue removal potential considering soil erosion, soil organic carbon, greenhouse gas emission, and long-term yield impacts of residue removal practices. The integrated model couples the environmental process models WEPS, RUSLE2, SCI, and DAYCENT. This study uses the integrated model to investigate the impact of interval removal practices in Boone County, Iowa, US. Residue removal of 4.5 Mg/ha was performed annually, bi-annually, and tri-annually and were compared to no residue removal. The study is performed at the soil type scale using a national soil survey database assuming a continuous corn rotation with reduced tillage. Results are aggregated across soil types to provide county level estimates of soil organic carbon changes and individual soil type soil organic matter content if interval residue removal were implemented. Results show interval residue removal is possible while improving soil organic matter. Implementation of interval removal practices provide greater increases in soil organic matter while still providing substantial residue for bioenergy production.

  5. Estimation of kinetic and thermodynamic ligand-binding parameters using computational strategies.

    Science.gov (United States)

    Deganutti, Giuseppe; Moro, Stefano

    2017-04-01

    Kinetic and thermodynamic ligand-protein binding parameters are gaining growing importance as key information to consider in drug discovery. The determination of the molecular structures, using particularly x-ray and NMR techniques, is crucial for understanding how a ligand recognizes its target in the final binding complex. However, for a better understanding of the recognition processes, experimental studies of ligand-protein interactions are needed. Even though several techniques can be used to investigate both thermodynamic and kinetic profiles for a ligand-protein complex, these procedures are very often laborious, time consuming and expensive. In the last 10 years, computational approaches have enormous potential in providing insights into each of the above effects and in parsing their contributions to the changes in both kinetic and thermodynamic binding parameters. The main purpose of this review is to summarize the state of the art of computational strategies for estimating the kinetic and thermodynamic parameters of a ligand-protein binding.

  6. Detecting Local Ligand-Binding Site Similarity in Non-Homologous Proteins by Surface Patch Comparison

    Science.gov (United States)

    Sael, Lee; Kihara, Daisuke

    2012-01-01

    Functional elucidation of proteins is one of the essential tasks in biology. Function of a protein, specifically, small ligand molecules that bind to a protein, can be predicted by finding similar local surface regions in binding sites of known proteins. Here, we developed an alignment free local surface comparison method for predicting a ligand molecule which binds to a query protein. The algorithm, named Patch-Surfer, represents a binding pocket as a combination of segmented surface patches, each of which is characterized by its geometrical shape, the electrostatic potential, the hydrophobicity, and the concaveness. Representing a pocket by a set of patches is effective to absorb difference of global pocket shape while capturing local similarity of pockets. The shape and the physicochemical properties of surface patches are represented using the 3D Zernike descriptor, which is a series expansion of mathematical 3D function. Two pockets are compared using a modified weighted bipartite matching algorithm, which matches similar patches from the two pockets. Patch-Surfer was benchmarked on three datasets, which consist in total of 390 proteins that bind to one of 21 ligands. Patch-Surfer showed superior performance to existing methods including a global pocket comparison method, Pocket-Surfer, which we have previously introduced. Particularly, as intended, the accuracy showed large improvement for flexible ligand molecules, which bind to pockets in different conformations. PMID:22275074

  7. Detecting local ligand-binding site similarity in nonhomologous proteins by surface patch comparison.

    Science.gov (United States)

    Sael, Lee; Kihara, Daisuke

    2012-04-01

    Functional elucidation of proteins is one of the essential tasks in biology. Function of a protein, specifically, small ligand molecules that bind to a protein, can be predicted by finding similar local surface regions in binding sites of known proteins. Here, we developed an alignment free local surface comparison method for predicting a ligand molecule which binds to a query protein. The algorithm, named Patch-Surfer, represents a binding pocket as a combination of segmented surface patches, each of which is characterized by its geometrical shape, the electrostatic potential, the hydrophobicity, and the concaveness. Representing a pocket by a set of patches is effective to absorb difference of global pocket shape while capturing local similarity of pockets. The shape and the physicochemical properties of surface patches are represented using the 3D Zernike descriptor, which is a series expansion of mathematical 3D function. Two pockets are compared using a modified weighted bipartite matching algorithm, which matches similar patches from the two pockets. Patch-Surfer was benchmarked on three datasets, which consist in total of 390 proteins that bind to one of 21 ligands. Patch-Surfer showed superior performance to existing methods including a global pocket comparison method, Pocket-Surfer, which we have previously introduced. Particularly, as intended, the accuracy showed large improvement for flexible ligand molecules, which bind to pockets in different conformations. Copyright © 2011 Wiley Periodicals, Inc.

  8. Conformational dynamics and ligand binding in the multi-domain protein PDC109.

    Directory of Open Access Journals (Sweden)

    Hyun Jin Kim

    2010-02-01

    Full Text Available PDC109 is a modular multi-domain protein with two fibronectin type II (Fn2 repeats joined by a linker. It plays a major role in bull sperm binding to the oviductal epithelium through its interactions with phosphorylcholines (PhCs, a head group of sperm cell membrane lipids. The crystal structure of the PDC109-PhC complex shows that each PhC binds to the corresponding Fn2 domain, while the two domains are on the same face of the protein. Long timescale explicit solvent molecular dynamics (MD simulations of PDC109, in the presence and absence of PhC, suggest that PhC binding strongly correlates with the relative orientation of choline-phospholipid binding sites of the two Fn2 domains; unless the two domains tightly bind PhCs, they tend to change their relative orientation by deforming the flexible linker. The effective PDC109-PhC association constant of 28 M(-1, estimated from their potential of mean force is consistent with the experimental result. Principal component analysis of the long timescale MD simulations was compared to the significantly less expensive normal mode analysis of minimized structures. The comparison indicates that difference between relative domain motions of PDC109 with bound and unbound PhC is captured by the first principal component in the principal component analysis as well as the three lowest normal modes in the normal mode analysis. The present study illustrates the use of detailed MD simulations to clarify the energetics of specific ligand-domain interactions revealed by a static crystallographic model, as well as their influence on relative domain motions in a multi-domain protein.

  9. Roles of N- and C-terminal domains in the ligand-binding properties of cytoglobin.

    Science.gov (United States)

    Hanai, Shumpei; Tsujino, Hirofumi; Yamashita, Taku; Torii, Ryo; Sawai, Hitomi; Shiro, Yoshitsugu; Oohora, Koji; Hayashi, Takashi; Uno, Tadayuki

    2018-02-01

    Cytoglobin (Cygb) is a member of the hexacoordinated globin protein family and is expressed ubiquitously in rat and human tissues. Although Cygb is reportedly upregulated under hypoxic conditions both in vivo and in vitro, suggesting a physiological function to protect cells under hypoxic/ischemic conditions by scavenging reactive oxygen species or by signal transduction, the mechanisms associated with this function have not been fully elucidated. Recent studies comparing Cygbs among several species suggest that mammalian Cygbs show a distinctly longer C-terminal domain potentially involved in unique physiological functions. In this study, we prepared human Cygb mutants (ΔC, ΔN, and ΔNC) with either one or both terminal domains truncated and investigated the enzymatic functions and structural features by spectroscopic methods. Evaluation of the superoxide-scavenging activity between Cygb variants showed that the ΔC and ΔNC mutants exhibited slightly higher activity involving superoxide scavenging as compared with wild-type Cygb. Subsequent experiments involving ligand titration, flash photolysis, and resonance Raman spectroscopic studies suggested that the truncation of the C- and N-terminal domains resulted in less effective to dissociation constants and binding rates for carbon monoxide, respectively. Furthermore, structural stability was assessed by guanidine hydrochloride and revealed that the C-terminal domain might play a vital role in improving structure, whereas the N-terminal domain did not exert a similar effect. These findings indicated that long terminal domains could be important not only in regulating enzymatic activity but also for structural stability, and that the domains might be relevant to other hypothesized physiological functions for Cygb. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Molecular characterization of the haptoglobin.hemoglobin receptor CD163. Ligand binding properties of the scavenger receptor cysteine-rich domain region

    DEFF Research Database (Denmark)

    Madsen, Mette; Møller, Holger J; Nielsen, Marianne Jensby

    2004-01-01

    CD163 is the macrophage receptor for endocytosis of haptoglobin.hemoglobin complexes. The extracellular region consisting of nine scavenger receptor cysteine rich (SRCR) domains also circulates in plasma as a soluble protein. By ligand binding analysis of a broad spectrum of soluble CD163...... truncation variants, the amino-terminal third of the SRCR region was shown to be crucial for the binding of haptoglobin.hemoglobin complexes. By Western blotting of the CD163 variants, a panel of ten monoclonal antibodies was mapped to SRCR domains 1, 3, 4, 6, 7, and 9, respectively. Only the two antibodies...... to CD163 demonstrated that optimal ligand binding requires physiological plasma calcium concentrations, and an immediate ligand release occurs at the low calcium concentrations measured in acidifying endosomes. In conclusion, SRCR domain 3 of CD163 is an exposed domain and a critical determinant...

  11. Three-dimensional structure of the ligand-binding core of GluR2 in complex with the agonist (S)-ATPA

    DEFF Research Database (Denmark)

    Lunn, Marie-Louise; Hogner, Anders; Stensbøl, Tine B

    2003-01-01

    Two X-ray structures of the GluR2 ligand-binding core in complex with (S)-2-amino-3-(5-tert-butyl-3-hydroxy-4-isoxazolyl)propionic acid ((S)-ATPA) have been determined with and without Zn(2+) ions. (S)-ATPA induces a domain closure of ca. 21 degrees compared to the apo form. The tert-butyl moiety...

  12. Changes in Electrostatic Surface Potential of Na+/K+-ATPase Cytoplasmic Headpiece Induced by Cytoplasmic Ligand(s) Binding

    Czech Academy of Sciences Publication Activity Database

    Kubala, M.; Gryčová, Lenka; Lánský, Zdeněk; Sklenovský, P.; Janovská, M.; Otyepka, M.; Teisinger, Jan

    2009-01-01

    Roč. 97, č. 6 (2009), s. 1756-1764 ISSN 0006-3495 R&D Projects: GA ČR(CZ) GA303/07/0915 Grant - others:GA ČR(CZ) GA203/07/0564; GA ČR(CZ) GD203/09/H046 Program:GD Institutional research plan: CEZ:AV0Z50110509 Keywords : Na(+)/K(+)- ATPase * intrinsic fluorescence * quenching Subject RIV: BO - Biophysics Impact factor: 4.390, year: 2009

  13. Accuracy comparison of several common implicit solvent models and their implementations in the context of protein-ligand binding.

    Science.gov (United States)

    Katkova, E V; Onufriev, A V; Aguilar, B; Sulimov, V B

    2017-03-01

    In this study several commonly used implicit solvent models are compared with respect to their accuracy of estimating solvation energies of small molecules and proteins, as well as desolvation penalty in protein-ligand binding. The test set consists of 19 small proteins, 104 small molecules, and 15 protein-ligand complexes. We compared predicted hydration energies of small molecules with their experimental values; the results of the solvation and desolvation energy calculations for small molecules, proteins and protein-ligand complexes in water were also compared with Thermodynamic Integration calculations based on TIP3P water model and Amber12 force field. The following implicit solvent (water) models considered here are: PCM (Polarized Continuum Model implemented in DISOLV and MCBHSOLV programs), GB (Generalized Born method implemented in DISOLV program, S-GB, and GBNSR6 stand-alone version), COSMO (COnductor-like Screening Model implemented in the DISOLV program and the MOPAC package) and the Poisson-Boltzmann model (implemented in the APBS program). Different parameterizations of the molecules were examined: we compared MMFF94 force field, Amber12 force field and the quantum-chemical semi-empirical PM7 method implemented in the MOPAC package. For small molecules, all of the implicit solvent models tested here yield high correlation coefficients (0.87-0.93) between the calculated solvation energies and the experimental values of hydration energies. For small molecules high correlation (0.82-0.97) with the explicit solvent energies is seen as well. On the other hand, estimated protein solvation energies and protein-ligand binding desolvation energies show substantial discrepancy (up to 10kcal/mol) with the explicit solvent reference. The correlation of polar protein solvation energies and protein-ligand desolvation energies with the corresponding explicit solvent results is 0.65-0.99 and 0.76-0.96 respectively, though this difference in correlations is caused

  14. A scalable and accurate method for classifying protein-ligand binding geometries using a MapReduce approach.

    Science.gov (United States)

    Estrada, T; Zhang, B; Cicotti, P; Armen, R S; Taufer, M

    2012-07-01

    We present a scalable and accurate method for classifying protein-ligand binding geometries in molecular docking. Our method is a three-step process: the first step encodes the geometry of a three-dimensional (3D) ligand conformation into a single 3D point in the space; the second step builds an octree by assigning an octant identifier to every single point in the space under consideration; and the third step performs an octree-based clustering on the reduced conformation space and identifies the most dense octant. We adapt our method for MapReduce and implement it in Hadoop. The load-balancing, fault-tolerance, and scalability in MapReduce allow screening of very large conformation spaces not approachable with traditional clustering methods. We analyze results for docking trials for 23 protein-ligand complexes for HIV protease, 21 protein-ligand complexes for Trypsin, and 12 protein-ligand complexes for P38alpha kinase. We also analyze cross docking trials for 24 ligands, each docking into 24 protein conformations of the HIV protease, and receptor ensemble docking trials for 24 ligands, each docking in a pool of HIV protease receptors. Our method demonstrates significant improvement over energy-only scoring for the accurate identification of native ligand geometries in all these docking assessments. The advantages of our clustering approach make it attractive for complex applications in real-world drug design efforts. We demonstrate that our method is particularly useful for clustering docking results using a minimal ensemble of representative protein conformational states (receptor ensemble docking), which is now a common strategy to address protein flexibility in molecular docking. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. The potential of residues of furfural and biogas as calcareous soil amendments for corn seed production.

    Science.gov (United States)

    Zhao, Yunchen; Yan, Zhibin; Qin, Jiahai; Ma, Zhijun; Zhang, Youfu; Zhang, Li

    2016-04-01

    Intensive corn seed production in Northwest of China produced large amounts of furfural residues, which represents higher treatment cost and environmental issue. The broad calcareous soils in the Northwest of China exhibit low organic matter content and high pH, which led to lower fertility and lower productivity. Recycling furfural residues as soil organic and nutrient amendment might be a promising agricultural practice to calcareous soils. A 3-year field study was conducted to evaluate the effects of furfural as a soil amendment on corn seed production on calcareous soil with compared to biogas residues. Soil physical-chemical properties, soil enzyme activities, and soil heavy metal concentrations were assessed in the last year after the last application. Corn yield was determined in each year. Furfural residue amendments significantly decreased soil pH and soil bulk density. Furfural residues combined with commercial fertilizers resulted in the greater cumulative on soil organic matter, total phosphorus, available phosphorus, available potassium, and cation exchange capacity than that of biogas residue. Simultaneously, urease, invertase, catalase, and alkaline phosphatase increased even at the higher furfural application rates. Maize seed yield increased even with lower furfural residue application rates. Furfural residues resulted in lower Zn concentration and higher Cd concentration than that of biogas residues. Amendment of furfural residues led to higher soil electrical conductivity (EC) than that of biogas residues. The addition of furfural residues to maize seed production may be considered to be a good strategy for recycling the waste, converting it into a potential resource as organic amendment in arid and semi-arid calcareous soils, and may help to reduce the use of mineral chemical fertilizers in these soils. However, the impact of its application on soil health needs to be established in long-term basis.

  16. Bioactive compounds and antioxidant potential for polyphenol-rich cocoa extract obtained by agroindustrial residue.

    Science.gov (United States)

    Gabbay Alves, Taís Vanessa; Silva da Costa, Russany; Aliakbarian, Bahar; Casazza, Alessandro Alberto; Perego, Patrizia; Pinheiro Arruda, Mara Silvia; Carréra Silva Júnior, José Otávio; Converti, Attilio; Ribeiro Costa, Roseane Maria

    2017-11-10

    Processing of cocoa (Theobroma cacao L.) beans responsible for agricultural exports leads to large amounts of solid waste that were discarded, however, this one presents high contents of metabolites with biological activities. The major objective of this study was to valorise cocoa agroindustrial residue obtained by hydraulic pressing for extract rich in antioxidants. For it, the centesimal composition of residue was investigated, the green extraction was carried out from the residue after, the bioactive compounds, sugar contents and screaming by HPTLC were quantified for extract. The extract has a total polyphenol content of 229.64 mg/g and high antioxidant activity according to ABTS 225.0 μM/g. HTPLC analysis confirmed the presence in the extract, residue of terpenes, sesquiterpenes, flavonoids and antioxidant activity. These results, as a whole, suggest that the extract from the cocoa residue has interesting characteristics to alternative crops with potential industrial uses.

  17. Calculation of vibrational shifts of nitrile probes in the active site of ketosteroid isomerase upon ligand binding.

    Science.gov (United States)

    Layfield, Joshua P; Hammes-Schiffer, Sharon

    2013-01-16

    The vibrational Stark effect provides insight into the roles of hydrogen bonding, electrostatics, and conformational motions in enzyme catalysis. In a recent application of this approach to the enzyme ketosteroid isomerase (KSI), thiocyanate probes were introduced in site-specific positions throughout the active site. This paper implements a quantum mechanical/molecular mechanical (QM/MM) approach for calculating the vibrational shifts of nitrile (CN) probes in proteins. This methodology is shown to reproduce the experimentally measured vibrational shifts upon binding of the intermediate analogue equilinen to KSI for two different nitrile probe positions. Analysis of the molecular dynamics simulations provides atomistic insight into the roles that key residues play in determining the electrostatic environment and hydrogen-bonding interactions experienced by the nitrile probe. For the M116C-CN probe, equilinen binding reorients an active-site water molecule that is directly hydrogen-bonded to the nitrile probe, resulting in a more linear C≡N--H angle and increasing the CN frequency upon binding. For the F86C-CN probe, equilinen binding orients the Asp103 residue, decreasing the hydrogen-bonding distance between the Asp103 backbone and the nitrile probe and slightly increasing the CN frequency. This QM/MM methodology is applicable to a wide range of biological systems and has the potential to assist in the elucidation of the fundamental principles underlying enzyme catalysis.

  18. Modern bioenergy from agricultural and forestry residues in Cameroon: Potential, challenges and the way forward

    International Nuclear Information System (INIS)

    Ackom, Emmanuel K.; Alemagi, Dieudonne; Ackom, Nana B.; Minang, Peter A.; Tchoundjeu, Zac

    2013-01-01

    Environmentally benign modern bioenergy is widely acknowledged as a potential substitute for fossil fuels to offset the human dependence on fossil fuels for energy. We have profiled Cameroon, a country where modern bioenergy remains largely untapped due to a lack of availability of biomass data and gaps in existing policies. This study assessed the biomass resource potential in Cameroon from sustainably extracted agricultural and forest residues. We estimated that environmentally benign residues amount to 1.11 million bone dry tons per year. This has the potential to yield 0.12–0.32 billion liters of ethanol annually to displace 18–48% of the national consumption of gasoline. Alternatively, the residues could provide 0.08–0.22 billion liters of biomass to Fischer Tropsch diesel annually to offset 17–45% of diesel fuel use. For the generation of bioelectricity, the residues could supply 0.76–2.02 TW h, which is the equivalent of 15–38% of Cameroon's current electricity consumption. This could help spread electricity throughout the country, especially in farming communities where the residues are plentiful. The residues could, however, offset only 3% of the national consumption of traditional biomass (woodfuel and charcoal). Policy recommendations that promote the wider uptake of modern bioenergy applications from residues are provided. - Highlights: • Environmentally benign residues amount to 1.11×10 6 bone dry tonnes per annum. • 0.12–0.32 billion litres of bio ethanol annually to displace 18–48% national gasoline use. • 0.08–0.22 billion litres of biomass to BTL diesel per year to offset 17–45% of diesel use. • 0.76–2.02 TW h of electricity, representing 15–38% of Cameroon's consumption. • Residues could offset only 3% of national consumption of traditional biomass

  19. Unrealized potential and residual consequences of electronic prescribing on pharmacy workflow in the outpatient pharmacy.

    Science.gov (United States)

    Nanji, Karen C; Rothschild, Jeffrey M; Boehne, Jennifer J; Keohane, Carol A; Ash, Joan S; Poon, Eric G

    2014-01-01

    Electronic prescribing systems have often been promoted as a tool for reducing medication errors and adverse drug events. Recent evidence has revealed that adoption of electronic prescribing systems can lead to unintended consequences such as the introduction of new errors. The purpose of this study is to identify and characterize the unrealized potential and residual consequences of electronic prescribing on pharmacy workflow in an outpatient pharmacy. A multidisciplinary team conducted direct observations of workflow in an independent pharmacy and semi-structured interviews with pharmacy staff members about their perceptions of the unrealized potential and residual consequences of electronic prescribing systems. We used qualitative methods to iteratively analyze text data using a grounded theory approach, and derive a list of major themes and subthemes related to the unrealized potential and residual consequences of electronic prescribing. We identified the following five themes: Communication, workflow disruption, cost, technology, and opportunity for new errors. These contained 26 unique subthemes representing different facets of our observations and the pharmacy staff's perceptions of the unrealized potential and residual consequences of electronic prescribing. We offer targeted solutions to improve electronic prescribing systems by addressing the unrealized potential and residual consequences that we identified. These recommendations may be applied not only to improve staff perceptions of electronic prescribing systems but also to improve the design and/or selection of these systems in order to optimize communication and workflow within pharmacies while minimizing both cost and the potential for the introduction of new errors.

  20. Quantification of receptor-ligand binding with [{sup 18}F]fluciclatide in metastatic breast cancer patients

    Energy Technology Data Exchange (ETDEWEB)

    Tomasi, Giampaolo [Hammersmith Hospital, Comprehensive Cancer Imaging Center, Imperial College, London (United Kingdom); Kenny, Laura; Aboagye, Eric O. [Hammersmith Hospital, Comprehensive Cancer Imaging Center, Imperial College, London (United Kingdom); Hammersmith Hospital, MRC Clinical Sciences Center, Imperial College Faculty of Medicine, London (United Kingdom); Mauri, Francesco [Hammersmith Hospital, Department of Medicine, Imperial College, London (United Kingdom); Turkheimer, Federico [Hammersmith Hospital, MRC Clinical Sciences Center, Imperial College Faculty of Medicine, London (United Kingdom); Hammersmith Hospital, Department of Medicine, Imperial College, London (United Kingdom)

    2011-12-15

    The purpose of the study was to estimate the receptor-ligand binding of an arginine-glycine-aspartic acid (RGD) peptide in somatic tumours. To this aim, we employed dynamic positron emission tomography (PET) data obtained from breast cancer patients with metastases, studied with the {alpha}{sub v}{beta}{sub 3/5} integrin receptor radioligand [{sup 18}F]fluciclatide. First, compartmental modelling and spectral analysis with arterial input function were performed at the region of interest (ROI) level in healthy lung and liver, and in lung and liver metastases; compartmental modelling was also carried out at the pixel level. The selection of the most appropriate indexes for tumour/healthy tissue differentiation and for estimation of specific binding was then assessed. The two-tissue reversible model emerged as the best according to the Akaike Information Criterion. Spectral analysis confirmed the reversibility of tracer kinetics. Values of kinetic parameters, estimated as mean from parametric maps, correlated well with those computed from ROI analysis. The volume of distribution V{sub T} was on average higher in lung metastases than in the healthy lung, but lower in liver metastases than in the healthy liver. In agreement with the expected higher {alpha}{sub v}{beta}{sub 3/5} expression in pathology, k{sub 3} and k{sub 3}/k{sub 4} were both remarkably higher in metastases, which makes them more suitable than V{sub T} for tumour/healthy tissue differentiation. The ratio k{sub 3}/k{sub 4}, in particular, appeared a reasonable measure of specific binding. Besides establishing the best quantitative approaches for the analysis of [{sup 18}F]fluciclatide data, this study indicated that the k{sub 3}/k{sub 4} ratio is a reasonable measure of specific binding, suggesting that this index can be used to estimate {alpha}{sub v}{beta}{sub 3/5} receptor expression in oncology, although further studies are necessary to validate this hypothesis. (orig.)

  1. Potential of energetic utilization of grains residual biomass; Potencial de utilizacao energetica de biomassa residual de graos

    Energy Technology Data Exchange (ETDEWEB)

    Mourad, Anna L. [Instituto de Tecnologia de Alimentos (ITAL), Campinas, SP (Brazil). Centro de Tecnologia de Embalagem], e-mail: anna@ital.sp.gov.br; Ambrogi, Vinicius S.; Guerra, Sinclair M.G. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica], e-mail: ambrogi@fem.unicamp.br, e-mail: sguerra@fem.unicamp.br

    2004-07-01

    The biomass resulting from the rejected parts of grains, as straw and peel of rice, corn, wheat, soy, all great cultivations in the country, has potential to be takes advantage as energy. It was considered that the contribution of this residual biomass is near of 167,8 million GJ/year, value that could be added to the use already established of the cane bagasse for energy purpose (658 million GJ, in 2001). This energy can be used for drying of these same grains (energy expense estimate of 67 million GJ), currently obtained from oil. It can also substitute the fuel oil used in the agricultural section, in the industries of food and beverage, ceramic and textile (sections that consumed 67.822 GJ in 2001). In Sao Paulo state the regions with greater potential to install biomass plants are located in Assis, Avare and Itapeva EDR (regional development office). (author)

  2. Pesticide residues in grain from Kazakhstan and potential health risks associated with exposure to detected pesticides.

    Science.gov (United States)

    Lozowicka, B; Kaczynski, P; Paritova, Capital A Cyrillic Е; Kuzembekova, G B; Abzhalieva, A B; Sarsembayeva, N B; Alihan, K

    2014-02-01

    This paper presents the first study of pesticide residue results in grain from Kazakhstan. A total of 80 samples: barley, oat, rye, and wheat were collected and tested in the accredited laboratory. Among 180 pesticides, 10 active substances were detected. Banned pesticides, such as DDTs, γ-HCH, aldrin and diazinon were found in cereal grain. Chlorpyrifos methyl and pirimiphos methyl were the most frequently detected residues. No residues were found in 77.5% of the samples, 13.75% contained pesticide residues at or below MRLs, and 8.75% above MRLs. The greatest percentage of samples with residues (29%) was noted for wheat, and the lowest for rye (20%). Obtained data were used to estimate potential health risks associated with exposure to these pesticides. The highest estimated daily intakes (EDIs) were as follows: 789% of the ADI for aldrin (wheat) and 49.8% of the ADI for pirimiphos methyl (wheat and rye). The acute risk from aldrin and tebuconazole in wheat was 315.9% and 98.7% ARfD, respectively. The results show that despite the highest EDIs of pesticide residues in cereals, the current situation could not be considered a serious public health problem. Nevertheless, an investigation into continuous monitoring of pesticide residues in grain is recommended. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. The interrelationship between ligand binding and thermal unfolding of the folate binding protein. The role of self-association and pH

    DEFF Research Database (Denmark)

    Holm, Jan; Babol, Linnea N.; Markova, Natalia

    2014-01-01

    The present study utilized a combination of DLS (dynamic light scattering) and DSC (differential scanning calorimetry) to address thermostability of high-affinity folate binding protein (FBP), a transport protein and cellular receptor for the vitamin folate. At pH7.4 (pI=7-8) ligand binding......, intermolecular forces involved in concentration-dependent multimerization thus contribute to the thermostability of holo-FBP. Hence, thermal unfolding and dissociation of holo-FBP multimers occur simultaneously consistent with a gradual decrease from octameric to monomeric holo-FBP (10μM) in DLS after a step-wise...

  4. Do cysteine residues regulate transient receptor potential canonical type 6 (TRPC6) channel protein expression?

    DEFF Research Database (Denmark)

    Thilo, Florian; Liu, Ying; Krueger, Katharina

    2012-01-01

    The regulation of calcium influx through transient receptor potential canonical type 6 channel is mandatory for the activity of human monocytes. We submit the first evidence that cysteine residues of homocysteine or acetylcysteine affect TRPC6 expression in human monocytes. We observed that patie......The regulation of calcium influx through transient receptor potential canonical type 6 channel is mandatory for the activity of human monocytes. We submit the first evidence that cysteine residues of homocysteine or acetylcysteine affect TRPC6 expression in human monocytes. We observed...... that patients with chronic renal failure had significantly elevated homocysteine levels and TRPC6 mRNA expression levels in monocytes compared to control subjects. We further observed that administration of homocysteine or acetylcysteine significantly increased TRPC6 channel protein expression compared...... to control conditions. We therefore hypothesize that cysteine residues increase TRPC6 channel protein expression in humans....

  5. Economic factors influencing potential use of cellulosic crop residues for electricity generation

    International Nuclear Information System (INIS)

    Maung, Thein A.; McCarl, Bruce A.

    2013-01-01

    This study examines cellulosic crop residues for biopower production in the context of (greenhouse gas) GHG emission mitigation. We employ sector modeling to simulate future market potential for biopower production from crop residues. Our findings suggest that in order for crop residues to have any role in electricity generation either the carbon or (carbon dioxide) CO 2 equivalent GHG price must rise to about 15 dollars per ton or the price of coal has to increase to about 43 dollars per ton. We find that crop residues with higher heat content have greater opportunities in biopower production than the residues with lower heat content. In addition, our evidence shows that improvements in crop yields do not have much impact on biopower production. However, the energy recovery efficiency does have significant positive impact but only if the CO 2 equivalent price rises substantially. Moreover, our analysis indicates the desirability of cofiring biomass as opposed to 100% replacement because this reduces transportation cost and increases the efficiency of heat recovery. In terms of policy implications, imposing carbon emission pricing could be an important step in inducing electric power producers to include biomass feedstocks in their fuel-mix power generation portfolios and achieve GHG emission reductions. - Highlights: • Crop residues with higher heat content have greater market opportunities. • Improvement in crop and residue yields does not have much impact on biopower production. • Advancement in biopower production technology does not encourage more use of crop residues. • The main factor that induces biopower production is an increase in future carbon prices

  6. Environmental toxicity and radioactivity assessment of a titanium-processing residue with potential for environmental use.

    Science.gov (United States)

    Wendling, Laura A; Binet, Monique T; Yuan, Zheng; Gissi, Francesca; Koppel, Darren J; Adams, Merrin S

    2013-07-01

    Thorough examination of the physicochemical characteristics of a Ti-processing residue was undertaken, including mineralogical, geochemical, and radiochemical characterization, and an investigation of the environmental toxicity of soft-water leachate generated from the residue. Concentrations of most metals measured in the leachate were low; thus, the residue is unlikely to leach high levels of potentially toxic elements on exposure to low-ionic strength natural waters. Relative to stringent ecosystem health-based guidelines, only chromium concentrations in the leachate exceeded guideline concentrations for 95% species protection; however, sulfate was present at concentrations known to cause toxicity. It is likely that the high concentration of calcium and extreme water hardness of the leachate reduced the bioavailability of some elements. Geochemical modeling of the leachate indicated that calcium and sulfate concentrations were largely controlled by gypsum mineral dissolution. The leachate was not toxic to the microalga Chlorella sp., the cladoceran Ceriodaphnia dubia, or the estuarine bacterium Vibrio fischeri. The Ti-processing residue exhibited an absorbed dose rate of 186 nGy/h, equivalent to an annual dose of 1.63 mGy and an annual effective dose of 0.326 mGy. In summary, the results indicate that the Ti-processing residue examined is suitable for productive use as an environmental amendment following 10 to 100 times dilution to ameliorate potential toxic effects due to chromium or sulfate. Copyright © 2013 SETAC.

  7. Crystallization and preliminary X-ray crystallographic analysis of the GluR0 ligand-binding core from Nostoc punctiforme

    International Nuclear Information System (INIS)

    Lee, Jun Hyuck; Park, Soo Jeong; Rho, Seong-Hwan; Im, Young Jun; Kim, Mun-Kyoung; Kang, Gil Bu; Eom, Soo Hyun

    2005-01-01

    The GluR0 ligand-binding core from N. punctiforme was expressed, purified and crystallized in the presence of l-glutamate. A diffraction data set was collected to a resolution of 2.1 Å. GluR0 from Nostoc punctiforme (NpGluR0) is a bacterial homologue of the ionotropic glutamate receptor. The ligand-binding core of NpGluR0 was crystallized at 294 K using the hanging-drop vapour-diffusion method. The l-glutamate-complexed crystal belongs to space group C222 1 , with unit-cell parameters a = 78.0, b = 145.1, c = 132.1 Å. The crystals contain three subunits in the asymmetric unit, with a V M value of 2.49 Å 3 Da −1 . The diffraction limit of the l-glutamate complex data set was 2.1 Å using synchrotron X-ray radiation at beamline BL-4A of the Pohang Accelerator Laboratory (Pohang, Korea)

  8. Crystallization and preliminary X-ray crystallographic analysis of the GluR0 ligand-binding core from Nostoc punctiforme

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jun Hyuck; Park, Soo Jeong; Rho, Seong-Hwan; Im, Young Jun; Kim, Mun-Kyoung; Kang, Gil Bu; Eom, Soo Hyun, E-mail: eom@gist.ac.kr [Department of Life Science, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of)

    2005-11-01

    The GluR0 ligand-binding core from N. punctiforme was expressed, purified and crystallized in the presence of l-glutamate. A diffraction data set was collected to a resolution of 2.1 Å. GluR0 from Nostoc punctiforme (NpGluR0) is a bacterial homologue of the ionotropic glutamate receptor. The ligand-binding core of NpGluR0 was crystallized at 294 K using the hanging-drop vapour-diffusion method. The l-glutamate-complexed crystal belongs to space group C222{sub 1}, with unit-cell parameters a = 78.0, b = 145.1, c = 132.1 Å. The crystals contain three subunits in the asymmetric unit, with a V{sub M} value of 2.49 Å{sup 3} Da{sup −1}. The diffraction limit of the l-glutamate complex data set was 2.1 Å using synchrotron X-ray radiation at beamline BL-4A of the Pohang Accelerator Laboratory (Pohang, Korea)

  9. Crystallization and crystallographic analysis of the ligand-binding domain of the Pseudomonas putida chemoreceptor McpS in complex with malate and succinate

    International Nuclear Information System (INIS)

    Gavira, J. A.; Lacal, J.; Ramos, J. L.; García-Ruiz, J. M.; Krell, T.; Pineda-Molina, E.

    2012-01-01

    The crystallization of the ligand-binding domain of the methyl-accepting chemotaxis protein chemoreceptor McpS (McpS-LBD) is reported. Methyl-accepting chemotaxis proteins (MCPs) are transmembrane proteins that sense changes in environmental signals, generating a chemotactic response and regulating other cellular processes. MCPs are composed of two main domains: a ligand-binding domain (LBD) and a cytosolic signalling domain (CSD). Here, the crystallization of the LBD of the chemoreceptor McpS (McpS-LBD) is reported. McpS-LBD is responsible for sensing most of the TCA-cycle intermediates in the soil bacterium Pseudomonas putida KT2440. McpS-LBD was expressed, purified and crystallized in complex with two of its natural ligands (malate and succinate). Crystals were obtained by both the counter-diffusion and the hanging-drop vapour-diffusion techniques after pre-incubation of McpS-LBD with the ligands. The crystals were isomorphous and belonged to space group C2, with two molecules per asymmetric unit. Diffraction data were collected at the ESRF synchrotron X-ray source to resolutions of 1.8 and 1.9 Å for the malate and succinate complexes, respectively

  10. Post processing of protein-compound docking for fragment-based drug discovery (FBDD): in-silico structure-based drug screening and ligand-binding pose prediction.

    Science.gov (United States)

    Fukunishi, Yoshifumi

    2010-01-01

    For fragment-based drug development, both hit (active) compound prediction and docking-pose (protein-ligand complex structure) prediction of the hit compound are important, since chemical modification (fragment linking, fragment evolution) subsequent to the hit discovery must be performed based on the protein-ligand complex structure. However, the naïve protein-compound docking calculation shows poor accuracy in terms of docking-pose prediction. Thus, post-processing of the protein-compound docking is necessary. Recently, several methods for the post-processing of protein-compound docking have been proposed. In FBDD, the compounds are smaller than those for conventional drug screening. This makes it difficult to perform the protein-compound docking calculation. A method to avoid this problem has been reported. Protein-ligand binding free energy estimation is useful to reduce the procedures involved in the chemical modification of the hit fragment. Several prediction methods have been proposed for high-accuracy estimation of protein-ligand binding free energy. This paper summarizes the various computational methods proposed for docking-pose prediction and their usefulness in FBDD.

  11. An estimation of cogeneration potential by using refinery residuals in Mexico

    International Nuclear Information System (INIS)

    Marin-Sanchez, J.E.; Rodriguez-Toral, M.A.

    2007-01-01

    Electric power generation in Mexico is mainly based on fossil fuels, specifically heavy fuel oil, although the use of natural gas combined cycles (NGCC) is becoming increasingly important. This is the main destination that has promoted growing imports of natural gas, currently accounting for about 20% of the total national annual consumption. Available crude oil is becoming heavier; thus refineries should be able to process it, and to handle greater quantities of refinery residuals. If all refinery residuals are used in cogeneration plants serving petroleum refineries, the high heat/power ratio of refinery needs, leads to the availability of appreciable quantities of electricity that can be exported to the public utility. Thus, in a global perspective, Mexican imports of natural gas may be reduced by cogeneration using refinery residuals. This is not the authors' idea; in fact, PEMEX, the national oil company, has been entitled by the Mexican congress to sell its power leftovers to The Federal Electricity Commission (CFE) in order to use cogeneration in the way described for the years to come. A systematic way of determining the cogeneration potential by using refinery residuals from Mexican refineries is presented here, taking into account residual quantities and composition, from a national perspective, considering expected scenarios for Maya crude content going to local refineries in the years to come. Among different available technologies for cogeneration using refinery residuals, it is believed that the integrated gasification combined cycle (IGCC) would be the best option. Thus, considering IGCC plants supplying heat and power to refineries where it is projected to have refinery residuals for cogeneration, the expected electric power that can be sent to the public utility is quantified, along with the natural gas imports mitigation that may be attained. This in turn would contribute to a necessary fuel diversification policy balancing energy, economy and

  12. Greenhouse crop residues: Energy potential and models for the prediction of their higher heating value

    Energy Technology Data Exchange (ETDEWEB)

    Callejon-Ferre, A.J.; Lopez-Martinez, J.A.; Manzano-Agugliaro, F. [Departamento de Ingenieria Rural, Universidad de Almeria, Ctra. Sacramento s/n, La Canada de San Urbano, 04120 Almeria (Spain); Velazquez-Marti, B. [Departamento de Ingenieria Rural y Agroalimentaria, Universidad Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain)

    2011-02-15

    Almeria, in southeastern Spain, generates some 1,086,261 t year{sup -1} (fresh weight) of greenhouse crop (Cucurbita pepo L., Cucumis sativus L., Solanum melongena L., Solanum lycopersicum L., Phaseoulus vulgaris L., Capsicum annuum L., Citrillus vulgaris Schrad. and Cucumis melo L.) residues. The energy potential of this biomass is unclear. The aim of the present work was to accurately quantify this variable, differentiating between crop species while taking into consideration the area they each occupy. This, however, required the direct analysis of the higher heating value (HHV) of these residues, involving very expensive and therefore not commonly available equipment. Thus, a further aim was to develop models for predicting the HHV of these residues, taking into account variables measured by elemental and/or proximate analysis, thus providing an economically attractive alternative to direct analysis. All the analyses in this work involved the use of worldwide-recognised standards and methods. The total energy potential for these plant residues, as determined by direct analysis, was 1,003,497.49 MW h year{sup -1}. Twenty univariate and multivariate equations were developed to predict the HHV. The R{sup 2} and adjusted R{sup 2} values obtained for the univariate and multivariate models were 0.909 and 0.946 or above respectively. In all cases, the mean absolute percentage error varied between 0.344 and 2.533. These results show that any of these 20 equations could be used to accurately predict the HHV of crop residues. The residues produced by the Almeria greenhouse industry would appear to be an interesting source of renewable energy. (author)

  13. Assessment of agroforestry residue potentials for the bioeconomy in the European Union.

    Science.gov (United States)

    Thorenz, Andrea; Wietschel, Lars; Stindt, Dennis; Tuma, Axel

    2018-03-01

    The biobased chemical industry is characterised by strong growth. Innovative products and materials such as biopolymers have been developed, and current European demand for biopolymers exceeds the domestic supply. Agroforestry residues can serve as main sources of the basic building blocks for chemicals and materials. This work assesses sustainably available agroforestry residues to feed a high added-value materials and product bioeconomy. To evaluate bioeconomic potential, a structured three-step approach is applied. Cultivation practices, sustainability issues, legislative restrictions, technical limitations and competitive applications are considered. All data regarding bioeconomic potential are processed on a regional level and mapped by ArcGIS. Our results identify wheat straw as the most promising source in the agricultural sector, followed by maize stover, barley straw and rape straw, which all contain a total concentration of lignocellulose of more than 80% of dry matter. In the forestry sector, residue bark from two coniferous species, spruce and pine, is the most promising source, with approximately 70% lignocellulose. Additionally, coniferous bark contains considerable amounts of tannin, which has attracted increasing interest for industrial utilisation. A sensitivity analysis concerning removal rates, residue-to-crop ratios, changes in farming technologies and competing applications is applied at the end of the study to consolidate our results.

  14. Assessing residual hydropower potential of the La Plata Basin accounting for future user demands

    Directory of Open Access Journals (Sweden)

    I. Popescu

    2012-08-01

    Full Text Available La Plata Basin is shared by five countries (Argentina, Bolivia, Brazil, Paraguay and Uruguay, which have fast growing economies in South America. These countries need energy for their sustainable development; hence, hydropower can play a very important role as a renewable clean source of energy. This paper presents an analysis of the current hydropower production and electricity demand in La Plata Basin (LPB, and it analyses the maximum and residual hydropower potential of the basin for a horizon of 30 yr (i.e. year 2040. Current hydropower production is estimated based on historical available data, while future energy production is deduced from the available water in the catchment (estimated based on measured hydrographs of the past years, whereas electricity demand is assessed by correlating existing electricity demand with the estimated population growth and economic development. The maximum and residual hydropower potential of the basin were assessed for the mean annual flows of the present hydrological regime (1970–2000 and topographical characteristics of the area.

    Computations were performed using an integrated GIS environment called VAPIDRO-ASTE released by the Research on Energy System (Italy. The residual hydropower potential of the basin is computed considering first that the water supply needs for population, industry and agriculture are served, and then hydropower energy is produced. The calculated hydropower production is found to be approximately half of the estimated electricity demand, which shows that there is a need to look for other sources of energy in the future.

  15. Assessing residual hydropower potential of the La Plata Basin accounting for future user demands

    Science.gov (United States)

    Popescu, I.; Brandimarte, L.; Perera, M. S. U.; Peviani, M.

    2012-08-01

    La Plata Basin is shared by five countries (Argentina, Bolivia, Brazil, Paraguay and Uruguay), which have fast growing economies in South America. These countries need energy for their sustainable development; hence, hydropower can play a very important role as a renewable clean source of energy. This paper presents an analysis of the current hydropower production and electricity demand in La Plata Basin (LPB), and it analyses the maximum and residual hydropower potential of the basin for a horizon of 30 yr (i.e. year 2040). Current hydropower production is estimated based on historical available data, while future energy production is deduced from the available water in the catchment (estimated based on measured hydrographs of the past years), whereas electricity demand is assessed by correlating existing electricity demand with the estimated population growth and economic development. The maximum and residual hydropower potential of the basin were assessed for the mean annual flows of the present hydrological regime (1970-2000) and topographical characteristics of the area. Computations were performed using an integrated GIS environment called VAPIDRO-ASTE released by the Research on Energy System (Italy). The residual hydropower potential of the basin is computed considering first that the water supply needs for population, industry and agriculture are served, and then hydropower energy is produced. The calculated hydropower production is found to be approximately half of the estimated electricity demand, which shows that there is a need to look for other sources of energy in the future.

  16. Crystallographic analysis of murine constitutive androstane receptor ligand-binding domain complexed with 5α-androst-16-en-3α-ol

    International Nuclear Information System (INIS)

    Vincent, Jeremy; Shan, Li; Fan, Ming; Brunzelle, Joseph S.; Forman, Barry M.; Fernandez, Elias J.

    2004-01-01

    The purification and structure determination of the murine constitutive androstane receptor bound to its inverse agonist/antagonist androstenol is described. The constitutive androstane receptor (CAR) is a member of the nuclear receptor superfamily. In contrast to classical nuclear receptors, which possess small-molecule ligand-inducible activity, CAR exhibits constitutive transcriptional activity in the apparent absence of ligand. CAR is among the most important transcription factors; it coordinately regulates the expression of microsomal cytochrome P450 genes and other drug-metabolizing enzymes. The murine CAR ligand-binding domain (LBD) was coexpressed with the steroid receptor coactivator protein (SRC-1) receptor-interacting domain (RID) in Escherichia coli. The mCAR LBD subunit was purified away from SRC-1 by affinity, anion-exchange and size-exclusion chromatography, crystallized with androstenol and the structure of the complex determined by molecular replacement

  17. The extracellular loop 2 (ECL2 of the human histamine H4 receptor substantially contributes to ligand binding and constitutive activity.

    Directory of Open Access Journals (Sweden)

    David Wifling

    Full Text Available In contrast to the corresponding mouse and rat orthologs, the human histamine H4 receptor (hH4R shows extraordinarily high constitutive activity. In the extracellular loop (ECL, replacement of F169 by V as in the mouse H4R significantly reduced constitutive activity. Stabilization of the inactive state was even more pronounced for a double mutant, in which, in addition to F169V, S179 in the ligand binding site was replaced by M. To study the role of the FF motif in ECL2, we generated the hH4R-F168A mutant. The receptor was co-expressed in Sf9 insect cells with the G-protein subunits Gαi2 and Gβ1γ2, and the membranes were studied in [3H]histamine binding and functional [35S]GTPγS assays. The potency of various ligands at the hH4R-F168A mutant decreased compared to the wild-type hH4R, for example by 30- and more than 100-fold in case of the H4R agonist UR-PI376 and histamine, respectively. The high constitutive activity of the hH4R was completely lost in the hH4R-F168A mutant, as reflected by neutral antagonism of thioperamide, a full inverse agonist at the wild-type hH4R. By analogy, JNJ7777120 was a partial inverse agonist at the hH4R, but a partial agonist at the hH4R-F168A mutant, again demonstrating the decrease in constitutive activity due to F168A mutation. Thus, F168 was proven to play a key role not only in ligand binding and potency, but also in the high constitutive activity of the hH4R.

