WorldWideScience

Sample records for potential dose distribution

  1. Multicriteria optimization of the spatial dose distribution

    International Nuclear Information System (INIS)

    Schlaefer, Alexander; Viulet, Tiberiu; Muacevic, Alexander; Fürweger, Christoph

    2013-01-01

    Purpose: Treatment planning for radiation therapy involves trade-offs with respect to different clinical goals. Typically, the dose distribution is evaluated based on few statistics and dose–volume histograms. Particularly for stereotactic treatments, the spatial dose distribution represents further criteria, e.g., when considering the gradient between subregions of volumes of interest. The authors have studied how to consider the spatial dose distribution using a multicriteria optimization approach.Methods: The authors have extended a stepwise multicriteria optimization approach to include criteria with respect to the local dose distribution. Based on a three-dimensional visualization of the dose the authors use a software tool allowing interaction with the dose distribution to map objectives with respect to its shape to a constrained optimization problem. Similarly, conflicting criteria are highlighted and the planner decides if and where to relax the shape of the dose distribution.Results: To demonstrate the potential of spatial multicriteria optimization, the tool was applied to a prostate and meningioma case. For the prostate case, local sparing of the rectal wall and shaping of a boost volume are achieved through local relaxations and while maintaining the remaining dose distribution. For the meningioma, target coverage is improved by compromising low dose conformality toward noncritical structures. A comparison of dose–volume histograms illustrates the importance of spatial information for achieving the trade-offs.Conclusions: The results show that it is possible to consider the location of conflicting criteria during treatment planning. Particularly, it is possible to conserve already achieved goals with respect to the dose distribution, to visualize potential trade-offs, and to relax constraints locally. Hence, the proposed approach facilitates a systematic exploration of the optimal shape of the dose distribution

  2. Converting dose distributions into tumour control probability

    International Nuclear Information System (INIS)

    Nahum, A.E.

    1996-01-01

    The endpoints in radiotherapy that are truly of relevance are not dose distributions but the probability of local control, sometimes known as the Tumour Control Probability (TCP) and the Probability of Normal Tissue Complications (NTCP). A model for the estimation of TCP based on simple radiobiological considerations is described. It is shown that incorporation of inter-patient heterogeneity into the radiosensitivity parameter a through s a can result in a clinically realistic slope for the dose-response curve. The model is applied to inhomogeneous target dose distributions in order to demonstrate the relationship between dose uniformity and s a . The consequences of varying clonogenic density are also explored. Finally the model is applied to the target-volume DVHs for patients in a clinical trial of conformal pelvic radiotherapy; the effect of dose inhomogeneities on distributions of TCP are shown as well as the potential benefits of customizing the target dose according to normal-tissue DVHs. (author). 37 refs, 9 figs

  3. Converting dose distributions into tumour control probability

    Energy Technology Data Exchange (ETDEWEB)

    Nahum, A E [The Royal Marsden Hospital, London (United Kingdom). Joint Dept. of Physics

    1996-08-01

    The endpoints in radiotherapy that are truly of relevance are not dose distributions but the probability of local control, sometimes known as the Tumour Control Probability (TCP) and the Probability of Normal Tissue Complications (NTCP). A model for the estimation of TCP based on simple radiobiological considerations is described. It is shown that incorporation of inter-patient heterogeneity into the radiosensitivity parameter a through s{sub a} can result in a clinically realistic slope for the dose-response curve. The model is applied to inhomogeneous target dose distributions in order to demonstrate the relationship between dose uniformity and s{sub a}. The consequences of varying clonogenic density are also explored. Finally the model is applied to the target-volume DVHs for patients in a clinical trial of conformal pelvic radiotherapy; the effect of dose inhomogeneities on distributions of TCP are shown as well as the potential benefits of customizing the target dose according to normal-tissue DVHs. (author). 37 refs, 9 figs.

  4. On dose distribution comparison

    International Nuclear Information System (INIS)

    Jiang, Steve B; Sharp, Greg C; Neicu, Toni; Berbeco, Ross I; Flampouri, Stella; Bortfeld, Thomas

    2006-01-01

    In radiotherapy practice, one often needs to compare two dose distributions. Especially with the wide clinical implementation of intensity-modulated radiation therapy, software tools for quantitative dose (or fluence) distribution comparison are required for patient-specific quality assurance. Dose distribution comparison is not a trivial task since it has to be performed in both dose and spatial domains in order to be clinically relevant. Each of the existing comparison methods has its own strengths and weaknesses and there is room for improvement. In this work, we developed a general framework for comparing dose distributions. Using a new concept called maximum allowed dose difference (MADD), the comparison in both dose and spatial domains can be performed entirely in the dose domain. Formulae for calculating MADD values for various comparison methods, such as composite analysis and gamma index, have been derived. For convenience in clinical practice, a new measure called normalized dose difference (NDD) has also been proposed, which is the dose difference at a point scaled by the ratio of MADD to the predetermined dose acceptance tolerance. Unlike the simple dose difference test, NDD works in both low and high dose gradient regions because it considers both dose and spatial acceptance tolerances through MADD. The new method has been applied to a test case and a clinical example. It was found that the new method combines the merits of the existing methods (accurate, simple, clinically intuitive and insensitive to dose grid size) and can easily be implemented into any dose/intensity comparison tool

  5. Does Vertebroplasty Affect Radiation Dose Distribution?: Comparison of Spatial Dose Distributions in a Cement-Injected Vertebra as Calculated by Treatment Planning System and Actual Spatial Dose Distribution

    International Nuclear Information System (INIS)

    Komemushi, A.; Tanigawa, N.; Kariya, Sh.; Yagi, R.; Nakatani, M.; Suzuki, S.; Sano, A.; Ikeda, K.; Utsunomiya, K.; Harima, Y.; Sawada, S.

    2012-01-01

    Purpose. To assess differences in dose distribution of a vertebral body injected with bone cement as calculated by radiation treatment planning system (RTPS) and actual dose distribution. Methods. We prepared two water-equivalent phantoms with cement, and the other two phantoms without cement. The bulk density of the bone cement was imported into RTPS to reduce error from high CT values. A dose distribution map for the phantoms with and without cement was calculated using RTPS with clinical setting and with the bulk density importing. Actual dose distribution was measured by the film density. Dose distribution as calculated by RTPS was compared to the dose distribution measured by the film dosimetry. Results. For the phantom with cement, dose distribution was distorted for the areas corresponding to inside the cement and on the ventral side of the cement. However, dose distribution based on film dosimetry was undistorted behind the cement and dose increases were seen inside cement and around the cement. With the equivalent phantom with bone cement, differences were seen between dose distribution calculated by RTPS and that measured by the film dosimetry. Conclusion. The dose distribution of an area containing bone cement calculated using RTPS differs from actual dose distribution

  6. Dose/volume–response relations for rectal morbidity using planned and simulated motion-inclusive dose distributions

    International Nuclear Information System (INIS)

    Thor, Maria; Apte, Aditya; Deasy, Joseph O.; Karlsdóttir, Àsa; Moiseenko, Vitali; Liu, Mitchell; Muren, Ludvig Paul

    2013-01-01

    Background and purpose: Many dose-limiting normal tissues in radiotherapy (RT) display considerable internal motion between fractions over a course of treatment, potentially reducing the appropriateness of using planned dose distributions to predict morbidity. Accounting explicitly for rectal motion could improve the predictive power of modelling rectal morbidity. To test this, we simulated the effect of motion in two cohorts. Materials and methods: The included patients (232 and 159 cases) received RT for prostate cancer to 70 and 74 Gy. Motion-inclusive dose distributions were introduced as simulations of random or systematic motion to the planned dose distributions. Six rectal morbidity endpoints were analysed. A probit model using the QUANTEC recommended parameters was also applied to the cohorts. Results: The differences in associations using the planned over the motion-inclusive dose distributions were modest. Statistically significant associations were obtained with four of the endpoints, mainly at high doses (55–70 Gy), using both the planned and the motion-inclusive dose distributions, primarily when simulating random motion. The strongest associations were observed for GI toxicity and rectal bleeding (Rs = 0.12–0.21; Rs = 0.11–0.20). Applying the probit model, significant associations were found for tenesmus and rectal bleeding (Rs = 0.13, p = 0.02). Conclusion: Equally strong associations with rectal morbidity were observed at high doses (>55 Gy), for the planned and the simulated dose distributions including in particular random rectal motion. Future studies should explore patient-specific descriptions of rectal motion to achieve improved predictive power

  7. Optimized dose distribution of a high dose rate vaginal cylinder

    International Nuclear Information System (INIS)

    Li Zuofeng; Liu, Chihray; Palta, Jatinder R.

    1998-01-01

    Purpose: To present a comparison of optimized dose distributions for a set of high-dose-rate (HDR) vaginal cylinders calculated by a commercial treatment-planning system with benchmark calculations using Monte-Carlo-calculated dosimetry data. Methods and Materials: Optimized dose distributions using both an isotropic and an anisotropic dose calculation model were obtained for a set of HDR vaginal cylinders. Mathematical optimization techniques available in the computer treatment-planning system were used to calculate dwell times and positions. These dose distributions were compared with benchmark calculations with TG43 formalism and using Monte-Carlo-calculated data. The same dwell times and positions were used for a quantitative comparison of dose calculated with three dose models. Results: The isotropic dose calculation model can result in discrepancies as high as 50%. The anisotropic dose calculation model compared better with benchmark calculations. The differences were more significant at the apex of the vaginal cylinder, which is typically used as the prescription point. Conclusion: Dose calculation models available in a computer treatment-planning system must be evaluated carefully to ensure their correct application. It should also be noted that when optimized dose distribution at a distance from the cylinder surface is calculated using an accurate dose calculation model, the vaginal mucosa dose becomes significantly higher, and therefore should be carefully monitored

  8. Maximizing the biological effect of proton dose delivered with scanned beams via inhomogeneous daily dose distributions

    Energy Technology Data Exchange (ETDEWEB)

    Zeng Chuan; Giantsoudi, Drosoula; Grassberger, Clemens; Goldberg, Saveli; Niemierko, Andrzej; Paganetti, Harald; Efstathiou, Jason A.; Trofimov, Alexei [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114 (United States)

    2013-05-15

    Purpose: Biological effect of radiation can be enhanced with hypofractionation, localized dose escalation, and, in particle therapy, with optimized distribution of linear energy transfer (LET). The authors describe a method to construct inhomogeneous fractional dose (IFD) distributions, and evaluate the potential gain in the therapeutic effect from their delivery in proton therapy delivered by pencil beam scanning. Methods: For 13 cases of prostate cancer, the authors considered hypofractionated courses of 60 Gy delivered in 20 fractions. (All doses denoted in Gy include the proton's mean relative biological effectiveness (RBE) of 1.1.) Two types of plans were optimized using two opposed lateral beams to deliver a uniform dose of 3 Gy per fraction to the target by scanning: (1) in conventional full-target plans (FTP), each beam irradiated the entire gland, (2) in split-target plans (STP), beams irradiated only the respective proximal hemispheres (prostate split sagittally). Inverse planning yielded intensity maps, in which discrete position control points of the scanned beam (spots) were assigned optimized intensity values. FTP plans preferentially required a higher intensity of spots in the distal part of the target, while STP, by design, employed proximal spots. To evaluate the utility of IFD delivery, IFD plans were generated by rearranging the spot intensities from FTP or STP intensity maps, separately as well as combined using a variety of mixing weights. IFD courses were designed so that, in alternating fractions, one of the hemispheres of the prostate would receive a dose boost and the other receive a lower dose, while the total physical dose from the IFD course was roughly uniform across the prostate. IFD plans were normalized so that the equivalent uniform dose (EUD) of rectum and bladder did not increase, compared to the baseline FTP plan, which irradiated the prostate uniformly in every fraction. An EUD-based model was then applied to estimate tumor

  9. Maximizing the biological effect of proton dose delivered with scanned beams via inhomogeneous daily dose distributions

    International Nuclear Information System (INIS)

    Zeng Chuan; Giantsoudi, Drosoula; Grassberger, Clemens; Goldberg, Saveli; Niemierko, Andrzej; Paganetti, Harald; Efstathiou, Jason A.; Trofimov, Alexei

    2013-01-01

    Purpose: Biological effect of radiation can be enhanced with hypofractionation, localized dose escalation, and, in particle therapy, with optimized distribution of linear energy transfer (LET). The authors describe a method to construct inhomogeneous fractional dose (IFD) distributions, and evaluate the potential gain in the therapeutic effect from their delivery in proton therapy delivered by pencil beam scanning. Methods: For 13 cases of prostate cancer, the authors considered hypofractionated courses of 60 Gy delivered in 20 fractions. (All doses denoted in Gy include the proton's mean relative biological effectiveness (RBE) of 1.1.) Two types of plans were optimized using two opposed lateral beams to deliver a uniform dose of 3 Gy per fraction to the target by scanning: (1) in conventional full-target plans (FTP), each beam irradiated the entire gland, (2) in split-target plans (STP), beams irradiated only the respective proximal hemispheres (prostate split sagittally). Inverse planning yielded intensity maps, in which discrete position control points of the scanned beam (spots) were assigned optimized intensity values. FTP plans preferentially required a higher intensity of spots in the distal part of the target, while STP, by design, employed proximal spots. To evaluate the utility of IFD delivery, IFD plans were generated by rearranging the spot intensities from FTP or STP intensity maps, separately as well as combined using a variety of mixing weights. IFD courses were designed so that, in alternating fractions, one of the hemispheres of the prostate would receive a dose boost and the other receive a lower dose, while the total physical dose from the IFD course was roughly uniform across the prostate. IFD plans were normalized so that the equivalent uniform dose (EUD) of rectum and bladder did not increase, compared to the baseline FTP plan, which irradiated the prostate uniformly in every fraction. An EUD-based model was then applied to estimate tumor

  10. Maximizing the biological effect of proton dose delivered with scanned beams via inhomogeneous daily dose distributions.

    Science.gov (United States)

    Zeng, Chuan; Giantsoudi, Drosoula; Grassberger, Clemens; Goldberg, Saveli; Niemierko, Andrzej; Paganetti, Harald; Efstathiou, Jason A; Trofimov, Alexei

    2013-05-01

    Biological effect of radiation can be enhanced with hypofractionation, localized dose escalation, and, in particle therapy, with optimized distribution of linear energy transfer (LET). The authors describe a method to construct inhomogeneous fractional dose (IFD) distributions, and evaluate the potential gain in the therapeutic effect from their delivery in proton therapy delivered by pencil beam scanning. For 13 cases of prostate cancer, the authors considered hypofractionated courses of 60 Gy delivered in 20 fractions. (All doses denoted in Gy include the proton's mean relative biological effectiveness (RBE) of 1.1.) Two types of plans were optimized using two opposed lateral beams to deliver a uniform dose of 3 Gy per fraction to the target by scanning: (1) in conventional full-target plans (FTP), each beam irradiated the entire gland, (2) in split-target plans (STP), beams irradiated only the respective proximal hemispheres (prostate split sagittally). Inverse planning yielded intensity maps, in which discrete position control points of the scanned beam (spots) were assigned optimized intensity values. FTP plans preferentially required a higher intensity of spots in the distal part of the target, while STP, by design, employed proximal spots. To evaluate the utility of IFD delivery, IFD plans were generated by rearranging the spot intensities from FTP or STP intensity maps, separately as well as combined using a variety of mixing weights. IFD courses were designed so that, in alternating fractions, one of the hemispheres of the prostate would receive a dose boost and the other receive a lower dose, while the total physical dose from the IFD course was roughly uniform across the prostate. IFD plans were normalized so that the equivalent uniform dose (EUD) of rectum and bladder did not increase, compared to the baseline FTP plan, which irradiated the prostate uniformly in every fraction. An EUD-based model was then applied to estimate tumor control probability

  11. Dose equivalent distributions in the AAEC total body nitrogen facility

    International Nuclear Information System (INIS)

    Allen, B.J.; Bailey, G.M.; McGregor, B.J.

    1985-01-01

    The incident neutron dose equivalent in the AAEC total body nitrogen facility is measured by a calibrated remmeter. Dose equivalent rates and distributions are calculated by Monte Carlo techniques which take account of the secondary neutron flux from the collimator. Experiment and calculation are found to be in satisfactory agreement. The effective dose equivalent per exposure is determined by weighting organ doses, and the potential detriment per exposure is calculated from ICRP risk factors

  12. Phantom experiment of depth-dose distributions for gadolinium neutron capture therapy

    International Nuclear Information System (INIS)

    Matsumoto, T.; Kato, K.; Sakuma, Y.; Tsuruno, A.; Matsubayashi, M.

    1993-01-01

    Depth-dose distributions in a tumor simulated phantom were measured for thermal neutron flux, capture gamma-ray and internal conversion electron dose rates for gadolinium neutron capture therapy. The results show that (i) a significant dose enhancement can be achieved in the tumor by capture gamma-rays and internal conversion electrons but the dose is mainly due to capture gamma-rays from the Gd(n, γ) reactions, therefore, is not selective at the cellular level, (ii) the dose distribution was a function of strongly interrelated parameters such as gadolinium concentrations, tumor site and neutron beam size (collimator aperture size), and (iii) the Gd-NCT by thermal neutrons appears to be a potential for treatment of superficial tumor. (author)

  13. SU-F-J-133: Adaptive Radiation Therapy with a Four-Dimensional Dose Calculation Algorithm That Optimizes Dose Distribution Considering Breathing Motion

    Energy Technology Data Exchange (ETDEWEB)

    Ali, I; Algan, O; Ahmad, S [University of Oklahoma Health Sciences, Oklahoma City, OK (United States); Alsbou, N [University of Central Oklahoma, Edmond, OK (United States)

    2016-06-15

    Purpose: To model patient motion and produce four-dimensional (4D) optimized dose distributions that consider motion-artifacts in the dose calculation during the treatment planning process. Methods: An algorithm for dose calculation is developed where patient motion is considered in dose calculation at the stage of the treatment planning. First, optimal dose distributions are calculated for the stationary target volume where the dose distributions are optimized considering intensity-modulated radiation therapy (IMRT). Second, a convolution-kernel is produced from the best-fitting curve which matches the motion trajectory of the patient. Third, the motion kernel is deconvolved with the initial dose distribution optimized for the stationary target to produce a dose distribution that is optimized in four-dimensions. This algorithm is tested with measured doses using a mobile phantom that moves with controlled motion patterns. Results: A motion-optimized dose distribution is obtained from the initial dose distribution of the stationary target by deconvolution with the motion-kernel of the mobile target. This motion-optimized dose distribution is equivalent to that optimized for the stationary target using IMRT. The motion-optimized and measured dose distributions are tested with the gamma index with a passing rate of >95% considering 3% dose-difference and 3mm distance-to-agreement. If the dose delivery per beam takes place over several respiratory cycles, then the spread-out of the dose distributions is only dependent on the motion amplitude and not affected by motion frequency and phase. This algorithm is limited to motion amplitudes that are smaller than the length of the target along the direction of motion. Conclusion: An algorithm is developed to optimize dose in 4D. Besides IMRT that provides optimal dose coverage for a stationary target, it extends dose optimization to 4D considering target motion. This algorithm provides alternative to motion management

  14. Tracking the dose distribution in radiation therapy by accounting for variable anatomy

    International Nuclear Information System (INIS)

    Schaly, B; Kempe, J A; Bauman, G S; Battista, J J; Van Dyk, J

    2004-01-01

    The goal of this research is to calculate the daily and cumulative dose distribution received by the radiotherapy patient while accounting for variable anatomy, by tracking the dose distribution delivered to tissue elements (voxels) that move within the patient. Non-linear image registration techniques (i.e., thin-plate splines) are used along with a conventional treatment planning system to combine the dose distributions computed for each 3D computed tomography (CT) study taken during treatment. For a clinical prostate case, we demonstrate that there are significant localized dose differences due to systematic voxel motion in a single fraction as well as in 15 cumulative fractions. The largest positive dose differences in rectum, bladder and seminal vesicles were 29%, 2% and 24%, respectively, after the first fraction of radiation treatment compared to the planned dose. After 15 cumulative fractions, the largest positive dose differences in rectum, bladder and seminal vesicles were 23%, 32% and 18%, respectively, compared to the planned dose. A sensitivity analysis of control point placement is also presented. This method provides an important understanding of actual delivered doses and has the potential to provide quantitative information to use as a guide for adaptive radiation treatments

  15. Dose Distribution of Gamma Irradiators

    International Nuclear Information System (INIS)

    Park, Seung Woo; Shin, Sang Hun; Son, Ki Hong; Lee, Chang Yeol; Kim, Kum Bae; Jung, Hai Jo; Ji, Young Hoon

    2010-01-01

    Gamma irradiator using Cs-137 have been widely utilized to the irradiation of cell, blood, and animal, and the dose measurement and education. The Gamma cell 3000 Elan (Nordion International, Kanata, Ontario, Canada) irradiator was installed in 2003 with Cs-137 and dose rate of 3.2 Gy/min. And the BioBeam 8000 (Gamma-Service Medical GmbH, Leipzig, Germany) irradiator was installed in 2008 with Cs-137 and dose rate of 3.5 Gy/min. Our purpose was to evaluate the practical dosimetric problems associated with inhomogeneous dose distribution within the irradiated volume in open air state using glass dosimeter and Gafchromic EBT film dosimeter for routine Gamma irradiator dosimetry applications at the KIRAMS and the measurements were compared with each other. In addition, an user guideline for useful utilization of the device based on practical dosimetry will be prepared. The measurement results of uniformity of delivered dose within the device showed variation more than 14% between middle point and the lowest position at central axis. Therefore, to maintain dose variation within 10%, the criteria of useful dose distribution, for research radiation effects, the irradiated specimen located at central axis of the container should be placed within 30 mm from top and bottom surface, respectively. In addition, for measurements using the film, the variations of dose distribution were more then 50% for the case of less than 10 second irradiation, mostly within 20% for the case of more than 20 second irradiation, respectively. Therefore, the irradiation experiments using the BioBeam 8000 irradiator are recommended to be used for specimen required at least more than 20 second irradiation time.

  16. Comparison of proton and photon dose distributions

    International Nuclear Information System (INIS)

    Goitein, Michael

    1995-01-01

    Recently, there has been considerable work, as yet largely theoretical, in developing ways to improve the dose distributions which can be achieved with x-rays. Foremost among these developments are the use of non-coplanar beam directions, the use of intensity-modulated beams, and the implementation of computer-controlled delivery of complex plans using new beam modifiers such as multi-leaf collimators and beam scanners. One way of improving the dose distributions which have been achieved with conventional radiations is to use protons, with their quite different physical characteristics but very similar radiobiological properties as compared with supervoltage x-rays. Some substantial experience has been gained in the use of protons which has confirmed clinically that better results have been obtained as a result of their better dose distributions. Indeed, it is fair to say that the advantages which protons have demonstrated are, in large part, responsible for the renewed interest in improving the dose distributions from all radiation modalities. So much better are the dose distributions which the new techniques, mentioned above, offer that there is the impression that, with their use, photons can deliver dose distributions as good as can be obtained with protons. In this paper, the extent of the possible improvement will be discussed. It will be suggested that the integral dose is relatively little affected by the treatment technique - so that the lower normal tissue doses which the new approaches offer is almost always at the price of delivering dose to a larger volume. Protons can be matched pencil beam for pencil beam with photons - and then almost always deliver substantially less dose outside the target volume. Ultimately, the clinical importance of the differences will have to decided by clinical trial

  17. Modelling simple helically delivered dose distributions

    International Nuclear Information System (INIS)

    Fenwick, John D; Tome, Wolfgang A; Kissick, Michael W; Mackie, T Rock

    2005-01-01

    In a previous paper, we described quality assurance procedures for Hi-Art helical tomotherapy machines. Here, we develop further some ideas discussed briefly in that paper. Simple helically generated dose distributions are modelled, and relationships between these dose distributions and underlying characteristics of Hi-Art treatment systems are elucidated. In particular, we describe the dependence of dose levels along the central axis of a cylinder aligned coaxially with a Hi-Art machine on fan beam width, couch velocity and helical delivery lengths. The impact on these dose levels of angular variations in gantry speed or output per linear accelerator pulse is also explored

  18. Dose distribution following selective internal radiation therapy

    International Nuclear Information System (INIS)

    Fox, R.A.; Klemp, P.F.; Egan, G.; Mina, L.L.; Burton, M.A.; Gray, B.N.

    1991-01-01

    Selective Internal Radiation Therapy is the intrahepatic arterial injection of microspheres labelled with 90Y. The microspheres lodge in the precapillary circulation of tumor resulting in internal radiation therapy. The activity of the 90Y injected is managed by successive administrations of labelled microspheres and after each injection probing the liver with a calibrated beta probe to assess the dose to the superficial layers of normal tissue. Predicted doses of 75 Gy have been delivered without subsequent evidence of radiation damage to normal cells. This contrasts with the complications resulting from doses in excess of 30 Gy delivered from external beam radiotherapy. Detailed analysis of microsphere distribution in a cubic centimeter of normal liver and the calculation of dose to a 3-dimensional fine grid has shown that the radiation distribution created by the finite size and distribution of the microspheres results in an highly heterogeneous dose pattern. It has been shown that a third of normal liver will receive less than 33.7% of the dose predicted by assuming an homogeneous distribution of 90Y

  19. The analysis of annual dose distributions for radiation workers

    International Nuclear Information System (INIS)

    Mill, A.J.

    1984-05-01

    The system of dose limitation recommended by the ICRP includes the requirement that no worker shall exceed the current dose limit of 50mSv/a. Continuous exposure at this limit corresponds to an annual death rate comparable with 'high risk' industries if all workers are continuously exposed at the dose limit. In practice, there is a distribution of doses with an arithmetic mean lower than the dose limit. In its 1977 report UNSCEAR defined a reference dose distribution for the purposes of comparison. However, this two parameter distribution does not show the departure from log-normality normally observed for actual distributions at doses which are a significant proportion of the annual limit. In this report an alternative model is suggested, based on a three parameter log-normal distribution. The third parameter is an ''effective dose limit'' and such a model fits very well the departure from log-normality observed in actual dose distributions. (author)

  20. Optimized Dose Distribution of Gammamed Plus Vaginal Cylinders

    International Nuclear Information System (INIS)

    Supe, Sanjay S.; Bijina, T.K.; Varatharaj, C.; Shwetha, B.; Arunkumar, T.; Sathiyan, S.; Ganesh, K.M.; Ravikumar, M.

    2009-01-01

    Endometrial carcinoma is the most common malignancy arising in the female genital tract. Intracavitary vaginal cuff irradiation may be given alone or with external beam irradiation in patients determined to be at risk for locoregional recurrence. Vaginal cylinders are often used to deliver a brachytherapy dose to the vaginal apex and upper vagina or the entire vaginal surface in the management of postoperative endometrial cancer or cervical cancer. The dose distributions of HDR vaginal cylinders must be evaluated carefully, so that clinical experiences with LDR techniques can be used in guiding optimal use of HDR techniques. The aim of this study was to optimize dose distribution for Gammamed plus vaginal cylinders. Placement of dose optimization points was evaluated for its effect on optimized dose distributions. Two different dose optimization point models were used in this study, namely non-apex (dose optimization points only on periphery of cylinder) and apex (dose optimization points on periphery and along the curvature including the apex points). Thirteen dwell positions were used for the HDR dosimetry to obtain a 6-cm active length. Thus 13 optimization points were available at the periphery of the cylinder. The coordinates of the points along the curvature depended on the cylinder diameters and were chosen for each cylinder so that four points were distributed evenly in the curvature portion of the cylinder. Diameter of vaginal cylinders varied from 2.0 to 4.0 cm. Iterative optimization routine was utilized for all optimizations. The effects of various optimization routines (iterative, geometric, equal times) was studied for the 3.0-cm diameter vaginal cylinder. The effect of source travel step size on the optimized dose distributions for vaginal cylinders was also evaluated. All optimizations in this study were carried for dose of 6 Gy at dose optimization points. For both non-apex and apex models of vaginal cylinders, doses for apex point and three dome

  1. Heterogeneity phantoms for visualization of 3D dose distributions by MRI-based polymer gel dosimetry

    International Nuclear Information System (INIS)

    Watanabe, Yoichi; Mooij, Rob; Mark Perera, G.; Maryanski, Marek J.

    2004-01-01

    Heterogeneity corrections in dose calculations are necessary for radiation therapy treatment plans. Dosimetric measurements of the heterogeneity effects are hampered if the detectors are large and their radiological characteristics are not equivalent to water. Gel dosimetry can solve these problems. Furthermore, it provides three-dimensional (3D) dose distributions. We used a cylindrical phantom filled with BANG-3 registered polymer gel to measure 3D dose distributions in heterogeneous media. The phantom has a cavity, in which water-equivalent or bone-like solid blocks can be inserted. The irradiated phantom was scanned with an magnetic resonance imaging (MRI) scanner. Dose distributions were obtained by calibrating the polymer gel for a relationship between the absorbed dose and the spin-spin relaxation rate of the magnetic resistance (MR) signal. To study dose distributions we had to analyze MR imaging artifacts. This was done in three ways: comparison of a measured dose distribution in a simulated homogeneous phantom with a reference dose distribution, comparison of a sagittally scanned image with a sagittal image reconstructed from axially scanned data, and coregistration of MR and computed-tomography images. We found that the MRI artifacts cause a geometrical distortion of less than 2 mm and less than 10% change in the dose around solid inserts. With these limitations in mind we could make some qualitative measurements. Particularly we observed clear differences between the measured dose distributions around an air-gap and around bone-like material for a 6 MV photon beam. In conclusion, the gel dosimetry has the potential to qualitatively characterize the dose distributions near heterogeneities in 3D

  2. Perturbation effects of the carbon fiber-PEEK screws on radiotherapy dose distribution.

    Science.gov (United States)

    Nevelsky, Alexander; Borzov, Egor; Daniel, Shahar; Bar-Deroma, Raquel

    2017-03-01

    Radiation therapy, in conjunction with surgical implant fixation, is a common combined treatment in cases of bone metastases. However, metal implants generally used in orthopedic implants perturb radiation dose distributions. Carbon-Fiber Reinforced Polyetheretherketone (CFR-PEEK) material has been recently introduced for production of intramedullary nails and plates. The purpose of this work was to investigate the perturbation effects of the new CFR-PEEK screws on radiotherapy dose distributions and to evaluate these effects in comparison with traditional titanium screws. The investigation was performed by means of Monte Carlo (MC) simulations for a 6 MV photon beam. The project consisted of two main stages. First, a comparison of measured and MC calculated doses was performed to verify the validity of the MC simulation results for different materials. For this purpose, stainless steel, titanium, and CFR-PEEK plates of various thicknesses were used for attenuation and backscatter measurements in a solid water phantom. For the same setup, MC dose calculations were performed. Next, MC dose calculations for titanium, CFR-PEEK screws, and CFR-PEEK screws with ultrathin titanium coating were performed. For the plates, the results of our MC calculations for all materials were found to be in good agreement with the measurements. This indicates that the MC model can be used for calculation of dose perturbation effects caused by the screws. For the CFR-PEEK screws, the maximum dose perturbation was less than 5%, compared to more than 30% perturbation for the titanium screws. Ultrathin titanium coating had a negligible effect on the dose distribution. CFR-PEEK implants have good prospects for use in radiotherapy because of minimal dose alteration and the potential for more accurate treatment planning. This could favorably influence treatment efficiency and decrease possible over- and underdose of adjacent tissues. The use of such implants has potential clinical advantages

  3. Phantoms for IMRT dose distribution measurement and treatment verification

    International Nuclear Information System (INIS)

    Low, Daniel A.; Gerber, Russell L.; Mutic, Sasa; Purdy, James A.

    1998-01-01

    Background: The verification of intensity-modulated radiation therapy (IMRT) patient treatment dose distributions is currently based on custom-built or modified dose measurement phantoms. The only commercially available IMRT treatment planning and delivery system (Peacock, NOMOS Corp.) is supplied with a film phantom that allows accurate spatial localization of the dose distribution using radiographic film. However, measurements using other dosimeters are necessary for the thorough verification of IMRT. Methods: We have developed a phantom to enable dose measurements using a cylindrical ionization chamber and the localization of prescription isodose curves using a matrix of thermoluminescent dosimetry (TLD) chips. The external phantom cross-section is identical to that of the commercial phantom, to allow direct comparisons of measurements. A supplementary phantom has been fabricated to verify the IMRT dose distributions for pelvis treatments. Results: To date, this phantom has been used for the verification of IMRT dose distributions for head and neck and prostate cancer treatments. Designs are also presented for a phantom insert to be used with polymerizing gels (e.g., BANG-2) to obtain volumetric dose distribution measurements. Conclusion: The phantoms have proven useful in the quantitative evaluation of IMRT treatments

  4. Adaptive anisotropic diffusion filtering of Monte Carlo dose distributions

    International Nuclear Information System (INIS)

    Miao Binhe; Jeraj, Robert; Bao Shanglian; Mackie, Thomas R

    2003-01-01

    The Monte Carlo method is the most accurate method for radiotherapy dose calculations, if used correctly. However, any Monte Carlo dose calculation is burdened with statistical noise. In this paper, denoising of Monte Carlo dose distributions with a three-dimensional adaptive anisotropic diffusion method was investigated. The standard anisotropic diffusion method was extended by changing the filtering parameters adaptively according to the local statistical noise. Smoothing of dose distributions with different noise levels in an inhomogeneous phantom, a conventional and an IMRT treatment case is shown. The resultant dose distributions were analysed using several evaluating criteria. It is shown that the adaptive anisotropic diffusion method can reduce statistical noise significantly (two to five times, corresponding to the reduction of simulation time by a factor of up to 20), while preserving important gradients of the dose distribution well. The choice of free parameters of the method was found to be fairly robust

  5. Generation of uniformly distributed dose points for anatomy-based three-dimensional dose optimization methods in brachytherapy.

