WorldWideScience

Sample records for potential energy source

  1. Potential of renewable and alternative energy sources

    Science.gov (United States)

    Konovalov, V.; Pogharnitskaya, O.; Rostovshchikova, A.; Matveenko, I.

    2015-11-01

    The article deals with application potential of clean alternative renewable energy sources. By means of system analysis the forecast for consumption of electrical energy in Tomsk Oblast as well as main energy sources of existing energy system have been studied up to 2018. Engineering potential of renewable and alternative energy sources is evaluated. Besides, ranking in the order of their efficiency descending is performed. It is concluded that Tomsk Oblast has high potential of alternative and renewable energy sources, among which the most promising development perspective is implementation of gasification stations to save fuel consumed by diesel power stations as well as building wind-power plants.

  2. Potential of natural energy sources

    Energy Technology Data Exchange (ETDEWEB)

    Denton, J D; Glanville, R; Gliddon, B J; Harrison, P L; Hotchkiss, R C; Hughes, E M; Swift-Hook, D T; Wright, J K

    1976-01-01

    Apart from fossil fuels and nuclear energy, five main alternative sources of power for electricity generation are: the sun, the wind, the waves, the tides, and the heat inside the earth. Each has been examined for its relevance to the energy situation in Britain and in particular to the CEGB's requirements as an electrical utility. None emerges from the analysis as directly competitive with nuclear power, provided that nuclear fulfills present expectations. As an insurance against unforeseen delays in the nuclear program, however, one or two of the options may well be worth closer consideration, particularly wave power, for which Britain is favorably placed. The best immediate prospect for using solar energy falls outside the province of the CEGB, in the area of domestic water heating. Wind power, despite the windiness of the British Isles, suffers in practice from a low load factor, which would greatly inflate the capital cost. Geothermal power in Britain, geologically one of the most stable parts of the world, appears to be available only at depths too great to be presently attractive for electricity generation. Finally, tidal power, although technically available in limited amounts, again suffers from high capital costs. (auth)

  3. The potential of new renewable energy sources in Switzerland

    International Nuclear Information System (INIS)

    Dietrich, P.; Kaiser, T.; Wokaun, A.

    2010-01-01

    This article presents and discusses the results of an evaluation made by the so-called 'Swiss Energy Trialogue' ETS on the potential offered by new renewable energy sources in Switzerland. The evaluation forecasts an important contribution to Swiss energy supply by renewable energy sources by the year 2050. The authors are of the opinion that, in spite of a considerable increase in the offers of renewable energy and the full use of energy saving potential, a discrepancy will exist between estimates of energy needs and the actual energy available from renewable resources if large-scale power generation facilities are not built. Activities proposed by the Swiss government are discussed and analysed. In particular, possible contributions to be made by renewable energy sources are examined. Suggestions made by ETS concerning possible courses of action are discussed

  4. The potential of renewable sources of energy in Austria

    International Nuclear Information System (INIS)

    Faninger, G.

    1991-11-01

    Besides hydropower and biomass, solar energy and biomass are candidates for renewable sources of energy. The demand for biomass, solar energy and ambient heat has been rising in all spheres: from 6.8% in 1983 to about 10% in 1990. The development of the market for solar and heat pump systems is continuing its positive tendency. It is expected, that solar as well as heat pump technologies could provide substantial contribution to the energy supply in Austria. The technical usable potential of renewable sources of energy in Austria is analysed. (author)

  5. Potential for unconventional energy sources for the United Kingdom

    Energy Technology Data Exchange (ETDEWEB)

    Leighton, L H; Wright, J K; Syrett, J J

    1977-01-01

    The unconventional sources considered are solar energy, wind power, wave and tidal power, and geothermal heat. Their potential contribution to energy supply in the UK is being assessed as part of a wider exercise aimed at formulating a national energy R and D strategy sufficiently robust to be valid for a wide range of possible future conditions. For each of the sources considered, the present state of knowledge of the magnitude of the potential resource base is outlined and the inherent characteristics of each are discussed in terms of environmental impact and of estimated cost relative to conventional technology. With respect to the latter, attention is drawn to the inherent variability of most of the sources, which imposes upon them a cost penalty for back-up plant and/or large scale storage is firm power is to be assured. The progress that has been made in drawing up, for each of the sources, a national R and D program compatible with the assessment of development potential is outlined, and a tentative estimate is made of the maximum credible contribution the sources could make to energy supply in the UK by the end of the century. The concluding paragraphs deal with the prospects for the next century and indicate that the long-term uncertainties on energy supply justify a determined effort to convert the most promising of the unconventional sources into the well-researched technological options that may be needed.

  6. Innovative Basis of Research of Energy-Efficient Potential and Effectiveness of Renewable Energy Sources

    OpenAIRE

    Hasanov Seymur Latif oglu; Hasanov Elnur Latif oglu

    2018-01-01

    In recent years, countries of the world have been trying to attract new energy sources (wind, sun, biogas, waves, drainage, non-conventional energy sources such as hydroelectric power of small rivers) in their fuel-energy balance. Azerbaijan has renewable natural resources, favorable for its energy-efficient potential, according to the amount of sunny and windy days. In this article was given total information about renewable energy potential of Azerbaijan Republic. In this article we use inf...

  7. The Potential of Renewable Energy Sources in Latvia

    Directory of Open Access Journals (Sweden)

    Sakipova S.

    2016-02-01

    Full Text Available The article discusses some aspects of the use of renewable energy sources in the climatic conditions prevailing in most of the territory of Latvia, with relatively low wind speeds and a small number of sunny days a year. The paper gives a brief description of the measurement equipment and technology to determine the parameters of the outer air; the results of the measurements are also analysed. On the basis of the data obtained during the last two years at the meteorological station at the Botanical Garden of the University of Latvia, the energy potential of solar radiation and wind was estimated. The values of the possible and the actual amount of produced energy were determined.

  8. Economic aspects and potentials of renewable energy sources in Germany

    International Nuclear Information System (INIS)

    Mannsbart, W.; Reichert, J.

    1992-01-01

    While there is a high theoretical potential for renewable energy sources in Germany, assessing theoretical potentials is more or less like playing with numbers; severe technical shortcomings and economic factors prevent then from being fully achieved. Unsuitable azimuth and slope of roofs, shading, absence of central hot water systems limit the application of collectors. The present storage technology is not suitable for a solar share higher than 50%. Individual space heating is not feasible under local climatic conditions. The broad application of biomass fuels fails because of limited resources. Feeding high amounts of fluctuating electricity generated by wind and photovoltaic systems into utility grids causes stability and storage problems. Insufficient training of installation personnel, lack of incentives for multi-family housing owners and high investment costs hinder the market penetration of renewable energy sources. Drastic cost reductions can only be expected from mass production. Therefore, appropriate policy measures - raised energy prices, as well as, subsidies or tax reliefs are necessary for market breakthrough

  9. On the global and regional potential of renewable energy sources

    NARCIS (Netherlands)

    Hoogwijk, Monique Maria

    2004-01-01

    In this thesis, the central research question is: what can be the contribution of renewable energy sources to the present and future world and regional energy supply system. The focus is on wind, solar PV and biomass energy (energy crops) for electricity generation. For the assessment of the

  10. Potential of Livestock Generated Biomass: Untapped Energy Source in India

    Directory of Open Access Journals (Sweden)

    Gagandeep Kaur

    2017-06-01

    Full Text Available Modern economies run on the backbone of electricity as one of major factors behind industrial development. India is endowed with plenty of natural resources and the majority of electricity within the country is generated from thermal and hydro-electric plants. A few nuclear plants assist in meeting the national requirements for electricity but still many rural areas remain uncovered. As India is primarily a rural agrarian economy, providing electricity to the remote, undeveloped regions of the country remains a top priority of the government. A vital, untapped source is livestock generated biomass which to some extent has been utilized to generate electricity in small scale biogas based plants under the government's thrust on rural development. This study is a preliminary attempt to correlate developments in this arena in the Asian region, as well as the developed world, to explore the possibilities of harnessing this resource in a better manner. The current potential of 2600 million tons of livestock dung generated per year, capable of yielding 263,702 million m3 of biogas is exploited. Our estimates suggest that if this resource is utilized judiciously, it possesses the potential of generating 477 TWh (Terawatt hour of electrical energy per annum.

  11. Energy sources

    International Nuclear Information System (INIS)

    Vajda, Gy.

    1998-01-01

    A comprehensive review is presented of the available sources of energy in the world is presented. About 80 percent of primary energy utilization is based on fossile fuels, and their dominant role is not expected to change in the foreseeable future. Data are given on petroleum, natural gas and coal based power production. The role and economic aspects of nuclear power are analyzed. A brief summary of renewable energy sources is presented. The future prospects of the world's energy resources are discussed, and the special position of Hungary regarding fossil, nuclear and renewable energy and the country's energy potential is evaluated. (R.P.)

  12. Potential utilization of renewable energy sources and the related problems

    International Nuclear Information System (INIS)

    Roos, I.; Selg, V.

    1996-01-01

    Estonia's most promising resource of renewable energy is the natural biomass. In 1994 the use of wood and waste wood formed about 4.9% of the primary energy supply, the available resource will provide for a much higher share of biomass in the future primary energy supply, reaching 9-14%. Along with the biomass, wind energy can be considered the largest resource. On the western and northern coast of Estonia, in particular, on the islands, over several years, the average wind speed has been 5 m/s. Based on the assumption that the wind speed exceeds 6 m/s in the area that forms ca 1.5% of the Estonian territory (the total area of Estonia is about 45,000 km 2 ) and is 5 - 6 m/s on about 15% of the total area, using 0.5 MW/km 2 for the installation density, very approximate estimates permit to state that the maximum hypothetical installed capacity could be 3750 MW. It might be useful to make use of the current maximum 50 MW, which could enable the generation of approximately 70 - 100 GW h of energy per year. Although the solar energy currently has no practical use in Estonia and the resource of hydro power is also insignificant (only ca 1% of the electricity consumption), these two resources of renewable energy hold future promise in view of the use of local resources and that of environmental protection. It is not reasonable to regard renewable energy sources as a substitute for the traditional oil shale-based power engineering in Estonia. But, to some extent, local energy demand can be covered by renewable energy sources. Thus, they can contribute to the reduction of the greenhouse gases emissions in Estonia

  13. Map of decentralised energy potential based on renewable energy sources in Croatia

    International Nuclear Information System (INIS)

    Schneider, D. R.; Ban, M.; Duic, N.; Bogdan, Z.

    2005-01-01

    Although the Republic of Croatia is almost completely electrified there are still regions where electricity network is not in place or network capacity is insufficient. These regions usually include areas of special state care (underdeveloped, war-affected or depopulated areas), islands, and mountainous areas. However, they often have good renewable energy potential. Decentralised energy generation based on renewable energy sources (wind power, hydropower, solar energy, biomass) has potential to ensure energy supply to users in remote and often isolated rural areas (off-grid applications). Such applications will primarily be related to tourism business in mountainous, rural and island/coastal regions. Also, agriculture, wood-processing and food-processing industries will potentially be interested in application of decentralised energy generation systems, most likely those using biomass as fuel (for example cogeneration facilities, connected on-grid).(author)

  14. Potential Ambient Energy-Harvesting Sources and Techniques

    Science.gov (United States)

    Yildiz, Faruk

    2009-01-01

    Ambient energy harvesting is also known as energy scavenging or power harvesting, and it is the process where energy is obtained from the environment. A variety of techniques are available for energy scavenging, including solar and wind powers, ocean waves, piezoelectricity, thermoelectricity, and physical motions. For example, some systems…

  15. Potential applications for energy from renewable sources in the railway sector; Anwendungsmoeglichkeiten erneuerbarer Energiequellen im Bahnsektor

    Energy Technology Data Exchange (ETDEWEB)

    Goldenberg, Philipp; Goldenberg, Vladimir; Reppich, Marcus [Hochschule Augsburg (Germany)

    2012-07-01

    Making use of energy from renewable sources has strategic and security-policy relevance. Since DB AG is a major energy consumer, the use of energy from renewable sources in railway operations will make economic sense in the long run. The railways depend on a very high security of energy supply nationwide. Efficient energy management can help enhance the security of supply to the railways. In addition, there are large potential energy savings to be made in railway operations. Major efforts are required to reach this objective. Using energy from renewable sources and increasing energy efficiency are two indispensable prerequisites for a sustainable energy supply to the railways as well as for increasing their attractiveness. (orig.)

  16. A potential of utilizing renewable energy sources and the state support in Slovakia

    Directory of Open Access Journals (Sweden)

    Lívia Bodonská

    2007-04-01

    Full Text Available The renewable energy sources are domestic sources of energy that help to enhance the safety of energy supplies and the diversification of energy sources. The utilization of such sources complies with the environmental acceptability requirement and leads to a reduction in greenhouse gas emissions. The renewable energy is proved to be commercially viable for a growing list of consumers and uses. The renewable energy technologies provide many benefits that go well beyond the energy alone. More and more, the renewable energies contribute to the three pillars of the sustainable development in the economy, environment and the society.Several renewable energy technologies are established in world markets, building global industries and infrastructures. Other renewables become competitive in growing markets, and some are widely recognised as the lowest cost option for stand-alone and offgrid applications. An increased utilization of renewable energy sources in the heat and electricity generation is one of priority tasks of the Slovak Republic to boost the use of domestic energy potential and thus to decrease the Slovakia’s dependence on imported fossil fuels.

  17. Characteristics of Ampel bamboo as a biomass energy source potential in Bali

    Science.gov (United States)

    Sucipta, M.; Putra Negara, D. N. K.; Tirta Nindhia, T. G.; Surata, I. W.

    2017-05-01

    Currently, non-renewable fossil energy dominates utilization of the world energy need for many applications. Efforts has been developed to find alternative renewable energy sources, due to fossil energy availability is diminishing. And one of renewable energy source is from biomass. The aim of this research is to determine characteristics of the Ampel bamboo (Bambusa vulgaris) as an energy potential of biomass. The Ampel bamboo’s characteristics possessed are evaluated based on its chemical composition; moisture, volatile, ash, and fixed carbon through proximate analysis; and also carbon, hydrogen and nitrogen content through ultimate analysis. From the Thermo-gravimetric analysis (TGA) indicates that Ampel bamboo contains of about 18.10% hemicelluloses, 47.75% cellulose and 18.86% lignin. While from the ultimate analysis results in the content of carbon, hydrogen, and Nitrogen of Ampel bamboo are 39.75%, 5.75% and 0% respectively. With such characteristics, it indicates that Ampel bamboo has an attractive potential as a renewable energy source.

  18. The potential of the Malaysian oil palm biomass as a renewable energy source

    International Nuclear Information System (INIS)

    Loh, Soh Kheang

    2017-01-01

    Highlights: • An energy resource data for oil palm biomass is generated. • The data encompasses crucial fuel and physicochemical characteristics. • These characteristics guide on biomass behaviors and technology selection. • Oil palm biomass is advantageous in today’s energy competitive markets. • Overall, it is a green alternative for biorefinery establishment. - Abstract: The scarcity of conventional energy such as fossil fuels (which will lead to eventual depletion) and the ever-increasing demand for new energy sources have resulted in the world moving into an era of renewable energy (RE) and energy efficiency. The Malaysian oil palm industry has been one of the largest contributor of lignocellulosic biomass, with more than 90% of the country’s total biomass deriving from 5.4 million ha of oil palms. Recent concerns on accelerating replanting activity, improving oil extraction rate, expanding mill capacity, etc. are expected to further increase the total oil palm biomass availability in Malaysia. This situation has presented a huge opportunity for the utilization of oil palm biomass in various applications including RE. This paper characterizes the various forms of oil palm biomass for their important fuel and other physicochemical properties, and assesses this resource data in totality – concerning energy potential, the related biomass conversion technologies and possible combustion-related problems. Overall, oil palm biomass possesses huge potential as one of the largest alternative energy sources for commercial exploitation.

  19. French Brittany macroalgae screening: composition and methane potential for potential alternative sources of energy and products.

    Science.gov (United States)

    Jard, G; Marfaing, H; Carrère, H; Delgenes, J P; Steyer, J P; Dumas, C

    2013-09-01

    Macroalgae are biomass resources that represent a valuable feedstock to be used entirely for human consumption or for food additives after some extractions (mainly colloids) and/or for energy production. In order to better develop the algal sector, it is important to determine the capacity of macroalgae to produce these added-values molecules for food and/or for energy industries on the basis of their biochemical characteristics. In this study, ten macroalgae obtained from French Brittany coasts (France) were selected. The global biochemical composition (proteins, lipids, carbohydrates, fibers), the presence and characteristics of added-values molecules (alginates, polyphenols) and the biochemical methane potential of these algae were determined. Regarding its biochemical composition, Palmaria palmata is interesting for food (rich in nutrients) and for anaerobic digestion (0.279 LCH4/gVS). Saccharina latissima could be used for alginate extraction (242 g/kgTS, ratio between mannuronic and guluronic acid M/G=1.4) and Sargassum muticum for polyphenol extraction (19.8 g/kgTS). Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Potential of hydrogen from oil palm biomass as a source of renewable energy worldwide

    International Nuclear Information System (INIS)

    Kelly-Yong, Tau Len; Lee, Keat Teong; Mohamed, Abdul Rahman; Bhatia, Subhash

    2007-01-01

    Various catastrophes related to extreme weather events such as floods, hurricanes, droughts and heat waves occurring on the Earth in the recent times are definitely a clear warning sign from nature questioning our ability to protect the environment and ultimately the Earth itself. Progressive release of greenhouse gases (GHG) such as CO 2 and CH 4 from development of various energy-intensive industries has ultimately caused human civilization to pay its debt. Realizing the urgency of reducing emissions and yet simultaneously catering to needs of industries, researches and scientists conclude that renewable energy is the perfect candidate to fulfill both parties requirement. Renewable energy provides an effective option for the provision of energy services from the technical point of view. In this context, biomass appears as one important renewable source of energy. Biomass has been a major source of energy in the world until before industrialization when fossil fuels become dominant and researches have proven from time to time its viability for large-scale production. Although there has been some successful industrial-scale production of renewable energy from biomass, generally this industry still faces a lot of challenges including the availability of economically viable technology, sophisticated and sustainable natural resources management, and proper market strategies under competitive energy markets. Amidst these challenges, the development and implementation of suitable policies by the local policy-makers is still the single and most important factor that can determine a successful utilization of renewable energy in a particular country. Ultimately, the race to the end line must begin with the proof of biomass ability to sustain in a long run as a sustainable and reliable source of renewable energy. Thus, the aim of this paper is to present the potential availability of oil palm biomass that can be converted to hydrogen (leading candidate positioned as the

  1. Potential Sources for Financing Environmental Protection Projects – Focusing on Energy Efficiency

    Directory of Open Access Journals (Sweden)

    Milan Počuča

    2015-05-01

    Full Text Available This paper elaborates financial mechanisms for financing energy efficiency with particular emphasis on the resources from financial institutions and equity funds and capital from the companies themselves. By conducting relevant academic research of literature and data from print and electronic sources (statistical reports, laws and regulations, statements of companies and financial institutions, as well as from the practical experience of some countries, it has been observed that the poor representation of adapted financial mechanisms is a major constraint to the emergence of a culture of energy efficiency in most countries, including Serbia. Even where they exist they are not necessarily known to make use of successful experiences. By conducting an analysis of the relevant academic literature and an analysis of practical experiences in the domain of energy efficiency and renewable energy sources it was concluded that energy efficiency is a significant potential for growth of the economic strength of Serbia, and therefore incentives should nfluence a greater use of renewable energy and a reduction in use of the fossil fuels as an energy source.

  2. Biogas as a potential renewable energy source: A Ghanaian case study

    Energy Technology Data Exchange (ETDEWEB)

    Arthur, Richard; Baidoo, Martina Francisca [Department of Energy Systems Engineering, Koforidua Polytechnic, Koforidua, Box KF 981, Koforidua (Ghana); Antwi, Edward [Department of Mechanical Engineering, Kumasi Polytechnic, Box 854, Kumasi (Ghana)

    2011-05-15

    The associated harmful environmental, health and social effects with the use of traditional biomass and fossil fuel has enhanced the growing interest in the search for alternate cleaner source of energy globally. Ghana, a developing country depends heavy on woodfuel as a source of fuel contributing about 72% of the primary energy supply with crude oil and hydro making up the rest. Biogas generation has simply been seen as a by-product of anaerobic digestion of organic waste. Having proven to be a practicable and promising technology, it has been very successful and a very reliable and clean source of energy when proper management programmes are followed. There are vast biomass resources including organic waste in Ghana that have the potential for use as feedstock for biogas production to reduce the over reliance of woodfuel and fossil fuel, and to help reduce the it would reduce greenhouse gas emissions which may be affecting climate change. Ghana having the technical potential of constructing about 278,000 biogas plants, only a little over 100 biogas plants has so far been established. This paper presents the energy situation and the status of the biogas technology and utilization in Ghana. It also presents the potential benefits, prospects and challenges of the biogas technology. (author)

  3. Biogas as a potential renewable energy source: A Ghanaian case study

    International Nuclear Information System (INIS)

    Arthur, Richard; Baidoo, Martina Francisca; Antwi, Edward

    2011-01-01

    The associated harmful environmental, health and social effects with the use of traditional biomass and fossil fuel has enhanced the growing interest in the search for alternate cleaner source of energy globally. Ghana, a developing country depends heavy on woodfuel as a source of fuel contributing about 72% of the primary energy supply with crude oil and hydro making up the rest. Biogas generation has simply been seen as a by-product of anaerobic digestion of organic waste. Having proven to be a practicable and promising technology, it has been very successful and a very reliable and clean source of energy when proper management programmes are followed. There are vast biomass resources including organic waste in Ghana that have the potential for use as feedstock for biogas production to reduce the over reliance of woodfuel and fossil fuel, and to help reduce the it would reduce greenhouse gas emissions which may be affecting climate change. Ghana having the technical potential of constructing about 278,000 biogas plants, only a little over 100 biogas plants has so far been established. This paper presents the energy situation and the status of the biogas technology and utilization in Ghana. It also presents the potential benefits, prospects and challenges of the biogas technology. (author)

  4. Analysis of the Potential of Low-Temperature Heat Pump Energy Sources

    Directory of Open Access Journals (Sweden)

    Pavel Neuberger

    2017-11-01

    Full Text Available The paper deals with an analysis of temperatures of ground masses in the proximities of linear and slinky-type HGHE (horizontal ground heat exchanger. It evaluates and compares the potentials of HGHEs and ambient air. The reason and aim of the verification was to gain knowledge of the temperature course of the monitored low-temperature heat pump energy sources during heating periods and periods of stagnation and to analyse the knowledge in terms of the potential to use those sources for heat pumps. The study was conducted in the years 2012–2015 during three heating periods and three periods of HGHEs stagnation. The results revealed that linear HGHE had the highest temperature potential of the observed low-temperature heat pump energy sources. The average daily temperatures of the ground mass surrounding the linear HGHE were the highest ranging from 7.08 °C to 9.20 °C during the heating periods, and having the lowest temperature variation range of 12.62–15.14 K, the relative frequency of the average daily temperatures of the ground mass being the highest at 22.64% in the temperature range containing the mode of all monitored temperatures in a recorded interval of [4.10, 6.00] °C. Ambient air had lower temperature potential than the monitored HGHEs.

  5. ARCHITECTURE AND FUNCTIONALITY OF INTEGRATED INFORMATION SYSTEM FOR ANALYSIS OF POTENTIAL OF RENEWABLE ENERGY SOURCES

    Directory of Open Access Journals (Sweden)

    B. A. Tonkonogov

    2017-01-01

    Full Text Available The aim of the work was the development of the original architecture of an integrated information system for analysis of the potential of renewable energy sources. The required functionality of system has led to the solution of a number of problems in the development of appropriate software modules that implement methods, models and algorithms for assessing the energy potential and economic efficiency of the use of renewable energy sources (RES. This required the solution of the following problems: adaptation of existing and development of new methods for analyzing the potential of RES at various territorial levels using modern technologies of geographic information systems and computer technologies were accomplished; models for the assessment and calculation of the potential of renewable energy resources were developed; techniques for assessing of the economic effectiveness of decisions made for using of RES were adapted; architecture of the information system was developed and the choice of technologies and means for its implementation was made; algorithms of software modules and their interaction as a parts of the information system were developed. A distinctive feature of the architecture were flexibility and openness for the expansion and implementation of additional functionality, in particular the development of special algorithms and software modules for interacting with the database and a graphical Web-based user interface that provides the ability to work with cartographic information. The development and implementation of this system is a modern up-to-date scientific and practical task, the solution of which will create conditions for increased use of RES in RB and improving the country’s energy security. The results of conducted researches and completed developments can be used in the system of the Ministry of Natural Resources and Environmental Protection of RB, in particular for maintaining of the state cadastre of RES and making

  6. Nontraditional renewable energy sources

    International Nuclear Information System (INIS)

    Shpil'rajn, Eh.Eh.

    1997-01-01

    The paper considers the application possibilities of nontraditional renewable energy sources to generate electricity, estimates the potential of nontraditional sources using energy of Sun, wind, biomass, as well as, geothermal energy and presents the results of economical analysis of cost of electricity generated by solar electrical power plants, geothermal and electrical plants and facilities for power reprocessing of biomass. 1 tab

  7. Climate change mitigation: the potential of agriculture as a renewable energy source in Nigeria.

    Science.gov (United States)

    Elum, Z A; Modise, D M; Nhamo, G

    2017-02-01

    Energy is pivotal to the economic development of every nation. However, its production and utilization leads to undesirable carbon emissions that aggravate global warming which results in climate change. The agriculture sector is a significant user of energy. However, it has the potential to be a major contributor to Nigeria's energy supply mix in meeting its energy deficit. More so, in the light of current and impending adverse effects of climate change, there is a need to contain GHG's emissions. This paper focuses on bioenergy utilization as a climate change mitigation strategy and one that can, through effective waste management, enhance sustainable economic development in Nigeria. The paper employed a critical discourse analysis to examine the potential of the agricultural sector to provide biofuels from energy crops and other biomass sources. We conclude that Nigeria can reduce its GHG emissions and greatly contribute to global climate change mitigation while also alleviating its energy supply deficit if the agricultural and municipal wastes readily available in its towns and cities are converted to bioenergy. Such engagements will not only promote a clean and healthy environment but also create jobs for economic empowerment and a better standard of living for the people.

  8. Potential of Electronic Plastic Waste as a Source of Raw Material and Energy Recovery

    International Nuclear Information System (INIS)

    Norazli Othman; Nor Ezlin Ahmad Basri; Lariyah Mohd Sidek

    2009-01-01

    Nowadays, the production of electronic equipment is one of the fastest growing industrial activities in this world. The increase use of plastic in this sector resulted in an increase of electronic plastic waste. Basically, electronic plastic material contains various chemical elements which act as a flame retardant when electronic equipment is operated. In general, the concept of recycling electronic plastic waste should be considered in order to protect the environment. For this purpose, research has been conducted to different resins of electronic plastic waste to identify the potential of electronic plastic waste as a source of raw material and energy recovery. This study was divided into two part for example determination of physical and chemical characteristics of plastic resins and calculation of heating value for plastic resins based on Dulong formula. Results of this research show that the average calorific value of electronic waste is 30,872.42 kJ/ kg (7,375 kcal/ kg). The emission factor analysis showed that the concentration of emission value that might occur during waste management activities is below the standard set by the Environment Quality Act 1974. Basically, this research shows that electronic plastic waste has the potential to become the source of raw material and energy recovery. (author)

  9. The Potential of Solar as Alternative Energy Source for Socio-Economic Wellbeing in Rural Areas, Malaysia

    Science.gov (United States)

    Alam, Rashidah Zainal; Siwar, Chamhuri; Ludin, Norasikin Ahmad

    Malaysia's energy sector is highly dependent on fossil fuels as a primary energy source. Economic growth and socio-economic wellbeing also rely on the utilization of energy in daily life routine. Nevertheless, the increasing cost for electricity and declining fossil fuels resources causes various negative impacts to the people and environment especially in rural areas. This prompted Malaysia to shift towards alternative energy sources such as solar energy to ensure social, economic and environmental benefits. The solar energy is one of the potential renewable energy sources in tropical countries particularly in Malaysia. The paper attempts to analyze the benefits and advantages related to energy efficiency of solar for sustainable energy use and socio economic wellbeing in rural areas, Malaysia. The paper uses secondary sources of data such as policies, regulations and research reports from relevant ministries and agencies to attain the objectives. As a signatory country to the UN Convention on Climate Change and the Kyoto Protocol, Malaysia has taken initiatives for decreasing energy dependence on oil to reduce greenhouse gas emissions (GHG) for sustainable development. The paper shows solar energy becomes one of the promising alternative energy sources to alleviate energy poverty in Malaysia for rural areas. Finally, solar energy has increased socio-economic wellbeing and develops green potential and toward achieving energy efficiency in energy sector of Malaysia by preserving environment as well as reducing carbon emission.

  10. Using the “Footprint” Approach to Examine the Potentials and Impacts of Renewable Energy Sources in the European Alps

    Directory of Open Access Journals (Sweden)

    Richard Hastik

    2016-05-01

    Full Text Available The expansion of renewable energies is regarded as a key way to mitigate global climate change and to ensure the provision of energy in the long term. However, conflicts between these goals and local nature conservation goals are likely to increase because of the additional space required for renewable energies. This is particularly true for mountainous areas with biodiversity-rich ecosystems. Little effort has been undertaken to systematically compare different renewable energy sources and to examine their environmental impacts using an interdisciplinary approach. This study adapted the concept of the “ecological footprint” to examine the impact on ecosystem services of land use changes involved in exploiting renewable energy sources. This innovative approach made it possible to assess and communicate the potentials of those energy sources in light of both space consumption and sustainability. The European Alps are an ideal test area because of their high energy potentials and biodiversity-rich ecosystems and the high demand for multiple ecosystem services. Our results demonstrate that energy consumption in the Alps could not be covered with the available renewable energy potentials, despite the utilization of large parts of the Alpine land area and the majority of larger rivers. Therefore, considerable effort must be invested in resolving conflicting priorities between expanding renewable energies and nature conservation, but also in realizing energy-saving measures. To this end, the approach presented here can support decision-making by revealing the energy potentials, space requirements, and environmental impacts of different renewable energy sources.

  11. Potentials and economic viability of small grain residue use as a source of energy in Serbia

    Energy Technology Data Exchange (ETDEWEB)

    Zekic, Vladislav; Rodic, Vesna; Jovanovic, Milenko [University of Novi Sad, Faculty of Agriculture, Department of Agricultural Economics and Rural Sociology, Trg Dositeja Obradovica 8, 21000 Novi Sad, Vojvodina (RS)

    2010-12-15

    One of the numerous challenges awaiting Serbia in the process of European integration is the increase in use of renewable sources of energy. The reason for such an increase is not merely a formal acceptance of European goals but the high energy import dependence, a relatively developed agricultural sector, with insufficiently exploited potentials of biomass, accompanied by an ever-growing awareness of the need for establishing long-lasting sustainable development. Serbia has a relatively undeveloped livestock sector which can absorb a limited portion of the biomass produced. Additionally, insufficient awareness on the part of farmers and the preconception of the low cost-effectiveness of biomass utilisation for the purpose of energy production are factors which, unsurprisingly, contribute to the current practice of burning the largest portion of the biomass produced on site, which is economically and ecologically unacceptable. This paper analyses the amounts of biomass available in Serbia and the prospects of its economically viable utilisation. The cost analysis conducted indicates that the energy obtained from small rectangular straw bales (the most widespread way of utilisation), is less costly by 28%, than the energy obtained from coal, whereas the energy obtained from round bales is cheaper by 34%. Sensitivity analysis has shown that the results obtained are relatively resistant to price changes in the most important inputs. The sensitivity is higher towards the efficiency of the machinery used; therefore, insistent efforts should be made for creating conditions where the introduction of more up-to-date technical solutions, already existing in developed countries, will become feasible. (author)

  12. Energy sources

    International Nuclear Information System (INIS)

    Anon.

    1972-01-01

    A study carried out around 1970 on the world energy future is described. One method is based on world energy evaluations extrapolated to 1985 and 2000. The other one is prospective and tries to account for changes in life style and technology and relations with the developing countries [fr

  13. Alternate energy sources

    International Nuclear Information System (INIS)

    Stevens-Guille, P.D.

    1975-01-01

    The author highlights the interesting points made by the speeches during the conference on Energy and its Future in Southern Africa. He also draws attention to potential alternate energy sources such as power from tides, ocean waves, ocean temperature differences and geothermal power

  14. The Potential and Utilization of Unused Energy Sources for Large-Scale Horticulture Facility Applications under Korean Climatic Conditions

    Directory of Open Access Journals (Sweden)

    In Tak Hyun

    2014-07-01

    Full Text Available As the use of fossil fuel has increased, not only in construction, but also in agriculture due to the drastic industrial development in recent times, the problems of heating costs and global warming are getting worse. Therefore, introduction of more reliable and environmentally-friendly alternative energy sources has become urgent and the same trend is found in large-scale horticulture facilities. In this study, among many alternative energy sources, we investigated the reserves and the potential of various different unused energy sources which have infinite potential, but are nowadays wasted due to limitations in their utilization. In addition, we utilized available unused energy as a heat source for a heat pump in a large-scale horticulture facility and analyzed its feasibility through EnergyPlus simulation modeling. Accordingly, the discharge flow rate from the Fan Coil Unit (FCU in the horticulture facility, the discharge air temperature, and the return temperature were analyzed. The performance and heat consumption of each heat source were compared with those of conventional boilers. The result showed that the power load of the heat pump was decreased and thus the heat efficiency was increased as the temperature of the heat source was increased. Among the analyzed heat sources, power plant waste heat which had the highest heat source temperature consumed the least electric energy and showed the highest efficiency.

  15. Solar Water Heating as a Potential Source for Inland Norway Energy Mix

    Directory of Open Access Journals (Sweden)

    Dejene Assefa Hagos

    2014-01-01

    Full Text Available The aim of this paper is to assess solar potential and investigate the possibility of using solar water heating for residential application in Inland Norway. Solar potential based on observation and satellite-derived data for four typical populous locations has been assessed and used to estimate energy yield using two types of solar collectors for a technoeconomic performance comparison. Based on the results, solar energy use for water heating is competitive and viable even in low solar potential areas. In this study it was shown that a typical tubular collector in Inland Norway could supply 62% of annual water heating energy demand for a single residential household, while glazed flat plates of the same size were able to supply 48%. For a given energy demand in Inland Norway, tubular collectors are preferred to flat plate collectors for performance and cost reasons. This was shown by break-even capital cost for a series of collector specifications. Deployment of solar water heating in all detached dwellings in Inland could have the potential to save 182 GWh of electrical energy, equivalent to a reduction of 15,690 tonnes of oil energy and 48.6 ktCO2 emissions, and contributes greatly to Norway 67.5% renewable share target by 2020.

  16. Alternative Energy Sources

    CERN Document Server

    Michaelides, Efstathios E (Stathis)

    2012-01-01

    Alternative Energy Sources is designed to give the reader, a clear view of the role each form of alternative energy may play in supplying the energy needs of the human society in the near and intermediate future (20-50 years).   The two first chapters on energy demand and supply and environmental effects, set the tone as to why the widespread use of alternative energy is essential for the future of human society. The third chapter exposes the reader to the laws of energy conversion processes, as well as the limitations of converting one energy form to another. The sections on exergy give a succinct, quantitative background on the capability/potential of each energy source to produce power on a global scale. The fourth, fifth and sixth chapters are expositions of fission and fusion nuclear energy. The following five chapters (seventh to eleventh) include detailed descriptions of the most common renewable energy sources – wind, solar, geothermal, biomass, hydroelectric – and some of the less common sources...

  17. A review on potential use of low-temperature water in the urban environment as a thermal-energy source

    Science.gov (United States)

    Laanearu, J.; Borodinecs, A.; Rimeika, M.; Palm, B.

    2017-10-01

    The thermal-energy potential of urban water sources is largely unused to accomplish the up-to-date requirements of the buildings energy demands in the cities of Baltic Sea Region. A reason is that the natural and excess-heat water sources have a low temperature and heat that should be upgraded before usage. The demand for space cooling should increase in near future with thermal insulation of buildings. There are a number of options to recover heat also from wastewater. It is proposed that a network of heat extraction and insertion including the thermal-energy recovery schemes has potential to be broadly implemented in the region with seasonally alternating temperature. The mapping of local conditions is essential in finding the suitable regions (hot spots) for future application of a heat recovery schemes by combining information about demands with information about available sources. The low-temperature water in the urban environment is viewed as a potential thermal-energy source. To recover thermal energy efficiently, it is also essential to ensure that it is used locally, and adverse effects on environment and industrial processes are avoided. Some characteristics reflecting the energy usage are discussed in respect of possible improvements of energy efficiency.

  18. Potential of small nuclear reactors for future clean and safe energy sources

    International Nuclear Information System (INIS)

    Sekimoto, H.

    1992-01-01

    To cope with the various kinds of energy demands expected in the 21st century, it is necessary to explore the potential of small nuclear reactors and to find a way of promoting their introduction to society. The main goal of current research activities is 'the constitution of the self-consistent nuclear energy system'. These activities can be understood by realizing that the nuclear community is facing a turning point for its survival in the 21st century. Self-consistency can be manifested by investigating and developing the potential advantages of the nuclear fission reaction and lessening the potential disadvantages. The contributions in this volume discuss concepts of small reactors, applications of small reactors, and consistency with conventional energy supply systems

  19. Martian Magmatic-Driven Hydrothermal Sites: Potential Sources of Energy, Water, and Life

    Science.gov (United States)

    Anderson, R. C.; Dohm, J. M.; Baker, V. R.; Ferris, J. C.; Hare, T. M.; Tanaka, K. L.; Klemaszewski, J. E.; Skinner, J. A.; Scott, D. H.

    2000-01-01

    Magmatic-driven processes and impact events dominate the geologic record of Mars. Such recorded geologic activity coupled with significant evidence of past and present-day water/ice, above and below the martian surface, indicate that hydrothermal environments certainly existed in the past and may exist today. The identification of such environments, especially long-lived magmatic-driven hydrothermal environments, provides NASA with significant target sites for future sample return missions, since they (1) could favor the development and sustenance of life, (2) may comprise a large variety of exotic mineral assemblages, and (3) could potentially contain water/ice reservoirs for future Mars-related human activities. If life developed on Mars, the fossil record would presumably be at its greatest concentration and diversity in environments where long-term energy sources and water coexisted such as at sites where long-lived, magmatic-driven hydrothermal activity occurred. These assertions are supported by terrestrial analogs. Small, single-celled creatures (prokaryotes) are vitally important in the evolution of the Earth; these prokaryotes are environmentally tough and tolerant of environmental extremes of pH, temperature, salinity, and anoxic conditions found around hydrothermal vents. In addition, there is a great ability for bacteria to survive long periods of geologic time in extreme conditions, including high temperature hydrogen sulfide and sulfur erupted from Mount St. Helens volcano. Our team of investigators is conducting a geological investigation using multiple mission-derived datasets (e.g., existing geologic map data, MOC imagery, MOLA, TES image data, geophysical data, etc.) to identify prime target sites of hydrothermal activity for future hydrological, mineralogical, and biological investigations. The identification of these sites will enhance the probability of success for future missions to Mars.

  20. Crop residues as a potential renewable energy source for Malawi's cement industry

    DEFF Research Database (Denmark)

    Gondwe, Kenneth J.; Chiotha, Sosten S.; Mkandawire, Theresa

    2017-01-01

    that the projected total energy demands in 2020, 2025 and 2030 were approximately 177 810 TJ, 184 210 TJ and 194 096 TJ respectively. The highest supply potentials were found to be in the central and southern regions of Malawi, coinciding with the locations of the two clinker plants. Crop residues could meet 45......-57% of the national total energy demand. The demand from the cement industry is only 0.8% of the estimated biomass energy potential. At an annual production of 600 000 t of clinker and 20% biomass co-firing with coal, 18 562 t of coal consumption would be avoided and 46 128 t of carbon dioxide emission reduction...

  1. Wind energy as a potential generation source at Ras Benas, Egypt

    International Nuclear Information System (INIS)

    Ahmed, Ahmed Shata

    2010-01-01

    Analysis of the wind characteristics in Ras Benas city located on the east coast of Red Sea in Egypt using measured data (wind, pressure and temperature) and Weibull function were made. Statistical analysis model to evaluate the wind energy potential was introduced. According to the power calculations done for the site, the annual mean wind density is 315 kW/m 2 at a height of 70 m above ground level. This station has a huge wind energy potential for electricity generation, especially during spring and summer seasons, comparing with some European countries. In addition, the monthly wind turbine efficiency parameter (η monthly ) has been calculated by using a commercial wind turbine 1 MW with 70 m hub height to help designers and users in evaluating the potentialities and choosing the suitable wind turbine for the considered site. The use of wind turbine with capacity greater than 1000 kW at this station was recommended. Ras Benas station was selected to install 30 MW-wind farm consists of 20 commercial wind turbines (Nordex S 77) with hub heights and Rotor diameter were 100 and 77 m, respectively. This site has annual wind speed more than 9.8 m/s at 100 m height and enough area to locate these turbines. The estimated energy production using WASP Program of these wind farm was 130 GWh/year. Furthermore, the production costs was found 1.3EUR cent/kWh, which is a competition price at the wind energy world market. (author)

  2. Wind energy as a potential generation source at Ras Benas, Egypt

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Ahmed Shata [Physics Department, Faculty of Science in Port Said, Suez Canal University (Egypt)

    2010-10-15

    Analysis of the wind characteristics in Ras Benas city located on the east coast of Red Sea in Egypt using measured data (wind, pressure and temperature) and Weibull function were made. Statistical analysis model to evaluate the wind energy potential was introduced. According to the power calculations done for the site, the annual mean wind density is 315 kW/m{sup 2} at a height of 70 m above ground level. This station has a huge wind energy potential for electricity generation, especially during spring and summer seasons, comparing with some European countries. In addition, the monthly wind turbine efficiency parameter ({eta}{sub monthly}) has been calculated by using a commercial wind turbine 1 MW with 70 m hub height to help designers and users in evaluating the potentialities and choosing the suitable wind turbine for the considered site. The use of wind turbine with capacity greater than 1000 kW at this station was recommended. Ras Benas station was selected to install 30 MW-wind farm consists of 20 commercial wind turbines (Nordex S 77) with hub heights and Rotor diameter were 100 and 77 m, respectively. This site has annual wind speed more than 9.8 m/s at 100 m height and enough area to locate these turbines. The estimated energy production using WASP Program of these wind farm was 130 GWh/year. Furthermore, the production costs was found 1.3EUR cent/kWh, which is a competition price at the wind energy world market. (author)

  3. The potential of global solar radiation in the Silesia region as a renewable source of energy

    Directory of Open Access Journals (Sweden)

    Waniek Katarzyna

    2016-12-01

    Full Text Available Historically, Silesia has been at the centre of the Polish coal industry for many years and thus has experienced poorer air quality compared to other voivodeships. However, in recent years strong economic transformation in the area has led to a considerable reduction in coal production. This study aimed to assess the variability of global solar radiation at selected stations within the Silesian voivodeship, in order to re-evaluate the resources of renewable solar energy during the period 1994–2013. The theoretical potential of solar radiation was calculated based on a three-dimensional terrain model. The data on global solar radiation from 13 stations within the Silesia region, covering the period 1994–2013, were obtained from the Regional Inspectorate of Environmental Protection in Katowice. The most favourable conditions for the use of solar energy were found at the cities Sosnowiec and Cieszyn. The largest increase in global radiation over the research period was observed in Zabrze. The average annual global radiation ranged between 600–1300 kWh·m−2. Digital Elevation Models (DEM for selected districts of the Silesia region were used to calculate the theoretical potential of global solar radiation. The highest theoretical potential of global radiation was found in the district of Cieszyn, located at the highest altitude.

  4. Comparative assessment of different energy sources and their potential role in long-term sustainable energy mix

    International Nuclear Information System (INIS)

    Kagramanian, V.S.

    2001-01-01

    In the debate on sustainable energy future, the role of nuclear power is a contentious issue. Many, who are outside of the nuclear community, do not even consider nuclear, because of public concerns on nuclear safety, radioactive waste and non-proliferation issues. For example, the United Nations Development Program, in its document Energy After Rio does not suggest a specific role for nuclear power except in the most doubtful of terms. On the contrary, most nuclear organisations and related industries see nuclear power as the only mature carbon-free electricity generating option that can be deployed even on a much larger scale than today. This paper analyses the potential role of nuclear power in the context of the global sustainable energy future. The fundamental features of sustainable energy development are examined in terms of the following compatibility constraints: Demand driven compatibility; Natural resource compatibility; Environmental compatibility; Geopolitical compatibility; and Economic compatibility

  5. POTENTIAL AND PROPERTIES OF THE GRANULAR SEWAGE SLUDGE AS A RENEWABLE ENERGY SOURCE

    Directory of Open Access Journals (Sweden)

    Sebastian Werle

    2014-10-01

    Full Text Available The predominant method of the sewage sludge management in Poland is land disposal. However, since 01/01/2013, this method will be prohibited. Therefore, there is a strong need for development of thermal methods of sludge disposal. In the Polish legal system sewage sludge may be named as a biomass or waste. For purposes of determining the obligations of environmental regulations definition of the Minister of Environment should be used. When disposing of sewage sludge in an amount up to 1% by weight of fuel, emission standards for fuel do not change. At the disposal of sewage in quantities of more than 1%, should be conducted continuous measurement of emissions, including HCl, HF, and continuous measurements of flue gas parameters (as for the installation of waste disposal. For purposes of settlement of the share of energy from renewable sources we use the definition of Minister of Economy. In this case, in accordance with applicable law sewage sludge shall be considered as pure biomass is CO2 neutral. The use of sewage sludge as a fuel requires the determination of fundamental combustible properties. These properties should be in accordance with the requirements put fuels as an energy source. The paper presents results of a detailed physico-chemical analysis of dried sewage sludge produced in the two Polish wastewater treatment plants. The results were compared with five representatives of biomass fuels: straw of wheat, straw of rape, willow, pine and oak sawdust. Ultimate and proximate analysis includes a detailed analysis of fuel and ash. The results clearly indicate that the sludge is a very valuable fuel similar to “traditional” biomass.

  6. Peat Deposits at Bijoynagar Upazila, Brahmanbaria District, Bangladesh : A Potential Local Source of Energy

    Directory of Open Access Journals (Sweden)

    Md. Nazwanul Haque

    2013-12-01

    Full Text Available Bangladesh with about 160 million people in land of 147,570 square km which is one of the most densely populated countries in the world. With the increase of population and diversifying of economic activities, Bangladesh has become an energy hunger country. Presently, 80% peoples depend on non commercial energy sources living in the rural area. Peat exploration at Bijoynagar Upazila, Brahmanbaria district. Bangladesh has been carried out for reserve estimation and its economic aspect evaluation. Total peat exploration area is about 4000 hectare. In explored area, nine peat bearing locations are identified in which peat deposits are observed from 0.152 to 3.0 meters below the surface. Total reserves are about 32.61 million tons in wet condition and 13.044 million tons in dry conditions. The peat is grayish brown to grayish black, fibrous, less to medium compacted and water content is about 60-80 % in wet condition. Chemical analyses of the peat shows that fixed carbon content is 15-25 %, Sulfur is 0.1 to 0.8 % and calorific value of the peat is 3000-7000 BTU. The peat of the area is medium to good quality. The peat may be extracted by open peat mining because of its surface to near surface position. This peat can be conveniently used for small industrial and domestic purpose as briquette and compressed tablet form to meet the growing energy demand of the area. But most of the people of Bijoynagar area live on agriculture. So, peat extraction and related geo-environmental degradation may change living style of the people. Proper land use planning, environmental management and policy should be taken before peat extraction.

  7. Determination of biogas generation potential as a renewable energy source from supermarket wastes.

    Science.gov (United States)

    Alkanok, Gizem; Demirel, Burak; Onay, Turgut T

    2014-01-01

    Fruit, vegetable, flower waste (FVFW), dairy products waste (DPW), meat waste (MW) and sugar waste (SW) obtained from a supermarket chain were anaerobically digested, in order to recover methane as a source of renewable energy. Batch mesophilic anaerobic reactors were run at total solids (TS) ratios of 5%, 8% and 10%. The highest methane yield of 0.44 L CH4/g VS(added) was obtained from anaerobic digestion of wastes (FVFW+DPW+MW+SW) at 10% TS, with 66.4% of methane (CH4) composition in biogas. Anaerobic digestion of mixed wastes at 5% and 8% TS provided slightly lower methane yields of 0.41 and 0.40 L CH4/g VS(added), respectively. When the wastes were digested alone without co-substrate addition, the highest methane yield of 0.40 L CH4/g VS(added) was obtained from FVFW at 5% TS. Generally, although the volatile solids (VS) conversion percentages seemed low during the experiments, higher methane yields could be obtained from anaerobic digestion of supermarket wastes. A suitable carbon/nitrogen (C/N) ratio, proper adjustment of the buffering capacity and the addition of essential trace nutrients (such as Ni) could improve VS conversion and biogas production yields significantly. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Mapping of wind energy potential over the Gobi Desert in Northwest China based on multiple sources of data

    Science.gov (United States)

    Li, Li; Wang, Xinyuan; Luo, Lei; Zhao, Yanchuang; Zong, Xin; Bachagha, Nabil

    2018-06-01

    In recent years, wind energy has been a fastgrowing alternative source of electrical power due to its sustainability. In this paper, the wind energy potential over the Gobi Desert in Northwest China is assessed at the patch scale using geographic information systems (GIS). Data on land cover, topography, and administrative boundaries and 11 years (2000‒2010) of wind speed measurements were collected and used to map and estimate the region's wind energy potential. Based on the results, it was found that continuous regions of geographical potential (GeoP) are located in the middle of the research area (RA), with scattered areas of similar GeoP found in other regions. The results also show that the technical potential (TecP) levels are about 1.72‒2.67 times (2.20 times on average) higher than the actual levels. It was found that the GeoP patches can be divided into four classes: unsuitable regions, suitable regions, more suitable regions, and the most suitable regions. The GeoP estimation shows that 0.41 billion kW of wind energy are potentially available in the RA. The suitable regions account for 25.49%, the more suitable regions 24.45%, and the most suitable regions for more than half of the RA. It is also shown that Xinjiang and Gansu are more suitable for wind power development than Ningxia.

  9. New renewable energy sources

    International Nuclear Information System (INIS)

    2001-06-01

    This publication presents a review of the technological, economical and market status in the field of new renewable energy sources. It also deals briefly with the present use of energy, external conditions for new renewable energy sources and prospects for these energy sources in a future energy system. The renewable energy sources treated here are ''new'' in the sense that hydroelectric energy technology is excluded, being fully developed commercially. This publication updates a previous version, which was published in 1996. The main sections are: (1) Introduction, (2) Solar energy, (3) Bio energy, (4) Wind power, (5) Energy from the sea, (6) Hydrogen, (7) Other new renewable energy technologies and (8) New renewable s in the energy system of the future

  10. Determination of biogas generation potential as a renewable energy source from supermarket wastes

    Energy Technology Data Exchange (ETDEWEB)

    Alkanok, Gizem; Demirel, Burak, E-mail: burak.demirel@boun.edu.tr; Onay, Turgut T.

    2014-01-15

    Highlights: • Disposal of supermarket wastes in landfills may contribute to environmental pollution. • High methane yields can be obtained from supermarket wastes by anaerobic co-digestion. • Fruit and vegetable wastes or dairy products wastes could individually be handled by a two-stage anaerobic process. • Buffering capacity, trace metal and C/N ratio are essential for digestion of supermarket wastes. - Abstract: Fruit, vegetable, flower waste (FVFW), dairy products waste (DPW), meat waste (MW) and sugar waste (SW) obtained from a supermarket chain were anaerobically digested, in order to recover methane as a source of renewable energy. Batch mesophilic anaerobic reactors were run at total solids (TS) ratios of 5%, 8% and 10%. The highest methane yield of 0.44 L CH{sub 4}/g VS{sub added} was obtained from anaerobic digestion of wastes (FVFW + DPW + MW + SW) at 10% TS, with 66.4% of methane (CH{sub 4}) composition in biogas. Anaerobic digestion of mixed wastes at 5% and 8% TS provided slightly lower methane yields of 0.41 and 0.40 L CH{sub 4}/g VS{sub added}, respectively. When the wastes were digested alone without co-substrate addition, the highest methane yield of 0.40 L CH{sub 4}/g VS{sub added} was obtained from FVFW at 5% TS. Generally, although the volatile solids (VS) conversion percentages seemed low during the experiments, higher methane yields could be obtained from anaerobic digestion of supermarket wastes. A suitable carbon/nitrogen (C/N) ratio, proper adjustment of the buffering capacity and the addition of essential trace nutrients (such as Ni) could improve VS conversion and biogas production yields significantly.

  11. Determination of biogas generation potential as a renewable energy source from supermarket wastes

    International Nuclear Information System (INIS)

    Alkanok, Gizem; Demirel, Burak; Onay, Turgut T.