  18. A novel thromboxane A2 receptor D304N variant that abrogates ligand binding in a patient with a bleeding diathesis.

    Science.gov (United States)

    Mumford, Andrew D; Dawood, Ban B; Daly, Martina E; Murden, Sherina L; Williams, Michael D; Protty, Majd B; Spalton, Jennifer C; Wheatley, Mark; Mundell, Stuart J; Watson, Steve P

    2010-01-14

    We investigated the cause of mild mucocutaneous bleeding in a 14-year-old male patient (P1). Platelet aggregation and ATP secretion induced by arachidonic acid and the thromboxane A(2) receptor (TxA(2)R) agonist U46619 were reduced in P1 compared with controls, whereas the responses to other platelet agonists were retained. P1 was heterozygous for a transversion within the TBXA2R gene predictive of a D304N substitution in the TxA(2)R. In Chinese hamster ovary-K1 cells expressing the variant D304N TxA(2)R, U46619 did not increase cytosolic free Ca(2+) concentration, indicating loss of receptor function. The TxA(2)R antagonist [(3)H]-SQ29548 showed an approximate 50% decrease in binding to platelets from P1 but absent binding to Chinese hamster ovary-K1 cells expressing variant D304N TxA(2)R. This is the second naturally occurring TxA(2)R variant to be associated with platelet dysfunction and the first in which loss of receptor function is associated with reduced ligand binding. D304 lies within a conserved NPXXY motif in transmembrane domain 7 of the TxA(2)R that is a key structural element in family A G protein-coupled receptors. Our demonstration that the D304N substitution causes clinically significant platelet dysfunction by reducing ligand binding establishes the importance of the NPXXY motif for TxA(2)R function in vivo.

  19. Assessing the potentials of agricultural residues for energy: What the CDM experience of India tells us about their availability

    International Nuclear Information System (INIS)

    Milhau, Antoine; Fallot, Abigail

    2013-01-01

    The potential of agricultural residues has been assessed worldwide and at different scales. Interpreting results so as to determine the possible role of this biomass feedstock in energy supplies, requires a clearer understanding of the conditions in which residues can effectively be mobilized for energy production. The experience of India with hundreds of projects where agricultural residues are transformed to heat and power partially sold to the grid, is analyzed and checked against the residue potentials that have been assessed in this country. We find that, in the absence of technological improvements in biomass conversion, the apparent success of Indian bioenergy projects is not sustainable in the long run due to rapid exhaustion effects on residue availability, coupled with the increasing costs that would be difficult to compensate by higher electricity tariffs. We also identify there is a serious agricultural issue which needs to be addressed in regard to degraded soils; this could lead to the reallocation of all primary residues, as well as part of secondary residues to soil and livestock needs. Such perspectives are considered within three contrasted scenario storylines. - Highlights: • India generates 572.10 6 t crop residues, 15–25% are potentially available. • Registered CDM projects for electricity generation use 17% of this energy source. • Some residues will be exhausted before the implementation of planned projects. • Residue scarcity translates to new markets with rising prices. • Increased tariffs will be necessary to compensate biomass cost increase

  20. The Second Transmembrane Domain of the Human Type 1 Angiotensin II Receptor Participates in the Formation of the Ligand Binding Pocket and Undergoes Integral Pivoting Movement during the Process of Receptor Activation*

    Science.gov (United States)

    Domazet, Ivana; Holleran, Brian J.; Martin, Stéphane S.; Lavigne, Pierre; Leduc, Richard; Escher, Emanuel; Guillemette, Gaétan

    2009-01-01

    The octapeptide hormone angiotensin II (AngII) exerts a wide variety of cardiovascular effects through the activation of the angiotensin II type-1 (AT1) receptor, which belongs to the G protein-coupled receptor superfamily. Like other G protein-coupled receptors, the AT1 receptor possesses seven transmembrane domains that provide structural support for the formation of the ligand-binding pocket. In order to identify those residues in the second transmembrane domain (TMD2) that contribute to the formation of the binding pocket of the AT1 receptor, we used the substituted cysteine accessibility method. All of the residues within the Leu-70 to Trp-94 region were mutated one at a time to a cysteine, and, after expression in COS-7 cells, the mutant receptors were treated with the sulfhydryl-specific alkylating agent methanethiosulfonate-ethylammonium (MTSEA). MTSEA reacts selectively with water-accessible, free sulfhydryl groups of endogenous or introduced point mutation cysteines. If a cysteine is found in the binding pocket, the covalent modification will affect the binding kinetics of the ligand. MTSEA substantially decreased the binding affinity of D74C-AT1, L81C-AT1, A85C-AT1, T88C-AT1, and A89C-AT1 mutant receptors, which suggests that these residues orient themselves within the water-accessible binding pocket of the AT1 receptor. Interestingly, this pattern of acquired MTSEA sensitivity was altered for TMD2 reporter cysteines engineered in a constitutively active N111G-AT1 receptor background. Indeed, mutant D74C-N111G-AT1 became insensitive to MTSEA, whereas mutant L81C-N111G-AT1 lost some sensitivity and mutant V86C-N111G-AT1 became sensitive to MTSEA. Our results suggest that constitutive activation of the AT1 receptor causes TMD2 to pivot, bringing the top of TMD2 closer to the binding pocket and pushing the bottom of TMD2 away from the binding pocket. PMID:19276075

  1. The second transmembrane domain of the human type 1 angiotensin II receptor participates in the formation of the ligand binding pocket and undergoes integral pivoting movement during the process of receptor activation.

    Science.gov (United States)

    Domazet, Ivana; Holleran, Brian J; Martin, Stéphane S; Lavigne, Pierre; Leduc, Richard; Escher, Emanuel; Guillemette, Gaétan

    2009-05-01

    The octapeptide hormone angiotensin II (AngII) exerts a wide variety of cardiovascular effects through the activation of the angiotensin II type-1 (AT(1)) receptor, which belongs to the G protein-coupled receptor superfamily. Like other G protein-coupled receptors, the AT(1) receptor possesses seven transmembrane domains that provide structural support for the formation of the ligand-binding pocket. In order to identify those residues in the second transmembrane domain (TMD2) that contribute to the formation of the binding pocket of the AT(1) receptor, we used the substituted cysteine accessibility method. All of the residues within the Leu-70 to Trp-94 region were mutated one at a time to a cysteine, and, after expression in COS-7 cells, the mutant receptors were treated with the sulfhydryl-specific alkylating agent methanethiosulfonate-ethylammonium (MTSEA). MTSEA reacts selectively with water-accessible, free sulfhydryl groups of endogenous or introduced point mutation cysteines. If a cysteine is found in the binding pocket, the covalent modification will affect the binding kinetics of the ligand. MTSEA substantially decreased the binding affinity of D74C-AT(1), L81C-AT(1), A85C-AT(1), T88C-AT(1), and A89C-AT(1) mutant receptors, which suggests that these residues orient themselves within the water-accessible binding pocket of the AT(1) receptor. Interestingly, this pattern of acquired MTSEA sensitivity was altered for TMD2 reporter cysteines engineered in a constitutively active N111G-AT(1) receptor background. Indeed, mutant D74C-N111G-AT(1) became insensitive to MTSEA, whereas mutant L81C-N111G-AT(1) lost some sensitivity and mutant V86C-N111G-AT(1) became sensitive to MTSEA. Our results suggest that constitutive activation of the AT(1) receptor causes TMD2 to pivot, bringing the top of TMD2 closer to the binding pocket and pushing the bottom of TMD2 away from the binding pocket.

  2. Assessing potential forest and steel inter-industry residue utilisation by sequential chemical extraction

    Energy Technology Data Exchange (ETDEWEB)

    Makela, M.

    2012-10-15

    Traditional process industries in Finland and abroad are facing an emerging waste disposal problem due recent regulatory development which has increased the costs of landfill disposal and difficulty in acquiring new sites. For large manufacturers, such as the forest and ferrous metals industries, symbiotic cooperation of formerly separate industrial sectors could enable the utilisation waste-labeled residues in manufacturing novel residue-derived materials suitable for replacing commercial virgin alternatives. Such efforts would allow transforming the current linear resource use and disposal models to more cyclical ones and thus attain savings in valuable materials and energy resources. The work described in this thesis was aimed at utilising forest and carbon steel industry residues in the experimental manufacture of novel residue-derived materials technically and environmentally suitable for amending agricultural or forest soil properties. Single and sequential chemical extractions were used to compare the pseudo-total concentrations of trace elements in the manufactured amendment samples to relevant Finnish statutory limit values for the use of fertilizer products and to assess respective potential availability under natural conditions. In addition, the quality of analytical work and the suitability of sequential extraction in the analysis of an industrial solid sample were respectively evaluated through the analysis of a certified reference material and by X-ray diffraction of parallel sequential extraction residues. According to the acquired data, the incorporation of both forest and steel industry residues, such as fly ashes, lime wastes, green liquor dregs, sludges and slags, led to amendment liming capacities (34.9-38.3%, Ca equiv., d.w.) comparable to relevant commercial alternatives. Only the first experimental samples showed increased concentrations of pseudo-total cadmium and chromium, of which the latter was specified as the trivalent Cr(III). Based on

  3. Refolding and characterization of the functional ligand-binding domain of human lectin-like oxidized LDL receptor.

    Science.gov (United States)

    Xie, Qiuhong; Matsunaga, Shigeru; Shi, Xiaohua; Ogawa, Setsuko; Niimi, Setsuko; Wen, Zhesheng; Tokuyasu, Ken; Machida, Sachiko

    2003-11-01

    Lectin-like oxidized low-density lipoprotein receptor (LOX-1), a type II membrane protein that can recognize a variety of structurally unrelated macromolecules, plays an important role in host defense and is implicated in atherogenesis. To understand the interaction between human LOX-1 and its ligands, in this study the functional C-type lectin-like domain (CTLD) of LOX-1 was reconstituted at high efficiency from inactive aggregates in Escherichia coli using a refolding technique based on an artificial chaperone. The CD spectra of the purified domain suggested that the domain has alpha-helical structure and the blue shift of Trp residues was observed on refolding of the domain. Like wild-type hLOX-1, the refolded CTLD domain was able to bind modified LDL. Thus, even though CTLD contains six Cys residues that form disulfide bonds, it recovered its specific binding ability on refolding. This suggests that the correct disulfide bonds in CTLD were formed by the artificial chaperone technique. Although the domain lacked N-glycosylation, it showed high affinity for its ligand in surface plasmon resonance experiments. Thus, unglycosylated CTLD is sufficient for binding modified LDL.

  4. Probing ligand binding modes of Mycobacterium tuberculosis MurC ligase by molecular modeling, dynamics simulation and docking.

    Science.gov (United States)

    Anuradha, C M; Mulakayala, Chaitanya; Babajan, Banaganapalli; Naveen, M; Rajasekhar, Chikati; Kumar, Chitta Suresh

    2010-01-01

    Multi drug resistance capacity for Mycobacterium tuberculosis (MDR-Mtb) demands the profound need for developing new anti-tuberculosis drugs. The present work is on Mtb-MurC ligase, which is an enzyme involved in biosynthesis of peptidoglycan, a component of Mtb cell wall. In this paper the 3-D structure of Mtb-MurC has been constructed using the templates 1GQQ and 1P31. Structural refinement and energy minimization of the predicted Mtb-MurC ligase model has been carried out by molecular dynamics. The streochemical check failures in the energy minimized model have been evaluated through Procheck, Whatif ProSA, and Verify 3D. Further torsion angles for the side chains of amino acid residues of the developed model were determined using Predictor. Docking analysis of Mtb-MurC model with ligands and natural substrates enabled us to identify specific residues viz. Gly125, Lys126, Arg331, and Arg332, within the Mtb-MurC binding pocket to play an important role in ligand and substrate binding affinity and selectivity. The availability of Mtb-MurC ligase built model, together with insights gained from docking analysis will promote the rational design of potent and selective Mtb-MurC ligase inhibitors as antituberculosis therapeutics.

  5. Compositional analysis and projected biofuel potentials from common West African agricultural residues

    DEFF Research Database (Denmark)

    Thomsen, Sune Tjalfe; Kádár, Zsófia; Schmidt, Jens Ejbye

    2014-01-01

    In recent years the focus on sustainable biofuel production from agricultural residues has increased considerably. However, the scientific work within this field has predominantly been concentrated upon bioresources from industrialised and newly industrialised countries, while analyses of the res......In recent years the focus on sustainable biofuel production from agricultural residues has increased considerably. However, the scientific work within this field has predominantly been concentrated upon bioresources from industrialised and newly industrialised countries, while analyses......, cassava stalks, plantain peelings, plantain trunks, plantain leaves, cocoa husks, cocoa pods, maize cobs, maize stalks, rice straw, groundnut straw and oil palm empty fruit bunches. The yam peelings showed the highest methane and bioethanol potentials, with 439 L methane (kg Total Solids)−1 and 0.61 L...... bioethanol (kg TS)−1 based on starch and cellulose alone due to their high starch content and low content of un-biodegradable lignin and ash. A complete biomass balance was done for each of the 13 residues, providing a basis for further research into the production of biofuels or biorefining from West...

  6. Characterisation of agroindustrial solid residues as biofuels and potential application in thermochemical processes.

    Science.gov (United States)

    Virmond, Elaine; De Sena, Rennio F; Albrecht, Waldir; Althoff, Christine A; Moreira, Regina F P M; José, Humberto J

    2012-10-01

    In the present work, selected agroindustrial solid residues from Brazil - biosolids from meat processing wastewater treatment and mixture of sawdust with these biosolids; residues from apple and orange juice industries; sugarcane bagasse; açaí kernels (Euterpe oleracea) and rice husk - were characterised as solid fuels and an evaluation of their properties, including proximate and ultimate composition, energy content, thermal behaviour, composition and fusibility of the ashes was performed. The lower heating value of the biomasses ranged from 14.31 MJkg(-1) to 29.14 MJkg(-1), on a dry and ash free basis (daf), all presenting high volatile matter content, varying between 70.57 wt.% and 85.36 wt.% (daf) what improves the thermochemical conversion of the solids. The fouling and slagging tendency of the ashes was predicted based on the fuel ash composition and on the ash fusibility correlations proposed in the literature, which is important to the project and operation of biomass conversion systems. The potential for application of the Brazilian agroindustrial solid residues studied as alternative energy sources in thermochemical processes has been identified, especially concerning direct combustion for steam generation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Residual mitochondrial transmembrane potential decreases unsaturated fatty acid level in sake yeast during alcoholic fermentation

    Directory of Open Access Journals (Sweden)

    Kazutaka Sawada

    2016-01-01

    Full Text Available Oxygen, a key nutrient in alcoholic fermentation, is rapidly depleted during this process. Several pathways of oxygen utilization have been reported in the yeast Saccharomyces cerevisiae during alcoholic fermentation, namely synthesis of unsaturated fatty acid, sterols and heme, and the mitochondrial electron transport chain. However, the interaction between these pathways has not been investigated. In this study, we showed that the major proportion of unsaturated fatty acids of ester-linked lipids in sake fermentation mash is derived from the sake yeast rather than from rice or koji (rice fermented with Aspergillus. Additionally, during alcoholic fermentation, inhibition of the residual mitochondrial activity of sake yeast increases the levels of unsaturated fatty acids of ester-linked lipids. These findings indicate that the residual activity of the mitochondrial electron transport chain reduces molecular oxygen levels and decreases the synthesis of unsaturated fatty acids, thereby increasing the synthesis of estery flavors by sake yeast. This is the first report of a novel link between residual mitochondrial transmembrane potential and the synthesis of unsaturated fatty acids by the brewery yeast during alcoholic fermentation.

  8. Full domain closure of the ligand-binding core of the ionotropic glutamate receptor iGluR5 induced by the high affinity agonist dysiherbaine and the functional antagonist 8,9-dideoxyneodysiherbaine

    DEFF Research Database (Denmark)

    Frydenvang, Karla Andrea; Lash, L Leanne; Naur, Peter

    2009-01-01

    The prevailing structural model for ligand activation of ionotropic glutamate receptors posits that agonist efficacy arises from the stability and magnitude of induced domain closure in the ligand-binding core structure. Here we describe an exception to the correlation between ligand efficacy and...

  9. The binding cavity of mouse major urinary protein is optimised for a variety of ligand binding modes

    Energy Technology Data Exchange (ETDEWEB)

    Pertinhez, Thelma A.; Ferrari, Elena; Casali, Emanuela [Department of Experimental Medicine, University of Parma, Via Volturno, 39, 43100 Parma (Italy); Patel, Jital A. [Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR (United Kingdom); Spisni, Alberto, E-mail: alberto.spisni@unipr.it [Department of Experimental Medicine, University of Parma, Via Volturno, 39, 43100 Parma (Italy); Smith, Lorna J., E-mail: lorna.smith@chem.ox.ac.uk [Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR (United Kingdom)

    2009-12-25

    {sup 15}N and {sup 1}HN chemical shift data and {sup 15}N relaxation studies have been used to characterise the binding of N-phenyl-naphthylamine (NPN) to mouse major urinary protein (MUP). NPN binds in the {beta}-barrel cavity of MUP, hydrogen bonding to Tyr120 and making extensive non-bonded contacts with hydrophobic side chains. In contrast to the natural pheromone 2-sec-butyl-4,5-dihydrothiazole, NPN binding gives no change to the overall mobility of the protein backbone of MUP. Comparison with 11 different ligands that bind to MUP shows a range of binding modes involving 16 different residues in the {beta}-barrel cavity. These finding justify why MUP is able to adapt to allow for many successful binding partners.

  10. Functional analysis of the citrate activator CitO from Enterococcus faecalis implicates a divalent metal in ligand binding

    Directory of Open Access Journals (Sweden)

    Victor S. Blancato

    2016-02-01

    Full Text Available The regulator of citrate metabolism, CitO, from Enterococcus faecalis belongs to the FCD family within the GntR superfamily. In the presence of citrate, CitO binds to cis-acting sequences located upstream of the cit promoters inducing the expression of genes involved in citrate utilization. The quantification of the molecular binding affinities, performed by isothermal titration calorimetry (ITC, indicated that CitO has a high affinity for citrate (KD= 1.2±0.2 µM, while it did not recognize other metabolic intermediates. Based on a structural model of CitO where a putative small molecule and a metal binding site were identified, it was hypothesized that the metal ion is required for citrate binding. In agreement with this model, citrate binding to CitO sharply decreased when the protein was incubated with EDTA. This effect was reverted by the addition of Ni2+, and Zn2+ to a lesser extent. Structure-based site-directed mutagenesis was conducted and it was found that changes to alanine in residues Arg97 and His191 resulted in decreased binding affinities for citrate, as determined by EMSA and ITC. Further assays using lacZ fusions confirmed that these residues in CitO are involved in sensing citrate in vivo. These results indicate that the molecular modifications induced by a ligand and a metal binding in the C-terminal domain of CitO are required for optimal DNA binding activity, and consequently, transcriptional activation.

  11. Selective oxidation of methionine residues in apolipoprotein A-I and its potential biological consequences

    International Nuclear Information System (INIS)

    Panzenboeck, U.; Waldeck, R.; Rye, K.A.; Sloane, T.; Kritharides, L.; Stocker, R.

    1998-01-01

    findings suggest that selective oxidation of Met residues of apo A-I may enhance rather than diminish known antiatherogenic activities of the apolipoprotein. Thus, our results are consistent with the overall hypothesis that detoxification of lipid hydroperoxides by Met residues of apo A-I is potentially antiatherogenic

  12. Babassu nut residues: potential for bioenergy use in the North and Northeast of Brazil.

    Science.gov (United States)

    de Paula Protásio, Thiago; Fernando Trugilho, Paulo; da Silva César, Antônia Amanda; Napoli, Alfredo; Alves de Melo, Isabel Cristina Nogueira; Gomes da Silva, Marcela

    2014-01-01

    Babassu is considered the largest native oil resource worldwide and occurs naturally in Brazil. The purpose of this study was to evaluate the potential of babassu nut residues (epicarp, mesocarp and endocarp) for bioenergy use, especially for direct combustion and charcoal production. The material was collected in the rural area of the municipality of Sítio Novo do Tocantins, in the state of Tocantins, Brazil. Analyses were performed considering jointly the three layers that make up the babassu nut shell. The following chemical characterizations were performed: molecular (lignin, total extractives and holocellulose), elemental (C, H, N, S and O), immediate (fixed carbon, volatiles and ash), energy (higher heating value and lower heating value), physical (basic density and energy density) and thermal (thermogravimetry and differential thermal analysis), besides the morphological characterization by scanning electron microscopy. Babassu nut residues showed a high bioenergy potential, mainly due to their high energy density. The use of this biomass as a bioenergy source can be highly feasible, given their chemical and thermal characteristics, combined with a low ash content. Babassu nut shell showed a high basic density and a suitable lignin content for the sustainable production of bioenergy and charcoal, capable of replacing coke in Brazilian steel plants.

  13. Objective selection of EEG late potentials through residual dependence estimation of independent components

    International Nuclear Information System (INIS)

    Milanesi, M; James, C J; Martini, N; Menicucci, D; Gemignani, A; Ghelarducci, B; Landini, L

    2009-01-01

    This paper presents a novel method to objectively select electroencephalographic (EEG) cortical sources estimated by independent component analysis (ICA) in event-related potential (ERP) studies. A proximity measure based on mutual information is employed to estimate residual dependences of the components that are then hierarchically clustered based on these residual dependences. Next, the properties of each group of components are evaluated at each level of the hierarchical tree by two indices that aim to assess both cluster tightness and physiological reliability through a template matching process. These two indices are combined in three different approaches to bring to light the hierarchical structure of the cluster organizations. Our method is tested on a set of experiments with the purpose of enhancing late positive ERPs elicited by emotional picture stimuli. Results suggest that the best way to look for physiologically plausible late positive potential (LPP) sources is to explore in depth the tightness of those clusters that, taken together, best resemble the template. According to our results, after brain sources clustering, LPPs are always identified more accurately than from ensemble-averaged raw data. Since the late components of an ERP involve the same associative areas, regardless of the modality of stimulation or specific tasks administered, the proposed method can be simply adapted to other ERP studies, and extended from psychophysiological studies to pathological or sport training evaluation support

  14. Anaerobic biodegradability and methane potential of crop residue co-digested with buffalo dung

    International Nuclear Information System (INIS)

    Sahito, A.R.; Mahar, R.B.; Brohi, K.M.

    2013-01-01

    ABD (Anaerobic Biodegradability) and BMP (Biochemical Methane Potential) of banana plant waste, canola straw, cotton stalks, rice straw, sugarcane trash and wheat straw co-digested with buffalo dung was evaluated through AMPTS (Automatic Methane Potential Test System). The substrates were analyzed for moisture, TS (Total Solids) and VS (Volatile Solids), ultimate analysis (CHONS), pH and TA (Total Alkalinity). The BMP/sub observed/ during incubation of 30 days at the temperature of 37+-0.2+-degree C was 322 Nml CH4/g VSadd for wheat straw followed by 260, 170, 149, 142 and 138 Nml CH4/gVS/sub add/ for canola straw, rice straw, cotton stalks, banana plant waste and sugarcane trash respectively, whereas the maximum theoretical BMP was 481 Nml CH/sub 4//gVS/sub add/ for cotton stalks, followed by 473, 473, 446, 432 and 385 Nml CH/sub 4//gVS/sub add/ for wheat straw, banana plant waste, canola straw, rice straw and sugarcane trash respectively. The percentage ABD values were in the range of 68-30%. In addition to this, the effect of lignin content in the crop residue was evaluated on the ABD. The results of this study indicate that, the co-digestion of the crop residues with buffalo dung is feasible for production of renewable methane. (author)

  15. Anaerobic Biodegradability and Methane Potential of Crop Residue Co-Digested with Buffalo Dung

    Directory of Open Access Journals (Sweden)

    Abdul Razaque Sahito

    2013-07-01

    Full Text Available ABD (Anaerobic Biodegradability and BMP (Biochemical Methane Potential of banana plant waste, canola straw, cotton stalks, rice straw, sugarcane trash and wheat straw co-digested with buffalo dung was evaluated through AMPTS (Automatic Methane Potential Test System. The substrates were analyzed for moisture, TS (Total Solids and VS (Volatile Solids, ultimate analysis (CHONS, pH and TA (Total Alkalinity. The BMPobserved during incubation of 30 days at the temperature of 37±0.2°C was 322 Nml CH4/g VSadd for wheat straw followed by 260, 170, 149, 142 and 138 Nml CH4/gVSadd for canola straw, rice straw, cotton stalks, banana plant waste and sugarcane trash respectively, whereas the maximum theoretical BMP was 481 Nml CH4/gVSadd for cotton stalks, followed by 473, 473, 446, 432 and 385 Nml CH4/gVSadd for wheat straw, banana plant waste, canola straw, rice straw and sugarcane trash respectively. The percentage ABD values were in the range of 68-30%. In addition to this, the effect of lignin content in the crop residue was evaluated on the ABD. The results of this study indicate that, the co-digestion of the crop residues with buffalo dung is feasible for production of renewable methane

  16. A pairwise residue contact area-based mean force potential for discrimination of native protein structure

    Directory of Open Access Journals (Sweden)

    Pezeshk Hamid

    2010-01-01

    Full Text Available Abstract Background Considering energy function to detect a correct protein fold from incorrect ones is very important for protein structure prediction and protein folding. Knowledge-based mean force potentials are certainly the most popular type of interaction function for protein threading. They are derived from statistical analyses of interacting groups in experimentally determined protein structures. These potentials are developed at the atom or the amino acid level. Based on orientation dependent contact area, a new type of knowledge-based mean force potential has been developed. Results We developed a new approach to calculate a knowledge-based potential of mean-force, using pairwise residue contact area. To test the performance of our approach, we performed it on several decoy sets to measure its ability to discriminate native structure from decoys. This potential has been able to distinguish native structures from the decoys in the most cases. Further, the calculated Z-scores were quite high for all protein datasets. Conclusions This knowledge-based potential of mean force can be used in protein structure prediction, fold recognition, comparative modelling and molecular recognition. The program is available at http://www.bioinf.cs.ipm.ac.ir/softwares/surfield

  17. Composition, texture and methane potential of cellulosic residues from Lewis acids organosolv pulping of wheat straw.

    Science.gov (United States)

    Constant, Sandra; Barakat, Abdellatif; Robitzer, Mike; Di Renzo, Francesco; Dumas, Claire; Quignard, Françoise

    2016-09-01

    Cellulosic pulps have been successfully isolated from wheat straw through a Lewis acids organosolv treatment. The use of Lewis acids with different hardness produced pulps with different delignification degrees. The cellulosic residue was characterised by chemical composition, X-ray diffraction, FT-IR spectroscopy, N2 physisorption, scanning electron microscopy and potential for anaerobic digestibility. Surface area and pore volume increased with the hardness of the Lewis acid, in correspondence with the decrease of the amount of lignin and hemicellulose in the pulp. The non linearity of the correlation between porosity and composition suggests that an agglomeration of cellulose fibrils occurs in the early stages of pulping. All organosolv pulps presented a significantly higher methane potential than the parent straw. A methane evolution of 295Ncm(3)/g OM was reached by a moderate improvement of the accessibility of the native straw. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Crop residues as a potential renewable energy source for Malawi's cement industry

    DEFF Research Database (Denmark)

    Gondwe, Kenneth J.; Chiotha, Sosten S.; Mkandawire, Theresa

    2017-01-01

    that the projected total energy demands in 2020, 2025 and 2030 were approximately 177 810 TJ, 184 210 TJ and 194 096 TJ respectively. The highest supply potentials were found to be in the central and southern regions of Malawi, coinciding with the locations of the two clinker plants. Crop residues could meet 45......-57% of the national total energy demand. The demand from the cement industry is only 0.8% of the estimated biomass energy potential. At an annual production of 600 000 t of clinker and 20% biomass co-firing with coal, 18 562 t of coal consumption would be avoided and 46 128 t of carbon dioxide emission reduction...

  19. CHARACTERISTICS OF COMPOSTED BIO-TOILET RESIDUE AND ITS POTENTIAL USE AS A SOIL CONDITIONER

    Directory of Open Access Journals (Sweden)

    Jovita Triastuti

    2016-10-01

    Full Text Available Bio-toilet is a dry toilet where human excreta is trapped in a lignocelluloses soil matrix such as wood sawdust, then it is decomposed by aerobic  bacteria to organic compost rich in minerals such as N, P, and K. The study aimed to characterize the bio-toilet residue and its potential use as a soil conditioner for Jatropha curcas. The study was conducted in a private school of Daarut Tauhid in Bandung West Java. A bio-toilet S-50 type of Japan was constructed consisting of a composting chamber, mixer, heater, exhaust fan, and closet. The composting chamber was filled with 63 kg of Albizzia sawdust. Feces and urine was loaded daily by 54 students for 122-day observation. At the end of observation, the decomposed bio-toilet residue was evaluated for its physical properties such as bulk density (rb, porosity (%, and water retention (WR. Chemical properties such as pH, C/N ratio, N, P, and K, as well as microbiological properties such as numbers of bacteria, fungi, and worm eggs were evaluated at 14 and 122 days of decomposition process. Effect of the composted bio-toilet residue as plant growth media was evaluated using J. curcass as a plant indicator. Before it was used as a growth media, the composted bio-toilet residue was dried in a room temperature for 30 days. The experiment was designed in a completely randomized design 2 x 4 factorial with three replications. The first factor was the rate of composted biotoilet residue, i.e., 0, 20, 40, and 60% based on weight of the growth media mixture (1500 g pot-1, and the second was NPK fertilizer addition at 0 and 2 g pot-1. Each pot was planted with 2-month old of J. curcas seedlings. Parameters evaluated were leaf number, leaf area, stem height, and stem diameter measured at 12 weeks after planting. The results showed that the biotoilet residue was suitable as soil conditioner because it had high porosity (76%, low bulk density (0.19 g cm-3, high water retention (2.6 ml g-1 DM, neutral pH (6.9, C

  20. Distribution, utilization structure and potential of biomass resources in rural China: With special references of crop residues

    Energy Technology Data Exchange (ETDEWEB)

    Liu, H [Laboratory of Quantitative Vegetation Ecology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing 100093 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Jiang, G M [Laboratory of Quantitative Vegetation Ecology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing 100093 (China); Agronomy Department, Shandong Agricultural University, Tai' an 271018, Shandong Province (China); Zhuang, H Y [National Bio-Energy CO., LTD, No. 26B, Financial Street, Xicheng District, Beijing 100032 (China); Shandong Academy of Sciences, No. 19, Keyuan Road, Ji' nan 250014, Shandong Province (China); Wang, K J [Agronomy Department, Shandong Agricultural University, Tai' an 271018, Shandong Province (China)

    2008-06-15

    As the largest developing country in the world, China is urgently in short of energy and natural resources. However, biological resources such as crop residues are burnt in the field, which cause serious environmental pollution. Still it is not clear how much storage and potential of these huge crop residues are in China. This paper firstly reported the distribution, utilization structure and potential of crop biomass and provided the tangible information of crop residues in rural China through careful collecting and recalculating data. From 1995 to 2005, China produces some 630 million tons of crop residues per year, 50% of which comes from east and central south of China. The amount of crop residues is 1.3 times of the total yield of crops, 2 times of the total fodder of grassland, which covers 41% of China's territory. Crop residues of corn, wheat and rice amounted to 239, 137 and 116 million tons, respectively, accounting for nearly 80% of the total crop residues. Unfortunately, the utilizing structure is seriously improper for such abundant biomass resources. Although 23% of the crop residues are used for forage, 4% for industry materials and 0.5% for biogas, the large parts are used with lower efficiency or wasted, with 37% being directly combusted by farmers, 15% lost during collection and the rest 20.5% discarded or directly burnt in the field. Reasonable adjustment of the utilizing pattern and popularization of the recycling agriculture are essential out-ways for residues, with the development of the forage industry being the breakthrough point. We suggested that utilizing the abandoned 20.5% of the total residues for forage and combining agriculture and stock raising can greatly improve the farm system and cut down fertilizer pollution. Through the development of forage industries, the use efficiency of crop residues could be largely enhanced. Commercializing and popularizing technologies of biomass gasification and liquefaction might be substitute

  1. firestar--advances in the prediction of functionally important residues.

    Science.gov (United States)

    Lopez, Gonzalo; Maietta, Paolo; Rodriguez, Jose Manuel; Valencia, Alfonso; Tress, Michael L

    2011-07-01

    firestar is a server for predicting catalytic and ligand-binding residues in protein sequences. Here, we present the important developments since the first release of firestar. Previous versions of the server required human interpretation of the results; the server is now fully automatized. firestar has been implemented as a web service and can now be run in high-throughput mode. Prediction coverage has been greatly improved with the extension of the FireDB database and the addition of alignments generated by HHsearch. Ligands in FireDB are now classified for biological relevance. Many of the changes have been motivated by the critical assessment of techniques for protein structure prediction (CASP) ligand-binding prediction experiment, which provided us with a framework to test the performance of firestar. URL: http://firedb.bioinfo.cnio.es/Php/FireStar.php.

  2. Pharmaceutical consumption and residuals potentially relevant to nutrient cycling in Greater Accra, Ghana

    Directory of Open Access Journals (Sweden)

    Evren Sinar

    2010-04-01

    Full Text Available Recycling nutrients form sanitary wastes back into agricultural ecosystems offers an option to alleviate soil depletion in regions where the use of mineral fertiliser is limited. Exemplary nutrient and water cycling approaches, including collection, treatment and use of human urine, are established at Valley View University (VVU in Greater Accra, Ghana.Concerns have been recently raised in regard to fate and impact of pharmaceutical residues in soils and interlinked environment. To evaluate in how far emerging knowledge can be transposed onto VVU, urban and rural environments in Greater Accra, spatial disease occurrence and drug consumption patterns were studied. Malaria has been found to represent the most severe health burden in Ghana, but there is also a high prevalence of infectious diseases. Drugs consumed in great quantities and in respect to their residual loads potentially problematic in the environment belong to therapeutic groups of: antibiotics, analgesics, drugs for diabetes, antimalarials, cardiovascular drugs and anthelmintics. Drug consumption revealed to be highest in urban and lowest in rural areas. At VVU the range of consumed drugs is comparable to urban areas except for the negligible use of diabetes and cardiovascular medication as well as contraceptives.

  3. Synthesis of [Dy(DPA)(HDPA)] and its potential as gunshot residue marker

    Energy Technology Data Exchange (ETDEWEB)

    Melo Lucena, Marcella A. [PGMTR - CCEN, Federal University of Pernambuco - UFPE, Avenida Professor Luiz Freire, S/N, Cidade Universitária, 50740-540 Recife (Brazil); Rodrigues, Marcelo Oliveira; Gatto, Claudia C. [LIMA, Chemistry Institute, University of Brasília-UNB, P.O. Box 04478, 70904-970 Brasília (Brazil); Talhavini, Marcio; Maldaner, Adriano O. [National Institute of Criminalistics, Brazilian Federal Police, SAIS Quadra 07, Lote 23, 70610-200 Brasília, DF (Brazil); Alves, Severino [Fundamental Chemistry Department-DQF, Federal University of Pernambuco - UFPE, Avenida Professor Luiz Freire, S/N, Cidade Universitária, 50740-540 Recife (Brazil); Weber, Ingrid T., E-mail: ingrid@ufpe.br [PGMTR - CCEN, Federal University of Pernambuco - UFPE, Avenida Professor Luiz Freire, S/N, Cidade Universitária, 50740-540 Recife (Brazil); LIMA, Chemistry Institute, University of Brasília-UNB, P.O. Box 04478, 70904-970 Brasília (Brazil)

    2016-02-15

    The 2D metal-organic framework (MOF) [Dy(DPA)(HDPA)] (where H{sub 2}DPA=dipicolinic acid) was synthesized under hydrothermal conditions and exhibited a whitish yellow color (CIE coordinates: 0.362, 0.416) when excited at 365 nm. This color arises from the simultaneous blue ({sup 4}F{sub 9/2}–{sup 6}H{sub 15/2}), yellow ({sup 4}F{sub 9/2}–{sup 6}H{sub 13/2}) and red ({sup 4}F{sub 9/2}–{sup 6}H{sub 11/2}) transitions of Dy{sup 3+}. This MOF exhibited a high potential for use as a luminescent marker for gunshot residue (GSR) and in the ammunition encoding process because it was possible to observe visually the luminescent gunshot residue (LGSR) on the shooter’s hands, both on the firearm and at the firing range, using an UV lamp. These particles were easily collected and characterized by photoluminescence spectroscopy and SEM–EDS. The particles exhibited a typical morphology and a composition, making them easy to differentiate from particles of occupational or environmental origin. - Highlights: • First example of a luminescent GSR marker based on Dy{sup 3+} luminescence. • New luminescent marker which can be used for ammunition encoding process. • Thermal and chemically stable MOF which can be used to visually identify GSR.

  4. A parallel panning scheme used for selection of a GluA4-specific Fab targeting the ligand-binding domain

    DEFF Research Database (Denmark)

    Clausen, Rasmus P; Mohr, Andreas Ø; Riise, Erik

    2016-01-01

    A method for development of murine Fab fragments towards extracellular domains of a surface receptor is presented. The GluA4 ionotropic glutamate receptor is used as a model system. Recombinant GluA4 ectodomain comprising both the N-terminal domain (NTD) and the ligand-binding domain (LBD) in one...... molecule was used for immunization. A Fab-phage library was constructed and a parallel panning approach enabled selection of murine Fab fragments towards either intact ectodomain or the isolated LBD of the GluA4 receptor. One LBD-Fab (FabL9) showed exclusive selectivity for the GluA4 LBD, over a panel...... of LBDs from GluA2, GluK1, GluK2 and GluD2. Soluble FabL9 was produced in amounts suitable for characterization. Competitive ELISA and rat-brain immunoprecipitation experiments confirmed that the FabL9 epitope is conserved in the LBD and in the intact native receptor. By an alignment of GluA2 and GluA4...

  5. Covalent labeling of the beta-adrenergic ligand-binding site with para-(bromoacetamidyl)benzylcarazolol. A highly potent beta-adrenergic affinity label

    International Nuclear Information System (INIS)

    Dickinson, K.E.; Heald, S.L.; Jeffs, P.W.; Lefkowitz, R.J.; Caron, M.G.

    1985-01-01

    Para-(Bromoacetamidyl)benzylcarazolol (pBABC) was synthesized and found to be an extremely potent affinity label for beta-adrenergic receptors. Its interaction with mammalian (rabbit and hamster lung) and nonmammalian (turkey and frog erythrocyte) beta-adrenergic receptors was similar, displaying EC 50 values of 400-900 pM for inhibiting 125 I-cyanopindolol binding to these receptors. pBABC reduced the number of beta-adrenergic receptors in frog erythrocyte membranes, without any change in the affinity of the remaining sites for [ 125 I]iodocyanopindolol. pBABC has been radioiodinated. As assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, this affinity probe specifically labeled the beta-adrenergic peptide of a purified preparation of hamster lung, with high efficiency (approximately 40%) and with a pharmacological specificity characteristic of an interaction at the beta 2-adrenergic receptor ligand-binding site. Comparison of the proteolyzed products derived from purified receptor labeled with [ 125 I]pBABC and with the photoaffinity agent [ 125 I]p-azidobenzylcarazolol suggested that covalent labeling of the beta-adrenergic receptor by these probes occurs at similar domains of the beta-adrenergic receptor

  6. Affinity-based, biophysical methods to detect and analyze ligand binding to recombinant proteins: matching high information content with high throughput.

    Science.gov (United States)

    Holdgate, Geoff A; Anderson, Malcolm; Edfeldt, Fredrik; Geschwindner, Stefan

    2010-10-01

    Affinity-based technologies have become impactful tools to detect, monitor and characterize molecular interactions using recombinant target proteins. This can aid the understanding of biological function by revealing mechanistic details, and even more importantly, enables the identification of new improved ligands that can modulate the biological activity of those targets in a desired fashion. The selection of the appropriate technology is a key step in that process, as each one of the currently available technologies offers a characteristic type of biophysical information about the ligand-binding event. Alongside the indisputable advantages of each of those technologies they naturally display diverse restrictions that are quite frequently related to the target system to be studied but also to the affinity, solubility and molecular size of the ligands. This paper discusses some of the theoretical and experimental aspects of the most common affinity-based methods, what type of information can be gained from each one of those approaches, and what requirements as well as limitations are expected from working with recombinant proteins on those platforms and how those can be optimally addressed.

  7. The IntFOLD server: an integrated web resource for protein fold recognition, 3D model quality assessment, intrinsic disorder prediction, domain prediction and ligand binding site prediction.

    Science.gov (United States)

    Roche, Daniel B; Buenavista, Maria T; Tetchner, Stuart J; McGuffin, Liam J

    2011-07-01

    The IntFOLD server is a novel independent server that integrates several cutting edge methods for the prediction of structure and function from sequence. Our guiding principles behind the server development were as follows: (i) to provide a simple unified resource that makes our prediction software accessible to all and (ii) to produce integrated output for predictions that can be easily interpreted. The output for predictions is presented as a simple table that summarizes all results graphically via plots and annotated 3D models. The raw machine readable data files for each set of predictions are also provided for developers, which comply with the Critical Assessment of Methods for Protein Structure Prediction (CASP) data standards. The server comprises an integrated suite of five novel methods: nFOLD4, for tertiary structure prediction; ModFOLD 3.0, for model quality assessment; DISOclust 2.0, for disorder prediction; DomFOLD 2.0 for domain prediction; and FunFOLD 1.0, for ligand binding site prediction. Predictions from the IntFOLD server were found to be competitive in several categories in the recent CASP9 experiment. The IntFOLD server is available at the following web site: http://www.reading.ac.uk/bioinf/IntFOLD/.

  8. Statistical Estimation of the Protein-Ligand Binding Free Energy Based On Direct Protein-Ligand Interaction Obtained by Molecular Dynamics Simulation

    Directory of Open Access Journals (Sweden)

    Haruki Nakamura

    2012-09-01

    Full Text Available We have developed a method for estimating protein-ligand binding free energy (DG based on the direct protein-ligand interaction obtained by a molecular dynamics simulation. Using this method, we estimated the DG value statistically by the average values of the van der Waals and electrostatic interactions between each amino acid of the target protein and the ligand molecule. In addition, we introduced fluctuations in the accessible surface area (ASA and dihedral angles of the protein-ligand complex system as the entropy terms of the DG estimation. The present method included the fluctuation term of structural change of the protein and the effective dielectric constant. We applied this method to 34 protein-ligand complex structures. As a result, the correlation coefficient between the experimental and calculated DG values was 0.81, and the average error of DG was 1.2 kcal/mol with the use of the fixed parameters. These results were obtained from a 2 nsec molecular dynamics simulation.

  9. Shape and depth determinations from second moving average residual self-potential anomalies

    International Nuclear Information System (INIS)

    Abdelrahman, E M; El-Araby, T M; Essa, K S

    2009-01-01

    We have developed a semi-automatic method to determine the depth and shape (shape factor) of a buried structure from second moving average residual self-potential anomalies obtained from observed data using filters of successive window lengths. The method involves using a relationship between the depth and the shape to source and a combination of windowed observations. The relationship represents a parametric family of curves (window curves). For a fixed window length, the depth is determined for each shape factor. The computed depths are plotted against the shape factors, representing a continuous monotonically increasing curve. The solution for the shape and depth is read at the common intersection of the window curves. The validity of the method is tested on a synthetic example with and without random errors and on two field examples from Turkey and Germany. In all cases examined, the depth and the shape solutions obtained are in very good agreement with the true ones

  10. Assessment of the potential radiological impact of residual contamination in the Maralinga and Emu areas

    International Nuclear Information System (INIS)

    Haywood, S.M.; Smith, J.

    1990-10-01

    The report presents an assessment of potential doses to future inhabitants of the Maralinga and Emu areas of Southern Australia, where nuclear weapons tests in the 1950s and 1960s resulted in widespread residual radioactive contamination. Annual effective doses of several millisieverts would be expected to result from continual occupancy within contours enclosing areas of several hundred square kilometres. Larger predicted annual effective doses - of the order of 0.5 Sv -would be expected to occur from 100% occupancy in small regions immediately surrounding the test sites, but continual occupancy of such areas is highly unlikely because of their small size. The most significant dose pathways are inhalation of resuspended activity and ingestion of soil by infants. An analysis of the effects of uncertainties in the dose calculation indicated the uncertainty distribution on predicted doses from the inhalation pathway. (author)

  11. Residues, Sources and Potential Biological Risk of Organochlorine Pesticides in Surface Sediments of Qiandao Lake, China.

    Science.gov (United States)

    Yang, Huayun; Zhou, Shanshan; Li, Weidong; Liu, Qi; Tu, Yunjie

    2015-10-01

    Sediment samples were analyzed to comprehensively characterize the concentrations, distribution, possible sources and potential biological risk of organochlorine pesticides in Qiandao Lake, China. Concentrations of sumHCH and sumDDT in sediments ranged from 0.03 to 5.75 ng/g dry weight and not detected to 14.39 ng/g dry weight. The predominant β-HCH and the α-HCH/γ-HCH ratios indicated that the residues of HCHs were derived not only from historical technical HCH use but also from additional usage of lindane. Ratios of o,p'-DDT/p,p'-DDT and DDD/DDE suggested that both dicofol-type DDT and technical DDT applications may be present in most study areas. Additionally, based on two sediment quality guidelines, γ-HCH, o,p'-DDT and p,p'-DDT could be the main organochlorine pesticides species of ecotoxicological concern in Qiandao Lake.

  12. Baryon femtoscopy considering residual correlations as a tool to extract strong interaction potentials

    Directory of Open Access Journals (Sweden)

    Szymański Maciej

    2015-01-01

    Full Text Available In this article, the analysis of baryon-antibaryon femtoscopic correlations is presented. In particular, it is shown that taking into account residual correlations is crucial for the description of pΛ¯$\\bar \\Lambda $ and p̄Λ correlation functions measured by the STAR experiment in Au–Au collisions at the centre-of-mass energy per nucleon pair √sNN = 200 GeV. This approach enables to obtain pΛ¯$\\bar \\Lambda $ (p̄Λ source size consistent with the sizes extracted from correlations in pΛ (p̄Λ¯$\\bar \\Lambda $ and lighter pair systems as well as with model predictions. Moreover, with this analysis it is possible to derive the unknown parameters of the strong interaction potential for baryon-antibaryon pairs under several assumptions.