    Science.gov (United States)

    Lahanas, M; Baltas, D; Giannouli, S; Milickovic, N; Zamboglou, N

    2000-05-01

    We have studied the accuracy of statistical parameters of dose distributions in brachytherapy using actual clinical implants. These include the mean, minimum and maximum dose values and the variance of the dose distribution inside the PTV (planning target volume), and on the surface of the PTV. These properties have been studied as a function of the number of uniformly distributed sampling points. These parameters, or the variants of these parameters, are used directly or indirectly in optimization procedures or for a description of the dose distribution. The accurate determination of these parameters depends on the sampling point distribution from which they have been obtained. Some optimization methods ignore catheters and critical structures surrounded by the PTV or alternatively consider as surface dose points only those on the contour lines of the PTV. D(min) and D(max) are extreme dose values which are either on the PTV surface or within the PTV. They must be avoided for specification and optimization purposes in brachytherapy. Using D(mean) and the variance of D which we have shown to be stable parameters, achieves a more reliable description of the dose distribution on the PTV surface and within the PTV volume than does D(min) and D(max). Generation of dose points on the real surface of the PTV is obligatory and the consideration of catheter volumes results in a realistic description of anatomical dose distributions.

  6. Tomotherapy dose distribution verification using MAGIC-f polymer gel dosimetry

    International Nuclear Information System (INIS)

    Pavoni, J. F.; Pike, T. L.; Snow, J.; DeWerd, L.; Baffa, O.

    2012-01-01

    Purpose: This paper presents the application of MAGIC-f gel in a three-dimensional dose distribution measurement and its ability to accurately measure the dose distribution from a tomotherapy unit. Methods: A prostate intensity-modulated radiation therapy (IMRT) irradiation was simulated in the gel phantom and the treatment was delivered by a TomoTherapy equipment. Dose distribution was evaluated by the R2 distribution measured in magnetic resonance imaging. Results: A high similarity was found by overlapping of isodoses of the dose distribution measured with the gel and expected by the treatment planning system (TPS). Another analysis was done by comparing the relative absorbed dose profiles in the measured and in the expected dose distributions extracted along indicated lines of the volume and the results were also in agreement. The gamma index analysis was also applied to the data and a high pass rate was achieved (88.4% for analysis using 3%/3 mm and of 96.5% using 4%/4 mm). The real three-dimensional analysis compared the dose-volume histograms measured for the planning volumes and expected by the treatment planning, being the results also in good agreement by the overlapping of the curves. Conclusions: These results show that MAGIC-f gel is a promise for tridimensional dose distribution measurements.

  7. Tomotherapy dose distribution verification using MAGIC-f polymer gel dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Pavoni, J. F.; Pike, T. L.; Snow, J.; DeWerd, L.; Baffa, O. [Departamento de Fisica, Faculdade de Filosofia Ciencias e Letras de Ribeirao Preto-Universidade de Sao Paulo, Av. Bandeirantes, 3900 - CEP 14040-901 - Bairro Monte Alegre - Ribeirao Preto, SP (Brazil); Medical Radiation Research Center, Department of Medical Physics, University of Wisconsin, 1111 Highland Avenue, B1002 WIMR, Madison, Wisconsin 53705-2275 (United States); Departamento de Fisica, Faculdade de Filosofia Ciencias e Letras de Ribeirao Preto-Universidade de Sao Paulo, Av. Bandeirantes, 3900 - CEP 14040-901 - Bairro Monte Alegre - Ribeirao Preto, SP (Brazil)

    2012-05-15

    Purpose: This paper presents the application of MAGIC-f gel in a three-dimensional dose distribution measurement and its ability to accurately measure the dose distribution from a tomotherapy unit. Methods: A prostate intensity-modulated radiation therapy (IMRT) irradiation was simulated in the gel phantom and the treatment was delivered by a TomoTherapy equipment. Dose distribution was evaluated by the R2 distribution measured in magnetic resonance imaging. Results: A high similarity was found by overlapping of isodoses of the dose distribution measured with the gel and expected by the treatment planning system (TPS). Another analysis was done by comparing the relative absorbed dose profiles in the measured and in the expected dose distributions extracted along indicated lines of the volume and the results were also in agreement. The gamma index analysis was also applied to the data and a high pass rate was achieved (88.4% for analysis using 3%/3 mm and of 96.5% using 4%/4 mm). The real three-dimensional analysis compared the dose-volume histograms measured for the planning volumes and expected by the treatment planning, being the results also in good agreement by the overlapping of the curves. Conclusions: These results show that MAGIC-f gel is a promise for tridimensional dose distribution measurements.

  8. Isobio software: biological dose distribution and biological dose volume histogram from physical dose conversion using linear-quadratic-linear model.

    Science.gov (United States)

    Jaikuna, Tanwiwat; Khadsiri, Phatchareewan; Chawapun, Nisa; Saekho, Suwit; Tharavichitkul, Ekkasit

    2017-02-01

    To develop an in-house software program that is able to calculate and generate the biological dose distribution and biological dose volume histogram by physical dose conversion using the linear-quadratic-linear (LQL) model. The Isobio software was developed using MATLAB version 2014b to calculate and generate the biological dose distribution and biological dose volume histograms. The physical dose from each voxel in treatment planning was extracted through Computational Environment for Radiotherapy Research (CERR), and the accuracy was verified by the differentiation between the dose volume histogram from CERR and the treatment planning system. An equivalent dose in 2 Gy fraction (EQD 2 ) was calculated using biological effective dose (BED) based on the LQL model. The software calculation and the manual calculation were compared for EQD 2 verification with pair t -test statistical analysis using IBM SPSS Statistics version 22 (64-bit). Two and three-dimensional biological dose distribution and biological dose volume histogram were displayed correctly by the Isobio software. Different physical doses were found between CERR and treatment planning system (TPS) in Oncentra, with 3.33% in high-risk clinical target volume (HR-CTV) determined by D 90% , 0.56% in the bladder, 1.74% in the rectum when determined by D 2cc , and less than 1% in Pinnacle. The difference in the EQD 2 between the software calculation and the manual calculation was not significantly different with 0.00% at p -values 0.820, 0.095, and 0.593 for external beam radiation therapy (EBRT) and 0.240, 0.320, and 0.849 for brachytherapy (BT) in HR-CTV, bladder, and rectum, respectively. The Isobio software is a feasible tool to generate the biological dose distribution and biological dose volume histogram for treatment plan evaluation in both EBRT and BT.

  9. Spatial distributions of dose enhancement around a gold nanoparticle at several depths of proton Bragg peak

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Jihun [Department of Radiation Oncology, Hokkaido University Graduate School of Medicine, Hokkaido University (Japan); Sutherland, Kenneth [Department of Medical Physics, Hokkaido University Graduate School of Medicine, Hokkaido University (Japan); Hashimoto, Takayuki [Department of Radiation Medicine, Hokkaido University Graduate School of Medicine (Japan); Shirato, Hiroki [Department of Radiation Medicine, Hokkaido University Graduate School of Medicine and Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University (Japan); Date, Hiroyuki, E-mail: date@hs.hokudai.ac.jp [Faculty of Health Sciences, Hokkaido University (Japan)

    2016-10-01

    Gold nanoparticles (GNPs) have been recognized as a promising candidate for a radiation sensitizer. A proton beam incident on a GNP can produce secondary electrons, resulting in an enhancement of the dose around the GNP. However, little is known about the spatial distribution of dose enhancement around the GNP, especially in the direction along the incident proton. The purpose of this study is to determine the spatial distribution of dose enhancement by taking the incident direction into account. Two steps of calculation were conducted using the Geant4 Monte Carlo simulation toolkit. First, the energy spectra of 100 and 195 MeV protons colliding with a GNP were calculated at the Bragg peak and three other depths around the peak in liquid water. Second, the GNP was bombarded by protons with the obtained energy spectra. Radial dose distributions were computed along the incident beam direction. The spatial distributions of the dose enhancement factor (DEF) and subtracted dose (D{sub sub}) were then evaluated. The spatial DEF distributions showed hot spots in the distal radial region from the proton beam axis. The spatial D{sub sub} distribution isotropically spread out around the GNP. Low energy protons caused higher and wider dose enhancement. The macroscopic dose enhancement in clinical applications was also evaluated. The results suggest that the consideration of the spatial distribution of GNPs in treatment planning will maximize the potential of GNPs.

  10. Reappraisal of the reference dose distribution in the UNSCEAR 1977 report

    International Nuclear Information System (INIS)

    Kumazawa, Shigeru

    2008-01-01

    This paper provides the update of the reference dose distribution proposed by G.A.M. Web and D. Beninson in Annex E to the UNSCEAR 1977 Report. To demonstrate compliance with regulatory obligations regarding doses to individuals, they defined it with the following properties: 1) The distribution of annual doses is log-normal; 2) The mean of the annual dose distribution is 5 m Gy (10% of the ICRP 1977 dose limit); 3) The proportion of workers exceeding 50 m Gy is 0.1%. The concept of the reference dose distribution is still important to understand the inherent variation of individual doses to workers controlled by source-related and individual-related efforts of best dose reduction. In the commercial nuclear power plant, the dose distribution becomes the more apart from the log-normal due to the stronger ALARA efforts and the revised dose limits. The monitored workers show about 1 m Sv of annual mean and far less than 0.1% of workers above 20 m Sv. The updated models of dose distribution consist of log-normal (no feedback on dose X) ln(X)∼N(μ,σ 2 ), hybrid log-normal (feedback on higher X by ρ) hyb(ρX)=ρX+ln(ρX)∼N(μ,σ 2 ), hybrid S B (feedback on higher dose quotient X/(D-X) not close to D by ρ) hyb[ρX/(D.X)]∼N(μ,σ 2 ) and Johnson's S B (limit to D) ln[X/(D-X)]∼N(μ,σ 2 ). These models afford interpreting the degree of dose control including dose constraint/limit to the reference distribution. Some of distributions are examined to characterize the variation of doses to members of the public with uncertainty. (author)

  11. Dose distributions in electron irradiated plastic tubing

    International Nuclear Information System (INIS)

    Miller, A.; Pederson, W.B.

    1981-01-01

    Plastic tubes have been crosslinked by irradiation at a 10 MeV linear electron accelerator and at a 400 keV DC electron accelerator at different irradiation geometries. The diameter of the different tubes was 20, 33 and 110 millimeters. Dose distributions have been measured with thin radiochromic dye films, indicating that in all cases irradiation from two sides is a necessary and sufficient condition for obtaining a satisfactory dose distribution. (author)

  12. Comparison between evaluating methods about the protocols of different dose distributions in radiotherapy

    International Nuclear Information System (INIS)

    Ju Yongjian; Chen Meihua; Sun Fuyin; Zhang Liang'an; Lei Chengzhi

    2004-01-01

    Objective: To study the relationship between tumor control probability (TCP) or equivalent uniform dose (EUD) and the heterogeneity degree of the dose changes with variable biological parameter values of the tumor. Methods: According to the definitions of TCP and EUD, calculating equations were derived. The dose distributions in the tumor were assumed to be Gaussian ones. The volume of the tumor was divided into several voxels, and the absorbed doses of these voxels were simulated by Monte Carlo methods. Then with the different values of radiosensitivity (α) and potential doubling time of the clonogens (T p ), the relationships between TCP or EUD and the standard deviation of dose (S d ) were evaluated. Results: The TCP-S d curves were influenced by the variable α and T p values, but the EUD-S d curves showed little variation. Conclusion: When the radiotherapy protocols with different dose distributions are compared, if the biological parameter values of the tumor have been known exactly, it's better to use the TCP, otherwise the EUD will be preferred

  13. Studies of absorbed dose determinations and spatial dose distributions for high energy proton beams

    International Nuclear Information System (INIS)

    Hiraoka, Takeshi

    1982-01-01

    Absolute dose determinations were made with three types of ionization chamber and a Faraday cup. Methane based tissue equivalent (TE) gas, nitrogen, carbon dioxide, air were used as an ionizing gas with flow rate of 10 ml per minute. Measurements were made at the entrance position of unmodulated beams and for a beam of a spread out Bragg peak at a depth of 17.3 mm in water. For both positions, the mean value of dose determined by the ionization chambers was 0.993 +- 0.014 cGy for which the value of TE gas was taken as unity. The agreement between the doses estimated by the ionization chambers and the Faraday cup was within 5%. Total uncertainty estimated in the ionization chamber and the Faraday cup determinations is 6 and 4%, respectively. Common sources of error in calculating the dose from ionization chamber measurements are depend on the factors of ion recombination, W value, and mass stopping power ratio. These factors were studied by both experimentally and theoretically. The observed values for the factors show a good agreement to the predicted one. Proton beam dosimetry intercomparison between Japan and the United States was held. Good agreement was obtained with standard deviation of 1.6%. The value of the TE calorimeter is close to the mean value of all. In the proton spot scanning system, lateral dose distributions at any depth for one spot beam can be simulated by the Gaussian distribution. From the Gaussian distributions and the central axis depth doses for one spot beam, it is easy to calculate isodose distributions in the desired field by superposition of dose distribution for one spot beam. Calculated and observed isodose curves were agreed within 1 mm at any dose levels. (J.P.N.)

  14. Warfarin maintenance dose in older patients: higher average dose and wider dose frequency distribution in patients of African ancestry than those of European ancestry.

    Science.gov (United States)

    Garwood, Candice L; Clemente, Jennifer L; Ibe, George N; Kandula, Vijay A; Curtis, Kristy D; Whittaker, Peter

    2010-06-15

    Studies report that warfarin doses required to maintain therapeutic anticoagulation decrease with age; however, these studies almost exclusively enrolled patients of European ancestry. Consequently, universal application of dosing paradigms based on such evidence may be confounded because ethnicity also influences dose. Therefore, we determined if warfarin dose decreased with age in Americans of African ancestry, if older African and European ancestry patients required different doses, and if their daily dose frequency distributions differed. Our chart review examined 170 patients of African ancestry and 49 patients of European ancestry cared for in our anticoagulation clinic. We calculated the average weekly dose required for each stable, anticoagulated patient to maintain an international normalized ratio of 2.0 to 3.0, determined dose averages for groups 80 years of age and plotted dose as a function of age. The maintenance dose in patients of African ancestry decreased with age (PAfrican ancestry required higher average weekly doses than patients of European ancestry: 33% higher in the 70- to 79-year-old group (38.2+/-1.9 vs. 28.8+/-1.7 mg; P=0.006) and 52% in the >80-year-old group (33.2+/-1.7 vs. 21.8+/-3.8 mg; P=0.011). Therefore, 43% of older patients of African ancestry required daily doses >5mg and hence would have been under-dosed using current starting-dose guidelines. The dose frequency distribution was wider for older patients of African ancestry compared to those of European ancestry (PAfrican ancestry indicate that strategies for initiating warfarin therapy based on studies of patients of European ancestry could result in insufficient anticoagulation and thereby potentially increase their thromboembolism risk. Copyright 2010 Elsevier Inc. All rights reserved.

  15. Experimental measurements of spatial dose distributions in radiosurgery treatments

    International Nuclear Information System (INIS)

    Avila-Rodriguez, M. A.; Rodriguez-Villafuerte, M.; Diaz-Perches, R.; Perez-Pastenes, M. A.

    2001-01-01

    The measurement of stereotactic radiosurgery dose distributions requires an integrating, high-resolution dosimeter capable of providing a spatial map of absorbed dose. This paper describes the use of a commercial radiochromic dye film (GafChromic MD-55-2) to measure radiosurgery dose distributions with 6 MV X-rays in a head phantom. The response of the MD-55-2 was evaluated by digitizing and analyzing the films with conventional computer systems. Radiosurgery dose distributions were measured using the radiochromic film in a spherical acrylic phantom of 16 cm diameter undergoing a typical SRS treatment as a patient, and were compared with dose distributions provided by the treatment planning system. The comparison lead to mean radial differences of ±0.6 mm, ±0.9 mm, ±1.3 mm, ±1.9 mm, and ±2.8 mm, for the 80, 60, 50, 40, and 30% isodose curves, respectively. It is concluded that the radiochromic film is a convenient and useful tool for radiosurgery treatment planning validation

  16. The MLC tongue-and-groove effect on IMRT dose distributions

    Energy Technology Data Exchange (ETDEWEB)

    Deng Jun [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305 (United States). E-mail: jun@reyes.stanford.edu; Pawlicki, Todd; Chen Yan; Li Jinsheng; Jiang, Steve B.; Ma, C.-M. [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305 (United States)

    2001-04-01

    We have investigated the tongue-and-groove effect on the IMRT dose distributions for a Varian MLC. We have compared the dose distributions calculated using the intensity maps with and without the tongue-and-groove effect. Our results showed that, for one intensity-modulated treatment field, the maximum tongue-and-groove effect could be up to 10% of the maximum dose in the dose distributions. For an IMRT treatment with multiple gantry angles ({>=} 5), the difference between the dose distributions with and without the tongue-and-groove effect was hardly visible, less than 1.6% for the two typical clinical cases studied. After considering the patient setup errors, the dose distributions were smoothed with reduced and insignificant differences between plans with and without the tongue-and-groove effect. Therefore, for a multiple-field IMRT plan ({>=} 5), the tongue-and-groove effect on the IMRT dose distributions will be generally clinically insignificant due to the smearing effect of individual fields. The tongue-and-groove effect on an IMRT plan with small number of fields (<5) will vary depending on the number of fields in a plan (coplanar or non-coplanar), the MLC leaf sequences and the patient setup uncertainty, and may be significant (>5% of maximum dose) in some cases, especially when the patient setup uncertainty is small ({<=} 2 mm). (author)

  17. Quantifying the Combined Effect of Radiation Therapy and Hyperthermia in Terms of Equivalent Dose Distributions

    International Nuclear Information System (INIS)

    Kok, H. Petra; Crezee, Johannes; Franken, Nicolaas A.P.; Stalpers, Lukas J.A.; Barendsen, Gerrit W.; Bel, Arjan

    2014-01-01

    Purpose: To develop a method to quantify the therapeutic effect of radiosensitization by hyperthermia; to this end, a numerical method was proposed to convert radiation therapy dose distributions with hyperthermia to equivalent dose distributions without hyperthermia. Methods and Materials: Clinical intensity modulated radiation therapy plans were created for 15 prostate cancer cases. To simulate a clinically relevant heterogeneous temperature distribution, hyperthermia treatment planning was performed for heating with the AMC-8 system. The temperature-dependent parameters α (Gy −1 ) and β (Gy −2 ) of the linear–quadratic model for prostate cancer were estimated from the literature. No thermal enhancement was assumed for normal tissue. The intensity modulated radiation therapy plans and temperature distributions were exported to our in-house-developed radiation therapy treatment planning system, APlan, and equivalent dose distributions without hyperthermia were calculated voxel by voxel using the linear–quadratic model. Results: The planned average tumor temperatures T90, T50, and T10 in the planning target volume were 40.5°C, 41.6°C, and 42.4°C, respectively. The planned minimum, mean, and maximum radiation therapy doses were 62.9 Gy, 76.0 Gy, and 81.0 Gy, respectively. Adding hyperthermia yielded an equivalent dose distribution with an extended 95% isodose level. The equivalent minimum, mean, and maximum doses reflecting the radiosensitization by hyperthermia were 70.3 Gy, 86.3 Gy, and 93.6 Gy, respectively, for a linear increase of α with temperature. This can be considered similar to a dose escalation with a substantial increase in tumor control probability for high-risk prostate carcinoma. Conclusion: A model to quantify the effect of combined radiation therapy and hyperthermia in terms of equivalent dose distributions was presented. This model is particularly instructive to estimate the potential effects of interaction from different treatment

  18. New dose limits and distribution of annual doses for controlled groups

    International Nuclear Information System (INIS)

    Vukcevic, M.; Stankovic, S.; Kovacevic, M.

    1993-01-01

    The new calculations of neutron doses received by the population of Hiroshima and Nagasaki, as well as the epidemiological data on the incidence of fatal cancers in the survivors, had led to the conclusion that the risk estimates should be raised by the factor 2 or 3. In this work, the distribution of monthly doses for occupationals was analysed in order to determine the percent of workers who might be considered as overexposed, on the basis of the new dose limits. (author)

  19. The dose distribution surrounding 192Ir and 137Cs seed sources

    International Nuclear Information System (INIS)

    Thomason, C.; Mackie, T.R.; Wisconsin Univ., Madison, WI; Lindstrom, M.J.; Higgins, P.D.

    1991-01-01

    Dose distributions in water were measured using LiF thermoluminescent dosemeters for 192 Ir seed sources with stainless steel and with platinum encapsulation to determine the effect of differing encapsulation. Dose distribution was measured for a 137 Cs seed source. In addition, dose distributions surrounding these sources were calculated using the EGS4 Monte Carlo code and were compared to measured data. The two methods are in good agreement for all three sources. Tables are given describing dose distribution surrounding each source as a function of distance and angle. Specific dose constants were also determined from results of Monte Carlo simulation. This work confirms the use of the EGS4 Monte Carlo code in modelling 192 Ir and 137 Cs seed sources to obtain brachytherapy dose distributions. (author)

  20. Potential implications of the bystander effect on TCP and EUD when considering target volume dose heterogeneity.

    Science.gov (United States)

    Balderson, Michael J; Kirkby, Charles

    2015-01-01

    In light of in vitro evidence suggesting that radiation-induced bystander effects may enhance non-local cell killing, there is potential for impact on radiotherapy treatment planning paradigms such as the goal of delivering a uniform dose throughout the clinical target volume (CTV). This work applies a bystander effect model to calculate equivalent uniform dose (EUD) and tumor control probability (TCP) for external beam prostate treatment and compares the results with a more common model where local response is dictated exclusively by local absorbed dose. The broad assumptions applied in the bystander effect model are intended to place an upper limit on the extent of the results in a clinical context. EUD and TCP of a prostate cancer target volume under conditions of increasing dose heterogeneity were calculated using two models: One incorporating bystander effects derived from previously published in vitro bystander data ( McMahon et al. 2012 , 2013a); and one using a common linear-quadratic (LQ) response that relies exclusively on local absorbed dose. Dose through the CTV was modelled as a normal distribution, where the degree of heterogeneity was then dictated by changing the standard deviation (SD). Also, a representative clinical dose distribution was examined as cold (low dose) sub-volumes were systematically introduced. The bystander model suggests a moderate degree of dose heterogeneity throughout a target volume will yield as good or better outcome compared to a uniform dose in terms of EUD and TCP. For a typical intermediate risk prostate prescription of 78 Gy over 39 fractions maxima in EUD and TCP as a function of increasing SD occurred at SD ∼ 5 Gy. The plots only dropped below the uniform dose values for SD ∼ 10 Gy, almost 13% of the prescribed dose. Small, but potentially significant differences in the outcome metrics between the models were identified in the clinically-derived dose distribution as cold sub-volumes were introduced. In terms of

  1. Dose distribution of non-coplanar irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Fukui, Toshiharu; Wada, Yoichi; Takenaka, Eiichi

    1987-02-01

    Non-coplanar irradiations were applied to the treatment of brain tumor. The dose distribution around the target area due to non-coplanar irradiation was half less than the dose when coplanar irradiation used. Integral volume dose due to this irradiation was not always less than that due to conventional opposing or rotational irradiation. This irradiation has the better application to the following;as a boost therapy, glioblastoma multiforme;as a radical therapy, recurrent brain tumor, well differentiated brain tumor such as craniopharyngioma, hypophyseal tumor etc and AV-malformation.

  2. Asymmetric fan beams (AFB) for improvement of the craniocaudal dose distribution in helical tomotherapy delivery

    International Nuclear Information System (INIS)

    Gladwish, Adam; Kron, Tomas; McNiven, Andrea; Bauman, Glenn; Van Dyk, Jake

    2004-01-01

    Helical tomotherapy (HT) is a novel radiotherapy technique that utilizes intensity modulated fan beams that deliver highly conformal dose distributions in a helical beam trajectory. The most significant limitation in dose delivery with a constant fan beam thickness (FBT) is the penumbra width of the dose distribution in the craniocaudal direction, which is equivalent to the FBT. We propose to employ a half-blocked fan beam at start and stop location to reduce the penumbra width by half. By opening the jaw slowly during the helical delivery until the desired FBT is achieved it is possible to create a sharper edge in the superior and inferior direction from the target. The technique was studied using a tomotherapy beam model implemented on a commercial treatment planning system (Theraplan Plus V3.0). It was demonstrated that the dose distribution delivered using a 25 mm fan beam can be improved significantly, to reduce the dose to normal structures located superiorly and inferiorly of the target. Dosimetry for this technique is straightforward down to a FBT of 15 mm and implementation should be simple as no changes in couch movement are required compared to a standard HT delivery. We conclude that the use of asymmetric collimated fan beams for the start and stop of the helical tomotherapeutic dose delivery has the potential of significantly improving the dose distribution in helical tomotherapy

  3. A new approach to the estimation of radiopharmaceutical radiation dose distributions

    International Nuclear Information System (INIS)

    Hetherington, E.L.R.; Wood, N.R.

    1975-03-01

    For a photon energy of 150 keV, the Monte Carlo technique of photon history simulation was used to obtain estimates of the dose distribution in a human phantom for three activity distributions relevant to diagnostic nuclear medicine. In this preliminary work, the number of photon histories considered was insufficient to produce complete dose contours and the dose distributions are presented in the form of colour-coded diagrams. The distribution obtained illustrate an important deficiency in the MIRD Schema for dose estimation. Although the Schema uses the same mathematical technique for calculating photon doses, the results are obtained as average values for the whole body and for complete organs. It is shown that the actual dose distributions, particularly those for the whole body may, differ significantly from the average value calculated using the MIRD Schema and published absorbed fractions. (author)

  4. Distribution of exposure concentrations and doses for constituents of environmental tobacco smoke

    Energy Technology Data Exchange (ETDEWEB)

    LaKind, J.S. [LaKind Associates (United States); Ginevan, M.E. [M.E. Ginevan and Associates (United States); Naiman, D.Q. [Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Mathematical Sciences; James, A.C. [A.C. James and Associates (United States); Jenkins, R.A. [Oak Ridge National Lab., TN (United States); Dourson, M.L.; Felter, S.P. [TERA (United States); Graves, C.G.; Tardiff, R.G. [Sapphire Group, Inc., Bethesda, MD (United States)

    1999-06-01

    The ultimate goal of the research reported in this series of three articles is to derive distributions of doses of selected environmental tobacco smoke (ETS)-related chemicals for nonsmoking workers. This analysis uses data from the 16-City Study collected with personal monitors over the course of one workday in workplaces where smoking occurred. In this article, the authors describe distributions of ETS chemical concentrations and the characteristics of those distributions for the workplace exposure. Next, they present population parameters relevant for estimating dose distributions and the methods used for estimating those dose distributions. Finally, they derive distributions of doses of selected ETS-related constituents obtained in the workplace for people in smoking work environments. Estimating dose distributions provided information beyond the usual point estimate of dose and showed that the preponderance of individuals exposed to ETS in the workplace were exposed at the low end of the dose distribution curve. The results of this analysis include estimations of hourly maxima and time-weighted average (TWA) doses of nicotine from workplace exposures to ETS and doses derived from modeled lung burdens of ultraviolet-absorbing particulate matter (UVPM) and solanesol resulting from workplace exposures to ETS (extrapolated from 1 day to 1 year).

  5. Inhomogeneous target-dose distributions: a dimension more for optimization?

    International Nuclear Information System (INIS)

    Gersem, Werner R.T. de; Derycke, Sylvie; Colle, Christophe O.; Wagter, Carlos de; Neve, Wilfried J. de

    1999-01-01

    plans (p lung as well as the percentage of lung volume exceeding 20 Gy was higher with the use of the biophysical objective function. NTCP heart was also higher with the use of the biophysical objective function. The percentage of heart volume exceeding 40 Gy tended to be higher but the difference was not significant. For spinal cord, the maximum dose as well as NTCP cord were similar for 3D plans (D max : p = 0.04; NTCP: p = 0.2) but were significantly lower for BIM (D max : p = 0.002; NTCP: p = 0.008) if the biophysical objective function was used. Conclusions: When using conventional 3D techniques, inhomogeneous dose distributions offer the potential to further increase the probability of uncomplicated local control. When using techniques as BIM that would lead to large escalation of the median and maximum target doses, it seems indicated to limit target-dose inhomogeneity to avoid dose levels that are so high that the safety becomes questionable

  6. Dose response study of PVA-Fx gel for three dimensional dose distribution

    International Nuclear Information System (INIS)

    Brindha, S.; Ayyangar, Komanduri M.; Shen, Bin; Saw, Cheng B.

    2001-01-01

    Modern radiotherapy techniques involve complex field arrangements using conformal and intensity modulated radiation that requires three dimensional treatment planning. The verification of these plans poses even more challenge. In 1984, Gore et al., proposed that ferrous gel dosimeters combined with magnetic resonance imaging (MRI) could be used to measure three dimensional radiation dose distributions. Since then, there has been much interest in the development of gel dosimetry to aid the determination of three dimensional dose distributions during field arrangements. In this work, preparation and study of the MR characteristics of a PVA-Fx gel reported in the literature is presented

  7. Evaluation of dose distributions in gamma chamber using glass plate detector

    Directory of Open Access Journals (Sweden)

    Narayan Pradeep

    2008-01-01

    Full Text Available A commercial glass plate of thickness 1.75 mm has been utilized for evaluation of dose distributions inside the irradiation volume of gamma chamber using optical densitometry technique. The glass plate showed linear response in the dose range 0.10 Kilo Gray (kGy to 10 kGy of cobalt-60 gamma radiation with optical sensitivity 0.04 Optical Density (OD /kGy. The change in the optical density at each identified spatial dose matrix on the glass plate in relation to the position in the irradiation volume has been presented as dose distributions inside the gamma chamber. The optical density changes have been graphically plotted in the form of surface diagram of color washes for different percentage dose rate levels as isodose distributions in gamma chamber. The variation in dose distribution inside the gamma chamber unit, GC 900, BRIT India make, using this technique has been observed within ± 15%. This technique can be used for routine quality assurances and dose distribution validation of any gamma chamber during commissioning and source replacement. The application of commercial glass plate for dose mapping in gamma chambers has been found very promising due to its wider dose linearity, quick measurement, and lesser expertise requirement in application of the technique.

  8. Verification of IMRT dose distributions using a water beam imaging system

    International Nuclear Information System (INIS)

    Li, J.S.; Boyer, Arthur L.; Ma, C.-M.

    2001-01-01

    A water beam imaging system (WBIS) has been developed and used to verify dose distributions for intensity modulated radiotherapy using dynamic multileaf collimator. This system consisted of a water container, a scintillator screen, a charge-coupled device camera, and a portable personal computer. The scintillation image was captured by the camera. The pixel value in this image indicated the dose value in the scintillation screen. Images of radiation fields of known spatial distributions were used to calibrate the device. The verification was performed by comparing the image acquired from the measurement with a dose distribution from the IMRT plan. Because of light scattering in the scintillator screen, the image was blurred. A correction for this was developed by recognizing that the blur function could be fitted to a multiple Gaussian. The blur function was computed using the measured image of a 10 cmx10 cm x-ray beam and the result of the dose distribution calculated using the Monte Carlo method. Based on the blur function derived using this method, an iterative reconstruction algorithm was applied to recover the dose distribution for an IMRT plan from the measured WBIS image. The reconstructed dose distribution was compared with Monte Carlo simulation result. Reasonable agreement was obtained from the comparison. The proposed approach makes it possible to carry out a real-time comparison of the dose distribution in a transverse plane between the measurement and the reference when we do an IMRT dose verification

  9. Dose distribution calculation for in-vivo X-ray fluorescence scanning

    International Nuclear Information System (INIS)

    Figueroa, R. G.; Lozano, E.; Valente, M.

    2013-01-01

    In-vivo X-ray fluorescence constitutes a useful and accurate technique, worldwide established for constituent elementary distribution assessment. Actually, concentration distributions of arbitrary user-selected elements can be achieved along sample surface with the aim of identifying and simultaneously quantifying every constituent element. The method is based on the use of a collimated X-ray beam reaching the sample. However, one common drawback for considering the application of this technique for routine clinical examinations was the lack of information about associated dose delivery. This work presents a complete study of the dose distribution resulting from an in-vivo X-ray fluorescence scanning for quantifying biohazard materials on human hands. Absorbed dose has been estimated by means of dosimetric models specifically developed to this aim. In addition, complete dose distributions have been obtained by means of full radiation transport calculations in based on stochastic Monte Carlo techniques. A dedicated subroutine has been developed using the Penelope 2008 main code also integrated with dedicated programs -Mat Lab supported- for 3 dimensional dose distribution visualization. The obtained results show very good agreement between approximate analytical models and full descriptions by means of Monte Carlo simulations. (Author)

  10. Absorbed Dose Distribution in a Pulse Radiolysis Optical Cell

    DEFF Research Database (Denmark)

    Miller, Arne; McLaughlin, W. L.

    1975-01-01

    When a liquid solution in an optical cell is irradiated by an intense pulsed electron beam, it may be important in the chemical analysis of the solution to know the distribution of energy deposited throughout the cell. For the present work, absorbed dose distributions were measured by thin...... radiochromic dye film dosimeters placed at various depths in a quartz glass pulse radiolysis cell. The cell was irradiated with 30 ns pulses from a field-emission electron accelerator having a broad spectrum with a maximum energy of ≈MeV. The measured three-dimensional dose distributions showed sharp gradients...... in dose at the largest penetration depths in the cell and at the extreme lateral edges of the cell interior near the optical windows. This method of measurement was convenient because of the high spatial resolution capability of the detector and the linearity and absence of dose-rate dependence of its...

  11. A luminescence imaging system for the routine measurement of single-grain OSL dose distributions

    DEFF Research Database (Denmark)

    Kook, Myung Ho; Lapp, Torben; Murray, Andrew

    2015-01-01

    the potential of an electron multiplying charge-coupled device (EMCCD), providing extremely low level light detection. We characterize the performance of the device by discussing reproducibility and evaluating uncertainties in OSL signals. Finally we derive a typical single grain natural dose distribution...

