WorldWideScience

Sample records for potential drug interactions

  1. Potential drug-drug interactions on in-patient medication ...

    African Journals Online (AJOL)

    Potential drug-drug interactions on in-patient medication prescriptions at Mbarara Regional Referral Hospital (MRRH) in western Uganda: prevalence, clinical importance and associated factors. SJ Lubinga, E Uwiduhaye ...

  2. Potential intravenous drug interactions in intensive care

    Directory of Open Access Journals (Sweden)

    Maiara Benevides Moreira

    Full Text Available Abstract OBJECTIVE To analyze potential intravenous drug interactions, and their level of severity associated with the administration of these drugs based on the prescriptions of an intensive care unit. METHOD Quantitative study, with aretrospective exploratory design, and descriptive statistical analysis of the ICU prescriptions of a teaching hospital from March to June 2014. RESULTS The sample consisted of 319 prescriptions and subsamples of 50 prescriptions. The mean number of drugs per patient was 9.3 records, and a higher probability of drug interaction inherent to polypharmacy was evidenced. The study identified severe drug interactions, such as concomitant administration of Tramadol with selective serotonin reuptake inhibitor drugs (e.g., Metoclopramide and Fluconazole, increasing the risk of seizures due to their epileptogenic actions, as well as the simultaneous use of Ranitidine-Fentanyl®, which can lead to respiratory depression. CONCLUSION A previous mapping of prescriptions enables the characterization of the drug therapy, contributing to prevent potential drug interactions and their clinical consequences.

  3. Risk factors for potential drug interactions in general practice

    DEFF Research Database (Denmark)

    Bjerrum, Lars; Gonzalez Lopez-Valcarcel, Beatriz; Petersen, Gert

    2008-01-01

    interactions during 1 year. Patient factors associated with increased risk of potential drug interactions were high age, a high number of concurrently used drugs, and a high number of prescribers. Practice factors associated with potential drug interactions were a high percentage of elderly patients and a low......Objective: To identify patient- and practice-related factors associated with potential drug interactions. Methods: A register analysis study in general practices in the county of Funen, Denmark. Prescription data were retrieved from a population-based prescription database (Odense University......, depending on the severity of outcome and the quality of documentation. A two-level random coefficient logistic regression model was used to investigate factors related to potential drug interactions. Results: One-third of the population was exposed to polypharmacy, and 6% were exposed to potential drug...

  4. Potential drug-drug and drug-disease interactions in well-functioning community-dwelling older adults.

    Science.gov (United States)

    Hanlon, J T; Perera, S; Newman, A B; Thorpe, J M; Donohue, J M; Simonsick, E M; Shorr, R I; Bauer, D C; Marcum, Z A

    2017-04-01

    There are few studies examining both drug-drug and drug-disease interactions in older adults. Therefore, the objective of this study was to describe the prevalence of potential drug-drug and drug-disease interactions and associated factors in community-dwelling older adults. This cross-sectional study included 3055 adults aged 70-79 without mobility limitations at their baseline visit in the Health Aging and Body Composition Study conducted in the communities of Pittsburgh PA and Memphis TN, USA. The outcome factors were potential drug-drug and drug-disease interactions as per the application of explicit criteria drawn from a number of sources to self-reported prescription and non-prescription medication use. Over one-third of participants had at least one type of interaction. Approximately one quarter (25·1%) had evidence of had one or more drug-drug interactions. Nearly 10·7% of the participants had a drug-drug interaction that involved a non-prescription medication. % The most common drug-drug interaction was non-steroidal anti-inflammatory drugs (NSAIDs) affecting antihypertensives. Additionally, 16·0% had a potential drug-disease interaction with 3·7% participants having one involving non-prescription medications. The most common drug-disease interaction was aspirin/NSAID use in those with history of peptic ulcer disease without gastroprotection. Over one-third (34·0%) had at least one type of drug interaction. Each prescription medication increased the odds of having at least one type of drug interaction by 35-40% [drug-drug interaction adjusted odds ratio (AOR) = 1·35, 95% confidence interval (CI) = 1·27-1·42; drug-disease interaction AOR = 1·30; CI = 1·21-1·40; and both AOR = 1·45; CI = 1·34-1·57]. A prior hospitalization increased the odds of having at least one type of drug interaction by 49-84% compared with those not hospitalized (drug-drug interaction AOR = 1·49, 95% CI = 1·11-2·01; drug-disease interaction AOR = 1·69, CI = 1·15-2

  5. Drug-drug interactions involving lysosomes: mechanisms and potential clinical implications.

    Science.gov (United States)

    Logan, Randall; Funk, Ryan S; Axcell, Erick; Krise, Jeffrey P

    2012-08-01

    Many commercially available, weakly basic drugs have been shown to be lysosomotropic, meaning they are subject to extensive sequestration in lysosomes through an ion trapping-type mechanism. The extent of lysosomal trapping of a drug is an important therapeutic consideration because it can influence both activity and pharmacokinetic disposition. The administration of certain drugs can alter lysosomes such that their accumulation capacity for co-administered and/or secondarily administered drugs is altered. In this review the authors explore what is known regarding the mechanistic basis for drug-drug interactions involving lysosomes. Specifically, the authors address the influence of drugs on lysosomal pH, volume and lipid processing. Many drugs are known to extensively accumulate in lysosomes and significantly alter their structure and function; however, the therapeutic and toxicological implications of this remain controversial. The authors propose that drug-drug interactions involving lysosomes represent an important potential source of variability in drug activity and pharmacokinetics. Most evaluations of drug-drug interactions involving lysosomes have been performed in cultured cells and isolated tissues. More comprehensive in vivo evaluations are needed to fully explore the impact of this drug-drug interaction pathway on therapeutic outcomes.

  6. Clinically relevant potential drug-drug interactions among outpatients: A nationwide database study.

    Science.gov (United States)

    Jazbar, Janja; Locatelli, Igor; Horvat, Nejc; Kos, Mitja

    2018-06-01

    Adverse drug events due to drug-drug interactions (DDIs) represent a considerable public health burden, also in Slovenia. A better understanding of the most frequently occurring potential DDIs may enable safer pharmacotherapy and minimize drug-related problems. The aim of this study was to evaluate the prevalence and predictors of potential DDIs among outpatients in Slovenia. An analysis of potential DDIs was performed using health claims data on prescription drugs from a nationwide database. The Lexi-Interact Module was used as the reference source of interactions. The influence of patient-specific predictors on the risk of potential clinically relevant DDIs was evaluated using logistic regression model. The study population included 1,179,803 outpatients who received 15,811,979 prescriptions. The total number of potential DDI cases identified was 3,974,994, of which 15.6% were potentially clinically relevant. Altogether, 9.3% (N = 191,213) of the total population in Slovenia is exposed to clinically relevant potential DDIs, and the proportion is higher among women and the elderly. After adjustment for cofactors, higher number of medications and older age are associated with higher odds of clinically relevant potential DDIs. The burden of DDIs is highest with drug combinations that increase risk of bleeding, enhance CNS depression or anticholinergic effects or cause cardiovascular complications. The current study revealed that 1 in 10 individuals in the total Slovenian population is exposed to clinically relevant potential DDIs yearly. Taking into account the literature based conservative estimate that approximately 1% of potential DDIs result in negative health outcomes, roughly 1800 individuals in Slovenia experience an adverse health outcome each year as a result of clinically relevant potential interactions alone. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Potential drug-drug interactions with direct oral anticoagulants in elderly hospitalized patients.

    Science.gov (United States)

    Forbes, Heather L; Polasek, Thomas M

    2017-10-01

    To determine the prevalence and nature of potential drug-drug interactions (DDIs) with direct oral anticoagulants (DOACs) in elderly hospitalized patients. This was a retrospective observational study. Inclusion criteria were: aged over 65 years; taking apixaban, rivaroxaban or dabigatran; and admitted to the Repatriation General Hospital between April 2014 and July 2015. A list of clinically relevant 'perpetrator' drugs was compiled from product information, the Australian Medicines Handbook, the Australian National Prescribing Service resources, and local health network guidelines. The prevalence and nature of potential DDIs with DOACs was determined by comparing inpatient drug charts with the list of perpetrator drugs. There were 122 patients in the study with a mean age of 82 years. Most patients had nonvalvular atrial fibrillation and were taking DOACs to prevent thrombotic stroke (83%). Overall, 45 patients (37%) had a total of 54 potential DDIs. Thirty-five patients had potential pharmacodynamic DDIs with antidepressants, nonsteroidal anti-inflammatory drugs and antiplatelets (35/122, 29%). Nineteen patients had potential pharmacokinetic DDIs (19/122, 16%). Of these, 68% (13/19) were taking drugs that increase DOAC plasma concentrations (amiodarone, erythromycin, diltiazem or verapamil) and 32% (6/19) were taking drugs that decrease DOAC plasma concentrations (carbamazepine, primidone or phenytoin). There were no cases of patients taking contraindicated interacting drugs. Potential DDIs with DOACs in elderly hospital inpatients are relatively common, particularly interactions that may increase the risk of bleeding. The risk-benefit ratio of DOACs in elderly patients on polypharmacy should always be carefully considered.

  8. Prevalence of potential drug-drug interactions in cancer patients treated with oral anticancer drugs

    NARCIS (Netherlands)

    van Leeuwen, R. W. F.; Brundel, D. H. S.; Neef, C.; van Gelder, T.; Mathijssen, R. H. J.; Burger, D. M.; Jansman, F. G. A.

    2013-01-01

    Background: Potential drug-drug interactions (PDDIs) in patients with cancer are common, but have not previously been quantified for oral anticancer treatment. We assessed the prevalence and seriousness of potential PDDIs among ambulatory cancer patients on oral anticancer treatment. Methods: A

  9. Prevalence of potential drug-drug interactions in cancer patients treated with oral anticancer drugs

    NARCIS (Netherlands)

    R.W.F. van Leeuwen (Roelof); D.H.S. Brundel (D. H S); C. Neef (Cees); T. van Gelder (Teun); A.H.J. Mathijssen (Ron); D.M. Burger (David); F.G.A. Jansman (Frank)

    2013-01-01

    textabstractBackground: Potential drug-drug interactions (PDDIs) in patients with cancer are common, but have not previously been quantified for oral anticancer treatment. We assessed the prevalence and seriousness of potential PDDIs among ambulatory cancer patients on oral anticancer treatment.

  10. Indolealkylamines: biotransformations and potential drug-drug interactions.

    Science.gov (United States)

    Yu, Ai-Ming

    2008-06-01

    Indolealkylamine (IAA) drugs are 5-hydroxytryptamine (5-HT or serotonin) analogs that mainly act on the serotonin system. Some IAAs are clinically utilized for antimigraine therapy, whereas other substances are notable as drugs of abuse. In the clinical evaluation of antimigraine triptan drugs, studies on their biotransformations and pharmacokinetics would facilitate the understanding and prevention of unwanted drug-drug interactions (DDIs). A stable, principal metabolite of an IAA drug of abuse could serve as a useful biomarker in assessing intoxication of the IAA substance. Studies on the metabolism of IAA drugs of abuse including lysergic acid amides, tryptamine derivatives and beta-carbolines are therefore emerging. An important role for polymorphic cytochrome P450 2D6 (CYP2D6) in the metabolism of IAA drugs of abuse has been revealed by recent studies, suggesting that variations in IAA metabolism, pharmaco- or toxicokinetics and dynamics can arise from distinct CYP2D6 status, and CYP2D6 polymorphism may represent an additional risk factor in the use of these IAA drugs. Furthermore, DDIs with IAA agents could occur additively at the pharmaco/toxicokinetic and dynamic levels, leading to severe or even fatal serotonin toxicity. In this review, the metabolism and potential DDIs of these therapeutic and abused IAA drugs are described.

  11. Potential drug interactions in patients given antiretroviral therapy.

    Science.gov (United States)

    Santos, Wendel Mombaque Dos; Secoli, Silvia Regina; Padoin, Stela Maris de Mello

    2016-11-21

    to investigate potential drug-drug interactions (PDDI) in patients with HIV infection on antiretroviral therapy. a cross-sectional study was conducted on 161 adults with HIV infection. Clinical, socio demographic, and antiretroviral treatment data were collected. To analyze the potential drug interactions, we used the software Micromedex(r). Statistical analysis was performed by binary logistic regression, with a p-value of ≤0.05 considered statistically significant. of the participants, 52.2% were exposed to potential drug-drug interactions. In total, there were 218 potential drug-drug interactions, of which 79.8% occurred between drugs used for antiretroviral therapy. There was an association between the use of five or more medications and potential drug-drug interactions (p = 0.000) and between the time period of antiretroviral therapy being over six years and potential drug-drug interactions (p central nervous and cardiovascular systems, but also can interfere in tests used for detection of HIV resistance to antiretroviral drugs. investigar potenciais interações droga-droga (PDDI) em pacientes infectados com HIV em terapia de antirretroviral. um estudo de corte transversal foi conduzido em 161 pessoas infectadas com o HIV. Dados de tratamentos clínicos, sociodemográficos e antirretrovirais foram coletados. Para analisar a possível interação medicamentosa, nós usamos o software Micromedex(r). A análise estatística foi feita por regressão logística binária, com um valor P de ≤0.05, considerado estatisticamente significativo. dos participantes, 52.2% foram expostos a potenciais interações droga-droga. No total, houve 218 interações droga-droga, das quais 79.8% ocorreram entre drogas usadas para a terapia antirretroviral. Houve uma associação entre o uso de cinco ou mais medicamentos e possíveis interações droga-droga (p = 0.000), e entre o período de tempo de terapia antirretroviral acima de seis anos e possíveis interações droga

  12. Potential drug–drug interactions in Alzheimer patients with behavioral symptoms

    Directory of Open Access Journals (Sweden)

    Pasqualetti G

    2015-09-01

    Full Text Available Giuseppe Pasqualetti, Sara Tognini, Valeria Calsolaro, Antonio Polini, Fabio Monzani Geriatrics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy Abstract: The use of multi drug regimens among the elderly population has increased tremendously over the last decade although the benefits of medications are always accompanied by potential harm, even when prescribed at recommended doses. The elderly populations are particularly at an increased risk of adverse drug reactions considering comorbidity, poly-therapy, physiological changes affecting the pharmacokinetics and pharmacodynamics of many drugs and, in some cases, poor compliance due to cognitive impairment and/or depression. In this setting, drug–drug interaction may represent a serious and even life-threatening clinical condition. Moreover, the inability to distinguish drug-induced symptoms from a definitive medical diagnosis often results in addition of yet another drug to treat the symptoms, which in turn increases drug–drug interactions. Cognitive enhancers, including acetylcholinesterase inhibitors and memantine, are the most widely prescribed agents for Alzheimer’s disease (AD patients. Behavioral and psychological symptoms of dementia, including psychotic symptoms and behavioral disorders, represent noncognitive disturbances frequently observed in AD patients. Antipsychotic drugs are at high risk of adverse events, even at modest doses, and may interfere with the progression of cognitive impairment and interact with several drugs including anti-arrhythmics and acetylcholinesterase inhibitors. Other medications often used in AD patients are represented by anxiolytic, like benzodiazepine, or antidepressant agents. These agents also might interfere with other concomitant drugs through both pharmacokinetic and pharmacodynamic mechanisms. In this review we focus on the most frequent drug–drug interactions, potentially harmful, in AD patients with

  13. Potential intravenous drug interactions in intensive care.

    Science.gov (United States)

    Moreira, Maiara Benevides; Mesquita, Maria Gefé da Rosa; Stipp, Marluci Andrade Conceição; Paes, Graciele Oroski

    2017-07-20

    To analyze potential intravenous drug interactions, and their level of severity associated with the administration of these drugs based on the prescriptions of an intensive care unit. Quantitative study, with aretrospective exploratory design, and descriptive statistical analysis of the ICU prescriptions of a teaching hospital from March to June 2014. The sample consisted of 319 prescriptions and subsamples of 50 prescriptions. The mean number of drugs per patient was 9.3 records, and a higher probability of drug interaction inherent to polypharmacy was evidenced. The study identified severe drug interactions, such as concomitant administration of Tramadol with selective serotonin reuptake inhibitor drugs (e.g., Metoclopramide and Fluconazole), increasing the risk of seizures due to their epileptogenic actions, as well as the simultaneous use of Ranitidine-Fentanyl®, which can lead to respiratory depression. A previous mapping of prescriptions enables the characterization of the drug therapy, contributing to prevent potential drug interactions and their clinical consequences. Analisar as potenciais interações medicamentosas intravenosas e seu grau de severidade associadas à administração desses medicamentos a partir das prescrições do Centro de Terapia Intensiva. Estudo quantitativo, tipologia retrospectiva exploratória, com análise estatística descritiva das prescrições medicamentosas do Centro de Terapia Intensiva de um Hospital Universitário, no período de março-junho/2014. A amostra foi composta de 319 prescrições e subamostras de 50 prescrições. Constatou-se que a média de medicamentos por paciente foi de 9,3 registros, e evidenciou-se maior probabilidade para ocorrência de interação medicamentosa inerente à polifarmácia. O estudo identificou interações medicamentosas graves, como a administração concomitante de Tramadol com medicamentos inibidores seletivos da recaptação da serotonina, (exemplo: Metoclopramida e Fluconazol

  14. Anticoagulant Medicine: Potential for Drug-Food Interactions

    Science.gov (United States)

    ... Medications Anticoagulants and Drug-Food Interactions Anticoagulants and Drug-Food Interactions Make an Appointment Ask a Question Refer Patient ... Jewish Health wants you to be aware these drug-food interactions when taking anticoagulant medicine. Ask your health care ...

  15. [Potential antimicrobial drug interactions in clinical practice: consequences of polypharmacy and multidrug resistance].

    Science.gov (United States)

    Martínez-Múgica, Cristina

    2015-12-01

    Polypharmacy is a growing problem nowadays, which can increase the risk of potential drug interactions, and result in a loss of effectiveness. This is particularly relevant to the anti-infective therapy, especially when infection is produced by resistant bacteria, because therapeutic options are limited and interactions can cause treatment failure. All antimicrobial prescriptions were retrospectively reviewed during a week in the Pharmacy Department, in order to detect potential drug-interactions and analysing their clinical significance. A total of 314 antimicrobial prescriptions from 151 patients were checked. There was at least one potential interaction detected in 40% of patients, being more frequent and severe in those infected with multidrug-resistant microorganisms. Drugs most commonly involved were quinolones, azoles, linezolid and vancomycin. Potential drug interactions with antimicrobial agents are a frequent problem that can result in a loss of effectiveness. This is why they should be detected and avoided when possible, in order to optimize antimicrobial therapy, especially in case of multidrug resistant infections.

  16. Prevalence of Potential and Clinically Relevant Statin-Drug Interactions in Frail and Robust Older Inpatients.

    Science.gov (United States)

    Thai, Michele; Hilmer, Sarah; Pearson, Sallie-Anne; Reeve, Emily; Gnjidic, Danijela

    2015-10-01

    A significant proportion of older people are prescribed statins and are also exposed to polypharmacy, placing them at increased risk of statin-drug interactions. To describe the prevalence rates of potential and clinically relevant statin-drug interactions in older inpatients according to frailty status. A cross-sectional study of patients aged ≥65 years who were prescribed a statin and were admitted to a teaching hospital between 30 July and 10 October 2014 in Sydney, Australia, was conducted. Data on socio-demographics, comorbidities and medications were collected using a standardized questionnaire. Potential statin-drug interactions were defined if listed in the Australian Medicines Handbook and three international drug information sources: the British National Formulary, Drug Interaction Facts and Drug-Reax(®). Clinically relevant statin-drug interactions were defined as interactions with the highest severity rating in at least two of the three international drug information sources. Frailty was assessed using the Reported Edmonton Frail Scale. A total of 180 participants were recruited (median age 78 years, interquartile range 14), 35.0% frail and 65.0% robust. Potential statin-drug interactions were identified in 10% of participants, 12.7% of frail participants and 8.5% of robust participants. Clinically relevant statin-drug interactions were identified in 7.8% of participants, 9.5% of frail participants and 6.8% of robust participants. Depending on the drug information source used, the prevalence rates of potential and clinically relevant statin-drug interactions ranged between 14.4 and 35.6% and between 14.4 and 20.6%, respectively. In our study of frail and robust older inpatients taking statins, the overall prevalence of potential statin-drug interactions was low and varied significantly according to the drug information source used.

  17. Information needs for making clinical recommendations about potential drug-drug interactions: a synthesis of literature review and interviews.

    Science.gov (United States)

    Romagnoli, Katrina M; Nelson, Scott D; Hines, Lisa; Empey, Philip; Boyce, Richard D; Hochheiser, Harry

    2017-02-22

    Drug information compendia and drug-drug interaction information databases are critical resources for clinicians and pharmacists working to avoid adverse events due to exposure to potential drug-drug interactions (PDDIs). Our goal is to develop information models, annotated data, and search tools that will facilitate the interpretation of PDDI information. To better understand the information needs and work practices of specialists who search and synthesize PDDI evidence for drug information resources, we conducted an inquiry that combined a thematic analysis of published literature with unstructured interviews. Starting from an initial set of relevant articles, we developed search terms and conducted a literature search. Two reviewers conducted a thematic analysis of included articles. Unstructured interviews with drug information experts were conducted and similarly coded. Information needs, work processes, and indicators of potential strengths and weaknesses of information systems were identified. Review of 92 papers and 10 interviews identified 56 categories of information needs related to the interpretation of PDDI information including drug and interaction information; study design; evidence including clinical details, quality and content of reports, and consequences; and potential recommendations. We also identified strengths/weaknesses of PDDI information systems. We identified the kinds of information that might be most effective for summarizing PDDIs. The drug information experts we interviewed had differing goals, suggesting a need for detailed information models and flexible presentations. Several information needs not discussed in previous work were identified, including temporal overlaps in drug administration, biological plausibility of interactions, and assessment of the quality and content of reports. Richly structured depictions of PDDI information may help drug information experts more effectively interpret data and develop recommendations

  18. Frequency of potential interactions between drugs in medical prescriptions in a city in southern Brazil

    Directory of Open Access Journals (Sweden)

    Genici Weyh Bleich

    Full Text Available CONTEXT AND OBJECTIVE: Drug interactions form part of current clinical practice and they affect between 3 and 5% of polypharmacy patients. The aim of this study was to identify the frequency of potential drug-drug interactions in prescriptions for adult and elderly patients. TYPE OF STUDY AND SETTING: Cross-sectional pharmacoepidemiological survey in the Parque Verde housing project, municipality of Cascavel, Paraná, Brazil, between December 2006 and February 2007. METHODS: Stratified cluster sampling, proportional to the total number of homes in the housing project, was used. The sample consisted of 95 homes and 96 male or female patients aged 19 or over, with medical prescriptions for at least two pharmaceutical drugs. Interactions were identified using DrugDigest, Medscape and Micromedex softwares. RESULTS: Most of the patients were female (69.8%, married (59.4% and in the age group of 60 years or over (56.3%, with an income less than or equal to three minimum monthly salaries (81.3% and less than eight years of schooling (69.8%; 90.6% of the patients were living with another person. The total number of pharmaceutical drugs was 406 (average of 4.2 medications per patient. The drugs most prescribed were antihypertensives (47.5%. The frequency of drug interactions was 66.6%. Among the 154 potential drug interactions, 4.6% were classified as major, 65.6% as moderate and 20.1% as minor. CONCLUSION: The high frequency of drug prescriptions with a potential for differentiated interactions indicates a situation that has so far been little explored, albeit a reality in household surveys.

  19. Potential Drug-Drug Interactions among Patients prescriptions collected from Medicine Out-patient Setting.

    Science.gov (United States)

    Farooqui, Riffat; Hoor, Talea; Karim, Nasim; Muneer, Mehtab

    2018-01-01

    To identify and evaluate the frequency, severity, mechanism and common pairs of drug-drug interactions (DDIs) in prescriptions by consultants in medicine outpatient department. This cross sectional descriptive study was done by Pharmacology department of Bahria University Medical & Dental College (BUMDC) in medicine outpatient department (OPD) of a private hospital in Karachi from December 2015 to January 2016. A total of 220 prescriptions written by consultants were collected. Medications given with patient's diagnosis were recorded. Drugs were analyzed for interactions by utilizing Medscape drug interaction checker, drugs.com checker and stockley`s drug interactions index. Two hundred eleven prescriptions were selected while remaining were excluded from the study because of unavailability of the prescribed drugs in the drug interaction checkers. In 211 prescriptions, two common diagnoses were diabetes mellitus (28.43%) and hypertension (27.96%). A total of 978 medications were given. Mean number of medications per prescription was 4.6. A total of 369 drug-drug interactions were identified in 211 prescriptions (175%). They were serious 4.33%, significant 66.12% and minor 29.53%. Pharmacokinetic and pharmacodynamic interactions were 37.94% and 51.21% respectively while 10.84% had unknown mechanism. Number wise common pairs of DDIs were Omeprazole-Losartan (S), Gabapentine- Acetaminophen (M), Losartan-Diclofenac (S). The frequency of DDIs is found to be too high in prescriptions of consultants from medicine OPD of a private hospital in Karachi. Significant drug-drug interactions were more and mostly caused by Pharmacodynamic mechanism. Number wise evaluation showed three common pairs of drugs involved in interactions.

  20. The Prevalence of Potential Drug Interactions Among Critically Ill Elderly Patients in the Intensive Care Unit (ICU

    Directory of Open Access Journals (Sweden)

    Hossein Rafiei

    2012-01-01

    Full Text Available Objectives: The aim of the research was to determine prevalence of potential drug interactions among elderly patients in the Shahid Bahonar ICU in Kerman. Methods & Materials: In this cross sectional study, data about all elderly patients who were admitted in the intensive care unit from 1/4/2009 to 1/4/2010 were retrieved from medical records and evaluated with regard to the number and type of drug interactions, the number of drugs administered, age, sex, length of stay in the ICU, and the number of doctors prescribing medications of medications administered. The extent and number of drug interactions were investigated based on the reference textbook Drug Interaction Facts and in order to analyze the data collected, using SPSS 18 and according to study goals, a descriptive test, Pierson's correlation test, an independent T-test and a one-way ANOVA were used. Results: In total, 77 types of drugs and 394 drugs were prescribed with a mean of 5.6(SD=1.5 drugs per patient. A total of 108 potential drug interactions were found related to drugs prescribed during the first twenty-four hours. In terms of the type of drug interactions, delayed, moderate and possible types comprised the highest proportion of drug interactions. The four major interactions were between cimetidine and methadone, furosemide and amikacine, phenytoin and dopamine, and heparin and aspirin. The results of Pierson's correlation test were inicative of a positive correlation between the number of potential drug interactions and that of the drugs prescribed (r=0.563, P<0.05. Results of a one-way ANOVA showed that the mean number of potential drug interaction were significantly higher in those who died than in other patients (P<0.05. Conclusion: Elderly patients who are admitted to the intensive care unit are at a high risk of developing drug interactions and better care must be taken by medical team members.

  1. The potential of protein-nanomaterial interaction for advanced drug delivery

    DEFF Research Database (Denmark)

    Peng, Qiang; Mu, Huiling

    2016-01-01

    Nanomaterials, like nanoparticles, micelles, nano-sheets, nanotubes and quantum dots, have great potentials in biomedical fields. However, their delivery is highly limited by the formation of protein corona upon interaction with endogenous proteins. This new identity, instead of nanomaterial itself...... of such interaction for advanced drug delivery are presented........ Therefore, protein-nanomaterial interaction is a great challenge for nanomaterial systems and should be inhibited. However, this interaction can also be used to functionalize nanomaterials by forming a selected protein corona. Unlike other decoration using exogenous molecules, nanomaterials functionalized...

  2. Drug interactions between common illicit drugs and prescription therapies.

    Science.gov (United States)

    Lindsey, Wesley T; Stewart, David; Childress, Darrell

    2012-07-01

    The aim was to summarize the clinical literature on interactions between common illicit drugs and prescription therapies. Medline, Iowa Drug Information Service, International Pharmaceutical Abstracts, EBSCO Academic Search Premier, and Google Scholar were searched from date of origin of database to March 2011. Search terms were cocaine, marijuana, cannabis, methamphetamine, amphetamine, ecstasy, N-methyl-3,4-methylenedioxymethamphetamine, methylenedioxymethamphetamine, heroin, gamma-hydroxybutyrate, sodium oxybate, and combined with interactions, drug interactions, and drug-drug interactions. This review focuses on established clinical evidence. All applicable full-text English language articles and abstracts found were evaluated and included in the review as appropriate. The interactions of illicit drugs with prescription therapies have the ability to potentiate or attenuate the effects of both the illicit agent and/or the prescription therapeutic agent, which can lead to toxic effects or a reduction in the prescription agent's therapeutic activity. Most texts and databases focus on theoretical or probable interactions due to the kinetic properties of the drugs and do not fully explore the pharmacodynamic and clinical implications of these interactions. Clinical trials with coadministration of illicit drugs and prescription drugs are discussed along with case reports that demonstrate a potential interaction between agents. The illicit drugs discussed are cocaine, marijuana, amphetamines, methylenedioxymethamphetamine, heroin, and sodium oxybate. Although the use of illicit drugs is widespread, there are little experimental or clinical data regarding the effects of these agents on common prescription therapies. Potential drug interactions between illicit drugs and prescription drugs are described and evaluated on the Drug Interaction Probability Scale by Horn and Hansten.

  3. Food-Drug Interactions

    Directory of Open Access Journals (Sweden)

    Arshad Yar Khan

    2011-03-01

    Full Text Available The effect of drug on a person may be different than expected because that drug interacts with another drug the person is taking (drug-drug interaction, food, beverages, dietary supplements the person is consuming (drug-nutrient/food interaction or another disease the person has (drug-disease interaction. A drug interaction is a situation in which a substance affects the activity of a drug, i.e. the effects are increased or decreased, or they produce a new effect that neither produces on its own. These interactions may occur out of accidental misuse or due to lack of knowledge about the active ingredients involved in the relevant substances. Regarding food-drug interactions physicians and pharmacists recognize that some foods and drugs, when taken simultaneously, can alter the body's ability to utilize a particular food or drug, or cause serious side effects. Clinically significant drug interactions, which pose potential harm to the patient, may result from changes in pharmaceutical, pharmacokinetic, or pharmacodynamic properties. Some may be taken advantage of, to the benefit of patients, but more commonly drug interactions result in adverse drug events. Therefore it is advisable for patients to follow the physician and doctors instructions to obtain maximum benefits with least fooddrug interactions. The literature survey was conducted by extracting data from different review and original articles on general or specific drug interactions with food. This review gives information about various interactions between different foods and drugs and will help physicians and pharmacists prescribe drugs cautiously with only suitable food supplement to get maximum benefit for the patient.

  4. Indolealkylamines: Biotransformations and Potential Drug–Drug Interactions

    OpenAIRE

    Yu, Ai-Ming

    2008-01-01

    Indolealkylamine (IAA) drugs are 5-hydroxytryptamine (5-HT or serotonin) analogs that mainly act on the serotonin system. Some IAAs are clinically utilized for antimigraine therapy, whereas other substances are notable as drugs of abuse. In the clinical evaluation of antimigraine triptan drugs, studies on their biotransformations and pharmacokinetics would facilitate the understanding and prevention of unwanted drug–drug interactions (DDIs). A stable, principal metabolite of an IAA drug of ab...

  5. Comparative analysis of three drug-drug interaction screening systems against probable clinically relevant drug-drug interactions: a prospective cohort study.

    Science.gov (United States)

    Muhič, Neža; Mrhar, Ales; Brvar, Miran

    2017-07-01

    Drug-drug interaction (DDI) screening systems report potential DDIs. This study aimed to find the prevalence of probable DDI-related adverse drug reactions (ADRs) and compare the clinical usefulness of different DDI screening systems to prevent or warn against these ADRs. A prospective cohort study was conducted in patients urgently admitted to medical departments. Potential DDIs were checked using Complete Drug Interaction®, Lexicomp® Online™, and Drug Interaction Checker®. The study team identified the patients with probable clinically relevant DDI-related ADRs on admission, the causality of which was assessed using the Drug Interaction Probability Scale (DIPS). Sensitivity, specificity, and positive and negative predictive values of screening systems to prevent or warn against probable DDI-related ADRs were evaluated. Overall, 50 probable clinically relevant DDI-related ADRs were found in 37 out of 795 included patients taking at least two drugs, most common of them were bleeding, hyperkalemia, digitalis toxicity, and hypotension. Complete Drug Interaction showed the best sensitivity (0.76) for actual DDI-related ADRs, followed by Lexicomp Online (0.50), and Drug Interaction Checker (0.40). Complete Drug Interaction and Drug Interaction Checker had positive predictive values of 0.07; Lexicomp Online had 0.04. We found no difference in specificity and negative predictive values among these systems. DDI screening systems differ significantly in their ability to detect probable clinically relevant DDI-related ADRs in terms of sensitivity and positive predictive value.

  6. Predicting drug?drug interactions through drug structural similarities and interaction networks incorporating pharmacokinetics and pharmacodynamics knowledge

    OpenAIRE

    Takeda, Takako; Hao, Ming; Cheng, Tiejun; Bryant, Stephen H.; Wang, Yanli

    2017-01-01

    Drug?drug interactions (DDIs) may lead to adverse effects and potentially result in drug withdrawal from the market. Predicting DDIs during drug development would help reduce development costs and time by rigorous evaluation of drug candidates. The primary mechanisms of DDIs are based on pharmacokinetics (PK) and pharmacodynamics (PD). This study examines the effects of 2D structural similarities of drugs on DDI prediction through interaction networks including both PD and PK knowledge. Our a...

  7. Drug-drug interactions among recently hospitalised patients--frequent but mostly clinically insignificant

    DEFF Research Database (Denmark)

    Glintborg, Bente; Andersen, Stig Ejdrup; Dalhoff, Kim

    2005-01-01

    OBJECTIVE: Patients use and store considerable amounts of drugs. The aim of the present study was to identify potential drug-drug interactions between drugs used by patients recently discharged from the hospital and, subsequently, to estimate the clinical implications of these interactions. METHODS......: Patients were visited within 1 week following their discharge from hospital and interviewed about their drug use. Stored products were inspected. We used a bibliography (Hansten and Horn; Wolters Kluwer Health, St. Louis, Mo., 2004) to identify and classify potential drug-drug interactions. RESULTS......: eight per patient; range: 1-24). With respect to those drugs used daily or on demand, 476 potential interactions were identified (126 patients); none were class 1 (always avoid drug combination) and 25 were class 2 (usually avoid combination; 24 patients). Eleven of the potential class 2 interactions...

  8. The potential of protein-nanomaterial interaction for advanced drug delivery.

    Science.gov (United States)

    Peng, Qiang; Mu, Huiling

    2016-03-10

    Nanomaterials, like nanoparticles, micelles, nano-sheets, nanotubes and quantum dots, have great potentials in biomedical fields. However, their delivery is highly limited by the formation of protein corona upon interaction with endogenous proteins. This new identity, instead of nanomaterial itself, would be the real substance the organs and cells firstly encounter. Consequently, the behavior of nanomaterials in vivo is uncontrollable and some undesired effects may occur, like rapid clearance from blood stream; risk of capillary blockage; loss of targeting capacity; and potential toxicity. Therefore, protein-nanomaterial interaction is a great challenge for nanomaterial systems and should be inhibited. However, this interaction can also be used to functionalize nanomaterials by forming a selected protein corona. Unlike other decoration using exogenous molecules, nanomaterials functionalized by selected protein corona using endogenous proteins would have greater promise for clinical use. In this review, we aim to provide a comprehensive understanding of protein-nanomaterial interaction. Importantly, a discussion about how to use such interaction is launched and some possible applications of such interaction for advanced drug delivery are presented. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Factors Associated with Potential Food-Drug Interaction in Hospitalized Patients: A Cross-Sectional Study in Northeast Iran

    Directory of Open Access Journals (Sweden)

    Mostafa Abdollahi

    2018-04-01

    Full Text Available Background: The minimization of adverse food-drug interactions will improve patient care by optimizing the therapeutic effects and maintaining proper nutritional status. Aim: The aim of the present study was to find the main factors that may place the hospitalized patients at risk of potential food-drug interactions. Method: This cross-sectional, descriptive study was conducted on 400 inpatients admitted to the Department of Internal Medicine of a teaching hospital in Mashhad, Northeast Iran, within 20 March 2013 to 20 April 2013. The potential food-drug interactions were evaluated for 19 commonly prescribed medications. The main factors (e.g., age, gender, education level, number of medications, and duration of the disease that may place the patients at risk of potential food-drug interactions were analyzed for each patient. Results: Out of the 19 commonly prescribed medications, 17 drugs (89% were not properly used with respect to meal. Furthermore, 14 commonly prescribed drugs were found to have a high frequency (≥50% of potential food-drug interactions. Most of the patients (n=359, 89.8% consumed their medicines at inappropriate time with respect to meals. The results of a multiple logistic regression after adjustment for confounders revealed that the age [β=0.005, CI: 0.0-0.01; P=033], number of medications [β=0.1, CI: 0.083-0.117; P

  10. Data-driven prediction of adverse drug reactions induced by drug-drug interactions.

    Science.gov (United States)

    Liu, Ruifeng; AbdulHameed, Mohamed Diwan M; Kumar, Kamal; Yu, Xueping; Wallqvist, Anders; Reifman, Jaques

    2017-06-08

    The expanded use of multiple drugs has increased the occurrence of adverse drug reactions (ADRs) induced by drug-drug interactions (DDIs). However, such reactions are typically not observed in clinical drug-development studies because most of them focus on single-drug therapies. ADR reporting systems collect information on adverse health effects caused by both single drugs and DDIs. A major challenge is to unambiguously identify the effects caused by DDIs and to attribute them to specific drug interactions. A computational method that provides prospective predictions of potential DDI-induced ADRs will help to identify and mitigate these adverse health effects. We hypothesize that drug-protein interactions can be used as independent variables in predicting ADRs. We constructed drug pair-protein interaction profiles for ~800 drugs using drug-protein interaction information in the public domain. We then constructed statistical models to score drug pairs for their potential to induce ADRs based on drug pair-protein interaction profiles. We used extensive clinical database information to construct categorical prediction models for drug pairs that are likely to induce ADRs via synergistic DDIs and showed that model performance deteriorated only slightly, with a moderate amount of false positives and false negatives in the training samples, as evaluated by our cross-validation analysis. The cross validation calculations showed an average prediction accuracy of 89% across 1,096 ADR models that captured the deleterious effects of synergistic DDIs. Because the models rely on drug-protein interactions, we made predictions for pairwise combinations of 764 drugs that are currently on the market and for which drug-protein interaction information is available. These predictions are publicly accessible at http://avoid-db.bhsai.org . We used the predictive models to analyze broader aspects of DDI-induced ADRs, showing that ~10% of all combinations have the potential to induce ADRs

  11. Drug-radiopharmaceutical interactions

    International Nuclear Information System (INIS)

    Hladik, W.B.; Ponto, J.A.; Stathis, V.J.

    1985-01-01

    Patients seen in the nuclear medicine department have a wide variety of disorders and, consequently, may be receiving any number of therapeutic drugs. For this reason, nuclear medicine professionals should be aware of the potential effects that these pharmacologic agents may have on the bio-distribution of subsequently administered radiopharmaceuticals, commonly referred to as ''drug-radiopharmaceutical interactions.'' Compared with the quantity of literature written about interactions between various therapeutic drugs, the information available on drug-radiopharmaceutical interactions is scarce. However, there has been increasing interest in this subject, particularly during the past five years. Some of the reported interactions are used intentionally to add a new dimension to the nuclear medicine study and increase its diagnostic capabilities, i.e., pharmacologic intervention. These beneficial ''interactions'' are discussed in detail in several other chapters of this book. Other interactions, however, cause changes in the normal distribution of radiopharmaceuticals, which may interfere with the diagnostic utility of various nuclear medicine procedures. The latter group of interactions is the focus of this chapter

  12. Observational study of drug-drug interactions in oncological inpatients

    Directory of Open Access Journals (Sweden)

    María Sacramento Díaz-Carrasco

    2018-01-01

    Full Text Available Objective: To determine the prevalence of potential clinically relevant drug- drug interactions in adult oncological inpatients, as well as to describe the most frequent interactions. A standard database was used. Method: An observational, transversal, and descriptive study including patients admitted to the Oncology Service of a reference hospital. All prescriptions were collected twice a week during a month. They were analysed using Lexicomp® database, recording all interactions classified with a level of risk: C, D or X. Results: A total of 1 850 drug-drug interactions were detected in 218 treatments. The prevalence of treatments with at least one clinically relevant interaction was 95%, being 94.5% for those at level C and 26.1% for levels D and X. The drugs most commonly involved in the interactions detected were opioid analgesics, antipsychotics (butyrophenones, benzodiazepines, pyrazolones, glucocorticoids and heparins, whereas interactions with antineoplastics were minimal, highlighting those related to paclitaxel and between metamizole and various antineoplastics. Conclusions: The prevalence of clinically relevant drug-drug interactions rate was very high, highlighting the high risk percentage of them related to level of risk X. Due to the frequency of onset and potential severity, highlighted the concomitant use of central nervous system depressants drugs with risk of respiratory depression, the risk of onset of anticholinergic symptoms when combining morphine or haloperidol with butylscopolamine, ipratropium bromide or dexchlorpheniramine and the multiple interactions involving metamizole.

  13. Drug-drug Interactions of Statins Potentially Leading to Muscle-Related Side Effects in Hospitalized Patients.

    Science.gov (United States)

    Bucsa, Camelia; Farcas, Andreea; Leucuta, D; Mogosan, Cristina; Bojita, M; Dumitrascu, D L

    2015-01-01

    The associations of drugs that may interact with the statins resulting in elevated serum concentration of the statins are an important risk factor for statin induced muscle disorders. We aimed to determine the prevalence of these associations in all hospitalized patients that had been prescribed statins before/during hospitalization and to find out how often they are associated with muscle-related side effects. This prospective, non-interventional study performed in two internal medicine departments included patients with statin therapy before/during hospitalization. Data on each patient demographic characteristics, co-morbidities and treatment was collected from medical charts and interviews. We evaluated patients' therapy for the targeted associations using Thomson Micromedex Drug Interactions checker and we ranked the identified drug-drug interactions (DDIs) accordingly. Each patient with statin treatment before admission was additionally interviewed in order to identify muscular symptoms. In 109 patients on statin treatment we found 35 potential (p) DDIs of statins in 30 (27.5%) patients, most of which were in the therapy before admission (27 pDDIs). The pDDIs were moderate (20 pDDIs) and major (15 pDDIs). Of the total number of pDDIs, 24 were targeting the muscular system. The drugs most frequently involved in the statins' pDDIs were amiodarone and fenofibrate. Two of the patients with pDDIs reported muscle pain, both having additional risk factors for statin induced muscular effects. The prevalence of statins' pDDIs was high in our study, mostly in the therapy before admission, with only a small number of pDDIs resulting in clinical outcome.

  14. Pharmacogenetics of drug-drug interaction and drug-drug-gene interaction : A systematic review on CYP2C9, CYP2C19 and CYP2D6

    NARCIS (Netherlands)

    Bahar, Muh Akbar; Setiawan, Didik; Hak, Eelko; Wilffert, Bob

    Currently, most guidelines on drug-drug interaction (DDI) neither consider the potential effect of genetic polymorphism in the strength of the interaction nor do they account for the complex interaction caused by the combination of DDI and drug-gene interaction (DGI) where there are multiple

  15. Botanical-drug interactions: a scientific perspective.

    Science.gov (United States)

    de Lima Toccafondo Vieira, Manuela; Huang, Shiew-Mei

    2012-09-01

    There is a continued predisposition of concurrent use of drugs and botanical products. A general lack of knowledge of the interaction potential together with an under-reporting of botanical use poses a challenge for the health care providers and a safety concern for patients. Botanical-drug interactions increase the patient risk, especially with regard to drugs with a narrow therapeutic index (e.g., warfarin, cyclosporine, and digoxin). Examples of case reports and clinical studies evaluating botanical-drug interactions of commonly used botanicals in the US are presented. The potential pharmacokinetic and pharmacodynamic bases of such interactions are discussed, as well as the challenges associated with the interpretation of the available data and prediction of botanical-drug interactions. Recent FDA experiences with botanical products and interactions including labeling implications as a risk management strategy are highlighted. Georg Thieme Verlag KG Stuttgart · New York.

  16. Potential herb-drug interactions found in a community pharmacy patients

    OpenAIRE

    C. Batista; C. Pinho; M. Castel-Branco; M. Caramona; I. Figueiredo

    2015-01-01

    Phytotherapy has always played a leading role in therapeutics. However, a strong knowledge of the risk-benefit relationship of herbal products by patients and health professionals is necessary. The goals of this study were to characterize the consumption pattern of medicinal plants in patients in a community pharmacy, identify potential herb-drug interactions, and establish a list of recommendations for health professionals and/or patients in order to prevent/minimize negative outcomes arisin...

  17. A review of drug-drug interactions in older HIV-infected patients.

    Science.gov (United States)

    Chary, Aarthi; Nguyen, Nancy N; Maiton, Kimberly; Holodniy, Mark

    2017-12-01

    The number of older HIV-infected people is growing due to increasing life expectancies resulting from the use of antiretroviral therapy (ART). Both HIV and aging increase the risk of other comorbidities, such as cardiovascular disease, osteoporosis, and some malignancies, leading to greater challenges in managing HIV with other conditions. This results in complex medication regimens with the potential for significant drug-drug interactions and increased morbidity and mortality. Area covered: We review the metabolic pathways of ART and other medications used to treat medical co-morbidities, highlight potential areas of concern for drug-drug interactions, and where feasible, suggest alternative approaches for treating these conditions as suggested from national guidelines or articles published in the English language. Expert commentary: There is limited evidence-based data on ART drug interactions, pharmacokinetics and pharmacodynamics in the older HIV-infected population. Choosing and maintaining effective ART regimens for older adults requires consideration of side effect profile, individual comorbidities, interactions with concurrent prescriptions and non-prescription medications and supplements, dietary patterns with respect to dosing, pill burden and ease of dosing, cost and affordability, patient preferences, social situation, and ART resistance history. Practitioners must remain vigilant for potential drug interactions and intervene when there is a potential for harm.

  18. Pharmacogenetics of drug-drug interaction and drug-drug-gene interaction: a systematic review on CYP2C9, CYP2C19 and CYP2D6.

    Science.gov (United States)

    Bahar, Muh Akbar; Setiawan, Didik; Hak, Eelko; Wilffert, Bob

    2017-05-01

    Currently, most guidelines on drug-drug interaction (DDI) neither consider the potential effect of genetic polymorphism in the strength of the interaction nor do they account for the complex interaction caused by the combination of DDI and drug-gene interaction (DGI) where there are multiple biotransformation pathways, which is referred to as drug-drug-gene interaction (DDGI). In this systematic review, we report the impact of pharmacogenetics on DDI and DDGI in which three major drug-metabolizing enzymes - CYP2C9, CYP2C19 and CYP2D6 - are central. We observed that several DDI and DDGI are highly gene-dependent, leading to a different magnitude of interaction. Precision drug therapy should take pharmacogenetics into account when drug interactions in clinical practice are expected.

  19. Clinical Drug-Drug Pharmacokinetic Interaction Potential of Sucralfate with Other Drugs: Review and Perspectives.

    Science.gov (United States)

    Sulochana, Suresh P; Syed, Muzeeb; Chandrasekar, Devaraj V; Mullangi, Ramesh; Srinivas, Nuggehally R

    2016-10-01

    Sucralfate, a complex of aluminium hydroxide with sulfated sucrose, forms a strong gastrointestinal tract (GIT) mucosal barrier with excellent anti-ulcer property. Because sucralfate does not undergo any significant oral absorption, sucralfate resides in the GIT for a considerable length of time. The unabsorbed sucralfate may alter the pharmacokinetics of the oral drugs by impeding its absorption and reducing the oral bioavailability. Because of the increased use of sucralfate, it was important to provide a reappraisal of the published clinical drug-drug interaction studies of sucralfate with scores of drugs. This review covers several category of drugs such as non-steroidal anti-inflammatory drugs, fluoroquinolones, histamine H2-receptor blockers, macrolides, anti-fungals, anti-diabetics, salicylic acid derivatives, steroidal anti-inflammatory drugs and provides pharmacokinetic data summary along with study design, objectives and key remarks. While the loss of oral bioavailability was significant for the fluoroquinolone class, it generally varied for other classes of drugs, suggesting that impact of the co-administration of sucralfate is manageable in clinical situations. Given the technology advancement in formulation development, it may be in order feasible to develop appropriate formulation strategies to either avoid or minimize the absorption-related issues when co-administered with sucralfate. It is recommended that consideration of both in vitro and preclinical studies may be in order to gauge the level of interaction of a drug with sucralfate. Such data may aid in the development of appropriate strategies to navigate the co-administration of sucralfate with other drugs in this age of polypharmacy.

  20. Prevalence and typology of potential drug interactions occurring in primary care patients.

    Science.gov (United States)

    Lopez-Picazo, Julio J; Ruiz, Juan C; Sanchez, Jose F; Ariza, Angeles; Aguilera, Belen; Lazaro, Dolores; Sanz, Gonzalo R

    2010-06-01

    To investigate the prevalence and types of potential drug interactions in primary care patients to detect risky prescriptions as an essential condition to design intervention policies leading to an improvement in patient safety. Cross-sectional descriptive study. Two areas in Spain comprising 715,661 inhabitants. 430,525 subjects with electronic medical records and assigned to a family doctor regularly updating them. On a random day, 29.4% of the population was taking medication. Of these, 73.9% were at risk of suffering interactions, and these were found in 20.6% of them. The amount of interactions was higher among people with chronic conditions, the elderly, females and polymedicated patients. From the total of interactions, 55.1% belonged to the highest clinical relevance 'A' level, and 28.3% should have been avoided. The active ingredients primarily involved were hydrochlorothiazide and ibuprofen and, when focusing on those that should be avoided, omeprazole and acenocoumarol. The most frequent 'A' interaction that should be avoided was between non-conjugated excreted benzodiazepines and proton-pump inhibitors, followed by some NSAIDs and diuretics. 1 in 20 Spanish citizens is currently undergoing a potential drug interaction, including a high rate of clinically relevant ones that should be avoided. These results confirm the existence of a serious safety issue that should be approached and where all parties involved (physicians, health services, medical societies and patients) must do our bit to improve. Health services should foster the implementation of prescription alert systems linked with electronic medical records including clinical data.

  1. [Prevalence of Avoidable Potential Interactions Between Antidepressants and Other Drugs in Colombian Patients].

    Science.gov (United States)

    Machado-Alba, Jorge E; Morales-Plaza, Cristhian David

    2013-06-01

    To determine the possible drugs interactions with antidepressive agents in data bases of patients in the Health Insurance System of Colombia. From data bases of about 4 million users in Colombia, a systematic review of drugs dispensation statistics was made to identify drug interactions between antidepressive agents, cholinergic antagonists and tramadol in 2010. We identified 114,465 monthly users of antidepressive agents. Of these, 5776 (5.0%) received two, and 178 (0.2%) received three antidepressive agents simultaneously. The most frequent combination was fluoxetine+trazodone (n=3235; 56.9% of cases). About 1127 (1.0%) patients were prescribed a cholinergic antagonist simultaneously; 2523 (2.1%) users were dispensed tramadol at the same time, while raising the risk of serotonin syndrome. Drug interactions represent a potential risk that is often underestimated by physicians. Pharmacovigilance is a useful tool to optimize resources and prevent negative outcomes associated with medication. It is recommended that systematic search is made to enhance surveillance programs for the rational use of medicines in this country. Copyright © 2013 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  2. TargetNet: a web service for predicting potential drug-target interaction profiling via multi-target SAR models

    Science.gov (United States)

    Yao, Zhi-Jiang; Dong, Jie; Che, Yu-Jing; Zhu, Min-Feng; Wen, Ming; Wang, Ning-Ning; Wang, Shan; Lu, Ai-Ping; Cao, Dong-Sheng

    2016-05-01

    Drug-target interactions (DTIs) are central to current drug discovery processes and public health fields. Analyzing the DTI profiling of the drugs helps to infer drug indications, adverse drug reactions, drug-drug interactions, and drug mode of actions. Therefore, it is of high importance to reliably and fast predict DTI profiling of the drugs on a genome-scale level. Here, we develop the TargetNet server, which can make real-time DTI predictions based only on molecular structures, following the spirit of multi-target SAR methodology. Naïve Bayes models together with various molecular fingerprints were employed to construct prediction models. Ensemble learning from these fingerprints was also provided to improve the prediction ability. When the user submits a molecule, the server will predict the activity of the user's molecule across 623 human proteins by the established high quality SAR model, thus generating a DTI profiling that can be used as a feature vector of chemicals for wide applications. The 623 SAR models related to 623 human proteins were strictly evaluated and validated by several model validation strategies, resulting in the AUC scores of 75-100 %. We applied the generated DTI profiling to successfully predict potential targets, toxicity classification, drug-drug interactions, and drug mode of action, which sufficiently demonstrated the wide application value of the potential DTI profiling. The TargetNet webserver is designed based on the Django framework in Python, and is freely accessible at http://targetnet.scbdd.com.

  3. TargetNet: a web service for predicting potential drug-target interaction profiling via multi-target SAR models.

    Science.gov (United States)

    Yao, Zhi-Jiang; Dong, Jie; Che, Yu-Jing; Zhu, Min-Feng; Wen, Ming; Wang, Ning-Ning; Wang, Shan; Lu, Ai-Ping; Cao, Dong-Sheng

    2016-05-01

    Drug-target interactions (DTIs) are central to current drug discovery processes and public health fields. Analyzing the DTI profiling of the drugs helps to infer drug indications, adverse drug reactions, drug-drug interactions, and drug mode of actions. Therefore, it is of high importance to reliably and fast predict DTI profiling of the drugs on a genome-scale level. Here, we develop the TargetNet server, which can make real-time DTI predictions based only on molecular structures, following the spirit of multi-target SAR methodology. Naïve Bayes models together with various molecular fingerprints were employed to construct prediction models. Ensemble learning from these fingerprints was also provided to improve the prediction ability. When the user submits a molecule, the server will predict the activity of the user's molecule across 623 human proteins by the established high quality SAR model, thus generating a DTI profiling that can be used as a feature vector of chemicals for wide applications. The 623 SAR models related to 623 human proteins were strictly evaluated and validated by several model validation strategies, resulting in the AUC scores of 75-100 %. We applied the generated DTI profiling to successfully predict potential targets, toxicity classification, drug-drug interactions, and drug mode of action, which sufficiently demonstrated the wide application value of the potential DTI profiling. The TargetNet webserver is designed based on the Django framework in Python, and is freely accessible at http://targetnet.scbdd.com .

  4. Identification of clinically significant drug-drug interactions in cardiac ...

    African Journals Online (AJOL)

    Purpose: To identify clinically significant potential drug-drug interactions in cardiac intensive care units of two tertiary care ... hypertension, hyperlipidemia, diabetes or other diseases .... May result in digoxin toxicity (nausea, vomiting, cardiac.

  5. Detection of Potential Drug-Drug Interactions for Outpatients across Hospitals

    Directory of Open Access Journals (Sweden)

    Yu-Ting Yeh

    2014-01-01

    Full Text Available The National Health Insurance Administration (NHIA has adopted smart cards (or NHI-IC cards as health cards to carry patients’ medication histories across hospitals in Taiwan. The aims of this study are to enhance a computerized physician order entry system to support drug-drug interaction (DDI checking based on a patient’s medication history stored in his/her NHI-IC card. For performance evaluation, we developed a transaction tracking log to keep track of every operation on NHI-IC cards. Based on analysis of the transaction tracking log from 1 August to 31 October 2007, physicians read patients’ NHI-IC cards in 71.01% (8,246 of patient visits; 33.02% (2,723 of the card reads showed at least one medicine currently being taken by the patient, 82.94% of which were prescribed during the last visit. Among 10,036 issued prescriptions, seven prescriptions (0.09% contained at least one drug item that might interact with the currently-taken medicines stored in NHI-IC cards and triggered pop-up alerts. This study showed that the capacity of an NHI-IC card is adequate to support DDI checking across hospitals. Thus, the enhanced computerized physician order entry (CPOE system can support better DDI checking when physicians are making prescriptions and provide safer medication care, particularly for patients who receive medication care from different hospitals.

  6. Detection of potential drug-drug interactions for outpatients across hospitals.

    Science.gov (United States)

    Yeh, Yu-Ting; Hsu, Min-Hui; Chen, Chien-Yuan; Lo, Yu-Sheng; Liu, Chien-Tsai

    2014-01-27

    The National Health Insurance Administration (NHIA) has adopted smart cards (or NHI-IC cards) as health cards to carry patients' medication histories across hospitals in Taiwan. The aims of this study are to enhance a computerized physician order entry system to support drug-drug interaction (DDI) checking based on a patient's medication history stored in his/her NHI-IC card. For performance evaluation, we developed a transaction tracking log to keep track of every operation on NHI-IC cards. Based on analysis of the transaction tracking log from 1 August to 31 October 2007, physicians read patients' NHI-IC cards in 71.01% (8,246) of patient visits; 33.02% (2,723) of the card reads showed at least one medicine currently being taken by the patient, 82.94% of which were prescribed during the last visit. Among 10,036 issued prescriptions, seven prescriptions (0.09%) contained at least one drug item that might interact with the currently-taken medicines stored in NHI-IC cards and triggered pop-up alerts. This study showed that the capacity of an NHI-IC card is adequate to support DDI checking across hospitals. Thus, the enhanced computerized physician order entry (CPOE) system can support better DDI checking when physicians are making prescriptions and provide safer medication care, particularly for patients who receive medication care from different hospitals.

  7. A regulatory science viewpoint on botanical–drug interactions

    Directory of Open Access Journals (Sweden)

    Manuela Grimstein

    2018-04-01

    Full Text Available There is a continued predisposition of concurrent use of drugs and botanical products. Consumers often self-administer botanical products without informing their health care providers. The perceived safety of botanical products with lack of knowledge of the interaction potential poses a challenge for providers and both efficacy and safety concerns for patients. Botanical–drug combinations can produce untoward effects when botanical constituents modulate drug metabolizing enzymes and/or transporters impacting the systemic or tissue exposure of concomitant drugs. Examples of pertinent scientific literature evaluating the interaction potential of commonly used botanicals in the US are discussed. Current methodologies that can be applied to advance our efforts in predicting drug interaction liability is presented. This review also highlights the regulatory science viewpoint on botanical–drug interactions and labeling implications. Keywords: Drug interaction, Botanical product, St. John's wort, Fruit juices, Regulatory science

  8. Drug interactions in hospitalized elderly patients

    Directory of Open Access Journals (Sweden)

    Juliana Locatelli

    2007-12-01

    Full Text Available Objective: To assess the prevalence of drug interactions in elderlyinpatients and to describe the most prevalent interactions. Methods:A retrospective study was conducted in 155 elderly inpatients enrolledin the Clinical Pharmacy program at the elderly-care unit of theHospital Israelita Albert Einstein from January 2006 to January 2007.Interactions were classified according to severity using Micromedex®.Results: A total of 705 potential drug interactions were found, withapproximately 4 interactions per patient. According to severity, 201(28% were major severities and 504 (72% were of moderate severity.Among these 705 interactions, 444 were selected according to theirresulting effect including 161 (36% had increased risk of bleeding, 78(18% hypoglycemia or hyperglycemia, 50 (11% cardiotoxicity, 46(10% digitalis toxicity, 40 (9% phenytoin toxicity, 31 (7% additiverespiratory depression, 20 (5% hyperkalemia, 18 (4% decreasedlevothyroxine absorption. Conclusion: The high drug interactionrate found in this study shows the relevance of this issue amongelderly inpatients and the need to assess and monitor drug therapyin the elderly to prevent and reduce consequences of potential druginteraction effects.

  9. Drug repurposing based on drug-drug interaction.

    Science.gov (United States)

    Zhou, Bin; Wang, Rong; Wu, Ping; Kong, De-Xin

    2015-02-01

    Given the high risk and lengthy procedure of traditional drug development, drug repurposing is gaining more and more attention. Although many types of drug information have been used to repurpose drugs, drug-drug interaction data, which imply possible physiological effects or targets of drugs, remain unexploited. In this work, similarity of drug interaction was employed to infer similarity of the physiological effects or targets for the drugs. We collected 10,835 drug-drug interactions concerning 1074 drugs, and for 700 of them, drug similarity scores based on drug interaction profiles were computed and rendered using a drug association network with 589 nodes (drugs) and 2375 edges (drug similarity scores). The 589 drugs were clustered into 98 groups with Markov Clustering Algorithm, most of which were significantly correlated with certain drug functions. This indicates that the network can be used to infer the physiological effects of drugs. Furthermore, we evaluated the ability of this drug association network to predict drug targets. The results show that the method is effective for 317 of 561 drugs that have known targets. Comparison of this method with the structure-based approach shows that they are complementary. In summary, this study demonstrates the feasibility of drug repurposing based on drug-drug interaction data. © 2014 John Wiley & Sons A/S.

  10. Drug-drug interactions between anti-retroviral therapies and drugs of abuse in HIV systems.

    Science.gov (United States)

    Kumar, Santosh; Rao, P S S; Earla, Ravindra; Kumar, Anil

    2015-03-01

    Substance abuse is a common problem among HIV-infected individuals. Importantly, addictions as well as moderate use of alcohol, smoking, or other illicit drugs have been identified as major reasons for non-adherence to antiretroviral therapy (ART) among HIV patients. The literature also suggests a decrease in the response to ART among HIV patients who use these substances, leading to failure to achieve optimal virological response and increased disease progression. This review discusses the challenges with adherence to ART as well as observed drug interactions and known toxicities with major drugs of abuse, such as alcohol, smoking, methamphetamine, cocaine, marijuana, and opioids. The lack of adherence and drug interactions potentially lead to decreased efficacy of ART drugs and increased ART, and drugs of abuse-mediated toxicity. As CYP is the common pathway in metabolizing both ART and drugs of abuse, we discuss the possible involvement of CYP pathways in such drug interactions. We acknowledge that further studies focusing on common metabolic pathways involving CYP and advance research in this area would help to potentially develop novel/alternate interventions and drug dose/regimen adjustments to improve medication outcomes in HIV patients who consume drugs of abuse.

  11. Gaussian interaction profile kernels for predicting drug-target interaction.

    Science.gov (United States)

    van Laarhoven, Twan; Nabuurs, Sander B; Marchiori, Elena

    2011-11-01

    The in silico prediction of potential interactions between drugs and target proteins is of core importance for the identification of new drugs or novel targets for existing drugs. However, only a tiny portion of all drug-target pairs in current datasets are experimentally validated interactions. This motivates the need for developing computational methods that predict true interaction pairs with high accuracy. We show that a simple machine learning method that uses the drug-target network as the only source of information is capable of predicting true interaction pairs with high accuracy. Specifically, we introduce interaction profiles of drugs (and of targets) in a network, which are binary vectors specifying the presence or absence of interaction with every target (drug) in that network. We define a kernel on these profiles, called the Gaussian Interaction Profile (GIP) kernel, and use a simple classifier, (kernel) Regularized Least Squares (RLS), for prediction drug-target interactions. We test comparatively the effectiveness of RLS with the GIP kernel on four drug-target interaction networks used in previous studies. The proposed algorithm achieves area under the precision-recall curve (AUPR) up to 92.7, significantly improving over results of state-of-the-art methods. Moreover, we show that using also kernels based on chemical and genomic information further increases accuracy, with a neat improvement on small datasets. These results substantiate the relevance of the network topology (in the form of interaction profiles) as source of information for predicting drug-target interactions. Software and Supplementary Material are available at http://cs.ru.nl/~tvanlaarhoven/drugtarget2011/. tvanlaarhoven@cs.ru.nl; elenam@cs.ru.nl. Supplementary data are available at Bioinformatics online.

  12. Identifying Drug–Drug Interactions by Data Mining

    DEFF Research Database (Denmark)

    Hansen, Peter Wæde; Clemmensen, Line Katrine Harder; Sehested, Thomas S.G.

    2016-01-01

    Background—Knowledge about drug–drug interactions commonly arises from preclinical trials, from adverse drug reports, or based on knowledge of mechanisms of action. Our aim was to investigate whether drug–drug interactions were discoverable without prior hypotheses using data mining. We focused...... registries. Additionally, we discovered a few potentially novel interactions. This opens up for the use of data mining to discover unknown drug–drug interactions in cardiovascular medicine....... on warfarin–drug interactions as the prototype. Methods and Results—We analyzed altered prothrombin time (measured as international normalized ratio [INR]) after initiation of a novel prescription in previously INR-stable warfarin-treated patients with nonvalvular atrial fibrillation. Data sets were retrieved...

  13. Drug Interactions in Clinical Practice | Ohaju-Obodo | Nigerian ...

    African Journals Online (AJOL)

    The existence of numerous drugs available today for clinical management of patients require consideration of their potential interactions - alteration of the effects of one drug by the concurrent or prior administration of one or more drugs (drug-drug interactions). There could also be alteration of the effects of a drug by food ...

  14. Drug-drug interactions in prescriptions for hospitalized elderly with Acute Coronary Syndrome

    Directory of Open Access Journals (Sweden)

    Tiago Aparecido Maschio de Lima

    2017-11-01

    Full Text Available The objective was to determine the rate of potential drug-drug interactions in prescriptions for elderly diagnosed with Acute Coronary Syndrome in a teaching hospital. This is an exploratory, descriptive study that analyzed 607 prescriptions through databases to identify and classify the interactions based on intensity (major, moderate or minor, the mechanism (pharmacokinetic or pharmacodynamics and documentation relevance. We detected 10,162 drug-drug interactions, distributed in 554 types of different combinations within the prescribed drugs, and 99% of prescriptions presented at least one and a maximum of 53 interactions; highlighting the prevalence of major and moderates ones. There was a correlation between the number of drug-drug interactions and the number of prescribed drugs and the hospitalization time. This study contributes for the delimitation of a prevalence pattern in drug-drug interactions in prescriptions for Acute Coronary Syndrome, besides subsidizing the importance of the effective implementation of the Clinical Pharmacy in teaching hospitals.

  15. Clinical relevancy and determinants of potential drug–drug interactions in chronic kidney disease patients: results from a retrospective analysis

    Directory of Open Access Journals (Sweden)

    Saleem A

    2017-02-01

    Full Text Available Ahsan Saleem,1,2 Imran Masood,1 Tahir Mehmood Khan3 1Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan; 2Pharmacy Services Department, Integrated Medical Center, The Aga Khan University Hospital, Lahore, Pakistan; 3School of Pharmacy, Monash University, Sunway Campus, Selangor, Malaysia Background: Chronic kidney disease (CKD alters the pharmacokinetic and pharmacodynamic responses of various renally excreted drugs and increases the risk of drug-related problems, such as drug–drug interactions.Objectives: To assess the pattern, determinants, and clinical relevancy of potential drug–drug interactions (pDDIs in CKD patients.Materials and methods: This study retrospectively reviewed medical charts of all CKD patients admitted in the nephrology unit of a tertiary care hospital in Pakistan from January 2013 to December 2014. The Micromedex Drug-Reax® system was used to screen patient profiles for pDDIs, and IBM SPSS version 20 was used to carry out statistical analysis.Results: We evaluated 209 medical charts and found pDDIs in nearly 78.5% CKD patients. Overall, 541 pDDIs were observed, of which, nearly 60.8% patients had moderate, 41.1% had minor, 27.8% had major, and 13.4% had contraindicated interactions. Among those interactions, 49.4% had good evidence, 44.0% had fair, 6.3% had excellent evidence, and 35.5% interactions had delayed onset of action. The potential adverse outcomes of pDDIs included postural hypotension, QT prolongation, ceftriaxone–calcium precipitation, cardiac arrhythmias, and reduction in therapeutic effectiveness. The occurrence of pDDIs was found strongly associated with the age of <60 years, number of prescribed medicines ≥5, hypertension, and the lengthy hospitalization of patients.Conclusion: The occurrence of pDDIs was high in CKD patients. It was observed that CKD patients with an older age, higher number of prescribed medicines, lengthy hospitalization, and hypertension were at

  16. Computational prediction of drug-drug interactions based on drugs functional similarities.

    Science.gov (United States)

    Ferdousi, Reza; Safdari, Reza; Omidi, Yadollah

    2017-06-01

    Therapeutic activities of drugs are often influenced by co-administration of drugs that may cause inevitable drug-drug interactions (DDIs) and inadvertent side effects. Prediction and identification of DDIs are extremely vital for the patient safety and success of treatment modalities. A number of computational methods have been employed for the prediction of DDIs based on drugs structures and/or functions. Here, we report on a computational method for DDIs prediction based on functional similarity of drugs. The model was set based on key biological elements including carriers, transporters, enzymes and targets (CTET). The model was applied for 2189 approved drugs. For each drug, all the associated CTETs were collected, and the corresponding binary vectors were constructed to determine the DDIs. Various similarity measures were conducted to detect DDIs. Of the examined similarity methods, the inner product-based similarity measures (IPSMs) were found to provide improved prediction values. Altogether, 2,394,766 potential drug pairs interactions were studied. The model was able to predict over 250,000 unknown potential DDIs. Upon our findings, we propose the current method as a robust, yet simple and fast, universal in silico approach for identification of DDIs. We envision that this proposed method can be used as a practical technique for the detection of possible DDIs based on the functional similarities of drugs. Copyright © 2017. Published by Elsevier Inc.

  17. Macrolide drug interactions: an update.

    Science.gov (United States)

    Pai, M P; Graci, D M; Amsden, G W

    2000-04-01

    To describe the current drug interaction profiles for the commonly used macrolides in the US and Europe, and to comment on the clinical impact of these interactions. A MEDLINE search (1975-1998) was performed to identify all pertinent studies, review articles, and case reports. When appropriate information was not available in the literature, data were obtained from the product manufacturers. All available data were reviewed to provide an unbiased account of possible drug interactions. Data for some of the interactions were not available from the literature, but were available from abstracts or company-supplied materials. Although the data were not always explicit, the best attempt was made to deliver pertinent information that clinical practitioners would need to formulate practice opinions. When more in-depth information was supplied in the form of a review or study report, a thorough explanation of pertinent methodology was supplied. Several clinically significant drug interactions have been identified since the approval of erythromycin. These interactions usually were related to the inhibition of the cytochrome P450 enzyme systems, which are responsible for the metabolism of many drugs. The decreased metabolism by the macrolides has in some instances resulted in potentially severe adverse events. The development and marketing of newer macrolides are hoped to improve the drug interaction profile associated with this class. However, this has produced variable success. Some of the newer macrolides demonstrated an interaction profile similar to that of erythromycin; others have improved profiles. The most success in avoiding drug interactions related to the inhibition of cytochrome P450 has been through the development of the azalide subclass, of which azithromycin is the first and only to be marketed. Azithromycin has not been demonstrated to inhibit the cytochrome P450 system in studies using a human liver microsome model, and to date has produced none of the

  18. Interactions between recreational drugs and antiretroviral agents.

    Science.gov (United States)

    Antoniou, Tony; Tseng, Alice Lin-In

    2002-10-01

    To summarize existing data regarding potential interactions between recreational drugs and drugs commonly used in the management of HIV-positive patients. Information was obtained via a MEDLINE search (1966-August 2002) using the MeSH headings human immunodeficiency virus, drug interactions, cytochrome P450, medication names commonly prescribed for the management of HIV and related opportunistic infections, and names of commonly used recreational drugs. Abstracts of national and international conferences, review articles, textbooks, and references of all articles were also reviewed. Literature on pharmacokinetic interactions was considered for inclusion. Pertinent information was selected and summarized for discussion. In the absence of specific data, prediction of potential clinically significant interactions was based on pharmacokinetic and pharmacodynamic properties. All protease inhibitors (PIs) and nonnucleoside reverse transcriptase inhibitors are substrates and potent inhibitors or inducers of the cytochrome P450 system. Many classes of recreational drugs, including benzodiazepines, amphetamines, and opioids, are also metabolized by the liver and can potentially interact with antiretrovirals. Controlled interaction studies are often not available, but clinically significant interactions have been observed in a number of case reports. Overdoses secondary to interactions between the "rave" drugs methylenedioxymethamphetamine (MDMA) or gamma-hydroxybutyrate (GHB) and PIs have been reported. PIs, particularly ritonavir, may also inhibit metabolism of amphetamines, ketamine, lysergic acid diethylmide (LSD), and phencyclidine (PCP). Case series and pharmacokinetic studies suggest that nevirapine and efavirenz induce methadone metabolism, which may lead to symptoms of opiate withdrawal. A similar interaction may exist between methadone and the PIs ritonavir and nelfinavir, although the data are less consistent. Opiate metabolism can be inhibited or induced by

  19. A regulatory science viewpoint on botanical-drug interactions.

    Science.gov (United States)

    Grimstein, Manuela; Huang, Shiew-Mei

    2018-04-01

    There is a continued predisposition of concurrent use of drugs and botanical products. Consumers often self-administer botanical products without informing their health care providers. The perceived safety of botanical products with lack of knowledge of the interaction potential poses a challenge for providers and both efficacy and safety concerns for patients. Botanical-drug combinations can produce untoward effects when botanical constituents modulate drug metabolizing enzymes and/or transporters impacting the systemic or tissue exposure of concomitant drugs. Examples of pertinent scientific literature evaluating the interaction potential of commonly used botanicals in the US are discussed. Current methodologies that can be applied to advance our efforts in predicting drug interaction liability is presented. This review also highlights the regulatory science viewpoint on botanical-drug interactions and labeling implications. Copyright © 2018. Published by Elsevier B.V.

  20. Statin drug-drug interactions in a Romanian community pharmacy.

    Science.gov (United States)

    Badiu, Raluca; Bucsa, Camelia; Mogosan, Cristina; Dumitrascu, Dan

    2016-01-01

    Statins are frequently prescribed for patients with dyslipidemia and have a well-established safety profile. However, when associated with interacting dugs, the risk of adverse effects, especially muscular toxicity, is increased. The objective of this study was to identify, characterize and quantify the prevalence of the potential drug-drug interactions (pDDIs) of statins in reimbursed prescriptions from a community pharmacy in Bucharest. We analyzed the reimbursed prescriptions including statins collected during one month in a community pharmacy. The online program Medscape Drug Interaction Checker was used for checking the drug interactions and their classification based on severity: Serious - Use alternative, Significant - Monitor closely and Minor. 132 prescriptions pertaining to 125 patients were included in the analysis. Our study showed that 25% of the patients who were prescribed statins were exposed to pDDIs: 37 Serious and Significant interactions in 31 of the statins prescriptions. The statins involved were atorvastatin, simvastatin and rosuvastatin. Statin pDDIs have a high prevalence and patients should be monitored closely in order to prevent the development of adverse effects that result from statin interactions.

  1. Erythromycin potentiates PR interval prolonging effect of verapamil in the rat: A pharmacodynamic drug interaction

    International Nuclear Information System (INIS)

    Dakhel, Yaman; Jamali, Fakhreddin

    2006-01-01

    Calcium channel blockers and macrolide antibiotics account for many drug interactions. Anecdotal reports suggest interactions between the two resulting in severe side effects. We studied the interaction between verapamil and erythromycin in the rat to see whether it occurs at the pharmacokinetics or pharmacodynamic level. Adult male Sprague-Dawley rats received doses of 1 mg/kg verapamil or 100 mg/kg erythromycin alone or in combination (n = 6/group). Serial blood samples (0-6 h) were taken for determination of the drug concentrations using HPLC. Electrocardiograms were recorded (0-6 h) through subcutaneously inserted lead II. Binding of the drugs to plasma proteins was studied using spiked plasma. Verapamil prolonged PR but not QT interval. Erythromycin prolonged QT but not PR interval. The combination resulted in a significant increase in PR interval prolongation and AV node blocks but did not further prolong QT interval. Pharmacokinetics and protein binding of neither drug were altered by the other. Our rat data confirm the anecdotal human case reports that combination of erythromycin and verapamil can result in potentiation of the cardiovascular response. The interaction appears to be at the pharmacodynamic rather than pharmacokinetic level hence may be extrapolated to other calcium channel antagonists

  2. Herb-drug interactions.

    Science.gov (United States)

    Fugh-Berman, A

    2000-01-08

    Concurrent use of herbs may mimic, magnify, or oppose the effect of drugs. Plausible cases of herb-drug interactions include: bleeding when warfarin is combined with ginkgo (Ginkgo biloba), garlic (Allium sativum), dong quai (Angelica sinensis), or danshen (Salvia miltiorrhiza); mild serotonin syndrome in patients who mix St John's wort (Hypericum perforatum) with serotonin-reuptake inhibitors; decreased bioavailability of digoxin, theophylline, cyclosporin, and phenprocoumon when these drugs are combined with St John's wort; induction of mania in depressed patients who mix antidepressants and Panax ginseng; exacerbation of extrapyramidal effects with neuroleptic drugs and betel nut (Areca catechu); increased risk of hypertension when tricyclic antidepressants are combined with yohimbine (Pausinystalia yohimbe); potentiation of oral and topical corticosteroids by liquorice (Glycyrrhiza glabra); decreased blood concentrations of prednisolone when taken with the Chinese herbal product xaio chai hu tang (sho-salko-to); and decreased concentrations of phenytoin when combined with the Ayurvedic syrup shankhapushpi. Anthranoid-containing plants (including senna [Cassia senna] and cascara [Rhamnus purshiana]) and soluble fibres (including guar gum and psyllium) can decrease the absorption of drugs. Many reports of herb-drug interactions are sketchy and lack laboratory analysis of suspect preparations. Health-care practitioners should caution patients against mixing herbs and pharmaceutical drugs.

  3. Drug Interactions in Childhood Cancer

    Science.gov (United States)

    Haidar, Cyrine; Jeha, Sima

    2016-01-01

    Children with cancer are increasingly benefiting from novel therapeutic strategies and advances in supportive care, as reflected in improvements in both their survival and quality of life. However, the continuous emergence of new oncology drugs and supportive care agents has also increased the possibility of deleterious drug interactions and healthcare providers need to practice extreme caution when combining medications. In this review, we discuss the most common interactions of chemotherapeutic agents with supportive care drugs such as anticonvulsants, antiemetics, uric acid–lowering agents, acid suppressants, antimicrobials, and pain management medications in pediatric oncology patients. As chemotherapy agents interact not only with medications but also with foods and herbal supplements that patients receive during the course of their treatment, we also briefly review such interactions and provide recommendations to avoid unwanted and potentially fatal interactions in children with cancer. PMID:20869315

  4. Identification of polycystic ovary syndrome potential drug targets based on pathobiological similarity in the protein-protein interaction network

    Science.gov (United States)

    Li, Wan; Wei, Wenqing; Li, Yiran; Xie, Ruiqiang; Guo, Shanshan; Wang, Yahui; Jiang, Jing; Chen, Binbin; Lv, Junjie; Zhang, Nana; Chen, Lina; He, Weiming

    2016-01-01

    Polycystic ovary syndrome (PCOS) is one of the most common endocrinological disorders in reproductive aged women. PCOS and Type 2 Diabetes (T2D) are closely linked in multiple levels and possess high pathobiological similarity. Here, we put forward a new computational approach based on the pathobiological similarity to identify PCOS potential drug target modules (PPDT-Modules) and PCOS potential drug targets in the protein-protein interaction network (PPIN). From the systems level and biological background, 1 PPDT-Module and 22 PCOS potential drug targets were identified, 21 of which were verified by literatures to be associated with the pathogenesis of PCOS. 42 drugs targeting to 13 PCOS potential drug targets were investigated experimentally or clinically for PCOS. Evaluated by independent datasets, the whole PPDT-Module and 22 PCOS potential drug targets could not only reveal the drug response, but also distinguish the statuses between normal and disease. Our identified PPDT-Module and PCOS potential drug targets would shed light on the treatment of PCOS. And our approach would provide valuable insights to research on the pathogenesis and drug response of other diseases. PMID:27191267

  5. The potential drug-drug interaction between proton pump inhibitors and warfarin

    DEFF Research Database (Denmark)

    Henriksen, Daniel Pilsgaard; Stage, Tore Bjerregaard; Hansen, Morten Rix

    2015-01-01

    BACKGROUND: Proton pump inhibitors (PPIs) have been suggested to increase the effect of warfarin, and clinical guidelines recommend careful monitoring of international normalized ratio (INR) when initiating PPI among warfarin users. However, this drug-drug interaction is sparsely investigated...... in a clinical setting. The aim was to assess whether initiation of PPI treatment among users of warfarin leads to increased INR values. METHODS: The study was an observational self-controlled study from 1998 to 2012 leveraging data on INR measurements on patients treated with warfarin from primary care...... and outpatient clinics and their use of prescription drugs. Data were analyzed in 2015. We assessed INR, warfarin dose, and dose/INR ratio before and after initiating PPI treatment using the paired student's t-test. RESULTS: We identified 305 warfarin users initiating treatment with PPIs. The median age was 71...