  13. Effect of pre-treatments on methane production potential of energy crops and crop residues

    Energy Technology Data Exchange (ETDEWEB)

    Lehtomaki, A.; Ronkainen; Rintala, J.A. [Jyvaskla Univ. (Finland). Dept. of Biological and Environmental Sciences; Viinikainen, T.A. [Jyvaskla Univ. (Finland). Dept. of Chemistry

    2004-07-01

    Energy crops, that is, crops grown specifically for energy purposes are an alternative to food production in areas with sufficient agricultural land. Crop residues are also a potential source of energy. The anaerobic digestion of solid materials is limited by hydrolysis of complex polymeric substances such as lignocellulose. The methane producing potential of ligno cellulosic material is to pretreat the substrate in order to break up the polymer chains to more easily accessible soluble compounds. In this study, three different substrates were used: sugar beet tops, grass hay, and straw of oats. Biological pretreatments were the following: enzyme treatment, composting, white-rot fungi treatment. Also, pretreatment in water was tried. Chemical pretreatments included peracetic acid treatment, and treatment with two different alkalis. Alkaline pretreatments of hay and sugar beet tops have the potential to improve the methane yield. For instance, the yield of grass hay was increased 15 per cent by one particular alkaline treatment. Straw did not respond to any of the treatments tried. 18 refs., 1 tab., 2 figs.

  14. Ligand binding modes from low resolution GPCR models and mutagenesis: chicken bitter taste receptor as a test-case.

    Science.gov (United States)

    Di Pizio, Antonella; Kruetzfeldt, Louisa-Marie; Cheled-Shoval, Shira; Meyerhof, Wolfgang; Behrens, Maik; Niv, Masha Y

    2017-08-15

    Bitter taste is one of the basic taste modalities, warning against consuming potential poisons. Bitter compounds activate members of the bitter taste receptor (Tas2r) subfamily of G protein-coupled receptors (GPCRs). The number of functional Tas2rs is species-dependent. Chickens represent an intriguing minimalistic model, because they detect the bitter taste of structurally different molecules with merely three bitter taste receptor subtypes. We investigated the binding modes of several known agonists of a representative chicken bitter taste receptor, ggTas2r1. Because of low sequence similarity between ggTas2r1 and crystallized GPCRs (~10% identity, ~30% similarity at most), the combination of computational approaches with site-directed mutagenesis was used to characterize the agonist-bound conformation of ggTas2r1 binding site between TMs 3, 5, 6 and 7. We found that the ligand interactions with N93 in TM3 and/or N247 in TM5, combined with hydrophobic contacts, are typically involved in agonist recognition. Next, the ggTas2r1 structural model was successfully used to identify three quinine analogues (epiquinidine, ethylhydrocupreine, quinidine) as new ggTas2r1 agonists. The integrated approach validated here may be applicable to additional cases where the sequence identity of the GPCR of interest and the existing experimental structures is low.

  15. The effect of glycation on bovine serum albumin conformation and ligand binding properties with regard to gliclazide

    Science.gov (United States)

    Żurawska-Płaksej, Ewa; Rorbach-Dolata, Anna; Wiglusz, Katarzyna; Piwowar, Agnieszka

    2018-01-01

    may have a direct impact on the free drug fraction and its pharmacokinetic behavior, including the risk of hypoglycemic episodes or unexpected interactions with other ligands. The use of BSA in examining binding effects upon glycation seems to be good model for preliminary research and may be used to identify a potential drug response in a diabetic state.

  16. Residual biomass potential of commercial and pre-commercial sugarcane cultivars

    Directory of Open Access Journals (Sweden)

    Marcos Guimarães de Andrade Landell

    2013-10-01

    Full Text Available Sugarcane (Saccharum spp. is an efficient and sustainable alternative for energy generation compared to non-renewable sources. Currently, during the mechanized harvest process, the straw left in the field can be used in part for the second generation ethanol and increasing the electric energy production. Thus, this study aimed to provide information on the potential for residual biomass cultivars of sugarcane cropping system. This study provides the following information: yield of straw, depending on the calculated leaf area index and the number of tillers per linear meter; primary energy production of several sugarcane genotypes; contribution of dry tops and leaves; biomass yield; and evaluation of fiber, cellulose, hemicellulose and lignin. Preliminary results obtained by researchers of the State of São Paulo, Brazil, and reCviews related studies are presented. The results suggest that the production of sugarcane straw content varies according to the cultivars; the greater mass of sugarcane straw is in the top leaves and that the potential for the crude energy production of sugarcane per area unit can be increased using fiber-rich species or species that produce more straw. The straw indexes was shown to be a good indicator and allow the estimation of straw volumes generated in a sugarcane crop. The cellulose, hemicellulose and lignin composition in sugarcane is distinct among varieties. Therefore, it is possible to develop distinct biomass materials for energy production and for the development of sugarcane mills using biochemical processes and thermal routes.

  17. Interaction of the phosphorylated DNA-binding domain in nuclear receptor CAR with its ligand-binding domain regulates CAR activation.

    Science.gov (United States)

    Shizu, Ryota; Min, Jungki; Sobhany, Mack; Pedersen, Lars C; Mutoh, Shingo; Negishi, Masahiko

    2018-01-05

    The nuclear protein constitutive active/androstane receptor (CAR or NR1I3) regulates several liver functions such as drug and energy metabolism and cell growth or death, which are often involved in the development of diseases such as diabetes and hepatocellular carcinoma. CAR undergoes a conversion from inactive homodimers to active heterodimers with retinoid X receptor α (RXRα), and phosphorylation of the DNA-binding domain (DBD) at Thr-38 in CAR regulates this conversion. Here, we uncovered the molecular mechanism by which this phosphorylation regulates the intramolecular interaction between CAR's DBD and ligand-binding domain (LBD), enabling the homodimer-heterodimer conversion. Phosphomimetic substitution of Thr-38 with Asp increased co-immunoprecipitation of the CAR DBD with CAR LBD in Huh-7 cells. Isothermal titration calorimetry assays also revealed that recombinant CAR DBD-T38D, but not nonphosphorylated CAR DBD, bound the CAR LBD peptide. This DBD-LBD interaction masked CAR's dimer interface, preventing CAR homodimer formation. Of note, EGF signaling weakened the interaction of CAR DBD T38D with CAR LBD, converting CAR to the homodimer form. The DBD-T38D-LBD interaction also prevented CAR from forming a heterodimer with RXRα. However, this interaction opened up a CAR surface, allowing interaction with protein phosphatase 2A. Thr-38 dephosphorylation then dissociated the DBD-LBD interaction, allowing CAR heterodimer formation with RXRα. We conclude that the intramolecular interaction of phosphorylated DBD with the LBD enables CAR to adapt a transient monomer configuration that can be converted to either the inactive homodimer or the active heterodimer.

  18. A novel signal transduction protein: Combination of solute binding and tandem PAS-like sensor domains in one polypeptide chain: Periplasmic Ligand Binding Protein Dret_0059

    Energy Technology Data Exchange (ETDEWEB)

    Wu, R. [Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne Illinois 60439; Biosciences Division, Argonne National Laboratory, Argonne Illinois 60439; Wilton, R. [Biosciences Division, Argonne National Laboratory, Argonne Illinois 60439; Cuff, M. E. [Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne Illinois 60439; Biosciences Division, Argonne National Laboratory, Argonne Illinois 60439; Structural Biology Center, Argonne National Laboratory, Argonne Illinois 60439; Endres, M. [Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne Illinois 60439; Babnigg, G. [Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne Illinois 60439; Biosciences Division, Argonne National Laboratory, Argonne Illinois 60439; Edirisinghe, J. N. [Mathematics and Computer Science Division, Argonne National Laboratory, Argonne Illinois 60439; Computation Institute, University of Chicago, Chicago Illinois 60637; Henry, C. S. [Mathematics and Computer Science Division, Argonne National Laboratory, Argonne Illinois 60439; Computation Institute, University of Chicago, Chicago Illinois 60637; Joachimiak, A. [Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne Illinois 60439; Biosciences Division, Argonne National Laboratory, Argonne Illinois 60439; Structural Biology Center, Argonne National Laboratory, Argonne Illinois 60439; Department of Biochemistry and Molecular Biology, University of Chicago, Chicago Illinois 60637; Schiffer, M. [Biosciences Division, Argonne National Laboratory, Argonne Illinois 60439; Pokkuluri, P. R. [Biosciences Division, Argonne National Laboratory, Argonne Illinois 60439

    2017-03-06

    We report the structural and biochemical characterization of a novel periplasmic ligand-binding protein, Dret_0059, from Desulfohalobium retbaense DSM 5692, an organism isolated from the Salt Lake Retba in Senegal. The structure of the protein consists of a unique combination of a periplasmic solute binding protein (SBP) domain at the N-terminal and a tandem PAS-like sensor domain at the C-terminal region. SBP domains are found ubiquitously and their best known function is in solute transport across membranes. PAS-like sensor domains are commonly found in signal transduction proteins. These domains are widely observed as parts of many protein architectures and complexes but have not been observed previously within the same polypeptide chain. In the structure of Dret_0059, a ketoleucine moiety is bound to the SBP, whereas a cytosine molecule is bound in the distal PAS-like domain of the tandem PAS-like domain. Differential scanning flourimetry support the binding of ligands observed in the crystal structure. There is significant interaction between the SBP and tandem PAS-like domains, and it is possible that the binding of one ligand could have an effect on the binding of the other. We uncovered three other proteins with this structural architecture in the non-redundant sequence data base, and predict that they too bind the same substrates. The genomic context of this protein did not offer any clues for its function. We did not find any biological process in which the two observed ligands are coupled. The protein Dret_0059 could be involved in either signal transduction or solute transport.

  19. Ligand Binding Induces Conformational Changes in Human Cellular Retinol-binding Protein 1 (CRBP1) Revealed by Atomic Resolution Crystal Structures.

    Science.gov (United States)

    Silvaroli, Josie A; Arne, Jason M; Chelstowska, Sylwia; Kiser, Philip D; Banerjee, Surajit; Golczak, Marcin

    2016-04-15

    Important in regulating the uptake, storage, and metabolism of retinoids, cellular retinol-binding protein 1 (CRBP1) is essential for trafficking vitamin A through the cytoplasm. However, the molecular details of ligand uptake and targeted release by CRBP1 remain unclear. Here we report the first structure of CRBP1 in a ligand-free form as well as ultra-high resolution structures of this protein bound to either all-trans-retinol or retinylamine, the latter a therapeutic retinoid that prevents light-induced retinal degeneration. Superpositioning of human apo- and holo-CRBP1 revealed major differences within segments surrounding the entrance to the retinoid-binding site. These included α-helix II and hairpin turns between β-strands βC-βD and βE-βF as well as several side chains, such as Phe-57, Tyr-60, and Ile-77, that change their orientations to accommodate the ligand. Additionally, we mapped hydrogen bond networks inside the retinoid-binding cavity and demonstrated their significance for the ligand affinity. Analyses of the crystallographic B-factors indicated several regions with higher backbone mobility in the apoprotein that became more rigid upon retinoid binding. This conformational flexibility of human apo-CRBP1 facilitates interaction with the ligands, whereas the more rigid holoprotein structure protects the labile retinoid moiety during vitamin A transport. These findings suggest a mechanism of induced fit upon ligand binding by mammalian cellular retinol-binding proteins. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Analysis and functional characterization of sequence variations in ligand binding domain of thyroid hormone receptors in autism spectrum disorder (ASD) patients.

    Science.gov (United States)

    Kalikiri, Mahesh Kumar; Mamidala, Madhu Poornima; Rao, Ananth N; Rajesh, Vidya

    2017-12-01

    Autism spectrum disorder (ASD) is a neuro developmental disorder, reported to be on a rise in the past two decades. Thyroid hormone-T3 plays an important role in early embryonic and central nervous system development. T3 mediates its function by binding to thyroid hormone receptors, TRα and TRβ. Alterations in T3 levels and thyroid receptor mutations have been earlier implicated in neuropsychiatric disorders and have been linked to environmental toxins. Limited reports from earlier studies have shown the effectiveness of T3 treatment with promising results in children with ASD and that the thyroid hormone levels in these children was also normal. This necessitates the need to explore the genetic variations in the components of the thyroid hormone pathway in ASD children. To achieve this objective, we performed genetic analysis of ligand binding domain of THRA and THRB receptor genes in 30 ASD subjects and in age matched controls from India. Our study for the first time reports novel single nucleotide polymorphisms in the THRA and THRB receptor genes of ASD individuals. Autism Res 2017, 10: 1919-1928. ©2017 International Society for Autism Research, Wiley Periodicals, Inc. Thyroid hormone (T3) and thyroid receptors (TRα and TRβ) are the major components of the thyroid hormone pathway. The link between thyroid pathway and neuronal development is proven in clinical medicine. Since the thyroid hormone levels in Autistic children are normal, variations in their receptors needs to be explored. To achieve this objective, changes in THRA and THRB receptor genes was studied in 30 ASD and normal children from India. The impact of some of these mutations on receptor function was also studied. © 2017 International Society for Autism Research, Wiley Periodicals, Inc.

  1. Introduction of potential helix-capping residues into an engineered helical protein.

    Science.gov (United States)

    Parker, M H; Hefford, M A

    1998-08-01

    MB-1 is an engineered protein that was designed to incorporate high percentages of four amino acid residues and to fold into a four-alpha-helix bundle motif. Mutations were made in the putative loop I and III regions of this protein with the aim of increasing the stability of the helix ends. Four variants, MB-3, MB-5, MB-11 and MB-13, have replacements intended to promote formation of an 'N-capping box'. The loop I and III sequences of MB-3 (both GDLST) and MB-11 (GGDST) were designed to cause alphaL C-terminal 'capping' motifs to form in helices I and III. MB-5 has a sequence, GPDST, that places proline in a favourable position for forming beta-turns, whereas MB-13 (GLDST) has the potential to form Schellman C-capping motifs. Size-exclusion chromatography suggested that MB-1, MB-3, MB-5, MB-11 and MB-13 all form dimers, or possibly trimers. Free energies for the unfolding of each of these variants were determined by urea denaturation, with the loss of secondary structure followed by CD spectroscopy. Assuming an equilibrium between folded dimer and unfolded monomer, MB-13 had the highest apparent stability (40.5 kJ/mol, with +/-2.5 kJ/mol 95% confidence limits), followed by MB-11 (39.3+/-5.9 kJ/mol), MB-3 (36.4+/-1.7 kJ/mol), MB-5 (34.7+/-2.1 kJ/mol) and MB-1 (29.3+/-1.3 kJ/mol); the same relative stabilities of the variants were found when a folded trimer to unfolded monomer model was used to calculate stabilities. All of the variants were relatively unstable for dimeric proteins, but were significantly more stable than MB-1. These findings suggest that it might be possible to increase the stability of a protein for which the three-dimensional structure is unknown by placing amino acid residues in positions that have the potential to form helix- and turn-stabilizing motifs.

  2. Potential use of edible crops in the phytoremediation of endosulfan residues in soil.

    Science.gov (United States)

    Mitton, Francesca M; Gonzalez, Mariana; Monserrat, José M; Miglioranza, Karina S B

    2016-04-01

    Endosulfan is a persistent and toxic organochlorine pesticide of banned or restricted use in several countries. It has been found in soil, water, and air and is bioaccumulated and magnified in ecosystems. Phytoremediation is a technology that promises effective and inexpensive cleanup of contaminated hazardous sites. The potential use of tomato, sunflower, soybean and alfalfa species to remove endosulfan from soil was investigated. All species were seeded and grown in endosulfan-spiked soils (8000 ng g(-1) dry weight) for 15 and 60 days. The phytoremediation potential was evaluated by studying the endosulfan levels and distribution in the soil-plant system, including the evaluation of soil dehydrogenase activity and toxic effects on plants. Plant endosulfan uptake leads to lower insecticide levels in the rhizosphere with regards to bulk soil or near root soil at 15 days of growth. Furthermore, plant growth-induced physical-chemical changes in soil were evidenced by differences in soil dehydrogenase activity and endosulfan metabolism. Sunflower showed differences in the uptake and distribution of endosulfan with regard to the other species, with a distribution pesticide pattern of aerial tissues > roots at 15 days of growth. Moreover, at 60 days, sunflower presented the highest pesticide levels in roots and leaves along with the highest phytoextraction capacity. Lipid peroxidation levels correlated positively with endosulfan accumulation, reflecting the negative effect of this insecticide on plant tissues. Considering biomass production and accumulation potential, in conjunction with the reduction of soil pesticide levels, sunflower plants seem to be the best phytoremediation candidate for endosulfan residues in soils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Modern bioenergy from agricultural and forestry residues in Cameroon: Potential, challenges and the way forward

    DEFF Research Database (Denmark)

    Ackom, Emmanuel; Alemagi, Dieudonne; Ackom, Nana B.

    2013-01-01

    liters of ethanol annually to displace 18–48% of the national consumption of gasoline. Alternatively, the residues could provide 0.08–0.22 billion liters of biomass to Fischer Tropsch diesel annually to offset 17–45% of diesel fuel use. For the generation of bioelectricity, the residues could supply 0...

  4. Raman spectroscopic analysis of gunshot residue offering great potential for caliber differentiation.

    Science.gov (United States)

    Bueno, Justin; Sikirzhytski, Vitali; Lednev, Igor K

    2012-05-15

    Near-infrared (NIR) Raman microspectroscopy combined with advanced statistics was used to differentiate gunshot residue (GSR) particles originating from different caliber ammunition. The firearm discharge process is analogous to a complex chemical reaction. The reagents of this process are represented by the chemical composition of the ammunition, firearm, and cartridge case. The specific firearm parameters determine the conditions of the reaction and thus the subsequent product, GSR. We found that Raman spectra collected from these products are characteristic for different caliber ammunition. GSR particles from 9 mm and 0.38 caliber ammunition, collected under identical discharge conditions, were used to demonstrate the capability of confocal Raman microspectroscopy for the discrimination and identification of GSR particles. The caliber differentiation algorithm is based on support vector machines (SVM) and partial least squares (PLS) discriminant analyses, validated by a leave-one-out cross-validation method. This study demonstrates for the first time that NIR Raman microspectroscopy has the potential for the reagentless differentiation of GSR based upon forensically relevant parameters, such as caliber size. When fully developed, this method should have a significant impact on the efficiency of crime scene investigations.

  5. Attenuated total reflectance-FT-IR spectroscopy for gunshot residue analysis: potential for ammunition determination.

    Science.gov (United States)

    Bueno, Justin; Sikirzhytski, Vitali; Lednev, Igor K

    2013-08-06

    The ability to link a suspect to a particular shooting incident is a principal task for many forensic investigators. Here, we attempt to achieve this goal by analysis of gunshot residue (GSR) through the use of attenuated total reflectance (ATR) Fourier transform infrared spectroscopy (FT-IR) combined with statistical analysis. The firearm discharge process is analogous to a complex chemical process. Therefore, the products of this process (GSR) will vary based upon numerous factors, including the specific combination of the firearm and ammunition which was discharged. Differentiation of FT-IR data, collected from GSR particles originating from three different firearm-ammunition combinations (0.38 in., 0.40 in., and 9 mm calibers), was achieved using projection to latent structures discriminant analysis (PLS-DA). The technique was cross (leave-one-out), both internally and externally, validated. External validation was achieved via assignment (caliber identification) of unknown FT-IR spectra from unknown GSR particles. The results demonstrate great potential for ATR-FT-IR spectroscopic analysis of GSR for forensic purposes.

  6. The bowing potential of granitic rocks: rock fabrics, thermal properties and residual strain

    Science.gov (United States)

    Siegesmund, S.; Mosch, S.; Scheffzük, Ch.; Nikolayev, D. I.

    2008-10-01

    The bowing of natural stone panels is especially known for marble slabs. The bowing of granite is mainly known from tombstones in subtropical humid climate. Field inspections in combination with laboratory investigations with respect to the thermal expansion and the bowing potential was performed on two different granitoids (Cezlak granodiorite and Flossenbürg granite) which differ in the composition and rock fabrics. In addition, to describe and explain the effect of bowing of granitoid facade panels, neutron time-of-flight diffraction was applied to determine residual macro- and microstrain. The measurements were combined with investigations of the crystallographic preferred orientation of quartz and biotite. Both samples show a significant bowing as a function of panel thickness and destination temperature. In comparison to marbles the effect of bowing is more pronounced in granitoids at temperatures of 120°C. The bowing as well as the thermal expansion of the Cezlak sample is also anisotropic with respect to the rock fabrics. A quantitative estimate was performed based on the observed textures. The effect of the locked-in stresses may also have a control on the bowing together with the thermal stresses related to the different volume expansion of the rock-forming minerals.

  7. The Yin and Yang of SagS: Distinct Residues in the HmsP Domain of SagS Independently Regulate Biofilm Formation and Biofilm Drug Tolerance

    Science.gov (United States)

    Dingemans, Jozef; Poudyal, Bandita

    2018-01-01

    distinct pathways leading to biofilm formation and biofilm drug tolerance are under the control of two sets of amino acid residues located within the HmsP sensory domain of SagS. The respective amino acids are likely part of ligand binding interaction sites. Thus, our findings have the potential not only to enable the manipulation of SagS function but also to enable research of biofilm drug tolerance in a manner independent of biofilm formation (and vice versa). Moreover, the manipulation of SagS function represents a promising target/avenue open for biofilm control. PMID:29848761

  8. Determination of the energy potential of the Urban Solid Residuals in three municipalities of the county of Luanda. Angola

    International Nuclear Information System (INIS)

    González Diaz, Yudith; Gato Clavell, Tania; Girón Guillot, Rosa L.; Pires Araújo, Luis

    2015-01-01

    The biological conversion of the Urban Solid Residuals (USR) for energy purposes comes winning importance every day, once the urban residuals became considered a source of alternative energy. To foresee the generation of resulting biogas of the process of biological decomposition of the solid residuals of organic origin in the sanitary fillers is fundamental to estimate the energy and economic balance of facilities of recovery of gas. For the appropriate determination of the potential of generation of gases you employment the calculation methodology presented by the Agency of Environmental Protection of United States. In this context, the objective of this article is to quantify the potential of electric power generation coming from the gas methane originating of the Urban Solid Residuals of the municipalities Belas, Cacuaco and Viana of the County of Luanda in Angola. The available energy power was determined annually of the three municipalities. The instinct demonstrates that the biogas flow arrives at the maximum level and it possesses the maximum available Power in the year 2037, obtaining stops the municipalities Belas, Cacuaco and Viana 3330 · 103, 1206.13 · 103 and 2809.23 · 103m"3/year of profitable methane respectively whose calculated energy potential was respectively of 2316.52, 1358.88 and 3165,02 kW. The carried out calculations not allow alone to evaluate the energy potential of the filler, but also to evaluate, in certain way, the environmental impact for the mitigation of emissions of gases of effect hothouse. (author)

  9. Strategies to reduce the environmental impact caused by the potential losses of N in soil amended with organic residues

    International Nuclear Information System (INIS)

    Lopez-Lopez, G.; Ibanez-Burgos, A. M.; Colombas, M.; Negree, A.; Reolid, C.; Lobo, M. C.; Sastre-Conde, I.

    2009-01-01

    For many years, nitrogen mineral fertilization has been regarded as a most highly productive and profitable farming practice. The downside, however, is represented by the negative environmental repercussions of its use. A potential source of N is found in organic residue, which has increased dramatically due to human activity. For instance, organic debris generated in urban areas and resulting rom intensive livestock breeding. (Author)

  10. Determination of the Energy Potential of the Urban Solid Residuals in Three Municipalities of the County of Luanda, Angola

    Directory of Open Access Journals (Sweden)

    Dra.C. Yudith González-Diaz

    2015-11-01

    Full Text Available The biological conversion of the Urban Solid Residuals (USR for energy purposes she comeswinning importance every day, once the urban residuals became considered a source ofalternative energy. To foresee the generation of resulting biogas of the process of biologicaldecomposition of the solid residuals of organic origin in the sanitary fillers is fundamental toestimate the energy and economic balance of facilities of recovery of gas. For the appropriatedetermination of the potential of generation of gases you employment the calculationmethodology presented by the Agency of Environmental Protection of United States. In thiscontext, the objective of this article is to quantify the potential of electric power generationcoming from the gas methane originating of the Urban Solid Residuals of the municipalitiesBelas, Cacuaco and Viana of the County of Luanda in Angola. The available energy power wasdetermined annually of the three municipalities. The instinct demonstrates that the biogas flow e"> arrives at the maximum level and it possesses the maximum available Power in the year 2037,obtaining stops the municipalities Belas, Cacuaco and Viana 3 330· 103, 1 206,13· 103 and 2 809,23· 103m3/ year of profitable methane respectively whose calculated energy potential wasrespectively of 2 316,52, 1 358,88 and 3 165,02 kW. The carried out calculations not allowalone to evaluate the energy potential of the filler, but also to evaluate, in certain way, theenvironmental impact for the mitigation of emissions of gases of effect hothouse.

  11. An exploratory study of the potential of LIBS for visualizing gunshot residue patterns.

    Science.gov (United States)

    López-López, María; Alvarez-Llamas, César; Pisonero, Jorge; García-Ruiz, Carmen; Bordel, Nerea

    2017-04-01

    The study of gunshot residue (GSR) patterns can assist in the reconstruction of shooting incidences. Currently, there is a real need of methods capable of furnishing simultaneous elemental analysis with higher specificity for the GSR pattern visualization. Laser-Induced Breakdown Spectroscopy (LIBS) provides a multi-elemental analysis of the sample, requiring very small amounts of material and no sample preparation. Due to these advantages, this study aims at exploring the potential of LIBS imaging for the visualization of GSR patterns. After the spectral characterization of individual GSR particles, the distribution of Pb, Sb and Ba over clothing targets, shot from different distances, were measured in laser raster mode. In particular, an array of spots evenly spaced at 800μm, using a stage displacement velocity of 4mm/s and a laser frequency of 5Hz was employed (e.g. an area of 130×165mm 2 was measured in less than 3h). A LIBS set-up based on the simultaneous use of two spectrographs with iCCD cameras and a motorized stage was used. This set-up allows obtaining information from two different wavelength regions (258-289 and 446-463nm) from the same laser induced plasma, enabling the simultaneous detection of the three characteristic elements (Pb, Sb, and Ba) of GSR particles from conventional ammunitions. The ability to visualize the 2D distribution GSR pattern by LIBS may have an important application in the forensic field, especially for the ballistics area. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Sensing Conformational Changes in DNA upon Ligand Binding Using QCM-D. Polyamine Condensation and Rad51 Extension of DNA Layers

    KAUST Repository

    Sun, Lu

    2014-10-16

    © 2014 American Chemical Society. Biosensors, in which binding of ligands is detected through changes in the optical or electrochemical properties of a DNA layer confined to the sensor surface, are important tools for investigating DNA interactions. Here, we investigate if conformational changes induced in surface-attached DNA molecules upon ligand binding can be monitored by the quartz crystal microbalance with dissipation (QCM-D) technique. DNA duplexes containing 59-184 base pairs were formed on QCM-D crystals by stepwise assembly of synthetic oligonucleotides of designed base sequences. The DNA films were exposed to the cationic polyamines spermidine and spermine, known to condense DNA molecules in bulk experiments, or to the recombination protein Rad51, known to extend the DNA helix. The binding and dissociation of the ligands to the DNA films were monitored in real time by measurements of the shifts in resonance frequency (Δf) and in dissipation (ΔD). The QCM-D data were analyzed using a Voigt-based model for the viscoelastic properties of polymer films in order to evaluate how the ligands affect thickness and shear viscosity of the DNA layer. Binding of spermine shrinks all DNA layers and increases their viscosity in a reversible fashion, and so does spermidine, but to a smaller extent, in agreement with its lower positive charge. SPR was used to measure the amount of bound polyamines, and when combined with QCM-D, the data indicate that the layer condensation leads to a small release of water from the highly hydrated DNA films. The binding of Rad51 increases the effective layer thickness of a 59bp film, more than expected from the know 50% DNA helix extension. The combined results provide guidelines for a QCM-D biosensor based on ligand-induced structural changes in DNA films. The QCM-D approach provides high discrimination between ligands affecting the thickness and the structural properties of the DNA layer differently. The reversibility of the film

  13. Unique structure and dynamics of the EphA5 ligand binding domain mediate its binding specificity as revealed by X-ray crystallography, NMR and MD simulations.

    Directory of Open Access Journals (Sweden)

    Xuelu Huan

    Full Text Available The 16 EphA and EphB receptors represent the largest family of receptor tyrosine kinases, and their interactions with 9 ephrin-A and ephrin-B ligands initiate bidirectional signals controlling many physiological and pathological processes. Most interactions occur between receptor and ephrins of the same class, and only EphA4 can bind all A and B ephrins. To understand the structural and dynamic principles that enable Eph receptors to utilize the same jellyroll β-sandwich fold to bind ephrins, the VAPB-MSP domain, peptides and small molecules, we have used crystallography, NMR and molecular dynamics (MD simulations to determine the first structure and dynamics of the EphA5 ligand-binding domain (LBD, which only binds ephrin-A ligands. Unexpectedly, despite being unbound, the high affinity ephrin-binding pocket of EphA5 resembles that of other Eph receptors bound to ephrins, with a helical conformation over the J-K loop and an open pocket. The openness of the pocket is further supported by NMR hydrogen/deuterium exchange data and MD simulations. Additionally, the EphA5 LBD undergoes significant picosecond-nanosecond conformational exchanges over the loops, as revealed by NMR and MD simulations, but lacks global conformational exchanges on the microsecond-millisecond time scale. This is markedly different from the EphA4 LBD, which shares 74% sequence identity and 87% homology. Consequently, the unbound EphA5 LBD appears to comprise an ensemble of open conformations that have only small variations over the loops and appear ready to bind ephrin-A ligands. These findings show how two proteins with high sequence homology and structural similarity are still able to achieve distinctive binding specificities through different dynamics, which may represent a general mechanism whereby the same protein fold can serve for different functions. Our findings also suggest that a promising strategy to design agonists/antagonists with high affinity and selectivity

  14. The potential of agro-industrial residues and municipal solid waste for production of biogas and electricity in Tanzania

    Energy Technology Data Exchange (ETDEWEB)

    Kivaisi, A K [Univ. of Dar es Salaam, Botany Dept., Applied Microbiology Unit (Tanzania, United Republic of)

    1998-12-31

    This paper gives an overview of the energy demands in Tanzania, and highlights the current serious shortage of electricity. Government strategy to alleviate the problem include exploitation of the country`s big natural gas reserves for power generation, and utilization of the renewable energies such as solar, wind and biogas. Important agro-industrial residues and municipal solid wastes with large potentials for anaerobic converstion into biogas and electricity have been identified and quantified. Tanzania is estimated to generate about 615,000 organic matter from coffee, sisal, sugar and cereal residues and households in main towns are estimated to generate about 600,000 tons of organic matter annually. Laboratory scale determinations of methane yields from the residues gave 400 m{sup 3} CH{sub 4}/ton VS of sisal pulp; 400 m{sup 3} CH{sub 4}/ton VS of sisal production wastewater; 400 m{sup 3} CH{sub 4}/ton VS of Robusta coffee solid waste, 350 m{sup 3} CH{sub 4}/ton VS of sugar processing wastewater; 250 m{sup 3} CH{sub 4}/ton VS of sugar filter mat, 450 m{sup 3} CH{sub 4}/ton VS maize bran and 300 m{sup 3} CH{sub 4}/ton VS of mixed household waste. Based on these results the estimated total annual potential electricity production from these residues is 1.4 million MW. The total oil substitution from these residues has been estimated at 0.35 million tonnes crude diesel oil per annum equivalent to 2% of the total energy consumption in Tanzania. Case studies onthe coffee and sisal processing factories indicate that exploitation of the residues for the production of electricity on site these factories is feasible. Utilization of agro-industrial residues and municipal waste for biogas production has enormous potential for reduction of environmental pollution. The potential substitution of fossil fuel with biogas represents an annual reduction in the net CO{sub 2} emission to the atmosphere of approximately 1.3 million tonnes. By treating the residues in controlled

  15. The potential of agro-industrial residues and municipal solid waste for production of biogas and electricity in Tanzania

    Energy Technology Data Exchange (ETDEWEB)

    Kivaisi, A.K. [Univ. of Dar es Salaam, Botany Dept., Applied Microbiology Unit (Tanzania, United Republic of)

    1997-12-31

    This paper gives an overview of the energy demands in Tanzania, and highlights the current serious shortage of electricity. Government strategy to alleviate the problem include exploitation of the country`s big natural gas reserves for power generation, and utilization of the renewable energies such as solar, wind and biogas. Important agro-industrial residues and municipal solid wastes with large potentials for anaerobic converstion into biogas and electricity have been identified and quantified. Tanzania is estimated to generate about 615,000 organic matter from coffee, sisal, sugar and cereal residues and households in main towns are estimated to generate about 600,000 tons of organic matter annually. Laboratory scale determinations of methane yields from the residues gave 400 m{sup 3} CH{sub 4}/ton VS of sisal pulp; 400 m{sup 3} CH{sub 4}/ton VS of sisal production wastewater; 400 m{sup 3} CH{sub 4}/ton VS of Robusta coffee solid waste, 350 m{sup 3} CH{sub 4}/ton VS of sugar processing wastewater; 250 m{sup 3} CH{sub 4}/ton VS of sugar filter mat, 450 m{sup 3} CH{sub 4}/ton VS maize bran and 300 m{sup 3} CH{sub 4}/ton VS of mixed household waste. Based on these results the estimated total annual potential electricity production from these residues is 1.4 million MW. The total oil substitution from these residues has been estimated at 0.35 million tonnes crude diesel oil per annum equivalent to 2% of the total energy consumption in Tanzania. Case studies onthe coffee and sisal processing factories indicate that exploitation of the residues for the production of electricity on site these factories is feasible. Utilization of agro-industrial residues and municipal waste for biogas production has enormous potential for reduction of environmental pollution. The potential substitution of fossil fuel with biogas represents an annual reduction in the net CO{sub 2} emission to the atmosphere of approximately 1.3 million tonnes. By treating the residues in controlled

  16. The potential of agro-industrial residues and municipal solid waste for production of biogas and electricity in Tanzania

    International Nuclear Information System (INIS)

    Kivaisi, A.K.

    1997-01-01

    This paper gives an overview of the energy demands in Tanzania, and highlights the current serious shortage of electricity. Government strategy to alleviate the problem include exploitation of the country's big natural gas reserves for power generation, and utilization of the renewable energies such as solar, wind and biogas. Important agro-industrial residues and municipal solid wastes with large potentials for anaerobic converstion into biogas and electricity have been identified and quantified. Tanzania is estimated to generate about 615,000 organic matter from coffee, sisal, sugar and cereal residues and households in main towns are estimated to generate about 600,000 tons of organic matter annually. Laboratory scale determinations of methane yields from the residues gave 400 m 3 CH 4 /ton VS of sisal pulp; 400 m 3 CH 4 /ton VS of sisal production wastewater; 400 m 3 CH 4 /ton VS of Robusta coffee solid waste, 350 m 3 CH 4 /ton VS of sugar processing wastewater; 250 m 3 CH 4 /ton VS of sugar filter mat, 450 m 3 CH 4 /ton VS maize bran and 300 m 3 CH 4 /ton VS of mixed household waste. Based on these results the estimated total annual potential electricity production from these residues is 1.4 million MW. The total oil substitution from these residues has been estimated at 0.35 million tonnes crude diesel oil per annum equivalent to 2% of the total energy consumption in Tanzania. Case studies onthe coffee and sisal processing factories indicate that exploitation of the residues for the production of electricity on site these factories is feasible. Utilization of agro-industrial residues and municipal waste for biogas production has enormous potential for reduction of environmental pollution. The potential substitution of fossil fuel with biogas represents an annual reduction in the net CO 2 emission to the atmosphere of approximately 1.3 million tonnes. By treating the residues in controlled anaerobic systems it is possible to reduce the methane emission by

  17. Linking Energy- and Land-Use Systems: Energy Potentials and Environmental Risks of Using Agricultural Residues in Tanzania

    Directory of Open Access Journals (Sweden)

    Julia C. Terrapon-Pfaff

    2012-02-01

    Full Text Available This paper attempts to assess whether renewable energy self-sufficiency can be achieved in the crop production and processing sector in Tanzania and if this could be accomplished in an environmentally sustainable manner. In order to answer these questions the theoretical energy potential of process residues from commercially produced agricultural crops in Tanzania is evaluated. Furthermore, a set of sustainability indicators with focus on environmental criteria is applied to identify risks and opportunities of using these residues for energy generation. In particular, the positive and negative effects on the land-use-system (soil fertility, water use and quality, biodiversity, etc. are evaluated. The results show that energy generation with certain agricultural process residues could not only improve and secure the energy supply but could also improve the sustainability of current land-use practices.

  18. Towards Coleoptera-specific high-throughput screening systems for compounds with ecdysone activity: development of EcR reporter assays using weevil (Anthonomus grandis)-derived cell lines and in silico analysis of ligand binding to A. grandis EcR ligand-binding pocket.

    Science.gov (United States)

    Soin, Thomas; Iga, Masatoshi; Swevers, Luc; Rougé, Pierre; Janssen, Colin R; Smagghe, Guy

    2009-08-01

    Molting in insects is regulated by ecdysteroids and juvenile hormones. Several synthetic non-steroidal ecdysone agonists are on the market as insecticides. These ecdysone agonists are dibenzoylhydrazine (DBH) analogue compounds that manifest their toxicity via interaction with the ecdysone receptor (EcR). Of the four commercial available ecdysone agonists, three (tebufenozide, methoxyfenozide and chromafenozide) are highly lepidopteran specific, one (halofenozide) is used to control coleopteran and lepidopteran insects in turf and ornamentals. However, compared to the very high binding affinity of these DBH analogues to lepidopteran EcRs, halofenozide has a low binding affinity for coleopteran EcRs. For the discovery of ecdysone agonists that target non-lepidopteran insect groups, efficient screening systems that are based on the activation of the EcR are needed. We report here the development and evaluation of two coleopteran-specific reporter-based screening systems to discover and evaluate ecdysone agonists. The screening systems are based on the cell lines BRL-AG-3A and BRL-AG-3C that are derived from the weevil Anthonomus grandis, which can be efficiently transduced with an EcR reporter cassette for evaluation of induction of reporter activity by ecdysone agonists. We also cloned the almost full length coding sequence of EcR expressed in the cell line BRL-AG-3C and used it to make an initial in silico 3D-model of its ligand-binding pocket docked with ponasterone A and tebufenozide.

  19. Residual biomass potential in olive tree cultivation and olive oil industry in Spain: valorization proposal in a biorefinery context

    Directory of Open Access Journals (Sweden)

    Paloma Manzanares

    2017-12-01

    Full Text Available Olive crop and olive oil industry generates several residues, i.e., olive tree pruning biomass (OTPB, extracted olive pomace (EOP and olive leaves (OL that could be used to produce high-added value products in an integrated biorefinery. OTPB is generated in the field as a result of pruning operation to remove old branches; EOP is the main residue of the pomace olive oil extracting industry after extraction with hexane of residual oil contained in olive pomace; and OL comes from the olive cleaning process carried out at olive mills, where small branches and leaves are separated by density. In this work, an analysis of the potential of OTPB, EOP and OL residues was addressed by estimating the production volumes at national level and the spatial distribution of these residues using geographic information system software. Information provided by public institutions and personal surveys to the industries was evaluated. Moreover, chemical analysis of the residues was undertaken and the results used to make a first assessment of valorization into biofuels such as bioethanol and bio based chemicals. Results show that close to 4.2 million tons/year of EOP, OL and OTPB derived from olive oil industry and olive tree cultivation in Spain could be available as a raw material for biorefineries in Spain. The analysis of the chemical characteristics indicates the relevant potential of these feedstocks for the production of bioethanol and other compounds such as phenols based on suitable processing and conversion routes, although techno-economic evaluations must be tackled to refine this approach.

  20. Residual biomass potential in olive tree cultivation and olive oil industry in Spain: valorization proposal in a biorefinery contex

    Energy Technology Data Exchange (ETDEWEB)

    Manzanares, P.; Ruiz, E.; Ballesteros, M.; Negro, M.J.; Gallego, F.J.; López-Linares, J.C.; Castro, E.

    2017-07-01

    Olive crop and olive oil industry generates several residues, i.e., olive tree pruning biomass (OTPB), extracted olive pomace (EOP) and olive leaves (OL) that could be used to produce high-added value products in an integrated biorefinery. OTPB is generated in the field as a result of pruning operation to remove old branches; EOP is the main residue of the pomace olive oil extracting industry after extraction with hexane of residual oil contained in olive pomace; and OL comes from the olive cleaning process carried out at olive mills, where small branches and leaves are separated by density. In this work, an analysis of the potential of OTPB, EOP and OL residues was addressed by estimating the production volumes at national level and the spatial distribution of these residues using geographic information system software. Information provided by public institutions and personal surveys to the industries was evaluated. Moreover, chemical analysis of the residues was undertaken and the results used to make a first assessment of valorization into biofuels such as bioethanol and bio based chemicals. Results show that close to 4.2 million tons/year of EOP, OL and OTPB derived from olive oil industry and olive tree cultivation in Spain could be available as a raw material for biorefineries in Spain. The analysis of the chemical characteristics indicates the relevant potential of these feedstocks for the production of bioethanol and other compounds such as phenols based on suitable processing and conversion routes, although techno-economic evaluations must be tackled to refine this approach.

  1. Availability and conversion to energy potentials of wood-based industry residues in Cameroon

    International Nuclear Information System (INIS)

    Simo, A.; Siyam Siew, S.

    2000-01-01

    The importance of biomass as the most accessible primary energy source in Cameroon is presented. The valorization of wood wastes and residues is seen as a way of implementing the sustainable use of biomass resources. A recent survey of wood-based industries in Cameroon reveals that large volumes of industrial wood residues are generated in the rain forest areas and are inefficiently used. Important quantities are lost in the form of burning in the four main forestry provinces, while other parts of the country suffer from fuelwood shortage. With the exception of the plywood factories, the wood industry is essentially dependent on commercial energy. An analysis made to show the economic and environmental benefits of converting wood residues to energy for industrial and domestic use is presented. (author)

  2. Assessment of Potential Capacity Increases at Combined Heat and Power Facilities Based on Available Corn Stover and Forest Logging Residues

    Directory of Open Access Journals (Sweden)

    Donald L. Grebner

    2013-08-01

    Full Text Available Combined Heat and Power (CHP production using renewable energy sources is gaining importance because of its flexibility and high-energy efficiency. Biomass materials, such as corn stover and forestry residues, are potential sources for renewable energy for CHP production. In Mississippi, approximately 4.0 MT dry tons of woody biomass is available annually for energy production. In this study, we collected and analyzed 10 years of corn stover data (2001–2010 and three years of forest logging residue data (1995, 1999, and 2002 in each county in Mississippi to determine the potential of these feed stocks for sustainable CHP energy production. We identified six counties, namely Amite, Copiah, Clarke, Wayne, Wilkinson and Rankin, that have forest logging residue feedstocks to sustain a CHP facility with a range of capacity between 8.0 and 9.8 MW. Using corn stover alone, Yazoo and Washington counties can produce 13.4 MW and 13.5 MW of energy, respectively. Considering both feedstocks and based on a conservative amount of 30% available forest logging residue and 33% corn stover, we found that 20 counties have adequate supply for a CHP facility with a capacity of 8.3 MW to 19.6 MW.

  3. Identification of coevolving residues and coevolution potentials emphasizing structure, bond formation and catalytic coordination in protein evolution.

    Directory of Open Access Journals (Sweden)

    Daniel Y Little

    Full Text Available The structure and function of a protein is dependent on coordinated interactions between its residues. The selective pressures associated with a mutation at one site should therefore depend on the amino acid identity of interacting sites. Mutual information has previously been applied to multiple sequence alignments as a means of detecting coevolutionary interactions. Here, we introduce a refinement of the mutual information method that: 1 removes a significant, non-coevolutionary bias and 2 accounts for heteroscedasticity. Using a large, non-overlapping database of protein alignments, we demonstrate that predicted coevolving residue-pairs tend to lie in close physical proximity. We introduce coevolution potentials as a novel measure of the propensity for the 20 amino acids to pair amongst predicted coevolutionary interactions. Ionic, hydrogen, and disulfide bond-forming pairs exhibited the highest potentials. Finally, we demonstrate that pairs of catalytic residues have a significantly increased likelihood to be identified as coevolving. These correlations to distinct protein features verify the accuracy of our algorithm and are consistent with a model of coevolution in which selective pressures towards preserving residue interactions act to shape the mutational landscape of a protein by restricting the set of admissible neutral mutations.

  4. Identification of the ligand-binding subunit of the human 5-hydroxytryptamine1A receptor with N-(p-azido-m-[125I] iodophenethyl)spiperone, a high affinity radioiodinated photoaffinity probe

    International Nuclear Information System (INIS)

    Raymond, J.R.; Fargin, A.; Lohse, M.J.; Regan, J.W.; Senogles, S.E.; Lefkowitz, R.J.; Caron, M.G.

    1989-01-01

    The ligand-binding subunit of the human 5-hydroxytryptamine1A (5-HT1A) receptor transiently expressed in COS-7 cells and of the native human 5-HT1A receptor derived from hippocampus and frontal cortex were identified by photoaffinity labeling with N-(p-azido-m-[125I]iodophenethyl)spiperone [( 125I]N3-NAPS), previously characterized as a high affinity radioiodinated D2-dopamine receptor probe. The identity of the ligand-binding subunit was confirmed by immunoprecipitation with an antipeptide rabbit antiserum, JWR21, raised against a synthetic peptide derived from the predicted amino acid sequence of the putative third intracellular loop of the human 5-HT1A receptor. In transiently transfected COS-7 cells expressing 14 +/- 3 pmol/mg of protein human 5-HT1A receptors, a single broad 75-kDa band was photoaffinity labeled by [125I]N3-NAPS. This band displayed the expected pharmacology of the 5-HT1A receptor, as evidenced by the ability of a series of competing ligands to block [125I]N3-NAPS photoincorporation. Moreover, antiserum JWR21 specifically and quantitatively immunoprecipitated the 75-kDa photoaffinity-labeled band from a soluble extract of the transfected COS-7 cell membranes, further confirming its identity. Finally, utilizing a combination of photoaffinity labeling and immunoprecipitation, the native ligand-binding subunit of 62-64 kDa was identified in human hippocampus and frontal cortex. The availability of the high specific activity, high affinity, photoaffinity ligand [125I]N3-NAPS and of a potent immunoprecipitating antiserum (JWR21) should greatly facilitate the biochemical characterization of the human 5-HT1A receptor

  5. Wood wastes and residues generated along the Colorado Front Range as a potential fuel source

    Science.gov (United States)

    Julie E. Ward; Kurt H. Mackes; Dennis L. Lynch

    2004-01-01

    Throughout the United States there is interest in utilizing renewable fuel sources as an alternative to coal and nat-ural gas. This project was initiated to determine the availability of wood wastes and residues for use as fuel in ce-ment kilns and power plants located along the Colorado Front Range. Research was conducted through literature searches, phone surveys,...