  12. The dose dependency of the over-dispersion of quartz OSL single grain dose distributions

    International Nuclear Information System (INIS)

    Thomsen, Kristina J.; Murray, Andrew; Jain, Mayank

    2012-01-01

    The use of single grain quartz OSL dating has become widespread over the past decade, particularly with application to samples likely to have been incompletely bleached before burial. By reducing the aliquot size to a single grain the probability of identifying the grain population most likely to have been well-bleached at deposition is maximised and thus the accuracy with which the equivalent dose can be determined is – at least in principle – improved. However, analysis of single grain dose distributions requires knowledge of the dispersion of the well-bleached part of the dose distribution. This can be estimated by measurement of a suitable analogue, e.g. a well-bleached aeolian sample, but this requires such an analogue to be available, and in addition the assumptions that the sample is in fact a) well-bleached, and b) has a similar dose rate heterogeneity to the fossil deposit. Finally, it is an implicit assumption in such analysis that any over-dispersion is not significantly dose dependent. In this study we have undertaken laboratory investigations of the dose dependency of over-dispersion using a well-bleached modern sample with an average measured dose of 36 ± 3 mGy. This sample was prepared as heated (750 °C for 1 h), bleached and untreated portions which were then given uniform gamma doses ranging from 100 mGy to 208 Gy. We show that for these samples the relative laboratory over-dispersion is not constant as a function of dose and that the over-dispersion is smaller in heated samples. We also show that the dim grains in the distributions have a greater over-dispersion than the bright grains, implying that insensitive samples will have greater values of over-dispersion than sensitive samples.

  13. Device for simulation of integral dose distribution in multifield radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Belyakov, E K; Voronin, V V; Kolosova, V F; Moskalev, A I; Marova, Yu M; Stavitskii, R V; Yarovoi, V S

    1974-11-15

    Described is a device for simulation of the sum dose distribution at multifield radiation therapy; the device comprises a mechanical unit on which the emission sources and detectors are mounted, an electromechanical scanning equipment, amplifiers, an adder, a position sensor and a recording instrument. The device suggested raises an accuracy of a sick man radiation program elaboration at a remote multifield radiation therapy, permits to estimate the irradiated medium heterogeneity and beam shaper influence on the sum dose distribution and also ensured the information on the sum dose distribution of the relative or absolute units. Additional filters simulating heterogeneity and beam shaping conditions of ionizing radiation may be mounted between the quantum emission sources and detectors, and an amplifier with a variable amplification factor may be placed between the adders and printers. Thus it is possible to obtain a sum dose distribution at static methods of the remote radiation therapy at a high degree of accuracy (up to +-10%).

  14. Potential radiation doses from 1994 Hanford Operations

    Energy Technology Data Exchange (ETDEWEB)

    Soldat, J.K.; Antonio, E.J.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the potential radiation doses to the public from releases originating at the Hanford Site. Members of the public are potentially exposed to low-levels of radiation from these effluents through a variety of pathways. The potential radiation doses to the public were calculated for the hypothetical MEI and for the general public residing within 80 km (50 mi) of the Hanford Site.

  15. Potential radiation doses from 1994 Hanford Operations

    International Nuclear Information System (INIS)

    Soldat, J.K.; Antonio, E.J.

    1995-01-01

    This section of the 1994 Hanford Site Environmental Report summarizes the potential radiation doses to the public from releases originating at the Hanford Site. Members of the public are potentially exposed to low-levels of radiation from these effluents through a variety of pathways. The potential radiation doses to the public were calculated for the hypothetical MEI and for the general public residing within 80 km (50 mi) of the Hanford Site

  16. The dose dependency of the over-dispersion of quartz OSL single grain dose distributions

    DEFF Research Database (Denmark)

    Thomsen, Kristina Jørkov; Murray, Andrew S.; Jain, Mayank

    2012-01-01

    The use of single grain quartz OSL dating has become widespread over the past decade, particularly with application to samples likely to have been incompletely bleached before burial. By reducing the aliquot size to a single grain the probability of identifying the grain population most likely...... to have been well-bleached at deposition is maximised and thus the accuracy with which the equivalent dose can be determined is – at least in principle – improved. However, analysis of single grain dose distributions requires knowledge of the dispersion of the well-bleached part of the dose distribution....... This can be estimated by measurement of a suitable analogue, e.g. a well-bleached aeolian sample, but this requires such an analogue to be available, and in addition the assumptions that the sample is in fact a) well-bleached, and b) has a similar dose rate heterogeneity to the fossil deposit. Finally...

  17. A three-dimensional dose-distribution estimation system using computerized image reconstruction

    International Nuclear Information System (INIS)

    Nishijima, Akihiko; Kidoya, Eiji; Komuro, Hiroyuki; Tanaka, Masato; Asada, Naoki.

    1990-01-01

    In radiotherapy planning, three dimensional (3-D) estimation of dose distribution has been very troublesome and time-consuming. To solve this problem, a simple and fast 3-D dose distribution image using a computer and Charged Couple Device (CCD) camera was developed. A series of X-ray films inserted in the phantom using a linear accelerator unit was exposed. The degree of film density was degitized with a CCD camera and a minicomputer (VAX 11-750). After that these results were compared with the present depth dose obtained by a JARP type dosimeter, with a dose error being less than 2%. The 3-D dose distribution image could accurately depict the density changes created by aluminum and air put into the phantom. The contrast resolution of the CCD camera seemed to be superior to the convention densitometer in the low-to-intermediate contrast range. In conclusion, our method seem to be very fast and simple for obtaining 3-D dose distribution images and is very effective when compared with the conventional method. (author)

  18. Monte Carlo dose distributions for radiosurgery

    International Nuclear Information System (INIS)

    Perucha, M.; Leal, A.; Rincon, M.; Carrasco, E.

    2001-01-01

    The precision of Radiosurgery Treatment planning systems is limited by the approximations of their algorithms and by their dosimetrical input data. This fact is especially important in small fields. However, the Monte Carlo methods is an accurate alternative as it considers every aspect of particle transport. In this work an acoustic neurinoma is studied by comparing the dose distribution of both a planning system and Monte Carlo. Relative shifts have been measured and furthermore, Dose-Volume Histograms have been calculated for target and adjacent organs at risk. (orig.)

  19. Radiochromic Plastic Films for Accurate Measurement of Radiation Absorbed Dose and Dose Distributions

    DEFF Research Database (Denmark)

    McLaughlin, W. L.; Miller, Arne; Fidan, S.

    1977-01-01

    of dose rate (1–1014 rad s−1). Upon irradiation of the film, the profile of the radiation field is registered as a permanent colored image of the dose distribution. Unlike most other types of dyed plastic dose meters, the optical density produced by irradiation is in most cases stable for periods...... of many polymeric systems in industrial radiation processing. The result is that errors due to energy dependence of response of the radiation sensor are effectively reduced, since the spectral sensitivity of the dose meter matches that of the polymer of interest, over a wide range of photon and electron...

  20. Impact of dose-distribution uncertainties on rectal ntcp modeling I: Uncertainty estimates

    International Nuclear Information System (INIS)

    Fenwick, John D.; Nahum, Alan E.

    2001-01-01

    A trial of nonescalated conformal versus conventional radiotherapy treatment of prostate cancer has been carried out at the Royal Marsden NHS Trust (RMH) and Institute of Cancer Research (ICR), demonstrating a significant reduction in the rate of rectal bleeding reported for patients treated using the conformal technique. The relationship between planned rectal dose-distributions and incidences of bleeding has been analyzed, showing that the rate of bleeding falls significantly as the extent of the rectal wall receiving a planned dose-level of more than 57 Gy is reduced. Dose-distributions delivered to the rectal wall over the course of radiotherapy treatment inevitably differ from planned distributions, due to sources of uncertainty such as patient setup error, rectal wall movement and variation in the absolute rectal wall surface area. In this paper estimates of the differences between planned and treated rectal dose-distribution parameters are obtained for the RMH/ICR nonescalated conformal technique, working from a distribution of setup errors observed during the RMH/ICR trial, movement data supplied by Lebesque and colleagues derived from repeat CT scans, and estimates of rectal circumference variations extracted from the literature. Setup errors and wall movement are found to cause only limited systematic differences between mean treated and planned rectal dose-distribution parameter values, but introduce considerable uncertainties into the treated values of some dose-distribution parameters: setup errors lead to 22% and 9% relative uncertainties in the highly dosed fraction of the rectal wall and the wall average dose, respectively, with wall movement leading to 21% and 9% relative uncertainties. Estimates obtained from the literature of the uncertainty in the absolute surface area of the distensible rectal wall are of the order of 13%-18%. In a subsequent paper the impact of these uncertainties on analyses of the relationship between incidences of bleeding

  1. Measurement system for depth dose distribution in cancer therapy

    International Nuclear Information System (INIS)

    Nishizawa, Hiroshi; Fujiwara, Hirotsugu; Tsutaka, Yoshikazu; Ikeda, Ikuo

    1999-01-01

    An accurate estimation of an absorbed dose distribution in human tissue is indispensable to efficiently perform radiotherapy in humans. Previously, various methods for such estimation have been developed, however, there is some problem in those methods, it takes too long times (3-4 hours) to determine the absorbed dose distribution through scanning by ionization chamber in water phantom. So, a determination system of depth dose was developed with an aim to determine the absorbed dose of X-ray or electron beam in materials similar to human body. This system was composed of a detector including scintillation fibers which allows emission due to radio-interaction, CCD camera for determination of light distribution of the emission and personal computer for data processing. Though the accuracy of this system was ±2% similar to that of the conventional measuring method, measuring time was reduced to almost 5 min, markedly shorter than that of the conventional water phantom (3-4 hours). The efficacy of works including the adjustment of irradiation system, planning, etc. would be improved by application of this system. (M.N.)

  2. The dose distribution surrounding sup 192 Ir and sup 137 Cs seed sources

    Energy Technology Data Exchange (ETDEWEB)

    Thomason, C [Wisconsin Univ., Madison, WI (USA). Dept. of Medical Physics; Mackie, T R [Wisconsin Univ., Madison, WI (USA). Dept. of Medical Physics Wisconsin Univ., Madison, WI (USA). Dept. of Human Oncology; Lindstrom, M J [Wisconsin Univ., Madison, WI (USA). Biostatistics Center; Higgins, P D [Cleveland Clinic Foundation, OH (USA). Dept. of Radiation Oncology

    1991-04-01

    Dose distributions in water were measured using LiF thermoluminescent dosemeters for {sup 192}Ir seed sources with stainless steel and with platinum encapsulation to determine the effect of differing encapsulation. Dose distribution was measured for a {sup 137}Cs seed source. In addition, dose distributions surrounding these sources were calculated using the EGS4 Monte Carlo code and were compared to measured data. The two methods are in good agreement for all three sources. Tables are given describing dose distribution surrounding each source as a function of distance and angle. Specific dose constants were also determined from results of Monte Carlo simulation. This work confirms the use of the EGS4 Monte Carlo code in modelling {sup 192}Ir and {sup 137}Cs seed sources to obtain brachytherapy dose distributions. (author).

  3. External dose distributions of exposure to natural uranium slab for calibration of beta absorbed dose

    International Nuclear Information System (INIS)

    Chen Lishu

    1987-01-01

    The depth dose distributions and uniformity of beta radiation fields from a natural uranium slab in equilibration were measured using a tissue equivalent extrapolation chamber and film dosimeter. The advantages for calibration of enviromental dose instument or survey meter and personal dosimeter, for routine monitoring in terms of directional dose equivalent and superficial individual dose equivalent were summarized. Finally, the values measured agree well with that of theoretical calculation

  4. External dose distributions of exposure to natural uranium slab for calibration of beta absorbed dose

    Energy Technology Data Exchange (ETDEWEB)

    Lishu, Chen

    1987-05-01

    The depth dose distributions and uniformity of beta radiation fields from a natural uranium slab in equilibration were measured using a tissue equivalent extrapolation chamber and film dosimeter. The advantages for calibration of enviromental dose instument or survey meter and personal dosimeter, for routine monitoring in terms of directional dose equivalent and superficial individual dose equivalent were summarized. Finally, the values measured agree well with that of theoretical calculation.

  5. Evaluation of a post-analysis method for cumulative dose distribution in stereotactic body radiotherapy

    International Nuclear Information System (INIS)

    Imae, Toshikazu; Takenaka, Shigeharu; Saotome, Naoya

    2016-01-01

    The purpose of this study was to evaluate a post-analysis method for cumulative dose distribution in stereotactic body radiotherapy (SBRT) using volumetric modulated arc therapy (VMAT). VMAT is capable of acquiring respiratory signals derived from projection images and machine parameters based on machine logs during VMAT delivery. Dose distributions were reconstructed from the respiratory signals and machine parameters in the condition where respiratory signals were without division, divided into 4 and 10 phases. The dose distribution of each respiratory phase was calculated on the planned four-dimensional CT (4DCT). Summation of the dose distributions was carried out using deformable image registration (DIR), and cumulative dose distributions were compared with those of the corresponding plans. Without division, dose differences between cumulative distribution and plan were not significant. In the condition Where respiratory signals were divided, dose differences were observed over dose in cranial region and under dose in caudal region of planning target volume (PTV). Differences between 4 and 10 phases were not significant. The present method Was feasible for evaluating cumulative dose distribution in VMAT-SBRT using 4DCT and DIR. (author)

  6. Study of dose distribution in high energy photon beam used in radiotherapy

    International Nuclear Information System (INIS)

    Rafaravavy, R.; Raoelina Andriambololona; Bridier, A.

    2007-01-01

    The dose distribution in a medium traversed by a photon beam depends on beam energy, field size and medium nature. Percent depth dose (PDD), Dose Profile (DP) and Opening Collimator Factor (OCF) curves will be established to study this distribution. So, the PDD curves are composed by tree parts: the build-up region, the maximal dose and the quasi-equilibrium region. The maximum dose depth and the dose in depth increase with increasing photon beam energy but the dose surface decreases. The PDD increases with increasing field size.

  7. Comparison of methods for the measurement of radiation dose distributions in high dose rate (HDR) brachytherapy: Ge-doped optical fiber, EBT3 Gafchromic film, and PRESAGE® radiochromic plastic

    International Nuclear Information System (INIS)

    Palmer, A. L.; Di Pietro, P.; Alobaidli, S.; Issa, F.; Doran, S.; Bradley, D.; Nisbet, A.

    2013-01-01

    Purpose: Dose distribution measurement in clinical high dose rate (HDR) brachytherapy is challenging, because of the high dose gradients, large dose variations, and small scale, but it is essential to verify accurate treatment planning and treatment equipment performance. The authors compare and evaluate three dosimetry systems for potential use in brachytherapy dose distribution measurement: Ge-doped optical fibers, EBT3 Gafchromic film with multichannel analysis, and the radiochromic material PRESAGE ® with optical-CT readout. Methods: Ge-doped SiO 2 fibers with 6 μm active core and 5.0 mm length were sensitivity-batched and their thermoluminescent properties used via conventional heating and annealing cycles. EBT3 Gafchromic film of 30 μm active thickness was calibrated in three color channels using a nominal 6 MV linear accelerator. A 48-bit transmission scanner and advanced multichannel analysis method were utilized to derive dose measurements. Samples of the solid radiochromic polymer PRESAGE ® , 60 mm diameter and 100 mm height, were analyzed with a parallel beam optical CT scanner. Each dosimetry system was used to measure the dose as a function of radial distance from a Co-60 HDR source, with results compared to Monte Carlo TG-43 model data. Each system was then used to measure the dose distribution along one or more lines through typical clinical dose distributions for cervix brachytherapy, with results compared to treatment planning system (TPS) calculations. Purpose-designed test objects constructed of Solid Water and held within a full-scatter water tank were utilized. Results: All three dosimetry systems reproduced the general shape of the isolated source radial dose function and the TPS dose distribution. However, the dynamic range of EBT3 exceeded those of doped optical fibers and PRESAGE ® , and the latter two suffered from unacceptable noise and artifact. For the experimental conditions used in this study, the useful range from an isolated

  8. Comparison of methods for the measurement of radiation dose distributions in high dose rate (HDR) brachytherapy: Ge-doped optical fiber, EBT3 Gafchromic film, and PRESAGE® radiochromic plastic.

    Science.gov (United States)

    Palmer, A L; Di Pietro, P; Alobaidli, S; Issa, F; Doran, S; Bradley, D; Nisbet, A

    2013-06-01

    Dose distribution measurement in clinical high dose rate (HDR) brachytherapy is challenging, because of the high dose gradients, large dose variations, and small scale, but it is essential to verify accurate treatment planning and treatment equipment performance. The authors compare and evaluate three dosimetry systems for potential use in brachytherapy dose distribution measurement: Ge-doped optical fibers, EBT3 Gafchromic film with multichannel analysis, and the radiochromic material PRESAGE(®) with optical-CT readout. Ge-doped SiO2 fibers with 6 μm active core and 5.0 mm length were sensitivity-batched and their thermoluminescent properties used via conventional heating and annealing cycles. EBT3 Gafchromic film of 30 μm active thickness was calibrated in three color channels using a nominal 6 MV linear accelerator. A 48-bit transmission scanner and advanced multichannel analysis method were utilized to derive dose measurements. Samples of the solid radiochromic polymer PRESAGE(®), 60 mm diameter and 100 mm height, were analyzed with a parallel beam optical CT scanner. Each dosimetry system was used to measure the dose as a function of radial distance from a Co-60 HDR source, with results compared to Monte Carlo TG-43 model data. Each system was then used to measure the dose distribution along one or more lines through typical clinical dose distributions for cervix brachytherapy, with results compared to treatment planning system (TPS) calculations. Purpose-designed test objects constructed of Solid Water and held within a full-scatter water tank were utilized. All three dosimetry systems reproduced the general shape of the isolated source radial dose function and the TPS dose distribution. However, the dynamic range of EBT3 exceeded those of doped optical fibers and PRESAGE(®), and the latter two suffered from unacceptable noise and artifact. For the experimental conditions used in this study, the useful range from an isolated HDR source was 5-40 mm for

  9. Influence of dose distribution homogeneity on the tumor control probability in heavy-ion radiotherapy

    International Nuclear Information System (INIS)

    Wen Xiaoqiong; Li Qiang; Zhou Guangming; Li Wenjian; Wei Zengquan

    2001-01-01

    In order to estimate the influence of the un-uniform dose distribution on the clinical treatment result, the Influence of dose distribution homogeneity on the tumor control probability was investigated. Basing on the formula deduced previously for survival fraction of cells irradiated by the un-uniform heavy-ion irradiation field and the theory of tumor control probability, the tumor control probability was calculated for a tumor mode exposed to different dose distribution homogeneity. The results show that the tumor control probability responding to the same total dose will decrease if the dose distribution homogeneity gets worse. In clinical treatment, the dose distribution homogeneity should be better than 95%

  10. Field size and dose distribution of electron beam

    International Nuclear Information System (INIS)

    Kang, Wee Saing

    1980-01-01

    The author concerns some relations between the field size and dose distribution of electron beams. The doses of electron beams are measured by either an ion chamber with an electrometer or by film for dosimetry. We analyzes qualitatively some relations; the energy of incident electron beams and depths of maximum dose, field sizes of electron beams and depth of maximum dose, field size and scatter factor, electron energy and scatter factor, collimator shape and scatter factor, electron energy and surface dose, field size and surface dose, field size and central axis depth dose, and field size and practical range. He meets with some results. They are that the field size of electron beam has influence on the depth of maximum dose, scatter factor, surface dose and central axis depth dose, scatter factor depends on the field size and energy of electron beam, and the shape of the collimator, and the depth of maximum dose and the surface dose depend on the energy of electron beam, but the practical range of electron beam is independent of field size

  11. Novel Radiobiological Gamma Index for Evaluation of 3-Dimensional Predicted Dose Distribution

    Energy Technology Data Exchange (ETDEWEB)

    Sumida, Iori, E-mail: sumida@radonc.med.osaka-u.ac.jp [Department of Radiation Oncology, Osaka University Graduate School of Medicine, Osaka (Japan); Yamaguchi, Hajime; Kizaki, Hisao; Aboshi, Keiko; Tsujii, Mari; Yoshikawa, Nobuhiko; Yamada, Yuji [Department of Radiation Oncology, NTT West Osaka Hospital, Osaka (Japan); Suzuki, Osamu; Seo, Yuji [Department of Radiation Oncology, Osaka University Graduate School of Medicine, Osaka (Japan); Isohashi, Fumiaki [Department of Radiation Oncology, NTT West Osaka Hospital, Osaka (Japan); Yoshioka, Yasuo [Department of Radiation Oncology, Osaka University Graduate School of Medicine, Osaka (Japan); Ogawa, Kazuhiko [Department of Radiation Oncology, NTT West Osaka Hospital, Osaka (Japan)

    2015-07-15

    Purpose: To propose a gamma index-based dose evaluation index that integrates the radiobiological parameters of tumor control (TCP) and normal tissue complication probabilities (NTCP). Methods and Materials: Fifteen prostate and head and neck (H&N) cancer patients received intensity modulated radiation therapy. Before treatment, patient-specific quality assurance was conducted via beam-by-beam analysis, and beam-specific dose error distributions were generated. The predicted 3-dimensional (3D) dose distribution was calculated by back-projection of relative dose error distribution per beam. A 3D gamma analysis of different organs (prostate: clinical [CTV] and planned target volumes [PTV], rectum, bladder, femoral heads; H&N: gross tumor volume [GTV], CTV, spinal cord, brain stem, both parotids) was performed using predicted and planned dose distributions under 2%/2 mm tolerance and physical gamma passing rate was calculated. TCP and NTCP values were calculated for voxels with physical gamma indices (PGI) >1. We propose a new radiobiological gamma index (RGI) to quantify the radiobiological effects of TCP and NTCP and calculate radiobiological gamma passing rates. Results: The mean RGI gamma passing rates for prostate cases were significantly different compared with those of PGI (P<.03–.001). The mean RGI gamma passing rates for H&N cases (except for GTV) were significantly different compared with those of PGI (P<.001). Differences in gamma passing rates between PGI and RGI were due to dose differences between the planned and predicted dose distributions. Radiobiological gamma distribution was visualized to identify areas where the dose was radiobiologically important. Conclusions: RGI was proposed to integrate radiobiological effects into PGI. This index would assist physicians and medical physicists not only in physical evaluations of treatment delivery accuracy, but also in clinical evaluations of predicted dose distribution.

  12. Estimation of the dose distribution within, and total dose to, the body of an acutely overexposed person

    International Nuclear Information System (INIS)

    Beer, G.P. de; Feather, J.I.; Oude, A. de; Language, A.E.

    1981-01-01

    In a case of accidental overexposure of a person, it is important to obtain a reliable value of the whole body dose as well as of the dose distribution within the body. Any follow-up treatment based only on the clinical effects as and when they appear, may result in insufficient or even erroneous therapy. In this respect knowledge of total dose and its distribution within the body may be a valuable aid in deciding on the follow-up treatment, taking into account the latent nature of the clinical effects. The calculated whole body dose and its distribution within the body of a person overexposed to a 192 Ir radiography source, are compared to experimentally determined values. In both cases the calculated values prove to be of sufficient accuracy to serve as an aid in decisions on the follow-up treatment. (author)

  13. Measurement of spatial dose distribution for evaluation operator dose during nero-interventional procedures

    International Nuclear Information System (INIS)

    Han, Su Chul; Hong, Dong Hee

    2016-01-01

    The spatial dose distribution was measured with ionization chamber as preliminary study to evaluate operator dose and to study dose reduction during neuro-interventional procedures. The zone of operators was divided into four area (45, 135, 225, and 315 degree).We supposed that operator exist on the four area and indicated location of critical organs(eyes, breast, gonad). The spatial doses were measured depending on distance( 80, 100, 120, and 140 cm) and location of critical organs. The spatial doses of area of 225 degree were 114.5 mR/h (eyes location), 143.1 mR/h (breast location) and 147 mR/h (gonad location) in 80 cm. When changed location of x-ray generator, spatial dose increased in 18.1±10.5%, averagely. We certified spatial dose in the operator locations, Using the results of this study, It is feasible to protect operator from radiation in neuro-interventional procedures

  14. Measurement of spatial dose distribution for evaluation operator dose during nero-interventional procedures

    Energy Technology Data Exchange (ETDEWEB)

    Han, Su Chul [Division of Medical Radiation Equipment, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Hong, Dong Hee [Dept. of Radiology Science, Far East University, Eumseong (Korea, Republic of)

    2016-09-15

    The spatial dose distribution was measured with ionization chamber as preliminary study to evaluate operator dose and to study dose reduction during neuro-interventional procedures. The zone of operators was divided into four area (45, 135, 225, and 315 degree).We supposed that operator exist on the four area and indicated location of critical organs(eyes, breast, gonad). The spatial doses were measured depending on distance( 80, 100, 120, and 140 cm) and location of critical organs. The spatial doses of area of 225 degree were 114.5 mR/h (eyes location), 143.1 mR/h (breast location) and 147 mR/h (gonad location) in 80 cm. When changed location of x-ray generator, spatial dose increased in 18.1±10.5%, averagely. We certified spatial dose in the operator locations, Using the results of this study, It is feasible to protect operator from radiation in neuro-interventional procedures.

  15. A Monte Carlo program converting activity distribution to absorbed dose distributions in a radionuclide treatment planning system

    International Nuclear Information System (INIS)

    Tagesson, M.; Ljungberg, M.; Strand, S.E.

    1996-01-01

    In systemic radiation therapy, the absorbed dose distribution must be calculated from the individual activity distribution. A computer code has been developed for the conversion of an arbitrary activity distribution to a 3-D absorbed dose distribution. The activity distribution can be described either analytically or as a voxel based distribution, which comes from a SPECT acquisition. Decay points are sampled according to the activity map, and particles (photons and electrons) from the decay are followed through the tissue until they either escape the patient or drop below a cut off energy. To verify the calculated results, the mathematically defined MIRD phantom and unity density spheres have been included in the code. Also other published dosimetry data were used for verification. Absorbed fraction and S-values were calculated. A comparison with simulated data from the code with MIRD data shows good agreement. The S values are within 10-20% of published MIRD S values for most organs. Absorbed fractions for photons and electrons in spheres (masses between 1 g and 200 kg) are within 10-15% of those published. Radial absorbed dose distributions in a necrotic tumor show good agreement with published data. The application of the code in a radionuclide therapy dose planning system, based on quantitative SPECT, is discussed. (orig.)

  16. The use of linear programming in optimization of HDR implant dose distributions

    International Nuclear Information System (INIS)

    Jozsef, Gabor; Streeter, Oscar E.; Astrahan, Melvin A.

    2003-01-01

    The introduction of high dose rate brachytherapy enabled optimization of dose distributions to be used on a routine basis. The objective of optimization is to homogenize the dose distribution within the implant while simultaneously satisfying dose constraints on certain points. This is accomplished by varying the time the source dwells at different locations. As the dose at any point is a linear function of the dwell times, a linear programming approach seems to be a natural choice. The dose constraints are inherently linear inequalities. Homogeneity requirements are linearized by minimizing the maximum deviation of the doses at points inside the implant from a prescribed dose. The revised simplex method was applied for the solution of this linear programming problem. In the homogenization process the possible source locations were chosen as optimization points. To avoid the problem of the singular value of the dose at a source location from the source itself we define the 'self-contribution' as the dose at a small distance from the source. The effect of varying this distance is discussed. Test cases were optimized for planar, biplanar and cylindrical implants. A semi-irregular, fan-like implant with diverging needles was also investigated. Mean central dose calculation based on 3D Delaunay-triangulation of the source locations was used to evaluate the dose distributions. The optimization method resulted in homogeneous distributions (for brachytherapy). Additional dose constraints--when applied--were satisfied. The method is flexible enough to include other linear constraints such as the inclusion of the centroids of the Delaunay-triangulation for homogenization, or limiting the maximum allowable dwell time

  17. Impact of implanted metal plates on radiation dose distribution in vivo

    International Nuclear Information System (INIS)

    Liu Ming; Li Xingde; Niu Qingguo; Zhai Fushan

    2010-01-01

    Objective: To investigate the impact of metal plate on radiation dose distribution in surrounding tissues in cadaver specimens. Methods: Stainless steel plate, titanium plate, and muscle strip were implanted into the left thigh of a corpse, respectively. All the specimens were irradiated with 6 MV X-ray , SSD = 100 cm. The absorbed dose of surface was measured by thermoluminescent elements. Results: Surface dose distributions differed significantly among the three different materials (F = 57.35, P < 0.01), with the amounts of 1.18 Gy ± 0.04 Gy (stainless steel plate), 1.12 Gy ± 0.04 Gy (titanium plate) and 0.97 Gy ± 0.03 Gy (muscle strip), respectively. The surface absorbed doses on incident plane of stainless steel plate and titanium plate were significantly increased by 21.65% and 15.46% respectively as compared with that of muscle strip. The absorbed doses on the exit surface of stainless steel plate, titanium plate and muscle strip were 0.87 Gy ± 0.03 Gy, 0.90 Gy ± 0.02 Gy and 0.95 Gy ± 0.04 Gy, respectively (F =13.37, P <0.01). The doses on the exit surface of stainless steel plate and titanium plate were significantly lowered by 8.42% and 5.26% when compared with that of muscle strip. Using treatment planning system,the differences between dose distribution with and without metal plate were compared. Within 1 cm away from the incident plate, there was an obvious increase in the absorbed dose, while the influence was less than 5% 1 cm outside the surface. The effect of dose distribution on exit surface was less than 2%. Conclusions: The influence of metal plate on the radiotherapy dose distribution is significant. The deviations ranges from 5% to 29%. Under the same condition, the impact of stainless steel plate is much more than that of titanium alloy plate. (authors)

  18. Determination of the dose and dose distribution in radiation-linked polyolefins

    International Nuclear Information System (INIS)

    Andress, B.; Fischer, P.; Repp, H.H.; Roehl, P.

    1984-01-01

    The method serves the determination of the radiation dose and dose distribution in polyolefins cross-linked by electron beams; the cross-linking takes place in the presence of an additive which is inserted in the polyolefin by radiation. After the cross-linking the fraction of the additive which is not inserted will be extracted from the polyolefin and afterwards the total extinction of the polyolefin will be determined by photometry. This process allows in particular the determination of the quality of the irradiation conditions for the electron-beam cross-linking of medium-voltage cables insulated by polyolefins. (orig.) [de

  19. Analytic characterization of linear accelerator radiosurgery dose distributions for fast optimization

    International Nuclear Information System (INIS)

    Meeks, S.L.; Buatti, J.M.; Eyster, B.; Kendrick, L.A.

    1999-01-01

    Linear accelerator (linac) radiosurgery utilizes non-coplanar arc therapy delivered through circular collimators. Generally, spherically symmetric arc sets are used, resulting in nominally spherical dose distributions. Various treatment planning parameters may be manipulated to provide dose conformation to irregular lesions. Iterative manipulation of these variables can be a difficult and time-consuming task, because (a) understanding the effect of these parameters is complicated and (b) three-dimensional (3D) dose calculations are computationally expensive. This manipulation can be simplified, however, because the prescription isodose surface for all single isocentre distributions can be approximated by conic sections. In this study, the effects of treatment planning parameter manipulation on the dimensions of the treatment isodose surface were determined empirically. These dimensions were then fitted to analytic functions, assuming that the dose distributions were characterized as conic sections. These analytic functions allowed real-time approximation of the 3D isodose surface. Iterative plan optimization, either manual or automated, is achieved more efficiently using this real time approximation of the dose matrix. Subsequent to iterative plan optimization, the analytic function is related back to the appropriate plan parameters, and the dose distribution is determined using conventional dosimetry calculations. This provides a pseudo-inverse approach to radiosurgery optimization, based solely on geometric considerations. (author)

  20. Neuroprotective potential of high-dose biotin.

    Science.gov (United States)

    McCarty, Mark F; DiNicolantonio, James J

    2017-11-01

    A recent controlled trial has established that high-dose biotin supplementation - 100 mg, three times daily - has a stabilizing effect on progression of multiple sclerosis (MS). Although this effect has been attributed to an optimization of biotin's essential cofactor role in the brain, a case can be made that direct stimulation of soluble guanylate cyclase (sGC) by pharmacological concentrations of biotin plays a key role in this regard. The utility of high-dose biotin in MS might reflect an anti-inflammatory effect of cGMP on the cerebral microvasculature, as well on oligodendrocyte differentiation and on Schwann cell production of neurotrophic factors thought to have potential for managing MS. But biotin's ability to boost cGMP synthesis in the brain may have broader neuroprotective potential. In many types of neurons and neural cells, cGMP exerts neurotrophic-mimetic effects - entailing activation of the PI3K-Akt and Ras-ERK pathways - that promote neuron survival and plasticity. Hippocampal long term potentiation requires nitric oxide synthesis, which in turn promotes an activating phosphorylation of CREB via a pathway involving cGMP and protein kinase G (PKG). In Alzheimer's disease (AD), amyloid beta suppresses this mechanism by inhibiting sGC activity; agents which exert a countervailing effect by boosting cGMP levels tend to restore effective long-term potentiation in rodent models of AD. Moreover, NO/cGMP suppresses amyloid beta production within the brain by inhibiting expression of amyloid precursor protein and BACE1. In conjunction with cGMP's ability to oppose neuron apoptosis, these effects suggest that high-dose biotin might have potential for the prevention and management of AD. cGMP also promotes neurogenesis, and may lessen stroke risk by impeding atherogenesis and hypertrophic remodeling in the cerebral vasculature. The neuroprotective potential of high-dose biotin likely could be boosted by concurrent administration of brain

  1. Investigation on 3D dose distribution in digital breast tomosynthesis

    Science.gov (United States)

    Masi, M.