    2014-01-01

    Highlights: • Disposal of supermarket wastes in landfills may contribute to environmental pollution. • High methane yields can be obtained from supermarket wastes by anaerobic co-digestion. • Fruit and vegetable wastes or dairy products wastes could individually be handled by a two-stage anaerobic process. • Buffering capacity, trace metal and C/N ratio are essential for digestion of supermarket wastes. - Abstract: Fruit, vegetable, flower waste (FVFW), dairy products waste (DPW), meat waste (MW) and sugar waste (SW) obtained from a supermarket chain were anaerobically digested, in order to recover methane as a source of renewable energy. Batch mesophilic anaerobic reactors were run at total solids (TS) ratios of 5%, 8% and 10%. The highest methane yield of 0.44 L CH 4 /g VS added was obtained from anaerobic digestion of wastes (FVFW + DPW + MW + SW) at 10% TS, with 66.4% of methane (CH 4 ) composition in biogas. Anaerobic digestion of mixed wastes at 5% and 8% TS provided slightly lower methane yields of 0.41 and 0.40 L CH 4 /g VS added , respectively. When the wastes were digested alone without co-substrate addition, the highest methane yield of 0.40 L CH 4 /g VS added was obtained from FVFW at 5% TS. Generally, although the volatile solids (VS) conversion percentages seemed low during the experiments, higher methane yields could be obtained from anaerobic digestion of supermarket wastes. A suitable carbon/nitrogen (C/N) ratio, proper adjustment of the buffering capacity and the addition of essential trace nutrients (such as Ni) could improve VS conversion and biogas production yields significantly

  12. Potential contributions of renewable energy sources and economically and ecologically feasible development strategies for Nordrhein-Westfalen. Final report

    International Nuclear Information System (INIS)

    Mohr, M.; Skiba, M.; Gernhardt; Ziolek, A.; Unger, H.

    1995-08-01

    This final technical report of the study contains the important equations and results of the above mentioned project. The main aim of the study was to show the importance of renewable energy in Nordrhein-Westfalen regarding its possible contribution to the energy supply as well as the reduction of carbon dioxide emissions, caused by the convertion of energy. Considering the energy sources photovoltaic, solar heating, wind and biomass, an economically oriented energy mix of renewable energy systems is developed, which describes the most economical combination of renewable energy sources and its production costs in dependence on the converted energy. In this connection a regional disaggregated estimation of the theoretical possible maximum contribution of the single renewable energy sources to the energy supply in the communities of Nordrhein-Westfalen is investigated. Basing on this estimation and on the technical datas of commerical manufactured systems, converting the energy sources sun, wind and biomass, the technical possibilities for an extension of the renewable energy are determined for every community. The result of the examinations shows, that the energy supply in Nordrhein-Westfalen could by based in future on barely a fourth by using renewable energy sources, on barely a third by using energy more efficient and on nearly the half by using fossil and nuclear energy sources. The costs however, which would be connected with an extension of renewable energy sources according to the suggested energy mix, can economical not be accepted in the further future. (orig./UA) [de

  13. Non-conventional energy sources: potential and prospects for IXth plan

    International Nuclear Information System (INIS)

    Majumdar, Debashish

    1998-01-01

    Looking beyond the year 2000, it seems certain that we are moving to an era when the energy costs are going to rise, and the pressure on fossil fuels and wood is going to become more and more acute. The energy supply patterns are going to determine the course of the future economic and social development. Energy supply will be the basis for a high and sustainable level of security and comfort. The energy mix will also determine the environment and ecological balance. Before I proceed further, let me emphasise my firm belief the renewable energy can help meet energy service needs in an ever widening array of applications for sustainable human and economic development. To make the best use of these innovative options, we need to continue to develop cost-effective renewable energy technologies, and we also need to focus our efforts on replicable, innovative institutional and financing models which are based on cost recovery principles and fostering private partnerships to enable the developing countries to use these technologies. (author)

  14. Diversification of energy sources

    Science.gov (United States)

    1975-01-01

    The concept of energy source diversification was introduced as a substitution conservation action. The current status and philosophy behind a diversification program is presented in the context of a national energy policy. Advantages, disadvantages (constraints), and methods of implementation for diversification are discussed. The energy source systems for diversification are listed and an example impact assessment is outlined which deals with the water requirements of the specific energy systems.

  15. Earth power spectrum and its potential as a usable energy source

    International Nuclear Information System (INIS)

    Richards, E.E.

    1984-01-01

    The aurora is a natural, visible manifestation of a large electrical-current system that is continually pumping millions of megawatts of electromagnetic power into the upper polar atmospheres, exceeding the total electrical generating capacity of the United States. Auroras begin on the sun, where the energy spirals away into interplanetary space at hundreds of miles per second; four days after it leaves the sun, this high speed stream of solar wind reaches the vicinity of the earth where the plasma collides with and moves around the planet's magnetic field. The high-speed solar wind reshapes the field into a comet-shaped cavity called the magnetosphere. The sunward shock front extends some 10-15 earth radii into space, while the night-side magnetotail stretches out beyond 60 earth radii (Re), reaching beyond the Moon's orbit. As the solar wind blows downstream along the edges of this magnetic cavity, the energies leak in and become part of an immense reservoir called the plasmasheet, which runs down the length of the magnetotail. The plasma that leaks in is carried back toward the Earth by the flow of the plasmasheet and down the funnels over the two polar regions, causing a constant ring-shaped glow. The path of the auroral energy streaming in along the Earth's magnetic field lines appears as a thin, glowing curtain hanging from 60 to hundreds of miles above the Earth. The magnetosphere is a big container of energy storage

  16. Renewable sources of energy

    International Nuclear Information System (INIS)

    Wojas, K.

    1996-01-01

    The author takes a look at causes of the present interest in the renewable, natural sources of energy. These are: the fuel deposits becoming exhausted, hazard to environment (especially carbon dioxide) and accessibility of these sources for under-developed countries. An interrelation is shown between these sources and the energy circulations connected with atmosphere and ocean systems. The chief ones from among them that are being used now are discussed, i.e. solar radiation, wind, water waves energy, tides, geothermal heat, and the like. Problems of conversion of the forms of these kinds of energy are also given a mention. (author)

  17. Fuel from Wastewater - Harnessing a Potential Energy Source in Canada through the Co-location of Algae Biofuel Production to Sources of Effluent, Heat and CO2

    Science.gov (United States)

    Klise, G. T.; Roach, J. D.; Passell, H. D.; Moreland, B. D.; O'Leary, S. J.; Pienkos, P. T.; Whalen, J.

    2010-12-01

    Sandia National Laboratories is collaborating with the National Research Council (NRC) Canada and the National Renewable Energy Laboratory (NREL) to develop a decision-support model that will evaluate the tradeoffs associated with high-latitude algae biofuel production co-located with wastewater, CO2, and waste heat. This project helps Canada meet its goal of diversifying fuel sources with algae-based biofuels. The biofuel production will provide a wide range of benefits including wastewater treatment, CO2 reuse and reduction of demand for fossil-based fuels. The higher energy density in algae-based fuels gives them an advantage over crop-based biofuels as the “production” footprint required is much less, resulting in less water consumed and little, if any conversion of agricultural land from food to fuel production. Besides being a potential source for liquid fuel, algae have the potential to be used to generate electricity through the burning of dried biomass, or anaerobically digested to generate methane for electricity production. Co-locating algae production with waste streams may be crucial for making algae an economically valuable fuel source, and will certainly improve its overall ecological sustainability. The modeling process will address these questions, and others that are important to the use of water for energy production: What are the locations where all resources are co-located, and what volumes of algal biomass and oil can be produced there? In locations where co-location does not occur, what resources should be transported, and how far, while maintaining economic viability? This work is being funded through the U.S. Department of Energy (DOE) Biomass Program Office of Energy Efficiency and Renewable Energy, and is part of a larger collaborative effort that includes sampling, strain isolation, strain characterization and cultivation being performed by the NREL and Canada’s NRC. Results from the NREL / NRC collaboration including specific

  18. Energy Sources | Climate Neutral Research Campuses | NREL

    Science.gov (United States)

    Sources Energy Sources Many opportunities exist to improve the efficiency of energy supply systems at the central plant and then evaluate potential renewable energy sources and systems. Central Plant Begin by evaluating energy efficiency at the central plant through: Fuel Sources Heat Pumps and Combined

  19. Sea Water Characterization at Ujung Kulon Coastal Depth as Raw Water Source for Desalination and Potential Energy

    Directory of Open Access Journals (Sweden)

    Mugisidi Dan

    2018-01-01

    Full Text Available Fresh water is basic need for life while the source is limited. Therefore, sea water is used as fresh water through desalination process. Sea water has different physical and chemical properties ranging from the surface to the seabed. The energy potential that can be obtained from the hydrostatic pressure also changes according to the depth. As part of the research of the utilization of sea water into fresh water, the aim of this study is to know the characteristics of sea water in the depth that can be utilized as source of fresh water. The sea water samples were taken at 11km from Ujung Kulon beach with depth of 0m, 20m, 40m, 60m, 80m, and 100m under the surface. The results showed that the physical properties at every depth were below the maximum allowable drinking water except for the amount of dissolved solids. Chemical characteristics at any depth above allowable level were fluoride, hardness (CaCo3, chloride, sodium, sulphate, and (KMnO4. In addition to the properties, pressure is one of the considerations in this study to determine the depth of sea water as sources for desalination. Pressure increased by 36.11% as the depth of the sea increased.

  20. Sea Water Characterization at Ujung Kulon Coastal Depth as Raw Water Source for Desalination and Potential Energy

    Science.gov (United States)

    Mugisidi, Dan; Heriyani, Okatrina

    2018-02-01

    Fresh water is basic need for life while the source is limited. Therefore, sea water is used as fresh water through desalination process. Sea water has different physical and chemical properties ranging from the surface to the seabed. The energy potential that can be obtained from the hydrostatic pressure also changes according to the depth. As part of the research of the utilization of sea water into fresh water, the aim of this study is to know the characteristics of sea water in the depth that can be utilized as source of fresh water. The sea water samples were taken at 11km from Ujung Kulon beach with depth of 0m, 20m, 40m, 60m, 80m, and 100m under the surface. The results showed that the physical properties at every depth were below the maximum allowable drinking water except for the amount of dissolved solids. Chemical characteristics at any depth above allowable level were fluoride, hardness (CaCo3), chloride, sodium, sulphate, and (KMnO4). In addition to the properties, pressure is one of the considerations in this study to determine the depth of sea water as sources for desalination. Pressure increased by 36.11% as the depth of the sea increased.

  1. Renewable sources of energy in Austria 1993

    International Nuclear Information System (INIS)

    Faninger, G.

    1993-07-01

    Present contribution of renewable sources of energy to the overall energy requirements in Austria. Estimated potential of renewable sources of energy in Austria: firewood and biogeneous fuels, environmental energy, combustible wastes. Ecological aspects of utilising renewable sources of energy. Market barriers and strategies for overcoming them

  2. Alternative energy sources

    International Nuclear Information System (INIS)

    Chapman, P.

    1978-01-01

    It is suggested that the development of alternative energy sources has made them more attractive than nuclear power, due to their characteristics, such as small scale and short lead times, moderate costs and minimal environmental impact. The objectives of energy policy are discussed in relation to forecasts of energy demand. Tables show (a) projected useful energy demands UK; (b) patterns of end-use of energy; (c) costs of heating fuels; (d) net present value of gas purchases; (e) useful-energy by end-use analysis; and (f) primary fuel summary 2025. The contributions of hydro, nuclear, waves, solar, oil, gas and coal are estimated to 2025. (U.K.)

  3. Risks of energy sources

    International Nuclear Information System (INIS)

    Pop-Jordanov, J.; Pop-Jordanova, N.

    1989-09-01

    The paper is devoted to comparative health and environmental risks of different energy sources and their influence to public perception, social acceptability and decision-making. The technical heights of the risks, expressed in the number of fatalities of labor and public per unit energy output, from fossil, nuclear and renewable sources are analysed and compared. The complete energy cycle from mining to waste disposal, as well as the future trends, are taken into account. A comparison of the risks of different energy systems with the anticipated global and national energy shares by source is also presented. Furthermore, detailed studies of the non-technical dimensions of the energy risks are performed. Using a modified attitude-behaviour model, the cognitive structure underlying the positions towards different energy options is investigated. Estimating the diverse acting of the risk components, the consequent changes in the rank ordering of the energy sources are deduced. Finally, adding the psychological components nuclear reaches the highest place. In this respect, a unified multidimensional space for the representation of various technological risks is introduced. It affords a comparison of the risks not only by their technical height, but also by other characteristics (involuntary, fearfulness etc.). Finally, it was pointed out that in considering the risk characteristics and constraints, as well as the external fields, a system approach has to be used, taking into account the risks simultaneously with the benefits. 12 refs, 4 figs, 2 tabs

  4. Renewable energy sources (promotion)

    International Nuclear Information System (INIS)

    Cook, F.

    1986-01-01

    Permission to present a Bill to establish an independent commission directly responsible for the research, development and demonstration of clean, renewable, alternative sources of energy (to nuclear energy) is requested. The paragraphs of the preamble to the Bill are summarized by the Member seeking permission. The main reason for promoting renewable energy sources is opposition to the nuclear industry. One objection was raised. However, permission was granted to present the Bill and it was read for the first time with a second reading ordered for 7 March 1986. The Bill itself is not reprinted but the permission and question are reported verbatim. (U.K.)

  5. Analysis the potential gas production of old municipal solid waste landfill as an alternative energy source: Preliminary results

    Science.gov (United States)

    Hayati, A. P.; Emalya, N.; Munawar, E.; Schwarzböck, T.; Lederer, J.; Fellner, J.

    2018-03-01

    The MSW landfill produces gas which is represent the energy resource that lost and polluted the ambient air. The objective of this study is to evaluate the potential gas production of old landfill as an alternative energy source. The study was conducted by using 10 years old waste in landfill simulator reactor (LSR). Four Landfills Simulator Reactors (LSR) were constructed for evaluate the gas production of old MSW landfilled. The LSR was made of high density poly ethylene (HDPE) has 50 cm outside diameter and 150 cm of high. The 10 years old waste was excavated from closed landfill and subsequently separated from inorganic fraction and sieved to maximum 50 mm size particle prior emplaced into the LSR. Although quite small compare to the LSR containing fresh waste has been reported, the LRS containing 10 years old waste still produce much landfill gas. The landfill gas produced of LSR operated with and without leachate recirculation were about 29 and 21 litter. The composition of landfill gas produced was dominated by CO2 with the composition of CH4 and O2 were around 12.5% and 0.2 %, respectively.

  6. Alternative energy sources

    Energy Technology Data Exchange (ETDEWEB)

    Ruiter, J P [N. V. Kema te Arnhem, NL

    1975-01-01

    A review of alternative energy sources is presented. Solar energy may be used by collecting the heat for direct use or by converting it to electricity. Flat-plate and concentrating collectors are described. Wind energy is an indirect form of solar energy, and has been used for many years in the Netherlands. Calculations of the efficiency of windmills, and of the useful available wind energy along the Netherlands' coastline, are provided. The conversion of organic waste to useable energy is described, including techniques of pyrolysis, combustion, and biological conversion. Tidal energy and ocean-thermal-gradient power plants are briefly described. Geothermal energy is a particularly attractive resource. The average temperature gradient is about 30/sup 0/C/km, ranging from 10/sup 0/C/km in South Africa to 150/sup 0/C/km in Italy. In the Netherlands it ranges from 20-50/sup 0/C/km. The various types of geothermal systems (steam, water, geopressured) are reviewed, and presently operating geothermal power plants are described. A comparison is made of the costs of various energy sources, and 27 references are provided.

  7. An assessment of wind energy potential as a power generation source in the capital of Iran, Tehran

    International Nuclear Information System (INIS)

    Keyhani, A.; Ghasemi-Varnamkhasti, M.; Khanali, M.; Abbaszadeh, R.

    2010-01-01

    In this paper, the statistical data of eleven years' wind speed measurements of the capital of Iran, Tehran, are used to find out the wind energy potential. Also, other wind characteristics with the help of two methods of meteorological and Weibull are assessed to evaluate of which at a height of 10 m above ground level and in open area. For this purpose, a long term data source, consisting of eleven years (1995-2005) of three-hour period measured mean wind data, was adopted and analyzed. Based on these data, it was indicated that the numerical values of the shape and scale parameters for Tehran varied over a wide range. The yearly values of k (dimensionless Weibull shape parameter), ranged from 1.91 to 2.26 with a mean value of 2.02, while those of c (Weibull scale parameter), were in the range of 4.38-5.1 with a mean value of 4.81. Corresponding values for monthly data of whole year were found to be within the range 1.72-2.68 and 4.09-5.67, respectively related to k and c Weibull parameters. Results revealed that the highest and the lowest wind power potential are in April and August, respectively. It was also concluded that the site studied is not suitable for electric wind application in a large-scale. It was found that the wind potential of the region can be adequate for non-grid connected electrical and mechanical applications, such as wind generators for local consumption, battery charging, and water pumping. In wind direction evaluation, it was found that the most probable wind direction for the eleven-year period is on 180 deg, i.e. west winds. (author)

  8. RENEWABLE ENERGY SOURCES AND THEIR POTENTIAL ROLE IN MITIGATION OF CLIMATE CHANGES AND AS A SUSTAINABLE DEVELOPMENT DRIVER IN BOSNIA AND HERZEGOVINA

    Directory of Open Access Journals (Sweden)

    Petar M Gvero

    2010-01-01

    Full Text Available Bosnia and Herzegovina have significant physical potential regarding to renewable energy sources. Hydro, biomass, geothermal, wind, and solar potential can play important role in the whole state economy. Bosnia and Herzegovina is Non-Annex I country according to UNFCCC and according to that it is obligated to participate in the global efforts in order to reduce green house gases emission. This paper gives some analysis of the physical, technological, economic, and market potential of renewable energy sources in Bosnia and Herzegovina and their potential role in mitigation of climate changes. Paper also gives the analysis of the potential connections between renewable energy sources and sustainable development of the economy, taking in to consideration specific political structure of the state. Bosnia and Herzegovina is consisting from two entities: Republic of Srpska and Federation of Bosnia and Herzegovina, and Brcko District; energy sector and climate changes mitigation measures are under their jurisdiction. According to that some of this paper results can be useful for the improvement of entity and state strategies with the final aim to place renewable energy sources on the right position, as some of the major economy drivers, not only in Bosnia and Herzegovina, but in whole region.

  9. Alternative energy sources: ECC report

    International Nuclear Information System (INIS)

    Renwick, Lord; Stoddart, Lord; Lauderdale, Earl of

    1988-01-01

    The European Communities Committee Report on Alternative Energy Resources was debated. Six alternative energy sources were first described - wind power, biomass, geothermal energy, solar energy, wave and tidal power. Combined heat and power was also mentioned. General questions concerning alternative energy sources were then considered. In particular, their potential contribution to the energy demand was assessed. The evidence presented to the committee suggested that they would only make a small contribution in the near future and could not be considered as a substitute for coal and nuclear power. However, by the year 2030 it would be possible for 18% of the national electricity demand to be met by alternative energy sources. The economic and environmental issues were assessed briefly and the report's conclusions were summarized. An independent review of wave power was called for in view of conflicting evidence presented to the committee. The debate which followed lasted three hours and is reported verbatim. Other issues raised included energy conservation, public attitudes to energy, the environment, government and private funding of research and development of nuclear power, including fusion. (U.K.)

  10. A review of the potential of renewable energy sources for the State of Jammu and Kashmir (India)

    International Nuclear Information System (INIS)

    Nisar, Arsalan; Rodriguez Monroy, Carlos

    2011-01-01

    The future economic development trajectory for India is likely to result in rapid and accelerated growth in energy demand, with expected shortages. Many of its current policies and strategies are aimed at the improvement and possible maximization of energy production from the renewable sector. It is also clear that while energy-conservation and energy-efficiency can make an important contribution in the national energy strategy, renewable energies will be essential to the solution and are likely to play an increasingly important role for the growth of grid power, providing energy access, reducing consumption of fossil fuels, and helping India pursue its low carbon progressive pathway. However, most of the states in India, like the northernmost State of Jammu and Kashmir (J and K), have experienced an energy crisis over a sustained period of time. As India intends to be one of the emerging powers of the 21st century, it has to embark upon with these pressing issues in a more sustainable manner and accordingly initiate various renewable energy projects within these states. This paper will provide a broad-spectrum view about the energy situation within J and K and will highlight the current policies along with future strategies for the optimal utilization of renewable energy resources. - Highlights: → To present an overview of the current energy situation in the State of Jammu and Kashmir, India. → To analyze the potential of the various renewable energy resources available in the State given the existing constraints. → To state the challenges of the administration to incentivize the participation of private initiative in energy development.

  11. A Comprehensive Tool for Exploring the Availability, Scalability and Growth Potential of Conventional and Renewable Energy Sources and Technologies

    Science.gov (United States)

    Jack-Scott, E.; Arnott, J. C.; Katzenberger, J.; Davis, S. J.; Delman, E.

    2015-12-01

    It has been a generational challenge to simultaneously meet the world's energy requirements, while remaining within the bounds of acceptable cost and environmental impact. To this end, substantial research has explored various energy futures on a global scale, leaving decision-makers and the public overwhelmed by information on energy options. In response, this interactive energy table was developed as a comprehensive resource through which users can explore the availability, scalability, and growth potentials of all energy technologies currently in use or development. Extensive research from peer-reviewed papers and reports was compiled and summarized, detailing technology costs, technical considerations, imminent breakthroughs, and obstacles to integration, as well as political, social, and environmental considerations. Energy technologies fall within categories of coal, oil, natural gas, nuclear, solar, wind, hydropower, ocean, geothermal and biomass. In addition to 360 expandable cells of cited data, the interactive table also features educational windows with background information on each energy technology. The table seeks not to advocate for specific energy futures, but to succinctly and accurately centralize peer-reviewed research and information in an interactive, accessible resource. With this tool, decision-makers, researchers and the public alike can explore various combinations of energy technologies and their quantitative and qualitative attributes that can satisfy the world's total primary energy supply (TPES) while making progress towards a near zero carbon future.

  12. BASIC APPROACHES TO THE RESEARCH OF RENEWABLE SOURCES OF ENERGY AS THE ENERGY POTENTIAL OF TERRITORIES AND BUILT-UP AREAS

    Directory of Open Access Journals (Sweden)

    Poddaeva Olga Igorevna

    2012-10-01

    renewable sources of energy include water, sun, and wind. Wind power engineering best fits the conditions of the Russian territories. However, experts believe that the wind power is to be backed by other sources due to the irregularity of its generation. This approach to the power generation and planning of territories coupled with the integration of renewable energy technologies into architectural designs of buildings and structures will make it possible to identify the prerequisites for the energy generation specialization of the subjects of the Russian Federation on the basis of their climatic conditions and urban development patterns. Private investments into renewable sources of energy will assure sustainable population settlement patterns and optimal energy generation and consumption.

  13. Energy policy and renewable energy sources

    International Nuclear Information System (INIS)

    2000-01-01

    According to Shell, by 2050, renewable energy sources may supply over 50% of the energy, worldwide. This concentration on renewable energy sources is primarily due to the intensified environmental demands. The UN climate panel has estimated that to avoid irreversible climate change it is necessary to reduce the global emissions of CO2 by 50 to 60% during the next 100 years. Biomass energy includes a number of biological raw materials from forestry and agriculture. The forests provide wood, wood chips, bark, branches and treetops, and from agriculture, straw. Although biomass energy is not entirely pollution-free, it is renewable and CO2-neutral as long as growth and consumption are in balance. In Norway, the total annual growth of available biomass corresponds to about 80 TWh. The technical potential is estimated to 30 TWh per year, allowing for operationally reasonable ways of producing the biomass. However, there is competition for the biomass since it is used by the wood processing industry. The use of biomass and waste for energy generation varies considerably among the Nordic countries. In Denmark, agriculture dominates and large quantities of straw are burned in cogeneration plants. Sweden and Finland have well-developed forest industries, and the wood processing industry in these countries uses much more biomass fuel (bark, fibre mud, black liquor) than the Norwegian wood processing industry. In Norway, more energy can be obtained by retrofitting old hydroelectric plants such as by installing a flexible liner in existing tunnels. This improves energy flexibility and increases energy production without negative environmental consequences. The potential for wind power is larger in Norway than in Denmark and Germany. The cost of wind power has fallen considerably as a consequence of the technological development of the sector

  14. Improved modelling of thermal energy savings potential in the existing residential stock using a newly available data source

    International Nuclear Information System (INIS)

    Dineen, D.; Rogan, F.; Ó Gallachóir, B.P.

    2015-01-01

    This paper presents a novel bottom up approach to modelling the energy savings potential of energy efficiency improvement measures to be applied through retrofit of the existing dwelling stock. It takes advantage of a newly available, rich dataset on the construction characteristics of the 2011 housing stock in Ireland. The methodological innovation centres on the use of wall construction type in the modelling and analysis. While Ireland is the focus, this approach is applicable to any EU member state for which data on dwelling characteristics exists from surveys carried as part of Energy Performance Certificate calculations. The model is calibrated to the national energy balance for 2011 by varying the internal temperature assumptions. Sensitivity analysis is performed on the effects of internal temperature and rebound. The paper also highlights some limitations posed by data availability on the accuracy and sophistication of models that can currently be developed, specifically in the Irish case. - Highlights: • Archetype model of energy savings potential from retrofit of existing dwelling stock. • Takes advantage of rich dataset on the construction characteristics of the Irish housing stock. • Innovative use of wall construction types in archetype definition possible due to improved data. • Results calibrated to top down estimate of heating demand by adjusting internal temperature. • Highlights limitations on the accuracy and sophistication of models posed by data availability.

  15. Patents Consulting Use Potential for Determining the State of the Art. Analysis in Microgrids with Renewable Energy Sources

    Directory of Open Access Journals (Sweden)

    Tomás Valencia-Zuluaga

    2017-06-01

    Full Text Available In this document, we aim to show how important patent research is for technological and scientific development. We expose some of the main characteristics of patents, as well as the advantages that these documents have over the most commonly used sources of information in research, such as scientific and professional papers. We also cover the International Patent Classification, which should be known if one hopes to extract any valuable information from patents. Finally, we put everything into practice with a case of study regarding microgrids in power systems, with high penetration of renewable energy sources. With this study case, we invite the reader to include patent consulting into his or her literature research habits.

  16. High energy neutrinos: sources and fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Stanev, Todor [Bartol Research Institute, Department of Physics and Astronomy, University of Delaware, Newark DE 19716 (United States)

    2006-05-15

    We discuss briefly the potential sources of high energy astrophysical neutrinos and show estimates of the neutrino fluxes that they can produce. A special attention is paid to the connection between the highest energy cosmic rays and astrophysical neutrinos.

  17. Energy efficiency - Germany's most important energy source with an elevated potential of marketing. Lectrures; Energieeffizienz - Deutschlands wichtigste Energiequelle mit hohem Marketingpotenzial. Vortraege

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    At the ICG Conference of the Innovation Congress GmbH (Cologne, Federal Republic of Germany), held at the Hotel Centrovital, Berlin (Federal Republic of Germany) on 31 May and 1 June 2007, the following lectures were held: (1) Energy efficiency at the European level (DG TREN, Brussels, Belgium); (2) Energy efficiency as a ''highlight'' of the German EU and G8 presidency - The action plans ''Energy efficiency'' from Brussels and Berlin (F. Schafhausen); (3) Potentials of energy efficiency - Industrial customers are targeted (H. Bradtke); (4) Energy Agencies as a partner for projects of energy efficiency (N. Huettenhoelscher); (5) Energy efficiency in practice - concepts and campaigns (S. Kohler); (6) Failure of the politics in the energy efficiency - the consumer is footing the bill. (H. Krawinkel); (7) The capital goods industry as an offerer of energy efficient technology (M.F. Zelinger); (8) Customer orientation and energy efficiency in focus (J. Hogrefe); (9) Energy efficiency measures as a new area of business for public utilities (D. Attig); (10) Energy efficiency in household, commerce, and industry - chances for market partnerships (H. Meixner); (11) Energy efficiency from the view of the heating industry (H. Schulte); (12) JI and CDM - Approaches for the marketing of energy efficient solutions (M.F. Zelinger).

  18. Very high-energy {gamma}-ray observations of the Crab nebula and other potential sources with the GRAAL experiment

    Energy Technology Data Exchange (ETDEWEB)

    Arqueros, F.A.; Ballestrin, J.; Berenguel, M.; Borque, D.M.; Camacho, E.F.; Diaz, M.; Enriquez, R.; Gebauer, H.J.; Plaga, R.

    2001-07-01

    The Gamma Ray Astronomy at Almeria (GRAAL) experiment uses 63 heliostat-mirrors with a total mirror area of {approx}2500 m''2 from the CESA-1 field to collect Cherenkov light from air showers. The detector is located in a central solar tower and detects photon-induced showers with an energy threshold of 250{+-}110 GeV and an asymptotic effective detection area of about 15000 m''2. Data sets taken in the period September 1999-September 2000 in the direction of the Crab pulsar and the active galaxy 3C 454.3 were analysed for high energy {gamma}-ray emission. Evidence for {gamma}-ray flux from the Crab pulsar with an integral flux of 2.2{+-}0.4 (stat) ''1.9{sub 1}.5 (syst x 10''-9 cm''-2 s''-1) above threshold and a significance of 4.5 {sigma} in a total (usable) observing time of 7 hours and 10 minutes on source was found. No evidence for emission from the other sources was seen. The effect of the field-of-view restricted to the central part of a detected air shower on the lateral distribution and iming properties of Cherenkov light and their effect on an efficient {gamma}-hadron separation are discussed. (Author) 6 refs.

  19. Wind energy potential in Bulgaria

    International Nuclear Information System (INIS)

    Shtrakov, Stanko Vl.

    2009-01-01

    In this study, wind characteristic and wind energy potential in Bulgaria were analyzed using the wind speed data. The wind energy potential at different sites in Bulgaria has been investigated by compiling data from different sources and analyzing it using a software tool. The wind speed distribution curves were obtained by using the Weibull and Rayleigh probability density functions. The results relating to wind energy potential are given in terms of the monthly average wind speed, wind speed probability density function (PDF), wind speed cumulative density function (CDF), and wind speed duration curve. A technical and economic assessment has been made of electricity generation from three wind turbines having capacity of (60, 200, and 500 kW). The yearly energy output capacity factor and the electrical energy cost of kWh produced by the three different turbines were calculated

  20. Hydrocarbons: source of energy

    International Nuclear Information System (INIS)

    Imarisio, G.; Frias, M.; Bemtgen, J.M.

    1989-01-01

    Hydrocarbons are at present the single most important source of energy, since they are the most versatile and widely used. It is expected that their importance will extend well into the next century and therefore it is essential to provide for all those improvements which will extend their availability and usefulness. The sub-programme ''Optimization of the production and utilization of hydrocarbons'' (within the Non-Nuclear Energy R and D Programme of the European Communities) is pursuing a number of R and D topics aimed at the above-mentioned results. It is implemented by means of shared-cost R and D contracts. At this first Seminar held in Lyon (France) from 21-23 September, 1988, all contractors of the sub-programme presented the state of progress of their R and D projects. These proceedings comprise all the papers presented at the Seminar. The section on oilfield exploration includes a report of work on the interpretation of nuclear logs by means of mathematical models. (author)

  1. DESIGN OF ALTERNATIVE ENERGY SOURCES

    Directory of Open Access Journals (Sweden)

    Popa Stefania

    2013-11-01

    Full Text Available By energy sources we understand technologies and materials used to obtain various forms of energy necessary for the development of society. These sources must be in adequate quantities and be conveniently exploited in terms of technical, economic and sustainable perspective. Alternative energy uses the inherent power of natural sources like wind, tides, the sun. Alternative energy is a term used for some energy sources and energy storage technologies. Generally it indicates energies that are nontraditional and have low impact to the environment. The alternative energy term is used in contrast with the term fossil fuel according to some sources, while other sources use it with the meaning of renewable energy purposes.

  2. Poultry litter incineration as a source of energy: reviewing the potential for impacts on environmental health and justice.

    Science.gov (United States)

    Stingone, Jeanette A; Wing, Steve

    2011-01-01

    Legislation in North Carolina has mandated obtaining renewable energy from the incineration of poultry waste, resulting in proposals for three poultry-litter-fueled power plants statewide. This article summarizes environmental health and environmental justice issues associated with incineration of poultry waste for the generation of electric power. Emissions from poultry waste incineration include particulate matter, dioxins, arsenic, bioaerosols and other toxins; various components are associated with cardiovascular disease, cancer, respiratory illness, and other diseases. Industrial farm animal production tends to be concentrated in low-income, rural communities, where residents may be more vulnerable to air pollutants due to pre-existing diseases, other exposures and stressors, and poor access to medical services. These communities lack the political clout to prevent citing of polluting facilities or to pressure industry and government to follow and enforce regulations. Policies intended to reduce reliance on fossil fuels have the potential to increase environmental injustices and threats to environmental health.

  3. Energy sources and power plants

    International Nuclear Information System (INIS)

    Schulz, Detlef; Schulz, Karen

    2013-01-01

    Energy is obtained from various energy sources (coal, petroleum, natural gas, nuclear fuels, wind energy, solar energy, hydro power, biomass, geothermal energy). These differ in each case with respect to their availability, methods of their production and the required power plant technologies. As technologies of the future fuel cells and nuclear fusion are traded. [de

  4. Renewable Energy Sources Brno '93

    International Nuclear Information System (INIS)

    1993-01-01

    The proceedings contain 27 contributions dealing with unconventional energy sources. The numbers of contributions in the individual classes of topics indicate that interest has mostly concentrated on the direct utilization of solar energy, whereas wind energy, hydroelectric energy and geothermal energy receive less attention and the use of biomass is at the margin of interest. (J.B.)

  5. Renewable energy sources. Erneuerbare Energien

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    To judge future trends in work on the exploitation of renewable energy sources for overall energy supply, it is necessary to know the following: the rules that nature abides by, the principles of technical exploitation of these energies, and the basic data for the current state of development. The above information is compiled in this publication for those renewable energy sources on which topical discussion centres: solar radiation and wind. For the remaining renowable energy sources (e.g. biomass, tidal power, geothermal energy), some examples of use are mentioned and advanced literature is indicated. (orig./HSCH).

  6. Alternate energy sources

    International Nuclear Information System (INIS)

    Andrei, L.

    1996-01-01

    The paper is a pleading in favor of hydroelectric power which in Romania originated more than 100 y ago. The hydroelectric potential of this country amounts to about 40 TWh / year. The hydroelectric yield is currently 15.5 TWh / year, 11.5 TWh / year of which being supplied by the Danube Power Plants. The hydroelectric power has a number of advantages: it is renewable, can be stocked and distributed according to the daily, weekly or seasonal energy demand, the energetic output is 82-89 %, if the project is carefully worked out the hydroelectric system has a small environmental impact, the service life can reach over 80 years, while the maintaining and operation costs are low. Some drawbacks are listed: the problems related to the population relocation, the environmental effects, especially the forest clearing, salt enrichment of affected soils. Arguments are presented from the economic point of view, backed up by ecological and technological advantages in favor of developing the micro hydroelectric power facilities

  7. Bio-methanol potential in Indonesia: Forest biomass as a source of bio-energy that reduces carbon emissions

    Energy Technology Data Exchange (ETDEWEB)

    Suntana, Asep S. [Forest Systems and Bio-Energy Program, College of Forest Resources, University of Washington, Box 352100, Seattle, WA 98195-2100 (United States); Indonesian Ecolabeling Institute/Lembaga Ekolabel Indonesia (LEI), Taman Bogor Baru Blok BIV No. 12, Bogor 16152 (Indonesia); Vogt, Kristiina A. [Forest Systems and Bio-Energy Program, College of Forest Resources, University of Washington, Box 352100, Seattle, WA 98195-2100 (United States); Interforest LLC, Holderness, NH 03245 (United States); Renewol LLC, 63260 Overtree Road, Bend, OR 97701 (United States); Turnblom, Eric C. [Forest Biometrics Program, College of Forest Resources, University of Washington, Box 352100, WA 98195-2100 (United States); Upadhye, Ravi [ARU Associates, Pleasanton, CA 94566 (United States)

    2009-11-15

    Since Indonesia has significant land area in different forest types that could be used to produce biofuels, the potential to sustainably collect and convert forest materials to methanol for use in energy production was examined. Using the annually available aboveground forest biomass, from 40 to 168 billion l of bio-methanol could be produced for use as a transportation fuel and/or to supply fuel cells to produce electricity. When a lower forest biomass availability estimate was used to determine how much electricity (methanol fed into fuel cells) could be produced in Indonesia, more than 10 million households or about 12,000 villages (20% of the total rural villages in Indonesia) would be supplied annually with electricity. Collecting forest biomass at the higher end of the estimated available biomass and converting it to methanol to supply fuel cells could provide electricity to more than 42 million households annually. This would be approximately 52,000 villages, or 86% of the total rural villages in Indonesian. When electricity is produced with bio-methanol/fuel cells, it could potentially supply from half to all of the current electricity consumed in Indonesia. By generating electricity using bio-methanol/fuel cells instead of from fossil fuels, from 9 to 38% of the total carbon currently emitted each year in Indonesia could be avoided. In contrast, substituting this same amount of bio-methanol for gasoline could provide all of the annual gasoline needs of Indonesia and contribute towards reducing their carbon emissions by about 8-35%. (author)

  8. Renewable energy sources: Energy Efficiency Agency

    International Nuclear Information System (INIS)

    Bulgarensky, Mihael

    2004-01-01

    The paper presents the activities of the Energy Efficiency Agency, its main functions, as well as the new legislation stimulating the use of RES, stipulated in the new Energy Law of Bulgaria. The second part of the paper describes the potential of renewable energy in i.e. wind energy; solar energy; biomass energy; hydro energy; geothermal energy; draft of a National Program on RES 2005-2015. The third part describes the main issues of the new ENERGY EFFICIENCY LAW and the established Energy efficiency fund. (Author)

  9. The potential of renewable energy

    International Nuclear Information System (INIS)

    Piot, M.

    2007-01-01

    This article presents and comments on definitions of the potential of renewable forms of energy and, in a second part, takes a look at the potentials mentioned in the energy perspectives published by the Swiss Federal Office of Energy (SFOE). The following potentials are looked at: technical potential, ecological potential, economic potential, exploitable and expected potentials, technical, economic and ecological expansion potentials, potential of particular technologies in Switzerland, exploitable and expected expansion potential. Four scenarios for expansion potential are briefly described

  10. Urges use of renewable energy sources to generate electric power

    International Nuclear Information System (INIS)

    Santizo, Rodolfo

    2001-01-01

    The article discusses the following issues of generation of electric power through renewable energy sources like geothermal and wind energy. The author that is the actual Deputy Minister of Energy and Mines explains the needs of Guatemala in the sector of energy in promoting the renewable energy sources such as wind and geothermal energy because Guatemala has a potential generation by this sources

  11. Promotion of renewable energy sources in Romania

    International Nuclear Information System (INIS)

    Turcu, Ioan

    2005-01-01

    Romania's climate and geographical conditions offer the following types of renewable energy sources: solar energy, wind energy, hydro energy, biomass and geothermal energy. These are here considered within the country's energy balance on medium and long term. Romania has a significant renewable energy potential. Unfortunately at present this potential is not used but to a small extent, except for hydraulic energy and biomass (especially as firewood), the latter being used in the great majority of cases in low performance installations. Government Decision No. 443/2003 on the promotion of electric energy generation from RES and Government Decision No. 1535/2003 regarding the Strategy of RES, establish the legal framework necessary for the promotion of RES in Romania. Consequently, an Action Plan defining actions, measures, responsibilities and financial sources has been settled. (author)

  12. Unused energy sources inducing minimal pollution

    Energy Technology Data Exchange (ETDEWEB)

    Voss, A [Inst. fur Reaktorentwicklung, Kernforschungsanlage Julich GmbH, German Federal Republic

    1974-01-01

    The contribution of hydroelectricity to the growing worldwide energy demand is not expected to exceed 6%. As the largest amount of hydroelectric potential is located in developing nations, it will find its greatest development outside the currently industrialized sphere. The potential of 60 GW ascribed to tidal and geothermal energy is a negligible quantity. Solar energy represents an essentially inexhaustible source, but technological problems will preclude any major contribution from it during this century. The environmental problems caused by these 'new' energy sources are different from those engendered by fossil and nuclear power plants, but they are not negligible. It is irresponsible and misleading to describe them as pollution-free.

  13. Geologic sources of energy

    Science.gov (United States)

    Bundtzen, Thomas K.; Nokleberg, Warren J.; Bundtzen, Thomas K.; Nokleberg, Warren J.; Price, Raymond A.; Scholl, David W.; Stone, David B.

    2017-01-01

    This chapter describes the exploration, development, and geologic setting of petroleum resources (including tar sands), coal resources (including coalbed methane), and geothermal energy resources of the Northern Cordillera.For petroleum resources, the chapter describes: (1) the history of petroleum development and production, first for Alaska and then for the Canadian Cordillera; and (2) generalized basin analysis geologic settings for the six major petroleum basins that are illustrated in summary maps and cross sections. Subsequent sections of the chapter describe the nature and geologic setting of tar sand resources, geothermal energy resources, and coal resources. The area distribution of the energy resources of the region are depicted in the Energy Resources Map that has multiple layers that can be displayed in various arrangements. Employing this map in a separate window while reading the text will be greatly beneficial. Many geographic names are employed in the descriptions throughout this chapter. While reading this chapter, viewing the Geographic Regions Layer of the Energy Resources Map, as needed, will be valuable.

  14. Potential for, and costs of, reducing greenhouse gas emissions from non-energy sources in South Africa

    CSIR Research Space (South Africa)

    Taviv, R

    2008-11-01

    Full Text Available The South African Government commissioned a detailed study entitled Long-Term Mitigation Scenarios (LTMS). This study defined and quantified the mitigation options and associated costs available under several energy and economic futures. Following a...

  15. Non conventional energy sources and energy conservation

    International Nuclear Information System (INIS)

    Bueno M, F.

    1995-01-01

    Geographically speaking, Mexico is in an enviable position. Sun, water, biomass and geothermal fields main non conventional energy sources with commercial applications, are presents and in some cases plentiful in national territory. Moreover the coastal tidal power which is in research stage in several countries. Non conventional energy sources are an alternative which allow us to reduce the consumption of hydrocarbons or any other type of primary energetic, are not by oneself choices for the energy conservation, but energy replacements. At the beginning of this year, CONAE created the Direction of Non conventional Energy Sources, which main objective is to promote and impulse programs inclined towards the application of systems based in renewable energy sources. The research centers represent a technological and consultative support for the CONAE. They have an infrastructure developed along several years of continuous work. The non conventional energy sources will be a reality at the same time that their cost be equal or lower than the cost for the traditional generating systems. CONAE (National Commission for Energy Conservation). (Author)

  16. Alternatives sources of energy in the Czech energy mix

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Lisy; Marek, Balas; Zdenek, Skala

    2010-09-15

    The paper features a basic outline of the situation in the energy sector of the Czech Republic. It brings information about the current state of the country's energy mix and indicative targets of the State Energy Policy. Though coal and nuclear energy will remain the country's energy staples, great stress is also put on the growth of share of renewable and alternative energy sources. Out of these, the greatest potential in the Czech Republic is that of biomass and waste. To make the use of these sources cost-effective, it is necessary to put stress on heat and power cogeneration.

  17. Potential of municipal solid waste (MSW) as a source of energy in Sao Paulo: its impact on CO2 balance

    International Nuclear Information System (INIS)

    Leao, A.L.; Ing Hwie Tan

    1998-01-01

    Energy generation is needed in Sao Paulo and MSW represents a promising alternative, although it is more expensive than hydroelectric power. About 14 900 t/day of MSW is generated, of which 8433 t/day is domestic and commercial MSW. From this amount, 1800 t will be destined to generate 30 MW of power. The eco-balance of CO 2 has been considered for incineration and recycling. The recycling program of plastics, metals, paper and glass would represent a significant reduction in energy and CO 2 emission. The total CO 2 released is 3.34 x 10 5 t/yr without recycling, and is 1.25 x 10 5 t/yr with a recycling program. Most of the CO 2 comes from plastics and paper production. Economic aspects could probably favor incineration with energy production as the best option. (author)

  18. Electrical energy supply with permanent energy sources

    Energy Technology Data Exchange (ETDEWEB)

    1981-05-01

    It can be shown that there are no chances for solar and wind power plants in Northern Europe when estimating the investment costs and the floor space required. However, the decentralized utilization of the plants which is likely to become very interesting in a few years shows other results. As a complete annual balance by traditional stores would cause a considerably uneconomic increase of the investment costs supplementary energy sources are inevitable. The author points out how the various primary energy sources in question can be utilized and combined with each other. He describes the converters for the permanent (regenerative) energy sources, the available electrochemical stores and their application as well as the fundamental structures of the energy supply systems. Finally some advice is given regarding the recycling of energy and the operation by the consumers.

  19. Mean energy polarized neutron source

    International Nuclear Information System (INIS)

    Aleshin, V.A.; Zaika, N.I.; Kolotyj, V.V.; Prokopenko, V.S.; Semenov, V.S.

    1988-01-01

    Physical bases and realization scheme of a pulsed source of polarized neutrons with the energy of up to 75 MeV are described. The source comprises polarized deuteron source, transport line, low-energy ion and axial injector to the accelerator, U-240 isochronous cyclotron, targets for polarized neutron production, accelerated deuteron transport line and flight bases. The pulsed source of fast neutrons with the energy of up to 75 MeV can provide for highly polarized neutron beams with the intensity by 2-3 orders higher than in the most perfect source of this range which allows one to perform various experiments with high efficiency and energy resolution. 9 refs.; 1 fig

  20. Rice straw as a renewable energy source in India, Thailand, and the Philippines: Overall potential and limitations for energy contribution and greenhouse gas mitigation

    International Nuclear Information System (INIS)

    Gadde, Butchaiah; Menke, Christoph; Wassmann, Reiner

    2009-01-01

    abstract: Rice is a widely grown crop in the South and South-East Asia that leaves substantial quantity of straw in the field. The aim of this paper is to assess the quantity of rice straw produced, estimate Greenhouse Gas (GHG) emissions based on its current uses, and assess its possible energy potential and related GHG emissions mitigation potential. Updated statistics on rough rice production are used in this study in combination with the literature values on Straw-to-Grain Ratio (SGR) to quantify the amount of rice straw produced in the three countries of focus. It is estimated that 97.19, 21.86, and 10.68 Mt of rice straw residue are produced in India, Thailand, and the Philippines, respectively. In India, 23% of rice straw residue produced is surplus and is either left in the field as uncollected or to a large extent open-field burnt. About 48% of this residue produced is subjected to open-field burning in Thailand, and in the Philippines it is 95%. The GHG emissions contribution through open-field burning of rice straw in India, Thailand, and the Philippines are 0.05%, 0.18%, and 0.56%, and the mitigated GHG emissions when generated electricity is used would be 0.75%, 1.81%, and 4.31%, respectively, when compared to the total country GHG emissions.

  1. Geothermal Energy: Tapping the Potential

    Science.gov (United States)

    Johnson, Bill

    2008-01-01

    Ground source geothermal energy enables one to tap into the earth's stored renewable energy for heating and cooling facilities. Proper application of ground-source geothermal technology can have a dramatic impact on the efficiency and financial performance of building energy utilization (30%+). At the same time, using this alternative energy…

  2. The potential of renewable energy

    Energy Technology Data Exchange (ETDEWEB)

    1990-03-01

    On June 27 and 28, 1989, the US Department of Energy (DOE) national laboratories were convened to discuss plans for the development of a National Energy Strategy (NES) and, in particular, the analytic needs in support of NES that could be addressed by the laboratories. As a result of that meeting, interlaboratory teams were formed to produce analytic white papers on key topics, and a lead laboratory was designated for each core laboratory team. The broad-ranging renewables assignment is summarized by the following issue statement from the Office of Policy, Planning and Analysis: to what extent can renewable energy technologies contribute to diversifying sources of energy supply What are the major barriers to greater renewable energy use and what is the potential timing of widespread commercialization for various categories of applications This report presents the results of the intensive activity initiated by the June 1989 meeting to produce a white paper on renewable energy. Scores of scientists, analysts, and engineers in the five core laboratories gave generously of their time over the past eight months to produce this document. Their generous, constructive efforts are hereby gratefully acknowledged. 126 refs., 44 figs., 32 tabs.

  3. Geothermal Energy Potential in Western United States

    Science.gov (United States)

    Pryde, Philip R.

    1977-01-01

    Reviews types of geothermal energy sources in the western states, including hot brine systems and dry steam systems. Conversion to electrical energy is a major potential use of geothermal energy, although it creates environmental disruptions such as noise, corrosion, and scaling of equipment. (AV)

  4. Energy potential of agricultural crops in Kosovo

    International Nuclear Information System (INIS)

    Sahiti, Naser; Sfishta, Avni; Gramatikov, Plamen

    2015-01-01

    Primary energy mix in Kosovo with 98 % consisting of lignite and only 2 % of water is far from portfolio of primary energy sources which could contribute to a sustainable and environmental friendly energy supply of the country. In order to improve the situation, government is supporting activities in favor of upgrading of electricity production capacities based on Renewable Energy Sources. Corresponding action plans and feed in tariffs are already in place. However, prior to any investment, one needs specific results on available potential. Current study provides results of the analysis of Kosovo potential for energy production by using of agricultural crops. Study is based on national statistics on available agricultural crops in Kosovo and provides results on biomass potential of crops, corresponding energy potential and an assessment of financial cost of energy produced.

  5. Worldwide potential of wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Flavin, C

    1982-01-01

    A well-documented discussion is presented dealing with the worldwide potential of wind energy as a source of electrical and mechanical power. It is pointed out that 2% of the solar insolation is converted to wind kinetic energy; it is constantly renewed and nondepletable. Efficiency of windmills are discussed (20 to 40%) and payback periods of less than 5 years are cited. Effects of wind velocity and site location are described. Wind pumps are reviewed and the need for wind pumps, particularly in the developing countries is stressed. The generation of electricity by windmills using small turbines is reviewed and appears promising in areas with wind velocities greater than 12 mi/hr. The development of large windmills and groups of windmills (windfarms) for large scale electrical power is discussed, illustrated, and reviewed (offshore sites included). Environmental and safety problems are considered as well as the role of electrical utilities, government support and research activities. It is concluded that the potential contribution of wind energy is immense and that mechanical windmills may become one of the most important renewable technologies. Electrical generating potential is estimated at 20 to 30% of electrical needs. International programs are discussed briefly. 57 references. (MJJ)

  6. Wind energy potential in India

    International Nuclear Information System (INIS)

    Rangarajan, S.

    1995-01-01

    Though located in the tropics, India is endowed with substantial wind resources because of its unique geographical location which gets fully exposed to both the south-west and north-east monsoon winds. The westerly winds of the south-west monsoons provide bulk of the wind potential. Areas with mean annual wind speed exceeding 18 k mph and areas with mean annual power density greater than 140 W/m 2 have been identified using the wind data collected by the wind monitoring project funded by the Ministry of Non-conventional Energy Sources (MNES). Seasonal variations in wind speed at selected locations are discussed as also the frequency distribution of hourly wind speed. Annual capacity factors for 250 kW wind electric generators have been calculated for several typical locations. A good linear correlation has been found between mean annual wind speed and mean annual capacity factor. A method is described for assessing wind potential over an extended region where adequate data is available. It is shown that the combined wind energy potential over five selected areas of limited extent in Gujarat, Andhra Pradesh and Tamil Nadu alone amounts to 22,000 MW under the assumption of 20 per cent land availability for installing wind farms. For a higher percentage of land availability, the potential will be correspondingly higher. (author). 12 refs., 6 figs., 3 tabs

  7. Renewable energy sources and ecology

    International Nuclear Information System (INIS)

    Panajotova, Yu.

    1998-01-01

    The share of renewable energy sources (RES) in the world energy balance is estimated from 1-2 to 10% of the total primary energy sources consumption. In EU since 1990 until now the power energy production from these sources is growing continuously by over 3% annually. The features of the updated Environmental Strategy for Bulgaria (ESB) elaborated with the World Bank in 1994 are: increasing the energy efficiency; utilising RES; granting preference to the regional energy concept and establishing regional energy centres based on the EU experience. In ESB the basic priorities are linked with disease factors - pollutants as lead in the air and soils (from leaded petrol, resp. from metallurgical enterprises), dust particles in the air (from household heating, industry and thermo-electric power stations) and sulfur dioxide and other gases (also from energy sector and industry). There is consistent policy for harmonization of the Bulgarian standards with those of the WHO. Among the implemented projects preference is granting to ones concerning new energy saving technologies and RES. Bulgaria got an environmental protection law harmonized with the international legislation and adapted to the economic situation inflicted by the market economy transition. The development of RES needs high investment cost and has low efficiency factor compared to the classical methods of energy production. Implementation of Environmental Action Programme (EAP) in Bulgaria with an international co-operation includes: solid wastes management; water sources management; water pollution problems; soil degradation; transport and environment; nuclear safety and nuclear waste problems and full value utilization of the RES. The Ministry of Environment and local Authorities have to develop their policies and implementing them by a range of activities to identify pollution control strategies, to identify areas where the greatest environmental benefits can be achieved at least cost and to incorporate the

  8. Radio Frequency Energy Harvesting Sources

    Directory of Open Access Journals (Sweden)

    Action NECHIBVUTE

    2017-12-01

    Full Text Available This radio frequency (RF energy harvesting is an emerging technology and research area that promises to produce energy to run low-power wireless devices. The great interest that has recently been paid to RF harvesting is predominantly driven by the great progress in both wireless communication systems and broadcasting technologies that have availed a lot of freely propagating ambient RF energy. The principle aim of an RF energy harvesting system is to convert the received ambient RF energy into usable DC power. This paper presents a state of the art concise review of RF energy harvesting sources for low power applications, and also discusses open research questions and future research directions on ambient RF energy harvesting.

  9. Energy production from renewable energy sources

    International Nuclear Information System (INIS)

    2001-04-01

    This table summarizes the electricity and heat produced in France and in overseas departments from renewable energy sources for 1998 (revised), 1999 (temporary) and 2000 (estimated): hydraulic, wind, solar photovoltaic and thermal, geothermal, solid municipal wastes, wood and wood wastes, biogas, ethanol and ester bio-fuels. (J.S.)

  10. Nuclear power, useful energy source

    International Nuclear Information System (INIS)

    Sorin, F.