  6. Food-drug interactions

    DEFF Research Database (Denmark)

    Schmidt, Lars E; Dalhoff, Kim

    2002-01-01

    Interactions between food and drugs may inadvertently reduce or increase the drug effect. The majority of clinically relevant food-drug interactions are caused by food-induced changes in the bioavailability of the drug. Since the bioavailability and clinical effect of most drugs are correlated......, the bioavailability is an important pharmacokinetic effect parameter. However, in order to evaluate the clinical relevance of a food-drug interaction, the impact of food intake on the clinical effect of the drug has to be quantified as well. As a result of quality review in healthcare systems, healthcare providers...... are increasingly required to develop methods for identifying and preventing adverse food-drug interactions. In this review of original literature, we have tried to provide both pharmacokinetic and clinical effect parameters of clinically relevant food-drug interactions. The most important interactions are those...

  7. Deep-Learning-Based Drug-Target Interaction Prediction.

    Science.gov (United States)

    Wen, Ming; Zhang, Zhimin; Niu, Shaoyu; Sha, Haozhi; Yang, Ruihan; Yun, Yonghuan; Lu, Hongmei

    2017-04-07

    Identifying interactions between known drugs and targets is a major challenge in drug repositioning. In silico prediction of drug-target interaction (DTI) can speed up the expensive and time-consuming experimental work by providing the most potent DTIs. In silico prediction of DTI can also provide insights about the potential drug-drug interaction and promote the exploration of drug side effects. Traditionally, the performance of DTI prediction depends heavily on the descriptors used to represent the drugs and the target proteins. In this paper, to accurately predict new DTIs between approved drugs and targets without separating the targets into different classes, we developed a deep-learning-based algorithmic framework named DeepDTIs. It first abstracts representations from raw input descriptors using unsupervised pretraining and then applies known label pairs of interaction to build a classification model. Compared with other methods, it is found that DeepDTIs reaches or outperforms other state-of-the-art methods. The DeepDTIs can be further used to predict whether a new drug targets to some existing targets or whether a new target interacts with some existing drugs.

  8. Cumulative organic anion transporter-mediated drug-drug interaction potential of multiple components in salvia miltiorrhiza (danshen) preparations.

    Science.gov (United States)

    Wang, Li; Venitz, Jürgen; Sweet, Douglas H

    2014-12-01

    To evaluate organic anion transporter-mediated drug-drug interaction (DDI) potential for individual active components of Danshen (Salvia miltiorrhiza) vs. combinations using in vitro and in silico approaches. Inhibition profiles for single Danshen components and combinations were generated in stably-expressing human (h)OAT1 and hOAT3 cells. Plasma concentration-time profiles for compounds were estimated from in vivo human data using an i.v. two-compartment model (with first-order elimination). The cumulative DDI index was proposed as an indicator of DDI potential for combination products. This index was used to evaluate the DDI potential for Danshen injectables from 16 different manufacturers and 14 different lots from a single manufacturer. The cumulative DDI index predicted in vivo inhibition potentials, 82% (hOAT1) and 74% (hOAT3), comparable with those observed in vitro, 72 ± 7% (hOAT1) and 81 ± 10% (hOAT3), for Danshen component combinations. Using simulated unbound Cmax values, a wide range in cumulative DDI index between manufacturers, and between lots, was predicted. Many products exhibited a cumulative DDI index > 1 (50% inhibition). Danshen injectables will likely exhibit strong potential to inhibit hOAT1 and hOAT3 function in vivo. The proposed cumulative DDI index might improve prediction of DDI potential of herbal medicines or pharmaceutical preparations containing multiple components.

  9. Evaluation of drug interaction microcomputer software: Dambro's Drug Interactions.

    Science.gov (United States)

    Poirier, T I; Giudici, R A

    1990-01-01

    Dambro's Drug Interactions was evaluated using general and specific criteria. The installation process, ease of learning and use were rated excellent. The user documentation and quality of the technical support were good. The scope of coverage, clinical documentation, frequency of updates, and overall clinical performance were fair. The primary advantages of the program are the quick searching and detection of drug interactions, and the attempt to provide useful interaction data, i.e., significance and reference. The disadvantages are the lack of current drug interaction information, outdated references, lack of evaluative drug interaction information, and the inability to save or print patient profiles. The program is not a good value for the pharmacist but has limited use as a quick screening tool.

  10. Drug interactions in African herbal remedies.

    Science.gov (United States)

    Cordier, Werner; Steenkamp, Vanessa

    2011-01-01

    Herbal usage remains popular as an alternative or complementary form of treatment, especially in Africa. However, the misconception that herbal remedies are safe due to their "natural" origins jeopardizes human safety, as many different interactions can occur with concomitant use with other pharmaceuticals on top of potential inherent toxicity. Cytochrome P450 enzymes are highly polymorphic, and pose a problem for pharmaceutical drug tailoring to meet an individual's specific metabolic activity. The influence of herbal remedies further complicates this. The plants included in this review have been mainly researched for determining their effect on cytochrome P450 enzymes and P-glycoprotein drug transporters. Usage of herbal remedies, such as Hypoxis hemerocallidea, Sutherlandia frutescens and Harpagophytum procumbensis popular in Africa. The literature suggests that there is a potential for drug-herb interactions, which could occur through alterations in metabolism and transportation of drugs. Research has primarily been conducted in vitro, whereas in vivo data are lacking. Research concerning the effect of African herbals on drug metabolism should also be approached, as specific plants are especially popular in conjunction with certain treatments. Although these interactions can be beneficial, the harm they pose is just as great.

  11. Common drug-drug interactions in antifungal treatments for superficial fungal infections.

    Science.gov (United States)

    Gupta, Aditya K; Versteeg, Sarah G; Shear, Neil H

    2018-04-01

    Antifungal agents can be co-administered alongside several other medications for a variety of reasons such as the presence of comorbidities. Pharmacodynamic interactions such as synergistic and antagonistic interactions could be the result of co-administered medications. Pharmacokinetic interactions could also transpire through the inhibition of metabolizing enzymes and drug transport systems, altering the absorption, metabolism and excretion of co-administered medications. Both pharmacodynamic and pharmacokinetic interactions can result in hospitalization due to serious adverse effects associated with antifungal agents, lower therapeutic doses required to achieve desired antifungal activity, and prevent antifungal resistance. Areas covered: The objective of this review is to summarize pharmacodynamic and pharmacokinetic interactions associated with common antifungal agents used to treat superficial fungal infections. Pharmacodynamic and pharmacokinetic interactions that impact the therapeutic effects of antifungal agents and drugs that are influenced by the presence of antifungal agents was the context to which these antifungal agents were addressed. Expert opinion: The potential for drug-drug interactions is minimal for topical antifungals as opposed to oral antifungals as they have minimal exposure to other co-administered medications. Developing non-lipophilic antifungals that have unique metabolizing pathways and are topical applied are suggested properties that could help limit drug-drug interactions associated with future treatments.

  12. [Drug-Drug Interactions with Consideration of Pharmacogenetics].

    Science.gov (United States)

    Ozawa, Shogo

    2018-01-01

     Elderly patients often suffer from a variety of diseases and therefore may be prescribed several kinds of drugs. Interactions between these drugs may cause problems in some patients. Guidelines for drug interactions were released on July 8, 2014 "Drug Interaction Guideline for Drug Development and Labeling Recommendations (Final Draft)". These guidelines include the theoretical basis for evaluating the mechanisms of drug interaction, the possible extent of drug interactions, and take into consideration special populations (e.g., infants, children, elderly patients, patients with hepatic or renal dysfunction, and subjects with minor deficient alleles for drug metabolizing enzymes and drug transporters). In this symposium article, I discuss this last special population: altered drug metabolism and drug interactions in subjects with minor alleles of genes encoding deficient drug metabolizing enzymes. I further discuss a drug label for eliglustat (Cerdelga) with instructions for patients with ultra-rapid, extensive, intermediate, and poor metabolizer phenotypes that arise from different CYP2D6 gene alleles.

  13. Analysis of Potential Drug-Drug Interactions and Its Clinical Manifestation of Pediatric Prescription on 2 Pharmacies in Bandung

    Directory of Open Access Journals (Sweden)

    Melisa I. Barliana

    2013-09-01

    Full Text Available The potential of Drug-Drug Interactions (DDI in prescription have high incidence around the world, including Indonesia. However, scientific evidence regarding DDI in Indonesia is not available. Therefore, in this study we have conducted survey in 2 pharmacies in Bandung against pediatric prescription given by pediatrician. These prescriptions then analyzed the potential for DDI contained in the prescription and clinical manifestation. The analysis showed that in pharmacy A, there are 33 prescriptions (from a total of 155 prescriptions that have potential DDI, or approximately 21.19% (2 prescriptions have the potential DDI major categories, 23 prescriptions categorized as moderate, and 8 prescriptions as minor. In Pharmacy B, there are 6 prescriptions (from a total of 40 prescriptions or 15% of potential DDI (4 prescriptions categorized as moderate and 2 prescriptions as minor. This result showed that potential DDI happened less than 50% in pediatric prescription from both pharmacies. However, this should get attention because DDI should not happen in a prescription considering its clinical manifestations caused by DDI. Moreover, current pharmaceutical care refers to patient oriented than product oriented. In addition, further study for the pediatric prescription on DDI incidence in large scale need to be investigated.

  14. Drug Interaction API

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Interaction API is a web service for accessing drug-drug interactions. No license is needed to use the Interaction API. Currently, the API uses DrugBank for its...

  15. Identification of polycystic ovary syndrome potential drug targets based on pathobiological similarity in the protein-protein interaction network

    OpenAIRE

    Huang, Hao; He, Yuehan; Li, Wan; Wei, Wenqing; Li, Yiran; Xie, Ruiqiang; Guo, Shanshan; Wang, Yahui; Jiang, Jing; Chen, Binbin; Lv, Junjie; Zhang, Nana; Chen, Lina; He, Weiming

    2016-01-01

    Polycystic ovary syndrome (PCOS) is one of the most common endocrinological disorders in reproductive aged women. PCOS and Type 2 Diabetes (T2D) are closely linked in multiple levels and possess high pathobiological similarity. Here, we put forward a new computational approach based on the pathobiological similarity to identify PCOS potential drug target modules (PPDT-Modules) and PCOS potential drug targets in the protein-protein interaction network (PPIN). From the systems level and biologi...

  16. [Drug interactions in chronic prescription].

    Science.gov (United States)

    Comet, D; Casajuana, J; Bordas, J M; Fuentes, M A; Arnáiz, J A; Núñez, B; Pou, R

    1997-06-30

    Application of computerized program for detection of potential drug interactions (PDI) in chronic prescriptions in four primary care centers. To evaluate the clinical significance of PDI identified according to clinical criterions. An observational crossover study. Clutat Vella health district (City of Barcelona). Using information of Consejo General de Colegios Oficiales de Farmaceuticos databases and the chronic prescriptions database of the primary care centers, computerized drug-interaction system have been developed for detection of PDI in patients. A panel of primary care physicians and clinical pharmacists developed criteria that were used to evaluate the clinical significance of PDI. 9840 Cards of Authorized Prescription (CAP) were analyzed, 36108 medicaments and 42877 drugs. A total of 2140 patients were involved for a total of 3406 PDI, 21.75% of patients with CAP. Clinical signification for the panel was found in 40.07% of these 3406 PIF; 3.78% were suggest to avoid the association drugs. The incidence of PDI with clinical signification are lower than other studies of the literature; it suggest a appropriate knowledge of drug prescription. The application of computerized program make much more easy the detection of adverse drug interactions in chronic prescription.

  17. MONITORING POTENTIAL DRUG INTERACTIONS AND REACTIONS VIA NETWORK ANALYSIS OF INSTAGRAM USER TIMELINES.

    Science.gov (United States)

    Correia, Rion Brattig; Li, Lang; Rocha, Luis M

    2016-01-01

    Much recent research aims to identify evidence for Drug-Drug Interactions (DDI) and Adverse Drug reactions (ADR) from the biomedical scientific literature. In addition to this "Bibliome", the universe of social media provides a very promising source of large-scale data that can help identify DDI and ADR in ways that have not been hitherto possible. Given the large number of users, analysis of social media data may be useful to identify under-reported, population-level pathology associated with DDI, thus further contributing to improvements in population health. Moreover, tapping into this data allows us to infer drug interactions with natural products-including cannabis-which constitute an array of DDI very poorly explored by biomedical research thus far. Our goal is to determine the potential of Instagram for public health monitoring and surveillance for DDI, ADR, and behavioral pathology at large. Most social media analysis focuses on Twitter and Facebook, but Instagram is an increasingly important platform, especially among teens, with unrestricted access of public posts, high availability of posts with geolocation coordinates, and images to supplement textual analysis. Using drug, symptom, and natural product dictionaries for identification of the various types of DDI and ADR evidence, we have collected close to 7000 user timelines spanning from October 2010 to June 2015.We report on 1) the development of a monitoring tool to easily observe user-level timelines associated with drug and symptom terms of interest, and 2) population-level behavior via the analysis of co-occurrence networks computed from user timelines at three different scales: monthly, weekly, and daily occurrences. Analysis of these networks further reveals 3) drug and symptom direct and indirect associations with greater support in user timelines, as well as 4) clusters of symptoms and drugs revealed by the collective behavior of the observed population. This demonstrates that Instagram

  18. The drug-minded protein interaction database (DrumPID) for efficient target analysis and drug development.

    Science.gov (United States)

    Kunz, Meik; Liang, Chunguang; Nilla, Santosh; Cecil, Alexander; Dandekar, Thomas

    2016-01-01

    The drug-minded protein interaction database (DrumPID) has been designed to provide fast, tailored information on drugs and their protein networks including indications, protein targets and side-targets. Starting queries include compound, target and protein interactions and organism-specific protein families. Furthermore, drug name, chemical structures and their SMILES notation, affected proteins (potential drug targets), organisms as well as diseases can be queried including various combinations and refinement of searches. Drugs and protein interactions are analyzed in detail with reference to protein structures and catalytic domains, related compound structures as well as potential targets in other organisms. DrumPID considers drug functionality, compound similarity, target structure, interactome analysis and organismic range for a compound, useful for drug development, predicting drug side-effects and structure-activity relationships.Database URL:http://drumpid.bioapps.biozentrum.uni-wuerzburg.de. © The Author(s) 2016. Published by Oxford University Press.

  19. [Pharmacokinetic interactions of telaprevir with other drugs].

    Science.gov (United States)

    Berenguer Berenguer, Juan; González-García, Juan

    2013-07-01

    Telaprevir is a new direct-acting antiviral drug for the treatment of hepatitis C virus (HCV) infection and is both a substrate and an inhibitor of cytochrome P450 (CYP450) isoenzymes. With the introduction of this new drug, assessment of drug-drug interactions has become a key factor in the evaluation of patients under treatment for HCV infection. During the treatment of this infection, many patients require other drugs to mitigate the adverse effects of anti-HCV drugs and to control other comorbidities. Moreover, most patients coinfected with HIV and HCV require antiretroviral therapy during treatment for HCV. Physicians should therefore be familiar with the pharmacokinetic properties of direct-acting antivirals for HCV treatment and their potential drug-drug interactions. The present article reviews the available information to date on the interactions of telaprevir with other drugs and provides recommendations for daily clinical practice. Copyright © 2013 Elsevier España, S.L. All rights reserved.

  20. Hydrophilic interaction chromatography with a focus on the drug-phosphate interaction in drug screening to determine the phospholipidosis induction risk.

    Science.gov (United States)

    Okamoto, Haruka; Hamaguchi, Ryohei; Kuroda, Yukihiro

    2017-04-15

    Cationic amphiphilic drugs (CADs) can induce the hyperaccumulation of phospholipids in cells and tissues. This side effect, which is known as drug-induced phospholipidosis, is sometimes problematic in the development and clinical use of CADs. It is known that CADs generally interact with phospholipids via both hydrophobic and acid-base interactions, and CADs with the larger affinity to phospholipid exhibit the larger induction risk. To develop a chromatographic assay system to predict the phospholipidosis-inducing potential with considering the acid-base interaction between CAD and phosphate group of phospholipid, hydrophilic interaction chromatographic (HILIC) methods were tested in this study. First, a PC HILIC column with phosphocholine groups on a packed material was used. The acid-base or other hydrophilic interactions to the stationary phase differed among basic drugs, and retention to the PC HILIC column did not accurately reflect the induction potential of phospholipidosis. As an alternative HILIC approach, the elution of CADs with the phosphate buffer from an amide column was tested. The elution effect, which is expressed as ratio of retention factors between different phosphate content in the mobile phase, closely correlated with the induction potential. Using the elution effect and retention factor to a reversed-phase HPLC column, the phospholipidosis-inducing drugs were clearly discriminated from the non-inducers. These results suggest that the proposed chromatographic approach can screen phospholipidosis-inducing drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Maximum flow approach to prioritize potential drug targets of Mycobacterium tuberculosis H37Rv from protein-protein interaction network.

    Science.gov (United States)

    Melak, Tilahun; Gakkhar, Sunita

    2015-12-01

    In spite of the implementations of several strategies, tuberculosis (TB) is overwhelmingly a serious global public health problem causing millions of infections and deaths every year. This is mainly due to the emergence of drug-resistance varieties of TB. The current treatment strategies for the drug-resistance TB are of longer duration, more expensive and have side effects. This highlights the importance of identification and prioritization of targets for new drugs. This study has been carried out to prioritize potential drug targets of Mycobacterium tuberculosis H37Rv based on their flow to resistance genes. The weighted proteome interaction network of the pathogen was constructed using a dataset from STRING database. Only a subset of the dataset with interactions that have a combined score value ≥770 was considered. Maximum flow approach has been used to prioritize potential drug targets. The potential drug targets were obtained through comparative genome and network centrality analysis. The curated set of resistance genes was retrieved from literatures. Detail literature review and additional assessment of the method were also carried out for validation. A list of 537 proteins which are essential to the pathogen and non-homologous with human was obtained from the comparative genome analysis. Through network centrality measures, 131 of them were found within the close neighborhood of the centre of gravity of the proteome network. These proteins were further prioritized based on their maximum flow value to resistance genes and they are proposed as reliable drug targets of the pathogen. Proteins which interact with the host were also identified in order to understand the infection mechanism. Potential drug targets of Mycobacterium tuberculosis H37Rv were successfully prioritized based on their flow to resistance genes of existing drugs which is believed to increase the druggability of the targets since inhibition of a protein that has a maximum flow to

  2. Clinical relevance of cimetidine drug interactions.

    Science.gov (United States)

    Shinn, A F

    1992-01-01

    The excellent efficacy and tolerability profiles of H2-antagonists have established these agents as the leading class of antiulcer drugs. Attention has been focused on drug interactions with H2-antagonists as a means of product differentiation and because many patients are receiving multiple drug therapy. The main mechanism of most drug interactions involving cimetidine appears to be inhibition of the hepatic microsomal enzyme cytochrome P450, an effect which may be related to the different structures of H2-antagonists. Ranitidine appears to have less affinity than cimetidine for this system. There have been many published case reports and studies of drug interactions with cimetidine, but many of these have provided pharmacokinetic data only, with little information concerning the clinical significance of these findings. Nevertheless, the coadministration of cimetidine with drugs that have a narrow therapeutic margin (such as theophylline) may potentially result in clinically significant adverse effects. The monitoring of serum concentrations of drugs coadministered with cimetidine may reduce the risk of adverse events but does not abolish the problem. However, for most patients, concomitant administration of cimetidine with drugs possessing a wide therapeutic margin is unlikely to pose a significant problem.

  3. 6-mercaptopurine and daunorubicin double drug liposomes-preparation, drug-drug interaction and characterization.

    Science.gov (United States)

    Agrawal, Vineet; Paul, Manash K; Mukhopadhyay, Anup K

    2005-01-01

    This article addresses and investigates the dual incorporation of daunorubicin (DR) and 6-mercaptopurine (6-MP) in liposomes for better chemotherapy. These drugs are potential candidates for interaction due to the quinone (H acceptor) and hydroxyl (H donor) groups on DR and 6-MP, respectively. Interactions between the two drugs in solution were monitored by UV/Vis and fluorescence spectroscopy. Interaction between the two drugs inside the liposomes was evaluated by HPLC (for 6-MP) and by fluorescence spectroscopy (for daunorubicin) after phospholipase-mediated liposome lysis. Our results provide evidence for the lack of interaction between the two drugs in solution and in liposomes. The entrapment efficiencies of 6-MP in the neutral Phosphatidyl choline (PC):Cholesterol (Chol):: 2:1 and anionic PC:Chol:Cardiolipin (CL) :: 4:5:1 single and double drug liposomes were found to be 0.4% and 1.5% (on average), respectively. The entrapment efficiencies of DR in the neutral and anionic double drug liposomes were found to be 55% and 31%, respectively. The corresponding entrapment of daunorubicin in the single drug liposomes was found to be 62% on average. Our thin layer chromatography (TLC) and transmission electron microscopy (TEM) results suggest stability of lipid and liposomes, thus pointing plausible existence of double drug liposomes. Cytotoxicity experiments were performed by using both single drug and double drug liposomes. By comparing the results of phase contrast and fluorescence microscopy, it was observed that the double drug liposomes were internalized in the jurkat and Hut78 (highly resistant cell line) leukemia cells as viewed by the fluorescence of daunorubicin. The cytotoxicity was dose dependent and had shown a synergistic effect when double drug liposome was used.

  4. MONITORING POTENTIAL DRUG INTERACTIONS AND REACTIONS VIA NETWORK ANALYSIS OF INSTAGRAM USER TIMELINES

    Science.gov (United States)

    CORREIA, RION BRATTIG; LI, LANG; ROCHA, LUIS M.

    2015-01-01

    Much recent research aims to identify evidence for Drug-Drug Interactions (DDI) and Adverse Drug reactions (ADR) from the biomedical scientific literature. In addition to this “Bibliome”, the universe of social media provides a very promising source of large-scale data that can help identify DDI and ADR in ways that have not been hitherto possible. Given the large number of users, analysis of social media data may be useful to identify under-reported, population-level pathology associated with DDI, thus further contributing to improvements in population health. Moreover, tapping into this data allows us to infer drug interactions with natural products—including cannabis—which constitute an array of DDI very poorly explored by biomedical research thus far. Our goal is to determine the potential of Instagram for public health monitoring and surveillance for DDI, ADR, and behavioral pathology at large. Most social media analysis focuses on Twitter and Facebook, but Instagram is an increasingly important platform, especially among teens, with unrestricted access of public posts, high availability of posts with geolocation coordinates, and images to supplement textual analysis. Using drug, symptom, and natural product dictionaries for identification of the various types of DDI and ADR evidence, we have collected close to 7000 user timelines spanning from October 2010 to June 2015. We report on 1) the development of a monitoring tool to easily observe user-level timelines associated with drug and symptom terms of interest, and 2) population-level behavior via the analysis of co-occurrence networks computed from user timelines at three different scales: monthly, weekly, and daily occurrences. Analysis of these networks further reveals 3) drug and symptom direct and indirect associations with greater support in user timelines, as well as 4) clusters of symptoms and drugs revealed by the collective behavior of the observed population. This demonstrates that

  5. DRUG INTERACTIONS WITH DIAZEPAM

    Directory of Open Access Journals (Sweden)

    Zoran Bojanić

    2011-06-01

    Full Text Available Diazepam is a benzodiazepine derivative with anxyolitic, anticonvulsant, hypnotic, sedative, skeletal muscle relaxant, antitremor, and amnestic activity. It is metabolized in the liver by the cytochrome P (CYP 450 enzyme system. Diazepam is N-demethylated by CYP3A4 and CYP2C19 to the active metabolite N-desmethyldiazepam, and is hydroxylated by CYP3A4 to the active metabolite temazepam. N-desmethyl-diazepam and temazepam are both further metabolized to oxazepam. Concomitant intake of inhibitors or inducers of the CYP isozymes involved in the biotransformation of diazepam may alter plasma concentrations of this drug, although this effect is unlikely to be associated with clinically relevant interactions.The goal of this article was to review the current literature on clinically relevant pharmacokinetic drug interactions with diazepam.A search of MEDLINE and EMBASE was conducted for original research and review articles published in English between January 1971. and May 2011. Among the search terms were drug interactions, diazepam, pharmacokinetics, drug metabolism, and cytochrome P450. Only articles published in peer-reviewed journals were included, and meeting abstracts were excluded. The reference lists of relevant articles were hand-searched for additional publications.Diazepam is substantially sorbed by the plastics in flexible containers, volume control set chambers, and tubings of intravenous administration sets. Manufacturers recommend not mixing with any other drug or solution in syringe or solution, although diazepam is compatible in syringe with cimetidine and ranitidine, and in Y-site with cisatracurium, dobutamine, fentanyl, hydromorphone, methadone, morphine, nafcillin, quinidine gluconate, remifentanil, and sufentanil. Diazepam is compatible with: dextrose 5% in water, Ringers injection, Ringers injection lactated and sodium chloride 0.9%. Emulsified diazepam is compatible with Intralipid and Nutralipid.Diazepam has low potential

  6. Potential drug-drug interactions in a Brazilian teaching hospital: age-related differences?

    Directory of Open Access Journals (Sweden)

    Daniela Oliveira Melo

    2016-07-01

    Full Text Available This study proposes to measure frequency and to characterize the profile of potential drug interactions (pDDI in a general medicine ward of a teaching hospital. Data about identification and clinical status of patients were extracted from medical records between March to August 2006. The occurrence of pDDI was analyzed using the database monographs Micromedex® DrugReax® System. From 5,336 prescriptions with two or more drugs, 3,097 (58.0% contained pDDI. The frequency of major and well document pDDI was 26.5%. Among 647 patients, 432 (66.8% were exposed to at least one pDDI and 283 (43.7% to major pDDI. The multivariate analysis identified that factors related to higher rates of major pDDI were the same age (p< 0.0001, length of stay (p< 0.0001, prevalence of hypertension [OR=3.42 (p< 0.0001] and diabetes mellitus [OR=2.1 (p< 0.0001], cardiovascular diseases (p< 0.0001 and the number of prescribed drugs (Spearman’s correlation=0.640622, p< 0.0001. Between major pDDI, the main risk was hemorrhage (50.3%, the most frequent major pDDI involved combination of anticoagulants and antiplatelet drugs. Among moderate pDDI, 3,866 (90.8% involved medicines for the treatment of chronic non-communicable diseases, mainly hypertension. In HU-USP, the profile of pDDI was similar among adults and elderly (the most frequent pDDI and major pDDI were same, the difference was only the frequency in either group. The efforts of the clinical pharmacists should be directed to elderly patients with cardiovascular compromise, mainly in use of anticoagulants and antiplatelet drugs. Furthermore, hospital managers should increase the integration between levels of health care to promote safety patient after discharge.Keywords: Drug interactions. Aged. Internal Medicine. Hospitals, University. RESUMOInterações medicamentosas potenciais em um hospital escolar brasileiro: diferenças relacionadas à idade?O estudo tem por objetivo descrever o perfil de intera

  7. Pharmacogenomic study using bio- and nanobioelectrochemistry: Drug-DNA interaction.

    Science.gov (United States)

    Hasanzadeh, Mohammad; Shadjou, Nasrin

    2016-04-01

    Small molecules that bind genomic DNA have proven that they can be effective anticancer, antibiotic and antiviral therapeutic agents that affect the well-being of millions of people worldwide. Drug-DNA interaction affects DNA replication and division; causes strand breaks, and mutations. Therefore, the investigation of drug-DNA interaction is needed to understand the mechanism of drug action as well as in designing DNA-targeted drugs. On the other hand, the interaction between DNA and drugs can cause chemical and conformational modifications and, thus, variation of the electrochemical properties of nucleobases. For this purpose, electrochemical methods/biosensors can be used toward detection of drug-DNA interactions. The present paper reviews the drug-DNA interactions, their types and applications of electrochemical techniques used to study interactions between DNA and drugs or small ligand molecules that are potentially of pharmaceutical interest. The results are used to determine drug binding sites and sequence preference, as well as conformational changes due to drug-DNA interactions. Also, the intention of this review is to give an overview of the present state of the drug-DNA interaction cognition. The applications of electrochemical techniques for investigation of drug-DNA interaction were reviewed and we have discussed the type of qualitative or quantitative information that can be obtained from the use of each technique. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Exploring drug-target interaction networks of illicit drugs.

    Science.gov (United States)

    Atreya, Ravi V; Sun, Jingchun; Zhao, Zhongming

    2013-01-01

    Drug addiction is a complex and chronic mental disease, which places a large burden on the American healthcare system due to its negative effects on patients and their families. Recently, network pharmacology is emerging as a promising approach to drug discovery by integrating network biology and polypharmacology, allowing for a deeper understanding of molecular mechanisms of drug actions at the systems level. This study seeks to apply this approach for investigation of illicit drugs and their targets in order to elucidate their interaction patterns and potential secondary drugs that can aid future research and clinical care. In this study, we extracted 188 illicit substances and their related information from the DrugBank database. The data process revealed 86 illicit drugs targeting a total of 73 unique human genes, which forms an illicit drug-target network. Compared to the full drug-target network from DrugBank, illicit drugs and their target genes tend to cluster together and form four subnetworks, corresponding to four major medication categories: depressants, stimulants, analgesics, and steroids. External analysis of Anatomical Therapeutic Chemical (ATC) second sublevel classifications confirmed that the illicit drugs have neurological functions or act via mechanisms of stimulants, opioids, and steroids. To further explore other drugs potentially having associations with illicit drugs, we constructed an illicit-extended drug-target network by adding the drugs that have the same target(s) as illicit drugs to the illicit drug-target network. After analyzing the degree and betweenness of the network, we identified hubs and bridge nodes, which might play important roles in the development and treatment of drug addiction. Among them, 49 non-illicit drugs might have potential to be used to treat addiction or have addictive effects, including some results that are supported by previous studies. This study presents the first systematic review of the network

  9. Relationship between drug interactions and drug-related negative clinical outcomes in two community pharmacies

    Directory of Open Access Journals (Sweden)

    Gonzalo M

    2009-03-01

    Full Text Available Drug interactions may represent an iatrogenic risk that should be controlled in community pharmacies at the dispensing level. Aim: We analyzed the association between potential drug-drug interactions (DDIs and negative clinical outcomes.Methods: We used dispensing data from two community pharmacies: instances where drug dispensing was associated with a potential DDI and a comparison group of randomized dispensing operations with no potential DDI. In cases where potential DDIs were detected, we analyzed the underlying negative clinical outcomes. Age and gender data were included in the analysis.Results: During the study period, we registered 417 potential DDIs. The proportion of women and age were higher in the study group than in the comparison group. The average potential DDIs per patient was 1.31 (SD=0.72. The Consejo General de Colegios Oficiales de Farmacéuticos (CGCOF database did not produce an alert in 2.4% of the cases. Over-the-counter medication use was observed in 5% of the potential DDI cases. The drugs most frequently involved in potential DDIs were acenocoumarol, calcium salts, hydrochlorothiazide, and alendronic acid, whereas the most predominant potential DDIs were calcium salts and bisphosphonates, oral antidiabetics and thiazide diuretics, antidiabetics and glucose, and oral anticoagulant and paracetamol. The existence of a drug-related negative clinical outcome was observed only in 0.96% of the potential DDI cases (50% safety cases and 50% effectiveness cases. Conclusions: Only a small proportion of the detected potential DDIs lead to medication negative outcomes. Considering the drug-related negative clinical outcomes encountered, tighter control would be recommended in potential DDIs with NSAIDs or benzodiazepines.

  10. Venetoclax (ABT-199) Might Act as a Perpetrator in Pharmacokinetic Drug-Drug Interactions.

    Science.gov (United States)

    Weiss, Johanna; Gajek, Thomas; Köhler, Bruno Christian; Haefeli, Walter Emil

    2016-02-24

    Venetoclax (ABT-199) represents a specific B-cell lymphoma 2 (Bcl-2) inhibitor that is currently under development for the treatment of lymphoid malignancies. So far, there is no published information on its interaction potential with important drug metabolizing enzymes and drug transporters, or its efficacy in multidrug resistant (MDR) cells. We therefore scrutinized its drug-drug interaction potential in vitro. Inhibition of cytochrome P450 enzymes (CYPs) was quantified by commercial kits. Inhibition of drug transporters (P-glycoprotein (P-gp, ABCB1), breast cancer resistance protein (BCRP), and organic anion transporting polypeptides (OATPs)) was evaluated by the use of fluorescent probe substrates. Induction of drug transporters and drug metabolizing enzymes was quantified by real-time RT-PCR. The efficacy of venetoclax in MDR cells lines was evaluated with proliferation assays. Venetoclax moderately inhibited P-gp, BCRP, OATP1B1, OATP1B3, CYP3A4, and CYP2C19, whereas CYP2B6 activity was increased. Venetoclax induced the mRNA expression of CYP1A1, CYP1A2, UGT1A3, and UGT1A9. In contrast, expression of ABCB1 was suppressed, which might revert tumor resistance towards antineoplastic P-gp substrates. P-gp over-expression led to reduced antiproliferative effects of venetoclax. Effective concentrations for inhibition and induction lay in the range of maximum plasma concentrations of venetoclax, indicating that it might act as a perpetrator drug in pharmacokinetic drug-drug interactions.

  11. Vitamin E-drug interactions: molecular basis and clinical relevance.

    Science.gov (United States)

    Podszun, Maren; Frank, Jan

    2014-12-01

    Vitamin E (α-, β-, γ- and δ-tocopherol and -tocotrienol) is an essential factor in the human diet and regularly taken as a dietary supplement by many people, who act under the assumption that it may be good for their health and can do no harm. With the publication of meta-analyses reporting increased mortality in persons taking vitamin E supplements, the safety of the micronutrient was questioned and interactions with prescription drugs were suggested as one potentially underlying mechanism. Here, we review the evidence in the scientific literature for adverse vitamin E-drug interactions and discuss the potential of each of the eight vitamin E congeners to alter the activity of drugs. In summary, there is no evidence from animal models or randomised controlled human trials to suggest that the intake of tocopherols and tocotrienols at nutritionally relevant doses may cause adverse nutrient-drug interactions. Consumption of high-dose vitamin E supplements ( ≥  300 mg/d), however, may lead to interactions with the drugs aspirin, warfarin, tamoxifen and cyclosporine A that may alter their activities. For the majority of drugs, however, interactions with vitamin E, even at high doses, have not been observed and are thus unlikely.

  12. Extent of poly-pharmacy, occurrence and associated factors of drug-drug interaction and potential adverse drug reactions in Gondar Teaching Referral Hospital, North West Ethiopia

    Directory of Open Access Journals (Sweden)

    Endalkachew Admassie

    2013-01-01

    Full Text Available The aim of this study was to assess the extent of poly-pharmacy, occurrence, and associated factors for the occurrence of drug-drug interaction (DDI and potential adverse drug reaction (ADR in Gondar University Teaching Referral Hospital. Institutional-based retrospective cross-sectional study. This study was conducted on prescriptions of both in and out-patients for a period of 3 months at Gondar University Hospital. Both bivariate analysis and multivariate logistic regression were used to identify risk factors for the occurrence of DDI and possible ADRs. All the statistical calculations were performed using SPSS; software. A total of 12,334 prescriptions were dispensed during the study period of which, 2,180 prescriptions were containing two or more drugs per prescription. A total of 21,210 drugs were prescribed and the average number of drugs per prescription was 1.72. Occurrences of DDI of all categories (Major, Moderate, and Minor were analyzed and DDI were detected in 711 (32.6% prescriptions. Sex was not found to be a risk factor for the occurrence of DDI and ADR, while age and number of medications per prescription were found to be significant risk factors for the occurrence of DDI and ADR. The mean number of drugs per prescription was 1.72 and hence with regard to the WHO limit of drugs per prescription, Gondar hospital was able to maintain the limit and prescriptions containing multiple drugs supposed to be taken systemically. Numbers of drugs per prescription as well as older age were found to be predisposing factors for the occurrence of DDI and potential ADRs while sex was not a risk factor.

  13. Drug interactions evaluation: An integrated part of risk assessment of therapeutics

    International Nuclear Information System (INIS)

    Zhang, Lei; Reynolds, Kellie S.; Zhao, Ping; Huang, Shiew-Mei

    2010-01-01

    Pharmacokinetic drug interactions can lead to serious adverse events or decreased drug efficacy. The evaluation of a new molecular entity's (NME's) drug-drug interaction potential is an integral part of risk assessment during drug development and regulatory review. Alteration of activities of enzymes or transporters involved in the absorption, distribution, metabolism, or excretion of a new molecular entity by concomitant drugs may alter drug exposure, which can impact response (safety or efficacy). The recent Food and Drug Administration (FDA) draft drug interaction guidance ( (http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm072101.pdf)) highlights the methodologies and criteria that may be used to guide drug interaction evaluation by industry and regulatory agencies and to construct informative labeling for health practitioner and patients. In addition, the Food and Drug Administration established a 'Drug Development and Drug Interactions' website to provide up-to-date information regarding evaluation of drug interactions ( (http://www.fda.gov/Drugs/DevelopmentApprovalProcess/DevelopmentResources/DrugInteractionsLabeling/ucm080499.htm)). This review summarizes key elements in the FDA drug interaction guidance and new scientific developments that can guide the evaluation of drug-drug interactions during the drug development process.

  14. Prevalência de potenciais interações medicamentosas droga-droga em unidades de terapia intensiva Potential drug interactions prevalence in intensive care units

    Directory of Open Access Journals (Sweden)

    Jean André Hammes

    2008-12-01

    presence of another drug. They are usually unpredictable and undesirable. A study was conducted to verify the prevalence and clinical value of potential drug interactions in intensive care units METHODS: All patients, of three intensive care units were included in a cross-sectional study, over a period of two months. Patients with less than a 2 days length of stay were excluded. Data were collected from twenty-four hour prescriptions and all possible paired combinations drug-drug were recorded. Prevalence and clinical value (significance were checked at the end of follow-up. RESULTS: One hundred and forty patients were analyzed, 67.1% presented with some significant potential drug interactions and of the 1069 prescriptions, 39.2% disclosed the same potential. Of 188 different potential drug interactions, 29 were considered highly significant. Univariate analysis showed that in the group with significant potential drug interactions a higher number of different drugs, drugs/day had been used, there were more prescribing physicians and extended stay in intensive care units. Adjusted to the multivariate logistic regression model, only the number of drugs/day correlated with increased risk of significant potential drug interaction (p = 0.0011 and, furthermore that use of more than 6 drugs/day increased relative risk by 9.8 times. CONCLUSIONS: Critically ill patients are submitted to high risk of potential drug interactions and the number of drugs/day has a high positive predictive value for these interactions. Therefore, it is imperative that critical care physicians be constantly alert to recognize this problem and provide appropriate mechanisms for management, thereby reducing adverse outcomes.

  15. Pharmacokinetic Interactions between Drugs and Botanical Dietary Supplements.

    Science.gov (United States)

    Sprouse, Alyssa A; van Breemen, Richard B

    2016-02-01

    The use of botanical dietary supplements has grown steadily over the last 20 years despite incomplete information regarding active constituents, mechanisms of action, efficacy, and safety. An important but underinvestigated safety concern is the potential for popular botanical dietary supplements to interfere with the absorption, transport, and/or metabolism of pharmaceutical agents. Clinical trials of drug-botanical interactions are the gold standard and are usually carried out only when indicated by unexpected consumer side effects or, preferably, by predictive preclinical studies. For example, phase 1 clinical trials have confirmed preclinical studies and clinical case reports that St. John's wort (Hypericum perforatum) induces CYP3A4/CYP3A5. However, clinical studies of most botanicals that were predicted to interact with drugs have shown no clinically significant effects. For example, clinical trials did not substantiate preclinical predictions that milk thistle (Silybum marianum) would inhibit CYP1A2, CYP2C9, CYP2D6, CYP2E1, and/or CYP3A4. Here, we highlight discrepancies between preclinical and clinical data concerning drug-botanical interactions and critically evaluate why some preclinical models perform better than others in predicting the potential for drug-botanical interactions. Gaps in knowledge are also highlighted for the potential of some popular botanical dietary supplements to interact with therapeutic agents with respect to absorption, transport, and metabolism. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  16. Drug-Drug and Herb-Drug Interaction-A Comment | Esimone ...

    African Journals Online (AJOL)

    Clinically relevant drug-drug interactions may be pharmacodynamic or pharmacokinetic. And herbal medicinal products are becoming increasingly popular. Drug interactions can be in vivo or in vitro. Pharmacodynamic outcomes take such forms as Additive, Synergistic, Antagonistic or Indifferent. The paper reviews and ...

  17. High-Throughput Cytochrome P450 Cocktail Inhibition Assay for Assessing Drug-Drug and Drug-Botanical Interactions.

    Science.gov (United States)

    Li, Guannan; Huang, Ke; Nikolic, Dejan; van Breemen, Richard B

    2015-11-01

    Detection of drug-drug interactions is essential during the early stages of drug discovery and development, and the understanding of drug-botanical interactions is important for the safe use of botanical dietary supplements. Among the different forms of drug interactions that are known, inhibition of cytochrome P450 (P450) enzymes is the most common cause of drug-drug or drug-botanical interactions. Therefore, a rapid and comprehensive mass spectrometry-based in vitro high-throughput P450 cocktail inhibition assay was developed that uses 10 substrates simultaneously against nine CYP isoforms. Including probe substrates for CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and two probes targeting different binding sites of CYP3A4/5, this cocktail simultaneously assesses at least as many P450 enzymes as previous assays while remaining among the fastest due to short incubation times and rapid analysis using ultrahigh pressure liquid chromatography-tandem mass spectrometry. The method was validated using known inhibitors of each P450 enzyme and then shown to be useful not only for single-compound testing but also for the evaluation of potential drug-botanical interactions using the botanical dietary supplement licorice (Glycyrrhiza glabra) as an example. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  18. Herb-drug interactions. Interactions between saw palmetto and prescription medications.

    Science.gov (United States)

    Bressler, Rubin

    2005-11-01

    Patients over age 50 typically present with one chronic disease per decade. Each chronic disease typically requires long-term drug therapy, meaning most older patients require several drugs to maintain health. Simultaneously, use of complementary and alternative medicine (CAM) has increased in the United States in the last 20 years, reaching 36% in 2002; herbal medicine use accounts for approximately 22% of all CAM use. Older adults often add herbal medicines to prescription medications, yet do not always inform their physicians. The drug metabolizing enzyme systems process all compounds foreign to the body, including prescription and herbal medications. Therefore use of both medicinals simultaneously has a potential for adverse interactions. This review, which discusses saw palmetto, is the last in a series covering the documented interactions among the top 5 efficacious herbal medicines and prescription drugs.

  19. Albumin-drug interaction and its clinical implication.

    Science.gov (United States)

    Yamasaki, Keishi; Chuang, Victor Tuan Giam; Maruyama, Toru; Otagiri, Masaki

    2013-12-01

    Human serum albumin acts as a reservoir and transport protein for endogenous (e.g. fatty acids or bilirubin) and exogenous compounds (e.g. drugs or nutrients) in the blood. The binding of a drug to albumin is a major determinant of its pharmacokinetic and pharmacodynamic profile. The present review discusses recent findings regarding the nature of drug binding sites, drug-albumin binding in certain diseased states or in the presence of coadministered drugs, and the potential of utilizing albumin-drug interactions in clinical applications. Drug-albumin interactions appear to predominantly occur at one or two specific binding sites. The nature of these drug binding sites has been fundamentally investigated as to location, size, charge, hydrophobicity or changes that can occur under conditions such as the content of the endogenous substances in question. Such findings can be useful tools for the analysis of drug-drug interactions or protein binding in diseased states. A change in protein binding is not always a problem in terms of drug therapy, but it can be used to enhance the efficacy of therapeutic agents or to enhance the accumulation of radiopharmaceuticals to targets for diagnostic purposes. Furthermore, several extracorporeal dialysis procedures using albumin-containing dialysates have proven to be an effective tool for removing endogenous toxins or overdosed drugs from patients. Recent findings related to albumin-drug interactions as described in this review are useful for providing safer and efficient therapies and diagnoses in clinical settings. This article is part of a Special Issue entitled Serum Albumin. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Pharmacokinetic interactions between contraceptives and antiepileptic drugs

    DEFF Research Database (Denmark)

    Sabers, A.

    2008-01-01

    The occurrence of bi-directional drug interactions between antiepileptic drugs (AEDs) and combined oral contraceptives (M) pose potential risks of unintended pregnancy and as well as seizure deterioration. It is well established that several of the older AEDs (carbamazepine, phenytoin...... AEDs, which undergoes glucuronidation processes, such as valproate and oxcarbazepine, may be affected by OCs. The magnitude of the drug-drug interactions show in general wide inter-individual variability and the change in the elimination rate is often unpredictable and can be influenced by a number...... of co-variants such as co-medication of other drugs, as well as genetic and environmental factors. It is therefore recommended that change in OC use is assisted by AED monitoring whenever possible. (C) 2007 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved Udgivelsesdato: 2008/3...

  1. Developing a Molecular Roadmap of Drug-Food Interactions

    DEFF Research Database (Denmark)

    Jensen, Kasper; Ni, Yueqiong; Panagiotou, Gianni

    2015-01-01

    therapeutic interventions, a systematic approach for identifying, predicting and preventing potential interactions between food and marketed or novel drugs is not yet available. The overall objective of this work was to sketch a comprehensive picture of the interference of ∼ 4,000 dietary components present...... view of the associations between diet and dietary molecules with drug targets, metabolic enzymes, drug transporters and carriers currently deposited in Drug-Bank. Moreover, we identified disease areas and drug targets that are most prone to the negative effects of drug-food interactions, showcasing......Recent research has demonstrated that consumption of food -especially fruits and vegetables-can alter the effects of drugs by interfering either with their pharmacokinetic or pharmacodynamic processes. Despite the recognition of such drug-food associations as an important element for successful...

  2. Detecting drug-drug interactions using a database for spontaneous adverse drug reactions: an example with diuretics and non-steroidal anti-inflammatory drugs.

    Science.gov (United States)

    van Puijenbroek, E P; Egberts, A C; Heerdink, E R; Leufkens, H G

    2000-12-01

    Drug-drug interactions are relatively rarely reported to spontaneous reporting systems (SRSs) for adverse drug reactions. For this reason, the traditional approach for analysing SRS has major limitations for the detection of drug-drug interactions. We developed a method that may enable signalling of these possible interactions, which are often not explicitly reported, utilising reports of adverse drug reactions in data sets of SRS. As an example, the influence of concomitant use of diuretics and non-steroidal anti-inflammatory drugs (NSAIDs) on symptoms indicating a decreased efficacy of diuretics was examined using reports received by the Netherlands Pharmacovigilance Foundation Lareb. Reports received between 1 January 1990 and 1 January 1999 of patients older than 50 years were included in the study. Cases were defined as reports with symptoms indicating a decreased efficacy of diuretics, non-cases as all other reports. Exposure categories were the use of NSAIDs or diuretics versus the use of neither of these drugs. The influence of the combined use of both drugs was examined using logistic regression analysis. The odds ratio of the statistical interaction term of the combined use of both drugs was increased [adjusted odds ratio 2.0, 95% confidence interval (CI) 1.1-3.7], which may indicate an enhanced effect of concomitant drug use. The findings illustrate that spontaneous reporting systems have a potential for signal detection and the analysis of possible drug-drug interactions. The method described may enable a more active approach in the detection of drug-drug interactions after marketing.

  3. Clinical Drug-Drug Pharmacokinetic Interaction Potential of Sucralfate with Other Drugs

    DEFF Research Database (Denmark)

    Sulochana, Suresh P; Syed, Muzeeb; Chandrasekar, Devaraj V

    2016-01-01

    of drugs. This review covers several category of drugs such as non-steroidal anti-inflammatory drugs, fluoroquinolones, histamine H2-receptor blockers, macrolides, anti-fungals, anti-diabetics, salicylic acid derivatives, steroidal anti-inflammatory drugs and provides pharmacokinetic data summary along...

  4. Co-morbidity and clinically significant interactions between antiepileptic drugs and other drugs in elderly patients with newly diagnosed epilepsy.

    Science.gov (United States)

    Bruun, Emmi; Virta, Lauri J; Kälviäinen, Reetta; Keränen, Tapani

    2017-08-01

    A study was conducted to investigate the frequency of potential pharmacokinetic drug-to-drug interactions in elderly patients with newly diagnosed epilepsy. We also investigated co-morbid conditions associated with epilepsy. From the register of Kuopio University Hospital (KUH) we identified community-dwelling patients aged 65 or above with newly diagnosed epilepsy and in whom use of the first individual antiepileptic drug (AED) began in 2000-2013 (n=529). Furthermore, register data of the Social Insurance Institution of Finland were used for assessing potential interactions in a nationwide cohort of elderly subjects with newly diagnosed epilepsy. We extracted all patients aged 65 or above who had received special reimbursement for the cost of AEDs prescribed on account of epilepsy in 2012 where their first AED was recorded in 2011-2012 as monotherapy (n=1081). Clinically relevant drug interactions (of class C or D) at the time of starting of the first AED, as assessed via the SFINX-PHARAO database, were analysed. Hypertension (67%), dyslipidemia (45%), and ischaemic stroke (32%) were the most common co-morbid conditions in the hospital cohort of patients. In these patients, excessive polypharmacy (more than 10 concomitant drugs) was identified in 27% of cases. Of the patients started on carbamazepine, 52 subjects (32%) had one class-C or class-D drug interaction and 51 (31%) had two or more C- or D-class interactions. Only 2% of the subjects started on valproate exhibited a class-C interaction. None of the subjects using oxcarbazepine displayed class-C or class-D interactions. Patients with 3-5 (OR 4.22; p=0.05) or over six (OR 8.86; p=0.003) other drugs were more likely to have C- or D-class interaction. The most common drugs with potential interactions with carbamazepine were dihydropyridine calcium-blockers, statins, warfarin, and psychotropic drugs. Elderly patients with newly diagnosed epilepsy are at high risk of clinically relevant pharmacokinetic

  5. Grapefruit and drug interactions.

    Science.gov (United States)

    2012-12-01

    Since the late 1980s, grapefruit juice has been known to affect the metabolism of certain drugs. Several serious adverse effects involving drug interactions with grapefruit juice have been published in detail. The components of grapefruit juice vary considerably depending on the variety, maturity and origin of the fruit, local climatic conditions, and the manufacturing process. No single component accounts for all observed interactions. Other grapefruit products are also occasionally implicated, including preserves, lyophylised grapefruit juice, powdered whole grapefruit, grapefruit seed extract, and zest. Clinical reports of drug interactions with grapefruit juice are supported by pharmacokinetic studies, each usually involving about 10 healthy volunteers, in which the probable clinical consequences were extrapolated from the observed plasma concentrations. Grapefruit juice inhibits CYP3A4, the cytochrome P450 isoenzyme most often involved in drug metabolism. This increases plasma concentrations of the drugs concerned, creating a risk of overdose and dose-dependent adverse effects. Grapefruit juice also inhibits several other cytochrome P450 isoenzymes, but they are less frequently implicated in interactions with clinical consequences. Drugs interacting with grapefruit and inducing serious clinical consequences (confirmed or very probable) include: immunosuppressants, some statins, benzodiazepines, most calcium channel blockers, indinavir and carbamazepine. There are large inter-individual differences in enzyme efficiency. Along with the variable composition of grapefruit juice, this makes it difficult to predict the magnitude and clinical consequences of drug interactions with grapefruit juice in a given patient. There is increasing evidence that transporter proteins such as organic anion transporters and P-glycoprotein are involved in interactions between drugs and grapefruit juice. In practice, numerous drugs interact with grapefruit juice. Although only a few

  6. Large-scale prediction of drug-target interactions using protein sequences and drug topological structures

    Energy Technology Data Exchange (ETDEWEB)

    Cao Dongsheng [Research Center of Modernization of Traditional Chinese Medicines, Central South University, Changsha 410083 (China); Liu Shao [Xiangya Hospital, Central South University, Changsha 410008 (China); Xu Qingsong [School of Mathematical Sciences and Computing Technology, Central South University, Changsha 410083 (China); Lu Hongmei; Huang Jianhua [Research Center of Modernization of Traditional Chinese Medicines, Central South University, Changsha 410083 (China); Hu Qiannan [Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071 (China); Liang Yizeng, E-mail: yizeng_liang@263.net [Research Center of Modernization of Traditional Chinese Medicines, Central South University, Changsha 410083 (China)

    2012-11-08

    Highlights: Black-Right-Pointing-Pointer Drug-target interactions are predicted using an extended SAR methodology. Black-Right-Pointing-Pointer A drug-target interaction is regarded as an event triggered by many factors. Black-Right-Pointing-Pointer Molecular fingerprint and CTD descriptors are used to represent drugs and proteins. Black-Right-Pointing-Pointer Our approach shows compatibility between the new scheme and current SAR methodology. - Abstract: The identification of interactions between drugs and target proteins plays a key role in the process of genomic drug discovery. It is both consuming and costly to determine drug-target interactions by experiments alone. Therefore, there is an urgent need to develop new in silico prediction approaches capable of identifying these potential drug-target interactions in a timely manner. In this article, we aim at extending current structure-activity relationship (SAR) methodology to fulfill such requirements. In some sense, a drug-target interaction can be regarded as an event or property triggered by many influence factors from drugs and target proteins. Thus, each interaction pair can be represented theoretically by using these factors which are based on the structural and physicochemical properties simultaneously from drugs and proteins. To realize this, drug molecules are encoded with MACCS substructure fingerings representing existence of certain functional groups or fragments; and proteins are encoded with some biochemical and physicochemical properties. Four classes of drug-target interaction networks in humans involving enzymes, ion channels, G-protein-coupled receptors (GPCRs) and nuclear receptors, are independently used for establishing predictive models with support vector machines (SVMs). The SVM models gave prediction accuracy of 90.31%, 88.91%, 84.68% and 83.74% for four datasets, respectively. In conclusion, the results demonstrate the ability of our proposed method to predict the drug

  7. Analysis of clinical drug-drug interaction data to predict uncharacterized interaction magnitudes between antiretroviral drugs and co-medications.

    Science.gov (United States)

    Stader, Felix; Kinvig, Hannah; Battegay, Manuel; Khoo, Saye; Owen, Andrew; Siccardi, Marco; Marzolini, Catia

    2018-04-23

    Despite their high potential for drug-drug-interactions (DDI), clinical DDI studies of antiretroviral drugs (ARVs) are often lacking, because the full range of potential interactions cannot feasibly or pragmatically be studied, with some high-risk DDI studies also ethically difficult to undertake. Thus, a robust method to screen and to predict the likelihood of DDIs is required.We developed a method to predict DDIs based on two parameters: the degree of metabolism by specific enzymes such as CYP3A and the strength of an inhibitor or inducer. These parameters were derived from existing studies utilizing paradigm substrates, inducers and inhibitors of CYP3A, to assess the predictive performance of this method by verifying predicted magnitudes of changes in drug exposure against clinical DDI studies involving ARVs.The derived parameters were consistent with the FDA classification of sensitive CYP3A substrates and the strength of CYP3A inhibitors and inducers. Characterized DDI magnitudes (n = 68) between ARVs and co-medications were successfully quantified meaning 53%, 85% and 98% of the predictions were within 1.25-fold (0.80 - 1.25), 1.5-fold (0.66 - 1.48) and 2-fold (0.66 - 1.94) of the observed clinical data. In addition, the method identifies CYP3A substrates likely to be highly or conversely minimally impacted by CYP3A inhibitors or inducers, thus categorizing the magnitude of DDIs.The developed effective and robust method has the potential to support a more rational identification of dose adjustment to overcome DDIs being particularly relevant in a HIV-setting giving the treatments complexity, high DDI risk and limited guidance on the management of DDIs. Copyright © 2018 American Society for Microbiology.

  8. Identifying Drug-Target Interactions with Decision Templates.

    Science.gov (United States)

    Yan, Xiao-Ying; Zhang, Shao-Wu

    2018-01-01

    During the development process of new drugs, identification of the drug-target interactions wins primary concerns. However, the chemical or biological experiments bear the limitation in coverage as well as the huge cost of both time and money. Based on drug similarity and target similarity, chemogenomic methods can be able to predict potential drug-target interactions (DTIs) on a large scale and have no luxurious need about target structures or ligand entries. In order to reflect the cases that the drugs having variant structures interact with common targets and the targets having dissimilar sequences interact with same drugs. In addition, though several other similarity metrics have been developed to predict DTIs, the combination of multiple similarity metrics (especially heterogeneous similarities) is too naïve to sufficiently explore the multiple similarities. In this paper, based on Gene Ontology and pathway annotation, we introduce two novel target similarity metrics to address above issues. More importantly, we propose a more effective strategy via decision template to integrate multiple classifiers designed with multiple similarity metrics. In the scenarios that predict existing targets for new drugs and predict approved drugs for new protein targets, the results on the DTI benchmark datasets show that our target similarity metrics are able to enhance the predictive accuracies in two scenarios. And the elaborate fusion strategy of multiple classifiers has better predictive power than the naïve combination of multiple similarity metrics. Compared with other two state-of-the-art approaches on the four popular benchmark datasets of binary drug-target interactions, our method achieves the best results in terms of AUC and AUPR for predicting available targets for new drugs (S2), and predicting approved drugs for new protein targets (S3).These results demonstrate that our method can effectively predict the drug-target interactions. The software package can

  9. Drug interactions at the human placenta: what is the evidence?

    Directory of Open Access Journals (Sweden)

    Miriam eRubinchik-Stern

    2012-07-01

    Full Text Available Pregnant women (and their fetuses are treated with a significant number of prescription and nonprescription medications. Interactions among those drugs may affect their efficacy and toxicity in both mother and fetus. Whereas interactions that result in altered drug concentrations in maternal plasma are detectable, those involving modulation of placental transfer mechanisms are rarely reflected by altered drug concentrations in maternal plasma. Therefore, they are often overlooked. Placental-mediated interactions are possible because the placenta is not only a passive diffusional barrier, but also expresses a variety of influx and efflux transporters and drug metabolizing enzymes. Current data on placental-mediated drug interactions are limited. In rodents, pharmacological or genetic manipulations of placental transporters significantly affect fetal drug exposure. In contrast, studies in human placentae suggest that the magnitude of such interactions is modest in most cases. Nevertheless, under certain circumstances, such interactions may be of clinical significance. This review describes currently known mechanisms of placental-mediated drug interactions and the potential implications of such interactions in humans. Better understanding of those mechanisms is important for minimizing fetal toxicity from drugs while improving their efficacy when directed to treat the fetus.

  10. Transporter-mediated natural product–drug interactions for the treatment of cardiovascular diseases

    Directory of Open Access Journals (Sweden)

    Weibin Zha

    2018-04-01

    Full Text Available The growing use of natural products in cardiovascular (CV patients has been greatly raising the concerns about potential natural product–CV drug interactions. Some of these may lead to unexpected cardiovascular adverse effects and it is, therefore, essential to identify or predict potential natural product–CV drug interactions, and to understand the underlying mechanisms. Drug transporters are important determinants for the pharmacokinetics of drugs and alterations of drug transport has been recognized as one of the major causes of natural product–drug interactions. In last two decades, many CV drugs (e.g., angiotensin II receptor blockers, beta-blockers and statins have been identified to be substrates and inhibitors of the solute carrier (SLC transporters and the ATP-binding cassette (ABC transporters, which are two major transporter superfamilies. Meanwhile, in vitro and in vivo studies indicate that a growing number of natural products showed cardioprotective effects (e.g., gingko biloba, danshen and their active ingredients are also substrates and inhibitors of drug transporters. Thus, to understand transporter-mediated natural product–CV drug interactions is important and some transporter-mediated interactions have already shown to have clinical relevance. In this review, we review the current knowledge on the role of ABC and SLC transporters in CV therapy, as well as transporter modulation by natural products used in CV diseases and their induced natural product–CV drug interactions through alterations of drug transport. We hope our review will aid in a comprehensive summary of transporter-mediated natural product–CV drug interactions and help public and physicians understand these type of interactions. Keywords: Cardiovascular drugs, Natural products, Drug transporters, Natural product–drug interaction, Pharmacokinetics

  11. Neighborhood Regularized Logistic Matrix Factorization for Drug-Target Interaction Prediction.

    Science.gov (United States)

    Liu, Yong; Wu, Min; Miao, Chunyan; Zhao, Peilin; Li, Xiao-Li

    2016-02-01

    In pharmaceutical sciences, a crucial step of the drug discovery process is the identification of drug-target interactions. However, only a small portion of the drug-target interactions have been experimentally validated, as the experimental validation is laborious and costly. To improve the drug discovery efficiency, there is a great need for the development of accurate computational approaches that can predict potential drug-target interactions to direct the experimental verification. In this paper, we propose a novel drug-target interaction prediction algorithm, namely neighborhood regularized logistic matrix factorization (NRLMF). Specifically, the proposed NRLMF method focuses on modeling the probability that a drug would interact with a target by logistic matrix factorization, where the properties of drugs and targets are represented by drug-specific and target-specific latent vectors, respectively. Moreover, NRLMF assigns higher importance levels to positive observations (i.e., the observed interacting drug-target pairs) than negative observations (i.e., the unknown pairs). Because the positive observations are already experimentally verified, they are usually more trustworthy. Furthermore, the local structure of the drug-target interaction data has also been exploited via neighborhood regularization to achieve better prediction accuracy. We conducted extensive experiments over four benchmark datasets, and NRLMF demonstrated its effectiveness compared with five state-of-the-art approaches.

  12. [Terbinafine : Relevant drug interactions and their management].

    Science.gov (United States)

    Dürrbeck, A; Nenoff, P

    2016-09-01

    The allylamine terbinafine is the probably most frequently prescribed systemic antifungal agent in Germany for the treatment of dermatomycoses and onychomycoses. According to the German drug law, terbinafine is approved for patients who are 18 years and older; however, this antifungal agent is increasingly used off-label for treatment of onychomycoses and tinea capitis in children. Terbinafine is associated with only a few interactions with other drugs, which is why terbinafine can generally be used without problems in older and multimorbid patients. Nevertheless, some potential interactions of terbinafine with certain drug substances are known, including substances of the group of antidepressants/antipsychotics and some cardiovascular drugs. Decisive for the relevance of interactions is-along with the therapeutic index of the substrate and the possible alternative degradation pathways-the genetically determined type of metabolism. When combining terbinafine with tricyclic antidepressants or selective serotonin reuptake inhibitors and serotonin/noradrenalin reuptake inhibitors, the clinical response and potential side effects must be monitored. Problematic is the use of terbinafine with simultaneous treatment with tamoxifen. The administration of potent CYP2D6 inhibitors leads to a diminished efficacy of tamoxifen because one of its most important active metabolites-endoxifen-is not sufficiently available. Therefore, combination of tamoxifen and terbinafine should be avoided. In conclusion, the number of substances which are able to cause clinically relevant interactions in case of simultaneously administration with terbinafine is clear and should be manageable in the dermatological office with adequate monitoring.

  13. Prevalence of potential drug–drug interactions among internal medicine ward in University of Gondar Teaching Hospital, Ethiopia

    Directory of Open Access Journals (Sweden)

    Akshaya Srikanth Bhagavathula

    2014-05-01

    Conclusion: We have recorded a high rate of prevalence of potential DDI in the internal medicine ward of UOG hospital and a high number of clinically significant DDIs which the most prevalent DDI were of moderate severity. Careful selection of drugs and active pharmaceutical care is encouraged in order to avoid negative consequences of these interactions.

  14. Evaluation of Drug-Drug Interaction Potential Between Sacubitril/Valsartan (LCZ696) and Statins Using a Physiologically Based Pharmacokinetic Model.

    Science.gov (United States)

    Lin, Wen; Ji, Tao; Einolf, Heidi; Ayalasomayajula, Surya; Lin, Tsu-Han; Hanna, Imad; Heimbach, Tycho; Breen, Christopher; Jarugula, Venkateswar; He, Handan

    2017-05-01

    Sacubitril/valsartan (LCZ696) has been approved for the treatment of heart failure. Sacubitril is an in vitro inhibitor of organic anion-transporting polypeptides (OATPs). In clinical studies, LCZ696 increased atorvastatin C max by 1.7-fold and area under the plasma concentration-time curve by 1.3-fold, but had little or no effect on simvastatin or simvastatin acid exposure. A physiologically based pharmacokinetics modeling approach was applied to explore the underlying mechanisms behind the statin-specific LCZ696 drug interaction observations. The model incorporated OATP-mediated clearance (CL int,T ) for simvastatin and simvastatin acid to successfully describe the pharmacokinetic profiles of either analyte in the absence or presence of LCZ696. Moreover, the model successfully described the clinically observed drug effect with atorvastatin. The simulations clarified the critical parameters responsible for the observation of a low, yet clinically relevant, drug-drug interaction DDI between sacubitril and atorvastatin and the lack of effect with simvastatin acid. Atorvastatin is administered in its active form and rapidly achieves C max that coincide with the low C max of sacubitril. In contrast, simvastatin requires a hydrolysis step to the acid form and therefore is not present at the site of interactions at sacubitril concentrations that are inhibitory. Similar models were used to evaluate the drug-drug interaction risk for additional OATP-transported statins which predicted to maximally result in a 1.5-fold exposure increase. Copyright © 2017. Published by Elsevier Inc.

  15. Global patient safety and antiretroviral drug-drug interactions in the resource-limited setting.

    Science.gov (United States)

    Seden, Kay; Khoo, Saye H; Back, David; Byakika-Kibwika, Pauline; Lamorde, Mohammed; Ryan, Mairin; Merry, Concepta

    2013-01-01

    Scale-up of HIV treatment services may have contributed to an increase in functional health facilities available in resource-limited settings and an increase in patient use of facilities and retention in care. As more patients are reached with medicines, monitoring patient safety is increasingly important. Limited data from resource-limited settings suggest that medication error and antiretroviral drug-drug interactions may pose a significant risk to patient safety. Commonly cited causes of medication error in the developed world include the speed and complexity of the medication use cycle combined with inadequate systems and processes. In resource-limited settings, specific factors may contribute, such as inadequate human resources and high disease burden. Management of drug-drug interactions may be complicated by limited access to alternative medicines or laboratory monitoring. Improving patient safety by addressing the issue of antiretroviral drug-drug interactions has the potential not just to improve healthcare for individuals, but also to strengthen health systems and improve vital communication among healthcare providers and with regulatory agencies.

  16. Carbon nanotubes buckypapers for potential transdermal drug delivery

    International Nuclear Information System (INIS)

    Schwengber, Alex; Prado, Héctor J.; Zilli, Darío A.; Bonelli, Pablo R.

    2015-01-01

    Drug loaded buckypapers based on different types of carbon nanotubes (CNTs) were prepared and characterized in order to evaluate their potentialities for the design of novel transdermal drug delivery systems. Lab-synthesized CNTs as well as commercial samples were employed. Clonidine hydrochloride was used as model drug, and the influence of composition of the drug loaded buckypapers and processing variables on in vitro release profiles was investigated. To examine the influence of the drug nature the evaluation was further extended to buckypapers prepared with flurbiprofen and one type of CNTs, their selection being based on the results obtained with the former drug. Scanning electronic microscopy images indicated that the model drugs were finely dispersed on the CNTs. Differential scanning calorimetry, and X-ray diffraction pointed to an amorphous state of both drugs in the buckypapers. A higher degree of CNT–drug superficial interactions resulted in a slower release of the drug. These interactions were in turn affected by the type of CNTs employed (single wall or multiwall CNTs), their functionalization with hydroxyl or carboxyl groups, the chemical structure of the drug, and the CNT:drug mass ratio. Furthermore, the application of a second layer of drug free CNTs on the loaded buckypaper, led to decelerate the drug release and to reduce the burst effect. - Highlights: • Drug loaded buckypapers from carbon nanotubes were prepared and characterized. • Their potentialities for transdermal drug delivery applications were evaluated. • Characteristics of carbon nanotubes and the structure of the drug affected release • A higher carbon nanotube:drug mass ratio decelerated release • Up to one week controlled release profiles were obtained for the drug flurbiprofen

  17. Carbon nanotubes buckypapers for potential transdermal drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Schwengber, Alex [PINMATE-Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA Buenos Aires (Argentina); Prado, Héctor J. [PINMATE-Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA Buenos Aires (Argentina); Cátedra de Tecnología Farmacéutica II, Departamento de Tecnología Farmacéutica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, C1113AAD Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, C1033AAJ Buenos Aires (Argentina); Zilli, Darío A. [PINMATE-Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA Buenos Aires (Argentina); Bonelli, Pablo R. [PINMATE-Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, C1033AAJ Buenos Aires (Argentina); and others

    2015-12-01

    Drug loaded buckypapers based on different types of carbon nanotubes (CNTs) were prepared and characterized in order to evaluate their potentialities for the design of novel transdermal drug delivery systems. Lab-synthesized CNTs as well as commercial samples were employed. Clonidine hydrochloride was used as model drug, and the influence of composition of the drug loaded buckypapers and processing variables on in vitro release profiles was investigated. To examine the influence of the drug nature the evaluation was further extended to buckypapers prepared with flurbiprofen and one type of CNTs, their selection being based on the results obtained with the former drug. Scanning electronic microscopy images indicated that the model drugs were finely dispersed on the CNTs. Differential scanning calorimetry, and X-ray diffraction pointed to an amorphous state of both drugs in the buckypapers. A higher degree of CNT–drug superficial interactions resulted in a slower release of the drug. These interactions were in turn affected by the type of CNTs employed (single wall or multiwall CNTs), their functionalization with hydroxyl or carboxyl groups, the chemical structure of the drug, and the CNT:drug mass ratio. Furthermore, the application of a second layer of drug free CNTs on the loaded buckypaper, led to decelerate the drug release and to reduce the burst effect. - Highlights: • Drug loaded buckypapers from carbon nanotubes were prepared and characterized. • Their potentialities for transdermal drug delivery applications were evaluated. • Characteristics of carbon nanotubes and the structure of the drug affected release • A higher carbon nanotube:drug mass ratio decelerated release • Up to one week controlled release profiles were obtained for the drug flurbiprofen.

  18. Herb-drug interactions: challenges and opportunities for improved predictions.

    Science.gov (United States)

    Brantley, Scott J; Argikar, Aneesh A; Lin, Yvonne S; Nagar, Swati; Paine, Mary F

    2014-03-01

    Supported by a usage history that predates written records and the perception that "natural" ensures safety, herbal products have increasingly been incorporated into Western health care. Consumers often self-administer these products concomitantly with conventional medications without informing their health care provider(s). Such herb-drug combinations can produce untoward effects when the herbal product perturbs the activity of drug metabolizing enzymes and/or transporters. Despite increasing recognition of these types of herb-drug interactions, a standard system for interaction prediction and evaluation is nonexistent. Consequently, the mechanisms underlying herb-drug interactions remain an understudied area of pharmacotherapy. Evaluation of herbal product interaction liability is challenging due to variability in herbal product composition, uncertainty of the causative constituents, and often scant knowledge of causative constituent pharmacokinetics. These limitations are confounded further by the varying perspectives concerning herbal product regulation. Systematic evaluation of herbal product drug interaction liability, as is routine for new drugs under development, necessitates identifying individual constituents from herbal products and characterizing the interaction potential of such constituents. Integration of this information into in silico models that estimate the pharmacokinetics of individual constituents should facilitate prospective identification of herb-drug interactions. These concepts are highlighted with the exemplar herbal products milk thistle and resveratrol. Implementation of this methodology should help provide definitive information to both consumers and clinicians about the risk of adding herbal products to conventional pharmacotherapeutic regimens.

  19. Drug-model membrane interactions

    International Nuclear Information System (INIS)

    Deniz, Usha K.

    1994-01-01

    In the present day world, drugs play a very important role in medicine and it is necessary to understand their mode of action at the molecular level, in order to optimise their use. Studies of drug-biomembrane interactions are essential for gaining such as understanding. However, it would be prohibitively difficult to carry out such studies, since biomembranes are highly complex systems. Hence, model membranes (made up of these lipids which are important components of biomembranes) of varying degrees of complexity are used to investigate drug-membrane interactions. Bio- as well as model-membranes undergo a chain melting transition when heated, the chains being in a disordered state above the transition point, T CM . This transition is of physiological importance since biomembranes select their components such that T CM is less than the ambient temperature but not very much so, so that membrane flexibility is ensured and porosity, avoided. The influence of drugs on the transition gives valuable clues about various parameters such as the location of the drug in the membrane. Deep insights into drug-membrane interactions are obtained by observing the effect of drugs on membrane structure and the mobilities of the various groups in lipids, near T CM . Investigation of such changes have been carried out with several drugs, using techniques such as DSC, XRD and NMR. The results indicate that the drug-membrane interaction not only depends on the nature of drug and lipids but also on the form of the model membrane - stacked bilayer or vesicles. The light that these results shed on the nature of drug-membrane interactions is discussed. (author). 13 refs., 13 figs., 1 tab

  20. Consumer Mobile Apps for Potential Drug-Drug Interaction Check: Systematic Review and Content Analysis Using the Mobile App Rating Scale (MARS).

    Science.gov (United States)

    Kim, Ben Yb; Sharafoddini, Anis; Tran, Nam; Wen, Emily Y; Lee, Joon

    2018-03-28

    General consumers can now easily access drug information and quickly check for potential drug-drug interactions (PDDIs) through mobile health (mHealth) apps. With aging population in Canada, more people have chronic diseases and comorbidities leading to increasing numbers of medications. The use of mHealth apps for checking PDDIs can be helpful in ensuring patient safety and empowerment. The aim of this study was to review the characteristics and quality of publicly available mHealth apps that check for PDDIs. Apple App Store and Google Play were searched to identify apps with PDDI functionality. The apps' general and feature characteristics were extracted. The Mobile App Rating Scale (MARS) was used to assess the quality. A total of 23 apps were included for the review-12 from Apple App Store and 11 from Google Play. Only 5 of these were paid apps, with an average price of $7.19 CAD. The mean MARS score was 3.23 out of 5 (interquartile range 1.34). The mean MARS scores for the apps from Google Play and Apple App Store were not statistically different (P=.84). The information dimension was associated with the highest score (3.63), whereas the engagement dimension resulted in the lowest score (2.75). The total number of features per app, average rating, and price were significantly associated with the total MARS score. Some apps provided accurate and comprehensive information about potential adverse drug effects from PDDIs. Given the potentially severe consequences of incorrect drug information, there is a need for oversight to eliminate low quality and potentially harmful apps. Because managing PDDIs is complex in the absence of complete information, secondary features such as medication reminder, refill reminder, medication history tracking, and pill identification could help enhance the effectiveness of PDDI apps. ©Ben YB Kim, Anis Sharafoddini, Nam Tran, Emily Y Wen, Joon Lee. Originally published in JMIR Mhealth and Uhealth (http://mhealth.jmir.org), 28.03.2018.

  1. Transporter-mediated natural product-drug interactions for the treatment of cardiovascular diseases.

    Science.gov (United States)

    Zha, Weibin

    2018-04-01

    The growing use of natural products in cardiovascular (CV) patients has been greatly raising the concerns about potential natural product-CV drug interactions. Some of these may lead to unexpected cardiovascular adverse effects and it is, therefore, essential to identify or predict potential natural product-CV drug interactions, and to understand the underlying mechanisms. Drug transporters are important determinants for the pharmacokinetics of drugs and alterations of drug transport has been recognized as one of the major causes of natural product-drug interactions. In last two decades, many CV drugs (e.g., angiotensin II receptor blockers, beta-blockers and statins) have been identified to be substrates and inhibitors of the solute carrier (SLC) transporters and the ATP-binding cassette (ABC) transporters, which are two major transporter superfamilies. Meanwhile, in vitro and in vivo studies indicate that a growing number of natural products showed cardioprotective effects (e.g., gingko biloba, danshen and their active ingredients) are also substrates and inhibitors of drug transporters. Thus, to understand transporter-mediated natural product-CV drug interactions is important and some transporter-mediated interactions have already shown to have clinical relevance. In this review, we review the current knowledge on the role of ABC and SLC transporters in CV therapy, as well as transporter modulation by natural products used in CV diseases and their induced natural product-CV drug interactions through alterations of drug transport. We hope our review will aid in a comprehensive summary of transporter-mediated natural product-CV drug interactions and help public and physicians understand these type of interactions. Copyright © 2017. Published by Elsevier B.V.

  2. Drug-drug interactions as a determinant of elevated lithium serum levels in daily clinical practice

    NARCIS (Netherlands)

    Wilting, [No Value; Movig, KL; Moolenaar, M; Hekster, YA; Brouwers, [No Value; Heerdink, ER; Nolen, WA; Egberts, AC

    Objective: Lithium is a drug with a narrow therapeutic window. Concomitantly used medication is a potentially influencing factor of lithium serum concentrations. We conducted a multicentre retrospective case-control study with the aim of investigating lithium-related drug interactions as

  3. Cytochrome P450 enzyme mediated herbal drug interactions (Part 2)

    Science.gov (United States)

    Wanwimolruk, Sompon; Phopin, Kamonrat; Prachayasittikul, Virapong

    2014-01-01

    To date, a number of significant herbal drug interactions have their origins in the alteration of cytochrome P450 (CYP) activity by various phytochemicals. Among the most noteworthy are those involving St. John's wort and drugs metabolized by human CYP3A4 enzyme. This review article is the continued work from our previous article (Part 1) published in this journal (Wanwimolruk and Prachayasittikul, 2014[ref:133]). This article extends the scope of the review to six more herbs and updates information on herbal drug interactions. These include black cohosh, ginseng, grape seed extract, green tea, kava, saw palmetto and some important Chinese medicines are also presented. Even though there have been many studies to determine the effects of herbs and herbal medicines on the activity of CYP, most of them were in vitro and in animal studies. Therefore, the studies are limited in predicting the clinical relevance of herbal drug interactions. It appeared that the majority of the herbal medicines have no clear effects on most of the CYPs examined. For example, the existing clinical trial data imply that black cohosh, ginseng and saw palmetto are unlikely to affect the pharmacokinetics of conventional drugs metabolized by human CYPs. For grape seed extract and green tea, adverse herbal drug interactions are unlikely when they are concomitantly taken with prescription drugs that are CYP substrates. Although there were few clinical studies on potential CYP-mediated interactions produced by kava, present data suggest that kava supplements have the ability to inhibit CYP1A2 and CYP2E1 significantly. Therefore, caution should be taken when patients take kava with CYP1A2 or CYP2E1 substrate drugs as it may enhance their therapeutic and adverse effects. Despite the long use of traditional Chinese herbal medicines, little is known about the potential drug interactions with these herbs. Many popularly used Chinese medicines have been shown in vitro to significantly change the

  4. Investigation of bioequivalence of a new fixed-dose combination of nifedipine and candesartan with the corresponding loose combination as well as the drug-drug interaction potential between both drugs under fasting conditions.