    2017-03-01

    Monte Carlo calculations for dosimetry in digital breast tomosynthesis (DBT) require experimental validations. We measured the 3D dose distribution in a breast phantom in a DBT scan, using XR-QA2 radiochromic films. We positioned film pieces at the entrance surface, at the bottom surface and at four depths between adjacent slabs in the 5-slabs, 5-cm-thick phantom simulating a compressed breast with 50% glandular fraction. We irradiated the phantom at 40kV (half value layer 1.1mm Al) for three angular tilting of the beam central axis ( {±}25° and 0° normal incidence). We determined the transverse and longitudinal distributions of the average dose in the phantom (in terms of air kerma normalized to the entrance air kerma), showing the angular dependence of the depth-resolved 3D dose distributions. In transverse planes the maximum dose variations were between 5.0% and 14.8% for normal incidence, and by 8.6% from the central to the tilted view. In the direction of the beam axis, the dose decreases up to about 71% from the entrance to the exit value. The extimated backscatter fraction was between 3% and 8%.

  2. Estimation of dose distribution in occupationally exposed individuals to FDG-18F

    International Nuclear Information System (INIS)

    Lacerda, Isabelle V. Batista de; Cabral, Manuela O. Monteiro; Vieira, Jose Wilson

    2014-01-01

    The use of unsealed radiation sources in nuclear medicine can lead to important incorporation of radionuclides, especially for occupationally exposed individuals (OEIs) during production and handling of radiopharmaceuticals. In this study, computer simulation was proposed as an alternative methodology for evaluation of the absorbed dose distribution and for the effective dose value in OEIs. For this purpose, the Exposure Computational Model (ECM) which is named as FSUP (Female Adult Mesh - supine) were used. This ECM is composed of: voxel phantom FASH (Female Adult MeSH) in the supine position, the MC code EGSnrc and an algorithm simulator of general internal source. This algorithm was modified to adapt to specific needs of the positron emission from FDG- 18 F. The obtained results are presented as absorbed dose/accumulated activity. To obtain the absorbed dose distribution it was necessary to use accumulative activity data from the in vivo bioassay. The absorbed dose distribution and the value of estimated effective dose in this study did not exceed the limits for occupational exposure. Therefore, the creation of a database with the distribution of accumulated activity is suggested in order to estimate the absorbed dose in radiosensitive organs and the effective dose for OEI in similar environment. (author)

  3. Calculation of multi-dimensional dose distribution in medium due to proton beam incidence

    International Nuclear Information System (INIS)

    Kawachi, Kiyomitsu; Inada, Tetsuo

    1978-01-01

    The method of analyzing the multi-dimensional dose distribution in a medium due to proton beam incidence is presented to obtain the reliable and simplified method from clinical viewpoint, especially for the medical treatment of cancer. The heavy ion beam being taken out of an accelerator has to be adjusted to fit cancer location and size, utilizing a modified range modulator, a ridge filter, a bolus and a special scanning apparatus. The precise calculation of multi-dimensional dose distribution of proton beam is needed to fit treatment to a limit part. The analytical formulas consist of those for the fluence distribution in a medium, the divergence of flying range, the energy distribution itself, the dose distribution in side direction and the two-dimensional dose distribution. The fluence distribution in polystyrene in case of the protons with incident energy of 40 and 60 MeV, the energy distribution of protons at the position of a Bragg peak for various values of incident energy, the depth dose distribution in polystyrene in case of the protons with incident energy of 40 and 60 MeV and average energy of 100 MeV, the proton fluence and dose distribution as functions of depth for the incident average energy of 250 MeV, the statistically estimated percentage errors in the proton fluence and dose distribution, the estimated minimum detectable tumor thickness as a function of the number of incident protons for the different incident spectra with average energy of 250 MeV, the isodose distribution in a plane containing the central axis in case of the incident proton beam of 3 mm diameter and 40 MeV and so on are presented as the analytical results, and they are evaluated. (Nakai, Y.)

  4. SU-F-J-59: Assessment of Dose Response Distribution in Individual Human Tumor

    Energy Technology Data Exchange (ETDEWEB)

    Yan, D [William Beaumont Hospital, Royal Oak, MI (United States); Chen, S; Krauss, D; Chen, P [Beaumont Health System, Royal Oak, Michigan (United States); Wilson, G [Beaumont Health System, Royal Oak, MI (United States)

    2016-06-15

    Purpose: To fulfill precision radiotherapy via adaptive dose painting by number, voxel-by-voxel dose response or radio-sensitivity in individual human tumor needs to be determined in early treatment to guide treatment adaptation. In this study, multiple FDG PET images obtained pre- and weekly during the treatment course were utilized to determine the distribution/spectrum of dose response parameters in individual human tumors. Methods: FDG PET/CT images of 18 HN cancer patients were used in the study. Spatial parametric image of tumor metabolic ratio (dSUV) was created following voxel by voxel deformable image registration. Each voxel value in dSUV was a function of pre-treatment baseline SUV and treatment delivered dose, and used as a surrogate of tumor survival fraction (SF). Regression fitting with break points was performed using the LQ-model with tumor proliferation for the control and failure group of tumors separately. The distribution and spectrum of radiation sensitivity and growth in individual tumors were determined and evaluated. Results: Spectrum of tumor dose-sensitivity and proliferation in the controlled group was broad with α in tumor survival LQ-model from 0.17 to 0.8. It was proportional to the baseline SUV. Tlag was about 21∼25 days, and Tpot about 0.56∼1.67 days respectively. Commonly tumor voxels with high radio-sensitivity or larger α had small Tlag and Tpot. For the failure group, the radio-sensitivity α was low within 0.05 to 0.3, but did not show clear Tlag. In addition, tumor voxel radio-sensitivity could be estimated during the early treatment weeks. Conclusion: Dose response distribution with respect to radio-sensitivity and growth in individual human tumor can be determined using FDG PET imaging based tumor metabolic ratio measured in early treatment course. The discover is critical and provides a potential quantitative objective to implement tumor specific precision radiotherapy via adaptive dose painting by number.

  5. Study of absorbed dose distribution to high energy electron beams

    International Nuclear Information System (INIS)

    Cecatti, E.R.

    1983-01-01

    The depth absorbed dose distribution by electron beams was studied. The influence of the beam energy, the energy spread, field size and design characteristics of the accelerator was relieved. Three accelerators with different scattering and collimation systems were studied leading todifferent depth dose distributions. A theoretical model was constructed in order to explain the increase in the depth dose in the build-up region with the increase of the energy. The model utilizes a three-dimensional formalism based on the Fermi-Eyges multiple scattering theory, with the introduction of modifications that takes into account the criation of secondary electrons. (Author) [pt

  6. Use of a concise prescription for specifying absolute dose distribution in external beam radiation therapy

    International Nuclear Information System (INIS)

    Viggers, D.A.; Shalev, S.

    1989-01-01

    Radiation therapy dose distributions are usually calculated relative to some normalization point to which a prescribed dose in grays is to be delivered. Often the radiation therapist requests that the prescribed dose be delivered to some other point(s), such as the 90% isodose. Therefore the prescribed dose is not well defined. Furthermore, this procedure leaves the shape of the dose distribution unspecified. The authors have used a dose prescription specifying the volumes of target and nontarget tissue that must lie within dose limits stated in grays. These dose-volume limits determine the magnitude and shape of the dose distribution. The prescription is well defined while allowing the absolute dose at a chosen point to be adjusted so that the dose distribution satisfies the prescription

  7. Influence of random setup error on dose distribution

    International Nuclear Information System (INIS)

    Zhai Zhenyu

    2008-01-01

    Objective: To investigate the influence of random setup error on dose distribution in radiotherapy and determine the margin from ITV to PTV. Methods: A random sample approach was used to simulate the fields position in target coordinate system. Cumulative effect of random setup error was the sum of dose distributions of all individual treatment fractions. Study of 100 cumulative effects might get shift sizes of 90% dose point position. Margins from ITV to PTV caused by random setup error were chosen by 95% probability. Spearman's correlation was used to analyze the influence of each factor. Results: The average shift sizes of 90% dose point position was 0.62, 1.84, 3.13, 4.78, 6.34 and 8.03 mm if random setup error was 1,2,3,4,5 and 6 mm,respectively. Univariate analysis showed the size of margin was associated only by the size of random setup error. Conclusions: Margin of ITV to PTV is 1.2 times random setup error for head-and-neck cancer and 1.5 times for thoracic and abdominal cancer. Field size, energy and target depth, unlike random setup error, have no relation with the size of the margin. (authors)

  8. Investigation of dose distribution in mixed neutron-gamma field of boron neutron capture therapy using N isopropylacrylamide gel

    Energy Technology Data Exchange (ETDEWEB)

    Bavarmegin, Elham; Sadremomtaz, Alireza [Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of); Khalafi, Hossein; Kasesaz, Yaser [Dept. of Physics, University of Guilan, Rasht (Iran, Islamic Republic of); Khajeali, Azim [Medical Education Research Center, Tabriz (Iran, Islamic Republic of)

    2017-02-15

    Gel dosimeters have unique advantages in comparison with other dosimeters. Until now, these gels have been used in different radiotherapy techniques as a reliable dosimetric tool. Because dose distribution measurement is an important factor for appropriate treatment planning in different radiotherapy techniques, in this study, we evaluated the ability of the N-isopropylacrylamide (NIPAM) polymer gel to record the dose distribution resulting from the mixed neutron-gamma field of boron neutron capture therapy (BNCT). In this regard, a head phantom containing NIPAM gel was irradiated using the Tehran Research Reactor BNCT beam line, and then by a magnetic resonance scanner. Eventually, the R2 maps were obtained in different slices of the phantom by analyzing T2-weighted images. The results show that NIPAM gel has a suitable potential for recording three-dimensional dose distribution in mixed neutron-gamma field dosimetry.

  9. Mid-ventilation position planning: Optimal model for dose distribution in lung tumour

    International Nuclear Information System (INIS)

    Benchalal, M.; Leseur, J.; Chajon, E.; Cazoulat, G.; Haigron, P.; Simon, A.; Bellec, J.; Lena, H.; Crevoisier, R. de

    2012-01-01

    Purpose. - The dose distribution for lung tumour is estimated using a 3D-CT scan, and since a person breathes while the images are captured, the dose distribution doesn't reflect the reality. A 4D-CT scan integrates the motion of the tumour during breathing and, therefore, provides us with important information regarding tumour's motion in all directions, the motion volume (ITV) and the time-weighted average position (MVP). Patient and methods. - Based on these two concepts, we have estimated, for a lung carcinoma case a 3D dose distribution from a 3D-CT scan, and a 4D dose distribution from a 4-D CT scan. To this, we have applied a non-rigid registration to estimate the cumulative dose. Results. - Our study shows that the 4D dose estimation of the GTV is almost the same when made using MVP and ITV concepts, but sparring of the healthy lung is better done using the MPV model (MVP), as compared to the ITV model. This improvement of the therapeutic index allows, from a projection on the theoretical maximal dose to PTV (strictly restricted to doses for the lungs and the spinal cord), for an increase of about 11% on the total dose (maximal dose of 86 Gy for the ITV and 96 Gy for the MVP). Conclusion. - Further studies with more patients are needed to confirm our data. (authors)

  10. Isotoxic dose escalation in the treatment of lung cancer by means of heterogeneous dose distributions in the presence of respiratory motion

    DEFF Research Database (Denmark)

    Baker, Mariwan; Nielsen, Morten; Hansen, Olfred

    2011-01-01

    To test, in the presence of intrafractional respiration movement, a margin recipe valid for a homogeneous and conformal dose distribution and to test whether the use of smaller margins combined with heterogeneous dose distributions allows an isotoxic dose escalation when respiratory motion...

  11. Oblique incidence of electron beams - comparisons between calculated and measured dose distributions

    International Nuclear Information System (INIS)

    Karcher, J.; Paulsen, F.; Christ, G.

    2005-01-01

    Clinical applications of high-energy electron beams, for example for the irradiation of internal mammary lymph nodes, can lead to oblique incidence of the beams. It is well known that oblique incidence of electron beams can alter the depth dose distribution as well as the specific dose per monitor unit. The dose per monitor unit is the absorbed dose in a point of interest of a beam, which is reached with a specific dose monitor value (DIN 6814-8[5]). Dose distribution and dose per monitor unit at oblique incidence were measured with a small-volume thimble chamber in a water phantom, and compared to both normal incidence and calculations of the Helax TMS 6.1 treatment planning system. At 4 MeV and 60 degrees, the maximum measured dose per monitor unit at oblique incidence was decreased up to 11%, whereas at 18MeV and 60 degrees this was increased up to 15% compared to normal incidence. Comparisons of measured and calculated dose distributions showed that the predicted dose at shallow depths is usually higher than the measured one, whereas it is smaller at depths beyond the depth of maximum dose. On the basis of the results of these comparisons, normalization depths and correction factors for the dose monitor value were suggested to correct the calculations of the dose per monitor unit. (orig.)

  12. Improvement of dose distribution of esophageal irradiation using the field-within-a-field technique

    International Nuclear Information System (INIS)

    Iwai, Tsugunori; Okabe, Keigo; Yamato, Hidetada; Murakami, Jyunji; Nakazawa, Yasuo; Kato, Mitsuyoshi

    2002-01-01

    The wide radiation field for mediastinal dose distribution should be inhomogeneous with the usual simple opposed beam irradiation. The purpose of this study was to improve the dose distribution of the mediastinum using a conventional planning system with a dose-volume histogram (DVH) and the field-in-field technique. Three-dimensional (3D) dose distribution is obtained in bilateral opposed-field irradiation. An overdose area obtained from the 3D dose distribution is defined and reprojected into the irradiation field. A new reduced field is created by removing the reprojected overdose area. A 3D dose distribution is again obtained and compared with the results from first one. Procedures were repeated until each of the target volumes was within ±5% of the prescribed dose and the irradiation volume within 107% or less of the prescribed dose. From the DVH analysis, our field-within-a-field technique resulted in a more uniform dose distribution within the conventional planning. The field-within-a-field technique involves many parameters, and an inverse planning algorithm is suitable for computation. However, with our method, the forward planning system is adequate for planning, at least in a relatively straightforward planning system such as bilateral opposed fields therapy. (author)

  13. Dose distribution to spinal structures from intrathecally administered yttrium-90

    Science.gov (United States)

    Mardirossian, George; Hall, Michael; Montebello, Joseph; Stevens, Patrick

    2006-01-01

    Previous treatment of cerebrospinal fluid (CSF) malignancies by intrathecal administration of 131I-radiolabelled monoclonal antibodies has led to the assumption that more healthy tissue will be spared when a pure beta-emitter such as 90Y replaces 131I. The purpose of this study is to compare and quantitatively evaluate the dose distribution from 90Y to the CSF space and its surrounding spinal structures to 131I. A 3D digital phantom of a section of the T-spine was constructed from the visible human project series of images which included the spinal cord, central canal, subarachnoid space, pia mater, arachnoid, dura mater, vertebral bone marrow and intervertebral disc. Monte Carlo N-particle (MCNP4C) was used to model the 90Y and 131I radiation distribution. Images of the CSF compartment were convolved with the radiation distribution to determine the dose within the subarachnoid space and surrounding tissues. 90Y appears to be a suitable radionuclide in the treatment of central nervous system (CNS) malignancies when attached to mAb's and the dose distribution would be confined largely within the vertebral foramen. This choice may offer favourable dose improvement to the subarachnoid and surface of spinal cord over 131I in such an application.

  14. Imaging and Measuring Electron Beam Dose Distributions Using Holographic Interferometry

    DEFF Research Database (Denmark)

    Miller, Arne; McLaughlin, W. L.

    1975-01-01

    Holographic interferometry was used to image and measure ionizing radiation depth-dose and isodose distributions in transparent liquids. Both broad and narrowly collimated electron beams from accelerators (2–10 MeV) provided short irradiation times of 30 ns to 0.6 s. Holographic images...... and measurements of absorbed dose distributions were achieved in liquids of various densities and thermal properties and in water layers thinner than the electron range and with backings of materials of various densities and atomic numbers. The lowest detectable dose in some liquids was of the order of a few k......Rad. The precision limits of the measurement of dose were found to be ±4%. The procedure was simple and the holographic equipment stable and compact, thus allowing experimentation under routine laboratory conditions and limited space....

  15. SU-E-T-514: Investigating the Dose Distributions of Equiangular Spaced Noncoplanar Beams

    International Nuclear Information System (INIS)

    Mitchell, T; Maxim, P; Hadsell, M; Loo, B

    2015-01-01

    Purpose It has been demonstrated that the use of noncoplanar beams in radiation therapy may Result in dose distributions that are comparable or better than standard coplanar beams [Pugachev, 2001]. A radiation therapy system designed with a noncoplanar beam geometry could allow for a full ring diagnostic quality imaging system to be placed around the patient. Additionally, if the noncoplanar beams were fixed in number and in their angle with respect to the patient’s axial plane, then both treatment and imaging could be achieved concurrently without the need for moving parts, which could greatly reduce treatment times. For such a system to be designed, it is necessary to determine the appropriate number of beams and the beam angles to achieve optimal dose distributions. For simplicity, the beam angles are assumed to be equiangular in the patient’s axial plane, and only the beam angle with respect to the axial plane are varied. This study aims to investigate the dose distributions produced by equiangular noncoplanar beams for multiple beam numbers and beam angles, and to compare these dose distributions with distributions achieved in coplanar volumetric arc therapy (VMAT). Methods Dose distributions produced by noncoplanar beams were calculated using the Varian Eclipse treatment planning system by varying the gantry, collimator, and couch angles to simulate the noncoplanar delivery method. Noncoplanar intensity-modulated (NC-IMRT) beams using 8, 12, and 16 beams with angles varying from 45 degrees to 54 with respect to the patient’s axial plane were studied. Results The NC-IMRT beams produced dose distributions comparable to VMAT plans for a number of treatment sites, and were capable of meeting similar dose-volume histogram constraints. Conclusion This study has demonstrated that a noncoplanar beam delivery method with fixed beam numbers and beam angles is capable of delivering dose distributions comparable to VMAT plans currently in use

  16. Monte-Carlo Method Python Library for dose distribution Calculation in Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Randriantsizafy, R D; Ramanandraibe, M J [Madagascar Institut National des Sciences et Techniques Nucleaires, Antananarivo (Madagascar); Raboanary, R [Institut of astro and High-Energy Physics Madagascar, University of Antananarivo, Antananarivo (Madagascar)

    2007-07-01

    The Cs-137 Brachytherapy treatment is performed in Madagascar since 2005. Time treatment calculation for prescribed dose is made manually. Monte-Carlo Method Python library written at Madagascar INSTN is experimentally used to calculate the dose distribution on the tumour and around it. The first validation of the code was done by comparing the library curves with the Nucletron company curves. To reduce the duration of the calculation, a Grid of PC's is set up with listner patch run on each PC. The library will be used to modelize the dose distribution in the CT scan patient picture for individual and better accuracy time calculation for a prescribed dose.

  17. Monte-Carlo Method Python Library for dose distribution Calculation in Brachytherapy

    International Nuclear Information System (INIS)

    Randriantsizafy, R.D.; Ramanandraibe, M.J.; Raboanary, R.

    2007-01-01

    The Cs-137 Brachytherapy treatment is performed in Madagascar since 2005. Time treatment calculation for prescribed dose is made manually. Monte-Carlo Method Python library written at Madagascar INSTN is experimentally used to calculate the dose distribution on the tumour and around it. The first validation of the code was done by comparing the library curves with the Nucletron company curves. To reduce the duration of the calculation, a Grid of PC's is set up with listner patch run on each PC. The library will be used to modelize the dose distribution in the CT scan patient picture for individual and better accuracy time calculation for a prescribed dose.

  18. Study on dose distribution of therapeutic proton beams with prompt gamma measurement

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. W. [National Cancer Center, Seoul (Korea, Republic of); Min, C. H.; Kim, C. H.; Kim, D. K.; Yoon, M. Y. [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2007-03-15

    The proton beam has an advantage of the sharp dose falloff in dose distribution called Bragg peak while conventional radiation therapy modalities such as photons exhibit considerable amount of exit dose. To take advantage of this property it is important to know the exact location of the distal dose falloff. An error can cause overdose to the normal tissue or underdose to the tumor volume. The only way of finding out the dose distribution in-situ in particle therapy is to measure the gammas produced by nuclear reactions with tissue materials. Two kinds of gammas can be used: one is prompt gamma and the other is coincident gamma from the positron-emission isotopes. We chose to detect prompt gammas, and developed a prompt gamma scanning system (PGS). The proton beams of the proton therapy facility at National Cancer Center were used. The gamma distribution was compared to the dose distribution measured by an ionization chamber at three different energies of 100, 150, 200 MeV's. The two distributions were well correlated within 1-2 mm. The effect of high-energy neutron appeared as blurred distribution near the distal dose falloff at the energy of 200 MeV. We then tested the PGS shielding design by adding additional layer of paraffin plates outside of the PGS, and found that fast neutrons significantly affect the background level. But the location of the dose fall-off was nearly coincident. The analysis of gamma energy spectrum showed that cut-off energy in gamma counting can be adjusted to enhance the signal to noise ratio. Further the ATOM phantom, which has similar tissue structure to human, was used to investigate the gamma distribution for the case of inhomogeneous matter. The location of dose falloff region was found to be well defined as for water phantom. Next an actual therapy beam, which was produced by the double scattering method, was used, for which the dose falloff by the gamma distribution was completely wiped out by background neutrons. It is not

  19. A calculation of dose distribution around 32P spherical sources and its clinical application

    International Nuclear Information System (INIS)

    Ohara, Ken; Tanaka, Yoshiaki; Nishizawa, Kunihide; Maekoshi, Hisashi

    1977-01-01

    In order to avoid the radiation hazard in radiation therapy of craniopharyngioma by using 32 P, it is helpful to prepare a detailed dose distribution in the vicinity of the source in the tissue. Valley's method is used for calculations. A problem of the method is pointed out and the method itself is refined numerically: it extends a region of xi where an approximate polynomial is available, and it determines an optimum degree of the polynomial as 9. Usefulness of the polynomial is examined by comparing with Berger's scaled absorbed dose distribution F(xi) and the Valley's result. The dose and dose rate distributions around uniformly distributed spherical sources are computed from the termwise integration of our polynomial of degree 9 over the range of xi from 0 to 1.7. The dose distributions calculated from the spherical surface to a point at 0.5 cm outside the source, are given, when the radii of sources are 0.5, 0.6, 0.7, 1.0, and 1.5 cm respectively. The therapeutic dose for a craniopharyngioma which has a spherically shaped cyst, and the absorbed dose to the normal tissue, (oculomotor nerve), are obtained from these dose rate distributions. (auth.)

  20. Potential gonadal dose from leakage radiation?

    International Nuclear Information System (INIS)

    Nicholson, R.A.

    1995-01-01

    The author draws attention to the potential dangers of leakage radiation from mobile image intensifier units, and points out that during interventional urological procedures, radiation from below the urologist's knees may irradiate male gonads without being intercepted by protective aprons. Results are presented for a Shimatzu WHA mobile II, phantom doses being measured with an ionization chamber. Dose rates measured in the male gonad position were compared with rates at waist level behind a 0.35 mm lead equivalent shielding and dose rates at collar level outside the lead apron. Results are also presented of a study on the effect on gonad dose of a) adding 0.7 mm lead shielding to the tube housing and b) adding 0.7 mm lead and removing the spacer cone to reduce scatter. Results show that it is possible for gonad doses to be comparable with those assumed for the eyes, rather than the body. (Author)

  1. Distribution of dose within the body from a photon emitter present in an organ

    International Nuclear Information System (INIS)

    Snyder, W.S.; Ford, M.R.; Warner, G.G.

    1977-01-01

    A dosimetric system was developed which provides estimates of mean radiation dose to organs from photon sources distributed uniformly in one or more organs. Although the sources of photons are assumed to be distributed uniformly, it is not true that dose from these photons is uniformly distributed. In particular, when a source of photons is located in a particular organ, nearby tissues will be irradiated at doses which decrease markedly with distance from the source. The mean dose may give a poor approximation to the actual dose if the tissues over which dose is averaged are extensive, for example, the remainder of the body. A set of enveloping organs was devised for liver, lungs, etc., which give mean dose at distances from zero to one centimeter from the source organ, from one to two centimeters, etc. These can be used to yield estimates of the extent of inhomogeneity of the dose distribution from a source of photons located in the source organ

  2. Inter-comparison of Dose Distributions Calculated by FLUKA, GEANT4, MCNP, and PHITS for Proton Therapy

    Science.gov (United States)

    Yang, Zi-Yi; Tsai, Pi-En; Lee, Shao-Chun; Liu, Yen-Chiang; Chen, Chin-Cheng; Sato, Tatsuhiko; Sheu, Rong-Jiun

    2017-09-01

    The dose distributions from proton pencil beam scanning were calculated by FLUKA, GEANT4, MCNP, and PHITS, in order to investigate their applicability in proton radiotherapy. The first studied case was the integrated depth dose curves (IDDCs), respectively from a 100 and a 226-MeV proton pencil beam impinging a water phantom. The calculated IDDCs agree with each other as long as each code employs 75 eV for the ionization potential of water. The second case considered a similar condition of the first case but with proton energies in a Gaussian distribution. The comparison to the measurement indicates the inter-code differences might not only due to different stopping power but also the nuclear physics models. How the physics parameter setting affect the computation time was also discussed. In the third case, the applicability of each code for pencil beam scanning was confirmed by delivering a uniform volumetric dose distribution based on the treatment plan, and the results showed general agreement between each codes, the treatment plan, and the measurement, except that some deviations were found in the penumbra region. This study has demonstrated that the selected codes are all capable of performing dose calculations for therapeutic scanning proton beams with proper physics settings.

  3. Measurement of leakage dose distribution from Crookes tube using imaging plate

    International Nuclear Information System (INIS)

    Fujibuchi, Toshioh; Obara, Satoshi; Inoue, Hajime; Kato, Hideyuki; Kobayashi, Ikuo; Hosoda, Masahiro

    2011-01-01

    Crookes tube is used on an educational site in the junior high school and the high school, etc. for the purpose to learn the character of cathode rays. When using the tube, X rays are generated, however, there is few example of confirming in which direction to scatter in detail. Understanding how the distribution of the leakage dose is important because of efficient exposure decrease. The distribution of X rays generated from Crookes tube was measured by arranging imaging plates in six surroundings to enclose Crookes tube. The electron collided with a metal target and X rays had extended backward. The dose was greatly different depending on the direction. When experimenting with Crookes tube, it is necessary to consider not only the dose but also distribution. (author)

  4. Stereotactic radiosurgery with the gamma knife. Possibilities of dose distribution optimizations

    International Nuclear Information System (INIS)

    Stuecklschweiger, G.

    1995-01-01

    On April 1992, the first stereotactic radiosurgical procedure using the gamma knife was performed at the University Medical School Graz, Department of Neurosurgery. Accurate dose optimization is the foundation of a convenient and responsible utilization of this modality. But there are limits, because the final collimation is only achieved by 1 of the 4 special helm collimators. The possibilities of dose optimization and its influence on the dose distributions were investigated and partly compared with results of film densitometry measurements. In detail, the technique, which uses the same isocenter, but different sized collimators was studied. The influence of these optimization techniques on the resulting dose distributions and the dose gradient at the edge of the treatment planning volume was analyzed. Also the visions for an effective dose optimization are discussed. With 2 shots of different diameters, located at the same target coordinates and different weighting of time any collimator size between the 4 mm and 18 mm can be achieved. Because of that, a combination of more than 2 collimators is not meaningful. With the combined shots the dose fall gradient was less than that of either of the single shots involved in the combination. With the available physical and technical possibilities only a limited, very time consuming optimization is practicable. The quality control of isodose distributions requires optimizations in hard-and software, that enable CT- or MRT-based 3-dimensional visualization and dose volume analysis. (orig./MG) [de

  5. Measurement of spatial dose-rate distribution using a position sensitive detector

    International Nuclear Information System (INIS)

    Emoto, T.; Torii, T.; Nozaki, T.; Ando, H.

    1994-01-01

    Recently, the radiation detectors using plastic scintillation fibers (PSF) have been developed to measure the positions exposed to radiation such as neutrons and high energy charged particles. In particular, the time of flight (TOF) method for measuring the difference of time that two directional signals of scintillation light reach both ends of a PSF is a rather simple method for the measurement of the spatial distribution of fast neutron fluence rate. It is possible to use the PSF in nuclear facility working areas because of its flexibility, small diameter and long length. In order to apply TOF method to measure spatial gamma dose rate distribution, the characteristic tests of a detector using PSFs were carried out. First, the resolution of irradiated positions and the counting efficiency were measured with collimated gamma ray. The sensitivity to unit dose rate was also obtained. The measurement of spatial dose rate distribution was also carried out. The sensor is made of ten bundled PSFs, and the experimental setup is described. The experiment and the results are reported. It was found that the PSF detector has the good performance to measure spatial gamma dose rate distribution. (K.I.)

  6. Proton dose distribution measurements using a MOSFET detector with a simple dose-weighted correction method for LET effects.

    Science.gov (United States)

    Kohno, Ryosuke; Hotta, Kenji; Matsuura, Taeko; Matsubara, Kana; Nishioka, Shie; Nishio, Teiji; Kawashima, Mitsuhiko; Ogino, Takashi

    2011-04-04

    We experimentally evaluated the proton beam dose reproducibility, sensitivity, angular dependence and depth-dose relationships for a new Metal Oxide Semiconductor Field Effect Transistor (MOSFET) detector. The detector was fabricated with a thinner oxide layer and was operated at high-bias voltages. In order to accurately measure dose distributions, we developed a practical method for correcting the MOSFET response to proton beams. The detector was tested by examining lateral dose profiles formed by protons passing through an L-shaped bolus. The dose reproducibility, angular dependence and depth-dose response were evaluated using a 190 MeV proton beam. Depth-output curves produced using the MOSFET detectors were compared with results obtained using an ionization chamber (IC). Since accurate measurements of proton dose distribution require correction for LET effects, we developed a simple dose-weighted correction method. The correction factors were determined as a function of proton penetration depth, or residual range. The residual proton range at each measurement point was calculated using the pencil beam algorithm. Lateral measurements in a phantom were obtained for pristine and SOBP beams. The reproducibility of the MOSFET detector was within 2%, and the angular dependence was less than 9%. The detector exhibited a good response at the Bragg peak (0.74 relative to the IC detector). For dose distributions resulting from protons passing through an L-shaped bolus, the corrected MOSFET dose agreed well with the IC results. Absolute proton dosimetry can be performed using MOSFET detectors to a precision of about 3% (1 sigma). A thinner oxide layer thickness improved the LET in proton dosimetry. By employing correction methods for LET dependence, it is possible to measure absolute proton dose using MOSFET detectors.

  7. Estimation of dose distribution in occupationally exposed individuals to FDG-{sup 18}F

    Energy Technology Data Exchange (ETDEWEB)

    Lacerda, Isabelle V. Batista de; Cabral, Manuela O. Monteiro; Vieira, Jose Wilson, E-mail: ilacerda.bolsista@cnen.gov.br, E-mail: manuela.omc@gmail.com [Universidade Federal de Pernambuco (DEN/UFPE), Recife, PE (Brazil). Departamento de Energia Nuclear; Oliveira, Mercia Liane de; Andrade Lima, Fernando R. de, E-mail: falima@cnen.gov.br [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil)

    2014-07-01

    The use of unsealed radiation sources in nuclear medicine can lead to important incorporation of radionuclides, especially for occupationally exposed individuals (OEIs) during production and handling of radiopharmaceuticals. In this study, computer simulation was proposed as an alternative methodology for evaluation of the absorbed dose distribution and for the effective dose value in OEIs. For this purpose, the Exposure Computational Model (ECM) which is named as FSUP (Female Adult Mesh - supine) were used. This ECM is composed of: voxel phantom FASH (Female Adult MeSH) in the supine position, the MC code EGSnrc and an algorithm simulator of general internal source. This algorithm was modified to adapt to specific needs of the positron emission from FDG-{sup 18}F. The obtained results are presented as absorbed dose/accumulated activity. To obtain the absorbed dose distribution it was necessary to use accumulative activity data from the in vivo bioassay. The absorbed dose distribution and the value of estimated effective dose in this study did not exceed the limits for occupational exposure. Therefore, the creation of a database with the distribution of accumulated activity is suggested in order to estimate the absorbed dose in radiosensitive organs and the effective dose for OEI in similar environment. (author)

  8. Evaluation of concave dose distributions created using an inverse planning system

    International Nuclear Information System (INIS)

    Hunt, Margie A.; Hsiung, C.-Y.; Spirou, Spirodon V.; Chui, C.-S.; Amols, Howard I.; Ling, Clifton C.

    2002-01-01

    Purpose: To evaluate and develop optimum inverse treatment planning strategies for the treatment of concave targets adjacent to normal tissue structures. Methods and Materials: Optimized dose distributions were designed using an idealized geometry consisting of a cylindrical phantom with a concave kidney-shaped target (PTV) and cylindrical normal tissues (NT) placed 5-13 mm from the target. Targets with radii of curvature from 1 to 2.75 cm were paired with normal tissues with radii between 0.5 and 2.25 cm. The target was constrained to a prescription dose of 100% and minimum and maximum doses of 95% and 105% with relative penalties of 25. Maximum dose constraint parameters for the NT varied from 10% to 70% with penalties from 10 to 1000. Plans were evaluated using the PTV uniformity index (PTV D max /PTV D 95 ) and maximum normal tissue doses (NT D max /PTV D 95 ). Results: In nearly all situations, the achievable PTV uniformity index and the maximum NT dose exceeded the corresponding constraints. This was particularly true for small PTV-NT separations (5-8 mm) or strict NT dose constraints (10%-30%), where the achievable doses differed from the requested by 30% or more. The same constraint parameters applied to different PTV-NT separations yielded different dose distributions. For most geometries, a range of constraints could be identified that would lead to acceptable plans. The optimization results were fairly independent of beam energy and radius of curvature, but improved as the number of beams increased, particularly for small PTV-NT separations or strict dose constraints. Conclusion: Optimized dose distributions are strongly affected by both the constraint parameters and target-normal tissue geometry. Standard site-specific constraint templates can serve as a starting point for optimization, but the final constraints must be determined iteratively for individual patients. A strategy whereby NT constraints and penalties are modified until the highest

  9. Impact of catheter reconstruction error on dose distribution in high dose rate intracavitary brachytherapy and evaluation of OAR doses

    International Nuclear Information System (INIS)

    Thaper, Deepak; Shukla, Arvind; Rathore, Narendra; Oinam, Arun S.