    2003-01-01

    This article is a reprint of an article published in a newspaper named 'Liberation Champagne' from October 7, 2003. It makes a brief analysis of the future world energy needs, of the need to fight against the global warming and to find a substitution to fossil fuels on the way to depletion. The mankind has to face a contradictory problem: increasing the energy production and saving the fossil fuels. The only solution is to accelerate the development of nuclear energy and of renewable energy sources. This is also the only way to fulfill the Kyoto protocol commitments. Short paper. (J.S.)

  11. Antimatter as an Energy Source

    International Nuclear Information System (INIS)

    Jackson, Gerald P.

    2009-01-01

    Antiprotons and positrons are constantly generated in space, and periodically manufactured by humans here on Earth. Harvesting of these particles in space and forming stable antimatter atoms and molecules would create a significant energy source for power and propulsion. Though dedicated fabrication of these particles on Earth consumes much more energy than could be liberated upon annihilation, manufactured antimatter represents a high-density energy storage mechanism well suited for spacecraft power and propulsion. In this paper the creation, storage, and utilization of antimatter is introduced. Specific examples of electrical energy generation and deep-space propulsion based on antimatter are also reviewed.

  12. Cyanate as energy source for nitrifiers

    DEFF Research Database (Denmark)

    Palatinszky, Marton; Herbold, Craig; Jehmlich, Nico

    2015-01-01

    recognized energy sources that promote the aerobic growth of ammonia-oxidizing bacteria and archaea. Here we report the aerobic growth of a pure culture of the ammonia-oxidizing thaumarchaeote Nitrososphaera gargensis1 using cyanate as the sole source of energy and reductant; to our knowledge, the first...... organism known to do so. Cyanate, a potentially important source of reduced nitrogen in aquatic and terrestrial ecosystems2, is converted to ammonium and carbon dioxide in Nitrososphaera gargensis by a cyanase enzyme that is induced upon addition of this compound. Within the cyanase gene family...

  13. Geothermal energy, a new energy source

    Energy Technology Data Exchange (ETDEWEB)

    Murr, K

    1960-05-01

    A survey is made of the historical development of geothermal energy, and the geological situations appropriate for its exploitation are described. When prospecting for steam sources, several vertical drillings of about 200 m depth and 60-120 mm diameter are usually sufficient to give adequate knowledge of subsurface conditions. In Iceland, geothermal energy is used primarily for domestic space-heating and climate control in greenhouses, but due to the ready availability of hydroelectricity, geothermal energy is not widely applied for the generation of electricity. In Katanga (Congo), a tin mine is supplied by 220-275 kW power plant which is driven by a nearby hot-water source. Other major developments at the time (1960) included Larderello in Italy and Wairakei in New Zealand. Preliminary results from exploratory boreholes in El Salvador are discussed.

  14. Neutron sources: Present practice and future potential

    International Nuclear Information System (INIS)

    Cierjacks, S.; Smith, A.B.

    1988-01-01

    The present capability and future potential of accelerator-based monoenergetic and white neutron sources are outlined in the context of fundamental and applied neutron-nuclear research. The neutron energy range extends from thermal to 500 MeV, and the time domain from steady-state to pico-second pulsed sources. Accelerator technology is summarized, including the production of intense light-ion, heavy-ion and electron beams. Target capabilities are discussed with attention to neutron-producing efficiency and power-handling capabilities. The status of underlying neutron-producing reactions is summarized. The present and future use of neutron sources in: fundamental neutron-nuclear research, nuclear data acquisition, materials damage studies, engineering tests, and biomedical applications are discussed. Emphasis is given to current status, near-term advances well within current technology, and to long-range projections. 90 refs., 4 figs

  15. Photovoltaic energy potential of Quebec

    International Nuclear Information System (INIS)

    Royer, J.; Thomas, R.

    1993-01-01

    Results are presented from a study concerning the potential of photovoltaic (PV) energy in Quebec to the year 2010. The different PV applications which are or will be economically viable in Quebec for the study period are identified and evaluated in comparison with the conventional energy sources used for these applications. Two penetration scenarios are proposed. One considers little change at the level of policies established for commercialization of PV sources, and the other considers certain measures which accelerate the implementation of PV technology in certain niches. While the off-grid market is already motivated to adopt PV technology for economic reasons, it is forecast that all encouragement from lowering costs would accelerate PV sales, offering a larger purchasing power to all interested parties. Above all, lowered PV costs would open up the network market. Photovoltaics would have access to a much larger market, which will accelerate changes in the very nature of the industry and bring with it new reductions in the costs of producing PV systems. 5 refs., 1 fig., 7 tabs

  16. Biowaste energy potential in Kenya

    NARCIS (Netherlands)

    Nzila, C.; DeWulf, J.; Spanjers, H.; Kiriamiti, H.; Langenhove, H.

    2010-01-01

    Energy affects all aspects of national development. Hence the current global energy crisis demands greater attention to new initiatives on alternative energy sources that are renewable, economically feasible and sustainable. The agriculture-dependent developing countries in Africa can mitigate the

  17. Controlling hazardous energy sources (lockout/tagout)

    Science.gov (United States)

    Dominguez, Manuel B.

    1991-10-01

    The minimum requirements as established by the Occupational Safety and Health Administration (OSHA) standard 29 CFR 1910.147 are discussed for preventing the unexpected operation of equipment or release of energy which could cause injury to personnel, damage to equipment, harm to the environment, or loss or compromise of test data. Safety requirements both for government and contractor personnel are explained for potentially hazardous energy sources during work operations at LeRC (Cleveland and Plum Brook Stations). Basic rules are presented to ensure protection against harmful exposures, and baseline implementation requirements are discussed from which detailed lockout/tagout procedures can be developed for individual equipment items. Examples of energy sources covered by this document include electrical, pneumatic, mechanical, chemical, cryogenic, thermal, spring tension/compression suspended or moving loads, and other potentially hazardous sources. Activities covered by this standard include, but are not limited to, construction, maintenance, installation, calibration, inspection, cleaning, or repair.

  18. Energy from streaming current and potential

    NARCIS (Netherlands)

    Olthuis, Wouter; Schippers, Bob; Eijkel, Jan C.T.; van den Berg, Albert

    2005-01-01

    It is investigated how much energy can be delivered by a streaming current source. A streaming current and subsequent streaming potential originate when double layer charge is transported by hydrodynamic flow. Theory and a network model of such a source is presented and initial experimental results

  19. Using Ground Source Heat Pumps for Renewable Energy

    OpenAIRE

    Xhevat BERISHA

    2017-01-01

    This paper provides background information on the current energy supply, energy demand, and energy sources in Kosovo. Moreover, it presents the country‟s current level of applying alternative energy sources. Additionally, this paper focuses on geothermal energy as a renewable energy resource with the potential to contribute to a sustainable use of resources to meet renewable energy and energy efficiency requirements of the European Union (EU), “EU 20 20 by 2020” policy. Hence, a careful analy...

  20. Canadian wind energy technical and market potential

    International Nuclear Information System (INIS)

    Templin, R.J.; Rangli, R.S.

    1992-01-01

    The current status of wind energy technology in Canada is reviewed, the technical potential of wind energy in Canada is estimated, and the economic market potential is assessed under several scenarios over about the next 25 years. The technical potential is seen to be large, with applications to water pumping on farms, the coupling of wind turbines to diesel-electric systems in remote communities where fuel costs are high, and the supply of electricity to main power grids. The main-grid application has greatest technical potential, but it cannot be economically exploited under the present utility buyback rate structure for intermittent power sources. A change in government policy toward market development of renewable energy sources, such as is already taking place in several European countries, would greatly increase market potential, decrease emissions of CO 2 and SO 2 , and benefit the Canadian wind energy industry. 2 figs., 1 tab

  1. Energy sources for future. Change to a sustainable energy system

    International Nuclear Information System (INIS)

    Morris, C.

    2005-01-01

    Can Germany give up gasoline and power from coal or nuclear energy and how much does it cost? The book does away with all common misunderstandings due to renewable energy sources and describes a compatible model for a sustainable energy mixing in future. Nevertheless fossil fuels are not denounced but seen as a platform for the advanced system. The author explains first why objections to renewable energy sources base on bad information, and pursues quite an other argumentation as such authors emphasizing the potential of these energy sources. Than he shows in detail the possibility of the optimal energy mixing for biomass, solar power, wind power, geothermal energy, hydropower and energy efficiency. The environment will reward us for this and instead buying expensive resources from foreign countries we will create work places at home. The number of big power plants - taking into account safety risks - will decrease and small units of on-site power generation feeded with this renewable sources will play more and more an important role. (GL) [de

  2. Biomass energy potential in Brazil. Country study

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, J [Biomass Users Network-Brazil Regional Office, Sao Paulo (Brazil)

    1995-12-01

    The present paper was prepared as a country study about the biomass potential for energy production in Brazil. Information and analysis of the most relevant biomass energy sources and their potential are presented in six chapters. Ethanol fuel, sugar-cane bagasse, charcoal, vegetable oil, firewood and other biomass-derived fuels are the objects of a historical review, in addition to the presentation of state-of-the-art technologies, economic analysis and discussion of relevant social and environmental issues related to their production and use. Wherever possible, an evaluation, from the available sources of information and based on the author`s knowledge, is performed to access future perspectives of each biomass energy source. Brazil is a country where more than half of the energy consumed is provided from renewable sources of energy, and biomass provides 28% of the primary energy consumption. Its large extension, almost all located in the tropical and rainy region, provides an excellent site for large-scale biomass production, which is a necessity if biomass is to be used to supply a significant part of future energy demand. Even so, deforestation has occurred and is occurring in the country, and the issue is discussed and explained as mainly the result of non-energy causes or the use of old and outdated technologies for energy production. (author) 115 refs, figs, tabs

  3. Biomass energy potential in Brazil. Country study

    International Nuclear Information System (INIS)

    Moreira, J.

    1995-01-01

    The present paper was prepared as a country study about the biomass potential for energy production in Brazil. Information and analysis of the most relevant biomass energy sources and their potential are presented in six chapters. Ethanol fuel, sugar-cane bagasse, charcoal, vegetable oil, firewood and other biomass-derived fuels are the objects of a historical review, in addition to the presentation of state-of-the-art technologies, economic analysis and discussion of relevant social and environmental issues related to their production and use. Wherever possible, an evaluation, from the available sources of information and based on the author's knowledge, is performed to access future perspectives of each biomass energy source. Brazil is a country where more than half of the energy consumed is provided from renewable sources of energy, and biomass provides 28% of the primary energy consumption. Its large extension, almost all located in the tropical and rainy region, provides an excellent site for large-scale biomass production, which is a necessity if biomass is to be used to supply a significant part of future energy demand. Even so, deforestation has occurred and is occurring in the country, and the issue is discussed and explained as mainly the result of non-energy causes or the use of old and outdated technologies for energy production. (author)

  4. Nuclear energy versus other energy sources

    International Nuclear Information System (INIS)

    King, F.K.

    1994-01-01

    This paper deals with nuclear and other sources of energy as they relate to the production of electricity. It first examines the current role of electricity in the world and its means of production and how future economic growth, associated with growing populations striving for better living conditions, will lead to increased demands for new electricity generation. The second part of the paper deals with the health and environmental impacts of the major options for generating electricity likely to be used to meet this need, and how a comparative assessment of these impacts is important to understand the full implications of electricity generation planning decisions. 6 refs, 12 figs

  5. Nuclear power: tomorrow's energy source

    International Nuclear Information System (INIS)

    2002-01-01

    In France, 76% of electricity is produced by nuclear power. The industry's pricing levels are among the most competitive in Europe. Thanks to its 58 nuclear reactors France enjoys almost 50% energy autonomy thus ensuring a highly stable supply. Equally, as a non-producer of greenhouse gases, the nuclear sector can rightfully claim to have an environmentally friendly impact. Against a background to increasing global demand with predictions that fossil fuels will run out and global warming a central issue, it is important to use production methods which face up to problems of this nature. There is no question that nuclear energy has a vital role to play alongside other energy sources. (authors)

  6. Health impacts of different energy sources

    International Nuclear Information System (INIS)

    1982-01-01

    Energy is needed to sustain the economy, health and welfare of nations. As a consequence of this, energy consumption figures are frequently used as an index of a nation's advancement. As a result of the global energy crisis, almost every nation has had to develop all its available energy resources and plan its future use of energy. The planners of national and international energy policies are however often faced with a problem of 'public acceptance' arising from the potential health and environmental impacts of developing energy resources. The public's desire to preserve the quality of man's health and his environment frequently results in opposition to many industrial innovations, including the generation and use of energy. Reliable, quantitative data and information are needed on the risks to health and the environment of different contemporary energy systems, to improve public understanding, and to serve as the basis from which national planners can choose between different energy supply options. With the exception of nuclear energy, even in technologically advanced countries little systematic research and development has been done on the quantitative assessment of the effects on health and the environment of the conventional energy sources. The need for this information has only been realized over the past decade as the climate and environment in many regions of the world has deteriorated with the unabated release of pollutants from factories and energy generating plants in particular. A number of countries have started national environmental health research programmes to monitor and regulate toxic emissions from industry and energy plants. Energy-related environmental health research has been supported and co-ordinated by various international organizations such as the International Atomic Energy Agency (IAEA), World Health Organization (WHO) and United Nations Environment Programme (UNEP). WHO has supported expert reviews on the potential health risks posed

  7. Renewable energy sources in agriculture

    International Nuclear Information System (INIS)

    Campiotti, C.A.; Balducchi, R.; Bernardini, A.; Dondi, F.; Di Carlo, F.; Genovese, A.; Scoccianti, M.; Bibbiani, C.

    2009-01-01

    Greenhouse crop evolution if from one hand improves the quality of products and productive cycles, from another hand cause negative effects on the natural resources, the environment and the economy of the country. Although renewable energies already feature to some extent in the European Union's regional, the 2007-2013 Structural Funds package could be the occasion to increase the weight given to RES within the energy programmes for less favoured regions (particularly in ex-objective 1 areas). In those areas, greenhouse crop sector is particularly developed as agriculture industrial activity. According to numerous investigations, agricultural greenhouse consumption for greenhouse acclimatization represents approximately between 2% to 6% of the E U's-27 total energy consumption. This report is intended to give a general overview to the potential of renewable energy and technology in Italy, particularly geothermal, wind and solar (thermic and photovoltaic) as energy for greenhouse crop sector. RES have a high potential for developing of indigenous resources, service activities, new job creation and reducing Co2 emissions. [it

  8. Tank farm potential ignition sources

    International Nuclear Information System (INIS)

    Scaief, C.C. III.

    1996-01-01

    This document identifies equipment, instrumentation, and sensors that are located in-tank as well as ex-tank in areas that may have communication paths with the tank vapor space. For each item, and attempt is made to identify the potential for ignition of flammable vapors using a graded approach. The scope includes all 177 underground storage tanks

  9. New renewable energy sources; Nye fornybare energikilder

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    This booklet describes in simple terms the so-called new renewable energy sources: solar energy, biomass, wind power and wave power. In addition, there are brief discussions on hydrogen, ocean thermal energy conversion (OTEC), tidal power, geothermal energy, small hydropower plants and energy from salt gradients. The concept of new renewable energy sources is used to exclude large hydropower plants as these are considered conventional energy sources. The booklet also discusses the present energy use, the external frames for new renewable energy sources, and prospects for the future energy supply.

  10. The potential of biogas energy

    International Nuclear Information System (INIS)

    Acaroglu, M.; Hepbasli, A.; Kocar, G.

    2005-01-01

    Biogas technology has been known about for a long time, but in recent years the interest in it has significantly increased, especially due to the higher costs and the rapid depletion of fossil fuels as well as their environmental considerations. The main objective of the present study is to investigate the potential of biogas energy in the 15 European Union (EU) countries and in Turkey, which is seeking admission to the EU and is trying to meet EU environmental standards. Biogas energy potential of the 15 EU countries is estimated to be about 800 PJ. Besides this, Turkey's annual animal waste potential is obtained to be about 11.81 million tons with a biogas energy equivalent of 53.6 PJ. It is expected that this study will be helpful in developing highly applicable and productive planning for energy policies towards the optimum utilization of biogas energy. (author)

  11. The potential of renewable energies

    International Nuclear Information System (INIS)

    Glubrecht, H.

    1998-01-01

    If one compares the progress in research and development of renewable energy applications with the finding which has been granted to these activities during the 23 years after the first oil shock, one cannot but be very impressed. It is indicated in this paper hoe comprehensive the potential of renewable energy is. One should take into account that the methods described form a broad interdisciplinary field in contrast to fossil and nuclear technologies. From technical point of view the present and future energy demand can be met by the broad spectrum of renewable energies in combination with energy conservation. Many of these techniques are already economically competitive: solar architecture, wind energy, hydropower, low temperature heat production, photovoltaic for remote areas, various types of biomass application, geothermal energy although not exactly renewable. The future of renewable energies will depend on opening markets for these techniques

  12. Nuclear energy: potentiality and implications

    International Nuclear Information System (INIS)

    Bahgat, Gawdat

    2008-01-01

    After a discussion about a broad definition of energy security and about the main challenges facing a potential nuclear renaissance, the article analyses how the European Union and the United States have addressed these challenges. There is no doubt that nuclear power will remain an important component of global energy mix, but it should not be seen as a panacea to the flows in the global energy markets [it

  13. World potential of renewable energies

    Energy Technology Data Exchange (ETDEWEB)

    Dessus, B; Devin, B; Pharabod, F

    1991-07-01

    A comprehensive analysis, region by region, of the actually accessible renewable energies at a given horizon, is presented. The same methodology as the one employed to derive ``proven fossil energy reserves`` from ``energy resources`` is adopted, in which resources are defined by quantitative information on physical potential, while reserves take into account technical and economical accessibility. As renewable resources are fluctuating with time and are diluted in space and not readily transportable or storeable, it is necessary to consider the presence of populations or activities near enough to be able to profit by these diluted and volatile energies.

  14. Prospects of renewable energy sources in India: Prioritization of alternative sources in terms of Energy Index

    International Nuclear Information System (INIS)

    Jha, Shibani K.; Puppala, Harish

    2017-01-01

    The growing energy demand in progressing civilization governs the exploitation of various renewable sources over the conventional sources. Wind, Solar, Hydro, Biomass, and waste & Bagasse are the various available renewable sources in India. A reliable nonconventional geothermal source is also available in India but it is restricted to direct heat applications. This study archives the status of renewable alternatives in India. The techno economic factors and environmental aspects associated with each of these alternatives are discussed. This study focusses on prioritizing the renewable sources based on a parameter introduced as Energy Index. This index is evaluated using cumulative scores obtained for each of the alternatives. The cumulative score is obtained by evaluating each alternative over a range of eleven environmental and techno economic criteria following Fuzzy Analytical Hierarchy Process. The eleven criteria's considered in the study are Carbon dioxide emissions (CO 2 ), Sulphur dioxide emissions (SO 2 ), Nitrogen oxide emissions (NO x ), Land requirement, Current energy cost, Potential future energy cost, Turnkey investment, Capacity factor, Energy efficiency, Design period and Water consumption. It is concluded from the study that the geothermal source is the most preferable alternative with highest Energy Index. Hydro, Wind, Biomass and Solar sources are subsequently preferred alternatives. - Highlights: • FAH process is used to obtain cumulative score for each renewable alternative. • Cumulative score is normalized by highest score of ideal source. • Energy Index shows how best a renewable alternative is. • Priority order is obtained for alternatives based on Energy Index. • Geothermal is most preferable source followed by Hydro, Wind, Biomass and Solar.

  15. Renewable energy resources in Pakistan: status, potential and information systems

    International Nuclear Information System (INIS)

    Khan, A.M.

    1991-01-01

    This paper provides some details regarding the characteristic properties, potential and assessment of renewable energy compared with other forms of energy sources. It gives status of renewable energy sources in Pakistan. It also lights about the agencies providing technical information regarding renewable energy in Pakistan as well as suggestions and recommendations for the development of these resources, and over view the present status of renewable energy sources. (author)

  16. Economics of alternative energy sources

    International Nuclear Information System (INIS)

    Ryle, M.

    1977-01-01

    It is stated that an important part of the oil and natural gas at present consumed in the UK is used for the heating of buildings, a demand which shows large diurnal, day-to-day and annual fluctuations. The replacement of this energy by nuclear-generated electricity, as at present envisaged, would require the construction of some 250 GW of additional capacity by the end of the century, a programme which does not seem feasible. By incorporating relatively cheap short term storage in the form of low-grade heat, the generating capacity required to fulfil peak demand could be reduced by more than 50%. As soon as such storage is provided, however, other sources of energy should become viable and attractive alternatives, and the UK is well situated to make use of wind, wave, and tidal power. It seems likely that the value of North Sea oil/gas reserves as feedstock to the chemical industry will rise sufficiently to make an early reduction in their consumption as fuel of great economic importance. (author)

  17. Economics of alternative energy sources.

    Science.gov (United States)

    Ryle, M

    1977-05-12

    An important part of the oil and natural gas at present consumed in the UK is used for the heating of buildings, a demand which shows large diurnal, day-to-day and annual fluctuations. The replacement of this energy by nuclear-generated electricity, as at present envisaged, would require the construction of some 250 GW of additional capacity by the end of the century, a progamme which does not seem feasible. By incorporating relatively cheap, short term storage in the form of low-grade heat, the generating capacity required to fulfil peak demand could be reduced by more than 50%. As soon as such storage is provided, however, other sources of energy become viable and attractive alternatives, and the UK is well situated to make use of wind, wave, and tidal power. It seems likely that the value of North Sea oil/gas reserves as feedstock to the chemical industry will rise sufficiently to make an early reduction in their consumption as fuel of great economic importance.

  18. Energy intensities: Prospects and potential

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    In the previous chapter, the author described how rising activity levels and structural change are pushing toward higher energy use in many sectors and regions, especially in the developing countries. The extent to which more activity leads to greater energy use will depend on the energy intensity of end-use activities. In this chapter, the author presents an overview of the potential for intensity reductions in each sector over the next 10-20 years. It is not the author's intent to describe in detail the various technologies that could be employed to improve energy efficiency, which has been done by others (see, for example, Lovins ampersand Lovins, 1991; Goldembert et al., 1987). Rather, he discusses the key factors that will shape future energy intensities in different parts of the world, and gives a sense for the changes that could be attained if greater attention were given to accelerate efficiency improvement. The prospects for energy intensities, and the potential for reduction, vary among sectors and parts of the world. In the majority of cases, intensities are tending to decline as new equipment and facilities come into use and improvements are made on existing stocks. The effect of stock turnover will be especially strong in the developing countries, where stocks are growing at a rapid pace, and the Former East Bloc, where much of the existing industrial plant will eventually be retired and replaced with more modern facilities. While reductions in energy intensity are likely in most areas, there is a large divergence between the technical and economic potential for reducing energy intensities and the direction in which present trends are moving. In the next chapter, the author presents scenarios that illustrate where trends are pointing, and what could be achieved if improving energy efficiency were a focus of public policies. 53 refs., 4 figs., 2 tabs

  19. Hydropower and biomass as renewable energy sources in Turkey

    International Nuclear Information System (INIS)

    Kaygusuz, K.

    2001-01-01

    When talking about renewable energy sources today, the most important and economical energy sources for Turkey are hydropower and biomass.The present study gives a review of production, consumption, and economics of hydropower and biomass as renewable energy sources in Turkey. Turkey has a total gross hydropower potential of 433 GW, but only 125 GW of the total hydroelectric potential of Turkey can be economically used. By the commissioning of new hydropower plants, which are under construction, 36% of the economically usable potential of the country could be tapped. On the other hand, biomass (wood and wastes) energy is the second most important renewable energy source for Turkey. However, the biomass energy sources of Turkey are limited. In 1998, the biomass share of the total energy consumption of the country is 10%. In this study, the potential of important biomass energy sources and animal solid wastes of the country were determined. The effects of hydropower and biomass usage on the environment were also discussed. Considering total cereal products and fatty seed plants, approximately 50-60 million tons per year of biomass and 8-10 million tons of solid matter animal waste are produced, and 70% of total biomass is seen as being usable for energy. Some useful suggestions and recommendations are also presented. The present study shows that there is an important potential for hydropower and biomass energy sources in Turkey. (author)

  20. Long-range prospects of world energy demands and future energy sources

    International Nuclear Information System (INIS)

    Kozaki, Yasuji

    1998-01-01

    The long-range prospects for world energy demands are reviewed, and the major factors which are influential in relation to energy demands are discussed. The potential for various kinds of conventional and new energy sources such as fossil fuels, solar energies, nuclear fission, and fusion energies to need future energy demands is also discussed. (author)

  1. Conventional and unconventional energy sources for mankind

    International Nuclear Information System (INIS)

    Sethna, H.N.

    1981-01-01

    Plenty of industrial nations of the world is founded on the fact that only 1% of their energy requirement is met by muscle power, both of human and animal origin, while 99% comes mostly from fossil fuels. However, fossil fuels are not an eternal source and hence to conserve it, other sources must also be used. Availability of energy sources such as coal, biogas, solar energy, wind, tidal energy is examined and their draw-backs are pointed out. Another energy source i.e. nuclear energy can however substantially contribute to the energy scene. Fission reactors can contribute nearly 25% of the world energy requirements within two decades. Breeder reactors, if successfully developed, can meet the energy requirements of the world for few thousands of years. Fusion reactors, if successful for commercial exploitation, will form almost an inexhaustible source of energy. An added advantage is that they produce much less radioactive waste than that produced by fission reactors. (author)

  2. Tapping a new energy source

    International Nuclear Information System (INIS)

    Thomas, W.

    1999-01-01

    The Sable Offshore Energy Project is one of Canada's largest construction projects which is bringing a new industry to Nova Scotia. A five-party consortium comprised of Mobil Oil Canada, Shell Canada, Imperial Oil, Nova Scotia Resources and Mosbacher, has formed an enterprise called Sable Offshore Energy Inc. The consortium plans to bring natural gas to markets in Canada and the United States before the end of 1999. The Santa Fe Galaxy II is one of the world's most modern marine all-weather drilling rigs that will soon begin the drilling of wells. Once in production, the project will produce half a billion cubic feet of natural gas daily from three production platforms that will tap three separate undersea natural gas fields. The gas will then be transported 200 km to shore near Goldboro, Nova Scotia, through an undersea pipeline. There, it will be treated to remove any remaining water and to separate liquid natural gas from the gas proper. The natural gas liquids will then be carried by an onshore pipeline to a new facility at Point Tupper where they will be processed into propane, butane and condensate. There will be enough gas to meet the potential demand in Nova Scotia and New Brunswick. Large urban centres such as Halifax and Saint John will be served by secondary lines that branch off the main pipeline, but developing smaller markets will take time because the necessary infrastructure does not yet exist. The project has already created thousands of jobs in the province. 5 figs

  3. Assessment of triton potential energy

    International Nuclear Information System (INIS)

    Friar, J.L.; Payne, G.L.

    1995-01-01

    An assessment is made of the dominant features contributing to the triton potential energy, with the objective of understanding qualitatively their origins and sensitivities. Relativistic effects, short-range repulsion, and OPEP dominance are discussed. A determination of the importance of various regions of nucleon-nucleon separation is made numerically. (author)

  4. Geothermal Energy as source or energy production

    International Nuclear Information System (INIS)

    Lozano, E.

    1998-01-01

    This article shows the use and utilization of geothermal energy. This calorific energy can be used, through the wells perforation, in generation of electricity and many other tasks. In Colombia is possible the utilization of this energy in the electrical production due to the volcanic presence in the Western and Central mountain chains

  5. The potentials of biomass as renewable energy

    International Nuclear Information System (INIS)

    Edens, J.J.

    1994-01-01

    Biomass is a term used in the context of energy to define a range of products derived from photosynthesis. Annually large amounts of solar energy is stored in the leaves, stems and branches of plants. Of the various renewable sources of energy, biomass is thus unique in that it represents stored solar energy. In addition it is the only source of carbon, and it may be converted into convenient solid, liquid and gaseous fuels. Biomass, principally in the form of wood, is humankind's oldest form of energy, and has been used to fuel both domestic and industrial activities. Traditional use has been, through direct combustion, a process still used extensively in many parts of the world. Biomass is a renewable and indigenous resource that requires little or no foreign exchange. But it is a dispersed, labor-intensive and land requiring source of energy and may avoid or reduce problems of waste disposal. We'll try to assess the potential contribution of biomass to the future world energy supply. 4 refs., 6 tabs

  6. Contemporary energy storage sources. Energy saving

    International Nuclear Information System (INIS)

    Manev, Veselin

    2011-01-01

    The development of renewable energy system for electricity production is impede because of needs to be stabilized with nearly equivalent installed power of energy storage devices. The development of more electrical energy storage facilities will be extremely important for electricity generation in the future. Using hydro pumping, combined with a long life and fast charge/discharge rate, highly efficient contemporary power energy storage as Altairnano lithium ion battery, currently is seems to be the best solution for fast penetration rate of wind and solar energy systems

  7. Nuclear energy such as an alternative energy source

    International Nuclear Information System (INIS)

    Domingos, D.B.; Stecher, L.C.; Menzel, F.; Coelho, T.S.; Giariola, R.S

    2013-01-01

    Nuclear power is still an unknown subject to many and ends up being left out when it comes to alternative energy sources and environmental preservation. Unfamiliarity and the disclosures information that are not always correct end up not to show the public the true risks and benefits of this source. The strength of public opinion is the main barrier to the advancement of this technology. So, this paper aims to demystify the villain aspect of nuclear energy that could become a major source for power generation. For this, will be made a historical retrospective of the theories that enabled the field of nuclear fission, the authors and key points, such as will be described how nuclear fission reaction is produced, controlled and sustained and how energy is produced, will be also made an argument on key facts that lead public opinion to stand up against nuclear power, as the generation of radioactive waste and nuclear weapons. Are presented possible solutions beyond the learning and improvements resulting from the occurred accidents. After these analyzes was observed that, besides being a potentially clean source for power generation, it can be safe in order that the waste generated are already safely managed and intelligence groups also monitor terrorist groups, seeking to ensure global security in relation to nuclear weapons and, at the issue of accidents, each event has brought learning and became the nuclear industry today, one of the safest. (author)

  8. Nuclear energy such as an alternative energy source

    Energy Technology Data Exchange (ETDEWEB)

    Domingos, D.B.; Stecher, L.C.; Menzel, F.; Coelho, T.S.; Giariola, R.S, E-mail: douglasborgesdomingos@gmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Nuclear power is still an unknown subject to many and ends up being left out when it comes to alternative energy sources and environmental preservation. Unfamiliarity and the disclosures information that are not always correct end up not to show the public the true risks and benefits of this source. The strength of public opinion is the main barrier to the advancement of this technology. So, this paper aims to demystify the villain aspect of nuclear energy that could become a major source for power generation. For this, will be made a historical retrospective of the theories that enabled the field of nuclear fission, the authors and key points, such as will be described how nuclear fission reaction is produced, controlled and sustained and how energy is produced, will be also made an argument on key facts that lead public opinion to stand up against nuclear power, as the generation of radioactive waste and nuclear weapons. Are presented possible solutions beyond the learning and improvements resulting from the occurred accidents. After these analyzes was observed that, besides being a potentially clean source for power generation, it can be safe in order that the waste generated are already safely managed and intelligence groups also monitor terrorist groups, seeking to ensure global security in relation to nuclear weapons and, at the issue of accidents, each event has brought learning and became the nuclear industry today, one of the safest. (author)

  9. Conservation as an alternative energy source

    Science.gov (United States)

    Allen, D. E.

    1978-01-01

    A speech is given outlining the energy situation in the United States. It is warned that the existing energy situation cannot prevail and the time is fast running out for continued growth or even maintenance of present levels. Energy conservation measures are given as an aid to decrease U.S. energy consumption, which would allow more time to develop alternative sources of energy.

  10. Coal: an economic source of energy

    International Nuclear Information System (INIS)

    Ali, I.; Ali, M.M.

    2001-01-01

    Coal, in spite its abundance availability in Pakistan, is a neglected source of energy. Its role as fuel is not more than five percent for the last four decades. Some of the coal, mined, in used as space heating in cold areas of Pakistan but more than 90% is being used in brick kilns. There are 185 billion tonnes of coal reserves in the country and hardly 3 million tonnes of coal is, annually, mined. Lakhra coal field is, presently, major source of coal and is considered the largest productive/operative coal field of Pakistan. It is cheaper coal compared to other coals available in Pakistan. As an average analysis of colas of the country, it shows that most of the coals are lignitic in nature with high ash and sulfur content. The energy potential is roughly the same but the cost/ton of coal is quite different. It may be due to methods of mining. There should be some criteria for fixing the cost of the coal. It should be based on energy potential of unit mass of coal. (author)

  11. Analysis of Energy, Environmental and Life Cycle Cost Reduction Potential of Ground Source Heat Pump (GSHP) in Hot and Humid Climate

    Energy Technology Data Exchange (ETDEWEB)

    Yong X. Tao; Yimin Zhu

    2012-04-26

    It has been widely recognized that the energy saving benefits of GSHP systems are best realized in the northern and central regions where heating needs are dominant or both heating and cooling loads are comparable. For hot and humid climate such as in the states of FL, LA, TX, southern AL, MS, GA, NC and SC, buildings have much larger cooling needs than heating needs. The Hybrid GSHP (HGSHP) systems therefore have been developed and installed in some locations of those states, which use additional heat sinks (such as cooling tower, domestic water heating systems) to reject excess heat. Despite the development of HGSHP the comprehensive analysis of their benefits and barriers for wide application has been limited and often yields non-conclusive results. In general, GSHP/HGSHP systems often have higher initial costs than conventional systems making short-term economics unattractive. Addressing these technical and financial barriers call for additional evaluation of innovative utility programs, incentives and delivery approaches. From scientific and technical point of view, the potential for wide applications of GSHP especially HGSHP in hot and humid climate is significant, especially towards building zero energy homes where the combined energy efficient GSHP and abundant solar energy production in hot climate can be an optimal solution. To address these challenges, this report presents gathering and analyzing data on the costs and benefits of GSHP/HGSHP systems utilized in southern states using a representative sample of building applications. The report outlines the detailed analysis to conclude that the application of GSHP in Florida (and hot and humid climate in general) shows a good potential.

  12. Status of geothermal energy amongst the world's energy sources

    International Nuclear Information System (INIS)

    Fridleifsson, I.B.

    2003-01-01

    The world primary energy consumption is about 400 EJ/year, mostly provided by fossil fuels (80%), The renewables collectively provide 14% of the primary energy, in the form of traditional biomass (10%), large (>10 MW) hydropower stations (2%), and the ''new renewables''(2%). Nuclear energy provides 6%. The World Energy Council expects the world primary energy consumption to have grown by 50-275% in 2050, depending on different scenarios. The renewable energy sources are expected to provide 20-40% of the primary energy in 2050 and 30-80% in 2100. The technical potential of the renewables is estimated at 7600 EJ/year, and thus certainly sufficiently large to meet future world energy requirements. Of the total electricity production from renewables of 2826 TWh in 1998, 92% came from hydropower, 5.5% from biomass, 1.6% from geothermal and 0.6% from wind. Solar electricity contributed 0.05% and tidal 0.02%. The electricity cost is 2-10 UScents/kWh for geothermal and hydro, 5-13 UScents/kWh for wind, 5-15 UScents/kWh for biomass, 25-125 UScents/kWh for solar photovoltaic and 12-18 UScents/kWh for solar thermal electricity. Biomass constitutes 93% of the total direct heat production from renewables, geothermal 5%, and solar heating 2%. Heat production from renewables is commercially competitive with conventional energy sources. Direct heat from biomass costs 1-5 UScents/kWh, geothermal 0.5-5 UScents/kWh, and solar heating 3-20 UScents/kWh. (author)

  13. Matching energy sources to demand

    International Nuclear Information System (INIS)

    Hendry, A.

    1979-01-01

    Diagrams show the current pattern of energy usage in Scotland; primary energy inputs; the various classes of user; the disposition of input energy in terms of useful and waste energy; an energy flow diagram showing the proportions of primary fuels taken by the various user groups and the proportions of useful energy derived by each. Within the S.S.E.B. area, installed capacity and maximum demand are shown for the present and projected future to the year 2000. A possible energy flow diagram for Scotland in 1996 is shown. The more efficient use of energy is discussed, with particular reference to the use of electricity. The primary energy inputs considered are oil, coal, nuclear, hydro and gas. (U.K.)

  14. Sustaining with efficiency the renewable energy sources

    International Nuclear Information System (INIS)

    Bano, L.; Lorenzoni, A.

    2008-01-01

    European energy policy requires actions, in favour of a more widespread diffusion of renewable energy sources. Is essential to have an efficient financial support to reduce costs. Are presented an estimated of electric power from renewable energy sources and some criticism. Is proposed a modification of green certificates market based on bilateral tradable agreements [it

  15. Photovoltaics as a worldwide energy source

    International Nuclear Information System (INIS)

    Jones, G.J.

    1991-01-01

    Photovoltaic energy systems have historically been treated as a bulk power generation source for the future. However, utilities and other agencies involved with electrification throughout the world are beginning to find photovoltaics a least-cost option to meet specific loads both for themselves and their customers, in both off-grid and grid-connected applications. These expanding markets offer the potential of hundreds of megawatts of sales in the coming decade, but a strategy addressing both industrial growth and user acceptance is necessary to capitalize on this opportunity. 11 refs

  16. Potential energy function of CN-

    Czech Academy of Sciences Publication Activity Database

    Špirko, Vladimír; Polák, Rudolf

    2008-01-01

    Roč. 248, č. 1 (2008), s. 77-80 ISSN 0022-2852 R&D Projects: GA MŠk LC512; GA AV ČR IAA400550511; GA AV ČR IAA400400504 Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z40400503 Keywords : potential energy curve * fundamental transition * spectroscopic constants Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.636, year: 2008

  17. SWOT analysis of the renewable energy sources in Romania - case study: solar energy

    Science.gov (United States)

    Lupu, A. G.; Dumencu, A.; Atanasiu, M. V.; Panaite, C. E.; Dumitrașcu, Gh; Popescu, A.

    2016-08-01

    The evolution of energy sector worldwide triggered intense preoccupation on both finding alternative renewable energy sources and environmental issues. Romania is considered to have technological potential and geographical location suitable to renewable energy usage for electricity generation. But this high potential is not fully exploited in the context of policies and regulations adopted globally, and more specific, European Union (EU) environmental and energy strategies and legislation related to renewable energy sources. This SWOT analysis of solar energy source presents the state of the art, potential and future prospects for development of renewable energy in Romania. The analysis concluded that the development of solar energy sector in Romania depends largely on: viability of legislative framework on renewable energy sources, increased subsidies for solar R&D, simplified methodology of green certificates, and educating the public, investors, developers and decision-makers.

  18. Life cycle assessment of renewable energy sources

    CERN Document Server

    Singh, Anoop; Olsen, Stig Irving

    2013-01-01

    Governments are setting challenging targets to increase the production of energy and transport fuel from sustainable sources. The emphasis is increasingly on renewable sources including wind, solar, geothermal, biomass based biofuel, photovoltaics or energy recovery from waste. What are the environmental consequences of adopting these other sources? How do these various sources compare to each other? Life Cycle Assessment of Renewable Energy Sources tries to answer these questions based on the universally adopted method of Life Cycle Assessment (LCA). This book introduces the concept and impor

  19. Wave energy potential in Galicia (NW Spain)

    DEFF Research Database (Denmark)

    Iglesias, Gregorio; López, Mario; Carballo, Rodrigo

    2009-01-01

    Wave power presents significant advantages with regard to other CO2-free energy sources, among which the predictability, high load factor and low visual and environmental impact stand out. Galicia, facing the Atlantic on the north-western corner of the Iberian Peninsula, is subjected to a very...... harsh wave climate; in this work its potential for energy production is assessed based on three-hourly data from a third generation ocean wave model (WAM) covering the period 1996 - 2005. Taking into account the results of this assessment along with other relevant considerations such as the location...

  20. Energy potential of Finnish peatlands

    Energy Technology Data Exchange (ETDEWEB)

    Virtanen, K. (Geological Survey of Finland, Kuopio (Finland)); Valpola, S. (Geological Survey of Finland, Kokkola (Finland)), e-mail: kimmo.virtanen@gtk.fi, e-mail: samu.valpola@gtk.fi

    2011-07-01

    One-third of the Finnish land area is covered by mires and peat. GTK has investigated 2.0 million ha of the 9.3 million ha area covered by mires in Finland. According to the EU Commission, the broadly-based Finnish energy economy, with various energy sources, is the best in the EU. As a fuel, peat fulfils the goals of the EU energy policy in Finland well: it is local, its availability is good and the price is stable. The use of peat also enhances national security. At present, peat is used in around one hundred larger applications that co-generate electricity and heat. In Finland, the development of mires has led to several mire complex types and three main types: raised bogs in Southern Finland, aapa mires in Ostrobothnia and Lapland, and palsa mires in Northern Lapland. Peat layers are deepest in southern Finland and partly in the southern Finnish Lake area, the Region of North Karelia and in the area of central Lapland. The mean depth of geological mires is 1.41 m and the thickest drilled peat is 12.3 m. According to peat investigations, the national peat reserve totals 69.3 billion m3 in situ (peatlands larger than 20 hectares). The dry solids of peat are estimated at 6.3 billion tones. Sphagnum peat accounts for 54% and Carex peat for 45% of feasible peat reserves. Peatlands that are technically suitable for the peat industry cover a total area of 1.2 million ha and contain 29.6 billion m3 of peat in situ. Slightly humified peat suitable for horticultural and environmental use totals 5.9 billion m3 in situ. The energy peat reserve is 23.7 billion m3 in situ and its energy content is 12 800 TWh. (orig.)

  1. Energy sources for the future

    Energy Technology Data Exchange (ETDEWEB)

    Duggan, J.L.; Cloutier, R.J. (eds.)

    1977-04-01

    The symposium program was designed for college faculty members who are teaching or plan to teach energy courses at their educational institutions. Lectures were presented on socio-economic aspects of energy development, fusion reactors, solar energy, coal-fired power plants, nuclear power, radioactive waste disposal, and radiation hazards. A separate abstract was prepared for each of 16 of the 18 papers presented; two papers were processed earlier: Residential Energy Use Alternatives to the Year 2000, by Eric Hurst (EAPA 2:257; ERA 1:25978) and The Long-Term Prospects for Solar Energy, by W. G. Pollard (EAPA 3:1008). Fourteen of the papers are included in Energy Abstracts for Policy Analysis. (EAPA).

  2. High energy particle accelerators as radiation Sources

    Energy Technology Data Exchange (ETDEWEB)

    Abdelaziz, M E [National Center for Nuclear Safety and Radiation Vontrol, Atomic Energy Authority, Cairo (Egypt)

    1997-12-31

    Small accelerators in the energy range of few million electron volts are usually used as radiation sources for various applications, like radiotherapy, food irradiation, radiation sterilization and in other industrial applications. High energy accelerators with energies reaching billions of electron volts also find wide field of applications as radiation sources. Synchrotrons with high energy range have unique features as radiation sources. This review presents a synopsis of cyclic accelerators with description of phase stability principle of high energy accelerators with emphasis on synchrotrons. Properties of synchrotron radiation are given together with their applications in basic and applied research. 13 figs.,1 tab.

  3. The potential of (waste)water as energy carrier

    International Nuclear Information System (INIS)

    Frijns, Jos; Hofman, Jan; Nederlof, Maarten

    2013-01-01

    Graphical abstract: Energy input and potential output of the Dutch communal water cycle. Highlights: ► Municipal wastewater is a large carrier of chemical and thermal energy. ► The recovery of chemical energy from wastewater can be maximised by digestion. ► The potential of thermal energy recovery from wastewater is huge. ► Underground thermal energy storage is a rapidly developing renewable energy source. - Abstract: Next to energy efficiency improvements in the water sector, there is a need for new concepts in which water is viewed as a carrier of energy. Municipal wastewater is a potential source of chemical energy, i.e. organic carbon that can be recovered as biogas in sludge digestion. The recovery of chemical energy can be maximised by up-concentration of organic carbon and maximised sludge digestion or by source separation and anaerobic treatment. Even more so, domestic wastewater is a source of thermal energy. Through warm water conservation and heat recovery, for example with shower heat exchangers, substantial amounts of energy can be saved and recovered from the water cycle. Water can also be an important renewable energy source, i.e. as underground thermal energy storage. These systems are developing rapidly in the Netherlands and their energy potential is large.

  4. Potential energy center site investigations

    International Nuclear Information System (INIS)

    Savage, W.F.

    1977-01-01

    Past studies by the AEC, NRC, NSF and others have indicated that energy centers have certain advantages over dispersed siting. There is the need, however, to investigate such areas as possible weather modifications due to major heat releases, possible changes in Federal/state/local laws and institutional arrangements to facilitate implementation of energy centers, and to assess methods of easing social and economic pressures on a surrounding community due to center construction. All of these areas are under study by ERDA, but there remains the major requirement for the study of a potential site to yield a true assessment of the energy center concept. In this regard the Division of Nuclear Research and Applications of ERDA is supporting studies by the Southern and Western Interstate Nuclear Boards to establish state and utility interest in the concept and to carry out screening studies of possible sites. After selection of a final site for center study , an analysis will be made of the center including technical areas such as heat dissipation methods, water resource management, transmission methods, construction methods and schedules, co-located fuel cycle facilities, possible mix of reactor types, etc. Additionally, studies of safeguards, the interaction of all effected entities in the siting, construction, licensing and regulation of a center, labor force considerations in terms of local impact, social and economic changes, and financing of a center will be conducted. It is estimated that the potential site study will require approximately two years

  5. Sectoral energy demand data: Sources and Issues

    International Nuclear Information System (INIS)

    Ounali, A.

    1991-01-01

    This chapter of the publication is dealing with Sectoral Energy Demand Data giving details about the Sources and Issues. Some comments are presented on rural energy surveys. Guidelines for the Definition and Desegregation of Sectoral Energy Consumption is given and Data Necessary for Sectoral Energy Demand Analysis is discussed

  6. Third party financing of renewable energy sources

    International Nuclear Information System (INIS)

    1994-01-01

    The Institut of Energy Saving and Diversification (IDAE) hosted the third party on financing Renewable Energy Sources in Spain. The main aspects were : 1) Experiences in renewable energy. 2) Financing of small hydro-power projects. 3) Third party financing of biomass projects. 4) Financing of wind energy projects

  7. Third party financing of renewable energy sources

    International Nuclear Information System (INIS)

    IDAE.

    1994-01-01

    IDAE (Institute of Energy Saving and Diversification) Hosted the Third party on financing renewable energy sources. The meeting was articulated into chapters: 1.- Experiences in the renewable energy field. 2.- Third party financing of small hydro-power projects. 3.- Third party financing of biomass projects. 4.- Third party financing of wind energy projects

  8. CADDIS Volume 2. Sources, Stressors and Responses: Urbanization - Energy Sources

    Science.gov (United States)

    Introduction to changes in basal energy sources with urbanization, overview of terrestrial leaf litter dynamics in urban streams, overview of how urbanization can affect primary production, respiration, and dissolved organic carbon quantity and quality.

  9. Limits and Prospects of Renewable Energy Sources in Italy

    International Nuclear Information System (INIS)

    Coiante, D.

    2008-01-01

    The Italian energy balance for year 2005 is discussed with particular attention on renewable energy production. The potentials of renewable sources are evaluated in terms of energy density that can be obtained from occupied plant area. About 20000 km 2 of sunny barren lands are present in South of Italy, particularly suitable for photovoltaic plants and that corresponds to a potential production of 144 Mtep of primary energy. Therefore, in theory, the photovoltaic energy potential is comparable with energy balance. The grid connection limit due to intermittent power generation of photovoltaic and wind energy systems is considered in relation with the stability of grid power level. Assuming a 25% maximum grid penetration of intermittent power with respect to capacity of active thermoelectric generators, the renewable energy contribution amounts to about 2% of annual energy balance. In front of expectations for a larger contribution, the practical result is the renewable energy production of present systems is marginal, unsuitable for counteracting the global climate crisis. The conclusion is that, for exploiting the large renewable energy potential, is necessary to implement the plants with an energy storage system able to overcome the source intermittency. Without this improvement, the expectations on renewable energy sources could be disappointed. [it

  10. Power conditioning system for energy sources

    Science.gov (United States)

    Mazumder, Sudip K [Chicago, IL; Burra, Rajni K [Chicago, IL; Acharya, Kaustuva [Chicago, IL

    2008-05-13

    Apparatus for conditioning power generated by an energy source includes an inverter for converting a DC input voltage from the energy source to a square wave AC output voltage, and a converter for converting the AC output voltage from the inverter to a sine wave AC output voltage.

  11. Development potential of wind energy in Turkey

    Directory of Open Access Journals (Sweden)

    İsmet Akova

    2011-07-01

    energy potential, as part of the renewable energy sources of Turkey, are highly important and each of these two sources has the technical potential to cover the electric production in 2008. The recent increase in the number of wind energy power stations can be related to the preparation of Turkish Wind Atlas, the preparation of legal arrangements to support private sector entrepreneurs and the rise in oil prices. Wind energy power stations are active in Marmara, Aegean region and the Mediterreanean region witnessing more constant and strong winds and are anticipated to be founded in other geographical regions as well in the future.

  12. Spatial mapping of renewable energy potential

    Energy Technology Data Exchange (ETDEWEB)

    Ramachandra, T.V. [Centre for Sustainable Technologies, Indian Institute of Science, Bangalore (India); Energy Research Group, CES RNO 215, Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560 012 (India); Shruthi, B.V. [Energy Research Group, CES RNO 215, Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560 012 (India)

    2007-09-15

    An energy resource that is renewed by nature and whose supply is not affected by the rate of consumption is often termed as renewable energy. The need to search for renewable, alternate and non-polluting sources of energy assumes top priority for self-reliance in the regional energy supply. This demands an estimation of available energy resources spatially to evolve better management strategies for ensuring sustainability of resources. The spatial mapping of availability and demand of energy resources would help in the integrated regional energy planning through an appropriate energy supply-demand matching. This paper discusses the application of Geographical Information System (GIS) to map the renewable energy potential talukwise in Karnataka State, India. Taluk is an administrative division in the federal set-up in India to implement developmental programmes like dissemination of biogas, improved stoves, etc. Hence, this paper focuses talukwise mapping of renewable energy (solar, wind, bioenergy and small hydroenergy) potential for Karnataka using GIS. GIS helps in spatial and temporal analyses of the resources and demand and also aids as Decision Support System while implementing location-specific renewable energy technologies. Regions suitable for tapping solar energy are mapped based on global solar radiation data, which provides a picture of the potential. Coastal taluks in Uttara Kannada have higher global solar radiation during summer (6.31 kWh/m{sup 2}), monsoon (4.16 kWh/m{sup 2}) and winter (5.48 kWh/m{sup 2}). Mapping of regions suitable for tapping wind energy has been done based on wind velocity data, and it shows that Chikkodi taluk, Belgaum district, has higher potential during summer (6.06 m/s), monsoon (8.27 m/s) and winter (5.19 m/s). Mysore district has the maximum number of small hydropower plants with a capacity of 36 MW. Talukwise computation of bioenergy availability from agricultural residue, forest, horticulture, plantation and livestock

  13. Review of Turkey's renewable energy potential

    International Nuclear Information System (INIS)

    Ozgur, M. Arif

    2008-01-01

    The use of renewable energy has a long history. Biomass, for instance, has been used for heating and cooking, while wind has been used in the irrigation of fields and to drive windmills for centuries. Although Turkey has many energy resources, all of these with the exception of coal and hydropower, cannot meet the total energy demand. Turkey has been importing resources to meet this deficit. These resources have become increasingly expensive and also have undesirably high emissions ratings. Turkey has an extensive shoreline and mountains and is rich in renewable energy potential. The share of renewables on total electricity generation is 29.63% while that of natural gas is 45% for the year 2006. The projection prepared for the period between 2006 and 2020 aims an annual growth of 8% for the total electricity generation. According to this projection, it is expected that renewables will have a share about 23.68% with a decrease of 5.95% while natural gas will have a share about 33.38% for 2020. This paper presents the present state of world renewable energy sources and then looks in detail at the potential resources available in Turkey. Energy politics are also considered. (author)

  14. SOURCES OF ENERGY AND THE ENVIRONMENT

    OpenAIRE

    Spash, Clive L.; Young, A.

    1994-01-01

    Energy from fossil fuels have become dominant in the industrialised and industrialising economies of the world. However, fossil fuels are also recognised as heavily polluting and responsible for a range of modern environmental and health problems. Nuclear power is a similar conventional energy source in that it relies upon depletion of a limited stock resource and is associated with a range of social and environmental problems. However, the alternative energy sources relying upon flow reso...

  15. Particle accelerators and lasers high energy sources

    International Nuclear Information System (INIS)

    Watteau, J.P.

    1985-04-01

    Particle accelerators and lasers are to-day precious devices for physicist and engineer. Their performance and scope do not stop growing. Producing thin beams of high energy particles or photons, they are able to be very high energy sources which interact strongly with matter. Numerous applications use them: research, industry, communication, medicine, agroalimentary, defence, and soon. In this note, their operation principles are described and some examples of their use as high energy sources are given [fr

  16. Environmental impacts of renewable energy sources

    International Nuclear Information System (INIS)

    Abbasi, S.A.; Abbasi, N.

    1997-01-01

    The global attention has always been focused on the adverse environmental impacts of conventional energy sources. In contrast nonconventional energy sources, particularly the renewable ones, have enjoyed a clean image vis a vis environmental impacts. The only major exception to this general trend has been large hydropower projects; experience has taught that they can be disastrous for the environment. The belief now is that mini hydro and microhydro projects are harmless alternatives. But are renewable energy sources really as benign as is widely believed? The present essay addresses this question in the background of Lovin's classical paradigm which had postulated the hard (malignant) and soft (benign) energy concepts in the first place. It then critically evaluates the environmental impacts of major renewable energy sources. It then comes up with the broad conclusion that renewable energy sources are not the panacea they are popularly perceived to be; indeed in some cases their adverse environmental impacts can be as strongly negative as the impacts of conventional energy sources. The paper also dwells on the steps needed to utilize renewable energy sources without facing environmental backlashes of the type experienced from hydropower projects

  17. Prospects of renewable energy sources

    International Nuclear Information System (INIS)

    Pargac, K.