    Science.gov (United States)

    Brendel, Erich; Weimann, Boris; Dietrich, Hartmut; Froede, Christoph; Thomas, Dirk

    2013-09-01

    To determine the bioequivalence of a nifedipine and candesartan fixed-dose combination (FDC) with the corresponding loose combination, and to investigate the pharmacokinetic drug-drug interaction potential between both drugs. 49 healthy, white, male subjects received: 60 mg nifedipine and 32 mg candesartan FDC, the loose combination of 60 mg nifedipine GITS and 32 mg candesartan, 60 mg nifedipine GITS alone, or 32 mg candesartan alone in a randomized, non-blinded, 4-period, 4-way crossover design with each dosing following overnight fasting. Treatment periods were separated by washout periods of ≥ 5 days. Plasma samples were collected for 48 hours after dosing and assayed using a validated LC-MS/MS method. Bioequivalence between the FDC and the loose combination as well as the impact of combined treatment with both drugs on candesartan pharmacokinetics was evaluated in 47 subjects, while the corresponding impact of treatment with both drugs on nifedipine pharmacokinetics was assessed in 46 patients. For AUC(0-tlast) and Cmax the 90% confidence intervals (CIs) for the ratios of the FDC vs. the corresponding loose combination were within the acceptance range for bioequivalence of 80 - 125%. When comparing AUC(0-tlast) and Cmax of nifedipine and candesartan after dosing with the loose combination vs. each drug alone, the 90% CIs remained within the range of 80 - 125% indicating the absence of a clinically relevant pharmacokinetic drug-drug interaction. Nifedipine and candesartan as well as the combinations were well tolerated. The FDC containing 60 mg nifedipine and 32 mg candesartan was bioequivalent to the corresponding loose combination following single oral doses under fasting conditions. No clinically relevant pharmacokinetic drug-drug interaction between nifedipine and candesartan was observed.

  5. Herb–Drug Interactions: Challenges and Opportunities for Improved Predictions

    Science.gov (United States)

    Brantley, Scott J.; Argikar, Aneesh A.; Lin, Yvonne S.; Nagar, Swati

    2014-01-01

    Supported by a usage history that predates written records and the perception that “natural” ensures safety, herbal products have increasingly been incorporated into Western health care. Consumers often self-administer these products concomitantly with conventional medications without informing their health care provider(s). Such herb–drug combinations can produce untoward effects when the herbal product perturbs the activity of drug metabolizing enzymes and/or transporters. Despite increasing recognition of these types of herb–drug interactions, a standard system for interaction prediction and evaluation is nonexistent. Consequently, the mechanisms underlying herb–drug interactions remain an understudied area of pharmacotherapy. Evaluation of herbal product interaction liability is challenging due to variability in herbal product composition, uncertainty of the causative constituents, and often scant knowledge of causative constituent pharmacokinetics. These limitations are confounded further by the varying perspectives concerning herbal product regulation. Systematic evaluation of herbal product drug interaction liability, as is routine for new drugs under development, necessitates identifying individual constituents from herbal products and characterizing the interaction potential of such constituents. Integration of this information into in silico models that estimate the pharmacokinetics of individual constituents should facilitate prospective identification of herb–drug interactions. These concepts are highlighted with the exemplar herbal products milk thistle and resveratrol. Implementation of this methodology should help provide definitive information to both consumers and clinicians about the risk of adding herbal products to conventional pharmacotherapeutic regimens. PMID:24335390

  6. Drug interactions with radiopharmaceuticals

    International Nuclear Information System (INIS)

    Hesslewood, S.; Leung, E.

    1994-01-01

    Considerable information on documented drug and radiopharmaceutical interactions has been assembled in a tabular form, classified by the type of nuclear medicine study. The aim is to provide a rapid reference for nuclear medicine staff to look for such interactions. The initiation of drug chart monitoring or drug history taking of nuclear medicine patients and the reporting of such events are encouraged. (orig.)

  7. Hypericum perforatum: pharmacokinetic, mechanism of action, tolerability, and clinical drug-drug interactions.

    Science.gov (United States)

    Russo, Emilio; Scicchitano, Francesca; Whalley, Benjamin J; Mazzitello, Carmela; Ciriaco, Miriam; Esposito, Stefania; Patanè, Marinella; Upton, Roy; Pugliese, Michela; Chimirri, Serafina; Mammì, Maria; Palleria, Caterina; De Sarro, Giovambattista

    2014-05-01

    Hypericum perforatum (HP) belongs to the Hypericaceae family and is one of the oldest used and most extensively investigated medicinal herbs. The medicinal form comprises the leaves and flowering tops of which the primary ingredients of interest are naphthodianthrones, xanthones, flavonoids, phloroglucinols (e.g. hyperforin), and hypericin. Although several constituents elicit pharmacological effects that are consistent with HP's antidepressant activity, no single mechanism of action underlying these effects has thus far been found. Various clinical trials have shown that HP has a comparable antidepressant efficacy as some currently used antidepressant drugs in the treatment of mild/moderate depression. Interestingly, low-hyperforin-content preparations are effective in the treatment of depression. Moreover, HP is also used to treat certain forms of anxiety. However, HP can induce various cytochrome P450s isozymes and/or P-glycoprotein, of which many drugs are substrates and which are the main origin of HP-drug interactions. Here, we analyse the existing evidence describing the clinical consequence of HP-drug interactions. Although some of the reported interactions are based on findings from in vitro studies, the clinical importance of which remain to be demonstrated, others are based on case reports where causality can, in some cases, be determined to reveal clinically significant interactions that suggest caution, consideration, and disclosure of potential interactions prior to informed use of HP. Copyright © 2013 John Wiley & Sons, Ltd.

  8. A survey of attitudes, practices, and knowledge regarding drug-drug interactions among medical residents in Iran

    NARCIS (Netherlands)

    Nabovati, Ehsan; Vakili-Arki, Hasan; Taherzadeh, Zhila; Saberi, Mohammad Reza; Abu-Hanna, Ameen; Eslami, Saeid

    2017-01-01

    Background When prescribing medications, physicians should recognize clinically relevant potential drug-drug interactions (DDIs). To improve medication safety, it is important to understand prescribers' knowledge and opinions pertaining to DDIs. Objective To determine the current DDI information

  9. Drug-drug interactions involving antidepressants: focus on desvenlafaxine.

    Science.gov (United States)

    Low, Yvette; Setia, Sajita; Lima, Graca

    2018-01-01

    Psychiatric and physical conditions often coexist, and there is robust evidence that associates the frequency of depression with single and multiple physical conditions. More than half of patients with depression may have at least one chronic physical condition. Therefore, antidepressants are often used in cotherapy with other medications for the management of both psychiatric and chronic physical illnesses. The risk of drug-drug interactions (DDIs) is augmented by complex polypharmacy regimens and extended periods of treatment required, of which possible outcomes range from tolerability issues to lack of efficacy and serious adverse events. Optimal patient outcomes may be achieved through drug selection with minimal potential for DDIs. Desvenlafaxine is a serotonin-norepinephrine reuptake inhibitor approved for the treatment of adults with major depressive disorder. Pharmacokinetic studies of desvenlafaxine have shown a simple metabolic profile unique among antidepressants. This review examines the DDI profiles of antidepressants, particularly desvenlafaxine, in relation to drugs of different therapeutic areas. The summary and comparison of information available is meant to help clinicians in making informed decisions when using desvenlafaxine in patients with depression and comorbid chronic conditions.

  10. Using Nonexperts for Annotating Pharmacokinetic Drug-Drug Interaction Mentions in Product Labeling: A Feasibility Study.

    Science.gov (United States)

    Hochheiser, Harry; Ning, Yifan; Hernandez, Andres; Horn, John R; Jacobson, Rebecca; Boyce, Richard D

    2016-04-11

    Because vital details of potential pharmacokinetic drug-drug interactions are often described in free-text structured product labels, manual curation is a necessary but expensive step in the development of electronic drug-drug interaction information resources. The use of nonexperts to annotate potential drug-drug interaction (PDDI) mentions in drug product label annotation may be a means of lessening the burden of manual curation. Our goal was to explore the practicality of using nonexpert participants to annotate drug-drug interaction descriptions from structured product labels. By presenting annotation tasks to both pharmacy experts and relatively naïve participants, we hoped to demonstrate the feasibility of using nonexpert annotators for drug-drug information annotation. We were also interested in exploring whether and to what extent natural language processing (NLP) preannotation helped improve task completion time, accuracy, and subjective satisfaction. Two experts and 4 nonexperts were asked to annotate 208 structured product label sections under 4 conditions completed sequentially: (1) no NLP assistance, (2) preannotation of drug mentions, (3) preannotation of drug mentions and PDDIs, and (4) a repeat of the no-annotation condition. Results were evaluated within the 2 groups and relative to an existing gold standard. Participants were asked to provide reports on the time required to complete tasks and their perceptions of task difficulty. One of the experts and 3 of the nonexperts completed all tasks. Annotation results from the nonexpert group were relatively strong in every scenario and better than the performance of the NLP pipeline. The expert and 2 of the nonexperts were able to complete most tasks in less than 3 hours. Usability perceptions were generally positive (3.67 for expert, mean of 3.33 for nonexperts). The results suggest that nonexpert annotation might be a feasible option for comprehensive labeling of annotated PDDIs across a broader

  11. Strategy for the Prediction of Steady-State Exposure of Digoxin to Determine Drug-Drug Interaction Potential of Digoxin With Other Drugs in Digitalization Therapy.

    Science.gov (United States)

    Srinivas, Nuggehally R

    2016-01-20

    Digoxin, a narrow therapeutic index drug, is widely used in congestive heart failure. However, the digitalization therapy involves dose titration and can exhibit drug-drug interaction. Ctrough versus area under the plasma concentration versus time curve in a dosing interval of 24 hours (AUC0-24h) and Cmax versus AUC0-24h for digoxin were established by linear regression. The predictions of digoxin AUC0-24h values were performed using published Ctrough or Cmax with appropriate regression lines. The fold difference, defined as the quotient of the observed/predicted AUC0-24h values, was evaluated. The mean square error and root mean square error, correlation coefficient (r), and goodness of the fold prediction were used to evaluate the models. Both Ctrough versus AUC0-24h (r = 0.9215) and Cmax versus AUC0-24h models for digoxin (r = 0.7781) showed strong correlations. Approximately 93.8% of the predicted digoxin AUC0-24h values were within 0.76-fold to 1.25-fold difference for Ctrough model. In sharp contrast, the Cmax model showed larger variability with only 51.6% of AUC0-24h predictions within 0.76-1.25-fold difference. The r value for observed versus predicted AUC0-24h for Ctrough (r = 0.9551; n = 177; P < 0.001) was superior to the Cmax (r = 0.6134; n = 275; P < 0.001) model. The mean square error and root mean square error (%) for the Ctrough model were 11.95% and 16.2% as compared to 67.17% and 42.3% obtained for the Cmax model. Simple linear regression models for Ctrough/Cmax versus AUC0-24h were derived for digoxin. On the basis of statistical evaluation, Ctrough was superior to Cmax model for the prediction of digoxin AUC0-24h and can be potentially used in a prospective setting for predicting drug-drug interaction or lack of it.

  12. Drug-Target Interactions: Prediction Methods and Applications.

    Science.gov (United States)

    Anusuya, Shanmugam; Kesherwani, Manish; Priya, K Vishnu; Vimala, Antonydhason; Shanmugam, Gnanendra; Velmurugan, Devadasan; Gromiha, M Michael

    2018-01-01

    Identifying the interactions between drugs and target proteins is a key step in drug discovery. This not only aids to understand the disease mechanism, but also helps to identify unexpected therapeutic activity or adverse side effects of drugs. Hence, drug-target interaction prediction becomes an essential tool in the field of drug repurposing. The availability of heterogeneous biological data on known drug-target interactions enabled many researchers to develop various computational methods to decipher unknown drug-target interactions. This review provides an overview on these computational methods for predicting drug-target interactions along with available webservers and databases for drug-target interactions. Further, the applicability of drug-target interactions in various diseases for identifying lead compounds has been outlined. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Drug-target interaction prediction via class imbalance-aware ensemble learning.

    Science.gov (United States)

    Ezzat, Ali; Wu, Min; Li, Xiao-Li; Kwoh, Chee-Keong

    2016-12-22

    Multiple computational methods for predicting drug-target interactions have been developed to facilitate the drug discovery process. These methods use available data on known drug-target interactions to train classifiers with the purpose of predicting new undiscovered interactions. However, a key challenge regarding this data that has not yet been addressed by these methods, namely class imbalance, is potentially degrading the prediction performance. Class imbalance can be divided into two sub-problems. Firstly, the number of known interacting drug-target pairs is much smaller than that of non-interacting drug-target pairs. This imbalance ratio between interacting and non-interacting drug-target pairs is referred to as the between-class imbalance. Between-class imbalance degrades prediction performance due to the bias in prediction results towards the majority class (i.e. the non-interacting pairs), leading to more prediction errors in the minority class (i.e. the interacting pairs). Secondly, there are multiple types of drug-target interactions in the data with some types having relatively fewer members (or are less represented) than others. This variation in representation of the different interaction types leads to another kind of imbalance referred to as the within-class imbalance. In within-class imbalance, prediction results are biased towards the better represented interaction types, leading to more prediction errors in the less represented interaction types. We propose an ensemble learning method that incorporates techniques to address the issues of between-class imbalance and within-class imbalance. Experiments show that the proposed method improves results over 4 state-of-the-art methods. In addition, we simulated cases for new drugs and targets to see how our method would perform in predicting their interactions. New drugs and targets are those for which no prior interactions are known. Our method displayed satisfactory prediction performance and was

  14. A network integration approach for drug-target interaction prediction and computational drug repositioning from heterogeneous information.

    Science.gov (United States)

    Luo, Yunan; Zhao, Xinbin; Zhou, Jingtian; Yang, Jinglin; Zhang, Yanqing; Kuang, Wenhua; Peng, Jian; Chen, Ligong; Zeng, Jianyang

    2017-09-18

    The emergence of large-scale genomic, chemical and pharmacological data provides new opportunities for drug discovery and repositioning. In this work, we develop a computational pipeline, called DTINet, to predict novel drug-target interactions from a constructed heterogeneous network, which integrates diverse drug-related information. DTINet focuses on learning a low-dimensional vector representation of features, which accurately explains the topological properties of individual nodes in the heterogeneous network, and then makes prediction based on these representations via a vector space projection scheme. DTINet achieves substantial performance improvement over other state-of-the-art methods for drug-target interaction prediction. Moreover, we experimentally validate the novel interactions between three drugs and the cyclooxygenase proteins predicted by DTINet, and demonstrate the new potential applications of these identified cyclooxygenase inhibitors in preventing inflammatory diseases. These results indicate that DTINet can provide a practically useful tool for integrating heterogeneous information to predict new drug-target interactions and repurpose existing drugs.Network-based data integration for drug-target prediction is a promising avenue for drug repositioning, but performance is wanting. Here, the authors introduce DTINet, whose performance is enhanced in the face of noisy, incomplete and high-dimensional biological data by learning low-dimensional vector representations.

  15. Drug-drug interactions of antifungal agents and implications for patient care.

    Science.gov (United States)

    Gubbins, Paul O; Amsden, Jarrett R

    2005-10-01

    Drug interactions in the gastrointestinal tract, liver and kidneys result from alterations in pH, ionic complexation, and interference with membrane transport proteins and enzymatic processes involved in intestinal absorption, enteric and hepatic metabolism, renal filtration and excretion. Azole antifungals can be involved in drug interactions at all the sites, by one or more of the above mechanisms. Consequently, azoles interact with a vast array of compounds. Drug-drug interactions associated with amphotericin B formulations are predictable and result from the renal toxicity and electrolyte disturbances associated with these compounds. The echinocandins are unknown cytochrome P450 substrates and to date are relatively devoid of significant drug-drug interactions. This article reviews drug interactions involving antifungal agents that affect other agents and implications for patient care are highlighted.

  16. Predicting Drug-Target Interactions Based on Small Positive Samples.

    Science.gov (United States)

    Hu, Pengwei; Chan, Keith C C; Hu, Yanxing

    2018-01-01

    A basic task in drug discovery is to find new medication in the form of candidate compounds that act on a target protein. In other words, a drug has to interact with a target and such drug-target interaction (DTI) is not expected to be random. Significant and interesting patterns are expected to be hidden in them. If these patterns can be discovered, new drugs are expected to be more easily discoverable. Currently, a number of computational methods have been proposed to predict DTIs based on their similarity. However, such as approach does not allow biochemical features to be directly considered. As a result, some methods have been proposed to try to discover patterns in physicochemical interactions. Since the number of potential negative DTIs are very high both in absolute terms and in comparison to that of the known ones, these methods are rather computationally expensive and they can only rely on subsets, rather than the full set, of negative DTIs for training and validation. As there is always a relatively high chance for negative DTIs to be falsely identified and as only partial subset of such DTIs is considered, existing approaches can be further improved to better predict DTIs. In this paper, we present a novel approach, called ODT (one class drug target interaction prediction), for such purpose. One main task of ODT is to discover association patterns between interacting drugs and proteins from the chemical structure of the former and the protein sequence network of the latter. ODT does so in two phases. First, the DTI-network is transformed to a representation by structural properties. Second, it applies a oneclass classification algorithm to build a prediction model based only on known positive interactions. We compared the best AUROC scores of the ODT with several state-of-art approaches on Gold standard data. The prediction accuracy of the ODT is superior in comparison with all the other methods at GPCRs dataset and Ion channels dataset. Performance

  17. Food-drug interactions precipitated by fruit juices other than grapefruit juice: An update review

    Directory of Open Access Journals (Sweden)

    Meng Chen

    2018-04-01

    Full Text Available This review addressed drug interactions precipitated by fruit juices other than grapefruit juice based on randomized controlled trials (RCTs. Literature was identified by searching PubMed, Cochrane Library, Scopus and Web of Science till December 30 2017. Among 46 finally included RCTs, six RCTs simply addressed pharmacodynamic interactions and 33 RCTs studied pharmacokinetic interactions, whereas seven RCTs investigated both pharmacokinetic and pharmacodynamic interactions. Twenty-two juice-drug combinations showed potential clinical relevance. The beneficial combinations included orange juice-ferrous fumarate, lemon juice-99mTc-tetrofosmin, pomegranate juice-intravenous iron during hemodialysis, cranberry juice-triple therapy medications for H. pylori, blueberry juice-etanercept, lime juice-antimalarials, and wheat grass juice-chemotherapy. The potential adverse interactions included decreased drug bioavailability (apple juice-fexofenadine, atenolol, aliskiren; orange juice-aliskiren, atenolol, celiprolol, montelukast, fluoroquinolones, alendronate; pomelo juice-sildenafil; grape juice-cyclosporine, increased bioavailability (Seville orange juice-felodipine, pomelo juice-cyclosporine, orange-aluminum containing antacids. Unlike furanocoumarin-rich grapefruit juice which could primarily precipitate drug interactions by strong inhibition of cytochrome P450 3A4 isoenzyme and P-glycoprotein and thus cause deadly outcomes due to co-ingestion with some medications, other fruit juices did not precipitate severely detrimental food–drug interaction despite of sporadic case reports. The extent of a juice-drug interaction may be associated with volume of drinking juice, fruit varieties, type of fruit, time between juice drinking and drug intake, genetic polymorphism in the enzymes or transporters and anthropometric variables. Pharmacists and health professionals should properly screen for and educate patients about potential adverse juice-drug

  18. Food-drug interactions precipitated by fruit juices other than grapefruit juice: An update review.

    Science.gov (United States)

    Chen, Meng; Zhou, Shu-Yi; Fabriaga, Erlinda; Zhang, Pian-Hong; Zhou, Quan

    2018-04-01

    This review addressed drug interactions precipitated by fruit juices other than grapefruit juice based on randomized controlled trials (RCTs). Literature was identified by searching PubMed, Cochrane Library, Scopus and Web of Science till December 30 2017. Among 46 finally included RCTs, six RCTs simply addressed pharmacodynamic interactions and 33 RCTs studied pharmacokinetic interactions, whereas seven RCTs investigated both pharmacokinetic and pharmacodynamic interactions. Twenty-two juice-drug combinations showed potential clinical relevance. The beneficial combinations included orange juice-ferrous fumarate, lemon juice- 99m Tc-tetrofosmin, pomegranate juice-intravenous iron during hemodialysis, cranberry juice-triple therapy medications for H. pylori, blueberry juice-etanercept, lime juice-antimalarials, and wheat grass juice-chemotherapy. The potential adverse interactions included decreased drug bioavailability (apple juice-fexofenadine, atenolol, aliskiren; orange juice-aliskiren, atenolol, celiprolol, montelukast, fluoroquinolones, alendronate; pomelo juice-sildenafil; grape juice-cyclosporine), increased bioavailability (Seville orange juice-felodipine, pomelo juice-cyclosporine, orange-aluminum containing antacids). Unlike furanocoumarin-rich grapefruit juice which could primarily precipitate drug interactions by strong inhibition of cytochrome P450 3A4 isoenzyme and P-glycoprotein and thus cause deadly outcomes due to co-ingestion with some medications, other fruit juices did not precipitate severely detrimental food-drug interaction despite of sporadic case reports. The extent of a juice-drug interaction may be associated with volume of drinking juice, fruit varieties, type of fruit, time between juice drinking and drug intake, genetic polymorphism in the enzymes or transporters and anthropometric variables. Pharmacists and health professionals should properly screen for and educate patients about potential adverse juice-drug interactions and help

  19. Characterization of Schizophrenia Adverse Drug Interactions through a Network Approach and Drug Classification

    Directory of Open Access Journals (Sweden)

    Jingchun Sun

    2013-01-01

    Full Text Available Antipsychotic drugs are medications commonly for schizophrenia (SCZ treatment, which include two groups: typical and atypical. SCZ patients have multiple comorbidities, and the coadministration of drugs is quite common. This may result in adverse drug-drug interactions, which are events that occur when the effect of a drug is altered by the coadministration of another drug. Therefore, it is important to provide a comprehensive view of these interactions for further coadministration improvement. Here, we extracted SCZ drugs and their adverse drug interactions from the DrugBank and compiled a SCZ-specific adverse drug interaction network. This network included 28 SCZ drugs, 241 non-SCZs, and 991 interactions. By integrating the Anatomical Therapeutic Chemical (ATC classification with the network analysis, we characterized those interactions. Our results indicated that SCZ drugs tended to have more adverse drug interactions than other drugs. Furthermore, SCZ typical drugs had significant interactions with drugs of the “alimentary tract and metabolism” category while SCZ atypical drugs had significant interactions with drugs of the categories “nervous system” and “antiinfectives for systemic uses.” This study is the first to characterize the adverse drug interactions in the course of SCZ treatment and might provide useful information for the future SCZ treatment.

  20. Is the clinical relevance of drug-food and drug-herb interactions limited to grapefruit juice and Saint-John's Wort?

    Science.gov (United States)

    Mouly, Stéphane; Lloret-Linares, Célia; Sellier, Pierre-Olivier; Sene, Damien; Bergmann, J-F

    2017-04-01

    An interaction of drug with food, herbs, and dietary supplements is usually the consequence of a physical, chemical or physiologic relationship between a drug and a product consumed as food, nutritional supplement or over-the-counter medicinal plant. The current educational review aims at reminding to the prescribing physicians that the most clinically relevant drug-food interactions may not be strictly limited to those with grapefruit juice and with the Saint John's Wort herbal extract and may be responsible for changes in drug plasma concentrations, which in turn decrease efficacy or led to sometimes life-threatening toxicity. Common situations handled in clinical practice such as aging, concomitant medications, transplant recipients, patients with cancer, malnutrition, HIV infection and those receiving enteral or parenteral feeding may be at increased risk of drug-food or drug-herb interactions. Medications with narrow therapeutic index or potential life-threatening toxicity, e.g., the non-steroidal anti-inflammatory drugs, opioid analgesics, cardiovascular medications, warfarin, anticancer drugs and immunosuppressants may be at risk of significant drug-food interactions to occur. Despite the fact that considerable effort has been achieved to increase patient' and doctor's information and ability to anticipate their occurrence and consequences in clinical practice, a thorough and detailed health history and dietary recall are essential for identifying potential problems in order to optimize patient prescriptions and drug dosing on an individual basis as well as to increase the treatment risk/benefit ratio. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Potenciais interações medicamentosas em pacientes com artrite reumatoide Potential drug interactions in patients with rheumatoid arthritis

    Directory of Open Access Journals (Sweden)

    Fabíola Bagatini

    2011-02-01

    risk of potential undesirable interactions between medications used for managing RA and those used for non-chronic diseases. METHODS: A cohort study was carried out with 103 RA patients registered at the Strategy of Access to Medications from the Brazilian Health Ministry, at the School of Pharmacy of the city of Florianópolis, state of Santa Catarina. Patients were monthly followed up by use of form completion. Drug interactions were identified by use of the Drugdex System - Thomson Micromedex® - Interactions database. RESULTS: Polypharmacy was found in 95.1% of the patients, and 19 potential undesirable interactions were observed between the drugs used by 74 patients (mean of 3.0 ± 1.2 interactions/patient. All potential interactions were related to methotrexate. Omeprazole was the major representative, accounting for 29.3% of the interactions, followed by diclofenac sodium (17.6%, and metamizole sodium (13.2%. CONCLUSION: Considering that this study confirms that polypharmacy is a common therapeutic practice in RA patients, it is worth emphasizing the need for greater surveillance regarding the adverse effects or effectiveness reduction of certain drugs due to drug interaction

  2. ORIGINAL ARTICLES Prevalence of drug-drug interactions of ...

    African Journals Online (AJOL)

    2008-02-02

    Feb 2, 2008 ... Table II. Frequency of level 2 interactions between ARVs and the other drugs. Interacting ARVs and other drugs. N. %*. Didanosine + ketoconazole. 1. 0.91. Didanosine + ofloxacin. 1. 0.91. Didanosine + ciprofloxacin. 2. 1.82. Didanosine + iraconazole. 3. 2.73. Didanosine + ketoconazole. 2. 1.82. Efavirenz ...

  3. [Molecular fundamentals of drug interactions in the therapy of colorectal cancer].

    Science.gov (United States)

    Regulska, Katarzyna; Stanisz, Beata; Regulski, Miłosz; Gieremek, Paulina

    2014-03-04

    Rapid advances in the field of chemotherapy have resulted in the introduction of numerous antineoplastic drugs into clinical practice, which increased the efficiency of patient management. Also the prevalent use of combination treatment based on drug action synergy contributed to the improved clinical effect associated with cytotoxic drug administration. It seems, however, obvious that the multidirectional pharmacotherapy in oncology requires a thorough knowledge of drugs' pharmaceutical behavior in order to maximize their collective action and prevent the occurrence of unintended drug interactions that could potentially impair treatment effectiveness. In fact, drug interactions constitute a serious problem for current oncology primarily resulting from a narrow therapeutic index specific for the majority of anticancer drugs. This, in turn, indicates that even slight deviations of their pharmacokinetics could cause significant clinical consequences, manifested by alteration of the toxicological profile or reduction of therapeutic efficiency. Hence, the investigation of molecular aspects underlying the mechanisms of various drug interactions seems to be essential for proper and safe patient management. The present article is devoted to the extensive subject of drug interactions occurring in the therapy of colorectal cancer. It presents the available literature data on both positive and negative effects of interactions and it discusses their mechanisms complying with their classification into pharmacokinetic and pharmacodynamic ones.

  4. Interaction of coenzyme Q10 with the intestinal drug transporter P-glycoprotein.

    Science.gov (United States)

    Itagaki, Shirou; Ochiai, Akiko; Kobayashi, Masaki; Sugawara, Mitsuru; Hirano, Takeshi; Iseki, Ken

    2008-08-27

    In clinical trials, patients usually take many kinds of drugs at the same time. Thus, drug-drug interactions can often directly affect the therapeutic safety and efficacy of many drugs. Oral delivery is the most desirable means of drug administration. Changes in the activity of drug transporters may substantially influence the absorption of administered drugs from the intestine. However, there have been a few studies on food-drug interactions involving transporters. It is important to be aware of the potential of food-drug interactions and to act in order to prevent undesirable and harmful clinical consequences. Coenzyme Q10 (CoQ10) is very widely consumed by humans as a food supplement because of its recognition by the public as an important nutrient in supporting human health. Since intestinal efflux transporter P-glycoprotein (P-gp) is one of the major factors in drug-drug interactions, we focused on this transporter. We report here for the first time that CoQ10, which is widely used as a food supplement, affects the transport activity of P-gp.

  5. Dendrimers in drug delivery and targeting: Drug-dendrimer interactions and toxicity issues

    Directory of Open Access Journals (Sweden)

    Kanika Madaan

    2014-01-01

    Full Text Available Dendrimers are the emerging polymeric architectures that are known for their defined structures, versatility in drug delivery and high functionality whose properties resemble with biomolecules. These nanostructured macromolecules have shown their potential abilities in entrapping and/or conjugating the high molecular weight hydrophilic/hydrophobic entities by host-guest interactions and covalent bonding (prodrug approach respectively. Moreover, high ratio of surface groups to molecular volume has made them a promising synthetic vector for gene delivery. Owing to these properties dendrimers have fascinated the researchers in the development of new drug carriers and they have been implicated in many therapeutic and biomedical applications. Despite of their extensive applications, their use in biological systems is limited due to toxicity issues associated with them. Considering this, the present review has focused on the different strategies of their synthesis, drug delivery and targeting, gene delivery and other biomedical applications, interactions involved in formation of drug-dendrimer complex along with characterization techniques employed for their evaluation, toxicity problems and associated approaches to alleviate their inherent toxicity.

  6. Dendrimers in drug delivery and targeting: Drug-dendrimer interactions and toxicity issues

    Science.gov (United States)

    Madaan, Kanika; Kumar, Sandeep; Poonia, Neelam; Lather, Viney; Pandita, Deepti

    2014-01-01

    Dendrimers are the emerging polymeric architectures that are known for their defined structures, versatility in drug delivery and high functionality whose properties resemble with biomolecules. These nanostructured macromolecules have shown their potential abilities in entrapping and/or conjugating the high molecular weight hydrophilic/hydrophobic entities by host-guest interactions and covalent bonding (prodrug approach) respectively. Moreover, high ratio of surface groups to molecular volume has made them a promising synthetic vector for gene delivery. Owing to these properties dendrimers have fascinated the researchers in the development of new drug carriers and they have been implicated in many therapeutic and biomedical applications. Despite of their extensive applications, their use in biological systems is limited due to toxicity issues associated with them. Considering this, the present review has focused on the different strategies of their synthesis, drug delivery and targeting, gene delivery and other biomedical applications, interactions involved in formation of drug-dendrimer complex along with characterization techniques employed for their evaluation, toxicity problems and associated approaches to alleviate their inherent toxicity. PMID:25035633

  7. Drug Interaction between Sirolimus and Ranolazine in a Kidney Transplant Patient

    Directory of Open Access Journals (Sweden)

    Joanna C. Masters

    2014-01-01

    Full Text Available Purpose. The case of a kidney transplant recipient who experienced a probable drug interaction between sirolimus and ranolazine is reported. Summary. The narrow therapeutic window of immunosuppressive therapy in transplant recipients requires close monitoring for potential drug-drug interactions. The patient, a 57-year-old Caucasian male kidney transplant recipient, was stable for years on sirolimus as his primary immunosuppressive agent and had a history of chronic angina, for which he was prescribed ranolazine. Upon addition and dose escalation of ranolazine, whole blood sirolimus levels more than tripled, rising to immeasurably high concentrations. After holding sirolimus on multiple occasions and reducing dosage more than 50%, blood levels returned to therapeutic range, while continuing ranolazine. Conclusion. Since ranolazine is a documented P-GP and CYP3A inhibitor, and sirolimus a known substrate for both pathways, it is proposed that ranolazine inhibition of P-GP and CYP3A4 contributed to the significant elevation in sirolimus exposure. No alternative causes for the rise in sirolimus exposure were found, and assessment with the Drug Interaction Probability Scale finds this interaction to be probable. Clinicians should be aware of the potential for this interaction to cause elevated sirolimus exposure and subsequent increase in clinical effect or toxicity, in this case overimmunosuppression.

  8. Contrast media: interactions with other drugs and clinical tests

    International Nuclear Information System (INIS)

    Morcos, Sameh K.; Exley, C.M.; Thomsen, Henrik S.

    2005-01-01

    Many patients with multiple medical problems who are receiving a variety of drugs are investigated with imaging techniques which require intravascular contrast media. The Contrast Media Safety Committee of the European Society of Urogenital Radiology therefore decided to review the literature and to draw up simple guidelines on interactions between contrast media and other drugs. An extensive literature search was carried out and summarized in a report. Based on the available information, simple guidelines have been drawn up. The report and guidelines were discussed at the 11th European Symposium on Urogenital Radiology in Santiago de Compostela. Contrast media may interact with other drugs, and may interfere with isotope studies and biochemical measurements. Awareness of the patient drug history is important to avoid potential hazards. Simple guidelines are presented. (orig.)

  9. Risk of drug interaction: combination of antidepressants and other drugs

    Directory of Open Access Journals (Sweden)

    Miyasaka Lincoln Sakiara

    2003-01-01

    Full Text Available OBJECTIVE: To assess the frequency of combination of antidepressants with other drugs and risk of drug interactions in the setting public hospital units in Brazil. METHODS: Prescriptions of all patients admitted to a public hospital from November 1996 to February 1997 were surveyed from the hospital's data processing center in São Paulo, Brazil. A manual search of case notes of all patients admitted to the psychiatric unit from January 1993 to December 1995 and all patients registered in the affective disorders outpatient clinic in December 1996 was carried out. Patients taking any antidepressant were identified and concomitant use of drugs was checked. By means of a software program (Micromedex® drug interactions were identified. RESULTS: Out of 6,844 patients admitted to the hospital, 63 (0.9% used antidepressants and 16 (25.3% were at risk of drug interaction. Out of 311 patients in the psychiatric unit, 63 (20.2% used antidepressants and 13 of them (20.6% were at risk. Out of 87 patients in the affective disorders outpatient clinic, 43 (49.4% took antidepressants and 7 (16.2% were at risk. In general, the use of antidepressants was recorded in 169 patients and 36 (21.3% were at risk of drug interactions. Twenty different forms of combinations at risk of drug interactions were identified: four were classified as mild, 15 moderate and one severe interaction. CONCLUSION: In the hospital general units the number of drug interactions per patient was higher than in the psychiatric unit; and prescription for depression was lower than expected.

  10. Molecular fundamentals of drug interactions in the therapy of colorectal cancer

    Directory of Open Access Journals (Sweden)

    Katarzyna Regulska

    2014-03-01

    Full Text Available Rapid advances in the field of chemotherapy have resulted in the introduction of numerous antineoplastic drugs into clinical practice, which increased the efficiency of patient management. Also the prevalent use of combination treatment based on drug action synergy contributed to the improved clinical effect associated with cytotoxic drug administration. It seems, however, obvious that the multidirectional pharmacotherapy in oncology requires a thorough knowledge of drugs’ pharmaceutical behavior in order to maximize their collective action and prevent the occurrence of unintended drug interactions that could potentially impair treatment effectiveness. In fact, drug interactions constitute a serious problem for current oncology primarily resulting from a narrow therapeutic index specific for the majority of anticancer drugs. This, in turn, indicates that even slight deviations of their pharmacokinetics could cause significant clinical consequences, manifested by alteration of the toxicological profile or reduction of therapeutic efficiency. Hence, the investigation of molecular aspects underlying the mechanisms of various drug interactions seems to be essential for proper and safe patient management. The present article is devoted to the extensive subject of drug interactions occurring in the therapy of colorectal cancer. It presents the available literature data on both positive and negative effects of interactions and it discusses their mechanisms complying with their classification into pharmacokinetic and pharmacodynamic ones.

  11. Drug-Drug Interaction Extraction via Convolutional Neural Networks

    Directory of Open Access Journals (Sweden)

    Shengyu Liu

    2016-01-01

    Full Text Available Drug-drug interaction (DDI extraction as a typical relation extraction task in natural language processing (NLP has always attracted great attention. Most state-of-the-art DDI extraction systems are based on support vector machines (SVM with a large number of manually defined features. Recently, convolutional neural networks (CNN, a robust machine learning method which almost does not need manually defined features, has exhibited great potential for many NLP tasks. It is worth employing CNN for DDI extraction, which has never been investigated. We proposed a CNN-based method for DDI extraction. Experiments conducted on the 2013 DDIExtraction challenge corpus demonstrate that CNN is a good choice for DDI extraction. The CNN-based DDI extraction method achieves an F-score of 69.75%, which outperforms the existing best performing method by 2.75%.

  12. Patient Counseling about Herbal-Drug Interactions | Hussain ...

    African Journals Online (AJOL)

    The multitude of pharmacologically active compounds obviously increases the likelihood of interactions taking place. Hence, the likelihood of herb-drug interactions is theoretically higher than drug-drug interactions because synthetic drugs usually contain single chemical entity. Case reports and clinical studies have ...

  13. Developing a molecular roadmap of drug-food interactions.

    Directory of Open Access Journals (Sweden)

    Kasper Jensen

    2015-02-01

    Full Text Available Recent research has demonstrated that consumption of food -especially fruits and vegetables- can alter the effects of drugs by interfering either with their pharmacokinetic or pharmacodynamic processes. Despite the recognition of such drug-food associations as an important element for successful therapeutic interventions, a systematic approach for identifying, predicting and preventing potential interactions between food and marketed or novel drugs is not yet available. The overall objective of this work was to sketch a comprehensive picture of the interference of ∼ 4,000 dietary components present in ∼1800 plant-based foods with the pharmacokinetics and pharmacodynamics processes of medicine, with the purpose of elucidating the molecular mechanisms involved. By employing a systems chemical biology approach that integrates data from the scientific literature and online databases, we gained a global view of the associations between diet and dietary molecules with drug targets, metabolic enzymes, drug transporters and carriers currently deposited in DrugBank. Moreover, we identified disease areas and drug targets that are most prone to the negative effects of drug-food interactions, showcasing a platform for making recommendations in relation to foods that should be avoided under certain medications. Lastly, by investigating the correlation of gene expression signatures of foods and drugs we were able to generate a completely novel drug-diet interactome map.

  14. Simultaneous Assessment of Transporter-Mediated Drug-Drug Interactions Using a Probe Drug Cocktail in Cynomolgus Monkey.

    Science.gov (United States)

    Kosa, Rachel E; Lazzaro, Sarah; Bi, Yi-An; Tierney, Brendan; Gates, Dana; Modi, Sweta; Costales, Chester; Rodrigues, A David; Tremaine, Larry M; Varma, Manthena V

    2018-06-07

    We aim to establish an in vivo preclinical model to enable simultaneous assessment of inhibition potential of an investigational drug on clinically relevant drug transporters, organic anion transporting polypeptide (OATP)1B, breast cancer resistance protein (BCRP), P-glycoprotein (P-gp) and organic anion transporter (OAT)3. Pharmacokinetics of substrate cocktail consisting of pitavastatin (OATP1B substrate), rosuvastatin (OATP1B/BCRP/OAT3), sulfasalazine (BCRP) and talinolol (P-gp) were obtained in cynomolgus monkey - alone or in combination with transporter inhibitors. Single dose rifampicin (30 mg/kg) significantly (pdrugs, with a marked effect on pitavastatin and rosuvastatin (AUC ratio ~21-39). Elacridar, BCRP/P-gp inhibitor, increased the AUC of sulfasalazine, talinolol, as well as rosuvastatin and pitavastatin. An OAT1/3 inhibitor (probenecid) significantly (pdrug-drug interaction risk assessment, before advancing a new molecular entity into clinical development, as well as providing mechanistic insights on transporter-mediated interactions. The American Society for Pharmacology and Experimental Therapeutics.

  15. In Silico Identification of Proteins Associated with Drug-induced Liver Injury Based on the Prediction of Drug-target Interactions.

    Science.gov (United States)

    Ivanov, Sergey; Semin, Maxim; Lagunin, Alexey; Filimonov, Dmitry; Poroikov, Vladimir

    2017-07-01

    Drug-induced liver injury (DILI) is the leading cause of acute liver failure as well as one of the major reasons for drug withdrawal from clinical trials and the market. Elucidation of molecular interactions associated with DILI may help to detect potentially hazardous pharmacological agents at the early stages of drug development. The purpose of our study is to investigate which interactions with specific human protein targets may cause DILI. Prediction of interactions with 1534 human proteins was performed for the dataset with information about 699 drugs, which were divided into three categories of DILI: severe (178 drugs), moderate (310 drugs) and without DILI (211 drugs). Based on the comparison of drug-target interactions predicted for different drugs' categories and interpretation of those results using clustering, Gene Ontology, pathway and gene expression analysis, we identified 61 protein targets associated with DILI. Most of the revealed proteins were linked with hepatocytes' death caused by disruption of vital cellular processes, as well as the emergence of inflammation in the liver. It was found that interaction of a drug with the identified targets is the essential molecular mechanism of the severe DILI for the most of the considered pharmaceuticals. Thus, pharmaceutical agents interacting with many of the identified targets may be considered as candidates for filtering out at the early stages of drug research. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. HIV Treatment: What is a Drug Interaction?

    Science.gov (United States)

    ... more) drugs or between a drug and a food or beverage. Taking a drug while having certain medical conditions ... interaction : A reaction between a drug and a food or beverage. Drug-condition interaction : A reaction that occurs when ...

  17. Pharmacodynamics and common drug-drug interactions of the third-generation antiepileptic drugs.

    Science.gov (United States)

    Stefanović, Srđan; Janković, Slobodan M; Novaković, Milan; Milosavljević, Marko; Folić, Marko

    2018-02-01

    Anticonvulsants that belong to the third generation are considered as 'newer' antiepileptic drugs, including: eslicarbazepine acetate, lacosamide, perampanel, brivaracetam, rufinamide and stiripentol. Areas covered: This article reviews pharmacodynamics (i.e. mechanisms of action) and clinically relevant drug-drug interactions of the third-generation antiepileptic drugs. Expert opinion: Newer antiepileptic drugs have mechanisms of action which are not shared with the first and the second generation anticonvulsants, like inhibition of neurotransmitters release, blocking receptors for excitatory amino acids and new ways of sodium channel inactivation. New mechanisms of action increase chances of controlling forms of epilepsy resistant to older anticonvulsants. Important advantage of the third-generation anticonvulsants could be their little propensity for interactions with both antiepileptic and other drugs observed until now, making prescribing much easier and safer. However, this may change with new studies specifically designed to discover drug-drug interactions. Although the third-generation antiepileptic drugs enlarged therapeutic palette against epilepsy, 20-30% of patients with epilepsy is still treatment-resistant and need new pharmacological approach. There is great need to explore all molecular targets that may directly or indirectly be involved in generation of seizures, so a number of candidate compounds for even newer anticonvulsants could be generated.

  18. Adverse drug reactions and drug–drug interactions with over-the-counter NSAIDs

    Directory of Open Access Journals (Sweden)

    Moore N

    2015-07-01

    Full Text Available Nicholas Moore,1 Charles Pollack,2 Paul Butkerait2 1Department of Pharmacology, Université de Bordeaux, Bordeaux, France; 2Pfizer Consumer Healthcare, Madison, NJ, USA Abstract: Nonsteroidal anti-inflammatory drugs (NSAIDs such as ibuprofen have a long history of safe and effective use as both prescription and over-the-counter (OTC analgesics/antipyretics. The mechanism of action of all NSAIDs is through reversible inhibition of cyclooxygenase enzymes. Adverse drug reactions (ADRs including gastrointestinal bleeding as well as cardiovascular and renal effects have been reported with NSAID use. In many cases, ADRs may occur because of drug–drug interactions (DDIs between the NSAID and a concomitant medication. For example, DDIs have been reported when NSAIDs are coadministered with aspirin, alcohol, some antihypertensives, antidepressants, and other commonly used medications. Because of the pharmacologic nature of these interactions, there is a continuum of risk in that the potential for an ADR is dependent on total drug exposure. Therefore, consideration of dose and duration of NSAID use, as well as the type or class of comedication administered, is important when assessing potential risk for ADRs. Safety findings from clinical studies evaluating prescription-strength NSAIDs may not be directly applicable to OTC dosing. Health care providers can be instrumental in educating patients that using OTC NSAIDs at the lowest effective dose for the shortest required duration is vital to balancing efficacy and safety. This review discusses some of the most clinically relevant DDIs reported with NSAIDs based on major sites of ADRs and classes of medication, with a focus on OTC ibuprofen, for which the most data are available. Keywords: adverse effects, nonsteroidal anti-inflammatory drugs, gastrointestinal, cardiovascular, renal

  19. Polypharmacy and the risk of drug-drug interactions among Danish elderly

    DEFF Research Database (Denmark)

    Rosholm, J U; Bjerrum, L; Hallas, J

    1998-01-01

    OBJECTIVE: To analyze the use of all subsidized prescription drugs with special attention to the elderly (> or = 70 years of age), including their use of drug combination generally accepted as carrying a risk of severe interactions. DESIGN: Descriptive prevalence study. SETTING: Odense...... accepted as carrying a risk of severe interactions. RESULTS: Among persons less than 70 years, 67.9% used none, 16.5% used one drug and 15.6% used two or more prescription drugs. The corresponding prevalences for the elderly were 35.7%, 15.9% and 48.4%. The 26,337 elderly patients with at least two drugs...... used 21,293 different combinations. Of the elderly patients who had purchased > or = two drugs, 4.4% had combinations of drugs carrying a risk of severe interactions. CONCLUSIONS: Most elderly use drugs and usually several drugs concomitantly. The elderly form a heterogeneous group of drug users. Drug...

  20. Review of pharmacological interactions of oral anticancer drugs provided at pharmacy department

    Directory of Open Access Journals (Sweden)

    E. Sánchez Gómez

    2014-07-01

    Full Text Available Abstract: Objective: To identify the pharmacologic interactions of oral anti-cancer drugs provided at an outpatient clinic. Material and methods: Anti-cancer drugs included in the Phamacotherapeutic Guideline of the Hospital were identified. A literature search was carried out on the pharmacologic interactions in MEDLINE® and EMBASE® (with the filer language English or Spanish, and the descriptors: “name of the anti-cancer drug” AND (“drug interactions” OR “pharmacokinetic”, Up-to-date®, MICROMEDEX® and the drug information sheet for the EMA and the FDA. Information was also gathered from the abstract presented to European and Spanish scientific meetings for the last 4 years. When an interaction was analyzed and had clinical relevance, the best pharmacotherapeutic interaction-free alternative was sought. Results: Twenty-three drugs were identified, of which Chlorambucil, Fludarabine, Lenalidomide, Melphalan, and Thalidomide were the active compounds with the lowest likelihood of producing a pharmacologic interaction. Tyrosine kinase inhibitors (particularly Erlotinib, Imatinib, Lapatinib, and Pazopanib are the drugs with highest number of pharmacologic interactions described, many of them with severe clinical consequences, with increases and decreases of the plasma levels of anti-cancer drugs. The active compounds identified that may have pharmacologic interactions with anticancer drugs were mainly: Allopurinol, Amiodarone, Carbamazepine, Dabigatran, Digoxin, Spironolactone, Phenytoin, Itraconazol, Repaglinide, Silodosin, Tamoxifen, Verapamil, and Warfarin. Pharmacologic interactions through the cytochrome P450 1A2, 2D6, 2C8, 2C9, 3A4 were the most important for tyrosine kinase inhibitors. Other non-pharmacologic compounds, with an important potential of producing relevant pharmacologic interaction were immunomodulators (Echinacea extracts and Hypericum perforatum. Conclusions: Oral anticancer drugs have numerous pharmacologic

  1. Pharmacokinetic drug interactions of morphine, codeine, and their derivatives: theory and clinical reality, Part II.

    Science.gov (United States)

    Armstrong, Scott C; Cozza, Kelly L

    2003-01-01

    Pharmacokinetic drug-drug interactions with codeine, dihydrocodeine, hydrocodone, oxycodone, and buprenorphine are reviewed in this column. These compounds have a very similar chemical structure to morphine. Unlike morphine, which is metabolized chiefly through conjugation reactions with uridine diphosphate glucuronosyl transferase (UGT) enzymes, these five drugs are metabolized both through oxidative reactions by the cytochrome P450 (CYP450) enzyme and conjugation by UGT enzymes. There is controversy as to whether codeine, dihydrocodeine, and hydrocodone are actually prodrugs requiring activation by the CYP450 2D6 enzyme or UGT enzymes. Oxycodone and buprenorphine, however, are clearly not prodrugs and are metabolized by the CYP450 2D6 and 3A4 enzymes, respectively. Knowledge of this metabolism assists in the understanding for the potential of drug-drug interactions with these drugs. This understanding is important so that clinicians can choose the proper dosages for analgesia and anticipate potential drug-drug interactions.

  2. Interaction of cationic drugs with liposomes.

    Science.gov (United States)

    Howell, Brett A; Chauhan, Anuj

    2009-10-20

    Interactions between cationic drugs and anionic liposomes were studied by measuring binding of drugs and the effect of binding on liposome permeability. The measurements were analyzed in the context of a continuum model based on electrostatic interactions and a Langmuir isotherm. Experiments and modeling indicate that, although electrostatic interactions are important, the fraction of drug sequestered in the double-layer is negligible. The majority of drug enters the bilayer with the charged regions interacting with the charged lipid head groups and the lipophilic regions associated with the bilayer. The partitioning of the drug can be described by a Langmuir isotherm with the electrostatic interactions increasing the sublayer concentration of the drug. The binding isotherms are similar for all tricyclic antidepressants (TCA). Bupivacaine (BUP) binds significantly less compared to TCA because its structure is such that the charged region has minimal interactions with the lipid heads once the BUP molecule partitions inside the bilayer. Conversely, the TCAs are linear with distinct hydrophilic and lipophilic regions, allowing the lipophilic regions to lie inside the bilayer and the hydrophilic regions to protrude out. This conformation maximizes the permeability of the bilayer, leading to an increased release of a hydrophilic fluorescent dye from liposomes.

  3. Drug-Drug Interactions Potential of Icariin and Its Intestinal Metabolites via Inhibition of Intestinal UDP-Glucuronosyltransferases

    Directory of Open Access Journals (Sweden)

    Yun-Feng Cao

    2012-01-01

    Full Text Available Icariin is known as an indicative constituent of the Epimedium genus, which has been commonly used in Chinese herbal medicine to enhance treat impotence and improve sexual function, as well as for several other indications for over 2000 years. In this study, we aimed to investigate the effects of icariin and its intestinal metabolites on the activities of human UDP-glucuronosyltransferase (UGT activities. Using a panel of recombinant human UGT isoforms, we found that icariin exhibited potent inhibition against UGT1A3. It is interesting that the intestinal metabolites of icariin exhibited a different inhibition profile compared with icariin. Different from icariin, icariside II was a potent inhibitor of UGT1A4, UGT1A7, UGT1A9, and UGT2B7, and icaritin was a potent inhibitor of UGT1A7 and UGT1A9. The potential for drug interactions in vivo was also quantitatively predicted and compared. The quantitative prediction of risks indicated that in vivo inhibition against intestinal UGT1A3, UGT1A4, and UGT1A7 would likely occur after oral administration of icariin products.

  4. Artemether-Lumefantrine Combination Therapy for Treatment of Uncomplicated Malaria: The Potential for Complex Interactions with Antiretroviral Drugs in HIV-Infected Individuals

    Directory of Open Access Journals (Sweden)

    Pauline Byakika-Kibwika

    2011-01-01

    Full Text Available Treatment of malaria in HIV-infected individuals receiving antiretroviral therapy (ART poses significant challenges. Artemether-lumefantrine (AL is one of the artemisisnin-based combination therapies recommended for treatment of malaria. The drug combination is highly efficacious against sensitive and multidrug resistant falciparum malaria. Both artemether and lumefantrine are metabolized by hepatic cytochrome P450 (CYP450 enzymes which metabolize the protease inhibitors (PIs and nonnucleoside reverse transcriptase inhibitors (NNRTIs used for HIV treatment. Coadministration of NNRTIs and PIs with AL could potentially cause complex pharmacokinetic drug interactions. NNRTI by inducing CYP450 3A4 enzyme and PIs by inhibiting CYP450 3A4 enzymes could influence both artemether and lumefantrine concentrations and their active metabolites dihydroartemisinin and desbutyl-lumefantrine, predisposing patients to poor treatment response, toxicity, and risk for development of resistance. There are scanty data on these interactions and their consequences. Pharmacokinetic studies to evaluate these interactions in the target populations are urgently needed.

  5. Biomembrane models and drug-biomembrane interaction studies: Involvement in drug design and development

    Directory of Open Access Journals (Sweden)

    R Pignatello

    2011-01-01

    Full Text Available Contact with many different biological membranes goes along the destiny of a drug after its systemic administration. From the circulating macrophage cells to the vessel endothelium, to more complex absorption barriers, the interaction of a biomolecule with these membranes largely affects its rate and time of biodistribution in the body and at the target sites. Therefore, investigating the phenomena occurring on the cell membranes, as well as their different interaction with drugs in the physiological or pathological conditions, is important to exploit the molecular basis of many diseases and to identify new potential therapeutic strategies. Of course, the complexity of the structure and functions of biological and cell membranes, has pushed researchers toward the proposition and validation of simpler two- and three-dimensional membrane models, whose utility and drawbacks will be discussed. This review also describes the analytical methods used to look at the interactions among bioactive compounds with biological membrane models, with a particular accent on the calorimetric techniques. These studies can be considered as a powerful tool for medicinal chemistry and pharmaceutical technology, in the steps of designing new drugs and optimizing the activity and safety profile of compounds already used in the therapy.

  6. Prevalence of potentially serious drug-drug interactions among South African elderly private health sector patients using the Mimica Matanović/Vlahović-Palčevski protocol.

    Science.gov (United States)

    van Heerden, Julandi A; Burger, Johanita R; Gerber, Jan J; Vlahović-Palčevski, Vera

    2018-04-01

    To determine the prevalence of potentially serious drug-drug interactions (DDIs) and their relationship with gender and age, among elderly in South Africa. A cross-sectional study was conducted using pharmaceutical claims data for 2013, for a total of 103 420 medical scheme beneficiaries' ≥65 years. All medications dispensed within one calendar month where the days' supply of medication dispensed overlapped, were grouped as one prescription. DDIs per prescription were then identified using the Mimica Matanović/Vlahović-Palčevski DDI protocol. Results were interpreted using effect sizes, that is Cramér's V, Cohen's d and Cohen's ƒ 2 . A total of 331 659 DDIs were identified on 235 870 (25.8%, N = 912 713) prescriptions (mean 0.36 (SD 0.7) (95% CI, 0.36 to 0.37)). Women encountered 63.5% of all DDIs. Effect sizes for the association between DDIs and age group (Cramér's V = 0.06), and gender (Cramér's V = 0.05) was negligible. There was no difference between men and women regarding the mean number of DDIs identified per prescription (Cohen's d = 0.10). The number of medicine per prescription (ƒ 2 = 0.51) was the biggest predictor of the DDIs. The most frequent interacting drug combinations were between central nervous system medicines (30.6%). Our study is the first to report the prevalence of potentially serious DDIs among an elderly population in the South African private health sector utilising the Mimica Matanović/Vlahović-Palčevski DDI protocol. Overall, we identified DDIs in approximately 26% of the prescriptions in our study. Age and gender were not found to be predictors of potentially serious DDIs. © 2017 Royal Pharmaceutical Society.

  7. Radiopharmaceuticals drug interactions: a critical review

    International Nuclear Information System (INIS)

    Santos-Oliveira, Ralph; Smith, Sheila W.; Carneiro-Leao, Ana Maria A.

    2008-01-01

    Radiopharmaceuticals play a critical role in modern medicine primarily for diagnostic purposes, but also for monitoring disease progression and response to treatment. As the use of image has been increased, so has the use of prescription medications. These trends increase the risk of interactions between medications and radiopharmaceuticals. These interactions which have an impact on image by competing with the radiopharmaceutical for binding sites for example can lead to false negative results. Drugs that accelerate the metabolism of the radiopharmaceutical can have a positive impact (i.e. speeding its clearance) or, if repeating image is needed, a negative impact. In some cases, for example in cardiac image among patients taking doxirubacin, these interactions may have a therapeutic benefit. The incidence of drug-radiopharmaceuticals adverse reactions is unknown, since they may not be reported or even recognized. Here, we compiled the medical literature, using the criteria of a systematic review established by the Cochrane Collaboration, on pharmaceutical-drug interactions to provide a summary of documented interactions by organ system and radiopharmaceuticals. The purpose is to provide a reference on drug interactions that could inform the nuclear medicine staff in their daily routine. Efforts to increase adverse event reporting, and ideally consolidate reports worldwide, can provide a critically needed resource for prevention of drug-radiopharmaceuticals interactions. (author)

  8. Drug disposition and drug-drug interaction data in 2013 FDA new drug applications: a systematic review.

    Science.gov (United States)

    Yu, Jingjing; Ritchie, Tasha K; Mulgaonkar, Aditi; Ragueneau-Majlessi, Isabelle

    2014-12-01

    The aim of the present work was to perform a systematic review of drug metabolism, transport, pharmacokinetics, and DDI data available in the NDAs approved by the FDA in 2013, using the University of Washington Drug Interaction Database, and to highlight significant findings. Among 27 NMEs approved, 22 (81%) were well characterized with regard to drug metabolism, transport, or organ impairment, in accordance with the FDA drug interaction guidance (2012) and were fully analyzed in this review. In vitro, a majority of the NMEs were found to be substrates or inhibitors/inducers of at least one drug metabolizing enzyme or transporter. However, in vivo, only half (n = 11) showed clinically relevant drug interactions, with most related to the NMEs as victim drugs and CYP3A being the most affected enzyme. As perpetrators, the overall effects for NMEs were much less pronounced, compared with when they served as victims. In addition, the pharmacokinetic evaluation in patients with hepatic or renal impairment provided useful information for further understanding of the drugs' disposition. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.

  9. Evaluation of Drug Interactions and Prescription Errors of Poultry Veterinarians in North of Iran

    Directory of Open Access Journals (Sweden)

    Madadi MS

    2014-03-01

    Full Text Available Drug prescription errors are a common cause of adverse incidents and may lead to adverse outcomes, sometimes in subtle ways, being compounded by circumstances or further errors. Therefore, it is important that veterinarians issue the correct drug at the correct dose. Using two or more prescribed drugs may lead to drug interactions. Some drug interactions are very harmful and may have potential threats to the patient's health that is called antagonism. In a survey study, medication errors of 750 prescriptions, including dosage errors and drug interactions were studied. The results indicated that 20.8% of prescriptions had at least one drug interaction. The most interactions were related to antibiotics (69.1%, Sulfonamides (46.7%, Methenamine (46.7% and Florfenicol (20.2%. Analysis of dosage errors indicated that total drugs consumed by broilers in the summer are more than winter seasons. Based on these results, avoiding medication errors are important in the balanced prescribing of drugs and regular education of veterinary practitioners in a certain interval is needed.

  10. Drug interactions with oral sulphonylurea hypoglycaemic drugs.

    Science.gov (United States)

    Hansen, J M; Christensen, L K

    1977-01-01

    The effect of the oral sulphonylurea hypoglycaemic drugs may be influenced by a large number of other drugs. Some of these combinations (e.g. phenylbutazone, sulphaphenazole) may result in cases of severe hypoglycaemic collapse. Tolbutamide and chlorpropamide should never be given to a patient without a prior careful check of which medicaments are already being given. Similarly, no drug should be given to a diabetic treated with tolbutamide and chlorpropamide without consideration of the possibility of interaction phenomena.

  11. Drug-domain interaction networks in myocardial infarction.

    Science.gov (United States)

    Wang, Haiying; Zheng, Huiru; Azuaje, Francisco; Zhao, Xing-Ming

    2013-09-01

    It has been well recognized that the pace of the development of new drugs and therapeutic interventions lags far behind biological knowledge discovery. Network-based approaches have emerged as a promising alternative to accelerate the discovery of new safe and effective drugs. Based on the integration of several biological resources including two recently published datasets i.e., Drug-target interactions in myocardial infarction (My-DTome) and drug-domain interaction network, this paper reports the association between drugs and protein domains in the context of myocardial infarction (MI). A MI drug-domain interaction network, My-DDome, was firstly constructed, followed by topological analysis and functional characterization of the network. The results show that My-DDome has a very clear modular structure, where drugs interacting with the same domain(s) within each module tend to have similar therapeutic effects. Moreover it has been found that drugs acting on blood and blood forming organs (ATC code B) and sensory organs (ATC code S) are significantly enriched in My-DDome (p drugs, their known targets, and seemingly unrelated proteins can be revealed.

  12. Pharmacokinetic drug interactions of morphine, codeine, and their derivatives: theory and clinical reality, part I.

    Science.gov (United States)

    Armstrong, Scott C; Cozza, Kelly L

    2003-01-01

    Pharmacokinetic drug-drug interactions with morphine, hydromorphone, and oxymorphone are reviewed in this column. Morphine is a naturally occurring opiate that is metabolized chiefly through glucuronidation by uridine diphosphate glucuronosyl transferase (UGT) enzymes in the liver. These enzymes produce an active analgesic metabolite and a potentially toxic metabolite. In vivo drug-drug interaction studies with morphine are few, but they do suggest that inhibition or induction of UGT enzymes could alter morphine and its metabolite levels. These interactions could change analgesic efficacy. Hydromorphone and oxymorphone, close synthetic derivatives of morphine, are also metabolized primarily by UGT enzymes. Hydromorphone may have a toxic metabolite similar to morphine. In vivo drug-drug interaction studies with hydromorphone and oxymorphone have not been done, so it is difficult to make conclusions with these drugs.

  13. Theoretical and experimental investigation of drug-polymer interaction and miscibility and its impact on drug supersaturation in aqueous medium.

    Science.gov (United States)

    Baghel, Shrawan; Cathcart, Helen; O'Reilly, Niall J

    2016-10-01

    Amorphous solid dispersions (ASDs) have the potential to offer higher apparent solubility and bioavailability of BCS class II drugs. Knowledge of the solid state drug-polymer solubility/miscibility and their mutual interaction are fundamental requirements for the effective design and development of such systems. To this end, we have carried out a comprehensive investigation of various ASD systems of dipyridamole and cinnarizine in polyvinylpyrrolidone (PVP) and polyacrylic acid (PAA) at different drug loadings. Theoretical and experimental examinations (by implementing binary and ternary Flory-Huggins (F-H) theory) related to drug-polymer interaction/miscibility including solubility parameter approach, melting point depression method, phase diagram, drug-polymer interaction in the presence of moisture and the effect of drug loading on interaction parameter were performed. The information obtained from this study was used to predict the stability of ASDs at different drug loadings and under different thermal and moisture conditions. Thermal and moisture sorption analysis not only provided the composition-dependent interaction parameter but also predicted the composition dependent miscibility. DPM-PVP, DPM-PAA and CNZ-PAA systems have shown molecular level mixing over the complete range of drug loading. For CNZ-PVP, the presence of a single Tg at lower drug loadings (10, 20 and 35%w/w) indicates the formation of solid solution. However, drug recrystallization was observed for samples with higher drug weight fractions (50 and 65%w/w). Finally, the role of polymer in maintaining drug supersaturation has also been explored. It has been found that drug-polymer combinations capable of hydrogen-bonding in the solution state (DPM-PVP, DPM-PAA and CNZ-PAA) are more effective in preventing drug crystallization compared to the drug-polymer systems without such interaction (CNZ-PVP). The DPM-PAA system outperformed all other ASDs in various stability conditions (dry-state, in

  14. Identification of new candidate drugs for lung cancer using chemical-chemical interactions, chemical-protein interactions and a K-means clustering algorithm.

    Science.gov (United States)

    Lu, Jing; Chen, Lei; Yin, Jun; Huang, Tao; Bi, Yi; Kong, Xiangyin; Zheng, Mingyue; Cai, Yu-Dong

    2016-01-01

    Lung cancer, characterized by uncontrolled cell growth in the lung tissue, is the leading cause of global cancer deaths. Until now, effective treatment of this disease is limited. Many synthetic compounds have emerged with the advancement of combinatorial chemistry. Identification of effective lung cancer candidate drug compounds among them is a great challenge. Thus, it is necessary to build effective computational methods that can assist us in selecting for potential lung cancer drug compounds. In this study, a computational method was proposed to tackle this problem. The chemical-chemical interactions and chemical-protein interactions were utilized to select candidate drug compounds that have close associations with approved lung cancer drugs and lung cancer-related genes. A permutation test and K-means clustering algorithm were employed to exclude candidate drugs with low possibilities to treat lung cancer. The final analysis suggests that the remaining drug compounds have potential anti-lung cancer activities and most of them have structural dissimilarity with approved drugs for lung cancer.

  15. PXR as a mediator of herb–drug interaction

    Directory of Open Access Journals (Sweden)

    Brett C. Hogle

    2018-04-01

    Full Text Available Medicinal herbs have been a part of human medicine for thousands of years. The herb–drug interaction is an extension of drug–drug interaction, in which the consumptions of herbs cause alterations in the metabolism of drugs the patients happen to take at the same time. The pregnane X receptor (PXR has been established as one of the most important transcriptional factors that regulate the expression of phase I enzymes, phase II enzymes, and drug transporters in the xenobiotic responses. Since its initial discovery, PXR has been implicated in multiple herb–drug interactions that can lead to alterations of the drug's pharmacokinetic properties and cause fluctuating therapeutic efficacies, possibly leading to complications. Regions of the world that heavily incorporate herbalism into their primary health care and people turning to alternative medicines as a personal choice could be at risk for adverse reactions or unintended results from these interactions. This article is intended to highlight our understanding of the PXR-mediated herb–drug interactions. Keywords: Drug metabolism, Herb–drug interaction, PXR, St. John's Wort, Xenobiotics

  16. Drug interaction databases in medical literature

    DEFF Research Database (Denmark)

    Kongsholm, Gertrud Gansmo; Nielsen, Anna Katrine Toft; Damkier, Per

    2015-01-01

    PURPOSE: It is well documented that drug-drug interaction databases (DIDs) differ substantially with respect to classification of drug-drug interactions (DDIs). The aim of this study was to study online available transparency of ownership, funding, information, classifications, staff training...... available transparency of ownership, funding, information, classifications, staff training, and underlying documentation varies substantially among various DIDs. Open access DIDs had a statistically lower score on parameters assessed....... and the three most commonly used subscription DIDs in the medical literature. The following parameters were assessed for each of the databases: Ownership, classification of interactions, primary information sources, and staff qualification. We compared the overall proportion of yes/no answers from open access...

  17. Drug-micronutrient interactions: food for thought and thought for action.

    Science.gov (United States)

    Karadima, Vasiliki; Kraniotou, Christina; Bellos, George; Tsangaris, George Th

    2016-01-01

    Micronutrients are indispensable for a variety of vital functions. Micronutrient deficiencies are a global problem concerning two billion people. In most cases, deficiencies are treatable with supplementation of the elements in lack. Drug-nutrient interactions can also lead to micronutrient reduce or depletion by various pathways. Supplementation of the elements and long-term fortification programs for populations at risk can prevent and restore the related deficiencies. Within the context of Predictive, Preventive, and Personalized Medicine, a multi-professional network should be developed in order to identify, manage, and prevent drug-micronutrient interactions that can potentially result to micronutrient deficiencies.

  18. Potential for drug interactions mediated by polymorphic flavin-containing monooxygenase 3 in human livers.

    Science.gov (United States)

    Shimizu, Makiko; Shiraishi, Arisa; Sato, Ayumi; Nagashima, Satomi; Yamazaki, Hiroshi

    2015-02-01

    Human flavin-containing monooxygenase 3 (FMO3) in the liver catalyzes a variety of oxygenations of nitrogen- and sulfur-containing medicines and xenobiotic substances. Because of growing interest in drug interactions mediated by polymorphic FMO3, benzydamine N-oxygenation by human FMO3 was investigated as a model reaction. Among the 41 compounds tested, trimethylamine, methimazole, itopride, and tozasertib (50 μM) suppressed benzydamine N-oxygenation at a substrate concentration of 50 μM by approximately 50% after co-incubation. Suppression of N-oxygenation of benzydamine, trimethylamine, itopride, and tozasertib and S-oxygenation of methimazole and sulindac sulfide after co-incubation with the other five of these six substrates was compared using FMO3 proteins recombinantly expressed in bacterial membranes. Apparent competitive inhibition by methimazole (0-50 μM) of sulindac sulfide S-oxygenation was observed with FMO3 proteins. Sulindac sulfide S-oxygenation activity of Arg205Cys variant FMO3 protein was likely to be suppressed more by methimazole than wild-type or Val257Met variant FMO3 protein was. These results suggest that genetic polymorphism in the human FMO3 gene may lead to changes of drug interactions for N- or S-oxygenations of xenobiotics and endogenous substances and that a probe battery system of benzydamine N-oxygenation and sulindac sulfide S-oxygenation activities is recommended to clarify the drug interactions mediated by FMO3. Copyright © 2014 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  19. Cognitive enhancers (nootropics). Part 2: drugs interacting with enzymes. Update 2014.

    Science.gov (United States)

    Froestl, Wolfgang; Muhs, Andreas; Pfeifer, Andrea

    2014-01-01

    Scientists working in the field of Alzheimer's disease and, in particular, cognitive enhancers are very productive. The review on Drugs interacting with Enzymes was accepted in August 2012. However, this field is very dynamic. New potential targets for the treatment of Alzheimer's disease were identified. This update describes drugs interacting with 60 enzymes versus 43 enzymes in the first paper. Some compounds progressed in their development, while many others were discontinued. The present review covers the evolution of research in this field through April 2014.

  20. Cognitive enhancers (Nootropics). Part 1: drugs interacting with receptors. Update 2014.

    Science.gov (United States)

    Froestl, Wolfgang; Muhs, Andreas; Pfeifer, Andrea

    2014-01-01

    Scientists working in the fields of Alzheimer's disease and, in particular, cognitive enhancers are very productive. The review "Cognitive enhancers (nootropics): drugs interacting with receptors" was accepted for publication in July 2012. Since then, new targets for the potential treatment of Alzheimer's disease were identified. This update describes drugs interacting with 42 receptors versus 32 receptors in the first paper. Some compounds progressed in their development, while many others were discontinued. The present review covers the evolution of research in this field through March 2014.

  1. Antifungal therapy: drug-drug interactions at your fingertips

    NARCIS (Netherlands)

    Lempers, V.J.; Bruggemann, R.J.

    2016-01-01

    The Information Age has revolutionized the ability of healthcare professionals (HCPs) to oversee a substantial body of clinically relevant information literally at one's fingertips. In the field of clinical pharmacology, this may be particularly useful for managing drug-drug interactions (DDIs). A

  2. Role of cytochrome P450 in drug interactions

    Directory of Open Access Journals (Sweden)

    Bibi Zakia

    2008-10-01

    Full Text Available Abstract Drug-drug interactions have become an important issue in health care. It is now realized that many drug-drug interactions can be explained by alterations in the metabolic enzymes that are present in the liver and other extra-hepatic tissues. Many of the major pharmacokinetic interactions between drugs are due to hepatic cytochrome P450 (P450 or CYP enzymes being affected by previous administration of other drugs. After coadministration, some drugs act as potent enzyme inducers, whereas others are inhibitors. However, reports of enzyme inhibition are very much more common. Understanding these mechanisms of enzyme inhibition or induction is extremely important in order to give appropriate multiple-drug therapies. In future, it may help to identify individuals at greatest risk of drug interactions and adverse events.

  3. Strategies to enhance the bioavailability of curcumin: a potential antitumor drug

    Science.gov (United States)

    Kumar, Abhishek; Chittigori, Joshna; Li, Lian; Samuelson, Lynne; Sandman, Daniel; Kumar, Jayant

    2012-02-01

    Curcumin is a polyphenol which has elicited considerable interest for its antioxidant and anti tumor properties. Although curcumin may be used as potential therapeutic drug, it is very sparingly soluble in water which makes it less bioavailable under physiological conditions. We report two approaches to make curcumin more bioavailable. The first approach involves fabricating colloidal dispersions of curcumin in the range of tens of nanometers. The second approach involves functionalization of curcumin with polyethylene glycol (PEG) to render it water dispersible or soluble. Since curcumin is a fluorescent molecule as well as a potential drug, its interactions with cells have been investigated using one and two photon confocal fluorescence imaging. We have also observed strong interaction between curcumin and metal ions, which may have physiological implications.

  4. [Interactions of cytostatic agents with other drugs].

    Science.gov (United States)

    Sauter, C

    1991-08-31

    With the degree of polypharmacy currently practiced in the field of oncology, there are undoubtedly many drug interactions. In the present study the influence of "non-cytotoxic" drugs on anticancer drugs is discussed, but not the reverse. Not only is the augmentation (reversal of multidrug resistance) or the reduction of antitumor properties of cytotoxic drugs observed, but also cytostatic activities of "non-cytotoxic" drugs themselves. Examples are calmodulin inhibitors such as phenothiazines and tricyclic antidepressants. Interactions may also increase side effects of cytostatic drugs or even neutralize the antitumoral activity. To ensure that interactions are not overlooked, all medicaments being administered should be listed. It is, however, not feasible yet to determine serum concentrations of all the drugs given to the patient. The antitumor activity of supportive care could be evaluated in randomized studies (e.g. cytostatic drugs +/- antidepressants).

  5. Evaluation of drug-drug interactions among patients with chronic ...

    African Journals Online (AJOL)

    Introduction: The risk of drug-drug interactions (DDIs) is high in patients with chronic kidney disease (CKD) necessitating dose adjustments or the avoidance of drug combinations. This study aimed to evaluate DDIs among patients with CKD in the University of Nigeria Teaching Hospital (UNTH), Enugu, South-East Nigeria.

  6. 77 FR 9946 - Draft Guidance for Industry on Drug Interaction Studies-Study Design, Data Analysis, Implications...

    Science.gov (United States)

    2012-02-21

    ... industry entitled ``Drug Interaction Studies--Study Design, Data Analysis, Implications for Dosing, and... data analysis in the context of identifying potential drug interactions. The guidance also addresses... Studies--Study Design, Data Analysis, and Implications for Dosing and Labeling.'' Comments were received...

  7. Estimation of the binding modes with important human cytochrome P450 enzymes, drug interaction potential, pharmacokinetics, and hepatotoxicity of ginger components using molecular docking, computational, and pharmacokinetic modeling studies.

    Science.gov (United States)

    Qiu, Jia-Xuan; Zhou, Zhi-Wei; He, Zhi-Xu; Zhang, Xueji; Zhou, Shu-Feng; Zhu, Shengrong

    2015-01-01

    Ginger is one of the most commonly used herbal medicines for the treatment of numerous ailments and improvement of body functions. It may be used in combination with prescribed drugs. The coadministration of ginger with therapeutic drugs raises a concern of potential deleterious drug interactions via the modulation of the expression and/or activity of drug-metabolizing enzymes and drug transporters, resulting in unfavorable therapeutic outcomes. This study aimed to determine the molecular interactions between 12 main active ginger components (6-gingerol, 8-gingerol, 10-gingerol, 6-shogaol, 8-shogaol, 10-shogaol, ar-curcumene, β-bisabolene, β-sesquiphelandrene, 6-gingerdione, (-)-zingiberene, and methyl-6-isogingerol) and human cytochrome P450 (CYP) 1A2, 2C9, 2C19, 2D6, and 3A4 and to predict the absorption, distribution, metabolism, excretion, and toxicity (ADMET) of the 12 ginger components using computational approaches and comprehensive literature search. Docking studies showed that ginger components interacted with a panel of amino acids in the active sites of CYP1A2, 2C9, 2C19, 2D6, and 3A4 mainly through hydrogen bond formation, to a lesser extent, via π-π stacking. The pharmacokinetic simulation studies showed that the [I]/[Ki ] value for CYP2C9, 2C19, and 3A4 ranged from 0.0002 to 19.6 and the R value ranged from 1.0002 to 20.6 and that ginger might exhibit a high risk of drug interaction via inhibition of the activity of human CYP2C9 and CYP3A4, but a low risk of drug interaction toward CYP2C19-mediated drug metabolism. Furthermore, it has been evaluated that the 12 ginger components possessed a favorable ADMET profiles with regard to the solubility, absorption, permeability across the blood-brain barrier, interactions with CYP2D6, hepatotoxicity, and plasma protein binding. The validation results showed that there was no remarkable effect of ginger on the metabolism of warfarin in humans, whereas concurrent use of ginger and nifedipine exhibited a

  8. Large-scale structural and textual similarity-based mining of knowledge graph to predict drug-drug interactions

    KAUST Repository

    Abdelaziz, Ibrahim; Fokoue, Achille; Hassanzadeh, Oktie; Zhang, Ping; Sadoghi, Mohammad

    2017-01-01

    Drug-Drug Interactions (DDIs) are a major cause of preventable Adverse Drug Reactions (ADRs), causing a significant burden on the patients’ health and the healthcare system. It is widely known that clinical studies cannot sufficiently and accurately identify DDIs for new drugs before they are made available on the market. In addition, existing public and proprietary sources of DDI information are known to be incomplete and/or inaccurate and so not reliable. As a result, there is an emerging body of research on in-silico prediction of drug-drug interactions. In this paper, we present Tiresias, a large-scale similarity-based framework that predicts DDIs through link prediction. Tiresias takes in various sources of drug-related data and knowledge as inputs, and provides DDI predictions as outputs. The process starts with semantic integration of the input data that results in a knowledge graph describing drug attributes and relationships with various related entities such as enzymes, chemical structures, and pathways. The knowledge graph is then used to compute several similarity measures between all the drugs in a scalable and distributed framework. In particular, Tiresias utilizes two classes of features in a knowledge graph: local and global features. Local features are derived from the information directly associated to each drug (i.e., one hop away) while global features are learnt by minimizing a global loss function that considers the complete structure of the knowledge graph. The resulting similarity metrics are used to build features for a large-scale logistic regression model to predict potential DDIs. We highlight the novelty of our proposed Tiresias and perform thorough evaluation of the quality of the predictions. The results show the effectiveness of Tiresias in both predicting new interactions among existing drugs as well as newly developed drugs.