    2016-01-01

    In high dose rate brachytherapy (HDR-B), current catheter reconstruction protocols are relatively slow and error prone. The purpose of this study is to evaluate the impact of catheter reconstruction error on dose distribution in CT based intracavitary brachytherapy planning and evaluation of its effect on organ at risk (OAR) like bladder, rectum and sigmoid and target volume High risk clinical target volume (HR-CTV)

  10. Patient-related factors determining geometry of intracavitary applicators and pelvic dose distribution during cervical cancer brachytherapy

    International Nuclear Information System (INIS)

    Senkus-Konefka, Elzbieta; Kobierska, Anna; Jassem, Jacek; Badzio, Andrezej

    1997-01-01

    .048). Conclusion: The results of this study allow for identification of some patient- and disease-related factors influencing pelvic dose distribution in cervical cancer brachytherapy. This potentially may enable optimization of the dose distribution in particular clinical situations

  11. Process control and dosimetry applied to establish a relation between reference dose measurements and actual dose distribution

    Energy Technology Data Exchange (ETDEWEB)

    Ehlerman, D A.E. [Institute of Process Engineering, Federal Research Centre for Nutrition, Karlsruhe (Germany)

    2001-03-01

    The availability of the first commercial dose level indicator prompted attempts to verify radiation absorbed dose to items under quarantine control (e.g. for insect disinfestation) by some indicator attached to these items. Samples of the new commercial dose level indicators were tested for their metrological properties using gamma and electron irradiation. The devices are suitable for the intended purpose and the subjective judgement whether the threshold dose was surpassed is possible in a reliable manner. The subjective judgements are completely backed by the instrumental results. Consequently, a prototype reader was developed; first tests were successful. The value of dose level indicators and the implications of its use for food or quarantine inspection depends on a link between dose measured (indicated) at the position of such indicator and the characteristic parameters of the frequency distribution of dose throughout the product load i.e. a box or a container or a whole batch of multiple units. Therefore, studies into variability and statistical properties of dose distributions obtained under a range of commercial situations were undertaken. Gamma processing at a commercial multipurpose contract irradiator, electron processing and bremsstrahlung applications at a largescale research facility were included; products were apples, potatoes, wheat, maize, pistachio. Studies revealed that still more detailed information on irradiation geometries are needed in order to render meaningful information from dose label indicators. (author)

  12. Process control and dosimetry applied to establish a relation between reference dose measurements and actual dose distribution

    International Nuclear Information System (INIS)

    Ehlerman, D.A.E.

    2001-01-01

    The availability of the first commercial dose level indicator prompted attempts to verify radiation absorbed dose to items under quarantine control (e.g. for insect disinfestation) by some indicator attached to these items. Samples of the new commercial dose level indicators were tested for their metrological properties using gamma and electron irradiation. The devices are suitable for the intended purpose and the subjective judgement whether the threshold dose was surpassed is possible in a reliable manner. The subjective judgements are completely backed by the instrumental results. Consequently, a prototype reader was developed; first tests were successful. The value of dose level indicators and the implications of its use for food or quarantine inspection depends on a link between dose measured (indicated) at the position of such indicator and the characteristic parameters of the frequency distribution of dose throughout the product load i.e. a box or a container or a whole batch of multiple units. Therefore, studies into variability and statistical properties of dose distributions obtained under a range of commercial situations were undertaken. Gamma processing at a commercial multipurpose contract irradiator, electron processing and bremsstrahlung applications at a largescale research facility were included; products were apples, potatoes, wheat, maize, pistachio. Studies revealed that still more detailed information on irradiation geometries are needed in order to render meaningful information from dose label indicators. (author)

  13. Statistical evaluation of the dose-distribution charts of the National Computerized Irradiation Planning Network

    International Nuclear Information System (INIS)

    Varjas, Geza; Jozsef, Gabor; Gyenes, Gyoergy; Petranyi, Julia; Bozoky, Laszlo; Pataki, Gezane

    1985-01-01

    The establishment of the National Computerized Irradiation Planning Network allowed to perform the statistical evaluation presented in this report. During the first 5 years 13389 dose-distribution charts were calculated for the treatment of 5320 patients, i.e. in average, 2,5 dose-distribution chart-variants per patient. This number practically did not change in the last 4 years. The irradiation plan of certain tumour localizations was performed on the basis of the calculation of, in average, 1.6-3.0 dose-distribution charts. Recently, radiation procedures assuring optimal dose-distribution, such as the use of moving fields, and two- or three-irradiation fields, are gaining grounds. (author)

  14. A simulation study on the dose distribution for a single beam of the gamma knife

    International Nuclear Information System (INIS)

    Chen, Chin-cheng; Jiang, Shiang-Huei; Lee, Chung-chi; Shiau, Cheng-Ying

    2000-01-01

    The purpose of this study is to evaluate the impact of the tissue heterogeneity on the dose distribution for a single beam of the gamma knife. The EGS4 Monte Carlo code was used to simulate both depth and radial profiles of the radiation dose in homogeneous and heterogeneous phantoms, respectively. The results are compared with the dose distribution calculated using the mathematical model of Gamma Plan, the treatment planning system of the gamma knife. The skull and sinus heterogeneity were simulated by a Teflon shell and an air shell, respectively. It was found that the tissue heterogeneity caused significant perturbation on the absolute depth dose at the focus as well as on the depth-dose distribution near the phantom surface and/or at the interface but little effect on the radial dose distribution. The effect of the beam aperture on the depth-dose distribution was also investigated in this study. (author)

  15. Analysis of the Dose Distribution of Moving Organ using a Moving Phantom System

    International Nuclear Information System (INIS)

    Kim, Yon Lae; Park, Byung Moon; Bae, Yong Ki; Kang, Min Young; Bang, Dong Wan; Lee, Gui Won

    2006-01-01

    Few researches have been performed on the dose distribution of the moving organ for radiotherapy so far. In order to simulate the organ motion caused by respiratory function, multipurpose phantom and moving device was used and dosimetric measurements for dose distribution of the moving organs were conducted in this study. The purpose of our study was to evaluate how dose distributions are changed due to respiratory motion. A multipurpose phantom and a moving device were developed for the measurement of the dose distribution of the moving organ due to respiratory function. Acryl chosen design of the phantom was considered the most obvious choice for phantom material. For construction of the phantom, we used acryl and cork with density of 1.14 g/cm 3 , 0.32 g/cm 3 respectively. Acryl and cork slab in the phantom were used to simulate the normal organ and lung respectively. The moving phantom system was composed of moving device, moving control system, and acryl and cork phantom. Gafchromic film and EDR2 film were used to measure dose distributions. The moving device system may be driven by two directional step motors and able to perform 2 dimensional movements (x, z axis), but only 1 dimensional movement(z axis) was used for this study. Larger penumbra was shown in the cork phantom than in the acryl phantom. The dose profile and isodose curve of Gafchromic EBT film were not uniform since the film has small optical density responding to the dose. As the organ motion was increased, the blurrings in penumbra, flatness, and symmetry were increased. Most of measurements of dose distributions, Gafchromic EBT film has poor flatness and symmetry than EDR2 film, but both penumbra distributions were more or less comparable. The Gafchromic EBT film is more useful as it does not need development and more radiation dose could be exposed than EDR2 film without losing film characteristics. But as response of the optical density of Gafchromic EBT film to dose is low, beam profiles

  16. The effects of radiotherapy treatment uncertainties on the delivered dose distribution and tumour control probability

    International Nuclear Information System (INIS)

    Booth, J.T.; Zavgorodni, S.F.; Royal Adelaide Hospital, SA

    2001-01-01

    Uncertainty in the precise quantity of radiation dose delivered to tumours in external beam radiotherapy is present due to many factors, and can result in either spatially uniform (Gaussian) or spatially non-uniform dose errors. These dose errors are incorporated into the calculation of tumour control probability (TCP) and produce a distribution of possible TCP values over a population. We also study the effect of inter-patient cell sensitivity heterogeneity on the population distribution of patient TCPs. This study aims to investigate the relative importance of these three uncertainties (spatially uniform dose uncertainty, spatially non-uniform dose uncertainty, and inter-patient cell sensitivity heterogeneity) on the delivered dose and TCP distribution following a typical course of fractionated external beam radiotherapy. The dose distributions used for patient treatments are modelled in one dimension. Geometric positioning uncertainties during and before treatment are considered as shifts of a pre-calculated dose distribution. Following the simulation of a population of patients, distributions of dose across the patient population are used to calculate mean treatment dose, standard deviation in mean treatment dose, mean TCP, standard deviation in TCP, and TCP mode. These parameters are calculated with each of the three uncertainties included separately. The calculations show that the dose errors in the tumour volume are dominated by the spatially uniform component of dose uncertainty. This could be related to machine specific parameters, such as linear accelerator calibration. TCP calculation is affected dramatically by inter-patient variation in the cell sensitivity and to a lesser extent by the spatially uniform dose errors. The positioning errors with the 1.5 cm margins used cause dose uncertainty outside the tumour volume and have a small effect on mean treatment dose (in the tumour volume) and tumour control. Copyright (2001) Australasian College of

  17. Depth-Dose and LET Distributions of Antiproton Beams in Various Target Materials

    DEFF Research Database (Denmark)

    Herrmann, Rochus; Olsen, Sune; Petersen, Jørgen B.B.

    the annihilation process. Materials We have investigated the impact of substituting the target material on  the depth-dose distribution of pristine and  spread out antiproton beams using the FLUKA Monte Carlo transport program. Classical ICRP targets are compared to water phantoms. In addition, track average...... unrestricted LET is calculated for all configurations. Finally, we investigate which concentrations of gadolinium and boron are needed in a water target in order to observe a significant change in the antiproton depth-dose distribution.  Results Results indicate, that there is no significant change...... in the depth-dose distribution and average LET when substituting the materials. Adding boron and gadolinium up to concentrations of 1 per 1000 atoms to a water phantom, did not change the depth-dose profile nor the average LET. Conclusions  According to our FLUKA calculations, antiproton neutron capture...

  18. Radon Exposure and the Definition of Low Doses-The Problem of Spatial Dose Distribution.

    Science.gov (United States)

    Madas, Balázs G

    2016-07-01

    Investigating the health effects of low doses of ionizing radiation is considered to be one of the most important fields in radiological protection research. Although the definition of low dose given by a dose range seems to be clear, it leaves some open questions. For example, the time frame and the target volume in which absorbed dose is measured have to be defined. While dose rate is considered in the current system of radiological protection, the same cancer risk is associated with all exposures, resulting in a given amount of energy absorbed by a single target cell or distributed among all the target cells of a given organ. However, the biological effects and so the health consequences of these extreme exposure scenarios are unlikely to be the same. Due to the heterogeneous deposition of radon progeny within the lungs, heterogeneous radiation exposure becomes a practical issue in radiological protection. While the macroscopic dose is still within the low dose range, local tissue doses on the order of Grays can be reached in the most exposed parts of the bronchial airways. It can be concluded that progress in low dose research needs not only low dose but also high dose experiments where small parts of a biological sample receive doses on the order of Grays, while the average dose over the whole sample remains low. A narrow interpretation of low dose research might exclude investigations with high relevance to radiological protection. Therefore, studies important to radiological protection should be performed in the frame of low dose research even if the applied doses do not fit in the dose range used for the definition of low doses.

  19. On the use of distributions of stopping pions as an indicator of the spatial distribution of the high-LET dose in negative pion radiotherapy

    International Nuclear Information System (INIS)

    Brenner, D.J.

    1991-01-01

    A semi-empirical across the treatment volume of a therapeutic negative pion beam. Such beams deliver dose partially at high LET (through alphas and heavier particles produced both directly in pion stars and via intermediate star-produced neutrons), and partially at low LET (through scattering of pions, electrons and muons, as well as protons produced directly from pion stars and via intermediate neutrons). The problem is how to understand the spatial distribution of the high-LET dose, which is responsible for the potentially improved biological response in the treatment volume

  20. Conceptual basis for calculations of absorbed-dose distributions

    International Nuclear Information System (INIS)

    Sinclair, W.K.; Rossi, H.H.; Alsmiller, R.G.; Berger, M.J.; Kellerer, A.M.; Roesch, W.C.; Spencer, L.V.; Zaider, M.A.

    1991-01-01

    The effects of radiation on matter are initiated by processes in which atoms and molecules of the medium are ionized or excited. Over a wide range of conditions, it is an excellent approximation to assume that the average number of ionizations and excitations is proportional to the amount of energy imparted to the medium by ionizing radiation in the volume of interest. The absorbed dose, that is, the average amount of energy imparted to the medium per unit mass, is therefore of central importance for the production of radiation effects, and the calculation of absorbed-dose distributions in irradiated media is the focus of interest of the present report. It should be pointed out, however, that even though absorbed dose is useful as an index relating absorbed energy to radiation effects, it is almost never sufficient; it may have to be supplemented by other information, such as the distributions of the amounts of energy imparted to small sites, the correlation of the amounts of energy imparted to adjacent sites, and so on. Such quantities are termed stochastic quantities. Unless otherwise stated, all quantities considered in this report are non-stochastic. 266 refs., 11 figs., 2 tabs

  1. Evaluation of heterogeneity dose distributions for Stereotactic Radiotherapy (SRT: comparison of commercially available Monte Carlo dose calculation with other algorithms

    Directory of Open Access Journals (Sweden)

    Takahashi Wataru

    2012-02-01

    Full Text Available Abstract Background The purpose of this study was to compare dose distributions from three different algorithms with the x-ray Voxel Monte Carlo (XVMC calculations, in actual computed tomography (CT scans for use in stereotactic radiotherapy (SRT of small lung cancers. Methods Slow CT scan of 20 patients was performed and the internal target volume (ITV was delineated on Pinnacle3. All plans were first calculated with a scatter homogeneous mode (SHM which is compatible with Clarkson algorithm using Pinnacle3 treatment planning system (TPS. The planned dose was 48 Gy in 4 fractions. In a second step, the CT images, structures and beam data were exported to other treatment planning systems (TPSs. Collapsed cone convolution (CCC from Pinnacle3, superposition (SP from XiO, and XVMC from Monaco were used for recalculating. The dose distributions and the Dose Volume Histograms (DVHs were compared with each other. Results The phantom test revealed that all algorithms could reproduce the measured data within 1% except for the SHM with inhomogeneous phantom. For the patient study, the SHM greatly overestimated the isocenter (IC doses and the minimal dose received by 95% of the PTV (PTV95 compared to XVMC. The differences in mean doses were 2.96 Gy (6.17% for IC and 5.02 Gy (11.18% for PTV95. The DVH's and dose distributions with CCC and SP were in agreement with those obtained by XVMC. The average differences in IC doses between CCC and XVMC, and SP and XVMC were -1.14% (p = 0.17, and -2.67% (p = 0.0036, respectively. Conclusions Our work clearly confirms that the actual practice of relying solely on a Clarkson algorithm may be inappropriate for SRT planning. Meanwhile, CCC and SP were close to XVMC simulations and actual dose distributions obtained in lung SRT.

  2. SU-F-19A-10: Recalculation and Reporting Clinical HDR 192-Ir Head and Neck Dose Distributions Using Model Based Dose Calculation

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson Tedgren, A [Linkoping University, Linkoping, Linkoping (Sweden); Persson, M; Nilsson, J [Karolinska hospital, Stockholm, Stockholm (Sweden)

    2014-06-15

    Purpose: To retrospectively re-calculate dose distributions for selected head and neck cancer patients, earlier treated with HDR 192Ir brachytherapy, using Monte Carlo (MC) simulations and compare results to distributions from the planning system derived using TG43 formalism. To study differences between dose to medium (as obtained with the MC code) and dose to water in medium as obtained through (1) ratios of stopping powers and (2) ratios of mass energy absorption coefficients between water and medium. Methods: The MC code Algebra was used to calculate dose distributions according to earlier actual treatment plans using anonymized plan data and CT images in DICOM format. Ratios of stopping power and mass energy absorption coefficients for water with various media obtained from 192-Ir spectra were used in toggling between dose to water and dose to media. Results: Differences between initial planned TG43 dose distributions and the doses to media calculated by MC are insignificant in the target volume. Differences are moderate (within 4–5 % at distances of 3–4 cm) but increase with distance and are most notable in bone and at the patient surface. Differences between dose to water and dose to medium are within 1-2% when using mass energy absorption coefficients to toggle between the two quantities but increase to above 10% for bone using stopping power ratios. Conclusion: MC predicts target doses for head and neck cancer patients in close agreement with TG43. MC yields improved dose estimations outside the target where a larger fraction of dose is from scattered photons. It is important with awareness and a clear reporting of absorbed dose values in using model based algorithms. Differences in bone media can exceed 10% depending on how dose to water in medium is defined.

  3. SU-F-19A-10: Recalculation and Reporting Clinical HDR 192-Ir Head and Neck Dose Distributions Using Model Based Dose Calculation

    International Nuclear Information System (INIS)

    Carlsson Tedgren, A; Persson, M; Nilsson, J

    2014-01-01

    Purpose: To retrospectively re-calculate dose distributions for selected head and neck cancer patients, earlier treated with HDR 192Ir brachytherapy, using Monte Carlo (MC) simulations and compare results to distributions from the planning system derived using TG43 formalism. To study differences between dose to medium (as obtained with the MC code) and dose to water in medium as obtained through (1) ratios of stopping powers and (2) ratios of mass energy absorption coefficients between water and medium. Methods: The MC code Algebra was used to calculate dose distributions according to earlier actual treatment plans using anonymized plan data and CT images in DICOM format. Ratios of stopping power and mass energy absorption coefficients for water with various media obtained from 192-Ir spectra were used in toggling between dose to water and dose to media. Results: Differences between initial planned TG43 dose distributions and the doses to media calculated by MC are insignificant in the target volume. Differences are moderate (within 4–5 % at distances of 3–4 cm) but increase with distance and are most notable in bone and at the patient surface. Differences between dose to water and dose to medium are within 1-2% when using mass energy absorption coefficients to toggle between the two quantities but increase to above 10% for bone using stopping power ratios. Conclusion: MC predicts target doses for head and neck cancer patients in close agreement with TG43. MC yields improved dose estimations outside the target where a larger fraction of dose is from scattered photons. It is important with awareness and a clear reporting of absorbed dose values in using model based algorithms. Differences in bone media can exceed 10% depending on how dose to water in medium is defined

  4. Dose distribution in organs: patient-specific phantoms versus reference phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Lacerda, I.V.B., E-mail: isabelle.lacerda@ufpe.br [Universidade Federal de Pernambuco (UFPE), Recife (Brazil); Vieira, J.W. [Instituto Federal de Pernambuco (IFPE), Recife (Brazil); Oliveira, M.L.; Lima, F.R.A. [Centro Regional de Ciências Nucleares do Nordeste (CRCN-NE/CNEN-PB), Recife (Brazil)

    2017-07-01

    Discrepancies between ICRP phantoms and real patients lead to disparities on patient-dose estimations. This paper aims to compare distribution of dose in organs of male/female specific-phantoms and ICRP reference phantoms. The absorbed dose estimation was performed using the EGSnrc Monte Carlo code and a parallel source algorithm. In this work were used a patient-specific phantom for a man (1.73m/70.3kg) and another for a woman (1.63m/60.3kg) and the male and female ICRP reference phantoms. The comparison of the absorbed dose from each phantom gender was performed using the relative error. The results were expressed in terms of conversion coefficients to brain, lungs, liver and kidneys. The greatest absolute relative error between the organs of the patient-specific phantom and the reference phantom was 22.92% in the liver and 62.84% in the kidneys, respectively for man and woman. There are errors that cannot be disregarded. This paper shows the need for a specific study for each patient or for the population of each country, since there are different body types, which affects the distribution of the organ doses. (author)

  5. Dose distribution in organs: patient-specific phantoms versus reference phantoms

    International Nuclear Information System (INIS)

    Lacerda, I.V.B.; Vieira, J.W.; Oliveira, M.L.; Lima, F.R.A.

    2017-01-01

    Discrepancies between ICRP phantoms and real patients lead to disparities on patient-dose estimations. This paper aims to compare distribution of dose in organs of male/female specific-phantoms and ICRP reference phantoms. The absorbed dose estimation was performed using the EGSnrc Monte Carlo code and a parallel source algorithm. In this work were used a patient-specific phantom for a man (1.73m/70.3kg) and another for a woman (1.63m/60.3kg) and the male and female ICRP reference phantoms. The comparison of the absorbed dose from each phantom gender was performed using the relative error. The results were expressed in terms of conversion coefficients to brain, lungs, liver and kidneys. The greatest absolute relative error between the organs of the patient-specific phantom and the reference phantom was 22.92% in the liver and 62.84% in the kidneys, respectively for man and woman. There are errors that cannot be disregarded. This paper shows the need for a specific study for each patient or for the population of each country, since there are different body types, which affects the distribution of the organ doses. (author)

  6. Initial investigations of dose distribution patterns for an industrial electron accelerator

    International Nuclear Information System (INIS)

    Ehlermann, D.A.E.

    1994-01-01

    A newly developed accelerator for electrons in the dose range of up 10 mev at 10 kw performance replaces a similar type of accelerator that has been in use during the past 25 years. It is characterized by some decisive technical changes. The ray, rather than moving from one point to the next, is now distributed over the merchandise for the duration of an impulse. In the direction of conveyance, irradiation is carried out on successive fields as was done formerly. As the duration of impulse is no longer than 12 μs, some problems arose in respect of operation and measuring techniques: the time distribution of microwave energy or rays emitted during the individual impulses has a bearing on the dose distribution pattern at a right angle to the direction of transport in both the superficial and deep layers of the merchandise. Some of the initial measuring results are represented here. The accelerator's operational parameters were then so adjusted that a largely homogeneous dose distribution was achieved throughout. (orig.) [de

  7. Preliminary investigations on the determination of three-dimensional dose distributions using scintillator blocks and optical tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kroll, Florian; Karsch, Leonhard [OncoRay - National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, TU Dresden, 01307 Dresden (Germany); Pawelke, Jörg [OncoRay - National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany and Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, P.O. Box 510119, 01314 Dresden (Germany)

    2013-08-15

    Purpose: Clinical QA in teletherapy as well as the characterization of experimental radiation sources for future medical applications requires effective methods for measuring three-dimensional (3D) dose distributions generated in a water-equivalent medium. Current dosimeters based on ionization chambers, diodes, thermoluminescence detectors, radiochromic films, or polymer gels exhibit various drawbacks: High quality 3D dose determination is either very sophisticated and expensive or requires high amounts of effort and time for the preparation or read out. New detectors based on scintillator blocks in combination with optical tomography are studied, since they have the potential to facilitate the desired cost-effective, transportable, and long-term stable dosimetry system that is able to determine 3D dose distributions with high spatial resolution in a short time.Methods: A portable detector prototype was set up based on a plastic scintillator block and four digital cameras. During irradiation the scintillator emits light, which is detected by the fixed cameras. The light distribution is then reconstructed by optical tomography, using maximum-likelihood expectation maximization. The result of the reconstruction approximates the 3D dose distribution. First performance tests of the prototype using laser light were carried out. Irradiation experiments were performed with ionizing radiation, i.e., bremsstrahlung (6 to 21 MV), electrons (6 to 21 MeV), and protons (68 MeV), provided by clinical and research accelerators.Results: Laser experiments show that the current imaging properties differ from the design specifications: The imaging scale of the optical systems is position dependent, ranging from 0.185 mm/pixel to 0.225 mm/pixel. Nevertheless, the developed dosimetry method is proven to be functional for electron and proton beams. Induced radiation doses of 50 mGy or more made 3D dose reconstructions possible. Taking the imaging properties into account, determined

  8. Dose distribution and mapping with 3D imaging presentation in intraoral and panoramic examinations

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hsiu-Ling [Department of Dental Medicine, Mackay Memorial Hospital, Taipei, Taiwan (China); Huang, Yung-Hui [Department of Medical Imaging and Radiological Science, I-Shou University, Kaohsiung, Taiwan (China); Wu, Tung-Hsin, E-mail: tung@ym.edu.tw [Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, No. 155, Sec. 2, Linong Street, Taipei 112 Taiwan (China); Wang, Shih-Yuan [Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, No. 155, Sec. 2, Linong Street, Taipei 112 Taiwan (China); Lee, Jason J.S., E-mail: jslee@ym.edu.tw [Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, No. 155, Sec. 2, Linong Street, Taipei 112 Taiwan (China)

    2011-10-01

    In current medical imaging applications, high quality images not only provide more diagnostic value for anatomic delineation but also offer functional information for treatment direction. However, this approach would potentially subscribe higher radiation dose in dental radiographies, which has been putatively associated with low-birth-weight during pregnancy, which affects the hypothalamus-pituitary-thyroid axis or thereby directly affects the reproductive organs. The aim of this study was to apply the high resolution 3-D image mapping technique to evaluate radiation doses from the following aspects: (1) verifying operating parameters of dental X-ray units, (2) measuring the leakage radiations and (3) mapping dose with 3-D radiographic imaging to evaluate dose distribution in head and neck regions. From the study results, we found that (1) leakage radiation from X-ray units was about 21.31{+-}15.24 mR/h (<100 mR/h), (2) error of actual tube voltage for 60 kVp setting was from 0.2% to 6.5%, with an average of 2.5% (<7%) and (3) the error of exposure time for a 0.5-1.5 s setting was within 0.7-8.5%, with an average of 7.3% (<10%) error as well. Our 3-D dose mapping demonstrated that dose values were relatively lower in soft tissues and higher in bone surfaces compared with other investigations. Multiple causes could contribute to these variations, including irradiation geometry, image equipment and type of technique applied, etc. From the results, we also observed that larger accumulated doses were presented in certain critical organs, such as salivary gland, thyroid gland and bone marrow. Potential biological affects associated with these findings warrant further investigation.

  9. Dose distribution and mapping with 3D imaging presentation in intraoral and panoramic examinations

    Science.gov (United States)

    Chen, Hsiu-Ling; Huang, Yung-Hui; Wu, Tung-Hsin; Wang, Shih-Yuan; Lee, Jason J. S.

    2011-10-01

    In current medical imaging applications, high quality images not only provide more diagnostic value for anatomic delineation but also offer functional information for treatment direction. However, this approach would potentially subscribe higher radiation dose in dental radiographies, which has been putatively associated with low-birth-weight during pregnancy, which affects the hypothalamus-pituitary-thyroid axis or thereby directly affects the reproductive organs. The aim of this study was to apply the high resolution 3-D image mapping technique to evaluate radiation doses from the following aspects: (1) verifying operating parameters of dental X-ray units, (2) measuring the leakage radiations and (3) mapping dose with 3-D radiographic imaging to evaluate dose distribution in head and neck regions. From the study results, we found that (1) leakage radiation from X-ray units was about 21.31±15.24 mR/h (error of actual tube voltage for 60 kVp setting was from 0.2% to 6.5%, with an average of 2.5% (error of exposure time for a 0.5-1.5 s setting was within 0.7-8.5%, with an average of 7.3% (error as well. Our 3-D dose mapping demonstrated that dose values were relatively lower in soft tissues and higher in bone surfaces compared with other investigations. Multiple causes could contribute to these variations, including irradiation geometry, image equipment and type of technique applied, etc. From the results, we also observed that larger accumulated doses were presented in certain critical organs, such as salivary gland, thyroid gland and bone marrow. Potential biological affects associated with these findings warrant further investigation.

  10. Electron Beam Dose Distribution in the Presence of Non-Uniform Magnetic Field

    Directory of Open Access Journals (Sweden)

    Mohamad Javad Tahmasebi-Birgani

    2014-04-01

    Full Text Available Introduction Magnetic fields are capable of altering the trajectory of electron beams andcan be used in radiation therapy.Theaim of this study was to produce regions with dose enhancement and reduction in the medium. Materials and Methods The NdFeB permanent magnets were arranged on the electron applicator in several configurations. Then, after the passage of the electron beams (9 and 15 MeV Varian 2100C/D through the non-uniform magnetic field, the Percentage Depth Dose(PDDs on central axis and dose profiles in three depths for each energy were measured in a 3D water phantom. Results For all magnet arrangements and for two different energies, the surface dose increment and shift in depth of maximum dose (dmax were observed. In addition, the pattern of dose distribution in buildup region was changed. Measurement of dose profile showed dose localization and spreading in some other regions. Conclusion The results of this study confirms that using magnetic field can alter the dose deposition patterns and as a result can produce dose enhancement as well as dose reduction in the medium using high-energy electron beams. These effects provide dose distribution with arbitrary shapes for use in radiation therapy.

  11. Evaluation of dose equivalent rate distribution in JCO critical accident by radiation transport calculation

    CERN Document Server

    Sakamoto, Y

    2002-01-01

    In the prevention of nuclear disaster, there needs the information on the dose equivalent rate distribution inside and outside the site, and energy spectra. The three dimensional radiation transport calculation code is a useful tool for the site specific detailed analysis with the consideration of facility structures. It is important in the prediction of individual doses in the future countermeasure that the reliability of the evaluation methods of dose equivalent rate distribution and energy spectra by using of Monte Carlo radiation transport calculation code, and the factors which influence the dose equivalent rate distribution outside the site are confirmed. The reliability of radiation transport calculation code and the influence factors of dose equivalent rate distribution were examined through the analyses of critical accident at JCO's uranium processing plant occurred on September 30, 1999. The radiation transport calculations including the burn-up calculations were done by using of the structural info...

  12. Effect of head size on 10B dose distribution

    International Nuclear Information System (INIS)

    Gupta, N.; Blue, T.E.; Gahbauer, R.

    1992-01-01

    Boron neutron capture therapy (BNCT) for treatment of brain tumors is based on the utilization of large epithermal-neutron fields. Epithermal neutrons thermalize at depths of ∼2.5 cm inside the head and provide a maximum thermal fluence at deep-seated tumor sites with minimum damage to normal tissue. Brain tissue is a highly scattering medium for epithermal and thermal neutrons; therefore, a broad treatment field enables epithermal neutrons to enter the head over a large area. These neutrons slow down as they undergo scattering collisions and contribute to the thermal-neutron fluence at the tumor location. With the use of large neutron fields, the size of the head affects the thermal-neutron distribution and thereby the 10 B absorbed dose distribution inside the head. In this paper, the authors describe measurements using a boron trifluoride (BF 3 )-filled proportional counter to determine the effect of head size on 10 B absorbed dose distributions for a broad field accelerator epithermal-neutron source

  13. SU-E-T-113: Dose Distribution Using Respiratory Signals and Machine Parameters During Treatment

    International Nuclear Information System (INIS)

    Imae, T; Haga, A; Saotome, N; Kida, S; Nakano, M; Takeuchi, Y; Shiraki, T; Yano, K; Yamashita, H; Nakagawa, K; Ohtomo, K

    2014-01-01

    Purpose: Volumetric modulated arc therapy (VMAT) is a rotational intensity-modulated radiotherapy (IMRT) technique capable of acquiring projection images during treatment. Treatment plans for lung tumors using stereotactic body radiotherapy (SBRT) are calculated with planning computed tomography (CT) images only exhale phase. Purpose of this study is to evaluate dose distribution by reconstructing from only the data such as respiratory signals and machine parameters acquired during treatment. Methods: Phantom and three patients with lung tumor underwent CT scans for treatment planning. They were treated by VMAT while acquiring projection images to derive their respiratory signals and machine parameters including positions of multi leaf collimators, dose rates and integrated monitor units. The respiratory signals were divided into 4 and 10 phases and machine parameters were correlated with the divided respiratory signals based on the gantry angle. Dose distributions of each respiratory phase were calculated from plans which were reconstructed from the respiratory signals and the machine parameters during treatment. The doses at isocenter, maximum point and the centroid of target were evaluated. Results and Discussion: Dose distributions during treatment were calculated using the machine parameters and the respiratory signals detected from projection images. Maximum dose difference between plan and in treatment distribution was −1.8±0.4% at centroid of target and dose differences of evaluated points between 4 and 10 phases were no significant. Conclusion: The present method successfully evaluated dose distribution using respiratory signals and machine parameters during treatment. This method is feasible to verify the actual dose for moving target

  14. Verification of Dose Distribution in Carbon Ion Radiation Therapy for Stage I Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Irie, Daisuke; Saitoh, Jun-ichi, E-mail: junsaito@gunma-u.ac.jp; Shirai, Katsuyuki; Abe, Takanori; Kubota, Yoshiki; Sakai, Makoto; Noda, Shin-ei; Ohno, Tatsuya; Nakano, Takashi

    2016-12-01

    Purpose: To evaluate robustness of dose distribution of carbon-ion radiation therapy (C-ion RT) in non-small cell lung cancer (NSCLC) and to identify factors affecting the dose distribution by simulated dose distribution. Methods and Materials: Eighty irradiation fields for delivery of C-ion RT were analyzed in 20 patients with stage I NSCLC. Computed tomography images were obtained twice before treatment initiation. Simulated dose distribution was reconstructed on computed tomography for confirmation under the same settings as actual treatment with respiratory gating and bony structure matching. Dose-volume histogram parameters, such as %D95 (percentage of D95 relative to the prescribed dose), were calculated. Patients with any field for which the %D95 of gross tumor volume (GTV) was below 90% were classified as unacceptable for treatment, and the optimal target margin for such cases was examined. Results: Five patients with a total of 8 fields (10% of total number of fields analyzed) were classified as unacceptable according to %D95 of GTV, although most patients showed no remarkable change in the dose-volume histogram parameters. Receiver operating characteristic curve analysis showed that tumor displacement and change in water-equivalent pathlength were significant predictive factors of unacceptable cases (P<.001 and P=.002, respectively). The main cause of degradation of the dose distribution was tumor displacement in 7 of the 8 unacceptable fields. A 6-mm planning target volume margin ensured a GTV %D95 of >90%, except in 1 extremely unacceptable field. Conclusions: According to this simulation analysis of C-ion RT for stage I NSCLC, a few fields were reported as unacceptable and required resetting of body position and reconfirmation. In addition, tumor displacement and change in water-equivalent pathlength (bone shift and/or chest wall thickness) were identified as factors influencing the robustness of dose distribution. Such uncertainties should be regarded

  15. Low Energy Scanned Electron-Beam Dose Distribution in Thin Layers

    DEFF Research Database (Denmark)

    McLaughlin, W. L.; Hjortenberg, P. E.; Pedersen, Walther Batsberg

    1975-01-01

    Thin radiochromic dye film dosimeters, calibrated by means of calorimetry, make possible the determination of absorbed-dose distributions due to low-energy scanned electron beam penetrations in moderately thin coatings and laminar media. For electrons of a few hundred keV, calibrated dosimeters...... of about 30–60 μm thickness may be used in stacks or interleaved between layers of materials of interest and supply a sufficient number of experimental data points throughout the depth of penetration of electrons to provide a depth-dose curve. Depth doses may be resolved in various polymer layers...... on different backings (wood, aluminum, and iron) for scanned electron beams (Emax = 400 keV) having a broad energy spectrum and diffuse incidence, such as those used in radiation curing of coatings, textiles, plastics, etc. Theoretical calculations of such distributions of energy depositions are relatively...