    2010-01-01

    Slovenske elektrarne has been dealing with exploitation of hydropower potential during long-term period and conceptually. In this paper parameters of construction of new planned small-scale hydroelectric power plants on the Vah River (Slovakia) are presented.

  18. Looking for alternative energy sources.

    Science.gov (United States)

    Gross, Michael

    2012-02-21

    With unrest in oil-exporting countries, backlashes against biofuels and photovoltaics, and a nuclear incident in Japan, the year 2011 rattled confidence in future energy supplies. The search for alternatives is all the more urgent, but some of the solutions investigated hark back to fossil fuels that we can't afford to burn.

  19. Energy models for commercial energy prediction and substitution of renewable energy sources

    International Nuclear Information System (INIS)

    Iniyan, S.; Suganthi, L.; Samuel, Anand A.

    2006-01-01

    In this paper, three models have been projected namely Modified Econometric Mathematical (MEM) model, Mathematical Programming Energy-Economy-Environment (MPEEE) model, and Optimal Renewable Energy Mathematical (OREM) model. The actual demand for coal, oil and electricity is predicted using the MEM model based on economic, technological and environmental factors. The results were used in the MPEEE model, which determines the optimum allocation of commercial energy sources based on environmental limitations. The gap between the actual energy demand from the MEM model and optimal energy use from the MPEEE model, has to be met by the renewable energy sources. The study develops an OREM model that would facilitate effective utilization of renewable energy sources in India, based on cost, efficiency, social acceptance, reliability, potential and demand. The economic variations in solar energy systems and inclusion of environmental constraint are also analyzed with OREM model. The OREM model will help policy makers in the formulation and implementation of strategies concerning renewable energy sources in India for the next two decades

  20. Management of development of renewable energy sources

    Directory of Open Access Journals (Sweden)

    Inić Branimir P.

    2014-01-01

    Full Text Available The aim of the paper: 'Management of development of renewable energy sources is to point out the possible solutions for neutralizing the threat of energy shortages. The paper outlines major short and long term energy problems facing humanity. The increase of world human population is, inevitably, accompanied by higher energy consumption. Reserves decrease of nonrenewable energy sources like oil, gas, and coal is a major threat to maintaining current living conditions, and thus requires solutions in order to neutralize the threat. This is why the management of development of renewable energy sources is an imperative for Serbia. The paper emphasizes the use of solar energy, because the annual average of solar radiation in Serbia is about 40% higher than the European average, however, the actual use of the sun's energy to generate electricity in Serbia is far behind the countries of the European Union. Solar energy is clean, renewable, and the fact that 4.2 kilowatt-hours are received daily per square meter averaged over the entire surface of the planet, makes it an almost unused energy source, Compared to EU countries, the price of non-renewable derived energy is, on average, higher in Serbia. Taking this into consideration, the use of solar energy, as an unused resource, imposes itself as indispensable.

  1. Engineering economics of alternative energy sources

    International Nuclear Information System (INIS)

    Denno, K.

    1990-01-01

    This textbook presents a comprehensive picture of the economic aspects, feasibility and adaptability of alternative energy sources and their interconnections. The author intends for this treatment of energy sources to be total and complete. It therefore includes such topics as low temperature and high temperature fuel cells, rechargeable storage batteries (including lead acid, nickel-cadmium, lithium, and sodium-sulfur), Redox flows cells energy system in compatibility with fuel cells and storage batteries, MHD energy systems using non-fossil renewable fuels, solar energy system using direct thermal units and photovoltaic generators, wind energy conversion systems, tidal ocean wave energy converters, geothermal energy, and ocean thermal energy conversion systems. The book is structured so that each major energy source is given one chapter. Each chapter begins with a discussion of the basic structural components of the energy source, as well as operational and fuel characteristics. This is followed by an economic analysis, which includes incremental energy cost curves and economic coordination equations for each possible system of operation. Where appropriate, economic scheduling of generation is applied to several modes of system consumption (e.g., localized dispersed systems, interconnected load centers, and central systems)

  2. Development of negative heavy ion sources for plasma potential measurement

    International Nuclear Information System (INIS)

    Sasao, M.; Okabe, Y.; Fujisawa, A.; Iguchi, H.; Fujita, J.; Yamaoka, H.; Wada, M.

    1991-10-01

    A plasma sputter negative ion source was studied for its applicability to the potential measurement of a fusion plasma. Both the beam current density and the beam energy spread are key issues. Energy spectra of a self extracted Au - beam from the source were measured under the condition of a constant work function of the production surface. The full width of half maximum (FWHM) increases from 3 eV to 9 eV monotonically as the target voltage increases from 50 V to 300 V, independently from the target surface work function of 2.2 - 3 eV. (author)

  3. Energy technology sources, systems and frontier conversion

    CERN Document Server

    Ohta, Tokio

    1994-01-01

    This book provides a concise and technical overview of energy technology: the sources of energy, energy systems and frontier conversion. As well as serving as a basic reference book for professional scientists and students of energy, it is intended for scientists and policy makers in other disciplines (including practising engineers, biologists, physicists, economists and managers in energy related industries) who need an up-to-date and authoritative guide to the field of energy technology.Energy systems and their elemental technologies are introduced and evaluated from the view point

  4. Alternative energy sources in the Czech Republic

    International Nuclear Information System (INIS)

    1999-10-01

    The hereby presented report was elaborated for the Royal Netherlands Embassy in Prague, Czech Republic by the Netherlands Chamber of Commerce in Prague from July to October 1999. The report is constituted so as to provide a complete introductory overview of the situation in the Czech Republic relating to alternative energy sources. For the purposes of this report, the term alternative energy sources is conceived as renewable energy sources and combined generation of heat and electricity. Renewable energy sources comprise sun, water, wind, geothermal energy and energy generated from biomass or waste. The report features a glimpse at the history of alternative energy sources' utilisation in the Czech Republic, a description of the current state and an extrapolation of existing trends into expectable medium- and long-run developments. The report also includes an insight into the relevant legal framework and a general scan of market opportunities. The objective of the report is to prepare a solid starting platform for Dutch companies which specialise in renewable energy sources and/or cogeneration and which may be interested in extending their scope of activities to the Czech Republic

  5. Potential GTCC LLW sealed radiation source recycle initiatives

    International Nuclear Information System (INIS)

    Fischer, D.

    1992-04-01

    This report suggests 11 actions that have the potential to facilitate the recycling (reuse or radionuclide) of surplus commercial sealed radiation sources that would otherwise be disposed of as greater-than-Class C low-level radioactive waste. The suggestions serve as a basis for further investigation and discussion between the Department of Energy, Nuclear Regulatory Commission, Agreement States, and the commercial sector. Information is also given that describes sealed sources, how they are used, and problems associated with recycling, including legal concerns. To illustrate the nationwide recycling potential, Appendix A gives the estimated quantity and application information for sealed sources that would qualify for disposal in commercial facilities if not recycle. The report recommends that the Department of Energy initiate the organization of a forum to explore the suggested actions and other recycling possibilities

  6. SO2 - An indirect source of energy

    DEFF Research Database (Denmark)

    Kriek, R.J.; Van Ravenswaay, J.P.; Potgieter, M.

    2013-01-01

    -related processes 12.8 Mt. As a well-known gaseous pollutant, SO2 is not per se known as a source of energy. However, in the presence of water SO2 can be electro-oxidized at the anode of an electrolyser to produce hydrogen ions, which in turn can be reduced at the cathode of the electrolyser to produce hydrogen gas......Global sulphur dioxide (SO2) emissions peaked around the mid- 1970s, after which they declined. However, with the growth of specifically China, emissions are on the rise again. In 2008, global anthropogenic SO2 emissions totalled 127 Mt, with energy production accounting for 63.2 Mt and metal....... Gaseous emissions of SO2 can therefore be cleaned up with the simultaneous production of hydrogen, an energy store or carrier, which provides an economic offset to the overall cost of this potential remediation process. This process forms part of the Hybrid Sulfur (HyS) cycle as well as the once...

  7. Estimating wastes as energy sources

    Energy Technology Data Exchange (ETDEWEB)

    Baston, V.F.; Gale, L.G.; Burt, B.; Stallings, J.W.

    1980-07-01

    The use of agricultural residues as fuel in fluidized-bed burners is discussed. Laboratory tests which assess the suitability of organic residues for fluidized-bed combustion are described. Residues tested include corn wastes, olive and peach pits, tomato pomace and dried paper mill sludge. It was found that peach pits appeared to be an ideal fuel for fluidized-bed combustion and that the tests can detect and solve potential problems before construction of commercial-size burners.

  8. Biogas: A renewable energy source

    International Nuclear Information System (INIS)

    Imiere, E.E.; Ojih, V.B.; Esiekpe, L.E.; Okafor, M.C.; Attoh, V. A.

    2011-01-01

    Biogas refers to a gas produced by the biological breakdown of organic matter in the absence of oxygen. Biogas can be used as a fuel in any country for any heating purpose such as cooking. By means of digesters, the energy in the gas can be converted to electricity and heat. Biogas like natural gas can also be used to power motor vehicle. Biogas is a renewable fuel which qualifies it for a renewable energy subsidy. It is non-toxic, environment-friendly and serve as a means of combating global warming. Biogas is presently being used in U.S.A, U.K, China, Sweden, Brazil, and India amongst others for domestic purposes, transportation and power generation. In this regard, this paper discusses biogas production. It also presents a model design of domestic biogas plant suitable for Nigerian households. The paper recommends that Nigerian Government should intensify efforts in educating the masses on this novel technology for a sustainable global development. A biogas plant designed for Nigerian household discussed in this paper is also recommended.

  9. Geothermal energy in Yugoslavia, potentials and applications

    International Nuclear Information System (INIS)

    Boreli, F.; Paradjanin, Lj.; Stankovic, Srb.

    2002-01-01

    This paper promotes the use of Geothermal energy (GTE) in Serbia, and argues that while GTE is both a viable and environmentally friendly energy source, as demonstrated elsewhere in the world, there is also a multitude of opportunities in this region, and the local knowledge and capabilities required for implementing the GTE plants. First, a general introduction to GTE in is given. The basis of GTE is the thermal energy accumulated in fluids and rocks masses in the Earth's Crust. The main GTE advantage compared to the traditional energy sources like thermo-electric plants is the absence of environmental deterioration, however GTE also has advantages compared to other NARES, as the GT sources are permanently available and independent of weather conditions. Worldwide energy potential of GTE is huge, as the reduction of Earth Crust temperature for just 0.1 deg. C would give enough Energy to produce Electrical Energy, at the present dissipation level, for the next 15,000 years. An overview of the regions in Yugoslavia which have a high GTE potential is given. There are two distinct regions with higher GTE values in Serbia: the first is a part of the South Panonian basin including Vojvodina, with Macva and Yu-part along Danube and Morava rivers. This is a sedimental part of the Tercier's Panonic Sea 'Parathetis', with partial depression and Backa subsupression, and is well investigated due to oil and gas holeboring. The second region includes Central and Southern part of Serbia, south from the Panonia basin, with pretercier's and tercier's magmatic volcanic intrusions, which produce a very high and stable thermal flux. This Region is rich in GT-warm water springs with stable yields, and includes 217 locations with 970 natural springs with temperature above 20 deg. C. These compare very favorably with international locations where GTE is exploited. GTE can be used for Electric Energy production using corresponding heat pump systems, for house heating and warm water

  10. RENEWABLE ENERGY SOURCES IN POLAND - CONDITIONS AND POSSIBILITES OF DEVELOPMENT

    Energy Technology Data Exchange (ETDEWEB)

    Gawlik, L.; Mokrzycki, E.; Ney, R.

    2007-07-01

    The paper describes the state of the art in renewable energy sources development. The obligation resulting from the membership of Poland in the European Union as well as from other international agreements in the scope of renewable energy sources development are described. The production of electricity, heat and biofuels in Poland is given and the perspectives of development of particular renewable energy sources in Poland are discussed in the view of potential reserves and other constrains. The economic aspects of renewable energy technologies are shown. The environmental pros and cons of biomass energy development are described. Arguments for development of renewable energy sources use are stated: the decrease of dependence from primary energy sources, the decrease the emission of green house gases and the recovery of agricultural regions of the country. In conclusion it is stated that the significance of renewable energy sources in Polish conditions is constrained to local societies. Their development should be adjusted to conditions predominating in a given region and that wider consumption of renewable energy sources should develop in conformity with sustainable development, so it is necessary to reach agreement between local societies, institutions dealing with environment protection and representatives of power sector. (auth)

  11. Renewable energy. The power and the potential

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    In late 1985, the Public Advisory Committees to the Environmental Council of Alberta began working toward a draft conservation strategy for Alberta. A prospectus was published and meetings and workshops held, the goal being a conservation strategy in place by 1992. This report is one of a series of discussion papers on relevant sectors such as agriculture, fish and wildlife, tourism, and energy production. This report focuses on the present and potential economic significance of renewable energy resources, excluding hydro power, and their capability to meet Alberta's demand. Renewable energy sources discussed include solar, wind, geothermal, biomass, and energy from waste, with economic significance and demand projections for each, as well as their interactions with conventional sources. Their use in low-temperature space heating, industrial process heat, liquid fuels, and electricity is also detailed. Current legislative and regulatory requirements for each of the renewables is given, as well as an attempt at policy formulation to deal with the use of renewables as a whole. 4 figs.

  12. CARDOON, RENEWABLE SOURCE OF ENERGY

    Directory of Open Access Journals (Sweden)

    Cecilia NEAGU

    2013-01-01

    Full Text Available Cardoon (Cynara cardunculus is a herbaceous perennial plant in the vegetable, artichoke, wild or garden, which belongs to the Compositae family (Asteraceae Compositae-and more precisely Cynara species and is grown specifically for the production of biomass (solid bio fuel as a pellet, or solid and liquid bio fuel, bio diesel. In this paper I have tried to highlight the profitability and economic efficiency of growing of this plant. Production capacity exceeding 2 tonnes dry matter/1000mp. The yield depends on climatic conditions, adequate soil moisture, soil nutrients, and range from 1 to 3 t/1000mp, dry. Cardoon seed contains on average 24% oil (category: 19-32%, with the same qualities as the sunflower. Quantity of seed production to 480 kgs/1000mp, while ordinary productivities range 70 to 330 kg/1000mp, always depending on the total biomass production. Growing cardooncan replace traditional crops, partly by ensuring a good profit for the farmer (double the wheat and rapeseed and bio fuel production with high energy content. Solid bio fuels (pellets, briquettes, artichokes, etc. can reach the enduser, at prices up to 30-40% lower than the price of oil. Because cardoon is a perennial plant which grows once every 10-12 years, and preparing the ground and sowing it will be carried out at intervals so large (this plant is harvested annually,it is remarkable cost reduction efficiency of growing this plant.In addition to the obvious environmental advantages by producing green energy, growing artichokes garden preserves the soil covered for the most part of the year, thereby minimizing the risk of soil erosion and limit the pollution of soil and groundwater with agrochemical products, especially in areas with intensive agriculture, because it does not require additional fertilization and/or with the use of chemical fertilizers or pesticides.

  13. Potential of arid zone vegetation as a source of substrates

    Energy Technology Data Exchange (ETDEWEB)

    Bassham, J.A.

    1977-11-01

    Three aspects of the potential of vegetation in arid zones as a source of substrates are discussed. The first includes the limitations on efficiency of conversion of solar energy to the stored chemical energy of biomass in green plants, and the subsequent biochemical pathways of carbon dioxide fixation and biosynthesis. Second is the potential of plants endogenous to arid zones. Finally, the use of covered agriculture or controlled environmental agriculture (CEA) is considered both in its present form and in terms of possible extenion to the large scale production of stable crops. (JGB)

  14. An Open Source Extensible Smart Energy Framework

    Energy Technology Data Exchange (ETDEWEB)

    Rankin, Linda [V-Squared, Portland, OR (United States)

    2017-03-23

    Aggregated distributed energy resources are the subject of much interest in the energy industry and are expected to play an important role in meeting our future energy needs by changing how we use, distribute and generate electricity. This energy future includes an increased amount of energy from renewable resources, load management techniques to improve resiliency and reliability, and distributed energy storage and generation capabilities that can be managed to meet the needs of the grid as well as individual customers. These energy assets are commonly referred to as Distributed Energy Resources (DER). DERs rely on a means to communicate information between an energy provider and multitudes of devices. Today DER control systems are typically vendor-specific, using custom hardware and software solutions. As a result, customers are locked into communication transport protocols, applications, tools, and data formats. Today’s systems are often difficult to extend to meet new application requirements, resulting in stranded assets when business requirements or energy management models evolve. By partnering with industry advisors and researchers, an implementation DER research platform was developed called the Smart Energy Framework (SEF). The hypothesis of this research was that an open source Internet of Things (IoT) framework could play a role in creating a commodity-based eco-system for DER assets that would reduce costs and provide interoperable products. SEF is based on the AllJoynTM IoT open source framework. The demonstration system incorporated DER assets, specifically batteries and smart water heaters. To verify the behavior of the distributed system, models of water heaters and batteries were also developed. An IoT interface for communicating between the assets and a control server was defined. This interface supports a series of “events” and telemetry reporting, similar to those defined by current smart grid communication standards. The results of this

  15. ALTERNATIVE SOURCES OF ENERGY - ALTERNATIVE SOURCES OF POLLUTION?

    Directory of Open Access Journals (Sweden)

    Marius-Razvan SURUGIU

    2007-06-01

    Full Text Available In many countries of the world investments are made for obtaining energy efficiency, pursuing to increase the generation of non-polluting fuels due to the fact that energy is vital for any economy. The increase in non-polluting fuels and in renewable energy generation might lead to diminishing the dependence of countries less endowed with conventional energy resources on oil and natural gas from Russia or from Arab countries. Nevertheless, environmental issues represent serious questions facing the mankind, requiring the identification, prevention, and why not, their total solving.European Union countries depend on imports of energy, especially on oil imports. At the same time, the European Union countries record a high volume of greenhouse gas emissions, substances adding to global warming. The transport sector is the main consumer of fossil fuels and generator of greenhouse gas emissions. Therefore, diversifying the energy supply used in the transport sector with less polluting sources is an essential objective of the European Union policy in the transport, energy and environment sector. Road transports’ is the sector recording the highest consumption of energy and the highest volume of greenhouse gas emissions.The use of ecologic fuels in the transport sector is an important factor for achieving the objectives of European policies in the field. It is yet to be seen to what extent alternative energy sources are damaging to the environment, as it is a known fact that even for them is recorded a certain level of negative externalities.

  16. Fusion energy - an abundant energy source for the future

    DEFF Research Database (Denmark)

    Fusion energy is the fundamental energy source of the Universe, as the energy of the Sun and the stars are produced by fusion of e.g. hydrogen to helium. Fusion energy research is a strongly international endeavor aiming at realizing fusion energy production in power plants on Earth. Reaching...... this goal, mankind will have a sustainable base load energy source with abundant resources, having no CO2 release, and with no longlived radioactive waste. This presentation will describe the basics of fusion energy production and the status and future prospects of the research. Considerations...... of integration into the future electricity system and socio-economic studies of fusion energy will be presented, referring to the programme of Socio-Economic Research on Fusion (SERF) under the European Fusion Energy Agreement (EFDA)....

  17. Biomass as an alternative energy source

    Energy Technology Data Exchange (ETDEWEB)

    De Bruyn, M.; Naveau, H.; Declerck, C.; Vanacker, L.; Mahy, D.; Schepens, G.

    The object of this paper is to evaluate the possible production and utilization of biomass as an energy source in Belgium. Four conversion methods are considered - methanation, fermentation, incineration and gasification - from a technological and economic viewpoint.

  18. Exploiting Sun's Energy Effectively as a Source of Renewable Energy

    Indian Academy of Sciences (India)

    Renewable energy, solar energy, photosynthesis, electrolysis, photocatalysis, photovoltaic cell. Abstract. Using Sun's energy effectively to drive important, industriallyrelevant chemical reactions is currently an area of researchthat is attracting a large attention. This route circumventsour reliance on non-renewable sources of ...

  19. Energy potential of the modified excess sludge

    Directory of Open Access Journals (Sweden)

    Zawieja Iwona

    2017-01-01

    Full Text Available On the basis of the SCOD value of excess sludge it is possible to estimate an amount of energy potentially obtained during the methane fermentation process. Based on a literature review, it has been estimated that from 1 kg of SCOD it is possible to obtain 3.48 kWh of energy. Taking into account the above methane and energy ratio (i.e. 10 kWh/1Nm3 CH4, it is possible to determine the volume of methane obtained from the tested sludge. Determination of potential energy of sludge is necessary for the use of biogas as a source of power generators as cogeneration and ensure the stability of this type of system. Therefore, the aim of the study was to determine the energy potential of excess sludge subjected to the thermal and chemical disintegration. In the case of thermal disintegration, test was conducted in the low temperature 80°C. The reagent used for the chemical modification was a peracetic acid, which in an aqueous medium having strong oxidizing properties. The time of chemical modification was 6 hours. Applied dose of the reagent was 1.0 ml CH3COOOH/L of sludge. By subjecting the sludge disintegration by the test methods achieved an increase in the SCOD value of modified sludge, indicating the improvement of biodegradability along with a concomitant increase in their energy potential. The obtained experimental production of biogas from disintegrated sludge confirmed that it is possible to estimate potential intensity of its production. The SCOD value of 2576 mg O2/L, in the case of chemical disintegration, was obtained for a dose of 1.0 ml CH3COOH/L. For this dose the pH value was equal 6.85. In the case of thermal disintegration maximum SCOD value was 2246 mg O2/L obtained at 80°C and the time of preparation 6 h. It was estimated that in case of thermal disintegration as well as for the chemical disintegration for selected parameters, the potential energy for model digester of active volume of 5L was, respectively, 0.193 and 0,118 kWh.

  20. Energy potential of the modified excess sludge

    Science.gov (United States)

    Zawieja, Iwona

    2017-11-01

    On the basis of the SCOD value of excess sludge it is possible to estimate an amount of energy potentially obtained during the methane fermentation process. Based on a literature review, it has been estimated that from 1 kg of SCOD it is possible to obtain 3.48 kWh of energy. Taking into account the above methane and energy ratio (i.e. 10 kWh/1Nm3 CH4), it is possible to determine the volume of methane obtained from the tested sludge. Determination of potential energy of sludge is necessary for the use of biogas as a source of power generators as cogeneration and ensure the stability of this type of system. Therefore, the aim of the study was to determine the energy potential of excess sludge subjected to the thermal and chemical disintegration. In the case of thermal disintegration, test was conducted in the low temperature 80°C. The reagent used for the chemical modification was a peracetic acid, which in an aqueous medium having strong oxidizing properties. The time of chemical modification was 6 hours. Applied dose of the reagent was 1.0 ml CH3COOOH/L of sludge. By subjecting the sludge disintegration by the test methods achieved an increase in the SCOD value of modified sludge, indicating the improvement of biodegradability along with a concomitant increase in their energy potential. The obtained experimental production of biogas from disintegrated sludge confirmed that it is possible to estimate potential intensity of its production. The SCOD value of 2576 mg O2/L, in the case of chemical disintegration, was obtained for a dose of 1.0 ml CH3COOH/L. For this dose the pH value was equal 6.85. In the case of thermal disintegration maximum SCOD value was 2246 mg O2/L obtained at 80°C and the time of preparation 6 h. It was estimated that in case of thermal disintegration as well as for the chemical disintegration for selected parameters, the potential energy for model digester of active volume of 5L was, respectively, 0.193 and 0,118 kWh.

  1. Soybean Opportunity as Source of New Energy in Indonesia

    OpenAIRE

    Muchlish Adie, M; Krisnawati, Ayda

    2014-01-01

    These last few years, the name of soybeans soared as a source of biodiesel. Soy biodiesel is an alternative fuel produced from soybean oil. Soybean potential as an alternative renewable energy source because it is expected to have the highest energy content compared to other alternative fuels. Opportunities to develop biodiesel using soybean oil in Indonesia is quite large, considering the soybean is a commodity that is already known and widely cultivated almost in all over Indonesia. In addi...

  2. Bandwidth Study on Energy Use and Potential Energy Savings Opportunities in U.S. Petroleum Refining

    Energy Technology Data Exchange (ETDEWEB)

    Sabine Brueske, Caroline Kramer, Aaron Fisher

    2015-06-01

    Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. petroleum refining. The study relies on multiple sources to estimate the energy used in nine individual process areas, representing 68% of sector-wide energy consumption. Energy savings opportunities for individual processes are based on technologies currently in use or under development; these potential savings are then extrapolated to estimate sector-wide energy savings opportunity.

  3. Bandwidth Study on Energy Use and Potential Energy Saving Opportunities in U.S. Chemical Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Sabine Brueske, Caroline Kramer, Aaron Fisher

    2015-06-01

    Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. chemical manufacturing. The study relies on multiple sources to estimate the energy used in the production of 74 individual chemicals, representing 57% of sector-wide energy consumption. Energy savings opportunities for individual chemicals and for 15 subsectors of chemicals manufacturing are based on technologies currently in use or under development; these potential savings are then extrapolated to estimate sector-wide energy savings opportunity.

  4. Can renewable energy sources sustain affluent society?

    International Nuclear Information System (INIS)

    Trainer, F.E.

    1995-01-01

    Figures commonly quoted on costs of generating energy from renewable sources can give the impression that it will be possible to switch to renewables as the foundation for the continuation of industrial societies with high material living standards. Although renewable energy must be the sole source in a sustainable society, major difficulties become evident when conversions, storage and supply for high latitudes are considered. It is concluded that renewable energy sources will not be able to sustain present rich world levels of energy use and that a sustainable world order must be based on acceptance of much lower per capita levels of energy use, much lower living standards and a zero growth economy. (Author)

  5. Balmorel open source energy system model

    DEFF Research Database (Denmark)

    Wiese, Frauke; Bramstoft, Rasmus; Koduvere, Hardi

    2018-01-01

    As the world progresses towards a cleaner energy future with more variable renewable energy sources, energy system models are required to deal with new challenges. This article describes design, development and applications of the open source energy system model Balmorel, which is a result...... of a long and fruitful cooperation between public and private institutions within energy system research and analysis. The purpose of the article is to explain the modelling approach, to highlight strengths and challenges of the chosen approach, to create awareness about the possible applications...... of Balmorel as well as to inspire to new model developments and encourage new users to join the community. Some of the key strengths of the model are the flexible handling of the time and space dimensions and the combination of operation and investment optimisation. Its open source character enables diverse...

  6. Wave energy potential in Galicia (NW Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Iglesias, G.; Lopez, M.; Carballo, R.; Castro, A. [University of Santiago de Compostela, Hydraulic Engineering, E.P.S., Campus Universitario s/n, 27002 Lugo (Spain); Fraguela, J.A. [University of A Coruna, E.P.S., Campus de Esteiro s/n, Ferrol (Spain); Frigaard, P. [University of Aalborg, Sohngaardsholmsvej 57, DK 9000 (Denmark)

    2009-11-15

    Wave power presents significant advantages with regard to other CO{sub 2}-free energy sources, among which the predictability, high load factor and low visual and environmental impact stand out. Galicia, facing the Atlantic on the north-western corner of the Iberian Peninsula, is subjected to a very harsh wave climate; in this work its potential for energy production is assessed based on three-hourly data from a third generation ocean wave model (WAM) covering the period 1996-2005. Taking into account the results of this assessment along with other relevant considerations such as the location of ports, navigation routes, and fishing and aquaculture zones, an area is selected for wave energy exploitation. The transformation of the offshore wave field as it propagates into this area is computed by means of a nearshore wave model (SWAN) in order to select the optimum locations for a wave farm. Two zones emerge as those with the highest potential for wave energy exploitation. The large modifications in the available wave power resulting from relatively small changes of position are made apparent in the process. (author)

  7. High-Energy Compton Scattering Light Sources

    CERN Document Server

    Hartemann, Fred V; Barty, C; Crane, John; Gibson, David J; Hartouni, E P; Tremaine, Aaron M

    2005-01-01

    No monochromatic, high-brightness, tunable light sources currently exist above 100 keV. Important applications that would benefit from such new hard x-ray sources include: nuclear resonance fluorescence spectroscopy, time-resolved positron annihilation spectroscopy, and MeV flash radiography. The peak brightness of Compton scattering light sources is derived for head-on collisions and found to scale with the electron beam brightness and the drive laser pulse energy. This gamma 2

  8. A comparative table of various energy sources

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    This table provides wide informations on the technological facets of various sources of primary energy. One of the outstanding features of this table is that it exposes and compares various technological problems involved in the energy conversion processes. The primary energy sources treated here are the solar energy (heat and light are treated separately), the geothermal energy, coal (gasification and liquefaction are treated separately), oil, natural gas, oceano-energy (tidal energy, temperature difference, and wave energy are treated separately), organic wastes, oil shale, tar sand, hydraulic power, wind power, biomass, uranium, thorium, and deuterium and lithium. On the other hand, the comparisons are made in three major items, i.e. charactersitics as natural resources, conversion or refinement to secondary energy sources, and economical characteristics. The first item includes the estimated and recognized amount of deposits, easiness of mining, storage, and transportation, and cleanliness and safety. As for conversion characteristics, the easiness, controlability, efficiency, cleanliness, and safety of various conversion processes are compared. Finally, as for economical problems, cost comparisons are made for gathering or mining those resources, including required energy input, man power, required facilities, and site conditions. (Aoki, K.)

  9. Comparative table of various energy sources

    Energy Technology Data Exchange (ETDEWEB)

    1976-08-01

    This table provides wide informations on the technological facets of various sources of primary energy. One of the outstanding features of this table is that it exposes and compares various technological problems involved in the energy conversion processes. The primary energy sources treated here are the solar energy (heat and light are treated separately), the geothermal energy, coal (gasification and liquefaction are treated separately), oil, natural gas, oceano-energy (tidal energy, temperature difference, and wave energy are treated separately), organic wastes, oil shale, tar sand, hydraulic power, wind power, biomass, uranium, thorium, and deuterium and lithium. On the other hand, the comparisons are made in three major items, i.e. charactersitics as natural resources, conversion or refinement to secondary energy sources, and economical characteristics. The first item includes the estimated and recognized amount of deposits, easiness of mining, storage, and transportation, and cleanliness and safety. As for conversion characteristics, the easiness, controlability, efficiency, cleanliness, and safety of various conversion processes are compared. Finally, as for economical problems, cost comparisons are made for gathering or mining those resources, including required energy input, man power, required facilities, and site conditions.

  10. Exactly solvable energy-dependent potentials

    International Nuclear Information System (INIS)

    Garcia-Martinez, J.; Garcia-Ravelo, J.; Pena, J.J.; Schulze-Halberg, A.

    2009-01-01

    We introduce a method for constructing exactly-solvable Schroedinger equations with energy-dependent potentials. Our method is based on converting a general linear differential equation of second order into a Schroedinger equation with energy-dependent potential. Particular examples presented here include harmonic oscillator, Coulomb and Morse potentials with various types of energy dependence.

  11. Residential Energy Efficiency Potential: Texas

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Texas single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  12. Residential Energy Efficiency Potential: Oregon

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Oregon single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  13. Residential Energy Efficiency Potential: Pennsylvania

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Pennsylvania single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  14. Residential Energy Efficiency Potential: Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Tennessee single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  15. Residential Energy Efficiency Potential: Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-16

    Energy used by Nevada single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  16. Residential Energy Efficiency Potential: Nebraska

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-22

    Energy used by Nebraska single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  17. Residential Energy Efficiency Potential: Washington

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-27

    Energy used by Washington single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  18. Residential Energy Efficiency Potential: Alabama

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-15

    Energy used by Alabama single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  19. Residential Energy Efficiency Potential: Maryland

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-16

    Energy used by Maryland single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  20. Residential Energy Efficiency Potential: Minnesota

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-22

    Energy used by Minnesota single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  1. Residential Energy Efficiency Potential: Florida

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-16

    Energy used by Florida single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  2. Residential Energy Efficiency Potential: Wisconsin

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-27

    Energy used by Wisconsin single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  3. Residential Energy Efficiency Potential: Maine

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Maine single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  4. Residential Energy Efficiency Potential: Georgia

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-17

    Energy used by Georgia single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  5. Residential Energy Efficiency Potential: Missouri

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-22

    Energy used by Missouri single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  6. Residential Energy Efficiency Potential: Utah

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-22

    Energy used by Utah single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  7. Residential Energy Efficiency Potential: Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Idaho single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  8. Residential Energy Efficiency Potential: Arizona

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-16

    Energy used by Arizona single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  9. Residential Energy Efficiency Potential: Virginia

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-27

    Energy used by Virginia single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  10. Residential Energy Efficiency Potential: Kentucky

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Kentucky single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  11. Residential Energy Efficiency Potential: Kansas

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Kansas single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  12. Residential Energy Efficiency Potential: Louisiana

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Louisiana single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  13. Residential Energy Efficiency Potential: Iowa

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Iowa single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  14. Residential Energy Efficiency Potential: Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-27

    Energy used by Wyoming single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  15. Residential Energy Efficiency Potential: Illinois

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Illinois single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  16. Residential Energy Efficiency Potential: Delaware

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-16

    Energy used by Delaware single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  17. Residential Energy Efficiency Potential: Arkansas

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-16

    Energy used by Arkansas single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  18. Residential Energy Efficiency Potential: Montana

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-22

    Energy used by Montana single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  19. Residential Energy Efficiency Potential: Mississippi

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-22

    Energy used by Mississippi single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  20. Residential Energy Efficiency Potential: Michigan

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-22

    Energy used by Michigan single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  1. Residential Energy Efficiency Potential: Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-16

    Energy used by Colorado single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  2. Residential Energy Efficiency Potential: Connecticut

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-16

    Energy used by Connecticut single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  3. Residential Energy Efficiency Potential: Indiana

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Indiana single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  4. Residential Energy Efficiency Potential: California

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-16

    Energy used by California single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  5. Residential Energy Efficiency Potential: Vermont

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-22

    Energy used by Vermont single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  6. Residential Energy Efficiency Potential: Massachusetts

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-21

    Energy used by Massachusetts single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  7. Residential Energy Efficiency Potential: Ohio

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Ohio single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  8. Residential Energy Efficiency Potential: Oklahoma

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Oklahoma single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  9. Sources, availability and costs of future energy

    International Nuclear Information System (INIS)

    Hart, R.G.

    1977-08-01

    An attempt is made to put the future energy scene in perspective by quantitatively examining energy resources, energy utilization and energy costs. Available data on resources show that conventional oil and gas are in short supply and that alternative energy sources are going to have to replace oil and gas in the not too distant future. Cost/applications assessments indicate that a mix of energy sources are likely to best meet our energy needs of the future. Hydro, nuclear and coal are all practical alternatives for meeting electrical needs and electricity is a practical alternative for space heating. Coal appears to be the most practical alternative for meeting much of the industrial energy need and frontier oil or oil from the tar sands appear to be the most practical alternatives for meeting the transportation need. Solar energy shows promise of meeting some of the space heating load in Canada if economical energy storage systems can be developed. The general conclusion is that the basic energy problem is energy conversion. (author)

  10. Climatic impact of alternative energy sources

    Energy Technology Data Exchange (ETDEWEB)

    Williams, J

    1979-01-01

    Detailed evaluations have suggested that the order of magnitude of energy demand 50 yr from the present will be 25-40 TW compared with about 8 TW at the present day. Environmental impacts are discussed of three energy-supply sources that could be developed on a large-enough scale to satisfy a demand of this magnitude: solar and nuclear energy and fossil fuels. 14 refs.

  11. Renewable energy costs, potentials, barriers: Conceptual issues

    International Nuclear Information System (INIS)

    Verbruggen, Aviel; Fischedick, Manfred; Moomaw, William; Weir, Tony; Nadai, Alain; Nilsson, Lars J.; Nyboer, John; Sathaye, Jayant

    2010-01-01

    Renewable energy can become the major energy supply option in low-carbon energy economies. Disruptive transformations in all energy systems are necessary for tapping widely available renewable energy resources. Organizing the energy transition from non-sustainable to renewable energy is often described as the major challenge of the first half of the 21st century. Technological innovation, the economy (costs and prices) and policies have to be aligned to achieve full renewable energy potentials, and barriers impeding that growth need to be removed. These issues are also covered by IPCC's special report on renewable energy and climate change to be completed in 2010. This article focuses on the interrelations among the drivers. It clarifies definitions of costs and prices, and of barriers. After reviewing how the third and fourth assessment reports of IPCC cover mitigation potentials and commenting on definitions of renewable energy potentials in the literature, we propose a consistent set of potentials of renewable energy supplies.

  12. Renewable energy sources. European Commission papers

    International Nuclear Information System (INIS)

    1997-05-01

    The ''Directive on the Promotion of Electricity from Renewable Sources of Energy in the Internal Electricity Market'' was adopted in September 2001. Its purpose is to promote an increase in the contribution of renewable energy sources to electricity production in the internal market for electricity and to create a basis for a future Community framework. Energie-Cites provides in this document a summary of its opinion on the Green Paper and on Alterner II and gives a proposal for an Action Plan concerning the White Paper. (A.L.B.)

  13. Action plan for renewable energy sources

    International Nuclear Information System (INIS)

    2000-03-01

    In the Finnish Energy Strategy, approved by the Finnish Government in 1997, the emphasis is laid on the importance of bioenergy and other renewable energy sources for the creation of such prerequisites for the Finnish energy economy that the supply of energy can be secured, the price on energy is competitive and the emissions from energy generation are within the limits set by the international commitments made by Finland. In 1998, the European Union Meeting of the Ministers of Energy adopted a resolution taking a positive attitude to the Communication from the Commission 'Energy for the future: Renewable sources of energy' - White Paper for a Community Strategy and Action Plan. National measures play a key role in the achievement of the objectives set in the White Paper. This Action Plan for Renewable Energy Sources is a national programme in line with the EU's White Paper. It comprises all renewable sources of energy available in Finland. It encompasses even peat, which in Finland has traditionally been considered to be a solid biofuel but is internationally classified as one of the non-renewable sources of energy. In the Action Plan, objectives are set for the volume of renewable energy sources used in the year 2010 including a prognosis on the development by the year 2025. The goal is that by the year 2010 the volume of energy generated using renewable energy sources has increased by 50% compared with the year 1995. This would mean an increase by 3 Mtoe, which is about 1 Mtoe more than anticipated in the outlook based on the Finnish Energy Strategy. A further goal is to double the use of renewable energy sources by the year 2025. The aggregate use of renewable energy sources depends to a large extent both on the development of the price on energy produced using other energy sources and on possible changes in the production volume of the Finnish forest industry. The most important objective stated in the Action Plan is to improve the competitiveness of renewable

  14. Potential contribution of biomass to the sustainable energy development

    International Nuclear Information System (INIS)

    Demirbas, M. Fatih; Balat, Mustafa; Balat, Havva

    2009-01-01

    Biomass is a renewable energy source and its importance will increase as national energy policy and strategy focuses more heavily on renewable sources and conservation. Biomass is considered the renewable energy source with the highest potential to contribute to the energy needs of modern society for both the industrialized and developing countries worldwide. The most important biomass energy sources are wood and wood wastes, agricultural crops and their waste byproducts, municipal solid waste, animal wastes, waste from food processing, and aquatic plants and algae. Biomass is one potential source of renewable energy and the conversion of plant material into a suitable form of energy, usually electricity or as a fuel for an internal combustion engine, can be achieved using a number of different routes, each with specific pros and cons. Currently, much research has been focused on sustainable and environmental friendly energy from biomass to replace conventional fossil fuels. The main objective of the present study is to investigate global potential and use of biomass energy and its contribution to the sustainable energy development by presenting its historical development.

  15. Modeling of renewable hybrid energy sources

    Directory of Open Access Journals (Sweden)

    Dumitru Cristian Dragos

    2009-12-01

    Full Text Available Recent developments and trends in the electric power consumption indicate an increasing use of renewable energy. Renewable energy technologies offer the promise of clean, abundant energy gathered from self-renewing resources such as the sun, wind, earth and plants. Virtually all regions of the world have renewable resources of one type or another. By this point of view studies on renewable energies focuses more and more attention. The present paper intends to present different mathematical models related to different types of renewable energy sources such as: solar energy and wind energy. It is also presented the validation and adaptation of such models to hybrid systems working in geographical and meteorological conditions specific to central part of Transylvania region. The conclusions based on validation of such models are also shown.

  16. WIND SPEED AND ENERGY POTENTIAL ANALYSES

    Directory of Open Access Journals (Sweden)

    A. TOKGÖZLÜ

    2013-01-01

    Full Text Available This paper provides a case study on application of wavelet techniques to analyze wind speed and energy (renewable and environmental friendly energy. Solar and wind are main sources of energy that allows farmers to have the potential for transferring kinetic energy captured by the wind mill for pumping water, drying crops, heating systems of green houses, rural electrification's or cooking. Larger wind turbines (over 1 MW can pump enough water for small-scale irrigation. This study tried to initiate data gathering process for wavelet analyses, different scale effects and their role on wind speed and direction variations. The wind data gathering system is mounted at latitudes: 37° 50" N; longitude 30° 33" E and height: 1200 m above mean sea level at a hill near Süleyman Demirel University campus. 10 minutes average values of two levels wind speed and direction (10m and 30m above ground level have been recorded by a data logger between July 2001 and February 2002. Wind speed values changed between the range of 0 m/s and 54 m/s. Annual mean speed value is 4.5 m/s at 10 m ground level. Prevalent wind

  17. Prospects of renewable-energy sources in Pakistan

    International Nuclear Information System (INIS)

    Zaigham, N.A.; Nayyar, Z.A.

    2005-01-01

    Pakistan, despite the enormous potential of its energy resources, remains energy- deficient and has to rely heavily on imports to satisfy its needs. Moreover, a very large part of the rural areas does not have the electrification facilities, because they are either too remote and/or too expensive to connect to the national grid. Pakistan obtains its energy requirements from a variety of traditional and commercial sources. Share of various primary energy-sources in energy-supply mix remained during last few years as oil: 43.5%, gas: 41.5%, LPG: 0.3%, coal: 4.5%, hydro-electricity: 9.2%, and nuclear electricity: 1.1%. The electric-power generation included 71.9% thermal, 25.2% hydel and 2.9% nuclear. While there is no prospect for Pakistan to reach self-sufficiency in hydrocarbons, a good option is the exploitation and utilization of the huge coal-reserves of Thar and the other renewable energy sources. Pakistan has wide spectrum of high potential renewable energy sources, conventional as well as non-conventional, which have not been adequately explored, exploited and developed. 'Thus, the primary energy supplies today are not enough to meet even the present demand. So, Pakistan, like other developing countries of the region, is facing a serious challenge of energy deficit. The development of the renewable energy sources can play an important role in meeting this challenge. Present observations, based on reviewing the geological setup, geographical position, climatological cycles and the agricultural/industrial/ urbanization activities, reveal that there are bright prospects for the exploitation of various renewable-energy sources, which include mega and macro/micro-hydel, biomass, biogas, wind, solar, co-generation, city and other solid wastes, utilization of low-head canal levels, sea wave and tide and geothermal energies etc. Technologically, all these renewable-energy sources are viable and consequently suited to efforts for poverty alleviation and cleaner

  18. Energy Spread Sources in TESLA and TTF

    International Nuclear Information System (INIS)

    Mosnier, A.; Tessier, J.M.

    1995-03-01

    The beam energy spread in the TESLA linac must be small enough to limit the emittance dilution due to the dispersive effects. This report summarizes the major sources of energy spread both for the TESLA linac and the TTF linac, where these estimations will be carefully checked with beam experiments. The first part recalls the intra-bunch energy spread while the second part looks into the bunch-to-bunch energy spread induced by rf field fluctuations within the bunch train and from pulse-to-pulse. (author). 3 refs., 4 figs

  19. Potential of solid waste utilization as source of refuse derived fuel (RDF) energy (case study at temporary solid waste disposal site in West Jakarta)

    Science.gov (United States)

    Indrawati, D.; Lindu, M.; Denita, P.

    2018-01-01

    This study aims to measure the volume of solid waste generated as well asits density, composition, and characteristics, to analyze the potential of waste in TPS to become RDF materials and to analyze the best composition mixture of RDF materials. The results show that the average of solid waste generation in TPS reaches 40.80 m3/day, with the largest percentage of its share is the organic waste component of 77.9%, while the smallest amount of its share is metal and rubber of 0.1%. The average water content and ash content of solid waste at the TPS is 27.7% and 6.4% respectively, while the average calorific potential value is 728.71 kcal/kg. The results of solid waste characteristics comparison at three TPS indicate thatTPS Tanjung Duren has the greatest waste potential to be processed into RDF materials with a calorific value of 893.73 kcal/kg, water content level of 24.6%, andlow ash content of 6.11%. This research has also shown that the best composition for RDF composite materials is rubber, wood, and textile mixtureexposed to outdoor drying conditions because it produced low water content and low ash content of 10.8% and 9.6%, thus optimizedthe calorific value of 4,372.896 kcal/kg.

  20. Opportunities for renewable energy sources in Central Asia countries

    Energy Technology Data Exchange (ETDEWEB)

    Obozov, A.J. [Project KUN (Kyrgyzstan); Loscutoff, W.V. [National Renewable Energy Lab., Golden, CO (United States)

    1998-07-01

    This report presents an overview of the state of conventional energy sources and the potential for development of renewable energy sources in the Central Asia countries of Kazakhstan, Uzbekistan, Kyrgyzstan, Turkmenistan, and Tajikistan. The region has a population of about 50 million in an area of more than four million square kilometers. The per capita gross internal product is more than $2,500, although the economy has been declining the past five years. The area has substantial coal, oil, uranium, and natural gas reserves, although they are not distributed equally among the five countries. Energy production is such that the countries do not have to rely heavily on imports. One of the problems in Central Asia is that the energy prices are substantially below the world prices. This is a factor in development of renewable energy sources. The primary renewable energy resources available are wind in Kazakhstan, solar in the entire region, biomass in Kyrgyzstan, and micro-hydropower stations in Kazakhstan and Kyrgyzstan. All of these have the potential to provide a significant amount of the required energy for the region. However, all of the countries have an abundance of various renewable energy resources. To effectively use these resources, however, a number of barriers to their development and commercialization must be overcome. These include low prices of conventional energy sources, absence of legislative support, lack of financing for new technologies, and lack of awareness of renewable energy sources by the population. A number of specific actions are proposed to overcome these barriers. These include establishment of a Central Asia coordinating council for renewable energy, development of a regional renewable energy program, and setting up a number of large demonstration projects. 16 figs.

  1. Energy efficiency: potentials and profits

    International Nuclear Information System (INIS)

    Sigaud, J.B.

    2011-01-01

    In this work, Jean-Marie Bouchereau (ADEME) has presented a review of the energy efficiency profits in France during the last 20 years and the prospects from now to 2020. Then, Geoffrey Woodward (TOTAL) and Sebastien Huchette (AXENS) have recalled the stakes involved in the energy efficiency of the upstream and downstream sectors respectively and presented examples of advances approaches illustrated by concrete cases of applications. (O.M.)

  2. Assessment on health and energy sources

    International Nuclear Information System (INIS)

    Acket, C.; Yvon, M.

    2013-01-01

    After having recalled some issues related to the prevention of environmental health risks and mentioned in the preparation of the debate on energy transition in France, this document gathers actual objective elements for an assessment of health impact of the different energy sources. It discusses the impacts on health (mortality, sicknesses and diseases) of fossil fuels (coal and its wastes, gas), of renewable energies, of nuclear energy. For this last one, the document outlines the lack of documentation for various topics, discusses some results published on the dose impact of nuclear operation, and comment the issue of waste storage. It also recalls the main accidents (Three Mile Island, Chernobyl, and Fukushima) and some of the known and assessed impacts. The third part proposes comparisons between the different energy sources in terms of deadly accidents, of pollution and greenhouse effect (current and late mortality), of released radioactivity (release sources and collective dose). In conclusion, the authors outline that the impact on health of environmental risks must be one of the essential issues for the definition of energy policy, and discuss the resulting implications. Various data are provided in appendix: energy in France and in the world, origins of radioactivity

  3. The nuclear energy: an essential source of the energy package

    International Nuclear Information System (INIS)

    Ngo, Ch.

    2007-01-01

    In the framework of the energy consumption facing the environmental quality, the author presents the energy sources, used and possible. He shows the necessity to reduce the dependency towards the fossil fuels. He discusses the possibility of the CO 2 storage, the electric power use to decrease the CO 2 emissions. He then analyses the cogeneration alternative, the hybrid vehicles and the advantages of the nuclear energy. (A.L.B.)

  4. PROSPECTS OF ENERGY EFFICIENCY IMPROVEMENT AND DEVELOPMENT OF THE RENEWABLE ENERGY SOURCES IN PROVINCE OF VOJVODINA

    Energy Technology Data Exchange (ETDEWEB)

    Gvozdenac, D.; Ciric, R.; Tesic, M.

    2007-07-01

    The paper presents the outcome of the research in the field of energy efficiency improvement and development of the renewable energy sources in province of Vojvodina (Serbia). The summarized results of the paper are: - Potentials for energy efficiency improvement in Vojvodina, - Potentials for development of renewable energy sources in Vojvodina, - Proposal of measures of the energy policy for the promotion of research and development (R and D) which will use local scientific and technical potentials in the field of renewable energy sources and energy efficiency and improve the sustainability on the long run. - Proposal of measures for the energy policy in the domain of renewable energy sources development and energy efficiency and estimation of potentials for improvements by applying proposed measures in order to accomplish established tasks. - Synthesizing findings and proposals in the Action Plan of the Executive Council of the Autonomous Province of Vojvodina for the realization of the medium term program as well as the establishment of the monitoring plan for the assessment of program objectives progress. (auth)

  5. Indian energy sources in 1980's

    Science.gov (United States)

    Chaturvedi, A. C.

    Indian energy sources for electrical power generation are surveyed with a view to the development of the available hydroelectric resources. The capital-intensive nature of hydroelectric projects and their long gestation periods have impeded the rapid exploitation of the hydroelectric resources in the country, which are expected to provide 37% of the 16,200 MW capacity anticipated by 2001. Alternative sources of power such as solar and wind energy, biogas conversion and the use of industrial waste heat to produce electricity are discussed with case studies presented.

  6. The wind energy potential in Argentina

    International Nuclear Information System (INIS)

    Alvarez, P

    2005-01-01

    The wind energy are increasing its contribution to large scale electricity generation in many countries.The high technical maturity reached by modern wind turbines returns it viable and competitive in many regions, specially in those where a suitable legal framework stimulates the generation from renewable sources of energy.As this regard, the objective of this report is to demonstrate that, far from being limited to provide energy to remote, dispersed or geographically isolated sites not served by conventional networks, the wind energy has fully potential to supply a pretty relevant part of the electrical consumption of the great urban centers located in those zones of the country favored with this resource.For it, two preliminary estimations has done: the total 'windy' surface area in geographic proximity of the high voltage lines and electrical substations of the Argentine System of Interconnection (SADI) able 'to be seeded' with wind turbines, and the total electrical energy feasible of being generated from them.The paper supposes the exclusion of important non apt areas by virtue of strictly geographic, economic or environmental considerations.Even so, the result of the final calculation is extraordinarily high and promissory: if only 4% of the total surface of the contiguous land areas (in a maximum radius of 62 km) to the high voltage transmission system (in which the annual mean wind speed surpasses the 5.55 m/s) would be filled with power wind turbines, the annual average energy produced by them would be equivalent to 89% of the estimated national electrical consumption for year 2013.The usable wind potential in favorable technical conditions for commercial generation rounds this way around 40,000 MW, that would report an annual average energy of 100,000 GWh, occupying an area near 5000 km 2 .The total wind energy potential is (of course) considerably greater. Anyway, given the random nature of the wind and the consequent characteristics of not firm power

  7. Health evaluation of energy-generating sources

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    The American Medical Association's House of Delegates, at its December 1976 Clinical Convention, requested that an evaluation be made of the health hazards of nuclear, fossil, and alternative energy-generating sources, for employees of energy-producing facilities as well as for the general population. This report is a summary evaluation of such hazards prepared in response to that request. This report, which was adopted by the House of Delegates on June 21, 1978, appears here in a revised and corrected version

  8. Forest biomass as an energy source

    Science.gov (United States)

    P.E. Laks; R.W. Hemingway; A. Conner

    1979-01-01

    The Task Force on Forest Biomass as an Energy Source was chartered by the Society of American Foresters on September 26, 1977, and took its present form following an amendment to the charter on October 5, 1977. It built upon the findings of two previous task forces, the Task Force on Energy and Forest Resources and the Task Force for Evaluation of the CORRIM Report (...

  9. Solar energy versus nuclear energy as energy sources at the transition period

    International Nuclear Information System (INIS)

    Sastroamidjojo, MSA.