  6. POTENTIAL IMPACT OF BLENDING RESIDUAL SOLIDS FROM TANKS 18/19 MOUNDS WITH TANK 7 OPERATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Eibling, R; Erich Hansen, E; Bradley Pickenheim, B

    2007-03-29

    High level waste tanks 18F and 19F have residual mounds of waste which may require removal before the tanks can be closed. Conventional slurry pump technology, previously used for waste removal and tank cleaning, has been incapable of removing theses mounds from tanks 18F and 19F. A mechanical cleaning method has been identified that is potentially capable of removing and transferring the mound material to tank 7F for incorporation in a sludge batch for eventual disposal in high level waste glass by the Defense Waste Processing Facility. The Savannah River National Laboratory has been requested to evaluate whether the material transferred from tanks 18F/19F by the mechanical cleaning technology can later be suspended in Tank 7F by conventional slurry pumps after mixing with high level waste sludge. The proposed mechanical cleaning process for removing the waste mounds from tanks 18 and 19 may utilize a high pressure water jet-eductor that creates a vacuum to mobilize solids. The high pressure jet is also used to transport the suspended solids. The jet-eductor system will be mounted on a mechanical crawler for movement around the bottom of tanks 18 and 19. Based on physical chemical property testing of the jet-eductor system processed IE-95 zeolite and size-reduced IE-95 zeolite, the following conclusions were made: (1) The jet-eductor system processed zeolite has a mean and median particle size (volume basis) of 115.4 and 43.3 microns in water. Preferential settling of these large particles is likely. (2) The jet-eductor system processed zeolite rapidly generates settled solid yield stresses in excess of 11,000 Pascals in caustic supernates and will not be easily retrieved from Tank 7 with the existing slurry pump technology. (3) Settled size-reduced IE-95 zeolite (less than 38 microns) in caustic supernate does not generate yield stresses in excess of 600 Pascals in less than 30 days. (4) Preferential settling of size-reduced zeolite is a function of the amount of

  7. Amount, availability, and potential use of rice straw (agricultural residue) biomass as an energy resource in Japan

    International Nuclear Information System (INIS)

    Matsumura, Yukihiko; Minowa, Tomoaki; Yamamoto, Hiromi

    2005-01-01

    This paper discusses the use of agricultural residue in Japan as an energy resource, based on the amounts produced and availability. The main agricultural residues in Japan are rice straw and rice husk. Based on a scenario wherein these residues are collected as is the rice product, we evaluate the size, cost, and CO 2 emission for power generation. Rice residue has a production potential of 12 Mt-dry year -1 , and 1.7 kt of rice straw is collected for each storage location. As this is too small an amount even for the smallest scale of power plant available, 2-month operation per year is assumed. Assuming a steam boiler and turbine with an efficiency of 7%, power generation from rice straw biomass can supply 3.8 billion(kW)h of electricity per year, or 0.47% of the total electricity demand in Japan. The electricity generated from this source costs as much as 25 JPY (kW h) -1 (0.21 US$ (kW h) -1 , 1 US$=120 JPY), more than double the current price of electricity. With heat recovery at 80% efficiency, the simultaneous heat supplied via cogeneration reaches 10% of that supplied by heavy oil in Japan. Further cost incentives will be required if the rice residue utilization is to be introduced. It will also be important to develop effective technologies to achieve high efficiency even in small-scale processes. If Japanese technologies enable the effective use of agricultural residue abroad as a result of Japanese effort from the years after 2010, the resulting reduction of greenhouse gas emission can be counted under the framework of the Kyoto Protocol

  8. Pesticide Residues on Three Cut Flower Species and Potential Exposure of Florists in Belgium

    Directory of Open Access Journals (Sweden)

    Khaoula Toumi

    2016-09-01

    Full Text Available In order to assess the prevalence of pesticide contamination and the risk of florists’ exposure when handling cut flowers, sampling and analysis of 90 bouquets of the most commonly sold cut flowers in Belgium (50 bouquets of roses; 20 of gerberas, and 20 of chrysanthemums were carried out. The bouquets were collected from 50 florists located in the seven largest cities of Belgium (Antwerp, Brussels, Charleroi, Ghent, Leuven, Liege, and Namur and from five supermarkets located in the different regions. To have a better understanding of the route of exposure and professional practices a questionnaire was also addressed to a group of 25 florists who volunteered to take part in the survey. All florists were interviewed individually when collecting the questionnaire. The residual pesticide deposit values on cut flowers were determined in an accredited laboratory using a multi-residue (QuEChERS Quick Easy Cheap Effective Rugged Safe method and a combination of gas chromatography (GC and liquid chormatograhphy (LC analysis. A total of 107 active substances were detected from all samples; i.e., an average of about 10 active substances per bouquet. The most severely contaminated bouquet accumulated a total concentration of residues up to 97 mg/kg. Results show that roses are the most contaminated cut flowers; with an average of 14 substances detected per sample and a total concentration per rose sample of 26 mg/kg. Some active substances present an acute toxicity (acephate, methiocarb, monocrotophos, methomyl, deltamethrin, etc. and exposure can generate a direct effect on the nervous system of florists. Nevertheless, fungicides (dodemorph, propamocarb, and procymidone were the most frequently detected in samples and had the highest maximum concentrations out of all the active substances analysed. Dodemorph was the most frequently detected substance with the highest maximum concentration (41.9 mg/kg measured in the rose samples. It appears from the

  9. Toxicity potential of residual ethylene oxide on fresh or frozen embryos maintained in plastic straws.

    Science.gov (United States)

    Schiewe, M C; Schmidt, P M; Pontbriand, D; Wildt, D E

    1988-01-01

    The toxic effects of residual ethylene oxide (EtO), a frequently used gas-sterilant, on embryos either frozen for long-term purposes or stored acutely for 30 min to 9 hr in a fresh condition in 0.25-ml straw containers were evaluated. In Experiment 1, fresh embryos were frozen (using conventional technology) in straws previously aerated for 0 hr to 8 mo after EtO sterilization. With the exception of the 8-mo group in which survival and quality ratings were depressed, embryo viability was not affected significantly by short-term prefreeze and post-thaw exposure to EtO residues. Experiment 2 was conducted to analyze the influence of prefreeze exposure to EtO residues on embryo development in vitro for embryos temporarily stored in previously sterilized straws aerated for different intervals. Compared to non-EtO-sterilized control straws, the development, quality, and viability of embryos exposed to EtO-treated straws were compromised (p less than 0.05) as the aeration interval decreased and the exposure interval increased. The combined results of both experiments indicate that EtO-treated straws can be used to cryopreserve gametes efficiently, but only if the aeration interval is greater than or equal to 72 hr and the prefreeze duration of exposure is less than or equal to 3 hr.

  10. Potential soil quality impact of harvesting crop residues for bio fuels

    International Nuclear Information System (INIS)

    Karlen, D.

    2011-01-01

    We are in one of the greatest technological, environmental and social transitions since the industrial revolution, as we strive to replace fossil energy with renewable biomass resources. My objectives are to (1) briefly review increased public interest in harvesting crop residues as feedstock for bio energy, (2) discuss the work soil scientists must do to address those interests, and (3) examine how soil quality assessment can be used to help quantify soil biological, chemical and physical response to this transition. Rising global energy demand, dependence on unstable imports, volatility in price, and increasing public concern regarding fossil fuel combustion effects on global climate change are among the factors leading to an increased interest in development and use of renewable biomass sources for energy production. Although controlling soil erosion by wind and water is no less important than in the past, it is not the only factor that needs to be considered when evaluating the sustain ability of land management practices including harvest of crop residues as bio energy feedstock. The concept of soil quality assessment is reviewed and the Soil Management Assessment Framework (SMAF) is used to illustrate how such assessments can be used for assessing impacts of harvesting crop residue as feedstock for bio energy production. Preliminary results of the SMAF assessment show that soil organic carbon (SOC) is one of the lower scoring indicators and therefore needs to be monitored closely. Innovative soil and crop management strategies, including a landscape vision are offered as ideas for achieving sustainable food, feed, fiber, and energy production

  11. Red/Green Currant and Sea Buckthorn Berry Press Residues as Potential Sources of Antioxidants for Food Use.

    Science.gov (United States)

    Puganen, Anna; Kallio, Heikki P; Schaich, Karen M; Suomela, Jukka-Pekka; Yang, Baoru

    2018-04-04

    The potential for using extracts of press residues from black, green, red, and white currants and from sea buckthorn berries as sources of antioxidants for foods use was investigated. Press residues were extracted with ethanol in four consecutive extractions, and total Folin-Ciocalteu (F-C) reactive material and authentic phenolic compounds were determined. Radical quenching capability and mechanisms were determined from total peroxyl radical-trapping antioxidant capacity (TRAP) and oxygen radical absorbance capacity (ORAC) assays and from diphenylpicrylhydrazyl (DPPH) kinetics, respectively; specific activities were normalized to F-C reactive concentrations. Levels of total F-C reactive materials in press residue extracts were higher than in many fruits and showed significant radical quenching activity. Black currant had the highest authentic phenol content and ORAC, TRAP, and DPPH reactivity. Sea buckthorn grown in northern Finland showed extremely high total specific DPPH reactivity. These results suggest that berry press residues offer attractive value-added products that can provide antioxidants for use in stabilizing and fortifying foods.

  12. Pyrolysis Characteristics and Kinetics of Phoenix Tree Residues as a Potential Energy

    Directory of Open Access Journals (Sweden)

    H. Li

    2015-09-01

    Full Text Available By using a thermogravimetric analyser under argon atmosphere, the pyrolysis process and the kinetic model of phoenix tree residues (the little stem, middle stem, and leaf at a 30 °C min−1 heating rate and the phoenix tree mix at three different heating rates (10 °C min−1, 30 °C min−1, and 50 °C min−1 were examined. The catalyst and the co-pyrolysis samples were at a 30 °C min−1 heating rate. The catalysts were Na2CO3, ZnCl2 and CaO in a mass fraction of 5 %. The experimental results revealed that the phoenix tree residues pyrolysis process consisted of three stages: dehydration stage, main pyrolysis stage, and the slow decomposition of residues. As the heating rate increased, the pyrolysis characteristic temperature of the phoenix tree grew, there was a backward-shift of the pyrolysis rate curve, and the mass loss rate gradually increased. The phoenix tree residues’ activation energy changed throughout the whole pyrolysis process, and the pyrolysis temperature ranges of the three main components (cellulose, hemicellulose, and lignin existed in overlapping phenomenon. As compared to the little stem, middle stem, and leaf, the phoenix tree mix was more likely to be pyrolysed under the same heating rate. Different catalysts had a different impact on the pyrolysis: ZnCl2 moved the start point of the reaction to the lower temperatures, but did not speed up the reaction; Na2CO3 speeded up the reaction without changing the start point of the reaction; CaO speeded up the reaction, moved the start point of the reaction to higher temperatures.

  13. Biomass Residues from Agriculture and Potential Contribution towards Modern Energy Supply in West Africa

    DEFF Research Database (Denmark)

    Ackom, Emmanuel

    2016-01-01

    Access to modern energy services especially in developing countries is an urgent issue. Globally, 1.3 billion people do not have access to modern energy and the services associated with it. Sub-Saharan Africa is one of the regions have profound lack of modern energy access. The objective of this ......Access to modern energy services especially in developing countries is an urgent issue. Globally, 1.3 billion people do not have access to modern energy and the services associated with it. Sub-Saharan Africa is one of the regions have profound lack of modern energy access. The objective...... of this paper is to understand the role that residues obtained from agricultural practices could be utilised in providing electricity for use in West African countries. Selected countries include: Ghana, Nigeria, Senegal and Togo. The study utilized methods developed by Mendu et. al. 2012, Mabeeet. al. 2010...

  14. Ethephon As a Potential Abscission Agent for Table Grapes: Effects on Pre-Harvest Abscission, Fruit Quality, and Residue

    Science.gov (United States)

    Ferrara, Giuseppe; Mazzeo, Andrea; Matarrese, Angela M. S.; Pacucci, Carmela; Trani, Antonio; Fidelibus, Matthew W.; Gambacorta, Giuseppe

    2016-01-01

    Some plant growth regulators, including ethephon, can stimulate abscission of mature grape berries. The stimulation of grape berry abscission reduces fruit detachment force (FDF) and promotes the development of a dry stem scar, both of which could facilitate the production of high quality stemless fresh-cut table grapes. The objective of this research was to determine how two potential abscission treatments, 1445 and 2890 mg/L ethephon, affected FDF, pre-harvest abscission, fruit quality, and ethephon residue of Thompson Seedless and Crimson Seedless grapes. Both ethephon treatments strongly induced abscission of Thompson Seedless berries causing >90% pre-harvest abscission. Lower ethephon rates, a shorter post-harvest interval, or berry retention systems such as nets, would be needed to prevent excessive pre-harvest losses. The treatments also slightly affected Thompson Seedless berry skin color, with treated fruit being darker, less uniform in color, and with a more yellow hue than non-treated fruit. Ethephon residues on Thompson Seedless grapes treated with the lower concentration of ethephon were below legal limits at harvest. Ethephon treatments also promoted abscission of Crimson Seedless berries, but pre-harvest abscission was much lower (≅49%) in Crimson Seedless compared to Thompson Seedless. Treated fruits were slightly darker than non-treated fruits, but ethephon did not affect SSC, acidity, or firmness of Crimson Seedless, and ethephon residues were below legal limits. PMID:27303407

  15. Pelletizing of rice straws: A potential solid fuel from agricultural residues

    International Nuclear Information System (INIS)

    Puad, E.; Wan Asma, I; Shaharuddin, H.; Mahanim, S.; Rafidah, J.

    2010-01-01

    Full text: Rice straw is the dry stalks of rice plants, after the grain and chaff have been removed. More than 1 million tonnes of rice straw are produced in MADA in the northern region of Peninsular Malaysia annually. Burning in the open air is the common technique of disposal that contribute to air pollution. In this paper, a technique to convert these residues into solid fuel through pelletizing is presented. The pellets are manufactured from rice straw and sawdust in a disc pelletizer. The pellet properties are quite good with good resistance to mechanical disintegration. The pellets have densities between 1000 and 1200 kg/ m 3 . Overall, converting rice straw into pellets has increased its energy and reduced moisture content to a minimum of 8 % and 30 % respectively. The gross calorific value is about 15.6 MJ/ kg which is lower to sawdust pellet. The garnering of knowledge in the pelletization process provides a path to increase the use of this resource. Rice straw pellets can become an important renewable energy source in the future. (author)

  16. A method for computing the inter-residue interaction potentials for ...

    Indian Academy of Sciences (India)

    PRAKASH KUMAR

    2007-06-16

    Jun 16, 2007 ... overview of the methods used to reduce the amino acid alphabet; second, we .... The MDS is a widely used method in social sciences and psychometry ... structures) statistical potential functions is the method of choice for ...

  17. Energy and raw material potentials of wood residue in the Pacific Coast States: a summary of a preliminary feasibility investigation.

    Science.gov (United States)

    John B. Grantham; Eldon Estep; John M. Pierovich; Harold Tarkow; Thomas C. Adams

    1974-01-01

    Results are reported of a preliminary investigation of feasibility of using wood residue to meet energy and raw material needs in the Pacific Coast States. Magnitude of needs was examined and volume of logging-residue and unused mill residue was estimated. Costs of obtaining and preprocessing logging residue for energy and pulp and particle board raw material were...

  18. Anaerobic fermentation of agricultural residue: potential for improvement and implementation. Final report, Volume II

    Energy Technology Data Exchange (ETDEWEB)

    Jewell, W. J.; Dell' orto, S.; Fanfoni, K. J.; Hayes, T. D.; Leuschner, A. P.; Sherman, D. F.

    1980-04-01

    Earlier studies have shown that although large quantities of agricultural residues are generated on small farms, it was difficult to economically justify use of conventional anaerobic digestion technology, such as used for sewage sludge digestion. A simple, unmixed, earthen-supported structure appeared to be capable of producing significant quantities of biogas at a cost that would make it competitive with many existing fuels. The goal of this study was to define and demonstrate a methane fermentation technology that could be practical and economically feasible on small farms. This study provides the first long term, large scale (reactor volumes of 34 m/sup 3/) parallel testing of the major theory, design, construction, and operation of a low cost approach to animal manure fermentation as compared to the more costly and complex designs. The main objectives were to define the lower limits for successful fermentor operation in terms of mixing, insulation, temperature, feed rate, and management requirements in a cold climate with both pilot scale and full scale fermentors. Over a period of four years, innovative fermentation processes for animal manures were developed from theoretical concept to successful full scale demonstration. Reactors were sized for 50 to 65 dairy animals, or for the one-family dairy size. The results show that a small farm biogas generation system that should be widely applicable and economically feasible was operated successfully for nearly two years. Although this low cost system out-performed the completely mixed unit throughout the study, perhaps the greatest advantage of this approach is its ease of modification, operation, and maintenance.

  19. Examining the Potential of Forest Residue-Based Amendments for Post-Wildfire Rehabilitation in Colorado, USA

    Directory of Open Access Journals (Sweden)

    Charles C. Rhoades

    2017-01-01

    Full Text Available Wildfire is a natural disturbance, though elemental losses and changes that occur during combustion and post-fire erosion can have long-term impacts on soil properties, ecosystem productivity, and watershed condition. Here we evaluate the potential of forest residue-based materials to rehabilitate burned soils. We compare soil nutrient and water availability, and plant recovery after application of 37 t ha−1 of wood mulch, 20 t ha−1 of biochar, and the combination of the two amendments with untreated, burned soils. We also conducted a greenhouse trial to examine how biochar influenced soil nutrient and water content under two wetting regimes. The effects of wood mulch on plant-available soil N and water content were significant and seasonally consistent during the three-year field study. Biochar applied alone had few effects under field conditions, but significantly increased soil pH, Ca, P, and water in the greenhouse. The mulched biochar treatment had the greatest effects on soil N and water availability and increased cover of the most abundant native plant. We found that rehabilitation treatments consisting of forest residue-based products have potential to enhance soil N and water dynamics and plant recovery following severe wildfire and may be justified where erosion risk or water supply protection are crucial.

  20. Harvest residue removal and soil compaction impact forest productivity and recovery: Potential implications for bioenergy harvests

    Science.gov (United States)

    Miranda T. Curzon; Anthony W. D' Amato; Brian J. Palik

    2014-01-01

    Understanding the effects of management on forest structure and function is increasingly important in light of projected increases in both natural and anthropogenic disturbance severity and frequency with global environmental change. We examined potential impacts of the procurement of forest-derived bioenergy, a change in land use that has been suggested as a climate...

  1. Enhancement of Palm residues (Phoenix canariensis for a potential use in ruminant feed

    Directory of Open Access Journals (Sweden)

    G. Sperandio

    2013-09-01

    Full Text Available The increase of biological residues from numerous fellings of palms (Phoenix canariensis infested by red palm weevil (Rhynchophorus ferrugineus Olivier in central Italy and around the Mediterranean basin, has created an important disposal problem. This issue could provide a further use by introducing it as a food in diet of ruminants, beyond that represented by the use as fuel in biomass power plants for heating or electrical energy. The shredded material of palm can be employed to animal nutrition, resulting in interest for the feed industry and livestock sector. Analysis, carried out on samples of shredded palm, made using a chipper machine modified to obtain a product of small size (according to the phytosanitary measures of Lazio Region: n. 390, June 5, 2007, showed an high water content (79% and therefore a not easy conservation. A conservation technique could be dehydration, in order to make product as flour, pellets, to introduce in unifeed together with the other compounds of the diet (forage, concentrates, etc.. Given the high water content, the dehydration process causes a very high production cost. About nutritional value, analysis showed 0.65 UF/ kg on dry matter basis, higher than the straw and hay of stable grass in an advanced stage of maturation (0.20 to 0.30 UF/kg. These values are similar to a good hay obtained from mixed grass. As consequence it is possible to use shredded palm as part of energy of the ruminants diet. Is still not clear which component allows the achievement of this value, probably derives in small part by the lipid component and largely by the fibrous component. Moreover data showed that the presence of fatty acid precursors of CLA (Conjugated Linoleic Acid such as oleic acid and linoleic acid, is much higher than the values of Italian pastures. Utilization of these fatty acids in animal diets improves quality of the final products (milk, cheese, meat. The possibility of introducing shredded palm in ruminants

  2. An assessment of the potential radiation exposure from residual radioactivity in scrap metal for recycling

    International Nuclear Information System (INIS)

    Lee, Sang Yoon; Lee, Kun Jai

    1997-01-01

    With current waste monitoring technology it is reasonable to assume that much of the material designated as low level waste (LLW), generated within nuclear facilities, is in fact uncontaminated. This may include operational wastes, metal and rubble, office waste and discrete items from decommissioning or decontamination operations. Materials that contain only trivial quantities of radionuclides could realistically be exempted or released from regulatory control for recycle or reuse. A criterion for uncontrolled disposal of low-level radioactive contaminated waste is that the radiation exposure of the public and of each individual caused by this disposal is so low that radiation protection measures need not be taken. The International Atomic Energy Agency (IAEA) suggests an annual effective doses of 10 μ Sv as a limit for the individual radiation dose. In 1990, new recommendation on radiation protection standards was developed by International Commission on Radiological Protection (ICRP) to take into account new biological information related to the detriment associated with radiation exposure. Adoption of these recommendations necessitated a revision of the Commission's secondary limits contained in Publication 30, Parts 1 ∼ 4. This study summarized the potential radiation exposure from valuable scrap metal considered to uncontrolled recycle by new ICRP recommendations. Potential exposure pathways to people following were analyzed and relevant models developed. Finally, concentrations leading to an individual dose of 10 μ Sv/yr were calculated for 14 key radionuclides. These potential radiation exposures are compared with the results of an IAEA study. 12 refs., 6 tabs., figs

  3. The Effects of Rape Residue Mulching on Net Global Warming Potential and Greenhouse Gas Intensity from No-Tillage Paddy Fields

    Science.gov (United States)

    Zhang, Zhi-Sheng; Cao, Cou-Gui; Guo, Li-Jin; Li, Cheng-Fang

    2014-01-01

    A field experiment was conducted to provide a complete greenhouse gas (GHG) accounting for global warming potential (GWP), net GWP, and greenhouse gas intensity (GHGI) from no-tillage (NT) paddy fields with different amounts of oilseed rape residue mulch (0, 3000, 4000, and 6000 kg dry matter (DM) ha−1) during a rice-growing season after 3 years of oilseed rape-rice cultivation. Residue mulching treatments showed significantly more organic carbon (C) density for the 0–20 cm soil layer at harvesting than no residue treatment. During a rice-growing season, residue mulching treatments sequestered significantly more organic C from 687 kg C ha−1 season−1 to 1654 kg C ha−1 season−1 than no residue treatment. Residue mulching significantly increased emissions of CO2 and N2O but decreased CH4 emissions. Residue mulching treatments significantly increased GWP by 9–30% but significantly decreased net GWP by 33–71% and GHGI by 35–72% relative to no residue treatment. These results suggest that agricultural economic viability and GHG mitigation can be achieved simultaneously by residue mulching on NT paddy fields in central China. PMID:25140329

  4. The effects of rape residue mulching on net global warming potential and greenhouse gas intensity from no-tillage paddy fields.

    Science.gov (United States)

    Zhang, Zhi-Sheng; Cao, Cou-Gui; Guo, Li-Jin; Li, Cheng-Fang

    2014-01-01

    A field experiment was conducted to provide a complete greenhouse gas (GHG) accounting for global warming potential (GWP), net GWP, and greenhouse gas intensity (GHGI) from no-tillage (NT) paddy fields with different amounts of oilseed rape residue mulch (0, 3000, 4000, and 6000 kg dry matter (DM) ha(-1)) during a rice-growing season after 3 years of oilseed rape-rice cultivation. Residue mulching treatments showed significantly more organic carbon (C) density for the 0-20 cm soil layer at harvesting than no residue treatment. During a rice-growing season, residue mulching treatments sequestered significantly more organic C from 687 kg C ha(-1) season(-1) to 1654 kg C ha(-1) season(-1) than no residue treatment. Residue mulching significantly increased emissions of CO2 and N2O but decreased CH4 emissions. Residue mulching treatments significantly increased GWP by 9-30% but significantly decreased net GWP by 33-71% and GHGI by 35-72% relative to no residue treatment. These results suggest that agricultural economic viability and GHG mitigation can be achieved simultaneously by residue mulching on NT paddy fields in central China.

  5. Potential risks of the residue from Samarco's mine dam burst (Bento Rodrigues, Brazil).

    Science.gov (United States)

    Segura, Fabiana Roberta; Nunes, Emilene Arusievicz; Paniz, Fernanda Pollo; Paulelli, Ana Carolina Cavalheiro; Rodrigues, Gabriela Braga; Braga, Gilberto Úbida Leite; Dos Reis Pedreira Filho, Walter; Barbosa, Fernando; Cerchiaro, Giselle; Silva, Fábio Ferreira; Batista, Bruno Lemos

    2016-11-01

    On November 5th, 2015, Samarco's iron mine dam - called Fundão - spilled 50-60 million m 3 of mud into Gualaxo do Norte, a river that belongs to Rio Doce Basin. Approximately 15 km 2 were flooded along the rivers Gualaxo do Norte, Carmo and Doce, reaching the Atlantic Ocean on November 22nd, 2015. Six days after, our group collected mud, soil and water samples in Bento Rodrigues (Minas Gerais, Brazil), which was the first impacted area. Overall, the results, water samples - potable and surface water from river - presented chemical elements concentration according to Brazilian environmental legislations, except silver concentration in surface water that ranged from 1.5 to 1087 μg L -1 . In addition, water mud-containing presented Fe and Mn concentrations approximately 4-fold higher than the maximum limit for water bodies quality assessment, according to Brazilian laws. Mud particle size ranged from 1 to 200 μm. SEM-EDS spot provided us some semi quantitative data. Leaching/extraction tests suggested that Ba, Pb, As, Sr, Fe, Mn and Al have high potential mobilization from mud to water. Low microbial diversity in mud samples compared to background soil samples. Toxicological bioassays (HepG2 and Allium cepa) indicated potential risks of cytotoxicity and DNA damage in mud and soil samples used in both assays. The present study provides preliminary information aiming to collaborate to the development of future works for monitoring and risk assessment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Assessment of Nano Cellulose from Peach Palm Residue as Potential Food Additive: Part II: Preliminary Studies.

    Science.gov (United States)

    Andrade, Dayanne Regina Mendes; Mendonça, Márcia Helena; Helm, Cristiane Vieira; Magalhães, Washington L E; de Muniz, Graciela Ines Bonzon; Kestur, Satyanarayana G

    2015-09-01

    High consumption of dietary fibers in the diet is related to the reduction of the risk of non-transmitting of chronic diseases, prevention of the constipation etc. Rich diets in dietary fibers promote beneficial effects for the metabolism. Considering the above and recognizing the multifaceted advantages of nano materials, there have been many attempts in recent times to use the nano materials in the food sector including as food additive. However, whenever new product for human and animal consumption is developed, it has to be tested for their effectiveness regarding improvement in the health of consumers, safety aspects and side effects. However, before it is tried with human beings, normally such materials would be assessed through biological tests on a living organism to understand its effect on health condition of the consumer. Accordingly, based on the authors' finding reported in a previous paper, this paper presents body weight, biochemical (glucose, cholesterol and lipid profile in blood, analysis of feces) and histological tests carried out with biomass based cellulose nano fibrils prepared by the authors for its possible use as food additive. Preliminary results of the study with mice have clearly brought out potential of these fibers for the said purpose.

  7. Evaluation of the biomass potential for the production of lignocellulosic bioethanol from various agricultural residues in Austria and Worldwide

    Science.gov (United States)

    Kahr, Heike; Steindl, Daniel; Wimberger, Julia; Schürz, Daniel; Jäger, Alexander

    2013-04-01

    Due to the fact that the resources of fossil fuels are steadily decreasing, researchers have been trying to find alternatives over the past few years. As bioethanol of the first generation is based on potential food, its production has become an increasingly controversial topic. Therefore the focus of research currently is on the production of bioethanol of the second generation, which is made from cellulosic and lignocellulosic materials. However, for the production of bioethanol of the second generation the fibres have to be pre-treated. In this work the mass balances of various agricultural residues available in Austria were generated and examined in lab scale experiments for their bioethanol potential. The residues were pretreatment by means of state of the art technology (steam explosion), enzymatically hydrolysed and fermented with yeast to produce ethanol. Special attention was paid the mass balance of the overall process. Due to the pretreatment the proportion of cellulose increases with the duration of the pre-treatment, whereby the amount of hemicellulose decreases greatly. However, the total losses were increasing with the duration of the pre-treatment, and the losses largely consist of hemicellulose. The ethanol yield varied depending on the cellulose content of the substrates. So rye straw 200 °C 20 min reaches an ethanol yield of 169 kg/t, by far the largest yield. As result on the basis of the annual straw yield in Austria, approximately 210 000 t of bioethanol (266 million litres) could be produced from the straw of wheat (Triticum vulgare), rye (Secale cereale), oat (Avena sativa) and corn (Zea mays) as well as elephant grass (Miscanthus sinensis) using appropriate pre-treatment. So the greenhouse gas emissions produced by burning fossil fuels could be reduced significantly. About 1.8 million tons of motor gasoline are consumed in Austria every year. The needed quantity for a transition to E10 biofuels could thus be easily provided by bioethanol

  8. Potentials and economic viability of small grain residue use as a source of energy in Serbia

    Energy Technology Data Exchange (ETDEWEB)

    Zekic, Vladislav; Rodic, Vesna; Jovanovic, Milenko [University of Novi Sad, Faculty of Agriculture, Department of Agricultural Economics and Rural Sociology, Trg Dositeja Obradovica 8, 21000 Novi Sad, Vojvodina (RS)

    2010-12-15

    One of the numerous challenges awaiting Serbia in the process of European integration is the increase in use of renewable sources of energy. The reason for such an increase is not merely a formal acceptance of European goals but the high energy import dependence, a relatively developed agricultural sector, with insufficiently exploited potentials of biomass, accompanied by an ever-growing awareness of the need for establishing long-lasting sustainable development. Serbia has a relatively undeveloped livestock sector which can absorb a limited portion of the biomass produced. Additionally, insufficient awareness on the part of farmers and the preconception of the low cost-effectiveness of biomass utilisation for the purpose of energy production are factors which, unsurprisingly, contribute to the current practice of burning the largest portion of the biomass produced on site, which is economically and ecologically unacceptable. This paper analyses the amounts of biomass available in Serbia and the prospects of its economically viable utilisation. The cost analysis conducted indicates that the energy obtained from small rectangular straw bales (the most widespread way of utilisation), is less costly by 28%, than the energy obtained from coal, whereas the energy obtained from round bales is cheaper by 34%. Sensitivity analysis has shown that the results obtained are relatively resistant to price changes in the most important inputs. The sensitivity is higher towards the efficiency of the machinery used; therefore, insistent efforts should be made for creating conditions where the introduction of more up-to-date technical solutions, already existing in developed countries, will become feasible. (author)

  9. Identification of the bile salt binding site on IpaD from Shigella flexneri and the influence of ligand binding on IpaD structure.

    Science.gov (United States)

    Barta, Michael L; Guragain, Manita; Adam, Philip; Dickenson, Nicholas E; Patil, Mrinalini; Geisbrecht, Brian V; Picking, Wendy L; Picking, William D

    2012-03-01

    Type III secretion (TTS) is an essential virulence factor for Shigella flexneri, the causative agent of shigellosis. The Shigella TTS apparatus (TTSA) is an elegant nanomachine that is composed of a basal body, an external needle to deliver effectors into human cells, and a needle tip complex that controls secretion activation. IpaD is at the tip of the nascent TTSA needle where it controls the first step of TTS activation. The bile salt deoxycholate (DOC) binds to IpaD to induce recruitment of the translocator protein IpaB into the maturing tip complex. We recently used spectroscopic analyses to show that IpaD undergoes a structural rearrangement that accompanies binding to DOC. Here, we report a crystal structure of IpaD with DOC bound and test the importance of the residues that make up the DOC binding pocket on IpaD function. IpaD binds DOC at the interface between helices α3 and α7, with concomitant movement in the orientation of helix α7 relative to its position in unbound IpaD. When the IpaD residues involved in DOC binding are mutated, some are found to lead to altered invasion and secretion phenotypes. These findings suggest that adoption of a DOC bound structural state for IpaD primes the Shigella TTSA for contact with host cells. The data presented here and in the studies leading up to this work provide the foundation for developing a model of the first step in Shigella TTS activation.

  10. Long Term Sugarcane Crop Residue Retention Offers Limited Potential to Reduce Nitrogen Fertilizer Rates in Australian Wet Tropical Environments.

    Science.gov (United States)

    Meier, Elizabeth A; Thorburn, Peter J

    2016-01-01

    The warming of world climate systems is driving interest in the mitigation of greenhouse gas (GHG) emissions. In the agricultural sector, practices that mitigate GHG emissions include those that (1) reduce emissions [e.g., those that reduce nitrous oxide (N2O) emissions by avoiding excess nitrogen (N) fertilizer application], and (2) increase soil organic carbon (SOC) stocks (e.g., by retaining instead of burning crop residues). Sugarcane is a globally important crop that can have substantial inputs of N fertilizer and which produces large amounts of crop residues ('trash'). Management of N fertilizer and trash affects soil carbon and nitrogen cycling, and hence GHG emissions. Trash has historically been burned at harvest, but increasingly is being retained on the soil surface as a 'trash blanket' in many countries. The potential for trash retention to alter N fertilizer requirements and sequester SOC was investigated in this study. The APSIM model was calibrated with data from field and laboratory studies of trash decomposition in the wet tropics of northern Australia. APSIM was then validated against four independent data sets, before simulating location × soil × fertilizer × trash management scenarios. Soil carbon increased in trash blanketed soils relative to SOC in soils with burnt trash. However, further increases in SOC for the study region may be limited because the SOC in trash blanketed soils could be approaching equilibrium; future GHG mitigation efforts in this region should therefore focus on N fertilizer management. Simulated N fertilizer rates were able to be reduced from conventional rates regardless of trash management, because of low yield potential in the wet tropics. For crops subjected to continuous trash blanketing, there was substantial immobilization of N in decomposing trash so conventional N fertilizer rates were required for up to 24 years after trash blanketing commenced. After this period, there was potential to reduce N fertilizer

  11. Long term sugarcane crop residue retention offers limited potential to reduce nitrogen fertilizer rates in Australian wet tropical environments

    Directory of Open Access Journals (Sweden)

    Elizabeth Anne Meier

    2016-07-01

    Full Text Available The warming of world climate systems is driving interest in the mitigation of greenhouse gas (GHG emissions. In the agricultural sector, practices that mitigate GHG emissions include those that (1 reduce emissions (e.g. those that reduce nitrous oxide (N2O emissions by avoiding excess nitrogen (N fertilizer application, and (2 increase soil organic carbon (SOC stocks (e.g. by retaining instead of burning crop residues. Sugarcane is a globally important crop that can have substantial inputs of N fertilizer and which produces large amounts of crop residues (‘trash’. Management of N fertilizer and trash affects soil carbon and nitrogen cycling, and hence GHG emissions. Trash has historically been burned at harvest, but increasingly is being retained on the soil surface as a ‘trash blanket’ in many countries. The potential for trash retention to alter N fertilizer requirements and sequester SOC was investigated in this study. The APSIM model was calibrated with data from field and laboratory studies of trash decomposition in the wet tropics of northern Australia. APSIM was then validated against four independent data sets, before simulating location  soil  fertilizer  trash management scenarios. Soil carbon increased in trash blanketed soils relative to SOC in soils with burnt trash. However, further increases in SOC for the study region may be limited because the SOC in trash blanketed soils could be approaching equilibrium; future GHG mitigation efforts in this region should therefore focus on N fertilizer management. Simulated N fertilizer rates were able to be reduced from conventional rates regardless of trash management, because of low yield potential in the wet tropics. For crops subjected to continuous trash blanketing, there was substantial immobilization of N in decomposing trash so conventional N fertilizer rates were required for up to 24 yr after trash blanketing commenced. After this period, there was potential to

  12. Anion induced conformational preference of Cα NN motif residues in functional proteins.

    Science.gov (United States)

    Patra, Piya; Ghosh, Mahua; Banerjee, Raja; Chakrabarti, Jaydeb

    2017-12-01

    Among different ligand binding motifs, anion binding C α NN motif consisting of peptide backbone atoms of three consecutive residues are observed to be important for recognition of free anions, like sulphate or biphosphate and participate in different key functions. Here we study the interaction of sulphate and biphosphate with C α NN motif present in different proteins. Instead of total protein, a peptide fragment has been studied keeping C α NN motif flanked in between other residues. We use classical force field based molecular dynamics simulations to understand the stability of this motif. Our data indicate fluctuations in conformational preferences of the motif residues in absence of the anion. The anion gives stability to one of these conformations. However, the anion induced conformational preferences are highly sequence dependent and specific to the type of anion. In particular, the polar residues are more favourable compared to the other residues for recognising the anion. © 2017 Wiley Periodicals, Inc.

  13. Revealing Ligand Binding Sites and Quantifying Subunit Variants of Noncovalent Protein Complexes in a Single Native Top-Down FTICR MS Experiment

    Science.gov (United States)

    Li, Huilin; Wongkongkathep, Piriya; Van Orden, Steve L.; Ogorzalek Loo, Rachel R.; Loo, Joseph A.

    2014-12-01

    "Native" mass spectrometry (MS) has been proven to be increasingly useful for structural biology studies of macromolecular assemblies. Using horse liver alcohol dehydrogenase (hADH) and yeast alcohol dehydrogenase (yADH) as examples, we demonstrate that rich information can be obtained in a single native top-down MS experiment using Fourier transform ion cyclotron mass spectrometry (FTICR MS). Beyond measuring the molecular weights of the protein complexes, isotopic mass resolution was achieved for yeast ADH tetramer (147 kDa) with an average resolving power of 412,700 at m/z 5466 in absorption mode, and the mass reflects that each subunit binds to two zinc atoms. The N-terminal 89 amino acid residues were sequenced in a top-down electron capture dissociation (ECD) experiment, along with the identifications of the zinc binding site at Cys46 and a point mutation (V58T). With the combination of various activation/dissociation techniques, including ECD, in-source dissociation (ISD), collisionally activated dissociation (CAD), and infrared multiphoton dissociation (IRMPD), 40% of the yADH sequence was derived directly from the native tetramer complex. For hADH, native top-down ECD-MS shows that both E and S subunits are present in the hADH sample, with a relative ratio of 4:1. Native top-down ISD of the hADH dimer shows that each subunit (E and S chains) binds not only to two zinc atoms, but also the NAD/NADH ligand, with a higher NAD/NADH binding preference for the S chain relative to the E chain. In total, 32% sequence coverage was achieved for both E and S chains.

  14. Diverse effects of distance cutoff and residue interval on the performance of distance-dependent atom-pair potential in protein structure prediction.

    Science.gov (United States)

    Yao, Yuangen; Gui, Rong; Liu, Quan; Yi, Ming; Deng, Haiyou

    2017-12-08

    As one of the most successful knowledge-based energy functions, the distance-dependent atom-pair potential is widely used in all aspects of protein structure prediction, including conformational search, model refinement, and model assessment. During the last two decades, great efforts have been made to improve the reference state of the potential, while other factors that also strongly affect the performance of the potential have been relatively less investigated. Based on different distance cutoffs (from 5 to 22 Å) and residue intervals (from 0 to 15) as well as six different reference states, we constructed a series of distance-dependent atom-pair potentials and tested them on several groups of structural decoy sets collected from diverse sources. A comprehensive investigation has been performed to clarify the effects of distance cutoff and residue interval on the potential's performance. Our results provide a new perspective as well as a practical guidance for optimizing distance-dependent statistical potentials. The optimal distance cutoff and residue interval are highly related with the reference state that the potential is based on, the measurements of the potential's performance, and the decoy sets that the potential is applied to. The performance of distance-dependent statistical potential can be significantly improved when the best statistical parameters for the specific application environment are adopted.

  15. Combining modelling and mutagenesis studies of synaptic vesicle protein 2A to identify a series of residues involved in racetam binding.

    Science.gov (United States)

    Shi, Jiye; Anderson, Dina; Lynch, Berkley A; Castaigne, Jean-Gabriel; Foerch, Patrik; Lebon, Florence

    2011-10-01

    LEV (levetiracetam), an antiepileptic drug which possesses a unique profile in animal models of seizure and epilepsy, has as its unique binding site in brain, SV2A (synaptic vesicle protein 2A). Previous studies have used a chimaeric and site-specific mutagenesis approach to identify three residues in the putative tenth transmembrane helix of SV2A that, when mutated, alter binding of LEV and related racetam derivatives to SV2A. In the present paper, we report a combined modelling and mutagenesis study that successfully identifies another 11 residues in SV2A that appear to be involved in ligand binding. Sequence analysis and modelling of SV2A suggested residues equivalent to critical functional residues of other MFS (major facilitator superfamily) transporters. Alanine scanning of these and other SV2A residues resulted in the identification of residues affecting racetam binding, including Ile273 which differentiated between racetam analogues, when mutated to alanine. Integrating mutagenesis results with docking analysis led to the construction of a mutant in which six SV2A residues were replaced with corresponding SV2B residues. This mutant showed racetam ligand-binding affinity intermediate to the affinities observed for SV2A and SV2B.

  16. Energetic potential of coffee residues to coffee industry; Potencialidade energetica da borra de cafe para as industrias de cafe soluvel

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, L.A.H.; Flores, L.F.V. [Escola Federal de Engenharia de Itajuba, MG (Brazil)

    1987-12-31

    This work aims to discuss the energetic viability of coffee residues as for steam generators and furnaces. The capacity of co-generation is presented. Economic analysis are also performed concerning the partial substitution of conventional fuel by residue. It was concluded that the above mentioned substitution is economically viable. 6 refs., 3 figs., 1 tab.

  17. Rigid Residue Scan Simulations Systematically Reveal Residue Entropic Roles in Protein Allostery.

    Directory of Open Access Journals (Sweden)

    Robert Kalescky

    2016-04-01

    Full Text Available Intra-protein information is transmitted over distances via allosteric processes. This ubiquitous protein process allows for protein function changes due to ligand binding events. Understanding protein allostery is essential to understanding protein functions. In this study, allostery in the second PDZ domain (PDZ2 in the human PTP1E protein is examined as model system to advance a recently developed rigid residue scan method combining with configurational entropy calculation and principal component analysis. The contributions from individual residues to whole-protein dynamics and allostery were systematically assessed via rigid body simulations of both unbound and ligand-bound states of the protein. The entropic contributions of individual residues to whole-protein dynamics were evaluated based on covariance-based correlation analysis of all simulations. The changes of overall protein entropy when individual residues being held rigid support that the rigidity/flexibility equilibrium in protein structure is governed by the La Châtelier's principle of chemical equilibrium. Key residues of PDZ2 allostery were identified with good agreement with NMR studies of the same protein bound to the same peptide. On the other hand, the change of entropic contribution from each residue upon perturbation revealed intrinsic differences among all the residues. The quasi-harmonic and principal component analyses of simulations without rigid residue perturbation showed a coherent allosteric mode from unbound and bound states, respectively. The projection of simulations with rigid residue perturbation onto coherent allosteric modes demonstrated the intrinsic shifting of ensemble distributions supporting the population-shift theory of protein allostery. Overall, the study presented here provides a robust and systematic approach to estimate the contribution of individual residue internal motion to overall protein dynamics and allostery.

  18. Agrobacterium uses a unique ligand-binding mode for trapping opines and acquiring a competitive advantage in the niche construction on plant host.

    Directory of Open Access Journals (Sweden)

    Julien Lang

    2014-10-01

    Full Text Available By modifying the nuclear genome of its host, the plant pathogen Agrobacterium tumefaciens induces the development of plant tumours in which it proliferates. The transformed plant tissues accumulate uncommon low molecular weight compounds called opines that are growth substrates for A. tumefaciens. In the pathogen-induced niche (the plant tumour, a selective advantage conferred by opine assimilation has been hypothesized, but not experimentally demonstrated. Here, using genetics and structural biology, we deciphered how the pathogen is able to bind opines and use them to efficiently compete in the plant tumour. We report high resolution X-ray structures of the periplasmic binding protein (PBP NocT unliganded and liganded with the opine nopaline (a condensation product of arginine and α-ketoglurate and its lactam derivative pyronopaline. NocT exhibited an affinity for pyronopaline (K(D of 0.6 µM greater than that for nopaline (KD of 3.7 µM. Although the binding-mode of the arginine part of nopaline/pyronopaline in NocT resembled that of arginine in other PBPs, affinity measurement by two different techniques showed that NocT did not bind arginine. In contrast, NocT presented specific residues such as M117 to stabilize the bound opines. NocT relatives that exhibit the nopaline/pyronopaline-binding mode were only found in genomes of the genus Agrobacterium. Transcriptomics and reverse genetics revealed that A. tumefaciens uses the same pathway for assimilating nopaline and pyronopaline. Fitness measurements showed that NocT is required for a competitive colonization of the plant tumour by A. tumefaciens. Moreover, even though the Ti-plasmid conjugal transfer was not regulated by nopaline, the competitive advantage gained by the nopaline-assimilating Ti-plasmid donors led to a preferential horizontal propagation of this Ti-plasmid amongst the agrobacteria colonizing the plant-tumour niche. This work provided structural and genetic evidences to

  19. Agrobacterium uses a unique ligand-binding mode for trapping opines and acquiring a competitive advantage in the niche construction on plant host.