  9. Large-scale structural and textual similarity-based mining of knowledge graph to predict drug-drug interactions

    KAUST Repository

    Abdelaziz, Ibrahim

    2017-06-12

    Drug-Drug Interactions (DDIs) are a major cause of preventable Adverse Drug Reactions (ADRs), causing a significant burden on the patients’ health and the healthcare system. It is widely known that clinical studies cannot sufficiently and accurately identify DDIs for new drugs before they are made available on the market. In addition, existing public and proprietary sources of DDI information are known to be incomplete and/or inaccurate and so not reliable. As a result, there is an emerging body of research on in-silico prediction of drug-drug interactions. In this paper, we present Tiresias, a large-scale similarity-based framework that predicts DDIs through link prediction. Tiresias takes in various sources of drug-related data and knowledge as inputs, and provides DDI predictions as outputs. The process starts with semantic integration of the input data that results in a knowledge graph describing drug attributes and relationships with various related entities such as enzymes, chemical structures, and pathways. The knowledge graph is then used to compute several similarity measures between all the drugs in a scalable and distributed framework. In particular, Tiresias utilizes two classes of features in a knowledge graph: local and global features. Local features are derived from the information directly associated to each drug (i.e., one hop away) while global features are learnt by minimizing a global loss function that considers the complete structure of the knowledge graph. The resulting similarity metrics are used to build features for a large-scale logistic regression model to predict potential DDIs. We highlight the novelty of our proposed Tiresias and perform thorough evaluation of the quality of the predictions. The results show the effectiveness of Tiresias in both predicting new interactions among existing drugs as well as newly developed drugs.

  10. Interaction Effects of Students, Drugs and Alienation

    Science.gov (United States)

    Jones, Woodrow, Jr.

    1977-01-01

    This study examined the interaction effect of students, drugs, and alienation in a large university, i.e., the linkages of both social and political alienation with drug behavior. The interaction terms which composed these forms of alienation were evaluated as to their comparative ability to produce drug behavior. (Author)

  11. QSAR Modeling and Prediction of Drug-Drug Interactions.

    Science.gov (United States)

    Zakharov, Alexey V; Varlamova, Ekaterina V; Lagunin, Alexey A; Dmitriev, Alexander V; Muratov, Eugene N; Fourches, Denis; Kuz'min, Victor E; Poroikov, Vladimir V; Tropsha, Alexander; Nicklaus, Marc C

    2016-02-01

    Severe adverse drug reactions (ADRs) are the fourth leading cause of fatality in the U.S. with more than 100,000 deaths per year. As up to 30% of all ADRs are believed to be caused by drug-drug interactions (DDIs), typically mediated by cytochrome P450s, possibilities to predict DDIs from existing knowledge are important. We collected data from public sources on 1485, 2628, 4371, and 27,966 possible DDIs mediated by four cytochrome P450 isoforms 1A2, 2C9, 2D6, and 3A4 for 55, 73, 94, and 237 drugs, respectively. For each of these data sets, we developed and validated QSAR models for the prediction of DDIs. As a unique feature of our approach, the interacting drug pairs were represented as binary chemical mixtures in a 1:1 ratio. We used two types of chemical descriptors: quantitative neighborhoods of atoms (QNA) and simplex descriptors. Radial basis functions with self-consistent regression (RBF-SCR) and random forest (RF) were utilized to build QSAR models predicting the likelihood of DDIs for any pair of drug molecules. Our models showed balanced accuracy of 72-79% for the external test sets with a coverage of 81.36-100% when a conservative threshold for the model's applicability domain was applied. We generated virtually all possible binary combinations of marketed drugs and employed our models to identify drug pairs predicted to be instances of DDI. More than 4500 of these predicted DDIs that were not found in our training sets were confirmed by data from the DrugBank database.

  12. Venetoclax (ABT-199) Might Act as a Perpetrator in Pharmacokinetic Drug–Drug Interactions

    Science.gov (United States)

    Weiss, Johanna; Gajek, Thomas; Köhler, Bruno Christian; Haefeli, Walter Emil

    2016-01-01

    Venetoclax (ABT-199) represents a specific B-cell lymphoma 2 (Bcl-2) inhibitor that is currently under development for the treatment of lymphoid malignancies. So far, there is no published information on its interaction potential with important drug metabolizing enzymes and drug transporters, or its efficacy in multidrug resistant (MDR) cells. We therefore scrutinized its drug–drug interaction potential in vitro. Inhibition of cytochrome P450 enzymes (CYPs) was quantified by commercial kits. Inhibition of drug transporters (P-glycoprotein (P-gp, ABCB1), breast cancer resistance protein (BCRP), and organic anion transporting polypeptides (OATPs)) was evaluated by the use of fluorescent probe substrates. Induction of drug transporters and drug metabolizing enzymes was quantified by real-time RT-PCR. The efficacy of venetoclax in MDR cells lines was evaluated with proliferation assays. Venetoclax moderately inhibited P-gp, BCRP, OATP1B1, OATP1B3, CYP3A4, and CYP2C19, whereas CYP2B6 activity was increased. Venetoclax induced the mRNA expression of CYP1A1, CYP1A2, UGT1A3, and UGT1A9. In contrast, expression of ABCB1 was suppressed, which might revert tumor resistance towards antineoplastic P-gp substrates. P-gp over-expression led to reduced antiproliferative effects of venetoclax. Effective concentrations for inhibition and induction lay in the range of maximum plasma concentrations of venetoclax, indicating that it might act as a perpetrator drug in pharmacokinetic drug–drug interactions. PMID:26927160

  13. Clinical risk management in Dutch community pharmacies: the case of drug-drug interactions.

    NARCIS (Netherlands)

    Buurma, H.; Smet, P.A.G.M. de; Egberts, A.C.G.

    2006-01-01

    BACKGROUND: The prevention of drug-drug interactions requires a systematic approach for which the concept of clinical risk management can be used. The objective of our study was to measure the frequency, nature and management of drug-drug interaction alerts as these occur in daily practice of Dutch

  14. Macrolides versus azalides: a drug interaction update.

    Science.gov (United States)

    Amsden, G W

    1995-09-01

    To describe the current drug interaction profiles for all approved and investigational macrolide and azalide antimicrobials, and to comment on the clinical impact of these interactions when appropriate. MEDLINE was searched to identify all pertinent studies, review articles, and case reports from 1975 to 1995. When appropriate information was not available in the literature, data were obtained from the product manufacturers. All available data were reviewed to give an unbiased account of possible drug interactions. Data for some of the interactions were not available from the literature, but were available from abstracts or from company-supplied materials. Although the data were not always entirely explicative, the best attempt was made to deliver the pertinent information that clinical practitioners would need to formulate practice opinions. When more in-depth information was supplied in the form of a review or study report, a thorough explanation of pertinent methodology was supplied. Since the introduction of erythromycin into clinical practice, there have been several clinically significant drug interactions identified throughout the literature associated with this drug. These interactions have been caused mostly by inhibition of the CYP3A subclass of hepatic enzymes, thereby decreasing the metabolism of any other agent given concurrently that is also cleared through this mechanism. With the development and marketing of several new macrolides, it was hoped that the drug interaction profile associated with this class would improve. This has been met with variable success. Although some of the extensions of the 14-membered ring macrolides have shown an incidence of interactions equal to that of erythromycin, others have shown improved profiles. In contrast, the 16-membered ring macrolides have demonstrated a much improved, though not absent, interaction profile. The most success in avoiding drug interactions through structure modification has been accomplished

  15. PXR as a mediator of herb-drug interaction.

    Science.gov (United States)

    Hogle, Brett C; Guan, Xiudong; Folan, M Maggie; Xie, Wen

    2018-04-01

    Medicinal herbs have been a part of human medicine for thousands of years. The herb-drug interaction is an extension of drug-drug interaction, in which the consumptions of herbs cause alterations in the metabolism of drugs the patients happen to take at the same time. The pregnane X receptor (PXR) has been established as one of the most important transcriptional factors that regulate the expression of phase I enzymes, phase II enzymes, and drug transporters in the xenobiotic responses. Since its initial discovery, PXR has been implicated in multiple herb-drug interactions that can lead to alterations of the drug's pharmacokinetic properties and cause fluctuating therapeutic efficacies, possibly leading to complications. Regions of the world that heavily incorporate herbalism into their primary health care and people turning to alternative medicines as a personal choice could be at risk for adverse reactions or unintended results from these interactions. This article is intended to highlight our understanding of the PXR-mediated herb-drug interactions. Copyright © 2017. Published by Elsevier B.V.

  16. DNA-interactive properties of crotamine, a cell-penetrating polypeptide and a potential drug carrier.

    Directory of Open Access Journals (Sweden)

    Pei-Chun Chen

    Full Text Available Crotamine, a 42-residue polypeptide derived from the venom of the South American rattlesnake Crotalus durissus terrificus, has been shown to be a cell-penetrating protein that targets chromosomes, carries plasmid DNA into cells, and shows specificity for actively proliferating cells. Given this potential role as a nucleic acid-delivery vector, we have studied in detail the binding of crotamine to single- and double-stranded DNAs of different lengths and base compositions over a range of ionic conditions. Agarose gel electrophoresis and ultraviolet spectrophotometry analysis indicate that complexes of crotamine with long-chain DNAs readily aggregate and precipitate at low ionic strength. This aggregation, which may be important for cellular uptake of DNA, becomes less likely with shorter chain length. 25-mer oligonucleotides do not show any evidence of such aggregation, permitting the determination of affinities and size via fluorescence quenching experiments. The polypeptide binds non-cooperatively to DNA, covering about 5 nucleotide residues when it binds to single (ss or (ds double stranded molecules. The affinities of the protein for ss- vs. ds-DNA are comparable, and inversely proportional to salt levels. Analysis of the dependence of affinity on [NaCl] indicates that there are a maximum of ∼3 ionic interactions between the protein and DNA, with some of the binding affinity attributable to non-ionic interactions. Inspection of the three-dimensional structure of the protein suggests that residues 31 to 35, Arg-Trp-Arg-Trp-Lys, could serve as a potential DNA-binding site. A hexapeptide containing this sequence displayed a lower DNA binding affinity and salt dependence as compared to the full-length protein, likely indicative of a more suitable 3D structure and the presence of accessory binding sites in the native crotamine. Taken together, the data presented here describing crotamine-DNA interactions may lend support to the design of more

  17. Population Impact of Drug Interactions with Warfarin: A Real-World Data Approach.

    Science.gov (United States)

    Martín-Pérez, Mar; Gaist, David; de Abajo, Francisco J; Rodríguez, Luis A García

    2018-03-01

     To investigate the population impact of previously reported interactions between warfarin and other drugs on international normalized ratio (INR) levels.  Using The Health Improvement Network (THIN), a United Kingdom primary care database, a cohort of warfarin users between 2005 and 2013 ( N  = 121,962) was followed until the first qualifying prescription for the potential interacting drugs was evaluated. Sixteen sub-cohorts, one for each study drug, and a control sub-cohort of warfarin were ascertained. Short-term changes in INR levels were assessed by comparing INR values measured before and after initiation of the interacting drug with paired Student's t -test. We also evaluated the proportion of patients with INR values outside the therapeutic range (INR: 2-3).  Miconazole use was associated with the highest mean increase in INR (+3.35), followed by amiodarone (+1.28), fluconazole (+0.79), metronidazole (+0.75) and nystatin (+0.65). After subtracting the natural INR variation observed in the control sub-cohort, supra-therapeutic levels (INR > 3) were found in 53.2% (miconazole), 45.5% (amiodarone), 23.3% (metronidazole), 23.2% (fluconazole) and 17.6% (nystatin) of patients initiating treatment with these drugs. Carbamazepine use was associated with a mean INR decrease of -0.63 and infra-therapeutic levels (INR < 2) were observed in 46.2% of patients initiating carbamazepine. For all other drugs, the change was small to moderate, in absolute INR units (+0.23 to +0.55) and in the proportion of patients with INR levels out of therapeutic range (<16%).  Clinically potentially important interactions were observed in several study drugs. The majority of them, although confirmed, had little impact after adjusting for standard INR variability in the general population of warfarin users. Schattauer GmbH Stuttgart.

  18. Natural Non-Mulberry Silk Nanoparticles for Potential-Controlled Drug Release

    Science.gov (United States)

    Wang, Juan; Yin, Zhuping; Xue, Xiang; Kundu, Subhas C.; Mo, Xiumei; Lu, Shenzhou

    2016-01-01

    Natural silk protein nanoparticles are a promising biomaterial for drug delivery due to their pleiotropic properties, including biocompatibility, high bioavailability, and biodegradability. Chinese oak tasar Antheraea pernyi silk fibroin (ApF) nanoparticles are easily obtained using cations as reagents under mild conditions. The mild conditions are potentially advantageous for the encapsulation of sensitive drugs and therapeutic molecules. In the present study, silk fibroin protein nanoparticles are loaded with differently-charged small-molecule drugs, such as doxorubicin hydrochloride, ibuprofen, and ibuprofen-Na, by simple absorption based on electrostatic interactions. The structure, morphology and biocompatibility of the silk nanoparticles in vitro are investigated. In vitro release of the drugs from the nanoparticles depends on charge-charge interactions between the drugs and the nanoparticles. The release behavior of the compounds from the nanoparticles demonstrates that positively-charged molecules are released in a more prolonged or sustained manner. Cell viability studies with L929 demonstrated that the ApF nanoparticles significantly promoted cell growth. The results suggest that Chinese oak tasar Antheraea pernyi silk fibroin nanoparticles can be used as an alternative matrix for drug carrying and controlled release in diverse biomedical applications. PMID:27916946

  19. The interaction of encapsulated pharmaceutical drugs with a silica matrix.

    Science.gov (United States)

    Morais, Everton C; Correa, Gabriel G; Brambilla, Rodrigo; Radtke, Claudio; Baibich, Ione Maluf; dos Santos, João Henrique Z

    2013-03-01

    A series of seven drugs, namely, fluoxetine, gentamicin, lidocaine, morphine, nifedipine, paracetamol and tetracycline, were encapsulated. The encapsulated systems were characterized using a series of complementary techniques: Fourier-transform infrared spectroscopy (FT-IR), diffusive reflectance spectroscopy in the UV-vis region (DRS) and X-ray photoelectron spectroscopy (XPS). According to the DRS spectra, most of the encapsulated systems showed a band shift of the maximum absorption when compared with the corresponding bare pharmaceutical. Additionally, after encapsulation, the drugs exhibited infrared band shifts toward higher wavenumbers, which in turn provided insight into potential sites for interaction with the silica framework. The amine group showed a band shift in the spectra of almost all the drugs (except nifedipine and tetracycline). This finding indicates the possibility of a hydrogen bonding interaction between the drug and the silica via electron donation from the amine group to the silica framework. XPS confirmed this interaction between the pharmaceuticals and the silica through the amine group. A correlation was observed between the textural characteristics of the solids and the spectroscopic data, suggesting that the amine groups from the pharmaceuticals were more perturbed upon encapsulation. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Hazards and Benefits of Drug Interaction

    Science.gov (United States)

    Labianca, Dominick A.

    1978-01-01

    Most cases of drug toxicity are direct consequences of drug misuse--either intentional or inadvertent. Discusses two types of drug interaction--synergistic and antagonistic. The former produces a combined effect greater than the sum of the effects of the individual drugs concerned; the latter is produced when the desired action of one drug is…

  1. P-glycoprotein interaction with risperidone and 9-OH-risperidone studied in vitro, in knock-out mice and in drug-drug interaction experiments

    DEFF Research Database (Denmark)

    Ejsing, Thomas B.; Pedersen, Anne D.; Linnet, Kristian

    2005-01-01

    P-glycoprotein, risperidone, nortriptyline, cyclosporine A, drug-drug interaction, blood-brain barrier, knock-out mice......P-glycoprotein, risperidone, nortriptyline, cyclosporine A, drug-drug interaction, blood-brain barrier, knock-out mice...

  2. Detecting drug-drug interactions using a database for spontaneous adverse drug reactions : an example with diuretics and non-steroidal anti-inflammatory drugs

    NARCIS (Netherlands)

    van Puijenbroek, E P; Egberts, A C; Heerdink, E R; Leufkens, H G

    2000-01-01

    OBJECTIVE: Drug-drug interactions are relatively rarely reported to spontaneous reporting systems (SRSs) for adverse drug reactions. For this reason, the traditional approach for analysing SRS has major limitations for the detection of drug-drug interactions. We developed a method that may enable

  3. Organic solute carrier 22 (SLC22 family: Potential for interactions with food, herbal/dietary supplements, endogenous compounds, and drugs

    Directory of Open Access Journals (Sweden)

    Raymond E. Lai

    2018-04-01

    Full Text Available Many drugs, hormones, components of herbal medicines, environmental pesticides and toxins are Solute Carrier family 22 (SLC22 substrates. The last twenty years has seen great progress in determining SLC22 tissue expression profiles, membrane localization, energetics, substrate profiles and biopharmaceutical significance. However, much still remains to be answered in terms of SLC22 family member's roles in ‘normal’ physiology as compared to pathophysiological states, as well as in drug interactions that impact pharmacokinetics, efficacy and toxicity. This review begins with a brief synopsis of SLC22 family discovery, function and tissue expression. Subsequent sections provide examples establishing a role for SLC22 transporters in food-drug, herbal supplement-drug, endogenous substrate-drug and drug–drug interactions. Keywords: Hepatic transport, Nephrotoxicity, Organic anion transporter, Organic cation transporter, Renal transport

  4. Initial Drug Dissolution from Amorphous Solid Dispersions Controlled by Polymer Dissolution and Drug-Polymer Interaction.

    Science.gov (United States)

    Chen, Yuejie; Wang, Shujing; Wang, Shan; Liu, Chengyu; Su, Ching; Hageman, Michael; Hussain, Munir; Haskell, Roy; Stefanski, Kevin; Qian, Feng

    2016-10-01

    To identify the key formulation factors controlling the initial drug and polymer dissolution rates from an amorphous solid dispersion (ASD). Ketoconazole (KTZ) ASDs using PVP, PVP-VA, HMPC, or HPMC-AS as polymeric matrix were prepared. For each drug-polymer system, two types of formulations with the same composition were prepared: 1. Spray dried dispersion (SDD) that is homogenous at molecular level, 2. Physical blend of SDD (80% drug loading) and pure polymer (SDD-PB) that is homogenous only at powder level. Flory-Huggins interaction parameters (χ) between KTZ and the four polymers were obtained by Flory-Huggins model fitting. Solution (13)C NMR and FT-IR were conducted to investigate the specific drug-polymer interaction in the solution and solid state, respectively. Intrinsic dissolution of both the drug and the polymer from ASDs were studied using a Higuchi style intrinsic dissolution apparatus. PXRD and confocal Raman microscopy were used to confirm the absence of drug crystallinity on the tablet surface before and after dissolution study. In solid state, KTZ is completely miscible with PVP, PVP-VA, or HPMC-AS, demonstrated by the negative χ values of -0.36, -0.46, -1.68, respectively; while is poorly miscible with HPMC shown by a positive χ value of 0.23. According to solution (13)C NMR and FT-IR studies, KTZ interacts with HPMC-AS strongly through H-bonding and dipole induced interaction; with PVPs and PVP-VA moderately through dipole-induced interactions; and with HPMC weakly without detectable attractive interaction. Furthermore, the "apparent" strength of drug-polymer interaction, measured by the extent of peak shift on NMR or FT-IR spectra, increases with the increasing number of interacting drug-polymer pairs. For ASDs with the presence of considerable drug-polymer interactions, such as KTZ/PVPs, KTZ/PVP-VA, or KTZ /HPMC-AS systems, drug released at the same rate as the polymer when intimate drug-polymer mixing was ensured (i.e., the SDD systems

  5. Potential for alcohol and drug interactions in older adults: evidence from the Irish longitudinal study on ageing

    Science.gov (United States)

    2014-01-01

    Background Older adults are susceptible to adverse effects from the concomitant use of prescription medications and alcohol. This study estimates the prevalence of exposure to alcohol interactive (AI) medications and concomitant alcohol use by therapeutic class in a large, nationally representative sample of older adults. Methods Cross-sectional analysis of a population based sample of older Irish adults aged ≥60 years using data from The Irish Longitudinal Study on Ageing (TILDA) (N = 3,815). AI medications were identified using Stockley’s Drug Interactions, the British National Formulary and the Irish Medicines Formulary. An in-home inventory of medications was used to characterise AI drug exposure by therapeutic class. Self-reported alcohol use was classified as non-drinker, light/moderate and heavy drinking. Comorbidities known to be exacerbated by alcohol were also recorded (diabetes mellitus, hypertension, peptic ulcer disease, liver disease, depression, gout or breast cancer), as well as sociodemographic and health factors. Results Seventy-two per cent of participants were exposed to AI medications, with greatest exposure to cardiovascular and CNS agents. Overall, 60% of participants exposed to AI medications reported concomitant alcohol use, compared with 69.5% of non-AI exposed people (p alcohol consumption (both light/moderate and heavier) and AI medications. Current smokers and people with increasing co-morbidities were also at greatest risk for heavy drinking in combination with AI medications. Conclusions The concurrent use of alcohol with AI medications, or with conditions known to be exacerbated by alcohol, is common among older Irish adults. Prescribers should be aware of potential interactions, and screen patients for alcohol use and provide warnings to minimize patient risk. PMID:24766969

  6. A temporal interestingness measure for drug interaction signal detection in post-marketing surveillance.

    Science.gov (United States)

    Ji, Yanqing; Ying, Hao; Tran, John; Dews, Peter; Mansour, Ayman; Massanari, R Michael

    2014-01-01

    Drug-drug interactions (DDIs) can result in serious consequences, including death. Existing methods for identifying potential DDIs in post-marketing surveillance primarily rely on the FDA's (Food and Drug Administration) spontaneous reporting system. However, this system suffers from severe underreporting, which makes it difficult to timely collect enough valid cases for statistical analysis. In this paper, we study how to signal potential DDIs using patient electronic health data. Specifically, we focus on discovery of potential DDIs by analyzing the temporal relationships between the concurrent use of two drugs of interest and the occurrences of various symptoms using novel temporal association mining techniques we developed. A new interestingness measure called functional temporal interest was proposed to assess the degrees of temporal association between two drugs of interest and each symptom. The measure was employed to screen potential DDIs from 21,405 electronic patient cases retrieved from the Veterans Affairs Medical Center in Detroit, Michigan. The preliminary results indicate the usefulness of our method in finding potential DDIs for further analysis (e.g., epidemiology study) and investigation (e.g., case review) by drug safety professionals.

  7. Peptide-based soft materials as potential drug delivery vehicles.

    Science.gov (United States)

    Verma, Sandeep; Joshi, K B; Ghosh, Surajit

    2007-11-01

    Emerging concepts in the construction of nanostructures hold immense potential in the areas of drug delivery and targeting. Such nanoscopic assemblies/structures, similar to natural proteins and self-associating systems, may lead to the formation of programmable soft structures with expanded drug delivery options and the capability to circumvent first-pass metabolism. This article aims to illustrate key recent developments and innovative bioinspired design paradigms pertaining to peptide-containing self-assembled tubular and vesicular soft structures. Soft structures are composed of components that self-assemble to reveal diverse morphologies stabilized by weak, noncovalent interactions. Morphological properties of such structures and their ability to encapsulate drugs, biologicals and bioactive small molecules, with the promise of targeted delivery, are discussed.

  8. Drug/radiation interactions and central nervous system injury

    International Nuclear Information System (INIS)

    DeAngelis, L.M.; Shapiro, W.R.

    1991-01-01

    Central nervous system (CNS) injury caused by combined treatment with cranial radiation therapy (CRT) and chemotherapy is a complicated and difficult problem. Interactions between the two modalities at the cellular level, the effect of treatment sequencing, and chemotherapy and RT dosages are all poorly understood. While this is generally true and applicable to toxicities expressed in multiple organs and tissue types, it is particularly true for the brain. There are many clinical descriptions and situations that strongly implicate an enhanced neurotoxic potential for combined treatment compared to either therapy alone; there is a paucity of definitive experimental evidence, however, and few animal models that can be used to elucidate the nature and pathophysiology of this clinical association. This paper addresses the neurotoxic potential of a specific chemotherapeutic drug when combined with CRT; outlines whose drugs known to cause CNS injury when combined with CRT. Although many of the clinical situations are complicated because multiple cytotoxic agents have been used, usually only one is thought to contribute to the CNS injury. The authors discuss each drug separately

  9. DRUG-INTERACTIONS WITH QUINOLONE ANTIBACTERIALS

    NARCIS (Netherlands)

    BROUWERS, JRBJ

    1992-01-01

    The quinolone antibacterials are prone to many interactions with other drugs. Quinolone absorption is markedly reduced with antacids containing aluminium, magnesium and/or calcium and therapeutic failure may result. Other metallic ion-containing drugs, such as sucralfate, iron salts, and zinc salts,

  10. Venetoclax (ABT-199 Might Act as a Perpetrator in Pharmacokinetic Drug–Drug Interactions

    Directory of Open Access Journals (Sweden)

    Johanna Weiss

    2016-02-01

    Full Text Available Venetoclax (ABT-199 represents a specific B-cell lymphoma 2 (Bcl-2 inhibitor that is currently under development for the treatment of lymphoid malignancies. So far, there is no published information on its interaction potential with important drug metabolizing enzymes and drug transporters, or its efficacy in multidrug resistant (MDR cells. We therefore scrutinized its drug–drug interaction potential in vitro. Inhibition of cytochrome P450 enzymes (CYPs was quantified by commercial kits. Inhibition of drug transporters (P-glycoprotein (P-gp, ABCB1, breast cancer resistance protein (BCRP, and organic anion transporting polypeptides (OATPs was evaluated by the use of fluorescent probe substrates. Induction of drug transporters and drug metabolizing enzymes was quantified by real-time RT-PCR. The efficacy of venetoclax in MDR cells lines was evaluated with proliferation assays. Venetoclax moderately inhibited P-gp, BCRP, OATP1B1, OATP1B3, CYP3A4, and CYP2C19, whereas CYP2B6 activity was increased. Venetoclax induced the mRNA expression of CYP1A1, CYP1A2, UGT1A3, and UGT1A9. In contrast, expression of ABCB1 was suppressed, which might revert tumor resistance towards antineoplastic P-gp substrates. P-gp over-expression led to reduced antiproliferative effects of venetoclax. Effective concentrations for inhibition and induction lay in the range of maximum plasma concentrations of venetoclax, indicating that it might act as a perpetrator drug in pharmacokinetic drug–drug interactions.

  11. Drug membrane interaction and the importance for drug transport, distribution, accumulation, efficacy and resistance.

    Science.gov (United States)

    Seydel, J K; Coats, E A; Cordes, H P; Wiese, M

    1994-10-01

    Some aspects of drug membrane interaction and its influence on drug transport, accumulation, efficacy and resistance have been discussed. The interactions manifest themselves macroscopically in changes in the physical and thermodynamic properties of "pure membranes" or bilayers. As various amounts of foreign molecules enter the membrane, in particular the main gel to liquid crystalline phase transition can be dramatically changed. This may change permeability, cell-fusion, cell resistance and may also lead to changes in conformation of the embedded receptor proteins. Furthermore, specific interactions with lipids may lead to drug accumulation in membranes and thus to much larger concentrations at the active site than present in the surrounding water phase. The lipid environment may also lead to changes in the preferred conformation of drug molecules. These events are directly related to drug efficacy. The determination of essential molecular criteria for the interaction could be used to design new and more selective therapeutics. This excursion in some aspects of drug membrane interaction underlines the importance of lipids and their interaction with drug molecules for our understanding of drug action, but this is not really a new thought but has been formulated in 1884 by THUDICUM: "Phospholipids are the centre, life and chemical soul of all bioplasm whatsoever, that of plants as well as of animals".

  12. Cellular mechanisms in drug - radiation interaction

    International Nuclear Information System (INIS)

    Trott, K.R.

    1979-01-01

    Some cytotoxic drugs, especially those belonging to the group of antibiotics and antimetabolites, sensitize the cells having survived drug treatment to the subsequent irradiation by either increasing the slope of the radiation dose response curves or by decreasing extrapolation number. Bleomycin was found to interact with radiation in L-cells and FM3A cells, but not in HeLa-cells. The data with EMT-6 cells suggest that the interaction depends on drug dose: no interaction occurred after the exposure to bleomycin which killed only 20 - 40% of the cells; yet the exposure to bleomycin which killed 90% of the cells in addition sensitized the surviving cells by the DMF of 1.3. The sensitization found 24 hr after the exposure of HeLa cells to methotrexate was due to cell synchronization. Other cytostatic drugs were found to synchronize proliferating cells even better. Therefore, the fluctuation of radiosensitivity has been commonly observed after the termination of exposure to these drugs. Preirradiation may lead to the change in drug dose response curves. The recruitment of resting cells into cycle occurs hours or days later, in some irradiated normal and malignant tissues. Since many cytostatic drugs are far more active in proliferating cells than in resting cells, the recruitment after irradiation may lead to the sudden increase in drug sensitivity, days after the irradiation. No single, simple theory seems to exist to classify and predict the cellular response to combined modality treatment. (Yamashita, S.)

  13. Compliance with national guidelines for the management of drug-drug interactions in Dutch community pharmacies.

    NARCIS (Netherlands)

    Buurma, H.; Schalekamp, T.; Egberts, A.C.G.; Smet, P.A.G.M. de

    2007-01-01

    BACKGROUND: Pharmacists contribute to the detection and prevention of drug therapy-related problems, including drug-drug interactions. Little is known about compliance with pharmacy practice guidelines for the management of drug-drug interaction alerts. OBJECTIVE: To measure the compliance of

  14. Pharmacokinetic Interactions between Drugs and Botanical Dietary Supplements

    Science.gov (United States)

    Sprouse, Alyssa A.

    2016-01-01

    The use of botanical dietary supplements has grown steadily over the last 20 years despite incomplete information regarding active constituents, mechanisms of action, efficacy, and safety. An important but underinvestigated safety concern is the potential for popular botanical dietary supplements to interfere with the absorption, transport, and/or metabolism of pharmaceutical agents. Clinical trials of drug–botanical interactions are the gold standard and are usually carried out only when indicated by unexpected consumer side effects or, preferably, by predictive preclinical studies. For example, phase 1 clinical trials have confirmed preclinical studies and clinical case reports that St. John’s wort (Hypericum perforatum) induces CYP3A4/CYP3A5. However, clinical studies of most botanicals that were predicted to interact with drugs have shown no clinically significant effects. For example, clinical trials did not substantiate preclinical predictions that milk thistle (Silybum marianum) would inhibit CYP1A2, CYP2C9, CYP2D6, CYP2E1, and/or CYP3A4. Here, we highlight discrepancies between preclinical and clinical data concerning drug–botanical interactions and critically evaluate why some preclinical models perform better than others in predicting the potential for drug–botanical interactions. Gaps in knowledge are also highlighted for the potential of some popular botanical dietary supplements to interact with therapeutic agents with respect to absorption, transport, and metabolism. PMID:26438626

  15. Position-aware deep multi-task learning for drug-drug interaction extraction.

    Science.gov (United States)

    Zhou, Deyu; Miao, Lei; He, Yulan

    2018-05-01

    A drug-drug interaction (DDI) is a situation in which a drug affects the activity of another drug synergistically or antagonistically when being administered together. The information of DDIs is crucial for healthcare professionals to prevent adverse drug events. Although some known DDIs can be found in purposely-built databases such as DrugBank, most information is still buried in scientific publications. Therefore, automatically extracting DDIs from biomedical texts is sorely needed. In this paper, we propose a novel position-aware deep multi-task learning approach for extracting DDIs from biomedical texts. In particular, sentences are represented as a sequence of word embeddings and position embeddings. An attention-based bidirectional long short-term memory (BiLSTM) network is used to encode each sentence. The relative position information of words with the target drugs in text is combined with the hidden states of BiLSTM to generate the position-aware attention weights. Moreover, the tasks of predicting whether or not two drugs interact with each other and further distinguishing the types of interactions are learned jointly in multi-task learning framework. The proposed approach has been evaluated on the DDIExtraction challenge 2013 corpus and the results show that with the position-aware attention only, our proposed approach outperforms the state-of-the-art method by 0.99% for binary DDI classification, and with both position-aware attention and multi-task learning, our approach achieves a micro F-score of 72.99% on interaction type identification, outperforming the state-of-the-art approach by 1.51%, which demonstrates the effectiveness of the proposed approach. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Lower alert rates by clustering of related drug interaction alerts

    NARCIS (Netherlands)

    Heringa, M.; Siderius, Hidde; Schreudering, A.; De Smet, Peter Agm; Bouvy, M.L.

    OBJECTIVE: We aimed to investigate to what extent clustering of related drug interaction alerts (drug-drug and drug-disease interaction alerts) would decrease the alert rate in clinical decision support systems (CDSSs). METHODS: We conducted a retrospective analysis of drug interaction alerts

  17. Predicting drug-target interactions using restricted Boltzmann machines.

    Science.gov (United States)

    Wang, Yuhao; Zeng, Jianyang

    2013-07-01

    In silico prediction of drug-target interactions plays an important role toward identifying and developing new uses of existing or abandoned drugs. Network-based approaches have recently become a popular tool for discovering new drug-target interactions (DTIs). Unfortunately, most of these network-based approaches can only predict binary interactions between drugs and targets, and information about different types of interactions has not been well exploited for DTI prediction in previous studies. On the other hand, incorporating additional information about drug-target relationships or drug modes of action can improve prediction of DTIs. Furthermore, the predicted types of DTIs can broaden our understanding about the molecular basis of drug action. We propose a first machine learning approach to integrate multiple types of DTIs and predict unknown drug-target relationships or drug modes of action. We cast the new DTI prediction problem into a two-layer graphical model, called restricted Boltzmann machine, and apply a practical learning algorithm to train our model and make predictions. Tests on two public databases show that our restricted Boltzmann machine model can effectively capture the latent features of a DTI network and achieve excellent performance on predicting different types of DTIs, with the area under precision-recall curve up to 89.6. In addition, we demonstrate that integrating multiple types of DTIs can significantly outperform other predictions either by simply mixing multiple types of interactions without distinction or using only a single interaction type. Further tests show that our approach can infer a high fraction of novel DTIs that has been validated by known experiments in the literature or other databases. These results indicate that our approach can have highly practical relevance to DTI prediction and drug repositioning, and hence advance the drug discovery process. Software and datasets are available on request. Supplementary data are

  18. Entecavir Interacts with Influx Transporters hOAT1, hCNT2, hCNT3, but Not with hOCT2: The Potential for Renal Transporter-Mediated Cytotoxicity and Drug-Drug Interactions

    Czech Academy of Sciences Publication Activity Database

    Mandíková, J.; Volková, M.; Pávek, P.; Navrátilová, L.; Hyršová, L.; Janeba, Zlatko; Pavlík, J.; Bárta, P.; Trejtnar, F.

    2016-01-01

    Roč. 6, Jan 5 (2016), č. článku 304. ISSN 1663-9812 Institutional support: RVO:61388963 Keywords : antivirals * nephrotoxicity * renal disposition * drug-drug interactions Subject RIV: CC - Organic Chemistry Impact factor: 4.400, year: 2016 http://journal.frontiersin.org/article/10.3389/fphar.2015.00304/full

  19. Predicting drug-target interaction for new drugs using enhanced similarity measures and super-target clustering.

    Science.gov (United States)

    Shi, Jian-Yu; Yiu, Siu-Ming; Li, Yiming; Leung, Henry C M; Chin, Francis Y L

    2015-07-15

    Predicting drug-target interaction using computational approaches is an important step in drug discovery and repositioning. To predict whether there will be an interaction between a drug and a target, most existing methods identify similar drugs and targets in the database. The prediction is then made based on the known interactions of these drugs and targets. This idea is promising. However, there are two shortcomings that have not yet been addressed appropriately. Firstly, most of the methods only use 2D chemical structures and protein sequences to measure the similarity of drugs and targets respectively. However, this information may not fully capture the characteristics determining whether a drug will interact with a target. Secondly, there are very few known interactions, i.e. many interactions are "missing" in the database. Existing approaches are biased towards known interactions and have no good solutions to handle possibly missing interactions which affect the accuracy of the prediction. In this paper, we enhance the similarity measures to include non-structural (and non-sequence-based) information and introduce the concept of a "super-target" to handle the problem of possibly missing interactions. Based on evaluations on real data, we show that our similarity measure is better than the existing measures and our approach is able to achieve higher accuracy than the two best existing algorithms, WNN-GIP and KBMF2K. Our approach is available at http://web.hku.hk/∼liym1018/projects/drug/drug.html or http://www.bmlnwpu.org/us/tools/PredictingDTI_S2/METHODS.html. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. The role of drug profiles as similarity metrics: applications to repurposing, adverse effects detection and drug-drug interactions.

    Science.gov (United States)

    Vilar, Santiago; Hripcsak, George

    2017-07-01

    Explosion of the availability of big data sources along with the development in computational methods provides a useful framework to study drugs' actions, such as interactions with pharmacological targets and off-targets. Databases related to protein interactions, adverse effects and genomic profiles are available to be used for the construction of computational models. In this article, we focus on the description of biological profiles for drugs that can be used as a system to compare similarity and create methods to predict and analyze drugs' actions. We highlight profiles constructed with different biological data, such as target-protein interactions, gene expression measurements, adverse effects and disease profiles. We focus on the discovery of new targets or pathways for drugs already in the pharmaceutical market, also called drug repurposing, in the interaction with off-targets responsible for adverse reactions and in drug-drug interaction analysis. The current and future applications, strengths and challenges facing all these methods are also discussed. Biological profiles or signatures are an important source of data generation to deeply analyze biological actions with important implications in drug-related studies. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Heuristic lipophilicity potential for computer-aided rational drug design

    Science.gov (United States)

    Du, Qishi; Arteca, Gustavo A.; Mezey, Paul G.

    1997-09-01

    In this contribution we suggest a heuristic molecular lipophilicitypotential (HMLP), which is a structure-based technique requiring noempirical indices of atomic lipophilicity. The input data used in thisapproach are molecular geometries and molecular surfaces. The HMLP is amodified electrostatic potential, combined with the averaged influences fromthe molecular environment. Quantum mechanics is used to calculate theelectron density function ρ(r) and the electrostatic potential V(r), andfrom this information a lipophilicity potential L(r) is generated. The HMLPis a unified lipophilicity and hydrophilicity potential. The interactions ofdipole and multipole moments, hydrogen bonds, and charged atoms in amolecule are included in the hydrophilic interactions in this model. TheHMLP is used to study hydrogen bonds and water-octanol partitioncoefficients in several examples. The calculated results show that the HMLPgives qualitatively and quantitatively correct, as well as chemicallyreasonable, results in cases where comparisons are available. Thesecomparisons indicate that the HMLP has advantages over the empiricallipophilicity potential in many aspects. The HMLP is a three-dimensional andeasily visualizable representation of molecular lipophilicity, suggested asa potential tool in computer-aided three-dimensional drug design.

  2. A facile drug delivery system preparation through the interaction between drug and iron ion of transferrin

    International Nuclear Information System (INIS)

    Zhou, Lin; Liu, Jihua; Wei, Shaohua; Ge, Xuefeng; Zhou, Jiahong; Yu, Boyang; Shen, Jian

    2013-01-01

    Many anticancer drugs have the capability to form stable complex with metal ions. Based on such property, a simple method to combine these drugs with transferrin, through the interaction between drug and Fe ion of transferrin, to improve their anticancer activity, is proposed. To demonstrate this technique, the complex of photosensitive anticancer drug hypocrellin A and transferrin was prepared by such facile method. The results indicated that the complex of hypocrellin A and transferrin can stabilize in aqueous solution. In vitro studies have demonstrated the superior cancer cell uptake ability of hypocrellin A–transferrin complex to the free hypocrellin A. Significant damage to such drug-impregnated tumor cells was observed upon irradiation and the cancer cells killing ability of hypocrellin A–transferrin was stronger than the free hypocrellin A within a certain range of concentrations. The above results demonstrated the validity and potential of our proposed strategy to prepare the drug delivery system of this type of anti-cancer drugs and transferrin

  3. A facile drug delivery system preparation through the interaction between drug and iron ion of transferrin

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Lin [Nanjing Normal University, Jiangsu Key Laboratory Biofunctional Materials, Key Laboratory of Applied Photochemistry, Analysis and Testing Center, College of Chemistry and Materials Science (China); Liu, Jihua [China Pharmaceutical University, Department of Complex Prescription of TCM (China); Wei, Shaohua; Ge, Xuefeng; Zhou, Jiahong, E-mail: zhoujiahong@njnu.edu.cn [Nanjing Normal University, Jiangsu Key Laboratory Biofunctional Materials, Key Laboratory of Applied Photochemistry, Analysis and Testing Center, College of Chemistry and Materials Science (China); Yu, Boyang, E-mail: boyangyu59@163.com [China Pharmaceutical University, Department of Complex Prescription of TCM (China); Shen, Jian [Nanjing Normal University, Jiangsu Key Laboratory Biofunctional Materials, Key Laboratory of Applied Photochemistry, Analysis and Testing Center, College of Chemistry and Materials Science (China)

    2013-09-15

    Many anticancer drugs have the capability to form stable complex with metal ions. Based on such property, a simple method to combine these drugs with transferrin, through the interaction between drug and Fe ion of transferrin, to improve their anticancer activity, is proposed. To demonstrate this technique, the complex of photosensitive anticancer drug hypocrellin A and transferrin was prepared by such facile method. The results indicated that the complex of hypocrellin A and transferrin can stabilize in aqueous solution. In vitro studies have demonstrated the superior cancer cell uptake ability of hypocrellin A-transferrin complex to the free hypocrellin A. Significant damage to such drug-impregnated tumor cells was observed upon irradiation and the cancer cells killing ability of hypocrellin A-transferrin was stronger than the free hypocrellin A within a certain range of concentrations. The above results demonstrated the validity and potential of our proposed strategy to prepare the drug delivery system of this type of anti-cancer drugs and transferrin.

  4. Semi-supervised drug-protein interaction prediction from heterogeneous biological spaces.

    Science.gov (United States)

    Xia, Zheng; Wu, Ling-Yun; Zhou, Xiaobo; Wong, Stephen T C

    2010-09-13

    Predicting drug-protein interactions from heterogeneous biological data sources is a key step for in silico drug discovery. The difficulty of this prediction task lies in the rarity of known drug-protein interactions and myriad unknown interactions to be predicted. To meet this challenge, a manifold regularization semi-supervised learning method is presented to tackle this issue by using labeled and unlabeled information which often generates better results than using the labeled data alone. Furthermore, our semi-supervised learning method integrates known drug-protein interaction network information as well as chemical structure and genomic sequence data. Using the proposed method, we predicted certain drug-protein interactions on the enzyme, ion channel, GPCRs, and nuclear receptor data sets. Some of them are confirmed by the latest publicly available drug targets databases such as KEGG. We report encouraging results of using our method for drug-protein interaction network reconstruction which may shed light on the molecular interaction inference and new uses of marketed drugs.

  5. Drug-Target Interaction Prediction through Label Propagation with Linear Neighborhood Information.

    Science.gov (United States)

    Zhang, Wen; Chen, Yanlin; Li, Dingfang

    2017-11-25

    Interactions between drugs and target proteins provide important information for the drug discovery. Currently, experiments identified only a small number of drug-target interactions. Therefore, the development of computational methods for drug-target interaction prediction is an urgent task of theoretical interest and practical significance. In this paper, we propose a label propagation method with linear neighborhood information (LPLNI) for predicting unobserved drug-target interactions. Firstly, we calculate drug-drug linear neighborhood similarity in the feature spaces, by considering how to reconstruct data points from neighbors. Then, we take similarities as the manifold of drugs, and assume the manifold unchanged in the interaction space. At last, we predict unobserved interactions between known drugs and targets by using drug-drug linear neighborhood similarity and known drug-target interactions. The experiments show that LPLNI can utilize only known drug-target interactions to make high-accuracy predictions on four benchmark datasets. Furthermore, we consider incorporating chemical structures into LPLNI models. Experimental results demonstrate that the model with integrated information (LPLNI-II) can produce improved performances, better than other state-of-the-art methods. The known drug-target interactions are an important information source for computational predictions. The usefulness of the proposed method is demonstrated by cross validation and the case study.

  6. Knowledge Integration and Use-Case Analysis for a Customized Drug-Drug Interaction CDS Service

    Science.gov (United States)

    Kam, Hye Jin; Park, Man Young; Kim, Woojae; Yoon, Duk Yong; Ahn, Eun Kyoung; Park, Rae Woong

    Clinical decision support systems (CDSSs) are thought to reduce adverse drug events (ADEs) by monitoring drug-drug interactions(DDIs). However, clinically improper or excessive alerts can result in high alert overrides. A tailored CDS service, which is appropriate for clinicians and their ordering situations, is required to increase alert acceptance. In this study, we conducted a 12-week pilot project adopting a tailed CDSS at an emergency department. The new CDSS was conducted via a stepwise integration of additional new rules. The alert status with changes in acceptance rate was analyzed. The most frequent DDI alerts were related to prescriptions of anti-inflammatory drugs. The percentages of alert overrides for each stage were 98.0%, 96.0%, 96.9%, and 98.1%, respectively. 91.5% of overridden alerts were related to discharge medications. To reduce the potential hazards of ADEs, the development of an effective customized DDI CDSS is required, via in-depth analysis on alert patterns and overridden reasons.

  7. Estimation of the binding modes with important human cytochrome P450 enzymes, drug interaction potential, pharmacokinetics, and hepatotoxicity of ginger components using molecular docking, computational, and pharmacokinetic modeling studies

    Directory of Open Access Journals (Sweden)

    Qiu JX

    2015-02-01

    Full Text Available Jia-Xuan Qiu,1,2 Zhi-Wei Zhou,3 Zhi-Xu He,4 Xueji Zhang,5 Shu-Feng Zhou,3 Shengrong Zhu11Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China; 2Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China; 3Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA; 4Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guiyang Medical University, Guiyang, Guizhou, People’s Republic of China; 5Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing, People’s Republic of ChinaAbstract: Ginger is one of the most commonly used herbal medicines for the treatment of numerous ailments and improvement of body functions. It may be used in combination with prescribed drugs. The coadministration of ginger with therapeutic drugs raises a concern of potential deleterious drug interactions via the modulation of the expression and/or activity of drug-metabolizing enzymes and drug transporters, resulting in unfavorable therapeutic outcomes. This study aimed to determine the molecular interactions between 12 main active ginger components (6-gingerol, 8-gingerol, 10-gingerol, 6-shogaol, 8-shogaol, 10-shogaol, ar-curcumene, ß-bisabolene, ß-sesquiphelandrene, 6-gingerdione, (--zingiberene, and methyl-6-isogingerol and human cytochrome P450 (CYP 1A2, 2C9, 2C19, 2D6, and 3A4 and to predict the absorption, distribution, metabolism, excretion, and toxicity (ADMET of the 12 ginger components using computational approaches and comprehensive literature search. Docking studies showed that ginger components interacted with a panel of amino acids in the active sites of CYP1A

  8. Oral chemotherapy: food-drug interactions

    Directory of Open Access Journals (Sweden)

    Sara Santana Martínez

    2015-07-01

    Full Text Available Introduction: oral chemotherapy is increasingly used in Oncology. It has important advantages. such as patient comfort. but it also brings new challenges which did not exist with the intravenous therapy. Some of these drugs have interactions with food. leading to changes in their bioavailability. As they are drugs of narrow therapeutic margin. this can lead to alterations in their efficacy and/or toxicity. Objectives: A. Assessing the level of knowledge on the administration of oral cytostatics that present restrictions with meals (drugs that have to be taken with/without food among the outpatients. B. Minimizing the incorrect administration and the risk of food-drug interactions. providing patients with information as to how and when drugs have to be administrated. Methods: once the oral cytostatics with food restrictions were identified. we asked the patients in treatment about the information they had received from the doctor and the way they were taking the medication. We provided those who were taking the drug incorrectly with the right information. In the following visit. it was confirmed if the patients that had been previously taking the cytostatic incorrectly. were taking them in a correct way (intervention accepted/not accepted. Results and conclusions: 40% of the patients interviewed used to take the drug incorrectly. We detected a great diversity depending on the dispensed drug. 95% of the 39 interventions made were accepted. The data obtained suggest the need to reinforce the information that the patient receives. It is important to make sure that the patient understands how and when the oral cytostatic should be administered

  9. Managing Drug-Drug Interaction Between Ombitasvir, Paritaprevir/Ritonavir, Dasabuvir, and Mycophenolate Mofetil.

    Science.gov (United States)

    Lemaitre, Florian; Ben Ali, Zeineb; Tron, Camille; Jezequel, Caroline; Boglione-Kerrien, Christelle; Verdier, Marie-Clémence; Guyader, Dominique; Bellissant, Eric

    2017-08-01

    No drug-drug interaction study has been conducted to date for the combination of ombitasvir, paritaprevir/ritonavir, dasabuvir (3D), and mycophenolic acid (MPA). We here report the case of a hepatitis C virus-infected patient treated with 3D and MPA for vasculitis. In light of the threat of drug-drug interaction, the concentration of MPA was measured before, during, and 15 days after the end of the 3D treatment. Similar values were found at all 3 time points, thus indicating that there is probably no need to adapt MPA dosage to 3D.

  10. Open-source chemogenomic data-driven algorithms for predicting drug-target interactions.

    Science.gov (United States)

    Hao, Ming; Bryant, Stephen H; Wang, Yanli

    2018-02-06

    While novel technologies such as high-throughput screening have advanced together with significant investment by pharmaceutical companies during the past decades, the success rate for drug development has not yet been improved prompting researchers looking for new strategies of drug discovery. Drug repositioning is a potential approach to solve this dilemma. However, experimental identification and validation of potential drug targets encoded by the human genome is both costly and time-consuming. Therefore, effective computational approaches have been proposed to facilitate drug repositioning, which have proved to be successful in drug discovery. Doubtlessly, the availability of open-accessible data from basic chemical biology research and the success of human genome sequencing are crucial to develop effective in silico drug repositioning methods allowing the identification of potential targets for existing drugs. In this work, we review several chemogenomic data-driven computational algorithms with source codes publicly accessible for predicting drug-target interactions (DTIs). We organize these algorithms by model properties and model evolutionary relationships. We re-implemented five representative algorithms in R programming language, and compared these algorithms by means of mean percentile ranking, a new recall-based evaluation metric in the DTI prediction research field. We anticipate that this review will be objective and helpful to researchers who would like to further improve existing algorithms or need to choose appropriate algorithms to infer potential DTIs in the projects. The source codes for DTI predictions are available at: https://github.com/minghao2016/chemogenomicAlg4DTIpred. Published by Oxford University Press 2018. This work is written by US Government employees and is in the public domain in the US.

  11. Treat the whole patient and be aware of drug interactions.

    Science.gov (United States)

    Breivik, Harald

    2015-03-01

    The case of an elderly male with bilateral shoulder pain is presented. The pain had been successfully treated years earlier with surgery, but a repeat rotator cuff procedure when the pain recurred was not effective. The patient's physician asked about impact of systemic analgesics on the elderly patient and interactions with his blood pressure medications. Cardiovascular and renal risks of NSAOIDs are discussed as are potential toxicities of tramadol and too rapid withdrawal from it. Drug interactions of medications used are described.

  12. Modeling Drug-Carrier Interaction in the Drug Release from Nanocarriers

    Directory of Open Access Journals (Sweden)

    Like Zeng

    2011-01-01

    Full Text Available Numerous nanocarriers of various compositions and geometries have been developed for the delivery and release of therapeutic and imaging agents. Due to the high specific surface areas of nanocarriers, different mechanisms such as ion pairing and hydrophobic interaction need to be explored for achieving sustained release. Recently, we developed a three-parameter model that considers reversible drug-carrier interaction and first-order drug release from liposomes. A closed-form analytical solution was obtained. Here, we further explore the ability of the model to capture the release of bioactive molecules such as drugs and growth factors from various nanocarriers. A parameter study demonstrates that the model is capable of resembling major categories of drug release kinetics. We further fit the model to 60 sets of experimental data from various drug release systems, including nanoparticles, hollow particles, fibers, and hollow fibers. Additionally, bootstrapping is used to evaluate the accuracy of parameter determination and validate the model in selected cases. The simplicity and universality of the model and the clear physical meanings of each model parameter render the model useful for the design and development of new drug delivery systems.

  13. Evaluation of Potential Drug-Drug Interaction Between Delayed-Release Dimethyl Fumarate and a Commonly Used Oral Contraceptive (Norgestimate/Ethinyl Estradiol) in Healthy Women.

    Science.gov (United States)

    Zhu, Bing; Nestorov, Ivan; Zhao, Guolin; Meka, Venkata; Leahy, Mark; Kam, Jeanelle; Sheikh, Sarah I

    2017-11-01

    Delayed-release dimethyl fumarate (DMF) is an oral therapy for relapsing multiple sclerosis with anti-inflammatory and neuroprotective properties. This 2-period crossover study was conducted to evaluate the potential for drug-drug interaction between DMF (240 mg twice daily) and a combined oral contraceptive (OC; norgestimate 250 μg, ethinyl estradiol 35 μg). Forty-six healthy women were enrolled; 32 completed the study. After the lead-in period (OC alone), 41 eligible participants were randomized 1:1 to sequence 1 (OC and DMF coadministration in period 1; OC alone in period 2) or sequence 2 (regimens reversed). Mean concentration profiles of plasma norelgestromin (primary metabolite of norgestimate) and ethinyl estradiol were superimposable following OC alone and OC coadministered with DMF, with 90% confidence intervals of geometric mean ratios for area under the plasma concentration-time curve over the dosing interval and peak plasma concentration contained within the 0.8-1.25 range. Low serum progesterone levels during combined treatment confirmed suppression of ovulation. The pharmacokinetics of DMF (measured via its primary active metabolite, monomethyl fumarate) were consistent with historical data when DMF was administered alone. No new safety concerns were identified. These results suggest that norgestimate/ethinyl estradiol-based OCs may be used with DMF without dose modification. © 2017, The Authors. Clinical Pharmacology in Drug Development Published by Wiley Periodicals, Inc. on behalf of The American College of Clinical Pharmacology.

  14. Predicting and understanding comprehensive drug-drug interactions via semi-nonnegative matrix factorization.

    Science.gov (United States)

    Yu, Hui; Mao, Kui-Tao; Shi, Jian-Yu; Huang, Hua; Chen, Zhi; Dong, Kai; Yiu, Siu-Ming

    2018-04-11

    Drug-drug interactions (DDIs) always cause unexpected and even adverse drug reactions. It is important to identify DDIs before drugs are used in the market. However, preclinical identification of DDIs requires much money and time. Computational approaches have exhibited their abilities to predict potential DDIs on a large scale by utilizing pre-market drug properties (e.g. chemical structure). Nevertheless, none of them can predict two comprehensive types of DDIs, including enhancive and degressive DDIs, which increases and decreases the behaviors of the interacting drugs respectively. There is a lack of systematic analysis on the structural relationship among known DDIs. Revealing such a relationship is very important, because it is able to help understand how DDIs occur. Both the prediction of comprehensive DDIs and the discovery of structural relationship among them play an important guidance when making a co-prescription. In this work, treating a set of comprehensive DDIs as a signed network, we design a novel model (DDINMF) for the prediction of enhancive and degressive DDIs based on semi-nonnegative matrix factorization. Inspiringly, DDINMF achieves the conventional DDI prediction (AUROC = 0.872 and AUPR = 0.605) and the comprehensive DDI prediction (AUROC = 0.796 and AUPR = 0.579). Compared with two state-of-the-art approaches, DDINMF shows it superiority. Finally, representing DDIs as a binary network and a signed network respectively, an analysis based on NMF reveals crucial knowledge hidden among DDIs. Our approach is able to predict not only conventional binary DDIs but also comprehensive DDIs. More importantly, it reveals several key points about the DDI network: (1) both binary and signed networks show fairly clear clusters, in which both drug degree and the difference between positive degree and negative degree show significant distribution; (2) the drugs having large degrees tend to have a larger difference between positive degree

  15. [Interactions between herbal medicines and drugs].

    Science.gov (United States)

    Tůmová, L

    2000-07-01

    At present the use of medicaments of plant origin is on the increase. It is therefore necessary to take into consideration that there exist known as well as potential interactions between the medicament of the medicinal plant. The problematic plants include Echinacea, Allium cepa, Gingko biloba, Panax ginseng, as well as Hypericum perforatum, Valeriana officinalis, or Glycyrrhiza glabra. Its use should be limited, or completely excluded in the cases of simultaneous therapy with, e.g., warfarin, hepatotoxically acting medicaments, MAOI inhibitors, phenelzin sulphate, or phenytoin, as they may decrease of completely eliminate the therapeutic effect of the administered drugs, or they may cause a toxic damage to the organism.

  16. Drug-Target Interaction Prediction with Graph Regularized Matrix Factorization.

    Science.gov (United States)

    Ezzat, Ali; Zhao, Peilin; Wu, Min; Li, Xiao-Li; Kwoh, Chee-Keong

    2017-01-01

    Experimental determination of drug-target interactions is expensive and time-consuming. Therefore, there is a continuous demand for more accurate predictions of interactions using computational techniques. Algorithms have been devised to infer novel interactions on a global scale where the input to these algorithms is a drug-target network (i.e., a bipartite graph where edges connect pairs of drugs and targets that are known to interact). However, these algorithms had difficulty predicting interactions involving new drugs or targets for which there are no known interactions (i.e., "orphan" nodes in the network). Since data usually lie on or near to low-dimensional non-linear manifolds, we propose two matrix factorization methods that use graph regularization in order to learn such manifolds. In addition, considering that many of the non-occurring edges in the network are actually unknown or missing cases, we developed a preprocessing step to enhance predictions in the "new drug" and "new target" cases by adding edges with intermediate interaction likelihood scores. In our cross validation experiments, our methods achieved better results than three other state-of-the-art methods in most cases. Finally, we simulated some "new drug" and "new target" cases and found that GRMF predicted the left-out interactions reasonably well.

  17. Adverse effects and Drug Interactions Associated with Inhaled Recreational and Medical Marijuana

    Directory of Open Access Journals (Sweden)

    Maisha Kelly Freeman

    2016-06-01

    Full Text Available Objectives: To provide an overview of the addiction potential; adverse effects (e.g., cardiovascular, immune dysfunction, respiratory system, mental health disorders; drug interactions; effects of accidental exposure; crime statistics; and pharmacist’s considerations for the use of inhaled medical marijuana. Methods: A PubMed search was conducted from 1966 to March 2016 to identify articles in which the safety of inhaled medical marijuana was assessed. Key MeSH search terms included medical marijuana with a subheading for adverse effect. Only articles in adult patients were considered. In addition, medical marijuana or cannabis plus one of the following search terms were searched: drug interactions, herb-drug interactions, drug-related side effects and adverse drug reactions, substance-related disorders, addiction, and abuse. A free-text search was also conducted to identify articles not included in the MeSH term search. A bibliographic search was also conducted. Articles were included if they addressed adverse effects of medical marijuana for the treatment of a condition. Meta-analyses, randomized controlled clinical trials, and case reports were included in the review if the primary focus of the article related to the adverse effect profile of inhaled medical marijuana. Medical marijuana efficacy studies were not assessed. In the absence of this information, case reports or reports of inhaled recreational marijuana use was used. Studies were excluded if published in languages other than English. In addition, studies highlighting mechanisms of action, studies of pharmacodynamics or pharmacokinetic effects were excluded, unless these effects were due to drug-drug interactions. Prescription products containing marijuana or derivatives were excluded from evaluation. An Internet search was conducted to locate the most up-to-date information on the laws concerning medical marijuana. Key findings: A PubMed search revealed 58 articles and 28 of

  18. Drug-botanical interactions: a review of the laboratory, animal, and human data for 8 common botanicals.

    Science.gov (United States)

    Shord, Stacy S; Shah, Kanan; Lukose, Alvina

    2009-09-01

    Many Americans use complementary and alternative medicine (CAM) to prevent or alleviate common illnesses, and these medicines are commonly used by individuals with cancer.These medicines or botanicals share the same metabolic and transport proteins, including cytochrome P450 enzymes (CYP), glucuronosyltransferases (UGTs), and P-glycoprotein (Pgp), with over-the-counter and prescription medicines increasing the likelihood of drug-botanical interactions.This review provides a brief description of the different proteins, such as CYPs, UGTs, and Pgp.The potential effects of drug-botanical interactions on the pharmacokinetics and pharmacodynamics of the drug or botanical and a summary of the more common models used to study drug metabolism are described.The remaining portion of this review summarizes the data extracted from several laboratory, animal, and clinical studies that describe the metabolism, transport, and potential interactions of 8 selected botanicals. The 8 botanicals include black cohosh, Echinacea, garlic, Gingko biloba, green tea, kava, milk thistle, and St John's wort; these botanicals are among some of the more common botanicals taken by individuals with cancer.These examples are included to demonstrate how to interpret the different studies and how to use these data to predict the likelihood of a clinically significant drug-botanical interaction.

  19. Displacement of Drugs from Human Serum Albumin: From Molecular Interactions to Clinical Significance.

    Science.gov (United States)

    Rimac, Hrvoje; Debeljak, Željko; Bojić, Mirza; Miller, Larisa

    2017-01-01

    Human serum albumin (HSA) is the most abundant protein in human serum. It has numerous functions, one of which is transport of small hydrophobic molecules, including drugs, toxins, nutrients, hormones and metabolites. HSA has the ability to interact with a wide variety of structurally different compounds. This promiscuous, nonspecific affinity can lead to sudden changes in concentrations caused by displacement, when two or more compounds compete for binding to the same molecular site. It is important to consider drug combinations and their binding to HSA when defining dosing regimens, as this can directly influence drug's free, active concentration in blood. In present paper we review drug interactions with potential for displacement from HSA, situations in which they are likely to occur and their clinical significance. We also offer guidelines in designing drugs with decreased binding to HSA. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Statin-associated rhabdomyolysis triggered by drug-drug interaction with itraconazole

    DEFF Research Database (Denmark)

    Dybro, Anne Mette; Damkier, Per; Rasmussen, Torsten Bloch

    2016-01-01

    -associated rhabdomyolysis, probably caused by a drug-drug interaction between simvastatin and itraconazole. The patient made full recovery. Three commonly used statins-simvastatin, atorvastatin and lovastatin-are metabolised by the liver enzyme CYP3A4. Several potent inhibitors of this enzyme are known, for example, azole...

  1. Consistency of psychotropic drug-drug interactions listed in drug monographs.

    Science.gov (United States)

    Liu, Xinyue; Hatton, Randy C; Zhu, Yanmin; Hincapie-Castillo, Juan M; Bussing, Regina; Barnicoat, Marie; Winterstein, Almut G

    With an increasing prevalence of psychotropic polypharmacy, clinicians depend on drug-drug interaction (DDI) references to ensure safe regimens, but the consistency of such information is frequently questioned. To evaluate the consistency of psychotropic DDIs documented in Clinical Pharmacology (CP), Micromedex (MM), and Lexicomp (LC) and summarize consistent psychotropic DDIs. In May 2016, we extracted severe or major psychotropic DDIs for 102 psychotropic drugs, including central nervous system (CNS) stimulants, antidepressants, an antimanic agent (lithium), antipsychotics, anticonvulsants, and anxiolytics-sedatives-hypnotics from CP, MM, and LC. We then summarized the psychotropic DDIs that were included in all 3 references and with evidence quality of "excellent" or "good" based on MM. We identified 1496, 938, and 1006 unique severe or major psychotropic DDIs from CP, MM, and LC, respectively. Common adverse effects related to psychotropic DDIs include increased or decreased effectiveness, CNS depression, neurotoxicity, QT prolongation, serotonin syndrome, and multiple adverse effects. Among these interactions, only 371 psychotropic DDIs were documented in all 3 references, 59 of which had "excellent" or "good" quality of evidence based on MM. The consistency of psychotropic DDI documentation across CP, MM, and LC is poor. DDI documentations need standards that would encourage consistency among drug information references. The list of the 59 DDIs may be useful in the assessment of psychotropic polypharmacy and highlighting DDI alerts in clinical practice. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  2. Idiosyncratic Drug-Induced Liver Injury: Is Drug-Cytokine Interaction the Linchpin?

    Science.gov (United States)

    Roth, Robert A; Maiuri, Ashley R; Ganey, Patricia E

    2017-02-01

    Idiosyncratic drug-induced liver injury continues to be a human health problem in part because drugs that cause these reactions are not identified in current preclinical testing and because progress in prevention is hampered by incomplete knowledge of mechanisms that underlie these adverse responses. Several hypotheses involving adaptive immune responses, inflammatory stress, inability to adapt to stress, and multiple, concurrent factors have been proposed. Yet much remains unknown about how drugs interact with the liver to effect death of hepatocytes. Evidence supporting hypotheses implicating adaptive or innate immune responses in afflicted patients has begun to emerge and is bolstered by results obtained in experimental animal models and in vitro systems. A commonality in adaptive and innate immunity is the production of cytokines, including interferon-γ (IFNγ). IFNγ initiates cell signaling pathways that culminate in cell death or inhibition of proliferative repair. Tumor necrosis factor-α, another cytokine prominent in immune responses, can also promote cell death. Furthermore, tumor necrosis factor-α interacts with IFNγ, leading to enhanced cellular responses to each cytokine. In this short review, we propose that the interaction of drugs with these cytokines contributes to idiosyncratic drug-induced liver injury, and mechanisms by which this could occur are discussed. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  3. Interaction of cephalosporin drugs with dodecyltrimethylammonium Bromide

    International Nuclear Information System (INIS)

    Hoque, Md. Anamul; Hossain, Mohammed Delwar; Khan, Mohammed Abdullah

    2013-01-01

    Highlights: • We carry out the interaction of cephalosporin drugs with DTAB conductometrically. • We examine the effect of drugs on the critical micelle concentration of DTAB. • Three critical micelle concentrations are obtained for drug- DTAB system. • Electrostatic and hydrophobic interactions between drugs and DTAB are proposed. • Drug supported micelle formation of DTAB is much favoured in aq. solution of K 2 SO 4 . -- Abstract: The interaction of three cephalosporin drugs namely cefadroxyl monohydrate (CFM), cephalexin monohydrate (CLM) and cephradine monohydrate (CDM) with dodecyltrimethylammonium Bromide (DTAB) has been carried out by conductance measurements in aqueous medium and in aqueous solution of K 2 SO 4 salt over temperature range of (303.15 to 318.15) K. For pure DTAB and drug-DTAB systems, three critical micelle concentrations were obtained. The third critical micelle concentration (c ∗ 3 ) indicates that the spherical micelle turns into rod shape that is sphere to rod transition. The c ∗ values of DTAB are changed due to the addition of cephalosporin drugs. In addition, the change of the values of c ∗ 1 , c ∗ 2 and c ∗ 3 with increase of the concentration of drugs indicate the presence of interaction between drug and DTAB. The c ∗ values indicate that micellization for the cephalosporins-surfactant systems in water follow the order: CFM-surfactant ∗ values for the cephalosporins - DTAB systems in aqueous K 2 SO 4 are lower in magnitude than those in pure water and the values decrease with increase of the concentrations of K 2 SO 4 at a particular temperature. A significant decrease of c ∗ values in the presence of K 2 SO 4 for cephalosporins-DTAB systems indicates that drug supported ionic micelle formation is much favoured in aqueous K 2 SO 4 solution compared to that in pure water. For cephalosporin-DTAB systems, ΔG 0 m values are negative which indicate that the drugs mediated ionic micelle formation processes are

  4. Analysis of possible food/nutrient and drug interactions in hospitalized patients

    Directory of Open Access Journals (Sweden)

    Everton Moraes Lopes

    2010-09-01

    Full Text Available Objective: To evaluate the prescription in relation to the possible interactions between drugs and foods/nutrients in the diets of patients in the Hospital Regional Justino Luz in the municipality of Picos, Piauí, Brazil. Methods: The sample consisted of 60 medical records of patients admitted at the hospital. The records were analyzed according to the presence or absence of interactions between drugs and foods/nutrients of the prescribed diets. Results: Of the 82 drugs prescribed in all periods, there were 16 drugs (19.5% with possible interaction with food, a total of 60 interactions between nutrient/food and medicine. Thus, 18 (30%, 10 (17% and 8 (13% possible interactions were identified with captopril (cardiovascular drug with acetylsalicylic acid (anti-inflammatory and spironolactone (diuretic, respectively representing the highest numbers of interactions among the classes of investigated drugs. It was also found that the total interactions between food/nutrients and drugs, 32 (53% accounted for interactions with cardiovascular drugs, 13 (22% with anti-inflammatory drugs, 11 (18% with diuretic agents e 4 (7% with drugs that act on the digestive tract. Conclusion: There was a high number of interactions between food/nutrients and medicines emphasizing the need for prior knowledge of these interactions as a way to avoid impairment in the treatment, longer hospital stays and/or damage to the nutritional status of the patients.

  5. Radiation and platinum drug interaction

    International Nuclear Information System (INIS)

    Nias, A.H.W.

    1985-01-01

    The ideal platinum drug-radiation interaction would achieve radiosensitization of hypoxic tumour cells with the use of a dose of drug which is completely non-toxic to normal tissues. Electron-affinic agents are employed with this aim, but the commoner platinum drugs are only weakly electron-affinic. They do have a quasi-alkylating action however, and this DNA targeting may account for the radiosensitizing effect which occurs with both pre- and post-radiation treatments. Because toxic drug dosage is usually required for this, the evidence of the biological responses to the drug and to the radiation, as well as to the combination, requires critical analysis before any claim of true enhancement, rather than simple additivity, can be accepted. The amount of enhancement will vary with both the platinum drug dose and the time interval between drug administration and radiation. Clinical schedules may produce an increase in tumour response and/or morbidity, depending upon such dose and time relationships. (author)

  6. Drug Interactions between some antiepileptic and certain hypocholesterolaemic drugs in irradiated animals

    International Nuclear Information System (INIS)

    Shaaban, D.M.L.

    2015-01-01

    Drug Interactions between antiepileptic drug such as phenytoin and certain hypercholesterolaemia drug namely rosuvastatin were investigated on several biological parameters. Phenytoin (60 mg/kg i.p) and rosuvastatin (1.25 mg/kg i.p) were given either alone and in combination to normal and irradiated animals to investigate drug interactions between the test drugs. Anticonvulsant activity was evaluated using pentylenetetrazole in a dose (80 mg/kg i.p) in normal and irradiated mice. Brain neurotransmitters (glutamate and GABA) were investigated. Lipid profile (total cholesterol (TC), Triacylglycerol (TG), High density lipoprotein-cholesterol (HDL-C) and low density lipoprotein- cholesterol (LDL-C) were determined. Liver functions such as serum Aspartate amino transferase (AST) and serum alanine amino transferase (ALT) were also estimated. Oxidative stress bio markers namely serum malondialdehyde (MDA), serum nitric oxide (NO) and blood superoxide dismutase activity (SOD) were studied. Histopathological examinations of brain and liver tissues were performed. Administration of phenytoin concurrently with rosuvastatin is not recommended in patients receiving radiotherapy as dangerous side effects on liver functions and lipid profile may occur. The interactions between the two drugs in normal rats improve liver functions and lipid peroxidation. Apart from the action of the combination on total cholesterol, it improves lipid profile pattern. Rosuvastatin administration in combination with phenytoin may have additive anticonvulsant activity.

  7. Pharmacoepidemiological assessment of drug interactions with vitamin K antagonists

    DEFF Research Database (Denmark)

    Pottegård, Anton; Christensen, Rene dePont; Wang, Shirley V

    2014-01-01

    PurposeWe present a database of prescription drugs and international normalized ratio (INR) data and the applied methodology for its use to assess drug-drug interactions with vitamin K antagonists (VKAs). We use the putative interaction between VKAs and tramadol as a case study. MethodsWe used...

  8. Cognitive enhancers (Nootropics). Part 3: drugs interacting with targets other than receptors or enzymes. Disease-modifying drugs. Update 2014.

    Science.gov (United States)

    Froestl, Wolfgang; Pfeifer, Andrea; Muhs, Andreas

    2014-01-01

    Scientists working in the field of Alzheimer's disease and, in particular, cognitive enhancers, are very productive. The review "Drugs interacting with Targets other than Receptors or Enzymes. Disease-modifying Drugs" was accepted in October 2012. In the last 20 months, new targets for the potential treatment of Alzheimer's disease were identified. Enormous progress was realized in the pharmacological characterization of natural products with cognitive enhancing properties. This review covers the evolution of research in this field through May 2014.

  9. Pharmacokinetic and pharmacodynamic drug interactions with ethanol (alcohol).

    Science.gov (United States)

    Chan, Lingtak-Neander; Anderson, Gail D

    2014-12-01

    Ethanol (alcohol) is one of the most widely used legal drugs in the world. Ethanol is metabolized by alcohol dehydrogenase (ADH) and the cytochrome P450 (CYP) 2E1 drug-metabolizing enzyme that is also responsible for the biotransformation of xenobiotics and fatty acids. Drugs that inhibit ADH or CYP2E1 are the most likely theoretical compounds that would lead to a clinically significant pharmacokinetic interaction with ethanol, which include only a limited number of drugs. Acute ethanol primarily alters the pharmacokinetics of other drugs by changing the rate and extent of absorption, with more limited effects on clearance. Both acute and chronic ethanol use can cause transient changes to many physiologic responses in different organ systems such as hypotension and impairment of motor and cognitive functions, resulting in both pharmacokinetic and pharmacodynamic interactions. Evaluating drug interactions with long-term use of ethanol is uniquely challenging. Specifically, it is difficult to distinguish between the effects of long-term ethanol use on liver pathology and chronic malnutrition. Ethanol-induced liver disease results in decreased activity of hepatic metabolic enzymes and changes in protein binding. Clinical studies that include patients with chronic alcohol use may be evaluating the effects of mild cirrhosis on liver metabolism, and not just ethanol itself. The definition of chronic alcohol use is very inconsistent, which greatly affects the quality of the data and clinical application of the results. Our study of the literature has shown that a significantly higher volume of clinical studies have focused on the pharmacokinetic interactions of ethanol and other drugs. The data on pharmacodynamic interactions are more limited and future research addressing pharmacodynamic interactions with ethanol, especially regarding the non-central nervous system effects, is much needed.

  10. Pharmacokinetic drug-drug interaction and their implication in clinical management

    OpenAIRE

    Palleria, Caterina; DI PAOLO, Antonello; Giofrè, Chiara; Caglioti, Chiara; Leuzzi, Giacomo; Siniscalchi, Antonio; De Sarro, Giovambattista; Gallelli, Luca

    2013-01-01

    Drug-drug interactions (DDIs) are one of the commonest causes of medication error in developed countries, particularly in the elderly due to poly-therapy, with a prevalence of 20-40%. In particular, poly-therapy increases the complexity of therapeutic management and thereby the risk of clinically important DDIs, which can both induce the development of adverse drug reactions or reduce the clinical efficacy. DDIs can be classify into two main groups: pharmacokinetic and pharmacodynamic. In thi...

  11. EXPLORING THE PATTERN OF POLYPHARMACY AND PROPORTION OF DRUG TO DRUG INTERACTIONS AND ADVERSE DRUG REACTIONS IN THE ELDERLY

    Directory of Open Access Journals (Sweden)

    Vijayashree Thyagaraj

    2017-07-01

    Full Text Available BACKGROUND The geriatric population is increasing as a result of advanced medical facilities. This population also faces a number of medical health challenges. They tend to receive multiple medications often leading to Drug-Drug Interactions (DDIs Adverse Drug Reactions (ADRs and other clinical consequences, which compromises their quality of life if not endangering it as well. There are few Indian studies focusing on this problem. Hence, this study was undertaken with the aim to assess the polypharmacy pattern, proportion of DDIs and adverse drug reactions in the geriatric population in a tertiary care hospital. MATERIALS AND METHODS This was a cross-sectional study wherein data from 201 geriatric inpatient’s prescriptions were collected. The prescriptions were assessed for demographic details such as age, gender, comorbidities and drugs prescribed. All prescriptions were evaluated for polypharmacy, DDIs and ADRs. DDIs were assessed using Micromedex software. Patients were stratified into groups and DDIs were compared between the groups, gender and also with number of drugs used. RESULTS There were 201 patients with a mean age of approximately 70 years. Polypharmacy occurred in 73.63% of them with mean number of drugs being 6.23. The number of drugs used increased significantly with age (p=0.0001. Hypertension was the most common comorbidity. Polypharmacy was strongly associated with hypertension and dyslipidaemia. A total of 129 (64.17% patients accounted for 425 potential DDIs. The most common drug involved in DDIs was aspirin. A subset analysis of ADRs showed an occurrence of 50.68% with 10.81% being definitely avoidable. CONCLUSION Elderly individuals are at increased risk of being on polypharmacy. This comes with the risk of several potential DDIs, which in turn may lead to adverse drug reactions, which results in morbidity. Doctors involved in the care of the elderly should be aware of these facts and exercise caution while adding any

  12. Pharmacokinetic drug interactions of antimicrobial drugs : a systematic review on oxazolidinones, rifamycines, macrolides, fluoroquinolones, and Beta-lactams

    NARCIS (Netherlands)

    Bolhuis, Mathieu S; Panday, Prashant N; Pranger, Arianna D; Kosterink, Jos G W; Alffenaar, Jan-Willem C

    2011-01-01

    Like any other drug, antimicrobial drugs are prone to pharmacokinetic drug interactions. These drug interactions are a major concern in clinical practice as they may have an effect on efficacy and toxicity. This article provides an overview of all published pharmacokinetic studies on drug

  13. Hepatic transporter drug-drug interactions: an evaluation of approaches and methodologies.

    Science.gov (United States)

    Williamson, Beth; Riley, Robert J

    2017-12-01

    Drug-drug interactions (DDIs) continue to account for 5% of hospital admissions and therefore remain a major regulatory concern. Effective, quantitative prediction of DDIs will reduce unexpected clinical findings and encourage projects to frontload DDI investigations rather than concentrating on risk management ('manage the baggage') later in drug development. A key challenge in DDI prediction is the discrepancies between reported models. Areas covered: The current synopsis focuses on four recent influential publications on hepatic drug transporter DDIs using static models that tackle interactions with individual transporters and in combination with other drug transporters and metabolising enzymes. These models vary in their assumptions (including input parameters), transparency, reproducibility and complexity. In this review, these facets are compared and contrasted with recommendations made as to their application. Expert opinion: Over the past decade, static models have evolved from simple [I]/k i models to incorporate victim and perpetrator disposition mechanisms including the absorption rate constant, the fraction of the drug metabolised/eliminated and/or clearance concepts. Nonetheless, models that comprise additional parameters and complexity do not necessarily out-perform simpler models with fewer inputs. Further, consideration of the property space to exploit some drug target classes has also highlighted the fine balance required between frontloading and back-loading studies to design out or 'manage the baggage'.

  14. Risk of Clinically Relevant Pharmacokinetic-based Drug-drug Interactions with Drugs Approved by the U.S. Food and Drug Administration Between 2013 and 2016.

    Science.gov (United States)

    Yu, Jingjing; Zhou, Zhu; Tay-Sontheimer, Jessica; Levy, Rene H; Ragueneau-Majlessi, Isabelle

    2018-03-23

    A total of 103 drugs (including 14 combination drugs) were approved by the U.S. Food and Drug Administration from 2013 to 2016. Pharmacokinetic-based drug interaction profiles were analyzed using the University of Washington Drug Interaction Database and the clinical relevance of these observations was characterized based on information from New Drug Application reviews. CYP3A was identified as a major contributor to clinical drug-drug interactions (DDIs), involved in approximately 2/3 of all interactions. Transporters (alone or with enzymes) were found to participate in about half of all interactions, although most of these were weak-to-moderate interactions. When considered as victims, eight new molecular entities (NMEs; cobimetinib, ibrutnib, isavuconazole, ivabradine, naloxegol, paritaprevir, simeprevir, and venetoclax) were identified as sensitive substrates of CYP3A, two NMEs (pirfenidone and tasimelteon) were sensitive substrates of CYP1A2, one NME (dasabuvir) was a sensitive substrate of CYP2C8, one NME (eliglustat) was a sensitive substrate of CYP2D6, and one NME (grazoprevir) was a sensitive substrate of OATP1B1/3 (with changes in exposure greater than 5-fold when co-administered with a strong inhibitor). Interestingly, approximately 75% of identified CYP3A substrates were also substrates of P-gp. As perpetrators, most clinical DDIs involved weak-to-moderate inhibition or induction, with only two drugs (Viekira Pak and idelalisib) showing strong inhibition of CYP3A, and one NME (lumacaftor) considered as a strong CYP3A inducer. Among drugs with large changes in exposure (≥ 5-fold), whether as victim or perpetrator, the most represented therapeutic classes were antivirals and oncology drugs, suggesting a significant risk of clinical DDIs in these patient populations. The American Society for Pharmacology and Experimental Therapeutics.