    Technical aspects and social aspects of nuclear power plants and solar energy system as energy sources, were comparatively evaluated. The evaluation proves that solar energy is better than nuclear energy. (SMN)

  10. Energy scavenging sources for biomedical sensors

    International Nuclear Information System (INIS)

    Romero, E; Warrington, R O; Neuman, M R

    2009-01-01

    Energy scavenging has increasingly become an interesting option for powering electronic devices because of the almost infinite lifetime and the non-dependence on fuels for energy generation. Moreover, the rise of wireless technologies promises new applications in medical monitoring systems, but these still face limitations due to battery lifetime and size. A trade-off of these two factors has typically governed the size, useful life and capabilities of an autonomous system. Energy generation from sources such as motion, light and temperature gradients has been established as commercially viable alternatives to batteries for human-powered flashlights, solar calculators, radio receivers and thermal-powered wristwatches, among others. Research on energy harvesting from human activities has also addressed the feasibility of powering wearable or implantable systems. Biomedical sensors can take advantage of human-based activities as the energy source for energy scavengers. This review describes the state of the art of energy scavenging technologies for powering sensors and instrumentation of physiological variables. After a short description of the human power and the energy generation limits, the different transduction mechanisms, recent developments and challenges faced are reviewed and discussed. (topical review)

  11. ECR ion source for variable energy cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Bose, D K; Taki, G S; Nabhiraj, P Y; Pal, G; Dasgupta, B; Mallik, C; Das, S K; Bandopadhaya, D K; Bhandari, R K [Variable Energy Cyclotron Centre, Calcutta (India)

    1995-09-01

    Some performance characteristics of 6.4 GHz two stage ECR ion source which was under development at this centre is presented. The present ion source will facilitate acceleration of light heavy ions with the existing k=130 variable energy cyclotron. Multiply charged heavy ion (MCHI) beam from the source will also be utilized for atomic physics studies. Oxygen beam has already been used for ion implantation studies. The external injection system under development is nearing completion. Heavy ion beam from cyclotron is expected by end of 1995. (author).

  12. Renewable energy sources in Bulgaria: Current state and trends

    Science.gov (United States)

    Kolev, K.

    The over-dependency of Bulgaria on imported fuel stressed the importance of developing a new energy strategy based on energy saving which includes also using renewable energy sources (RES). The target is the substitution of at least 2 percent of the real primary energy consumption with RES by 2010. The author gives a generalized analysis of the available RES in Bulgaria -solar, wind, geothermal, biomass and mini-hydraulic. The potentialities of each source for its usage as a suitable energy supply are pointed out, as well as the current status of research and implementation work, problems connected with legislation, financing and production of particular facilities. The governmental policy concerning RES is considered briefly. A description is given to the project 'Technical and Economical Assessment of Possibilities for Expansion of the RES-part in the Energy Balance of the Country' developed and started in 1994 in the framework of the PHARE program.

  13. Energy sources, self-organization, and the origin of life.

    Science.gov (United States)

    Boiteau, Laurent; Pascal, Robert

    2011-02-01

    The emergence and early developments of life are considered from the point of view that contingent events that inevitably marked evolution were accompanied by deterministic driving forces governing the selection between different alternatives. Accordingly, potential energy sources are considered for their propensity to induce self-organization within the scope of the chemical approach to the origin of life. Requirements in terms of quality of energy locate thermal or photochemical activation in the atmosphere as highly likely processes for the formation of activated low-molecular weight organic compounds prone to induce biomolecular self-organization through their ability to deliver quanta of energy matching the needs of early biochemical pathways or the reproduction of self-replicating entities. These lines of reasoning suggest the existence of a direct connection between the free energy content of intermediates of early pathways and the quanta of energy delivered by available sources of energy.

  14. Development of Electricity Generation from Renewable Energy Sources in Turkey

    Science.gov (United States)

    Kentel, E.

    2011-12-01

    Electricity is mainly produced from coal, natural gas and hydropower in Turkey. However, almost all the natural gas and high quality coal are imported. Thus, increasing the shares of both hydro and other renewables in energy supply is necessary to decrease dependency of the country on foreign sources. In 2008, the total installed capacity of Turkey was around 42000 MW and 66 % of this was from thermal sources. The remaining 33 % was from hydro, which leaves only one percent for the other renewable energy sources. The share of renewable energy in the energy budget of Turkey has increased in the last two decades; however, in 2008, only 17 % of the total electricity generation was realized from renewable sources most of which was hydro. According to State Hydraulic Works (SHW) which is the primary executive state agency responsible for the planning, operating and managing of Turkey's water resources, Turkey utilizes only around 35% of its economically viable hydro potential. The current situation clearly demonstrates the need for increasing the share of renewables in the energy budget. New laws, such as the Electricity Market Law, have been enacted and the following items were identified by the Ministry of Energy and Natural Resources of Turkey among primary energy policies and priorities: (i) decreasing dependency on foreign resources by prioritizing utilization of natural resources, (ii) increasing the share of renewable energy resources in the energy budget of Turkey; (iii) minimization of adverse environmental impacts of production and utilization of natural resources. The government's energy policy increased investments in renewable energy resources; however lack of a needed legal framework brought various environmental and social problems with this fast development. The development of the share of renewable resources in the energy budget, current government policy, and environmental concerns related with renewables, and ideas to improve the overall benefits of

  15. Energy price comparison of new, renewable, and fossil energy sources

    International Nuclear Information System (INIS)

    Edwaren Liun; Sunardi

    2014-01-01

    Low cost transportation for people and goods is essential to the economic well-being of the nation. Until now, if the oil prices rise, the cost of transportation will automatically follow and most of the people suffering due to soaring prices of food and other items. Almost 100 percent of Indonesian transportation energy demand is supported by oil. Supply disruption - or even the threat of disruption - in the Middle East or elsewhere may lead to a shift in consumer prices and the cost of the industry in significant numbers. While costs in the energy sector, especially electricity in developed countries that also contribute significantly to support the transport sector, is much more stable and predictable. Energy requirements are so high in the transport sector tends to force people to seek the source and means of energy in other forms such as electricity or hydrogen that can match or exceed the performance of fuel oil. This paper aims to analyze the economics of energy price comparison to see the extent of the economic opportunities some kind of energy to play a significant role in the transport sector and the subsequent impact on the energy system. From the results obtained by the analysis that will be increasingly necessary role of nuclear energy and other specific energy as a source of electrical energy considering its economical aspects are relatively better. (author)

  16. Importance of biomass energy sources for Turkey

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2008-01-01

    Various agricultural residues such as grain dust, crop residues and fruit tree residues are available in Turkey as the sources of biomass energy. Among the biomass energy sources, fuelwood seems to be one of the most interesting because its share of the total energy production of Turkey is high at 21% and the techniques for converting it to useful energy are not necessarily sophisticated. Selection of a particular biomass for energy requirements is influenced by its availability, source and transportation cost, competing uses and prevalent fossil fuel prices. Utilization of biomass is a very attractive energy resource, particularly for developing countries since biomass uses local feedstocks and labor. Like many developing countries, Turkey relies on biomass to provide much of its energy requirement. More efficient use of biomass in producing energy, both electrical and thermal, may allow Turkey to reduce petroleum imports, thus affecting its balance of payments dramatically. Turkey has always been one of the major agricultural countries in the world. The importance of agriculture is increasing due to biomass energy being one of the major resources in Turkey. Biomass waste materials can be used in Turkey to provide centralized, medium- and large-scale production of process heat for electricity production. Turkey's first biomass power project is under development in Adana province, at an installed capacity of 45 MW. Two others, at a total capacity of 30 MW, are at the feasibility study stage in Mersin and Tarsus provinces. Electricity production from biomass has been found to be a promising method in the nearest future in Turkey

  17. Potential energy savings and thermal comfort

    DEFF Research Database (Denmark)

    Jensen, Karsten Ingerslev; Rudbeck, Claus Christian; Schultz, Jørgen Munthe

    1996-01-01

    The simulation results on the energy saving potential and influence on indoor thermal comfort by replacement of common windows with aerogel windows as well as commercial low-energy windows are described and analysed.......The simulation results on the energy saving potential and influence on indoor thermal comfort by replacement of common windows with aerogel windows as well as commercial low-energy windows are described and analysed....

  18. Potential Effects of Domestic Energy on the Health of Women ...

    African Journals Online (AJOL)

    Objective: To highlight the various potential health problems women and others exposed to gases/substances emitted from domestic sources of energy are at risk of. A review of the literature on the health problems associated with use of various forms of energy fuels was done. Review: Not much literature has emanated ...

  19. High energy cosmic rays: sources and fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Stanev, Todor; Gaisser, Thomas K.; Tilav, Serap

    2014-04-01

    We discuss the production of a unique energy spectrum of the high energy cosmic rays detected with air showers by shifting the energy estimates of different detectors. After such a spectrum is generated we fit the spectrum with three or four populations of cosmic rays that might be accelerated at different cosmic ray sources. We also present the chemical composition that the fits of the spectrum generates and discuss some new data sets presented this summer at the ICRC in Rio de Janeiro that may require new global fits.

  20. Potential of renewable energy systems in China

    International Nuclear Information System (INIS)

    Liu, Wen; Lund, Henrik; Mathiesen, Brian Vad; Zhang, Xiliang

    2011-01-01

    Along with high-speed economic development and increasing energy consumption, the Chinese Government faces a growing pressure to maintain the balance between energy supply and demand. In 2009, China has become both the largest energy consumer and CO 2 emitting country in the world. In this case, the inappropriate energy consumption structure should be changed. As an alternative, a suitable infrastructure for the implementation of renewable energy may serve as a long-term sustainable solution. The perspective of a 100% renewable energy system has been analyzed and discussed in some countries previously. In this process, assessment of domestic renewable energy sources is the first step. Then appropriate methodologies are needed to perform energy system analyses involving the integration of more sustainable strategies. Denmark may serve as an example of how sustainable strategies can be implemented. The Danish system has demonstrated the possibility of converting into a 100% renewable energy system. This paper discusses the perspective of renewable energy in China firstly, and then analyses whether it is suitable to adopt similar methodologies applied in other countries as China approaches a renewable energy system. The conclusion is that China's domestic renewable energy sources are abundant and show the possibility to cover future energy demand; the methodologies used to analyse a 100% renewable energy system are applicable in China. Therefore, proposing an analysis of a 100% renewable energy system in China is not unreasonable. (author)

  1. Petroleum coke as energy source: an update

    International Nuclear Information System (INIS)

    Pinelli, G.

    2008-01-01

    A previous review presented a critical evaluation of the use of petroleum coke as energy source. After some years, with reference to increased petroleum coke production, that paper is revised. In particular, the attention is now focused on world petroleum coke market trends and, in regard to petroleum coke used as fuel, on new Italian environment laws. [it

  2. A Web Based Puzzle for Energy Sources

    Science.gov (United States)

    Secken, Nilgun

    2006-01-01

    At present many countries in the world consume too much fossil fuels such as petroleum, natural gas and coal to meet their energy needs. These fossil fuels are not renewable; their sources are limited and reducing gradually. More importantly they have been becoming more expensive day by day and their damage to the environment has been increasing.…

  3. Kansas Energy Sources: A Geological Review

    Science.gov (United States)

    Merriam, D.F.; Brady, L.L.; Newell, K.D.

    2012-01-01

    Kansas produces both conventional energy (oil, gas, and coal) and nonconventional (coalbed gas, wind, hydropower, nuclear, geothermal, solar, and biofuels) and ranks the 22nd in state energy production in the U. S. Nonrenewable conventional petroleum is the most important energy source with nonrenewable, nonconventional coalbed methane gas becoming increasingly important. Many stratigraphic units produce oil and/or gas somewhere in the state with the exception of the Salina Basin in north-central Kansas. Coalbed methane is produced from shallow wells drilled into the thin coal units in southeastern Kansas. At present, only two surface coal mines are active in southeastern Kansas. Although Kansas has been a major exporter of energy in the past (it ranked first in oil production in 1916), now, it is an energy importer. ?? 2011 International Association for Mathematical Geology.

  4. Renewable energy sources: resistance to change

    International Nuclear Information System (INIS)

    Dubreuil, Th.; Audrain-Demey, G.; Attal, J.Ph.; Lormeteau, B.

    2011-01-01

    This paper is the summary of a conference day organised by the students of the 'environment and sustainable development law' Master of Nantes university (France). This interdisciplinary meeting brought together professionals of renewable energy industries who could testify about the resistance of both politicians and the public opinion against the energy transition towards renewable sources. Legal, political, sociological and cultural considerations are put forward to explain this resistance. The French specificity, with an over-representation of nuclear energy, a constraining legal framework for renewable energies, a regional opposition to renewable energy projects (NIMBY syndrome), and a lack of trust in the political class and in its representatives are as many factors that have contributed to build this French 'cultural exception'. (J.S.)

  5. Energy utilization, environmental pollution and renewable energy sources in Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Ocak, M.; Ocak, Z.; Bilgen, S.; Keles, S.; Kaygusuz, K. [Karadeniz Technical University, Trabzon (Turkey). Dept. of Chemistry

    2004-04-01

    In this study, energy utilization and its major environmental impacts are discussed from the standpoint of sustainable development, including anticipated patterns of future energy use and subsequent environmental issues in Turkey. Several aspects relating to energy utilization, renewable energy, energy efficiency, environment and sustainable development are examined from both current and future perspectives. Turkey is an energy importing country, more than half of the energy requirement has been supplied by imports. Domestic oil and lignite reserves are limited, and the lignites are characterised by high ash, sulfur and moisture content. Because of increasing energy consumption, environmental pollution is becoming a serious problem in the future for the country. In this regard, renewable energy resources appear to be one of the most efficient and effective solutions for sustainable energy development and environmental pollution prevention in Turkey. Turkey's geographical location has several advantages for extensive use of most of these renewable energy sources. Especially hydropower, biomass, geothermal, solar and wind energy should be considered and seriously supported by governments and private sectors.

  6. Energy utilization, environmental pollution and renewable energy sources in Turkey

    International Nuclear Information System (INIS)

    Ocak, M.; Ocak, Z.; Bilgen, S.; Keles, S.; Kaygusuz, K.

    2004-01-01

    In this study, energy utilization and its major environmental impacts are discussed from the standpoint of sustainable development, including anticipated patterns of future energy use and subsequent environmental issues in Turkey. Several aspects relating to energy utilization, renewable energy, energy efficiency, environment and sustainable development are examined from both current and future perspectives. Turkey is an energy importing country, more than half of the energy requirement has been supplied by imports. Domestic oil and lignite reserves are limited, and the lignites are characterised by high ash, sulfur and moisture content. Because of increasing energy consumption, environmental pollution is becoming a serious problem in the future for the country. In this regard, renewable energy resources appear to be one of the most efficient and effective solutions for sustainable energy development and environmental pollution prevention in Turkey. Turkey's geographical location has several advantages for extensive use of most of these renewable energy sources. Especially hydropower, biomass, geothermal, solar and wind energy should be considered and seriously supported by governments and private sectors

  7. Potential of renewable energy systems in China

    DEFF Research Database (Denmark)

    Liu, Wen; Lund, Henrik; Mathiesen, Brian Vad

    2011-01-01

    Along with high-speed economic development and increasing energy consumption, the Chinese Government faces a growing pressure to maintain the balance between energy supply and demand. In 2009, China has become both the largest energy consumer and CO2 emitting country in the world. In this case...... system has demonstrated the possibility of converting into a 100% renewable energy system. This paper discusses the perspective of renewable energy in China firstly, and then analyses whether it is suitable to adopt similar methodologies applied in other countries as China approaches a renewable energy...... system. The conclusion is that China’s domestic renewable energy sources are abundant and show the possibility to cover future energy demand; the methodologies used to analyse a 100% renewable energy system are applicable in China. Therefore, proposing an analysis of a 100% renewable energy system...

  8. Energy conservation potential in Taiwanese textile industry

    International Nuclear Information System (INIS)

    Hong, Gui-Bing; Su, Te-Li; Lee, Jenq-Daw; Hsu, Tsung-Chi; Chen, Hua-Wei

    2010-01-01

    Since Taiwan lacks sufficient self-produced energy, increasing energy efficiency and energy savings are essential aspects of Taiwan's energy policy. This work summarizes the energy savings implemented by 303 firms in Taiwan's textile industry from the on-line Energy Declaration System in 2008. It was found that the total implemented energy savings amounted to 46,074 ton of oil equivalent (TOE). The energy saving was equivalent to 94,614 MWh of electricity, 23,686 kl of fuel oil and 4887 ton of fuel coal. It represented a potential reduction of 143,669 ton in carbon dioxide emissions, equivalent to the annual carbon dioxide absorption capacity of a 3848 ha plantation forest. This study summarizes energy-saving measures for energy users and identifies the areas for making energy saving to provide an energy efficiency baseline.

  9. Energy Efficiency of Biogas Produced from Different Biomass Sources

    International Nuclear Information System (INIS)

    Begum, Shahida; Nazri, A H

    2013-01-01

    Malaysia has different sources of biomass like palm oil waste, agricultural waste, cow dung, sewage waste and landfill sites, which can be used to produce biogas and as a source of energy. Depending on the type of biomass, the biogas produced can have different calorific value. At the same time the energy, being used to produce biogas is dependent on transportation distance, means of transportation, conversion techniques and for handling of raw materials and digested residues. An energy systems analysis approach based on literature is applied to calculate the energy efficiency of biogas produced from biomass. Basically, the methodology is comprised of collecting data, proposing locations and estimating the energy input needed to produce biogas and output obtained from the generated biogas. The study showed that palm oil and municipal solid waste is two potential sources of biomass. The energy efficiency of biogas produced from palm oil residues and municipal solid wastes is 1.70 and 3.33 respectively. Municipal solid wastes have the higher energy efficiency due to less transportation distance and electricity consumption. Despite the inherent uncertainties in the calculations, it can be concluded that the energy potential to use biomass for biogas production is a promising alternative.

  10. Solid waste as an energy source for the Northeast

    Energy Technology Data Exchange (ETDEWEB)

    Meier, P.M.; McCoy, T.H.

    1976-06-01

    This report, one of a series prepared for the BNL study of the Energy Future of the Northeastern United States, presents an assessment of the potential contribution of energy recovery from municipal refuse to energy supply in the region. A brief review of the present and likely future quantity and composition of municipal refuse and the technologies available for energy recovery (Chapters II and III) is followed by a comparison of the potential contributions to energy supply of the various recovery options including direct firing in utility boilers, pyrolysis to oil or gas, and steam generation for industrial process heat or district space heating (Chapter IV). The relationship of refuse energy recovery to market conditions for alternative energy sources is considered in Chapter V, which also includes an analysis of the impact of haul costs, interest rates, and delivered prices of the major fuels. Institutional barriers to implementation of energy recovery are reviewed in Chapter VI, and the environmental implications of the concept are addressed in Chapter VII. In the concluding chapters, scenarios of energy recovery are developed for 1985 and 2000, and the sensitivity of overall energy yield to projections and assumptions is examined. Although even under the most optimistic assumptions, refuse energy recovery is found to contribute only some 5 percent of total regional consumption, the economic and environmental benefits, coupled with the increasing difficulty of finding other refuse disposal alternatives, make energy recovery a very attractive policy choice for helping to relieve future energy supply difficulties in the Northeast. (auth)

  11. Energy sources and nuclear energy. Comparative analysis and ethical reflections

    International Nuclear Information System (INIS)

    Hoenraet, C.

    1999-01-01

    Under the authority of the episcopacy of Brugge in Belgium an independent working group Ethics and Nuclear Energy was set up. The purpose of the working group was to collect all the necessary information on existing energy sources and to carry out a comparative analysis of their impact on mankind and the environment. Also attention was paid to economical and social aspects. The results of the study are subjected to an ethical reflection. The book is aimed at politicians, teachers, journalists and every interested layman who wants to gain insight into the consequences of the use of nuclear energy and other energy sources. Based on the information in this book one should be able to objectively define one's position in future debates on this subject

  12. Renewable energy sources and nuclear installations

    International Nuclear Information System (INIS)

    Hirschberg, S.; Bauer, Ch.; Burgherr, P.; Stucki, S.; Vogel, F.; Biollaz, S.; Schulz, T.; Durisch, W.; Hardegger, P.; Foskolos, K.; Meier, A.; Schenler, W.

    2005-02-01

    This comprehensive work report for the Swiss Federal Office of Energy (SFOE) made by the Paul Scherrer Institute PSI takes a look at work done in connection with the updating of the office's Energy Perspectives. In particular, the topic of electricity is reviewed in the light of pending important decisions in the area of nuclear energy and the newer renewable sources of energy. The report makes an attempt to estimate the effect on Swiss power production that the new renewables and new nuclear installations could have in the next 30-40 years and to what costs this could be done and which obstacles would have to overcome. The renewable energy sources include small hydro, wind, photovoltaics, solar thermal power plants, biogas, geothermal energy, wave-power and solar chemistry. The methods used include literature study and contacts with internal PSI experts on the various areas involved. The most important system characteristics were noted and learning curves for the various technologies were taken into account. Ecological and social factors were also considered

  13. Renewable energy potential from biomass residues in Egypt

    Energy Technology Data Exchange (ETDEWEB)

    Said, N.; Zamorano, M. [Civil Engineering Dept., Univ. of Granada, Campus de Fuentenueva, Granada (Spain); El-Shatoury, S.A. [Botany Dept., Faculty of Sciences, Suez Canal Univ., Ismailia (Egypt)

    2012-11-01

    Egypt has been one of the developing countries following successful programs for the development of renewable energy resources, with special emphasis on solar, wind and biomass. Utilization of biomass as a source of energy is important from energetic as well as environmental viewpoint. Furthermore, Egypt produces millions of biomass waste every year causing pollution and health problems. So, the incorporation of biomass with other renewable energy will increase the impact of solving energy and environmental problem. There is a good potential for the utilization of biomass energy resources in Egypt. Four main types of biomass energy sources are included in this study: agricultural residues, municipal solid wastes, animal wastes and sewage sludge. Analysis of the potential biomass resource quantity and its theoretical energy content has been computed according to literature review. The agriculture crop residue represents the main source of biomass waste with a high considerable amount of the theoretical potential energy in Egypt. Rice straw is considered one of the most important of such residue due to its high amount and its produced energy through different conversion techniques represent a suitable candidate for crop energy production in Egypt.

  14. Burning plasmas in ITER for energy source

    International Nuclear Information System (INIS)

    Inoue, Nobuyuki

    2002-01-01

    Fusion research and development has two aspects. One is an academic research on science and technology, i.e., discovery and understanding of unexpected phenomena and, development of innovative technology, respectively. The other is energy source development to realize fusion as a viable energy future. Fusion research has been made remarkable progress in the past several decades, and ITER will soon realize burning plasma that is essential for both academic research and energy development. With ITER, scientific research on unknown phenomena such as self-organization of the plasma in burning state will become possible and it contributes to create a variety of academic outcome. Fusion researchers will have a responsibility to generate actual energy, and electricity generation immediately after the success of burning plasma control experiment in ITER is the next important step that has to be discussed seriously. (author)

  15. Burning plasmas in ITER for energy source

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Nobuyuki [Atomic Energy Commission, Tokyo (Japan)

    2002-10-01

    Fusion research and development has two aspects. One is an academic research on science and technology, i.e., discovery and understanding of unexpected phenomena and, development of innovative technology, respectively. The other is energy source development to realize fusion as a viable energy future. Fusion research has been made remarkable progress in the past several decades, and ITER will soon realize burning plasma that is essential for both academic research and energy development. With ITER, scientific research on unknown phenomena such as self-organization of the plasma in burning state will become possible and it contributes to create a variety of academic outcome. Fusion researchers will have a responsibility to generate actual energy, and electricity generation immediately after the success of burning plasma control experiment in ITER is the next important step that has to be discussed seriously. (author)

  16. Renewable energy sources, subsidised indefinitely?; Erneuerbare Energien. Ein ewiger Subventionstatbestand?

    Energy Technology Data Exchange (ETDEWEB)

    Muehlhaeuser, Kurt; Roth, Hans [Stadtwerke Muenchen GmbH, Muenchen (Germany)

    2012-08-15

    The German Renewables Act, EEG, specified a guaranteed reimbursement rate for electric power from renewable energy sources. Normally, the reimbursement rate is far higher than the market value of the power generated and thus makes the plant economically interesting for its owner. It remains to be seen if the renewable energy sources with the biggest potential, i.e. wind power and solar power, will have to be subsidized indefinitely, or whether they can find their place in the electricity market also without the EEG and other funding mechanisms.

  17. Integration of new distributed energy sources

    International Nuclear Information System (INIS)

    Pleym, Anngjerd; Bakken, Bjoern H.; Hetland, Jens

    2001-01-01

    In years with average runoff, Norway will be a net importer of electric power. The use of electric energy is not declining and so the gap between supply and demand is increasing. A large-scale increase of the production of new hydroelectric power is unlikely for political reasons. Gas power by today's technology is controversial and basing the national energy supply on import is undesirable. It is possible to concentrate on decentralized electricity production in small units. On the supply side, increased taxation can be used to reduce consumption; but this may hit unfairly. Direct regulation to limit consumption is undesirable in a free market. One solution on the consumer side may be a more flexible energy use by way of new technology, incorporating thermal energy. Research and development in a united energy sector is needed to realize the potential of small combined heating and power units connected to the existing system. Some efforts have already been made

  18. Energy harvesting: small scale energy production from ambient sources

    Science.gov (United States)

    Yeatman, Eric M.

    2009-03-01

    Energy harvesting - the collection of otherwise unexploited energy in the local environment - is attracting increasing attention for the powering of electronic devices. While the power levels that can be reached are typically modest (microwatts to milliwatts), the key motivation is to avoid the need for battery replacement or recharging in portable or inaccessible devices. Wireless sensor networks are a particularly important application: the availability of essentially maintenance free sensor nodes, as enabled by energy harvesting, will greatly increase the feasibility of large scale networks, in the paradigm often known as pervasive sensing. Such pervasive sensing networks, used to monitor buildings, structures, outdoor environments or the human body, offer significant benefits for large scale energy efficiency, health and safety, and many other areas. Sources of energy for harvesting include light, temperature differences, and ambient motion, and a wide range of miniature energy harvesters based on these sources have been proposed or demonstrated. This paper reviews the principles and practice in miniature energy harvesters, and discusses trends, suitable applications, and possible future developments.

  19. A snapshot of geothermal energy potential and utilization in Turkey

    International Nuclear Information System (INIS)

    Erdogdu, Erkan

    2009-01-01

    Turkey is one of the countries with significant potential in geothermal energy. It is estimated that if Turkey utilizes all of her geothermal potential, she can meet 14% of her total energy need (heat and electricity) from geothermal sources. Therefore, today geothermal energy is an attractive option in Turkey to replace fossil fuels. Besides, increase in negative effects of fossil fuels on the environment has forced many countries, including Turkey, to use renewable energy sources. Also, Turkey is an energy importing country; more than two-thirds of her energy requirement is supplied by imports. In this context, geothermal energy appears to be one of the most efficient and effective solutions for sustainable energy development and environmental pollution prevention in Turkey. Since geothermal energy will be used more and more in the future, its current potential, usage, and assessment in Turkey is the focus of the present study. The paper not only presents a review of the potential and utilization of the geothermal energy in Turkey but also provides some guidelines for policy makers. (author)

  20. Solid waste as an energy source

    International Nuclear Information System (INIS)

    Armenski, Slave

    2004-01-01

    The solid wastes as sources of heat and electrical energy were analysed. Typical structure of solid waste and organic products from: municipal solid wastes, industrial wastes and agricultural wastes for some developed countries are presented. Some dates of agricultural wastes for R. Macedonia are presented. The structure and percentage of organic products and energy content of solid wastes are estimated. The quantity of heat from solid wastes depending of the waste mass is presented. The heat quantity of some solid wastes component and the mixed municipal waste is presented. (Original)

  1. Poultry manure. Agronomic use or energy source?

    International Nuclear Information System (INIS)

    Trinchera, A.; Perri, P.T.

    2000-01-01

    By the year 2010, Italy could see the construction of three incinerators that use poultry manure as source of energy. In this paper, advantages and disadvantages of such a choice are considered in their environmental and economical aspects, taking into account the agronomic qualities of poultry manure. The analyses suggests that the agricultural sector should be the one to recover the biomass. It should be used above all as a fertiliser, either directly or after proper treatments improving its agronomic characteristics. Conversely, the energy sector should be in charge of dismissing the eventual surplus through incineration [it

  2. Assessment of wind energy potential in China

    Institute of Scientific and Technical Information of China (English)

    Zhu Rong; Zhang De; Wang Yuedong; Xing Xuhuang; Li Zechun

    2009-01-01

    China wind atlas was made by numerical simulation and the wind energy potential in China was calculated. The model system for wind energy resource assessment was set up based on Canadian Wind Energy Simulating Toolkit (WEST) and the simulating method was as follows. First, the weather classes were obtained depend on meteorological data of 30 years. Then, driven by the initial meteorological field produced by each weather class, the meso-scale model ran for the distribution of wind energy resources according each weather class condition one by one. Finally, averaging all the modeling output weighted by the occurrence frequency of each weather class, the annual mean distribution of wind energy resources was worked out. Compared the simulated wind energy potential with other results from several ac-tivities and studies for wind energy resource assessment, it is found that the simulated wind energy potential in mainland of China is 3 times that from the second and the third investigations for wind energy resources by CMA, and is similar to the wind energy potential obtained by NREL in Solar and Wind Energy Resource Assessment (SWERA) project. The simulated offshore wind energy potential of China seems smaller than the true value. According to the simulated results of CMA and considering lots of limited factors to wind energy development, the final conclusion can be obtained that the wind energy availability in China is 700~1 200 GW, in which 600~1 000 GW is in mainland and 100~200 GW is on offshore, and wind power will become the important part of energy composition in future.

  3. Renewable energy sources - the opportunity for a safer future

    International Nuclear Information System (INIS)

    Prodrom, Andrei; Federenciuc, Dumitru; Ignat, Vasile; Dobre, Paul

    2004-01-01

    The researches have shown that the potential of renewable energy sources is huge as they can in principle meet many times the world's energy demand. Renewable energy sources such as biomass, wind, solar, hydropower and geothermal can provide energy services based on the use of local available resources. Starting from this fact, a transition to renewable-based energy systems is looking increasingly likely as their costs have dropped while the price of oil and gas continue to fluctuate. In the past 30 years, the sales of solar and wind energy systems continued to increase because the capital and electricity production costs decreased simultaneously with the performance enhancement. It is becoming clear that future growth in the energy sector will be primarily in the renewable energy systems and to some extent natural gas-based systems and not in conventional oil and coal sources. It is also important to have governmental assistance and popular support in developing these alternate energy sources, that among others, reduce local and global atmospheric emissions, provide commercially attractive options, particularly in developing countries and rural areas and create the transition to the energy sector of the future. This paper tries to approach the renewable energy sources currently analyzed by the experts, emphasizing their strengths and weaknesses. The conventional energy sources based on oil, coal and natural gas have proven to be highly effective drivers of economic progress but at the same time damaging to the environment and human health. Furthermore they tend to be cyclical in nature, due to the effects of oligopoly in production and distribution. These traditional fossil fuel-based energy sources are facing increasing pressure on environmental issues, among these the future reduction of greenhouse gas specified in the Kyoto Protocol. Renewable energy sources currently supply between 15 - 20% of world's total energy demand. This supply is dominated by biomass

  4. Electric Power From Ambient Energy Sources

    Energy Technology Data Exchange (ETDEWEB)

    DeSteese, John G.; Hammerstrom, Donald J.; Schienbein, Lawrence A.

    2000-10-03

    This report summarizes research on opportunities to produce electric power from ambient sources as an alternative to using portable battery packs or hydrocarbon-fueled systems in remote areas. The work was an activity in the Advanced Concepts Project conducted by Pacific Northwest National Laboratory (PNNL) for the Office of Research and Development in the U.S. Department of Energy Office of Nonproliferation and National Security.

  5. Renewable energy sources and Estonian national interests

    International Nuclear Information System (INIS)

    Veski, Rein

    2002-01-01

    There is only one national level document, The Long-term National Development Plan for the Fuel and Energy sector, regulating the development of renewable energy for Estonia. It was approved by the Parliament (Riigikogu) in 1998. This document planned a 2/3 (66,7%) increase in the share of renewable (according to the document: peat, biofuels and other renewables) to the year 2010 against 1996. At the same time a decrease of the share of domestic oil shale was planned 1/5 to the year 2010 against 1995. That means the use of domestic energy sources, both renewable and non-renewable, will decrease by 16,8% altogether. In reality the rapid projected growth of renewables in Estonia (+66,7% between 1996 and 2010) was changed with decrease of 20% by 2000. So the security of supply must shift to the first place in Estonia. It is also an issue of national sovereignty. Estonia is rich in renewable energy sources, mainly in wood, peat and wind, to achieve the goals set in the National Development Plan. Forest resources amount 352,7, total felling 6,44, allowed felling 7,81 million cubic meters solid volume in 2000. The future of fuel peat usage in Estonia is uncertain, as most of the EU member states, which have burned up their peat resources and/or drained their mires do not consider peat as a renewable fuel. Obviously Estonia has to explain its opinion about the renewability of its resources. Although progress is needed in all directions of additional use of all renewable energy sources in tactical consideration finance must be directed first to guarantee better use of wastes of woodworking and timber industry

  6. An assessement of global energy resource economic potentials

    International Nuclear Information System (INIS)

    Mercure, Jean-François; Salas, Pablo

    2012-01-01

    This paper presents an assessment of global economic energy potentials for all major natural energy resources. This work is based on both an extensive literature review and calculations using natural resource assessment data. Economic potentials are presented in the form of cost-supply curves, in terms of energy flows for renewable energy sources, or fixed amounts for fossil and nuclear resources, with strong emphasis on uncertainty, using a consistent methodology that allow direct comparisons to be made. In order to interpolate through available resource assessment data and associated uncertainty, a theoretical framework and a computational methodology are given based on statistical properties of different types of resources, justified empirically by the data, and used throughout. This work aims to provide a global database for natural energy resources ready to integrate into models of energy systems, enabling to introduce at the same time uncertainty over natural resource assessments. The supplementary material provides theoretical details and tables of data and parameters that enable this extensive database to be adapted to a variety of energy systems modelling frameworks. -- Highlights: ► Global energy potentials for all major energy resources are reported. ► Theory and methodology for calculating economic energy potentials is given. ► An uncertainty analysis for all energy economic potentials is carried out.

  7. Potential of Tidal Plants and Offshore Energy Storage in India

    International Nuclear Information System (INIS)

    Lemperiere, F.

    2008-01-01

    After a discussion of the future needs of electric power in India, the author discusses the perspectives offered by different possible sources of electric energy in this country: coal, hydro, nuclear, wind, solar. These two last ones seem very promising. In order to solve the intermittency problem raised by wind and solar energy, the author discusses and assesses the needs, potentials and costs of energy storage. Then, he evokes the opportunities and possible sites for the development of tidal energy, proposes a schedule of investments for energy

  8. Potential of photosynthetically produced organic matter as an energy feedstock. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Spedding, C.R.W.; Walsingham, J.M.; McDougall, V.D.; Shiels, L.A.; Carruthers, S.P.

    1982-01-01

    The following aspects of biomass as an energy source are discussed: fuel supplies, land resources, sources of biomass for fuel, utilization processes, energy cost of producing energy, and potential energy savings. Included in an appendix are fossil fuel energy budgets for crops grown in the United Kingdom.

  9. 10 CFR 39.53 - Energy compensation source.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Energy compensation source. 39.53 Section 39.53 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR WELL LOGGING Equipment § 39.53 Energy compensation source. The licensee may use an energy compensation source (ECS) which is...

  10. Fuel cells as renewable energy sources

    International Nuclear Information System (INIS)

    Cacciola, G.; Passalacqua, E.

    2001-01-01

    The technology level achieved in fuel cell (FC) systems in the last years has significantly increased the interest of various manufacturing industries engaged in energy production and distribution even under the perspectives that this technology could provide. Today, the fuel cells (FCs) can supply both electrical and thermal energy without using moving parts and with a high level of affordability with respect to the conventional systems. FCs can utilise every kind of fuel such as hydrocarbons, hydrogen available from the water through renewable sources (wind, solar energy), alcohol etc. Thus, they may find application in many field ranging from energy production in large or small plants to the cogeneration systems for specific needs such as for residential applications, hospitals, industries, electric vehicles and portable power sources. Low temperature polymer electrolyte fuel cells (PEFC, DMFC) are preferred for application in the field of transportation and portable systems. The CNR-ITAE research activity in this field concerns the development of technologies, materials and components for the entire system: electrocatalysts, conducting supports, electrolytes, manufacturing technologies for the electrodes-electrolyte assemblies and the attainment of fuel cells with high power densities. Furthermore, some activities have been devoted to the design and realisation of PEFC fuel cell prototypes with rated power lower than I kW for stationary and mobile applications [it

  11. Alternative and renewable sources of energy

    International Nuclear Information System (INIS)

    Seifritz, W.

    1983-09-01

    The paper reviews the use of biomass as a source of energy and shows from a number of examples, particularly the growing of sugar beet for the manufacture of ethanol, that this way of producing fuel is not desirable. On a world basis it is possible that there might be a confrontation between the needs for 'food' and 'technological' calories of which there is already a hint in the so-called 'energy crop strategy'. In conclusion, given the present world food supply position, the intensification of food production should be given priority over attempts to produce fuel from biomass and we should not aim to use the photosynthetic process to provide technical calories. Other ways must be found to provide the latter, and it is suggested that nuclear energy should make an increasing contribution even in the developing countries. (Auth.)

  12. Building Energy Management Open Source Software

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Saifur [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2017-08-25

    Funded by the U.S. Department of Energy in November 2013, a Building Energy Management Open Source Software (BEMOSS) platform was engineered to improve sensing and control of equipment in small- and medium-sized commercial buildings. According to the Energy Information Administration (EIA), small- (5,000 square feet or smaller) and medium-sized (between 5,001 to 50,000 square feet) commercial buildings constitute about 95% of all commercial buildings in the U.S. These buildings typically do not have Building Automation Systems (BAS) to monitor and control building operation. While commercial BAS solutions exist, including those from Siemens, Honeywell, Johnsons Controls and many more, they are not cost effective in the context of small- and medium-sized commercial buildings, and typically work with specific controller products from the same company. BEMOSS targets small and medium-sized commercial buildings to address this gap.

  13. White paper for the exploitation of the renewable energy sources

    International Nuclear Information System (INIS)

    Barra, L.; Avella, R.; Braccio, G.; Caserta, G.; Chiado' Rana, M.; Ciciolla, C.; Conte, G.; De Lillo, A.; Gerardi, V.; Giuliani, G.; Pignatelli, V.; Pirazzi, L.; Ricci, A.; Sarno, A.; Sonnino, A.; Viggiano, D.; Pazzi, V.; Silvestrini, G.; Morselli, F.; Gomboli, M.

    1998-01-01

    The Italian government attributes at the renewable energy sources a remarkable strategy. Therefore supports the progressive integration of this energy sources in energy market and develop the co-operation with Mediterranean area countries [it

  14. Wave Energy Potential in the Latvian EEZ

    Science.gov (United States)

    Beriņš, J.; Beriņš, J.; Kalnačs, J.; Kalnačs, A.

    2016-06-01

    The present article deals with one of the alternative forms of energy - sea wave energy potential in the Latvian Exclusice Economic Zone (EEZ). Results have been achieved using a new method - VEVPP. Calculations have been performed using the data on wave parameters over the past five years (2010-2014). We have also considered wave energy potential in the Gulf of Riga. The conclusions have been drawn on the recommended methodology for the sea wave potential and power calculations for wave-power plant pre-design stage.

  15. Ethanol as an alternative source of energy

    International Nuclear Information System (INIS)

    Haroon, M.; Benjamin, S.E.

    2011-01-01

    Pakistan, at present facades huge shortage of energy that has disabled several industries and has worsened the living standards of a common man. Its economy mainly depends upon agriculture but relies heavily on imported petroleum to meet the necessities. The importance of national resources as an alternative energy resource is thus greatly felt. The sugar cane industry of Pakistan holds a potential to provide such an alternative fuel as bio ethanol that can be produced entirely from molasses. This paper looks deeper into scope of ethanol as one replacement that can reduce the financial and environmental cost of petroleum based fuels. (author)

  16. Exploitation of endophytic fungus as a potential source of biofuel

    Directory of Open Access Journals (Sweden)

    Nawed Anjum

    2016-06-01

    Full Text Available Biofuel demand is unquestionable in order to reduce greenhouse gaseous emission which can lead to climatic changes and global warming effect. Finding sufficient supply of clean energy for the upcoming is one of the society’s most daunting challenges and is directly linked with global stability, economic prosperity and quality of life. Endophytic microbes reside in the healthy part of the plant without causing any symptoms of disease. It is well known that the endophytic microbes produces wide variety of bioactive compound having, antibacterial, antifungal, antiviral, antitumor, antioxidant, antiinflammatory, immunosuppressive drugs, and volatile organic compounds having similarity with conventional diesel fuel. Now the endophytic fungi, have also been known to possess a suitable lipid matrix at high concentrations and volatile organic compounds having similarity with conventional diesel fuel that make them promising sources for next generation biofuels. This would be more efficient and having lesser number of biosynthetic steps in production, can be brought to immediate use in the existing internal combustion engines without taking about any major modification in automobile design. The present article therefore aims to review the current status of research in the field of alternative source of energy emphasizing endophytic fungi as a source of biofuel precursor, in order to encourage and generate interest among research groups across India and the world for initiating and undertaking more enthusiastic and intensive research activity on endophytic fungi from the Indian subcontinent having the potential to make fuel-related hydrocarbons.

  17. PASOTRON high-energy microwave source

    Science.gov (United States)

    Goebel, Dan M.; Schumacher, Robert W.; Butler, Jennifer M.; Hyman, Jay, Jr.; Santoru, Joseph; Watkins, Ron M.; Harvey, Robin J.; Dolezal, Franklin A.; Eisenhart, Robert L.; Schneider, Authur J.

    1992-04-01

    A unique, high-energy microwave source, called PASOTRON (Plasma-Assisted Slow-wave Oscillator), has been developed. The PASOTRON utilizes a long-pulse E-gun and plasma- filled slow-wave structure (SWS) to produce high-energy pulses from a simple, lightweight device that utilizes no externally produced magnetic fields. Long pulses are obtained from a novel E-gun that employs a low-pressure glow discharge to provide a stable, high current- density electron source. The electron accelerator consists of a high-perveance, multi-aperture array. The E-beam is operated in the ion-focused regime where the plasma filling the SWS space-charge neutralizes the beam, and the self-pinch force compresses the beamlets and increases the beam current density. A scale-model PASOTRON, operating as a backward- wave oscillator in C-band with a 100-kV E-beam, has produced output powers in the 3 to 5 MW range and pulse lengths of over 100 microsecond(s) ec, corresponding to an integrated energy per pulse of up to 500 J. The E-beam to microwave-radiation power conversion efficiency is about 20%.

  18. Confirmed and Potential Sources of Legionella Reviewed

    NARCIS (Netherlands)

    van Heijnsbergen, Eri; Schalk, Johanna A C; Euser, Sjoerd M; Brandsema, Petra S; den Boer, Jeroen W; de Roda Husman, Ana Maria|info:eu-repo/dai/nl/139498281

    2015-01-01

    Legionella bacteria are ubiquitous in natural matrices and man-made systems. However, it is not always clear if these reservoirs can act as source of infection resulting in cases of Legionnaires' disease. This review provides an overview of reservoirs of Legionella reported in the literature, other

  19. Renewable energy sources for electricity generation in selected developed countries

    International Nuclear Information System (INIS)

    1992-05-01

    The objectives of this report are to analyze the present status and to assess the future of selected renewable energy sources (RE) other than hydropower, i.e. wind, solar, biomass, tidal and geothermal, already in use or expected to be used for electricity generation. The report focuses on grid connected technologies leaving stand-alone power plants unconsidered. This report provides recent information on environmental impacts, costs and technical potentials related to the implementation of electricity technologies using these energy sources. The study is limited to six OECD countries, i.e. Australia, the Federal Republic of Germany, Japan, Sweden, the United Kingdom and the United States of America. The situation in other OECD countries is addressed where appropriate, but no comprehensive information is provided. Nevertheless, efforts are made to determine the technical potential of the renewable energy sources for ''Rest of OECD''. The time horizons in this report are 2010 and 2030. While detailed information is provided for the period until 2010, the technical potential for 2030 is discussed only qualitatively. Scenario analysis and the design of national energy and electric systems assuming different sets of objectives and boundary conditions are outside the scope of this study. Nevertheless, the information given in this report should provide input data for such a systems analysis. All the information given in this report is based on literature surveys. Any figure given is contingent on the fact that it has appeared in a paper or a publicly available technical report. 251 refs, figs and tabs

  20. Economic costs and benefits of the renewable energy sources

    International Nuclear Information System (INIS)

    De Leo, G. A.

    2001-01-01

    In this work it has been analysed the potential diffusion of renewable energy sources and co-generation in the Italian market on the basis of the level of maturation of the different technologies, predicted market growth and environmental impacts associated to them. A sensitivity analysis on external costs generated by global climate changes has allowed everybody to assess how possible errors in estimating the potential impact of greenhouse gasses can affect the estimate of the economic performances of different scenarios of energetic development. On the basis of these considerations, it can be outlined a potential doubling of energy production by renewable energies in the next 10 years, with specific reference of small hydroelectric, biogass and eolic power plants [it

  1. Energy policy and economy of renewable energy sources

    International Nuclear Information System (INIS)

    Bohoczky, F.

    1999-01-01

    Complete text of publication follows. The potential and expected economic impact of various forms of renewable energy are discussed briefly some figures are presented of the expected output of various forms of renewable. Economic and environmental benefits are stressed. (R.P.)

  2. Potential for Geothermal Energy in Myanmar

    International Nuclear Information System (INIS)

    Khin Soe Moe

    2010-12-01

    Geothermal energy is energy obtained by tapping the heat of the earth itself from kilometers deep into the earth's crust in some places of world. It is power extracted from heat stored in the earth. It is a renewable energy source because the heat is continuously produced inside the earth. Geothermal energy originates from the heat retained within the Earth's core since the orginal formation of the planet, from radioactive decay of minerals, and from solar energy absorbed at the surface. Most high temperature geothermal heat is harvested in regions close to tectonic plate boundaries where volcanic activity rises up to the surface of the Earth. It is one of the best renewable sources of energy and is capable of maintaining its temperature. The heating cost is very low. It uses less electricity and 75 per cent more efficient than the oil furnace and 48 per cent more efficient than the gas furnace. The energy is not only used for heating a place but also for cooling down the site. It generates uniform energy and creates no sound pollution. Maintenance cost is very cheap. The life of the underground piping is more than 50 year.

  3. an assessment of household energy types, sources, uses and its

    African Journals Online (AJOL)

    xtz

    these energy types/sources, seasons and the disappearing forest. KEYWORDS: Energy, Types, Sources, Household, Consumption. INTRODUCTION. The running of any given economic sector. (industrial, domestic) is powered by various forms of energy that can be sourced from renewable and non-renewable sources ...

  4. 47 CFR 80.1099 - Ship sources of energy.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Ship sources of energy. 80.1099 Section 80.1099... Stations § 80.1099 Ship sources of energy. (a) There must be available at all times, while the ship is at... batteries used as part of a reserve source of energy for the radio installations. (b) A reserve source of...

  5. Research and development in alternative energy sources

    International Nuclear Information System (INIS)

    Lamptey, J.; Moo-Young, M.; Sullivan, H.F.

    1990-01-01

    This paper comprehensively discusses the various bioconversion and thermochemical processes. It recommends that the most urgent research and development issues should relate to direct microbial conversion systems for starch and cellulosic material and to basic biomass combustion rates and mechanisms. An overview of some of the major renewable energy resources and conversion technologies along with the potentials and problems associated with these are also presented.(author). 235 refs., 2 tabs

  6. Fusion: an energy source for synthetic fuels

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J; Steinberg, M.

    1980-01-01

    The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and supplement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approx. 40 to 60% and hydrogen production efficiencies by high temperature electrolysis of approx. 50 to 70% are projected for fusion reactors using high temperature blankets. Fusion/coal symbiotic systems appear economically promising for the first generation of commercial fusion synfuels plants. Coal production requirements and the environmental effects of large-scale coal usage would be greatly reduced by a fusion/coal system. In the long term, there could be a gradual transition to an inexhaustible energy system based solely on fusion

  7. Outlook for alternative energy sources. [aviation fuels

    Science.gov (United States)

    Card, M. E.

    1980-01-01

    Predictions are made concerning the development of alternative energy sources in the light of the present national energy situation. Particular emphasis is given to the impact of alternative fuels development on aviation fuels. The future outlook for aircraft fuels is that for the near term, there possibly will be no major fuel changes, but minor specification changes may be possible if supplies decrease. In the midterm, a broad cut fuel may be used if current development efforts are successful. As synfuel production levels increase beyond the 1990's there may be some mixtures of petroleum-based and synfuel products with the possibility of some shale distillate and indirect coal liquefaction products near the year 2000.

  8. Renewable energy sources: the case of Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Goldemberg, J

    1979-04-01

    Industrial nations have based their economic and social development on the use of fossil fuels (coal, petroleum, and natural gas). This trend is being followed by many developing countries, which have neither the natural resources nor the manpower to adopt this path. As a result, one finds in many of these countries islands of prosperity (based on consumption patterns copied from industrial nations surrounded by a sea of poverty. The problems resulting from this dual social structure are obvious in many parts of the world. It is argued here that renewable energy sources are a natural basis for the development of the poorer countries and that intelligent use of hydropower, biomass, and direct solar energy can shortut many of the problems faced today by industrial nations. The case of Brazil is analyzed as one of the countries in which these solutions are being tried. 5 references, 3 figures, 6 tables.

  9. FINANCING RENEWABLE ENERGY SOURCES INVESTMENT IN POLAND

    Directory of Open Access Journals (Sweden)

    Jerzy Piotr Gwizdała

    2017-09-01

    Full Text Available In Poland, as in other European Union countries, the project finance structure is used to finance investments in the field of energy. This method investment financing is often used in the world. The upward trend inhibition in recent periods has been due to the global financial crisis and financial instability in the euro zone. On account of the necessity to develop the energy infrastructure associated with renewable sources, the considerable strengthening in the use of project finance techniques can be expected. The particular progression may be observed in the case of public-private partnership (ppp, where public investments are carried out by private companies. Companies, in case of investment realization in the field of ppp, almost always use project finance, because it is a beneficial way to separate the risks associated with an investment from the balance sheet of the compa-ny.

  10. Energy efficiency and renewable energy sources in Nordic homes

    Energy Technology Data Exchange (ETDEWEB)

    Hyysalo, S; Rinkinen, J [Aalto Univ. School of Economics, Helsinki (Finland). Dept. of Management and International Business; Heiskanen, E [National Consumer Research Centre, Helsinki (Finland)

    2011-07-01

    The role of citizens as innovators, adaptors of existing technologies and diffusers of new climate-relevant innovations has been studied extensively in recent years. Since the late 1970s, sociological and demographic research on residential energy use has consistently found great variations in energy use among similar households. It has been suggested that these variations constitute a source of innovative low-carbon practices. Yet, while there are many generic technologies available for end-use efficiency and renewables, their slow rate of diffusion suggests that they are not as such applicable to local conditions. Citizens have a key role in their adoption and adaptation to local conditions, as well in their diffusion to other users. Against this backdrop, the track 4 of NCF called for poster presentations of innovative new products, modifications of existing products, news ways of make use of existing technologies as well as such living practices that reduce energy use or enable the utilization of renewable energy sources in domestic settings in the Nordic countries. (orig.)

  11. Correlation between renew able energy source's energy output and load

    International Nuclear Information System (INIS)

    Ali, G.H.M.; El-Zeftawy, A.A.

    1996-01-01

    The common problem to all renew energy sources (RESs) is the mismatch between their energy output and load demand. In remote areas, the solution of this problem is in general employing a small diesel-generator or a storage battery. But, the storage battery is a major cost element of RESs and small diesel-generator is unreliable and costly. Therefore, a proposed technique has been introduced in this work to determine correlation between the energy output of wind energy systems (WES) and isolated loads. solar photovoltaic power system (PVS) and two of energy storage facilities are used here for this correlation. The proposed technique includes also two models for optimizing the generation and costs of WES accompanied with PVS, storage battery and water storage (reservoir) to accommodate an isolated load. The proposed technique is applied with the dynamic programming to coordinate the energy output of a WES with residential and pumping load in remote area of egypt. The results of this application reveal that minimization of both capacity of the storage battery and the whole power system cost are obtained. 4 figs

  12. Economic Energy Savings Potential in Federal Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Daryl R.; Dirks, James A.; Hunt, Diane M.

    2000-09-04

    The primary objective of this study was to estimate the current life-cycle cost-effective (i.e., economic) energy savings potential in Federal buildings and the corresponding capital investment required to achieve these savings, with Federal financing. Estimates were developed for major categories of energy efficiency measures such as building envelope, heating system, cooling system, and lighting. The analysis was based on conditions (building stock and characteristics, retrofit technologies, interest rates, energy prices, etc.) existing in the late 1990s. The potential impact of changes to any of these factors in the future was not considered.

  13. Energy efficiency: a source of savings; a priority objective

    International Nuclear Information System (INIS)

    Bethencourt, Anne de; Chorin, Jacky

    2013-01-01

    Energy efficiency is defined as consumption of less energy whilst delivering the same service. Significant progress has been made through the impact of technology, price increases and awareness of waste. Too often viewed as a constraint, energy efficiency nonetheless constitutes the leading potential source of domestic energy for the 2020 goal. Energy efficiency is or will be (depending on the will of the stakeholders, public authorities and society as a whole) a key market for the future and a pathway to creative innovation. Everything is pointing in that direction: the obligation to reduce greenhouse gas emissions fourfold, the new European Directive on Energy Efficiency to be incorporated, the expected increase in energy prices, the presence in France of industry leaders and of a small-scale but important industry in this sector. The goals in energy efficiency entail: - at Community level, that the objective of 20% energy savings for the 2020 goal becomes binding; - at national level, that public policies for energy efficiency are part of a long-term vision, based on the achievements of the Grenelle Environment Forum and avoid sending out any wrong signals which might adversely affect progress. The ESEC proposals are built around the following four themes: - (residential and service sector) buildings: Make energy efficiency into a real sector and a new opportunity 'work together', Optimise tools and regulations, Be innovative in terms of financial support; - fuel poverty; - industry and agriculture; - the particular situation of the overseas departments

  14. Sewage sludge as a biomass energy source

    Directory of Open Access Journals (Sweden)

    Pavel Kolat

    2013-01-01

    Full Text Available The major part of the dry matter content of sewage sludge consists of nontoxic organic compounds, in general a combination of primary sludge and secondary microbiological sludge. The sludge also contains a substantive amount of inorganic material and a small amount of toxic components. There are many sludge-management options in which production of energy is one of the key treatment steps. The most important options are anaerobic digestion, co-digestion, incineration in combination with energy recovery and co-incineration in coal-fired power plants. The goal of our applied research is to verify, if the sludge from waste water treatment plants may be used as a biomass energy source in respect of the EU legislation, which would comply with emission limits or the proposal of energy process optimizing the preparation of coal/sludge mixture for combustion in the existing fluid bed boilers in the Czech Republic. The paper discusses the questions of thermal usage of mechanically drained stabilized sewage sludge from the waste water treatment plants in the boiler with circulated fluid layer. The paper describes methods of thermal analysis of coal, sewage sludge and its mixtures, mud transport to the circulating fluidised bed boiler, effects on efficiency, operational reliability of the combustion equipment, emissions and solid combustion residues.