    Science.gov (United States)

    Lang, Julien; Vigouroux, Armelle; Planamente, Sara; El Sahili, Abbas; Blin, Pauline; Aumont-Nicaise, Magali; Dessaux, Yves; Moréra, Solange; Faure, Denis

    2014-10-01

    By modifying the nuclear genome of its host, the plant pathogen Agrobacterium tumefaciens induces the development of plant tumours in which it proliferates. The transformed plant tissues accumulate uncommon low molecular weight compounds called opines that are growth substrates for A. tumefaciens. In the pathogen-induced niche (the plant tumour), a selective advantage conferred by opine assimilation has been hypothesized, but not experimentally demonstrated. Here, using genetics and structural biology, we deciphered how the pathogen is able to bind opines and use them to efficiently compete in the plant tumour. We report high resolution X-ray structures of the periplasmic binding protein (PBP) NocT unliganded and liganded with the opine nopaline (a condensation product of arginine and α-ketoglurate) and its lactam derivative pyronopaline. NocT exhibited an affinity for pyronopaline (K(D) of 0.6 µM) greater than that for nopaline (KD of 3.7 µM). Although the binding-mode of the arginine part of nopaline/pyronopaline in NocT resembled that of arginine in other PBPs, affinity measurement by two different techniques showed that NocT did not bind arginine. In contrast, NocT presented specific residues such as M117 to stabilize the bound opines. NocT relatives that exhibit the nopaline/pyronopaline-binding mode were only found in genomes of the genus Agrobacterium. Transcriptomics and reverse genetics revealed that A. tumefaciens uses the same pathway for assimilating nopaline and pyronopaline. Fitness measurements showed that NocT is required for a competitive colonization of the plant tumour by A. tumefaciens. Moreover, even though the Ti-plasmid conjugal transfer was not regulated by nopaline, the competitive advantage gained by the nopaline-assimilating Ti-plasmid donors led to a preferential horizontal propagation of this Ti-plasmid amongst the agrobacteria colonizing the plant-tumour niche. This work provided structural and genetic evidences to support the niche

  20. On the ligand binding profile and desensitization of plant ionotropic glutamate receptor (iGluR)-like channels functioning in MAMP-triggered Ca2+ influx

    DEFF Research Database (Denmark)

    Kwaaitaal, Mark Adrianus Cornelis J; Maintz, Jens; Cavdar, Meltem

    2012-01-01

    in the putative agonist binding profile and potential mode of desensitization of MAMP-activated plant iGluRs. Based on results from pharmacological inhibition and desensitization experiments, we propose that plant iGluR complexes responsible for the MAMP-triggered Ca ( 2+) signature have a binding profile...... that combines the specificities of mammalian NMDA-and non-NMDA types of iGluRs, possibly reflecting the evolutionary history of plant and animal iGluRs. We further hypothesize that, analogous to the mammalian NMDA-NR1 receptor, desensitization of plant iGluR-like channels might involve binding of the ubiquitous...

  1. Closing the Global Energy and Nutrient Cycles through Application of Biogas Residue to Agricultural Land – Potential Benefits and Drawback

    Directory of Open Access Journals (Sweden)

    Veronica Arthurson

    2009-04-01

    Full Text Available Anaerobic digestion is an optimal way to treat organic waste matter, resulting in biogas and residue. Utilization of the residue as a crop fertilizer should enhance crop yield and soil fertility, promoting closure of the global energy and nutrient cycles. Consequently, the requirement for production of inorganic fertilizers will decrease, in turn saving significant amounts of energy, reducing greenhouse gas emissions to the atmosphere, and indirectly leading to global economic benefits. However, application of this residue to agricultural land requires careful monitoring to detect amendments in soil quality at the early stages.

  2. BECCS potential in Brazil: Achieving negative emissions in ethanol and electricity production based on sugar cane bagasse and other residues

    International Nuclear Information System (INIS)

    Moreira, José Roberto; Romeiro, Viviane; Fuss, Sabine; Kraxner, Florian; Pacca, Sérgio A.

    2016-01-01

    Highlights: • Demonstrates the cost competitiveness of sugarcane based bioenergy carbon capture and storage (BECCS). • Evaluates BECCS based on emissions from sugar fermentation, which is the low hanging fruit technology available. • Determines the BECCS cost premium of CO_2, ethanol and electricity. • Determines the full mitigation potential of this BECCS technology in Brazil. • Discusses polices to enable BECCS deployment by society. - Abstract: Stabilization at concentrations consistent with keeping global warming below 2 °C above the pre-industrial level will require drastic cuts in Greenhouse Gas (GHG) emissions during the first half of the century; net negative emissions approaching 2100 are required in the vast majority of current emission scenarios. For negative emissions, the focus has been on bioenergy with carbon capture and storage (BECCS), where carbon-neutral bioenergy would be combined with additional carbon capture thus yielding emissions lower than zero. Different BECCS technologies are considered around the world and one option that deserves special attention applies CCS to ethanol production. It is currently possible to eliminate 27.7 million tonnes (Mt) of CO_2 emissions per year through capture and storage of CO_2 released during fermentation, which is part of sugar cane-based ethanol production in Brazil. Thus, BECCS could reduce the country’s emissions from energy production by roughly 5%. Such emissions are additional to those due to the substitution of biomass-based electricity for fossil-fueled power plants. This paper assesses the potential and cost effectiveness of negative emissions in the joint production system of ethanol and electricity based on sugar cane, bagasse, and other residues in Brazil. An important benefit is that CO_2 can be captured twice along the proposed BECCS supply chain (once during fermentation and once during electricity generation). This study only considers BECCS from fermentation because capturing

  3. Prediction of long-residue properties of potential blends from mathematically mixed infrared spectra of pure crude oils by partial least-squares regression models

    NARCIS (Netherlands)

    de Peinder, P.; Visser, T.; Petrauskas, D.D.; Salvatori, F.; Soulimani, F.; Weckhuysen, B.M.

    2009-01-01

    Research has been carried out to determine the feasibility of partial least-squares (PLS) regression models to predict the long-residue (LR) properties of potential blends from infrared (IR) spectra that have been created by linearly co-adding the IR spectra of crude oils. The study is the follow-up

  4. Stable alterations of CD44 isoform expression in prostate cancer cells decrease invasion and growth and alter ligand binding and chemosensitivity

    International Nuclear Information System (INIS)

    Yang, Kui; Tang, Yaqiong; Habermehl, Gabriel K; Iczkowski, Kenneth A

    2010-01-01

    Dysregulated CD44 expression characterizes most human cancers, including prostate cancer (PCa). PCa loses expression of CD44 standard (CD44s) that is present in benign epithelium, and overexpresses the novel splice variant isoform, CD44v7-10. Using retroviral gene delivery to PC-3M PCa cells, we expressed luciferase-only, enforced CD44s re-expression as a fusion protein with luciferase at its C-terminus or as a protein separate from luciferase, or knocked down CD44v7-10 by RNAi. Invasion, migration, proliferation, soft agar colony formation, adhesion, Docetaxel sensitivity, and xenograft growth assays were carried out. Expression responses of merlin, a CD44 binding partner, and growth-permissive phospho-merlin, were assessed by western blot. Compared to luciferase-only PC-3M cells, all three treatments reduced invasion and migration. Growth and soft agar colony formation were reduced only by re-expression of CD44s as a separate or fusion protein but not CD44v7-10 RNAi. Hyaluronan and osteopontin binding were greatly strengthened by CD44s expression as a separate protein, but not a fusion protein. CD44v7-10 RNAi in PC-3M cells caused marked sensitization to Docetaxel; the two CD44s re-expression approaches caused minimal sensitization. In limited numbers of mouse subcutaneous xenografts, all three alterations produced only nonsignificant trends toward slower growth compared with luciferase-only controls. The expression of CD44s as a separate protein, but not a fusion protein, caused emergence of a strongly-expressed, hypophosphorylated species of phospho-merlin. Stable re-expression of CD44s reduces PCa growth and invasion in vitro, and possibly in vivo, suggesting CD44 alterations have potential as gene therapy. When the C-terminus of CD44s is fused to another protein, most phenotypic effects are lessened, particularly hyaluronan adhesion. Finally, CD44v7-10, although it was not functionally significant for growth, may be a target for chemosensitization

  5. Case study: Is the 'catch-all-plastics bin' useful in unlocking the hidden resource potential in the residual waste collection system?

    Science.gov (United States)

    Kranzinger, Lukas; Schopf, Kerstin; Pomberger, Roland; Punesch, Elisabeth

    2017-02-01

    Austria's performance in the collection of separated waste is adequate. However, the residual waste still contains substantial amounts of recyclable materials - for example, plastics, paper and board, glass and composite packaging. Plastics (lightweight packaging and similar non-packaging materials) are detected at an average mass content of 13% in residual waste. Despite this huge potential, only 3% of the total amount of residual waste (1,687,000 t y -1 ) is recycled. This implies that most of the recyclable materials contained in the residual waste are destined for thermal recovery and are lost for recycling. This pilot project, commissioned by the Land of Lower Austria, applied a holistic approach, unique in Europe, to the Lower Austrian waste management system. It aims to transfer excess quantities of plastic packaging and non-packaging recyclables from the residual waste system to the separately collected waste system by introducing a so-called 'catch-all-plastics bin'. A quantity flow model was constructed and the results showed a realistic increase in the amount of plastics collected of 33.9 wt%. This equals a calculated excess quantity of 19,638 t y -1 . The increased plastics collection resulted in a positive impact on the climate footprint (CO 2 equivalent) in line with the targets of EU Directive 94/62/EG (Circular Economy Package) and its Amendments. The new collection system involves only moderate additional costs.

  6. The role of the class A scavenger receptors, SR-A and MARCO, in the immune system. Part 1. The structure of receptors, their ligand binding repertoires and ability to initiate intracellular signaling

    Directory of Open Access Journals (Sweden)

    Szczepan Józefowski

    2012-02-01

    Full Text Available  Recognition of pathogens by innate immune cells is mediated by pattern recognition receptors (PRR, which include scavenger receptors (SR. The class A SR, SR-A/CD204 and MARCO, are characterized by the presence of collagenous and SR cysteine-rich domains in their extracellular portions. Both receptors are expressed mainly on macrophages and dendritic cells. Thanks to their ability to bind to a wide range of polyanionic ligands, the class A SR may participate in numerous functions of these cells, such as endocytosis, and adhesion to extracellular matrix and to other cells. Among SR-A ligands are oxidized lipoproteins and β-amyloid fibrils, which link SR-A to the pathogenesis of arteriosclerosis and Alzheimer’s disease. Despite the demonstration of class A SR involvement in so many processes, the lack of selective ligands precluded reaching definite conclusions concerning their signaling abilities. Using specific receptor ligation with antibodies, we showed that SR-A and MARCO trigger intracellular signaling, modulating pro-inflammatory and microbicidal activities of macrophages. Surprisingly, despite similarities in structure and ligand binding repertoires, SR-A and MARCO exert opposite effects on interleukin-12 (IL-12 production in macrophages. SR-A ligation also stimulated H2O2 and IL-10 production, but had no effect on the release of several other cytokines. These limited effects of specific SR-A ligation contrast with generalized enhancement of immune responses observed in SR-A-deficient mice. Recent studies have revealed that many of these effects of SR-A deficiency may be caused by compensatory changes in the expression of other receptors and/or disinhibition of signal transduction from receptors belonging to the Toll/IL-1R family, rather than by the loss of the receptor function of SR-A.

  7. Organochlorine pesticide residues in sardinella aurita from the coastal waters of Accra-Tema, Ghana and their potential health risks

    International Nuclear Information System (INIS)

    Nyarko, E.; Botwe, B.O.; Bampoe, A.A.; Addo, S.; Armah, A.K.; Ntow, W.J.; Kelderman, P.

    2011-01-01

    Sardinella aurita and seawater samples from the Accra-Tema coast of Ghana were analysed for organochlorine (OC) pesticides using gas chromatography (GC) with electron capture detection (ECD). Residues of DDTs (p,p'-DDT, p'p'-DDE,p,p'-DDD), hexachlorocyclohexane (HCHs - α-HCH, β-HCH and γ-HCH), endosulfan (α-endosulfan, β-endosulfan, endosulfan sulphate) and heptachlor were detected in fish at average concentrations ranging from 3.0 to 1235.0 μg/kg wet wt. These residues were, however, below the detection limit in seawater samples. Significant differences (p < 0.05) in residue levels were also observed across sites, decreasing from Chorkor to Kpone for seven (7) of the residues that were detected in S. aurita. Evaluation of hazard ratios (HRs) and the health risk associated with OC exposure from consumption of sardinellas revealed a probability of adverse health effect due to p,p'-DDT, γ-HCH and heptachlor. Hence, p,p'-DDT, γ-HCH and heptachlor may be of particular health concern. (au)

  8. Investigation of potential of agro-industrial residues for ethanol production by using Candida tropicalis and Zymomonas mobilis

    Science.gov (United States)

    Patle, Sonali

    India is becoming more susceptible regarding energy security with increasing world prices of crude oil and increasing dependence on imports. Based on experiments by the Indian Institute of Petroleum, a 10% ethanol blend with gasoline is being considered for use in vehicles in at least one state and it will be mandatory for all oil companies to blend petrol with 10% ethanol from October 2008. In view of the above, the Government has already started supply of 5% ethanol blended petrol from 2003 in nine states and four contiguous Union Territories. Currently, fuel ethanol is produced mainly from molasses, corn, wheat and sugar beets. The production cost of ethanol from these agro-feedstocks is more than twice the price of gasoline. The high feedstock cost poses a major obstacle to large scale implementation of ethanol as a transportation fuel. Molasses could be in short supply due to the implementation of 10% blending norm. A reduction in import duty for industrial alcohol from7.5% to 5% has been suggested. The use of lignocellulosic energy crops, and particularly low cost biomass residues, offers excellent perspectives for application of ethanol in transportation fuels (Ridder, 2000). These materials will increase the ethanol production capacity and reduce the production cost to a competitive level. There is a huge demand (500 million litres) of ethanol to meet the 5% blending in India. With the present infrastructure, only 90 million litres of ethanol was produced till November 2006 and could reach up to 140 million litres (around) till October 2007. Bioethanol from these materials provides a highly cost effective option for CO2 emission reduction in the transportation sector. The aim of the present investigation was to evaluate the potential of biomass as feedstock for ethanol production. The dedicated energy crops would require thorough support as well as planning efforts such as assessing resources, availability and utilization. Furthermore, applied research is

  9. Characterization of microwave liquefied bamboo residue and its potential use in the generation of nanofibrillated cellulosic fiber

    Science.gov (United States)

    Jiulong Xie; Chung Hse; Chunjie Li; Todd F. Shupe; Tingxing Hu; Jinqiu Qi; Cornelis F. De Hoop

    2016-01-01

    Bamboo raw feedstocks with large particle size (20−80 mesh) were subjected to a microwave liquefaction system, and the liquefied products were separated into biopolyols and liquefied residues. Biopolyols were first analyzed by gas chromatography mass spectrometry (GC−MS), and the main components were sugar derivatives with 2−4 hydroxyl groups and phenolic compounds...

  10. Virtual screening with AutoDock Vina and the common pharmacophore engine of a low diversity library of fragments and hits against the three allosteric sites of HIV integrase: participation in the SAMPL4 protein-ligand binding challenge.

    Science.gov (United States)

    Perryman, Alexander L; Santiago, Daniel N; Forli, Stefano; Martins, Diogo Santos; Olson, Arthur J

    2014-04-01

    To rigorously assess the tools and protocols that can be used to understand and predict macromolecular recognition, and to gain more structural insight into three newly discovered allosteric binding sites on a critical drug target involved in the treatment of HIV infections, the Olson and Levy labs collaborated on the SAMPL4 challenge. This computational blind challenge involved predicting protein-ligand binding against the three allosteric sites of HIV integrase (IN), a viral enzyme for which two drugs (that target the active site) have been approved by the FDA. Positive control cross-docking experiments were utilized to select 13 receptor models out of an initial ensemble of 41 different crystal structures of HIV IN. These 13 models of the targets were selected using our new "Rank Difference Ratio" metric. The first stage of SAMPL4 involved using virtual screens to identify 62 active, allosteric IN inhibitors out of a set of 321 compounds. The second stage involved predicting the binding site(s) and crystallographic binding mode(s) for 57 of these inhibitors. Our team submitted four entries for the first stage that utilized: (1) AutoDock Vina (AD Vina) plus visual inspection; (2) a new common pharmacophore engine; (3) BEDAM replica exchange free energy simulations, and a Consensus approach that combined the predictions of all three strategies. Even with the SAMPL4's very challenging compound library that displayed a significantly lower amount of structural diversity than most libraries that are conventionally employed in prospective virtual screens, these approaches produced hit rates of 24, 25, 34, and 27 %, respectively, on a set with 19 % declared binders. Our only entry for the second stage challenge was based on the results of AD Vina plus visual inspection, and it ranked third place overall according to several different metrics provided by the SAMPL4 organizers. The successful results displayed by these approaches highlight the utility of the computational

  11. Quantitative analysis of multiple kappa-opioid receptors by selective and nonselective ligand binding in guinea pig spinal cord: Resolution of high and low affinity states of the kappa 2 receptors by a computerized model-fitting technique

    International Nuclear Information System (INIS)

    Tiberi, M.; Magnan, J.

    1990-01-01

    The binding characteristics of selective and nonselective opioids have been studied in whole guinea pig spinal cord, using a computer fitting method to analyze the data obtained from saturation and competition studies. The delineation of specific binding sites labeled by the mu-selective opioid [3H]D-Ala2,MePhe4,Gly-ol5-enkephalin (Kd = 2.58 nM, R = 4.52 pmol/g of tissue) and by the delta-selective opioid [3H]D-Pen2, D-Pen5-enkephalin (Kd = 2.02 nM, R = 1.47 pmol/g of tissue) suggests the presence of mu and delta-receptors in the spinal cord tissue. The presence of kappa receptors was probed by the kappa-selective opioid [3H]U69593 (Kd = 3.31 nM, R = 2.00 pmol/g of tissue). The pharmacological characterization of the sites labeled by [3H]U69593 confirms the assumption that this ligand discriminates kappa receptors in guinea pig spinal cord. The benzomorphan [3H]ethylketazocine labels a population of receptors with one homogeneous affinity state (Kd = 0.65 nM, R = 7.39 pmol/g of tissue). The total binding capacity of this ligand was not different from the sum of the binding capacities of mu, delta-, and kappa-selective ligands. Under mu- and delta-suppressed conditions, [3H]ethylketazocine still binds to receptors with one homogeneous affinity state (Kd = 0.45 nM, R = 1.69 pmol/g of tissue). Competition studies performed against the binding of [3H]ethylketazocine under these experimental conditions reveal that the pharmacological profile of the radiolabeled receptors is similar to the profile of the kappa receptors labeled with [3H]U69593. Saturation studies using the nonselective opioid [3H]bremazocine demonstrate that this ligand binds to spinal cord membranes with heterogeneous affinities (Kd1 = 0.28 nM, R1 = 7.91 pmol/g of tissue; Kd2 = 3.24 nM, R2 = 11.2 pmol/g of tissue)

  12. Virtual screening with AutoDock Vina and the common pharmacophore engine of a low diversity library of fragments and hits against the three allosteric sites of HIV integrase: participation in the SAMPL4 protein-ligand binding challenge

    Science.gov (United States)

    Perryman, Alexander L.; Santiago, Daniel N.; Forli, Stefano; Santos-Martins, Diogo; Olson, Arthur J.

    2014-04-01

    To rigorously assess the tools and protocols that can be used to understand and predict macromolecular recognition, and to gain more structural insight into three newly discovered allosteric binding sites on a critical drug target involved in the treatment of HIV infections, the Olson and Levy labs collaborated on the SAMPL4 challenge. This computational blind challenge involved predicting protein-ligand binding against the three allosteric sites of HIV integrase (IN), a viral enzyme for which two drugs (that target the active site) have been approved by the FDA. Positive control cross-docking experiments were utilized to select 13 receptor models out of an initial ensemble of 41 different crystal structures of HIV IN. These 13 models of the targets were selected using our new "Rank Difference Ratio" metric. The first stage of SAMPL4 involved using virtual screens to identify 62 active, allosteric IN inhibitors out of a set of 321 compounds. The second stage involved predicting the binding site(s) and crystallographic binding mode(s) for 57 of these inhibitors. Our team submitted four entries for the first stage that utilized: (1) AutoDock Vina (AD Vina) plus visual inspection; (2) a new common pharmacophore engine; (3) BEDAM replica exchange free energy simulations, and a Consensus approach that combined the predictions of all three strategies. Even with the SAMPL4's very challenging compound library that displayed a significantly lower amount of structural diversity than most libraries that are conventionally employed in prospective virtual screens, these approaches produced hit rates of 24, 25, 34, and 27 %, respectively, on a set with 19 % declared binders. Our only entry for the second stage challenge was based on the results of AD Vina plus visual inspection, and it ranked third place overall according to several different metrics provided by the SAMPL4 organizers. The successful results displayed by these approaches highlight the utility of the computational

  13. Quantitative analysis of multiple kappa-opioid receptors by selective and nonselective ligand binding in guinea pig spinal cord: Resolution of high and low affinity states of the kappa 2 receptors by a computerized model-fitting technique

    Energy Technology Data Exchange (ETDEWEB)

    Tiberi, M.; Magnan, J. (Universite de Montreal, Quebec (Canada))

    1990-05-01

    The binding characteristics of selective and nonselective opioids have been studied in whole guinea pig spinal cord, using a computer fitting method to analyze the data obtained from saturation and competition studies. The delineation of specific binding sites labeled by the mu-selective opioid (3H)D-Ala2,MePhe4,Gly-ol5-enkephalin (Kd = 2.58 nM, R = 4.52 pmol/g of tissue) and by the delta-selective opioid (3H)D-Pen2, D-Pen5-enkephalin (Kd = 2.02 nM, R = 1.47 pmol/g of tissue) suggests the presence of mu and delta-receptors in the spinal cord tissue. The presence of kappa receptors was probed by the kappa-selective opioid (3H)U69593 (Kd = 3.31 nM, R = 2.00 pmol/g of tissue). The pharmacological characterization of the sites labeled by (3H)U69593 confirms the assumption that this ligand discriminates kappa receptors in guinea pig spinal cord. The benzomorphan (3H)ethylketazocine labels a population of receptors with one homogeneous affinity state (Kd = 0.65 nM, R = 7.39 pmol/g of tissue). The total binding capacity of this ligand was not different from the sum of the binding capacities of mu, delta-, and kappa-selective ligands. Under mu- and delta-suppressed conditions, (3H)ethylketazocine still binds to receptors with one homogeneous affinity state (Kd = 0.45 nM, R = 1.69 pmol/g of tissue). Competition studies performed against the binding of (3H)ethylketazocine under these experimental conditions reveal that the pharmacological profile of the radiolabeled receptors is similar to the profile of the kappa receptors labeled with (3H)U69593. Saturation studies using the nonselective opioid (3H)bremazocine demonstrate that this ligand binds to spinal cord membranes with heterogeneous affinities (Kd1 = 0.28 nM, R1 = 7.91 pmol/g of tissue; Kd2 = 3.24 nM, R2 = 11.2 pmol/g of tissue).

  14. Seasonal changes in chemical and mineralogical composition of sewage sludge incineration residues and their potential for metallic elements and valuable components recovery

    Science.gov (United States)

    Kasina, Monika; Kowalski, Piotr R.; Michalik, Marek

    2017-04-01

    Increasing energy needs, the implementation of the circular economy principles and rising environmental awareness caused that waste management is becoming a major social and economic issue. The EU Member States have committed to a significant reduction in the amount of waste produced and landfilled and to use their inherent energy and raw materials potential. One of the most reasonable option to fulfil these commitments is waste incineration. The aim of the waste incineration is to reduce their volume and toxicity by disinfection and detoxification at high temperatures. Thermal process and reduction of volume allows the recovery of minerals and metallic elements from residues as well as the energy production (waste-to-energy strategy) during incineration. As a result of waste incineration a variety of solid residues (bottom ash, fly ash, air pollution control residues) and technological waste (gas waste, wastewater) are produced. The goal of this study is to characterize fly ash and air pollution control (APC) residues formed as a result of municipal sewage sludge incineration in terms of their chemical and mineral composition and their extractive potential. Residues were sampled quarterly to study their seasonal changes in composition. The fly ash was a Si-P-C-Fe-Al dominated material, whereas the APC residues composition was dominated by Na-rich soluble phases. The removal of soluble phase ( 98% of the material) from the APC residues by dissolution in deionised water caused significant mass reduction and concentration of non-soluble elements. The main mineral phases in fly ash were quartz, hematite, Fe-PO4, whitlockite and feldspar, while in APC thenardite, and in lower amount calcite, apatite and quartz were present. The chemical composition of fly ash was practically invariable in different seasons, but significant differences were observed in APC residues. The lowest concentrations of all elements and the highest TOC content were measured in the samples

  15. A cluster of aspartic residues in the extracellular loop II of PAR 4 is important for thrombin interaction and activation of platelets.

    Science.gov (United States)

    Sánchez Centellas, Daniel; Gudlur, Sushanth; Vicente-Carrillo, Alejandro; Ramström, Sofia; Lindahl, Tomas L

    2017-06-01

    Thrombin activates platelets via proteolytic cleavage of protease-activated receptors (PARs) 1 and 4. The two PARs have distinct but complementary roles. The mechanisms responsible for PAR1 activation by thrombin have been extensively studied. However, much less is known regarding thrombin activation of PAR4, especially the potential involvement of regions of PAR4 other than the N-terminal, which is bound to the catalytic site of thrombin. We have studied PAR4 in S. cerevisiae strain MMY12, an expression system in which the GPCR receptors are connected to a Lac Z reporter gene resulting in increased β-galactosidase activity. This approach was used to assess PAR4 mutants to evaluate the contribution of different aspartic residues in facilitating PAR4 activation. Furthermore, peptides mimicking parts of the PAR4 N-terminal and the second extracellular loop (ECLII) were tested for their ability to inhibit platelet activation by thrombin. Binding of these peptides to γ-thrombin was studied by monitoring the decrease in tryptophan fluorescence intensity of thrombin. We conclude that not only the N-terminal but also the electronegative aspartic residues D224, D230 and D235 (located in ECLII) are be important for PAR4 binding to thrombin. We further suggest that they play a role for the tethered ligand binding to the receptor, as mutations also affected activation in response to a PAR4-activating peptide mimicking the new N-terminal formed after cleavage. This agrees with previous results on PAR1 and thrombin binding. We suggest that the ECLII of PAR4 could be a potential target for antithrombotic drug development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Potential application of a semi-quantitative method for mercury determination in soils, sediments and gold mining residues

    International Nuclear Information System (INIS)

    Yallouz, A.V.; Cesar, R.G.; Egler, S.G.

    2008-01-01

    An alternative, low cost method for analyzing mercury in soil, sediment and gold mining residues was developed, optimized and applied to 30 real samples. It is semiquantitative, performed using an acid extraction pretreatment step, followed by mercury reduction and collection in a detecting paper containing cuprous iodide. A complex is formed with characteristic color whose intensity is proportional to mercury concentration in the original sample. The results are reported as range of concentration and the minimum detectable is 100 ng/g. Method quality assurance was performed by comparing results obtained using the alternative method and the Cold Vapor Atomic Absorption Spectrometry techniques. The average results from duplicate analysis by CVAAS were 100% coincident with alternative method results. The method is applicable for screening tests and can be used in regions where a preliminary diagnosis is necessary, at programs of environmental surveillance or by scientists interested in investigating mercury geochemistry. - Semi-quantitative low-cost method for mercury determination in soil, sediments and mining residues

  17. Evaluation of Mediterranean Agricultural Residues as a Potential Feedstock for the Production of Biogas via Anaerobic Fermentation.

    Science.gov (United States)

    Nitsos, Christos; Matsakas, Leonidas; Triantafyllidis, Kostas; Rova, Ulrika; Christakopoulos, Paul

    2015-01-01

    Hydrothermal, dilute acid, and steam explosion pretreatment methods, were evaluated for their efficiency to improve the methane production yield of three Mediterranean agricultural lignocellulosic residues such as olive tree pruning, grapevine pruning, and almond shells. Hydrothermal and dilute acid pretreatments provided low to moderate increase in the digestibility of the biomass samples, whereas steam explosion enabled the highest methane yields to be achieved for almond shells at 232.2 ± 13.0 mL CH4/gVS and olive pruning at 315.4 ± 0.0 mL CH4/gVS. Introduction of an enzymatic prehydrolysis step moderately improved methane yields for hydrothermal and dilute acid pretreated samples but not for the steam exploded ones.

  18. Evaluation of Mediterranean Agricultural Residues as a Potential Feedstock for the Production of Biogas via Anaerobic Fermentation

    Directory of Open Access Journals (Sweden)

    Christos Nitsos

    2015-01-01

    Full Text Available Hydrothermal, dilute acid, and steam explosion pretreatment methods, were evaluated for their efficiency to improve the methane production yield of three Mediterranean agricultural lignocellulosic residues such as olive tree pruning, grapevine pruning, and almond shells. Hydrothermal and dilute acid pretreatments provided low to moderate increase in the digestibility of the biomass samples, whereas steam explosion enabled the highest methane yields to be achieved for almond shells at 232.2 ± 13.0 mL CH4/gVS and olive pruning at 315.4 ± 0.0 mL CH4/gVS. Introduction of an enzymatic prehydrolysis step moderately improved methane yields for hydrothermal and dilute acid pretreated samples but not for the steam exploded ones.

  19. Evaluation of PAH depletion of subsurface Exxon Valdez oil residues remaining in Prince William Sound in 2007-2008 and their likely bioremediation potential

    Energy Technology Data Exchange (ETDEWEB)

    Atlas, R. [Louisville Univ., Louisville, KY (United States); Bragg, J.R. [Creative Petroleum Solutions LLC, Houston, TX (United States)

    2009-07-01

    This study examined the extent of oil weathering at the Exxon Valdez oil spill (EVOS) sites and estimated the bioremediation potential for shoreline segments by examining the depletion of total polycyclic aromatic hydrocarbons (PAHs) relative to an estimated applicability threshold of 70 per cent. The distribution of oil was examined by location and current ratios of nitrogen and non-polar oil in order to assess if biodegradation rates were nutrient-limited. The impact of sequestration on the effectiveness of bioremediation was also studied. Results of the study showed that the EVOS residues are patchy and infrequently found on sites that were heavily oiled in 1989. Only 0.4 per cent of the oil originally stranded in 1989 remained. The remaining EVOS residues are sequestered under boulder and cobble armour in areas with limited contact with flowing water. The study also showed that concentrations of nitrogen and dissolved oxygen in pore waters within strata adjacent to the sequestered oil can support biodegradation. Most remaining EVOS residues are highly weathered and biodegraded. It was concluded that nutrients added to the shorelines are unlikely to effectively contact the sequestered oil. 31 refs., 2 tabs., 14 figs.

  20. Pyrolysis of petroleum residues while making use of the hydrogen potential of polymer waste; Pyrolyse von Erdoelrueckstaenden unter Nutzung des Wasserstoffpotentials von Polymerabfaellen

    Energy Technology Data Exchange (ETDEWEB)

    Klemens, I; Butz, T; Rahimian, I; Linde, A [Institut fuer Erdoel- und Erdgasforschung, Clausthal-Zellerfeld (Germany)

    1998-09-01

    The hydrogen potential contained in waste plastics is to be utilized optimally for cracking of petroleum residues. Homogeneous distribution of the plastic particles in the petroleum residue is to ensure short distances between the hydrogen donor and acceptor, a sufficently large reaction surface, and stable mixing for further processing. Apart from homogeneity, another factor of interest is the influence of mixed-in polymer particles on the colloidal stability of the petroleum residue and the physico-chemical properties of the mixtures. With a view to further processing, the mixtures were analyzed for high-temperature stability, flow characteristics, and reaction behaviour during pyrolysis. (orig.) [Deutsch] Ziel dieses Vorhabens ist es, das in den Kunststoffabfaellen vorhandene Wasserstoffpotential optimal fuer eine tiefergehende Spaltung der Erdoelrueckstaende nutzbar zu machen. Durch eine homogene Verteilung der Kunststoffpartikel im Erdoelrueckstand soll ein moeglichst kurzer Transportweg zwischen Wasserstoff-Donor und -Akkzeptor, eine ausreichend grosse Reaktionsoberflaeche und eine fuer weitere Verarbeitungsschritte notwendige stabile Mischung erreicht werden. Ebenso interessant wie die Homogenitaet solcher Gemische ist auch der Einfluss der eingemengten Polymerteilchen auf die Kolloidstabilitaet des Erdoelrueckstandes und die physikalisch-chemischen Eigenschaften der Mischungen. Im Hinblick auf eine technische Weiterverarbeitung werden die Gemische besonders auf ihre Stabilitaet bei erhoehten Temperaturen (Heisslagerstabilitaet), ihr Fliessverhalten sowie ihr Reaktionsverhalten waehrend der Pyrolyse untersucht. (orig.)

  1. Molecular Determinants Underlying Binding Specificities of the ABL Kinase Inhibitors: Combining Alanine Scanning of Binding Hot Spots with Network Analysis of Residue Interactions and Coevolution.

    Directory of Open Access Journals (Sweden)

    Amanda Tse

    Full Text Available Quantifying binding specificity and drug resistance of protein kinase inhibitors is of fundamental importance and remains highly challenging due to complex interplay of structural and thermodynamic factors. In this work, molecular simulations and computational alanine scanning are combined with the network-based approaches to characterize molecular determinants underlying binding specificities of the ABL kinase inhibitors. The proposed theoretical framework unveiled a relationship between ligand binding and inhibitor-mediated changes in the residue interaction networks. By using topological parameters, we have described the organization of the residue interaction networks and networks of coevolving residues in the ABL kinase structures. This analysis has shown that functionally critical regulatory residues can simultaneously embody strong coevolutionary signal and high network centrality with a propensity to be energetic hot spots for drug binding. We have found that selective (Nilotinib and promiscuous (Bosutinib, Dasatinib kinase inhibitors can use their energetic hot spots to differentially modulate stability of the residue interaction networks, thus inhibiting or promoting conformational equilibrium between inactive and active states. According to our results, Nilotinib binding may induce a significant network-bridging effect and enhance centrality of the hot spot residues that stabilize structural environment favored by the specific kinase form. In contrast, Bosutinib and Dasatinib can incur modest changes in the residue interaction network in which ligand binding is primarily coupled only with the identity of the gate-keeper residue. These factors may promote structural adaptability of the active kinase states in binding with these promiscuous inhibitors. Our results have related ligand-induced changes in the residue interaction networks with drug resistance effects, showing that network robustness may be compromised by targeted mutations

  2. Molecular Determinants Underlying Binding Specificities of the ABL Kinase Inhibitors: Combining Alanine Scanning of Binding Hot Spots with Network Analysis of Residue Interactions and Coevolution

    Science.gov (United States)

    Tse, Amanda; Verkhivker, Gennady M.

    2015-01-01

    Quantifying binding specificity and drug resistance of protein kinase inhibitors is of fundamental importance and remains highly challenging due to complex interplay of structural and thermodynamic factors. In this work, molecular simulations and computational alanine scanning are combined with the network-based approaches to characterize molecular determinants underlying binding specificities of the ABL kinase inhibitors. The proposed theoretical framework unveiled a relationship between ligand binding and inhibitor-mediated changes in the residue interaction networks. By using topological parameters, we have described the organization of the residue interaction networks and networks of coevolving residues in the ABL kinase structures. This analysis has shown that functionally critical regulatory residues can simultaneously embody strong coevolutionary signal and high network centrality with a propensity to be energetic hot spots for drug binding. We have found that selective (Nilotinib) and promiscuous (Bosutinib, Dasatinib) kinase inhibitors can use their energetic hot spots to differentially modulate stability of the residue interaction networks, thus inhibiting or promoting conformational equilibrium between inactive and active states. According to our results, Nilotinib binding may induce a significant network-bridging effect and enhance centrality of the hot spot residues that stabilize structural environment favored by the specific kinase form. In contrast, Bosutinib and Dasatinib can incur modest changes in the residue interaction network in which ligand binding is primarily coupled only with the identity of the gate-keeper residue. These factors may promote structural adaptability of the active kinase states in binding with these promiscuous inhibitors. Our results have related ligand-induced changes in the residue interaction networks with drug resistance effects, showing that network robustness may be compromised by targeted mutations of key mediating

  3. Lignocellulosic residues for production of electricity, biogas or second generation biofuel: A case study of technical and sustainable potential of rice straw in Mali

    DEFF Research Database (Denmark)

    Nygaard, Ivan; Dembelé, Filifing; Daou, Ibrahima

    2016-01-01

    Biomass from agricultural residues, especially lignocellulosic biomass, is not only seen as a sustainable biomass source for the production of electricity, but increasingly as a resource for the production of biogas and second generation biofuel in developing countries. Based on empirical research...... in an irrigated rice-growing area, Office du Niger, in Mali, this article builds scenarios for the sustainable potential of rice straw. The paper concludes that there is great uncertainty regarding the size of the sustainable resources of rice straw available for energy, but that the most likely scenario...

  4. RNA-Seq transcriptomics and pathway analyses reveal potential regulatory genes and molecular mechanisms in high- and low-residual feed intake in Nordic dairy cattle

    DEFF Research Database (Denmark)

    Salleh, M. S.; Mazzoni, G.; Höglund, J. K.

    2017-01-01

    -throughput RNA sequencing data of liver biopsies from 19 dairy cows were used to identify differentially expressed genes (DEGs) between high- and low-FE groups of cows (based on Residual Feed Intake or RFI). Subsequently, a profile of the pathways connecting the DEGs to FE was generated, and a list of candidate...... genes and biomarkers was derived for their potential inclusion in breeding programmes to improve FE. The bovine RNA-Seq gene expression data from the liver was analysed to identify DEGs and, subsequently, identify the molecular mechanisms, pathways and possible candidate biomarkers of feed efficiency....... On average, 57 million reads (short reads or short mRNA sequences ...

  5. Residual hepatocellular carcinoma after oxaliplatin treatment has increased metastatic potential in a nude mouse model and is attenuated by Songyou Yin

    International Nuclear Information System (INIS)

    Xiong, Wei; Liu, Liang; Wang, Wen-Quan; Tang, Zhao-You; Ren, Zheng-Gang; Qiu, Shuang-Jian; Sun, Hui-Chuan; Wang, Lu; Liu, Bin-Bin; Li, Qi-Song; Zhang, Wei; Zhu, Xiao-Dong

    2010-01-01

    The opposite effects of chemotherapy, which enhance the malignancy of treated cancers such as hepatocellular carcinoma (HCC), are not well understood. We investigated this phenomenon and corresponding mechanisms to develop a novel approach for improving chemotherapy efficacy in HCC. Human hepatocellular carcinoma cell lines HepG2 (with low metastatic potential) and MHCC97L (with moderate metastatic potential) were used for the in vitro study. An orthotopic nude mouse model of human HCC was developed using MHCC97L cells. We then assessed the metastatic potential of surviving tumor cells after in vitro and in vivo oxaliplatin treatment. The molecular changes in surviving tumor cells were evaluated by western blot, immunofluorescence, and immunohistochemistry. The Chinese herbal extract Songyou Yin (composed of five herbs) was investigated in vivo to explore its effect on the metastatic potential of oxaliplatin-treated cancer cells. MHCC97L and HepG2 cells surviving oxaliplatin treatment showed enhanced migration and invasion in vitro. Residual HCC after in vivo oxaliplatin treatment demonstrated significantly increased metastasis to the lung (10/12 vs. 3/12) when re-inoculated into the livers of new recipient nude mice. Molecular changes consistent with epithelial-mesenchymal transition (EMT) were observed in oxaliplatin-treated tumor tissues and verified by in vitro experiments. The Chinese herbal extract Songyou Yin (4.2 and 8.4 g/kg) attenuated EMT and inhibited the enhanced metastatic potential of residual HCC in nude mice (6/15 vs. 13/15 and 3/15 vs. 13/15, respectively). The surviving HCC after oxaliplatin treatment underwent EMT and demonstrated increased metastatic potential. Attenuation of EMT by Songyou Yin may improve the efficacy of chemotherapy in HCC

  6. Role of Conserved Disulfide Bridges and Aromatic Residues in Extracellular Loop 2 of Chemokine Receptor CCR8 for Chemokine and Small Molecule Binding

    DEFF Research Database (Denmark)

    Barington, Line; Rummel, Pia C; Lückmann, Michael

    2016-01-01

    and aromatic residues in extracellular loop 2 (ECL2) for ligand binding and activation in the chemokine receptor CCR8. We used IP3 accumulation and radioligand binding experiments to determine the impact of receptor mutagenesis on both chemokine and small molecule agonist and antagonist binding and action...... in CCR8. We find that the 7 transmembrane (7TM) receptor conserved disulfide bridge (7TM bridge) linking transmembrane helix (TM)III and ECL2 is crucial for chemokine and small molecule action, whereas the chemokine receptor conserved disulfide bridge between the N terminus and TMVII is needed only...

  7. High-resolution neutron and X-ray diffraction room-temperature studies of an H-FABP–oleic acid complex: study of the internal water cluster and ligand binding by a transferred multipolar electron-density distribution

    Directory of Open Access Journals (Sweden)

    E. I. Howard

    2016-03-01

    Full Text Available Crystal diffraction data of heart fatty acid binding protein (H-FABP in complex with oleic acid were measured at room temperature with high-resolution X-ray and neutron protein crystallography (0.98 and 1.90 Å resolution, respectively. These data provided very detailed information about the cluster of water molecules and the bound oleic acid in the H-FABP large internal cavity. The jointly refined X-ray/neutron structure of H-FABP was complemented by a transferred multipolar electron-density distribution using the parameters of the ELMAMII library. The resulting electron density allowed a precise determination of the electrostatic potential in the fatty acid (FA binding pocket. Bader's quantum theory of atoms in molecules was then used to study interactions involving the internal water molecules, the FA and the protein. This approach showed H...H contacts of the FA with highly conserved hydrophobic residues known to play a role in the stabilization of long-chain FAs in the binding cavity. The determination of water hydrogen (deuterium positions allowed the analysis of the orientation and electrostatic properties of the water molecules in the very ordered cluster. As a result, a significant alignment of the permanent dipoles of the water molecules with the protein electrostatic field was observed. This can be related to the dielectric properties of hydration layers around proteins, where the shielding of electrostatic interactions depends directly on the rotational degrees of freedom of the water molecules in the interface.

  8. Analysis of copy number variations in Holstein cows identify potential mechanisms contributing to differences in residual feed intake.

    Science.gov (United States)

    Hou, Yali; Bickhart, Derek M; Chung, Hoyoung; Hutchison, Jana L; Norman, H Duane; Connor, Erin E; Liu, George E

    2012-11-01

    Genomic structural variation is an important and abundant source of genetic and phenotypic variation. In this study, we performed an initial analysis of copy number variations (CNVs) using BovineHD SNP genotyping data from 147 Holstein cows identified as having high or low feed efficiency as estimated by residual feed intake (RFI). We detected 443 candidate CNV regions (CNVRs) that represent 18.4 Mb (0.6 %) of the genome. To investigate the functional impacts of CNVs, we created two groups of 30 individual animals with extremely low or high estimated breeding values (EBVs) for RFI, and referred to these groups as low intake (LI; more efficient) or high intake (HI; less efficient), respectively. We identified 240 (~9.0 Mb) and 274 (~10.2 Mb) CNVRs from LI and HI groups, respectively. Approximately 30-40 % of the CNVRs were specific to the LI group or HI group of animals. The 240 LI CNVRs overlapped with 137 Ensembl genes. Network analyses indicated that the LI-specific genes were predominantly enriched for those functioning in the inflammatory response and immunity. By contrast, the 274 HI CNVRs contained 177 Ensembl genes. Network analyses indicated that the HI-specific genes were particularly involved in the cell cycle, and organ and bone development. These results relate CNVs to two key variables, namely immune response and organ and bone development. The data indicate that greater feed efficiency relates more closely to immune response, whereas cattle with reduced feed efficiency may have a greater capacity for organ and bone development.

  9. The emergence of insecticide resistance in central Mozambique and potential threat to the successful indoor residual spraying malaria control programme

    Directory of Open Access Journals (Sweden)

    Wilding Craig S

    2011-05-01

    Full Text Available Abstract Background Malaria vector control by indoor residual spraying was reinitiated in 2006 with DDT in Zambézia province, Mozambique. In 2007, these efforts were strengthened by the President's Malaria Initiative. This manuscript reports on the monitoring and evaluation of this programme as carried out by the Malaria Decision Support Project. Methods Mosquitoes were captured daily through a series of 114 window exit traps located at 19 sentinel sites, identified to species and analysed for sporozoites. Anopheles mosquitoes were collected resting indoors and tested for insecticide resistance following the standard WHO protocol. Annual cross sectional household parasite surveys were carried out to monitor the impact of the control programme on prevalence of Plasmodium falciparum in children aged 1 to 15 years. Results A total of 3,769 and 2,853 Anopheles gambiae s.l. and Anopheles funestus, respectively, were captured from window exit traps throughout the period. In 2010 resistance to the pyrethroids lambda-cyhalothrin and permethrin and the carbamate, bendiocarb was detected in An. funestus. In 2006, the sporozoite rate in An. gambiae s.s. was 4% and this reduced to 1% over 4 rounds of spraying. The sporozoite rate for An. funestus was also reduced from 2% to 0 by 2008. Of the 437 Anopheles arabiensis identified, none were infectious. Overall prevalence of P. falciparum in the sentinel sites fell from 60% to 32% between October 2006 and October 2008. Conclusion Both An. gambiae s.s. and An. funestus were controlled effectively with the DDT-based IRS programme in Zambézia, reducing disease transmission and burden. However, the discovery of pyrethroid resistance in the province and Mozambique's policy change away from DDT to pyrethroids for IRS threatens the gains made here.

  10. [Residues and potential ecological risk assessment of metal in sediments from lower reaches and estuary of Pearl River].

    Science.gov (United States)

    Xie, Wen-Ping; Wang, Shao-Bing; Zhu, Xin-Ping; Chen, Kun-Ci; Pan, De-Bo; Hong, Xiao-You; Yin, Yi

    2012-06-01

    In order to investigate the heavy metal concentrations and their potential ecological risks in surface sediments of lower reaches and estuary of Pearl River, 21 bottom sediment samples were collected from lower reaches and estuary of Pearl River. Total contents of Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Cd, Sb, Pb and Hg in these samples were measured by the inductively coupled plasma mass spectrometry (ICP-MS) and the atomic fluorescence spectrometry (AFS) and using the index of geoaccumulation and the potential ecological risk index to evaluate the pollution degree of heavy metals in the sediments. Results indicated that the concentration of total Fe and total Mn were 41658.73 and 1104.73 mg x kg(-1) respectively and toxic trace metals, such as Cr, Co, Ni, Cu, Zn, As, Se, Cd, Sb, Pb and Hg were 86.62, 18.18, 54.10, 80.20, 543.60, 119.55, 4.28, 10.60, 20.26, 104.58 and 0.520 mg x kg(-1). The descending order of pollution degree of various metals is: Cd > As approximately Zn > Hg > Pb approximately Cu approximately Cr, while the single potential ecological risk followed the order: Cd > Hg > As > Cu > Pb > Zn > Cr. The pollution extent and potential ecological risk of Cd were the most serious among all heavy metals. The distribution pattern of Cd individual potential ecological risk indices is exactly the same as that of general potential ecological risk indices for all heavy metals. Clustering analysis indicates that the sampling stations may be classified into five groups which basically reflected the characteristics of the heavy metal contamination and sedimentation environments along the different river reaches in lower reaches and estuary of Pearl Rive. In general, the serious heavy metal pollution and the high potential ecological risk existed in three river reaches: Chengcun-Shawan, Chengcun-Shundegang and Waihai-Hutiaomen. The pollution degree and potential ecological risk are higher in related river reaches of Beijiang than that in other lower reaches and

  11. Comparison of methods of zeta potential and residual turbidity of pectin solutions using calcium sulphate/aluminium sulphate as a precipitant

    Directory of Open Access Journals (Sweden)

    Kuljanin Tatjana A.