  16. Experimental Determination of the Neutron Radiation-Dose Distribution in the Human Phantom

    Energy Technology Data Exchange (ETDEWEB)

    Stipcic, Neda [Institute Rudjer Bogkovic, Zagreb, Yugoslavia (Serbia)

    1967-01-15

    The quality of the radiation delivering the radiation dose to the human phantom is quite different from that of the incident neutron beam. This paper describes the experimental investigation of the variation of neutron dose related to the variation of neutron fluence with depth in the human phantom. The distribution of neutron radiation was determined in the human phantom - a cube of paraffin wax 25 cm x 25 cm x 50 cm with a density of 0.92 cm{sup -3}. Po-Be and Ra-Be point sources were used as neutron sources. Neutron fluences were measured using different types of detector: scintillation detector, BF{sub 3} counter, and nuclear-track emulsions. Since the fluence measurements with these three types of detectors were carried out under the same experimental conditions, it was possible to separate and analyse each part of the radiation dose in the paraffin. From the investigations, the distribution of the total radiation dose was obtained as a function of the paraffin depth. The maximum value of this dose distribution is constant with respect to the distance between the source and the paraffin phantom. From the results obtained, some conclusions may be drawn concerning the amount of absorbed radiation dose in the human phantom. (author)

  17. Three-dimensional dose distribution in contrast-enhanced digital mammography using Gafchromic XR-QA2 films: Feasibility study

    International Nuclear Information System (INIS)

    Hwang, Yi-Shuan; Lin, Yu-Ying; Cheung, Yun-Chung; Tsai, Hui-Yu

    2014-01-01

    This study was aimed to establish three-dimensional dose distributions for contrast-enhanced digital mammography (CEDM) using self-developed Gafchromic XR-QA2 films. Dose calibration and distribution evaluations were performed on a full-field digital mammography unit with dual energy (DE) contrast-enhanced option. Strategy for dose calibration of films in the DE mode was based on the data obtained from common target/filter/kVp combinations used clinically and the dose response model modified from Rampado's model. Dose derived from films were also verified by measured data from an ionization chamber. The average difference of dose was 8.9% in the dose range for clinical uses. Three-dimensional dose distributions were estimated using triangular acrylic phantom equipped with the mammography system. Five pieces of film sheets were separately placed between the acrylic slabs to evaluate the dose distribution at different depths. After normalizing the dose in each pixel to the maximum dose at the top-center position of the acrylic, normalized dose distribution for transverse, coronal and sagittal planes, could thus be obtained. The depth dose distribution evaluated in this study may further serve as a reference for evaluating the patient glandular dose at different depths based on the entrance exposure information. - Highlights: • CEDM techniques can enhance contrast uptake areas and suppress background tissue. • Dose for the dual-energy acquisition is about 20% higher than standard mode. • A new method is proposed to estimate the 3D dose distribution in dual-energy CEDM. • Depth of normalized dose ratio of 0.5 is less than but near 1 cm in the DE mode

  18. Measurement of californium-252 gamma photons depth dose distribution in tissue equivalent material. Vol. 4

    Energy Technology Data Exchange (ETDEWEB)

    Fadel, M A; El-Fiki, M A; Eissa, H M; Abdel-Hafez, A; Naguib, S H [National Institute of Standards, Cairo (Egypt)

    1996-03-01

    Phantom of tissue equivalent material with and without bone was used measuring depth dose distribution of gamma-rays from californium-252 source. The source was positioned at center of perspex walled phantom. Depth dose measurements were recorded for X, Y and Z planes at different distances from source. TLD 700 was used for measuring the dose distribution. Results indicate that implantation of bone in tissue equivalent medium cause changes in the gamma depth dose distribution which varies according to variation in bone geometry. 9 figs.

  19. Calculation of dose distribution above contaminated soil

    Science.gov (United States)

    Kuroda, Junya; Tenzou, Hideki; Manabe, Seiya; Iwakura, Yukiko

    2017-07-01

    The purpose of this study was to assess the relationship between altitude and the distribution of the ambient dose rate in the air over soil decontamination area by using PHITS simulation code. The geometry configuration was 1000 m ×1000 m area and 1m in soil depth and 100m in altitude from the ground to simulate the area of residences or a school grounds. The contaminated region is supposed to be uniformly contaminated by Cs-137 γ radiation sources. The air dose distribution and space resolution was evaluated for flux of the gamma rays at each altitude, 1, 5, 10, and 20m. The effect of decontamination was calculated by defining sharpness S. S was the ratio of an average flux and a flux at the center of denomination area in each altitude. The suitable flight altitude of the drone is found to be less than 15m above a residence and 31m above a school grounds to confirm the decontamination effect. The calculation results can be a help to determine a flight planning of a drone to minimize the clash risk.

  20. Low earth orbit radiation dose distribution in a phantom head

    International Nuclear Information System (INIS)

    Konradi, A.; Badhwar, G.D.; Cash, B.L.; Hardy, K.A.

    1992-01-01

    In order to compare analytical methods with data obtained during exposure to space radiation, a phantom head instrumented with a large number of radiation detectors was flown on the Space Shuttle on three occasions: 8 August 1989 (STS-28), 28 February 1990 (STS-36), and 24 April 1990 (STS-31). The objective of this experiment was to obtain a measurement of the inhomogeneity in the dose distribution within a phantom head volume. The orbits of these missions were complementary-STS-28 and STS-36 had high inclination and low altitude, while STS-31 had a low inclination and high altitude. In the cases of STS-28 and STS-36, the main contribution to the radiation dose comes from galactic cosmic rays (GCR) with a minor to negligible part supplied by the inner belt through the South Atlantic Anomaly (SAA), and for STS-28 an even smaller one from a proton enhancement during a solar flare-associated proton event. For STS-31, the inner belt protons dominate and the GCR contribution is almost negligible. The internal dose distribution is consistent with the mass distribution of the orbiter and the self-shielding and physical location of the phantom head. (author)

  1. Development of an ICCD-scintillator system for measurement of spatial dose distributions around 'hot particles'

    International Nuclear Information System (INIS)

    Aydarous, A. Sh; Darley, P. J.; Charles, M. W.

    2004-01-01

    An intensified charge coupled device (ICCD)-scintillator system has been investigated for potential use in measuring the spatially non-uniform dose distribution around 'hot particles'. This imaging system is capable of producing real-time measurements considerably quicker than other presently available radiation dosimetry techniques and exhibits good linearity and reproducibility and relatively high spatial resolution (∼17.5 μm). The time required for a dose evaluation is less than a hundredth that required for radiochromic dye film measurements. The non-uniformity of the system has been eliminated by applying pixel-to-pixel correction factors. The measurable dose rate range using a 110 μm thick scintillator extends from ∼2000 down to ∼6 Gy h -1 . The prototype ICCD-scintillator system has been used in evaluation of the skin dose from some high-activity nuclear fuel fragments. The results agree within a few percentage with radiochromic dye film measurements for 1 cm 2 averaging areas. (authors)

  2. Dose rate distribution for products irradiated in a semi-industrial irradiation plant. 1st stage

    International Nuclear Information System (INIS)

    Mangussi, J.

    2005-01-01

    The model of the bulk product absorbed dose rate distribution in a semi industrial irradiation plant is presented. In this plant the products are subject to a dynamic irradiation process: single-plaque, single-direction, four-passes. The additional two passes, also one on each side of the plaque, serve to minimize the lateral dose variation as well as the depth-dose non-uniformity. The first stage of this model takes only into account the direct absorbed dose rate; the model outputs are the depth-dose distribution and the lateral-dose distribution. The calculated absorbed dose in the bulk product and its uniformity-ratio after the dynamic irradiation process for different products is compared. The model results are in good agreement with the experimental measurements in a bulk of irradiated product; and the air absorbed dose rate in the irradiation chamber behind the product subject to the dynamic irradiation process. (author) [es

  3. Inherent calibration of microdosemeters for dose distributions in lineal energy

    Energy Technology Data Exchange (ETDEWEB)

    Crossman, J.S.P.; Watt, D.E. [Saint Andrews Univ. (United Kingdom). Dept. of Physics and Astronomy

    1994-12-31

    A method, utilising the inherent electron event spectra, is described for the absolute calibration of microdosemeters in the presence of a photon field. The method, which avoids the problems and uncertainties present in conventional calibration techniques, involves simple extrapolation of the dose distribution in lineal energy associated with `exact stopper` electrons. Validation of the method is made using the published experimental distributions of Rossi, of Kliauga, and of Dvorak and by direct theoretical calculation of the components of the microdose distributions for gamma rays. Further experimental data from a cylindrical TEPC in a photon field generated by an external source of {sup 137}Cs are obtained for comparison. A `universal` calibration curve for the dose-weighted lineal energy as a function of the simulated mean diameter of the microdosemeter, is presented for use in practical applications. (author).

  4. Inherent calibration of microdosemeters for dose distributions in lineal energy

    International Nuclear Information System (INIS)

    Crossman, J.S.P.; Watt, D.E.

    1994-01-01

    A method, utilising the inherent electron event spectra, is described for the absolute calibration of microdosemeters in the presence of a photon field. The method, which avoids the problems and uncertainties present in conventional calibration techniques, involves simple extrapolation of the dose distribution in lineal energy associated with 'exact stopper' electrons. Validation of the method is made using the published experimental distributions of Rossi, of Kliauga, and of Dvorak and by direct theoretical calculation of the components of the microdose distributions for gamma rays. Further experimental data from a cylindrical TEPC in a photon field generated by an external source of 137 Cs are obtained for comparison. A 'universal' calibration curve for the dose-weighted lineal energy as a function of the simulated mean diameter of the microdosemeter, is presented for use in practical applications. (author)

  5. Three-dimensional cluster formation and structure in heterogeneous dose distribution of intensity modulated radiation therapy.

    Science.gov (United States)

    Chao, Ming; Wei, Jie; Narayanasamy, Ganesh; Yuan, Yading; Lo, Yeh-Chi; Peñagarícano, José A

    2018-05-01

    To investigate three-dimensional cluster structure and its correlation to clinical endpoint in heterogeneous dose distributions from intensity modulated radiation therapy. Twenty-five clinical plans from twenty-one head and neck (HN) patients were used for a phenomenological study of the cluster structure formed from the dose distributions of organs at risks (OARs) close to the planning target volumes (PTVs). Initially, OAR clusters were searched to examine the pattern consistence among ten HN patients and five clinically similar plans from another HN patient. Second, clusters of the esophagus from another ten HN patients were scrutinized to correlate their sizes to radiobiological parameters. Finally, an extensive Monte Carlo (MC) procedure was implemented to gain deeper insights into the behavioral properties of the cluster formation. Clinical studies showed that OAR clusters had drastic differences despite similar PTV coverage among different patients, and the radiobiological parameters failed to positively correlate with the cluster sizes. MC study demonstrated the inverse relationship between the cluster size and the cluster connectivity, and the nonlinear changes in cluster size with dose thresholds. In addition, the clusters were insensitive to the shape of OARs. The results demonstrated that the cluster size could serve as an insightful index of normal tissue damage. The clinical outcome of the same dose-volume might be potentially different. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Assessing potential impacts associated with contamination events in water distribution systems : a sensitivity analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Davis, M. J.; Janke, R.; Taxon, T. N. (Decision and Information Sciences); ( EVS); (EPA)

    2010-11-01

    An understanding of the nature of the adverse effects that could be associated with contamination events in water distribution systems is necessary for carrying out vulnerability analyses and designing contamination warning systems. This study examines the adverse effects of contamination events using models for 12 actual water systems that serve populations ranging from about 104 to over 106 persons. The measure of adverse effects that we use is the number of people who are exposed to a contaminant above some dose level due to ingestion of contaminated tap water. For this study the number of such people defines the impact associated with an event. We consider a wide range of dose levels in order to accommodate a wide range of potential contaminants. For a particular contaminant, dose level can be related to a health effects level. For example, a dose level could correspond to the median lethal dose, i.e., the dose that would be fatal to 50% of the exposed population. Highly toxic contaminants may be associated with a particular response at a very low dose level, whereas contaminants with low toxicity may only be associated with the same response at a much higher dose level. This report focuses on the sensitivity of impacts to five factors that either define the nature of a contamination event or involve assumptions that are used in assessing exposure to the contaminant: (1) duration of contaminant injection, (2) time of contaminant injection, (3) quantity or mass of contaminant injected, (4) population distribution in the water distribution system, and (5) the ingestion pattern of the potentially exposed population. For each of these factors, the sensitivities of impacts to injection location and contaminant toxicity are also examined. For all the factors considered, sensitivity tends to increase with dose level (i.e., decreasing toxicity) of the contaminant, with considerable inter-network variability. With the exception of the population distribution (factor 4

  7. Age-dependent effective doses for radionuclides uniformly distributed in air

    International Nuclear Information System (INIS)

    Hung, Tran Van

    2014-01-01

    Age-dependent effective doses for external exposure to photons emitted by radionuclides uniformly distributed in air are reported. The calculations were performed for 160 radionuclides, which are important for safety assessment of nuclear facilities. The energies and intensities of photons emitted from radionuclides were taken from the decay data DECDC used for dose calculations. The results are tabulated in the form of effective dose per unit concentration and time (Sv per Bq s m -3 ) for 6 age groups: newborn, 1, 5, 10 and 15 years-old and adult. The effective doses for the adult are also compared to values given in the literature.

  8. The calculation of electron depth-dose distributions in multilayer medium

    International Nuclear Information System (INIS)

    Wang Chuanshan; Xu Mengjie; Li Zhiliang; Feng Yongxiang; Li Panlin

    1989-01-01

    Energy deposition in multilayer medium and the depth dose distribution in the layers are studied. Based on semi-empirical calculation of electron energy absorption in matter with EDMULT program of Tabata and Ito, further work has been carried out to extend the computation to multilayer composite material. New program developed in this paper makes IBM-PC compatible with complicated electron dose calculations

  9. Effects of physics change in Monte Carlo code on electron pencil beam dose distributions

    International Nuclear Information System (INIS)

    Toutaoui, Abdelkader; Khelassi-Toutaoui, Nadia; Brahimi, Zakia; Chami, Ahmed Chafik

    2012-01-01

    Pencil beam algorithms used in computerized electron beam dose planning are usually described using the small angle multiple scattering theory. Alternatively, the pencil beams can be generated by Monte Carlo simulation of electron transport. In a previous work, the 4th version of the Electron Gamma Shower (EGS) Monte Carlo code was used to obtain dose distributions from monoenergetic electron pencil beam, with incident energy between 1 MeV and 50 MeV, interacting at the surface of a large cylindrical homogeneous water phantom. In 2000, a new version of this Monte Carlo code has been made available by the National Research Council of Canada (NRC), which includes various improvements in its electron-transport algorithms. In the present work, we were interested to see if the new physics in this version produces pencil beam dose distributions very different from those calculated with oldest one. The purpose of this study is to quantify as well as to understand these differences. We have compared a series of pencil beam dose distributions scored in cylindrical geometry, for electron energies between 1 MeV and 50 MeV calculated with two versions of the Electron Gamma Shower Monte Carlo Code. Data calculated and compared include isodose distributions, radial dose distributions and fractions of energy deposition. Our results for radial dose distributions show agreement within 10% between doses calculated by the two codes for voxels closer to the pencil beam central axis, while the differences are up to 30% for longer distances. For fractions of energy deposition, the results of the EGS4 are in good agreement (within 2%) with those calculated by EGSnrc at shallow depths for all energies, whereas a slightly worse agreement (15%) is observed at deeper distances. These differences may be mainly attributed to the different multiple scattering for electron transport adopted in these two codes and the inclusion of spin effect, which produces an increase of the effective range of

  10. Measurements of the electron dose distribution near inhomogeneities using a plastic scintillation detector

    International Nuclear Information System (INIS)

    Wells, C.M.M.; Mackie, T.R.; Podgorsak, M.B.; Holmes, M.A.; Papanikolaou, N.; Reckwerdt, P.J.; Cygler, J.; Rogers, D.W.O.; Bielajew, A.F.; Schmidt, D.G.

    1994-01-01

    Accurate measurement of the electron dose distribution near an inhomogeneity is difficult with traditional dosimeters which themselves perturb the electron field. The authors tested the performance of a new high resolution, water-equivalent plastic scintillation detector which has ideal properties for this application. A plastic scintillation detector with a 1 mm diameter, 3 mm long cylindrical sensitive volume was used to measure the dose distributions behind standard benchmark inhomogeneities in water phantoms. The plastic scintillator material is more water equivalent than polystyrene in terms of its mass collision stopping power and mass scattering power. Measurements were performed for beams of electrons having initial energies of 6 and 18 MeV at depths from 0.2-4.2 cm behind the inhomogeneities. The detector reveals hot and cold spots behind heterogeneities at resolutions equivalent to typical film digitizer spot sizes. Plots of the dose distributions behind air, aluminum, lead, and formulations for cortical and inner bone-equivalent materials are presented. The plastic scintillation detector is suited for measuring the electron dose distribution near an inhomogeneity. 14 refs., 9 figs

  11. Comparison of measured with calculated dose distribution from a 120-MeV electron beam from a laser-plasma accelerator

    International Nuclear Information System (INIS)

    Lundh, O.; Rechatin, C.; Faure, J.; Ben-Ismaïl, A.; Lim, J.; De Wagter, C.; De Neve, W.; Malka, V.

    2012-01-01

    Purpose: To evaluate the dose distribution of a 120-MeV laser-plasma accelerated electron beam which may be of potential interest for high-energy electron radiation therapy. Methods: In the interaction between an intense laser pulse and a helium gas jet, a well collimated electron beam with very high energy is produced. A secondary laser beam is used to optically control and to tune the electron beam energy and charge. The potential use of this beam for radiation treatment is evaluated experimentally by measurements of dose deposition in a polystyrene phantom. The results are compared to Monte Carlo simulations using the geant4 code. Results: It has been shown that the laser-plasma accelerated electron beam can deliver a peak dose of more than 1 Gy at the entrance of the phantom in a single laser shot by direct irradiation, without the use of intermediate magnetic transport or focusing. The dose distribution is peaked on axis, with narrow lateral penumbra. Monte Carlo simulations of electron beam propagation and dose deposition indicate that the propagation of the intense electron beam (with large self-fields) can be described by standard models that exclude collective effects in the response of the material. Conclusions: The measurements show that the high-energy electron beams produced by an optically injected laser-plasma accelerator can deliver high enough dose at penetration depths of interest for electron beam radiotherapy of deep-seated tumors. Many engineering issues must be resolved before laser-accelerated electrons can be used for cancer therapy, but they also represent exciting challenges for future research.

  12. The use of polymer gel dosimetry to measure dose distribution around metallic implants

    International Nuclear Information System (INIS)

    Nagahata, Tomomasa; Yamaguchi, Hajime; Monzen, Hajime; Nishimura, Yasumasa

    2014-01-01

    A semi-solid polymer dosimetry system using agar was developed to measure the dose distribution close to metallic implants. Dosimetry of heterogeneous fields where electron density markedly varies is often problematic. This prompted us to develop a polymer gel dosimetry technique using agar to measure the dose distribution near substance boundaries. Varying the concentration of an oxygen scavenger (tetra-hydroxymethyl phosphonium chloride) showed the absorbed dose and transverse relaxation rate of the magnetic resonance signal to be linear between 3 and 12 Gy. Although a change in the dosimeter due to oxidization was observed in room air after 24 hours, no such effects were observed in the first 4 hours. The dose distribution around the metal implants was measured using agar dosimetry. The metals tested were a lead rod, a titanium hip joint, and a metallic stent. A maximum 30% dose increase was observed near the lead rod, but only a 3% increase in the absorbed dose was noted near the surface of the titanium hip joint and metallic stent. Semi-solid polymer dosimetry using agar thus appears to be a useful method for dosimetry around metallic substances. (author)

  13. [The use of polymer gel dosimetry to measure dose distribution around metallic implants].

    Science.gov (United States)

    Nagahata, Tomomasa; Yamaguchi, Hajime; Monzen, Hajime; Nishimura, Yasumasa

    2014-10-01

    A semi-solid polymer dosimetry system using agar was developed to measure the dose distribution close to metallic implants. Dosimetry of heterogeneous fields where electron density markedly varies is often problematic. This prompted us to develop a polymer gel dosimetry technique using agar to measure the dose distribution near substance boundaries. Varying the concentration of an oxygen scavenger (tetra-hydroxymethyl phosphonium chloride) showed the absorbed dose and transverse relaxation rate of the magnetic resonance signal to be linear between 3 and 12 Gy. Although a change in the dosimeter due to oxidization was observed in room air after 24 hours, no such effects were observed in the first 4 hours. The dose distribution around the metal implants was measured using agar dosimetry. The metals tested were a lead rod, a titanium hip joint, and a metallic stent. A maximum 30% dose increase was observed near the lead rod, but only a 3% increase in the absorbed dose was noted near the surface of the titanium hip joint and metallic stent. Semi-solid polymer dosimetry using agar thus appears to be a useful method for dosimetry around metallic substances.

  14. Measurement of depth-dose distributions by means of the LiF-fluoroplastic thermoluminescent detectors

    International Nuclear Information System (INIS)

    Shaks, A.I.; Uryaev, I.A.; Trifonov, V.A.; Reshetnikova, L.V.

    1977-01-01

    Depth-dose distributions have been studied by means of thin-layer thermoluminescent detectors LiF-fluoroplast (8 mg/cm 2 ). Dosimetric characteristics of the detectors are described. They are: tissue-equivalence, dependence of sensitivity on the dose, dose rate and angle of incidence of radiation, and time-dependent storage, of the total light absorbed. Comparison of the results obtained with the measurements taken with an extrapolation chamber has demonstrated the possibility of measuring the depth-dose distributions by means of LiF-fluoroplast detectors

  15. The characteristics on dose distribution of a large field

    International Nuclear Information System (INIS)

    Lee, Sang Rok; Jeong, Deok Yang; Lee, Btiung Koo; Kwon, Young Ho

    2003-01-01

    In special cases of Total Body Irradiation(TBI), Half Body Irradiation(HBI), Non-Hodgkin's lymphoma, E-Wing's sarcoma, lymphosarcoma and neuroblastoma a large field can be used clinically. The dose distribution of a large field can use the measurement result which gets from dose distribution of a small field (standard SSD 100 cm, size of field under 40 x 40 cm 2 ) in the substitution which always measures in practice and it will be able to calibrate. With only the method of simple calculation, it is difficult to know the dose and its uniformity of actual body region by various factor of scatter radiation. In this study, using Multidata Water Phantom from standard SSD 100 cm according to the size change of field, it measures the basic parameter (PDD,TMR,Output,Sc,Sp) From SSD 180 cm (phantom is to the bottom vertically) according to increasing of a field, it measures a basic parameter. From SSD 350 cm (phantom is to the surface of a wall, using small water phantom. which includes mylar capable of horizontal beam's measurement) it measured with the same method and compared with each other. In comparison with the standard dose data, parameter which measures between SSD 180 cm and 350 cm, it turned out there was little difference. The error range is not up to extent of the experimental error. In order to get the accurate data, it dose measures from anthropomorphous phantom or for this objective the dose measurement which is the possibility of getting the absolute value which uses the unlimited phantom that is devised especially is demanded. Additionally, it needs to consider ionization chamber use of small volume and stem effect of cable by a large field.

  16. Influence of boundary effects on electron beam dose distribution formation in multilayer targets

    International Nuclear Information System (INIS)

    Kaluska, I.; Zimek, Z.; Lazurik, V.T.; Lazurik, V.M.; Popov, G.F.; Rogov, Y.V.

    2010-01-01

    Computational dosimetry play a significant role in an industrial radiation processing at dose measurements in the product irradiated with electron beams (EB), X-ray and gamma ray from radionuclide sources. Accurate and validated programs for absorbed dose calculations are required for computational dosimetry. The program ModeStEB (modelling of EB processing in a three-dimensional (3D) multilayer flat targets) was designed specially for simulation and optimization of industrial radiation processing, calculation of the 3D absorbed dose distribution within multilayer packages. The package is irradiated with scanned EB on an industrial radiation facility that is based on the pulsed or continuous type of electron accelerators in the electron energy range from 0.1 to 25 MeV. Simulation of EB dose distributions in the multilayer targets was accomplished using the Monte Carlo (MC) method. Experimental verification of MC simulation prediction for EB dose distribution formation in a stack of plates interleaved with polyvinylchloride (PVC) dosimetric films (DF), within a packing box, and irradiated with a scanned 10 MeV EB on a moving conveyer is discussed. (authors)

  17. Monte Carlo Estimation of Absorbed Dose Distributions Obtained from Heterogeneous 106Ru Eye Plaques.

    Science.gov (United States)

    Zaragoza, Francisco J; Eichmann, Marion; Flühs, Dirk; Sauerwein, Wolfgang; Brualla, Lorenzo

    2017-09-01

    The distribution of the emitter substance in 106 Ru eye plaques is usually assumed to be homogeneous for treatment planning purposes. However, this distribution is never homogeneous, and it widely differs from plaque to plaque due to manufacturing factors. By Monte Carlo simulation of radiation transport, we study the absorbed dose distribution obtained from the specific CCA1364 and CCB1256 106 Ru plaques, whose actual emitter distributions were measured. The idealized, homogeneous CCA and CCB plaques are also simulated. The largest discrepancy in depth dose distribution observed between the heterogeneous and the homogeneous plaques was 7.9 and 23.7% for the CCA and CCB plaques, respectively. In terms of isodose lines, the line referring to 100% of the reference dose penetrates 0.2 and 1.8 mm deeper in the case of heterogeneous CCA and CCB plaques, respectively, with respect to the homogeneous counterpart. The observed differences in absorbed dose distributions obtained from heterogeneous and homogeneous plaques are clinically irrelevant if the plaques are used with a lateral safety margin of at least 2 mm. However, these differences may be relevant if the plaques are used in eccentric positioning.

  18. Analysis of dose distribution in interventionist radiology professionals

    International Nuclear Information System (INIS)

    Mauricio, Claudia L.P.; Silva, Leonardo Peres; Canevaro, Lucia V.; Luz, Eara de Souza

    2005-01-01

    In this work, an evaluation was made of the distribution of dose received by professionals involved in some procedures of Interventional Radiology at hospitals and clinics in Rio de Janeiro, RJ, Brazil. For these measurements thermoluminescent dosemeters (TLD) of LiF: Mg, Ti (TLD100) were used, positioned at different points of the body of professionals: the hands, knees, neck, forehead and chest, inside and outside the lead apron. The measurements were made by procedure and/or a day of work, and the TLD were calibrated in equivalent operating magnitude of personal dose (Hp (d)) at different depths: 0.07 mm, 3 mm and 10 mm. In some procedures, physicians (holders of service and residents) received significant doses. The results show the importance of the appropriate training of these professionals and the use of personal protective equipment (PPE), such as thyroid shield, which is not always used. Based on these evaluations, some suggestions were made in order to optimize the dose values in these procedures and a discussion on the need for additional monitoring points

  19. Analytical approximation of the nanoscale dose distribution in an irradiated medium with an embedded nanoparticle

    International Nuclear Information System (INIS)

    Chernov, V; Barboza-Flores, M; Chernov, G

    2012-01-01

    In this work we propose an analytical approach describing the dose distribution around a NP embedded in a medium. The approach describes the following sequence of events: The homogenous and isotropic creation of secondary electrons under incident photon fluence; travel of the created electrons toward the NP surface and their escaping from the NP with different energies and angles; deposition of energy in surrounding medium. The radial dose distribution around the NP was found as the average energy deposited by the escaped electrons in a spherical shell at a distance r from the NP center normalized to its mass. The continuous slowing down approximation and the assumption that created electrons travel in a straight-line path were used. As result, a set of analytical expressions describing the dose distribution was derived. The expressions were applied to the calculation of the dose distribution around spherical gold NPs of different size embedded in water. It was shown that the dose distribution is close to the 1/r 2 dependence and practically independent of the NP radius.

  20. Image quality and dose distributions of three linac-based imaging modalities

    Energy Technology Data Exchange (ETDEWEB)

    Dzierma, Yvonne; Ames, Evemarie; Nuesken, Frank; Palm, Jan; Licht, Norbert; Ruebe, Christian [Universitaetsklinikum des Saarlandes, Klinik fuer Strahlentherapie und Radioonkologie, Homburg/Saar (Germany)

    2015-04-01

    Linac-based patient imaging is possible with a variety of techniques using different photon energies. The purpose of this work is to compare three imaging systems operating at 6 MV, flattening free filter (FFF) 1 MV, and 121 kV. The dose distributions of all pretreatment set-up images (over 1,000) were retrospectively calculated on the planning computed tomography (CT) images for all patients with prostate and head-and-neck cancer treated at our institution in 2013. We analyzed the dose distribution and the dose to organs at risk. For head-and-neck cancer patients, the imaging dose from 6-MV cone beam CT (CBCT) reached maximum values at around 8 cGy. The 1-MV CBCT dose was about 63-79 % of the 6-MV CBCT dose for all organs at risk. Planar imaging reduced the imaging dose from CBCT to 30-40 % for both megavoltage modalities. The dose from the kilovoltage CBCT was 4-10 % of the 6-MV CBCT dose. For prostate cancer patients, the maximum dose from 6-MV CBCT reached 13-15 cGy, and was reduced to 66-73 % for 1 MV. Planar imaging reduces the MV CBCT dose to 10-20 %. The kV CBCT dose is 15-20 % of the 6-MV CBCT dose, slightly higher than the dose from MV axes. The dose distributions differ markedly in response to the different beam profiles and dose-depth characteristics. (orig.) [German] Linac-basierte Bildgebung zur Patientenlagerung ist mit einer Vielzahl von Techniken unterschiedlicher Photonenenergien moeglich. Ziel dieser Arbeit ist der Vergleich dreier Bildgebungssysteme mit 6 MV (Megavolt), FFF 1 MV, und 121 kV (Kilovolt). Fuer alle im Jahr 2013 an unserer Klinik behandelten Prostata- und HNO-Patienten wurden retrospektiv die Dosisverteilungen aller Verifikationsaufnahmen (ueber 1000 insgesamt) auf der Planungs-Computertomographie (CT) berechnet. Wir analysierten die Dosisverteilung und die Dosis an den Risikoorganen. Bei HNO-Patienten erreichte die Dosis von 6 MV ''Cone-beam''-CT (CBCT)Maximalwerte um 8 cGy. Mit 1 MV wird die Dosis auf 63

  1. Measurement of two-dimensional thermal neutron flux in a water phantom and evaluation of dose distribution characteristics

    International Nuclear Information System (INIS)

    Yamamoto, Kazuyoshi; Kumada, Hiroaki; Kishi, Toshiaki; Torii, Yoshiya; Horiguchi, Yoji

    2001-03-01

    To evaluate nitrogen dose, boron dose and gamma-ray dose occurred by neutron capture reaction of the hydrogen at the medical irradiation, two-dimensional distribution of the thermal neutron flux is very important because these doses are proportional to the thermal neutron distribution. This report describes the measurement of the two-dimensional thermal neutron distribution in a head water phantom by neutron beams of the JRR-4 and evaluation of the dose distribution characteristic. Thermal neutron flux in the phantom was measured by gold wire placed in the spokewise of every 30 degrees in order to avoid the interaction. Distribution of the thermal neutron flux was also calculated using two-dimensional Lagrange's interpolation program (radius, angle direction) developed this time. As a result of the analysis, it was confirmed to become distorted distribution which has annular peak at outside of the void, though improved dose profile of the deep direction was confirmed in the case which the radiation field in the phantom contains void. (author)

  2. Impact of Mobile Dose-Tracking Technology on Medication Distribution at an Academic Medical Center.

    Science.gov (United States)

    Kelm, Matthew; Campbell, Udobi

    2016-05-01

    Medication dose-tracking technologies have the potential to improve efficiency and reduce costs associated with re-dispensing doses reported as missing. Data describing this technology and its impact on the medication use process are limited. The purpose of this study is to assess the impact of dose-tracking technology on pharmacy workload and drug expense at an academic, acute care medical center. Dose-tracking technology was implemented in June 2014. Pre-implementation data were collected from February to April 2014. Post-implementation data were collected from July to September 2014. The primary endpoint was the percent of re-dispensed oral syringe and compounded sterile product (CSP) doses within the pre- and post-implementation periods per 1,000 discharges. Secondary endpoints included pharmaceutical expense generated from re-dispensing doses, labor costs, and staff satisfaction with the medication distribution process. We observed an average 6% decrease in re-dispensing of oral syringe and CSP doses from pre- to post-implementation (15,440 vs 14,547 doses; p = .047). However, when values were adjusted per 1,000 discharges, this trend did not reach statistical significance (p = .074). Pharmaceutical expense generated from re-dispensing doses was significantly reduced from pre- to post-implementation ($834,830 vs $746,466 [savings of $88,364]; p = .047). We estimated that $2,563 worth of technician labor was avoided in re-dispensing missing doses. We also saw significant improvement in staff perception of technology assisting in reducing missing doses (p = .0003), as well as improvement in effectiveness of resolving or minimizing missing doses (p = .01). The use of mobile dose-tracking technology demonstrated meaningful reductions in both the number of doses re-dispensed and cost of pharmaceuticals dispensed.