  15. Assessing the Potential for Renewable Energy on Public Lands

    Energy Technology Data Exchange (ETDEWEB)

    2003-02-01

    This report represents an initial activity of the Bureau of Land Managements (BLM) proposed National Energy Policy Implementation Plan: identify and evaluate renewable energy resources on federal lands and any limitations on accessing them. Ultimately, BLM will prioritize land-use planning activities to increase industrys development of renewable energy resources. These resources include solar, biomass, geothermal, water, and wind energy. To accomplish this, BLM and the Department of Energys National Renewable Energy Laboratory (NREL) established a partnership to conduct an assessment of renewable energy resources on BLM lands in the western United States. The objective of this collaboration was to identify BLM planning units in the western states with the highest potential for private-sector development of renewable resources. The assessment resulted in the following findings: (1) 63 BLM planning units in nine western states have high potential for one or more renewable energy technologies; and (2) 20 BLM planning units in seven western states have high potential for power production from three or more renewable energy sources. This assessment report provides BLM with information needed to prioritize land-use planning activities on the basis of potential for the development of energy from renewable resources.

  16. Energy development potential: An analysis of Brazil

    International Nuclear Information System (INIS)

    Perobelli, Fernando Salgueiro; Oliveira, Caio Cézar Calheiros de

    2013-01-01

    This paper develops an indicator for the energy development potential (EDP) of 27 Brazilian states. This indicator uses data on a state's infrastructure and its supply of and demand for energy. The indicator measures the data for three periods: the first part of the 1990s, which is a period of low economic growth; the first part of the 2000s, which is a period of high economic growth but with a historical crisis in the Brazilian energy sector; and 2009–2011, which is a period of economic growth after the energy crisis. Using a factor analysis, we are able to identify three factors for EDP. They are the demand for energy, the supply of renewable energy, and the supply of nonrenewable energy. We use these factors to classify the Brazilian states according to their EDP and to perform an exploratory spatial data analysis (ESDA) by using the Moran indicators and the local indicators of spatial association (LISA). - Highlights: • This paper deals with the spatial dimension of the Brazilian energy sector. • We construct an index of the energy development potential for Brazilian states. • Energy issues are defined over time and space, thus have spatial dimensions. • The spatial results show that there are two well-defined spatial patterns

  17. Potential of forestry biomass for energy in economies in transition

    International Nuclear Information System (INIS)

    Apalovic, R.

    1995-01-01

    A rapid increase in the world's population, the gradual exhaustion of fossil fuels and serious ecological problems are making developed countries more attentive to the utilization of renewable energy sources, mainly biomass, which should form part of the global energy mix during the twenty-first century. The economies in transition have been experiencing a transformation of their political, economic and social systems and a modernization of their industry, including the energy industry. Energy supply in the transition economies is based on coal, oil, gas and nuclear power. Of the renewable sources, only hydroelectric power is utilized to any significant extent. The forest biomass resources of these economies are quantified in this paper. The economies in transition have a big potential for biomass from forestry and timber industry wastes and agricultural wastes that are not being utilized and could become a source of energy. So far, biomass is used as a source of energy in only small amounts in the wood and pulp industries and as fuelwood in forestry. The governments of some countries (the Czech Republic, Hungary and Slovakia) have energy plans through the year 2010 that aim to develop renewable energy sources. Economic, institutional, technical and other barriers to the development of renewable sources and their utilization are analysed in this paper and some remedies are proposed. In cooperation with countries such as Austria, Denmark, Sweden, Finland, the United States of America and others, which have achieved remarkable results in the utilization of biomass for energy, it would be possible for the transition economies to quickly develop the technological know-how needed to satisfy the demand for energy of approximately 350 million inhabitants. (author)

  18. Potential of forestry biomass for energy in economies in transition

    Energy Technology Data Exchange (ETDEWEB)

    Apalovic, R [State Forest Products Research Institute and Slovak Biomass Association, Bratislava (Slovakia)

    1995-12-01

    A rapid increase in the world`s population, the gradual exhaustion of fossil fuels and serious ecological problems are making developed countries more attentive to the utilization of renewable energy sources, mainly biomass, which should form part of the global energy mix during the twenty-first century. The economies in transition have been experiencing a transformation of their political, economic and social systems and a modernization of their industry, including the energy industry. Energy supply in the transition economies is based on coal, oil, gas and nuclear power. Of the renewable sources, only hydroelectric power is utilized to any significant extent. The forest biomass resources of these economies are quantified in this paper. The economies in transition have a big potential for biomass from forestry and timber industry wastes and agricultural wastes that are not being utilized and could become a source of energy. So far, biomass is used as a source of energy in only small amounts in the wood and pulp industries and as fuelwood in forestry. The governments of some countries (the Czech Republic, Hungary and Slovakia) have energy plans through the year 2010 that aim to develop renewable energy sources. Economic, institutional, technical and other barriers to the development of renewable sources and their utilization are analysed in this paper and some remedies are proposed. In cooperation with countries such as Austria, Denmark, Sweden, Finland, the United States of America and others, which have achieved remarkable results in the utilization of biomass for energy, it would be possible for the transition economies to quickly develop the technological know-how needed to satisfy the demand for energy of approximately 350 million inhabitants. (author) 6 refs, 4 figs, 4 tabs

  19. Energy audit: potential of energy - conservation in Jordanian ceramic industry

    International Nuclear Information System (INIS)

    Adas, H.; Taher, A.

    2005-01-01

    This paper represents the findings of the preliminary energy-audits performed by the Rational Use of Energy Division at the National Energy Research Center (NERC), as well as the findings of a detailed energy-audit carried out in the largest Ceramic plant in Jordan (Jordan Ceramic industries).These studies were preceded by a survey of the ceramic factories in Jordan. The survey was carried out in 1997. The performed preliminary energy-audits showed that an average saving-potential in most of theses plants is about 25 % of the total energy-bills in these plants, which constitutes a considerable portion of the total production-cost. This fact was verified through the detailed energy-audit performed by NERC team for the largest Ceramic Plant in Jordan in June 2003, which showed an energy-saving potential of about 30 %. This saving can be achieved by some no-cost or low-cost measures, in addition to some measures that need reasonable investments with an average pay-back period of about two years. This detailed energy-audit covered electrical systems, refrigeration systems, compressed-air systems, and kilns. The results of the detailed energy-audit can be disseminated to other Ceramic plant, because of the similarity in the production process between these plants and the plant where the detailed energy-audit was carried out. (author)

  20. Survey lecture on renewable energy sources. [In German

    Energy Technology Data Exchange (ETDEWEB)

    Meliss, M

    1977-01-01

    The essay deals with utilizable regenerative energy sources: geothermal energy, tidal energy, solar energy, running water energy, and wind energy. Tests for the development of these sources have been carried out, but only one of them has a considerable share in meeting the energy demand--that gained from running water. The others are only of regional importance (geothermal energy, tidal energy) or have lost the importance they once had (wind energy, biochemical energy in the form of wood). The latest discussions about the restrictions on fossil and nuclear energy sources and the environmental effects of the technologies necessary for their utilization have increased the interest in the ''inexhaustible'' energy sources. This is why the author outlines the possible importance of renewable energy sources.

  1. Energy policy. Technical developments, political strategies, and concepts of action regarding renewable energy sources and rational energy use

    International Nuclear Information System (INIS)

    Brauch, H.G.

    1997-01-01

    This interdisciplinary study book deals with problems from the history of energy, energy sytems, energy engineering, and the potential of renewable energy sources: hydro and wind power, biomass, geothermal energy, photovoltaics and solar thermal conversion; the improvement of boundary conditions for their transfer to market; concepts of action and project funding preferences of the EU, USA and Japan in this sector; relevant activities of the federal German government and proposals by non-governmental players in the field as well as strategies for rational energy use; methods for building an energy consensus and criteria for valuating energy systems; concepts of action and proposals for extending solar energy use in the Mediterranean and Afrika, as well as political factors governing the market introduction and export promotion of renewable energy technologies in this triad: the USA, Japan, and the European Union. Seven of the papers contained in the book are individually recorded. (orig./RHM). 76 figs., 100 tabs [de

  2. Reeds as potential sources of alcohol

    Energy Technology Data Exchange (ETDEWEB)

    Lodh, A B; Rao, P R

    1964-01-01

    Five species of reeds, Erianthus ravennae, Saccharum munja S. procerum, Phragmites communis, and Neyraudia reynaudiana yielded 25.02, 19.5, 24.11, 26.1, and 21.6% reducing sugars, repectively., when digested with 1% H/sub 2/SO/sub 4/ under 15lb/square inch for 3 hours. Fermentable sugars from hydrolyzates of the above reeds were 70.0, 34.5, 65.0, 28.0, and 67.5% respectively. This source can become important only in case of an acute demand for fermentation alcohol.

  3. Technical and Economic Potential of Distributed Energy Storages for the Integration of Renewable Energy

    DEFF Research Database (Denmark)

    Sveinbjörnsson, Dadi Þorsteinn; Trier, Daniel; Hansen, Kenneth

    Very high penetration of fluctuating renewable energy sources can lead to new challenges in balancing energy supply and demand in future energy systems. This work, carried out as a part of Annex 28 of the IEA ECES programme, addresses this. The aim of the study is to identify which role decentral...... indicate that sector coupling along with an intelligent choice of distributed energy storage technologies can enable the integration of large shares of fluctuating renewable energy in an energy efficient and cost-effective way.......Very high penetration of fluctuating renewable energy sources can lead to new challenges in balancing energy supply and demand in future energy systems. This work, carried out as a part of Annex 28 of the IEA ECES programme, addresses this. The aim of the study is to identify which role...... decentralised energy storages (DES) should play in integrating fluctuating renewable energy sources. The technical and economic potential for DES solutions is quantified using energy system modelling, and it is identified which DES technologies have the largest total (technical and economic) potential. For this...

  4. Energy Sources Management and Future Automotive Technologies: Environmental Impact

    Directory of Open Access Journals (Sweden)

    Florin Mariasiu

    2012-01-01

    Full Text Available The paper presents the environmental impact created through the introduction of introducing new technologies in transportation domain. New electric vehicles are considered zero-emission vehicles (ZEV. However, electricity produced in power plants is still predominantly based on fossil fuel usage (required for recharge electric vehicle batteries and thus directly affects the quantity of pollutant emissions and greenhouse gases (CO2, NOx and SOx. Given the structure of EU-wide energy sources used for electricity generation, the potential pollutant emissions stemming from these energy sources, related to energy consumption of an electric vehicle, was determined under the projected environmental impact of specific market penetration of electric vehicles. In addition to the overall impact at the EU level, were identified the countries for which the use of electric vehicles is (or not feasible in terms of reaching the lower values ​​of future emissions compared to the present and future European standards.

  5. Very high energy emission sources beyond the Galaxy

    Directory of Open Access Journals (Sweden)

    Sinitsyna V.G.

    2017-01-01

    Full Text Available Active Galactic Nuclei (AGN are considered as potential extragalactic sources of very and ultra high energy cosmic rays. According to theoretical predictions cosmic ray acceleration can take place at the shock created by the expanding cocoons around active galactic nuclei as well as at AGN jets. The measurements of AGN TeV spectra, the variability time scale of TeV emission can provide essential information on the dynamics of AGN jets, the localization of acceleration region and an estimation of its size. SHALON observations yielded data on extragalactic sources of different AGN types in the energy range of 800 GeV–100 TeV. The data from SHALON observations are compared with those from other experiments at high and very high energies.

  6. Potential sources of methylmercury in tree foliage

    International Nuclear Information System (INIS)

    Tabatchnick, Melissa D.; Nogaro, Géraldine; Hammerschmidt, Chad R.

    2012-01-01

    Litterfall is a major source of mercury (Hg) and toxic methylmercury (MeHg) to forest soils and influences exposures of wildlife in terrestrial and aquatic ecosystems. However, the origin of MeHg associated with tree foliage is largely unknown. We tested the hypothesis that leaf MeHg is influenced by root uptake and thereby related to MeHg levels in soils. Concentrations of MeHg and total Hg in deciduous and coniferous foliage were unrelated to those in soil at 30 urban and rural forested locations in southwest Ohio. In contrast, tree genera and trunk diameter were significant variables influencing Hg in leaves. The fraction of total Hg as MeHg averaged 0.4% and did not differ among tree genera. Given that uptake of atmospheric Hg 0 appears to be the dominant source of total Hg in foliage, we infer that MeHg is formed by in vivo transformation of Hg in proportion to the amount accumulated. - Highlights: ► Levels of methylmercury and total Hg in foliage were unrelated to those in soil. ► Methylmercury:total Hg ratio in leaves did not differ among nine tree genera. ► Hg in foliage varied inversely with trunk diameter, a proxy for respiration. ► Methylmercury in leaves may result from in vivo methylation of atmospheric Hg. - Methylmercury in tree foliage appears to result from in vivo methylation of mercury accumulated from the atmosphere.

  7. The Optimal Use of Renewable Energy Sources-The Case of Lemnos Island

    DEFF Research Database (Denmark)

    Koroneos, C.; Xydis, George; Polyzakis, A.

    2012-01-01

    The efficient use of Renewable Energy Sources (RES) is one of the major issues in the modern energy sector. The objective of this work was to examine the potential of wind energy, solar energy (e.g. photovoltaics), biomass energy sources to meet the current energy use in the island of Lemnos...... in Greece. An optimisation methodology was applied to the energy system of the island, where various Renewable Energy Sources are abundant and could be exploited to satisfy part of the island's energy needs. An optimization model has been developed having as an objective the satisfaction of Lemnos Island...... energy needs from Renewable Energy Sources taking into consideration a multiplicity of criteria such as environmental impacts, energy demand, energy cost, and resources availability. A series of solutions have resulted, based on deterministic model runs, providing decision makers the flexibility...

  8. "Helios Dynamics" A Potential Future Power Source for the Greek Islands

    National Research Council Canada - National Science Library

    Deligiannidis, Ioannis; Angelis, Ioannis

    2007-01-01

    .... Environmental concerns, economic benefits but most of all the potential exhaustion of the current sources of energy, such as fossil fuels, have alarmed the international community and gave incentives...

  9. Building Energy Management Open Source Software

    Energy Technology Data Exchange (ETDEWEB)

    2017-06-20

    This is the repository for Building Energy Management Open Source Software (BEMOSS), which is an open source operating system that is engineered to improve sensing and control of equipment in small- and medium-sized commercial buildings. BEMOSS offers the following key features: (1) Open source, open architecture – BEMOSS is an open source operating system that is built upon VOLTTRON – a distributed agent platform developed by Pacific Northwest National Laboratory (PNNL). BEMOSS was designed to make it easy for hardware manufacturers to seamlessly interface their devices with BEMOSS. Software developers can also contribute to adding additional BEMOSS functionalities and applications. (2) Plug & play – BEMOSS was designed to automatically discover supported load controllers (including smart thermostats, VAV/RTUs, lighting load controllers and plug load controllers) in commercial buildings. (3) Interoperability – BEMOSS was designed to work with load control devices form different manufacturers that operate on different communication technologies and data exchange protocols. (4) Cost effectiveness – Implementation of BEMOSS deemed to be cost-effective as it was built upon a robust open source platform that can operate on a low-cost single-board computer, such as Odroid. This feature could contribute to its rapid deployment in small- or medium-sized commercial buildings. (5) Scalability and ease of deployment – With its multi-node architecture, BEMOSS provides a distributed architecture where load controllers in a multi-floor and high occupancy building could be monitored and controlled by multiple single-board computers hosting BEMOSS. This makes it possible for a building engineer to deploy BEMOSS in one zone of a building, be comfortable with its operation, and later on expand the deployment to the entire building to make it more energy efficient. (6) Ability to provide local and remote monitoring – BEMOSS provides both local and remote monitoring

  10. A Flexible Power Electronics Configuration for Coupling Renewable Energy Sources

    Directory of Open Access Journals (Sweden)

    Mattia Filippini

    2015-05-01

    Full Text Available A combination of series, parallel and multilevel power electronics has been investigated as a potential interface for two different types of renewable energy sources and in order to reach higher power levels. Renewable energy sources are typically dispersed in a territory, and sources, like wind and solar, allow small to medium-scale generation of electricity. The configuration investigated in this article aims at adapting the coupling solution to the specific generation characteristics of the renewable energy source to make it fit the electrical network. The configuration consists of a combination of three-phase multilevel converters and single-phase inverters, which are designed to provide flexibility, high power quality and high efficiency. A detailed analysis and simulation is performed to identify the properties in conjunction with the electrical grid requirements and the potential challenges encountered during operation. An optimized operation example of wind generation combined with solar PV generation is presented to exemplify the flexibility and benefits of the proposed configuration.

  11. Prioritizing low-carbon energy sources to enhance China’s energy security

    International Nuclear Information System (INIS)

    Ren, Jingzheng; Sovacool, Benjamin K.

    2015-01-01

    Highlights: • Four dimensions and ten metrics are used for energy security assessment. • Both qualitative and quantitative metrics are considered for energy security. • AHP has been used to quantify qualitative metrics. • TOPSIS method has been used for prioritize the low-carbon energy sources. • Sensitivity analysis and integrated ranking have been carried out. - Abstract: This paper explores how low-carbon systems compare to each other in terms of their net effect on Chinese energy security, and how they ought to be ranked and strategized into an optimal and integrated resource plan. The paper utilizes Analytic Hierarchy Process (AHP) to first determine the relative performances of hydroelectricity, wind energy, solar energy, biomass energy, and nuclear power with respect to the energy security dimensions of availability, affordability, accessibility, and acceptability. Both qualitative and quantitative metrics are considered. It relies on AHP to calculate the relative weights of the qualitative metrics attached to these dimensions of energy security for each of our five low carbon energy sources. Then, energy security performance is determined by aggregating multiple, weighted metrics into a generic index based on the method of TOPSIS and then tweaked with a sensitivity analysis. Finally, an integrated method has been developed to rank the low-carbon energy systems from most to least important, with major implications for Chinese decision-makers and stakeholders. We conclude that hydroelectricity and wind power are the two low-carbon energy sources with the most potential to enhance China’s energy security. By contrast, nuclear and solar power have the least potential

  12. Potential radiation exposure in emergencies involving neutron sources

    International Nuclear Information System (INIS)

    Marathe, P.K.; Bisht, J.S.; Massand, O.P.; Venkataraman, G.; Nandakumar, A.N.

    1996-01-01

    Incidents involving neutron sources, particularly in the field of oil well logging, may involve potential hazards by way of source lost above ground, lost under water at a depth or source damaged and spread over an area. While every effort should be made for retrieving a lost source or contain the contamination, there could be occasions when abandonment of the source may be preferable to retrieval. However, the decision to abandon the source needs to be guided primarily by considerations of potential exposure and the cost of retrieval. This report briefly discusses these aspects of such emergencies. 5 refs., 3 figs., 3 tabs

  13. Firmiana simplex: a potential source of antimicrobials

    International Nuclear Information System (INIS)

    Ajab, M.; Khan, K.M.

    2014-01-01

    he antimicrobial activity of leaves and bark extracts of Firmiana simplex (L.) W. F. Wight was evaluated by using zone of inhibition and MIC assay. It is revealed from the results that plant showed tremendous antibacterial and antifungal potential. The most significant results were obtained from petroleum ether extracts of leaves against Pseudomonas aeruginosa (78 ± 1.1 mm) and Aspergillus niger (66 ± 0.2 mm). The leaves and bark extracts have produced significant results against Klebsiella pneumoniae within the range of 0 ± 0 to 67 ± 1.5 mm. It is revealed that extracts macerated in water have failed to exhibit any potential against all test organisms employed. The lowest (significant) MIC value of bark extract was 0.023 ± 0.04 at 0.7 mg/ml and leaf extract was 0.030 ± 0.02 at 0.9 mg/ml. (author)

  14. Centrifugal potential energy : an astounding renewable energy concept

    Energy Technology Data Exchange (ETDEWEB)

    Oduniyi, I.A. [Aled Conglomerate Nigeria Ltd., Lagos (Nigeria)

    2010-07-01

    A new energy concept known as centrifugal potential energy was discussed. This new energy concept is capable of increasing the pressure, temperature and enthalpy of a fluid, without having to apply work or heat transfer to the fluid. It occurs through a change in the centrifugal potential energy of the flowing fluid in a rotating frame of reference or a centrifugal force field, where work is performed internally by the centrifugal weight of the fluid. This energy concept has resulted in new energy equations, such as the Rotational Frame Bernoulli's Equation for liquids and the Rotational Frame Steady-Flow Energy Equation for gases. Applications of these equations have been incorporated into the design of centrifugal field pumps and compressors. Rather than compressing a fluid with a physical load transfer, these devices can compress a fluid via the effect of centrifugal force applied to the object. A large amount of energy is therefore produced when this high pressure compressed working fluid expands in a turbine. When water is used as the working fluid, it could reach renewable energy densities in the range of 25-100 kJ/kg of water. When atmospheric air is used, it could reach energy densities in the range of 500-1,500 kJ/kg of air.

  15. Soybean Opportunity as Source of New Energy in Indonesia

    Directory of Open Access Journals (Sweden)

    M. Muchlish Adie

    2014-02-01

    Full Text Available These last few years, the name of soybeans soared as a source of biodiesel. Soy biodiesel is an alternative fuel produced from soybean oil. Soybean potential as an alternative renewable energy source because it is expected to have the highest energy content compared to other alternative fuels. Opportunities to develop biodiesel using soybean oil in Indonesia is quite large, considering the soybean is a commodity that is already known and widely cultivated almost in all over Indonesia. In addition, the use of soybean for biofuel feedstock is expected to motivate farmers to cultivate soybeans, so their use is not limited to non-energy raw materials. Soybean varieties that have a high oil content as well as high yield is a source of major biodiesel feedstock. From 73 soybean varieties that have been released in Indonesia, has an average oil content of 18%. Varieties with high oil content can be used as raw material for biodiesel. Research on the use of soy as an ingredient of energy crops (biodiesel have been carried out. In fact, soybean oil is the vegetable oil feedstock for most of the biodiesel being produced in the United States today. With the potential for soybean crops in Indonesia, both in terms of availability of land and varieties, the use of soybean oil for biofuel development in Indonesia is the flagship prospective materials for bio fuel substitute than other plants in the future.

  16. Energy dependence of nonlocal optical potentials

    Science.gov (United States)

    Lovell, A. E.; Bacq, P.-L.; Capel, P.; Nunes, F. M.; Titus, L. J.

    2017-11-01

    Recently, a variety of studies have shown the importance of including nonlocality in the description of reactions. The goal of this work is to revisit the phenomenological approach to determining nonlocal optical potentials from elastic scattering. We perform a χ2 analysis of neutron elastic scattering data off 40Ca, 90Zr, and 208Pb at energies E ≈5 -40 MeV, assuming a Perey and Buck [Nucl. Phys. 32, 353 (1962), 10.1016/0029-5582(62)90345-0] or Tian et al. [Int. J. Mod. Phys. E 24, 1550006 (2015), 10.1142/S0218301315500068] nonlocal form for the optical potential. We introduce energy and asymmetry dependencies in the imaginary part of the potential and refit the data to obtain a global parametrization. Independently of the starting point in the minimization procedure, an energy dependence in the imaginary depth is required for a good description of the data across the included energy range. We present two parametrizations, both of which represent an improvement over the original potentials for the fitted nuclei as well as for other nuclei not included in our fit. Our results show that, even when including the standard Gaussian nonlocality in optical potentials, a significant energy dependence is required to describe elastic-scattering data.

  17. Woody biomass energy potential in 2050

    International Nuclear Information System (INIS)

    Lauri, Pekka; Havlík, Petr; Kindermann, Georg; Forsell, Nicklas; Böttcher, Hannes; Obersteiner, Michael

    2014-01-01

    From a biophysical perspective, woody biomass resources are large enough to cover a substantial share of the world's primary energy consumption in 2050. However, these resources have alternative uses and their accessibility is limited, which tends to decrease their competitiveness with respect to other forms of energy. Hence, the key question of woody biomass use for energy is not the amount of resources, but rather their price. In this study we consider the question from the perspective of energy wood supply curves, which display the available amount of woody biomass for large-scale energy production at various hypothetical energy wood prices. These curves are estimated by the Global Biosphere Management Model (GLOBIOM), which is a global partial equilibrium model of forest and agricultural sectors. The global energy wood supply is estimated to be 0–23 Gm 3 /year (0–165 EJ/year) when energy wood prices vary in a range of 0–30$/GJ (0–216$/m 3 ). If we add household fuelwood to energy wood, then woody biomass could satisfy 2–18% of world primary energy consumption in 2050. If primary forests are excluded from wood supply then the potential decreases up to 25%. - highlights: • We examine woody biomass energy potential by partial equilibrium model of forest and agriculture sectors. • It is possible to satisfy 18% (or 14% if primary forests are excluded) of the world's primary energy consumption in 2050 by woody biomass. • To achieve this would require an extensive subsidy/tax policy and would lead to substantial higher woody biomass prices compared to their current level

  18. Synergy potential for oil and geothermal energy exploitation

    DEFF Research Database (Denmark)

    Ziabakhsh-Ganji, Zaman; Nick, Hamidreza M.; Donselaar, Marinus E.

    2018-01-01

    A new solution for harvesting energy simultaneously from two different sources of energy by combining geothermal energy production and thermal enhanced heavy oil recovery is introduced. Numerical simulations are employed to evaluate the feasibility of generating energy from geothermal resources...... and feasibility analyses of the synergy potential of thermally-enhanced oil recovery and geothermal energy production are performed. A series of simulations are carried out to examine the effects of reservoir properties on energy consumption and oil recovery for different injection rates and injection temperature...... the geothermal energy could make the geothermal business case independent and may be a viable option to reduce the overall project cost. Furthermore, the results display that the enhance oil productions are able to reduce the required subsidy for a single doublet geothermal project up to 50%....

  19. Clerodendrum splendens: a potential source of antimicrobials

    International Nuclear Information System (INIS)

    Ajaib, M.; Boota, F.

    2014-01-01

    The antimicrobial status of the bark and leaves of Clerodendrum splendens was evaluated.The inquisition had provided that the leaf and bark of the plant had exhibited maximum antimicrobial potential. The antibacterial activity was significant against S. aureus with the maximum effectiveness of 71 ± 0.6 mm displayed by the petroleum ether extracts of bark. Moreover, all the petroleum ether extracts exhibited maximum inhibitory effects against all the bacterial strains. The Gram negative strains, i.e. K. pneumoniae, P. aeruginosa and E. coli had provided good to satisfactory results within the range of 20 ± 0.8 mm to 69 ± 0.9 mm. Excellent activities were exhibited by leaf and bark extracts against the fungal pathogens with the maximum potential displayed by the petroleum ether extracts of leaf i.e. 57 ± 0.5 mm against A. oryzae. The MIC assays were carried out to further authenticate the results obtained by zones of inhibitions. The MIC potential exhibited by Gram negative bacteria for K. pneumoniae was evaluated to be > 0.032 mg/mL while for the S. aureus was roughly evaluated to be > 0.088. Moreover, the MIC activity displayed against other Gram negative bacterial strains was reported > 0.112 ± 0.7 mg/mL for E. coli and > 0.059 ± 1.0 mg/mL for P. aeruginosa. The MIC effectiveness for the fungal strain of A. niger and A. oryzae was evaluated to be 0.118 ± 0.7 mg/mL. (author)

  20. Microalgae as a Renewable Source of Energy: A Niche Opportunity

    Directory of Open Access Journals (Sweden)

    Simon Jegan Porphy Jegathese

    2014-01-01

    Full Text Available Algae are believed to be a good source of renewable energy because of its rapid growth rate and its ability to be cultivated in waste water or waste land. Several companies and government agencies are making efforts to reduce capital cost and operating costs and make algae fuel production commercially viable. Algae are the fastest growing plant and theoretically have the potential to produce more oil or biomass per acre when compared to other crops and plants. However, the energy efficiency ratio and carbon and water footprint for algal based biofuels still need to be evaluated in order to fully understand the environmental impact of algal derived biofuels.

  1. Microwave and particle beam sources and directed energy concepts

    International Nuclear Information System (INIS)

    Brandt, H.E.

    1989-01-01

    This book containing the proceedings of the SPIE on microwave and particle beam sources and directed energy concepts. Topics covered include: High power microwave sources, Direct energy concepts, Advanced accelerators, and Particle beams

  2. Study of the potential of wave energy in Malaysia

    Science.gov (United States)

    Tan, Wan Ching; Chan, Keng Wai; Ooi, Heivin

    2017-07-01

    Renewable energy is generally defined as energy harnessed from resources which are naturally replenished. It is an alternative to the current conventional energy sources such as natural gas, oil and coal, which are nonrenewable. Besides being nonrenewable, the harnessing of these resources generally produce by-products which could be potentially harmful to the environment. On the contrary, the generation from renewable energy does not pose environmental degradation. Some examples of renewable energy sources are sunlight, wind, tides, waves and geothermal heat. Wave energy is considered as one of the most promising marine renewable resources and is becoming commercially viable quicker than other renewable technologies at an astonishing growth rate. This paper illustrates the working principle of wave energy converter (WEC) and the availability of wave energy in Malaysia oceans. A good understanding of the behaviour of ocean waves is important for designing an efficient WEC as the characteristics of the waves in shallow and deep water are different. Consequently, wave energy converters are categorized into three categories on shore, near shore and offshore. Therefore, the objectives of this study is ought to be carried out by focusing on the formation of waves and wave characteristics in shallow as well as in deep water. The potential sites for implementation of wave energy harvesting technology in Malaysia and the wave energy available in the respective area were analysed. The potential of wave energy in Malaysia were tabulated and presented with theoretical data. The interaction between motion of waves and heave buoys for optimum phase condition by using the mass and diameter as the variables were investigated.

  3. Biogas : Animal Waste That Can be Alternative Energy Source

    Directory of Open Access Journals (Sweden)

    Tuti Haryati

    2006-09-01

    Full Text Available Biogas is a renewable energy which can be used as alternative fuel to replace fossil fuel such as oil and natural gas . Recently, diversification on the use of energy has increasingly become an important issue because the oil sources are depleting . Utilization of agricultural wastes for biogas production can minimize the consumption of commercial energy source such as kerosene as well as the use of firewood . Biogas is generated by the process of organic material digestion by certain anaerobe bacteria activity in aerobic digester . Anaerobic digestion process is basically carried out in three steps i.e. hydrolysis, acidogenic and metanogenic . Digestion process needs certain condition such as C : N ratio, temperature, acidity and also digester design . Most anaerobic digestions perform best at 32 - 35°C or at 50 - 55°C, and pH 6 .8 - 8 . At these temperatures, the digestion process essentially converts organic matter in the present of water into gaseous energy . Generally, biogas consists of methane about 60 - 70% and yield about 1,000 British Thermal Unit/ft 3 or 252 Kcal/0.028 m3 when burned . In several developing countries, as well as in Europe and the United States, biogas has been commonly used as a subtitute environmental friendly energy . Meanwhile, potentially Indonesia has abundant potential of biomass waste, however biogas has not been used maximally .

  4. Potential future waste-to-energy systems

    OpenAIRE

    Thorin, Eva; Guziana, Bozena; Song, Han; Jääskeläinen, Ari; Szpadt, Ryszard; Vasilic, Dejan; Ahrens, Thorsten; Anne, Olga; Lõõnik, Jaan

    2012-01-01

    This report discusses potential future systems for waste-to-energy production in the Baltic Sea Region, and especially for the project REMOWE partner regions, the County of Västmanland in Sweden, Northern Savo in Finland, Lower Silesia in Poland, western part of Lithuania and Estonia. The waste-to-energy systems planned for in the partner regions are combustion of municipal solid waste (MSW) and solid recovered fuels from household and industry as well as anaerobic digestion of sewage sludge ...

  5. Vibration Energy Harvesting Potential for Turbomachinery Applications

    Directory of Open Access Journals (Sweden)

    Adrian STOICESCU

    2018-03-01

    Full Text Available The vibration energy harvesting process represents one of the research directions for increasing power efficiency of electric systems, increasing instrumentation nodes autonomy in hard to reach locations and decreasing total system mass by eliminating cables and higher-power adapters. Research based on the possibility of converting vibration energy into useful electric energy is used to evaluate the potential of its use on turbomachinery applications. Aspects such as the structure and characteristics of piezoelectric generators, harvesting networks, their setup and optimization, are considered. Finally, performance test results are shown using piezoelectric systems on a turbine engine.

  6. The Dilemmas of Energy: Essential energy services and potentially fatal risks

    Science.gov (United States)

    Perkins, J. H.

    2018-01-01

    During their evolution, humans have made three energy transitions, each marked by the adoption of new ways of procuring energy with attendant changes in lifestyle. Modern civilization arose in the Third Energy Transition, and its major sources of energy come from coal, oil, gas, uranium, and hydropower. Unfortunately, despite its incalculable benefits, the Third Transition can’t provide sustainable energy services for the indefinite future. Climate change is the most serious problem. Criteria and standards for each of the currently available, nine primary energy sources indicate the potential feasibility of replacing most or all uses of coal, oil, gas, and uranium with hydropower, solar, wind, biomass, and geothermal. This is the Fourth Energy Transition, promotion of which is strongly supported by considerations of sustainability.

  7. Valorization of potentials of wind energy in Montenegro

    Directory of Open Access Journals (Sweden)

    Vujadinović Radoje V.

    2017-01-01

    Full Text Available Investments in energy sector are usually long term processes both in construction and exploitation phase, and therefore require many conditions to be satisfied, mostly from legislative and technical sector. While the legislative can change in accordance with economy activities in the country, technical data (on-site measurements which are the main base for energy facility design, need to be reliable as much as possible. Wind energy has a significant global potential which exceeds the world’s electrical energy consumptions. This paper presents the estimation of wind energy potentials in Montenegro, based on all previous available studies in this field. The wind energy potential in Montenegro is based on a combination of 3-D numerical simulations of wind fields on the entire territory, and comprehensive on-site measurements. The preliminary studies show that there is a potential of areas with high and mean values of a capacity factor about 400 MW, and annual production of 900 GWh of electric energy. The share of wind parks in the total installed power in Montenegro is planned to be about 8%, while an adequate ratio of wind parks in an annual production from renewable sources (large hydro power plants are included here is estimated to be 11.4%. The paper presents the current state of art in the field of building of wind parks in Montenegro. A particular attention was paid to the legislation framework and strategic documents in the energy area in Montenegro.

  8. CONCEPT OF THE MINIMUM ENERGY PASSENGER CAR WITH USE OF UNCONVENTIONAL ENERGY SOURCES

    Directory of Open Access Journals (Sweden)

    V. A. Gabrinets

    2014-06-01

    Full Text Available Purpose. The paper is aimed to consider the concept of creation of the minimum energy passenger car with use of nonconventional energy sources and the walls that have enhanced thermal insulation properties. Мethodology. The types of heat losses, as well as their value were analyzed. The alternative sources of energy are considered for heating. Their potential contribution to the overall energy balance of the passenger car is analyzed. Impact on the car design of the enhanced wall thermal insulation, solar energy inflow through the transparent windows and energy release of passengers are quantitatively evaluated. Findings. With the maximum possible use of all unconventional energy sources and the rational scheme solutions of conditioning and heating systems energy the costs for these needs for a passenger car can be reduced by 40-50%. Originality. New types of energy to maintain the heat balance of the car in the winter period is proposed to use firstly. New schematics solutions for environmental control system of the car both in winter and in summer periods were offered. Practical value. Introduction of the proposed scheme solutions and approaches to ensure the comfortable conditions for passengers may be implemented on an existing park of passenger cars and do not require a major re-equipment of systems that have already been installed.

  9. 46 CFR 111.10-5 - Multiple energy sources.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Multiple energy sources. 111.10-5 Section 111.10-5...-GENERAL REQUIREMENTS Power Supply § 111.10-5 Multiple energy sources. Failure of any single generating set energy source such as a boiler, diesel, gas turbine, or steam turbine must not cause all generating sets...

  10. Eddy energy sources and flux in the Red Sea

    KAUST Repository

    Zhan, Peng

    2015-04-01

    In the Red Sea, eddies are reported to be one of the key features of hydrodynamics in the basin. They play a significant role in converting the energy among the large-scale circulation, the available potential energy (APE) and the eddy kinetic energy (EKE). Not only do eddies affect the horizontal circulation, deep-water formation and overturning circulation in the basin, but they also have a strong impact on the marine ecosystem by efficiently transporting heat, nutrients and carbon across the basin and by pumping the nutrient-enriched subsurface water to sustain the primary production. Previous observations and modeling work suggest that the Red Sea is rich of eddy activities. In this study, the eddy energy sources and sinks have been studied based on a high-resolution MITgcm. We have also investigated the possible mechanisms of eddy generation in the Red Sea. Eddies with high EKE are found more likely to appear in the central and northern Red Sea, with a significant seasonal variability. They are more inclined to occur during winter when they acquire their energy mainly from the conversion of APE. In winter, the central and especially the northern Red Sea are subject to important heat loss and extensive evaporation. The resultant densified upper-layer water tends to sink and release the APE through baroclinic instability, which is about one order larger than the barotropic instability contribution and is the largest source term for the EKE in the Red Sea. As a consequence, the eddy energy is confined to the upper layer but with a slope deepening from south to north. In summer, the positive surface heat flux helps maintain the stratification and impedes the gain of APE. The EKE is, therefore, much lower than that in winter despite a higher wind power input. Unlike many other seas, the wind energy is not the main source of energy to the eddies in the Red Sea.

  11. An online low energy gaseous ion source

    International Nuclear Information System (INIS)

    Jin Shuoxue; Guo Liping; Peng Guoliang; Zhang Jiaolong; Yang Zheng; Li Ming; Liu Chuansheng; Ju Xin; Liu Shi

    2010-01-01

    The accumulation of helium and/or hydrogen in nuclear materials may cause performance deterioration of the materials. In order to provide a unique tool to investigate the He-and/or H-caused problems, such as interaction of helium with hydrogen and defects, formation of gas bubbles and its evolution, and the related effects, we designed a low energy (≤ 20 keV) cold cathode Penning ion source, which will be interfaced to a 200 kV transmission electron microscope (TEM), for monitoring continuously the evolution of micro-structure during the He + or H + ion implantation. Studies on discharge voltage-current characteristics of the ion source, and extraction and focusing of the ion beam were performed. The ion source works stably with 15-60 mA of the discharge current.Under the gas pressure of 5 x 10 -3 Pa and 1.5 x 10 -2 Pa, the discharge voltage are about 380 V and 320 V, respectively. The extracted ion current under lower gas pressure is greater than that under higher gas pressure, and it increases with the discharge current and extraction voltage. The ion lens consisting of three equal-diameter metal cylinder focus the ion beam effectively, so that the beam density at the 150 cm away from the lens exit increases by a over one order of magnitude. For ion beams of around 10 keV, the measured beam density is about 200 nA · cm -2 , which is applicable for ion implantation and in situ TEM observation for many kinds of nuclear materials. (authors)

  12. Potential Energy Curve of N2 Revisited

    Czech Academy of Sciences Publication Activity Database

    Špirko, Vladimír; Xiangzhu, L.; Paldus, J.

    2011-01-01

    Roč. 76, č. 4 (2011), s. 327-341 ISSN 0010-0765 R&D Projects: GA MŠk LC512; GA ČR GAP208/11/0436 Institutional research plan: CEZ:AV0Z40550506 Keywords : reduced multireference coupled-cluster method * reduced potential curve method * nitrogen molecule potential energy curves Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.283, year: 2011

  13. Energy efficiency potential study for New Brunswick

    International Nuclear Information System (INIS)

    1992-05-01

    The economic and environmental impacts associated with economically attractive energy savings identified in each of four sectors in New Brunswick are analyzed. The results are derived through a comparison of two potential future scenarios. The frozen efficiency scenario projects what future energy expenditures would be if no new energy efficiency initiatives are introduced. The economic potential scenario projects what those expenditures would be if all economically attractive energy efficiency improvements were gradually implemented over the next 20 years. Energy related emissions are estimated under scenarios with and without fuel switching. The results show, for example, that New Brunswick's energy related CO 2 emissions would be reduced by ca 5 million tonnes in the year 2000 under the economic potential scenario. If fuel switching is adopted, an additional 1 million tonnes of CO 2 emissions could be saved in the year 2000 and 1.6 million tonnes in 2010. The economic impact analysis is restricted to efficiency options only and does not consider fuel switching. Results show the effect of the economic potential scenario on employment, government revenues, and intra-industry distribution of employment gains and losses. The employment impact is estimated as the equivalent of the creation of 2,424 jobs annually over 1991-2010. Government revenues would increase by ca $24 million annually. The industries benefitting most from energy efficiency improvements would be those related to construction, retail trade, finance, real estate, and food/beverages. Industries adversely affected would be the electric power, oil, and coal sectors. 2 figs., 37 tabs

  14. Energy: sources, economics and the environment

    International Nuclear Information System (INIS)

    Coles, G.

    2003-01-01

    The demands of providing energy whilst reducing greenhouse gas emissions makes the use of nuclear power and hydroelectricity a practical alternative. The Australian government accepts that present global greenhouse gas emissions produce global warming. It is not apparent that any degree of global warming can be prevented by less than global elimination of greenhouse gas emissions or even that this will remove any such global warming which has already occurred. The evidence and references discussed also indicate that the effect of the total elimination of CO 2 emissions by Australia at the 2000 rate of 279.9 million tonnes will be overwhelmed by global levels and increases, for example the present emission of 3500 million tonnes by China at 2.8 tonnes per capita from 1250 billion people and the virtual certainty of its increase . It is therefore necessary to question whether a country like Australia is otherwise justified (unless nuclear power or other measures to eliminate greenhouse gas emissions are accepted worldwide) in adopting an) energy-generating systems intended to lead to its own elimination of CO 2 emissions if they create social, economic and resource costs (and possibly other environmental non-greenhouse gas problems) exceeding those of nuclear sources

  15. Natural gas decompression energy recovery: Energy savings potential in Italy

    International Nuclear Information System (INIS)

    Piatti, A.; Piemonte, C.; Rampini, E.; Vatrano, F.; Techint SpA, Milan; ENEA, Rome

    1992-01-01

    This paper surveyed the natural gas distribution systems employed in the Italian civil, industrial and thermoelectric sectors to identify those installations which can make use of gas decompression energy recovery systems (consisting of turbo-expanders or alternative expanders) to economically generate electric power. Estimates were then made of the total amount of potential energy savings. The study considered as eligible for energy savings interventions only those plants with a greater than 5,000 standard cubic meter per hour plant capacity. It was evaluated that, with suitable decompression equipment installed at 50 key installations (33 civil, 15 industrial), about 200 GWh of power could be produced annually, representing potential savings of about 22,000 petroleum equivalent tonnes of energy. A comparative analysis was done on three investment alternatives involving inputs of varying amounts of Government financial assistance

  16. Bandwidth Study on Energy Use and Potential Energy Saving Opportunities in U.S. Pulp and Paper Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Sabine Brueske, Caroline Kramer, Aaron Fisher

    2015-06-01

    Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. pulp and paper manufacturing. The study relies on multiple sources to estimate the energy used in six individual process areas, representing 52% of sector-wide energy consumption. Energy savings opportunities for individual processes are based on technologies currently in use or under development; the potential savings are then extrapolated to estimate sector-wide energy savings opportunity

  17. Bandwidth Study on Energy Use and Potential Energy Saving Opportunities in U.S. Iron and Steel Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Keith Jamison, Caroline Kramer, Sabine Brueske, Aaron Fisher

    2015-06-01

    Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. iron and steel manufacturing. The study relies on multiple sources to estimate the energy used in six individual process areas and select subareas, representing 82% of sector-wide energy consumption. Energy savings opportunities for individual processes and subareas are based on technologies currently in use or under development; the potential savings are then extrapolated to estimate sector-wide energy savings opportunity.

  18. Correlation energy generating potentials for molecular hydrogen

    International Nuclear Information System (INIS)

    Sharma, B.S.; Thakkar, A.J.

    1985-01-01

    A variety of local correlation energy functionals are currently in use. All of them depend, to some extent, on modeling the correlation energy of a homogeneous electron fluid. Since atomic and molecular charge densities are neither uniform nor slowly varying, it is important to attempt to use known high accuracy wave functions to learn about correlation energy functionals appropriate to such systems. We have extended the definition of the correlation energy generating potentials V/sub c/ introduced by Ros. A charge density response to correlation has been allowed for by inclusion of an electron--nuclear component V/sup e/n/sub c/ in addition to the electron--electron component V/sup e/e/sub c/. Two different definitions of V/sup e/n/sub c/ are given. We present the first calculations of V/sub c/ for a molecular system: H 2 . The results show that V/sup e/n/sub c/, in either definition, is by no means negligible. Moreover, V/sup e/e/sub c/ and both forms of V/sup e/n/sub c/ show significant nonlocal dependence on the charge density. Calculations with ten different model correlation energy functionals show that none of them is particularly sensitive to the charge density. However, they are quite sensitive to the parametrization of the electron fluid correlation energy. The schemes which include self-interaction corrections (SIC) are found to be superior to those of Kohn--Sham type. The correlation energy generating potentials implied by the SIC type and empirical correlation energy functionals are found to correspond roughly to averages of one of the accurate potentials

  19. Development of high current low energy H+ ion source

    International Nuclear Information System (INIS)

    Forrester, A.T.; Crow, J.T.; Goebel, D.M.

    1978-01-01

    The ultimate goal of this work is the development of an ion source suitable for double charge exchange of D + ions to D - ions in cesium or other vapor. Since the fraction of the D + which changes to D - may be as high as 0.35 in the energy below one keV, the process appears very favorable. What is desired is a source of several hundred cm 2 area, with a D + current density greater than, say 0.2A/cm 2 . Small angular spread is essential with up to about 0.1 radian being acceptable. A simple approach to this problem appears to be through fine mesh extraction electrodes. In this system a single grid facing the ion source plasma constitutes the entire extraction electrode system. If the potential difference between the grid and the source plasma is large compared to the ion energy at the plasma boundary, then the distance s 0 is just the Child-Langmuir distance corresponding to the ion current density J and the potential difference V 0 between the plasma and the grid

  20. Legal Framework of Renewable Energy Sources in the European Union

    OpenAIRE

    Milto, Yuliya

    2017-01-01

    The thesis analyses the following issues: historical development of energy and renewable energy sources legislation in the European Economic Community (EEC): the role of energy crisis of 1973 – 1974 in development of renewable energy legislation; international cooperation in the field of energy and renewable energy between EEC and third countries and membership of the EEC in international energy organizations dealing with energy; the European Union renewable energy policy and legal fra...

  1. Energy Transfer in Scattering by Rotating Potentials

    Indian Academy of Sciences (India)

    Quantum mechanical scattering theory is studied for time-dependent Schrödinger operators, in particular for particles in a rotating potential. Under various assumptions about the decay rate at infinity we show uniform boundedness in time for the kinetic energy of scattering states, existence and completeness of wave ...

  2. Potential energy surface of alanine polypeptide chains

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Yakubovich, Alexander V.; Solov'yov, Andrey V.

    2006-01-01

    The multidimensional potential energy surfaces of the peptide chains consisting of three and six alanine (Ala) residues have been studied with respect to the degrees of freedom related to the twist of these molecules relative to the peptide backbone (these degrees of freedom are responsible...

  3. Storage of energies - Translating potential into actions

    International Nuclear Information System (INIS)

    Signoret, Stephane; Mary, Olivier; Petitot, Pauline; Dejeu, Mathieu; De Santis, Audrey

    2015-01-01

    In this set of articles, a first one evokes issues discussed during a colloquium held in Paris by the European association for storage of energy, the possibilities mentioned about energy storage development in the French bill project for energy transition, and the importance of non-interconnected areas in the development of energy storage. A second article proposes an overview of developments and advances in energy storage in California which adopted suitable laws. The German situation is then briefly described: needs are still to be defined and a road map has been published in 2014, as technologies are expensive and the legal framework is still complex. The next article outlines the conditions of development of the power-to-gas sector (as a process of valorisation of excess electricity). An article gives an overview of technological developments in the field of electrochemical energy storage (batteries). The results of the PEPS study (a study on the potential of energy storage) in Europe are commented. An interview with a member of the French BRGM (Bureau of Mines) outlines the major role which underground storage could play in energy transition. The Seti project for an intelligent thermal energy storage and a better use of renewable energies is then presented. An article comments how to use foodstuff cold to make consumption cut-offs. A last article comments how superconductors could be used in the future for batteries. Few examples are briefly presented: a molten salt-based storage by Areva, a local production of green hydrogen in France, an innovating project of solar energy storage in Switzerland, and the Toucan solar plant in French Guyana

  4. Timing of potential and metabolic brain energy

    DEFF Research Database (Denmark)

    Korf, Jakob; Gramsbergen, Jan Bert

    2007-01-01

    functions. We introduce the concepts of potential and metabolic brain energy to distinguish trans-membrane gradients of ions or neurotransmitters and the capacity to generate energy from intra- or extra-cerebral substrates, respectively. Higher brain functions, such as memory retrieval, speaking......The temporal relationship between cerebral electro-physiological activities, higher brain functions and brain energy metabolism is reviewed. The duration of action potentials and transmission through glutamate and GABA are most often less than 5 ms. Subjects may perform complex psycho......-physiological tasks within 50 to 200 ms, and perception of conscious experience requires 0.5 to 2 s. Activation of cerebral oxygen consumption starts after at least 100 ms and increases of local blood flow become maximal after about 1 s. Current imaging technologies are unable to detect rapid physiological brain...

  5. The future of coal as an energy source

    International Nuclear Information System (INIS)

    Wells, W.L.

    1991-01-01

    This paper reports on the future of such coal as an energy source which the author believes, is inextricably related to its economic and environmental acceptability. Technologies have been - and are being - developed that will help assure that coal retains its traditional share of the United States energy market. In addition, there are some 900 million tons per year of coal equivalent oil and gas currently being consumed (22.5 quads of 12.500 BTU/lb coal) in the United States that may be considered for potential coal conversion. Lastly, one can see trends emerging that may justify reconsideration of coal as a source of hydrocarbon to substitute for petrochemical industry feedstocks in addition to its customary role as a BTU supplier. The balance of this report will provide a background on environmental and legislative initiatives and discuss some of these technologies and new directions for coal research in the 1990s and beyond

  6. Impact of Weather and Occupancy on Energy Flexibility Potential of a Low-energy Building

    DEFF Research Database (Denmark)

    Zilio, Emanuele; Foteinaki, Kyriaki; Gianniou, Panagiota

    The introduction of renewable energy sources in the energy market leads to instability of the energy system itself; therefore, new solutions to increase its flexibility will become more common in the coming years. In this context the implementation of energy flexibility in buildings is evaluated...... solar radiation and the outdoor temperature appeared to have the larger impact on the thermal flexibility of the building. Specifically, the energy flexibility potential of the examined apartment can ensure its thermal autonomy up to 200 h in a typical sunny winter day......., using heat storage in the building mass. This study focuses on the influence of weather conditions and internal gains on the energy flexibility potential of a nearly-zero-energy building in Denmark. A specific six hours heating program is used to reach the scope. The main findings showed that the direct...

  7. New renewable energy sources; Nye fornybare energikilder. Revidert utgave 2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-06-01

    This publication presents a review of the technological, economical and market status in the field of new renewable energy sources. It also deals briefly with the present use of energy, external conditions for new renewable energy sources and prospects for these energy sources in a future energy system. The renewable energy sources treated here are ''new'' in the sense that hydroelectric energy technology is excluded, being fully developed commercially. This publication updates a previous version, which was published in 1996. The main sections are: (1) Introduction, (2) Solar energy, (3) Bio energy, (4) Wind power, (5) Energy from the sea, (6) Hydrogen, (7) Other new renewable energy technologies and (8) New renewables in the energy system of the future.

  8. Advanced energy system with nuclear reactors as an energy source

    International Nuclear Information System (INIS)

    Kato, Y.; Ishizuka, T.; Nikitin, K.

    2007-01-01

    About two-thirds of the energy generated in a light water reactors (LWRs) core is currently dissipated to the ocean as lukewarm water through steam condensers; more than half the energy in helium (He) gas turbine high temperature gas cooled reactors (HTGRs) is dissipated through pre-coolers and inter coolers. The new waste heat recovery system efficiently recovers the waste heat from reactors using boiling heat transfer of 20 degree C liquid carbon dioxide (CO 2 ) instead of conventional sea water as a cooling medium. The CO 2 gasified in the cooling process is used directly as a working fluid of mechanical heat pumps for hot water supply. In LWRs, the net energy utilization fraction to total heat generation in the core exceeds 85% through the waste heat recovery. This cogeneration system is about 2.5 times more effective than current systems in reducing global warming gas emissions and long half- life radioactive material accumulation. It also increases uranium resource utilization relative to current LWRs. In the HTGR cogeneration system, the waste heat is also useful for cold water supply by introducing an adsorption refrigeration system since the gas temperature is still as high as about 190 degree Celsius. When the heat recovery system is incorporated into the HTGR, the electricity to heat-supply ratio of the HTGR cogeneration system accommodates the demand ratio in cities well; it would be suited to dispersed energy sources. The heat supply cost is expected to be lower than those of conventional fossil-fired boilers beyond operation of about four years. The waste heat recovered is able to be utilized not only for local heat supply but also for methane and methanol production from waste products of cities and farms through high-temperature fermentation, e.g., garbage, waste wood and used paper that are produced in cities, along with excreta produced through farming. The methane and methanol can be used to generate hydrogen for fuel cells. The new waste heat

  9. Energy independent optical potentials: construction and limitations

    International Nuclear Information System (INIS)

    Hussein, M.S.; Moniz, E.J.