    2017-01-01

    Full Text Available The affinity of calcium ion binding from CaO used in the most common process of purification of sugar beet juice is relatively low. Therefore, large amounts of this compound are required. This paper presents the theoretical basis of a novel sugar beet juice purification method based on the application of the binary system CaSO4/Al2(SO4 . In order to monitor the process of coagulation and precipitation of pectin in the presence of CaSO4/Al2(SO43, two methods were compared: measurement of the zeta potential and of residual solution turbidity. The zeta potential of pectin solution was determined by electrophoretic method, while the residual turbidity was determined by spectrophotometry. Two model solutions of pectin (0.1 % w/w were investigated. Studies were performed with 10 different concentrations of the binary solution CaSO4/Al2(SO43 (50 - 500 g dm-3. The amount of the precipitant CaSO4/Al2(SO43 (1:1 w/w needed to achieve the minimum solution turbidity and charge neutralization of pectin particles (zero zeta potential were measured and compared. Colloidal destabilization occurred before a complete neutralization of the surface charge of pectin particles (zeta potential ~ 0 mV. Optimal quantities (490 - 705 mg g-1 pectin of the applied binary mixture, were obtained using both methods. This is much lower than the amount of CaO that is commonly used in the conventional process of sugar beet juice purification (about 9 g• g-1 pectin. The use of these precipitants could be important from both economic and environmental point of view. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. TR 31055

  12. Structural insights into transient receptor potential vanilloid type 1 (TRPV1) from homology modeling, flexible docking, and mutational studies.

    Science.gov (United States)

    Lee, Jin Hee; Lee, Yoonji; Ryu, HyungChul; Kang, Dong Wook; Lee, Jeewoo; Lazar, Jozsef; Pearce, Larry V; Pavlyukovets, Vladimir A; Blumberg, Peter M; Choi, Sun

    2011-04-01

    The transient receptor potential vanilloid subtype 1 (TRPV1) is a non-selective cation channel composed of four monomers with six transmembrane helices (TM1-TM6). TRPV1 is found in the central and peripheral nervous system, and it is an important therapeutic target for pain relief. We describe here the construction of a tetrameric homology model of rat TRPV1 (rTRPV1). We experimentally evaluated by mutational analysis the contribution of residues of rTRPV1 contributing to ligand binding by the prototypical TRPV1 agonists, capsaicin and resiniferatoxin (RTX). We then performed docking analysis using our homology model. The docking results with capsaicin and RTX showed that our homology model was reliable, affording good agreement with our mutation data. Additionally, the binding mode of a simplified RTX (sRTX) ligand as predicted by the modeling agreed well with those of capsaicin and RTX, accounting for the high binding affinity of the sRTX ligand for TRPV1. Through the homology modeling, docking and mutational studies, we obtained important insights into the ligand-receptor interactions at the molecular level which should prove of value in the design of novel TRPV1 ligands.

  13. Assessment of some straw-derived materials for reducing the leaching potential of Metribuzin residues in the soil

    Energy Technology Data Exchange (ETDEWEB)

    Cara, Irina Gabriela, E-mail: coroirina@yahoo.com [“Ion Ionescu de la Brad” University of Agricultural Sciences and Veterinary Medicine, Faculty of Agriculture, 3M. Sadoveanu Alley, 700490 Iasi (Romania); Trincă, Lucia Carmen, E-mail: lctrinca@uaiasi.ro [“Ion Ionescu de la Brad” University of Agricultural Sciences and Veterinary Medicine, Faculty of Horticulture, 3 M. Sadoveanu Alley, 700490 Iasi (Romania); Trofin, Alina Elena, E-mail: aetrofin@yahoo.com [“Ion Ionescu de la Brad” University of Agricultural Sciences and Veterinary Medicine, Faculty of Horticulture, 3 M. Sadoveanu Alley, 700490 Iasi (Romania); Cazacu, Ana, E-mail: anagarlea@gmail.com [“Ion Ionescu de la Brad” University of Agricultural Sciences and Veterinary Medicine, Faculty of Horticulture, 3 M. Sadoveanu Alley, 700490 Iasi (Romania); Ţopa, Denis, E-mail: topadennis@yahoo.com [“Ion Ionescu de la Brad” University of Agricultural Sciences and Veterinary Medicine, Faculty of Agriculture, 3M. Sadoveanu Alley, 700490 Iasi (Romania); Peptu, Cătălina Anişoara, E-mail: catipeptu@yahoo.co.uk [“Gheorghe Asachi” Technical University of Iasi, Faculty of Chemical Engineering and Environmental Protection, 73 D. Mangeron Street, 700050 Iasi (Romania); Jităreanu, Gerard, E-mail: gerardj@uaiasi.ro [“Ion Ionescu de la Brad” University of Agricultural Sciences and Veterinary Medicine, Faculty of Agriculture, 3M. Sadoveanu Alley, 700490 Iasi (Romania)

    2015-12-15

    Highlights: • Surface characteristics of activated straw (wheat, corn, soybean) were assessed. • Modification methods to enhance materials sorption were presented. • Adsorption mechanism of metribuzin was revealed and discussed. - Abstract: Biomass (straw waste) can be used as raw to obtain materials for herbicide removal from wastewater. These by-products have some important advantages, being environmentally friendly, easily available, presenting low costs, and requiring little processing to increase their adsorptive capacity. In the present study, some materials derived from agricultural waste (wheat, corn and soybean straw) were investigated as potential adsorbents for metribuzin removal from aqueous solutions. The straw wastes were processed by grinding, mineralisation (850 °C) and KOH activation in order to improve their functional surface activity. The materials surface characteristics were investigated by scanning electron microscopy, energy dispersive X-ray spectroscopy and atomic force microscopy. The adsorbents capacity was evaluated using batch sorption tests and liquid chromatography coupled with mass spectrometry for herbicide determination. For adsorption isotherms, the equilibrium time considered was 3 h. The experimental adsorption data were modelled by Freundlich and Langmuir models. The activated straw and ash-derived materials from wheat, corn and soybean increased the adsorption capacity of metribuzin with an asymmetrical behaviour. Overall, our results sustain that activated ash-derived from straw and activated straw materials can be a valuable solution for reducing the leaching potential of metribuzin through soil.

  14. Assessment of some straw-derived materials for reducing the leaching potential of Metribuzin residues in the soil

    International Nuclear Information System (INIS)

    Cara, Irina Gabriela; Trincă, Lucia Carmen; Trofin, Alina Elena; Cazacu, Ana; Ţopa, Denis; Peptu, Cătălina Anişoara; Jităreanu, Gerard

    2015-01-01

    Highlights: • Surface characteristics of activated straw (wheat, corn, soybean) were assessed. • Modification methods to enhance materials sorption were presented. • Adsorption mechanism of metribuzin was revealed and discussed. - Abstract: Biomass (straw waste) can be used as raw to obtain materials for herbicide removal from wastewater. These by-products have some important advantages, being environmentally friendly, easily available, presenting low costs, and requiring little processing to increase their adsorptive capacity. In the present study, some materials derived from agricultural waste (wheat, corn and soybean straw) were investigated as potential adsorbents for metribuzin removal from aqueous solutions. The straw wastes were processed by grinding, mineralisation (850 °C) and KOH activation in order to improve their functional surface activity. The materials surface characteristics were investigated by scanning electron microscopy, energy dispersive X-ray spectroscopy and atomic force microscopy. The adsorbents capacity was evaluated using batch sorption tests and liquid chromatography coupled with mass spectrometry for herbicide determination. For adsorption isotherms, the equilibrium time considered was 3 h. The experimental adsorption data were modelled by Freundlich and Langmuir models. The activated straw and ash-derived materials from wheat, corn and soybean increased the adsorption capacity of metribuzin with an asymmetrical behaviour. Overall, our results sustain that activated ash-derived from straw and activated straw materials can be a valuable solution for reducing the leaching potential of metribuzin through soil.

  15. Potential for thermochemical conversion of biomass residues from the integrated sugar-ethanol process - Fate of ash and ash-forming elements.

    Science.gov (United States)

    Dirbeba, Meheretu Jaleta; Brink, Anders; DeMartini, Nikolai; Zevenhoven, Maria; Hupa, Mikko

    2017-06-01

    In this work, potential for thermochemical conversion of biomass residues from an integrated sugar-ethanol process and the fate of ash and ash-forming elements in the process are presented. Ash, ash-forming elements, and energy flows in the process were determined using mass balances and analyses of eight different biomass samples for ash contents, elemental compositions, and heating values. The results show that the ash content increases from the sugarcane to the final residue, vinasse. The cane straw, which is left in the field, contains one-third of the energy and 25% of the K and Cl while the vinasse contains 2% of the energy and 40% of the K and Cl in the cane. K and Cl in biomass fuels cause corrosion and fouling problems in boilers and gasifiers. Over 85% of these elements in the straw are water soluble indicating that water leaching would improve it for utilization in thermochemical conversion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Nicotinic Receptor Transduction Zone: Invariant Arginine Couples to Multiple Electron-Rich Residues

    Science.gov (United States)

    Mukhtasimova, Nuriya; Sine, Steven M.

    2013-01-01

    Summary Gating of the muscle-type acetylcholine receptor (AChR) channel depends on communication between the ACh-binding site and the remote ion channel. A key region for this communication is located within the structural transition zone between the ligand-binding and pore domains. Here, stemming from β-strand 10 of the binding domain, the invariant αArg209 lodges within the hydrophobic interior of the subunit and is essential for rapid and efficient channel gating. Previous charge-reversal experiments showed that the contribution of αArg209 to channel gating depends strongly on αGlu45, also within this region. Here we determine whether the contribution of αArg209 to channel gating depends on additional anionic or electron-rich residues in this region. Also, to reconcile diverging findings in the literature, we compare the dependence of αArg209 on αGlu45 in AChRs from different species, and compare the full agonist ACh with the weak agonist choline. Our findings reveal that the contribution of αArg209 to channel gating depends on additional nearby electron-rich residues, consistent with both electrostatic and steric contributions. Furthermore, αArg209 and αGlu45 show a strong interdependence in both human and mouse AChRs, whereas the functional consequences of the mutation αE45R depend on the agonist. The emerging picture shows a multifaceted network of interdependent residues that are required for communication between the ligand-binding and pore domains. PMID:23442857

  17. Nicotinic receptor transduction zone: invariant arginine couples to multiple electron-rich residues.

    Science.gov (United States)

    Mukhtasimova, Nuriya; Sine, Steven M

    2013-01-22

    Gating of the muscle-type acetylcholine receptor (AChR) channel depends on communication between the ACh-binding site and the remote ion channel. A key region for this communication is located within the structural transition zone between the ligand-binding and pore domains. Here, stemming from β-strand 10 of the binding domain, the invariant αArg209 lodges within the hydrophobic interior of the subunit and is essential for rapid and efficient channel gating. Previous charge-reversal experiments showed that the contribution of αArg209 to channel gating depends strongly on αGlu45, also within this region. Here we determine whether the contribution of αArg209 to channel gating depends on additional anionic or electron-rich residues in this region. Also, to reconcile diverging findings in the literature, we compare the dependence of αArg209 on αGlu45 in AChRs from different species, and compare the full agonist ACh with the weak agonist choline. Our findings reveal that the contribution of αArg209 to channel gating depends on additional nearby electron-rich residues, consistent with both electrostatic and steric contributions. Furthermore, αArg209 and αGlu45 show a strong interdependence in both human and mouse AChRs, whereas the functional consequences of the mutation αE45R depend on the agonist. The emerging picture shows a multifaceted network of interdependent residues that are required for communication between the ligand-binding and pore domains. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  18. Energy from biogenic wastes and residual materials. Potentials, perspectives and examples; Energie aus biogenen Abfaellen und Reststoffen. Potenziale, Perspektiven und Beispiele

    Energy Technology Data Exchange (ETDEWEB)

    Nelles, Michael [Rostock Univ. (Germany). Lehrstuhl Abfall- und Stoffstromwirtschaft; Deutsches Biomasseforschungszentrum gemeinnuetzige GmbH (DBFZ) Leipzig (Germany); Morscheck, Gert; Schuech, Andrea; Scholwin, Frank [Rostock Univ. (Germany). Lehrstuhl Abfall- und Stoffstromwirtschaft

    2013-10-01

    One of the most important global tasks in the future is to secure a sustainable supply of raw material and energy, which must be economically, ecologically and socially acceptable. In both fields - energy and raw material - the waste management can contribute a substantial share. In particular, the positive environmental effects of waste recycling have been shown by numerous scientific studies. Waste management in Germany has achieved a high level of development and already makes significant contributions to sustainability. Here in Germany the waste management contributes significantly to climate protection, whereas in many developing and emerging countries about 10 to 15 percent of the greenhouse gas emissions results from waste handling processes. The previous success of the German waste management according to the climate protection goals primarily results from the recycling and energetic utilization of the biogenic waste and residues, whereby in this field still exists potential for further development and optimization, which must be used in the next years. (orig.)

  19. POTENTIAL APPLICATIONS OF SOS-GFP BIOSENSOR TO IN VITRO RAPID SCREENING OF CYTOTOXIC AND GENOTOXIC EFFECT OF ANTICANCER AND ANTIDIABETIC PHARMACIST RESIDUES IN SURFACE WATER

    Directory of Open Access Journals (Sweden)

    Marzena Matejczyk

    2014-12-01

    Full Text Available Escherichia coli K-12 GFP-based bacterial biosensors allowed the detection of cytotoxic and genotoxic effect of anticancer drug– cyclophosphamide and antidiabetic drug – metformin in PBS buffer and surface water. Experimental data indicated that recA::gfpmut2 genetic system was sensitive to drugs and drugs mixture applied in experiment. RecA promoter was a good bioindicator in cytotoxic and genotoxic effect screening of cyclophosphamide, metformin and the mixture of the both drugs in PBS buffer and surface water. The results indicated that E. coli K-12 recA::gfp mut2 strain could be potentially useful for first-step screening of cytotoxic and genotoxic effect of anticancer and antidiabetic pharmacist residues in water. Next steps in research will include more experimental analysis to validate recA::gfpmut2 genetic system in E. coli K-12 on different anticancer drugs.

  20. Residual stresses

    International Nuclear Information System (INIS)

    Sahotra, I.M.

    2006-01-01

    The principal effect of unloading a material strained into the plastic range is to create a permanent set (plastic deformation), which if restricted somehow, gives rise to a system of self-balancing within the same member or reaction balanced by other members of the structure., known as residual stresses. These stresses stay there as locked-in stresses, in the body or a part of it in the absence of any external loading. Residual stresses are induced during hot-rolling and welding differential cooling, cold-forming and extruding: cold straightening and spot heating, fabrication and forced fitting of components constraining the structure to a particular geometry. The areas which cool more quickly develop residual compressive stresses, while the slower cooling areas develop residual tensile stresses, and a self-balancing or reaction balanced system of residual stresses is formed. The phenomenon of residual stresses is the most challenging in its application in surface modification techniques determining endurance mechanism against fracture and fatigue failures. This paper discusses the mechanism of residual stresses, that how the residual stresses are fanned and what their behavior is under the action of external forces. Such as in the case of a circular bar under limit torque, rectangular beam under limt moment, reclaiming of shafts welds and peening etc. (author)

  1. Residual Glycerol from Biodiesel Manufacturing, Waste or Potential Source of Bioenergy: A Review Glicerol Residual de la Producción de Biodiesel, Residuo o Potencial Fuente de Energía: Una Revisión

    Directory of Open Access Journals (Sweden)

    Claudia Santibáñez

    2011-09-01

    Full Text Available This review provides a summary of the research conducted on the use of crude glycerol, the major byproduct of the biodiesel industry, as substrate for anaerobic co-digestion and production of biogas. In general, for every 100 kg biodiesel produced, approximately 10 kg crude glycerol is generated. Because this glycerol is expensive to purify for use in food, pharmaceutical, or cosmetic industries, biodiesel producers must seek alternative methods for its disposal. Several studies have demonstrated that the use of crude glycerol as a C source for fermentation and biogas generation is a promising alternative use for this waste material. The high C content of glycerol increases the C:N ratio in the mixture, avoiding the inhibition of the process by the excess of N increasing methane production of digesters by 50 to 200%. Anaerobic co-digestion of glycerol and a variety of residual biomasses may be a good integrated solution for managing these wastes and simultaneously producing a source of bioenergy in an environmentally friendly way. On the other hand, after anaerobic treatment of glycerol, an organic matter-rich solid waste is generated (digestate. The incorporation of digestates from glycerol co-digestion to soils constitutes an important source of organic matter and nutrients for plants. However, the potential of digestates as an organic soil amendment has not been sufficiently studied. The utilization of glycerol as a potential source of energy, rather than as a waste, seems to be a convenient way of lowering the costs of biodiesel production and making this emerging industry more competitive.Esta revisión proporciona un resumen de la investigación realizada sobre el uso de glicerol crudo, principal subproducto de la industria del biodiesel, como sustrato para la co-digestión anaerobia y producción de biogas. En general, por cada 100 kg de biodiesel producido, se generan aproximadamente 10 kg de glicerol. Debido al alto costo de purificaci

  2. Residual stresses

    International Nuclear Information System (INIS)

    Macherauch, E.

    1978-01-01

    Residual stresses are stresses which exist in a material without the influence of external powers and moments. They come into existence when the volume of a material constantly changes its form as a consequence of mechanical, thermal, and/or chemical processes and is hindered by neighbouring volumes. Bodies with residual stress are in mechanical balance. These residual stresses can be manifested by means of all mechanical interventions disturbing this balance. Acoustical, optical, radiological, and magnetical methods involving material changes caused by residual stress can also serve for determining residual stress. Residual stresses have an ambivalent character. In technical practice, they are feared and liked at the same time. They cause trouble because they can be the cause for unexpected behaviour of construction elements. They are feared since they can cause failure, in the worst case with catastrophical consequences. They are appreciated, on the other hand, because, in many cases, they can contribute to improvements of the material behaviour under certain circumstances. But they are especially liked for their giving convenient and (this is most important) mostly uncontrollable explanations. For only in very few cases we have enough knowledge and possibilities for the objective evaluation of residual stresses. (orig.) [de

  3. PINGU: PredIction of eNzyme catalytic residues usinG seqUence information.

    Directory of Open Access Journals (Sweden)

    Priyadarshini P Pai

    Full Text Available Identification of catalytic residues can help unveil interesting attributes of enzyme function for various therapeutic and industrial applications. Based on their biochemical roles, the number of catalytic residues and sequence lengths of enzymes vary. This article describes a prediction approach (PINGU for such a scenario. It uses models trained using physicochemical properties and evolutionary information of 650 non-redundant enzymes (2136 catalytic residues in a support vector machines architecture. Independent testing on 200 non-redundant enzymes (683 catalytic residues in predefined prediction settings, i.e., with non-catalytic per catalytic residue ranging from 1 to 30, suggested that the prediction approach was highly sensitive and specific, i.e., 80% or above, over the incremental challenges. To learn more about the discriminatory power of PINGU in real scenarios, where the prediction challenge is variable and susceptible to high false positives, the best model from independent testing was used on 60 diverse enzymes. Results suggested that PINGU was able to identify most catalytic residues and non-catalytic residues properly with 80% or above accuracy, sensitivity and specificity. The effect of false positives on precision was addressed in this study by application of predicted ligand-binding residue information as a post-processing filter. An overall improvement of 20% in F-measure and 0.138 in Correlation Coefficient with 16% enhanced precision could be achieved. On account of its encouraging performance, PINGU is hoped to have eventual applications in boosting enzyme engineering and novel drug discovery.

  4. Possibilities for sustainable biorefineries based on agricultural residues – A case study of potential straw-based ethanol production in Sweden

    International Nuclear Information System (INIS)

    Ekman, Anna; Wallberg, Ola; Joelsson, Elisabeth; Börjesson, Pål

    2013-01-01

    Highlights: ► Biorefineries can produce ethanol, biogas, heat and power efficiently with profit. ► Location of plant is decided by raw material supply in the region. ► Increased production of high value compounds affects profitability. ► Energy efficiency is increased by availability of heat sinks. ► Several locations may be suitable for construction of a biorefinery plant. -- Abstract: This study presents a survey of the most important techno-economic factors for the implementation of biorefineries based on agricultural residues, in the form of straw, and biochemical conversion into ethanol and biogas, together with production of electricity and heat. The paper suggests locations where the necessary conditions can be met in Sweden. The requirements identified are regional availability of feedstock, the possibility to integrate with external heat sinks, appropriate process design and the scale of the plant. The scale of the plant should be adapted to the potential, regional, raw-material supply, but still be large enough to give economies of scale. The integration with heat sinks proved to be most important to achieve high energy-efficiency, but it was of somewhat less importance for the profitability. Development of pentose fermentation, leading to higher ethanol yields, was important to gain high profitability. Promising locations were identified in the county of Östergötland where integration with an existing 1st generation ethanol plant and district heating systems (DHSs) is possible, and in the county of Skåne where both a significant, potential straw supply and integration potential with DHSs are available.

  5. Effects of coal combustion residues on survival, antioxidant potential, and genotoxicity resulting from full-lifecycle exposure of grass shrimp (Palaemonetes pugio Holthius)

    International Nuclear Information System (INIS)

    Kuzmick, Danika M.; Mitchelmore, Carys L.; Hopkins, William A.; Rowe, Christopher L.

    2007-01-01

    Coal combustion residues (CCRs), largely derived from coal-fired electrical generation, are rich in numerous trace elements that have the potential to induce sublethal effects including oxidative stress, alterations in antioxidant status and DNA single strand breaks (SSB). CCRs are frequently discharged into natural and man-made aquatic systems. As the effects of CCRs have received relatively little attention in estuarine systems, the estuarine grass shrimp, Palaemonetes pugio, was chosen for this study. Grass shrimp were exposed in the laboratory to CCR-enriched sediments and food over a full life cycle. Survival to metamorphosis was significantly reduced in CCR-exposed larvae (17 ± 4 versus 70 ± 13% in the controls) but not in the juveniles or adults. The COMET assay, a general but sensitive assay for genotoxicity, was used to quantify DNA SSB in the adults. Total antioxidant potential was examined to assess the overall antioxidant scavenging capacity of CCR-exposed and non-exposed adult grass shrimp. Grass shrimp exposed to CCR significantly accumulated selenium and cadmium compared to unexposed shrimp, although an inverse relationship was seen for mercury accumulation. Chronic CCR exposure caused DNA SSB in hepatopancreas cells, as evidenced by the significantly increased percent tail DNA, tail moment, and tail length as compared to reference shrimp. However, no significant difference was observed in total antioxidant potential. Our findings suggest that genotoxicity may be an important mode of toxicity of CCR, and that DNA SSB may serve as a useful biomarker of exposure and effect of this very common, complex waste stream

  6. Effects of coal combustion residues on survival, antioxidant potential, and genotoxicity resulting from full-lifecycle exposure of grass shrimp (Palaemonetes pugio Holthius)

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmick, Danika M.; Mitchelmore, Carys L.; Rowe, Christopher L. [University of Maryland Center for Environmental Science, Chesapeake Biological Laboratory, 1, Williams Street, PO Box 38, Solomons, MD, 20688 (United States); Hopkins, William A. [Department of Fisheries and Wildlife Sciences, Virginia Polytechnic Institute and State University, 100 Cheatham Hall, Blacksburg, VA (United States)

    2007-02-01

    Coal combustion residues (CCRs), largely derived from coal-fired electrical generation, are rich in numerous trace elements that have the potential to induce sublethal effects including oxidative stress, alterations in antioxidant status and DNA single strand breaks (SSB). CCRs are frequently discharged into natural and man-made aquatic systems. As the effects of CCRs have received relatively little attention in estuarine systems, the estuarine grass shrimp, Palaemonetes pugio, was chosen for this study. Grass shrimp were exposed in the laboratory to CCR-enriched sediments and food over a full life cycle. Survival to metamorphosis was significantly reduced in CCR-exposed larvae (17 {+-} 4 versus 70 {+-} 13% in the controls) but not in the juveniles or adults. The COMET assay, a general but sensitive assay for genotoxicity, was used to quantify DNA SSB in the adults. Total antioxidant potential was examined to assess the overall antioxidant scavenging capacity of CCR-exposed and non-exposed adult grass shrimp. Grass shrimp exposed to CCR significantly accumulated selenium and cadmium compared to unexposed shrimp, although an inverse relationship was seen for mercury accumulation. Chronic CCR exposure caused DNA SSB in hepatopancreas cells, as evidenced by the significantly increased percent tail DNA, tail moment, and tail length as compared to reference shrimp. However, no significant difference was observed in total antioxidant potential. Our findings suggest that genotoxicity may be an important mode of toxicity of CCR, and that DNA SSB may serve as a useful biomarker of exposure and effect of this very common, complex waste stream. (author)

  7. Land disposal potential of tobacco processing residues Potencial de uso agrícola de dois resíduos de agroindústria fumageira

    Directory of Open Access Journals (Sweden)

    Marino José Tedesco

    2011-02-01

    Full Text Available Brazil is one of the leaders in the production and trading of tobacco leaves in the global market, which results in a large amount of residues that would be recycled and used as soil fertilizers in agriculture. This research aimed to study the land disposal potential and agricultural use of tobacco processing residues (TPRs, their mineralization and the nutrient supply to the plants. The study was carried out in an open area using pots with 32dm³ of a sandy soil (Paleudult, provided with water drainage collectors and tilled with three corn plants each. Eighteen treatments were tested with mineral fertilization, poultry manure (PM, earthworm compost (EC and increasing rates (0, 7.5, 15, 30 e 60t ha-1 of TPR D (dust and TPR S (stem fibers.Treatments with TPRs (15t ha-1 plus mineral supplementation two by two (NP, NK and PK were also tested, with four replications each. The experiment started in 01/15/2004 and conducted until 03/16/2004, when corn plants were harvested. The response curves showed that the residues application rates between 15 and 20t ha-1 are most adequate for the studied soil. The results indicated that both TPRs may be important sources of biomass and potash and have potential to be recycled in the soil, supplying part of the macronutrients required for proper plant growth.O Brasil é um dos maiores produtores e exportadores mundiais de tabaco em folha, resultando em grandes quantidaes de resíduos que poderiam ser utilizados como fertilizantes na agricultura. O objetivo deste trabalho foi avaliar o potencial de reciclagem agrícola de dois resíduos de agroindústria fumageira (RAF's, sua mineralização no solo e liberação de nutrientes às plantas. O experimento foi conduzido a céu aberto utilizando como unidades experimentais vasos com capacidade de 32 litros de solo, adaptados com tubo coletor de lixiviado e um argissolo (PVAd, cultivado com três plantas de milho. Foram feitos 18 tratamentos com adubo mineral, cama

  8. Solid residues

    International Nuclear Information System (INIS)

    Mulder, E.; Duin, P.J. van; Grootenboer, G.J.

    1995-01-01

    A summary is presented of the many investigations that have been done on solid residues of atmospheric fluid bed combustion (AFBC). These residues are bed ash, cyclone ash and bag filter ash. Physical and chemical properties are discussed and then the various uses of residues (in fillers, bricks, gravel, and for recovery of aluminium) are summarised. Toxicological properties of fly ash and stack ash are discussed as are risks of pneumoconiosis for workers handling fly ash, and contamination of water by ashes. On the basis of present information it is concluded that risks to public health from exposure to emissions of coal fly ash from AFBC appear small or negligible as are health risk to workers in the coal fly ash processing industry. 35 refs., 5 figs., 12 tabs

  9. Risk element immobilization/stabilization potential of fungal-transformed dry olive residue and arbuscular mycorrhizal fungi application in contaminated soils.

    Science.gov (United States)

    García-Sánchez, Mercedes; Stejskalová, Tereza; García-Romera, Inmaculada; Száková, Jiřina; Tlustoš, Pavel

    2017-10-01

    The use of biotransformed dry olive residue (DOR) as organic soil amendment has recently been proposed due to its high contents of stabilized organic matter and nutrients. The potential of biotransformed DOR to immobilize risk elements in contaminated soils might qualify DOR as a potential risk element stabilization agent for in situ soil reclamation practices. In this experiment, the mobility of risk elements in response to Penicillium chrysogenum-10-transformed DOR, Funalia floccosa-transformed DOR, Bjerkandera adusta-transformed DOR, and Chondrostereum purpureum-transformed DOR as well as arbuscular mycorrhizal fungi (AMF), Funneliformis mosseae, inoculation was investigated. We evaluated the effect of these treatments on risk element uptake by wheat (Triticum aestivum L.) plants in a pot experiment with Cd, Pb, and Zn contaminated soil. The results showed a significant impact of the combined treatment (biotransformed DOR and AMF inoculation) on wheat plant growth and element mobility. The mobile proportions of elements in the treated soils were related to soil pH; with increasing pH levels, Cd, Cu, Fe, Mn, P, Pb, and Zn mobility decreased significantly (r values between -0.36 and -0.46), while Ca and Mg mobility increased (r = 0.63, and r = 0.51, respectively). The application of biotransformed DOR decreased risk element levels (Cd, Zn), and nutrient concentrations (Ca, Cu, Fe, Mg, Mn) in the aboveground biomass, where the elements were retained in the roots. Thus, biotransformed DOR in combination with AMF resulted in a higher capacity of wheat plants to grow under detrimental conditions, being able to accumulate high amounts of risk elements in the roots. However, risk element reduction was insufficient for safe crop production in the extremely contaminated soil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Influence of soil organic C content on the greenhouse gas emission potential after application of biogas residues or cattle slurry - Results from a pot experiment

    Science.gov (United States)

    Heintze, Gawan

    2017-04-01

    Influence of soil organic C content on the greenhouse gas emission potential after application of biogas residues or cattle slurry - Results from a pot experiment Gawan Heintze1,2, Tim Eickenscheidt1, Urs Schmidthalter2 and Matthias Drösler1 1University of Applied Sciences Weihenstephan-Triesdorf, Chair of Vegetation Ecology, Weihenstephaner Berg 4, 85354 Freising, Germany 2Technische Universität München, Chair of Plant Nutrition, Emil-Ramann-Str. 2, 85354 Freising, Germany The European Union Renewable Energy Directive, which sets a binding target of a final energy consumption of 20% from renewable sources by 2020, has markedly promoted the increase of biogas plants, particularly in Germany. As a consequence, a large amount of biogas residue remains as a by-product of the fermentative process. These residues are now widely used instead of mineral fertilizers or animal slurries to maintain soil fertility and productivity. However, to date, the effect of the application of biogas residue on greenhouse gas (GHG) emission, compared to that of other organic fertilizers, is contradictory in literature, not having been completely understood. It is often stated that GHG fluxes are closely related to the quality of the raw material, particularly the type of soil to which the digestates are applied. This study addresses the questions (a) to what extent are the applications of biogas digestate and cattle slurry different in terms of their GHG emission (CO2, CH4 and N2O) potential, and (b) how do different soil organic carbon contents (SOCs) influence the rate of GHG exchange. We hypothesize that, i) cattle slurry application enhances the CO2 and N2O fluxes compared to the biogas digestate due to the overall higher C and N input, and ii) that with increasing SOC and N content, higher emissions of CO2 and N2O can be expected. The study was conducted as a pot experiment. Biogas digestate and cattle slurry were applied to and incorporated into three different soil types with

  11. Designing with residual materials

    NARCIS (Netherlands)

    Walhout, W.; Wever, R.; Blom, E.; Addink-Dölle, L.; Tempelman, E.

    2013-01-01

    Many entrepreneurial businesses have attempted to create value based on the residual material streams of third parties. Based on ‘waste’ materials they designed products, around which they built their company. Such activities have the potential to yield sustainable products. Many of such companies

  12. Residual basins

    International Nuclear Information System (INIS)

    D'Elboux, C.V.; Paiva, I.B.

    1980-01-01

    Exploration for uranium carried out over a major portion of the Rio Grande do Sul Shield has revealed a number of small residual basins developed along glacially eroded channels of pre-Permian age. Mineralization of uranium occurs in two distinct sedimentary units. The lower unit consists of rhythmites overlain by a sequence of black shales, siltstones and coal seams, while the upper one is dominated by sandstones of probable fluvial origin. (Author) [pt

  13. Mutational analysis of amino acid residues involved in catalytic activity of a family 18 chitinase from tulip bulbs.

    Science.gov (United States)

    Suzukawa, Keisuke; Yamagami, Takeshi; Ohnuma, Takayuki; Hirakawa, Hideki; Kuhara, Satoru; Aso, Yoichi; Ishiguro, Masatsune

    2003-02-01

    We expressed chitinase-1 (TBC-1) from tulip bulbs (Tulipa bakeri) in E. coli cells and used site-directed mutagenesis to identify amino acid residues essential for catalytic activity. Mutations at Glu-125 and Trp-251 completely abolished enzyme activity, and activity decreased with mutations at Asp-123 and Trp-172 when glycolchitin was the substrate. Activity changed with the mutations of Trp-251 to one of several amino acids with side-chains of little hydrophobicity, suggesting that hydrophobic interaction of Trp-251 is important for the activity. Molecular dynamics (MD) simulation analysis with hevamine as the model compound showed that the distance between Asp-123 and Glu-125 was extended by mutation of Trp-251. Kinetic studies of Trp-251-mutated chitinases confirmed these various phenomena. The results suggested that Glu-125 and Trp-251 are essential for enzyme activity and that Trp-251 had a direct role in ligand binding.

  14. Large-scale evaluation of dynamically important residues in proteins predicted by the perturbation analysis of a coarse-grained elastic model

    Directory of Open Access Journals (Sweden)

    Tekpinar Mustafa

    2009-07-01

    Full Text Available Abstract Backgrounds It is increasingly recognized that protein functions often require intricate conformational dynamics, which involves a network of key amino acid residues that couple spatially separated functional sites. Tremendous efforts have been made to identify these key residues by experimental and computational means. Results We have performed a large-scale evaluation of the predictions of dynamically important residues by a variety of computational protocols including three based on the perturbation and correlation analysis of a coarse-grained elastic model. This study is performed for two lists of test cases with >500 pairs of protein structures. The dynamically important residues predicted by the perturbation and correlation analysis are found to be strongly or moderately conserved in >67% of test cases. They form a sparse network of residues which are clustered both in 3D space and along protein sequence. Their overall conservation is attributed to their dynamic role rather than ligand binding or high network connectivity. Conclusion By modeling how the protein structural fluctuations respond to residue-position-specific perturbations, our highly efficient perturbation and correlation analysis can be used to dissect the functional conformational changes in various proteins with a residue level of detail. The predictions of dynamically important residues serve as promising targets for mutational and functional studies.

  15. Spectroscopic and molecular docking studies on the charge transfer complex of bovine serum albumin with quinone in aqueous medium and its influence on the ligand binding property of the protein

    Science.gov (United States)

    Satheshkumar, Angupillai; Elango, Kuppanagounder P.

    2014-09-01

    The spectral techniques such as UV-Vis, 1H NMR and fluorescence and electrochemical experiments have been employed to investigate the interaction between 2-methoxy-3,5,6-trichloro-1,4-benzoquinone (MQ; a water soluble quinone) and bovine serum albumin (BSA) in aqueous medium. The fluorescence of BSA was quenched by MQ via formation of a 1:1 BSA-MQ charge transfer adduct with a formation constant of 3.3 × 108 L mol-1. Based on the Forster’s theory the binding distance between them is calculated as 2.65 nm indicating high probability of binding. For the first time, influence of quinone on the binding property of various types of ligands such as aspirin, ascorbic acid, nicotinimide and sodium stearate has also been investigated. The results indicated that the strong and spontaneous binding existing between BSA and MQ, decreased the intensity of binding of these ligands with BSA. Since Tryptophan (Trp) is the basic residue present in BSA, a comparison between binding property of Trp-MQ adduct with that of BSA-MQ with these ligands has also been attempted. 1H NMR titration study indicated that the Trp forms a charge transfer complex with MQ, which reduces the interaction of Trp with the ligands. Molecular docking study supported the fact that the quinone interacts with the Trp212 unit of the BSA and the free energy change of binding (ΔG) for the BSA-MQ complex was found to be -46 kJ mol-1, which is comparable to our experimental free energy of binding (-49 kJ mol-1) obtained from fluorescence study.

  16. Potential of household environmental resources and practices in eliminating residual malaria transmission: a case study of Tanzania, Burundi, Malawi and Liberia.

    Science.gov (United States)

    Semakula, Henry M; Song, Guobao; Zhang, Shushen; Achuu, Simon P

    2015-09-01

    The increasing protection gaps of insecticide-treated nets and indoor-residual spraying methods against malaria have led to an emergence of residual transmission in sub-Saharan Africa and thus, supplementary strategies to control mosquitoes are urgently required. To assess household environmental resources and practices that increase or reduce malaria risk among children under-five years of age in order to identify those aspects that can be adopted to control residual transmission. Household environmental resources, practices and malaria test results were extracted from Malaria Indicators Survey datasets for Tanzania, Burundi, Malawi and Liberia with 16,747 children from 11,469 households utilised in the analysis. Logistic regressions were performed to quantify the contribution of each factor to malaria occurrence. Cattle rearing reduced malaria risk between 26%-49% while rearing goats increased the risk between 26%-32%. All piped-water systems reduced malaria risk between 30%-87% (Tanzania), 48%-95% (Burundi), 67%-77% (Malawi) and 58%-73 (Liberia). Flush toilets reduced malaria risk between 47%-96%. Protected-wells increased malaria risk between 19%-44%. Interestingly, boreholes increased malaria risk between 19%-75%. Charcoal use reduced malaria risk between 11%-49%. Vector control options for tackling mosquitoes were revealed based on their risk levels. These included cattle rearing, installation of piped-water systems and flush toilets as well as use of smokeless fuels.

  17. Residual nilpotence and residual solubility of groups

    International Nuclear Information System (INIS)

    Mikhailov, R V

    2005-01-01

    The properties of the residual nilpotence and the residual solubility of groups are studied. The main objects under investigation are the class of residually nilpotent groups such that each central extension of these groups is also residually nilpotent and the class of residually soluble groups such that each Abelian extension of these groups is residually soluble. Various examples of groups not belonging to these classes are constructed by homological methods and methods of the theory of modules over group rings. Several applications of the theory under consideration are presented and problems concerning the residual nilpotence of one-relator groups are considered.

  18. Residual risk

    African Journals Online (AJOL)

    transfusion. Strategies which could be considered include: (z) an intensive campaign of education among potential blood donors as to ... Doyle PR. The Impact ofAIDS on the South African Population. (paper No. 23). Johannesburg: Centre for ...

  19. Analysis of Amino Acid Residues of Potential Importance for Phosphati-dylserine Specificity of P4-type ATPase ATP8A2

    DEFF Research Database (Denmark)

    Mogensen, Louise; Vestergaard, Anna Lindeløv; Mikkelsen, Stine

    The asymmetric structure of the plasma membrane is maintained through internalization of phos-pholipids by the family of P4-ATPases by a poorly characterized mechanism. Studies in yeast point towards a non-classical pathway involving important residues of a two-gate mechanism [1]. Glycine-230...... 302 of ATP8A2 with alanine (N302A), tyrosine (N302Y) and serine (N302S). Furthermore, a triple mutant of ATP8A2 (Q95GQ96AN302S) was studied to reveal any cooperativity between the two gates, as observed in yeast [1]. The affinities of the mutants for phosphatidylserine and phosphatidylethanolamine...

  20. Characterisation and management of concrete grinding residuals.

    Science.gov (United States)

    Kluge, Matt; Gupta, Nautasha; Watts, Ben; Chadik, Paul A; Ferraro, Christopher; Townsend, Timothy G

    2018-02-01

    Concrete grinding residue is the waste product resulting from the grinding, cutting, and resurfacing of concrete pavement. Potential beneficial applications for concrete grinding residue include use as a soil amendment and as a construction material, including as an additive to Portland cement concrete. Concrete grinding residue exhibits a high pH, and though not hazardous, it is sufficiently elevated that precautions need to be taken around aquatic ecosystems. Best management practices and state regulations focus on reducing the impact on such aquatic environment. Heavy metals are present in concrete grinding residue, but concentrations are of the same magnitude as typically recycled concrete residuals. The chemical composition of concrete grinding residue makes it a useful product for some soil amendment purposes at appropriate land application rates. The presence of unreacted concrete in concrete grinding residue was examined for potential use as partial replacement of cement in new concrete. Testing of Florida concrete grinding residue revealed no dramatic reactivity or improvement in mortar strength.

  1. Flipped Phenyl Ring Orientations of Dopamine Binding with Human and Drosophila Dopamine Transporters: Remarkable Role of Three Nonconserved Residues.

    Science.gov (United States)

    Yuan, Yaxia; Zhu, Jun; Zhan, Chang-Guo

    2018-03-09

    Molecular modeling and molecular dynamics simulations were performed in the present study to examine the modes of dopamine binding with human and Drosophila dopamine transporters (hDAT and dDAT). The computational data revealed flipped binding orientations of dopamine in hDAT and dDAT due to the major differences in three key residues (S149, G153, and A423 of hDAT vs A117, D121, and S422 of dDAT) in the binding pocket. These three residues dictate the binding orientation of dopamine in the binding pocket, as the aromatic ring of dopamine tends to take an orientation with both the para- and meta-hydroxyl groups being close to polar residues and away from nonpolar residues of the protein. The flipped binding orientations of dopamine in hDAT and dDAT clearly demonstrate a generally valuable insight concerning how the species difference could drastically affect the protein-ligand binding modes, demonstrating that the species difference, which is a factor rarely considered in early drug design stage, must be accounted for throughout the ligand/drug design and discovery processes in general.

  2. Flow cytometric minimal residual disease assessment of peripheral blood in acute lymphoblastic leukaemia patients has potential for early detection of relapsed extramedullary disease.

    Science.gov (United States)

    Keegan, Alissa; Charest, Karry; Schmidt, Ryan; Briggs, Debra; Deangelo, Daniel J; Li, Betty; Morgan, Elizabeth A; Pozdnyakova, Olga

    2018-03-27

    To evaluate peripheral blood (PB) for minimal residual disease (MRD) assessment in adults with acute lymphoblastic leukaemia (ALL). We analysed 76 matched bone marrow (BM) aspirate and PB specimens independently for the presence of ALL MRD by six-colour flow cytometry (FC). The overall rate of BM MRD-positivity was 24% (18/76) and PB was also MRD-positive in 22% (4/18) of BM-positive cases. We identified two cases with evidence of leukaemic cells in PB at the time of the extramedullary relapse that were interpreted as MRD-negative in BM. The use of PB MRD as a non-invasive method for monitoring of systemic relapse may have added clinical and diagnostic value in patients with high risk of extramedullary disease. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  3. A pilot study using residual newborn dried blood spots to assess the potential role of cytomegalovirus and Toxoplasma gondii in the etiology of congenital hydrocephalus.

    Science.gov (United States)

    Simeone, Regina M; Rasmussen, Sonja A; Mei, Joanne V; Dollard, Sheila C; Frias, Jaime L; Shaw, Gary M; Canfield, Mark A; Meyer, Robert E; Jones, Jeffrey L; Lorey, Fred; Honein, Margaret A

    2013-07-01

    Congenital hydrocephalus is a condition characterized by accumulation of cerebrospinal fluid in the ventricles of the brain. Prenatal infections are risk factors for some birth defects. This pilot study investigated whether residual dried blood spots (DBS) could be used to assess infections as risk factors for birth defects by examining the associations between prenatal infection with Toxoplasma gondii (T. gondii) or cytomegalovirus (CMV) with congenital hydrocephalus. Case-infants with hydrocephalus (N=410) were identified among live-born infants using birth defects surveillance systems in California, North Carolina, and Texas. Control-infants without birth defects were randomly selected from the same geographic areas and time periods as case-infants (N=448). We tested residual DBS from case- and control-infants for T. gondii immunoglobulin M and CMV DNA. When possible, we calculated crude odds ratios (cORs) and confidence intervals (CIs). Evidence for prenatal T. gondii infection was more common among case-infants (1.2%) than control-infants (0%; p=0.11), and evidence for prenatal CMV infection was higher among case-infants (1.5%) than control-infants (0.7%; cOR: 2.3; 95% CI: 0.48, 13.99). Prenatal infections with T. gondii and CMV occurred more often among infants with congenital hydrocephalus than control-infants, although differences were not statistically significant. This pilot study highlighted some challenges in using DBS to examine associations between certain infections and birth defects, particularly related to reduced sensitivity and specimen storage conditions. Further study with increased numbers of specimens and higher quality specimens should be considered to understand better the contribution of these infections to the occurrence of congenital hydrocephalus. Copyright © 2013 Wiley Periodicals, Inc.

  4. Positron Emission Tomography/Computed Tomography Imaging of Residual Skull Base Chordoma Before Radiotherapy Using Fluoromisonidazole and Fluorodeoxyglucose: Potential Consequences for Dose Painting

    Energy Technology Data Exchange (ETDEWEB)

    Mammar, Hamid, E-mail: hamid.mammar@unice.fr [Radiation Oncology Department, Antoine Lacassagne Center, Nice (France); CNRS-UMR 6543, Institute of Developmental Biology and Cancer, University of Nice Sophia Antipolis, Nice (France); Kerrou, Khaldoun; Nataf, Valerie [Department of Nuclear Medicine and Radiopharmacy, Tenon Hospital, and University Pierre et Marie Curie, Paris (France); Pontvert, Dominique [Proton Therapy Center of Orsay, Curie Institute, Paris (France); Clemenceau, Stephane [Department of Neurosurgery, Pitie-Salpetriere Hospital, Paris (France); Lot, Guillaume [Department of Neurosurgery, Adolph De Rothschild Foundation, Paris (France); George, Bernard [Department of Neurosurgery, Lariboisiere Hospital, Paris (France); Polivka, Marc [Department of Pathology, Lariboisiere Hospital, Paris (France); Mokhtari, Karima [Department of Pathology, Pitie-Salpetriere Hospital, Paris (France); Ferrand, Regis; Feuvret, Loiec; Habrand, Jean-louis [Proton Therapy Center of Orsay, Curie Institute, Paris (France); Pouyssegur, Jacques; Mazure, Nathalie [CNRS-UMR 6543, Institute of Developmental Biology and Cancer, University of Nice Sophia Antipolis, Nice (France); Talbot, Jean-Noeel [Department of Nuclear Medicine and Radiopharmacy, Tenon Hospital, and University Pierre et Marie Curie, Paris (France)

    2012-11-01

    Purpose: To detect the presence of hypoxic tissue, which is known to increase the radioresistant phenotype, by its uptake of fluoromisonidazole (18F) (FMISO) using hybrid positron emission tomography/computed tomography (PET/CT) imaging, and to compare it with the glucose-avid tumor tissue imaged with fluorodeoxyglucose (18F) (FDG), in residual postsurgical skull base chordoma scheduled for radiotherapy. Patients and Methods: Seven patients with incompletely resected skull base chordomas were planned for high-dose radiotherapy (dose {>=}70 Gy). All 7 patients underwent FDG and FMISO PET/CT. Images were analyzed qualitatively by visual examination and semiquantitatively by computing the ratio of the maximal standardized uptake value (SUVmax) of the tumor and cerebellum (T/C R), with delineation of lesions on conventional imaging. Results: Of the eight lesion sites imaged with FDG PET/CT, only one was visible, whereas seven of nine lesions were visible on FMISO PET/CT. The median SUVmax in the tumor area was 2.8 g/mL (minimum 2.1; maximum 3.5) for FDG and 0.83 g/mL (minimum 0.3; maximum 1.2) for FMISO. The T/C R values ranged between 0.30 and 0.63 for FDG (median, 0.41) and between 0.75 and 2.20 for FMISO (median,1.59). FMISO T/C R >1 in six lesions suggested the presence of hypoxic tissue. There was no correlation between FMISO and FDG uptake in individual chordomas (r = 0.18, p = 0.7). Conclusion: FMISO PET/CT enables imaging of the hypoxic component in residual chordomas. In the future, it could help to better define boosted volumes for irradiation and to overcome the radioresistance of these lesions. No relationship was founded between hypoxia and glucose metabolism in these tumors after initial surgery.