  15. Drug-target interaction prediction from PSSM based evolutionary information.

    Science.gov (United States)

    Mousavian, Zaynab; Khakabimamaghani, Sahand; Kavousi, Kaveh; Masoudi-Nejad, Ali

    2016-01-01

    The labor-intensive and expensive experimental process of drug-target interaction prediction has motivated many researchers to focus on in silico prediction, which leads to the helpful information in supporting the experimental interaction data. Therefore, they have proposed several computational approaches for discovering new drug-target interactions. Several learning-based methods have been increasingly developed which can be categorized into two main groups: similarity-based and feature-based. In this paper, we firstly use the bi-gram features extracted from the Position Specific Scoring Matrix (PSSM) of proteins in predicting drug-target interactions. Our results demonstrate the high-confidence prediction ability of the Bigram-PSSM model in terms of several performance indicators specifically for enzymes and ion channels. Moreover, we investigate the impact of negative selection strategy on the performance of the prediction, which is not widely taken into account in the other relevant studies. This is important, as the number of non-interacting drug-target pairs are usually extremely large in comparison with the number of interacting ones in existing drug-target interaction data. An interesting observation is that different levels of performance reduction have been attained for four datasets when we change the sampling method from the random sampling to the balanced sampling. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Potential effect of cationic liposomes on interactions with oral bacterial cells and biofilms.

    Science.gov (United States)

    Sugano, Marika; Morisaki, Hirobumi; Negishi, Yoichi; Endo-Takahashi, Yoko; Kuwata, Hirotaka; Miyazaki, Takashi; Yamamoto, Matsuo

    2016-01-01

    Although oral infectious diseases have been attributed to bacteria, drug treatments remain ineffective because bacteria and their products exist as biofilms. Cationic liposomes have been suggested to electrostatically interact with the negative charge on the bacterial surface, thereby improving the effects of conventional drug therapies. However, the electrostatic interaction between oral bacteria and cationic liposomes has not yet been examined in detail. The aim of the present study was to examine the behavior of cationic liposomes and Streptococcus mutans in planktonic cells and biofilms. Liposomes with or without cationic lipid were prepared using a reverse-phase evaporation method. The zeta potentials of conventional liposomes (without cationic lipid) and cationic liposomes were -13 and 8 mV, respectively, and both had a mean particle size of approximately 180 nm. We first assessed the interaction between liposomes and planktonic bacterial cells with a flow cytometer. We then used a surface plasmon resonance method to examine the binding of liposomes to biofilms. We confirmed the binding behavior of liposomes with biofilms using confocal laser scanning microscopy. The interactions between cationic liposomes and S. mutans cells and biofilms were stronger than those of conventional liposomes. Microscopic observations revealed that many cationic liposomes interacted with the bacterial mass and penetrated the deep layers of biofilms. In this study, we demonstrated that cationic liposomes had higher affinity not only to oral bacterial cells, but also biofilms than conventional liposomes. This electrostatic interaction may be useful as a potential drug delivery system to biofilms.

  17. Recommendation Techniques for Drug-Target Interaction Prediction and Drug Repositioning.

    Science.gov (United States)

    Alaimo, Salvatore; Giugno, Rosalba; Pulvirenti, Alfredo

    2016-01-01

    The usage of computational methods in drug discovery is a common practice. More recently, by exploiting the wealth of biological knowledge bases, a novel approach called drug repositioning has raised. Several computational methods are available, and these try to make a high-level integration of all the knowledge in order to discover unknown mechanisms. In this chapter, we review drug-target interaction prediction methods based on a recommendation system. We also give some extensions which go beyond the bipartite network case.

  18. Guidance for nuclear medicine staff on radiopharmaceuticals drug interaction

    International Nuclear Information System (INIS)

    Santos-Oliveira, Ralph

    2009-01-01

    Numerous drug interactions related to radiopharmaceuticals take place every day in hospitals many of which are not reported or detected. Information concerning this kind of reaction is not abundant, and nuclear medicine staff are usually overwhelmed by this information. To better understand this type of reaction, and to help nuclear medicine staff deal with it, a review of the literature was conducted. The results show that almost all of radiopharmaceuticals marketed around the world present drug interactions with a large variety of compounds. This suggests that a logical framework to make decisions based on reviews incorporating adverse reactions must be created. The review also showed that researchers undertaking a review of literature, or even a systematic review that incorporates drug interactions, must understand the rationale for the suggested methods and be able to implement them in their review. Additionally, a global effort should be made to report as many cases of drug interaction with radiopharmaceuticals as possible. With this, a complete picture of drug interactions with radiopharmaceuticals can be drawn. (author)

  19. Predicting transporter-mediated drug interactions: Commentary on: "Pharmacokinetic evaluation of a drug transporter cocktail consisting of digoxin, furosemide, metformin and rosuvastatin" and "Validation of a microdose probe drug cocktail for clinical drug interaction assessments for drug transporters and CYP3A".

    Science.gov (United States)

    Zhang, L; Sparreboom, A

    2017-04-01

    Transporters, expressed in various tissues, govern the absorption, distribution, metabolism, and excretion of drugs, and consequently their inherent safety and efficacy profiles. Drugs may interact with a transporter as a substrate and/or an inhibitor. Understanding transporter-mediated drug-drug interactions (DDIs), in addition to enzyme-mediated DDIs, is an integral part of risk assessment in drug development and regulatory review because the concomitant use of more than one medication in patients is common. © 2016 ASCPT.

  20. Drug-food interaction counseling programs in teaching hospitals.

    Science.gov (United States)

    Wix, A R; Doering, P L; Hatton, R C

    1992-04-01

    The results of a survey to characterize drug-food interaction counseling programs in teaching hospitals and solicit opinions on these programs from pharmacists and dietitians are reported. A questionnaire was mailed to the pharmacy director and the director of dietary services at teaching hospitals nationwide. The questionnaire contained 33 questions relating to hospital characteristics, drug-food interaction counseling programs, and the standard calling for such programs issued by the Joint Commission on Accreditation of Healthcare Organizations. Of 792 questionnaires mailed, 425 were returned (response rate, 53.7). A majority of the pharmacists and dietitians (51.2%) did not consider their drug-food interaction counseling program to be formal; some had no program. The pharmacy department was involved more in program development than in the daily operation of such programs. The most frequent methods of identifying patients for counseling were using lists of patients' drugs and using physicians' orders. A mean of only five drugs were targeted per program. Slightly over half the respondents rated the Joint Commission standard less effective than other standards in its ability to improve patient care. A majority of teaching hospitals did not have formal drug-food interaction counseling programs. Pharmacists and dietitians did not view these programs as greatly beneficial and did not believe that the Joint Commission has clearly delineated the requirements for meeting its standard.

  1. Target-mediated drug disposition with drug-drug interaction, Part I: single drug case in alternative formulations.

    Science.gov (United States)

    Koch, Gilbert; Jusko, William J; Schropp, Johannes

    2017-02-01

    Target-mediated drug disposition (TMDD) describes drug binding with high affinity to a target such as a receptor. In application TMDD models are often over-parameterized and quasi-equilibrium (QE) or quasi-steady state (QSS) approximations are essential to reduce the number of parameters. However, implementation of such approximations becomes difficult for TMDD models with drug-drug interaction (DDI) mechanisms. Hence, alternative but equivalent formulations are necessary for QE or QSS approximations. To introduce and develop such formulations, the single drug case is reanalyzed. This work opens the route for straightforward implementation of QE or QSS approximations of DDI TMDD models. The manuscript is the first part to introduce DDI TMDD models with QE or QSS approximations.

  2. Clinically important drug interactions with zopiclone, zolpidem and zaleplon.

    Science.gov (United States)

    Hesse, Leah M; von Moltke, Lisa L; Greenblatt, David J

    2003-01-01

    Insomnia, an inability to initiate or maintain sleep, affects approximately one-third of the American population. Conventional benzodiazepines, such as triazolam and midazolam, were the treatment of choice for short-term insomnia for many years but are associated with adverse effects such as rebound insomnia, withdrawal and dependency. The newer hypnosedatives include zolpidem, zaleplon and zopiclone. These agents may be preferred over conventional benzodiazepines to treat short-term insomnia because they may be less likely to cause significant rebound insomnia or tolerance and are as efficacious as the conventional benzodiazepines. This review aims to summarise the published clinical drug interaction studies involving zolpidem, zaleplon and zopiclone. The pharmacokinetic and pharmacodynamic interactions that may be clinically important are highlighted. Clinical trials have studied potential interactions of zaleplon, zolpidem and zopiclone with the following types of drugs: cytochrome P450 (CYP) inducers (rifampicin), CYP inhibitors (azoles, ritonavir and erythromycin), histamine H(2) receptor antagonists (cimetidine and ranitidine), antidepressants, antipsychotics, antagonists of benzodiazepines and drugs causing sedation. Rifampicin significantly induced the metabolism of the newer hypnosedatives and decreased their sedative effects, indicating that a dose increase of these agents may be necessary when they are administered with rifampicin. Ketoconazole, erythromycin and cimetidine inhibited the metabolism of the newer hypnosedatives and enhanced their sedative effects, suggesting that a dose reduction may be required. Addition of ethanol to treatment with the newer hypnosedatives resulted in additive sedative effects without altering the pharmacokinetic parameters of the drugs. Compared with some of the conventional benzodiazepines, fewer clinically important interactions appear to have been reported in the literature with zaleplon, zolpidem and zopiclone. The

  3. Comparative evaluation of the drug interaction screening programs MediQ and ID PHARMA CHECK in neurological inpatients.

    Science.gov (United States)

    Zorina, Olesya I; Haueis, Patrick; Semmler, Alexander; Marti, Isabelle; Gonzenbach, Roman R; Guzek, Markus; Kullak-Ublick, Gerd A; Weller, Michael; Russmann, Stefan

    2012-08-01

    The comparative evaluation of clinical decision support software (CDSS) programs regarding their sensitivity and positive predictive value for the identification of clinically relevant drug interactions. In this research, we used a cross-sectional study that identified potential drug interactions using the CDSS MediQ and the ID PHARMA CHECK in 484 neurological inpatients. Interactions were reclassified according to the Zurich Interaction System, a multidimensional classification that incorporates the Operational Classification of Drug Interactions. In 484 patients with 2812 prescriptions, MediQ and ID PHARMA CHECK generated a total of 1759 and 1082 alerts, respectively. MediQ identified 658 unique potentially interacting combinations, 8 classified as "high danger," 164 as "average danger," and 486 as "low danger." ID PHARMA CHECK detected 336 combinations assigned to one or several of 12 risk and management categories. Altogether, both CDSS issued alerts relating to 808 unique potentially interacting combinations. According to the Zurich Interaction System, 6 of these were contraindicated, 25 were provisionally contraindicated, 190 carried a conditional risk, and 587 had a minimal risk of adverse events. The positive predictive value for alerts having at least a conditional risk was 0.24 for MediQ and 0.48 for ID PHARMA CHECK. CDSS showed major differences in the identification and grading of interactions, and many interactions were only identified by one of the two CDSS. For both programs, only a small proportion of all identified interactions appeared clinically relevant, and the selected display of alerts that imply management changes is a key issue in the further development and local setup of such programs. Copyright © 2012 John Wiley & Sons, Ltd.

  4. An Oral Contraceptive Drug Interaction Study

    Science.gov (United States)

    Bradstreet, Thomas E.; Panebianco, Deborah L.

    2004-01-01

    This article focuses on a two treatment, two period, two treatment sequence crossover drug interaction study of a new drug and a standard oral contraceptive therapy. Both normal theory and distribution-free statistical analyses are provided along with a notable amount of graphical insight into the dataset. For one of the variables, the decision on…

  5. Large-scale prediction of drug–target interactions using protein sequences and drug topological structures

    International Nuclear Information System (INIS)

    Cao Dongsheng; Liu Shao; Xu Qingsong; Lu Hongmei; Huang Jianhua; Hu Qiannan; Liang Yizeng

    2012-01-01

    Highlights: ► Drug–target interactions are predicted using an extended SAR methodology. ► A drug–target interaction is regarded as an event triggered by many factors. ► Molecular fingerprint and CTD descriptors are used to represent drugs and proteins. ► Our approach shows compatibility between the new scheme and current SAR methodology. - Abstract: The identification of interactions between drugs and target proteins plays a key role in the process of genomic drug discovery. It is both consuming and costly to determine drug–target interactions by experiments alone. Therefore, there is an urgent need to develop new in silico prediction approaches capable of identifying these potential drug–target interactions in a timely manner. In this article, we aim at extending current structure–activity relationship (SAR) methodology to fulfill such requirements. In some sense, a drug–target interaction can be regarded as an event or property triggered by many influence factors from drugs and target proteins. Thus, each interaction pair can be represented theoretically by using these factors which are based on the structural and physicochemical properties simultaneously from drugs and proteins. To realize this, drug molecules are encoded with MACCS substructure fingerings representing existence of certain functional groups or fragments; and proteins are encoded with some biochemical and physicochemical properties. Four classes of drug–target interaction networks in humans involving enzymes, ion channels, G-protein-coupled receptors (GPCRs) and nuclear receptors, are independently used for establishing predictive models with support vector machines (SVMs). The SVM models gave prediction accuracy of 90.31%, 88.91%, 84.68% and 83.74% for four datasets, respectively. In conclusion, the results demonstrate the ability of our proposed method to predict the drug–target interactions, and show a general compatibility between the new scheme and current SAR

  6. Review of potential drug interaction between Oseltamivir and Warfarin and why it is important for emergency medicine physicians.

    Science.gov (United States)

    Shah, Siddharth P; Patel, Kinner M; Subedi, Rogin; Gambhir, Harvir Singh

    2017-08-01

    Oseltamivir is a very commonly prescribed anti-viral medication by the Emergency Medicine (EM) physicians for the prophylactic and therapeutic treatment of Influenza infection. While the drug interaction of Warfarin with various antibiotics is known, the drug interaction between Oseltamivir and Warfarin is not common. We present a case where an 83-year female patient, on Warfarin for Pulmonary Embolism, had worsening of coagulopathy after she was started on Oseltamivir. The INR was monitored daily in our patient and Warfarin was stopped when the INR became supra-therapeutic. Our patient did not have any minor or major bleeding complication. This is the first reported case of Oseltamivir related worsening coagulopathy in patient on Warfarin to the best of our knowledge. Keeping in mind the possible interaction between the two as it was evident in our case and few other published reports, we recommend monitoring the INR closely in patients using Warfarin after they are started on Oseltamivir therapy. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Characterization of the mechanism of drug-drug interactions from PubMed using MeSH terms.

    Science.gov (United States)

    Lu, Yin; Figler, Bryan; Huang, Hong; Tu, Yi-Cheng; Wang, Ju; Cheng, Feng

    2017-01-01

    Identifying drug-drug interaction (DDI) is an important topic for the development of safe pharmaceutical drugs and for the optimization of multidrug regimens for complex diseases such as cancer and HIV. There have been about 150,000 publications on DDIs in PubMed, which is a great resource for DDI studies. In this paper, we introduced an automatic computational method for the systematic analysis of the mechanism of DDIs using MeSH (Medical Subject Headings) terms from PubMed literature. MeSH term is a controlled vocabulary thesaurus developed by the National Library of Medicine for indexing and annotating articles. Our method can effectively identify DDI-relevant MeSH terms such as drugs, proteins and phenomena with high accuracy. The connections among these MeSH terms were investigated by using co-occurrence heatmaps and social network analysis. Our approach can be used to visualize relationships of DDI terms, which has the potential to help users better understand DDIs. As the volume of PubMed records increases, our method for automatic analysis of DDIs from the PubMed database will become more accurate.

  8. Ethanol-drug absorption interaction: potential for a significant effect on the plasma pharmacokinetics of ethanol vulnerable formulations.

    Science.gov (United States)

    Lennernäs, Hans

    2009-01-01

    Generally, gastric emptying of a drug to the small intestine is controlled by gastric motor activity and is the main factor affecting the onset of absorption. Accordingly, the emptying rate from the stomach is mainly affected by the digestive state, the properties of the pharmaceutical formulation and the effect of drugs, posture and circadian rhythm. Variability in the gastric emptying of drugs is reflected in variability in the absorption rate and the shape of the plasma pharmacokinetic profile. When ethanol interacts with an oral controlled release product, such that the mechanism controlling drug release is impaired, the delivery of the dissolved dose into the small intestine and the consequent absorption may result in dangerously high plasma concentrations. For example, the maximal plasma concentration of hydromorphone has individually been shown to be increased as much as 16 times through in vivo testing as a result of this specific pharmacokinetic ethanol-drug formulation interaction. Thus, a pharmacokinetic ethanol-drug interaction is a very serious safety concern when substantially the entire dose from a controlled release product is rapidly emptied into the small intestine (dose dumping), having been largely dissolved in a strong alcoholic beverage in the stomach during a sufficient lag-time in gastric emptying. Based on the literature, a two hour time frame for screening the in vitro dissolution profile of a controlled release product in ethanol concentrations of up to 40% is strongly supported and may be considered as the absolute minimum standard. It is also evident that the dilution, absorption and metabolism of ethanol in the stomach are processes with a minor effect on the local ethanol concentration and that ethanol exposure will be highly dependent on the volume and ethanol concentration of the fluid ingested, together with the rate of intake and gastric emptying. When and in which patients a clinically significant dose dumping will happen is

  9. Solubilization and Interaction Studies of Bile Salts with Surfactants and Drugs: a Review.

    Science.gov (United States)

    Malik, Nisar Ahmad

    2016-05-01

    In this review, bile salt, bile salt-surfactant, and bile salt-drug interactions and their solubilization studies are mainly focused. Usefulness of bile salts in digestion, absorption, and excretion of various compounds and their rare properties in ordering the shape and size of the micelles owing to the presence of hydrophobic and hydrophilic faces are taken into consideration while compiling this review. Bile salts as potential bio-surfactants to solubilize drugs of interest are also highlighted. This review will give an insight into the selection of drugs in different applications as their properties get modified by interaction with bile salts, thus influencing their solution behavior which, in turn, modifies the phase-forming behavior, microemulsion, and clouding phenomenon, besides solubilization. Finally, their future perspectives are taken into consideration to assess their possible uses as bio-surfactants without side effects to human beings.

  10. Simultaneous determination of intestinal permeability and potential drug interactions of complex mixtures using Caco-2 cells and high-resolution mass spectrometry: Studies with Rauwolfia serpentina extract.

    Science.gov (United States)

    Flynn, Thomas J; Vohra, Sanah N

    2018-06-25

    Caco-2 cells are a commonly used model for estimating the intestinal bioavailability of single chemical entity pharmaceuticals. Caco-2 cells, when induced with calcitriol, also express other biological functions such as phase I (CYP) and phase II (glucuronosyltransferases) drug metabolizing enzymes which are relevant to drug-supplement interactions. Intestinal bioavailability is an important factor in the overall safety assessment of products consumed orally. Foods, including herbal dietary supplements, are complex substances with multiple chemical components. Because of potential interactions between components of complex mixtures, more reliable safety assessments can be obtained by studying the commercial products "as consumed" rather than by testing individual chemical components one at a time. The present study evaluated the apparent intestinal permeability (P app ) of a model herbal extract, Rauwolfia serpentina, using both whole plant extracts and the individual purified Rauwolfia alkaloids. All test compounds, endpoint substrates, and their metabolites were quantified using liquid chromatography and high-resolution mass spectrometry. The P app values for individual Rauwolfia alkaloids were comparable whether measured individually or as components of the complete extract. Both Rauwolfia extract and all individual Rauwolfia alkaloids except yohimbine inhibited CYP3A4 activity (midazolam 1'-hydroxylation). Both Rauwolfia extract and all individual Rauwolfia alkaloids except corynanthine and reserpic acid significantly increased glucuronosyltransferase activity (glucuronidation of 4-methylumbelliferone). The positive control, ketoconazole, significantly inhibited both CYP3A4 and glucuronosyltransferase activities. These findings suggest that the Caco-2 assay is capable of simultaneously identifying both bioavailability and potentially hazardous intestinal drug-supplement interactions in complex mixtures. Published by Elsevier B.V.

  11. FTIR Drug-Polymer Interactions Studies of Perindopril Erbumine

    International Nuclear Information System (INIS)

    Modni, A.; Ahmad, S.; Din, I.; Hussain, Z.

    2014-01-01

    The present study was carried out to prepare different combinations of Perindopril Erbumine with different polymers like Hydroxy propyl methyl cellulose, Hydroxy propyl methyl cellulose K4M, Hydroxy propyl methyl cellulose K15M, Xanthan gum and Ethyl cellulose, thereby to determine any possible interactions between Perindopril erbumine and polymers. The analytical technique Fourier Transform Infrared (FTIR) spectroscopy was used to take spectra of individual drug, polymers and combination of drug with polymers. The results were analyzed to find out any interactions of Perindopril erbumine and polymers. From this study it was concluded that there were no any significant changes in characteristic peaks of drug after combinations with polymers which indicated no interaction between Perindopril erbumine and polymers. (author)

  12. Fragment-based drug discovery and protein–protein interactions

    Directory of Open Access Journals (Sweden)

    Turnbull AP

    2014-09-01

    Full Text Available Andrew P Turnbull,1 Susan M Boyd,2 Björn Walse31CRT Discovery Laboratories, Department of Biological Sciences, Birkbeck, University of London, London, UK; 2IOTA Pharmaceuticals Ltd, Cambridge, UK; 3SARomics Biostructures AB, Lund, SwedenAbstract: Protein–protein interactions (PPIs are involved in many biological processes, with an estimated 400,000 PPIs within the human proteome. There is significant interest in exploiting the relatively unexplored potential of these interactions in drug discovery, driven by the need to find new therapeutic targets. Compared with classical drug discovery against targets with well-defined binding sites, developing small-molecule inhibitors against PPIs where the contact surfaces are frequently more extensive and comparatively flat, with most of the binding energy localized in “hot spots”, has proven far more challenging. However, despite the difficulties associated with targeting PPIs, important progress has been made in recent years with fragment-based drug discovery playing a pivotal role in improving their tractability. Computational and empirical approaches can be used to identify hot-spot regions and assess the druggability and ligandability of new targets, whilst fragment screening campaigns can detect low-affinity fragments that either directly or indirectly perturb the PPI. Once fragment hits have been identified and confirmed using biochemical and biophysical approaches, three-dimensional structural data derived from nuclear magnetic resonance or X-ray crystallography can be used to drive medicinal chemistry efforts towards the development of more potent inhibitors. A small-scale comparison presented in this review of “standard” fragments with those targeting PPIs has revealed that the latter tend to be larger, be more lipophilic, and contain more polar (acid/base functionality, whereas three-dimensional descriptor data indicate that there is little difference in their three

  13. 21 CFR 314.104 - Drugs with potential for abuse.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Drugs with potential for abuse. 314.104 Section 314.104 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... and Abbreviated Applications § 314.104 Drugs with potential for abuse. The Food and Drug...

  14. Drug-drug interaction and doping, part 1: an in vitro study on the effect of non-prohibited drugs on the phase I metabolic profile of toremifene.

    Science.gov (United States)

    Mazzarino, Monica; de la Torre, Xavier; Fiacco, Ilaria; Palermo, Amelia; Botrè, Francesco

    2014-05-01

    The present study was designed to provide preliminary information on the potential impact of metabolic drug-drug interaction on the effectiveness of doping control strategies currently followed by the anti-doping laboratories to detect the intake of banned agents. In vitro assays based on the use of human liver microsomes and recombinant CYP isoforms were designed and performed to characterize the phase I metabolic profile of the prohibited agent toremifene, selected as a prototype drug of the class of selective oestrogen receptor modulators, both in the absence and in the presence of medicaments (fluconazole, ketoconazole, itraconazole, miconazole, cimetidine, ranitidine, fluoxetine, paroxetine, nefazodone) not included in the World Anti-Doping Agency list of prohibited substances and methods and frequently administered to athletes. The results show that the in vitro model developed in this study was adequate to simulate the in vivo metabolism of toremifene, confirming the results obtained in previous studies. Furthermore, our data also show that ketoconazole, itraconazole, miconazole and nefazodone cause a marked modification in the production of the metabolic products (i.e. hydroxylated and carboxylated metabolites) normally selected by the anti-doping laboratories as target analytes to detect toremifene intake; moderate variations were registered in the presence of fluconazole, paroxetine and fluoxetine; while no significant modifications were measured in the presence of ranitidine and cimetidine. This evidence imposes that the potential effect of drug-drug interactions is duly taken into account in anti-doping analysis, also for a broader significance of the analytical results. Copyright © 2014 John Wiley & Sons, Ltd.

  15. Some Remarks on Prediction of Drug-Target Interaction with Network Models.

    Science.gov (United States)

    Zhang, Shao-Wu; Yan, Xiao-Ying

    2017-01-01

    System-level understanding of the relationships between drugs and targets is very important for enhancing drug research, especially for drug function repositioning. The experimental methods used to determine drug-target interactions are usually time-consuming, tedious and expensive, and sometimes lack reproducibility. Thus, it is highly desired to develop computational methods for efficiently and effectively analyzing and detecting new drug-target interaction pairs. With the explosive growth of different types of omics data, such as genome, pharmacology, phenotypic, and other kinds of molecular networks, numerous computational approaches have been developed to predict Drug-Target Interactions (DTI). In this review, we make a survey on the recent advances in predicting drug-target interaction with network-based models from the following aspects: i) Available public data sources and benchmark datasets; ii) Drug/target similarity metrics; iii) Network construction; iv) Common network algorithms; v) Performance comparison of existing network-based DTI predictors. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. In vitro drug interaction of levocetirizine and diclofenac: Theoretical and spectroscopic studies.

    Science.gov (United States)

    Abo Dena, Ahmed S; Abdel Gaber, Sara A

    2017-06-15

    Levocetirizine dihydrochloride is known to interact with some anti-inflammatory drugs. We report here a comprehensive integrated theoretical and experimental study for the in vitro drug interaction between levocetirizine dihydrochloride (LEV) and diclofenac sodium (DIC). The interaction of the two drugs was confirmed by the molecular ion peak obtained from the mass spectrum of the product. Moreover, FTIR and 1 HNMR spectra of the individual drugs and their interaction product were inspected to allocate the possible sites of interaction. In addition, quantum mechanical DFT calculations were performed to search for the interaction sites and to verify the types of interactions deduced from the spectroscopic studies such as charge-transfer and non-bonding π-π interactions. It was found that the studied drugs interact with each other in aqueous solution via four types of interactions, namely, ion-pair formation, three weak hydrogen bonds, non-bonding π-π interactions and charge-transfer from DIC to LEV. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. In vitro drug interaction of levocetirizine and diclofenac: Theoretical and spectroscopic studies

    Science.gov (United States)

    Abo Dena, Ahmed S.; Abdel Gaber, Sara A.

    2017-06-01

    Levocetirizine dihydrochloride is known to interact with some anti-inflammatory drugs. We report here a comprehensive integrated theoretical and experimental study for the in vitro drug interaction between levocetirizine dihydrochloride (LEV) and diclofenac sodium (DIC). The interaction of the two drugs was confirmed by the molecular ion peak obtained from the mass spectrum of the product. Moreover, FTIR and 1HNMR spectra of the individual drugs and their interaction product were inspected to allocate the possible sites of interaction. In addition, quantum mechanical DFT calculations were performed to search for the interaction sites and to verify the types of interactions deduced from the spectroscopic studies such as charge-transfer and non-bonding π-π interactions. It was found that the studied drugs interact with each other in aqueous solution via four types of interactions, namely, ion-pair formation, three weak hydrogen bonds, non-bonding π-π interactions and charge-transfer from DIC to LEV.

  18. The Two Faces of Social Interaction Reward in Animal Models of Drug Dependence.

    Science.gov (United States)

    El Rawas, Rana; Saria, Alois

    2016-03-01

    Drug dependence is a serious health and social problem. Social factors can modify vulnerability to developing drug dependence, acting as risk factors or protective factors. Whereas stress and peer environment that encourage substance use may increase drug taking, strong attachments between family members and peer environment that do not experience drug use may protect against drug taking and, ultimately, drug dependence. The rewarding effects of drug abuse and social interaction can be evaluated using animal models. In this review we focus on evaluating social interaction reward in the conditioned place preference paradigm. We give an overview of how social interaction, if made available within the drug context, may facilitate, promote and interact with the drug's effects. However, social interaction, if offered alternatively outside the drug context, may have pronounced protective effects against drug abuse and relapse. We also address the importance of the weight difference parameter between the social partners in determining the positive or "agonistic" versus the hostile or "antagonistic" social interaction. We conclude that understanding social interaction reward and its subsequent effects on drug reward is sorely needed for therapeutic interventions against drug dependence.

  19. Interaction of amphiphilic drugs with human and bovine serum albumins.

    Science.gov (United States)

    Khan, Abbul Bashar; Khan, Javed Masood; Ali, Mohd Sajid; Khan, Rizwan Hasan; Kabir-Ud-Din

    2012-11-01

    To know the interaction of amphiphilic drugs nortriptyline hydrochloride (NOT) and promazine hydrochloride (PMZ) with serum albumins (i.e., human serum albumin (HSA) and bovine serum albumin (BSA)), techniques of UV-visible, fluorescence, and circular dichroism (CD) spectroscopies are used. The binding affinity is more in case of PMZ with both the serum albumins. The quenching rate constant (k(q)) values suggest a static quenching process for all the drug-serum albumin interactions. The UV-visible results show that the change in protein conformation of PMZ-serum albumin interactions are more prominent as compared to NOT-serum albumin interactions. The CD results also explain the conformational changes in the serum albumins on binding with the drugs. The increment in %α-helical structure is slightly more for drug-BSA complexes as compared to drug-HSA complexes. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Clinical management of drug-drug interactions in HCV therapy: Challenges and solutions

    NARCIS (Netherlands)

    Burger, D.M.; Back, D.; Buggisch, P.; Buti, M.; Craxi, A.; Foster, G.; Klinker, H.; Larrey, D.; Nikitin, I.; Pol, S. van der; Puoti, M.; Romero-Gomez, M.; Wedemeyer, H.; Zeuzem, S.

    2013-01-01

    Hepatitis C virus (HCV) infected patients often take multiple co-medications to treat adverse events related to HCV therapy, or to manage other co-morbidities. Drug-drug interactions associated with this polypharmacy are relatively new to the field of HCV pharmacotherapy. With the advent of the

  1. Prevalence of acid-reducing agents (ARA) in cancer populations and ARA drug-drug interaction potential for molecular targeted agents in clinical development.

    Science.gov (United States)

    Smelick, Gillian S; Heffron, Timothy P; Chu, Laura; Dean, Brian; West, David A; Duvall, Scott L; Lum, Bert L; Budha, Nageshwar; Holden, Scott N; Benet, Leslie Z; Frymoyer, Adam; Dresser, Mark J; Ware, Joseph A

    2013-11-04

    Acid-reducing agents (ARAs) are the most commonly prescribed medications in North America and Western Europe. There are currently no data describing the prevalence of their use among cancer patients. However, this is a paramount question due to the potential for significant drug-drug interactions (DDIs) between ARAs, most commonly proton pump inhibitors (PPIs), and orally administered cancer therapeutics that display pH-dependent solubility, which may lead to decreased drug absorption and decreased therapeutic benefit. Of recently approved orally administered cancer therapeutics, >50% are characterized as having pH-dependent solubility, but there are currently no data describing the potential for this ARA-DDI liability among targeted agents currently in clinical development. The objectives of this study were to (1) determine the prevalence of ARA use among different cancer populations and (2) investigate the prevalence of orally administered cancer therapeutics currently in development that may be liable for an ARA-DDI. To address the question of ARA use among cancer patients, a retrospective cross-sectional analysis was performed using two large healthcare databases: Thomson Reuters MarketScan (N = 1,776,443) and the U.S. Department of Veterans Affairs (VA, N = 1,171,833). Among all cancer patients, the total prevalence proportion of ARA use (no. of cancer patients receiving an ARA/total no. of cancer patients) was 20% and 33% for the MarketScan and VA databases, respectively. PPIs were the most commonly prescribed agent, comprising 79% and 65% of all cancer patients receiving a prescription for an ARA (no. of cancer patients receiving a PPI /no. of cancer patients receiving an ARA) for the MarketScan and VA databases, respectively. To estimate the ARA-DDI liability of orally administered molecular targeted cancer therapeutics currently in development, two publicly available databases, (1) Kinase SARfari and (2) canSAR, were examined. For those orally administered

  2. Adverse event potentially due to an interaction between ibrutinib and verapamil: a case report.

    Science.gov (United States)

    Lambert Kuhn, E; Levêque, D; Lioure, B; Gourieux, B; Bilbault, P

    2016-02-01

    Ibrutinib is a recently approved oral anticancer agent with pharmacokinetics that is very sensitive to metabolic inhibition. We report a serious side effect of ibrutinib potentially attributable to interaction with the moderate CYP3A4 inhibitor verapamil. A patient with mantle cell lymphoma was admitted to our emergency department with severe diarrhoea. During a prescription review, the clinical pharmacist identified a potential drug interaction between ibrutinib and verapamil present in a branded combination product also containing trandolapril. Ibrutinib was discontinued for 5 days, and verapamil was stopped. Lercanidipine 10 mg daily was prescribed as an alternative antihypertensive drug. The patient was discharged after 3 days with symptomatic treatment for his diarrhoea. Three months later, the patient maintained control with ibrutinib and olmesartan, but without verapamil. This is the first description of a serious side effect of ibrutinib likely due to an interaction with the CYP3A4 inhibitor verapamil. Prescriptions of ibrutinib must be carefully checked to identify possible interactions with CYP3A4 inhibitors and patients monitored accordingly. © 2016 John Wiley & Sons Ltd.

  3. Use of Spectroscopic, Zeta Potential and Molecular Dynamic Techniques to Study the Interaction between Human Holo-Transferrin and Two Antagonist Drugs: Comparison of Binary and Ternary Systems

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Saberi

    2012-03-01

    Full Text Available For the first time, the binding of ropinirole hydrochloride (ROP and aspirin (ASA to human holo-transferrin (hTf has been investigated by spectroscopic approaches (fluorescence quenching, synchronous fluorescence, time-resolved fluorescence, three-dimensional fluorescence, UV-vis absorption, circular dichroism, resonance light scattering, as well as zeta potential and molecular modeling techniques, under simulated physiological conditions. Fluorescence analysis was used to estimate the effect of the ROP and ASA drugs on the fluorescence of hTf as well as to define the binding and quenching properties of binary and ternary complexes. The synchronized fluorescence and three-dimensional fluorescence spectra demonstrated some micro-environmental and conformational changes around the Trp and Tyr residues with a faint red shift. Thermodynamic analysis displayed the van der Waals forces and hydrogen bonds interactions are the major acting forces in stabilizing the complexes. Steady-state and time-resolved fluorescence data revealed that the fluorescence quenching of complexes are static mechanism. The effect of the drugs aggregating on the hTf resulted in an enhancement of the resonance light scattering (RLS intensity. The average binding distance between were computed according to the forster non-radiation energy transfer theory. The circular dichroism (CD spectral examinations indicated that the binding of the drugs induced a conformational change of hTf. Measurements of the zeta potential indicated that the combination of electrostatic and hydrophobic interactions between ROP, ASA and hTf formed micelle-like clusters. The molecular modeling confirmed the experimental results. This study is expected to provide important insight into the interaction of hTf with ROP and ASA to use in various toxicological and therapeutic processes.

  4. Warfarin: pharmacological profile and drug interactions with antidepressants

    Directory of Open Access Journals (Sweden)

    Juliana Souto Teles

    2012-03-01

    Full Text Available Oral anticoagulants are among the drugs with the greatest numberof drug interactions. The concomitant use of several medications isa common practice in patients with cardiovascular problems, whooften also present with depression; therefore, the probability of aninteraction occurring between warfarin and the antidepressants ishigh, and may result in increased or decreased anticoagulant activity.Since the possible interactions between these two classes of drugshave been poorly explored in literature, with a risk to the patients who use them, we reviewed the pharmacology of warfarin and its possible interactions with antidepressants. Of the antidepressants analyzed, those that showed relevant effects on the interaction with warfarin were, in decreasing order: paroxetine, venlafaxine, fluoxetine, and duloxetine.

  5. Drug–drug interactions involving antidepressants: focus on desvenlafaxine

    Science.gov (United States)

    Low, Yvette; Setia, Sajita; Lima, Graca

    2018-01-01

    Psychiatric and physical conditions often coexist, and there is robust evidence that associates the frequency of depression with single and multiple physical conditions. More than half of patients with depression may have at least one chronic physical condition. Therefore, antidepressants are often used in cotherapy with other medications for the management of both psychiatric and chronic physical illnesses. The risk of drug–drug interactions (DDIs) is augmented by complex polypharmacy regimens and extended periods of treatment required, of which possible outcomes range from tolerability issues to lack of efficacy and serious adverse events. Optimal patient outcomes may be achieved through drug selection with minimal potential for DDIs. Desvenlafaxine is a serotonin–norepinephrine reuptake inhibitor approved for the treatment of adults with major depressive disorder. Pharmacokinetic studies of desvenlafaxine have shown a simple metabolic profile unique among antidepressants. This review examines the DDI profiles of antidepressants, particularly desvenlafaxine, in relation to drugs of different therapeutic areas. The summary and comparison of information available is meant to help clinicians in making informed decisions when using desvenlafaxine in patients with depression and comorbid chronic conditions. PMID:29497300

  6. Pharmacokinetic drug-drug interaction and their implication in clinical management.

    Science.gov (United States)

    Palleria, Caterina; Di Paolo, Antonello; Giofrè, Chiara; Caglioti, Chiara; Leuzzi, Giacomo; Siniscalchi, Antonio; De Sarro, Giovambattista; Gallelli, Luca

    2013-07-01

    Drug-drug interactions (DDIs) are one of the commonest causes of medication error in developed countries, particularly in the elderly due to poly-therapy, with a prevalence of 20-40%. In particular, poly-therapy increases the complexity of therapeutic management and thereby the risk of clinically important DDIs, which can both induce the development of adverse drug reactions or reduce the clinical efficacy. DDIs can be classify into two main groups: pharmacokinetic and pharmacodynamic. In this review, using Medline, PubMed, Embase, Cochrane library and Reference lists we searched articles published until June 30 2012, and we described the mechanism of pharmacokinetic DDIs focusing the interest on their clinical implications.

  7. Characterization of the mechanism of drug-drug interactions from PubMed using MeSH terms.

    Directory of Open Access Journals (Sweden)

    Yin Lu

    Full Text Available Identifying drug-drug interaction (DDI is an important topic for the development of safe pharmaceutical drugs and for the optimization of multidrug regimens for complex diseases such as cancer and HIV. There have been about 150,000 publications on DDIs in PubMed, which is a great resource for DDI studies. In this paper, we introduced an automatic computational method for the systematic analysis of the mechanism of DDIs using MeSH (Medical Subject Headings terms from PubMed literature. MeSH term is a controlled vocabulary thesaurus developed by the National Library of Medicine for indexing and annotating articles. Our method can effectively identify DDI-relevant MeSH terms such as drugs, proteins and phenomena with high accuracy. The connections among these MeSH terms were investigated by using co-occurrence heatmaps and social network analysis. Our approach can be used to visualize relationships of DDI terms, which has the potential to help users better understand DDIs. As the volume of PubMed records increases, our method for automatic analysis of DDIs from the PubMed database will become more accurate.

  8. MDMA: interactions with other psychoactive drugs.

    Science.gov (United States)

    Mohamed, Wael M Y; Ben Hamida, Sami; Cassel, Jean-Christophe; de Vasconcelos, Anne Pereira; Jones, Byron C

    2011-10-01

    3,4-Methylenedioxymethamphetamine (MDMA, ecstasy) is one of the most widely abused illegal drugs. Some users self-report euphoria and an increased perception and feeling of closeness to others. When taken in warm environments, MDMA users may develop acute complications with potential fatal consequences. In rodents, MDMA increases locomotor activity and, depending on ambient temperature, may produce a dose-dependent, potentially lethal hyperthermia. Like most other recreational drugs, MDMA is frequently taken in combination with other substances including tobacco, EtOH, marijuana, amphetamines, cocaine and, caffeine. Although polydrug use is very common, the understanding of the effects of this multiple substance use, as well as the analysis of consequences of different drug-drug associations, received rather little attention. The purpose of this review is to summarize our current knowledge about the changes on MDMA-related behavior, pharmacology, and neurotoxicity associated with co-consumption of other drugs of abuse and psychoactive agents. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Drug-target interaction prediction: A Bayesian ranking approach.

    Science.gov (United States)

    Peska, Ladislav; Buza, Krisztian; Koller, Júlia

    2017-12-01

    In silico prediction of drug-target interactions (DTI) could provide valuable information and speed-up the process of drug repositioning - finding novel usage for existing drugs. In our work, we focus on machine learning algorithms supporting drug-centric repositioning approach, which aims to find novel usage for existing or abandoned drugs. We aim at proposing a per-drug ranking-based method, which reflects the needs of drug-centric repositioning research better than conventional drug-target prediction approaches. We propose Bayesian Ranking Prediction of Drug-Target Interactions (BRDTI). The method is based on Bayesian Personalized Ranking matrix factorization (BPR) which has been shown to be an excellent approach for various preference learning tasks, however, it has not been used for DTI prediction previously. In order to successfully deal with DTI challenges, we extended BPR by proposing: (i) the incorporation of target bias, (ii) a technique to handle new drugs and (iii) content alignment to take structural similarities of drugs and targets into account. Evaluation on five benchmark datasets shows that BRDTI outperforms several state-of-the-art approaches in terms of per-drug nDCG and AUC. BRDTI results w.r.t. nDCG are 0.929, 0.953, 0.948, 0.897 and 0.690 for G-Protein Coupled Receptors (GPCR), Ion Channels (IC), Nuclear Receptors (NR), Enzymes (E) and Kinase (K) datasets respectively. Additionally, BRDTI significantly outperformed other methods (BLM-NII, WNN-GIP, NetLapRLS and CMF) w.r.t. nDCG in 17 out of 20 cases. Furthermore, BRDTI was also shown to be able to predict novel drug-target interactions not contained in the original datasets. The average recall at top-10 predicted targets for each drug was 0.762, 0.560, 1.000 and 0.404 for GPCR, IC, NR, and E datasets respectively. Based on the evaluation, we can conclude that BRDTI is an appropriate choice for researchers looking for an in silico DTI prediction technique to be used in drug

  10. Diclofenac sex-divergent drug-drug interaction with Sunitinib: pharmacokinetics and tissue distribution in male and female mice.

    Science.gov (United States)

    Chew, Chii Chii; Ng, Salby; Chee, Yun Lee; Koo, Teng Wai; Liew, Ming Hui; Chee, Evelyn Li-Ching; Modamio, Pilar; Fernández, Cecilia; Mariño, Eduardo L; Segarra, Ignacio

    2017-08-01

    Coadministration of diclofenac and sunitinib, tyrosine kinase inhibitor, led to sex-divergent pharmacokinetic drug-drug interaction outcomes. Male and female mice were administered 60 mg/kg PO sunitinib alone (control groups) or with 30 mg/kg PO diclofenac. Sunitinib concentration in plasma, brain, kidney and liver were determined by HPLC and non-compartmental pharmacokinetic parameters calculated. In male mice, diclofenac decreased AUC 0→∞ 38% in plasma (p diclofenac increased the liver uptake efficiency in male (27%, p diclofenac with probable clinical translatability due to potential different effects in male and female patients requiring careful selection of the NSAID and advanced TDM to implement a personalized treatment.

  11. A novel algorithm for analyzing drug-drug interactions from MEDLINE literature.

    Science.gov (United States)

    Lu, Yin; Shen, Dan; Pietsch, Maxwell; Nagar, Chetan; Fadli, Zayd; Huang, Hong; Tu, Yi-Cheng; Cheng, Feng

    2015-11-27

    Drug-drug interaction (DDI) is becoming a serious clinical safety issue as the use of multiple medications becomes more common. Searching the MEDLINE database for journal articles related to DDI produces over 330,000 results. It is impossible to read and summarize these references manually. As the volume of biomedical reference in the MEDLINE database continues to expand at a rapid pace, automatic identification of DDIs from literature is becoming increasingly important. In this article, we present a random-sampling-based statistical algorithm to identify possible DDIs and the underlying mechanism from the substances field of MEDLINE records. The substances terms are essentially carriers of compound (including protein) information in a MEDLINE record. Four case studies on warfarin, ibuprofen, furosemide and sertraline implied that our method was able to rank possible DDIs with high accuracy (90.0% for warfarin, 83.3% for ibuprofen, 70.0% for furosemide and 100% for sertraline in the top 10% of a list of compounds ranked by p-value). A social network analysis of substance terms was also performed to construct networks between proteins and drug pairs to elucidate how the two drugs could interact.

  12. Core drug-drug interaction alerts for inclusion in pediatric electronic health records with computerized prescriber order entry.

    Science.gov (United States)

    Harper, Marvin B; Longhurst, Christopher A; McGuire, Troy L; Tarrago, Rod; Desai, Bimal R; Patterson, Al

    2014-03-01

    The study aims to develop a core set of pediatric drug-drug interaction (DDI) pairs for which electronic alerts should be presented to prescribers during the ordering process. A clinical decision support working group composed of Children's Hospital Association (CHA) members was developed. CHA Pharmacists and Chief Medical Information Officers participated. Consensus was reached on a core set of 19 DDI pairs that should be presented to pediatric prescribers during the order process. We have provided a core list of 19 high value drug pairs for electronic drug-drug interaction alerts to be recommended for inclusion as high value alerts in prescriber order entry software used with a pediatric patient population. We believe this list represents the most important pediatric drug interactions for practical implementation within computerized prescriber order entry systems.

  13. Drug interactions in primary health care in the George subdistrict ...

    African Journals Online (AJOL)

    2012-02-15

    Feb 15, 2012 ... Drug-drug interactions are a recognised cause of morbidity and mortality ..... or fatal if the interaction increases toxicity or reduces the intended effect of the ... antihypertensive effect of angiotensin-converting enzyme inhibitors ...

  14. Potential pharmacokinetic interactions between antiretrovirals and medicinal plants used as complementary and African traditional medicines.

    Science.gov (United States)

    Müller, Adrienne C; Kanfer, Isadore

    2011-11-01

    The use of traditional/complementary/alternate medicines (TCAMs) in HIV/AIDS patients who reside in Southern Africa is quite common. Those who use TCAMs in addition to antiretroviral (ARV) treatment may be at risk of experiencing clinically significant pharmacokinetic (PK) interactions, particularly between the TCAMs and the protease inhibitors (PIs) and non-nucleoside reverse transcriptase inhibitors (NNRTIs). Mechanisms of PK interactions include alterations to the normal functioning of drug efflux transporters, such as P-gp and/or CYP isoenzymes, such a CYP3A4 that mediate the absorption and elimination of drugs in the small intestine and liver. Specific mechanisms include inhibition and activation of these proteins and induction via the pregnane X receptor (PXR). Several clinical studies and case reports involving ARV-herb PK interactions have been reported. St John's Wort, Garlic and Cat's Claw exhibited potentially significant interactions, each with a PI or NNRTI. The potential for these herbs to induce PK interactions with drugs was first identified in reports of in vitro studies. Other in vitro studies have shown that several African traditional medicinal (ATM) plants and extracts may also demonstrate PK interactions with ARVs, through effects on CYP3A4, P-gp and PXR. The most complex effects were exhibited by Hypoxis hemerocallidea, Sutherlandia frutescens, Cyphostemma hildebrandtii, Acacia nilotica, Agauria salicifolia and Elaeodendron buchananii. Despite a high incidence of HIV/AIDs in the African region, only one clinical study, between efavirenz and Hypoxis hemerocallidea has been conducted. However, several issues/concerns still remain to be addressed and thus more studies on ATMs are warranted in order for more meaningful data to be generated and the true potential for such interactions to be determined. Copyright © 2011 John Wiley & Sons, Ltd.

  15. Exploiting Large-Scale Drug-Protein Interaction Information for Computational Drug Repurposing

    Science.gov (United States)

    2014-06-20

    studies that have reported antimalarial activities of azole compounds [39-43] lend support to our model predictions. The highest-scored non-malarial...Table 4, verapamil and cimetidine, do not have antimal- arial activities themselves but exhibit synergism when used in combination with antimalarial ... activators . Because of their high frequencies among the antimalarial drugs, according to Eq. 3, the drug-protein interactions contributing most to the

  16. Drug-polymer interaction studies of cytarabine loaded chitosan nanoparticles

    International Nuclear Information System (INIS)

    Madni, A.; Kashif, P.M.; Nazir, I.; Rehman, M.

    2017-01-01

    Assessment of possible incompatibilities between drug and excipients is an important parameter of preformulation stage during the pharmaceutical product development of active pharmaceutical ingredient (API). The potential physical and chemical interaction among the components of a delivery system can affect the chemical nature, bioavailability, stability, and subsequently therapeutic efficacy of drugs. In this study, ATR-FTIR spectroscopy was employed to investigate the possible intermolecular interaction of Cytarabine with deacetylated chitosan and tripolyphosphate in the resulting physical blends and crosslinked nanoparticulate system. Two different strategies, physical blending and ionotropic gelation, were adopted to prepare binary or tertiary mixtures and nanoparticulate formulation, respectively. The IR spectra of CB showed characteristic peaks at 3438.27 cm-1 (primary amine), 3264.74 cm-1 (hydroxyl group) and 1654.98 cm-1 (C=O stretch in cyclic ring); CS at 3361.47 cm-1 (N-H stretching), 1646.18 cm-1 (C=O of Amide I), 1582.36 cm-1 (C=O of Amide II), and sTPP at 1135.77 cm-1 (P=O). CS-sTPP chemical interaction was confirmed from the shift in the absorption band of carbonyl groups (amide I, II) to 1634.66 cm-1 and 1541.17 cm-1 in blank chitosan nanoparticles, and 1636.87 cm-1, 1543.33 cm-1 in CSNP1 (2:6:1), and at 1646.15 cm-1 and 1557.04 cm-1 in CSNP2 (1:3:1). The characteristic peaks of CB were also present in chitosan formulation with a slight shift in the amino group at 3429.43 cm-1 and 3423.21 cm-1, in the hydroxyl group at 3274.54 cm-1 and 3270.73 cm-1, CSNP1 and CSNP2, respectively. The findings counseled no significant interaction in IR absorption pattern of cytarabine functional groups after encapsulation in CS-sTPP complex, which projected the potential of chitosan nanoparticulate system to entrap cytarabine. (author)

  17. Drug-drug interactions as a result of co-administering Δ9-THC and CBD with other psychotropic agents.

    Science.gov (United States)

    Rong, Carola; Carmona, Nicole E; Lee, Yena L; Ragguett, Renee-Marie; Pan, Zihang; Rosenblat, Joshua D; Subramaniapillai, Mehala; Shekotikhina, Margarita; Almatham, Fahad; Alageel, Asem; Mansur, Rodrigo; Ho, Roger C; McIntyre, Roger S

    2018-01-01

    To determine, via narrative, non-systematic review of pre-clinical and clinical studies, whether the effect of cannabis on hepatic biotransformation pathways would be predicted to result in clinically significant drug-drug interactions (DDIs) with commonly prescribed psychotropic agents. Areas covered: A non-systematic literature search was conducted using the following databases: PubMed, PsycInfo, and Scopus from inception to January 2017. The search term cannabis was cross-referenced with the terms drug interactions, cytochrome, cannabinoids, cannabidiol, and medical marijuana. Pharmacological, molecular, and physiologic studies evaluating the pharmacokinetics of Δ 9 -tetrahydrocannabinol (Δ 9 -THC) and cannabidiol (CBD), both in vitro and in vivo, were included. Bibliographies were also manually searched for additional citations that were relevant to the overarching aim of this paper. Expert opinion: Δ 9 -Tetrahydrocannabinol and CBD are substrates and inhibitors of cytochrome P450 enzymatic pathways relevant to the biotransformation of commonly prescribed psychotropic agents. The high frequency and increasing use of cannabis invites the need for healthcare providers to familiarize themselves with potential DDIs in persons receiving select psychotropic agents, and additionally consuming medical marijuana and/or recreational marijuana.

  18. Herb–drug interaction prediction based on the high specific inhibition of andrographolide derivatives towards UDP-glucuronosyltransferase (UGT) 2B7

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Hai-Ying [The Fourth Affiliated Hospital of China Medical University, Shenyang 110032 (China); Sun, Dong-Xue [School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016 (China); Cao, Yun-Feng [The First Affiliated Hospital of Liaoning Medical University, Jinzhou 121001 (China); Joint Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road, Dalian 116023 (China); Ai, Chun-Zhi [Joint Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road, Dalian 116023 (China); Qu, Yan-Qing [Thyroid Surgery, Yantaishan Hospital, Yantai, Shandong (China); Hu, Cui-Min [Joint Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road, Dalian 116023 (China); Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC 20057 (United States); Jiang, Changtao [Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892 (United States); Dong, Pei-Pei [Academy of Integrative Medicine, Dalian Medical University, Dalian 116044 (China); Sun, Xiao-Yu; Hong, Mo [Joint Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road, Dalian 116023 (China); Tanaka, Naoki; Gonzalez, Frank J. [Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892 (United States); others, and

    2014-05-15

    Herb–drug interaction strongly limits the clinical application of herbs and drugs, and the inhibition of herbal components towards important drug-metabolizing enzymes (DMEs) has been regarded as one of the most important reasons. The present study aims to investigate the inhibition potential of andrographolide derivatives towards one of the most important phase II DMEs UDP-glucuronosyltransferases (UGTs). Recombinant UGT isoforms (except UGT1A4)-catalyzed 4-methylumbelliferone (4-MU) glucuronidation reaction and UGT1A4-catalyzed trifluoperazine (TFP) glucuronidation were employed to firstly screen the andrographolide derivatives' inhibition potential. High specific inhibition of andrographolide derivatives towards UGT2B7 was observed. The inhibition type and parameters (K{sub i}) were determined for the compounds exhibiting strong inhibition capability towards UGT2B7, and human liver microsome (HLMs)-catalyzed zidovudine (AZT) glucuronidation probe reaction was used to furtherly confirm the inhibition behavior. In combination of inhibition parameters (K{sub i}) and in vivo concentration of andrographolide and dehydroandrographolide, the potential in vivo inhibition magnitude was predicted. Additionally, both the in vitro inhibition data and computational modeling results provide important information for the modification of andrographolide derivatives as selective inhibitors of UGT2B7. Taken together, data obtained from the present study indicated the potential herb–drug interaction between Andrographis paniculata and the drugs mainly undergoing UGT2B7-catalyzed metabolic elimination, and the andrographolide derivatives as potential candidates for the selective inhibitors of UGT2B7. - Highlights: • Specific inhibition of andrographolide derivatives towards UGT2B7. • Herb-drug interaction related withAndrographis paniculata. • Guidance for design of UGT2B7 specific inhibitors.

  19. Herb–drug interaction prediction based on the high specific inhibition of andrographolide derivatives towards UDP-glucuronosyltransferase (UGT) 2B7

    International Nuclear Information System (INIS)

    Ma, Hai-Ying; Sun, Dong-Xue; Cao, Yun-Feng; Ai, Chun-Zhi; Qu, Yan-Qing; Hu, Cui-Min; Jiang, Changtao; Dong, Pei-Pei; Sun, Xiao-Yu; Hong, Mo; Tanaka, Naoki; Gonzalez, Frank J.

    2014-01-01

    Herb–drug interaction strongly limits the clinical application of herbs and drugs, and the inhibition of herbal components towards important drug-metabolizing enzymes (DMEs) has been regarded as one of the most important reasons. The present study aims to investigate the inhibition potential of andrographolide derivatives towards one of the most important phase II DMEs UDP-glucuronosyltransferases (UGTs). Recombinant UGT isoforms (except UGT1A4)-catalyzed 4-methylumbelliferone (4-MU) glucuronidation reaction and UGT1A4-catalyzed trifluoperazine (TFP) glucuronidation were employed to firstly screen the andrographolide derivatives' inhibition potential. High specific inhibition of andrographolide derivatives towards UGT2B7 was observed. The inhibition type and parameters (K i ) were determined for the compounds exhibiting strong inhibition capability towards UGT2B7, and human liver microsome (HLMs)-catalyzed zidovudine (AZT) glucuronidation probe reaction was used to furtherly confirm the inhibition behavior. In combination of inhibition parameters (K i ) and in vivo concentration of andrographolide and dehydroandrographolide, the potential in vivo inhibition magnitude was predicted. Additionally, both the in vitro inhibition data and computational modeling results provide important information for the modification of andrographolide derivatives as selective inhibitors of UGT2B7. Taken together, data obtained from the present study indicated the potential herb–drug interaction between Andrographis paniculata and the drugs mainly undergoing UGT2B7-catalyzed metabolic elimination, and the andrographolide derivatives as potential candidates for the selective inhibitors of UGT2B7. - Highlights: • Specific inhibition of andrographolide derivatives towards UGT2B7. • Herb-drug interaction related withAndrographis paniculata. • Guidance for design of UGT2B7 specific inhibitors

  20. Herb–drug interaction prediction based on the high specific inhibition of andrographolide derivatives towards UDP-glucuronosyltransferase (UGT) 2B7

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Hai-Ying, E-mail: cmu4h-mhy@126.com [The Fourth Affiliated Hospital of China Medical University, Shenyang 110032 (China); Sun, Dong-Xue [School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016 (China); Cao, Yun-Feng [The First Affiliated Hospital of Liaoning Medical University, Jinzhou 121001 (China); Joint Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road, Dalian 116023 (China); Ai, Chun-Zhi [Joint Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road, Dalian 116023 (China); Qu, Yan-Qing [Thyroid Surgery, Yantaishan Hospital, Yantai, Shandong (China); Hu, Cui-Min [Joint Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road, Dalian 116023 (China); Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC 20057 (United States); Jiang, Changtao [Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892 (United States); Dong, Pei-Pei [Academy of Integrative Medicine, Dalian Medical University, Dalian 116044 (China); Sun, Xiao-Yu; Hong, Mo [Joint Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road, Dalian 116023 (China); Tanaka, Naoki; Gonzalez, Frank J. [Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892 (United States); and others

    2014-05-15

    Herb–drug interaction strongly limits the clinical application of herbs and drugs, and the inhibition of herbal components towards important drug-metabolizing enzymes (DMEs) has been regarded as one of the most important reasons. The present study aims to investigate the inhibition potential of andrographolide derivatives towards one of the most important phase II DMEs UDP-glucuronosyltransferases (UGTs). Recombinant UGT isoforms (except UGT1A4)-catalyzed 4-methylumbelliferone (4-MU) glucuronidation reaction and UGT1A4-catalyzed trifluoperazine (TFP) glucuronidation were employed to firstly screen the andrographolide derivatives' inhibition potential. High specific inhibition of andrographolide derivatives towards UGT2B7 was observed. The inhibition type and parameters (K{sub i}) were determined for the compounds exhibiting strong inhibition capability towards UGT2B7, and human liver microsome (HLMs)-catalyzed zidovudine (AZT) glucuronidation probe reaction was used to furtherly confirm the inhibition behavior. In combination of inhibition parameters (K{sub i}) and in vivo concentration of andrographolide and dehydroandrographolide, the potential in vivo inhibition magnitude was predicted. Additionally, both the in vitro inhibition data and computational modeling results provide important information for the modification of andrographolide derivatives as selective inhibitors of UGT2B7. Taken together, data obtained from the present study indicated the potential herb–drug interaction between Andrographis paniculata and the drugs mainly undergoing UGT2B7-catalyzed metabolic elimination, and the andrographolide derivatives as potential candidates for the selective inhibitors of UGT2B7. - Highlights: • Specific inhibition of andrographolide derivatives towards UGT2B7. • Herb-drug interaction related withAndrographis paniculata. • Guidance for design of UGT2B7 specific inhibitors.

  1. Pharmacokinetic drug-drug interaction and their implication in clinical management

    Directory of Open Access Journals (Sweden)

    Palleria Caterina

    2013-01-01

    Full Text Available Drug-drug interactions (DDIs are one of the commonest causes of medication error in developed countries, particularly in the elderly due to poly-therapy, with a prevalence of 20-40%. In particular, poly-therapy increases the complexity of therapeutic management and thereby the risk of clinically important DDIs, which can both induce the development of adverse drug reactions or reduce the clinical efficacy. DDIs can be classify into two main groups: pharmacokinetic and pharmacodynamic. In this review, using Medline, PubMed, Embase, Cochrane library and Reference lists we searched articles published until June 30 2012, and we described the mechanism of pharmacokinetic DDIs focusing the interest on their clinical implications.

  2. Colchicine in Pericardial Disease: from the Underlying Biology and Clinical Benefits to the Drug-Drug Interactions in Cardiovascular Medicine.

    Science.gov (United States)

    Schenone, Aldo L; Menon, Venu

    2018-06-14

    This is an in-depth review on the mechanism of action, clinical utility, and drug-drug interactions of colchicine in the management of pericardial disease. Recent evidence about therapeutic targets on pericarditis has demonstrated that NALP3 inflammasome blockade is the cornerstone in the clinical benefits of colchicine. Such benefits extend from acute and recurrent pericarditis to transient constriction and post-pericardiotomy syndrome. Despite the increased utilization of colchicine in cardiovascular medicine, safety concerns remains unsolved regarding the long-term use of colchicine in the cardiac patient. Moreover, recent evidence has demonstrated that numerous cardiovascular medications, ranging from antihypertensive medication to antiarrhythmics, are known to interact with the CYP3A4 and/or P-gp system increasing the toxicity potential of colchicine. The use of adjunctive colchicine in the management of inflammatory pericardial diseases is standard of care in current practice. It is advised that a careful medication reconciliation with emphasis on pharmacokinetic is completed before prescribing colchicine in order to avoid harmful interaction by finding an alternative regimen or adjusting colchicine dosing.

  3. Assessing the proarrhythmic potential of drugs

    DEFF Research Database (Denmark)

    Thomsen, Morten Bækgaard; Matz, Jørgen; Volders, Paul G A

    2006-01-01

    Torsades de pointes (TdP) is a potentially lethal cardiac arrhythmia that can occur as an unwanted adverse effect of various pharmacological therapies. Before a drug is approved for marketing, its effects on cardiac repolarisation are examined clinically and experimentally. This paper expresses...... the opinion that effects on repolarisation duration cannot directly be translated to risk of proarrhythmia. Current safety assessments of drugs only involve repolarisation assays, however the proarrhythmic profile can only be determined in the predisposed model. The availability of these proarrhythmic animal...... surrogate parameters possessing predictive power of TdP arrhythmia are reviewed. As these parameters are not developed to finalisation, any meaningful study of the proarrhythmic potential of a new drug will include evaluation in an integrated model of TdP arrhythmia....

  4. Retrospective use of PBPK modelling to understand a clinical drug-drug interaction between dextromethorphan and GSK1034702.

    Science.gov (United States)

    Hobbs, Michael J; Bloomer, Jackie; Dear, Gordon

    2017-08-01

    1. In a clinical trial, a strong drug-drug interaction (DDI) was observed between dextromethorphan (DM, the object or victim drug) and GSK1034702 (the precipitant or perpetrator drug), following single and repeat doses. This study determined the inhibition parameters of GSK1034702 in vitro and applied PBPK modelling approaches to simulate the clinical observations and provide mechanistic hypotheses to understand the DDI. 2. In vitro assays were conducted to determine the inhibition parameters of human CYP2D6 by GSK1034702. PBPK models were populated with the in vitro parameters and DDI simulations conducted and compared to the observed data from a clinical study with DM and GSK1034702. 3. GSK1034702 was a potent direct and metabolism-dependent inhibitor of human CYP2D6, with inhibition parameters of: IC 50  =   1.6 μM, K inact  = 3.7 h -1 and K I  = 0.8 μM. Incorporating these data into PBPK models predicted a DDI after repeat, but not single, 5 mg doses of GSK1034702. 4. The DDI observed with repeat administration of GSK1034702 (5 mg) can be attributed to metabolism-dependent inhibition of CYP2D6. Further, in vitro data were generated and several potential mechanisms proposed to explain the interaction observed following a single dose of GSK1034702.

  5. Drug-Herb Interactions in the Elderly Patient with IBD: a Growing Concern.

    Science.gov (United States)

    Rahman, Haider; Kim, Marina; Leung, Galen; Green, Jesse A; Katz, Seymour

    2017-12-01

    Inflammatory bowel disease (IBD), which includes conditions such as Crohn's disease and ulcerative colitis, is becoming more prevalent with the elderly being the fastest growing group. Parallel to this, there is an increasing interest in the use of complementary and alternative medicine (CAM). Nearly half of patients with IBD have used CAM at one time. The elderly patients, however, are burdened by comorbid conditions, polypharmacy, and altered functional status. With increasing use of complementary and alternative medicine in our elderly patients with IBD, it is vital for the provider to provide counsel on drug-herb potential interactions. CAM includes herbal products, diet, dietary supplements, acupuncture, and prayer. In this paper, we will review common CAM, specifically herbs, that are used in patients with IBD including the herb background, suggested use, evidence in IBD, and most importantly, potential interactions with IBD medications used in elderly patients. Most important evidence-based adverse events and drug-herb interactions are summarized. The herbs discussed include Triticum aestivum (wheat grass), Andrographis paniculata (chiretta), Boswellia serrata, tormentil, bilberry, curcumin (turmeric), Plantago ovata (blond psyllium), Oenothera biennis (evening primrose oil), germinated barley foodstuff, an herbal preparation of myrrh, chamomile and coffee extract, chios mastic gum, wormwood (absinthe, thujone), Cannabis sativa (marijuana, THC), tripterygium wilfordii (thunder god vine), Ulmus rubra (slippery elm bark), trigonella foenugraecum (fenugreek), Dioscorea mexicana (wild yam), Harpagophytum procumbens (devil's claw), ginger, cinnamon, licorice, and peppermint.

  6. Herbs with anti-lipid effects and their interactions with statins as a chemical anti- hyperlipidemia group drugs: A systematic review

    Directory of Open Access Journals (Sweden)

    Hojjat Rouhi-Boroujeni

    2015-08-01

    Full Text Available BACKGROUND: The present systematic review aimed to express the clinical anti-lipid effects of different types of herbs, as well as described studied interactions between herbal remedies and prescribed drugs for hyperlipidemic patients which were based on in vitro experiments, animal studies, and empirical clinical experiences. METHODS: For this systematic review, we explored 2183 published papers about herbal drugs interactions from November 1967 to August 2014, fulfilling eligibility criteria by searching in some databases such as Web of Science, Medline, Scopus, Embase, Cinahl, and the Cochrane database. The main keywords used for searching included: herbal medicine, herbs, statin, lipid, and herb-drug interaction. RESULTS: Among published articles about herb-drug interactions, 185 papers met the initial search criteria and among them, 92 papers were potentially retrievable including a description of 17 herbs and medicinal plants. In first step and by reviewing all published manuscripts on beneficial effects of herbs on serum lipids level, 17 herbs were described to be effective on lipid profile as lowering serum triglyceride, total cholesterol, low-density lipoprotein cholesterol as well as increasing serum high-density lipoprotein level. Some herbs such as celery could even affect the hepatic triglyceride concentrations. The herbal reaction toward different types of statins is varied so that grapefruit or pomegranate was interacted with only some types of statins, but not with all statin types. In this context, administration of herbal materials can lead to decreased absorption of statins or decreased the plasma concentration of these drugs. CONCLUSION: Various types of herbs can potentially reduce serum lipid profile with the different pathways; however, the herb-drug interactions may decrease pharmacological therapeutic effects of anti-hyperlipidemic drugs that should be considered when approved herbs are prescribed. 

  7. Evaluation of documented drug interactions and contraindications associated with herbs and dietary supplements: a systematic literature review.

    Science.gov (United States)

    Tsai, H-H; Lin, H-W; Simon Pickard, A; Tsai, H-Y; Mahady, G B

    2012-11-01

    The use of herbs and dietary supplements (HDS) alone or concomitantly with medications can potentially increase the risk of adverse events experienced by the patients. This review aims to evaluate the documented HDS-drug interactions and contraindications. A structured literature review was conducted on PubMed, EMBASE, Cochrane Library, tertiary literature and Internet. While 85 primary literatures, six books and two web sites were reviewed for a total of 1,491 unique pairs of HDS-drug interactions, 213 HDS entities and 509 medications were involved. HDS products containing St. John's Wort, magnesium, calcium, iron, ginkgo had the greatest number of documented interactions with medications. Warfarin, insulin, aspirin, digoxin, and ticlopidine had the greatest number of reported interactions with HDS. Medications affecting the central nervous system or cardiovascular system had more documented interactions with HDS. Of the 882 HDS-drug interactions being described its mechanism and severity, 42.3% were due to altered pharmacokinetics and 240 were described as major interactions. Of the 152 identified HDS contraindications, the most frequent involved gastrointestinal (16.4%), neurological (14.5%), and renal/genitourinary diseases (12.5%). Flaxseed, echinacea, and yohimbe had the largest number of documented contraindications. Although HDS-drug interactions and contraindications primarily concerned a relatively small subset of commonly used medications and HDS entities, this review provides the summary to identify patients, HDS products, and medications that are more susceptible to HDS-drug interactions and contraindications. The findings would facilitate the health-care professionals to communicate these documented interactions and contraindications to their patients and/or caregivers thereby preventing serious adverse events and improving desired therapeutic outcomes. © 2012 Blackwell Publishing Ltd.

  8. Interactions between hormonal contraception and antiepileptic drugs

    DEFF Research Database (Denmark)

    Reimers, Arne; Brodtkorb, Eylert; Sabers, Anne

    2015-01-01

    Antiepileptic drugs (AEDs) and hormonal contraceptives may affect each other's metabolism and clinical efficacy. Loss of seizure control and unplanned pregnancy may occur when these compounds are used concomitantly. Although a large number of available preparations yield a plethora of possible drug...... combinations, most of these drug interactions are predictable and, thus, avoidable. Unfortunately, there is a substantial lack of data regarding the newer AEDs. Detailed understanding of these issues is necessary for those who prescribe AEDs and/or hormonal contraception to women with epilepsy, as well...

  9. Hidden sources of grapefruit in beverages: potential interactions with immunosuppressant medications.

    Science.gov (United States)

    Auten, Ashley A; Beauchamp, Lauren N; Joshua Taylor; Hardinger, Karen L

    2013-06-01

    The interaction between grapefruit-containing beverages and immunosuppressants is not well defined in the literature. This study was conducted to investigate possible sources of grapefruit juice or grapefruit extract in common US-manufactured beverages. The goal was to identify those products that might serve as hidden sources of dietary grapefruit intake, increasing a transplant patient's risk for drug interactions. A careful review of the ingredients of the 3 largest US beverage manufacturer's product lines was conducted through manufacturer correspondence, product labeling examination, and online nutrition database research. Focus was placed on citrus-flavored soft drinks, teas, and juice products and their impact on a patient's immunosuppressant regimens. Twenty-three beverages were identified that contained grapefruit. Five did not contain the word "grapefruit" in the product name. In addition to the confirmed grapefruit-containing products, 17 products were identified as possibly containing grapefruit juice or grapefruit extract. A greater emphasis should be placed upon properly educating patients regarding hidden sources of grapefruit in popular US beverages and the potential for food-drug interactions.

  10. Radiopharmaceuticals drug interactions: a critical review

    Directory of Open Access Journals (Sweden)

    Ralph Santos-Oliveira

    2008-12-01

    Full Text Available Radiopharmaceuticals play a critical role in modern medicine primarily for diagnostic purposes, but also for monitoring disease progression and response to treatment. As the use of image has been increased, so has the use of prescription medications. These trends increase the risk of interactions between medications and radiopharmaceuticals. These interactions which have an impact on image by competing with the radiopharmaceutical for binding sites for example can lead to false negative results. Drugs that accelerate the metabolism of the radiopharmaceutical can have a positive impact (i.e. speeding its clearance or, if repeating image is needed, a negative impact. In some cases, for example in cardiac image among patients taking doxirubacin, these interactions may have a therapeutic benefit. The incidence of drug-radiopharmaceuticals adverse reactions is unknown, since they may not be reported or even recognized. Here,we compiled the medical literature, using the criteria of a systematic review established by the Cochrane Collaboration, on pharmaceutical-drug interactions to provide a summary of documented interactions by organ system and radiopharmaceuticals. The purpose is to provide a reference on drug interactions that could inform the nuclear medicine staff in their daily routine. Efforts to increase adverse event reporting, and ideally consolidate reports worldwide, can provide a critically needed resource for prevention of drug-radiopharmaceuticals interactions.Os radiofármacos desempenham função crítica na medicina moderna, primariamente para fins diagnósticos, mas também no monitoramento da progressão de doenças assim como na avaliação de respostas ao tratamento. O uso da tecnologia por imagem tem crescido e conseqüentemente as prescrições de medicamentos (radiofármacos em especial com esse propósito. Este fato, aumenta o risco de interações entre medicamentos e radiofármacos. Interações que podem ter um impacto na

  11. Prolonged Drug-Drug Interaction between Terbinafine and Perphenazine.

    Science.gov (United States)

    Park, Young-Min

    2012-12-01

    I report here an elderly woman receiving perphenazine together with terbinafine. After 1 week of terbinafine treatment she experienced extrapyramidal symptoms and, in particular, akathisia. Her symptoms did not disappear for 6 weeks, and so at 2 weeks prior to this most recent admission she had stopped taking terbinafine. However, these symptoms persisted for 3 weeks after discontinuing terbinafine. It is well known that terbinafine inhibits CYP2D6 and that perphenazine is metabolized mainly by CYP2D6. Thus, when terbinafine and perphenazine are coadministrated, the subsequent increase in the concentration of perphenazine may induce extrapyramidal symptoms. Thus, terbinafine therapy may be associated with the induction and persistence of extrapyramidal symptoms, including akathisia. This case report emphasizes the importance of monitoring drug-drug interactions in patients undergoing terbinafine and perphenazine therapy.

  12. Intracranial self-stimulation to evaluate abuse potential of drugs.

    Science.gov (United States)

    Negus, S Stevens; Miller, Laurence L

    2014-07-01

    Intracranial self-stimulation (ICSS) is a behavioral procedure in which operant responding is maintained by pulses of electrical brain stimulation. In research to study abuse-related drug effects, ICSS relies on electrode placements that target the medial forebrain bundle at the level of the lateral hypothalamus, and experimental sessions manipulate frequency or amplitude of stimulation to engender a wide range of baseline response rates or response probabilities. Under these conditions, drug-induced increases in low rates/probabilities of responding maintained by low frequencies/amplitudes of stimulation are interpreted as an abuse-related effect. Conversely, drug-induced decreases in high rates/probabilities of responding maintained by high frequencies/amplitudes of stimulation can be interpreted as an abuse-limiting effect. Overall abuse potential can be inferred from the relative expression of abuse-related and abuse-limiting effects. The sensitivity and selectivity of ICSS to detect abuse potential of many classes of abused drugs is similar to the sensitivity and selectivity of drug self-administration procedures. Moreover, similar to progressive-ratio drug self-administration procedures, ICSS data can be used to rank the relative abuse potential of different drugs. Strengths of ICSS in comparison with drug self-administration include 1) potential for simultaneous evaluation of both abuse-related and abuse-limiting effects, 2) flexibility for use with various routes of drug administration or drug vehicles, 3) utility for studies in drug-naive subjects as well as in subjects with controlled levels of prior drug exposure, and 4) utility for studies of drug time course. Taken together, these considerations suggest that ICSS can make significant contributions to the practice of abuse potential testing. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.

  13. Drug-Nutrition Interactions in Older People

    NARCIS (Netherlands)

    Orten-Luiten, van A.C.; Janse, A.; Witkamp, R.

    2016-01-01

    Although both malnutrition and polypharmacy in elderly populations are relevant clinical issues, relatively little is known about their mutual relationship through drug-nutrition interactions (DNIs). To address this knowledge gap, DNIs are discussed, captured in a framework of five classes: the

  14. Variable Linezolid Exposure in Intensive Care Unit Patients-Possible Role of Drug-Drug Interactions.

    Science.gov (United States)

    Töpper, Christoph; Steinbach, Cathérine L; Dorn, Christoph; Kratzer, Alexander; Wicha, Sebastian G; Schleibinger, Michael; Liebchen, Uwe; Kees, Frieder; Salzberger, Bernd; Kees, Martin G

    2016-10-01

    Standard doses of linezolid may not be suitable for all patient groups. Intensive care unit (ICU) patients in particular may be at risk of inadequate concentrations. This study investigated variability of drug exposure and its potential sources in this population. Plasma concentrations of linezolid were determined by high-performance liquid chromatography in a convenience sample of 20 ICU patients treated with intravenous linezolid 600 mg twice daily. Ultrafiltration applying physiological conditions (pH 7.4/37°C) was used to determine the unbound fraction. Individual pharmacokinetic (PK) parameters were estimated by population PK modeling. As measures of exposure to linezolid, area under the concentration-time curve (AUC) and trough concentrations (Cmin) were calculated and compared with published therapeutic ranges (AUC 200-400 mg*h/L, Cmin 2-10 mg/L). Coadministered inhibitors or inducers of cytochrome P450 and/or P-glycoprotein were noted. Data from 18 patients were included into the PK evaluation. Drug exposure was highly variable (median, range: AUC 185, 48-618 mg*h/L, calculated Cmin 2.92, 0.0062-18.9 mg/L), and only a minority of patients had values within the target ranges (6 and 7, respectively). AUC and Cmin were linearly correlated (R = 0.98), and classification of patients (underexposed/within therapeutic range/overexposed) according to AUC or Cmin was concordant in 15 cases. Coadministration of inhibitors was associated with a trend to higher drug exposure, whereas 3 patients treated with levothyroxine showed exceedingly low drug exposure (AUC ∼60 mg*h/L, Cmin linezolid is highly variable and difficult to predict in ICU patients, and therapeutic drug monitoring seems advisable. PK drug-drug interactions might partly be responsible and should be further investigated; protein binding appears to be stable and irrelevant.

  15. Drug-drug interactions in patients treated for cancer : a prospective study on clinical interventions

    NARCIS (Netherlands)

    van Leeuwen, R. W. F.; Jansman, F. G. A.; van den Bemt, P. M. L. A.; de Man, F.; Piran, F.; Vincenten, I.; Jager, A.; Rijneveld, A. W.; Brugma, J. D.; Mathijssen, R. H. J.; van Gelder, T.