    1983-11-01

    Properties of the energy-independent potential U sup(-) which is wave-function-equivalent to the usual optical potential U(E) are constructed and examined. A simple procedure is presented for constructing U sup(-) in the uniform medium, and physical examples are discussed. The general result for finite systems, a recursive expansion in powers of U(E), is used to investigate the multiple scattering expansion of U sup(-); the energy-independent potential is found to have serious short-comings for direct microscopic construction or phenomenological parametrization. The microscopic theory, as exemplified here by the multiple scattering approach, does not lead to a reliable approximation scheme. Phenomenological approaches to U sup(-) are unattractive because the physics does not guide the parametrization effectively: the structure of the nonlocality is not tied directly to the dynamics; Im U sup(-) changes sign; different elements of the physics, separate in U(E), are completely entangled in U sup(-). (Author) [pt

  10. Alternate Energy Sources for Thermalplastic Binding Agent Consolidation

    Energy Technology Data Exchange (ETDEWEB)

    Frame, B.J.

    1999-01-01

    A study was conducted to investigate microwave and electron beam technologies as alternate energy sources to consolidate fiber coated with a thermoplastic binding agent into preforms for composite molding applications. Bench experiments showed that both microwave and electron beam energy can produce heat sufficient to melt and consolidate a thermoplastic binding agent applied to fiberglass mat, and several two- and three-dimensional fiberglass preforms were produced with each method. In both cases, it is postulated that the heating was accomplished by the effective interaction of the microwave or electron beam energy with the combination of the mat preform and the tooling used to shape the preform. Both methods contrast with conventional thermal energy applied via infrared heaters or from a heated tool in which the heat to melt the thermoplastic binding agent must diffuse over time from the outer surface of the preform toward its center under a thermal gradient. For these reasons, the microwave and electron beam energy techniques have the potential to rapidly consolidate thick fiber preforms more efficiently than the thermal process. With further development, both technologies have the potential to make preform production more cost effective by decreasing cycle time in the preform tool, reducing energy costs, and by enabling the use of less expensive tooling materials. Descriptions of the microwave and electron beam consolidation experiments and a summary of the results are presented in this report.

  11. Renewable energy and air pollution abatement in the Rhine-Neckar region. Assessment, potential, and perspectives of renewable energy sources in the Rhine-Neckar region; Klimaschutz durch Erneuerbare Energien in der Region Rhein-Neckar. Bestandsaufnahme, Potenziale und Entwicklungsperspektiven Erneuerbarer Energien im Wirtschaftsraum Rhein-Neckar

    Energy Technology Data Exchange (ETDEWEB)

    Hirschl, B.

    2001-12-01

    The study analyzed the situation, potential and obstacles of renewable energy sources and developed strategic recommendations on this basis for enhancing the use of renewables in the Rhein-Neckar region. [German] Gegenstand der nachfolgenden Untersuchung ist eine umfassende Bestandsaufnahme, Potenzial- und Hemmnisanalyse sowie die Entwicklung darauf basierender Strategieempfehlungen, die zu einer Initiative zur Foerderung Erneuerbarer Energien fuehren koennen. Dabei bilden die erstgenannten Bestandteile der Untersuchung die Basis fuer die Entwicklung von Vorschlaegen zur Strategieentwicklung, d.h. zur Identifizierung von inhaltlichen und konzeptionellen Vorschlaegen zur Ausgestaltung einer Initiative fuer Erneuerbare Energien in der Region Rhein-Neckar. (orig.)

  12. Biomass energy in Jordan, and its potential contribution towards the total energy mix of the Kingdom

    International Nuclear Information System (INIS)

    Al-Dabbas, Moh'd A. F.

    1994-04-01

    An evaluation of Jordan's bio-energy status was carried out. Available sources and the viability of exploitation were studied in order to identify the size of contribution that bio-energy could provide to the total energy mix of the Kingdom. The advantages of biogas technology were discussed, and a general description of Jordan's experience in this field was presented. Data on Jordan' animal, municipal, and agricultural wastes that are available as a potential source of bio-energy was tabulated. The report ascertained the economic feasibility of biogas utilization in Jordan, and concluded that the annual energy production potential from biogas, with only animal wastes being utilized, would amount to 80,000 ton oil equivalent. This amount of energy is equivalent to 2% of Jordan's total energy consumption in 1992. The utilization of biogas from municipal wastes would produce an additional 2.5% of the total energy consumption of Jordan. The annual value of utilizing animal and municipal wastes would reach 23 million Jordanian Dinars (JD). This value would increase to 61.5 million JD with the utilization of human wastes. The investment required for the utilization of bio-energy sources in Amman and its suburbs on the scale of family unit fermenters was estimated to be in the order of a million JD. The size of investment for industrial scale utilization for power generation with an electricity feed to the national grid, would range from 3 to 4 million JD. (A.M.H.). 8 refs., 4 tabs

  13. Renewable energy sources. Transformation of the Energy Market; Foernybara Energikaellor. Hela elmarknaden i foeraendring

    Energy Technology Data Exchange (ETDEWEB)

    2009-03-15

    This report describes and analyzes renewable energy seen as emerging markets, focusing on wind, solar and wave power. The conclusions are that: Wind and solar energy has reached critical mass. They are already large markets, and has a high growth rate. There are growth areas that may become among the world's largest industries in the future. This summary report and the underlying studies of wind, solar and wave power show that there is a large potential market for renewable energy sources. Wind power is already a market worth around 36.5 billion Euro. Solar energy is growing strongly and solar cells in 2008 had a market worth around 24 billion Euro. Wave power is at present a very small market and the in the actual development stage the potential of wave power is uncertain. But if the wave would become commercially viable, it could represent a significant part of the world's energy capacity, with associated large investments. In the foreseeable future, all areas have a continuing need for public support to be commercially viable. Despite the already extensive market renewable energy sources represent a relatively small share of energy and electricity in the world. For large-scale electricity generation, there is still a need for public support. Renewable energy means new business opportunities that fundamentally can change structure and competition in the electricity market. A potential of this magnitude involves major business opportunities for involved companies, but also challenges. There are several factors affecting this development, Such as new technology, deregulation, support systems and consumer preferences. The growth of renewable energy sources is not only a question of technical development and relative prices of a homogeneous product, but a question of which actors and business models that will be viable in a rapidly changing market. Swedish industry is well placed to benefit from the growing markets. Many Swedish companies have significant

  14. Energy potential of fruit tree pruned biomass in Croatia

    Energy Technology Data Exchange (ETDEWEB)

    Bilandzija, N.; Voca, N.; Kricka, T.; Martin, A.; Jurisic, V.

    2012-11-01

    The world's most developed countries and the European Union (EU) deem that the renewable energy sources should partly substitute fossil fuels and become a bridge to the utilization of other energy sources of the future. This paper will present the possibility of using pruned biomass from fruit cultivars. It will also present the calculation of potential energy from the mentioned raw materials in order to determine the extent of replacement of non-renewable sources with these types of renewable energy. One of the results of the intensive fruit-growing process, in post pruning stage, is large amount of pruned biomass waste. Based on the calculated biomass (kg ha{sup 1}) from intensively grown woody fruit crops that are most grown in Croatia (apple, pear, apricots, peach and nectarine, sweet cherry, sour cherry, prune, walnut, hazelnut, almond, fig, grapevine, and olive) and the analysis of combustible (carbon 45.55-49.28%, hydrogen 5.91-6.83%, and sulphur 0.18-0.21%) and non-combustible matters (oxygen 43.34-46.6%, nitrogen 0.54-1.05%, moisture 3.65-8.83%, ashes 1.52-5.39%) with impact of lowering the biomass heating value (15.602-17.727 MJ kg{sup 1}), the energy potential of the pruned fruit biomass is calculated at 4.21 PJ. (Author) 31 refs.

  15. Canada's renewable energy resources. An assessment of potential

    Energy Technology Data Exchange (ETDEWEB)

    Middleton, P; Argue, R; Burrell, T; Hathaway, G

    1976-04-01

    Rising costs of conventional, frontier and nuclear energy production and the prospect of future shortages have prompted a resurgence of interest in alternative, renewable energy technologies. This study constituted a preliminary step in determining which sources, technologies and applications may be appropriate in Canada, and when and under what conditions they might be technically and economically viable. Principal sources of renewable energy (solar radiation, wind and biomass), as well as waves, thermal gradients and sensible heat sources are reviewed to establish, in general terms, their significance in the Canadian context. Next, the technical characteristics, efficiency, costs, impacts and state-of-the-art of sixteen harnessing or conversion technologies are presented as an information base upon which to build an assessment of potential. A method of comparing the life cost of a renewable energy system to that of the likely conventional alternative is proposed and applied in cases where adequate technical and economic data are available. A variety of different economic assumptions are also outlined under which the renewable systems would be cost competitive. This costing methodology is applied in detail to four case studies: residential solar space and water heating, photovoltaics, residential, a 200 kW wind generator, and anaerobic digestion of livestock wastes. Finally, the potential for renewable energy approaches in Canada is explored and evaluated from three perspectives: technical viability, economic viability and implementation. 319 refs., 18 figs., 94 tabs.

  16. Canada's renewable energy resources: an assessment of potential

    Energy Technology Data Exchange (ETDEWEB)

    Middleton, P; Argue, R; Argue, R; Burrell, T; Hathaway, G

    1976-04-01

    Rising costs of conventional, frontier, and nuclear energy production and the prospect of future shortages have prompted a resurgence of interest in alternative, renewable energy technologies. This study constitutes a preliminary step in determining which sources, technologies, and applications may be appropriate in Canada and when and under what conditions they might be technically and economically viable. Principal sources of renewable energy (solar radiation, wind, and biomass), as well as waves, thermal gradients and, sensible heat sources are reviewed to establish, in general terms, their significance in the Canadian context. Next, the technical characteristics, efficiency, costs, impacts, and state of the art of sixteen harnessing or conversion technologies are presented as an information base upon which to build an assessment of potential. A method of comparing the life cost of a renewable energy system to that of the likely conventional alternative is proposed and applied in cases where adequate technical and economic data are available. A variety of different economic assumptions are also outlined under which the renewable systems would be cost competitive. This costing methodology is applied in detail to four Case Studies: solar space and water heating--residential; photovoltaics--residential; wind generator--200 kW; and anaerobic digestion of livestock wastes. Finally, the potential for renewable energy approaches in Canada is explored and evaluated from three perspectives: technical viability, economic viability, and implementation.

  17. Wind, hydro or mixed renewable energy source

    DEFF Research Database (Denmark)

    Yang, Yingkui; Solgaard, Hans Stubbe; Haider, Wolfgang

    2016-01-01

    While the share of renewable energy, especially wind power, increases in the energy mix, the risk of temporary energy shortage increases as well. Thus, it is important to understand consumers' preference for the renewable energy towards the continuous growing renewable energy society. We use...

  18. Effective Land Use for Renewable Energy Sources

    NARCIS (Netherlands)

    Dijkman, Teunis

    2009-01-01

    The aim of this research is to determine the energy densities for different methods to produce renew-able energy. Energy density is defined here as the energy that is annually produced on a certain area. Using low, average, and high energy density scenari

  19. Microscopic optical potential at medium energies

    International Nuclear Information System (INIS)

    Malecki, A.

    1979-01-01

    The problems concerning a microscopic optical model for the elastic nuclear collisions at medium energies are discussed. We describe the method for constructing the optical potential which makes use of the particular properties of quantum scattering in the eikonal limit. The resulting potential is expressed in terms of the nuclear wave functions and the nucleon-nucleon scattering amplitudes. This potential has a dynamic character since by including the effects of multiple scattering it allows for the possibility of intermediate excitations of the projectile and target nuclei. The use of the potential in the exact wave equation accounts for the most important mechanisms present in the collisions between composite particles. The microscopic optical model was successfully applied in the analysis of elastic scattering of protons and α-particles on atomic nuclei in the energy range of 300-1000 MeV/nucleon. The dynamic optical potential in this case represents a considerable improvement over the eikonal Glauber model and the static optical potential of Watson. The possibilities to extend the microscopic description of the proton-nucleus interaction by considering the spin dependence of the elementary amplitude and the Majorana exchange effects were investigated. (author)

  20. Renewable energy sources in Basque Country

    International Nuclear Information System (INIS)

    Ente Vasco de la Energia

    1992-01-01

    The Autonomous Basque Energy Authority makes an analysis on the final results obtained during 1980 decade promoting renewable energies: Minihydroelectric power plants, solar thermal, photovoltaics, biomass and Wind Energy. New goals until the year 2000 are outlined

  1. A Low Carbon EU Energy System and Unconventional Sources

    International Nuclear Information System (INIS)

    Gracceva, F.; Kanudia, A.; Tosato, GC.

    2013-01-01

    The paper investigates the potential role of unconventional fossil fuels in a global low carbon energy system. Making use of a systemic approach, the paper presents an original application of a global partial equilibrium energy system model (TIAM-JET). In order to give a worldwide perspective with higher detail on European energy systems, the model links a set of extra-European macro-regions to the 30 European countries. First, a review of the most recent estimates of the available stocks of unconventional hydrocarbon resources is used to build the set of assumption for the scenario analysis. Secondly, a set of scenarios assuming different availability and cost of unconventional fuels are added to both a Current Trend scenario and a Carbon Constrained (CC) scenario, to explore the perspectives of unconventional gas and oil in a scenario halving CO 2 emissions by 2050, which is consistent with a 2 degree temperature increase. The results show if/how unconventional sources can contribute to the robustness of the European energy system with respect to the stress of a strong carbon constraint. We define this robustness as the capacity of the energy system to adapt its evolution to long-term constraints and keep delivering energy services to end users. In our approach robustness represents the long-term dimension of energy security. Assessing this ''system property'' requires analysing the wide range of factors that can exercise a stabilizing influence on the energy services delivery system, together with their relations, actual interactions and synergies. The energy system approach used for the analysis seeks to take into account as much of this complexity as possible. We assess the robustness of the EU system to the carbon constraint by looking at how the CC scenario affects energy system costs and energy prices under scenarios with different deployment of unconventional sources. This provides insights on the synergies and/or trade-offs between energy security and

  2. The potential for energy production from crop residues in Zimbabwe

    Energy Technology Data Exchange (ETDEWEB)

    Jingura, R.M.; Matengaifa, R. [School of Engineering Sciences and Technology, Chinhoyi University of Technology, P. Bag 7724, Chinhoyi (Zimbabwe)

    2008-12-15

    There is increasing interest in Zimbabwe in the use of renewable energy sources as a means of meeting the country's energy requirements. Biomass provides 47% of the gross energy consumption in Zimbabwe. Energy can be derived from various forms of biomass using various available conversion technologies. Crop residues constitute a large part of the biomass available from the country's agriculture-based economy. The potential for energy production of crop residues is examined using data such as estimates of the quantities of the residues and their energy content. The major crops considered are maize, sugarcane, cotton, soyabeans, groundnuts, wheat, sorghum, fruits and forestry plantations. Quantities of residues are estimated from crop yields by using conversion coefficients for the various crops. Long-term crop yields data from 1970 to 1999 were used. Total annual residue yields for crops, fruits and forestry plantations are 7.805 Mt, 378 kt and 3.05 Mt, respectively. The crops, fruits and forestry residues have energy potential of 81.5, 4.9 and 44.3 PJ per year, respectively. This represents about 44% of the gross energy consumption in Zimbabwe. The need to balance use of crop residues for both energy purposes and other purposes such as animal feeding and soil fertility improvement is also highlighted. (author)

  3. Renewable energy sources for tenable development

    International Nuclear Information System (INIS)

    Manazza, G.

    1992-01-01

    Planning criteria for feasible tenable development strategies for industrialized and developing countries are discussed. Attention is given to the role to be played by industrial countries in renewable energy source development and technology transfer to curb the onslaught of global greenhouse effects related environmental problems. The paper cautions against the use of the expression 'tenable' in combination with 'growth'. It recommends, instead, the substitution of the expression, 'tenable growth', which implies the indefinite growth of something which is physical, with 'tenable development', a preferred term, since it denotes the realization of an optimum strategy, compatible with environmental ecosystems, for the betterment of living conditions. An assessment is made of the overall social-economic impacts of such a strategy on the proposed European free trade market and on developing countries struggling to survive in a fiercely competitive world. Here, the paper notes that, for the effective implementation of a tenable development strategy, it is of prime importance to make optimum use of the education system to instil a new set of social values and modify individual behaviour relative to the development and use of natural resources

  4. Renewable sources of energy in Africa: status of development and future contribution to the energy mix

    International Nuclear Information System (INIS)

    Mwanza, P.N.; Pashkov, Y.V.

    1995-01-01

    Renewable sources of energy in Africa are widely regarded as alternatives to fossil fuels. Being an abundant indigenous reserve, they offer considerable savings of foreign exchange. Also, they are usually regarded as environmentally friendly and thus do not contribute significantly to the greenhouse effect. However, present contributions of renewable energy to the African energy supply remain negligible despite substantial claims often made about the potential scope for renewable energy forms. This paper is based on a comprehensive study undertaken by the United Nations Economic Commission for Africa in 1993-94. The assessment of renewable energy contributions to the energy mix has been made based on data obtained from African countries. A formula reflecting new and renewable sources of energy (NRSE) utilisation was developed and an attempt was made to delineate some zones with identical patterns of utilisation. Some of the difficulties encountered in the dissemination of NRSE and incentives introduced by African countries are also discussed. The conclusion is that African countries acknowledge the role of NRSE technologies in the development of future world energy systems. Yet the probability of NRSE assuming a greater share in energy supplies within the next two decades in Africa is doubtful. (author) 3 tabs., 1 fig., 7 refs

  5. Biomass of Microalgae as a Source of Renewable Energy

    Directory of Open Access Journals (Sweden)

    Głowacka Natalia

    2017-05-01

    Full Text Available Algae represent a potential source of energy via anaerobic digestion. The aim of the study was to obtain the possible potential of green microalgae, which could replace the commonly used corn silage for the production of biogas in the future. The intensive construction of new biogas plants stations across Europe and the lack of arable land suitable for the cultivation of biomass for energy purposes are the fundamental reasons behind looking for the alternative raw materials for energy production as a substitute for commonly used input materials. When comparing green microalgae with conventional crops the high productivity potential (high oil content as well as the possibility of their production during the whole year can be noticed. It is necessary to find the effective way to produce biomass from green microalgae, proper for energy conversion, while ensuring the economic and environmental aspects. The interim research results mentioned in this article indicate that microalgae present appropriate alternative material for the process of anaerobic digestion.

  6. Potential for natural evaporation as a reliable renewable energy resource.

    Science.gov (United States)

    Cavusoglu, Ahmet-Hamdi; Chen, Xi; Gentine, Pierre; Sahin, Ozgur

    2017-09-26

    About 50% of the solar energy absorbed at the Earth's surface drives evaporation, fueling the water cycle that affects various renewable energy resources, such as wind and hydropower. Recent advances demonstrate our nascent ability to convert evaporation energy into work, yet there is little understanding about the potential of this resource. Here we study the energy available from natural evaporation to predict the potential of this ubiquitous resource. We find that natural evaporation from open water surfaces could provide power densities comparable to current wind and solar technologies while cutting evaporative water losses by nearly half. We estimate up to 325 GW of power is potentially available in the United States. Strikingly, water's large heat capacity is sufficient to control power output by storing excess energy when demand is low, thus reducing intermittency and improving reliability. Our findings motivate the improvement of materials and devices that convert energy from evaporation.The evaporation of water represents an alternative source of renewable energy. Building on previous models of evaporation, Cavusoglu et al. show that the power available from this natural resource is comparable to wind and solar power, yet it does not suffer as much from varying weather conditions.

  7. Reevaluation of Turkey's hydropower potential and electric energy demand

    International Nuclear Information System (INIS)

    Yueksek, Omer

    2008-01-01

    This paper deals with Turkey's hydropower potential and its long-term electric energy demand predictions. In the paper, at first, Turkey's energy sources are briefly reviewed. Then, hydropower potential is analyzed and it has been concluded that Turkey's annual economically feasible hydropower potential is about 188 TWh, nearly 47% greater than the previous estimation figures of 128 TWh. A review on previous prediction models for Turkey's long-term electric energy demand is presented. In order to predict the future demand, new increment ratio scenarios, which depend on both observed data and future predictions of population, energy consumption per capita and total energy consumption, are developed. The results of 11 prediction models are compared and analyzed. It is concluded that Turkey's annual electric energy demand predictions in 2010, 2015 and 2020 vary between 222 and 242 (average 233) TWh; 302 and 356 (average 334) TWh; and 440 and 514 (average 476) TWh, respectively. A discussion on the role of hydropower in meeting long-term demand is also included in the paper and it has been predicted that hydropower can meet 25-35% of Turkey's electric energy demand in 2020

  8. Foster alternate sources of energy or perish

    International Nuclear Information System (INIS)

    Panda, P.C.

    1992-01-01

    With proper planning, load identification and community sharing, the energy requirements of the non-commercial sector can be left to the renewable energy resources. Of course, the day is not far off when the world energy demand shall fully count on the renewable energy resources of the world. (author). 2 refs., 1 tab

  9. In Search of the Wind Energy Potential

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik

    2017-01-01

    The worldwide advancement of wind energy is putting high demands on a number of underlying technologies such as wind turbine aerodynamics, structural dynamics, gearbox design, electrical grid connections, and so on. As wind is the only fuel for wind power plants, naturally, wind......-meteorology and wind-climatology are essential for any utilization of wind energy. This is what we are concerned about here with a view on what has happened in wind energy potential assessments in the last 25 years where the utilization of wind turbines in national power supply has accelerated and what...... is the perspective for future improvements of the assessment methods. We take as the starting point the methodology of The European Wind Atlas [I. Troen and E. L. Petersen, European Wind Atlas (Risø National Laboratory, Roskilde, Denmark, 1989)]. From there to the global wind atlas methodology [J. Badger et al...

  10. Energy Savings Potential of Radiative Cooling Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Nicholas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wang, Weimin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Alvine, Kyle J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Katipamula, Srinivas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-11-30

    Pacific Northwest National Laboratory (PNNL), with funding from the U.S. Department of Energy’s (DOE’s) Building Technologies Program (BTP), conducted a study to estimate, through simulation, the potential cooling energy savings that could be achieved through novel approaches to capturing free radiative cooling in buildings, particularly photonic ‘selective emittance’ materials. This report documents the results of that study.

  11. On the physics of power, energy and economics of renewable electric energy sources - Part II

    International Nuclear Information System (INIS)

    Skoglund, Annika; Leijon, Mats; Waters, Rafael; Rehn, Alf; Lindahl, Marcus

    2010-01-01

    Renewable Energy Technologies (RETs) are often recognized as less competitive than traditional electric energy conversion systems. Obstacles with renewable electric energy conversion systems are often referred to the intermittency of the energy sources and the relatively high maintenance cost. However, due to an intensified discourse on climate change and its effects, it has from a societal point of view, become more desirable to adopt and install CO 2 neutral power plants. Even if this has increased the competitiveness of RETs in a political sense, the new goals for RET installations must also be met with economical viability. We propose that the direction of technical development, as well as the chosen technology in new installations, should not primarily be determined by policies, but by the basic physical properties of the energy source and the associated potential for inexpensive energy production. This potential is the basic entity that drives the payback of the investment of a specific RET power plant. With regard to this, we argue that the total electric energy conversion system must be considered if effective power production is to be achieved, with focus on the possible number of full loading hours and the Degree of Utilization. This will increase the cost efficiency and economical competitiveness of RET investments, and could enhance faster diffusion of new innovations and installations without over-optimistic subsidies. This paper elaborates on the overall problem of the economy of renewable electric energy conversion systems by studying the interface between physics, engineering and economy reported for RET power plants in different scientific publications. The core objective is to show the practical use of the Degree of Utilization and how the concept is crucial for the design and economical optimization disregarding subsidies. The results clearly indicate that the future political regulative frameworks should consider the choice of renewable energy

  12. Integration of renewable energy sources for a sustainable energy policy at Djibouti

    International Nuclear Information System (INIS)

    Aye, Fouad Ahmed

    2009-01-01

    Generally, the predictable exhaustion of the fossil fuels, the necessity of fighting against the global warming, the awareness for the protection of the environment and finally the consideration of the sustainable development in energy policies put the renewable energies in the heart of a strategic stake for the future of our planet. But for the Republic of Djibouti which currently knows an annual economic growth of 3,5 %, it is almost vital to exploit its potential in renewable energies to ensure its economic growth, to realize savings of currencies and to initially achieve the Millennium human development goals whose calendar is fixed at 2015. Unfortunately, the country knows the same energy situation of the countries of sub-Saharan Africa where the energy is plentiful but the electricity is rare. Indeed, the current energy balance of the country is strongly overdrawn. The 97 % of the energy needs of the population (mainly urban in more than 85 %) are satisfied by the imports of oil productions and 90 % of the Djiboutians households use the kerosene as domestic fuel. The cover rate for the electricity network is very low, about 30 %. Only 0,2 % of the electric production (with a total capacity installed of 130 MW) is made from a unique source of renewable energy ( the photovoltaic solar energy). Nevertheless, the country has an important potential in renewable energies. At the level of the photovoltaic solar energy (PV), the technically exploitable solar potential is estimated in 1535 GWh/day. At the level of the wind energy, the estimation of the currently exploitable potential is 8 MW and yet no form of wind energy (whether it is the big or the small wind energy) is exploited in the country. At the level of the geothermal energy, the technically exploitable potential is estimated between 350 and 650 MWe. The economically exploitable potential for the only region of Assal-Ghoubbet is higher than 150 MWe, very widely upper to the current needs of the country. At

  13. Energy sources taxes. 1989-1992 Plan

    International Nuclear Information System (INIS)

    Pery, J.P.

    1990-12-01

    Owing to the development of nuclear power industry and energy conservation, the french energy independence has well progressed since 1973. But french imports are still higher than 50 percent of energy consumption in the country and important uncertainties exist such the cost of energy supply or the risks of supply disruption. This paper describes energy fiscal policy and taxes in France and its development possibilities

  14. Source composition of cosmic rays at high energy

    International Nuclear Information System (INIS)

    Juliusson, E.; Cesarsky, C.J.; Meneguzzi, M.; Casse, M.

    1975-01-01

    The source composition of the cosmic ray is usually calculated at an energy of a few GeV per nucleon. Recent measurements have however indicated that the source composition may be energy dependent. In order to give a quantitative answer to this question the source composition at 50GeV/nucleon has been calculated using an exponential distribution of path lengths and in the slab approximation. The results obtained at high energy agree very well with the source composition obtained at lower energies, except the abundance of carbon which is significantly lower than the generally accepted value of low energies [fr

  15. Wearable energy sources based on 2D materials.

    Science.gov (United States)

    Yi, Fang; Ren, Huaying; Shan, Jingyuan; Sun, Xiao; Wei, Di; Liu, Zhongfan

    2018-05-08

    Wearable energy sources are in urgent demand due to the rapid development of wearable electronics. Besides flexibility and ultrathin thickness, emerging 2D materials present certain extraordinary properties that surpass the properties of conventional materials, which make them advantageous for high-performance wearable energy sources. Here, we provide a comprehensive review of recent advances in 2D material based wearable energy sources including wearable batteries, supercapacitors, and different types of energy harvesters. The crucial roles of 2D materials in the wearable energy sources are highlighted. Based on the current progress, the existing challenges and future prospects are outlined and discussed.

  16. Electron energy recovery system for negative ion sources

    International Nuclear Information System (INIS)

    Dagenhart, W.K.; Stirling, W.L.

    1982-01-01

    An electron energy recovery system for negative ion sources is provided. The system, employs crossed electric and magnetic fields to separate the electrons from ions as they are extracted from a negative ion source plasma generator and before the ions are accelerated to their full kinetic energy. With the electric and magnetic fields oriented 90* to each other, the electrons are separated from the plasma and remain at approximately the electrical potential of the generator in which they were generated. The electrons migrate from the ion beam path in a precessing motion out of the ion accelerating field region into an electron recovery region provided by a specially designed electron collector electrode. The electron collector electrode is uniformly spaced from a surface of the ion generator which is transverse to the direction of migration of the electrons and the two surfaces are contoured in a matching relationship which departs from a planar configuration to provide an electric field component in the recovery region which is parallel to the magnetic field thereby forcing the electrons to be directed into and collected by the electron collector electrode. The collector electrode is maintained at a potential slightly positive with respect to the ion generator so that the electrons are collected at a small fraction of the full accelerating supply voltage energy

  17. Waste characterisation, determining the energy potential of waste

    CSIR Research Space (South Africa)

    Oelofse, Suzanna HH

    2015-11-01

    Full Text Available Changes in waste over time • Changes in population – Birth rates – Death rates –Migration • Changes in per capita generation – Socio-economic status – Degree of urbanisation – Household size • Recycling, composting and source reduction initiatives..., determining the energy potential of waste 25 November 2015 by Prof Suzan Oelofse Research Group Leader: Waste for Development Competency Area: Solutions for a Green Economy 2 WtE should consider Fitness for purpose • Feedstock...

  18. Oil crops: requirements and possibilities for their utilization as an energy source

    International Nuclear Information System (INIS)

    Boerner, G.; Schoenefeldt, J.; Mehring, I.

    1995-01-01

    Although vegetable oils have been used as an energy source for centuries, they were used almost exclusively in oil lamps. Their value as a foodstuff and the availability and low price of mineral oil had for a long time kept them from being seriously considered as a potential energy source. Now, owing to the increasing cost of fossil fuel, particularly oil, and increasing industrial energy consumption, as well as the negative impact of fossil fuel use on the environment, there is interest in a number of alternative energy sources, including vegetable oils. The discussion in this paper focuses on the use of untreated vegetable oils, particularly rapeseed oil. The energy potential of rapeseed oil is explored first. Then, conditions under which the use of oil crops as an energy source is feasible are briefly discussed; two concepts for decentralized oil-seed processing are described and, finally, future possibilities for use of vegetable oils as a fuel source are reviewed. (author)

  19. Energy sources for gynecologic laparoscopic surgery: a review of the literature.

    Science.gov (United States)

    Law, Kenneth S K; Abbott, Jason A; Lyons, Stephen D

    2014-12-01

    A range of energy sources are used in gynecologic laparoscopy. These energy sources include monopolar electrosurgery, bipolar electrosurgery (including "advanced bipolar" devices that incorporate tissue feedback monitoring), and various types of laser and ultrasonic technologies. Gynecologists using these tools should be aware of the potential benefits and potential dangers of these instruments. This review provides an overview of the biophysics of these energy sources, their tissue effects, and the complications that may arise. It aims to highlight any potential advantages or disadvantages of various energy sources, as reported by clinical and laboratory studies. Literature relating to energy sources used in gynecologic laparoscopy was reviewed. While laboratory-based studies have reported differences between various energy sources, these differences may not be clinically significant. The choice of instrumentation may depend on the nature of the surgical task being performed, but other factors, such as the surgeon's training/experience, cost, and industry marketing, may also influence the decision. TAn awareness of the pros and cons of each energy modality and their relative efficacy profiles is paramount. It is important that surgeons have an understanding of the biophysics of these technologies in order to understand their limitations and potential dangers and to utilize the most appropriate energy source(s) in the appropriate clinical setting, in order to both minimize the risk of inadvertent injuries during gynecologic laparoscopy and to maximize cost-efficient delivery of health care.

  20. Biomass as an energy source: an Asian-Pacific perspective

    Energy Technology Data Exchange (ETDEWEB)

    Kyi, Lwin [Energy Resources Section, Environment and Natural Resources Management Division, Economic and Social Commission for Asia and the Pacific, United Nations Building, Bangkok (Thailand)

    1995-12-01

    Biomass is the most commonly used renewable source of energy in the region covered by the Economic and Social Commission for Asia and the Pacific, making up an average of 50% of energy supplies in the developing countries. However, experience over the past one and a half decades in rural energy supply in the ESCAP region suggests that biomass resources are unlikely to compete with conventional supplies in meeting expanded rural energy needs for fuel, electricity and fertilizers. Nevertheless, biomass, especially wood and agricultural residues, will remain the main energy source in most countries of the region for the next two decades. The development of biomass energy systems in the ESCAP region is at different stages for different types of biomass resources. Efforts have been concentrated in six areas: direct combustion, gasification, co-generation, anaerobic digestion, densification and dendrothermal processes. Among the biomass technologies presently being promoted in the region, biogas and cooking stove programmes are the largest in terms of scale, operations and coverage. Co-generation is promising as its economic advantages make it attractive to industrial consumers, particularly the booming food and fibre production and processing industries, which produce enough biomass feedstock to warrant installing co-generation facilities. Despite its potential, the production of liquid fuel from energy crops is presently taking place in only a few countries. The major constraints on extending the use of biomass include the difficulty of assessing resources, poor local acceptance of technology (mainly for social and economic reasons), lack of financial resources and manpower, environmental concerns, the absence of up-to-date local technology and the lack of after-sales services. Appropriate technologies to develop and harness the region`s vast biomass resource base to augment energy supplies, particularly in rural areas, has been a major issue in the developing

  1. Biomass as an energy source: an Asian-Pacific perspective

    International Nuclear Information System (INIS)

    Lwin Kyi

    1995-01-01

    Biomass is the most commonly used renewable source of energy in the region covered by the Economic and Social Commission for Asia and the Pacific, making up an average of 50% of energy supplies in the developing countries. However, experience over the past one and a half decades in rural energy supply in the ESCAP region suggests that biomass resources are unlikely to compete with conventional supplies in meeting expanded rural energy needs for fuel, electricity and fertilizers. Nevertheless, biomass, especially wood and agricultural residues, will remain the main energy source in most countries of the region for the next two decades. The development of biomass energy systems in the ESCAP region is at different stages for different types of biomass resources. Efforts have been concentrated in six areas: direct combustion, gasification, co-generation, anaerobic digestion, densification and dendrothermal processes. Among the biomass technologies presently being promoted in the region, biogas and cooking stove programmes are the largest in terms of scale, operations and coverage. Co-generation is promising as its economic advantages make it attractive to industrial consumers, particularly the booming food and fibre production and processing industries, which produce enough biomass feedstock to warrant installing co-generation facilities. Despite its potential, the production of liquid fuel from energy crops is presently taking place in only a few countries. The major constraints on extending the use of biomass include the difficulty of assessing resources, poor local acceptance of technology (mainly for social and economic reasons), lack of financial resources and manpower, environmental concerns, the absence of up-to-date local technology and the lack of after-sales services. Appropriate technologies to develop and harness the region's vast biomass resource base to augment energy supplies, particularly in rural areas, has been a major issue in the developing

  2. Directory of financing sources for foreign energy projects

    Energy Technology Data Exchange (ETDEWEB)

    La Ferla, L. [La Ferla Associates, Washington, DC (United States)

    1995-09-01

    The Office of National Security Policy has produced this Directory of Financing Sources for Foreign Energy Projects. The Directory reviews programs that offer financing from US government agencies, multilateral organizations, public, private, and quasi-private investment funds, and local commercial and state development banks. The main US government agencies covered are the US Agency for International Development (USAID), the Export-Import Bank of the US (EXIM Bank), Overseas Private Investment Corporation (OPIC), US Department of Energy, US Department of Defense, and the US Trade and Development Agency (TDA). Other US Government Sources includes market funds that have been in part capitalized using US government agency funds. Multilateral organizations include the World Bank, International Finance Corporation (IFC), Asian Development Bank (ADB), European Bank for Reconstruction and Development (EBRD), and various organizations of the United Nations. The Directory lists available public, private, and quasi-private sources of financing in key emerging markets in the Newly Independent States and other developing countries of strategic interest to the US Department of Energy. The sources of financing listed in this directory should be considered indicative rather than inclusive of all potential sources of financing. Initial focus is on the Russian Federation, Ukraine, india, China, and Pakistan. Separate self-contained sections have been developed for each of the countries to enable the user to readily access market-specific information and to support country-specific Departmental initiatives. For each country, the directory is organized to follow the project life cycle--from prefeasibility, feasibility, project finance, cofinancing, and trade finance, through to technical assistance and training. Programs on investment and export insurance are excluded.

  3. Domestic energy sources urged as Middle East situation heats up

    International Nuclear Information System (INIS)

    Rodgers, L.M.

    1990-01-01

    This article discusses the alternatives to foreign oil as an energy source for the US in the light of the invasion of Kuwait by Iraq. Topics addressed include the responses of organizations representing various energy sources, the public response of the Department of Energy, the response of conservation advocates, and the Administration's reaction

  4. Potential sources for the radiation treatment of food

    International Nuclear Information System (INIS)

    Sande, W.E.; Libby, R.A.

    1976-01-01

    The present, near-term, and potential (through year 2000) supply of radiation sources for large-scale radiosterilization applications is discussed. Principal sources considered are 60 Co produced in nuclear power reactors, 137 Cs presently available from ERDA encapsulation operations, and a mixture of 134 Cs- 137 Cs potentially available from the reprocessing of spent nuclear fuel. Some consideration is also given to electron accelerators

  5. Bioethanol as a major source of energy

    International Nuclear Information System (INIS)

    Anagha, Phani

    2009-01-01

    Full text: Achieving sustainability in agriculture requires taking into account many different factors: global climate, pollution, better use of industrial water, options regarding the use of fertilizers, pesticides, and herbicides, and also economic sustainability in terms of costs, competitiveness, and the number and quality of jobs created. The sugarcane industry is a good example of the integration of such concerns. It also illustrates what can be attained when people in developing countries receive the training they need to develop their own technologies. Bioethanol has taken precedence as Prime Biofuel after lot of controversy erupted on international food shortages and spiraling food prices. In spite of all the controversy Shrouding Biofuels, there has been universal acceptance and understanding that we need to continually look at alternate sources of fuels and feed stock's which are non food and this has seen visible interest for Sugarcane based Bioethanol to wheat, Maize and other food crops. In July 2008 alone, big investments in sugarcane/ethanol production were announced across the globe in sugar producing countries in the order of over 500 million dollars. The preceding months saw planned investment in the billions of dollars in the sector. The International Energy Agency sees world Biofuels production rising from 1.35 million barrels a day in 2008 to 1.95 million barrels a day in 2013- only five years away- and it is a safe bet that most of this increase will come from sugarcane ethanol. Dow Jones notes the sector seems impervious to the liquidity crunch with new investment being announced in Brazil despite high levels of existing debt. Pressure is also mounting on the developed countries to free up current import. (author)

  6. Energy saving potential in existing industrial compressors

    International Nuclear Information System (INIS)

    Vittorini, Diego; Cipollone, Roberto

    2016-01-01

    The Compressed Air Sector accounts for a mean 10% worldwide electricity consumption, which ensures about its importance, when energy saving and CO_2 emissions reduction are in question. Since the compressors alone account for 15% overall industry electricity consumption, it appears vital to pay attention to machine performances. The paper presents an overview of present compressor technology and focuses on saving directions for screw and sliding vanes machines, according to data provided by the Compressed Air and Gas Institute and PNEUROP. Data were processed to obtain consistency with fixed reference pressures and organized as a function of main operating parameters. Each sub-term, contributing to the overall efficiency (adiabatic, volumetric, mechanical, electric, organic), was considered separately: the analysis showed that the thermodynamic improvement during compression achievable by splitting the compression in two stages, with a lower compression ratio, opens the way to significantly reduce the energy specific consumption. - Highlights: • Compressors technology overview in industrial compressed air systems. • Market compressors efficiency baseline definition. • Energy breakdown and evaluation of main efficiency terms. • Assessment of air cooling-related energy saving potential. • Energy specific consumption reduction through dual stage compression.

  7. Panchromatic spectral energy distributions of Herschel sources

    Science.gov (United States)

    Berta, S.; Lutz, D.; Santini, P.; Wuyts, S.; Rosario, D.; Brisbin, D.; Cooray, A.; Franceschini, A.; Gruppioni, C.; Hatziminaoglou, E.; Hwang, H. S.; Le Floc'h, E.; Magnelli, B.; Nordon, R.; Oliver, S.; Page, M. J.; Popesso, P.; Pozzetti, L.; Pozzi, F.; Riguccini, L.; Rodighiero, G.; Roseboom, I.; Scott, D.; Symeonidis, M.; Valtchanov, I.; Viero, M.; Wang, L.

    2013-03-01

    Combining far-infrared Herschel photometry from the PACS Evolutionary Probe (PEP) and Herschel Multi-tiered Extragalactic Survey (HerMES) guaranteed time programs with ancillary datasets in the GOODS-N, GOODS-S, and COSMOS fields, it is possible to sample the 8-500 μm spectral energy distributions (SEDs) of galaxies with at least 7-10 bands. Extending to the UV, optical, and near-infrared, the number of bands increases up to 43. We reproduce the distribution of galaxies in a carefully selected restframe ten colors space, based on this rich data-set, using a superposition of multivariate Gaussian modes. We use this model to classify galaxies and build median SEDs of each class, which are then fitted with a modified version of the magphys code that combines stellar light, emission from dust heated by stars and a possible warm dust contribution heated by an active galactic nucleus (AGN). The color distribution of galaxies in each of the considered fields can be well described with the combination of 6-9 classes, spanning a large range of far- to near-infrared luminosity ratios, as well as different strength of the AGN contribution to bolometric luminosities. The defined Gaussian grouping is used to identify rare or odd sources. The zoology of outliers includes Herschel-detected ellipticals, very blue z ~ 1 Ly-break galaxies, quiescent spirals, and torus-dominated AGN with star formation. Out of these groups and outliers, a new template library is assembled, consisting of 32 SEDs describing the intrinsic scatter in the restframe UV-to-submm colors of infrared galaxies. This library is tested against L(IR) estimates with and without Herschel data included, and compared to eightother popular methods often adopted in the literature. When implementing Herschel photometry, these approaches produce L(IR) values consistent with each other within a median absolute deviation of 10-20%, the scatter being dominated more by fine tuning of the codes, rather than by the choice of

  8. An evaluation of wind energy potential at Kati Bandar, Pakistan

    Energy Technology Data Exchange (ETDEWEB)

    Ullah, Irfan [Department of Mechanical Engineering, NWFP University of Engineering and Technology, Peshawar (Pakistan); Chaudhry, Qamar-uz-Zaman [Pakistan Meteorological Department, Sector H-8/2, Islamabad (Pakistan); Chipperfield, Andrew J. [Computational Engineering and Design Group, School of Engineering Sciences, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom)

    2010-02-15

    As a developing nation of energy-starved people, Pakistan urgently needs new sources of affordable, clean energy. Wind energy is potentially attractive because of its low environmental impact and sustainability. This work aims to investigate the wind power production potential of sites in south-eastern Pakistan. Wind speed data measured over a one-year period at a typical site on the south-east coast of Pakistan are presented. Frequency distributions of wind speed and wind power densities at three heights, seasonal variations of speed, and estimates of power likely to be produced by commercial turbines are included. The site investigated is found to be a class 4 wind power site with annual average wind speed of 7.16 m/s and power density of 414 W/m{sup 2} at 50 m height. The site is, therefore, likely to be suitable for wind farms as well as small, stand-alone systems. (author)

  9. Alternative Natural Energy Sources in Building Design.

    Science.gov (United States)

    Davis, Albert J.; Schubert, Robert P.

    This publication provides a discussion of various energy conserving building systems and design alternatives. The information presented here covers alternative space and water heating systems, and energy conserving building designs incorporating these systems and other energy conserving techniques. Besides water, wind, solar, and bio conversion…

  10. Wind energy potential assessment at four typical locations in Ethiopia

    Energy Technology Data Exchange (ETDEWEB)

    Bekele, Getachew; Palm, Bjoern [Department of Energy Technology, KTH, 10044 Stockholm (Sweden)

    2009-03-15

    The wind energy potential at four different sites in Ethiopia - Addis Ababa (09:02N, 38:42E), Mekele (13:33N, 39:30E), Nazret (08:32N, 39:22E), and Debrezeit (8:44N, 39:02E) - has been investigated by compiling data from different sources and analyzing it using a software tool. The results relating to wind energy potential are given in terms of the monthly average wind speed, wind speed probability density function (PDF), wind speed cumulative density function (CDF), and wind speed duration curve (DC) for all four selected sites. In brief, for measurements taken at a height of 10 m, the results show that for three of the four locations the wind energy potential is reasonable, with average wind speeds of approximately 4 m/s. For the fourth site, the mean wind speed is less than 3 m/s. This study is the first stage in a longer project and will be followed by an analysis of solar energy potential and finally the design of a hybrid standalone electric energy supply system that includes a wind turbine, PV, diesel generator and battery. (author)

  11. Solar heating as a major source of energy for Australia

    Energy Technology Data Exchange (ETDEWEB)

    Morse, R. N.

    1977-07-01

    Solar energy can make its most effective contribution to Australian primary energy in the form of heat for industrial applications. About 50% of all end use energy is required as heat and it is estimated that 40% of this amounting to 1 EJ/a by 2000 could be supplied by solar heat generating systems. This would be 12% of estimated primary energy requirements by that time, and could help reduce the country's increasing dependence on imported oil. Energy self-sufficiency for Australia is possible, based on coal, solar energy and natural gas as primary energy sources. The reason for the present orientation towards residential solar water heaters is that there are many places where electric power for water heating costs between 2 and 4 cents per kWh which makes a solar water heater an attractive proposition. There is also a growing interest in the solar heating of swimming pools, mostly for private homes but also in larger installations for public and institutional pools. Industrial applications, on the other hand, are inhibited by the current low energy prices in Australia, which in some cases are around 0.13 cents/MJ (.47 cents/kWh). Industry, however, uses 40% of Australian primary energy, and represents by far the greatest potential for solar heat generating systems. Demonstration plants are being planned to obtain data on capital and running costs, and at the same time build up professional design and constructional skills in this area. The first demonstration solar industrial process heating system was commissioned in December 1976 and supplies portion of the heat requirements of a soft drink plant in conjunction with the existing oil fired boiler. Integrated solar/oil fired systems of this sort ensure continuous operation of the plant and over a year can result in significant oil savings.

  12. Solar heating as a major source of energy for Australia

    Energy Technology Data Exchange (ETDEWEB)

    Morse, R.N.

    1977-07-01

    Solar energy can make its most effective contribution to Australian primary energy in the form of heat for industrial applications. About 50% of all end use energy is required as heat and it is estimated that 40% of this amounting to 1 EJ/a by 2000 could be supplied by solar heat generating systems. This would be 12% of estimated primary energy requirements by that time, and could help reduce the country's increasing dependence on imported oil. Energy self-sufficiency for Australia is possible, based on coal, solar energy and natural gas as primary energy sources. The reason for the present orientation towards residential solar water heaters is that there are many places where electric power for water heating costs between 2 and 4 cents per kWh which makes a solar water heater an attractive proposition. There is also a growing interest in the solar heating of swimming pools, mostly for private homes but also in larger installations for public and institutional pools. Industrial applications, on the other hand, are inhibited by the current low energy prices in Australia, which in some cases are around 0.13 cents/MJ (.47 cents/kWh). Industry, however, uses 40% of Australian primary energy, and represents by far the greatest potential for solar heat generating systems. Demonstration plants are being planned to obtain data on capital and running costs, and at the same time build up professional design and constructional skills in this area. The first demonstration solar industrial process heating system was commissioned in December 1976 and supplies portion of the heat requirements of a soft drink plant in conjunction with the existing oil fired boiler. Integrated solar/oil fired systems of this sort ensure continuous operation of the plant and over a year can result in significant oil savings.

  13. Energy. From natural sources to production challenges

    International Nuclear Information System (INIS)

    2002-09-01

    Human beings have always needed energy to feed themselves and move about. Energy can be found in various forms. Today's technologies are capable of tapping all possible resources (e.g. fossil fuels, water, wind, sun) to produce large quantities of energy. Now, at the start of the 21. century, energy remains essential for mankind. It represents a major political, economic, scientific and environmental challenge. Of the many properties found in material objects, energy is not only one of the most important but also one of the most abstract, since it is not actually tangible. (authors)

  14. Environmental problems connected to the use of renewable energy sources

    International Nuclear Information System (INIS)

    Mottana, A.; Pignotti, S.

    2000-01-01

    The development of FER (renewable energy sources) can represent a fundamental answer to the growing energy need and the requirement for a new environmental quality. Also the renewable sources, however, have an environmental cost, whose amount can be considered of little importance at a world balance, but can have a large impact at a local level. Among FER the author has chosen hydroelectric source, biomass and wind energy, since they are most effective according to the aims of this discussion [it

  15. Can renewable energy sources satiate Slovakia's future energy needs?

    Energy Technology Data Exchange (ETDEWEB)

    Tomis, Igor; Koval, Peter; Janicek, Frantisek; Darula, Ivan

    2010-09-15

    The paper examines the options for replacing the current energy mix of non-renewable, conventional energy sources solely with renewable sources in the long term within the context of the Slovak environment, possibly combined with nuclear energy in the 50-year horizon. Vital needs are outlined in household energy consumption and energy consumption for industrial and transportation purposes to fulfil in order for Slovakia to become independent of foreign sources in energy supplies.

  16. Investigation of Solar and Solar-Gas Thermal Energy Sources

    OpenAIRE

    Ivan Herec; Jan Zupa

    2003-01-01

    The article deals with the investigation of solar thermal sources of electrical and heat energy as well as the investigation of hybrid solar-gas thermal sources of electrical and heat energy (so called photothermal sources). Photothermal sources presented here utilize computer-controlled injection of the conversion fluid into special capillary porous substance that is adjusted to direct temperature treatment by the concentrated thermal radiation absorption.

  17. The renewable energies sources in France 1970-2000

    International Nuclear Information System (INIS)

    2001-01-01

    The objective of this report is to describe the energy production from renewable sources in France since 1970. In France the rate of using renewable energy sources is unequal. Some of them as hydro energy show a confirmed industrial and commercial interest when other techniques have not still reach the same level of maturity. The renewable energy sources chosen to calculate the electric and thermal production of France are: for electric power, hydro energy, wind energy, solar energy, geothermal energy, the urban wastes, the wood wastes, the harvesting residues, the biogas. For the thermal production, the thermal solar energy, the geothermal energy, the urban wastes, the wood and wood wastes, the harvesting residues, the biogas and bio fuels. The figures are marked in thirty tables. (N.C.)

  18. Analysis of the prospects of solar energy and other alternative energy sources in Ukraine

    OpenAIRE

    Mogylko, O.

    2010-01-01

    The need to develop an alternative energy sources in Ukraine to increase energy efficiency and energy security it is explained in the article. The international experience of development of solar energy are analyzed. The prospects and other alternative energy sources in Ukraine are defined. The conclusions and recommendations to address the problems are identified.

  19. Offshore wind energy potential in China

    DEFF Research Database (Denmark)

    Hong, Lixuan; Möller, Bernd

    2011-01-01

    and economic costs. However, the influence of tropical cyclone risks on these regions and detailed assessments at regional or local scale are worth of further discussions. Nevertheless, the models and results provide a foundation for a more comprehensive regional planning framework that would address......This paper investigates available offshore wind energy resources in China’s exclusive economic zone (EEZ) with the aid of a Geographical Information System (GIS), which allows the influence of technical, spatial and economic constraints on offshore wind resources being reflected in a continuous...... space. Geospatial supply curves and spatial distribution of levelised production cost (LPC) are developed, which provide information on the available potential of offshore wind energy at or below a given cost, and its corresponding geographical locations. The GIS-based models also reflect the impacts...

  20. Use of regenerative energy sources and hydrogen technology 2006. Proceedings

    International Nuclear Information System (INIS)

    Lehmann, J.; Luschtinetz, T.

    2006-01-01

    This volume contains 25 contributions, which were held on the 13th symposium ''Use of regenerative energy sources and hydrogen technology'' in Stralsund (Germany). Separate documentation items analysing 16 of the contributions have been prepared for the ENERGY database

  1. Conversion of biomass into energy source

    International Nuclear Information System (INIS)

    Antonescu, S.; Garjoaba, M.; Antonescu, A.

    2005-01-01

    This study assists the identification of possible application and markets of the CHP-plants in the NAS states, and forms the first part of a detailed study on economical and ecological prospects of small scale and large heat pipe reformers in NAS. It is well known that the energy strategy of the European Union, foresees the increase of the participation of the renewable energy from the total of the energy resources of the European Union, up to 12% in 2010. This participation is of a great importance for the adequate reduction of green house effect gases. From the energy production point of view it is proven the fact that in 2010 the production of renewable energy will be: electricity - 675 tWh; heat - 80 Mtoe (930 TWh). From the above mentioned energy demand, the biomass will cover: electricity - 230 TWh-34,1%; heat - 75 Mtoe (93,8%)

  2. Cogenerational sources of energies and their allocating problem

    Directory of Open Access Journals (Sweden)

    Badida Miroslav

    1997-12-01

    Full Text Available Energy production in industrial communities consume a main part of primary raw materials and it is one of the sources of ecologicall impact. Electric power plants and warm produce plants are mostly important investment – consuming establishments with a long time of return, what stress along with the economical, predictional, logistical and environmental decision making aspect of their allocating. Already input of the mentioned aspects along with the price movement after the energy depression motivate a formation of new conception of combinated so-called items, which are able to use the energetic potential of fuels with a higher concurrent efficiency and, on the other hand, can reduce ecologic impacts of fossil combustion.