  3. Interface effects on dose distributions in irradiated media

    International Nuclear Information System (INIS)

    Wright, H.A.; Hamm, R.N.; Turner, J.E.

    1980-01-01

    It has long been recognized that nonuniformities in dose distributions may occur in the immediate vicinity of a boundary between two different media. Considerable work has been done to determine interface effects in media irradiated by photons or in media containing β- or α-particle emitters. More recently interface effects have become of interest in additional problems, including pion radiotherapy and radiation effects in electronic microcircuits in space vehicles. These problems arise when pion capture stars or proton-nucleus interactions produce a spectrum of charged nuclear fragments near an interface. The purpose of this paper is to examine interface effects in detail as to their specific origin. We have made Monte Carlo calculations of dose distributions near an interface in a systematic way for a number of idealized cases in order to indicate the separate influences of several factors including different stopping powers of the two media, nonconstancy (e.g., Bragg peak) in the energy loss curve for the particles, different particle spectra in the two media, and curvature of the boundary between the two media

  4. Effect of silicone gel breast prosthesis on electron and photon dose distributions

    International Nuclear Information System (INIS)

    Krishnan, L.; St George, F.J.; Mansfield, C.M.; Krishnan, E.C.

    1983-01-01

    The effect of a silicone gel breast prosthesis on the absorbed dose distribution of 9-20 MeV electron beams and 1.25-15 MV photon beams was studied. Compared to water measurements, at depths smaller than the practical range of the electron beams, the central axis depth dose values below the prosthesis were lower for all energies by as much as 3.5%. However, at depths near the practical range, the central axis depth dose values for the prosthesis were greater than that of water by as much as 33%. Since this occurs near the end of the electron range, the resultant difference may not be clinically significant. Results of the effect of breast prosthesis on photon depth dose distributions reveal that no clinically significant perturbation is produced by the breast prosthesis using Co-60, 6- and 15-MV radiations

  5. Effect of silicone gel breast prosthesis on electron and photon dose distributions

    International Nuclear Information System (INIS)

    Krishnan, L.; St George, F.J.; Mansfield, C.M.; Krishnan, E.C.

    1983-01-01

    The effect of a silicone gel breast prosthesis on the absorbed dose distribution of 9--20 MeV electron beams and 1.25--15 MV photon beams was studied. Compared to water measurements, at depths smaller than the practical range of the electron beams, the central axis depth dose values below the prothesis were lower for all energies by as much as 3.5%. However, at depths near the practical range, the central axis depth dose values for the prosthesis were greater than that of water by as much as 33%. Since this occurs near the end of the electron range, the resultant difference may not be clinically significant. Results of the effect of breast prosthesis on photon depth dose distributions reveal that no clinically significant perturbation is produced by the breast prosthesis using Co-60, 6- and 15-MV radiations

  6. Estimation of four-dimensional dose distribution using electronic portal imaging device in radiation therapy

    International Nuclear Information System (INIS)

    Mizoguchi, Asumi; Arimura, Hidetaka; Shioyama, Yoshiyuki

    2013-01-01

    We are developing a method to evaluate four-dimensional radiation dose distribution in a patient body based upon the animated image of EPID (electronic portal imaging device) which is an image of beam-direction at the irradiation. In the first place, we have obtained the image of the dose which is emitted from patient body at therapy planning using therapy planning CT image and dose evaluation algorism. In the second place, we have estimated the emission dose image at the irradiation using EPID animated image which is obtained at the irradiation. In the third place, we have got an affine transformation matrix including respiratory movement in the body by performing linear registration on the emission dose image at therapy planning to get the one at the irradiation. In the fourth place, we have applied the affine transformation matrix on the therapy planning CT image and estimated the CT image 'at irradiation'. Finally we have evaluated four-dimensional dose distribution by calculating dose distribution in the CT image 'at irradiation' which has been estimated for each frame of the EPID animated-image. This scheme may be useful for evaluating therapy results and risk management. (author)

  7. Studies on the dose distribution and treatment technique of high energy electron beams

    International Nuclear Information System (INIS)

    Lee, D.H.; Chu, S.S.

    1978-01-01

    Some important properties of high energy electron beams from the linear accelerator, LMR-13, installed in the Yonsei Cancer Center were studied. The results of experimental studies on the problems associated with the 8, 10, and 12 MeV electron beam therapy were as followings; The ionization type dosemeters calibrated by 90 Sr standard source were suitable to the measurements of the outputs and the obsorbed doses in accuracy point of view, and dose measurements using ionization chambers were difficult when measuring doses in small field size and the regions of rapid fall off. The electron energies were measured precisely with an energy spectrometer, and the practical electron energy was calculated within 5% error in the maximum range of the high energy electron beam in water. The correcting factors of perturbated dose distributions owing to radiation field, energy, and materials of the treatment cone were checked and described systematically and thus the variation of dose distributions due to the non-homogeneities of tissues and slopping skin surfaces were completely compensated. The electron beams were adequately diffused using the scatterers, and minimized the bremsstrahlung, irradiation field size, and materials of scatterers. Thus, the therapeutic capacity with the limited electron energy could be extended by improving the dose distributions. (author)

  8. Radiation shielding and dose rate distribution for the building of the high dose rate accelerator

    International Nuclear Information System (INIS)

    Matsuda, Koji; Takagaki, Torao; Nakase, Yoshiaki; Nakai, Yohta.

    1984-03-01

    A high dose rate electron accelerator was established at Osaka Laboratory for Radiation Chemistry, Takasaki Establishment, JAERI in the fiscal year of 1975. This report shows the fundamental concept for the radiation shielding of the accelerator building and the results of their calculations which were evaluated through the model experiments. After the construction of the building, the leak radiation was measured in order to evaluate the calculating method of radiation shielding. Dose rate distribution of X-rays was also measured in the whole area of the irradiation room as a data base. (author)

  9. Fast Neutron Dose Distribution in a Linac Radiotherapy Facility

    International Nuclear Information System (INIS)

    Al-Othmany, D.Sh.; Abdul-Majid, S.; Kadi, M.W.

    2011-01-01

    CR-39 plastic detectors were used for fast neutron dose mapping in the radiotherapy facility at King AbdulAziz University Hospital (KAUH). Detectors were calibrated using a 252 Cf neutron source and a neutron dosimeter. After exposure chemical etching was performed using 6N NaOH solution at 70 degree C. Tracks were counted using an optical microscope and the number of tracks/cm 2 was converted to a neutron dose. 15 track detectors were distributed inside and outside the therapy room and were left for 32 days. The average neutron doses were 142.3 mSv on the accelerator head, 28.5 mSv on inside walls, 1.4 mSv beyond the beam shield, and 1 mSv in the control room

  10. Dose Distribution Calculation Using MCNPX Code in the Gamma-ray Irradiation Cell

    International Nuclear Information System (INIS)

    Kim, Yong Ho

    1991-02-01

    60 Co-gamma irradiators have long been used for foods sterilization, plant mutation and development of radio-protective agents, radio-sensitizers and other purposes. The Applied Radiological Science Research Institute of Cheju National University has a multipurpose gamma irradiation facility loaded with a MDS Nordin standard 60 Co source (C188), of which the initial activity was 400 TBq (10,800 Ci) on February 19, 2004. This panoramic gamma irradiator is designed to irradiate in all directions various samples such as plants, cultured cells and mice to administer given radiation doses. In order to give accurate doses to irradiation samples, appropriate methods of evaluating, both by calculation and measurement, the radiation doses delivered to the samples should be set up. Computational models have been developed to evaluate the radiation dose distributions inside the irradiation chamber and the radiation doses delivered to typical biolological samples which are frequently irradiated in the facility. The computational models are based on using the MCNPX code. The horizontal and vertical dose distributions has been calculated inside the irradiation chamber and compared the calculated results with measured data obtained with radiation dosimeters to verify the computational models. The radiation dosimeters employed are a Famer's type ion chamber and MOSFET dosimeters. Radiation doses were calculated by computational models, which were delivered to cultured cell samples contained in test tubes and to a mouse fixed in a irradiation cage, and compared the calculated results with the measured data. The computation models are also tested to see if they can accurately simulate the case where a thick lead shield is placed between the source and detector. Three tally options of the MCNPX code, F4, F5 and F6, are alternately used to see which option produces optimum results. The computation models are also used to calculate gamma ray energy spectra of a BGO scintillator at

  11. Impact of respiratory motion on variable relative biological effectiveness in 4D-dose distributions of proton therapy.

    Science.gov (United States)

    Ulrich, Silke; Wieser, Hans-Peter; Cao, Wenhua; Mohan, Radhe; Bangert, Mark

    2017-11-01

    Organ motion during radiation therapy with scanned protons leads to deviations between the planned and the delivered physical dose. Using a constant relative biological effectiveness (RBE) of 1.1 linearly maps these deviations into RBE-weighted dose. However, a constant value cannot account for potential nonlinear variations in RBE suggested by variable RBE models. Here, we study the impact of motion on recalculations of RBE-weighted dose distributions using a phenomenological variable RBE model. 4D-dose calculation including variable RBE was implemented in the open source treatment planning toolkit matRad. Four scenarios were compared for one field and two field proton treatments for a liver cancer patient assuming (α∕β) x  = 2 Gy and (α∕β) x  = 10 Gy: (A) the optimized static dose distribution with constant RBE, (B) a static recalculation with variable RBE, (C) a 4D-dose recalculation with constant RBE and (D) a 4D-dose recalculation with variable RBE. For (B) and (D), the variable RBE was calculated by the model proposed by McNamara. For (C), the physical dose was accumulated with direct dose mapping; for (D), dose-weighted radio-sensitivity parameters of the linear quadratic model were accumulated to model synergistic irradiation effects on RBE. Dose recalculation with variable RBE led to an elevated biological dose at the end of the proton field, while 4D-dose recalculation exhibited random deviations everywhere in the radiation field depending on the interplay of beam delivery and organ motion. For a single beam treatment assuming (α∕β) x  = 2 Gy, D 95 % was 1.98 Gy (RBE) (A), 2.15 Gy (RBE) (B), 1.81 Gy (RBE) (C) and 1.98 Gy (RBE) (D). The homogeneity index was 1.04 (A), 1.08 (B), 1.23 (C) and 1.25 (D). For the studied liver case, intrafractional motion did not reduce the modulation of the RBE-weighted dose postulated by variable RBE models for proton treatments.

  12. Radial dose distribution of 192Ir and 137Cs seed sources

    International Nuclear Information System (INIS)

    Thomason, C.; Higgins, P.

    1989-01-01

    The radial dose distributions in water around /sup 192/ Ir seed sources with both platinum and stainless steel encapsulation have been measured using LiF thermoluminescent dosimeters (TLD) for distances of 1 to 12 cm along the perpendicular bisector of the source to determine the effect of source encapsulation. Similar measurements also have been made around a /sup 137/ Cs seed source of comparable dimensions. The data were fit to a third order polynomial to obtain an empirical equation for the radial dose factor which then can be used in dosimetry. The coefficients of this equation for each of the three sources are given. The radial dose factor of the stainless steel encapsulated /sup 192/ Ir and that of the platinum encapsulated /sup 192/ Ir agree to within 2%. The radial dose distributions measured here for /sup 192/ Ir with either type of encapsulation and for /sup 137/ Cs are indistinguishable from those of other authors when considering uncertainties involved. For clinical dosimetry based on isotropic point or line source models, any of these equations may be used without significantly affecting accuracy

  13. Comparison of measured with calculated dose distribution from a 120-MeV electron beam from a laser-plasma accelerator.

    Science.gov (United States)

    Lundh, O; Rechatin, C; Faure, J; Ben-Ismaïl, A; Lim, J; De Wagter, C; De Neve, W; Malka, V

    2012-06-01

    To evaluate the dose distribution of a 120-MeV laser-plasma accelerated electron beam which may be of potential interest for high-energy electron radiation therapy. In the interaction between an intense laser pulse and a helium gas jet, a well collimated electron beam with very high energy is produced. A secondary laser beam is used to optically control and to tune the electron beam energy and charge. The potential use of this beam for radiation treatment is evaluated experimentally by measurements of dose deposition in a polystyrene phantom. The results are compared to Monte Carlo simulations using the geant4 code. It has been shown that the laser-plasma accelerated electron beam can deliver a peak dose of more than 1 Gy at the entrance of the phantom in a single laser shot by direct irradiation, without the use of intermediate magnetic transport or focusing. The dose distribution is peaked on axis, with narrow lateral penumbra. Monte Carlo simulations of electron beam propagation and dose deposition indicate that the propagation of the intense electron beam (with large self-fields) can be described by standard models that exclude collective effects in the response of the material. The measurements show that the high-energy electron beams produced by an optically injected laser-plasma accelerator can deliver high enough dose at penetration depths of interest for electron beam radiotherapy of deep-seated tumors. Many engineering issues must be resolved before laser-accelerated electrons can be used for cancer therapy, but they also represent exciting challenges for future research. © 2012 American Association of Physicists in Medicine.

  14. Biologically effective dose distribution based on the linear quadratic model and its clinical relevance

    International Nuclear Information System (INIS)

    Lee, Steve P.; Leu, Min Y.; Smathers, James B.; McBride, William H.; Parker, Robert G.; Withers, H. Rodney

    1995-01-01

    Purpose: Radiotherapy plans based on physical dose distributions do not necessarily entirely reflect the biological effects under various fractionation schemes. Over the past decade, the linear-quadratic (LQ) model has emerged as a convenient tool to quantify biological effects for radiotherapy. In this work, we set out to construct a mechanism to display biologically oriented dose distribution based on the LQ model. Methods and Materials: A computer program that converts a physical dose distribution calculated by a commercially available treatment planning system to a biologically effective dose (BED) distribution has been developed and verified against theoretical calculations. This software accepts a user's input of biological parameters for each structure of interest (linear and quadratic dose-response and repopulation kinetic parameters), as well as treatment scheme factors (number of fractions, fractional dose, and treatment time). It then presents a two-dimensional BED display in conjunction with anatomical structures. Furthermore, to facilitate clinicians' intuitive comparison with conventional fractionation regimen, a conversion of BED to normalized isoeffective dose (NID) is also allowed. Results: Two sample cases serve to illustrate the application of our tool in clinical practice. (a) For an orthogonal wedged pair of x-ray beams treating a maxillary sinus tumor, the biological effect at the ipsilateral mandible can be quantified, thus illustrates the so-called 'double-trouble' effects very well. (b) For a typical four-field, evenly weighted prostate treatment using 10 MV x-rays, physical dosimetry predicts a comparable dose at the femoral necks between an alternate two-fields/day and four-fields/day schups. However, our BED display reveals an approximate 21% higher BED for the two-fields/day scheme. This excessive dose to the femoral necks can be eliminated if the treatment is delivered with a 3:2 (anterio-posterior/posterio-anterior (AP

  15. Evaluation of the breast absorbed dose distribution using the Fricke Xylenol Gel

    Energy Technology Data Exchange (ETDEWEB)

    Czelusniak, C; Del Lama, L S; Moreira, M V; De Almeida, A, E-mail: dalmeida@ffclrp.usp.b

    2010-11-01

    During a breast cancer radiotherapy treatment, several issues have to be taken into account, among them, hot spots, gradient of doses delivered over the breast, as well as in the lungs and the heart. The present work aims to apply the Fricke Xylenol Gel (FXG) dosimeter in the study of these issues, using a CCD camera to analyse the dose deposited distribution. Thus, the CCD was used to capture the images of different cuvettes that were filled with FXG and irradiated considering analogous setups employed in breast cancer radiotherapy treatments. Thereafter, these pictures where processed in a MatLab routine and the spatial dose distributions could be evaluated. These distributions were compared with the ones that were obtained from dedicated treatment planning's softwares. According to the results obtained, the FXG, allied with the CCD system, has shown to be a complementary tool in dosimetry, helping to prevent possible complications during breast cancer treatments.

  16. Evaluation of the breast absorbed dose distribution using the Fricke Xylenol Gel

    International Nuclear Information System (INIS)

    Czelusniak, C; Del Lama, L S; Moreira, M V; De Almeida, A

    2010-01-01

    During a breast cancer radiotherapy treatment, several issues have to be taken into account, among them, hot spots, gradient of doses delivered over the breast, as well as in the lungs and the heart. The present work aims to apply the Fricke Xylenol Gel (FXG) dosimeter in the study of these issues, using a CCD camera to analyse the dose deposited distribution. Thus, the CCD was used to capture the images of different cuvettes that were filled with FXG and irradiated considering analogous setups employed in breast cancer radiotherapy treatments. Thereafter, these pictures where processed in a MatLab routine and the spatial dose distributions could be evaluated. These distributions were compared with the ones that were obtained from dedicated treatment planning's softwares. According to the results obtained, the FXG, allied with the CCD system, has shown to be a complementary tool in dosimetry, helping to prevent possible complications during breast cancer treatments.

  17. Contrast-enhanced radiotherapy: feasibility and characteristics of the physical absorbed dose distribution for deep-seated tumors

    Energy Technology Data Exchange (ETDEWEB)

    Garnica-Garza, H M [Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional Unidad Monterrey, Via del Conocimiento 201 Parque de Investigacion e Innovacion Tecnologica, Apodaca NL C.P. 66600 (Mexico)], E-mail: hgarnica@cinvestav.mx

    2009-09-21

    Radiotherapy using kilovoltage x-rays in conjunction with contrast agents incorporated into the tumor, gold nanoparticles in particular, could represent a potential alternative to current techniques based on high-energy linear accelerators. In this paper, using the voxelized Zubal phantom in conjunction with the Monte Carlo code PENELOPE to model a prostate cancer treatment, it is shown that in combination with a 360 deg. arc delivery technique, tumoricidal doses of radiation can be delivered to deep-seated tumors while still providing acceptable doses to the skin and other organs at risk for gold concentrations in the tumor within the range of 7-10 mg-Au per gram of tissue. Under these conditions and using a x-ray beam with 90% of the fluence within the range of 80-200 keV, a 72 Gy physical absorbed dose to the prostate can be delivered, while keeping the rectal wall, bladder, skin and femoral heads below 65 Gy, 55 Gy, 40 Gy and 30 Gy, respectively. However, it is also shown that non-uniformities in the contrast agent concentration lead to a severe degradation of the dose distribution and that, therefore, techniques to locally quantify the presence of the contrast agent would be necessary in order to determine the incident x-ray fluence that best reproduces the dosimetry obtained under conditions of uniform contrast agent distribution.

  18. Optimization of dose distribution for the system of linear accelerator-based stereotactic radiosurgery

    International Nuclear Information System (INIS)

    Suh Taesuk.

    1990-01-01

    This work addresses a method for obtaining an optimal dose distribution of stereotactic radiosurgery. Since stereotactic radiosurgery utilizes multiple noncoplanar arcs and a three-dimensional dose evaluation technique, many beam parameters and complex optimization criteria are included in the dose optimization. Consequently, a lengthy computation time is required to optimize even the simplest case by a trial and error method. The basic approach presented here is to use both an analytical and an experimental optimization to minimize the dose to critical organs while maintaining a dose shaped to the target. The experimental approach is based on shaping the target volumes using multiple isocenters from dose experience, or on field shaping using a beam's eye view technique. The analytical approach is to adapt computer-aided design optimization to find optimum parameters automatically. Three-dimensional approximate dose models are developed to simulate the exact dose model using a spherical or cylindrical coordinate system. Optimum parameters are found much faster with the use of computer-aided design optimization techniques. The implementation of computer-aided design algorithms with the approximate dose model and the application of the algorithms to several cases are discussed. It is shown that the approximate dose model gives dose distributions similar to those of the exact dose model, which makes the approximate dose model an attractive alternative to the exact dose model, and much more efficient in terms of computer-aided design and visual optimization

  19. Dosimetric and Clinical Analysis of Spatial Distribution of the Radiation Dose in Gamma Knife Radiosurgery for Vestibular Schwannoma

    International Nuclear Information System (INIS)

    Massager, Nicolas; Lonneville, Sarah; Delbrouck, Carine; Benmebarek, Nadir; Desmedt, Françoise; Devriendt, Daniel

    2011-01-01

    Objectives: We investigated variations in the distribution of radiation dose inside (dose inhomogeneity) and outside (dose falloff) the target volume during Gamma Knife (GK) irradiation of vestibular schwannoma (VS). We analyzed the relationship between some parameters of dose distribution and the clinical and radiological outcome of patients. Methods and Materials: Data from dose plans of 203 patients treated for a vestibular schwannoma by GK C using same prescription dose (12 Gy at the 50% isodose) were collected. Four different dosimetric indexes were defined and calculated retrospectively in all plannings on the basis of dose–volume histograms: Paddick conformity index (PI), gradient index (GI), homogeneity index (HI), and unit isocenter (UI). The different measures related to distribution of the radiation dose were compared with hearing and tumor outcome of 203 patients with clinical and radiological follow-up of minimum 2 years. Results: Mean, median, SD, and ranges of the four indexes of dose distribution analyzed were calculated; large variations were found between dose plans. We found a high correlation between the target volume and PI, GI, and UI. No significant association was found between the indexes of dose distribution calculated in this study and tumor control, tumor volume shrinkage, hearing worsening, loss of functional hearing, or complete hearing loss at last follow-up. Conclusions: Parameters of distribution of the radiation dose during GK radiosurgery for VS can be highly variable between dose plans. The tumor and hearing outcome of patients treated is not significantly related to these global indexes of dose distribution inside and around target volume. In GK radiosurgery for VS, the outcome seems more to be influenced by local radiation dose delivered to specific structures or volumes than by global dose gradients.

  20. SU-D-BRB-07: Lipiodol Impact On Dose Distribution in Liver SBRT After TACE

    International Nuclear Information System (INIS)

    Kawahara, D; Ozawa, S; Hioki, K; Suzuki, T; Lin, Y; Okumura, T; Ochi, Y; Nakashima, T; Ohno, Y; Kimura, T; Murakami, Y; Nagata, Y

    2015-01-01

    Purpose: Stereotactic body radiotherapy (SBRT) combining transarterial chemoembolization (TACE) with Lipiodol is expected to improve local control. This study aims to evaluate the impact of Lipiodol on dose distribution by comparing the dosimetric performance of the Acuros XB (AXB) algorithm, anisotropic analytical algorithm (AAA), and Monte Carlo (MC) method using a virtual heterogeneous phantom and a treatment plan for liver SBRT after TACE. Methods: The dose distributions calculated using AAA and AXB algorithm, both in Eclipse (ver. 11; Varian Medical Systems, Palo Alto, CA), and EGSnrc-MC were compared. First, the inhomogeneity correction accuracy of the AXB algorithm and AAA was evaluated by comparing the percent depth dose (PDD) obtained from the algorithms with that from the MC calculations using a virtual inhomogeneity phantom, which included water and Lipiodol. Second, the dose distribution of a liver SBRT patient treatment plan was compared between the calculation algorithms. Results In the virtual phantom, compared with the MC calculations, AAA underestimated the doses just before and in the Lipiodol region by 5.1% and 9.5%, respectively, and overestimated the doses behind the region by 6.0%. Furthermore, compared with the MC calculations, the AXB algorithm underestimated the doses just before and in the Lipiodol region by 4.5% and 10.5%, respectively, and overestimated the doses behind the region by 4.2%. In the SBRT plan, the AAA and AXB algorithm underestimated the maximum doses in the Lipiodol region by 9.0% in comparison with the MC calculations. In clinical cases, the dose enhancement in the Lipiodol region can approximately 10% increases in tumor dose without increase of dose to normal tissue. Conclusion: The MC method demonstrated a larger increase in the dose in the Lipiodol region than the AAA and AXB algorithm. Notably, dose enhancement were observed in the tumor area; this may lead to a clinical benefit

  1. SU-D-BRB-07: Lipiodol Impact On Dose Distribution in Liver SBRT After TACE

    Energy Technology Data Exchange (ETDEWEB)

    Kawahara, D; Ozawa, S; Hioki, K; Suzuki, T; Lin, Y; Okumura, T; Ochi, Y; Nakashima, T; Ohno, Y; Kimura, T; Murakami, Y; Nagata, Y [Hiroshima University, Hiroshima, Hiroshima (Japan)

    2015-06-15

    Purpose: Stereotactic body radiotherapy (SBRT) combining transarterial chemoembolization (TACE) with Lipiodol is expected to improve local control. This study aims to evaluate the impact of Lipiodol on dose distribution by comparing the dosimetric performance of the Acuros XB (AXB) algorithm, anisotropic analytical algorithm (AAA), and Monte Carlo (MC) method using a virtual heterogeneous phantom and a treatment plan for liver SBRT after TACE. Methods: The dose distributions calculated using AAA and AXB algorithm, both in Eclipse (ver. 11; Varian Medical Systems, Palo Alto, CA), and EGSnrc-MC were compared. First, the inhomogeneity correction accuracy of the AXB algorithm and AAA was evaluated by comparing the percent depth dose (PDD) obtained from the algorithms with that from the MC calculations using a virtual inhomogeneity phantom, which included water and Lipiodol. Second, the dose distribution of a liver SBRT patient treatment plan was compared between the calculation algorithms. Results In the virtual phantom, compared with the MC calculations, AAA underestimated the doses just before and in the Lipiodol region by 5.1% and 9.5%, respectively, and overestimated the doses behind the region by 6.0%. Furthermore, compared with the MC calculations, the AXB algorithm underestimated the doses just before and in the Lipiodol region by 4.5% and 10.5%, respectively, and overestimated the doses behind the region by 4.2%. In the SBRT plan, the AAA and AXB algorithm underestimated the maximum doses in the Lipiodol region by 9.0% in comparison with the MC calculations. In clinical cases, the dose enhancement in the Lipiodol region can approximately 10% increases in tumor dose without increase of dose to normal tissue. Conclusion: The MC method demonstrated a larger increase in the dose in the Lipiodol region than the AAA and AXB algorithm. Notably, dose enhancement were observed in the tumor area; this may lead to a clinical benefit.

  2. Knowledge-based prediction of three-dimensional dose distributions for external beam radiotherapy

    International Nuclear Information System (INIS)

    Shiraishi, Satomi; Moore, Kevin L.

    2016-01-01

    Purpose: To demonstrate knowledge-based 3D dose prediction for external beam radiotherapy. Methods: Using previously treated plans as training data, an artificial neural network (ANN) was trained to predict a dose matrix based on patient-specific geometric and planning parameters, such as the closest distance (r) to planning target volume (PTV) and organ-at-risks (OARs). Twenty-three prostate and 43 stereotactic radiosurgery/radiotherapy (SRS/SRT) cases with at least one nearby OAR were studied. All were planned with volumetric-modulated arc therapy to prescription doses of 81 Gy for prostate and 12–30 Gy for SRS. Using these clinically approved plans, ANNs were trained to predict dose matrix and the predictive accuracy was evaluated using the dose difference between the clinical plan and prediction, δD = D clin − D pred . The mean (〈δD r 〉), standard deviation (σ δD r ), and their interquartile range (IQR) for the training plans were evaluated at a 2–3 mm interval from the PTV boundary (r PTV ) to assess prediction bias and precision. Initially, unfiltered models which were trained using all plans in the cohorts were created for each treatment site. The models predict approximately the average quality of OAR sparing. Emphasizing a subset of plans that exhibited superior to the average OAR sparing during training, refined models were created to predict high-quality rectum sparing for prostate and brainstem sparing for SRS. Using the refined model, potentially suboptimal plans were identified where the model predicted further sparing of the OARs was achievable. Replans were performed to test if the OAR sparing could be improved as predicted by the model. Results: The refined models demonstrated highly accurate dose distribution prediction. For prostate cases, the average prediction bias for all voxels irrespective of organ delineation ranged from −1% to 0% with maximum IQR of 3% over r PTV ∈ [ − 6, 30] mm. The average prediction error was less

  3. Dose distribution around ion track in tissue equivalent material

    International Nuclear Information System (INIS)

    Zhang Wenzhong; Guo Yong; Luo Yisheng

    2007-01-01

    Objective: To study the energy deposition micro-specialty of ions in body-tissue or tissue equivalent material (TEM). Methods: The water vapor was determined as the tissue equivalent material, based on the analysis to the body-tissue, and Monte Carlo method was used to simulate the behavior of proton in the tissue equivalent material. Some features of the energy deposition micro-specialty of ion in tissue equivalent material were obtained through the analysis to the data from calculation. Results: The ion will give the energy by the way of excitation and ionization in material, then the secondary electrons will be generated in the progress of ionization, these electron will finished ions energy deposition progress. When ions deposited their energy, large amount energy will be in the core of tracks, and secondary electrons will devote its' energy around ion track, the ion dose distribution is then formed in TEM. Conclusions: To know biological effects of radiation , the research to dose distribution of ions is of importance(significance). (authors)

  4. The dose distributions of γ ray in the silicon in and near the interfaces of silicon and various materials

    International Nuclear Information System (INIS)

    Ba Weizhen; Wu Qingzhi; He Chengfa; Chen Chaoyang

    1996-01-01

    The depth dose distributions of γ ray in the silicon in and near the interfaces of silicon and various materials, such as gold, have been studied. The dose distributions have been compared with equilibrium doses in the homogeneous silicon material, and considerable dose gradient distributions were obtained. In the case of silicon adjacent to high atomic numbered material, dose enhancement effects have been observed in and near the interfaces. The dose gradient distributions were explained by photoelectron effect, Auger effect and secondary electron transport mechanism of the low energy scattering photons

  5. Dose distribution in head and neck during dental x-ray procedures

    International Nuclear Information System (INIS)

    Mason, E.W.; Goepp, R.A.

    1978-01-01

    Previous studies, notably by Franklin (Angle Ortho., 43:53-64, 1973), have shown significant exposures during cephalometric dental procedures and ways in which these exposures can be reduced. Skin dose over thyroid tissue has been measured by Alcox (J. Am. Dent. Assoc., 88:568-579, 1974), and others. This study is an expansion of thyroid dose measurements by Block, Goepp, and Mason (Angle Ortho., 47:17-24, 1977). The internal dose distribution in the head and neck area due to cephalometric and panoramic dental x-ray procedures is shown along with the dependence of orbit and thyroid dose on patient positioning. Higher doses can be delivered to deep tissue by panoramic machines since tissue at the axis of rotation is exposed during the entire procedure. (author)

  6. Feasibility of optimizing the dose distribution in lung tumors using fluorine-18-fluorodeoxyglucose positron emission tomography and single photon emission computed tomography guided dose prescriptions

    International Nuclear Information System (INIS)

    Das, S.K.; Miften, M.M.; Zhou, S.; Bell, M.; Munley, M.T.; Whiddon, C.S.; Craciunescu, O.; Baydush, A.H.; Wong, T.; Rosenman, J.G.; Dewhirst, M.W.; Marks, L.B.

    2004-01-01

    The information provided by functional images may be used to guide radiotherapy planning by identifying regions that require higher radiation dose. In this work we investigate the dosimetric feasibility of delivering dose to lung tumors in proportion to the fluorine-18-fluorodeoxyglucose activity distribution from positron emission tomography (FDG-PET). The rationale for delivering dose in proportion to the tumor FDG-PET activity distribution is based on studies showing that FDG uptake is correlated to tumor cell proliferation rate, which is shown to imply that this dose delivery strategy is theoretically capable of providing the same duration of local control at all voxels in tumor. Target dose delivery was constrained by single photon emission computed tomography (SPECT) maps of normal lung perfusion, which restricted irradiation of highly perfused lung and imposed dose-function constraints. Dose-volume constraints were imposed on all other critical structures. All dose-volume/function constraints were considered to be soft, i.e., critical structure doses corresponding to volume/function constraint levels were minimized while satisfying the target prescription, thus permitting critical structure doses to minimally exceed dose constraint levels. An intensity modulation optimization methodology was developed to deliver this radiation, and applied to two lung cancer patients. Dosimetric feasibility was assessed by comparing spatially normalized dose-volume histograms from the nonuniform dose prescription (FDG-PET proportional) to those from a uniform dose prescription with equivalent tumor integral dose. In both patients, the optimization was capable of delivering the nonuniform target prescription with the same ease as the uniform target prescription, despite SPECT restrictions that effectively diverted dose from high to low perfused normal lung. In one patient, both prescriptions incurred similar critical structure dosages, below dose-volume/function limits

  7. Microscopic dose distribution around PuO2 particles in lungs of hamsters, rats and dogs

    International Nuclear Information System (INIS)

    Diel, J.H.; Mewhinney, J.A.; Guilmette, R.A.

    1982-01-01

    Syrian hamsters, Fischer-344 rats and Beagle dogs inhaled monodisperse aerosols of PuO 2 and were sacrificed 1 to 16 days after exposure. The microscopic distribution of dose and tissue-at-risk around individual particles in lung was studied using autoradiographs of the lungs. The dose pattern in dogs and rats was more diffuse than in hamsters, resulting in a calculation of about twice the tumor incidence in rats and dogs as in hamsters on the basis of dose pattern using the same dose-effect model for all three species. The tumorigenic effect of inhaled insoluble PuO 2 particles depends on the species inhaling the material; Syrian hamsters are much less susceptible than are rats or dogs. It has been suggested that a difference in dose distribution resulting from differences in particle distributions in the two species may contribute to the differences in susceptibility in Syrian hamsters and rats. The role of dose distribution in lung cancer production is explored in this study by measuring microscopic dose patterns in regions surrounding single PuO 2 particles in lung. The alveolar structures of the dog and rat are different than those of the hamster. Based on these measurements, particles of PuO 2 in lung are more likely to cause lung cancer in dogs and rats than in hamsters

  8. An examination of the distribution of patient doses from diagnostic x-ray procedures

    International Nuclear Information System (INIS)

    Morris, N.D.