    Background: Drug-drug interactions (DDIs) are of major concern in oncology, since cancer patients typically take many concomitant medications. Retrospective studies have been conducted to determine the prevalence of DDIs. However, prospective studies on DDIs needing interventions in cancer patients

  16. Drug discrimination: A versatile tool for characterization of CNS safety pharmacology and potential for drug abuse.

    Science.gov (United States)

    Swedberg, Michael D B

    2016-01-01

    Drug discrimination studies for assessment of psychoactive properties of drugs in safety pharmacology and drug abuse and drug dependence potential evaluation have traditionally been focused on testing novel compounds against standard drugs for which drug abuse has been documented, e.g. opioids, CNS stimulants, cannabinoids etc. (e.g. Swedberg & Giarola, 2015), and results are interpreted such that the extent to which the test drug causes discriminative effects similar to those of the standard training drug, the test drug would be further characterized as a potential drug of abuse. Regulatory guidance for preclinical assessment of abuse liability by the European Medicines Agency (EMA, 2006), the U.S. Food and Drug Administration (FDA, 2010), the International Conference of Harmonization (ICH, 2009), and the Japanese Ministry of Health Education and Welfare (MHLW, 1994) detail that compounds with central nervous system (CNS) activity, whether by design or not, need abuse and dependence liability assessment. Therefore, drugs with peripheral targets and a potential to enter the CNS, as parent or metabolite, are also within scope (see Swedberg, 2013, for a recent review and strategy). Compounds with novel mechanisms of action present a special challenge due to unknown abuse potential, and should be carefully assessed against defined risk criteria. Apart from compounds sharing mechanisms of action with known drugs of abuse, compounds intended for indications currently treated with drugs with potential for abuse and or dependence are also within scope, regardless of mechanism of action. Examples of such compounds are analgesics, anxiolytics, cognition enhancers, appetite control drugs, sleep control drugs and drugs for psychiatric indications. Recent results (Swedberg et al., 2014; Swedberg & Raboisson, 2014; Swedberg, 2015) on the metabotropic glutamate receptor type 5 (mGluR5) antagonists demonstrate that compounds causing hallucinatory effects in humans did not exhibit

  17. Viral induced oxidative and inflammatory response in Alzheimer's disease pathogenesis with identification of potential drug candidates: A systematic review using systems biology approach.

    Science.gov (United States)

    Talwar, Puneet; Gupta, Renu; Kushwaha, Suman; Agarwal, Rachna; Saso, Luciano; Kukreti, Shrikant; Kukreti, Ritushree

    2018-04-19

    Alzheimer's disease (AD) is genetically complex with multifactorial etiology. Here, we aim to identify the potential viral pathogens leading to aberrant inflammatory and oxidative stress response in AD along with potential drug candidates using systems biology approach. We retrieved protein interactions of amyloid precursor protein (APP) and tau protein (MAPT) from NCBI and genes for oxidative stress from NetAge, for inflammation from NetAge and InnateDB databases. Genes implicated in aging were retrieved from GenAge database and two GEO expression datasets. These genes were individually used to create protein-protein interaction network using STRING database (score≥0.7). The interactions of candidate genes with known viruses were mapped using virhostnet v2.0 database. Drug molecules targeting candidate genes were retrieved using the Drug-Gene Interaction Database (DGIdb). Data mining resulted in 2095 APP, 116 MAPT, 214 oxidative stress, 1269 inflammatory genes. After STRING PPIN analysis, 404 APP, 109 MAPT, 204 oxidative stress and 1014 inflammation related high confidence proteins were identified. The overlap among all datasets yielded eight common markers (AKT1, GSK3B, APP, APOE, EGFR, PIN1, CASP8 and SNCA). These genes showed association with hepatitis C virus (HCV), Epstein-Barr virus (EBV), human herpes virus 8 and Human papillomavirus (HPV). Further, screening of drugs targeting candidate genes, and possessing anti-inflammatory property, antiviral activity along with suggested role in AD pathophysiology yielded 12 potential drug candidates. Our study demonstrated the role of viral etiology in AD pathogenesis by elucidating interaction of oxidative stress and inflammation causing candidate genes with common viruses along with the identification of potential AD drug candidates. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Possible drug–drug interaction in dogs and cats resulted from alteration in drug metabolism: A mini review

    Directory of Open Access Journals (Sweden)

    Kazuaki Sasaki

    2015-05-01

    Full Text Available Pharmacokinetic drug–drug interactions (in particular at metabolism may result in fatal adverse effects in some cases. This basic information, therefore, is needed for drug therapy even in veterinary medicine, as multidrug therapy is not rare in canines and felines. The aim of this review was focused on possible drug–drug interactions in dogs and cats. The interaction includes enzyme induction by phenobarbital, enzyme inhibition by ketoconazole and fluoroquinolones, and down-regulation of enzymes by dexamethasone. A final conclusion based upon the available literatures and author’s experience is given at the end of the review.

  19. Detection of First-Line Drug Resistance Mutations and Drug-Protein Interaction Dynamics from Tuberculosis Patients in South India.

    Science.gov (United States)

    Nachappa, Somanna Ajjamada; Neelambike, Sumana M; Amruthavalli, Chokkanna; Ramachandra, Nallur B

    2018-05-01

    Diagnosis of drug-resistant tuberculosis predominantly relies on culture-based drug susceptibility testing, which take weeks to produce a result and a more time-efficient alternative method is multiplex allele-specific PCR (MAS-PCR). Also, understanding the role of mutations in causing resistance helps better drug designing. To evaluate the ability of MAS-PCR in the detection of drug resistance and to understand the mechanism of interaction of drugs with mutant proteins in Mycobacterium tuberculosis. Detection of drug-resistant mutations using MAS-PCR and validation through DNA sequencing. MAS-PCR targeted five loci on three genes, katG 315 and inhA -15 for the drug isoniazid (INH), and rpoB 516, 526, and 531 for rifampicin (RIF). Furthermore, the sequence data were analyzed to study the effect on interaction of the anti-TB drug molecule with the target protein using in silico docking. We identified drug-resistant mutations in 8 out of 114 isolates with 2 of them as multidrug-resistant TB using MAS-PCR. DNA sequencing confirmed only six of these, recording a sensitivity of 85.7% and specificity of 99.3% for MAS-PCR. Molecular docking showed estimated free energy of binding (ΔG) being higher for RIF binding with RpoB S531L mutant. Codon 315 in KatG does not directly interact with INH but blocks the drug access to active site. We propose DNA sequencing-based drug resistance detection for TB, which is more accurate than MAS-PCR. Understanding the action of resistant mutations in disrupting the normal drug-protein interaction aids in designing effective drug alternatives.

  20. Study of interaction between antiobesity and hypolipidemic drugs ...

    African Journals Online (AJOL)

    PURPOSE: To explore the interaction between antiobesity drug, topiramate, and hypolipidemic drug, atorvastatin, in rats. METHODS: Obesity was induced in Wistar albino rats by administering cafeteria diet (CD) for 40 days and divided into 5 groups. While one group served as control, each other group received either ...

  1. Pharmacogenetics in drug regulation: promise, potential and pitfalls

    Science.gov (United States)

    Shah, Rashmi R

    2005-01-01

    Pharmacogenetic factors operate at pharmacokinetic as well as pharmacodynamic levels—the two components of the dose–response curve of a drug. Polymorphisms in drug metabolizing enzymes, transporters and/or pharmacological targets of drugs may profoundly influence the dose–response relationship between individuals. For some drugs, although retrospective data from case studies suggests that these polymorphisms are frequently associated with adverse drug reactions or failure of efficacy, the clinical utility of such data remains unproven. There is, therefore, an urgent need for prospective data to determine whether pre-treatment genotyping can improve therapy. Various regulatory guidelines already recommend exploration of the role of genetic factors when investigating a drug for its pharmacokinetics, pharmacodynamics, dose–response relationship and drug interaction potential. Arising from the global heterogeneity in the frequency of variant alleles, regulatory guidelines also require the sponsors to provide additional information, usually pharmacogenetic bridging data, to determine whether data from one ethnic population can be extrapolated to another. At present, sponsors explore pharmacogenetic influences in early clinical pharmacokinetic studies but rarely do they carry the findings forward when designing dose–response studies or pivotal studies. When appropriate, regulatory authorities include genotype-specific recommendations in the prescribing information. Sometimes, this may include the need to adjust a dose in some genotypes under specific circumstances. Detailed references to pharmacogenetics in prescribing information and pharmacogenetically based prescribing in routine therapeutics will require robust prospective data from well-designed studies. With greater integration of pharmacogenetics in drug development, regulatory authorities expect to receive more detailed genetic data. This is likely to complicate the drug evaluation process as well as

  2. iNR-Drug: predicting the interaction of drugs with nuclear receptors in cellular networking.

    Science.gov (United States)

    Fan, Yue-Nong; Xiao, Xuan; Min, Jian-Liang; Chou, Kuo-Chen

    2014-03-19

    Nuclear receptors (NRs) are closely associated with various major diseases such as cancer, diabetes, inflammatory disease, and osteoporosis. Therefore, NRs have become a frequent target for drug development. During the process of developing drugs against these diseases by targeting NRs, we are often facing a problem: Given a NR and chemical compound, can we identify whether they are really in interaction with each other in a cell? To address this problem, a predictor called "iNR-Drug" was developed. In the predictor, the drug compound concerned was formulated by a 256-D (dimensional) vector derived from its molecular fingerprint, and the NR by a 500-D vector formed by incorporating its sequential evolution information and physicochemical features into the general form of pseudo amino acid composition, and the prediction engine was operated by the SVM (support vector machine) algorithm. Compared with the existing prediction methods in this area, iNR-Drug not only can yield a higher success rate, but is also featured by a user-friendly web-server established at http://www.jci-bioinfo.cn/iNR-Drug/, which is particularly useful for most experimental scientists to obtain their desired data in a timely manner. It is anticipated that the iNR-Drug server may become a useful high throughput tool for both basic research and drug development, and that the current approach may be easily extended to study the interactions of drug with other targets as well.

  3. Prediction of potential drug targets based on simple sequence properties

    Directory of Open Access Journals (Sweden)

    Lai Luhua

    2007-09-01

    Full Text Available Abstract Background During the past decades, research and development in drug discovery have attracted much attention and efforts. However, only 324 drug targets are known for clinical drugs up to now. Identifying potential drug targets is the first step in the process of modern drug discovery for developing novel therapeutic agents. Therefore, the identification and validation of new and effective drug targets are of great value for drug discovery in both academia and pharmaceutical industry. If a protein can be predicted in advance for its potential application as a drug target, the drug discovery process targeting this protein will be greatly speeded up. In the current study, based on the properties of known drug targets, we have developed a sequence-based drug target prediction method for fast identification of novel drug targets. Results Based on simple physicochemical properties extracted from protein sequences of known drug targets, several support vector machine models have been constructed in this study. The best model can distinguish currently known drug targets from non drug targets at an accuracy of 84%. Using this model, potential protein drug targets of human origin from Swiss-Prot were predicted, some of which have already attracted much attention as potential drug targets in pharmaceutical research. Conclusion We have developed a drug target prediction method based solely on protein sequence information without the knowledge of family/domain annotation, or the protein 3D structure. This method can be applied in novel drug target identification and validation, as well as genome scale drug target predictions.

  4. A drug-drug interaction study to assess the effect of the CYP1A2 inhibitor fluvoxamine on the pharmacokinetics of dovitinib (TKI258) in patients with advanced solid tumors

    NARCIS (Netherlands)

    de Weger, Vincent A; Goel, Sanjay; von Moos, Roger; Schellens, Jan H M; Mach, Nicholas; Tan, Eugene; Anand, Suraj; Scott, Jeffrey W; Lassen, Ulrik N

    PURPOSE: Dovitinib is an orally available multi tyrosine kinase inhibitor which inhibits VEGFR 1-3, FGFR 1-3, and PDGFR. This study was performed to investigate the potential drug-drug interaction of dovitinib with the CYP1A2 inhibitor fluvoxamine in patients with advanced solid tumors. METHODS:

  5. A drug-drug interaction study to assess the effect of the CYP1A2 inhibitor fluvoxamine on the pharmacokinetics of dovitinib (TKI258) in patients with advanced solid tumors

    DEFF Research Database (Denmark)

    de Weger, Vincent A; Goel, Sanjay; von Moos, Roger

    2018-01-01

    PURPOSE: Dovitinib is an orally available multi tyrosine kinase inhibitor which inhibits VEGFR 1-3, FGFR 1-3, and PDGFR. This study was performed to investigate the potential drug-drug interaction of dovitinib with the CYP1A2 inhibitor fluvoxamine in patients with advanced solid tumors. METHODS: ...

  6. Cognitive enhancers (nootropics). Part 2: drugs interacting with enzymes.

    Science.gov (United States)

    Froestl, Wolfgang; Muhs, Andreas; Pfeifer, Andrea

    2013-01-01

    Cognitive enhancers (nootropics) are drugs to treat cognition deficits in patients suffering from Alzheimer's disease, schizophrenia, stroke, attention deficit hyperactivity disorder, or aging. Cognition refers to a capacity for information processing, applying knowledge, and changing preferences. It involves memory, attention, executive functions, perception, language, and psychomotor functions. The term nootropics was coined in 1972 when memory enhancing properties of piracetam were observed in clinical trials. In the meantime, hundreds of drugs have been evaluated in clinical trials or in preclinical experiments. To classify the compounds, a concept is proposed assigning drugs to 19 categories according to their mechanism(s) of action, in particular drugs interacting with receptors, enzymes, ion channels, nerve growth factors, re-uptake transporters, antioxidants, metal chelators, and disease modifying drugs meaning small molecules, vaccines, and monoclonal antibodies interacting with amyloid-β and tau. For drugs whose mechanism of action is not known, they are either classified according to structure, e.g., peptides, or their origin, e.g., natural products. This review covers the evolution of research in this field over the last 25 years.

  7. Cognitive enhancers (nootropics). Part 1: drugs interacting with receptors.

    Science.gov (United States)

    Froestl, Wolfgang; Muhs, Andreas; Pfeifer, Andrea

    2012-01-01

    Cognitive enhancers (nootropics) are drugs to treat cognition deficits in patients suffering from Alzheimer's disease, schizophrenia, stroke, attention deficit hyperactivity disorder, or aging. Cognition refers to a capacity for information processing, applying knowledge, and changing preferences. It involves memory, attention, executive functions, perception, language, and psychomotor functions. The term nootropics was coined in 1972 when memory enhancing properties of piracetam were observed in clinical trials. In the meantime, hundreds of drugs have been evaluated in clinical trials or in preclinical experiments. To classify the compounds, a concept is proposed assigning drugs to 18 categories according to their mechanism(s) of action, in particular drugs interacting with receptors, enzymes, ion channels, nerve growth factors, re-uptake transporters, antioxidants, metal chelators, and disease-modifying drugs meaning small molecules, vaccines, and monoclonal antibodies interacting with amyloid-β and tau. For drugs, whose mechanism of action is not known, they are either classified according to structure, e.g., peptides, or their origin, e.g., natural products. The review covers the evolution of research in this field over the last 25 years.

  8. Consensus-based evaluation of clinical significance and management of anticancer drug interactions

    NARCIS (Netherlands)

    Jansman, F.G.A.; Reyners, A.K.L.; van Roon, E.N.; Smorenburg, C.H.; Helgason, H.H.; le Comte, M.; Wensveen, B.M.; van den Tweel, A.M.A.; de Blois, M.; Kwee, W.; Kerremans, A.L.; Brouwers, J.R.B.J.

    Background: Anticancer drug interactions can affect the efficacy and toxicity of anticancer treatment and that of the interacting drugs. However, information on the significance, prevention, and management of these interactions is currently lacking. Objective: The purpose of this study was to assess

  9. Target mediated drug disposition with drug-drug interaction, Part II: competitive and uncompetitive cases.

    Science.gov (United States)

    Koch, Gilbert; Jusko, William J; Schropp, Johannes

    2017-02-01

    We present competitive and uncompetitive drug-drug interaction (DDI) with target mediated drug disposition (TMDD) equations and investigate their pharmacokinetic DDI properties. For application of TMDD models, quasi-equilibrium (QE) or quasi-steady state (QSS) approximations are necessary to reduce the number of parameters. To realize those approximations of DDI TMDD models, we derive an ordinary differential equation (ODE) representation formulated in free concentration and free receptor variables. This ODE formulation can be straightforward implemented in typical PKPD software without solving any non-linear equation system arising from the QE or QSS approximation of the rapid binding assumptions. This manuscript is the second in a series to introduce and investigate DDI TMDD models and to apply the QE or QSS approximation.

  10. Analysis of Drugs Interaction among Pediatric Inpatients at Hospital in Palu

    Directory of Open Access Journals (Sweden)

    Akhmed G. Sjahadat

    2013-12-01

    Full Text Available We performed drug interaction analyses in the pediatric inpatient unit at one of hospitals in Palu. In this study, those analysesstudy are important to prevent childhood morbidity, mortality and to improve patient’s safety. By using a cross-sectional descriptive study, we collected retrospective data from January until December 2012. We included patients at age of 0- 18 years old who were hospitalized during 2012 and received two or more drugs from a prescription sheet. In particular, we excluded pediatric inpatients in emergency and intensive care units who received topical medications (e.g., ointment, creams, eye drops, ear drops, and nasal drops. Each drug was analyzed by using Drug.Com software. In total, we minor interactions (44.78%. We found several drug interactions in the combination of rifampicin-isoniazid, dexamethasone-ibuprofen, acetaminophen-isoniazid, gentamicin-cefotaxime-ceftriaxone and diazepam- dexamethasone.

  11. A proposal for a pharmacokinetic interaction significance classification system (PISCS) based on predicted drug exposure changes and its potential application to alert classifications in product labelling.

    Science.gov (United States)

    Hisaka, Akihiro; Kusama, Makiko; Ohno, Yoshiyuki; Sugiyama, Yuichi; Suzuki, Hiroshi

    2009-01-01

    Pharmacokinetic drug-drug interactions (DDIs) are one of the major causes of adverse events in pharmacotherapy, and systematic prediction of the clinical relevance of DDIs is an issue of significant clinical importance. In a previous study, total exposure changes of many substrate drugs of cytochrome P450 (CYP) 3A4 caused by coadministration of inhibitor drugs were successfully predicted by using in vivo information. In order to exploit these predictions in daily pharmacotherapy, the clinical significance of the pharmacokinetic changes needs to be carefully evaluated. The aim of the present study was to construct a pharmacokinetic interaction significance classification system (PISCS) in which the clinical significance of DDIs was considered with pharmacokinetic changes in a systematic manner. Furthermore, the classifications proposed by PISCS were compared in a detailed manner with current alert classifications in the product labelling or the summary of product characteristics used in Japan, the US and the UK. A matrix table was composed by stratifying two basic parameters of the prediction: the contribution ratio of CYP3A4 to the oral clearance of substrates (CR), and the inhibition ratio of inhibitors (IR). The total exposure increase was estimated for each cell in the table by associating CR and IR values, and the cells were categorized into nine zones according to the magnitude of the exposure increase. Then, correspondences between the DDI significance and the zones were determined for each drug group considering the observed exposure changes and the current classification in the product labelling. Substrate drugs of CYP3A4 selected from three therapeutic groups, i.e. HMG-CoA reductase inhibitors (statins), calcium-channel antagonists/blockers (CCBs) and benzodiazepines (BZPs), were analysed as representative examples. The product labelling descriptions of drugs in Japan, US and UK were obtained from the websites of each regulatory body. Among 220

  12. Interaction in the Research Interview and Drug-Related Disclosures among Respondents.

    Science.gov (United States)

    Myers, Vincent

    1979-01-01

    Interviewers and respondents judged interview interactions during a survey of drug-related sentiments. Pronounced variability in interviewer-respondent judgements occurred in unanticipated ways related to gender, role, and ethnicity of participants. Positive interaction yielded different respondent cognitions and reports of illicit drug ingestion…

  13. Nanomaterials potentiating standard chemotherapy drugs' effect

    Science.gov (United States)

    Kazantsev, S. O.; Korovin, M. S.

    2017-09-01

    Application of antitumor chemotherapeutic drugs is hindered by a number of barriers, multidrug resistance that makes effective drug deposition inside cancer cells difficult is among them. Recent research shows that potential efficiency of anticancer drugs can be increased with nanoparticles. This review is devoted to the application of nanoparticles for cancer treatment. Various types of nanoparticles currently used in medicine are reviewed. The nanoparticles that have been used for cancer therapy and targeted drug delivery to damaged sites of organism are described. Also, the possibility of nanoparticles application for cancer diagnosis that could help early detection of tumors is discussed. Our investigations of antitumor activity of low-dimensional nanostructures based on aluminum oxides and hydroxides are briefly reviewed.

  14. Drug–drug interactions involving antidepressants: focus on desvenlafaxine

    Directory of Open Access Journals (Sweden)

    Low Y

    2018-02-01

    Full Text Available Yvette Low,1 Sajita Setia,2 Graca Lima3 1Department of Pharmacy, National University of Singapore, Singapore; 2Medical Affairs, Pfizer Pte. Ltd., Singapore; 3Global Medical Affairs, Asia-Pacific Region, Pfizer, Hong Kong Abstract: Psychiatric and physical conditions often coexist, and there is robust evidence that associates the frequency of depression with single and multiple physical conditions. More than half of patients with depression may have at least one chronic physical condition. Therefore, antidepressants are often used in cotherapy with other medications for the management of both psychiatric and chronic physical illnesses. The risk of drug–drug interactions (DDIs is augmented by complex polypharmacy regimens and extended periods of treatment required, of which possible outcomes range from tolerability issues to lack of efficacy and serious adverse events. Optimal patient outcomes may be achieved through drug selection with minimal potential for DDIs. Desvenlafaxine is a serotonin–norepinephrine reuptake inhibitor approved for the treatment of adults with major depressive disorder. Pharmacokinetic studies of desvenlafaxine have shown a simple metabolic profile unique among antidepressants. This review examines the DDI profiles of antidepressants, particularly desvenlafaxine, in relation to drugs of different therapeutic areas. The summary and comparison of information available is meant to help clinicians in making informed decisions when using desvenlafaxine in patients with depression and comorbid chronic conditions. Keywords: desvenlafaxine, polypharmacy, comorbidities, depression, pharmacokinetics

  15. Do law enforcement interactions reduce the initiation of injection drug use? An investigation in three North American settings.

    Science.gov (United States)

    Melo, J S; Garfein, R S; Hayashi, K; Milloy, M J; DeBeck, K; Sun, S; Jain, S; Strathdee, S A; Werb, D

    2018-01-01

    The prevention of drug injecting is often cited as a justification for the deployment of law enforcement and for the continuation of drug criminalization policies. We sought to characterize the impact of law enforcement interactions on the risk that people who inject drugs (PWID) report assisting others with injection initiation in three North American countries. Cross-sectional data from PWID participating in cohort studies in three cities (San Diego, USA; Tijuana, Mexico; Vancouver, Canada) were pooled (August 2014-December 2016). The dependent variable was defined as recently (i.e., past six months) providing injection initiation assistance; the primary independent variable was the frequency of recent law enforcement interactions, defined categorically (0 vs. 1 vs. 2-5 vs. ≥6). We employed multivariable logistic regression analyses to assess this relationship while controlling for potential confounders. Among 2122 participants, 87 (4.1%) reported recently providing injection initiation assistance, and 802 (37.8%) reported recent law enforcement interactions. Reporting either one or more than five recent interactions with law enforcement was not significantly associated with injection initiation assistance. Reporting 2-5 law enforcement interactions was associated with initiation assistance (Adjusted Odds Ratio=1.74, 95% Confidence Interval: 1.01-3.02). Reporting interactions with law enforcement was not associated with a reduced likelihood that PWID reported initiating others into injection drug use. Instead, we identified a positive association between reporting law enforcement interactions and injection initiation assistance among PWID in multiple settings. These findings raise concerns regarding the effectiveness of drug law enforcement to deter injection drug use initiation. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Electronic structure of an anticancer drug DC81 and its interaction with DNA base pairs

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, Gargi, E-mail: gargi.tiwari@rediffmail.com; Sharma, Dipendra, E-mail: d-11sharma@rediffmail.com; Dwivedi, K. K., E-mail: dwivedikarunesh4@gmail.com [Department of Physics, DDU Gorakhpur University, Gorakhpur (India); Dwivedi, M. K., E-mail: dwivedi-ji@rediffmail.com [Department of Physics, Banaras Hindu University, Varanasi (India)

    2016-05-06

    The drug, 8-Hydroxy-7-methoxy-pyrrolo-[2,1-c][1,4] benzodiazepine-5-one, commonly christened as DC81 belongs to the pyrrolo-[2,1-c][1,4]benzodiazepine (PBDs) family. It is a member of the group of naturally occurring antitumour antibiotics produced by various Streptomyces species. The antitumour activity of DC81 is attributed to its sequence specific interaction with G-C rich DNA region in particular, for Pu-G-Pu motifs. In the present paper, physico-chemical properties DC81 have been carried out using an ab-initio method, HF/6-31G(d,p) with GAMESS program. MEP, HOMO and LUMO surfaces have been scanned. Ionization potential, electron affinity, electronegativity, global hardness and softness of the drug have been calculated. Further, drug-DNA interactions have been examined using modified second order perturbation theory along with multicentred-multipole expansion technique. Results have been discussed in the light of other theoretical and experimental observations. Efforts have been made to elucidate the binding patterns and thereby biological properties of the drug.

  17. Adverse effects and Drug Interactions Associated with Inhaled Recreational and Medical Marijuana

    OpenAIRE

    Maisha Kelly Freeman; Pilar Z Murphy

    2016-01-01

    Objectives: To provide an overview of the addiction potential; adverse effects (e.g., cardiovascular, immune dysfunction, respiratory system, mental health disorders); drug interactions; effects of accidental exposure; crime statistics; and pharmacist’s considerations for the use of inhaled medical marijuana. Methods: A PubMed search was conducted from 1966 to March 2016 to identify articles in which the safety of inhaled medical marijuana was assessed. Key MeSH search terms included med...

  18. iNR-Drug: Predicting the Interaction of Drugs with Nuclear Receptors in Cellular Networking

    Directory of Open Access Journals (Sweden)

    Yue-Nong Fan

    2014-03-01

    Full Text Available Nuclear receptors (NRs are closely associated with various major diseases such as cancer, diabetes, inflammatory disease, and osteoporosis. Therefore, NRs have become a frequent target for drug development. During the process of developing drugs against these diseases by targeting NRs, we are often facing a problem: Given a NR and chemical compound, can we identify whether they are really in interaction with each other in a cell? To address this problem, a predictor called “iNR-Drug” was developed. In the predictor, the drug compound concerned was formulated by a 256-D (dimensional vector derived from its molecular fingerprint, and the NR by a 500-D vector formed by incorporating its sequential evolution information and physicochemical features into the general form of pseudo amino acid composition, and the prediction engine was operated by the SVM (support vector machine algorithm. Compared with the existing prediction methods in this area, iNR-Drug not only can yield a higher success rate, but is also featured by a user-friendly web-server established at http://www.jci-bioinfo.cn/iNR-Drug/, which is particularly useful for most experimental scientists to obtain their desired data in a timely manner. It is anticipated that the iNR-Drug server may become a useful high throughput tool for both basic research and drug development, and that the current approach may be easily extended to study the interactions of drug with other targets as well.

  19. Timing and Duration of Drug Exposure Affects Outcomes of a Drug-Nutrient Interaction During Ontogeny

    Directory of Open Access Journals (Sweden)

    Jane Alcorn

    2010-10-01

    Full Text Available Significant drug-nutrient interactions are possible when drugs and nutrients share the same absorption and disposition mechanisms. During postnatal development, the outcomes of drug-nutrient interactions may change with postnatal age since these processes undergo ontogenesis through the postnatal period. Our study investigated the dependence of a significant drug-nutrient interaction (cefepime-carnitine on the timing and duration of drug exposure relative to postnatal age. Rat pups were administered cefepime (5 mg/kg twice daily subcutaneously according to different dosing schedules (postnatal day 1-4, 1-8, 8-11, 8-20, or 1-20. Cefepime significantly reduced serum and heart L-carnitine levels in postnatal day 1-4, 1-8 and 8-11 groups and caused severe degenerative changes in ventricular myocardium in these groups. Cefepime also altered the ontogeny of several key L-carnitine homeostasis pathways. The qualitative and quantitative changes in levels of hepatic γ-butyrobetaine hydroxylase mRNA and activity, hepatic trimethyllysine hydroxlase mRNA, intestinal organic cation/carnitine transporter (Octn mRNA, and renal Octn2 mRNA depended on when during postnatal development the cefepime exposure occurred and duration of exposure. Despite lower levels of heart L-carnitine in earlier postnatal groups, levels of carnitine palmitoyltransferase mRNA and activity, heart Octn2 mRNA and ATP levels in all treatment groups remained unchanged with cefepime exposure. However, changes in other high energy phosphate substrates were noted and reductions in the phosphocreatine/ATP ratio were found in rat pups with normal serum L-carnitine levels. In summary, our data suggest a significant drug-nutrient transport interaction in developing neonates, the nature of which depends on the timing and duration of exposure relative to postnatal age.

  20. Herb-drug interaction prediction based on the high specific inhibition of andrographolide derivatives towards UDP-glucuronosyltransferase (UGT) 2B7.

    Science.gov (United States)

    Ma, Hai-Ying; Sun, Dong-Xue; Cao, Yun-Feng; Ai, Chun-Zhi; Qu, Yan-Qing; Hu, Cui-Min; Jiang, Changtao; Dong, Pei-Pei; Sun, Xiao-Yu; Hong, Mo; Tanaka, Naoki; Gonzalez, Frank J; Ma, Xiao-Chi; Fang, Zhong-Ze

    2014-05-15

    Herb-drug interaction strongly limits the clinical application of herbs and drugs, and the inhibition of herbal components towards important drug-metabolizing enzymes (DMEs) has been regarded as one of the most important reasons. The present study aims to investigate the inhibition potential of andrographolide derivatives towards one of the most important phase II DMEs UDP-glucuronosyltransferases (UGTs). Recombinant UGT isoforms (except UGT1A4)-catalyzed 4-methylumbelliferone (4-MU) glucuronidation reaction and UGT1A4-catalyzed trifluoperazine (TFP) glucuronidation were employed to firstly screen the andrographolide derivatives' inhibition potential. High specific inhibition of andrographolide derivatives towards UGT2B7 was observed. The inhibition type and parameters (Ki) were determined for the compounds exhibiting strong inhibition capability towards UGT2B7, and human liver microsome (HLMs)-catalyzed zidovudine (AZT) glucuronidation probe reaction was used to furtherly confirm the inhibition behavior. In combination of inhibition parameters (Ki) and in vivo concentration of andrographolide and dehydroandrographolide, the potential in vivo inhibition magnitude was predicted. Additionally, both the in vitro inhibition data and computational modeling results provide important information for the modification of andrographolide derivatives as selective inhibitors of UGT2B7. Taken together, data obtained from the present study indicated the potential herb-drug interaction between Andrographis paniculata and the drugs mainly undergoing UGT2B7-catalyzed metabolic elimination, and the andrographolide derivatives as potential candidates for the selective inhibitors of UGT2B7. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Phytotherapeutics: The Emerging Role of Intestinal and Hepatocellular Transporters in Drug Interactions with Botanical Supplements.

    Science.gov (United States)

    Murtaza, Ghulam; Ullah, Naveed; Mukhtar, Farah; Nawazish, Shamyla; Muneer, Saiqa

    2017-10-21

    In herbalism, botanical supplements are commonly believed to be safe remedies, however, botanical supplements and dietary ingredients interact with transport and metabolic processes, affecting drug disposition. Although a large number of studies have described that botanical supplements interfere with drug metabolism, the mode of their interaction with drug transport processes is not well described. Such interactions may result in serious undesired effects and changed drug efficacy, therefore, some studies on interaction between botanical supplement ingredients and drug transporters such as P-gp and OATPs are described here, suggesting that the interaction between botanical supplements and the drug transporters is clinically significant.

  2. Update of green tea interactions with cardiovascular drugs and putative mechanisms

    Directory of Open Access Journals (Sweden)

    José Pablo Werba

    2018-04-01

    Full Text Available Many patients treated with cardiovascular (CV drugs drink green tea (GT, either as a cultural tradition or persuaded of its putative beneficial effects for health. Yet, GT may affect the pharmacokinetics and pharmacodynamics of CV compounds. Novel GT-CV drug interactions were reported for rosuvastatin, sildenafil and tacrolimus. Putative mechanisms involve inhibitory effects of GT catechins at the intestinal level on influx transporters OATP1A2 or OATP2B1 for rosuvastatin, on CYP3A for sildenafil and on both CYP3A and the efflux transporter p-glycoprotein for tacrolimus. These interactions, which add to those previously described with simvastatin, nadolol and warfarin, might lead, in some cases, to reduced drug efficacy or risk of drug toxicity. Oddly, available data on GT interaction with CV compounds with a narrow therapeutic index, such as warfarin and tacrolimus, derive from single case reports. Conversely, GT interactions with simvastatin, rosuvastatin, nadolol and sildenafil were documented through pharmacokinetic studies. In these, the effect of GT or GT derivatives on drug exposure was mild to moderate, but a high inter-individual variability was observed. Further investigations, including studies on the effect of the dose and the time of GT intake are necessary to understand more in depth the clinical relevance of GT-CV drug interactions. Keywords: Cardiovascular drugs, Green tea, Herb–drug interactions

  3. N(1)-methylnicotinamide as an endogenous probe for drug interactions by renal cation transporters: studies on the metformin-trimethoprim interaction.

    Science.gov (United States)

    Müller, Fabian; Pontones, Constanza A; Renner, Bertold; Mieth, Maren; Hoier, Eva; Auge, Daniel; Maas, Renke; Zolk, Oliver; Fromm, Martin F

    2015-01-01

    N(1)-methylnicotinamide (NMN) was proposed as an in vivo probe for drug interactions involving renal cation transporters, which, for example, transport the oral antidiabetic drug metformin, based on a study with the inhibitor pyrimethamine. The role of NMN for predicting other interactions with involvement of renal cation transporters (organic cation transporter 2, OCT2; multidrug and toxin extrusion proteins 1 and 2-K, MATE1 and MATE2-K) is unclear. We determined inhibition of metformin or NMN transport by trimethoprim using cell lines expressing OCT2, MATE1, or MATE2-K. Moreover, a randomized, open-label, two-phase crossover study was performed in 12 healthy volunteers. In each phase, 850 mg metformin hydrochloride was administered p.o. in the evening of day 4 and in the morning of day 5. In phase B, 200 mg trimethoprim was administered additionally p.o. twice daily for 5 days. Metformin pharmacokinetics and effects (measured by OGTT) and NMN pharmacokinetics were determined. Trimethoprim inhibited metformin transport with K i values of 27.2, 6.3, and 28.9 μM and NMN transport with IC50 values of 133.9, 29.1, and 0.61 μM for OCT2, MATE1, and MATE2-K, respectively. In the clinical study, trimethoprim increased metformin area under the plasma concentration-time curve (AUC) by 29.5 % and decreased metformin and NMN renal clearances by 26.4 and 19.9 %, respectively (p ≤ 0.01). Moreover, decreases of NMN and metformin renal clearances due to trimethoprim correlated significantly (r S=0.727, p=0.010). These data on the metformin-trimethoprim interaction support the potential utility of N(1)-methylnicotinamide as an endogenous probe for renal drug-drug interactions with involvement of renal cation transporters.

  4. DGIdb 3.0: a redesign and expansion of the drug-gene interaction database.

    Science.gov (United States)

    Cotto, Kelsy C; Wagner, Alex H; Feng, Yang-Yang; Kiwala, Susanna; Coffman, Adam C; Spies, Gregory; Wollam, Alex; Spies, Nicholas C; Griffith, Obi L; Griffith, Malachi

    2018-01-04

    The drug-gene interaction database (DGIdb, www.dgidb.org) consolidates, organizes and presents drug-gene interactions and gene druggability information from papers, databases and web resources. DGIdb normalizes content from 30 disparate sources and allows for user-friendly advanced browsing, searching and filtering for ease of access through an intuitive web user interface, application programming interface (API) and public cloud-based server image. DGIdb v3.0 represents a major update of the database. Nine of the previously included 24 sources were updated. Six new resources were added, bringing the total number of sources to 30. These updates and additions of sources have cumulatively resulted in 56 309 interaction claims. This has also substantially expanded the comprehensive catalogue of druggable genes and anti-neoplastic drug-gene interactions included in the DGIdb. Along with these content updates, v3.0 has received a major overhaul of its codebase, including an updated user interface, preset interaction search filters, consolidation of interaction information into interaction groups, greatly improved search response times and upgrading the underlying web application framework. In addition, the expanded API features new endpoints which allow users to extract more detailed information about queried drugs, genes and drug-gene interactions, including listings of PubMed IDs, interaction type and other interaction metadata.

  5. Basic principles of drug--excipients interactions.

    Science.gov (United States)

    Vranić, Edina

    2004-05-01

    Excipients are generally considered inert additives included in drug formulation to help in the manufacturing, administration or absorption. Other reasons for inclusion concern product differentiation, appearance enhancement or retention of quality. Excipients can initiate, propagate or participate in chemical or physical interactions with an active substance, possibly leading to compromised quality or performance of the medication. Understanding the chemical and physical nature of excipients, the impurities or residues associated with them and how they may interact with other materials, or with each other, forewarns the pharmaceutical technologist of possibilities for undesirable developments.

  6. [Predictive factors of clinically significant drug-drug interactions among regimens based on protease inhibitors, non-nucleoside reverse transcriptase inhibitors and raltegravir].

    Science.gov (United States)

    Cervero, Miguel; Torres, Rafael; Jusdado, Juan José; Pastor, Susana; Agud, Jose Luis

    2016-04-15

    To determine the prevalence and types of clinically significant drug-drug interactions (CSDI) in the drug regimens of HIV-infected patients receiving antiretroviral treatment. retrospective review of database. Centre: Hospital Universitario Severo Ochoa, Infectious Unit. one hundred and forty-two participants followed by one of the authors were selected from January 1985 to December 2014. from their outpatient medical records we reviewed information from the last available visit of the participants, in relation to HIV infection, comorbidities, demographics and the drugs that they were receiving; both antiretroviral drugs and drugs not related to HIV infection. We defined CSDI from the information sheet and/or database on antiretroviral drug interactions of the University of Liverpool (http://www.hiv-druginteractions.org) and we developed a diagnostic tool to predict the possibility of CSDI. By multivariate logistic regression analysis and by estimating the diagnostic performance curve obtained, we identified a quick tool to predict the existence of drug interactions. Of 142 patients, 39 (29.11%) had some type of CSDI and in 11.2% 2 or more interactions were detected. In only one patient the combination of drugs was contraindicated (this patient was receiving darunavir/r and quetiapine). In multivariate analyses, predictors of CSDI were regimen type (PI or NNRTI) and the use of 3 or more non-antiretroviral drugs (AUC 0.886, 95% CI 0.828 to 0.944; P=.0001). The risk was 18.55 times in those receiving NNRTI and 27,95 times in those receiving IP compared to those taking raltegravir. Drug interactions, including those defined as clinically significant, are common in HIV-infected patients treated with antiretroviral drugs, and the risk is greater in IP-based regimens. Raltegravir-based prescribing, especially in patients who receive at least 3 non-HIV drugs could avoid interactions. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.

  7. [Rhabdomyolysis and severe hepatotoxicity due to a drug-drug interaction between ritonavir and simvastatin. Could we use the most cost-effective statin in all human immunodeficiency virus-infected patients?].

    Science.gov (United States)

    Bastida, Carla; Also, Maria Antonia; Pericas, Juan Manuel; Letang, Emili; Tuset, Montse; Miró, Josep Maria

    2014-11-01

    Drugs like statins may induce rhabdomyolysis. Simvastatin and lovastatin have a high hepatic metabolism and their potential toxicity could be increased by interactions with other drugs that reduce their metabolism. A case-report is presented of an HIV-infected patient treated with antiretroviral drugs who developed a rhabdomyolysis-induced renal failure and liver toxicity when simvastatin was substituted for atorvastatin. A literature review is also presented. The patient required hospital admission and showed a favorable response after hydration and urine alkalinization. There were 4 additional cases published of which there was one death. Drug-drug interactions can increase the risk of statin induced rhabdomyolysis. In order to evaluate them properly, physicians at all levels of clinical care should be aware of all drugs prescribed to their patients and the contraindicated combinations. Copyright © 2014 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  8. Inhibitory effects of drugs on the metabolic activity of mouse and human aldehyde oxidases and influence on drug-drug interactions.

    Science.gov (United States)

    Takaoka, Naoki; Sanoh, Seigo; Okuda, Katsuhiro; Kotake, Yaichiro; Sugahara, Go; Yanagi, Ami; Ishida, Yuji; Tateno, Chise; Tayama, Yoshitaka; Sugihara, Kazumi; Kitamura, Shigeyuki; Kurosaki, Mami; Terao, Mineko; Garattini, Enrico; Ohta, Shigeru

    2018-04-17

    As aldehyde oxidase (AOX) plays an emerging role in drug metabolism, understanding its significance for drug-drug interactions (DDI) is important. Therefore, we tested 10 compounds for species-specific and substrate-dependent differences in the inhibitory effect of AOX activity using genetically engineered HEK293 cells over-expressing human AOX1, mouse AOX1 or mouse AOX3. The IC 50 values of 10 potential inhibitors of the three AOX enzymes were determined using phthalazine and O 6 -benzylguanine as substrates. 17β-Estradiol, menadione, norharmane and raloxifene exhibited marked differences in inhibitory effects between the human and mouse AOX isoforms when the phthalazine substrate was used. Some of the compounds tested exhibited substrate-dependent differences in their inhibitory effects. Docking simulations with human AOX1 and mouse AOX3 were conducted for six representative inhibitors. The rank order of the minimum binding energy reflected the order of the corresponding IC 50 values. We also evaluated the potential DDI between an AOX substrate (O 6 -benzylguanine) and an inhibitor (hydralazine) using chimeric mice with humanized livers. Pretreatment of hydralazine increased the maximum plasma concentration (C max ) and the area under the plasma concentration-time curve (AUC 0-24 ) of O 6 -benzylguanine compared to single administration. Our in vitro data indicate species-specific and substrate-dependent differences in the inhibitory effects on AOX activity. Our in vivo data demonstrate the existence of a DDI which may be of relevance in the clinical context. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Analysis of possible food/nutrient and drug interactions in hospitalized patients

    OpenAIRE

    Lopes, Everton Moraes; Carvalho, Rumão Batista Nunes de; Freitas, Rivelilson Mendes de

    2010-01-01

    ABSTRACT Objective: To evaluate the prescription in relation to the possible interactions between drugs and foods/nutrients in the diets of patients in the Hospital Regional Justino Luz in the municipality of Picos, Piauí, Brazil. Methods: The sample consisted of 60 medical records of patients admitted at the hospital. The records were analyzed according to the presence or absence of interactions between drugs and foods/nutrients of the prescribed diets. Results: Of the 82 drugs prescribed...

  10. Photopatternable Magnetic Hollowbots by Nd-Fe-B Nanocomposite for Potential Targeted Drug Delivery Applications

    Directory of Open Access Journals (Sweden)

    Hui Li

    2018-04-01

    Full Text Available In contrast to traditional drug administration, targeted drug delivery can prolong, localize, target and have a protected drug interaction with the diseased tissue. Drug delivery carriers, such as polymeric micelles, liposomes, dendrimers, nanotubes, and so on, are hard to scale-up, costly, and have short shelf life. Here we show the novel fabrication and characterization of photopatternable magnetic hollow microrobots that can potentially be utilized in microfluidics and drug delivery applications. These magnetic hollowbots can be fabricated using standard ultraviolet (UV lithography with low cost and easily accessible equipment, which results in them being easy to scale up, and inexpensive to fabricate. Contact-free actuation of freestanding magnetic hollowbots were demonstrated by using an applied 900 G external magnetic field to achieve the movement control in an aqueous environment. According to the movement clip, the average speed of the magnetic hollowbots was estimated to be 1.9 mm/s.

  11. An Evidence-Based Assessment of the Clinical Significance of Drug-Drug Interactions Between Disease-Modifying Antirheumatic Drugs and Non-Antirheumatic Drugs According to Rheumatologists and Pharmacists

    NARCIS (Netherlands)

    van Roon, Eric N.; van den Bemt, Patricia M. L. A.; Jansen, Tim L. Th. A.; Houtman, Nella M.; van de Laar, Mart A. F. J.; Brouwers, Jacobus R. B. J.

    Background: Clinically relevant drug-drug interactions (DDIs) must be recognized in a timely manner and managed appropriately to prevent adverse drug reactions or therapeutic failure. Because the evidence for most DDIs is based on case reports or poorly documented clinical information, there is a

  12. New Equilibrium Models of Drug-Receptor Interactions Derived from Target-Mediated Drug Disposition.

    Science.gov (United States)

    Peletier, Lambertus A; Gabrielsson, Johan

    2018-05-14

    In vivo analyses of pharmacological data are traditionally based on a closed system approach not incorporating turnover of target and ligand-target kinetics, but mainly focussing on ligand-target binding properties. This study incorporates information about target and ligand-target kinetics parallel to binding. In a previous paper, steady-state relationships between target- and ligand-target complex versus ligand exposure were derived and a new expression of in vivo potency was derived for a circulating target. This communication is extending the equilibrium relationships and in vivo potency expression for (i) two separate targets competing for one ligand, (ii) two different ligands competing for a single target and (iii) a single ligand-target interaction located in tissue. The derived expressions of the in vivo potencies will be useful both in drug-related discovery projects and mechanistic studies. The equilibrium states of two targets and one ligand may have implications in safety assessment, whilst the equilibrium states of two competing ligands for one target may cast light on when pharmacodynamic drug-drug interactions are important. The proposed equilibrium expressions for a peripherally located target may also be useful for small molecule interactions with extravascularly located targets. Including target turnover, ligand-target complex kinetics and binding properties in expressions of potency and efficacy will improve our understanding of within and between-individual (and across species) variability. The new expressions of potencies highlight the fact that the level of drug-induced target suppression is very much governed by target turnover properties rather than by the target expression level as such.

  13. Drug interactions: volatile anesthetics and opioids.

    Science.gov (United States)

    Glass, P S; Gan, T J; Howell, S; Ginsberg, B

    1997-09-01

    Multiple drugs are used to provide anesthesia. Volatile anesthetics are commonly combined with opioids. Several studies have demonstrated that small doses of opioid (i.e., within the analgesic range) result in a marked reduction in minimum alveolar concentration (MAC) of the volatile anesthetic that will prevent purposeful movement in 50% of patients at skin incision). Further increases in opioid dose provide only a further small reduction in MAC. Thus, a ceiling effect of the opioid is observed at a MAC value of the volatile anesthetic equal to its MAC awake. Recovery from anesthesia when an opioid is combined with a volatile anesthetic is dependent on the rate of decrease of both drugs to their respective concentrations that are associated with adequate spontaneous ventilation and awakening. Through an understanding of the pharmacodynamic interaction of volatile anesthetics with opioids and the pharmacokinetic processes responsible for the recovery from drug effect, optimal dosing schemes can thus be developed. A review of these pharmacodynamic and pharmacokinetic principles that will allow clinicians to administer drugs to provide a more optimal anesthetic is provided.

  14. Prediction of Human Drug Targets and Their Interactions Using Machine Learning Methods: Current and Future Perspectives.

    Science.gov (United States)

    Nath, Abhigyan; Kumari, Priyanka; Chaube, Radha

    2018-01-01

    Identification of drug targets and drug target interactions are important steps in the drug-discovery pipeline. Successful computational prediction methods can reduce the cost and time demanded by the experimental methods. Knowledge of putative drug targets and their interactions can be very useful for drug repurposing. Supervised machine learning methods have been very useful in drug target prediction and in prediction of drug target interactions. Here, we describe the details for developing prediction models using supervised learning techniques for human drug target prediction and their interactions.

  15. A high-speed drug interaction search system for ease of use in the clinical environment.

    Science.gov (United States)

    Takada, Masahiro; Inada, Hiroshi; Nakazawa, Kazuo; Tani, Shoko; Iwata, Michiaki; Sugimoto, Yoshihisa; Nagata, Satoru

    2012-12-01

    With the advancement of pharmaceutical development, drug interactions have become increasingly complex. As a result, a computer-based drug interaction search system is required to organize the whole of drug interaction data. To overcome problems faced with the existing systems, we developed a drug interaction search system using a hash table, which offers higher processing speeds and easier maintenance operations compared with relational databases (RDB). In order to compare the performance of our system and MySQL RDB in terms of search speed, drug interaction searches were repeated for all 45 possible combinations of two out of a group of 10 drugs for two cases: 5,604 and 56,040 drug interaction data. As the principal result, our system was able to process the search approximately 19 times faster than the system using the MySQL RDB. Our system also has several other merits such as that drug interaction data can be created in comma-separated value (CSV) format, thereby facilitating data maintenance. Although our system uses the well-known method of a hash table, it is expected to resolve problems common to existing systems and to be an effective system that enables the safe management of drugs.

  16. Chemotherapy drugs form ion pores in membranes due to physical interactions with lipids.

    Science.gov (United States)

    Ashrafuzzaman, Mohammad; Tseng, Chih-Yuan; Duszyk, Marek; Tuszynski, Jack A

    2012-12-01

    We demonstrate the effects on membrane of the tubulin-binding chemotherapy drugs: thiocolchicoside and taxol. Electrophysiology recordings across lipid membranes in aqueous phases containing drugs were used to investigate the drug effects on membrane conductance. Molecular dynamics simulation of the chemotherapy drug-lipid complexes was used to elucidate the mechanism at an atomistic level. Both drugs are observed to induce stable ion-flowing pores across membranes. Discrete pore current-time plots exhibit triangular conductance events in contrast to rectangular ones found for ion channels. Molecular dynamics simulations indicate that drugs and lipids experience electrostatic and van der Waals interactions for short periods of time when found within each other's proximity. The energies from these two interactions are found to be similar to the energies derived theoretically using the screened Coulomb and the van der Waals interactions between peptides and lipids due to mainly their charge properties while forming peptide-induced ion channels in lipid bilayers. Experimental and in silico studies together suggest that the chemotherapy drugs induce ion pores inside lipid membranes due to drug-lipid physical interactions. The findings reveal cytotoxic effects of drugs on the cell membrane, which may aid in novel drug development for treatment of cancer and other diseases. © 2012 John Wiley & Sons A/S.

  17. iGPCR-drug: a web server for predicting interaction between GPCRs and drugs in cellular networking.

    Directory of Open Access Journals (Sweden)

    Xuan Xiao

    Full Text Available Involved in many diseases such as cancer, diabetes, neurodegenerative, inflammatory and respiratory disorders, G-protein-coupled receptors (GPCRs are among the most frequent targets of therapeutic drugs. It is time-consuming and expensive to determine whether a drug and a GPCR are to interact with each other in a cellular network purely by means of experimental techniques. Although some computational methods were developed in this regard based on the knowledge of the 3D (dimensional structure of protein, unfortunately their usage is quite limited because the 3D structures for most GPCRs are still unknown. To overcome the situation, a sequence-based classifier, called "iGPCR-drug", was developed to predict the interactions between GPCRs and drugs in cellular networking. In the predictor, the drug compound is formulated by a 2D (dimensional fingerprint via a 256D vector, GPCR by the PseAAC (pseudo amino acid composition generated with the grey model theory, and the prediction engine is operated by the fuzzy K-nearest neighbour algorithm. Moreover, a user-friendly web-server for iGPCR-drug was established at http://www.jci-bioinfo.cn/iGPCR-Drug/. For the convenience of most experimental scientists, a step-by-step guide is provided on how to use the web-server to get the desired results without the need to follow the complicated math equations presented in this paper just for its integrity. The overall success rate achieved by iGPCR-drug via the jackknife test was 85.5%, which is remarkably higher than the rate by the existing peer method developed in 2010 although no web server was ever established for it. It is anticipated that iGPCR-Drug may become a useful high throughput tool for both basic research and drug development, and that the approach presented here can also be extended to study other drug - target interaction networks.

  18. Evaluation of potential interactions between mycophenolic acid derivatives and proton pump inhibitors.

    Science.gov (United States)

    Gabardi, Steven; Olyaei, Ali

    2012-01-01

    To evaluate the incidence of gastrointestinal (GI) complications in solid organ transplant (SOT) recipients, impact of the complications on transplant outcomes, and the potential interactions between mycophenolic acid (MPA) derivatives and proton pump inhibitors (PPIs). An unrestricted literature search (1980-January 2012) was performed with MEDLINE and EMBASE using the following key words: drug-drug interaction, enteric-coated mycophenolic acid, GI complications, mycophenolate mofetil, solid organ transplant, and proton pump inhibitor, including individual agents within the class. Abstracts from scientific meetings were also evaluated. Additionally, reference citations from identified publications were reviewed. Relevant English-language, original research articles and review articles were evaluated if they focused on any of the topics identified in the search or included substantial content addressing GI complications in SOT recipients or drug interactions. GI complications are frequent among SOT recipients, with some studies showing prevalence rates as high as 70%. Transplant outcomes among renal transplant recipients are significantly impacted by GI complications, especially in patients requiring immunosuppressant dosage reductions or premature discontinuation. To this end, PPI use among patients receiving transplants is common. Recent data demonstrate that PPIs significantly reduce the overall exposure to MPA after oral administration of mycophenolate mofetil. Similar studies show this interaction does not exist between PPIs and enteric-coated mycophenolic acid (EC-MPA). Unfortunately, most of the available data evaluating this interaction are pharmacokinetic analyses that do not investigate the clinical impact of this interaction. A significant interaction exists between PPIs and mycophenolate mofetil secondary to reduced dissolution of mycophenolate mofetil in higher pH environments. EC-MPA is not absorbed in the stomach; therefore, low intragastric acidity

  19. Pharmacokinetic drug-drug interaction between erlotinib and paracetamol: A potential risk for clinical practice.

    Science.gov (United States)

    Karbownik, Agnieszka; Szałek, Edyta; Sobańska, Katarzyna; Grabowski, Tomasz; Wolc, Anna; Grześkowiak, Edmund

    2017-05-01

    Erlotinib is a tyrosine kinase inhibitor available for the treatment of non-small cell lung cancer. Paracetamol is an analgesic agent, commonly used in cancer patients. Because these drugs are often co-administered, there is an increasing issue of interaction between them. The aim of the study was to investigate the effect of paracetamol on the pharmacokinetic parameters of erlotinib, as well as the influence of erlotinib on the pharmacokinetics of paracetamol. The rabbits were divided into three groups: the rabbits receiving erlotinib (I ER ), the group receiving paracetamol (II PR ), and the rabbits receiving erlotinib+paracetamol (III ER+PR ). A single dose of erlotinib was administered orally (25mg) and was administered intravenously (35mg/kg). Plasma concentrations of erlotinib, its metabolite (OSI420), paracetamol and its metabolites - glucuronide and sulphate were measured with the validated method. During paracetamol co-administration we observed increased erlotinib maximum concentration (C max ) and area under the plasma concentration-time curve from time zero to infinity (AUC 0-∞ ) by 87.7% and 31.1%, respectively. In turn, erlotinib lead to decreased paracetamol AUC 0-∞ by 35.5% and C max by 18.9%. The mean values of paracetamol glucuronide/paracetamol ratios for C max were 32.2% higher, whereas paracetamol sulphate/paracetamol ratios for C max and AUC 0-∞ were 37.1% and 57.1% lower in the II PR group, when compared to the III ER+PR group. Paracetamol had significant effect on the enhanced plasma exposure of erlotinib. Additionally, erlotinib contributed to the lower concentrations of paracetamol. Decreased glucuronidation and increased sulphation of paracetamol after co-administration of erlotinib were also observed. Copyright © 2017. Published by Elsevier B.V.

  20. Validation of a microdose probe drug cocktail for clinical drug interaction assessments for drug transporters and CYP3A.

    Science.gov (United States)

    Prueksaritanont, T; Tatosian, D A; Chu, X; Railkar, R; Evers, R; Chavez-Eng, C; Lutz, R; Zeng, W; Yabut, J; Chan, G H; Cai, X; Latham, A H; Hehman, J; Stypinski, D; Brejda, J; Zhou, C; Thornton, B; Bateman, K P; Fraser, I; Stoch, S A

    2017-04-01

    A microdose cocktail containing midazolam, dabigatran etexilate, pitavastatin, rosuvastatin, and atorvastatin has been established to allow simultaneous assessment of a perpetrator impact on the most common drug metabolizing enzyme, cytochrome P450 (CYP)3A, and the major transporters organic anion-transporting polypeptides (OATP)1B, breast cancer resistance protein (BCRP), and MDR1 P-glycoprotein (P-gp). The clinical utility of these microdose cocktail probe substrates was qualified by conducting clinical drug interaction studies with three inhibitors with different in vitro inhibitory profiles (rifampin, itraconazole, and clarithromycin). Generally, the pharmacokinetic profiles of the probe substrates, in the absence and presence of the inhibitors, were comparable to their reported corresponding pharmacological doses, and/or in agreement with theoretical expectations. The exception was dabigatran, which resulted in an approximately twofold higher magnitude for microdose compared to conventional dosing, and, thus, can be used to flag a worst-case scenario for P-gp. Broader application of the microdose cocktail will facilitate a more comprehensive understanding of the roles of drug transporters in drug disposition and drug interactions. © 2016 American Society for Clinical Pharmacology and Therapeutics.

  1. Public health relevance of drug-nutrition interactions

    NARCIS (Netherlands)

    Péter, Szabolcs; Navis, Gerjan; de Borst, Martin H; von Schacky, Clemens; van Orten-Luiten, Anne Claire B; Zhernakova, Alexandra; Witkamp, Renger F; Janse, André; Weber, Peter; Bakker, Stephan J L; Eggersdorfer, Manfred

    The public health relevance of drug-nutrition interactions is currently highly undervalued and overlooked. This is particularly the case for elderly persons where multi-morbidity and consequently polypharmacy is very common. Vitamins and other micronutrients have central functions in metabolism, and

  2. Hot-spot analysis for drug discovery targeting protein-protein interactions.

    Science.gov (United States)

    Rosell, Mireia; Fernández-Recio, Juan

    2018-04-01

    Protein-protein interactions are important for biological processes and pathological situations, and are attractive targets for drug discovery. However, rational drug design targeting protein-protein interactions is still highly challenging. Hot-spot residues are seen as the best option to target such interactions, but their identification requires detailed structural and energetic characterization, which is only available for a tiny fraction of protein interactions. Areas covered: In this review, the authors cover a variety of computational methods that have been reported for the energetic analysis of protein-protein interfaces in search of hot-spots, and the structural modeling of protein-protein complexes by docking. This can help to rationalize the discovery of small-molecule inhibitors of protein-protein interfaces of therapeutic interest. Computational analysis and docking can help to locate the interface, molecular dynamics can be used to find suitable cavities, and hot-spot predictions can focus the search for inhibitors of protein-protein interactions. Expert opinion: A major difficulty for applying rational drug design methods to protein-protein interactions is that in the majority of cases the complex structure is not available. Fortunately, computational docking can complement experimental data. An interesting aspect to explore in the future is the integration of these strategies for targeting PPIs with large-scale mutational analysis.

  3. Prediction of Effective Drug Combinations by Chemical Interaction, Protein Interaction and Target Enrichment of KEGG Pathways

    Directory of Open Access Journals (Sweden)

    Lei Chen

    2013-01-01

    Full Text Available Drug combinatorial therapy could be more effective in treating some complex diseases than single agents due to better efficacy and reduced side effects. Although some drug combinations are being used, their underlying molecular mechanisms are still poorly understood. Therefore, it is of great interest to deduce a novel drug combination by their molecular mechanisms in a robust and rigorous way. This paper attempts to predict effective drug combinations by a combined consideration of: (1 chemical interaction between drugs, (2 protein interactions between drugs’ targets, and (3 target enrichment of KEGG pathways. A benchmark dataset was constructed, consisting of 121 confirmed effective combinations and 605 random combinations. Each drug combination was represented by 465 features derived from the aforementioned three properties. Some feature selection techniques, including Minimum Redundancy Maximum Relevance and Incremental Feature Selection, were adopted to extract the key features. Random forest model was built with its performance evaluated by 5-fold cross-validation. As a result, 55 key features providing the best prediction result were selected. These important features may help to gain insights into the mechanisms of drug combinations, and the proposed prediction model could become a useful tool for screening possible drug combinations.

  4. Drug affordability-potential tool for comparing illicit drug markets.

    Science.gov (United States)

    Groshkova, Teodora; Cunningham, Andrew; Royuela, Luis; Singleton, Nicola; Saggers, Tony; Sedefov, Roumen

    2018-06-01

    -national comparisons of retail drug markets in Europe. Future work will need to examine other potential uses of the drug affordability tool. The limitations of this measure reflect primarily the limitations of the constituent data; in addition to issues inherent in collecting accurate data on illicit markets, analysis that relies on data collected from multiple countries is susceptible to discrepancies in data collection practices from country to country. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Regulation of drug-metabolizing enzymes in infectious and inflammatory disease: implications for biologics-small molecule drug interactions.

    Science.gov (United States)

    Mallick, Pankajini; Taneja, Guncha; Moorthy, Bhagavatula; Ghose, Romi

    2017-06-01

    Drug-metabolizing enzymes (DMEs) are primarily down-regulated during infectious and inflammatory diseases, leading to disruption in the metabolism of small molecule drugs (smds), which are increasingly being prescribed therapeutically in combination with biologics for a number of chronic diseases. The biologics may exert pro- or anti-inflammatory effect, which may in turn affect the expression/activity of DMEs. Thus, patients with infectious/inflammatory diseases undergoing biologic/smd treatment can have complex changes in DMEs due to combined effects of the disease and treatment. Areas covered: We will discuss clinical biologics-SMD interaction and regulation of DMEs during infection and inflammatory diseases. Mechanistic studies will be discussed and consequences on biologic-small molecule combination therapy on disease outcome due to changes in drug metabolism will be highlighted. Expert opinion: The involvement of immunomodulatory mediators in biologic-SMDs is well known. Regulatory guidelines recommend appropriate in vitro or in vivo assessments for possible interactions. The role of cytokines in biologic-SMDs has been documented. However, the mechanisms of drug-drug interactions is much more complex, and is probably multi-factorial. Studies aimed at understanding the mechanism by which biologics effect the DMEs during inflammation/infection are clinically important.

  6. Diatomic interaction potential theory applications

    CERN Document Server

    Goodisman, Jerry

    2013-01-01

    Diatomic Interaction Potential Theory, Volume 2: Applications discusses the variety of applicable theoretical material and approaches in the calculations for diatomic systems in their ground states. The volume covers the descriptions and illustrations of modern calculations. Chapter I discusses the calculation of the interaction potential for large and small values of the internuclear distance R (separated and united atom limits). Chapter II covers the methods used for intermediate values of R, which in principle means any values of R. The Hartree-Fock and configuration interaction schemes des

  7. Drug-interaction-induced hemodynamically mediated acute renal failure in postsurgical patient

    Directory of Open Access Journals (Sweden)

    Arup K Misra

    2014-01-01

    Full Text Available Acute renal failure is a life threatening condition. Nonsteroidal antiinflammatory drugs (NSAIDs and cephalosporins are widely used postoperative drugs. NSAID-induced acute renal failure has been reported in the past. In this case, drug interaction and decompensated state of the patient precipitate the condition. NSAIDs inhibit prostaglandins synthesis and thus aggravate ischemia to the kidney that is already facing volume crisis due to surgery. Due to renal dysfunction, plasma ceftriaxone level increases due to decrease clearance and it also acts as nephrotoxic by unknown mechanism. On the other hand, ceftriaxone on its interaction with diclofenac for renal tubular clearance also increases the level of diclofenac and thus further aggravate the ischemia. It is a reversible condition with excluding diclofenac from the treatment regimen and giving adequate hydration to the patient. This highlights the importance of hydration and knowledge of drugs interactions in a postsurgical patient.

  8. The supplement-drug interaction of quercetin with tamsulosin on vasorelaxation.

    Science.gov (United States)

    Vrolijk, Misha F; Haenen, Guido R M M; Opperhuizen, Antoon; Jansen, Eugène H J M; Schiffers, Paul M; Bast, Aalt

    2015-01-05

    The food supplement quercetin is used as self-medication for prostate disorders and is known to induce vasorelaxation. The drug tamsulosin is used in the treatment of benign prostatic hyperplasia. A major side effect of tamsulosin is orthostatic hypotension, mediated by vasorelaxation resulting from α1-adrenoceptor blockade. The overlapping profile prompted us to investigate the pharmacodynamic interaction of quercetin with tamsulosin. Since quercetin is extensively metabolized in the intestines and the liver, the metabolites quercetin-3-glucuronide and 4'O-methyl-quercetin were also examined. Vasorelaxation induced by the compounds was tested in rat mesenteric arteries (average diameter: 360±μm) constricted by the α1-adrenoceptor agonist phenylephrine. Tamsulosin (0.1nM) decreased phenylephrine sensitivity 17-fold (n=10). Quercetin (5, 10 and 20µM) also caused a decrease (2-, 4- and 6-fold respectively) of phenylephrine sensitivity, while 10µM of quercetin-3-glucuronide and 4'O-methyl-quercetin decreased this sensitivity (1.5- and 2-fold) only slightly (n=6). The combination of tamsulosin with quercetin or quercetin metabolites proved to be far more potent than the compounds in isolation. The combination of quercetin, quercetin-3-glucuronide or 4'O-methyl-quercetin with tamsulosin decreased the phenylephrine sensitivity approximately 200-, 35- and 150-fold (n=6). The strong pharmacodynamic interaction between the food supplement quercetin and tamsulosin underlines the potential of the impact of supplement-drug interactions that warrant more research. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Predicting adverse drug reaction profiles by integrating protein interaction networks with drug structures.

    Science.gov (United States)

    Huang, Liang-Chin; Wu, Xiaogang; Chen, Jake Y

    2013-01-01

    The prediction of adverse drug reactions (ADRs) has become increasingly important, due to the rising concern on serious ADRs that can cause drugs to fail to reach or stay in the market. We proposed a framework for predicting ADR profiles by integrating protein-protein interaction (PPI) networks with drug structures. We compared ADR prediction performances over 18 ADR categories through four feature groups-only drug targets, drug targets with PPI networks, drug structures, and drug targets with PPI networks plus drug structures. The results showed that the integration of PPI networks and drug structures can significantly improve the ADR prediction performance. The median AUC values for the four groups were 0.59, 0.61, 0.65, and 0.70. We used the protein features in the best two models, "Cardiac disorders" (median-AUC: 0.82) and "Psychiatric disorders" (median-AUC: 0.76), to build ADR-specific PPI networks with literature supports. For validation, we examined 30 drugs withdrawn from the U.S. market to see if our approach can predict their ADR profiles and explain why they were withdrawn. Except for three drugs having ADRs in the categories we did not predict, 25 out of 27 withdrawn drugs (92.6%) having severe ADRs were successfully predicted by our approach. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Alignment-independent comparison of binding sites based on DrugScore potential fields encoded by 3D Zernike descriptors.

    Science.gov (United States)

    Nisius, Britta; Gohlke, Holger

    2012-09-24

    Analyzing protein binding sites provides detailed insights into the biological processes proteins are involved in, e.g., into drug-target interactions, and so is of crucial importance in drug discovery. Herein, we present novel alignment-independent binding site descriptors based on DrugScore potential fields. The potential fields are transformed to a set of information-rich descriptors using a series expansion in 3D Zernike polynomials. The resulting Zernike descriptors show a promising performance in detecting similarities among proteins with low pairwise sequence identities that bind identical ligands, as well as within subfamilies of one target class. Furthermore, the Zernike descriptors are robust against structural variations among protein binding sites. Finally, the Zernike descriptors show a high data compression power, and computing similarities between binding sites based on these descriptors is highly efficient. Consequently, the Zernike descriptors are a useful tool for computational binding site analysis, e.g., to predict the function of novel proteins, off-targets for drug candidates, or novel targets for known drugs.

  11. Interaction between anti-Alzheimer and antipsychotic drugs in modulating extrapyramidal motor disorders in mice

    Directory of Open Access Journals (Sweden)

    Saki Shimizu

    2015-04-01

    Full Text Available Antipsychotics are often used in conjunction with anti-Alzheimer drugs to treat the behavioral and psychological symptoms of dementia (BPSD. Here, we examined the effects of cholinesterase inhibitors (ChEIs, donepezil and galantamine, on antipsychotic-induced extrapyramidal side effects (EPS in mice. The effects of serotonergic agents on the EPS drug interaction were also evaluated. Donepezil (0.3–3 mg/kg did not induce EPS signs by itself; however, it significantly potentiated bradykinesia induction with a low dose of haloperidol (0.5 mg/kg in dose-dependent and synergistic manners. Galantamine (0.3–3 mg/kg elicited mild bradykinesia at a high dose and dose-dependently augmented haloperidol-induced bradykinesia. The EPS potentiation by galantamine was blocked by trihexyphenidyl (a muscarinic antagonist, but not by mecamylamine (a nicotinic antagonist. In addition, the bradykinesia potentiation by galantamine was significantly reduced by (±-8-hydroxy-2-(di-n-propylamino-tetralin (a 5-HT1A agonist, ritanserin (a 5-HT2 antagonist, and SB-258585 (a 5-HT6 antagonist. The present results give us a caution for the antipsychotics and ChEIs interaction in inducing EPS in the treatment of BPSD. In addition, second generation antipsychotics, which can stimulate 5-HT1A receptors or antagonize 5-HT2 and 5-HT6 receptors, seem to be favorable as an adjunctive therapy for BPSD.

  12. Use of cisapride with contraindicated drugs in The Netherlands

    DEFF Research Database (Denmark)

    De Bruin, Marie L; Panneman, Martien J M; Leufkens, Hubert G M

    2002-01-01

    OBJECTIVE: To investigate the prevalence of concomitant use and coprescribing of cisapride with potentially interacting drugs to evaluate the impact of these warnings from 1994 to 1998. DESIGN: Retrospective follow-up study of patients using cisapride. SETTING: Data for this study were obtained...... from the pharmacy database of the Dutch PHARMO record linkage system (n = 834,000). RESULTS: From 1994 to 1998, the prevalence rate of the observed versus expected use of any potentially interacting drug decreased significantly over time (p ... of coprescriptions of potentially interacting drugs among cisapride users increased on average by 13% and 9% per year, respectively. This increase was almost exclusively explained by a large increase in concomitant prescribing of clarithromycin, the most commonly used potentially interacting drug. Decreases...

  13. Characterization of the interaction forces in a drug carrier complex of doxorubicin with a drug-binding peptide.

    Science.gov (United States)

    Gocheva, Gergana; Ilieva, Nina; Peneva, Kalina; Ivanova, Anela

    2018-04-01

    Polypeptide-based materials are used as building blocks for drug delivery systems aimed at toxicity decrease in chemotherapeutics. A molecular-level approach is adopted for investigating the non-covalent interactions between doxorubicin and a recently synthesized drug-binging peptide as a key part of a system for delivery to neoplastic cells. Molecular dynamics simulations in aqueous solution at room and body temperature are applied to investigate the structure and the binding modes within the drug-peptide complex. The tryptophans are outlined as the main chemotherapeutic adsorption sites, and the importance of their placement in the peptide sequence is highlighted. The drug-peptide binging energy is evaluated by density functional theory calculations. Principal component analysis reveals comparable importance of several types of interaction for the binding strength. π-Stacking is dominant, but other factors are also significant: intercalation, peptide backbone stacking, electrostatics, dispersion, and solvation. Intra- and intermolecular H-bonding also stabilizes the complexes. The influence of solvent molecules on the binding energy is mild. The obtained data characterize the drug-to-peptide attachment as a mainly attractive collective process with interactions spanning a broad range of values. These results explain with atomistic detail the experimentally registered doxorubicin-binging ability of the peptide and outline the complex as a prospective carrying unit that can be employed in design of drug delivery systems. © 2017 John Wiley & Sons A/S.

  14. Neostigmine interactions with non steroidal anti-inflammatory drugs.

    Science.gov (United States)

    Miranda, Hugo F; Sierralta, Fernando; Pinardi, Gianni

    2002-04-01

    1. The common mechanism of action of non-steroidal anti-inflammatory drugs (NSAIDs) is the inhibition of the enzyme cyclo-oxygenase (COX), however, this inhibition is not enough to completely account for the efficacy of these agents in several models of acute pain. 2. It has been demonstrated that cholinergic agents can induce antinociception, but the nature of the interaction between these agents and NSAIDs drugs has not been studied. The present work evaluates, by isobolographic analysis, the interactions between the cholinergic indirect agonist neostigmine (NEO) and NSAIDs drugs, using a chemical algesiometric test. 3. Intraperitoneal (i.p.) or intrathecal (i.t.) administration of NEO and of the different NSAIDs produced dose-dependent antinociception in the acetic acid writhing test of the mouse. 4. The i.p. or i.t. co-administration of fixed ratios of ED(50) fractions of NSAIDs and NEO, resulted to be synergistic or supra-additive for the combinations ketoprofen (KETO) and NEO, paracetamol (PARA) and NEO) and diclofenac (DICLO) and NEO administered i.p. However, the same combinations administered i.t. were only additive. In addition, the combinations meloxicam (MELO) and NEO and piroxicam (PIRO) and NEO, administered either i.p. or i.t., were additive. 5. The results suggest that the co-administration of NEO with some NSAIDs (e.g. KETO, PARA or DICLO) resulted in a synergistic interaction, which may provide evidence of supraspinal antinociception modulation by the increased acetylcholine concentration in the synaptic cleft of cholinergic interneurons. The interaction obtained between neostigmine and the NSAIDs could carry important clinical implications.

  15. Interactions between traditional Chinese medicine and western drugs in Taiwan: A population-based study.

    Science.gov (United States)

    Chen, Kuan Chen; Lu, Richard; Iqbal, Usman; Hsu, Ko-Ching; Chen, Bi-Li; Nguyen, Phung-Anh; Yang, Hsuan-Chia; Huang, Chih-Wei; Li, Yu-Chuan Jack; Jian, Wen-Shan; Tsai, Shin-Han

    2015-12-01

    Drug-drug interactions have long been an active research area in clinical medicine. In Taiwan, however, the widespread use of traditional Chinese medicines (TCM) presents additional complexity to the topic. Therefore, it is important to see the interaction between traditional Chinese and western medicine. (1) To create a comprehensive database of multi-herb/western drug interactions indexed according to the ways in which physicians actually practice and (2) to measure this database's impact on the detection of adverse effects between traditional Chinese medicine compounds and western medicines. First, a multi-herb/western medicine drug interactions database was created by separating each TCM compound into its constituent herbs. Each individual herb was then checked against an existing single-herb/western drug interactions database. The data source comes from the National Health Insurance research database, which spans the years 1998-2011. This study estimated the interaction prevalence rate and further separated the rates according to patient characteristics, distribution by county, and hospital accreditation levels. Finally, this new database was integrated into a computer order entry module of the electronic medical records system of a regional teaching hospital. The effects it had were measured for two months. The most commonly interacting Chinese herbs were Ephedrae Herba and Angelicae Sinensis Radix/Angelicae Dahuricae Radix. Ephedrae Herba contains active ingredients similar to in ephedrine. 15 kinds of traditional Chinese medicine compounds contain Ephedrae Herba. Angelicae Sinensis Radix and Angelicae Dahuricae Radix contain ingredients similar to coumarin, a blood thinner. 9 kinds of traditional Chinese medicine compounds contained Angelicae Sinensis Radix/Angelicae Dahuricae Radix. In the period from 1998 to 2011, the prevalence of herb-drug interactions related to Ephedrae Herba was 0.18%. The most commonly prescribed traditional Chinese compounds were

  16. Potential drug therapies for the treatment of fibromyalgia.

    Science.gov (United States)

    Lawson, Kim

    2016-09-01

    Fibromyalgia (FM) is a common, complex chronic widespread pain condition is characterized by fatigue, sleep disturbance and cognitive dysfunction. Treatment of FM is difficult, requiring both pharmacological and non-pharmacological approaches, with an empiric approach to drug therapy focused toward individual symptoms, particularly pain. The effectiveness of current medications is limited with many patients discontinuing use. A systemic database search has identified 26 molecular entities as potential emerging drug therapies. Advances in the understanding of the pathophysiology of FM provides clues to targets for new medications. Investigation of bioamine modulation and α2δ ligands and novel targets such as dopamine receptors, NMDA receptors, cannabinoid receptors, melatonin receptors and potassium channels has identified potential drug therapies. Modest improvement of health status in patients with FM has been observed with drugs targeting a diverse range of molecular mechanisms. No single drug, however, offered substantial efficacy against all the symptoms characteristic of FM. Identification of new and improved therapies for FM needs to address the heterogeneity of the condition, which suggests existence of patient subgroups, the relationship of central and peripheral aspects of the pathophysiology and a requirement of combination therapy with drugs targeting multiple molecular mechanisms.

  17. Identifying novel drug indications through automated reasoning.

    Directory of Open Access Journals (Sweden)

    Luis Tari

    Full Text Available With the large amount of pharmacological and biological knowledge available in literature, finding novel drug indications for existing drugs using in silico approaches has become increasingly feasible. Typical literature-based approaches generate new hypotheses in the form of protein-protein interactions networks by means of linking concepts based on their cooccurrences within abstracts. However, this kind of approaches tends to generate too many hypotheses, and identifying new drug indications from large networks can be a time-consuming process.In this work, we developed a method that acquires the necessary facts from literature and knowledge bases, and identifies new drug indications through automated reasoning. This is achieved by encoding the molecular effects caused by drug-target interactions and links to various diseases and drug mechanism as domain knowledge in AnsProlog, a declarative language that is useful for automated reasoning, including reasoning with incomplete information. Unlike other literature-based approaches, our approach is more fine-grained, especially in identifying indirect relationships for drug indications.To evaluate the capability of our approach in inferring novel drug indications, we applied our method to 943 drugs from DrugBank and asked if any of these drugs have potential anti-cancer activities based on information on their targets and molecular interaction types alone. A total of 507 drugs were found to have the potential to be used for cancer treatments. Among the potential anti-cancer drugs, 67 out of 81 drugs (a recall of 82.7% are indeed known cancer drugs. In addition, 144 out of 289 drugs (a recall of 49.8% are non-cancer drugs that are currently tested in clinical trials for cancer treatments. These results suggest that our method is able to infer drug indications (original or alternative based on their molecular targets and interactions alone and has the potential to discover novel drug indications for

  18. Guidance for nuclear medicine staff on radiopharmaceuticals drug interaction

    Directory of Open Access Journals (Sweden)

    Ralph Santos-Oliveira

    2009-12-01

    Full Text Available Numerous drug interactions related to radiopharmaceuticals take place every day in hospitals many of which are not reported or detected. Information concerning this kind of reaction is not abundant, and nuclear medicine staff are usually overwhelmed by this information. To better understand this type of reaction, and to help nuclear medicine staff deal with it, a review of the literature was conducted. The results show that almost all of radiopharmaceuticals marketed around the world present drug interactions with a large variety of compounds. This suggests that a logical framework to make decisions based on reviews incorporating adverse reactions must be created. The review also showed that researchers undertaking a review of literature, or even a systematic review that incorporates drug interactions, must understand the rationale for the suggested methods and be able to implement them in their review. Additionally, a global effort should be made to report as many cases of drug interaction with radiopharmaceuticals as possible. With this, a complete picture of drug interactions with radiopharmaceuticals can be drawn.Diversos casos de interações medicamentosas com radiofármacos ocorrem diariamente na rotina hospitalar, contudo muitos deles não são notificados ou mesmo percebidos. Informações a respeito desse tipo de reação não é abundante e os profissionais da medicina nuclear muitas vezes estão assoberbados por essas informações. De modo a entender esse tipo de reação e auxiliar a medicina nuclear a lidar com essa situação uma revisão da literatura foi realizada. Os resultados mostraram que a totalidade dos radiofármacos comercializados no mundo apresentam interação medicamentosa com uma enorme variedade de outros medicamentos. Dessa forma sugere-se que revisões sobre radiofármacos inclua um capítulo sobre efeitos adversos. Além disso, um esforço mundial para notificar efeitos adversos deve ser realizado, pois somente

  19. Hospitalization due to Adverse Drug Reactions and Drug Interactions before and after HAART

    Directory of Open Access Journals (Sweden)

    Michelle M Foisy

    2000-01-01

    Full Text Available OBJECTIVE: To characterize and compare the rates of adverse drug reactions (ADRs and interactions on admission in two, one-year periods: pre-highly active antiretroviral therapy (HAART (phase 1 and post-HAART (phase 2.