  3. The Wind Energy Potential of Iceland

    DEFF Research Database (Denmark)

    Nawri, Nikolai; Petersen, Guðrún Nína; Björnsson, Halldór

    2014-01-01

    Downscaling simulations performed with theWeather Research and Forecasting (WRF) model were used to determine the large-scale wind energy potential of Iceland. Local wind speed distributions are represented by Weibull statistics. The shape parameter across Iceland varies between 1.2 and 3...... is higher by 100 e700 W m_2 than that of offshore winds. Based on these results, 14 test sites were selected for more detailed analyses using the Wind Atlas Analysis and Application Program (WAsP). © 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license...

  4. Theoretical studies of potential energy surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Harding, L.B. [Argonne National Laboratory, IL (United States)

    1993-12-01

    The goal of this program is to calculate accurate potential energy surfaces (PES) for both reactive and nonreactive systems. To do this the electronic Schrodinger equation must be solved. Our approach to this problem starts with multiconfiguration self-consistent field (MCSCF) reference wavefunctions. These reference wavefunctions are designed to be sufficiently flexible to accurately describe changes in electronic structure over a broad range of geometries. Electron correlation effects are included via multireference, singles and doubles configuration interaction (MRSDCI) calculations. With this approach, the authors are able to provide useful predictions of the energetics for a broad range of systems.

  5. Data Network Equipment Energy Use and Savings Potential in Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Lanzisera, Steven; Nordman, Bruce; Brown, Richard E.

    2010-06-09

    Network connectivity has become nearly ubiquitous, and the energy use of the equipment required for this connectivity is growing. Network equipment consists of devices that primarily switch and route Internet Protocol (IP) packets from a source to a destination, and this category specifically excludes edge devices like PCs, servers and other sources and sinks of IP traffic. This paper presents the results of a study of network equipment energy use and includes case studies of networks in a campus, a medium commercial building, and a typical home. The total energy use of network equipment is the product of the stock of equipment in use, the power of each device, and their usage patterns. This information was gathered from market research reports, broadband market penetration studies, field metering, and interviews with network administrators and service providers. We estimate that network equipment in the USA used 18 TWh, or about 1percent of building electricity, in 2008 and that consumption is expected to grow at roughly 6percent per year to 23 TWh in 2012; world usage in 2008 was 51 TWh. This study shows that office building network switches and residential equipment are the two largest categories of energy use consuming 40percent and 30percent of the total respectively. We estimate potential energy savings for different scenarios using forecasts of equipment stock and energy use, and savings estimates range from 20percent to 50percent based on full market penetration of efficient technologies.

  6. Multi-Source Energy Harvesting for Wireless Sensor Nodes.

    OpenAIRE

    Kang, Kai

    2012-01-01

    The past few years have seen an increasing interest in the development of wireless sensor networks. But the unsatisfactory or limited available energy source is one of the major bottlenecks which are limiting the wireless sensor technology from mass deployment. Ambient energy harvesting is the most promising solution towards autonomous sensor nodes by providing low cost, permanent, and maintenance-free energy source to wireless sensor nodes. In this paper, we first invested available energy s...

  7. Perspectives of microalgal biofuels as a renewable source of energy

    International Nuclear Information System (INIS)

    Kiran, Bala; Kumar, Ritunesh; Deshmukh, Devendra

    2014-01-01

    Highlights: • Microalgae offer solution of wastewater treatment, CO 2 sequestration, and energy crises. • Microalgal biofuel is renewable, nontoxic and environmentally friendly option. • Integration of wastewater treatment with biofuels production has made them more cost effective. • This article details out the potential production process and benefits of microalgal biofuels. - Abstract: Excessive use of fossil fuels to satisfy our rapidly increasing energy demand has created severe environmental problems, such as air pollution, acid rain and global warming. Biofuels are a potential alternative to fossil fuels. First- and second-generation biofuels face criticism due to food security and biodiversity issues. Third-generation biofuels, based on microalgae, seem to be a plausible solution to the current energy crisis, as their oil-producing capability is many times higher than that of various oil crops. Microalgae are the fastest-growing plants and can serve as a sustainable energy source for the production of biodiesel and several other biofuels by conversion of sunlight into chemical energy. Biofuels produced from microalgae are renewable, non-toxic, biodegradable and environment friendly. Microalgae can be grown in open pond systems or closed photobioreactors. Microalgal biofuels are a potential means to keep the development of human activities in synchronization with the environment. The integration of wastewater treatment with biofuel production using microalgae has made microalgal biofuels more attractive and cost effective. A biorefinery approach can also be used to improve the economics of biofuel production, in which all components of microalgal biomass (i.e., proteins, lipids and carbohydrates) are used to produce useful products. The integration of various processes for maximum economic and environmental benefits minimizes the amount of waste produced and the pollution level. This paper presents an overview of various aspects associated with

  8. RUSTEC: Greening Europe's energy supply by developing Russia's renewable energy potential

    International Nuclear Information System (INIS)

    Boute, Anatole; Willems, Patrick

    2012-01-01

    The North-West of Russia is characterized by a large renewable energy resource base in geographic proximity to the EU. At the same time, EU Member States are bound by mandatory renewable energy targets which could prove to be costly to achieve in the current budgetary context and which often face strong local opposition. Directive 2009/28/EC on Renewable Energy makes it possible for Member States to achieve their targets by importing electricity produced from renewable energy sources from non-EU countries. So far, most attention has been on the Mediterranean Solar Plan or Desertec. An EU–Russia Renewable Energy Plan or RUSTEC – being based on onshore wind/biomass/hydro energy and on-land interconnection, rather than solar power and subsea lines – could present a cost-efficient and short-term complement to Desertec. This article examines the political, geopolitical, economic, social and legal challenges and opportunities of exporting “green” energy from Russia to the EU. It argues that EU–Russian cooperation in the renewable energy field would present a win-win situation: Member States could achieve their targets on the basis of Russia's renewable energy potential, while Russia could begin to develop a national renewable energy industry without risking potential price increases for domestic consumers—a concern of great political sensitivity in Russia. - Highlights: ► Russia has a huge renewable energy potential in geographic proximity to the EU. ► This potential could help the EU decarbonize its electricity supply at least cost.► EU–Russia green energy export is a win-win situation but lacks political attention.► RUSTEC could be a short-term and cost-efficient complement to Desertec. ► RUSTEC would diversify EU energy imports/Russian exports and stimulate innovation.

  9. Biomass - alternative renewable energy source to the fossil fuels

    Directory of Open Access Journals (Sweden)

    Koruba Dorota

    2017-01-01

    Full Text Available The article presents the fossil fuels combustion effects in terms of the dangers of increasing CO2 concentration in the atmosphere. Based on the bibliography review the negative impact of increased carbon dioxide concentration on the human population is shown in the area of the external environment, particularly in terms of the air pollution and especially the impact on human health. The paper presents biomass as the renewable energy alternative source to fossil fuels which combustion gives a neutral CO2 emissions and therefore should be the main carrier of primary energy in Poland. The paper presents the combustion heat results and humidity of selected dry wood pellets (pellets straw, energy-crop willow pellets, sawdust pellets, dried sewage sludge from two sewage treatment plants of the Holly Cross province pointing their energy potential. In connection with the results analysis of these studies the standard requirements were discussed (EN 14918:2010 “Solid bio-fuels-determination of calorific value” regarding the basic parameters determining the biomass energy value (combustion heat, humidity.

  10. Sustainable biotechnology: sources of renewable energy

    National Research Council Canada - National Science Library

    Singh, Om V; Harvey, Steven P

    2010-01-01

    ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Anuj K. Chandel, Om V. Singh, and L.Venkateswar Rao 63 Tactical Garbage to Energy Refinery (TGER) . . . . . . . . . . . . . . . James J. Valdes and Jerry B. Warner...

  11. Conservation – a new and efficient source of energy

    CSIR Research Space (South Africa)

    National Building Research Institute

    1981-09-01

    Full Text Available Energy is becoming increasingly expensive. Conservation can offset the increase in energy cost and can therefore be considered a new and can fairly inexpensive source of energy. The following article looks at the ways in which energy savings in both...

  12. Geothermal source potential and utilization for alcohol production

    Energy Technology Data Exchange (ETDEWEB)

    Austin, J.C.

    1981-11-01

    A study was conducted to assess the technical and economic feasibility of using a potential geothermal source to drive a fuel grade alcohol plant. Test data from the well at the site indicated that the water temperature at approximately 8500 feet should approach 275/sup 0/F. However, no flow data was available, and so the volume of hot water that can be expected from a well at this site is unknown. Using the available data, numerous fuel alcohol production processes and various heat utilization schemes were investigated to determine the most cost effective system for using the geothermal resource. The study found the direct application of hot water for alcohol production based on atmospheric processes using low pressure steam to be most cost effective. The geothermal flow rates were determined for various sizes of alcohol production facility using 275/sup 0/F water, 235/sup 0/F maximum processing temperature, 31,000 and 53,000 Btu per gallon energy requirements, and appropriate process approach temperatures. It was determined that a 3 million gpy alcohol plant is the largest facility that can practically be powered by the flow from one large geothermal well. An order-of-magnitude cost estimate was prepared, operating costs were calculated, the economic feasibility of the propsed project was examined, and a sensitivity analysis was performed.

  13. SPATIOTEMPORAL MODELING FOR ASSESSING COMPLEMENTARITY OF RENEWABLE ENERGY SOURCES IN DISTRIBUTED ENERGY SYSTEMS

    Directory of Open Access Journals (Sweden)

    L. Ramirez Camargo

    2015-07-01

    Full Text Available Spatial assessments of the potential of renewable energy sources (RES have become a valuable information basis for policy and decision-making. These studies, however, do not explicitly consider the variability in time of RES such as solar energy or wind. Until now, the focus is usually given to economic profitability based on yearly balances, which do not allow a comprehensive examination of RES-technologies complementarity. Incrementing temporal resolution of energy output estimation will permit to plan the aggregation of a diverse pool of RES plants i.e., to conceive a system as a virtual power plant (VPP. This paper presents a spatiotemporal analysis methodology to estimate RES potential of municipalities. The methodology relies on a combination of open source geographic information systems (GIS processing tools and the in-memory array processing environment of Python and NumPy. Beyond the typical identification of suitable locations to build power plants, it is possible to define which of them are the best for a balanced local energy supply. A case study of a municipality, using spatial data with one square meter resolution and one hour temporal resolution, shows strong complementarity of photovoltaic and wind power. Furthermore, it is shown that a detailed deployment strategy of potential suitable locations for RES, calculated with modest computational requirements, can support municipalities to develop VPPs and improve security of supply.

  14. The electric energy potential of landfill biogas in Brazil

    International Nuclear Information System (INIS)

    Mambeli Barros, Regina; Tiago Filho, Geraldo Lúcio; Silva, Tiago Rodrigo da

    2014-01-01

    The increases in a country's energy capacity are related to its gross domestic product (GDP). In Brazil, increases in income and the consumption of goods and services have led to an increase in the generation of solid waste (SW), which is sent to landfills as a method of treatment and final disposal. The purpose of this study was to facilitate an increase in energy generation from renewable resources, specifically from landfills via thermal biogas plants, and the research was divided into two phases. The first phase involved the assessment of the potential population size contributing to the landfill, which could result in the installation of a financially viable enterprise to generate electricity in Brazil. Next, an estimate of the costs associated with the generation and collection of solid waste in Brazil was predicted by GDP prognoses, the latter being in accordance with the National Energy Balance (Balanço Energético Nacional – BEN) plan created by the Mines and Energy Ministry of Brazil (Ministério de Minas e Energia do Brasil – MME). The net present value (NPV) and internal rate of return (IRR) of each enterprise scenario was used in the first stage to assess the plan's financial viability. In the second stage, estimation curves such as logistics, decreasing rate of growth, and logarithmic curves were used to establish relationships between the generation scenarios and the projected collection of SW and projected GDP. Thus, a range of possible landfill biogas/methane generation values and installed energy capacities were created, considering the extreme maximum and minimum values. These values were related to the energy sources from residual fuels reported by BEN. The results demonstrated that such values still represented a small percentage (0.00020% in 2010 and 0.44496–0.81042% in 2030) of the projected energy generation from residual fuels. Thus, an urgent need was identified to formulate policies that would encourage landfills as a

  15. The potential of energy farming in the southeastern California desert

    Science.gov (United States)

    Lew, V.

    1980-04-01

    The use of energy forms to provide future sources of energy for California is considered. Marginal desert lands in southeastern California are proposed for the siting of energy farms using acacia, eucalyptus, euphorbia, guayule, jojoba, mesquite, or tamarisk.

  16. Energy storage: potential analysis is still on the way

    International Nuclear Information System (INIS)

    Signoret, Stephane; Dejeu, Mathieu; Deschaseaux, Christelle; De Santis, Audrey; Cygler, Clement; Petitot, Pauline

    2014-01-01

    A set of articles gives an overview of the status and current evolutions of the energy storage sector. The different technologies (flywheel, lithium-ion batteries, NaS or Zebra batteries, compressed air energy storage or CAES, 2. generation CAES, pump storage power plants or PSP) have different applications areas, and also different technological maturity levels. PSPs have probably the best potential nowadays, but investors must be supported. In an interview, a member of the CNRS evokes the main researches, the obstacles in the development of solar thermodynamic plants, technology transfers, and the potential of hydrogen for massive energy storage. An article outlines the need to develop the battery market. Several technological examples and experiments are then presented: Nice Grid (storage at the source level), FlyProd (energy storage by flywheel). An article then addresses the issue of heat storage, notably in a situation of energy co-generation. Researches and prototype development are then presented, the objective of which is to obtain an adiabatic CAES. The last articles address the development of hydrogen to store energy (technologies) and a first technological demonstrator

  17. Renewable energy sources in Germany, 1990 through 2007; Erneuerbare Energien in Deutschland 1990 bis 2007

    Energy Technology Data Exchange (ETDEWEB)

    Boehme, Dieter; Duerrschmidt, Wolfhart (comps.)

    2009-11-15

    This brochure presents a picture of the rapid development of renewable energy sources in the years between 1990 and 2007. It shows the rapid growth and informs on the importance of renewable energy sources for climate protection. The new CDU/FDP government headed by Angela Merkel stressed its intention to develop the potential of renewable energy sources. Apart from the effect of higher energy efficiency, this will also help Germany to make an ambitious contribution to climate protection world-wide. Renewable energy sources are to provide the biggest share of power supply in the future. By 2020, the EEG (German Renewables Act) envisages at least a 30 percent share for renewable energy sources as an intermediate goal. In the field of heat supply, at least 14 percent are envisaged fro 2020. (orig./RHM)

  18. Antideuterons in cosmic rays: sources and discovery potential

    Energy Technology Data Exchange (ETDEWEB)

    Herms, Johannes; Ibarra, Alejandro; Vittino, Andrea; Wild, Sebastian, E-mail: johannes.herms@tum.de, E-mail: ibarra@tum.de, E-mail: andrea.vittino@tum.de, E-mail: sebastian.wild@ph.tum.de [Physik-Department T30d, Technische Universität München, James-Franck-Straße 1, D-85748 Garching (Germany)

    2017-02-01

    Antibaryons are produced in our Galaxy in collisions of high energy cosmic rays with the interstellar medium and in old supernova remnants, and possibly, in exotic sources such as primordial black hole evaporation or dark matter annihilations and decays. The search for signals from exotic sources in antiproton data is hampered by large backgrounds from spallation which, within theoretical errors, can solely account for the current data. Due to the higher energy threshold for antideuteron production, which translates into a suppression of the low energy flux from spallations, antideuteron searches have been proposed as a probe for exotic sources. We perform in this paper a comprehensive analysis of the antideuteron fluxes at the Earth expected from known and hypothetical sources in our Galaxy, and we calculate their maximal values consistent with current antiproton data from AMS-02. We find that supernova remnants generate a negligible flux, whereas primordial black hole evaporation and dark matter annihilations or decays may dominate the total flux at low energies. On the other hand, we find that the (detection of cosmic antideuterons) would require, for the scenarios studied in this paper and assuming optimistic values of the coalescence momentum and solar modulation, an increase of the experimental sensitivity compared to ongoing and planned instruments by at least a factor of 2. Finally, we briefly comment on the prospects for antihelium-3 detection.

  19. Policy Enabling Environment for Corporate Renewable Energy Sourcing

    Energy Technology Data Exchange (ETDEWEB)

    2017-05-09

    Interest in renewable energy (RE) procurement in new markets is on the rise. Corporations are increasing their commitments to procuring RE, motivated by an interest in using clean energy sources and reducing their energy expenses. Many large companies have facilities and supply chains in multiple countries, and are interested in procuring renewable energy in the grids where they use energy. The policy environment around the world plays a key role in shaping where and how corporations will invest in renewables. This fact sheet details findings from a recent 21st Century Power Partnership report, Policies to Enable Corporate Renewable Energy Sourcing Internationally.

  20. Spent grain as energy source for breweries

    Energy Technology Data Exchange (ETDEWEB)

    Scharf, P; Meyer-Pittroff, R [Technical Univ. of Munich, Freising (West Germany)

    1990-01-01

    About 1.7 million tons of spent grain are produced from brewing operations each year in the Federal Republic of Germany. Because there is more spent grain than can be sold as cattle fodder, other uses for this product are being sought. These include composting, methane generation, and direct combustion. Researchers are using anaerobic fermentation as a means of producing biogas and using waste energy from the brewery to heat the fermenter. Combustion of spent grain can give a net energy of 12.8 MJ per kg dry grain. With biogas production, about 15-20% of the whole primary energy or 50% of the primary energy used in the boiling house could be substituted by the biogas.

  1. Non-conventional sources of energy

    International Nuclear Information System (INIS)

    Bhishikar, Subhash

    1993-01-01

    The article describes flat plate solar collector, concentration solar collector, applications of solar energy, biomass gasification process, and biomass fueled Stirling engine. Cost aspect is also considered. (M.G.B). 3 tabs., 2 figs

  2. Energy Efficiency and Importance of Renewable Energy Sources in Latvia

    Science.gov (United States)

    Skapare, I.; Kreslins, A.

    2007-10-01

    The main goal of Latvian energy policy is to ensure safe and environmentally friendly long-term energy supply at cost-effective prices, contributing to enhance competitiveness, and to ensure safe energy transit. The Latvian Parliament approved an Energy Efficiency Strategy in 2000. Its objective is to decrease energy consumption per unit of GDP by 25% by 2010. Awareness raising, implementation of standards and economic incentives for self financing are the main instruments to increase energy efficiency, mentioned in the strategy. Latvia, as many other European Union member states, is dependent on the import of primary energy resources. The Latvian Renewable Energy strategy is still under development. The only recent study on RES was developed in the framework of a PHARE program in year 2000: "Renewable energy resource program", where three main objectives for a future RES strategy were proposed: 1. To increase the use of wood waste and low value wood and forest residues. 2. To improve efficiency of combustion technologies and to replace outdated plants. 3. To increase the use of renewables in Combined Heat and Power plants (CHP). Through the Renewable Energy and Energy Efficiency Partnership, partners will develop a set of new shared activities, and coordinate and strengthen existing efforts in this area.

  3. Environmental benefit from renewable energy sources

    International Nuclear Information System (INIS)

    Nicoletti, G.; Notarnicola, B.

    2001-01-01

    In this paper a comparative environmental analysis on the electricity production between wind energy system and coal power plant has been made. The methodologies used are the LCA and the Impact Patway Analysis (IPA) - a recent tool to assess the externalities of the energy systems. Both methodologies, even if in different amount, show a remarkable convenience in the production of electricity from wind systems [it

  4. Comparing nuclear power with other energy sources

    International Nuclear Information System (INIS)

    Rey, Francisco C.

    2001-01-01

    The economics of electric generation of nuclear, hydro, oil and gas origin are compared. A similar comparison is also made from the health and environment standpoint for the fossil, nuclear, solar and wind generation. A risk assessment for energies of different origin is outlined and the significance of the greenhouse effect is emphasised. A comprehensive economic and environmental evaluation is recommended for the energy planning

  5. Fossil energy savings potential of sugar cane bio-energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Thu Lan T. [Department of Agroecology, Aarhus University, Tjele (Denmark); The Joint Graduate School of Energy and Environment, King Mongkut' s University of Technology Thonburi, Bangkok (Thailand); Hermansen, John E. [Department of Agroecology, Aarhus University, Tjele (Denmark); Sagisaka, Masayuki [Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology, Tsukuba (Japan)

    2009-11-15

    One important rationale for bio-energy systems is their potential to save fossil energy. Converting a conventional sugar mill into a bio-energy process plant would contribute to fossil energy savings via the extraction of renewable electricity and ethanol substituting for fossil electricity and gasoline, respectively. This paper takes a closer look at the Thai sugar industry and examines two practical approaches that will enhance fossil energy savings. The first one addresses an efficient extraction of energy in the form of electricity from the excess bagasse and cane trash. The second while proposing to convert molasses or sugar cane to ethanol stresses the use of bagasse as well as distillery spent wash to replace coal in meeting ethanol plants' energy needs. The savings potential achieved with extracting ethanol from surplus sugar versus current practice in sugar industry in Thailand amounts to 15 million barrels of oil a year. Whether the saving benefits could be fully realized, however, depends on how well the potential land use change resulting from an expansion of ethanol production is managed. The results presented serve as a useful guidance to formulate strategies that enable optimum utilization of biomass as an energy source. (author)

  6. Potential Sources of Polarized Light from a Plant Canopy

    Science.gov (United States)

    Vanderbilt, Vern; Daughtry, Craig; Dahlgren, Robert

    2016-01-01

    Field measurements have demonstrated that sunlight polarized during a first surface reflection by shiny leaves dominates the optical polarization of the light reflected by shiny-leafed plant canopies having approximately spherical leaf angle probability density functions ("Leaf Angle Distributions" - LAD). Yet for other canopies - specifically those without shiny leaves and/or spherical LADs - potential sources of optically polarized light may not always be obvious. Here we identify possible sources of polarized light within those other canopies and speculate on the ecologically important information polarization measurements of those sources might contain.

  7. 27-Level DC–AC inverter with single energy source

    International Nuclear Information System (INIS)

    Tsang, K.M.; Chan, W.L.

    2012-01-01

    Highlights: ► This paper reports a novel 27-level DC–AC inverter using only single renewable energy source. ► The efficiency of the inverter is very high. The output waveform is almost sinusoidal. ► The cost is low as the number of power switches required is only 12. - Abstract: A novel design of multilevel DC–AC inverter using only single renewable energy source is presented in this paper. The proposed approach enables multilevel output to be realised by a few cascaded H-bridges and a single energy source. As an illustration, a 27-level inverter has been implemented based on three cascaded H-bridges with a single energy source and two capacitors. Using the proposed novel switching strategy, 27 levels can be realized and the two virtual energy sources can be well regulated. Experimental results are included to demonstrate the effectiveness of the proposed inverter.

  8. Environmental impact of non-conventional energy sources

    International Nuclear Information System (INIS)

    Abbasi, S.A.; Abbasi, Naseema; Nipaney, P.C.; Ramasamy, E.V.

    1995-01-01

    Whereas the global attention has always been focused on the adverse environmental impacts of conventional energy sources, only a few studies have been conducted on the clean environment image of the non-conventional energy sources, particularly the renewable ones. The question whether the non-conventional sources are really as benign as they are made out to be is addressed in the present paper in the background of a classical paradigm developed by Lovin which had postulated the hard (malignant) and soft (benign) energy concepts in the first place. It then assesses the likely environmental impacts of several major non-conventional energy sources and comes up with the note of caution that in many cases the adverse impacts may not be insubstantial; indeed in some cases they can be as strongly negative as the impacts of the conventional energy sources. (author). 31 refs

  9. Use of non-conventional energy sources for power generation

    International Nuclear Information System (INIS)

    Umapathaiah, R.; Sharma, N.D.

    1999-01-01

    India being a developing country, cannot afford to meet the power and energy demand only from conventional sources. Power generation can be augmented by using non-conventional energy sources. Sufficient importance must be given for recovery of energy from industrial/urban waste. Solar heating system must replace industrial and domestic sectors. Solar photovoltaic, biogas plant, biomass based gasified system must also be given sufficient place in energy sector. More thrust has to be given for generation of power by using sugar cane which is a perennial source

  10. Does willingness to pay for green energy differ by source?

    International Nuclear Information System (INIS)

    Borchers, Allison M.; Duke, Joshua M.; Parsons, George R.

    2007-01-01

    We present the findings of a choice experiment designed to estimate consumer preferences and willingness-to-pay (WTP) for voluntary participation in green energy electricity programs. Our model estimates WTP for a generic 'green energy' source and compares it to WTP for green energy from specific sources, including wind, solar, farm methane, and biomass. Our results show that there exists a positive WTP for green energy electricity. Further, individuals have a preference for solar over a generic green and wind. Biomass and farm methane are found to be the least preferred sources

  11. Contracting of energy services in Switzerland. Development, effects, market potentials

    International Nuclear Information System (INIS)

    Muggli, C.; Baumgartner, W.; Kohn, L.

    1999-06-01

    The authors of this detailed report first define the contracting of energy services, this new reality of the market place, and analyse its current status in Switzerland. Contracting is mainly to be understood as the delegation of certain energy-related services by a company. The total investment for the operated energy systems considered by the study is about 120 millions USD, with an installed power of 160 MW. This market is highly unhomogeneous and is the answer to various goals. Globally, it brings a more efficient use of energy, including a more frequent involvement of renewable energy sources, along with a lower risk and significant advantages for all contractors. That is the reason for the energy policy authority to recommend contracting. The report goes on with the analysis of the factors leading the chief executives to consider contracting of energy services, or on the contrary to exclude it. The authors estimate the realistic potential market for contracting in Switzerland to 650 millions USD for the period 1999-2004. They conclude by giving recommendations which should result in an acceleration of the contracting's development on the market place

  12. Nuclear power: an eco friendly energy source for sustainable development

    International Nuclear Information System (INIS)

    Obaidurrahman, K.; Singh, Om Pal

    2009-01-01

    When viewed from a large set of criteria such as abundance of energy resources, environmental impacts, low fuel inventory, quantum of waste generated and green house gas emissions, nuclear power can be considered as a large scale sustainable energy source. Among all energy sources, nuclear energy has perhaps the lowest impact on the environment, especially in relation to kilowatt-hr produced, because nuclear plants do not emit harmful gases and produce small quantity of waste. In other words, nuclear energy is the most environmental friendly electricity source. There are no significant adverse effects to water, land, habitat, species and air resources. The present paper discusses the sustainability and feasibility of nuclear power as an eco friendly energy source in the changing and challenging competitive power market. (author)

  13. Energy Harvesting Research: The Road from Single Source to Multisource.

    Science.gov (United States)

    Bai, Yang; Jantunen, Heli; Juuti, Jari

    2018-06-07

    Energy harvesting technology may be considered an ultimate solution to replace batteries and provide a long-term power supply for wireless sensor networks. Looking back into its research history, individual energy harvesters for the conversion of single energy sources into electricity are developed first, followed by hybrid counterparts designed for use with multiple energy sources. Very recently, the concept of a truly multisource energy harvester built from only a single piece of material as the energy conversion component is proposed. This review, from the aspect of materials and device configurations, explains in detail a wide scope to give an overview of energy harvesting research. It covers single-source devices including solar, thermal, kinetic and other types of energy harvesters, hybrid energy harvesting configurations for both single and multiple energy sources and single material, and multisource energy harvesters. It also includes the energy conversion principles of photovoltaic, electromagnetic, piezoelectric, triboelectric, electrostatic, electrostrictive, thermoelectric, pyroelectric, magnetostrictive, and dielectric devices. This is one of the most comprehensive reviews conducted to date, focusing on the entire energy harvesting research scene and providing a guide to seeking deeper and more specific research references and resources from every corner of the scientific community. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. The nuclear energy in the frame of the energy sources

    International Nuclear Information System (INIS)

    Bogas, J.

    2008-01-01

    This article analyses the different technological alternatives for addressing the energy challenges of our society (security of supply, competitiveness and sustain ability), emphasizing the need for nuclear energy to achieving those goals. Recently, the view of society about nuclear power has shifted from a position of outright hostility towards an acceptance still not totally defined. That is so, that people of environmentalism as the founders of Green peace James Love lock, Patrick Moore or the writer Gwyneth Cravens have said that nuclear energy is the option to produce energy that less increases CO 2 emissions, and that without it targets for reduction may not meet. (Author) 4 refs

  15. Energy research and energy technologies. Fossil energy sources. Annual report 1994

    International Nuclear Information System (INIS)

    1995-01-01

    After an introduction into the research programme and an overview of the sponsored projects, the main part of the book gives a description of the projects in the research area fossile energy sources. Several indexes provide access to this comprehensive compilation: a project number index, an index of interconnected projects, and an index of companies. The organization plan of ''BEO'', the project group biology, energy, ecology, is appended. (UA) [de

  16. Protection from potential exposures: application to selected radiation sources

    International Nuclear Information System (INIS)

    1997-09-01

    This ICRP Report begins with the general principles of radiation protection in the case of potential exposures, followed by special issues in application and compliance with regulatory aims. The rest of the report uses event trees or fault trees to derive the logical structure of six scenarios of potential exposure, i.e. two irradiators, a large research accelerator, an accelerator for industrial isotope production, an industrial radiography device using a mobile source of radiation, and finally a medical gamma radiotherapy device. (UK)

  17. Potential of hydrogen production from wind energy in Pakistan

    International Nuclear Information System (INIS)

    Uqaili, M. A.; Harijan, K.; Memon, M.

    2007-01-01

    The transport sector consumes about 34% of the total commercial energy consumption in Pakistan. About 97% of fuel used in this sector is oil and the remaining 3% is CNG and electricity. The indigenous reserves of oil and gas are limited and the country is heavily dependent on the import of oil. The oil import bill is serious strain on the country's economy. The production, transportation and consumption of fossil fuels also degrade the environment. Therefore, it is important to explore the opportunities for clean renewable energy for long-term energy supply in the transport sector. Sindh, the second largest province of Pakistan, has about 250 km long coastline. The estimated average annual wind speed at 50 m height at almost all sites is about 6-7 m/s, indicating that Sindh has the potential to effectively utilize wind energy source for power generation and hydrogen production. A system consisting of wind turbines coupled with electrolyzers is a promising design to produce hydrogen. This paper presents an assessment of the potential of hydrogen production from wind energy in the coastal area of Sindh, Pakistan. The estimated technical potential of wind power is 386 TWh per year. If the wind electricity is used to power electrolyzers, 347.4 TWh hydrogen can be produced annually, which is about 1.2 times the total energy consumption in the transport sector of Pakistan in 2005. The substitution of oil with renewable hydrogen is essential to increase energy independence, improve domestic economies, and reduce greenhouse gas and other harmful emissions

  18. The likely adverse environmental impacts of renewable energy sources

    International Nuclear Information System (INIS)

    Abbasi, S.A.; Abbasi, Naseema

    2000-01-01

    The global attention has always been focused on the adverse environmental impacts of conventional energy sources. In contrast nonconventional energy sources, particularly the renewable ones, have enjoyed a 'clean' image vis a vis environmental impacts. The only major exception to this general trend has been large hydropower projects; experience has taught us that they can be disastrous for the environment. The belief now is that minihydel and microhydel projects are harmless alternatives. But are renewable energy sources really as benign as is widely believed? The present essay addresses this question in the background of Lovin's classical paradigm, which had postulated the hard (malignant) and soft (benign) energy concepts in the first place. It critically evaluates the environmental impacts of major renewable energy sources. It then comes up with the broad conclusion that renewable energy sources are not the panacea they are popularly perceived to be; indeed in some cases their adverse environmental impacts can be as strongly negative as the impacts of conventional energy sources. The paper also dwells on the steps we need to take so that we can utilise renewable energy sources without facing environmental backlashes of the type we got from hydropower projects. (Author)

  19. The Wind Energy Potential of Kurdistan, Iran

    Science.gov (United States)

    Arefi, Farzad; Moshtagh, Jamal; Moradi, Mohammad

    2014-01-01

    In the current work by using statistical methods and available software, the wind energy assessment of prone regions for installation of wind turbines in, Qorveh, has been investigated. Information was obtained from weather stations of Baneh, Bijar, Zarina, Saqez, Sanandaj, Qorveh, and Marivan. The monthly average and maximum of wind speed were investigated between the years 2000–2010 and the related curves were drawn. The Golobad curve (direction and percentage of dominant wind and calm wind as monthly rate) between the years 1997–2000 was analyzed and drawn with plot software. The ten-minute speed (at 10, 30, and 60 m height) and direction (at 37.5 and 10 m height) wind data were collected from weather stations of Iranian new energy organization. The wind speed distribution during one year was evaluated by using Weibull probability density function (two-parametrical), and the Weibull curve histograms were drawn by MATLAB software. According to the average wind speed of stations and technical specifications of the types of turbines, the suitable wind turbine for the station was selected. Finally, the Divandareh and Qorveh sites with favorable potential were considered for installation of wind turbines and construction of wind farms. PMID:27355042

  20. Geothermal Energy: Delivering on the Global Potential

    Directory of Open Access Journals (Sweden)

    Paul L. Younger

    2015-10-01

    Full Text Available Geothermal energy has been harnessed for recreational uses for millennia, but only for electricity generation for a little over a century. Although geothermal is unique amongst renewables for its baseload and renewable heat provision capabilities, uptake continues to lag far behind that of solar and wind. This is mainly attributable to (i uncertainties over resource availability in poorly-explored reservoirs and (ii the concentration of full-lifetime costs into early-stage capital expenditure (capex. Recent advances in reservoir characterization techniques are beginning to narrow the bounds of exploration uncertainty, both by improving estimates of reservoir geometry and properties, and by providing pre-drilling estimates of temperature at depth. Advances in drilling technologies and management have potential to significantly lower initial capex, while operating expenditure is being further reduced by more effective reservoir management—supported by robust models—and increasingly efficient energy conversion systems (flash, binary and combined-heat-and-power. Advances in characterization and modelling are also improving management of shallow low-enthalpy resources that can only be exploited using heat-pump technology. Taken together with increased public appreciation of the benefits of geothermal, the technology is finally ready to take its place as a mainstream renewable technology, exploited far beyond its traditional confines in the world’s volcanic regions.

  1. Computed potential energy surfaces for chemical reactions

    Science.gov (United States)

    Walch, Stephen P.

    1988-01-01

    The minimum energy path for the addition of a hydrogen atom to N2 is characterized in CASSCF/CCI calculations using the (4s3p2d1f/3s2p1d) basis set, with additional single point calculations at the stationary points of the potential energy surface using the (5s4p3d2f/4s3p2d) basis set. These calculations represent the most extensive set of ab initio calculations completed to date, yielding a zero point corrected barrier for HN2 dissociation of approx. 8.5 kcal mol/1. The lifetime of the HN2 species is estimated from the calculated geometries and energetics using both conventional Transition State Theory and a method which utilizes an Eckart barrier to compute one dimensional quantum mechanical tunneling effects. It is concluded that the lifetime of the HN2 species is very short, greatly limiting its role in both termolecular recombination reactions and combustion processes.

  2. CFD simulation of energy sources in EAF

    Directory of Open Access Journals (Sweden)

    Ekrem Büyükkaya

    2017-10-01

    Full Text Available Modeling of energy production and heat transfer by carbon combustion and electrical arc is performed using Fluent computational fluid dynamic (CFD software in this manuscript. The heat energy generated by carbon burning and electric arc radiation during combustion of the scrap in the EAO has been examined in detail. For this reason, modeling studies have utilized the combustion reactions of carbon particles and electromagnetically emitted radiation. Firstly, particle surface and gas reactions are investigated in terms of injected carbon burning. The result of the chemical reaction at the burner outlet is about 3000 K of the core temperature during combustion. It has been determined that the temperature which acts on the slag is 2200 K. The radiation temperature was found to be highest in the area under the electrodes and fell to 1850 K in the area where the melt was poured. Under steady operating conditions, it was seen that electric energy was absorbed by about 5.5% of the electrodes. As a result of this study, CFD software can be used to model combustion and radiation and energy generation and heat transfer for an electric arc furnace at the design study.

  3. Methane hydrates. An overlooked energy source

    International Nuclear Information System (INIS)

    Avella, R.; Castellazzi, L.; Bassano, C.

    2001-01-01

    A virtually unthought-of world energy reserve, at least twice as large as known fossil-fuel reserves, opens new opportunities and deserves investments in research on methods for discovering and exploiting deposits, and in the development of relevant technologies [it

  4. Geothermal energy. Ground source heat pumps

    International Nuclear Information System (INIS)

    2009-01-01

    Geothermal energy can be harnessed in 2 different ways: electricity or heat generation. The combined net electrical geothermal power of the European Union countries reached 719.3 MWe in 2008 (4.8 MW up on 2007) for 868.1 MWe of installed capacity. Gross electrical production contracted slightly in 2008 (down 1% on the 2007 level) and stood at 5809.5 GWh in 2008. Italy has a overwhelming position with a production of 5520.3 GWh. Geothermal heat production concerning aquifers whose temperature is 30-150 C. degrees generally at a depth of 1-3 km is called low- and medium-enthalpy energy. 18 of the 27 EU members use low- and medium-enthalpy energy totaling 2560.0 MWth of installed capacity that yielded 689.2 ktoe in 2008 and 3 countries Hungary, Italy and France totaling 480.3 ktoe. Very low-enthalpy energy concerns the exploitation of shallow geothermal resources using geothermal heat pumps. In 2008, 114452 ground heat pumps were sold in Europe. At the end of 2008, the installed capacity was 8955.4 MWth (16.5% up on 2007 level, it represented 785206 pumps. Over one million ground heat pumps are expected to be operating in 2010 in Europe. (A.C.)

  5. Importance of biomass energy as alternative to other sources in Turkey

    International Nuclear Information System (INIS)

    Gokcol, Cihan; Dursun, Bahtiyar; Alboyaci, Bora; Sunan, Erkan

    2009-01-01

    Energy plays a vital role in socio-economic development and raising standards of human beings. Turkey is a rapidly growing country; both its population and economy are expanding each year so its energy demand increases correspondingly and this increasing demand has to be met for keeping sustainable development in the economy and raising living conditions of mankind. Although Turkey has many energy sources, it is a big energy importer. Turkey has a lot of potential to supply its own energy, which could be put to use in order to avoid this energy dependence. Additionally, Turkey is a country that has an abundance of renewable energy sources and can essentially provide all energy requirements from indigenous energy sources. Biomass is one of the most promising energy sources considered to be alternative to conventional ones. This paper investigates the importance of biomass energy in Turkey. Additionally, the potential of biomass and its utilization in Turkey are presented in detail. Turkey has always been one of the major agricultural countries of the world. The importance of agriculture is increasing due to biomass energy being a major resource of Turkey. Like many developing countries, Turkey relies on biomass to satisfy much of its energy requirements

  6. [Animals as a potential source of human fungal infections].

    Science.gov (United States)

    Dworecka-Kaszak, Bozena

    2008-01-01

    Changing environment is a reason, that many saprotrophic fungi became opportunists and in the end also maybe a pathogenic. Host specific adaptation is not so strong among fungi, so there are many common fungal pathogens for people and for animals. Animals suffering from dermatomycosis are well recognize as source of human superficial mycoses. Breeding of different exotic animals such as parrots, various Reptiles and Amphibians, miniature Rodents and keeping them as a pets in the peoples houses, have become more and more popular in the recent years. This article is shortly presenting which animals maybe a potential source of fungal infections for humans. Looking for the other mycoses as systemic mycoses, especially candidiasis or aspergilosis there are no data, which allow excluding sick animals as a source of infection for human, even if those deep mycoses have endogenic reactivation mechanism. Immunocompromised people are in high-risk group when they take care of animals. Another important source of potentially pathogenic, mostly air-born fungi may be animal use in experimental laboratory work. During the experiments is possible that laboratory workers maybe hurt and these animals and their environment, food and house boxes could be the possible source of microorganisms, pathogenic for humans or other animals. Unusual way to inoculate these potentially pathogens into the skin of laboratory personnel may cause granulomatous, local lesions on their hands.

  7. Energy potential of the wind and possibility for construction of big energy systems

    International Nuclear Information System (INIS)

    Gruevski, Trpe

    2004-01-01

    In this paper a brief theoretical survey is given on the wind as a clean and renewable energy source.The wind energy potential is analyzed as well as the power limits that could be obtained as a result of the wind kinetic energy.The total generating costs for wind turbine systems are determined by total investments costs, the life time, the operating and maintenance costs, the wind regime, the efficiency and availability of the wind turbine. The optimum size of a wind turbine depends on the wind speed, the wind turbine costs, the construction costs, the environmental impact and the social costs. The value of wind energy depends on the application that is made of the energy generated and on the costs of alternatives

  8. Pulsars as the sources of high energy cosmic ray positrons

    International Nuclear Information System (INIS)

    Hooper, Dan; Blasi, Pasquale; Serpico, Pasquale Dario

    2009-01-01

    Recent results from the PAMELA satellite indicate the presence of a large flux of positrons (relative to electrons) in the cosmic ray spectrum between approximately 10 and 100 GeV. As annihilating dark matter particles in many models are predicted to contribute to the cosmic ray positron spectrum in this energy range, a great deal of interest has resulted from this observation. Here, we consider pulsars (rapidly spinning, magnetized neutron stars) as an alternative source of this signal. After calculating the contribution to the cosmic ray positron and electron spectra from pulsars, we find that the spectrum observed by PAMELA could plausibly originate from such sources. In particular, a significant contribution is expected from the sum of all mature pulsars throughout the Milky Way, as well as from the most nearby mature pulsars (such as Geminga and B0656+14). The signal from nearby pulsars is expected to generate a small but significant dipole anisotropy in the cosmic ray electron spectrum, potentially providing a method by which the Fermi gamma-ray space telescope would be capable of discriminating between the pulsar and dark matter origins of the observed high energy positrons

  9. Development of alternative/renewable sources of energy in Pakistan

    International Nuclear Information System (INIS)

    Sharif, M.

    2005-01-01

    The depleting Conventional Energy Resources and highly raised prices of fuel oil, coal, firewood and such other fossil fuels, have forced the mankind to think about the utilization of Alternative / Renewable Sources of Energy. Alternative / Renewable Energy is very attractive, reliable and cost competitive energy. Sun is readily available to provide a clean, abundant and virtually infinite energy to meet the significant portion of mankind's energy-needs. The possible use of renewable-energy sources is discussed in this paper, in order to fill the estimated gap between the available energy-sources and energy-needs of our country in the near future. Designing, Fabrication and Installation of different renewable-energy devices by PCSIR are also discussed in this paper. Different renewable-energy devices such as, solar water heaters, solar cookers, solar dehydrators, solar water-desalination plants, solar heating and cooling of buildings, solar operated absorption-type chiller, solar furnace, solar architecture, developed by PCSIR are discussed in some detail so that the role of renewable-energy sources for their direct use (as heat and power) can be determined. Various technical aspects are discussed to reduce the unit cost with improved efficiency. (author)

  10. Hydrocarbon source rock potential evaluation of the Late Paleocene ...

    Indian Academy of Sciences (India)

    63

    research is available on its source rock potential evaluation at Nammal Gorge Section in the Salt. Range, Potwar Basin .... methods of Tucker (2003) and Assaad (2008) have been followed. A total of fifteen ..... Business Media. Baker D M, Lillie ...

  11. Utilization of leaf litter as a potential feed source

    Science.gov (United States)

    Proximate analysis and In-situ nylon bag ruminal dry matter degradation of fall dropped Liriodendron tulipifera (tulip poplar) and Quercus alba (white oak) leaves were used to determine their potential use as a feed source for ruminant livestock animals. Ash content was 8.24 and 4.69 ...

  12. Essentials of energy technology sources, transport, storage, conservation

    CERN Document Server

    Fricke, Jochen

    2013-01-01

    An in-depth understanding of energy technology, sources, conversion, storage, transport and conservation is crucial for developing a sustainable and economically viable energy infrastructure. This need, for example, is addressed in university courses with a special focus on the energy mix of renewable and depletable energy resources. Energy makes our lives comfortable, and the existence of amenities such as heaters, cars, warm water, household appliances and electrical light is characteristic for a developed economy. Supplying the industrial or individual energy consumer with energy 24 hours

  13. Tapping the zero-point energy as an energy source

    International Nuclear Information System (INIS)

    King, M.B.

    1991-01-01

    This paper reports that the hypothesis for tapping the zero-point energy (ZPE) arises by combining the theories of the ZPE with the theories of system self-organization. The vacuum polarization of atomic nuclei might allow their synchronous motion to activate a ZPE coherence. Experimentally observed plasma ion-acoustic anomalies as well as inventions utilizing cycloid ion motions may offer supporting evidence. The suggested experiment of rapidly circulating a charged plasma in a vortex ring might induce a sufficient zero-point energy interaction to manifest a gravitational anomaly. An invention utilizing abrupt E field rotation to create virtual charge exhibits excessive energy output

  14. Overview of Nepal's energy sources and environment

    Science.gov (United States)

    Sharma, C. K.

    In the Kathmandu Valley, Nepal faces environmental problems of most industrialized countries whereas it has problems similar to the least developed countries, in the hills. Types and quantity of energy use have a close link with the environmental degradation in Nepal Himalaya. Over dependence on the forest to meet the energy demand in the hills has aggravated the environmental problems. Lack of forest cover on the hills, the intense monsoon rain, the fragile geology and steep terrain are contributing to the acceleration of landslides, soil erosion and temperature rise. The rise of average minimum temperature is causing glaciers to retreat and thereby the development of large bodies of glacial lake. Glacial lake outbursts of 1981 in Kodari and of 1985 in Namche bazar area caused extensive damage on infrastructures down stream. Heavy use of commercial fuel (hydrocarbons) in the bowl shaped Kathmandu valley is causing air and water pollution and an increase in the average minimum temperature. Extensive development of hydropower, biogas plants and massive reforestation on naked hills and efficient use of imported hydrocarbons are the solution to existing energy and environmental problems.

  15. Secondary Electrons as an Energy Source for Life.

    Science.gov (United States)

    Stelmach, Kamil B; Neveu, Marc; Vick-Majors, Trista J; Mickol, Rebecca L; Chou, Luoth; Webster, Kevin D; Tilley, Matt; Zacchei, Federica; Escudero, Cristina; Flores Martinez, Claudio L; Labrado, Amanda; Fernández, Enrique J G

    2018-01-01

    Life on Earth is found in a wide range of environments as long as the basic requirements of a liquid solvent, a nutrient source, and free energy are met. Previous hypotheses have speculated how extraterrestrial microbial life may function, among them that particle radiation might power living cells indirectly through radiolytic products. On Earth, so-called electrophilic organisms can harness electron flow from an extracellular cathode to build biomolecules. Here, we describe two hypothetical mechanisms, termed "direct electrophy" and "indirect electrophy" or "fluorosynthesis," by which organisms could harness extracellular free electrons to synthesize organic matter, thus expanding the ensemble of potential habitats in which extraterrestrial organisms might be found in the Solar System and beyond. The first mechanism involves the direct flow of secondary electrons from particle radiation to a microbial cell to power the organism. The second involves the indirect utilization of impinging secondary electrons and a fluorescing molecule, either biotic or abiotic in origin, to drive photosynthesis. Both mechanisms involve the attenuation of an incoming particle's energy to create low-energy secondary electrons. The validity of the hypotheses is assessed through simple calculations showing the biomass density attainable from the energy supplied. Also discussed are potential survival strategies that could be used by organisms living in possible habitats with a plentiful supply of secondary electrons, such as near the surface of an icy moon. While we acknowledge that the only definitive test for the hypothesis is to collect specimens, we also describe experiments or terrestrial observations that could support or nullify the hypotheses. Key Words: Radiation-Electrophiles-Subsurface life. Astrobiology 18, 73-85.

  16. Secondary Electrons as an Energy Source for Life

    Science.gov (United States)

    Stelmach, Kamil B.; Neveu, Marc; Vick-Majors, Trista J.; Mickol, Rebecca L.; Chou, Luoth; Webster, Kevin D.; Tilley, Matt; Zacchei, Federica; Escudero, Cristina; Flores Martinez, Claudio L.; Labrado, Amanda; Fernández, Enrique J. G.

    2018-01-01

    Life on Earth is found in a wide range of environments as long as the basic requirements of a liquid solvent, a nutrient source, and free energy are met. Previous hypotheses have speculated how extraterrestrial microbial life may function, among them that particle radiation might power living cells indirectly through radiolytic products. On Earth, so-called electrophilic organisms can harness electron flow from an extracellular cathode to build biomolecules. Here, we describe two hypothetical mechanisms, termed "direct electrophy" and "indirect electrophy" or "fluorosynthesis," by which organisms could harness extracellular free electrons to synthesize organic matter, thus expanding the ensemble of potential habitats in which extraterrestrial organisms might be found in the Solar System and beyond. The first mechanism involves the direct flow of secondary electrons from particle radiation to a microbial cell to power the organism. The second involves the indirect utilization of impinging secondary electrons and a fluorescing molecule, either biotic or abiotic in origin, to drive photosynthesis. Both mechanisms involve the attenuation of an incoming particle's energy to create low-energy secondary electrons. The validity of the hypotheses is assessed through simple calculations showing the biomass density attainable from the energy supplied. Also discussed are potential survival strategies that could be used by organisms living in possible habitats with a plentiful supply of secondary electrons, such as near the surface of an icy moon. While we acknowledge that the only definitive test for the hypothesis is to collect specimens, we also describe experiments or terrestrial observations that could support or nullify the hypotheses.

  17. Economic dispatch optimization for system integrating renewable energy sources

    Science.gov (United States)

    Jihane, Kartite; Mohamed, Cherkaoui

    2018-05-01

    Nowadays, the use of energy is growing especially in transportation and electricity industries. However this energy is based on conventional sources which pollute the environment. Multi-source system is seen as the best solution to sustainable development. This paper proposes the Economic Dispatch (ED) of hybrid renewable power system. The hybrid system is composed of ten thermal generators, photovoltaic (PV) generator and wind turbine generator. To show the importance of renewable energy sources (RES) in the energy mix we have ran the simulation for system integrated PV only and PV plus wind. The result shows that the system with renewable energy sources (RES) is more compromising than the system without RES in terms of fuel cost.

  18. Estimation and comparison of effective dose (E) in standard chest CT by organ dose measurements and dose-length-product methods and assessment of the influence of CT tube potential (energy dependency) on effective dose in a dual-source CT.

    Science.gov (United States)

    Paul, Jijo; Banckwitz, Rosemarie; Krauss, Bernhard; Vogl, Thomas J; Maentele, Werner; Bauer, Ralf W

    2012-04-01

    To determine effective dose (E) during standard chest CT using an organ dose-based and a dose-length-product-based (DLP) approach for four different scan protocols including high-pitch and dual-energy in a dual-source CT scanner of the second generation. Organ doses were measured with thermo luminescence dosimeters (TLD) in an anthropomorphic male adult phantom. Further, DLP-based dose estimates were performed by using the standard 0.014mSv/mGycm conversion coefficient k. Examinations were performed on a dual-source CT system (Somatom Definition Flash, Siemens). Four scan protocols were investigated: (1) single-source 120kV, (2) single-source 100kV, (3) high-pitch 120kV, and (4) dual-energy with 100/Sn140kV with equivalent CTDIvol and no automated tube current modulation. E was then determined following recommendations of ICRP publication 103 and 60 and specific k values were derived. DLP-based estimates differed by 4.5-16.56% and 5.2-15.8% relatively to ICRP 60 and 103, respectively. The derived k factors calculated from TLD measurements were 0.0148, 0.015, 0.0166, and 0.0148 for protocol 1, 2, 3 and 4, respectively. Effective dose estimations by ICRP 103 and 60 for single-energy and dual-energy protocols show a difference of less than 0.04mSv. Estimates of E based on DLP work equally well for single-energy, high-pitch and dual-energy CT examinations. The tube potential definitely affects effective dose in a substantial way. Effective dose estimations by ICRP 103 and 60 for both single-energy and dual-energy examinations differ not more than 0.04mSv. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  19. Nuclear Powerplant Safety: Source Terms. Nuclear Energy.

    Science.gov (United States)

    Department of Energy, Washington, DC. Nuclear Energy Office.

    There has been increased public interest in the potential effects of nuclear powerplant accidents since the Soviet reactor accident at Chernobyl. People have begun to look for more information about the amount of radioactivity that might be released into the environment as a result of such an accident. When this issue is discussed by people…

  20. Electromagnetic projectile acceleration utilizing distributed energy sources

    International Nuclear Information System (INIS)

    Parker, J.V.

    1982-01-01

    Circuit equations are derived for an electromagnetic projectile accelerator (railgun) powered by a large number of capacitive discharge circuits distributed along its length. The circuit equations are put into dimensionless form and the parameters governing the solutions derived. After specializing the equations to constant spacing between circuits, the case of lossless rails and negligible drag is analyzed to show that the electrical to kinetic energy transfer efficiency is equal to sigma/2, where sigma = 2mS/Lq 2 0 and m is the projectile mass, S the distance between discharge circuit, Lthe rail inductance per unit length, and q 0 the charge on the first stage capacitor. For sigma = 2 complete transfer of electrical to kinetic energy is predicted while for sigma>2 the projective-discharge circuit system is unstable. Numerical solutions are presented for both lossless rails and for finite rail resistance. When rail resistance is included, >70% transfer is calculated for accelerators of arbitrary length. The problem of projectile startup is considered and a simple modification of the first two stages is described which provides proper startup. Finally, the results of the numerical solutions are applied to a practical railgun design. A research railgun designed for repeated operation at 50 km/sec is described. It would have an overall length of 77 m, an electrical efficiency of 81%, a stored energy per stage of 105 kJ, and a charge transfer of <50 C per stage. A railgun of this design appears to be practicable with current pulsed power technology