  5. Bifunctional avidin with covalently modifiable ligand binding site.

    Directory of Open Access Journals (Sweden)

    Jenni Leppiniemi

    Full Text Available The extensive use of avidin and streptavidin in life sciences originates from the extraordinary tight biotin-binding affinity of these tetrameric proteins. Numerous studies have been performed to modify the biotin-binding affinity of (streptavidin to improve the existing applications. Even so, (streptavidin greatly favours its natural ligand, biotin. Here we engineered the biotin-binding pocket of avidin with a single point mutation S16C and thus introduced a chemically active thiol group, which could be covalently coupled with thiol-reactive molecules. This approach was applied to the previously reported bivalent dual chain avidin by modifying one binding site while preserving the other one intact. Maleimide was then coupled to the modified binding site resulting in a decrease in biotin affinity. Furthermore, we showed that this thiol could be covalently coupled to other maleimide derivatives, for instance fluorescent labels, allowing intratetrameric FRET. The bifunctional avidins described here provide improved and novel tools for applications such as the biofunctionalization of surfaces.

  6. CW EPR parameters reveal cytochrome P450 ligand binding modes.

    Science.gov (United States)

    Lockart, Molly M; Rodriguez, Carlo A; Atkins, William M; Bowman, Michael K

    2018-06-01

    Cytochrome P450 (CYP) monoxygenses utilize heme cofactors to catalyze oxidation reactions. They play a critical role in metabolism of many classes of drugs, are an attractive target for drug development, and mediate several prominent drug interactions. Many substrates and inhibitors alter the spin state of the ferric heme by displacing the heme's axial water ligand in the resting enzyme to yield a five-coordinate iron complex, or they replace the axial water to yield a nitrogen-ligated six-coordinate iron complex, which are traditionally assigned by UV-vis spectroscopy. However, crystal structures and recent pulsed electron paramagnetic resonance (EPR) studies find a few cases where molecules hydrogen bond to the axial water. The water-bridged drug-H 2 O-heme has UV-vis spectra similar to nitrogen-ligated, six-coordinate complexes, but are closer to "reverse type I" complexes described in older liteature. Here, pulsed and continuous wave (CW) EPR demonstrate that water-bridged complexes are remarkably common among a range of nitrogenous drugs or drug fragments that bind to CYP3A4 or CYP2C9. Principal component analysis reveals a distinct clustering of CW EPR spectral parameters for water-bridged complexes. CW EPR reveals heterogeneous mixtures of ligated states, including multiple directly-coordinated complexes and water-bridged complexes. These results suggest that water-bridged complexes are under-represented in CYP structural databases and can have energies similar to other ligation modes. The data indicates that water-bridged binding modes can be identified and distinguished from directly-coordinated binding by CW EPR. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. The cholinergic ligand binding material of axonal membranes

    International Nuclear Information System (INIS)

    Mautner, H.G.; Coronado, R.; Jumblatt, J.E.

    1986-01-01

    Choline acetyltransferase and acetylcholinesterase, the enzymes responsible for the synthesis and hydrolysis of ACh, are present in nerve fibers. In crustacean peripheral nerves, release of ACh from cut nerve fibers has been demonstrated. Previously closed membrane vesicles have been prepared from lobster walking leg nerve plasma membrane and saturable binding of cholinergic agonsist and antagonists to such membranes have been demonstrated. This paper studies this axonal cholinergic binding material, and elucidates its functions. The binding of tritium-nicotine to lobster nerve plasma membranes was antagonized by a series of cholinergic ligands as well as by a series of local anesthetics. This preparation was capable of binding I 125-alpha-bungarotoxin, a ligand widely believed to be a specific label for nicotinic ACh receptor. The labelling of 50 K petide band with tritium-MBTA following disulfide reduction is illustrated

  8. Ligand-binding sites in human serum amyloid P component

    DEFF Research Database (Denmark)

    Heegaard, N.H.H.; Heegaard, Peter M. H.; Roepstorff, P.

    1996-01-01

    Amyloid P component (AP) is a naturally occurring glycoprotein that is found in serum and basement membranes, AP is also a component of all types of amyloid, including that found in individuals who suffer from Alzheimer's disease and Down's syndrome. Because AP has been found to bind strongly...

  9. The ins and outs of ligand binding to CCR2

    NARCIS (Netherlands)

    Zweemer, Annelien Jacomina Maria

    2014-01-01

    This thesis provides novel insights in the molecular mechanism of action of antagonists for the chemokine receptor CCR2. CCR2 belongs to the protein family of G protein-coupled receptors (GPCRs). It is involved in several inflammatory diseases and therefore many small molecule antagonists targeting

  10. Ligand Binding Domain Protein in Tetracycline-Inducible Expression ...

    African Journals Online (AJOL)

    binding domain proteins in E. coli using a tetracycline inducible system. To allow for ... development of molecular ligands with improved therapeutic windows. Keywords: Nuclear receptor ..... functional recombinant cannabinoid receptor CB2 in ...

  11. Integrating structural and mutagenesis data to elucidate GPCR ligand binding

    DEFF Research Database (Denmark)

    Munk, Christian; Harpsøe, Kasper; Hauser, Alexander S

    2016-01-01

    is reported that exhibit activity through multiple receptors, binding in allosteric sites, and bias towards different intracellular signalling pathways. Furthermore, a wealth of single point mutants has accumulated in literature and public databases. Integrating these structural and mutagenesis data will help...

  12. Xylanase production from Thermomyces lanuginosus VAPS-24 using low cost agro-industrial residues via hybrid optimization tools and its potential use for saccharification.

    Science.gov (United States)

    Kumar, Vishal; Chhabra, Deepak; Shukla, Pratyoosh

    2017-11-01

    The xylanase production from Thermomyces lanuginosus VAPS-24 has been optimized using OFAT (One factor at a time) approach using agro-industrial substrates. Further, central composite design (CCD) has been employed to optimize various process parameters such as temperature (45-55°C), carbon source concentration (1.5-2.5%), fermentation time (72-120h) and production medium pH (6-8). Maximum xylanase yield after RSM optimization was approximately double (119.91±2.53UmL -1 ) than un-optimized conditions (61.09±0.91UmL -1 ). Several hybrid statistical tools such as Genetic Algorithm-Response Surface Methodology (GA-RSM), Artificial Neural Network (ANN), Genetic Algorithm-Artificial Neural Network (GA-ANN) were employed to obtain more optimized process parameters to maximize the xylanase production and observed an increase of 10.50% xylanase production (132.51±3.27UmL -1 ) as compared to RSM response (119.91±2.53UmL -1 ). The various pretreated and untreated agricultural residues were subjected to saccharification by using crude xylanase in which the pretreated rice straw yielded maximum fermentable sugars 126.89mgg -1 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Preparation, radioiodination and in vitro evaluation of a nido-carborane-dextran conjugate, a potential residualizing label for tumor targeting proteins and peptides

    International Nuclear Information System (INIS)

    Tolmachev, V.; Bruskin, A.; Uppsala University; Sjoeberg, S.; Carlsson, J.; Lundqvist, H.

    2004-01-01

    Polysaccharides are not degradable by proteolytic enzymes in lysosomes and do not diffuse through cellular membranes. Thus, attached to an internalizing, targeting protein, such polysaccharide linkers, will remain intracellularly after protein degradation. They can be labeled with halogens and provide then a so called residualizing label. Such an approach improves tumor-to-non-tumor radioactivity ratio and, consequently, the results of radionuclide diagnostics and therapy. A new approach to obtain a stable halogenation of the polysaccharide dextran using 7-(3-amino-propyl)-7,8-dicarba-nido-undecaborate (-) (ANC) is presented. Dextran T10 was partially oxidized by metaperiodate, and ANC was coupled to dextran by reductive amination. The conjugate was then labeled with 125 I using either Chloramine-T or IodoGen as oxidants. Labeling efficiency was 69-85%. Stability of the label was evaluated in rat liver homogenates. Under these conditions, the ANC-dextran conjugate was found to be more stable than labeled albumin, which was used as a control protein. (author)

  14. Bioenergy from sisal residues

    Energy Technology Data Exchange (ETDEWEB)

    Jungersen, G. [Dansk Teknologisk Inst. (Denmark); Kivaisi, A.; Rubindamayugi, M. [Univ. of Dar es Salaam (Tanzania, United Republic of)

    1998-05-01

    The main objectives of this report are: To analyse the bioenergy potential of the Tanzanian agro-industries, with special emphasis on the Sisal industry, the largest producer of agro-industrial residues in Tanzania; and to upgrade the human capacity and research potential of the Applied Microbiology Unit at the University of Dar es Salaam, in order to ensure a scientific and technological support for future operation and implementation of biogas facilities and anaerobic water treatment systems. The experimental work on sisal residues contains the following issues: Optimal reactor set-up and performance; Pre-treatment methods for treatment of fibre fraction in order to increase the methane yield; Evaluation of the requirement for nutrient addition; Evaluation of the potential for bioethanol production from sisal bulbs. The processing of sisal leaves into dry fibres (decortication) has traditionally been done by the wet processing method, which consumes considerable quantities of water and produces large quantities of waste water. The Tanzania Sisal Authority (TSA) is now developing a dry decortication method, which consumes less water and produces a waste product with 12-15% TS, which is feasible for treatment in CSTR systems (Continously Stirred Tank Reactors). (EG)

  15. Non-isomorphic radial wavenumber dependencies of residual zonal flows in ion and electron Larmor radius scales, and effects of initial parallel flow and electromagnetic potentials in a circular tokamak

    Science.gov (United States)

    Yamagishi, Osamu

    2018-04-01

    Radial wavenumber dependencies of the residual zonal potential for E × B flow in a circular, large aspect ratio tokamak is investigated by means of the collisionless gyrokinetic simulations of Rosenbluth-Hinton (RH) test and the semi-analytic approach using an analytic solution of the gyrokinetic equation Rosenbluth and Hinton (1998 Phys. Rev. Lett. 80 724). By increasing the radial wavenumber from an ion Larmor radius scale {k}r{ρ }i≲ 1 to an electron Larmor radius scale {k}r{ρ }e≲ 1, the well-known level ˜ O[1/(1+1.6{q}2/\\sqrt{r/{R}0})] is retained, while the level remains O(1) when the wavenumber is decreased from the electron to the ion Larmor radius scale, if physically same adiabatic assumption is presumed for species other than the main species that is treated kinetically. The conclusion is not modified by treating both species kinetically, so that in the intermediate scale between the ion and electron Larmor radius scale it seems difficult to determine the level uniquely. The toroidal momentum conservation property in the RH test is also investigated by including an initial parallel flow in addition to the perpendicular flow. It is shown that by taking a balance between the initial parallel flow and perpendicular flows which include both E × B flow and diamagnetic flow in the initial condition, the mechanical toroidal angular momentum is approximately conserved despite the toroidal symmetry breaking due to the finite radial wavenumber zonal modes. Effect of electromagnetic potentials is also investigated. When the electromagnetic potentials are applied initially, fast oscillations which are faster than the geodesic acoustic modes are introduced in the decay phase of the zonal modes. Although the residual level in the long time limit is not modified, this can make the time required to reach the stationary zonal flows longer and may weaken the effectiveness of the turbulent transport suppression by the zonal flows.

  16. Conserved Residues within the Putative S4–S5 Region Serve Distinct Functions among Thermosensitive Vanilloid Transient Receptor Potential (TRPV) Channels

    Czech Academy of Sciences Publication Activity Database

    Boukalová, Štěpána; Maršáková, Lenka; Teisinger, Jan; Vlachová, Viktorie

    2010-01-01

    Roč. 285, č. 53 (2010), s. 41455-41462 ISSN 0021-9258 R&D Projects: GA ČR GA305/09/0081; GA ČR GAP301/10/1159; GA AV ČR(CZ) IAA600110701; GA MŠk(CZ) 1M0517; GA MŠk(CZ) LC554 Grant - others:Univerzita Karlova(CZ) 26110 Institutional research plan: CEZ:AV0Z50110509 Keywords : vanilloid receptor * voltage sensor * transient receptor potential Subject RIV: FH - Neurology Impact factor: 5.328, year: 2010

  17. A single acidic residue can guide binding site selection but does not govern QacR cationic-drug affinity.

    Directory of Open Access Journals (Sweden)

    Kate M Peters

    Full Text Available Structures of the multidrug-binding repressor protein QacR with monovalent and bivalent cationic drugs revealed that the carboxylate side-chains of E90 and E120 were proximal to the positively charged nitrogens of the ligands ethidium, malachite green and rhodamine 6G, and therefore may contribute to drug neutralization and binding affinity. Here, we report structural, biochemical and in vivo effects of substituting these glutamate residues. Unexpectedly, substitutions had little impact on ligand affinity or in vivo induction capabilities. Structures of QacR(E90Q and QacR(E120Q with ethidium or malachite green took similar global conformations that differed significantly from all previously described QacR-drug complexes but still prohibited binding to cognate DNA. Strikingly, the QacR(E90Q-rhodamine 6G complex revealed two mutually exclusive rhodamine 6G binding sites. Despite multiple structural changes, all drug binding was essentially isoenergetic. Thus, these data strongly suggest that rather than contributing significantly to ligand binding affinity, the role of acidic residues lining the QacR multidrug-binding pocket is primarily to attract and guide cationic drugs to the "best available" positions within the pocket that elicit QacR induction.

  18. A survey of 17α-ethinylestradiol and mestranol residues in Hawkesbury River, Australia, using a highly specific enzyme-linked immunosorbent assay (ELISA) demonstrates the levels of potential biological significance.

    Science.gov (United States)

    Uraipong, Chatchaporn; Allan, Robin D; Li, Chunhua; Kennedy, Ivan R; Wong, Victor; Lee, Nanju Alice

    2017-10-01

    This study reports on the potential status of 17α-ethinylestradiol (EE2) and mestranol (MeEE2) residues in aquatic environments in New South Wales (NSW), Australia, based on the analysis by a specific ELISA we developed. Polyclonal antibodies were raised against the EE2 hapten with a linker attached at the C3-position to direct the antibody binding towards the ring D of EE2/MeEE2. Using this approach, an ELISA highly specific to EE2 and MeEE2 was successfully developed, showing less than 3.1% cross-reactivity (% CR) with other major steroidal sex hormones and their derivatives. The assay performed with the limit of detection (LOD) of 0.04 ± 0.01µg/L for both EE2 and MeEE2, and the limit of quantitation (LOQ) of 0.05 ± 0.01ng/L when it was coupled with the SM2-Biobeads solid phase extraction. Prior to conducting the survey study, it was validated against the gas chromatography-mass spectrophotometry (GC-MS) method, which showed high correlation with R 2 of 0.934. Fresh surface water samples collected at different sites along Hawkesbury River in New South Wales (NSW) were analyzed for the EE2/ MeEE2 residues using the developed ELISA. The EE2/MeEE2 levels were found to range between 4.1 and 8.3ng/L in Emigrant Creek, NSW, where the primary activity was macadamia plantation, and higher levels between 15 and 29ng/L in South Creek, NSW, Greater Western Sydney at sites upstream and downstream of the municipal sewage treatment plants. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Modeling, molecular dynamics, and docking assessment of transcription factor rho: a potential drug target in Brucella melitensis 16M

    Directory of Open Access Journals (Sweden)

    Pradeepkiran JA

    2015-03-01

    24934545 and ZINC72319544 – that showed high binding affinity among 2,829 drug analogs that bind with key active-site residues; these residues are considered for protein-ligand binding and unbinding pathways via steered molecular dynamics simulations. Arg215 in the model plays an important role in the stability of the protein-ligand complex via a hydrogen bonding interaction by aromatic-π contacts, and the ADMET (absorption, distribution, metabolism, and excretion analysis of best leads indicate nontoxic in nature with good potential for drug development. Keywords: brucellosis, rho proteins, transcription inhibitors, SMD simulations, ADMET analysis, therapeutics 

  20. Chloroform-Methanol Residue of Coxiella burnetii Markedly Potentiated the Specific Immunoprotection Elicited by a Recombinant Protein Fragment rOmpB-4 Derived from Outer Membrane Protein B of Rickettsia rickettsii in C3H/HeN Mice.

    Directory of Open Access Journals (Sweden)

    Wenping Gong

    Full Text Available The obligate intracellular bacteria, Rickettsia rickettsii and Coxiella burnetii, are the potential agents of bio-warfare/bio-terrorism. Here C3H/HeN mice were immunized with a recombinant protein fragment rOmp-4 derived from outer membrane protein B, a major protective antigen of R. rickettsii, combined with chloroform-methanol residue (CMR extracted from phase I C. burnetii organisms, a safer Q fever vaccine. These immunized mice had significantly higher levels of IgG1 and IgG2a to rOmpB-4 and interferon-γ (IFN-γ and tumor necrosis factor-α (TNF-α, two crucial cytokines in resisting intracellular bacterial infection, as well as significantly lower rickettsial loads and slighter pathological lesions in organs after challenge with R. rickettsii, compared with mice immunized with rOmpB-4 or CMR alone. Additionally, after challenge with C. burnetii, the coxiella loads in the organs of these mice were significantly lower than those of mice immunized with rOmpB-4 alone. Our results prove that CMR could markedly potentiate enhance the rOmpB-4-specific immunoprotection by promoting specific and non-specific immunoresponses and the immunization with the protective antigen of R. rickettsii combined with CMR of C. burnetii could confer effective protection against infection of R. rickettsii or C. burnetii.

  1. Residual gas analysis

    International Nuclear Information System (INIS)

    Berecz, I.

    1982-01-01

    Determination of the residual gas composition in vacuum systems by a special mass spectrometric method was presented. The quadrupole mass spectrometer (QMS) and its application in thin film technology was discussed. Results, partial pressure versus time curves as well as the line spectra of the residual gases in case of the vaporization of a Ti-Pd-Au alloy were demonstrated together with the possible construction schemes of QMS residual gas analysers. (Sz.J.)

  2. Ceramic residue for producing cements, method for the production thereof, and cements containing same

    OpenAIRE

    Sánchez de Rojas, María Isabel; Frías, Moisés; Asensio, Eloy; Medina Martínez, César

    2014-01-01

    [EN] The invention relates to a ceramic residue produced from construction and demolition residues, as a puzzolanic component of cements. The invention also relates to a method for producing said ceramic residues and to another method of producing cements using said residues. This type of residue is collected in recycling plants, where it is managed. This invention facilitates a potential commercial launch.

  3. Identification of critical residues in loop E in the 5-HT3ASR binding site

    Directory of Open Access Journals (Sweden)

    Muthalagi Mani

    2002-06-01

    Full Text Available Abstract Background The serotonin type 3 receptor (5-HT3R is a member of a superfamily of ligand gated ion channels. All members of this family share a large degree of sequence homology and presumably significant structural similarity. A large number of studies have explored the structure-function relationships of members of this family, particularly the nicotinic and GABA receptors. This information can be utilized to gain additional insights into specific structural and functional features of other receptors in this family. Results Thirteen amino acids in the mouse 5-HT3ASR that correspond to the putative E binding loop of the nicotinic α7 receptor were chosen for mutagenesis. Due to the presence of a highly conserved glycine in this region, it has been suggested that this binding loop is comprised of a hairpin turn and may form a portion of the ligand-binding site in this ion channel family. Mutation of the conserved glycine (G147 to alanine eliminated binding of the 5-HT3R antagonist [3H]granisetron. Three tyrosine residues (Y140, Y142 and Y152 also significantly altered the binding of 5-HT3R ligands. Mutations in neighboring residues had little or no effect on binding of these ligands to the 5-HT3ASR. Conclusion Our data supports a role for the putative E-loop region of the 5-HT3R in the binding of 5-HT, mCPBG, d-tc and lerisetron. 5-HT and mCPBG interact with Y142, d-tc with Y140 and lerisetron with both Y142 and Y152. Our data also provides support for the hypothesis that this region of the receptor is present in a loop structure.

  4. Prioritizing stream types according to their potential risk to receive crop plant material--A GIS-based procedure to assist in the risk assessment of genetically modified crops and systemic insecticide residues.

    Science.gov (United States)

    Bundschuh, Rebecca; Kuhn, Ulrike; Bundschuh, Mirco; Naegele, Caroline; Elsaesser, David; Schlechtriemen, Ulrich; Oehen, Bernadette; Hilbeck, Angelika; Otto, Mathias; Schulz, Ralf; Hofmann, Frieder

    2016-03-15

    Crop plant residues may enter aquatic ecosystems via wind deposition or surface runoff. In the case of genetically modified crops or crops treated with systemic pesticides, these materials may contain insecticidal Bt toxins or pesticides that potentially affect aquatic life. However, the particular exposure pattern of aquatic ecosystems (i.e., via plant material) is not properly reflected in current risk assessment schemes, which primarily focus on waterborne toxicity and not on plant material as the route of uptake. To assist in risk assessment, the present study proposes a prioritization procedure of stream types based on the freshwater network and crop-specific cultivation data using maize in Germany as a model system. To identify stream types with a high probability of receiving crop materials, we developed a formalized, criteria-based and thus transparent procedure that considers the exposure-related parameters, ecological status--an estimate of the diversity and potential vulnerability of local communities towards anthropogenic stress--and availability of uncontaminated reference sections. By applying the procedure to maize, ten stream types out of 38 are expected to be the most relevant if the ecological effects from plant-incorporated pesticides need to be evaluated. This information is an important first step to identifying habitats within these stream types with a high probability of receiving crop plant material at a more local scale, including accumulation areas. Moreover, the prioritization procedure developed in the present study may support the selection of aquatic species for ecotoxicological testing based on their probability of occurrence in stream types having a higher chance of exposure. Finally, this procedure can be adapted to any geographical region or crop of interest and is, therefore, a valuable tool for a site-specific risk assessment of crop plants carrying systemic pesticides or novel proteins, such as insecticidal Bt toxins, expressed

  5. Handling of Solid Residues

    International Nuclear Information System (INIS)

    Medina Bermudez, Clara Ines

    1999-01-01

    The topic of solid residues is specifically of great interest and concern for the authorities, institutions and community that identify in them a true threat against the human health and the atmosphere in the related with the aesthetic deterioration of the urban centers and of the natural landscape; in the proliferation of vectorial transmitters of illnesses and the effect on the biodiversity. Inside the wide spectrum of topics that they keep relationship with the environmental protection, the inadequate handling of solid residues and residues dangerous squatter an important line in the definition of political and practical environmentally sustainable. The industrial development and the population's growth have originated a continuous increase in the production of solid residues; of equal it forms, their composition day after day is more heterogeneous. The base for the good handling includes the appropriate intervention of the different stages of an integral administration of residues, which include the separation in the source, the gathering, the handling, the use, treatment, final disposition and the institutional organization of the administration. The topic of the dangerous residues generates more expectation. These residues understand from those of pathogen type that are generated in the establishments of health that of hospital attention, until those of combustible, inflammable type, explosive, radio-active, volatile, corrosive, reagent or toxic, associated to numerous industrial processes, common in our countries in development

  6. Three amino acid residues bind corn odorants to McinOBP1 in the polyembryonic endoparasitoid of Macrocentrus cingulum Brischke.

    Directory of Open Access Journals (Sweden)

    Tofael Ahmed

    Full Text Available Odorant binding proteins (OBPs play a central role in transporting odorant molecules from the sensillum lymph to olfactory receptors to initiate behavioral responses. In this study, the OBP of Macrocentrus cingulum McinOBP1 was expressed in Escherichia coli and purified by Ni ion affinity chromatography. Real-time PCR experiments indicate that the McinOBP1 is expressed mainly in adult antennae, with expression levels differing by sex. Ligand-binding experiments using N-phenyl-naphthylamine (1-NPN as a fluorescent probe demonstrated that the McinOBP1 can bind green-leaf volatiles, including aldehydes and terpenoids, but also can bind aliphatic alcohols with good affinity, in the order trans-2-nonenal>cis-3-hexen-1-ol>trans-caryophelle, suggesting a role of McinOBP1 in general odorant chemoreception. We chose those three odorants for further homology modeling and ligand docking based on their binding affinity. The Val58, Leu62 and Glu130 are the key amino acids in the binding pockets that bind with these three odorants. The three mutants, Val58, Leu62 and Glu130, where the valine, leucine and glutamic residues were replaced by alanine, proline and alanine, respectively; showed reduced affinity to these odorants. This information suggests, Val58, Leu62 and Glu130 are involved in the binding of these compounds, possibly through the specific recognition of ligands that forms hydrogen bonds with the ligands functional groups.

  7. Environmental assessment of incinerator residue utilisation

    OpenAIRE

    Toller, Susanna

    2008-01-01

     In Sweden, utilisation of incinerator residues outside disposal areas is restricted by environmental concerns, as such residues commonly contain greater amounts of potentially toxic trace elements than the natural materials they replace. On the other hand, utilisation can also provide environmental benefits by decreasing the need for landfill and reducing raw material extraction. This thesis provides increased knowledge and proposes better approaches for environmental assessment of incinerat...

  8. Characterization of Hospital Residuals

    International Nuclear Information System (INIS)

    Blanco Meza, A.; Bonilla Jimenez, S.

    1997-01-01

    The main objective of this investigation is the characterization of the solid residuals. A description of the handling of the liquid and gassy waste generated in hospitals is also given, identifying the source where they originate. To achieve the proposed objective the work was divided in three stages: The first one was the planning and the coordination with each hospital center, in this way, to determine the schedule of gathering of the waste can be possible. In the second stage a fieldwork was made; it consisted in gathering the quantitative and qualitative information of the general state of the handling of residuals. In the third and last stage, the information previously obtained was organized to express the results as the production rate per day by bed, generation of solid residuals for sampled services, type of solid residuals and density of the same ones. With the obtained results, approaches are settled down to either determine design parameters for final disposition whether for incineration, trituration, sanitary filler or recycling of some materials, and storage politics of the solid residuals that allow to determine the gathering frequency. The study concludes that it is necessary to improve the conditions of the residuals handling in some aspects, to provide the cleaning personnel of the equipment for gathering disposition and of security, minimum to carry out this work efficiently, and to maintain a control of all the dangerous waste, like sharp or polluted materials. In this way, an appreciable reduction is guaranteed in the impact on the atmosphere. (Author) [es

  9. Residual life management. Maintenance improvement

    International Nuclear Information System (INIS)

    Sainero Garcia, J.; Hevia Ruperez, F.

    1995-01-01

    The terms Residual Life Management, Life Cycle Management and Long-Term Management are synonymous with a concept which aims to establish efficient maintenance for the profitable and safe operation of a power plant for as long as possible. A Residual Life Management programme comprises a number of stages, of which Maintenance Evaluation focuses on how power plant maintenance practices allow the mitigation and control of component ageing. with this objective in mind, a methodology has been developed for the analysis of potential degradative phenomena acting on critical components in terms of normal power plant maintenance practices. This methodology applied to maintenance evaluation enables the setting out of a maintenance programme based on the Life Management concept, and the programme's subsequent up-dating to allow for new techniques and methods. Initial applications have shown that although, in general terms, power plant maintenance is efficient, the way in which Residual Life Management is approached requires changes in maintenance practices. These changes range from modifications to existing inspection and surveillance methods or the establishment of new ones, to the monitoring of trends or the performance of additional studies, the purpose of which is to provide an accurate evaluation of the condition of the installations and the possibility of life extension. (Author)

  10. HemeBIND: a novel method for heme binding residue prediction by combining structural and sequence information

    Directory of Open Access Journals (Sweden)

    Hu Jianjun

    2011-05-01

    Full Text Available Abstract Background Accurate prediction of binding residues involved in the interactions between proteins and small ligands is one of the major challenges in structural bioinformatics. Heme is an essential and commonly used ligand that plays critical roles in electron transfer, catalysis, signal transduction and gene expression. Although much effort has been devoted to the development of various generic algorithms for ligand binding site prediction over the last decade, no algorithm has been specifically designed to complement experimental techniques for identification of heme binding residues. Consequently, an urgent need is to develop a computational method for recognizing these important residues. Results Here we introduced an efficient algorithm HemeBIND for predicting heme binding residues by integrating structural and sequence information. We systematically investigated the characteristics of binding interfaces based on a non-redundant dataset of heme-protein complexes. It was found that several sequence and structural attributes such as evolutionary conservation, solvent accessibility, depth and protrusion clearly illustrate the differences between heme binding and non-binding residues. These features can then be separately used or combined to build the structure-based classifiers using support vector machine (SVM. The results showed that the information contained in these features is largely complementary and their combination achieved the best performance. To further improve the performance, an attempt has been made to develop a post-processing procedure to reduce the number of false positives. In addition, we built a sequence-based classifier based on SVM and sequence profile as an alternative when only sequence information can be used. Finally, we employed a voting method to combine the outputs of structure-based and sequence-based classifiers, which demonstrated remarkably better performance than the individual classifier alone

  11. Acid transformation of bauxite residue: Conversion of its alkaline characteristics

    OpenAIRE

    Kong, X.; Li, M.; Xue, S.; Hartley, W.; Chen, C.; Wu, C.; Li, X.; Li, Y.

    2016-01-01

    Bauxite residue (BR) is a highly alkaline solid hazardous waste produced from bauxite processing for alumina production. Alkaline transformation appears to reduce the environmental risk of bauxite residue disposal areas (BRDAs) whilst potentially providing opportunities for the sustainable reuse and on-going management of BR. Mineral acids, a novel citric acid and a hybrid combination of acid-gypsum treatments were investigated for their potential to reduce residue pH and total alkalinity and...

  12. Residues from waste incineration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Astrup, T.; Juul Pedersen, A.; Hyks, J.; Frandsen, F.J.

    2009-08-15

    The overall objective of the project was to improve the understanding of the formation and characteristics of residues from waste incineration. This was done focusing on the importance of the waste input and the operational conditions of the furnace. Data and results obtained from the project have been discussed in this report according to the following three overall parts: i) mass flows and element distribution, ii) flue gas/particle partitioning and corrosion/deposition aspects, and iii) residue leaching. This has been done with the intent of structuring the discussion while tacitly acknowledging that these aspects are interrelated and cannot be separated. Overall, it was found that the waste input composition had significant impact of the characteristics of the generated residues. A similar correlation between operational conditions and residue characteristics could not be observed. Consequently, the project recommend that optimization of residue quality should focus on controlling the waste input composition. The project results showed that including specific waste materials (and thereby also excluding the same materials) may have significant effects on the residue composition, residue leaching, aerosol and deposit formation.It is specifically recommended to minimize Cl in the input waste. Based on the project results, it was found that a significant potential for optimization of waste incineration exist. (author)

  13. Management of NORM Residues

    International Nuclear Information System (INIS)

    2013-06-01

    The IAEA attaches great importance to the dissemination of information that can assist Member States in the development, implementation, maintenance and continuous improvement of systems, programmes and activities that support the nuclear fuel cycle and nuclear applications, and that address the legacy of past practices and accidents. However, radioactive residues are found not only in nuclear fuel cycle activities, but also in a range of other industrial activities, including: - Mining and milling of metalliferous and non-metallic ores; - Production of non-nuclear fuels, including coal, oil and gas; - Extraction and purification of water (e.g. in the generation of geothermal energy, as drinking and industrial process water; in paper and pulp manufacturing processes); - Production of industrial minerals, including phosphate, clay and building materials; - Use of radionuclides, such as thorium, for properties other than their radioactivity. Naturally occurring radioactive material (NORM) may lead to exposures at some stage of these processes and in the use or reuse of products, residues or wastes. Several IAEA publications address NORM issues with a special focus on some of the more relevant industrial operations. This publication attempts to provide guidance on managing residues arising from different NORM type industries, and on pertinent residue management strategies and technologies, to help Member States gain perspectives on the management of NORM residues

  14. Use of ultrasound in petroleum residue upgradation

    Energy Technology Data Exchange (ETDEWEB)

    Sawarkar, A.N.; Pandit, A.B.; Samant, S.D.; Joshi, J.B. [Mumbai Univ., Mumbai (India). Inst. of Chemical Technology

    2009-06-15

    The importance of bottom-of-the barrel upgrading has increased in the current petroleum refining scenario because of the progressively heavier nature of crude oil. Heavy residues contain large concentrations of metals such as vanadium and nickel which foul catalysts and reduce the potential effect of residue fluidized catalytic cracking. This study showed that the cavitational energy induced by ultrasound be be successfully used to upgrade hydrocarbon mixtures. Conventional processes for the upgrading of residual feedstocks, such as thermal cracking and catalytic cracking, were carried out in the temperature range of 400-520 degrees C. Experiments were performed on 2 vacuum residues, Arabian mix vacuum residue (AMVR) and Bombay high vacuum residue (BHVR) and 1 Haldia asphalt (HA). These were subjected to acoustic cavitation for different reaction times from 15 to 120 minutes at ambient temperature and pressure. Two acoustic cavitation devices were compared, namely the ultrasonic bath and ultrasonic horn. In particular, this study compared the ability of these 2 devices to upgrade the petroleum residues to lighter, more value-added products. Different surfactants were used to examine the effect of ultrasound on upgrading the residue when emulsified in water. In order to better understand the reaction mechanism, a kinetic model was developed based on the constituents of the residue. The ultrasonic horn was found to be more effective in bringing about the upgrading than ultrasonic bath. The study also showed that the acoustic cavitation of the aqueous emulsified hydrocarbon mixture could reduce the asphaltenes content to a greater extent than the acoustic cavitation of non-emulsified hydrocarbon mixture. 20 refs., 11 tabs., 17 figs.

  15. Residual-stress measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ezeilo, A N; Webster, G A [Imperial College, London (United Kingdom); Webster, P J [Salford Univ. (United Kingdom)

    1997-04-01

    Because neutrons can penetrate distances of up to 50 mm in most engineering materials, this makes them unique for establishing residual-stress distributions non-destructively. D1A is particularly suited for through-surface measurements as it does not suffer from instrumental surface aberrations commonly found on multidetector instruments, while D20 is best for fast internal-strain scanning. Two examples for residual-stress measurements in a shot-peened material, and in a weld are presented to demonstrate the attractive features of both instruments. (author).

  16. Three C-terminal residues from the sulphonylurea receptor contribute to the functional coupling between the KATP channel subunits SUR2A and Kir6.2

    Science.gov (United States)

    Dupuis, Julien P; Revilloud, Jean; Moreau, Christophe J; Vivaudou, Michel

    2008-01-01

    Cardiac ATP-sensitive potassium (KATP) channels are metabolic sensors formed by the association of the inward rectifier potassium channel Kir6.2 and the sulphonylurea receptor SUR2A. SUR2A adjusts channel gating as a function of intracellular ATP and ADP and is the target of pharmaceutical openers and blockers which, respectively, up- and down-regulate Kir6.2. In an effort to understand how effector binding to SUR2A translates into Kir6.2 gating modulation, we examined the role of a 65-residue SUR2A fragment linking transmembrane domain TMD2 and nucleotide-binding domain NBD2 that has been shown to interact with Kir6.2. This fragment of SUR2A was replaced by the equivalent residues of its close homologue, the multidrug resistance protein MRP1. The chimeric construct was expressed in Xenopus oocytes and characterized using the patch-clamp technique. We found that activation by MgADP and synthetic openers was greatly attenuated although apparent affinities were unchanged. Further chimeragenetic and mutagenetic studies showed that mutation of three residues, E1305, I1310 and L1313 (rat numbering), was sufficient to confer this defective phenotype. The same mutations had no effects on channel block by the sulphonylurea glibenclamide or by ATP, suggesting a role for these residues in activatory – but not inhibitory – transduction processes. These results indicate that, within the KATP channel complex, the proximal C-terminal of SUR2A is a critical link between ligand binding to SUR2A and Kir6.2 up-regulation. PMID:18450778

  17. Molecular Dynamics simulations of Inhibitor of Apoptosis Proteins and identification of potential small molecule inhibitors.

    Science.gov (United States)

    Jayakumar, Jayanthi; Anishetty, Sharmila

    2014-05-01

    Chemotherapeutic resistance due to over expression of Inhibitor of Apoptosis Proteins (IAPs) XIAP, survivin and livin has been observed in various cancers. In the current study, Molecular Dynamics (MD) simulations were carried out for all three IAPs and a common ligand binding scaffold was identified. Further, a novel sequence based motif specific to these IAPs was designed. SMAC is an endogenous inhibitor of IAPs. Screening of ChemBank for compounds similar to lead SMAC-non-peptidomimetics yielded a cemadotin related compound NCIMech_000654. Cemadotin is a derivative of natural anti-tumor peptide dolastatin-15; hence these compounds were docked against all three IAPs. Based on our analysis, we propose that NCIMech_000654/dolastatin-15/cemadotin derivatives may be investigated for their potential in inhibiting XIAP, survivin and livin. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Eviromental Economic and Technological Residues Management Demands: An Optimization Tool.

    Directory of Open Access Journals (Sweden)

    Marisa Soares Borges

    2012-12-01

    Full Text Available Industrial residues management is a very demanding task since many different goals must be achieved. The combination of different approaches used by people from different stuff is very challenging activity that can misuse the residues potential value and applicability. An interactive WEB base tool, to integrate different sectors and overcome residues management difficulties will be presented. The system must be loaded with all data concerning the residue life cycle, and through data integration and modeling routine will give the best alternative as output. As wider and complete the system data becomes, by information loading from differen t segment, more efficient the residues management becomes. The user friendly tool will encourage the participation of industries, labs and research institutions to obtain qualified information about industrial residues inventory, raw materials recovery, characteristics, treatment and alternative uses, to achieve residues management sustainability.

  19. Synthesis of Phthalimide Derivatives as Potential PPAR-γ Ligands

    Directory of Open Access Journals (Sweden)

    So Hyeon Eom

    2016-06-01

    Full Text Available Paecilocin A, a phthalide derivative isolated from the jellyfish-derived fungus Paecilomyces variotii, activates PPAR-γ (Peroxisome proliferator-activated receptor gamma in rat liver Ac2F cells. Based on a SAR (Structure-activity relationships study and in silico analysis of paecilocin A-mimetic derivatives, additional N-substituted phthalimide derivatives were synthesized and evaluated for PPAR-γ agonistic activity in both murine liver Ac2F cells and in human liver HepG2 cells by luciferase assay, and for adipogenic activity in 3T3-L1 cells. Docking simulation indicated PD6 was likely to bind most strongly to the ligand binding domain of PPAR-γ by establishing crucial H-bonds with key amino acid residues. However, in in vitro assays, PD1 and PD2 consistently displayed significant PPAR-γ activation in Ac2F and HepG2 cells, and adipogenic activity in 3T3-L1 preadipocytes.

  20. Evaluation of residue-residue contact predictions in CASP9

    KAUST Repository

    Monastyrskyy, Bohdan; Fidelis, Krzysztof; Tramontano, Anna; Kryshtafovych, Andriy

    2011-01-01

    This work presents the results of the assessment of the intramolecular residue-residue contact predictions submitted to CASP9. The methodology for the assessment does not differ from that used in previous CASPs, with two basic evaluation measures

  1. Sharing Residual Liability

    DEFF Research Database (Denmark)

    Carbonara, Emanuela; Guerra, Alice; Parisi, Francesco

    2016-01-01

    Economic models of tort law evaluate the efficiency of liability rules in terms of care and activity levels. A liability regime is optimal when it creates incentives to maximize the value of risky activities net of accident and precaution costs. The allocation of primary and residual liability...... for policy makers and courts in awarding damages in a large number of real-world accident cases....

  2. Residual Stresses In 3013 Containers

    International Nuclear Information System (INIS)

    Mickalonis, J.; Dunn, K.

    2009-01-01

    The DOE Complex is packaging plutonium-bearing materials for storage and eventual disposition or disposal. The materials are handled according to the DOE-STD-3013 which outlines general requirements for stabilization, packaging and long-term storage. The storage vessels for the plutonium-bearing materials are termed 3013 containers. Stress corrosion cracking has been identified as a potential container degradation mode and this work determined that the residual stresses in the containers are sufficient to support such cracking. Sections of the 3013 outer, inner, and convenience containers, in both the as-fabricated condition and the closure welded condition, were evaluated per ASTM standard G-36. The standard requires exposure to a boiling magnesium chloride solution, which is an aggressive testing solution. Tests in a less aggressive 40% calcium chloride solution were also conducted. These tests were used to reveal the relative stress corrosion cracking susceptibility of the as fabricated 3013 containers. Significant cracking was observed in all containers in areas near welds and transitions in the container diameter. Stress corrosion cracks developed in both the lid and the body of gas tungsten arc welded and laser closure welded containers. The development of stress corrosion cracks in the as-fabricated and in the closure welded container samples demonstrates that the residual stresses in the 3013 containers are sufficient to support stress corrosion cracking if the environmental conditions inside the containers do not preclude the cracking process.

  3. Mutation-induced quisqualic acid and ibotenic acid affinity at the metabotropic glutamate receptor subtype 4: ligand selectivity results from a synergy of several amino acid residues

    DEFF Research Database (Denmark)

    Hermit, Mette B; Greenwood, Jeremy R; Bräuner-Osborne, Hans

    2004-01-01

    The metabotropic glutamate receptors (mGluRs) are key modulators of excitatory neurotransmission in the central nervous system. The eight mGluR subtypes are seven trans-membrane-spanning proteins that possess a large extracellular amino-terminal domain in which the endogenous ligand binding pocket...... resides. In this study, we have identified four non-conserved amino acid residues that are essential for differentiating mGluR1 from mGluR4. Our approach has been to increase the affinity of the classic mGluR1 agonists, quisqualic acid and ibotenic acid, at mGluR4 by making various point mutations......, the mutations K74Y and K317R induced dramatic triple-order-of-magnitude increases in the affinity of ibotenic acid at mGluR4, making the affinity equivalent to that of mGluR1. Furthermore, the affinity of quisqualic acid at mGluR4 was increased to the same level as mGluR1 by the two double mutations, K74Y/K317R...

  4. Identification of an evolutionarily conserved extracellular threonine residue critical for surface expression and its potential coupling of adjacent voltage-sensing and gating domains in voltage-gated potassium channels.

    Science.gov (United States)

    Mckeown, Lynn; Burnham, Matthew P; Hodson, Charlotte; Jones, Owen T

    2008-10-31

    The dynamic expression of voltage-gated potassium channels (Kvs) at the cell surface is a fundamental factor controlling membrane excitability. In exploring possible mechanisms controlling Kv surface expression, we identified a region in the extracellular linker between the first and second of the six (S1-S6) transmembrane-spanning domains of the Kv1.4 channel, which we hypothesized to be critical for its biogenesis. Using immunofluorescence microscopy, flow cytometry, patch clamp electrophysiology, and mutagenesis, we identified a single threonine residue at position 330 within the Kv1.4 S1-S2 linker that is absolutely required for cell surface expression. Mutation of Thr-330 to an alanine, aspartate, or lysine prevented surface expression. However, surface expression occurred upon co-expression of mutant and wild type Kv1.4 subunits or mutation of Thr-330 to a serine. Mutation of the corresponding residue (Thr-211) in Kv3.1 to alanine also caused intracellular retention, suggesting that the conserved threonine plays a generalized role in surface expression. In support of this idea, sequence comparisons showed conservation of the critical threonine in all Kv families and in organisms across the evolutionary spectrum. Based upon the Kv1.2 crystal structure, further mutagenesis, and the partial restoration of surface expression in an electrostatic T330K bridging mutant, we suggest that Thr-330 hydrogen bonds to equally conserved outer pore residues, which may include a glutamate at position 502 that is also critical for surface expression. We propose that Thr-330 serves to interlock the voltage-sensing and gating domains of adjacent monomers, thereby yielding a structure competent for the surface expression of functional tetramers.

  5. Proceedings of the 7. biennial residue-to-revenue residual wood conference 2007

    International Nuclear Information System (INIS)

    Raulin, J.

    2007-01-01

    This conference provided information on the highest and best use of residual wood, which is quickly becoming a valuable commodity. Issues concerning forest residues, sawmill wastes, agricultural residues and urban organic materials were discussed along with trends in Canadian surplus mill waste production. The evolving nature and technologies of the biomass business were highlighted with particular focus on how to generate energy and save money through the use of residual wood. Residual wood energy projects and developments in Canada, North America and Europe were outlined along with biomass development in relation to forest fires and insect disturbances. Cogeneration technologies using wood wastes for thermal heat, steam and electricity were also presented, along with transportation fuel technologies for the production of ethanol. It was noted that with the rising cost of energy, the forest industry is seeking energy solutions based on the use of residual wood. The range of economically practical residual wood solutions continues to grow as energy prices increase. The conference was attended by more than 200 delegates from the forest industry, suppliers and government representatives, to discuss policies and procedures currently in place. Industry investment is being stimulated by the potential for biofuels and biochemicals, as well as the co-operation between the forest and energy sectors. The conference featured 23 presentations, of which 12 have been catalogued separately for inclusion in this database. refs., tabs., figs

  6. Residual radioactivity of treated green diamonds.

    Science.gov (United States)

    Cassette, Philippe; Notari, Franck; Lépy, Marie-Christine; Caplan, Candice; Pierre, Sylvie; Hainschwang, Thomas; Fritsch, Emmanuel

    2017-08-01

    Treated green diamonds can show residual radioactivity, generally due to immersion in radium salts. We report various activity measurements on two radioactive diamonds. The activity was characterized by alpha and gamma ray spectrometry, and the radon emanation was measured by alpha counting of a frozen source. Even when no residual radium contamination can be identified, measurable alpha and high-energy beta emissions could be detected. The potential health impact of radioactive diamonds and their status with regard to the regulatory policy for radioactive products are discussed. Copyright © 2017. Published by Elsevier Ltd.