  20. Cognitive enhancers (nootropics). Part 3: drugs interacting with targets other than receptors or enzymes. disease-modifying drugs.

    Science.gov (United States)

    Froestl, Wolfgang; Pfeifer, Andrea; Muhs, Andreas

    2013-01-01

    Cognitive enhancers (nootropics) are drugs to treat cognition deficits in patients suffering from Alzheimer's disease, schizophrenia, stroke, attention deficit hyperactivity disorder, or aging. Cognition refers to a capacity for information processing, applying knowledge, and changing preferences. It involves memory, attention, executive functions, perception, language, and psychomotor functions. The term nootropics was coined in 1972 when memory enhancing properties of piracetam were observed in clinical trials. In the meantime, hundreds of drugs have been evaluated in clinical trials or in preclinical experiments. To classify the compounds, a concept is proposed assigning drugs to 19 categories according to their mechanism(s) of action, in particular drugs interacting with receptors, enzymes, ion channels, nerve growth factors, re-uptake transporters, antioxidants, metal chelators, and disease modifying drugs, meaning small molecules, vaccines, and monoclonal antibodies interacting with amyloid-β and tau. For drugs, whose mechanism of action is not known, they are either classified according to structure, e.g., peptides, or their origin, e.g., natural products. The review covers the evolution of research in this field over the last 25 years.

  1. Drug addiction: targeting dynamic neuroimmune receptor interactions as a potential therapeutic strategy.

    Science.gov (United States)

    Jacobsen, Jonathan Henry W; Hutchinson, Mark R; Mustafa, Sanam

    2016-02-01

    Drug addiction and dependence have proven to be difficult psychiatric disorders to treat. The limited efficacy of neuronally acting medications, such as acamprosate and naltrexone, highlights the need to identify novel targets. Recent research has underscored the importance of the neuroimmune system in many behavioural manifestations of drug addiction. In this review, we propose that our appreciation for complex phenotypes such as drug addiction and dependence will come with a greater understanding that these disorders are the result of intricate, interconnected signalling pathways that are, if only partially, determined at the receptor level. The idea of receptor heteromerisation and receptor mosaics will be introduced to explain cross talk between the receptors and signalling molecules implicated in neuroimmune signalling pathways. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. [Food-drug interactions: an underestimated risk].

    Science.gov (United States)

    Sönnichsen, A C; Donner-Banzhoff, N; Baum, E

    2005-11-03

    With only few exceptions, administration of medicaments should, in principle, be independent of food intake (at least half an hour before or two hours after eating). This ensures uniform and assessable bioavailability. However, it also entails the risk that the patient is more likely to forget to take medication postponed to 2 hours after a meal, than when it is directly coupled to a meal. Certain foodstuffs or food constituents, such as, for example, grapefruit, Seville orange juice, red wine, alcoholic drinks in general, or large quantities of caffeine and garlic should be avoided during drug treatment. In addition, specific interactions with certain drugs must also be taken into account (e.g. MAO inhibitors and tyramine, curamine and vitamin K).

  3. Evaluation of the transporter-mediated herb-drug interaction potential of DA-9801, a standardized dioscorea extract for diabetic neuropathy, in human in vitro and rat in vivo.

    Science.gov (United States)

    Song, Im-Sook; Kong, Tae Yeon; Jeong, Hyeon-Uk; Kim, Eun Nam; Kwon, Soon-Sang; Kang, Hee Eun; Choi, Sang-Zin; Son, Miwon; Lee, Hye Suk

    2014-07-17

    Drug transporters play important roles in the absorption, distribution, and elimination of drugs and thereby, modulate drug efficacy and toxicity. With a growing use of poly pharmacy, concurrent administration of herbal extracts that modulate transporter activities with drugs can cause serious adverse reactions. Therefore, prediction and evaluation of drug-drug interaction potential is important in the clinic and in the drug development process. DA-9801, comprising a mixed extract of Dioscoreae rhizoma and Dioscorea nipponica Makino, is a new standardized extract currently being evaluated for diabetic peripheral neuropathy in a phase II clinical study. The inhibitory effects of DA-9801 on the transport functions of organic cation transporter (OCT)1, OCT2, organic anion transporter (OAT)1, OAT3, organic anion transporting polypeptide (OATP)1B1, OATP1B3, P-glycoprotein (P-gp), and breast cancer resistance protein (BCRP) were investigated in HEK293 or LLC-PK1 cells. The effects of DA-9801 on the pharmacokinetics of relevant substrate drugs of these transporters were also examined in vivo in rats. DA-9801 inhibited the in vitro transport activities of OCT1, OCT2, OAT3, and OATP1B1, with IC50 values of 106, 174, 48.1, and 273 μg/mL, respectively, while the other transporters were not inhibited by 300 μg/mL DA-9801. To investigate whether this inhibitory effect of DA-9801 on OCT1, OCT2, and OAT3 could change the pharmacokinetics of their substrates in vivo, we measured the pharmacokinetics of cimetidine, a substrate for OCT1, OCT2, and OAT3, and of furosemide, a substrate for OAT1 and OAT3, by co-administration of DA-9801 at a single oral dose of 1,000 mg/kg. Pre-dose of DA-9801 5 min or 2 h prior to cimetidine administration decreased the Cmax of cimetidine in rats. However, DA-9801 did not affect the elimination parameters such as half-life, clearance, or amount excreted in the urine, suggesting that it did not inhibit elimination process of cimetidine, which is

  4. Interaction of Drug or Food with Drug Transporters in Intestine and Liver.

    Science.gov (United States)

    Nakanishi, Takeo; Tamai, Ikumi

    2015-01-01

    Oral bioavailability (F) is determined as fraction of the drug dose absorbed through the gastrointestinal membranes (Fa), the unmetabolized fraction of the absorbed dose that passes through the gut into the portal blood (Fg), and the hepatic first pass availability (Fh), namely F is expressed as the product of Fa, Fg and Fh (F = Fa.Fg.Fh). Current evidence suggests that transporter proteins play a role in intestinal absorption and hepatobiliary clearance of drugs. Among those transporters, this review will focus on PEPT1 and OATP2B1 as influx transporter and p-glycoprotein (P-gp) and BCRP as efflux transporter in intestinal epithelial cells, and on OATP1B1 and 1B3 as influx transporter and MRP2 as efflux transporter in hepatocytes, respectively, because drug-drug (DDI) and -food (DFI) interactions on these transporter are considered to affect bioavailability of their substrate drugs. DDI and DFI may reduce systemic exposure to drug by blocking influx transporters in intestine, but increase it by modulating influx and efflux transporters in liver and efflux transporters in intestines. Namely, drug disposition and efficacy are likely affected by DDI and DFI, resulting in treatment failures or increase in adverse effect. Therefore, it is of significantly importance to understand precise mechanism of DDI and DFI. This review will present information about transporter-based DDI and DFI in the processes of intestinal absorption and hepatic clearance of drugs, and discuss about their clinical implication.

  5. The effect of membrane diffusion potential change on anionic drugs ...

    African Journals Online (AJOL)

    The effect of membrane potential change on anionic drugs Indomethacin and barbitone induced human erythrocyte shape change and red cell uptake of drug has been studied using microscopy and spectrophotometry techniques respectively. The membrane potential was changed by reducing the extracellular chloride ...

  6. Essential multimeric enzymes in kinetoplastid parasites: A host of potentially druggable protein-protein interactions.

    Science.gov (United States)

    Wachsmuth, Leah M; Johnson, Meredith G; Gavenonis, Jason

    2017-06-01

    Parasitic diseases caused by kinetoplastid parasites of the genera Trypanosoma and Leishmania are an urgent public health crisis in the developing world. These closely related species possess a number of multimeric enzymes in highly conserved pathways involved in vital functions, such as redox homeostasis and nucleotide synthesis. Computational alanine scanning of these protein-protein interfaces has revealed a host of potentially ligandable sites on several established and emerging anti-parasitic drug targets. Analysis of interfaces with multiple clustered hotspots has suggested several potentially inhibitable protein-protein interactions that may have been overlooked by previous large-scale analyses focusing solely on secondary structure. These protein-protein interactions provide a promising lead for the development of new peptide and macrocycle inhibitors of these enzymes.

  7. [Impact of potentially inappropriate drug usage on health insurance business results].

    Science.gov (United States)

    Kirschke, Malin; Böhme, Jacqueline

    2014-09-01

    In Germany a list was drawn up that included 83 potentially inappropriate drugs. The PRISCUS list published in 2010 was intended to highlight certain problems in the pharmakotherapy of elderly patients and serve as a support for improved medicine safety. Almost a third of the insurance portfolio of the HALLESCHE Krankenversicherung aged over 75 years takes drugs that are on the PRISCUS list. Benzodiazepine and Z-drugs are taken most frequently. The costs per insurant with potentially inappropriate medication are on average higher than for policyholders who do not take drugs on the PRISCUS list. The costs per insurant are rising, with an increase in the number of PRISCUS agents being taken as well. However, there is still no scientific proof that potentially inappropriate drugs lead to adverse drug events.

  8. Perfluorocarbon (PFC) emulsions as potential drug carriers

    International Nuclear Information System (INIS)

    Yuhas, J.M.; Goodman, R.L.; Moore, R.E.

    1984-01-01

    PFC emulsions have excellent oxygen transporting properties and have been reported to enhance the response of murine tumors to both radiation and BCNU. While the presently available emulsions are far too toxic to the immune system to be used in cancer therapy, they can be used to investigate the overall potential of this approach. As an example, the authors have found that these emulsions can alter drug availability. The lipophilicity of both the PFC and the drug in question determine the partitioning of the drug between the organic and aqueous phases of an emulsion. In vitro, this can reduce drug effectiveness by reducing the amount of drug available to the cells. In vivo, however, this partitioning may produce sustained drug exposure, which could be of benefit in cancer therapy and other applications. In brief, as the drug is absorbed from the circulating aqueous phase, additional drug would leach from the PFC, thereby providing a sustained drug exposure similar to that obtained with liposomes. While a great deal more work will be required to evaluate the practicality of this approach, the existence of this phenomenon must be taken into account in both the design and interpretation of efficacy studies in which anesthetics, chemotherapeutics, etc are employed

  9. Adverse interactions between herbal and dietary substances and prescription medications: a clinical survey.

    Science.gov (United States)

    Bush, Thomas M; Rayburn, Keith S; Holloway, Sandra W; Sanchez-Yamamoto, Deanna S; Allen, Blaine L; Lam, Tiffany; So, Brian K; Tran, De H; Greyber, Elizabeth R; Kantor, Sophia; Roth, Larry W

    2007-01-01

    Patients often combine prescription medications with herbal and dietary substances (herein referred to as herbal medicines). A variety of potential adverse herb-drug interactions exist based on the pharmacological properties of herbal and prescription medications. To determine the incidence of potential and observed adverse herb-drug interactions in patients using herbal medicines with prescription medications. Consecutive patients were questioned about their use of herbal medicines in 6 outpatient clinics. Patients reporting use of these products provided a list of their prescription medications, which were reviewed for any potential adverse herb-drug interactions using a comprehensive natural medicine database. Any potential adverse herb-drug interactions prompted a review of the patient's chart for evidence of an observed adverse herb-drug interaction. The rate of potential and observed adverse herb-drug interactions. Eight hundred four patients were surveyed, and 122 (15%) used herbal medicines. Eighty-five potential adverse herb-drug interactions were found in 49 patients (40% of herbal medicine users). Twelve possible adverse herb-drug interactions in 8 patients (7% of herbal medicine users) were observed. In all 12 cases, the severity scores were rated as mild, including 8 cases of hypoglycemia in diabetics taking nopal (prickly pear cactus). A substantial number of potential adverse herb-drug interactions were detected and a small number of adverse herb-drug interactions observed, particularly in diabetics taking nopal. Screening for herbal medicine usage in 804 patients did not uncover any serious adverse interactions with prescription medications.

  10. Clinically significant drug–drug interactions involving opioid analgesics used for pain treatment in patients with cancer: a systematic review

    Directory of Open Access Journals (Sweden)

    Kotlinska-Lemieszek A

    2015-09-01

    Full Text Available Aleksandra Kotlinska-Lemieszek,1 Pål Klepstad,2,3,6 Dagny Faksvåg Haugen2,4,5 1Palliative Medicine Chair and Department, University Hospital of the Lord’s Transfiguration, Karol Marcinkowski University of Medical Sciences, Poznan, Poland; 2European Palliative Care Research Centre, Faculty of Medicine, Norwegian University of Science and Technology,Trondheim, Norway; 3Department of Anaesthesiology and Intensive Care Medicine, St Olavs Hospital, Trondheim, Norway; 4Regional Centre of Excellence for Palliative Care, Haukeland University Hospital, Bergen, Norway; 5Department of Clinical Medicine K1, University of Bergen, Bergen, Norway; 6Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway Background: Opioids are the most frequently used drugs to treat pain in cancer patients. In some patients, however, opioids can cause adverse effects and drug–drug interactions. No advice concerning the combination of opioids and other drugs is given in the current European guidelines. Objective: To identify studies that report clinically significant drug–drug interactions involving opioids used for pain treatment in adult cancer patients. Design and data sources: Systematic review with searches in Embase, MEDLINE, and Cochrane Central Register of Controlled Trials from the start of the databases (Embase from 1980 through January 2014. In addition, reference lists of relevant full-text papers were hand-searched. Results: Of 901 retrieved papers, 112 were considered as potentially eligible. After full-text reading, 17 were included in the final analysis, together with 15 papers identified through hand-searching of reference lists. All of the 32 included publications were case reports or case series. Clinical manifestations of drug–drug interactions involving opioids were grouped as follows: 1 sedation and respiratory depression, 2 other central nervous system symptoms, 3 impairment of pain

  11. Evaluation of the potential interaction between tofacitinib and drugs that undergo renal tubular secretion using metformin, an in vivo marker of renal organic cation transporter 2.

    Science.gov (United States)

    Klamerus, Karen J; Alvey, Christine; Li, Lei; Feng, Bo; Wang, Rong; Kaplan, Irina; Shi, Haihong; Dowty, Martin E; Krishnaswami, Sriram

    2014-11-01

    Tofacitinib is a novel, oral Janus kinase inhibitor. The potential for drug-drug interactions (DDIs) between tofacitinib and drugs that undergo renal tubular secretion was evaluated using metformin as a probe transporter substrate, and genotyping for organic cation transporter (OCT) 1, OCT2 and multidrug and toxin extrusion 1 polymorphisms. Twenty-four healthy male subjects completed this open-label, fixed-sequence study. Subjects were administered a single oral metformin 500 mg dose on Days 1 and 4, and multiple oral tofacitinib 30 mg twice daily doses on Days 2, 3, and 4. Subjects underwent serial blood and urine samplings (Days 1 and 4) to estimate metformin pharmacokinetics. A single blood sample for tofacitinib was collected 2 hours after the morning dose (Day 4). The 90% confidence intervals for the ratios of maximum plasma concentration, area under the curve and renal clearance of metformin, with and without tofacitinib, were contained within the 80-125% acceptance range commonly used to establish a lack of DDI. No deaths, serious adverse events (AEs), severe AEs or discontinuations due to AEs were reported. The study confirms tofacitinib is unlikely to impact the pharmacokinetics of drugs that undergo renal tubular secretion, and concurs with its weak in vitro OCT2 inhibitory profile. © 2014, The American College of Clinical Pharmacology.

  12. Colloid electrochemistry of conducting polymer: towards potential-induced in-situ drug release

    International Nuclear Information System (INIS)

    Sankoh, Supannee; Vagin, Mikhail Yu.; Sekretaryova, Alina N.; Thavarungkul, Panote; Kanatharana, Proespichaya; Mak, Wing Cheung

    2017-01-01

    Highlights: • Pulsed electrode potential induced an in-situ drug release from dispersion of conducting polymer microcapsules. • Fast detection of the released drug within the colloid microenvironment. • Improved the efficiency of localized drug release at the electrode interface. - Abstract: Over the past decades, controlled drug delivery system remains as one of the most important area in medicine for various diseases. We have developed a new electrochemically controlled drug release system by combining colloid electrochemistry and electro-responsive microcapsules. The pulsed electrode potential modulation led to the appearance of two processes available for the time-resolved registration in colloid microenvironment: change of the electronic charge of microparticles (from 0.5 ms to 0.1 s) followed by the drug release associated with ionic equilibration (1–10 s). The dynamic electrochemical measurements allow the distinction of drug release associated with ionic relaxation and the change of electronic charge of conducting polymer colloid microparticles. The amount of released drug (methylene blue) could be controlled by modulating the applied potential. Our study demonstrated a surface-potential driven controlled drug release of dispersion of conducting polymer carrier at the electrode interfaces, while the bulk colloids dispersion away from the electrode remains as a reservoir to improve the efficiency of localized drug release. The developed new methodology creates a model platform for the investigations of surface potential-induced in-situ electrochemical drug release mechanism.

  13. Routine drug and food interactions during antihelminthic treatment of neurocysticercosis: a reason for the variable efficacy of albendazole and praziquantel?

    Science.gov (United States)

    Romo, Matthew L; Carpio, Arturo; Kelvin, Elizabeth A

    2014-04-01

    Neurocysticercosis (NC) or infection of the central nervous system with Taenia solium larvae is a leading cause of preventable seizures and epilepsy in endemic regions across the globe. Albendazole and praziquantel are commonly used antihelminthic agents to treat NC; however, viable cysts persist in the majority of patients, putting them at risk for future seizures and other neurological complications. Because of their pharmacokinetic profiles, albendazole and praziquantel have the potential to interact with many different drugs. During antihelminthic treatment, antiepileptic drugs and corticosteroids are commonly co-administered to manage seizures and cerebral edema; however, the most commonly used agents from these drug classes are known to significantly alter plasma concentrations of albendazole and praziquantel. The overarching issue with drug interactions during the treatment of NC is whether or not they have clinical relevance, as the plasma concentrations of albendazole and praziquantel have not been directly linked with eradication of viable cysts. Future studies should attempt to evaluate the validity of a causal relationship between antihelminthic plasma concentrations and outcomes so that drug interactions can be better understood and managed and so that treatment can be optimized. © 2014, The American College of Clinical Pharmacology.

  14. Benzothiophen-pyrazine scaffold as a potential membrane targeting drug carrier

    International Nuclear Information System (INIS)

    Mazuryk, Olga; Niemiec, Elżbieta; Stochel, Grażyna; Gillaizeau, Isabelle; Brindell, Małgorzata

    2013-01-01

    The fluorescent properties of 2,5-di(benzo[b]thiophen-2-yl)pyrazine as a potential membrane targeting drug carrier were characterized and it was shown that its fluorescence intensity was much higher in organic solvent than in water. The embedding of studied compound by liposomes leads to ca. 2 orders of magnitude increase in its fluorescence intensity, suggesting its preferential accumulation in membranes. Preliminary biological studies showed its ability to accumulate in cells, and the concentration of 10 μM was sufficient for homogeneous staining of cells. The treatment of mouse carcinoma CT26 cells with studied compound up to 200 μM resulted in decreasing of viable cells by ca. 30%. Its reactivity towards albumin was found to be moderate with an association constant of 6×10 4 M −1 , while no interaction with DNA was observed. Our findings encourage for further studies on functionalization of this molecule to obtain a new class of anticancer drugs targeting membrane. Highlights: ► The fluorescence of 2,5-di(benzo[b]thiophen-2-yl)pyrazine is solvent dependent. ► Weak fluorescence is found in water while high in organic solvents (DMSO, chloroform). ► Embedding of compound in liposomes remarkably increased its fluorescence. ► No interaction with DNA is observed but moderate reactivity towards albumin is found. ► Homogeneous staining of cells is feasible using nontoxic dose of compound

  15. Herb-Drug Interaction between the Traditional Hepatoprotective Formulation and Sorafenib on Hepatotoxicity, Histopathology and Pharmacokinetics in Rats

    Directory of Open Access Journals (Sweden)

    Chin-Tsung Ting

    2017-06-01

    Full Text Available Sorafenib has been used as a standard therapy for advanced hepatocellular carcinoma (HCC. In Asia, patients with HCC are potentially treated with the combination of sorafenib and Chinese herbal medicines to improve the efficiency and reduce the side effects of sorafenib. However, limited information about the herb-drug interactions is available. We hypothesize that the Chinese herbal medicine may exert hepatoprotective effects on the sorafenib-treated group. The aim of this study is to investigate the pharmacokinetic mechanism of drug-drug interactions of sorafenib including interacting with hepatoprotective formulation, Long-Dan-Xie-Gan-Tang formulation (LDXGT and with two cytochrome P450 3A4 (CYP3A4 inhibitors, grapefruit juice and ketoconazole. Liver enzyme levels and histopathology of liver slices were used to evaluate sorafenib-induced hepatotoxicity and the potential hepatoprotective effects of the LDXGT formulation on subjects treated with the combination of sorafenib and the herbal medicine. In this study, a validated HPLC-photodiode array analytical system was developed for the pharmacokinetic study of sorafenib in rats. As the result of the pharmacokinetic data, pretreatment with the LDXGT formulation did not significantly interact with sorafenib compared with sorafenib oral administration alone. Furthermore, grapefruit juice and ketoconazole did not significantly affect sorafenib metabolism. Furthermore, pretreatment with variable, single or repeat doses of the LDXGT formulation did not suppress or exacerbate the sorafenib-induced hepatotoxicity and histopathological alterations. According to these results, the LDXGT formulation is safe, but has no beneficial effects on sorafenib-induced hepatotoxicity. A detailed clinical trial should be performed to further evaluate the efficacy or adverse effects of the LDXGT formulation in combination with sorafenib in humans.

  16. Clinically Relevant Pharmacological Strategies That Reverse MDMA-Induced Brain Hyperthermia Potentiated by Social Interaction.

    Science.gov (United States)

    Kiyatkin, Eugene A; Ren, Suelynn; Wakabayashi, Ken T; Baumann, Michael H; Shaham, Yavin

    2016-01-01

    MDMA-induced hyperthermia is highly variable, unpredictable, and greatly potentiated by the social and environmental conditions of recreational drug use. Current strategies to treat pathological MDMA-induced hyperthermia in humans are palliative and marginally effective, and there are no specific pharmacological treatments to counteract this potentially life-threatening condition. Here, we tested the efficacy of mixed adrenoceptor blockers carvedilol and labetalol, and the atypical antipsychotic clozapine, in reversing MDMA-induced brain and body hyperthermia. We injected rats with a moderate non-toxic dose of MDMA (9 mg/kg) during social interaction, and we administered potential treatment drugs after the development of robust hyperthermia (>2.5 °C), thus mimicking the clinical situation of acute MDMA intoxication. Brain temperature was our primary focus, but we also simultaneously recorded temperatures from the deep temporal muscle and skin, allowing us to determine the basic physiological mechanisms of the treatment drug action. Carvedilol was modestly effective in attenuating MDMA-induced hyperthermia by moderately inhibiting skin vasoconstriction, and labetalol was ineffective. In contrast, clozapine induced a marked and immediate reversal of MDMA-induced hyperthermia via inhibition of brain metabolic activation and blockade of skin vasoconstriction. Our findings suggest that clozapine, and related centrally acting drugs, might be highly effective for reversing MDMA-induced brain and body hyperthermia in emergency clinical situations, with possible life-saving results.

  17. Electrostimulated Release of Neutral Drugs from Polythiophene Nanoparticles: Smart Regulation of Drug-Polymer Interactions.

    Science.gov (United States)

    Puiggalí-Jou, Anna; Micheletti, Paolo; Estrany, Francesc; Del Valle, Luis J; Alemán, Carlos

    2017-09-01

    Poly(3,4-ethylenedioxythiophene) (PEDOT) nanoparticles are loaded with curcumin and piperine by in situ emulsion polymerization using dodecyl benzene sulfonic acid both as a stabilizer and a doping agent. The loaded drugs affect the morphology, size, and colloidal stability of the nanoparticles. Furthermore, kinetics studies of nonstimulated drug release have evidenced that polymer···drug interactions are stronger for curcumin than for piperine. This observation suggests that drug delivery systems based on combination of the former drug with PEDOT are much appropriated to show an externally tailored release profile. This is demonstrated by comparing the release profiles obtained in presence and absence of electrical stimulus. Results indicate that controlled and time-programmed release of curcumin is achieved in a physiological medium by applying a negative voltage of -1.25 V to loaded PEDOT nanoparticles. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Metabolic Pathway of Icotinib In Vitro: The Differential Roles of CYP3A4, CYP3A5, and CYP1A2 on Potential Pharmacokinetic Drug-Drug Interaction.

    Science.gov (United States)

    Zhang, TianHong; Zhang, KeRong; Ma, Li; Li, Zheng; Wang, Juan; Zhang, YunXia; Lu, Chuang; Zhu, Mingshe; Zhuang, XiaoMei

    2018-04-01

    Icotinib is the first self-developed small molecule drug in China for targeted therapy of non-small cell lung cancer. To date, systematic studies on the pharmacokinetic drug-drug interaction of icotinib were limited. By identifying metabolite generated in human liver microsomes and revealing the contributions of major cytochromes P450 (CYPs) in the formation of major metabolites, the aim of the present work was to understand the mechanisms underlying pharmacokinetic and pharmacological variability in clinic. A liquid chromatography/UV/high-resolution mass spectrometer method was developed to characterize the icotinib metabolites. The formation of 6 major metabolites was studied in recombinant CYP isozymes and human liver microsomes with specific inhibitors to identify the CYPs responsible for icotinib metabolism. The metabolic pathways observed in vitro are consistent with those observed in human. Results demonstrated that the metabolites are predominantly catalyzed by CYP3A4 (77%∼87%), with a moderate contribution from CYP3A5 (5%∼15%) and CYP1A2 (3.7%∼7.5%). The contribution of CYP2C8, 2C9, 2C19, and 2D6 is insignificant. Based on our observations, to minimize drug-drug interaction risk in clinic, coprescription of icotinib with strong CYP3A inhibitors or inducers must be weighed. CYP1A2, a highly inducible enzyme in the smoking population, may also represent a determinant of pharmacokinetic and pharmacological variability of icotinib, especially in lung cancer patients with smoking history. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  19. Metabolic drug interactions - the impact of prescribed drug regimens on the medication safety.

    NARCIS (Netherlands)

    Fialova, D.; Vrbensky, K.; Topinkova, E.; Vlcek, J.; Soerbye, L.W.; Wagner, C.; Bernabei, R.

    2005-01-01

    Background and objective: Risk/benefit profile of prescribed drug regimens is unkown. Over 60% of commonly used medications interact on metabolic pathways (cytochrom P450 (CYP450), uridyl-glucuronyl tranferasis (UGT I, II) and P-glycoprotein (PGP) transport). Using an up-to-date knowledge on

  20. MRP2 mediated drug-drug interaction: indomethacin increases sulfasalazine absorption in the small intestine, potentially decreasing its colonic targeting.

    Science.gov (United States)

    Dahan, Arik; Amidon, Gordon L

    2010-02-15

    We have recently shown that efflux transport, mediated by multidrug resistance-associated protein 2 (MRP2) and breast cancer resistance protein (BCRP), is responsible for sulfasalazine low-permeability in the small intestine, thereby enabling its colonic targeting and therapeutic action. The purpose of the present study was to evaluate the potential pharmacokinetic interaction between indomethacin and sulfasalazine, in the mechanism of efflux transporter competition. The concentration-dependent effects of indomethacin on sulfasalazine intestinal epithelial transport were investigated across Caco-2 cell monolayers, in both apical to basolateral (AP-BL) and BL-AP directions. The interaction was then investigated in the in situ single-pass rat jejunal perfusion model. Sulfasalazine displayed 30-fold higher BL-AP than AP-BL Caco-2 permeability, indicative of net mucosal secretion. Indomethacin significantly increased AP-BL and decreased BL-AP sulfasalazine Caco-2 transport, in a concentration-dependent manner, with IC(50) values of 75 and 196 microM respectively. In the rat model, higher sulfasalazine concentrations resulted in higher intestinal permeability, consistent with saturation of efflux transporter. Without indomethacin, sulfasalazine demonstrated low rat jejunal permeability (vs. metoprolol). Indomethacin significantly increased sulfasalazine P(eff), effectively shifting it from BCS (biopharmaceutics classification system) Class IV to II. In conclusion, the data indicate that concomitant intake of indomethacin and sulfasalazine may lead to increased absorption of sulfasalazine in the small intestine, thereby reducing its colonic concentration and potentially altering its therapeutic effect. Copyright 2009 Elsevier B.V. All rights reserved.

  1. Photoreactivity of biologically active compounds. VII. Interaction of antimalarial drugs with melanin in vitro as part of phototoxicity screening.

    Science.gov (United States)

    Kristensen, S; Orsteen, A L; Sande, S A; Tønnesen, H H

    1994-10-01

    The drugs commonly used in the treatment of malaria are photochemically unstable. Several of these compounds accumulate in melanin-rich tissues and cause toxic reactions which may be light induced. As part of the screening of the photochemical properties and phototoxic capabilities of antimalarials, the in vitro interaction of eight antimalarials with melanin was studied. The dissociation constant for the drug-melanin complex and the relative number of binding sites on melanin were estimated for six of the drugs using a curve-fitting program. The reaction rate for the formation of the melanin-drug complex was determined, and the complexes were further characterized by zeta potential measurements.

  2. Calculation of Rydberg interaction potentials

    International Nuclear Information System (INIS)

    Weber, Sebastian; Büchler, Hans Peter; Tresp, Christoph; Urvoy, Alban; Hofferberth, Sebastian; Menke, Henri; Firstenberg, Ofer

    2017-01-01

    The strong interaction between individual Rydberg atoms provides a powerful tool exploited in an ever-growing range of applications in quantum information science, quantum simulation and ultracold chemistry. One hallmark of the Rydberg interaction is that both its strength and angular dependence can be fine-tuned with great flexibility by choosing appropriate Rydberg states and applying external electric and magnetic fields. More and more experiments are probing this interaction at short atomic distances or with such high precision that perturbative calculations as well as restrictions to the leading dipole–dipole interaction term are no longer sufficient. In this tutorial, we review all relevant aspects of the full calculation of Rydberg interaction potentials. We discuss the derivation of the interaction Hamiltonian from the electrostatic multipole expansion, numerical and analytical methods for calculating the required electric multipole moments and the inclusion of electromagnetic fields with arbitrary direction. We focus specifically on symmetry arguments and selection rules, which greatly reduce the size of the Hamiltonian matrix, enabling the direct diagonalization of the Hamiltonian up to higher multipole orders on a desktop computer. Finally, we present example calculations showing the relevance of the full interaction calculation to current experiments. Our software for calculating Rydberg potentials including all features discussed in this tutorial is available as open source. (tutorial)

  3. Population Impact of Drug Interactions with Warfarin

    DEFF Research Database (Denmark)

    Martín-Pérez, Mar; Gaist, David; de Abajo, Francisco J

    2018-01-01

    OBJECTIVE:  To investigate the population impact of previously reported interactions between warfarin and other drugs on international normalized ratio (INR) levels. METHODS:  Using The Health Improvement Network (THIN), a United Kingdom primary care database, a cohort of warfarin users between.......55) and in the proportion of patients with INR levels out of therapeutic range (population...

  4. Exploring the interaction between Salvia miltiorrhiza and human serum albumin: Insights from herb-drug interaction reports, computational analysis and experimental studies

    Science.gov (United States)

    Shao, Xin; Ai, Ni; Xu, Donghang; Fan, Xiaohui

    2016-05-01

    Human serum albumin (HSA) binding is one of important pharmacokinetic properties of drug, which is closely related to in vivo distribution and may ultimately influence its clinical efficacy. Compared to conventional drug, limited information on this transportation process is available for medicinal herbs, which significantly hampers our understanding on their pharmacological effects, particularly when herbs and drug are co-administrated as polytherapy to the ailment. Several lines of evidence suggest the existence of Salvia miltiorrhiza-Warfarin interaction. Since Warfarin is highly HSA bound in the plasma with selectivity to site I, it is critical to evaluate the possibility of HSA-related herb-drug interaction. Herein an integrated approach was employed to analyze the binding of chemicals identified in S. miltiorrhiza to HSA. Molecular docking simulations revealed filtering criteria for HSA site I compounds that include docking score and key molecular determinants for binding. For eight representative ingredients from the herb, their affinity and specificity to HSA site I was measured and confirmed fluorometrically, which helps to improve the knowledge of interaction mechanisms between this herb and HSA. Our results indicated that several compounds in S. miltiorrhiza were capable of decreasing the binding constant of Warfarin to HSA site I significantly, which may increase free drug concentration in vivo, contributing to the herb-drug interaction observed clinically. Furthermore, the significance of HSA mediated herb-drug interactions was further implied by manual mining on the published literatures on S. miltiorrhiza.

  5. Possible drug-drug interaction between pregabalin and clozapine in patients with schizophrenia

    DEFF Research Database (Denmark)

    Schjerning, O; Lykkegaard, S; Damkier, P

    2015-01-01

    INTRODUCTION: Pregabalin is an antiepileptic drug with anti-anxiety properties and is approved for treatment of generalized anxiety disorder. Anxiety is common in patients with schizophrenia and pregabalin has been suggested as an off-label add-on treatment. METHODS: Pregabalin was added...... patient was less clear. DISCUSSION: This short report discusses the possible mechanism of a pregabalin-clozapine interaction....

  6. Prediction of Drug-Drug Interactions with Bupropion and Its Metabolites as CYP2D6 Inhibitors Using a Physiologically-Based Pharmacokinetic Model.

    Science.gov (United States)

    Xue, Caifu; Zhang, Xunjie; Cai, Weimin

    2017-12-21

    The potential of inhibitory metabolites of perpetrator drugs to contribute to drug-drug interactions (DDIs) is uncommon and underestimated. However, the occurrence of unexpected DDI suggests the potential contribution of metabolites to the observed DDI. The aim of this study was to develop a physiologically-based pharmacokinetic (PBPK) model for bupropion and its three primary metabolites-hydroxybupropion, threohydrobupropion and erythrohydrobupropion-based on a mixed "bottom-up" and "top-down" approach and to contribute to the understanding of the involvement and impact of inhibitory metabolites for DDIs observed in the clinic. PK profiles from clinical researches of different dosages were used to verify the bupropion model. Reasonable PK profiles of bupropion and its metabolites were captured in the PBPK model. Confidence in the DDI prediction involving bupropion and co-administered CYP2D6 substrates could be maximized. The predicted maximum concentration (C max ) area under the concentration-time curve (AUC) values and C max and AUC ratios were consistent with clinically observed data. The addition of the inhibitory metabolites into the PBPK model resulted in a more accurate prediction of DDIs (AUC and C max ratio) than that which only considered parent drug (bupropion) P450 inhibition. The simulation suggests that bupropion and its metabolites contribute to the DDI between bupropion and CYP2D6 substrates. The inhibitory potency from strong to weak is hydroxybupropion, threohydrobupropion, erythrohydrobupropion, and bupropion, respectively. The present bupropion PBPK model can be useful for predicting inhibition from bupropion in other clinical studies. This study highlights the need for caution and dosage adjustment when combining bupropion with medications metabolized by CYP2D6. It also demonstrates the feasibility of applying the PBPK approach to predict the DDI potential of drugs undergoing complex metabolism, especially in the DDI involving inhibitory

  7. The potential biomarkers of drug addiction: proteomic and metabolomics challenges.

    Science.gov (United States)

    Wang, Lv; Wu, Ning; Zhao, Tai-Yun; Li, Jin

    2016-07-28

    Drug addiction places a significant burden on society and individuals. Proteomics and metabolomics approaches pave the road for searching potential biomarkers to assist the diagnosis and treatment. This review summarized putative drug addiction-related biomarkers in proteomics and metabolomics studies and discussed challenges and prospects in future studies. Alterations of several hundred proteins and metabolites were reported when exposure to abused drug, which enriched in energy metabolism, oxidative stress response, protein modification and degradation, synaptic function and neurotrasmission, etc. Hsp70, peroxiredoxin-6 and α- and β-synuclein, as well as n-methylserotonin and purine metabolites, were promising as potential biomarker for drug addiction.

  8. Significant inhibitory impact of dibenzyl trisulfide and extracts of Petiveria alliacea on the activities of major drug-metabolizing enzymes in vitro: An assessment of the potential for medicinal plant-drug interactions.

    Science.gov (United States)

    Murray, J; Picking, D; Lamm, A; McKenzie, J; Hartley, S; Watson, C; Williams, L; Lowe, H; Delgoda, R

    2016-06-01

    Dibenzyl trisulfide (DTS) is the major active ingredient expressed in Petiveria alliacea L., a shrub widely used for a range of conditions, such as, arthritis, asthma and cancer. Given its use alone and concomitantly with prescription medicines, we undertook to investigate its impact on the activities of important drug metabolizing enzymes, the cytochromes P450 (CYP), a key family of enzymes involved in many adverse drug reactions. DTS and seven standardized extracts from the plant were assessed for their impact on the activities of CYPs 1A2, 2C19, 2C9, 2D6 and 3A4 on a fluorometric assay. DTS revealed significant impact against the activities of CYPs 1A2, 2C19 and 3A4 with IC50 values of 1.9, 4.0 and 3.2μM, respectively, which are equivalent to known standard inhibitors of these enzymes (furafylline, and tranylcypromine), and the most potent interaction with CYP1A2 displayed irreversible enzyme kinetics. The root extract, drawn with 96% ethanol (containing 2.4% DTS), displayed IC50 values of 5.6, 3.9 and 4.2μg/mL respectively, against the same isoforms, CYPs 1A2, 2C19 and 3A4. These investigations identify DTS as a valuable CYP inhibitor and P. alliacea as a candidate plant worthy of clinical trials to confirm the conclusions that extracts yielding high DTS may lead to clinically relevant drug interactions, whilst extracts yielding low levels of DTS, such as aqueous extracts, are unlikely to cause adverse herb-drug interactions. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Comparison of three commercial knowledge bases for detection of drug-drug interactions in clinical decision support.

    Science.gov (United States)

    Fung, Kin Wah; Kapusnik-Uner, Joan; Cunningham, Jean; Higby-Baker, Stefanie; Bodenreider, Olivier

    2017-07-01

    To compare 3 commercial knowledge bases (KBs) used for detection and avoidance of potential drug-drug interactions (DDIs) in clinical practice. Drugs in the DDI tables from First DataBank (FDB), Micromedex, and Multum were mapped to RxNorm. The KBs were compared at the clinical drug, ingredient, and DDI rule levels. The KBs were evaluated against a reference list of highly significant DDIs from the Office of the National Coordinator for Health Information Technology (ONC). The KBs and the ONC list were applied to a prescription data set to simulate their use in clinical decision support. The KBs contained 1.6 million (FDB), 4.5 million (Micromedex), and 4.8 million (Multum) clinical drug pairs. Altogether, there were 8.6 million unique pairs, of which 79% were found only in 1 KB and 5% in all 3 KBs. However, there was generally more agreement than disagreement in the severity rankings, especially in the contraindicated category. The KBs covered 99.8-99.9% of the alerts of the ONC list and would have generated 25 (FDB), 145 (Micromedex), and 84 (Multum) alerts per 1000 prescriptions. The commercial KBs differ considerably in size and quantity of alerts generated. There is less variability in severity ranking of DDIs than suggested by previous studies. All KBs provide very good coverage of the ONC list. More work is needed to standardize the editorial policies and evidence for inclusion of DDIs to reduce variation among knowledge sources and improve relevance. Some DDIs considered contraindicated in all 3 KBs might be possible candidates to add to the ONC list. Published by Oxford University Press on behalf of the American Medical Informatics Association 2017. This work is written by US Government employees and is in the public domain in the United States.

  10. Interaction between ropinirole hydrochloride and aspirin with human serum albumin as binary and ternary systems by multi-spectroscopic, molecular modeling and zeta potential

    International Nuclear Information System (INIS)

    Mahaki, Hanie; Memarpoor-Yazdi, Mina; Chamani, Jamshidkhan; Reza Saberi, Mohammad

    2013-01-01

    The aim of the present study was to describe the competition of ropinirole hydrochloride (RP) and aspirin (ASA) in binding to human serum albumin (HSA) in physiological buffer (pH=7.4) using multi-spectroscopic, molecular modeling and zeta-potential measurements. Fluorescence analysis was used to define the binding and quenching properties of drug-HSA complexes in binary and ternary systems. Fluorescence spectroscopy showed that in the presence of RP, the binding constant of HSA–ASA was increased. Static quenching was confirmed to result in the fluorescence quenching and FRET. The effect of drugs on the conformation of HSA was analyzed using synchronous fluorescence spectroscopy, three-dimensional fluorescence spectra and circular dichroism (CD). The RLS method determined the critical aggregation concentration of drugs on HSA in binary and ternary systems that confirmed the zeta potential results. Structural modeling showed that the affinity of each of the drugs to HSA in binary and ternary systems confirms the spectroscopic results. - Highlights: ► We studied the interaction of ropinirole hydrochloride and aspirin with HSA. ► Molecular modeling and zeta-potential used to describe competitive interaction. ► We determined the critical induced aggregation concentration of both drugs on HSA. ► The binding mechanism of drugs as separate and simultaneous to HSA has been compared. ► The binding site of both drugs as simultaneous effects on HSA has been determined.

  11. Computational-experimental approach to drug-target interaction mapping: A case study on kinase inhibitors.

    Directory of Open Access Journals (Sweden)

    Anna Cichonska

    2017-08-01

    Full Text Available Due to relatively high costs and labor required for experimental profiling of the full target space of chemical compounds, various machine learning models have been proposed as cost-effective means to advance this process in terms of predicting the most potent compound-target interactions for subsequent verification. However, most of the model predictions lack direct experimental validation in the laboratory, making their practical benefits for drug discovery or repurposing applications largely unknown. Here, we therefore introduce and carefully test a systematic computational-experimental framework for the prediction and pre-clinical verification of drug-target interactions using a well-established kernel-based regression algorithm as the prediction model. To evaluate its performance, we first predicted unmeasured binding affinities in a large-scale kinase inhibitor profiling study, and then experimentally tested 100 compound-kinase pairs. The relatively high correlation of 0.77 (p < 0.0001 between the predicted and measured bioactivities supports the potential of the model for filling the experimental gaps in existing compound-target interaction maps. Further, we subjected the model to a more challenging task of predicting target interactions for such a new candidate drug compound that lacks prior binding profile information. As a specific case study, we used tivozanib, an investigational VEGF receptor inhibitor with currently unknown off-target profile. Among 7 kinases with high predicted affinity, we experimentally validated 4 new off-targets of tivozanib, namely the Src-family kinases FRK and FYN A, the non-receptor tyrosine kinase ABL1, and the serine/threonine kinase SLK. Our sub-sequent experimental validation protocol effectively avoids any possible information leakage between the training and validation data, and therefore enables rigorous model validation for practical applications. These results demonstrate that the kernel

  12. Predicting abuse potential of stimulants and other dopaminergic drugs: overview and recommendations.

    Science.gov (United States)

    Huskinson, Sally L; Naylor, Jennifer E; Rowlett, James K; Freeman, Kevin B

    2014-12-01

    Examination of a drug's abuse potential at multiple levels of analysis (molecular/cellular action, whole-organism behavior, epidemiological data) is an essential component to regulating controlled substances under the Controlled Substances Act (CSA). We reviewed studies that examined several central nervous system (CNS) stimulants, focusing on those with primarily dopaminergic actions, in drug self-administration, drug discrimination, and physical dependence. For drug self-administration and drug discrimination, we distinguished between experiments conducted with rats and nonhuman primates (NHP) to highlight the common and unique attributes of each model in the assessment of abuse potential. Our review of drug self-administration studies suggests that this procedure is important in predicting abuse potential of dopaminergic compounds, but there were many false positives. We recommended that tests to determine how reinforcing a drug is relative to a known drug of abuse may be more predictive of abuse potential than tests that yield a binary, yes-or-no classification. Several false positives also occurred with drug discrimination. With this procedure, we recommended that future research follow a standard decision-tree approach that may require examining the drug being tested for abuse potential as the training stimulus. This approach would also allow several known drugs of abuse to be tested for substitution, and this may reduce false positives. Finally, we reviewed evidence of physical dependence with stimulants and discussed the feasibility of modeling these phenomena in nonhuman animals in a rational and practical fashion. This article is part of the Special Issue entitled 'CNS Stimulants'. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Dabigatran - Metabolism, Pharmacologic Properties and Drug Interactions.

    Science.gov (United States)

    Antonijevic, Nebojsa M; Zivkovic, Ivana D; Jovanovic, Ljubica M; Matic, Dragan M; Kocica, Mladen J; Mrdovic, Igor B; Kanjuh, Vladimir I; Culafic, Milica D

    2017-01-01

    The superiority of dabigatran has been well proven in the standard dosing regimen in prevention of stroke and systemic embolism in patients with non-valvular atrial fibrillation (NVAF) and extended venous thromboembolism (VTE) treatment. Dabigatran, an anticoagulant with a good safety profile, reduces intracranial bleeding in patients with atrial fibrillation and decreases major and clinically relevant non-major bleeding in acute VTE treatment. However, several important clinical issues are not fully covered by currently available directions with regard to dabigatran administration. The prominent one is reflected in the fact that dynamic impairment in renal function due to dehydratation may lead to haemorragic complications on the one hand, while on the other hand glomerular hyperfiltration may be a possible cause of dabigatran subdosing, hence reducing the drug's efficacy. Furthermore, limitations of the Cockcroft-Gault formula, considered a standard equation for assessing the renal function, may imply that other calculations are likely to obtain more accurate estimates of the kidney function in specific patient populations. Method and Conclusions: Although not routinely recommended, a possibility of monitoring dabigatran in special clinical settings adds to optimization of its dosage regimens, timely perioperative care and administration of urgently demanded thrombolytic therapy, therefore significantly improving this drug's safety profile. Despite the fact that dabigatran has fewer reported interactions with drugs, food constituents, and dietary supplements, certain interactions still remain, requiring considerable caution, notably in elderly, high bleeding risk patients, patients with decreased renal function and those on complex drug regimens. Additionally, upon approval of idarucizumab, an antidote to dabigatran solution, hitherto being a major safety concern, has been finally reached, which plays a vital role in life-threatening bleeding and emergency

  14. Drug interactions with phenprocoumon and the risk of serious haemorrhage: a nested case-control study in a large population-based German database.

    Science.gov (United States)

    Jobski, Kathrin; Behr, Sigrid; Garbe, Edeltraut

    2011-09-01

    Phenprocoumon is the most frequently used vitamin K antagonist in Germany. The aim of this study was to estimate the risk of serious bleeding as a result of the use of drugs with potential interaction with phenprocoumon. We conducted a nested case-control study in a cohort of 246,220 phenprocoumon users in the German Pharmacoepidemiological Research Database. Cases were patients hospitalised for haemorrhage of different kinds. Ten controls were matched to each case by health insurance, birth year and sex using incidence density sampling. Odds ratios (OR) with 95% confidence intervals (CI) of the risk of serious bleeding associated with combined use of phenprocoumon and potentially interacting drugs versus phenprocoumon alone were estimated using conditional logistic regression analysis. Our analyses considered multiple risk factors, such as bleeding history, other comorbidities or co-medication. Our study included 2,553 cases and 25,348 matched controls. An increased risk of bleeding was observed for the combined use of phenprocoumon and clopidogrel vs phenprocoumon use alone (OR: 1.83, 95% CI: 1.41-2.36). Antibiotic drugs associated with an increased risk of haemorrhage in the population of phenprocoumon users included the group of quinolones with ORs ranging from 2.74 (95% CI: 1.80-4.18) for ciprofloxacin to 4.40 (95% CI: 2.45-7.89) for levofloxacin, amoxicillin plus clavulanic acid (OR: 2.99, 95% CI: 1.39-6.42) and cotrimoxazole (OR 3.57, 95% CI: 2.36-5.40). Among non-steroidal anti-inflammatory drugs (NSAIDs), ketoprofen and naproxen were associated with the highest risks. Significantly elevated risks of major bleeding were mainly observed for drugs with known pharmacodynamic interaction with phenprocoumon, and less for drugs with possible pharmacokinetic interaction.

  15. Effect of Zeta Potential on the Properties of Nano-Drug Delivery ...

    African Journals Online (AJOL)

    Zeta potential is a scientific term for electrokinetic potential in colloidal systems which has a major effect on the various properties of nano-drug delivery systems. Presently, colloidal nano-carriers are growing at a remarkable rate owing to their strong potential for overcoming old challenges such as poor drug solubility and ...

  16. Pharmacokinetic Herb-Drug Interactions: Insight into Mechanisms and Consequences.

    Science.gov (United States)

    Oga, Enoche F; Sekine, Shuichi; Shitara, Yoshihisa; Horie, Toshiharu

    2016-04-01

    Herbal medicines are currently in high demand, and their popularity is steadily increasing. Because of their perceived effectiveness, fewer side effects and relatively low cost, they are being used for the management of numerous medical conditions. However, they are capable of affecting the pharmacokinetics and pharmacodynamics of coadministered conventional drugs. These interactions are particularly of clinically relevance when metabolizing enzymes and xenobiotic transporters, which are responsible for the fate of many drugs, are induced or inhibited, sometimes resulting in unexpected outcomes. This article discusses the general use of herbal medicines in the management of several ailments, their concurrent use with conventional therapy, mechanisms underlying herb-drug interactions (HDIs) as well as the drawbacks of herbal remedy use. The authors also suggest means of surveillance and safety monitoring of herbal medicines. Contrary to popular belief that "herbal medicines are totally safe," we are of the view that they are capable of causing significant toxic effects and altered pharmaceutical outcomes when coadministered with conventional medicines. Due to the paucity of information as well as sometimes conflicting reports on HDIs, much more research in this field is needed. The authors further suggest the need to standardize and better regulate herbal medicines in order to ensure their safety and efficacy when used alone or in combination with conventional drugs.

  17.  The potential nephrotoxicity of antiretroviral drugs

    Directory of Open Access Journals (Sweden)

    Zofia Marchewka

    2012-09-01

    Full Text Available  The intensive studies carried out in many scientific laboratories and the efforts of numerous pharmaceutical companies have led to the development of drugs which are able to effectively inhibitHIV proliferation. At present, a number of antiretroviral agents with different mechanisms of actionare available. Unfortunately, long-term use of antiretroviral drugs, however, does not remainindifferent to the patient and can cause significant side effects.In the present work, the antiretroviral drugs with a nephrotoxicity potential most commonly usedin clinical practice are described. In the review attention has also been focused on the nephropathyresulting from the HIV infection alone and the influence of genetic factors on the occurrenceof pathological changes in the kidney.

  18. Safety aspects of protease inhibitors for chronic hepatitis C: adverse events and drug-to-drug interactions

    Directory of Open Access Journals (Sweden)

    Rosângela Teixeira

    Full Text Available The standard of care therapy of chronic hepatitis C with the combination of pegylated interferon and ribavirin for 24 or 48 weeks was a remarkable accomplishment of the past decade. However, sustained virological responses rates of about 80% (genotypes 2-3 and 50% (geno 3 type 1 were not satisfactory especially for patients infected with genotype 1. Important advances in the biology of HCV have made possible the development of the direct-acting antiviral agents boceprevir and telaprevir with substantial increase in the rates of sustained virological response with shorter duration of therapy for a large number of patients. However, the complexity of triple therapy is higher and several new side effects are expected suggesting greater expertise in the patient management. Anemia and disgeusia are frequent with boceprevir while cutaneous rash, ranging from mild to severe, is expected with telaprevir. Higher risk of drug-drug interactions demand further clinical consideration of the previous well-known adverse events of pegylated interferon and ribavirin. Identification and prompt management of these potential new problems with boceprevir and telaprevir are crucial in clinical practice for optimizing treatment and assuring safety outcomes to HCV-genotype 1 patients.

  19. Safety aspects of protease inhibitors for chronic hepatitis C: adverse events and drug-to-drug interactions

    Directory of Open Access Journals (Sweden)

    Rosângela Teixeira

    2013-04-01

    Full Text Available The standard of care therapy of chronic hepatitis C with the combination of pegylated interferon and ribavirin for 24 or 48 weeks was a remarkable accomplishment of the past decade. However, sustained virological responses rates of about 80% (genotypes 2-3 and 50% (geno 3 type 1 were not satisfactory especially for patients infected with genotype 1. Important advances in the biology of HCV have made possible the development of the direct-acting antiviral agents boceprevir and telaprevir with substantial increase in the rates of sustained virological response with shorter duration of therapy for a large number of patients. However, the complexity of triple therapy is higher and several new side effects are expected suggesting greater expertise in the patient management. Anemia and disgeusia are frequent with boceprevir while cutaneous rash, ranging from mild to severe, is expected with telaprevir. Higher risk of drug-drug interactions demand further clinical consideration of the previous well-known adverse events of pegylated interferon and ribavirin. Identification and prompt management of these potential new problems with boceprevir and telaprevir are crucial in clinical practice for optimizing treatment and assuring safety outcomes to HCV-genotype 1 patients.

  20. Cutting edge: Antimalarial drugs inhibit IFN-β production through blockade of cyclic GMP-AMP synthase-DNA interaction.

    Science.gov (United States)

    An, Jie; Woodward, Joshua J; Sasaki, Tomikazu; Minie, Mark; Elkon, Keith B

    2015-05-01

    Type I IFN is strongly implicated in the pathogenesis of systemic autoimmune diseases, such as lupus, and rare monogenic IFNopathies, including Aicardi-Goutières syndrome. Recently, a new DNA-activated pathway involving the enzyme cyclic GMP-AMP synthase (cGAS) was described and potentially linked to Aicardi-Goutières syndrome. To identify drugs that could potentially inhibit cGAS activity, we performed in silico screening of drug libraries. By computational analysis, we identified several antimalarial drugs (AMDs) that were predicted to interact with the cGAS/dsDNA complex. Our studies validated that several AMDs were effective inhibitors of IFN-β production and that they functioned by inhibiting dsDNA stimulation of cGAS. Because AMDs have been widely used in human diseases and have an excellent safety profile, our findings suggest new therapeutic strategies for the treatment of severe debilitating diseases associated with type I IFNs due to cGAS activation. Copyright © 2015 by The American Association of Immunologists, Inc.

  1. An overview of herbal supplement utilization with particular emphasis on possible interactions with dental drugs and oral manifestations.

    Science.gov (United States)

    Abebe, Worku

    2003-01-01

    Herbal medication in the United States is a popular form of therapy. This paper provides an overview of the utilization of herbal supplements with particular emphasis on possible interactions with oral health drugs and oral manifestations. Herbal supplements are regulated by the Dietary Supplement Health and Education Act (DSHEA), which limits their regulation by the U.S Food and Drug Administration (FDA). A number of studies indicate that there is a progressive increase in the utilization of herbal supplements. The majority of consumers of these products are white, middle-aged women who have some college education. Many of the consumers use pharmaceutical drugs concurrently, but most do not inform their health-care providers about their use of herbal supplements. Various herbal supplements have been reported or are suspected to interact with certain oral health drugs, the most important one being 1) bromelain, cayenne, chamomile, feverfew, dong quai, eleuthro/Seberian ginseng, garlic, ginkgo, ginger, ginseng and licorice interacting with aspirin; 2) aloe latex, ephedra, ginseng, rhubarb, cascara sagrada, licorice, and senna interacting with corticosteriods; 3) kava, St. John's wort, chamomile, and valerian interacting with central nervous system (CNS) depressant drugs; and 4) herbs acting on the gastrointestinal system, altering the absorption of several orally administered drugs. Further, the use of some herbal supplements has been reported to be associated with oral manifestations, including aphthous ulcers, lip and tongue irritation, and swelling with feverfew; gingival bleeding with feverfew and ginkgo; tongue numbness with echinacea; xerostomia with St. John's wort; oral and lingual dyskinesia with kava; and salivation with yohimbe. These potential effects of herbal supplements in conjunction with factors related to regulation restrictions suggest that the use of these products may be associated with various adverse reactions that can affect oral health and

  2. Prediction of drug-packaging interactions via molecular dynamics (MD) simulations.

    Science.gov (United States)

    Feenstra, Peter; Brunsteiner, Michael; Khinast, Johannes

    2012-07-15

    The interaction between packaging materials and drug products is an important issue for the pharmaceutical industry, since during manufacturing, processing and storage a drug product is continuously exposed to various packaging materials. The experimental investigation of a great variety of different packaging material-drug product combinations in terms of efficacy and safety can be a costly and time-consuming task. In our work we used molecular dynamics (MD) simulations in order to evaluate the applicability of such methods to pre-screening of the packaging material-solute compatibility. The solvation free energy and the free energy of adsorption of diverse solute/solvent/solid systems were estimated. The results of our simulations agree with experimental values previously published in the literature, which indicates that the methods in question can be used to semi-quantitatively reproduce the solid-liquid interactions of the investigated systems. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Mining association patterns of drug-interactions using post marketing FDA's spontaneous reporting data.

    Science.gov (United States)

    Ibrahim, Heba; Saad, Amr; Abdo, Amany; Sharaf Eldin, A

    2016-04-01

    Pharmacovigilance (PhV) is an important clinical activity with strong implications for population health and clinical research. The main goal of PhV is the timely detection of adverse drug events (ADEs) that are novel in their clinical nature, severity and/or frequency. Drug interactions (DI) pose an important problem in the development of new drugs and post marketing PhV that contribute to 6-30% of all unexpected ADEs. Therefore, the early detection of DI is vital. Spontaneous reporting systems (SRS) have served as the core data collection system for post marketing PhV since the 1960s. The main objective of our study was to particularly identify signals of DI from SRS. In addition, we are presenting an optimized tailored mining algorithm called "hybrid Apriori". The proposed algorithm is based on an optimized and modified association rule mining (ARM) approach. A hybrid Apriori algorithm has been applied to the SRS of the United States Food and Drug Administration's (U.S. FDA) adverse events reporting system (FAERS) in order to extract significant association patterns of drug interaction-adverse event (DIAE). We have assessed the resulting DIAEs qualitatively and quantitatively using two different triage features: a three-element taxonomy and three performance metrics. These features were applied on two random samples of 100 interacting and 100 non-interacting DIAE patterns. Additionally, we have employed logistic regression (LR) statistic method to quantify the magnitude and direction of interactions in order to test for confounding by co-medication in unknown interacting DIAE patterns. Hybrid Apriori extracted 2933 interacting DIAE patterns (including 1256 serious ones) and 530 non-interacting DIAE patterns. Referring to the current knowledge using four different reliable resources of DI, the results showed that the proposed method can extract signals of serious interacting DIAEs. Various association patterns could be identified based on the relationships among

  4. Adherence to drug label recommendations for avoiding drug interactions causing statin-induced myopathy--a nationwide register study.

    Directory of Open Access Journals (Sweden)

    Jennifer Settergren

    Full Text Available To investigate the extent to which clinicians avoid well-established drug-drug interactions that cause statin-induced myopathy. We hypothesised that clinicians would avoid combining erythromycin or verapamil/diltiazem respectively with atorvastatin or simvastatin. In patients with statin-fibrate combination therapy, we hypothesised that gemfibrozil was avoided to the preference of bezafibrate or fenofibrate. When combined with verapamil/diltiazem or fibrates, we hypothesized that the dispensed doses of atorvastatin/simvastatin would be decreased.Cross-sectional analysis of nationwide dispensing data. Odds ratios of interacting erythromycin, verapamil/diltiazem versus respective prevalence of comparator drugs doxycycline, amlodipine/felodipine in patients co-dispensed interacting statins simvastatin/atorvastatin versus patients unexposed (pravastatin/fluvastatin/rosuvastatin was calculated. For fibrates, OR of gemfibrozil versus fenofibrate/bezafibrate in patients co-dispensed any statin was assessed.OR of interacting erythromycin versus comparator doxycycline did not differ between patients on interacting and comparator statins either in patients dispensed high or low statin doses (adjusted OR 0.87; 95% CI 0.60-1.25 and 0.92; 95% CI 0.69-1.23. Interacting statins were less common among patients dispensed verapamil/diltiazem as compared to patients on amlodipine/felodipine (OR high dose 0.62; CI 0.56-0.68 and low dose 0.63; CI 0.58-0.68. Patients on any statin were to a lesser extent dispensed gemfibrozil compared to patients not dispensed a statin (OR high dose 0.65; CI 0.55-0.76 and low dose 0.70; CI 0.63-0.78. Mean DDD (SD for any statin was substantially higher in patients co-dispensed gemfibrozil 178 (149 compared to patients on statin monotherapy 127 (93, (p<0.001.Prescribers may to some extent avoid co-prescription of statins with calcium blockers and fibrates with an increased risk of myopathy. We found no evidence for avoiding co

  5. Impact of the CYP2C8 *3 polymorphism on the drug-drug interaction between gemfibrozil and pioglitazone.

    Science.gov (United States)

    Aquilante, Christina L; Kosmiski, Lisa A; Bourne, David W A; Bushman, Lane R; Daily, Elizabeth B; Hammond, Kyle P; Hopley, Charles W; Kadam, Rajendra S; Kanack, Alexander T; Kompella, Uday B; Le, Merry; Predhomme, Julie A; Rower, Joseph E; Sidhom, Maha S

    2013-01-01

    The objective of this study was to determine the extent to which the CYP2C8*3 allele influences pharmacokinetic variability in the drug-drug interaction between gemfibrozil (CYP2C8 inhibitor) and pioglitazone (CYP2C8 substrate). In this randomized, two phase crossover study, 30 healthy Caucasian subjects were enrolled based on CYP2C8*3 genotype (n = 15, CYP2C8*1/*1; n = 15, CYP2C8*3 carriers). Subjects received a single 15 mg dose of pioglitazone or gemfibrozil 600 mg every 12 h for 4 days with a single 15 mg dose of pioglitazone administered on the morning of day 3. A 48 h pharmacokinetic study followed each pioglitazone dose and the study phases were separated by a 14 day washout period. Gemfibrozil significantly increased mean pioglitazone AUC(0,∞) by 4.3-fold (P gemfibrozil administration was significantly influenced by CYP2C8 genotype. Specifically, CYP2C8*3 carriers had a 5.2-fold mean increase in pioglitazone AUC(0,∞) compared with a 3.3-fold mean increase in CYP2C8*1 homozygotes (P = 0.02). CYP2C8*3 is associated with decreased pioglitazone plasma exposure in vivo and significantly influences the pharmacokinetic magnitude of the gemfibrozil-pioglitazone drug-drug interaction. Additional studies are needed to evaluate the impact of CYP2C8 genetics on the pharmacokinetics of other CYP2C8-mediated drug-drug interactions. © 2012 The Authors. British Journal of Clinical Pharmacology © 2012 The British Pharmacological Society.

  6. Molecular imaging of drug-modulated protein-protein interactions in living subjects.

    Science.gov (United States)

    Paulmurugan, Ramasamy; Massoud, Tarik F; Huang, Jing; Gambhir, Sanjiv S

    2004-03-15

    Networks of protein interactions mediate cellular responses to environmental stimuli and direct the execution of many different cellular functional pathways. Small molecules synthesized within cells or recruited from the external environment mediate many protein interactions. The study of small molecule-mediated interactions of proteins is important to understand abnormal signal transduction pathways in cancer and in drug development and validation. In this study, we used split synthetic renilla luciferase (hRLUC) protein fragment-assisted complementation to evaluate heterodimerization of the human proteins FRB and FKBP12 mediated by the small molecule rapamycin. The concentration of rapamycin required for efficient dimerization and that of its competitive binder ascomycin required for dimerization inhibition were studied in cell lines. The system was dually modulated in cell culture at the transcription level, by controlling nuclear factor kappaB promoter/enhancer elements using tumor necrosis factor alpha, and at the interaction level, by controlling the concentration of the dimerizer rapamycin. The rapamycin-mediated dimerization of FRB and FKBP12 also was studied in living mice by locating, quantifying, and timing the hRLUC complementation-based bioluminescence imaging signal using a cooled charged coupled device camera. This split reporter system can be used to efficiently screen small molecule drugs that modulate protein-protein interactions and also to assess drugs in living animals. Both are essential steps in the preclinical evaluation of candidate pharmaceutical agents targeting protein-protein interactions, including signaling pathways in cancer cells.

  7. Free software to analyse the clinical relevance of drug interactions with antiretroviral agents (SIMARV®) in patients with HIV/AIDS.

    Science.gov (United States)

    Giraldo, N A; Amariles, P; Monsalve, M; Faus, M J

    Highly active antiretroviral therapy has extended the expected lifespan of patients with HIV/AIDS. However, the therapeutic benefits of some drugs used simultaneously with highly active antiretroviral therapy may be adversely affected by drug interactions. The goal was to design and develop a free software to facilitate analysis, assessment, and clinical decision making according to the clinical relevance of drug interactions in patients with HIV/AIDS. A comprehensive Medline/PubMed database search of drug interactions was performed. Articles that recognized any drug interactions in HIV disease were selected. The publications accessed were limited to human studies in English or Spanish, with full texts retrieved. Drug interactions were analyzed, assessed, and grouped into four levels of clinical relevance according to gravity and probability. Software to systematize the information regarding drug interactions and their clinical relevance was designed and developed. Overall, 952 different references were retrieved and 446 selected; in addition, 67 articles were selected from the citation lists of identified articles. A total of 2119 pairs of drug interactions were identified; of this group, 2006 (94.7%) were drug-drug interactions, 1982 (93.5%) had an identified pharmacokinetic mechanism, and 1409 (66.5%) were mediated by enzyme inhibition. In terms of clinical relevance, 1285 (60.6%) drug interactions were clinically significant in patients with HIV (levels 1 and 2). With this information, a software program that facilitates identification and assessment of the clinical relevance of antiretroviral drug interactions (SIMARV ® ) was developed. A free software package with information on 2119 pairs of antiretroviral drug interactions was designed and developed that could facilitate analysis, assessment, and clinical decision making according to the clinical relevance of drug interactions in patients with HIV/AIDS. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Novel Methods for Drug-Target Interaction Prediction using Graph Mining

    KAUST Repository

    Ba Alawi, Wail

    2016-08-31

    The problem of developing drugs that can be used to cure diseases is important and requires a careful approach. Since pursuing the wrong candidate drug for a particular disease could be very costly in terms of time and money, there is a strong interest in minimizing such risks. Drug repositioning has become a hot topic of research, as it helps reduce these risks significantly at the early stages of drug development by reusing an approved drug for the treatment of a different disease. Still, finding new usage for a drug is non-trivial, as it is necessary to find out strong supporting evidence that the proposed new uses of drugs are plausible. Many computational approaches were developed to narrow the list of possible candidate drug-target interactions (DTIs) before any experiments are done. However, many of these approaches suffer from unacceptable levels of false positives. We developed two novel methods based on graph mining networks of drugs and targets. The first method (DASPfind) finds all non-cyclic paths that connect a drug and a target, and using a function that we define, calculates a score from all the paths. This score describes our confidence that DTI is correct. We show that DASPfind significantly outperforms other state-of-the-art methods in predicting the top ranked target for each drug. We demonstrate the utility of DASPfind by predicting 15 novel DTIs over a set of ion channel proteins, and confirming 12 out of these 15 DTIs through experimental evidence reported in literature and online drug databases. The second method (DASPfind+) modifies DASPfind in order to increase the confidence and reliability of the resultant predictions. Based on the structure of the drug-target interaction (DTI) networks, we introduced an optimization scheme that incrementally alters the network structure locally for each drug to achieve more robust top 1 ranked predictions. Moreover, we explored effects of several similarity measures between the targets on the prediction

  9. Drug-drug interactions and adverse drug reactions in polypharmacy among older adults: an integrative review 1

    Science.gov (United States)

    Rodrigues, Maria Cristina Soares; de Oliveira, Cesar

    2016-01-01

    ABSTRACT Objective: to identify and summarize studies examining both drug-drug interactions (DDI) and adverse drug reactions (ADR) in older adults polymedicated. Methods: an integrative review of studies published from January 2008 to December 2013, according to inclusion and exclusion criteria, in MEDLINE and EMBASE electronic databases were performed. Results: forty-seven full-text studies including 14,624,492 older adults (≥ 60 years) were analyzed: 24 (51.1%) concerning ADR, 14 (29.8%) DDI, and 9 studies (19.1%) investigating both DDI and ADR. We found a variety of methodological designs. The reviewed studies reinforced that polypharmacy is a multifactorial process, and predictors and inappropriate prescribing are associated with negative health outcomes, as increasing the frequency and types of ADRs and DDIs involving different drug classes, moreover, some studies show the most successful interventions to optimize prescribing. Conclusions: DDI and ADR among older adults continue to be a significant issue in the worldwide. The findings from the studies included in this integrative review, added to the previous reviews, can contribute to the improvement of advanced practices in geriatric nursing, to promote the safety of older patients in polypharmacy. However, more research is needed to elucidate gaps. PMID:27598380

  10. Investigation of the host-guest complexation between 4-sulfocalix[4]arene and nedaplatin for potential use in drug delivery

    Science.gov (United States)

    Fahmy, Sherif Ashraf; Ponte, Fortuna; Abd El-Rahman, Mohamed K.; Russo, Nino; Sicilia, Emilia; Shoeib, Tamer

    2018-03-01

    Macromolecules including macrocyclic species have been reported to have the potential to encapsulate biologically active compounds such as drugs through host-guest complexation to increase their solubility, stability and bioavailability. In this paper the first experimental and theoretical investigation of the complexation between nedaplatin, a second generation antineoplastic drug, and p-4-sulfocalix[4]arene, a macromolecule possessing a bipolar amphiphilic structure with good biocompatibility and relatively low haemolytic toxicity for potential use as a drug delivery system is presented. Data from 1H NMR, UV, Job's plot analysis, HPLC and DFT calculations are detailed and suggest the formation of a 1:1 complex. The stability constant of the complex was experimentally estimated to be 3.6 × 104 M- 1 and 2.1 × 104 M- 1 which correspond to values of - 6.2 and - 5.9 kcal mol- 1, respectively for the free energy of complexation while the interaction free energy is calculated to be - 4.9 kcal mol- 1. The formed species is shown to be stabilised in solution through hydrogen bonding between the host and the guest which may allow for this strategy to be effective for potential use in drug delivery.

  11. Editorial : Clinical drug interactions | Kokwaro | East African Medical ...

    African Journals Online (AJOL)

    Journal Home > Vol 78, No 10 (2001) >. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register. Editorial: Clinical drug interactions. G. O. Kokwaro. Abstract. (East African Medical Journal 2001 78 (10): 505-506). Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  12. Interaction between ropinirole hydrochloride and aspirin with human serum albumin as binary and ternary systems by multi-spectroscopic, molecular modeling and zeta potential

    Energy Technology Data Exchange (ETDEWEB)

    Mahaki, Hanie, E-mail: hanieh.mahaki@gmail.com [Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad (Iran, Islamic Republic of); Memarpoor-Yazdi, Mina; Chamani, Jamshidkhan [Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad (Iran, Islamic Republic of); Reza Saberi, Mohammad [Medical Chemistry Department, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad (Iran, Islamic Republic of)

    2013-02-15

    The aim of the present study was to describe the competition of ropinirole hydrochloride (RP) and aspirin (ASA) in binding to human serum albumin (HSA) in physiological buffer (pH=7.4) using multi-spectroscopic, molecular modeling and zeta-potential measurements. Fluorescence analysis was used to define the binding and quenching properties of drug-HSA complexes in binary and ternary systems. Fluorescence spectroscopy showed that in the presence of RP, the binding constant of HSA-ASA was increased. Static quenching was confirmed to result in the fluorescence quenching and FRET. The effect of drugs on the conformation of HSA was analyzed using synchronous fluorescence spectroscopy, three-dimensional fluorescence spectra and circular dichroism (CD). The RLS method determined the critical aggregation concentration of drugs on HSA in binary and ternary systems that confirmed the zeta potential results. Structural modeling showed that the affinity of each of the drugs to HSA in binary and ternary systems confirms the spectroscopic results. - Highlights: Black-Right-Pointing-Pointer We studied the interaction of ropinirole hydrochloride and aspirin with HSA. Black-Right-Pointing-Pointer Molecular modeling and zeta-potential used to describe competitive interaction. Black-Right-Pointing-Pointer We determined the critical induced aggregation concentration of both drugs on HSA. Black-Right-Pointing-Pointer The binding mechanism of drugs as separate and simultaneous to HSA has been compared. Black-Right-Pointing-Pointer The binding site of both drugs as simultaneous effects on HSA has been determined.

  13. Preferred drug lists: Potential impact on healthcare economics

    Directory of Open Access Journals (Sweden)

    Kimberly Ovsag

    2008-04-01

    Full Text Available Kimberly Ovsag, Sabrina Hydery, Shaker A MousaPharmaceutical Research Institute at Albany College of Pharmacy, Albany, New York, USAObjectives: To analyze the implementation of Medicaid preferred drug lists (PDLs in a number of states and determine its impact on quality of care and cost relative to other segments of healthcare.Methods: We reviewed research and case studies found by searching library databases, primarily MEDLINE and EBSCOHost, and searching pertinent journals. Keywords initially included “drug lists,” “prior authorization,” “prior approval,” and “Medicaid.” We added terms such as “influence use of other healthcare services,” “quality of care,” and “overall economic impact.” We mainly used primary sources.Results: Based on our literature review, we determined that there are a number of issues regarding Medicaid PDLs that need to be addressed. Some issues include: (a the potential for PDLs to influence the utilization of other healthcare services, (b criteria used by Medicaid for determining acceptance of drugs onto a PDL, (c the effect of PDL implementation on compliance to new regimens, (d the potential effects of restricting medication availability on quality of care, (e administrative costs associated with PDLs, and (f satisfaction rates among patients and medical providers. This review highlighted expected short-term cost savings with limited degree of compromised quality of PDL implementation, but raised the concern about the potential long-term decline in quality of care and overall economic impact.Conclusions: The number of concerns raised indicates that further studies are warranted regarding both short-term cost benefits as well as potential long-term effects of Medicaid PDL implementation. Objective analysis of these effects is necessary to ensure cost-effectiveness and quality of care.Keywords: preferred drug lists, medicaid, healthcare costs, managed care

  14. Modulation of electrostatic interactions to improve controlled drug delivery from nanogels

    Energy Technology Data Exchange (ETDEWEB)

    Mauri, Emanuele; Chincarini, Giulia M.F.; Rigamonti, Riccardo; Magagnin, Luca; Sacchetti, Alessandro, E-mail: alessandro.sacchetti@polimi.it; Rossi, Filippo, E-mail: filippo.rossi@polimi.it

    2017-03-01

    The synthesis of nanogels as devices capable to maintain the drug level within a desired range for a long and sustained period of time is a leading strategy in controlled drug delivery. However, with respect to the good results obtained with antibodies and peptides there are a lot of problems related to the quick and uncontrolled diffusion of small hydrophilic molecules through polymeric network pores. For these reasons research community is pointing toward the use of click strategies to reduce release rates of the linked drugs to the polymer chains. Here we propose an alternative method that considers the electrostatic interactions between polymeric chains and drugs to tune the release kinetics from nanogel network. The main advantage of these systems lies in the fact that the carried drugs are not modified and no chemical reactions take place during their loading and release. In this work we synthesized PEG-PEI based nanogels with different protonation degrees and the release kinetics with charged and uncharged drug mimetics (sodium fluorescein, SF, and rhodamine B, RhB) were studied. Moreover, also the effect of counterion used to induce protonation was taken into account in order to build a tunable drug delivery system able to provide multiple release rates with the same device. - Highlights: • The design of nanogels as drug delivery systems based on electrostatic interaction among drug and polymers is proposed. • Nanogels can be synthetized tuning their positive charge density, according to the protonation of PEI at different pH. • No biorthogonal chemistry strategies are applied to the polymers or drugs. • Drug release is efficiently modulated by charge density of PEI chains. • The effect of counterion on nanogel synthesis is investigated and allows controlling the drug release.

  15. Kidney-on-a-Chip: a New Technology for Predicting Drug Efficacy, Interactions, and Drug-induced Nephrotoxicity.

    Science.gov (United States)

    Lee, Jeonghwan; Kim, Sejoong

    2018-03-08

    The kidneys play a pivotal role in most drug-removal processes and are important when evaluating drug safety. Kidney dysfunction resulting from various drugs is an important issue in clinical practice and during the drug development process. Traditional in vivo animal experiments are limited with respect to evaluating drug efficacy and nephrotoxicity due to discrepancies in drug pharmacokinetics and pharmacodynamics between humans and animals, and static cell culture experiments cannot fully reflect the actual microphysiological environment in humans. A kidney-on-a-chip is a microfluidic device that allows the culture of living renal cells in 3-dimensional channels and mimics the human microphysiological environment, thus simulating the actual drug filtering, absorption, and secretion process.. In this review, we discuss recent developments in microfluidic culturing technique and describe current and future kidney-on-a-chip applications. We focus on pharmacological interactions and drug-induced nephrotoxicity, and additionally discuss the development of multi-organ chips and their possible applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Evaluation of a Potential Metabolism-Mediated Drug-Drug Interaction Between Atomoxetine and Bupropion in Healthy Volunteers.

    Science.gov (United States)

    Todor, Ioana; Popa, Adina; Neag, Maria; Muntean, Dana; Bocsan, Corina; Buzoianu, Anca; Vlase, Laurian; Gheldiu, Ana-Maria; Briciu, Corina

    2016-01-01

    To evaluate the impact of bupropion on the pharmacokinetic profile of atomoxetine and its main active metabolite (glucuronidated form), 4-hydroxyatomoxetine-O-glucuronide, in healthy volunteers. An open-label, non-randomized, two-period, sequential clinical trial was conducted as follows: during Period I (Reference), each volunteer received a single oral dose of 25 mg atomoxetine, whilst during Period II (Test), a combination of 25 mg atomoxetine and 300 mg bupropion was administered to all volunteers, after a pretreatment regimen with bupropion for 7 days. Next, after determining atomoxetine and 4-hydroxyatomoxetine-O-glucuronide plasma concentrations, their pharmacokinetic parameters were calculated using a noncompartmental method and subsequently compared to determine any statistically significant differences between the two periods. Bupropion intake influenced all the pharmacokinetic parameters of both atomoxetine and its metabolite. For atomoxetine, Cmax increased from 226±96.1 to 386±137 ng/mL and more importantly, AUC0-∞ was significantly increasedfrom 1580±1040 to 8060±4160 ng*h/mL, while the mean t1/2 was prolonged after bupropion pretreatment. For 4-hydroxyatomoxetine-O-glucuronide, Cmax and AUC0-∞  were decreased from 707±269 to 212±145 ng/mL and from 5750±1240 to 3860±1220 ng*h/mL, respectively. These results demonstrated that the effect of bupropion on CYP2D6 activity was responsible for an increased systemic exposure to atomoxetine (5.1-fold) and also for a decreased exposure to its main metabolite (1.5-fold). Additional studies are required in order to evaluate the clinical relevance of this pharmacokinetic drug interaction.This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.

  17. Hyperspherical effective interaction for nonlocal potentials

    International Nuclear Information System (INIS)

    Barnea, N.; Leidemann, W.; Orlandini, G.

    2010-01-01

    The effective interaction hyperspherical-harmonics method, formulated for local forces, is generalized to accommodate nonlocal interactions. As for local potentials this formulation retains the separation of the hyper-radial part leading solely to a hyperspherical effective interaction. By applying the method to study ground-state properties of 4 He with a modern effective-field-theory nucleon-nucleon potential model (Idaho-N3LO), one finds a substantial acceleration in the convergence rate of the hyperspherical-harmonics series. Also studied are the binding energies of the six-body nuclei 6 He and 6 Li with the JISP16 nuclear force. Again an excellent convergence is observed.

  18. The role of interleukin-18 in glioblastoma pathology implies therapeutic potential of two old drugs-disulfiram and ritonavir.

    Science.gov (United States)

    Kast, Richard E

    2015-04-09

    Based on reporting in the last several years, an impressive but dismal list of cytotoxic chemotherapies that fail to prolong the median overall survival of patients with glioblastoma has prompted the development of treatment protocols designed to interfere with growth-facilitating signaling systems by using non-cytotoxic, non-oncology drugs. Recent recognition of the pro-mobility stimulus, interleukin-18, as a driver of centrifugal glioblastoma cell migration allows potential treatment adjuncts with disulfiram and ritonavir. Disulfiram and ritonavir are well-tolerated, non-cytotoxic, non-oncology chemotherapeutic drugs that are marketed for the treatment of alcoholism and human immunodeficiency virus (HIV) infection, respectively. Both drugs exhibit an interleukin-18-inhibiting function. Given the favorable tolerability profile of disulfiram and ritonavir, the unlikely drug-drug interaction with temozolomide, and the poor prognosis of glioblastoma, trials of addition of disulfiram and ritonavir to current standard initial treatment of glioblastoma would be warranted.

  19. Correlation between drug–drug interaction-induced Stevens–Johnson syndrome and related deaths in Taiwan

    Directory of Open Access Journals (Sweden)

    Fu-Jen Cheng

    2016-04-01

    Full Text Available Concomitant use of some drugs can lead to interactions between them resulting in severe adverse effects. To date, there are few reports of incidences of Stevens-Johnson syndrome (SJS associated with combination drug administration. Therefore, we studied the relationship between drug combinations and SJS-related mortality, with the hope that a retrospective study of this nature would provide information crucial for the prevention of future drug-drug interaction related deaths attributable to SJS. This retrospective longitudinal study used mortality cases from 1999 to 2008 that were diagnosed as erythema multiforme (International Classification of Diseases, Ninth Revision, Clinical Modification 695.1 from the National Health Insurance database in Taiwan. Statistical comparisons of the results were performed using analysis of variance (ANOVA, independent sample t-tests, and odds ratio (OR. In this way, the relationship between combinations of SJS-inducing drugs and mortality could be determined. A total of 111 patients who had died, including 63 males and 48 females (66.0 ± 20 and 70.0 ± 17.7 years, respectively, were suspected of having experienced drug-drug interaction-related adverse effects. The associated drug combinations included allopurinol and ampicillin (p = 0.049, carbamazepine and sulfamethoxazole/trimethoprim (TMP (p < 0.0001, carbamazepine and phenytoin (p < 0.0001, sulfamethoxazole/TMP and phenytoin (p = 0.015, sulfadoxine and piroxicam (p = 0.045, phenobarbital and cephalexin (p < 0.0001, ampicillin and erythromycin (p < 0.0001, erythromycin and minocycline (p < 0.0001, and vancomycin and ethambutol (p < 0.0001 administered 1 month before the patients' deaths. Caution should be exercised when administering any drugs that may possibly induce SJS. In addition, attention should be paid to ensure prompt identification of possible drug-drug interactions, and patients should be closely monitored. Furthermore

  20. Clinical Pharmacokinetics of Systemically Administered Antileishmanial Drugs

    NARCIS (Netherlands)

    Kip, Anke E; Schellens, Jan H M; Beijnen, Jos H; Dorlo, Thomas P C

    This review describes the pharmacokinetic properties of the systemically administered antileishmanial drugs pentavalent antimony, paromomycin, pentamidine, miltefosine and amphotericin B (AMB), including their absorption, distribution, metabolism and excretion and potential drug-drug interactions.

  1. Potential applications for halloysite nanotubes based drug delivery systems

    Science.gov (United States)

    Sun, Lin

    Drug delivery refers to approaches, formulations, technologies, and systems for transporting a drug in the body. The purpose is to enhance the drug efficacy and to reduce side reactions, which can significantly improve treatment outcomes. Halloysite is a naturally occurred alumino-silicate clay with a tubular structure. It is a biocompatible material with a big surface area which can be used for attachment of targeted molecules. Besides, loaded molecules can present a sustained release manner in solution. These properties make halloysite nanotubes (HNTs) a good option for drug delivery. In this study, a drug delivery system was built based on halloysite via three different fabrication methods: physical adsorption, vacuum loading and layer-by-layer coating. Methotrexate was used as the model drug. Factors that may affect performance in both drug loading and release were tested. Results showed that methotrexate could be incorporated within the HNTs system and released in a sustained manner. Layer-by-layer coating showed a better potential than the other two methods in both MTX loading and release. Besides, lower pH could greatly improve MTX loading and release while the increased number of polyelectrolytes bilayers had a limited impact. Osteosarcoma is the most common primary bone malignancy in children and adolescents. Postoperative recurrence and metastasis has become one of the leading causes for patient death after surgical remove of the tumor mass. A strategy could be a sustained release of chemotherapeutics directly at the primary tumor sites where recurrence would mostly occur. Then, this HNTs based system was tested with osteosarcoma cells in vitro to show the potential of delivering chemotherapeutics in the treatment of osteosarcoma. Methotrexate was incorporated within HNTs with a layer-bylayer coating technique, and drug coated HNTs were filled into nylon-6 which is a common material for surgical sutures in industry. Results showed that (1) methotrexate

  2. Mechanism of the pharmacokinetic interaction between methotrexate and benzimidazoles: potential role for breast cancer resistance protein in clinical drug-drug interactions

    NARCIS (Netherlands)

    Breedveld, Pauline; Zelcer, Noam; Pluim, Dick; Sönmezer, Ozgür; Tibben, Matthijs M.; Beijnen, Jos H.; Schinkel, Alfred H.; van Tellingen, Olaf; Borst, Piet; Schellens, Jan H. M.

    2004-01-01

    The antifolate drug methotrexate (MTX) is transported by breast cancer resistance protein (BCRP; ABCG2) and multidrug resistance-associated protein1-4 (MRP1-4; ABCC1-4). In cancer patients, coadministration of benzimidazoles and MTX can result in profound MTX-induced toxicity coinciding with an

  3. Separable expansions for local potentials with Coulomb interactions

    International Nuclear Information System (INIS)

    Adhikari, S.K.

    1976-01-01

    If two particles are interacting via a short range potential and a repulsive Coulomb potential the t matrix can be written as a sum of the Coulomb and the ''nuclear'' t matrices. In order to solve the three-nucleon problem with Coulomb interactions usually we need a separable representation of this ''nuclear'' t matrix. A recently proposed method for finding a separable expansion for local potentials is here extended to find a rapidly convergent separable expansion, with analytic form factors, for the ''nuclear'' part of the t matrix of a local potential, in the presence of Coulomb interactions. The method is illustrated for a two-term Malfliet-Tjon potential. In each rank the ''nuclear'' phase shift is close to the corresponding phase shift when the Coulomb interaction is switched off

  4. Targeted drugs in radiation therapy

    International Nuclear Information System (INIS)

    Favaudon, V.; Hennequin, C.; Hennequin, C.

    2004-01-01

    New drugs aiming at the development of targeted therapies have been assayed in combination with ionizing radiation over the past few years. The rationale of this concept comes from the fact that the cytotoxic potential of targeted drugs is limited, thus requiring concomitant association with a cytotoxic agent for the eradication of tumor cells. Conversely a low level of cumulative toxicity is expected from targeted drugs. Most targeted drugs act through inhibition of post-translational modifications of proteins, such as dimerization of growth factor receptors, prenylation reactions, or phosphorylation of tyrosine or serine-threonine residues. Many systems involving the proteasome, neo-angiogenesis promoters, TGF-β, cyclooxygenase or the transcription factor NF-κB, are currently under investigation in hopes they will allow a control of cell proliferation, apoptosis, cell cycle progression, tumor angiogenesis and inflammation. A few drugs have demonstrated an antitumor potential in particular phenotypes. In most instances, however, radiation-drug interactions proved to be strictly additive in terms of cell growth inhibition or induced cell death. Strong potentiation of the response to radiotherapy is expected to require interaction with DNA repair mechanisms. (authors)

  5. Preferences of Patients and Pharmacists with Regard to the Management of Drug-Drug Interactions : A Choice-Based Conjoint Analysis

    NARCIS (Netherlands)

    Heringa, Mette; Floor-Schreudering, Annemieke; Wouters, Hans; De Smet, Peter A G M; Bouvy, Marcel L

    INTRODUCTION: The management of drug-drug interactions (DDIs) is a complex process in which risk-benefit assessments should be combined with the patient's perspective. OBJECTIVE: The aim of this study was to determine patients' and pharmacists' preferences regarding DDI management. METHODS: We

  6. An Integrative Data Science Pipeline to Identify Novel Drug Interactions that Prolong the QT Interval.

    Science.gov (United States)

    Lorberbaum, Tal; Sampson, Kevin J; Woosley, Raymond L; Kass, Robert S; Tatonetti, Nicholas P

    2016-05-01

    Drug-induced prolongation of the QT interval on the electrocardiogram (long QT syndrome, LQTS) can lead to a potentially fatal ventricular arrhythmia known as torsades de pointes (TdP). Over 40 drugs with both cardiac and non-cardiac indications are associated with increased risk of TdP, but drug-drug interactions contributing to LQTS (QT-DDIs) remain poorly characterized. Traditional methods for mining observational healthcare data are poorly equipped to detect QT-DDI signals due to low reporting numbers and lack of direct evidence for LQTS. We hypothesized that LQTS could be identified latently using an adverse event (AE) fingerprint of more commonly reported AEs. We aimed to generate an integrated data science pipeline that addresses current limitations by identifying latent signals for QT-DDIs in the US FDA's Adverse Event Reporting System (FAERS) and retrospectively validating these predictions using electrocardiogram data in electronic health records (EHRs). We trained a model to identify an AE fingerprint for risk of TdP for single drugs and applied this model to drug pair data to predict novel DDIs. In the EHR at Columbia University Medical Center, we compared the QTc intervals of patients prescribed the flagged drug pairs with patients prescribed either drug individually. We created an AE fingerprint consisting of 13 latently detected side effects. This model significantly outperformed a direct evidence control model in the detection of established interactions (p = 1.62E-3) and significantly enriched for validated QT-DDIs in the EHR (p = 0.01). Of 889 pairs flagged in FAERS, eight novel QT-DDIs were significantly associated with prolonged QTc intervals in the EHR and were not due to co-prescribed medications. Latent signal detection in FAERS validated using the EHR presents an automated and data-driven approach for systematically identifying novel QT-DDIs. The high-confidence hypotheses flagged using this method warrant further investigation.

  7. Analysis of the Mechanism of Prolonged Persistence of Drug Interaction between Terbinafine and Amitriptyline or Nortriptyline.

    Science.gov (United States)

    Mikami, Akiko; Hori, Satoko; Ohtani, Hisakazu; Sawada, Yasufumi

    2017-01-01

    The purpose of the study was to quantitatively estimate and predict drug interactions between terbinafine and tricyclic antidepressants (TCAs), amitriptyline or nortriptyline, based on in vitro studies. Inhibition of TCA-metabolizing activity by terbinafine was investigated using human liver microsomes. Based on the unbound K i values obtained in vitro and reported pharmacokinetic parameters, a pharmacokinetic model of drug interaction was fitted to the reported plasma concentration profiles of TCAs administered concomitantly with terbinafine to obtain the drug-drug interaction parameters. Then, the model was used to predict nortriptyline plasma concentration with concomitant administration of terbinafine and changes of area under the curve (AUC) of nortriptyline after cessation of terbinafine. The CYP2D6 inhibitory potency of terbinafine was unaffected by preincubation, so the inhibition seems to be reversible. Terbinafine competitively inhibited amitriptyline or nortriptyline E-10-hydroxylation, with unbound K i values of 13.7 and 12.4 nM, respectively. Observed plasma concentrations of TCAs administered concomitantly with terbinafine were successfully simulated with the drug interaction model using the in vitro parameters. Model-predicted nortriptyline plasma concentration after concomitant nortriptylene/terbinafine administration for two weeks exceeded the toxic level, and drug interaction was predicted to be prolonged; the AUC of nortriptyline was predicted to be increased by 2.5- or 2.0- and 1.5-fold at 0, 3 and 6 months after cessation of terbinafine, respectively. The developed model enables us to quantitatively predict the prolonged drug interaction between terbinafine and TCAs. The model should be helpful for clinical management of terbinafine-CYP2D6 substrate drug interactions, which are difficult to predict due to their time-dependency.

  8. Responsiveness to physicians' requests for information concerning drug interactions: a comparison of brand and generic companies.

    Science.gov (United States)

    Thomas, M; Lexchin, J

    1990-01-01

    Research-based pharmaceutical companies maintain that there are important differences between themselves and their generic competitors. Prominent among them is an alleged greater ability to provide accurate and rapid responses to requests from physicians for information about drug products. This study evaluates pharmaceutical company behavior with regard to these issues. Two drug-drug interactions were identified, along with all of the companies in Canada marketing any of the four drugs involved. Each company received a letter describing symptoms suggestive of an interaction in a patient taking its particular product and the relevant second drug. The companies were asked if they were aware of any evidence of an interaction involving the two drugs. They were also asked to provide references regarding the interaction. Responses were received from all companies contacted except one. There were no significant differences (in the hypothesized direction) between the generic and brand companies with regard to either the accuracy or promptness of the response, or the usefulness of the references cited. On the contrary, generic firms were markedly quicker to respond than were brand manufacturers. The latter were slightly more likely to acknowledge evidence of an adverse drug interaction, and to provide useful references to relevant published research.

  9. Interaction of anthraquinone anti-cancer drugs with DNA:Experimental and computational quantum chemical study

    Science.gov (United States)

    Al-Otaibi, Jamelah S.; Teesdale Spittle, Paul; El Gogary, Tarek M.

    2017-01-01

    Anthraquinones form the basis of several anticancer drugs. Anthraquinones anticancer drugs carry out their cytotoxic activities through their interaction with DNA, and inhibition of topoisomerase II activity. Anthraquinones (AQ4 and AQ4H) were synthesized and studied along with 1,4-DAAQ by computational and experimental tools. The purpose of this study is to shade more light on mechanism of interaction between anthraquinone DNA affinic agents and different types of DNA. This study will lead to gain of information useful for drug design and development. Molecular structures were optimized using DFT B3LYP/6-31 + G(d). Depending on intramolecular hydrogen bonding interactions two conformers of AQ4 were detected and computed as 25.667 kcal/mol apart. Molecular reactivity of the anthraquinone compounds was explored using global and condensed descriptors (electrophilicity and Fukui functions). Molecular docking studies for the inhibition of CDK2 and DNA binding were carried out to explore the anti cancer potency of these drugs. NMR and UV-VIS electronic absorption spectra of anthraquinones/DNA were investigated at the physiological pH. The interaction of the three anthraquinones (AQ4, AQ4H and 1,4-DAAQ) were studied with three DNA (calf thymus DNA, (Poly[dA].Poly[dT]) and (Poly[dG].Poly[dC]). NMR study shows a qualitative pattern of drug/DNA interaction in terms of band shift and broadening. UV-VIS electronic absorption spectra were employed to measure the affinity constants of drug/DNA binding using Scatchard analysis.

  10. Interaction of 3‧,4‧,6‧-trimyristoyl-uridine derivative as potential anticancer drug with phospholipids of tumorigenic and non-tumorigenic cells

    Science.gov (United States)

    Salis, Luiz Fernando Grosso; Jaroque, Guilherme Nuñez; Escobar, Jhon Fernando Berrío; Giordani, Cristiano; Martinez, Alejandro Martinez; Fernández, Diana Margarita Márquez; Castelli, Francesco; Sarpietro, Maria Grazia; Caseli, Luciano

    2017-12-01

    Investigating the mechanism of action of drugs whose pharmaceutical activity is associated with cell membranes is fundamental to comprehending the biochemical and biophysical processes that occur on membrane surfaces. In this work, we investigated the interaction of an ester-type derivative of uridine, 3‧,4‧,6‧-trimyristoyl uridine, with models for cell membranes formed by lipid monolayers at the air-water interface. For that, selected lipids have been chosen in order to mimic tumorigenic and non-tumorigenic cells. For mixed monolayers with 2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) or 1,2-dihexadecanoyl-sn-glycero-3-phospho-L-serine (DPPS), the surface pressure-area isotherms exhibited a noticeable shift to lower areas in relation to the areas predicted for ideal mixtures, indicating a condensation of the monolayer structure. Changes in the viscoelastic properties of the interfacial film could be inferred by analyzing the compressibility modulus of the monolayer. Structural and morphological changes were also evidenced by using vibrational spectroscopy and Brewster angle microscopy, respectively, with distinctive effects on DPPC and DPPS. As conclusion we can state that the lipid composition of the monolayer modulates the interaction with this lipophilic drug, which may have important implications in understanding how this drug acts on specific sites of the cellular membrane.

  11. On singular interaction potentials in classical statistical mechanics

    International Nuclear Information System (INIS)

    Zagrebnov, V.A.; Pastur, L.A.

    1978-01-01

    A classical system of particles with stable two-body interaction potential is considered. It is shown that for a certain class of highly singular stable two-body potentials a cut-off procedure preserves the stability of the potential. The thermodynamical potentials (pressure and free energy density) and correlation functions are proved to have the property of asymptotic independence with respect to the continuation of the interaction potentials near singularity

  12. Influence of lipophilicity on drug-cyclodextrin interactions: A calorimetric study

    International Nuclear Information System (INIS)

    Waters, Laura J.; Bedford, Susan; Parkes, Gareth M.B.; Mitchell, J.C.

    2010-01-01

    This study presents a systematic investigation of the interaction of three functionally related drugs, ibuprofen, ketoprofen and flurbiprofen, with two distinct forms of cyclodextrin at three specific temperatures, 298, 303 and 310 K using isothermal titration calorimetry (ITC). Although all three pharmaceutical compounds have similar pKa values, they exhibit widely differing lipophilicities. While previous authors have presented data regarding the binding of flurbiprofen and ibuprofen with β-cyclodextrin, this is the first report of the interaction of all three drug substances with β-cyclodextrin and 2-(hydroxypropyl)-β-cyclodextrin at controlled pH and temperature. For all scenarios, the associated changes in Gibbs free energy, enthalpy and entropy are presented alongside the stoichiometry and binding constants concerned. In all cases the binding was found to occur at a 1:1 ratio with an associated negative enthalpy and Gibbs free energy with the formation of the complex enthalpically, rather than entropically driven. The data further demonstrates a clear relationship between the thermodynamic behaviour and log P of the drug molecules. This work confirms the suitability of ITC to determine thermodynamic data for drug-cyclodextrin complex formations and provides an insight into the selection of appropriate cyclodextrins for bespoke pharmaceutical formulations.

  13. Influence of lipophilicity on drug-cyclodextrin interactions: A calorimetric study

    Energy Technology Data Exchange (ETDEWEB)

    Waters, Laura J., E-mail: l.waters@hud.ac.uk [School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH (United Kingdom); Bedford, Susan; Parkes, Gareth M.B. [School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH (United Kingdom); Mitchell, J.C. [Medway Sciences, School of Science, University of Greenwich at Medway, Chatham Maritime, Kent ME4 4TB (United Kingdom)

    2010-11-20

    This study presents a systematic investigation of the interaction of three functionally related drugs, ibuprofen, ketoprofen and flurbiprofen, with two distinct forms of cyclodextrin at three specific temperatures, 298, 303 and 310 K using isothermal titration calorimetry (ITC). Although all three pharmaceutical compounds have similar pKa values, they exhibit widely differing lipophilicities. While previous authors have presented data regarding the binding of flurbiprofen and ibuprofen with {beta}-cyclodextrin, this is the first report of the interaction of all three drug substances with {beta}-cyclodextrin and 2-(hydroxypropyl)-{beta}-cyclodextrin at controlled pH and temperature. For all scenarios, the associated changes in Gibbs free energy, enthalpy and entropy are presented alongside the stoichiometry and binding constants concerned. In all cases the binding was found to occur at a 1:1 ratio with an associated negative enthalpy and Gibbs free energy with the formation of the complex enthalpically, rather than entropically driven. The data further demonstrates a clear relationship between the thermodynamic behaviour and log P of the drug molecules. This work confirms the suitability of ITC to determine thermodynamic data for drug-cyclodextrin complex formations and provides an insight into the selection of appropriate cyclodextrins for bespoke pharmaceutical formulations.

  14. Therapeutic potential of cannabis-related drugs.

    Science.gov (United States)

    Alexander, Stephen P H

    2016-01-04

    In this review, I will consider the dual nature of Cannabis and cannabinoids. The duality arises from the potential and actuality of cannabinoids in the laboratory and clinic and the 'abuse' of Cannabis outside the clinic. The therapeutic areas currently best associated with exploitation of Cannabis-related medicines include pain, epilepsy, feeding disorders, multiple sclerosis and glaucoma. As with every other medicinal drug of course, the 'trick' will be to maximise the benefit and minimise the cost. After millennia of proximity and exploitation of the Cannabis plant, we are still playing catch up with an understanding of its potential influence for medicinal benefit. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Dual process interaction model of HIV-risk behaviors among drug offenders.

    Science.gov (United States)

    Ames, Susan L; Grenard, Jerry L; Stacy, Alan W

    2013-03-01

    This study evaluated dual process interaction models of HIV-risk behavior among drug offenders. A dual process approach suggests that decisions to engage in appetitive behaviors result from a dynamic interplay between a relatively automatic associative system and an executive control system. One synergistic type of interplay suggests that executive functions may dampen or block effects of spontaneously activated associations. Consistent with this model, latent variable interaction analyses revealed that drug offenders scoring higher in affective decision making were relatively protected from predictive effects of spontaneous sex associations promoting risky sex. Among drug offenders with lower levels of affective decision making ability, spontaneous sexually-related associations more strongly predicted risky sex (lack of condom use and greater number of sex partners). These findings help elucidate associative and control process effects on appetitive behaviors and are important for explaining why some individuals engage in risky sex, while others are relatively protected.

  16. Improved prediction of drug-target interactions using regularized least squares integrating with kernel fusion technique

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Ming; Wang, Yanli, E-mail: ywang@ncbi.nlm.nih.gov; Bryant, Stephen H., E-mail: bryant@ncbi.nlm.nih.gov

    2016-02-25

    Identification of drug-target interactions (DTI) is a central task in drug discovery processes. In this work, a simple but effective regularized least squares integrating with nonlinear kernel fusion (RLS-KF) algorithm is proposed to perform DTI predictions. Using benchmark DTI datasets, our proposed algorithm achieves the state-of-the-art results with area under precision–recall curve (AUPR) of 0.915, 0.925, 0.853 and 0.909 for enzymes, ion channels (IC), G protein-coupled receptors (GPCR) and nuclear receptors (NR) based on 10 fold cross-validation. The performance can further be improved by using a recalculated kernel matrix, especially for the small set of nuclear receptors with AUPR of 0.945. Importantly, most of the top ranked interaction predictions can be validated by experimental data reported in the literature, bioassay results in the PubChem BioAssay database, as well as other previous studies. Our analysis suggests that the proposed RLS-KF is helpful for studying DTI, drug repositioning as well as polypharmacology, and may help to accelerate drug discovery by identifying novel drug targets. - Graphical abstract: Flowchart of the proposed RLS-KF algorithm for drug-target interaction predictions. - Highlights: • A nonlinear kernel fusion algorithm is proposed to perform drug-target interaction predictions. • Performance can further be improved by using the recalculated kernel. • Top predictions can be validated by experimental data.

  17. Improved prediction of drug-target interactions using regularized least squares integrating with kernel fusion technique

    International Nuclear Information System (INIS)

    Hao, Ming; Wang, Yanli; Bryant, Stephen H.

    2016-01-01

    Identification of drug-target interactions (DTI) is a central task in drug discovery processes. In this work, a simple but effective regularized least squares integrating with nonlinear kernel fusion (RLS-KF) algorithm is proposed to perform DTI predictions. Using benchmark DTI datasets, our proposed algorithm achieves the state-of-the-art results with area under precision–recall curve (AUPR) of 0.915, 0.925, 0.853 and 0.909 for enzymes, ion channels (IC), G protein-coupled receptors (GPCR) and nuclear receptors (NR) based on 10 fold cross-validation. The performance can further be improved by using a recalculated kernel matrix, especially for the small set of nuclear receptors with AUPR of 0.945. Importantly, most of the top ranked interaction predictions can be validated by experimental data reported in the literature, bioassay results in the PubChem BioAssay database, as well as other previous studies. Our analysis suggests that the proposed RLS-KF is helpful for studying DTI, drug repositioning as well as polypharmacology, and may help to accelerate drug discovery by identifying novel drug targets. - Graphical abstract: Flowchart of the proposed RLS-KF algorithm for drug-target interaction predictions. - Highlights: • A nonlinear kernel fusion algorithm is proposed to perform drug-target interaction predictions. • Performance can further be improved by using the recalculated kernel. • Top predictions can be validated by experimental data.

  18. Effects of Social Interaction and Warm Ambient Temperature on Brain Hyperthermia Induced by the Designer Drugs Methylone and MDPV

    Science.gov (United States)

    Kiyatkin, Eugene A; Kim, Albert H; Wakabayashi, Ken T; Baumann, Michael H; Shaham, Yavin

    2015-01-01

    3,4-Methylenedioxymethcathinone (methylone) and 3,4-methylenedioxypyrovalerone (MDPV) are new drugs of abuse that have gained worldwide popularity. These drugs are structurally similar to 3,4-methylenedioxymethamphetamine (MDMA) and share many of its physiological and behavioral effects in humans, including the development of hyperthermia during acute intoxication. Here, we examined the effects of methylone (1–9 mg/kg, s.c.) or MDPV (0.1–1.0 mg/kg, s.c.) on brain temperature homeostasis in rats maintained in a standard laboratory environment (single-housed in a quiet rest at 22 °C) and under conditions that model human drug use (social interaction and 29 °C ambient temperature). By simultaneously monitoring temperatures in the nucleus accumbens, temporal muscle, and facial skin, we assessed the effects of methylone and MDPV on intra-brain heat production and cutaneous vascular tone, two critical factors that control brain temperature responses. Both methylone and MDPV dose-dependently increased brain temperature, but even at high doses that induced robust locomotor activation, hyperthermia was modest in magnitude (up to ∼2 °C). Both drugs also induced dose-dependent peripheral vasoconstriction, which appears to be a primary mechanism determining the brain hyperthermic responses. In contrast to the powerful potentiation of MDMA-induced hyperthermia by social interaction and warm ambient temperature, such potentiation was absent for methylone and minimal for MDPV. Taken together, despite structural similarities to MDMA, exposure to methylone or MDPV under conditions commonly associated with human drug use does not lead to profound elevations in brain temperature and sustained vasoconstriction, two critical factors associated with MDMA toxicity. PMID:25074640

  19. An attention-based effective neural model for drug-drug interactions extraction.

    Science.gov (United States)

    Zheng, Wei; Lin, Hongfei; Luo, Ling; Zhao, Zhehuan; Li, Zhengguang; Zhang, Yijia; Yang, Zhihao; Wang, Jian

    2017-10-10

    Drug-drug interactions (DDIs) often bring unexpected side effects. The clinical recognition of DDIs is a crucial issue for both patient safety and healthcare cost control. However, although text-mining-based systems explore various methods to classify DDIs, the classification performance with regard to DDIs in long and complex sentences is still unsatisfactory. In this study, we propose an effective model that classifies DDIs from the literature by combining an attention mechanism and a recurrent neural network with long short-term memory (LSTM) units. In our approach, first, a candidate-drug-oriented input attention acting on word-embedding vectors automatically learns which words are more influential for a given drug pair. Next, the inputs merging the position- and POS-embedding vectors are passed to a bidirectional LSTM layer whose outputs at the last time step represent the high-level semantic information of the whole sentence. Finally, a softmax layer performs DDI classification. Experimental results from the DDIExtraction 2013 corpus show that our system performs the best with respect to detection and classification (84.0% and 77.3%, respectively) compared with other state-of-the-art methods. In particular, for the Medline-2013 dataset with long and complex sentences, our F-score far exceeds those of top-ranking systems by 12.6%. Our approach effectively improves the performance of DDI classification tasks. Experimental analysis demonstrates that our model performs better with respect to recognizing not only close-range but also long-range patterns among words, especially for long, complex and compound sentences.

  20. Interactions of Rosiglitazone and Anti.Arrhythmic Drugs in Animal ...

    African Journals Online (AJOL)

    Interactions of Rosiglitazone and Anti.Arrhythmic Drugs in Animal Model. YM Mohammed, EI Mohammed, N Mohiuddin, SS Syeda. Abstract. Background: Diabetes increases the risk of vascular problems by two times compared with a healthy individual, with deposition of fats in blood vessel and this includes cardiovascular ...

  1. The interaction of drug use, sex work, and HIV among transgender women.

    Science.gov (United States)

    Hoffman, Beth R

    2014-06-01

    Transgender women have a higher prevalence of drug use, HIV, drug use, and sex work than the general population. This article explores the interaction of these variables and discusses how sex work and drug use behaviors contribute to the high rates of HIV. A model predicting HIV rates with sex work and drug use as well as these behaviors in the transgender woman's social network is presented. Challenges to intervening with transgender women, as well as suggestions and criteria for successful interventions, are discussed.

  2. In vitro, in vivo, and clinical studies of tedizolid to assess the potential for peripheral or central monoamine oxidase interactions.

    Science.gov (United States)

    Flanagan, S; Bartizal, K; Minassian, S L; Fang, E; Prokocimer, P

    2013-07-01

    Tedizolid phosphate is a novel oxazolidinone prodrug whose active moiety, tedizolid, has improved potency against Gram-positive pathogens and pharmacokinetics, allowing once-daily administration. Given linezolid warnings for drug-drug and drug-food interactions mediated by monoamine oxidase (MAO) inhibition, including sporadic serotonergic toxicity, these studies evaluated tedizolid for potential MAO interactions. In vitro, tedizolid and linezolid were reversible inhibitors of human MAO-A and MAO-B; the 50% inhibitory concentration (IC50) for tedizolid was 8.7 μM for MAO-A and 5.7 μM for MAO-B and 46.0 and 2.1 μM, respectively, with linezolid. Tedizolid phosphate was negative in the mouse head twitch model of serotonergic activity. Two randomized placebo-controlled crossover clinical studies assessed the potential of 200 mg/day tedizolid phosphate (at steady state) to enhance pressor responses to coadministered oral tyramine or pseudoephedrine. Sensitivity to tyramine was determined by comparing the concentration of tyramine required to elicit a ≥ 30-mmHg increase in systolic blood pressure (TYR30) when administered with placebo versus tedizolid phosphate. The geometric mean tyramine sensitivity ratio (placebo TYR30/tedizolid phosphate TYR30) was 1.33; a ratio of ≥ 2 is considered clinically relevant. In the pseudoephedrine study, mean maximum systolic blood pressure was not significantly different when pseudoephedrine was coadministered with tedizolid phosphate versus placebo. In summary, tedizolid is a weak, reversible inhibitor of MAO-A and MAO-B in vitro. Provocative testing in humans and animal models failed to uncover significant signals that would suggest potential for hypertensive or serotonergic adverse consequences at the therapeutic dose of tedizolid phosphate. Clinical studies are registered at www.clinicaltrials.gov as NCT01539473 (tyramine interaction study conducted at Covance Clinical Research Center, Evansville, IN) and NCT01577459

  3. Improving drug policy: The potential of broader democratic participation.

    Science.gov (United States)

    Ritter, Alison; Lancaster, Kari; Diprose, Rosalyn

    2018-05-01

    Policies concerned with illicit drugs vex governments. While the 'evidence-based policy' paradigm argues that governments should be informed by 'what works', in practice policy makers rarely operate this way. Moreover the evidence-based policy paradigm fails to account for democratic participatory processes, particularly how community members and people who use drugs might be included. The aim of this paper is to explore the political science thinking about democratic participation and the potential afforded in 'deliberative democracy' approaches, such as Citizens Juries and other mini-publics for improved drug policy processes. Deliberative democracy, through its focus on inclusion, equality and reasoned discussion, shows potential for drug policy reform and shifts the focus from reliance on and privileging of experts and scientific evidence. But the very nature of this kind of 'deliberation' may delimit participation, notably through its insistence on authorised modes of communication. Other forms of participation beyond reasoned deliberation aligned with the ontological view that participatory processes themselves are constitutive of subject positions and policy problems, may generate opportunities for considering how the deleterious effects of authorised modes of communication might be overcome. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Effect of Fruit/Vegetable-Drug Interactions on CYP450, OATP and p ...

    African Journals Online (AJOL)

    Purpose: To review the concomitant use of certain drugs with fruit/vegetable juices that may lead to drug-juice interactions resulting in medication-related problems. Method: In this systematic review, online databases (PubMed, Google Scholar and Science Direct) were searched for information on juices derived from fruits ...

  5. [Role of food interaction pharmacokinetic studies in drug development. Food interaction studies of theophylline and nifedipine retard and buspirone tablets].

    Science.gov (United States)

    Drabant, S; Klebovich, I; Gachályi, B; Renczes, G; Farsang, C

    1998-09-01

    Due to several mechanism, meals may modify the pharmacokinetics of drug products, thereby eliciting to clinically significant food interaction. Food interactions with the drug substance and with the drug formulation should be distinguished. Food interaction of different drug products containing the same active ingredient can be various depending on the pharmaceutical formulation technology. Particularly, in the case of modified release products, the food/formulation interaction can play an important role in the development of food interaction. Well known example, that bioavailability of theophylline can be influenced in different way (either increased, decreased or unchanged) by concomitant intake of food in the case of different sustained release products. The role and methods of food interaction studies in the different kinds of drug development (new chemical entity, modified release products, generics) are reviewed. Prediction of food effect response on the basis of the physicochemical and pharmacokinetic characteristics of the drug molecule or formulations is discussed. The results of three food interaction studies carried out the products of EGIS Pharmaceuticals Ltd. are also reviewed. The pharmacokinetic parameters of theophyllin 400 mg retard tablet were practically the same in both fasting condition and administration after consumption of a high fat containing standard breakfast. The ingestion of a high fat containing breakfast, increased the AUC of nifedipine from 259.0 +/- 101.2 ng h/ml to 326.7 +/- 122.5 ng h/ml and Cmax from 34.5 +/- 15.9 ng/ml to 74.3 +/- 23.9 ng/ml in case of nifedipine 20 mg retard tablet, in agreement with the data of literature. The statistical evaluation indicated significant differences between the pharmacokinetic parameters in the case of two administrations (before and after meal). The effect of a high fat containing breakfast for a generic version of buspiron 10 mg tablet and the bioequivalence after food consumption were

  6. A Synthetic Biology Project - Developing a single-molecule device for screening drug-target interactions.

    Science.gov (United States)

    Firman, Keith; Evans, Luke; Youell, James

    2012-07-16

    This review describes a European-funded project in the area of Synthetic Biology. The project seeks to demonstrate the application of engineering techniques and methodologies to the design and construction of a biosensor for detecting drug-target interactions at the single-molecule level. Production of the proteins required for the system followed the principle of previously described "bioparts" concepts (a system where a database of biological parts - promoters, genes, terminators, linking tags and cleavage sequences - is used to construct novel gene assemblies) and cassette-type assembly of gene expression systems (the concept of linking different "bioparts" to produce functional "cassettes"), but problems were quickly identified with these approaches. DNA substrates for the device were also constructed using a cassette-system. Finally, micro-engineering was used to build a magnetoresistive Magnetic Tweezer device for detection of single molecule DNA modifying enzymes (motors), while the possibility of constructing a Hall Effect version of this device was explored. The device is currently being used to study helicases from Plasmodium as potential targets for anti-malarial drugs, but we also suggest other potential uses for the device. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  7. A regulatory perspective on the abuse potential evaluation of novel stimulant drugs in the United States.

    Science.gov (United States)

    Calderon, Silvia N; Klein, Michael

    2014-12-01

    In the United States of America (USA), the abuse potential assessment of a drug is performed as part of the safety evaluation of a drug under development, and to evaluate if the drug needs to be subject to controls that would minimize the abuse of the drug once on the market. The assessment of the abuse potential of new drugs consists of a scientific and medical evaluation of all data related to abuse of the drug. This paper describes the regulatory framework for evaluating the abuse potential of new drugs, in general, including novel stimulants. The role of the United States Food and Drug Administration (FDA) in the evaluation of the abuse potential of drugs, and its role in drug control are also discussed. A definition of abuse potential, an overview of the currently accepted approaches to evaluating the abuse potential of a drug, as well as a description of the criteria that applies when recommending a specific level of control (i.e., a Schedule) for a drug under the Controlled Substances Act (CSA). This article is part of the Special Issue entitled 'CNS Stimulants'. Published by Elsevier Ltd.

  8. Evaluation of salivary flow and drug interactions in patients with a diagnosis of diabetes mellitus.

    Science.gov (United States)

    Noboru Kuroiwa, D; Ruiz Da Cunha Melo, M A; Balducci, I; Bortolin Lodi, K; Ghislaine Oliveira Alves, M; Dias Almeida, J

    2014-01-01

    Diabetes mellitus (DM) is one of the most common chronic diseases responsible for substantial loss on the quality of life in elderly. Oral manifestations in these patients include xerostomia and alterations in salivary flow and salivary pH. The aim of this study was to analyze the relationship between salivary flow, pH and medication. The sample consisted of 53 subjects aged 60 years and older, including 30 patients with a diagnosis of type 2 DM and 23 controls. Salivary flow was 1.066±0.814 mL/min in the control group and 0.955±0.606 mL/min in the DM group, with no significant difference between groups (P=0.588). There was a significant difference (P=0.045) in mean salivary pH (DM: 5.267±0.828; control: 5.783±0.951). Only 32.07% of the patients reported to remove their denture while sleeping. Three of 53 subjects using medications presented severe drug interactions. In summary, dentists must be able to make the diagnosis, to recognize all factors related to salivary alterations in DM, and to prescribe adequate treatment related to oral condition. Patients with DM presented salivary pH below normal reference values. It is important to advice patients to remove their denture while sleeping in order to prevent traumatic irritations and infections with Candida albicans. Potentially harmful cases of drug interactions have to be observed in elderly patient. Further studies focusing on the nature of drug interactions as the cause of adverse events such as xerostomia and increased salivary pH are needed.

  9. A Novel Design for Drug-Drug Interaction Alerts Improves Prescribing Efficiency.

    Science.gov (United States)

    Russ, Alissa L; Chen, Siying; Melton, Brittany L; Johnson, Elizabette G; Spina, Jeffrey R; Weiner, Michael; Zillich, Alan J

    2015-09-01

    Drug-drug interactions (DDIs) are common in clinical care and pose serious risks for patients. Electronic health records display DDI alerts that can influence prescribers, but the interface design of DDI alerts has largely been unstudied. In this study, the objective was to apply human factors engineering principles to alert design. It was hypothesized that redesigned DDI alerts would significantly improve prescribers' efficiency and reduce prescribing errors. In a counterbalanced, crossover study with prescribers, two DDI alert designs were evaluated. Department of Veterans Affairs (VA) prescribers were video recorded as they completed fictitious patient scenarios, which included DDI alerts of varying severity. Efficiency was measured from time-stamped recordings. Prescribing errors were evaluated against predefined criteria. Efficiency and prescribing errors were analyzed with the Wilcoxon signed-rank test. Other usability data were collected on the adequacy of alert content, prescribers' use of the DDI monograph, and alert navigation. Twenty prescribers completed patient scenarios for both designs. Prescribers resolved redesigned alerts in about half the time (redesign: 52 seconds versus original design: 97 seconds; p<.001). Prescribing errors were not significantly different between the two designs. Usability results indicate that DDI alerts might be enhanced by facilitating easier access to laboratory data and dosing information and by allowing prescribers to cancel either interacting medication directly from the alert. Results also suggest that neither design provided adequate information for decision making via the primary interface. Applying human factors principles to DDI alerts improved overall efficiency. Aspects of DDI alert design that could be further enhanced prior to implementation were also identified.

  10. physico-chemical studies on DNA-drugs interaction and their analytical applications

    International Nuclear Information System (INIS)

    Kandil, S.A

    2003-01-01

    The present thesis is devoted to study the interaction of some antibacterial agents i.e. fluoroquinolones . these agents include ciprofloxacin, norfloxacin , ofloxacin , pefloxacin and levofloxacin with DNA. voltammetric and spectrophotometric methods were used to carry out this study. Also the interaction of the suggested drugs with DNA at the surface of carbon electrode by cyclic voltammetry and differential pulse techniques is examined. The work comprises three chapters: (1) includes an introduction of voltammetry , differential pulse, drug-DNA interaction and fluoroquinoline- DNA interaction and literature survey on fluoroquinolones.Chapter (II) includes preparation of the solutions and instruments which were used for the measurements using the different techniques.Chapter(III) comprises three parts; (1) deals with the interaction of fluoroquinolones (ciprofloxacin, norfloxacin, ofloxacin, pefloxacin and levofloxacin) with DNA in solution have been investigated by means of voltammetry and spectroscopy . the results show that the values of binding constant of fluoroquinolne drugs with DNA obtained through the changes of the anodic peak current, and their values are, 30900,31000,32300,32000 and 32500 M -1 respectively. or changes of absorption and values are, 36000,30200.38300,36500 and 34400 M -1 receptively.(II) includes voltammetric behavior of fluoroquinolones on DNA-modified carbon paste electrode. (III)includes analytical application for proposed method for the determination of levofloxacin as a typical example for fluoroquinolones. Concentration in the range 5.0x10 -7 ∼ 5.0x10 -6 mol/L , with a detection limit of 1.0x10 -7 mol/L. direct and simple determination of levofloxacin in urine was established with no manipulation of urine sample other than dilution 1:10

  11. Pharmacokinetic drug interactions with clopidogrel: updated review and risk management in combination therapy

    Directory of Open Access Journals (Sweden)

    Wang ZY

    2015-03-01

    inhibitors on clopidogrel (omeprazole, esomeprazole versus pantoprazole, rabeprazole, the effects of rifampicin on clopidogrel versus ticagrelor and prasugrel, and the effects of calcium channel blockers on clopidogrel (amlodipine versus P-glycoprotein-inhibiting calcium channel blockers. The mechanism of the DDIs with clopidogrel involves modulating CYP enzymes (eg, CYP2B6, CYP2C8, CYP2C19, and CYP3A4, paraoxonase-1, hepatic carboxylesterase 1, P-glycoprotein, and organic anion transporter family member 1B1.Conclusion: Effective and safe clopidogrel combination therapy can be achieved by increasing the awareness of potential changes in efficacy and toxicity, rationally selecting alternatives, tailoring drug therapy based on genotype, checking the appropriateness of physician orders, and performing therapeutic monitoring. Keywords: clopidogrel, drug–drug interactions, drug metabolism, drug transporter, genotype, pharmacokinetics, polypharmacy, pharmacogenetics, P2Y12 receptor inhibitors, risk management 

  12. Classification and occurrence of clinically significant drug interactions with irinotecan and oxaliplatin in patients with metastatic colorectal cancer

    NARCIS (Netherlands)

    Jansman, FGA; Idzinga, FSF; Smit, WM; de Graaf, JC; Coenen, JLLM; Sleijfer, DT; Brouwers, JRBJ

    Background: Pharmacokinetic and pharmacodynamic drug interactions with cytotoxic drugs may significantly influence the efficacy and toxicity of chemotherapy. Objective: The purpose of this study was to identify drug interactions with irinotecan and oxaliplatin reported in the literature, to assess

  13. Potential drug interactions in intensive care patients at a teaching hospital Interacciones medicamentosas potenciales en pacientes de una unidad de terapia intensiva de un hospital universitario Interações medicamentosas potenciais em pacientes de unidade de terapia intensiva de um hospital universitário

    Directory of Open Access Journals (Sweden)

    Rhanna Emanuela Fontenele Lima

    2009-04-01

    Full Text Available This study assessed potential drugs interactions in intensive care patients at a university hospital in Ceará, northeast Brazil. Of 102 patients studied, 72.5% were exposed to 311 potential drug-drug interactions; 64% of them were females aged 60 years or more and hospital stay was at least 9 days. A statistically significant association was found between number of drugs used and the occurrence of drug interactions. A total of 1,140 drugs were scheduled to be administered concomitantly; of these, 74% had potential for drug interactions. As for the classification of these events, 48.2% had a pharmacokinetic profile; 55.4% were of slow onset; 54.7% had moderate severity; and 60.6% were well-documented in the literature. The most common clinical action taken was "to monitor signs and symptoms". Nursing staff can perform 80% of preventive actions to avoid undesirable effects of drug interactions. However, nurses need to have adequate knowledge about drug action mechanisms and triggering factors associated to drug interactions.Este estudio investigó interacciones medicamentosas (IM potenciales en una Unidad de Terapia Intensiva (UTI en un hospital universitario del Ceará. De los 102 pacientes del estudio, 72,5% presentaron 311 potenciales IMs. De estos, 64% eran del sexo femenino, con edad mayor o igual a 60 años y tiempo de internación mayor o igual a nueve días. Hubo una asociación estadísticamente significativa entre el número de medicamentos y la ocurrencia de IM; 1.140 medicamentos fueron administrados durante el mismo horario, entre estos, 74% presentaron potencial para IM. En lo que se refiere a la clasificación de las IMs, 48,2% presentaron un perfil fármaco cinético, 55,4% inicio demorado, 54,7% moderada gravedad y 60,6% bien documentadas en la literatura. El manejo clínico más frecuente fue "observar señales y síntomas". Ochenta por ciento de las intervenciones para evitar los efectos indeseables de las IMs pueden ser

  14. In silico repositioning-chemogenomics strategy identifies new drugs with potential activity against multiple life stages of Schistosoma mansoni.

    Directory of Open Access Journals (Sweden)

    Bruno J Neves

    2015-01-01

    Full Text Available Morbidity and mortality caused by schistosomiasis are serious public health problems in developing countries. Because praziquantel is the only drug in therapeutic use, the risk of drug resistance is a concern. In the search for new schistosomicidal drugs, we performed a target-based chemogenomics screen of a dataset of 2,114 proteins to identify drugs that are approved for clinical use in humans that may be active against multiple life stages of Schistosoma mansoni. Each of these proteins was treated as a potential drug target, and its amino acid sequence was used to interrogate three databases: Therapeutic Target Database (TTD, DrugBank and STITCH. Predicted drug-target interactions were refined using a combination of approaches, including pairwise alignment, conservation state of functional regions and chemical space analysis. To validate our strategy, several drugs previously shown to be active against Schistosoma species were correctly predicted, such as clonazepam, auranofin, nifedipine, and artesunate. We were also able to identify 115 drugs that have not yet been experimentally tested against schistosomes and that require further assessment. Some examples are aprindine, gentamicin, clotrimazole, tetrabenazine, griseofulvin, and cinnarizine. In conclusion, we have developed a systematic and focused computer-aided approach to propose approved drugs that may warrant testing and/or serve as lead compounds for the design of new drugs against schistosomes.

  15. Novel Methods for Drug-Target Interaction Prediction using Graph Mining

    KAUST Repository

    Ba Alawi, Wail

    2016-01-01

    -target interactions (DTIs) before any experiments are done. However, many of these approaches suffer from unacceptable levels of false positives. We developed two novel methods based on graph mining networks of drugs and targets. The first method (DASPfind) finds all

  16. Using Electrochemical SERS to Measure the Redox Potential of Drug Molecules Bound to dsDNA—a Study of Mitoxantrone

    International Nuclear Information System (INIS)

    Meneghello, Marta; Papadopoulou, Evanthia; Ugo, Paolo; Bartlett, Philip N.

    2016-01-01

    Interaction with DNA plays an important role in the biological activity of some anticancer drug molecules. In this paper we show that electrochemical surface enhanced Raman spectroscopy at sphere segment void gold electrodes can be used as a highly sensitive technique to measure the redox potential of the anticancer drug mitoxantrone bound to dsDNA. For this system we show that we can follow the redox reaction of the bound molecule and can extract the redox potential for the molecule bound to dsDNA by deconvolution of the SER spectra recorded as a function of electrode potential. We find that mitoxantrone bound to dsDNA undergoes a 2 electron, 1 proton reduction and that the redox potential (-0.87 V vs. Ag/AgCl at pH 7.2) is shifted approximately 0.12 V cathodic of the corresponding value at a glassy carbon electrode. Our results also show that the reduced form of mitoxantrone remains bound to dsDNA and we are able to use the deconvoluted SER spectra of the reduced mitoxantrone as a function of electrode potential to follow the electrochemically driven melting of the dsDNA at more negative potentials.

  17. Metastable He (n=2) - Ne potential interaction calculation

    International Nuclear Information System (INIS)

    Rahal, H.

    1983-10-01

    Diabatic potential terms corresponding to He (2 1 S)-Ne and He (2 3 S)-Ne interactions are calculated. These potentials reproduce the experimental results thermal metastable atom elastic scattering on Ne target. A model which reduces the interaction to a one-electron problem is proposed: the He excited electron. Its interaction with the He + center is reproduced by a ''l'' dependent potential model with a 1/2 behaviour at short range. The electron interaction facing the Ne is described by a l-dependent pseudopotential reproducing with accuracy the electron elastic scattering on a Ne atom. The importance of the corrective term related to the Ne polarizations by the electron and the He + ion is showed in this work. In the modelling problems, the accuracy cannot be better than 0.1 MeV [fr

  18. The role of mesocorticolimbic dopamine in regulating interactions between drugs of abuse and social behavior.

    Science.gov (United States)

    Young, Kimberly A; Gobrogge, Kyle L; Wang, Zuoxin

    2011-01-01

    The use of addictive drugs can have profound short- and long-term consequences on social behaviors. Similarly, social experiences and the presence or absence of social attachments during early development and throughout life can greatly influence drug intake and the susceptibility to drug abuse. The following review details this reciprocal interaction, focusing on common drugs of abuse (e.g., psychostimulants, opiates, alcohol and nicotine) and social behaviors (e.g., maternal, sexual, play, aggressive and bonding behaviors). The neural mechanisms underlying this interaction are discussed, with a particular emphasis on the involvement of the mesocorticolimbic dopamine system. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Dopamine and oxytocin interactions underlying behaviors: potential contributions to behavioral disorders.

    Science.gov (United States)

    Baskerville, Tracey A; Douglas, Alison J

    2010-06-01

    Dopamine is an important neuromodulator that exerts widespread effects on the central nervous system (CNS) function. Disruption in dopaminergic neurotransmission can have profound effects on mood and behavior and as such is known to be implicated in various neuropsychiatric behavioral disorders including autism and depression. The subsequent effects on other neurocircuitries due to dysregulated dopamine function have yet to be fully explored. Due to the marked social deficits observed in psychiatric patients, the neuropeptide, oxytocin is emerging as one particular neural substrate that may be influenced by the altered dopamine levels subserving neuropathologic-related behavioral diseases. Oxytocin has a substantial role in social attachment, affiliation and sexual behavior. More recently, it has emerged that disturbances in peripheral and central oxytocin levels have been detected in some patients with dopamine-dependent disorders. Thus, oxytocin is proposed to be a key neural substrate that interacts with central dopamine systems. In addition to psychosocial improvement, oxytocin has recently been implicated in mediating mesolimbic dopamine pathways during drug addiction and withdrawal. This bi-directional role of dopamine has also been implicated during some components of sexual behavior. This review will discuss evidence for the existence dopamine/oxytocin positive interaction in social behavioral paradigms and associated disorders such as sexual dysfunction, autism, addiction, anorexia/bulimia, and depression. Preliminary findings suggest that whilst further rigorous testing has to be conducted to establish a dopamine/oxytocin link in human disorders, animal models seem to indicate the existence of broad and integrated brain circuits where dopamine and oxytocin interactions at least in part mediate socio-affiliative behaviors. A profound disruption to these pathways is likely to underpin associated behavioral disorders. Central oxytocin pathways may serve as a

  20. Interaction of antihypertensive drug amiloride with metal ions in micellar medium using fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gujar, Varsha; Pundge, Vijaykumar; Ottoor, Divya, E-mail: divya@chem.unipune.ac.in

    2015-05-15

    Steady state and life time fluorescence spectroscopy have been employed to study the interaction of antihypertensive drug amiloride with biologically important metal ions i.e. Cu{sup 2+}, Fe{sup 2+}, Ni{sup 2+} and Zn{sup 2+} in various micellar media (anionic SDS (sodium dodecyl sulfate), nonionic TX-100 (triton X-100) and cationic CTAB (cetyl trimethyl ammonium bromide)). It was observed that fluorescence properties of drug remain unaltered in the absence of micellar media with increasing concentration of metal ions. However, addition of Cu{sup 2+}, Fe{sup 2+} and Ni{sup 2+} caused fluorescence quenching of amiloride in the presence of anionic micelle, SDS. Binding of drug with metal ions at the charged micellar interface could be the possible reason for this pH-dependent metal-mediated fluorescence quenching. There were no remarkable changes observed due to metal ions addition when drug was present in cationic and nonionic micellar medium. The binding constant and bimolecular quenching constant were evaluated and compared for the drug–metal complexes using Stern–Volmer equation and fluorescence lifetime values. - Highlights: • Interaction of amiloride with biologically important metal ions, Fe{sup 2+}, Cu{sup 2+}, Ni{sup 2+} and Zn{sup 2+}. • Monitoring the interaction in various micelle at different pH by fluorescence spectroscopy. • Micelles acts as receptor, amiloride as transducer and metal ions as analyte in the present system. • Interaction study provides pH dependent quenching and binding mechanism of drug with metal ions.

  1. Interaction of antihypertensive drug amiloride with metal ions in micellar medium using fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Gujar, Varsha; Pundge, Vijaykumar; Ottoor, Divya

    2015-01-01

    Steady state and life time fluorescence spectroscopy have been employed to study the interaction of antihypertensive drug amiloride with biologically important metal ions i.e. Cu 2+ , Fe 2+ , Ni 2+ and Zn 2+ in various micellar media (anionic SDS (sodium dodecyl sulfate), nonionic TX-100 (triton X-100) and cationic CTAB (cetyl trimethyl ammonium bromide)). It was observed that fluorescence properties of drug remain unaltered in the absence of micellar media with increasing concentration of metal ions. However, addition of Cu 2+ , Fe 2+ and Ni 2+ caused fluorescence quenching of amiloride in the presence of anionic micelle, SDS. Binding of drug with metal ions at the charged micellar interface could be the possible reason for this pH-dependent metal-mediated fluorescence quenching. There were no remarkable changes observed due to metal ions addition when drug was present in cationic and nonionic micellar medium. The binding constant and bimolecular quenching constant were evaluated and compared for the drug–metal complexes using Stern–Volmer equation and fluorescence lifetime values. - Highlights: • Interaction of amiloride with biologically important metal ions, Fe 2+ , Cu 2+ , Ni 2+ and Zn 2+ . • Monitoring the interaction in various micelle at different pH by fluorescence spectroscopy. • Micelles acts as receptor, amiloride as transducer and metal ions as analyte in the present system. • Interaction study provides pH dependent quenching and binding mechanism of drug with metal ions

  2. Use of a three-dimensional virtual environment to teach drug-receptor interactions.

    Science.gov (United States)

    Richardson, Alan; Bracegirdle, Luke; McLachlan, Sarah I H; Chapman, Stephen R

    2013-02-12

    Objective. To determine whether using 3-dimensional (3D) technology to teach pharmacy students about the molecular basis of the interactions between drugs and their targets is more effective than traditional lecture using 2-dimensional (2D) graphics.Design. Second-year students enrolled in a 4-year masters of pharmacy program in the United Kingdom were randomly assigned to attend either a 3D or 2D presentation on 3 drug targets, the β-adrenoceptor, the Na(+)-K(+) ATPase, and the nicotinic acetylcholine receptor.Assessment. A test was administered to assess the ability of both groups of students to solve problems that required analysis of molecular interactions in 3D space. The group that participated in the 3D teaching presentation performed significantly better on the test than the group who attended the traditional lecture with 2D graphics. A questionnaire was also administered to solicit students' perceptions about the 3D experience. The majority of students enjoyed the 3D session and agreed that the experience increased their enthusiasm for the course.Conclusions. Viewing a 3D presentation of drug-receptor interactions improved student learning compared to learning from a traditional lecture and 2D graphics.

  3. Weak interaction potentials of nucleons in the Weinberg-Salam model

    International Nuclear Information System (INIS)

    Lobov, G.A.

    1979-01-01

    Weak interaction potentials of nucleons due to the nonet vector meson exchange are obtained in the Weinberg-Salam model using the vector-meson dominance. Contribution from the hadronic neutral currents to the weak interaction potential due to the charged pion exchange is obtained. The isotopic structure of the obtained potentials, that is unambiguous in the Weinberg-Salam model, is investigated. Enhancement of the nucleon weak interaction in nuclei resulting from the hadronic neutral currents is discussed. A nuclear one-particle weak interaction potential is presented that is a result of averaging of the two-particle potential over the states of the nuclear core. An approach to the nucleon weak interaction based on the quark model, is discussed. Effects of the nucleon weak interaction in the radiative capture of a thermal neutron by a proton, are considered

  4. Investigation of the Interaction Between Human Serum Albumin and Two Drugs as Binary and Ternary Systems.

    Science.gov (United States)

    Abdollahpour, Nooshin; Soheili, Vahid; Saberi, Mohammad Reza; Chamani, Jamshidkhan

    2016-12-01

    Human serum albumin (HSA) is the most frequent protein in blood plasma. Albumin transports various compounds, preserves osmotic pressure, and buffers pH. A unique feature of albumin is its ability to bind drugs and other bioactive molecules. However, it is important to consider binary and ternary systems of two pharmaceuticals to estimate the effect of the first drug on the second one and physicochemical properties. Different techniques including time-resolved, second-derivative and anisotropy fluorescence spectroscopy, resonance light scattering (RLS), critical induced aggregation concentration (C CIAC ), particle size, zeta potential and stability analysis were employed in this assessment to elucidate the binding behavior of Amlodipine and Aspirin to HSA. Moreover, isothermal titration calorimetric techniques were performed and the QSAR properties were applied to analyze the hydration energy and log P. Multiple sequence alignments were also used to predict the structure and biological characteristics of the HSA binding site. Time-resolved fluorescence spectroscopy showed interaction of both drugs to HSA based on a static quenching mechanism. Subsequently, second-derivative fluorescence spectroscopy presented different values of parameter H in binary and ternary systems, which were suggested that tryptophan was in a more polar environment in the ternary system than in a binary system. Moreover, the polydispersity index and results from mean number measurements revealed that the presence of the second drug caused a decrease in the stability of systems and increased the heterogeneity of complex. It is also, observed that the gradual addition of HSA has led to a marked increase in fluorescence anisotropy (r) of Amlodipine and Aspirin which can be suggested that the drugs were located in a restricted environment of the protein as confirmed by Red Edge Excitation Shift (REES) studies. The isothermal titration calorimetric technique demonstrated that the interaction of

  5. Erosive and cariogenicity potential of pediatric drugs: study of physicochemical parameters.

    Science.gov (United States)

    Xavier, Alidianne Fábia C; Moura, Eline F F; Azevedo, Waldeneide F; Vieira, Fernando F; Abreu, Mauro H N G; Cavalcanti, Alessandro L

    2013-12-10

    Pediatric medications may possess a high erosive potential to dental tissues due to the existence of acid components in their formulations. The purpose was to determine the erosive and cariogenic potential of pediatric oral liquid medications through the analysis of their physicochemical properties in vitro. A total of 59 substances were selected from the drug reference list of the National Health Surveillance Agency (ANVISA), which belong to 11 therapeutic classes, as follows: analgesics, non-steroidal anti-inflammatory, corticosteroids, antihistamines, antitussives, bronchodilators, antibacterials, antiparasitics, antiemetics, anticonvulsants and antipsychotics. Measurement of pH was performed by potentiometry, using a digital pH meter. For the Total Titratable Acidity (TTA) chemical assay, a 0.1 N NaOH standard solution was used, which was titrated until drug pH was neutralized. The Total Soluble Solids Contents (TSSC) quantification was carried out by refractometry using Brix scale and the analysis of Total Sugar Content was performed according to Fehling's method. In addition, it was analyzed the information contained in the drug inserts with regard to the presence of sucrose and type of acid and sweetener added to the formulations. All drug classes showed acidic pH, and the lowest mean was found for antipsychotics (2.61 ± 0.08). There was a large variation in the TTA (0.1% - 1.18%) and SST (10.44% - 57.08%) values. High total sugar contents were identified in the antitussives (53.25%) and anticonvulsants (51.75%). As described in the drug inserts, sucrose was added in 47.5% of the formulations, as well as citric acid (39.0%), sodium saccharin (36.4%) and sorbitol (34.8%). The drugs analyzed herein showed physicochemical characteristics indicative of a cariogenic and erosive potential on dental tissues. Competent bodies' strategies should be implemented in order to broaden the knowledge of health professionals, drug manufacturers and general consuming public

  6. [Framework on drug interactions between herbal medicine and western medicine: building Ⅰ/Ⅱ/Ⅲ class pathways of interactions].

    Science.gov (United States)

    Jin, Rui; Huang, Jian-Mei; Wang, Yu-Guang; Zhang, Bing

    2016-02-01

    Combined use of Chinese medicine and western medicine is one of the hot spots in the domestic medical and academic fields for many years. There are lots of involved reports and studies on interaction problems due to combined used of Chinese medicine and western medicine, however, framework understanding is still rarely seen, affecting the clinical rationality of drug combinations. Actually, the inference ideas of drug interactions in clinical practice are more extensive and practical, and the overall viewpoint and pragmatic idea are the important factors in evaluating the rationality of clinical drug combinations. Based on above points, this paper systemically analyzed the existing information and examples, deeply discuss the embryology background (environment and action mechanism of interactions), and principally divided the interactions into three important and independent categories. Among the three categories, the first category (Ⅰapproach) was defined as the physical/chemical reactions after direct contact in vivo or in vitro, such as the combination of Chinese medicine injections and western medicine injections (in vitro), combination of bromide and Chinese medicines containing cinnabar (in vivo). The evaluation method for such interactions may be generalized theory of Acid-Base reaction. The second category (Ⅱ approach) was defined as the interactions through the pharmacokinetic process including absorption (such as the combination of aspirin and Huowei capsule), distribution (such as the combination of artosin and medicinal herbs containing coumarin), metabolism (such as the combination of phenobarbital and glycyrrhiza) and excretion (such as the combination of furadantin and Crataegi Fructus). The existing pharmacokinetic theory can act as the evaluation method for this type of interaction. The third category (Ⅲ approach) was defined as the synergy/antagonism interactions by pharmacological effects or biological pathways. The combination of warfarin

  7. Development of description framework of pharmacodynamics ontology and its application to possible drug-drug interaction reasoning.

    Science.gov (United States)

    Imai, Takeshi; Hayakawa, Masayo; Ohe, Kazuhiko

    2013-01-01

    Prediction of synergistic or antagonistic effects of drug-drug interaction (DDI) in vivo has been of considerable interest over the years. Formal representation of pharmacological knowledge such as ontology is indispensable for machine reasoning of possible DDIs. However, current pharmacology knowledge bases are not sufficient to provide formal representation of DDI information. With this background, this paper presents: (1) a description framework of pharmacodynamics ontology; and (2) a methodology to utilize pharmacodynamics ontology to detect different types of possible DDI pairs with supporting information such as underlying pharmacodynamics mechanisms. We also evaluated our methodology in the field of drugs related to noradrenaline signal transduction process and 11 different types of possible DDI pairs were detected. The main features of our methodology are the explanation capability of the reason for possible DDIs and the distinguishability of different types of DDIs. These features will not only be useful for providing supporting information to prescribers, but also for large-scale monitoring of drug safety.

  8. A calix[4]arene derivative and its selective interaction with drugs (clofibric acid, diclofenac and aspirin).

    Science.gov (United States)

    Danil de Namor, Angela F; Al Nuaim, Maan; Villanueva Salas, Jose A; Bryant, Sophie; Howlin, Brendan

    2017-03-30

    The synthesis and characterisation of a partially substituted calix[4]arene, namely, 5,11,17,23-tetra-tert-butyl,25,27-bis[aminoethoxy] 26,28-dihydroxycalix[4]arene are reported. Its interaction with commonly used pharmaceuticals (clofibric acid, diclofenac and aspirin) was investigated by spectroscopic ( 1 H NMR and UV), electrochemical (conductance measurements) and thermal (titration calorimetry) techniques. It is concluded on the basis of the experimental work and molecular simulation studies that the receptor interacts selectively with these drugs. Preliminary studies on the selective extraction of these pharmaceuticals from water by the calix receptor are reported and the potential for a carrier mediated sensor based on this ligand for 'on site' monitoring of pharmaceuticals is discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Cancer stem cells and drug resistance: the potential of nanomedicine

    Science.gov (United States)

    Vinogradov, Serguei; Wei, Xin

    2012-01-01

    Properties of the small group of cancer cells called tumor-initiating or cancer stem cells (CSCs) involved in drug resistance, metastasis and relapse of cancers can significantly affect tumor therapy. Importantly, tumor drug resistance seems to be closely related to many intrinsic or acquired properties of CSCs, such as quiescence, specific morphology, DNA repair ability and overexpression of antiapoptotic proteins, drug efflux transporters and detoxifying enzymes. The specific microenvironment (niche) and hypoxic stability provide additional protection against anticancer therapy for CSCs. Thus, CSC-focused therapy is destined to form the core of any effective anticancer strategy. Nanomedicine has great potential in the development of CSC-targeting drugs, controlled drug delivery and release, and the design of novel gene-specific drugs and diagnostic modalities. This review is focused on tumor drug resistance-related properties of CSCs and describes current nanomedicine approaches, which could form the basis of novel combination therapies for eliminating metastatic and CSCs. PMID:22471722

  10. Drug-mineral interactions

    International Nuclear Information System (INIS)

    Kramer, L.

    1986-01-01

    The effect of drugs such as glucocorticoids and thyroid extract on calcium metabolism is unknown. However, several other medications affect the excretion and intestinal absorption of calcium. A controlled study was carried out to investigate these aspects. Urinary calcium was determined for 3 months during the long-term intake of the antituberculous drug isoniazid (INH) and of the antibiotic tetracycline. The effect of the diuretics furosemide and hydrochlorothiazide, of several aluminum-containing antacids, of thyroid extract and of corticosteroids was also studied. Metabolic balances of calcium, phosphorus, magnesium and zinc were determined, as well as the intestinal absorption of calcium using Ca 47. Plasma levels, urinary and fecal excretions of Ca 47 were determined. All drugs tested increased urinary calcium except for the diuretic hydrochlorothiazide. Regarding the effect of corticosteroids: the intestinal absorption of calcium was unchanged after the short-term use and was very high after long-term use. The studies have shown that several commonly used drugs induce an increase in urinary calcium excretion which may contribute to calcium loss, if this increase persists for prolonged periods of time. Urinary excretions of phosphorus, magnesium and zinc increased in some of the studies

  11. Role of Molecular Interactions for Synergistic Precipitation Inhibition of Poorly Soluble Drug in Supersaturated Drug-Polymer-Polymer Ternary Solution.

    Science.gov (United States)

    Prasad, Dev; Chauhan, Harsh; Atef, Eman

    2016-03-07

    We are reporting a synergistic effect of combined Eudragit E100 and PVP K90 in precipitation inhibition of indomethacin (IND) in solutions at low polymer concentration, a phenomenon that has significant implications on the usefulness of developing novel ternary solid dispersion of poorly soluble drugs. The IND supersaturation was created by cosolvent technique, and the precipitation studies were performed in the absence and the presence of individual and combined PVP K90 and Eudragit E100. The studies were also done with PEG 8000 as a noninteracting control polymer. A continuous UV recording of the IND absorption was used to observe changes in the drug concentration over time. The polymorphic form and morphology of precipitated IND were characterized by Raman spectroscopy and scanning electron microscopy. The change in the chemical shift in solution (1)H NMR was used as novel approach to probe IND-polymer interactions. Molecular modeling was used for calculating binding energy between IND-polymer as another indication of IND-polymer interaction. Spontaneous IND precipitation was observed in the absence of polymers. Eudragit E100 showed significant inhibitory effect on nuclei formation due to stronger interaction as reflected in higher binding energy and greater change in chemical shift by NMR. PVP K90 led to significant crystal growth inhibition due to adsorption on growing IND crystals as confirmed by modified crystal habit of precipitate in the presence of PVP K90. Combination of polymers resulted in a synergistic precipitation inhibition and extended supersaturation. The NMR confirmed interaction between IND-Eudragit E100 and IND-PVP K90 in solution. The combination of polymers showed similar peak shift albeit using lower polymer concentration indicating stronger interactions. The results established the significant synergistic precipitation inhibition effect upon combining Eudragit E100 and PVP K90 due to drug-polymer interaction.

  12. A computational approach to finding novel targets for existing drugs.

    Directory of Open Access Journals (Sweden)

    Yvonne Y Li

    2011-09-01

    Full Text Available Repositioning existing drugs for new therapeutic uses is an efficient approach to drug discovery. We have developed a computational drug repositioning pipeline to perform large-scale molecular docking of small molecule drugs against protein drug targets, in order to map the drug-target interaction space and find novel interactions. Our method emphasizes removing false positive interaction predictions using criteria from known interaction docking, consensus scoring, and specificity. In all, our database contains 252 human protein drug targets that we classify as reliable-for-docking as well as 4621 approved and experimental small molecule drugs from DrugBank. These were cross-docked, then filtered through stringent scoring criteria to select top drug-target interactions. In particular, we used MAPK14 and the kinase inhibitor BIM-8 as examples where our stringent thresholds enriched the predicted drug-target interactions with known interactions up to 20 times compared to standard score thresholds. We validated nilotinib as a potent MAPK14 inhibitor in vitro (IC50 40 nM, suggesting a potential use for this drug in treating inflammatory diseases. The published literature indicated experimental evidence for 31 of the top predicted interactions, highlighting the promising nature of our approach. Novel interactions discovered may lead to the drug being repositioned as a therapeutic treatment for its off-target's associated disease, added insight into the drug's mechanism of action, and added insight into the drug's side effects.

  13. Effect of drug-carrier interaction on the dissolution behavior of solid dispersion tablets

    NARCIS (Netherlands)

    Srinarong, Parinda; Kouwen, Sander; Visser, Marinella R; Hinrichs, Wouter L J; Frijlink, Henderik W

    2010-01-01

    The objective of this study was to compare the dissolution behavior of tablets prepared from solid dispersions with and without drug-carrier interactions. Diazepam and nifedipine were used as model drugs. Two types of carriers were used; polyvinylpyrrolidone (PVP K12, K30 and K60) and saccharides

  14. [Does implementation of benchmarking in quality circles improve the quality of care of patients with asthma and reduce drug interaction?].

    Science.gov (United States)

    Kaufmann-Kolle, Petra; Szecsenyi, Joachim; Broge, Björn; Haefeli, Walter Emil; Schneider, Antonius

    2011-01-01

    The purpose of this cluster-randomised controlled trial was to evaluate the efficacy of quality circles (QCs) working either with general data-based feedback or with an open benchmark within the field of asthma care and drug-drug interactions. Twelve QCs, involving 96 general practitioners from 85 practices, were randomised. Six QCs worked with traditional anonymous feedback and six with an open benchmark. Two QC meetings supported with feedback reports were held covering the topics "drug-drug interactions" and "asthma"; in both cases discussions were guided by a trained moderator. Outcome measures included health-related quality of life and patient satisfaction with treatment, asthma severity and number of potentially inappropriate drug combinations as well as the general practitioners' satisfaction in relation to the performance of the QC. A significant improvement in the treatment of asthma was observed in both trial arms. However, there was only a slight improvement regarding inappropriate drug combinations. There were no relevant differences between the group with open benchmark (B-QC) and traditional quality circles (T-QC). The physicians' satisfaction with the QC performance was significantly higher in the T-QCs. General practitioners seem to take a critical perspective about open benchmarking in quality circles. Caution should be used when implementing benchmarking in a quality circle as it did not improve healthcare when compared to the traditional procedure with anonymised comparisons. Copyright © 2011. Published by Elsevier GmbH.

  15. Application of receiver operating characteristic analysis to refine the prediction of potential digoxin drug interactionss

    NARCIS (Netherlands)

    Ellens, H.; Deng, S.; Coleman, J.; Bentz, J.; Taub, M.E.; Ragueneau-Majlessi, I.; Chung, S.P.; Herédi-Szabó, K.; Neuhoff, S.; Palm, J.; Balimane, P.; Zhang, L.; Jamei, M.; Hanna, I.; O'connor, M.; Bednarczyk, D.; Forsgard, M.; Chu, X.; Funk, C.; Guo, A.; Hillgren, K.M.; Li, L.; Pak, A.Y.; Perloff, E.S.; Rajaraman, G.; Salphati, L.; Taur, J.-S.; Weitz, D.; Wortelboer, H.M.; Xia, C.Q.; Xiao, G.; Yamagata, T.; Lee, C.A.

    2013-01-01

    In the 2012 Food and Drug Administration (FDA) draft guidance on drug-drug interactions (DDIs), a new molecular entity that inhibits Pglycoprotein (P-gp) may need a clinical DDI study with a P-gp substrate such as digoxin when themaximumconcentration of inhibitor at steady state divided by IC50

  16. Potential Role of Extracellular Vesicles in the Pathophysiology of Drug Addiction.

    Science.gov (United States)

    Rao, P S S; O'Connell, Kelly; Finnerty, Thomas Kyle

    2018-01-23

    Extracellular vesicles (EVs) are small vesicles secreted by cells and are known to carry sub-cellular components including microRNA, proteins, and lipids. Due to their ability to transport cargo between cells, EVs have been identified as important regulators of various pathophysiological conditions and can therefore influence treatment outcomes. In particular, the significance of microRNAs in EV-mediated cell-cell communication is well-documented. While the influence of EVs and the cargo delivered by EVs has been extensively reviewed in other neurological disorders, the available literature on the potential role of EVs in the pathophysiology of drug addiction has not been reviewed. Hence, in this article, the known effects of commonly abused drugs (ethanol, nicotine, opiates, cocaine, and cannabinoids) on EV secretion have been reviewed. In addition, the potential role of drugs of abuse in affecting the delivery of EV-packaged microRNAs, and the subsequent impact on neuronal health and continued drug dependence, has been discussed.

  17. Therapeutic Potential of Foldamers: From Chemical Biology Tools To Drug Candidates?

    Science.gov (United States)

    Gopalakrishnan, Ranganath; Frolov, Andrey I; Knerr, Laurent; Drury, William J; Valeur, Eric

    2016-11-10

    Over the past decade, foldamers have progressively emerged as useful architectures to mimic secondary structures of proteins. Peptidic foldamers, consisting of various amino acid based backbones, have been the most studied from a therapeutic perspective, while polyaromatic foldamers have barely evolved from their nascency and remain perplexing for medicinal chemists due to their poor drug-like nature. Despite these limitations, this compound class may still offer opportunities to study challenging targets or provide chemical biology tools. The potential of foldamer drug candidates reaching the clinic is still a stretch. Nevertheless, advances in the field have demonstrated their potential for the discovery of next generation therapeutics. In this perspective, the current knowledge of foldamers is reviewed in a drug discovery context. Recent advances in the early phases of drug discovery including hit finding, target validation, and optimization and molecular modeling are discussed. In addition, challenges and focus areas are debated and gaps highlighted.

  18. Anticancer drugs in Portuguese surface waters - Estimation of concentrations and identification of potentially priority drugs.

    Science.gov (United States)

    Santos, Mónica S F; Franquet-Griell, Helena; Lacorte, Silvia; Madeira, Luis M; Alves, Arminda

    2017-10-01

    Anticancer drugs, used in chemotherapy, have emerged as new water contaminants due to their increasing consumption trends and poor elimination efficiency in conventional water treatment processes. As a result, anticancer drugs have been reported in surface and even drinking waters, posing the environment and human health at risk. However, the occurrence and distribution of anticancer drugs depend on the area studied and the hydrological dynamics, which determine the risk towards the environment. The main objective of the present study was to evaluate the risk of anticancer drugs in Portugal. This work includes an extensive analysis of the consumption trends of 171 anticancer drugs, sold or dispensed in Portugal between 2007 and 2015. The consumption data was processed aiming at the estimation of predicted environmental loads of anticancer drugs and 11 compounds were identified as potentially priority drugs based on an exposure-based approach (PEC b > 10 ng L -1 and/or PEC c > 1 ng L -1 ). In a national perspective, mycophenolic acid and mycophenolate mofetil are suspected to pose high risk to aquatic biota. Moderate and low risk was also associated to cyclophosphamide and bicalutamide exposition, respectively. Although no evidences of risk exist yet for the other anticancer drugs, concerns may be associated with long term effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Sense-antisense (complementary) peptide interactions and the proteomic code; potential opportunities in biology and pharmaceutical science.

    Science.gov (United States)

    Miller, Andrew D

    2015-02-01

    A sense peptide can be defined as a peptide whose sequence is coded by the nucleotide sequence (read 5' → 3') of the sense (positive) strand of DNA. Conversely, an antisense (complementary) peptide is coded by the corresponding nucleotide sequence (read 5' → 3') of the antisense (negative) strand of DNA. Research has been accumulating steadily to suggest that sense peptides are capable of specific interactions with their corresponding antisense peptides. Unfortunately, although more and more examples of specific sense-antisense peptide interactions are emerging, the very idea of such interactions does not conform to standard biology dogma and so there remains a sizeable challenge to lift this concept from being perceived as a peripheral phenomenon if not worse, into becoming part of the scientific mainstream. Specific interactions have now been exploited for the inhibition of number of widely different protein-protein and protein-receptor interactions in vitro and in vivo. Further, antisense peptides have also been used to induce the production of antibodies targeted to specific receptors or else the production of anti-idiotypic antibodies targeted against auto-antibodies. Such illustrations of utility would seem to suggest that observed sense-antisense peptide interactions are not just the consequence of a sequence of coincidental 'lucky-hits'. Indeed, at the very least, one might conclude that sense-antisense peptide interactions represent a potentially new and different source of leads for drug discovery. But could there be more to come from studies in this area? Studies on the potential mechanism of sense-antisense peptide interactions suggest that interactions may be driven by amino acid residue interactions specified from the genetic code. If so, such specified amino acid residue interactions could form the basis for an even wider amino acid residue interaction code (proteomic code) that links gene sequences to actual protein structure and function, even

  20. A Qualitative and Quantitative Assay to Study DNA/Drug Interaction ...

    African Journals Online (AJOL)

    Research Article. A Qualitative and Quantitative Assay to Study. DNA/Drug Interaction Based on Sequence Selective. Inhibition of Restriction Endonucleases. Syed A Hassan1*, Lata Chauhan2, Ritu Barthwal2 and Aparna Dixit3. 1 Faculty of Computing and Information Technology, King Abdul Aziz University, Rabigh-21911 ...