  7. Residual and Destroyed Accessible Information after Measurements

    Science.gov (United States)

    Han, Rui; Leuchs, Gerd; Grassl, Markus

    2018-04-01

    When quantum states are used to send classical information, the receiver performs a measurement on the signal states. The amount of information extracted is often not optimal due to the receiver's measurement scheme and experimental apparatus. For quantum nondemolition measurements, there is potentially some residual information in the postmeasurement state, while part of the information has been extracted and the rest is destroyed. Here, we propose a framework to characterize a quantum measurement by how much information it extracts and destroys, and how much information it leaves in the residual postmeasurement state. The concept is illustrated for several receivers discriminating coherent states.

  8. Landfill Mining of Shredder Residues

    DEFF Research Database (Denmark)

    Hansen, Jette Bjerre; Hyks, Jiri; Shabeer Ahmed, Nassera

    In Denmark, shredder residues (SR) are classified as hazardous waste and until January 2012 the all SR were landfilled. It is estimated that more than 1.8 million tons of SR have been landfilled in mono cells. This paper describes investigations conducted at two Danish landfills. SR were excavated...... from the landfills and size fractionated in order to recover potential resources such as metal and energy and to reduce the amounts of SR left for re-landfilling. Based on the results it is estimated that 60-70% of the SR excavated could be recovered in terms of materials or energy. Only a fraction...... with particle size less than 5 mm needs to be re-landfilled at least until suitable techniques are available for recovery of materials with small particle sizes....

  9. Machine for compacting solid residues

    International Nuclear Information System (INIS)

    Herzog, J.

    1981-11-01

    Machine for compacting solid residues, particularly bulky radioactive residues, constituted of a horizontally actuated punch and a fixed compression anvil, in which the residues are first compacted horizontally and then vertically. Its salient characteristic is that the punch and the compression anvil have embossments on the compression side and interpenetrating plates in the compression position [fr

  10. Quadratic residues and non-residues selected topics

    CERN Document Server

    Wright, Steve

    2016-01-01

    This book offers an account of the classical theory of quadratic residues and non-residues with the goal of using that theory as a lens through which to view the development of some of the fundamental methods employed in modern elementary, algebraic, and analytic number theory. The first three chapters present some basic facts and the history of quadratic residues and non-residues and discuss various proofs of the Law of Quadratic Reciprosity in depth, with an emphasis on the six proofs that Gauss published. The remaining seven chapters explore some interesting applications of the Law of Quadratic Reciprocity, prove some results concerning the distribution and arithmetic structure of quadratic residues and non-residues, provide a detailed proof of Dirichlet’s Class-Number Formula, and discuss the question of whether quadratic residues are randomly distributed. The text is a valuable resource for graduate and advanced undergraduate students as well as for mathematicians interested in number theory.

  11. Crop residues for advanced biofuels workshop: A synposis

    Science.gov (United States)

    Crop residues are being harvested for a variety of purposes including their use as livestock feed and to produce advanced biofuels. Crop residue harvesting, by definition, reduces the potential annual carbon input to the soil from aboveground biomass but does not affect input from plant roots. The m...

  12. Nitrous oxide emission from soils amended with crop residues

    NARCIS (Netherlands)

    Velthof, G.L.; Kuikman, P.J.; Oenema, O.

    2002-01-01

    Crop residues incorporated in soil are a potentially important source of nitrous oxide (N2O), though poorly quantified. Here, we report on the N2O emission from 10 crop residues added to a sandy and a clay soil, both with and without additional nitrate (NO3-). In the sandy soil, total nitrous oxide

  13. Sustainable System for Residual Hazards Management

    International Nuclear Information System (INIS)

    Kevin M. Kostelnik; James H. Clarke; Jerry L. Harbour

    2004-01-01

    Hazardous, radioactive and other toxic substances have routinely been generated and subsequently disposed of in the shallow subsurface throughout the world. Many of today's waste management techniques do not eliminate the problem, but rather only concentrate or contain the hazardous contaminants. Residual hazards result from the presence of hazardous and/or contaminated material that remains on-site following active operations or the completion of remedial actions. Residual hazards pose continued risk to humans and the environment and represent a significant and chronic problem that require continuous long-term management (i.e. >1000 years). To protect human health and safeguard the natural environment, a sustainable system is required for the proper management of residual hazards. A sustainable system for the management of residual hazards will require the integration of engineered, institutional and land-use controls to isolate residual contaminants and thus minimize the associated hazards. Engineered controls are physical modifications to the natural setting and ecosystem, including the site, facility, and/or the residual materials themselves, in order to reduce or eliminate the potential for exposure to contaminants of concern (COCs). Institutional controls are processes, instruments, and mechanisms designed to influence human behavior and activity. System failure can involve hazardous material escaping from the confinement because of system degradation (i.e., chronic or acute degradation) or by external intrusion of the biosphere into the contaminated material because of the loss of institutional control. An ongoing analysis of contemporary and historic sites suggests that the significance of the loss of institutional controls is a critical pathway because decisions made during the operations/remedial action phase, as well as decisions made throughout the residual hazards management period, are key to the long-term success of the prescribed system. In fact

  14. Determination of Pesticide Residues in Cannabis Smoke

    Directory of Open Access Journals (Sweden)

    Nicholas Sullivan

    2013-01-01

    Full Text Available The present study was conducted in order to quantify to what extent cannabis consumers may be exposed to pesticide and other chemical residues through inhaled mainstream cannabis smoke. Three different smoking devices were evaluated in order to provide a generalized data set representative of pesticide exposures possible for medical cannabis users. Three different pesticides, bifenthrin, diazinon, and permethrin, along with the plant growth regulator paclobutrazol, which are readily available to cultivators in commercial products, were investigated in the experiment. Smoke generated from the smoking devices was condensed in tandem chilled gas traps and analyzed with gas chromatography-mass spectrometry (GC-MS. Recoveries of residues were as high as 69.5% depending on the device used and the component investigated, suggesting that the potential of pesticide and chemical residue exposures to cannabis users is substantial and may pose a significant toxicological threat in the absence of adequate regulatory frameworks.

  15. Bioenergy from agricultural residues in Ghana

    DEFF Research Database (Denmark)

    Thomsen, Sune Tjalfe

    and biomethane under Ghanaian conditions. Detailed characterisations of thirteen of the most common agricultural residues in Ghana are presented, enabling estimations of theoretical bioenergy potentials and identifying specific residues for future biorefinery applications. When aiming at residue-based ethanol...... to pursue increased implementation of anaerobic digestion in Ghana, as the first bioenergy option, since anaerobic digestion is more flexible than ethanol production with regard to both feedstock and scale of production. If possible, the available manure and municipal liquid waste should be utilised first....... A novel model for estimating BMP from compositional data of lignocellulosic biomasses is derived. The model is based on a statistical method not previously used in this area of research and the best prediction of BMP is: BMP = 347 xC+H+R – 438 xL + 63 DA , where xC+H+R is the combined content of cellulose...

  16. Rare Earth Element Phases in Bauxite Residue

    Directory of Open Access Journals (Sweden)

    Johannes Vind

    2018-02-01

    Full Text Available The purpose of present work was to provide mineralogical insight into the rare earth element (REE phases in bauxite residue to improve REE recovering technologies. Experimental work was performed by electron probe microanalysis with energy dispersive as well as wavelength dispersive spectroscopy and transmission electron microscopy. REEs are found as discrete mineral particles in bauxite residue. Their sizes range from <1 μm to about 40 μm. In bauxite residue, the most abundant REE bearing phases are light REE (LREE ferrotitanates that form a solid solution between the phases with major compositions (REE,Ca,Na(Ti,FeO3 and (Ca,Na(Ti,FeO3. These are secondary phases formed during the Bayer process by an in-situ transformation of the precursor bauxite LREE phases. Compared to natural systems, the indicated solid solution resembles loparite-perovskite series. LREE particles often have a calcium ferrotitanate shell surrounding them that probably hinders their solubility. Minor amount of LREE carbonate and phosphate minerals as well as manganese-associated LREE phases are also present in bauxite residue. Heavy REEs occur in the same form as in bauxites, namely as yttrium phosphates. These results show that the Bayer process has an impact on the initial REE mineralogy contained in bauxite. Bauxite residue as well as selected bauxites are potentially good sources of REEs.

  17. Forest residues in cattle feed

    Directory of Open Access Journals (Sweden)

    João Elzeário Castelo Branco Iapichini

    2012-12-01

    amount of 1% over the live weight + 10% of intake. The results of the first phase of the research, for steers supplemented in pasture, showed good acceptability and consumption in the three levels of substitution, with an average of 3.0 kg of concentrate per head. No rejection was observed for consumption of the mixture, as well as any physiological negative / change and clinical levels tested The pine cone (strobilus without the pine nuts (seeds was obtained as a residue of genetically improved seed collection. Likely source of tannins and fiber, dried and triturated pine cones can contribute to lower production costs due to the substitution of an ingredient in feed formulation, as an aid in control of internal parasites and also in the possible mitigation of methane gas production, resulting from digestion of ruminants, one of the gases responsible for the greenhouse effect. The potential use of pine cone as an ingredient in replacement of roughage and concentrate in the diet of ruminants qualifies as a new source of revenue in pine forestry activity, since no such product currently has no commercial value timber and its accumulation along the dried leaves among the trees, increase the risk of forest fires. Finally, these technological and social innovations result in remarkable potential to leverage Regional Programs Sustainable Development.

  18. Pesticide residues in birds and mammals

    Science.gov (United States)

    Stickel, L.F.; Edwards, C.A.

    1973-01-01

    exposure to an organochlorine pesticide, the concentrations of residues in the different tissues are ordinarily directly correlated with each other. When the dosage is at lethal levels, or when stored residues are mobilised to lethal levels, the balanced relationship is disrupted. The concentrations of residues in the brain provide the most rigorous criteria for diagnosis of death due to these chemicals, and levels are generally similar across a wide range of species of birds and mammals. Residues in liver are closely correlated with recent dose, either from direct intake or from mobilisation from storage, and so reflect hazardous exposure. Residues in the whole carcass show the storage reserve, and so indicate the potential for adverse effects from lethal mobilisation or from the continuous slow mobilisation that occurs during the normal processes of metabolism and excretion. A synchronous, rapid, and widespread decline in weight and thickness of shells of eggs laid by many species of wild birds occurred in the late 1940's and has persisted. Birds of prey were primarily affected; exceptions apparently are the result of lesser exposure because of different food habits. Many species of fish-eating birds are also affected. Others, however, appear to be more resistant and to accumulate much higher residues before shell-thinning occurs. Seed-eating birds do not appear to have been generally affected; their exposure is ordinarily lower, but physiological factors also seem to be involved. A relationship between shell-thinning and population decline has been established for many species. In exceptional cases, such as the herring gull, persistent re-nesting and other population reactions have overcome adverse effects at the population level. The discovery of shell-thinning among natural populations, and the hypothesis that this thinning was related to the occurrence of organochlorine pesticides, stimulated experimental studies to determine wheth

  19. Biotechnological Potential of Agro Residues for Economical Production of Thermoalkali-Stable Pectinase by Bacillus pumilus dcsr1 by Solid-State Fermentation and Its Efficacy in the Treatment of Ramie Fibres

    Directory of Open Access Journals (Sweden)

    Deepak Chand Sharma

    2012-01-01

    Full Text Available The production of a thermostable and highly alkaline pectinase by Bacillus pumilus dcsr1 was optimized in solid-state fermentation (SSF and the impact of various treatments (chemical, enzymatic, and in combination on the quality of ramie fibres was investigated. Maximum enzyme titer (348.0±11.8 Ug−1 DBB in SSF was attained, when a mixture of agro-residues (sesame oilseed cake, wheat bran, and citrus pectin, 1 : 1 : 0.01 was moistened with mineral salt solution ( 0.92, pH 9.0 at a substrate-to-moistening agent ratio of 1 : 2.5 and inoculated with 25% of 24 h old inoculum, in 144 h at 40°C. Parametric optimization in SSF resulted in 1.7-fold enhancement in the enzyme production as compared to that recorded in unoptimized conditions. A 14.2-fold higher enzyme production was attained in SSF as compared to that in submerged fermentation (SmF. The treatment with the enzyme significantly improved tensile strength and Young’s modulus, reduction in brittleness, redness and yellowness, and increase in the strength and brightness of ramie fibres.

  20. Residues in the 5th module of the low-density lipoprotein receptor that bind apoE and apoB-100

    International Nuclear Information System (INIS)

    Kroon, P.A.; Zhang, H.-Y.; Smith, R.

    2000-01-01

    Full text: The low-density lipoprotein receptor (LDLR) binds and removes cholesterol-rich lipoproteins from the circulation. Its ligand-binding (LB) domain consists of seven cysteine-rich LB modules that bind apoB-100 and apoE. These modules fold into well-defined structures with three disulfide bonds, in the presence of Ca 2+ . The 5th module (LB5) is unique in that it is required to bind both apoB-100 and apoE. The aim of the current study was to map residues in human LB5 that are required for ligand binding. This was done by alanine mutagenesis of a series of residues that are conserved in human, mouse, rat and rabbit LB5 (E9, S14, E16, H19, S21, K31, and K33), but not in the other six modules. E37 (R37 in the rabbit) was included, since it has been previously hypothesized to play a role in binding. The variant LB5 modules were first produced as recombinant peptides, and subjected to oxidative folding to determine whether the mutations interfered with Ca 2+ '-dependent folding. Only the S14A and E16A mutations interfered significantly with folding, suggesting that S14 and E16 are required for the structural framework of LB5 and that their substitution in the LDLR may interfere with its folding. The native LDLR and E9A, H19A, S21A, K31A, K33A and E37A LDLRs were expressed in LDLR negative IdlA-7 CHO cells. Labeling with 125 I-lgG-C7 showed that all receptors were expressed on the cell surface. Binding of Dil-labeled LDL (Dil-LDL) and Dil-labeled DMPC, complexed with the N-terminal receptor-binding domain of apoE3 (Dil-E3), at 4 deg C, was used to assess receptor binding. Binding of Dil-E3 (0.1 μ/ml) to the H19A, S21A, K31A, K33A and E37A LDLRs was 65-92% of binding to the native LDLR. In contrast, the E9A LDLR only bound 3% of that of the native LDLR. The binding of Dil-LDL (0.5 Ag/ml) to the E9A LDLR was 23% of that of the native LDLR, while binding to the remaining variant LDLRs ranged from 44-70% of what of the native LDLR. We conclude that (i) E9 of LB5

  1. Immobilization of acid digestion residue

    International Nuclear Information System (INIS)

    Greenhalgh, W.O.; Allen, C.R.

    1983-01-01

    Acid digestion treatment of nuclear waste is similar to incineration processes and results in the bulk of the waste being reduced in volume and weight to some residual solids termed residue. The residue is composed of various dispersible solid materials and typically contains the resultant radioactivity from the waste. This report describes the immobilization of the residue in portland cement, borosilicate glass, and some other waste forms. Diagrams showing the cement and glass virtification parameters are included in the report as well as process steps and candidate waste product forms. Cement immobilization is simplest and probably least expensive; glass vitrification exhibits the best overall volume reduction ratio

  2. Environmental assessment of incinerator residue utilisation

    OpenAIRE

    Toller, Susanna; Kärrman, Erik; Gustafsson, Jon Petter; Magnusson, Y.

    2009-01-01

    Incineration ashes may be treated either as a waste to be dumped in landfill, or as a resource that is suit able for re-use. In order to choose the best management scenario, knowledge is needed on the potential environmental impact that may be expected, including not only local, but also regional and global impact. In this study. A life cycle assessment (LCA) based approach Was Outlined for environmental assessment of incinerator residue utilisation, in which leaching of trace elements as wel...

  3. Western Canadian wood residue production and consumption trends

    International Nuclear Information System (INIS)

    McCloy, B.

    2006-01-01

    This presentation considered various trends in western Canadian wood residue production and consumption. Potential markets for wood residue products were also discussed. Trends were reviewed by province for the years 2000-2004. British Columbia (BC) is currently the largest producer of residue in the country, and also retains the largest surpluses of bark, sawdust and shavings. Wood residues in BC are used in pulp and plywood mill production, as well as in the creation of particleboard and MDF. Surplus mill wood residue production in the province has greatly increased due to the Mountain Pine Beetle (MPB) infestation, which has in turn spurred expansion of the BC interior sawmill industry. The infestation has also resulted in a glut of pulp chips. Current wood residue products in Alberta are mostly used in pulp mill combined heat and power (CHP) systems, as well as for wood pellet production and the creation of particleboard and MDF. It was noted that surplus residues are rapidly declining in the province. Saskatchewan's wood residue storage piles are estimated to contain 2,900,000 BDt, while Manitoba surpluses are relatively minor. It was suggested that high natural gas prices have increased the payback on wood energy systems to approximately 2 years. The value of wood residue is now greater than $100/BDt as a substitute for natural gas once the wood energy system has been fully depreciated. Sawmills may now wish to consider equipping themselves to sell wood residue products, as most sawmills only require 20 per cent of their residues for heating purposes. It was concluded that markets for hog fuel wood pellets should be developed in Canada and internationally. Future markets may also develop if natural gas currently used in pulp mill power boilers and lime kilns is replaced with wood residue energy systems. refs., tabs., figs

  4. Evaluation of residue-residue contact predictions in CASP9

    KAUST Repository

    Monastyrskyy, Bohdan

    2011-01-01

    This work presents the results of the assessment of the intramolecular residue-residue contact predictions submitted to CASP9. The methodology for the assessment does not differ from that used in previous CASPs, with two basic evaluation measures being the precision in recognizing contacts and the difference between the distribution of distances in the subset of predicted contact pairs versus all pairs of residues in the structure. The emphasis is placed on the prediction of long-range contacts (i.e., contacts between residues separated by at least 24 residues along sequence) in target proteins that cannot be easily modeled by homology. Although there is considerable activity in the field, the current analysis reports no discernable progress since CASP8.

  5. Antibiotic Residues - A Global Health Hazard

    Directory of Open Access Journals (Sweden)

    Nisha A.R.

    Full Text Available Use of Antibiotic that might result in deposition of residues in meat, milk and eggs must not be permitted in food intended for human consumption. If use of antibiotics is necessary as in prevention and treatment of animal diseases, a withholding period must be observed until the residues are negligible or no longer detected. The use of antibiotics to bring about improved performance in growth and feed efficiency, to synchronize or control of reproductive cycle and breeding performance also often lead to harmful residual effects. Concern over antibiotic residues in food of animal origin occurs in two times; one which produces potential threat to direct toxicity in human, second is whether the low levels of antibiotic exposure would result in alteration of microflora, cause disease and the possible development of resistant strains which cause failure of antibiotic therapy in clinical situations. A withdrawal period is established to safeguard human from exposure of antibiotic added food. The withdrawal time is the time required for the residue of toxicological concern to reach safe concentration as defined by tolerance. It is the interval from the time an animal is removed from medication until permitted time of slaughter. Heavy responsibility is placed on the veterinarian and livestock producer to observe the period for a withdrawal of a drug prior to slaughter to assure that illegal concentration of drug residue in meat, milk and egg do not occur. Use of food additives may improve feed efficiency 17% in beef cattle, 10% in lambs, 15% in poultry and 15% in swine. But their indiscriminate use will produce toxicity in consumers. WHO and FAO establish tolerances for a drug, pesticide or other chemical in the relevant tissues of food producing animals. The tolerance is the tissue concentration below, which a marker residue for the drug or chemical must fall in the target tissue before that animal edible tissues are considered safe for human

  6. Recent advances in residual stress measurement

    International Nuclear Information System (INIS)

    Withers, P.J.; Turski, M.; Edwards, L.; Bouchard, P.J.; Buttle, D.J.

    2008-01-01

    Until recently residual stresses have been included in structural integrity assessments of nuclear pressure vessels and piping in a very primitive manner due to the lack of reliable residual stress measurement or prediction tools. This situation is changing the capabilities of newly emerging destructive (i.e. the contour method) and non-destructive (i.e. magnetic and high-energy synchrotron X-ray strain mapping) residual stress measurement techniques for evaluating ferritic and austenitic pressure vessel components are contrasted against more well-established methods. These new approaches offer the potential for obtaining area maps of residual stress or strain in welded plants, mock-up components or generic test-pieces. The mapped field may be used directly in structural integrity calculations, or indirectly to validate finite element process/structural models on which safety cases for pressurised nuclear systems are founded. These measurement methods are complementary in terms of application to actual plant, cost effectiveness and measurements in thick sections. In each case an exemplar case study is used to illustrate the method and to highlight its particular capabilities

  7. Formulation of morning product using food residues

    Directory of Open Access Journals (Sweden)

    Maria do Rosário de Fátima Padilha

    2017-09-01

    Full Text Available In Brazil, there is resistance of the population to the use of stalks, leaves, peels and seeds of vegetables and fruits, leading to trash important parts of the food in good physiological conditions and with the presence of potential nutrients. In this research, a morning product was elaborated using green and dry coconut residue, jerimum and melon seed, crystallized sicilian lemon peel, cashew nut, common rapadura sweet and ginger. The bacteriological tests proved the hygienic-sanitary quality of the product, therefore suitable for consumption, that is, according to RDC 12/2001. It was also observed that the dehydration of all the residues reached the legal levels and accepted by ANVISA that limits in 25% the water content in the dehydrated foods. As for the centesimal composition, it was observed that the elaborated product with residues and other ingredients had a good content of macro nutrients. A use of the type of waste as a new food proposal constitutes an alternative to avoid and reduce: the serious environmental problem caused by the large residual volume generated, and the inadequate places in which they are stored or deposited, aggravating the scenario of food-borne pollutants.

  8. Landfilling of waste incineration residues

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Astrup, Thomas; Cai, Zuansi

    2002-01-01

    Residues from waste incineration are bottom ashes and air-pollution-control (APC) residues including fly ashes. The leaching of heavy metals and salts from the ashes is substantial and a wide spectrum of leaching tests and corresponding criteria have been introduced to regulate the landfilling...

  9. Predicting Flavin and Nicotinamide Adenine Dinucleotide-Binding Sites in Proteins Using the Fragment Transformation Method

    Directory of Open Access Journals (Sweden)

    Chih-Hao Lu

    2015-01-01

    Full Text Available We developed a computational method to identify NAD- and FAD-binding sites in proteins. First, we extracted from the Protein Data Bank structures of proteins that bind to at least one of these ligands. NAD-/FAD-binding residue templates were then constructed by identifying binding residues through the ligand-binding database BioLiP. The fragment transformation method was used to identify structures within query proteins that resembled the ligand-binding templates. By comparing residue types and their relative spatial positions, potential binding sites were identified and a ligand-binding potential for each residue was calculated. Setting the false positive rate at 5%, our method predicted NAD- and FAD-binding sites at true positive rates of 67.1% and 68.4%, respectively. Our method provides excellent results for identifying FAD- and NAD-binding sites in proteins, and the most important is that the requirement of conservation of residue types and local structures in the FAD- and NAD-binding sites can be verified.

  10. Application of industrial wood residues for combined heat and power production

    International Nuclear Information System (INIS)

    Majchrzycka, A.

    2015-01-01

    The paper discusses combined production of heat and power (CHP) from industrial wood residues. The system will be powered by wood residues generated during manufacturing process of wooden floor panels. Based on power and heat demands of the plant and wood residues potential, the CHP system was selected. Preliminary analysis of biomass conversion in CHP system and environmental impact was performed.

  11. Fuel characteristics and pyrolysis studies of solvent extractables and residues from the evergreen shrub Calotropis procera

    Energy Technology Data Exchange (ETDEWEB)

    Erdman, M.D.; Gregorski, K.S.; Pavlath, A.E.

    1984-01-01

    Solvent extractables and residues from milkweed were evaluated as sources of liquid and solid fuels. Selected chemical, physical and pyrolytic determinations of the extractables and residues indicated that hexane extract is a potentially valuable, high density fuel resource. Methanol extract was shown to be a lower energy, highly toxic extract. Extracted residues were demonstrated to be valuable as solid fuel energy resources. 31 references.

  12. Statistical inference on residual life

    CERN Document Server

    Jeong, Jong-Hyeon

    2014-01-01

    This is a monograph on the concept of residual life, which is an alternative summary measure of time-to-event data, or survival data. The mean residual life has been used for many years under the name of life expectancy, so it is a natural concept for summarizing survival or reliability data. It is also more interpretable than the popular hazard function, especially for communications between patients and physicians regarding the efficacy of a new drug in the medical field. This book reviews existing statistical methods to infer the residual life distribution. The review and comparison includes existing inference methods for mean and median, or quantile, residual life analysis through medical data examples. The concept of the residual life is also extended to competing risks analysis. The targeted audience includes biostatisticians, graduate students, and PhD (bio)statisticians. Knowledge in survival analysis at an introductory graduate level is advisable prior to reading this book.

  13. Environmental assessment of incinerator residue utilisation

    Energy Technology Data Exchange (ETDEWEB)

    Toller, Susanna

    2008-10-15

    In Sweden, utilisation of incinerator residues outside disposal areas is restricted by environmental concerns, as such residues commonly contain greater amounts of potentially toxic trace elements than the natural materials they replace. On the other hand, utilisation can also provide environmental benefits by decreasing the need for landfill and reducing raw material extraction. This thesis provides increased knowledge and proposes better approaches for environmental assessment of incinerator residue utilisation, particularly bottom ash from municipal solid waste incineration (MSWI). A life cycle assessment (LCA) based approach was outlined for environmental assessment of incinerator residue utilisation, in which leaching of trace elements as well as other emissions to air and water and the use of resources were regarded as constituting the potential environmental impact from the system studied. Case studies were performed for i) road construction with or without MSWI bottom ash, ii) three management scenarios for MSWI bottom ash and iii) three management scenarios for wood ash. Different types of potential environmental impact predominated in the activities of the system and the scenarios differed in use of resources and energy. Utilising MSWI bottom ash in road construction and recycling of wood ash on forest land saved more natural resources and energy than when these materials were managed according to the other scenarios investigated, including dumping in landfill. There is a potential for trace element leaching regardless of how the ash is managed. Trace element leaching, particularly of copper (Cu), was identified as being relatively important for environmental assessment of MSWI bottom ash utilisation. CuO is suggested as the most important type of Cu-containing mineral in weathered MSWI bottom ash, whereas in the leachate Cu is mainly present in complexes with dissolved organic matter (DOM). The hydrophilic components of the DOM were more important for Cu

  14. Agricultural Residues and Biomass Energy Crops

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-06-01

    There are many opportunities to leverage agricultural resources on existing lands without interfering with production of food, feed, fiber, or forest products. In the recently developed advanced biomass feedstock commercialization vision, estimates of potentially available biomass supply from agriculture are built upon the U.S. Department of Agriculture’s (USDA’s) Long-Term Forecast, ensuring that existing product demands are met before biomass crops are planted. Dedicated biomass energy crops and agricultural crop residues are abundant, diverse, and widely distributed across the United States. These potential biomass supplies can play an important role in a national biofuels commercialization strategy.

  15. Structures of Pseudomonas aeruginosa β-ketoacyl-(acyl-carrier-protein) synthase II (FabF) and a C164Q mutant provide templates for antibacterial drug discovery and identify a buried potassium ion and a ligand-binding site that is an artefact of the crystal form

    Energy Technology Data Exchange (ETDEWEB)

    Baum, Bernhard [Johannes Gutenberg-Universität, Staudinger Weg 5, 55128 Mainz (Germany); Lecker, Laura S. M.; Zoltner, Martin [University of Dundee, Dundee DD1 4EH, Scotland (United Kingdom); Jaenicke, Elmar [Johannes Gutenberg-Universität, Jakob Welder Weg 26, 55128 Mainz (Germany); Schnell, Robert [Karolinska Institutet, 17 177 Stockholm (Sweden); Hunter, William N., E-mail: w.n.hunter@dundee.ac.uk [University of Dundee, Dundee DD1 4EH, Scotland (United Kingdom); Brenk, Ruth, E-mail: w.n.hunter@dundee.ac.uk [Johannes Gutenberg-Universität, Staudinger Weg 5, 55128 Mainz (Germany)

    2015-07-28

    Three crystal structures of recombinant P. aeruginosa FabF are reported: the apoenzyme, an active-site mutant and a complex with a fragment of a natural product inhibitor. The characterization provides reagents and new information to support antibacterial drug discovery. Bacterial infections remain a serious health concern, in particular causing life-threatening infections of hospitalized and immunocompromised patients. The situation is exacerbated by the rise in antibacterial drug resistance, and new treatments are urgently sought. In this endeavour, accurate structures of molecular targets can support early-stage drug discovery. Here, crystal structures, in three distinct forms, of recombinant Pseudomonas aeruginosa β-ketoacyl-(acyl-carrier-protein) synthase II (FabF) are presented. This enzyme, which is involved in fatty-acid biosynthesis, has been validated by genetic and chemical means as an antibiotic target in Gram-positive bacteria and represents a potential target in Gram-negative bacteria. The structures of apo FabF, of a C164Q mutant in which the binding site is altered to resemble the substrate-bound state and of a complex with 3-(benzoylamino)-2-hydroxybenzoic acid are reported. This compound mimics aspects of a known natural product inhibitor, platensimycin, and surprisingly was observed binding outside the active site, interacting with a symmetry-related molecule. An unusual feature is a completely buried potassium-binding site that was identified in all three structures. Comparisons suggest that this may represent a conserved structural feature of FabF relevant to fold stability. The new structures provide templates for structure-based ligand design and, together with the protocols and reagents, may underpin a target-based drug-discovery project for urgently needed antibacterials.

  16. Structures of Pseudomonas aeruginosa β-ketoacyl-(acyl-carrier-protein) synthase II (FabF) and a C164Q mutant provide templates for antibacterial drug discovery and identify a buried potassium ion and a ligand-binding site that is an artefact of the crystal form

    International Nuclear Information System (INIS)

    Baum, Bernhard; Lecker, Laura S. M.; Zoltner, Martin; Jaenicke, Elmar; Schnell, Robert; Hunter, William N.; Brenk, Ruth

    2015-01-01

    Three crystal structures of recombinant P. aeruginosa FabF are reported: the apoenzyme, an active-site mutant and a complex with a fragment of a natural product inhibitor. The characterization provides reagents and new information to support antibacterial drug discovery. Bacterial infections remain a serious health concern, in particular causing life-threatening infections of hospitalized and immunocompromised patients. The situation is exacerbated by the rise in antibacterial drug resistance, and new treatments are urgently sought. In this endeavour, accurate structures of molecular targets can support early-stage drug discovery. Here, crystal structures, in three distinct forms, of recombinant Pseudomonas aeruginosa β-ketoacyl-(acyl-carrier-protein) synthase II (FabF) are presented. This enzyme, which is involved in fatty-acid biosynthesis, has been validated by genetic and chemical means as an antibiotic target in Gram-positive bacteria and represents a potential target in Gram-negative bacteria. The structures of apo FabF, of a C164Q mutant in which the binding site is altered to resemble the substrate-bound state and of a complex with 3-(benzoylamino)-2-hydroxybenzoic acid are reported. This compound mimics aspects of a known natural product inhibitor, platensimycin, and surprisingly was observed binding outside the active site, interacting with a symmetry-related molecule. An unusual feature is a completely buried potassium-binding site that was identified in all three structures. Comparisons suggest that this may represent a conserved structural feature of FabF relevant to fold stability. The new structures provide templates for structure-based ligand design and, together with the protocols and reagents, may underpin a target-based drug-discovery project for urgently needed antibacterials

  17. Comparative Analysis of Immune Checkpoint Molecules and Their Potential Role in the Transmissible Tasmanian Devil Facial Tumor Disease

    Directory of Open Access Journals (Sweden)

    Andrew S. Flies

    2017-05-01

    Full Text Available Immune checkpoint molecules function as a system of checks and balances that enhance or inhibit immune responses to infectious agents, foreign tissues, and cancerous cells. Immunotherapies that target immune checkpoint molecules, particularly the inhibitory molecules programmed cell death 1 and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4, have revolutionized human oncology in recent years, yet little is known about these key immune signaling molecules in species other than primates and rodents. The Tasmanian devil facial tumor disease is caused by transmissible cancers that have resulted in a massive decline in the wild Tasmanian devil population. We have recently demonstrated that the inhibitory checkpoint molecule PD-L1 is upregulated on Tasmanian devil (Sarcophilus harrisii facial tumor cells in response to the interferon-gamma cytokine. As this could play a role in immune evasion by tumor cells, we performed a thorough comparative analysis of checkpoint molecule protein sequences among Tasmanian devils and eight other species. We report that many of the key signaling motifs and ligand-binding sites in the checkpoint molecules are highly conserved across the estimated 162 million years of evolution since the last common ancestor of placental and non-placental mammals. Specifically, we discovered that the CTLA-4 (MYPPPY ligand-binding motif and the CTLA-4 (GVYVKM inhibitory domain are completely conserved across all nine species used in our comparative analysis, suggesting that the function of CTLA-4 is likely conserved in these species. We also found that cysteine residues for intra- and intermolecular disulfide bonds were also highly conserved. For instance, all 20 cysteine residues involved in disulfide bonds in the human 4-1BB molecule were also present in devil 4-1BB. Although many key sequences were conserved, we have also identified immunoreceptor tyrosine-based inhibitory motifs (ITIMs and immunoreceptor tyrosine-based switch

  18. Adsorption Property and Mechanism of Oxytetracycline onto Willow Residues

    Directory of Open Access Journals (Sweden)

    Di Wang

    2017-12-01

    Full Text Available To elucidate the adsorption property and the mechanism of plant residues to reduce oxytetracycline (OTC, the adsorption of OTC onto raw willow roots (WR-R, stems (WS-R, leaves (WL-R, and adsorption onto desugared willow roots (WR-D, stems (WS-D, and leaves (WL-D were investigated. The structural characterization was analyzed by scanning electron microscopy, Fourier-transform infrared spectra, and an elemental analyzer. OTC adsorption onto the different tissues of willow residues was compared and correlated with their structures. The adsorption kinetics of OTC onto willow residues was found to follow the pseudo-first-order model. The isothermal adsorption process of OTC onto the different tissues of willow residues followed the Langmuir and Freundlich model and the process was also a spontaneous endothermic reaction, which was mainly physical adsorption. After the willow residues were desugared, the polarity decreased and the aromaticity increased, which explained why the adsorption amounts of the desugared willow residues were higher than those of the unmodified residues. These observations suggest that the raw and modified willow residues have great potential as adsorbents to remove organic pollutants.

  19. Residual stress by repair welds

    International Nuclear Information System (INIS)

    Mochizuki, Masahito; Toyoda, Masao

    2003-01-01

    Residual stress by repair welds is computed using the thermal elastic-plastic analysis with phase-transformation effect. Coupling phenomena of temperature, microstructure, and stress-strain fields are simulated in the finite-element analysis. Weld bond of a plate butt-welded joint is gouged and then deposited by weld metal in repair process. Heat source is synchronously moved with the deposition of the finite-element as the weld deposition. Microstructure is considered by using CCT diagram and the transformation behavior in the repair weld is also simulated. The effects of initial stress, heat input, and weld length on residual stress distribution are studied from the organic results of numerical analysis. Initial residual stress before repair weld has no influence on the residual stress after repair treatment near weld metal, because the initial stress near weld metal releases due to high temperature of repair weld and then stress by repair weld regenerates. Heat input has an effect for residual stress distribution, for not its magnitude but distribution zone. Weld length should be considered reducing the magnitude of residual stress in the edge of weld bead; short bead induces high tensile residual stress. (author)

  20. Alkali activation processes for incinerator residues management.

    Science.gov (United States)

    Lancellotti, Isabella; Ponzoni, Chiara; Barbieri, Luisa; Leonelli, Cristina

    2013-08-01

    Incinerator bottom ash (BA) is produced in large amount worldwide and in Italy, where 5.1 millionstons of municipal solid residues have been incinerated in 2010, corresponding to 1.2-1.5 millionstons of produced bottom ash. This residue has been used in the present study for producing dense geopolymers containing high percentage (50-70 wt%) of ash. The amount of potentially reactive aluminosilicate fraction in the ash has been determined by means of test in NaOH. The final properties of geopolymers prepared with or without taking into account this reactive fraction have been compared. The results showed that due to the presence of both amorphous and crystalline fractions with a different degree of reactivity, the incinerator BA geopolymers exhibit significant differences in terms of Si/Al ratio and microstructure when reactive fraction is considered. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Recovering recyclable materials from shredder residue

    Science.gov (United States)

    Jody, Bassam J.; Daniels, Edward J.; Bonsignore, Patrick V.; Brockmeier, Norman F.

    1994-02-01

    Each year, about 11 million tons of metals are recovered in the United States from about 10 million discarded automobiles. The recovered metals account for about 75 percent of the total weight of the discarded vehicles. The balance of the material, known as shredder residue, amounts to about three million tons annually and is currently landfilled. The residue contains a diversity of potentially recyclable materials, including polyurethane foams, iron oxides, and certain thermoplastics. This article discusses a process under development at Argonne National Laboratory to separate and recover the recyclable materials from this waste stream. The process consists essentially of two stages. First, a physical separation is used to recover the foams and the metal oxides, followed by a chemical process to extract certain thermoplastics. The status of the technology and the process economics are reviewed here.

  2. RESIDUAL RISK ASSESSMENT: ETHYLENE OXIDE ...

    Science.gov (United States)

    This document describes the residual risk assessment for the Ethylene Oxide Commercial Sterilization source category. For stationary sources, section 112 (f) of the Clean Air Act requires EPA to assess risks to human health and the environment following implementation of technology-based control standards. If these technology-based control standards do not provide an ample margin of safety, then EPA is required to promulgate addtional standards. This document describes the methodology and results of the residual risk assessment performed for the Ethylene Oxide Commercial Sterilization source category. The results of this analyiss will assist EPA in determining whether a residual risk rule for this source category is appropriate.

  3. Mineral CO2 sequestration in alkaline solid residues

    International Nuclear Information System (INIS)

    Huijgen, W.J.J.; Comans, R.N.J.; Witkamp, G.J.

    2004-12-01

    Mineral carbonation is a promising sequestration route for the permanent and safe storage of carbon dioxide. In addition to calcium- or magnesium-containing primary minerals, suitable alkaline solid residues can be used as feedstock. The use of alkaline residues has several advantages, such as their availability close to CO2 sources and their higher reactivity for carbonation than primary minerals. In addition, the environmental quality of residues can potentially be improved by carbonation. In this study, key factors of the mineral CO2 sequestration process are identified, their influence on the carbonation process is examined, and environmental properties of the reaction products with regard to their possible beneficial utilization are investigated. The use of alkaline solid residues forms a potentially attractive alternative for the first mineral sequestration plants

  4. Potential mechanisms underlying estrogen-induced expression of the molluscan estrogen receptor (ER) gene

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Thi Kim Anh [School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308 (Australia); Department of Agriculture, Forestry and Fisheries, Vinh University, 182 Le Duan St., Vinh City, Nghe An (Viet Nam); MacFarlane, Geoff R. [School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308 (Australia); Kong, Richard Yuen Chong [Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region (China); O’Connor, Wayne A. [New South Wales Department of Primary Industries, Port Stephens Fisheries Institute, Taylors Beach, NSW 2316 (Australia); Yu, Richard Man Kit, E-mail: Richard.Yu@newcastle.edu.au [School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308 (Australia)

    2016-10-15

    Highlights: • This is the first report on the putative promoter sequence of a molluscan ER gene. • The gene promoter contains putative binding sites for direct and indirect interaction with ER. • E2 upregulates ER gene expression in the ovary in vitro and in vivo. • E2-induced gene expression may require a novel ligand-dependent receptor. • The ER proximal promoter is hypomethylated regardless of gene expression levels. - Abstract: In vertebrates, estrogens and estrogen mimicking chemicals modulate gene expression mainly through a genomic pathway mediated by the estrogen receptors (ERs). Although the existence of an ER orthologue in the mollusc genome has been known for some time, its role in estrogen signalling has yet to be deciphered. This is largely due to its constitutive (ligand-independent) activation and a limited mechanistic understanding of its regulation. To fill this knowledge gap, we cloned and characterised an ER cDNA (sgER) and the 5′-flanking region of the gene from the Sydney rock oyster Saccostrea glomerata. The sgER cDNA is predicted to encode a 477-amino acid protein that contains a DNA-binding domain (DBD) and a ligand-binding domain (LBD) typically conserved among both vertebrate and invertebrate ERs. A comparison of the sgER LBD sequence with those of other ligand-dependent ERs revealed that the sgER LBD is variable at several conserved residues known to be critical for ligand binding and receptor activation. Ligand binding assays using fluorescent-labelled E2 and purified sgER protein confirmed that sgER is devoid of estrogen binding. In silico analysis of the sgER 5′-flanking sequence indicated the presence of three putative estrogen responsive element (ERE) half-sites and several putative sites for ER-interacting transcription factors, suggesting that the sgER promoter may be autoregulated by its own gene product. sgER mRNA is ubiquitously expressed in adult oyster tissues, with the highest expression found in the ovary

  5. An Additive-Multiplicative Restricted Mean Residual Life Model

    DEFF Research Database (Denmark)

    Mansourvar, Zahra; Martinussen, Torben; Scheike, Thomas H.

    2016-01-01

    mean residual life model to study the association between the restricted mean residual life function and potential regression covariates in the presence of right censoring. This model extends the proportional mean residual life model using an additive model as its covariate dependent baseline....... For the suggested model, some covariate effects are allowed to be time-varying. To estimate the model parameters, martingale estimating equations are developed, and the large sample properties of the resulting estimators are established. In addition, to assess the adequacy of the model, we investigate a goodness...

  6. Adaptive evolution and elucidating the potential inhibitor against schizophrenia to target DAOA (G72) isoforms.

    Science.gov (United States)

    Sehgal, Sheikh Arslan; Mannan, Shazia; Kanwal, Sumaira; Naveed, Ishrat; Mir, Asif

    2015-01-01

    Schizophrenia (SZ), a chronic mental and heritable disorder characterized by neurophysiological impairment and neuropsychological abnormalities, is strongly associated with D-amino acid oxidase activator (DAOA, G72). Research studies emphasized that overexpression of DAOA may be responsible for improper functioning of neurotransmitters, resulting in neurological disorders like SZ. In the present study, a hybrid approach of comparative modeling and molecular docking followed by inhibitor identification and structure modeling was employed. Screening was performed by two-dimensional similarity search against selected inhibitor, keeping in view the physiochemical properties of the inhibitor. Here, we report an inhibitor compound which showed maximum binding affinity against four selected isoforms of DAOA. Docking studies revealed that Glu-53, Thr-54, Lys-58, Val-85, Ser-86, Tyr-87, Leu-88, Glu-90, Leu-95, Val-98, Ser-100, Glu-112, Tyr-116, Lys-120, Asp-121, and Arg-122 are critical residues for receptor-ligand interaction. The C-terminal of selected isoforms is conserved, and binding was observed on the conserved region of isoforms. We propose that selected inhibitor might be more potent on the basis of binding energy values. Further analysis of this inhibitor through site-directed mutagenesis could be helpful for exploring the details of ligand-binding pockets. Overall, the findings of this study may be helpful in designing novel therapeutic targets to cure SZ.

  7. Cellulosic ethanol production from agricultural residues in Nigeria

    International Nuclear Information System (INIS)

    Iye, Edward; Bilsborrow, Paul

    2013-01-01

    Nigeria′s Biofuels Policy introduced in 2007 mandates a 10% blend (E10) of bioethanol with gasoline. This study investigates the potential for the development of a cellulosic ethanol industry based on the availability of agricultural residues and models the number of commercial processing facilities that could be sited in the six Geo-political zones. The potential for cellulosic ethanol production from agricultural residues in Nigeria is 7556 km 3 per annum exceeding the mandate of 10% renewable fuel required and providing the potential for 12 large- and 11 medium-scale processing facilities based on the use of a single feedstock. Cassava and yam peelings provided in excess of 80% of the process residues available with enough feedstock to supply 10 large-scale facilities with a fairly even distribution across the zones. Sorghum straw, millet straw and maize stalks represented 75% of the potential resource available from field residues with the potential to supply 2 large- and 7 medium-scale processing facilities, all of which would be located in the north of the country. When a multi-feedstock approach is used, this provides the potential for either 29 large- or 58 medium-scale facilities based on outputs of 250 and 125 km 3 per annum respectively. - Highlights: • Nigeria′s Biofuels Policy mandates a 10% blend of bioethanol with gasoline. • Total bioethanol production from agricultural residues was 7556 km 3 per annum. • Process residues offer the greatest potential accounting for 62% of production. • Nigeria has the potential for 12 large- and 11 medium scale commercial. • The use of mixed feedstocks significantly increases the potential for production

  8. Nitrogen availability of biogas residues

    Energy Technology Data Exchange (ETDEWEB)

    El-Sayed Fouda, Sara

    2011-09-07

    The objectives of this study were to characterize biogas residues either unseparated or separated into a liquid and a solid phase from the fermentation of different substrates with respect to their N and C content. In addition, short and long term effects of the application of these biogas residues on the N availability and N utilization by ryegrass was investigated. It is concluded that unseparated or liquid separated biogas residues provide N at least corresponding to their ammonium content and that after the first fertilizer application the C{sub org}:N{sub org} ratio of the biogas residues was a crucial factor for the N availability. After long term application, the organic N accumulated in the soil leads to an increased release of N.

  9. Vesícula residual

    Directory of Open Access Journals (Sweden)

    Júlio C. U. Coelho

    Full Text Available Our objective is to report three patients with recurrent severe upper abdominal pain secondary to residual gallbladder. All patients had been subjected to cholecystectomy from 1 to 20 years before. The diagnosis was established after several episodes of severe upper abdominal pain by imaging exams: ultrasonography, tomography, or endoscopic retrograde cholangiography. Removal of the residual gallbladder led to complete resolution of symptoms. Partial removal of the gallbladder is a very rare cause of postcholecystectomy symptoms.

  10. Residual number processing in dyscalculia ?

    OpenAIRE

    Cappelletti, Marinella; Price, Cathy J.

    2013-01-01

    Developmental dyscalculia – a congenital learning disability in understanding numerical concepts – is typically associated with parietal lobe abnormality. However, people with dyscalculia often retain some residual numerical abilities, reported in studies that otherwise focused on abnormalities in the dyscalculic brain. Here we took a different perspective by focusing on brain regions that support residual number processing in dyscalculia. All participants accurately performed semantic and ca...

  11. Americium recovery from reduction residues

    Science.gov (United States)

    Conner, W.V.; Proctor, S.G.

    1973-12-25

    A process for separation and recovery of americium values from container or bomb'' reduction residues comprising dissolving the