    1983-02-01

    An examination was made of the distribution of patient doses from diagnostic radiology. The data were derived from an Australia wide survey carried out during the 1970's. There was a large range of doses to which patients were exposed. If establishments can reduce doses to below the most common value, the total dose to the population will be reduced to less than 60% of the present value

  9. Dose Distribution of Rectum and Bladder in Intracavitary Irradiation

    International Nuclear Information System (INIS)

    Chu, S. S.; Oh, W. Y.; Suh, C. O.; Kim, G. E.

    1984-01-01

    The intrauterine irradiation is essential to achieve adequate tumor dose to central tumor mass of uterine malignancy in radiotherapy. The complications of pelvic organ are known to be directly related to radiation dose and physical parameters. The simulation radiogram and medical records of 206 patients, who were treated with intrauterine irradiation from Feb. 1983 to Oct. 1983, were critically analyzed. The physical parameters to include distances between lateral walls of vaginal fornices, longitudinal and lateral cervix to the central axis of ovoid were measured for low dose rate irradiation system and high dose rate remote control after loading system. The radiation doses and dose distributions within cervical area including interesting points and bladder, rectum, according to sources arrangement and location of applicator, were estimated with personal computer. Followings were summary of study results; 1. In distances between lateral walls of vaginal fornices, the low dose rate system showed as 4-7cm width and high dose rate system showed as 5-6cm. 2. In Horizontal angulation of tandem to body axis, the low dose rate system revealed mid position 64.6%, left deviation 19.2% and right deviation 16.2%. 3. In longitudinal angulation of tandem to body axis, the mid position was 11.8% and anterior angulation 88.2% in low dose rate system but in high dose rate system, anterior angulation was 98.5%. 4. Down ward displacement of ovoid below external os was only 3% in low dose rate system and 66.6% in high dose rate system. 5. In radiation source arrangement, the most activities of tandem and ovoid were 35 by 30 in low dose rate system but 50 by 40 in high dose rate system. 6. In low and high dose rate system, the total doses and TDF were 80, 70 Gy and 131, 123 including 40 Gy external irradiation. 7. The doses and TDF in interesting points Co, B, were 98, 47 Gy and 230, 73 in high dose rate system but in low dose rate system 125, 52 Gy and 262, 75 respectively. 8. Doses

  10. Distribution and characteristics of gamma and cosmic ray dose rate in living environment

    International Nuclear Information System (INIS)

    Nagaoka, Toshi; Moriuchi, Shigeru

    1991-01-01

    A series of environmental radiation surveys was carried out from the viewpoint of characterizing the natural radiation dose rate distribution in the living environment, including natural and artificial ones. Through the analysis of the data obtained at numbers of places, several aspects of the radiation field in living environments were clarified. That is the gamma ray dose rate varies due to the following three dominant causes: 1) the radionuclide concentration of surrounding materials acting as gamma ray sources, 2) the spatial distribution of surrounding materials, and 3) the geometrical and shielding conditions between the natural gamma ray sources and the measured point; whereas, the cosmic ray dose rate varies due to the thickness of upper shielding materials. It was also suggested that the gamma ray dose rate generally shows an upward tendency, and the cosmic ray dose rate a downward one in artificial environment. This kind of knowledge is expected to serve as fundamental information for accurate and realistic evaluation of the collective dose in the living environment. (author)

  11. Re-distribution of brachytherapy dose using a differential dose prescription adapted to risk of local failure in low-risk prostate cancer patients

    DEFF Research Database (Denmark)

    Rylander, Susanne; Polders, Daniel; Steggerda, Marcel J

    2015-01-01

    BACKGROUND AND PURPOSE: We investigated the application of a differential target- and dose prescription concept for low-dose-rate prostate brachytherapy (LDR-BT), involving a re-distribution of dose according to risk of local failure and treatment-related morbidity. MATERIAL AND METHODS: Our study......- and dose prescription concept of prescribing a lower dose to the whole gland and an escalated dose to the GTV using LDR-BT seed planning was technically feasible and resulted in a significant dose-reduction to urethra and bladder neck....

  12. Analysis of Dose and Dose Distribution for Patients Undergoing Selected X-Ray Diagnostic Procedures in Ghana

    Energy Technology Data Exchange (ETDEWEB)

    Schandorf, C.; Tetteh, G.K

    1998-07-01

    The levels of dose and dose distributions for adult patients undergoing five selected common types of X ray examination in Ghana were determined using thermoluminescence dosemeters (TLD) attached to the skin where the beam enters the patient. To assess the performance of each X ray room surveyed, the mean of the entrance surface dose for patients whose statistics were close to a standard patient (70 kg weight and 20 cm AP trunk thickness) were compared to the Commission of the European Communities guideline values for chest PA, lumbar spine AP, pelvis/abdomen AP and skull AP examinations. The third quartiles dose values were 1.3 mGy, 14.5 mGy, 12.0 mGy and 7.9 mGy for chest PA, lumbar spine AP, pelvis/abdomen AP and skull AP respectively. Analysis of the data show that 86%, 58%, 37.5% and 50% of radiographic rooms delivered a mean dose greater than the CEC guideline values for chest PA, lumbar spine AP, pelvis/abdomen and skull AP respectively. This suggests that radiographic departments should undertake a review of their radiographic practice in order to bring their doses to optimum levels. (author)

  13. Analysis of Dose and Dose Distribution for Patients Undergoing Selected X-Ray Diagnostic Procedures in Ghana

    International Nuclear Information System (INIS)

    Schandorf, C.; Tetteh, G.K.

    1998-01-01

    The levels of dose and dose distributions for adult patients undergoing five selected common types of X ray examination in Ghana were determined using thermoluminescence dosemeters (TLD) attached to the skin where the beam enters the patient. To assess the performance of each X ray room surveyed, the mean of the entrance surface dose for patients whose statistics were close to a standard patient (70 kg weight and 20 cm AP trunk thickness) were compared to the Commission of the European Communities guideline values for chest PA, lumbar spine AP, pelvis/abdomen AP and skull AP examinations. The third quartiles dose values were 1.3 mGy, 14.5 mGy, 12.0 mGy and 7.9 mGy for chest PA, lumbar spine AP, pelvis/abdomen AP and skull AP respectively. Analysis of the data show that 86%, 58%, 37.5% and 50% of radiographic rooms delivered a mean dose greater than the CEC guideline values for chest PA, lumbar spine AP, pelvis/abdomen and skull AP respectively. This suggests that radiographic departments should undertake a review of their radiographic practice in order to bring their doses to optimum levels. (author)

  14. An IMRT dose distribution study using commercial verification software

    International Nuclear Information System (INIS)

    Grace, M.; Liu, G.; Fernando, W.; Rykers, K.

    2004-01-01

    Full text: The introduction of IMRT requires users to confirm that the isodose distributions and relative doses calculated by their planning system match the doses delivered by their linear accelerators. To this end the commercially available software, VeriSoft TM (PTW-Freiburg, Germany) was trialled to determine if the tools and functions it offered would be of benefit to this process. The CMS Xio (Computer Medical System) treatment planning system was used to generate IMRT plans that were delivered with an upgraded Elekta SL15 linac. Kodak EDR2 film sandwiched in RW3 solid water (PTW-Freiburg, Germany) was used to measure the IMRT fields delivered with 6 MV photons. The isodose and profiles measured with the film generally agreed to within ± 3% or ± 3 mm with the planned doses, in some regions (outside the IMRT field) the match fell to within ± 5%. The isodose distributions of the planning system and the film could be compared on screen and allows for electronic records of the comparison to be kept if so desired. The features and versatility of this software has been of benefit to our IMRT QA program. Furthermore, the VeriSoft TM software allows for quick and accurate, automated planar film analysis.Copyright (2004) Australasian College of Physical Scientists and Engineers in Medicine

  15. Intra-voxel heterogeneity influences the dose prescription for dose-painting with radiotherapy: a modelling study

    NARCIS (Netherlands)

    Petit, S.F.; Dekker, A.L.A.J.; Seigneuric, R.; Murrer, L.H.P.; Riel, van N.A.W.; Nordsmark, M.; Overgaard, J.; Lambin, Ph.; Wouters, B.G.

    2009-01-01

    The purpose of this study was to increase the potential of dose redistribution by incorporating estimates of oxygen heterogeneity within imaging voxels for optimal dose determination. Cellular oxygen tension (pO2) distributions were estimated for imaging-size-based voxels by solving oxygen

  16. Dose distribution, using homogeneous material before the reload of the JS-6500 irradiator

    International Nuclear Information System (INIS)

    Carrasco A, H.

    1991-10-01

    The objective of this report is to determine the dose distribution inside the aluminum containers used for the industrial irradiation, as well as to locate the positions of maximum and minimum doses, before the reloading of the JS-6500 Irradiator. (Author)

  17. Simulative study on dose distribution of 103Pd stent in blood-vessel

    International Nuclear Information System (INIS)

    Yuan Shuyu; Dai Guangfu; Xu Zhiyong; Sun Fuyin; Xu Shuhe; Ma Fengwu

    2003-01-01

    Objective: To evaluate the dose distribution of 103 Pd stent in the blood-vessel. Methods: Simulative study on dose distribution of endovascular 103 Pd stent was conducted with thermoluminescence dosimeter. The vessel wall was substituted by muscle equivalent material in this simulative study. Results: When radioactivity of the study 103 Pd stent was 9.8 MBq the absorbed dose from the stent surface by muscle equivalent material was 9.8 Gy at 17 d (the half-life period of 103 Pd). The radioactivity of 103 Pd stent surface rapidly attenuated over the radial distance. 80% of the radioactivity at the area that was radially 0.4 mm apart from the stent surface was absorbed by the simulative blood-vessel wall. Conclusion: Endovascular 103 Pd stent does not exert significant injury on the surrounding organs or tissues

  18. Effects of target size on the comparison of photon and charged particle dose distributions

    International Nuclear Information System (INIS)

    Phillips, M.H.; Frankel, K.A.; Tjoa, T.; Lyman, J.T.; Fabrikant, J.I.; Levy, R.P.

    1989-12-01

    The work presented here is part of an ongoing project to quantify and evaluate the differences in the use of different radiation types and irradiation geometries in radiosurgery. We are examining dose distributions for photons using the ''Gamma Knife'' and the linear accelerator arc methods, as well as different species of charged particles from protons to neon ions. A number of different factors need to be studied to accurately compare the different modalities such as target size, shape and location, the irradiation geometry, and biological response. This presentation focuses on target size, which has a large effect on the dose distributions in normal tissue surrounding the lesion. This work concentrates on dose distributions found in radiosurgery, as opposed to those usually found in radiotherapy. 5 refs., 2 figs

  19. Evaluation of dose-volume metrics for microbeam radiation therapy dose distributions in head phantoms of various sizes using Monte Carlo simulations

    Science.gov (United States)

    Anderson, Danielle; Siegbahn, E. Albert; Fallone, B. Gino; Serduc, Raphael; Warkentin, Brad

    2012-05-01

    This work evaluates four dose-volume metrics applied to microbeam radiation therapy (MRT) using simulated dosimetric data as input. We seek to improve upon the most frequently used MRT metric, the peak-to-valley dose ratio (PVDR), by analyzing MRT dose distributions from a more volumetric perspective. Monte Carlo simulations were used to calculate dose distributions in three cubic head phantoms: a 2 cm mouse head, an 8 cm cat head and a 16 cm dog head. The dose distribution was calculated for a 4 × 4 mm2 microbeam array in each phantom, as well as a 16 × 16 mm2 array in the 8 cm cat head, and a 32 × 32 mm2 array in the 16 cm dog head. Microbeam widths of 25, 50 and 75 µm and center-to-center spacings of 100, 200 and 400 µm were considered. The metrics calculated for each simulation were the conventional PVDR, the peak-to-mean valley dose ratio (PMVDR), the mean dose and the percentage volume below a threshold dose. The PVDR ranged between 3 and 230 for the 2 cm mouse phantom, and between 2 and 186 for the 16 cm dog phantom depending on geometry. The corresponding ranges for the PMVDR were much smaller, being 2-49 (mouse) and 2-46 (dog), and showed a slightly weaker dependence on phantom size and array size. The ratio of the PMVDR to the PVDR varied from 0.21 to 0.79 for the different collimation configurations, indicating a difference between the geometric dependence on outcome that would be predicted by these two metrics. For unidirectional irradiation, the mean lesion dose was 102%, 79% and 42% of the mean skin dose for the 2 cm mouse, 8 cm cat and 16 cm dog head phantoms, respectively. However, the mean lesion dose recovered to 83% of the mean skin dose in the 16 cm dog phantom in intersecting cross-firing regions. The percentage volume below a 10% dose threshold was highly dependent on geometry, with ranges for the different collimation configurations of 2-87% and 33-96% for the 2 cm mouse and 16 cm dog heads, respectively. The results of this study

  20. Evaluation of dose-volume metrics for microbeam radiation therapy dose distributions in head phantoms of various sizes using Monte Carlo simulations

    International Nuclear Information System (INIS)

    Anderson, Danielle; Fallone, B Gino; Warkentin, Brad; Siegbahn, E Albert; Serduc, Raphael

    2012-01-01

    This work evaluates four dose-volume metrics applied to microbeam radiation therapy (MRT) using simulated dosimetric data as input. We seek to improve upon the most frequently used MRT metric, the peak-to-valley dose ratio (PVDR), by analyzing MRT dose distributions from a more volumetric perspective. Monte Carlo simulations were used to calculate dose distributions in three cubic head phantoms: a 2 cm mouse head, an 8 cm cat head and a 16 cm dog head. The dose distribution was calculated for a 4 × 4 mm 2 microbeam array in each phantom, as well as a 16 × 16 mm 2 array in the 8 cm cat head, and a 32 × 32 mm 2 array in the 16 cm dog head. Microbeam widths of 25, 50 and 75 µm and center-to-center spacings of 100, 200 and 400 µm were considered. The metrics calculated for each simulation were the conventional PVDR, the peak-to-mean valley dose ratio (PMVDR), the mean dose and the percentage volume below a threshold dose. The PVDR ranged between 3 and 230 for the 2 cm mouse phantom, and between 2 and 186 for the 16 cm dog phantom depending on geometry. The corresponding ranges for the PMVDR were much smaller, being 2–49 (mouse) and 2–46 (dog), and showed a slightly weaker dependence on phantom size and array size. The ratio of the PMVDR to the PVDR varied from 0.21 to 0.79 for the different collimation configurations, indicating a difference between the geometric dependence on outcome that would be predicted by these two metrics. For unidirectional irradiation, the mean lesion dose was 102%, 79% and 42% of the mean skin dose for the 2 cm mouse, 8 cm cat and 16 cm dog head phantoms, respectively. However, the mean lesion dose recovered to 83% of the mean skin dose in the 16 cm dog phantom in intersecting cross-firing regions. The percentage volume below a 10% dose threshold was highly dependent on geometry, with ranges for the different collimation configurations of 2–87% and 33–96% for the 2 cm mouse and 16 cm dog heads, respectively. The results of this

  1. FEASIBILITY OF POSITRON EMISSION TOMOGRAPHY OF DOSE DISTRIBUTION IN PROTON BEAM CANCER THERAPY

    International Nuclear Information System (INIS)

    BEEBE-WANG, J.J.; DILMANIAN, F.A.; PEGGS, S.G.; SCHLYEER, D.J.; VASKA, P.

    2002-01-01

    Proton therapy is a treatment modality of increasing utility in clinical radiation oncology mostly because its dose distribution conforms more tightly to the target volume than x-ray radiation therapy. One important feature of proton therapy is that it produces a small amount of positron-emitting isotopes along the beam-path through the non-elastic nuclear interaction of protons with target nuclei such as 12 C, 14 N, and 16 O. These radioisotopes, mainly 11 C, 13 N and 15 O, allow imaging the therapy dose distribution using positron emission tomography (PET). The resulting PET images provide a powerful tool for quality assurance of the treatment, especially when treating inhomogeneous organs such as the lungs or the head-and-neck, where the calculation of the dose distribution for treatment planning is more difficult. This paper uses Monte Carlo simulations to predict the yield of positron emitters produced by a 250 MeV proton beam, and to simulate the productions of the image in a clinical PET scanner

  2. The influence of inhomogeneities on the dose distribution of fast electrons in radiotherapy

    International Nuclear Information System (INIS)

    Windemuth, M.

    1985-01-01

    Simple models are used to make a principal comparison between measured fast-electron dose distributions behind tissue inhomogeneities and those calculated by means of an irradiation planning system. The different organs were represented by water (for muscle), by cork (for the lungs) and by graphite (for bone). Corresponding to their density, inhomogeneities result, in principle, in a dose shift to a greater or smaller body depth which is correctly considered by the irradiation planning system. However, electron scattering transversal to beam direction will occur behind inhomogeneity edges which, in general, are not covered by the irradiation planning system, but which result in dose distributions deviating strongly from those expected as due to the shift. This is the reason for the limited accuracy of irradiation planning systems in complicated inhomogeneity distribution. The thesis demonstrates those cases which justify irradiation planning and those cases where they are not a reliable basis for irradiation. (orig./HP) [de

  3. Dose distributions of pendulum fields in the field border plane

    International Nuclear Information System (INIS)

    Schrader, R.

    1986-01-01

    Calculations (program SIDOS-U2) and LiF measurements taken in a cylindric water phantom are used to investigate the isodose distributions of different pendulum irradiation methods (Co-60) in a plane which is parallel to the central ray plane and crosses the field borders at the depth of the axis. The dose values compared to the maximum values of the central ray plane are completely different for each pendulum method. In case of monoaxial pendulum methods around small angles, the maximum dose value found in the border plane is less than 50% of the dose in the central ray plane. The relative maximum of the border plane moves to tissues laying in a greater depth. In case of bi-axial methods, the maximum value of the border plane can be much more than 50% of the maximum dose measured in the central ray plane. (orig.) [de

  4. Development of semi-empirical equations for In-water dose distribution using Co-60 beams

    International Nuclear Information System (INIS)

    Abdalla, Siddig Abdalla Talha

    2001-08-01

    Knowledge of absorbed dose distribution is essential for the management of cancer using Co-60 teletherapy. Since direct measurement of dose in patient is impossible, indirect assessments are always carried. In this study direct assessments in phantoms were taken for dose distribution data. Mainly we concentrated on central axis dose and isodose curves data, which are essential for treatment planning. We started by development of a semi-empirical method which uses a more restricted number of measurements and uses graphical relation to develop the dose distribution. This method was based on the decrement lines method which was introduced by Orchard (1964) to develop isodose curve. In the beginning the already developed percent depth dose, Pdd, equation was modified and used to plot the Pdd lines for randomly selected field sizes. After that the dose profiles at depths 5, 10, 15 and 20 cm for randomly selected field sizes were plotted from the direct measurement. Then with the help of the PDD's equation, an equation for the slope of decrement lines is developed. From this slope equation a relation that gives the off axial distance was found. Making use of these relations, the iso lines 80%, 50% and 20% were plotted for the field sizes: 6*6 cm 2 , 10*10 cm 2 and 18*18 cm 2 . Finally these plotted lines were compared to their correspondents from the manufacturer and those used in the hospital (Rick). (Author)

  5. Practical dose point-based methods to characterize dose distribution in a stationary elliptical body phantom for a cone-beam C-arm CT system

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jang-Hwan, E-mail: jhchoi21@stanford.edu [Department of Radiology, Stanford University, Stanford, California 94305 and Department of Mechanical Engineering, Stanford University, Stanford, California 94305 (United States); Constantin, Dragos [Microwave Physics R& E, Varian Medical Systems, Palo Alto, California 94304 (United States); Ganguly, Arundhuti; Girard, Erin; Fahrig, Rebecca [Department of Radiology, Stanford University, Stanford, California 94305 (United States); Morin, Richard L. [Mayo Clinic Jacksonville, Jacksonville, Florida 32224 (United States); Dixon, Robert L. [Department of Radiology, Wake Forest University, Winston-Salem, North Carolina 27157 (United States)

    2015-08-15

    Purpose: To propose new dose point measurement-based metrics to characterize the dose distributions and the mean dose from a single partial rotation of an automatic exposure control-enabled, C-arm-based, wide cone angle computed tomography system over a stationary, large, body-shaped phantom. Methods: A small 0.6 cm{sup 3} ion chamber (IC) was used to measure the radiation dose in an elliptical body-shaped phantom made of tissue-equivalent material. The IC was placed at 23 well-distributed holes in the central and peripheral regions of the phantom and dose was recorded for six acquisition protocols with different combinations of minimum kVp (109 and 125 kVp) and z-collimator aperture (full: 22.2 cm; medium: 14.0 cm; small: 8.4 cm). Monte Carlo (MC) simulations were carried out to generate complete 2D dose distributions in the central plane (z = 0). The MC model was validated at the 23 dose points against IC experimental data. The planar dose distributions were then estimated using subsets of the point dose measurements using two proposed methods: (1) the proximity-based weighting method (method 1) and (2) the dose point surface fitting method (method 2). Twenty-eight different dose point distributions with six different point number cases (4, 5, 6, 7, 14, and 23 dose points) were evaluated to determine the optimal number of dose points and their placement in the phantom. The performances of the methods were determined by comparing their results with those of the validated MC simulations. The performances of the methods in the presence of measurement uncertainties were evaluated. Results: The 5-, 6-, and 7-point cases had differences below 2%, ranging from 1.0% to 1.7% for both methods, which is a performance comparable to that of the methods with a relatively large number of points, i.e., the 14- and 23-point cases. However, with the 4-point case, the performances of the two methods decreased sharply. Among the 4-, 5-, 6-, and 7-point cases, the 7-point case (1

  6. SU-F-BRA-06: Dose Distributions for the CivaSheet Pd-103 Directional Brachytherapy Device

    Energy Technology Data Exchange (ETDEWEB)

    Rivard, MJ [Tufts University School of Medicine, Boston, MA (United States)

    2015-06-15

    Purpose: A flexible polymer membrane (CivaSheet) has been developed by CivaTech Oncology, Inc. (Research Triangle Park, NC) for permanent brachytherapy. Distributed throughout the array are small plastic disks containing Pd-103 and gold foil shielding on one side to provide a directional dose distribution and facilitate imaging. This study evaluated dosimetry for the CivaSheet. Methods: Manufacturer-provided dimensional and compositional information for the device were compared to physical samples for validation of design information, then entered into the MCNP6 radiation transport code for dosimetry simulations. Three device sizes (6×6, 6×12, or 6×18 disk-arrays) were simulated as the membrane can be custom-sized preceding surgical placement. Dose to water was estimated with 0.01 cm resolution from the surface to 10 cm on both sides of the device. Because this is a novel device with calibration methods under development, results were normalized using DVHs to provide 90% prescription coverage to a plane positioned 0.5 cm from the front surfaces. This same normalization was used for creating isodose distributions. Results: Planar dose distributions of flat CivaSheets were relatively homogeneous with acceptable dose uniformity variations. Differences in the results between the differently sized CivaSheets were not significant. At 0.5 mm, 87% of the target volume was within the therapeutic dose range. Dose hotspots on the CivaSheet forward surfaces were directly above the disks. However, dose hotspots on the rear-facing surfaces were positioned between the disks. Doses in contact with the front surface were similar to those observed for currently available brachytherapy sources. Maximum doses that occurred on the rear surface were approximately 55 times lower than the dose on the front surface. Conclusion: Monte Carlo calculations validated the directional capabilities and advantageous dosimetry of the new Pd-103 brachytherapy device. It appears feasible to re

  7. A γ dose distribution evaluation technique using the k-d tree for nearest neighbor searching

    International Nuclear Information System (INIS)

    Yuan Jiankui; Chen Weimin

    2010-01-01

    Purpose: The authors propose an algorithm based on the k-d tree for nearest neighbor searching to improve the γ calculation time for 2D and 3D dose distributions. Methods: The γ calculation method has been widely used for comparisons of dose distributions in clinical treatment plans and quality assurances. By specifying the acceptable dose and distance-to-agreement criteria, the method provides quantitative measurement of the agreement between the reference and evaluation dose distributions. The γ value indicates the acceptability. In regions where γ≤1, the predefined criterion is satisfied and thus the agreement is acceptable; otherwise, the agreement fails. Although the concept of the method is not complicated and a quick naieve implementation is straightforward, an efficient and robust implementation is not trivial. Recent algorithms based on exhaustive searching within a maximum radius, the geometric Euclidean distance, and the table lookup method have been proposed to improve the computational time for multidimensional dose distributions. Motivated by the fact that the least searching time for finding a nearest neighbor can be an O(log N) operation with a k-d tree, where N is the total number of the dose points, the authors propose an algorithm based on the k-d tree for the γ evaluation in this work. Results: In the experiment, the authors found that the average k-d tree construction time per reference point is O(log N), while the nearest neighbor searching time per evaluation point is proportional to O(N 1/k ), where k is between 2 and 3 for two-dimensional and three-dimensional dose distributions, respectively. Conclusions: Comparing with other algorithms such as exhaustive search and sorted list O(N), the k-d tree algorithm for γ evaluation is much more efficient.

  8. Principles of protection: a formal approach for evaluating dose distributions

    International Nuclear Information System (INIS)

    Wikman-Svahn, Per; Peterson, Martin; Hansson, Sven Ove

    2006-01-01

    One of the central issues in radiation protection consists in determining what weight should be given to individual doses in relation to collective or aggregated doses. A mathematical framework is introduced in which such assessments can be made precisely in terms of comparisons between alternative distributions of individual doses. In addition to evaluation principles that are well known from radiation protection, a series of principles that are derived from parallel discussions in moral philosophy and welfare economics is investigated. A battery of formal properties is then used to investigate the evaluative principles. The results indicate that one of the new principles, bilinear prioritarianism, may be preferable to current practices, since it satisfies efficiency-related properties better without sacrificing other desirable properties

  9. Spatial distribution of absorbed dose onboard of International Space Station

    International Nuclear Information System (INIS)

    Jadrnickova, I.; Spumy, F.; Tateyama, R.; Yasuda, N.; Kawashima, H.; Kurano, M.; Uchihori, Y.; Kitamura, H.; Akatov, Yu.; Shurshakov, V.; Kobayashi, I.; Ohguchi, H.; Koguchi, Y.

    2009-01-01

    The passive detectors (LD and PNTD) were exposed onboard of Russian Service Module Qn the International Space Station (ISS) from August 2004 to October 2005 (425 days). The detectors were located at 6 different positions inside the Service Module and also in 32 pockets on the surface of the spherical tissue-equivalent phantom located in crew cabin. Distribution of absorbed doses and dose equivalents measured with passive detectors, as well as LET spectra of fluences of registered particles, are presented as the function of detectors' location. The variation of dose characteristics for different locations can be up to factor of 2. In some cases, data measured with passive detectors are also compared with the data obtained by means of active instruments. (authors)

  10. Knowledge-based prediction of three-dimensional dose distributions for external beam radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Shiraishi, Satomi; Moore, Kevin L., E-mail: kevinmoore@ucsd.edu [Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California 92093 (United States)

    2016-01-15

    Purpose: To demonstrate knowledge-based 3D dose prediction for external beam radiotherapy. Methods: Using previously treated plans as training data, an artificial neural network (ANN) was trained to predict a dose matrix based on patient-specific geometric and planning parameters, such as the closest distance (r) to planning target volume (PTV) and organ-at-risks (OARs). Twenty-three prostate and 43 stereotactic radiosurgery/radiotherapy (SRS/SRT) cases with at least one nearby OAR were studied. All were planned with volumetric-modulated arc therapy to prescription doses of 81 Gy for prostate and 12–30 Gy for SRS. Using these clinically approved plans, ANNs were trained to predict dose matrix and the predictive accuracy was evaluated using the dose difference between the clinical plan and prediction, δD = D{sub clin} − D{sub pred}. The mean (〈δD{sub r}〉), standard deviation (σ{sub δD{sub r}}), and their interquartile range (IQR) for the training plans were evaluated at a 2–3 mm interval from the PTV boundary (r{sub PTV}) to assess prediction bias and precision. Initially, unfiltered models which were trained using all plans in the cohorts were created for each treatment site. The models predict approximately the average quality of OAR sparing. Emphasizing a subset of plans that exhibited superior to the average OAR sparing during training, refined models were created to predict high-quality rectum sparing for prostate and brainstem sparing for SRS. Using the refined model, potentially suboptimal plans were identified where the model predicted further sparing of the OARs was achievable. Replans were performed to test if the OAR sparing could be improved as predicted by the model. Results: The refined models demonstrated highly accurate dose distribution prediction. For prostate cases, the average prediction bias for all voxels irrespective of organ delineation ranged from −1% to 0% with maximum IQR of 3% over r{sub PTV} ∈ [ − 6, 30] mm. The

  11. Systematic measurements of whole-body imaging dose distributions in image-guided radiation therapy

    International Nuclear Information System (INIS)

    Hälg, Roger A.; Besserer, Jürgen; Schneider, Uwe

    2012-01-01

    Purpose: The full benefit of the increased precision of contemporary treatment techniques can only be exploited if the accuracy of the patient positioning is guaranteed. Therefore, more and more imaging modalities are used in the process of the patient setup in clinical routine of radiation therapy. The improved accuracy in patient positioning, however, results in additional dose contributions to the integral patient dose. To quantify this, absorbed dose measurements from typical imaging procedures involved in an image-guided radiation therapy treatment were measured in an anthropomorphic phantom for a complete course of treatment. The experimental setup, including the measurement positions in the phantom, was exactly the same as in a preceding study of radiotherapy stray dose measurements. This allows a direct combination of imaging dose distributions with the therapy dose distribution. Methods: Individually calibrated thermoluminescent dosimeters were used to measure absorbed dose in an anthropomorphic phantom at 184 locations. The dose distributions from imaging devices used with treatment machines from the manufacturers Accuray, Elekta, Siemens, and Varian and from computed tomography scanners from GE Healthcare were determined and the resulting effective dose was calculated. The list of investigated imaging techniques consisted of cone beam computed tomography (kilo- and megavoltage), megavoltage fan beam computed tomography, kilo- and megavoltage planar imaging, planning computed tomography with and without gating methods and planar scout views. Results: A conventional 3D planning CT resulted in an effective dose additional to the treatment stray dose of less than 1 mSv outside of the treated volume, whereas a 4D planning CT resulted in a 10 times larger dose. For a daily setup of the patient with two planar kilovoltage images or with a fan beam CT at the TomoTherapy unit, an additional effective dose outside of the treated volume of less than 0.4 mSv and 1

  12. Monte Carlo MCNP-4B-based absorbed dose distribution estimates for patient-specific dosimetry.

    Science.gov (United States)

    Yoriyaz, H; Stabin, M G; dos Santos, A

    2001-04-01

    This study was intended to verify the capability of the Monte Carlo MCNP-4B code to evaluate spatial dose distribution based on information gathered from CT or SPECT. A new three-dimensional (3D) dose calculation approach for internal emitter use in radioimmunotherapy (RIT) was developed using the Monte Carlo MCNP-4B code as the photon and electron transport engine. It was shown that the MCNP-4B computer code can be used with voxel-based anatomic and physiologic data to provide 3D dose distributions. This study showed that the MCNP-4B code can be used to develop a treatment planning system that will provide such information in a time manner, if dose reporting is suitably optimized. If each organ is divided into small regions where the average energy deposition is calculated with a typical volume of 0.4 cm(3), regional dose distributions can be provided with reasonable central processing unit times (on the order of 12-24 h on a 200-MHz personal computer or modest workstation). Further efforts to provide semiautomated region identification (segmentation) and improvement of marrow dose calculations are needed to supply a complete system for RIT. It is envisioned that all such efforts will continue to develop and that internal dose calculations may soon be brought to a similar level of accuracy, detail, and robustness as is commonly expected in external dose treatment planning. For this study we developed a code with a user-friendly interface that works on several nuclear medicine imaging platforms and provides timely patient-specific dose information to the physician and medical physicist. Future therapy with internal emitters should use a 3D dose calculation approach, which represents a significant advance over dose information provided by the standard geometric phantoms used for more than 20 y (which permit reporting of only average organ doses for certain standardized individuals)

  13. Exposure subpopulations and peculiarities of individual dose distributions among inhabitants of the Semipalatinsk region

    Energy Technology Data Exchange (ETDEWEB)

    Pivovarov, S. [Institute of Nuclear Physics, National Nuclear Center of Kazakhstan (Kazakhstan)], E-mail: pivov@inp.kz; Rukhin, A.; Seredavina, T.; Sushkova, N. [Institute of Nuclear Physics, National Nuclear Center of Kazakhstan (Kazakhstan); Hill, P. [Forschungszentrum GmbH, Department of Safety and Radiation Protection, Juelich (Germany)], E-mail: p.hill@fz-juelich.de; Peterson, L.E. [Baylor College of Medicine, Houston, TX (United States)], E-mail: peterson.leif@ieee.org

    2007-07-15

    The results of integral dose estimations for inhabitants of four settlements near the former Semipalatinsk nuclear test site obtained by EPR dosimetry on tooth enamel in 2004-2005 years are discussed. It was found that the observed dose distributions have a nonstandard bimodal form with a mode at low doses in the range from 0.3-0.5 Gy, and a tail with higher doses, possibly suggesting two subpopulations. Possible reasons for such high doses are discussed.

  14. Calculations of dose distributions using a neural network model

    International Nuclear Information System (INIS)

    Mathieu, R; Martin, E; Gschwind, R; Makovicka, L; Contassot-Vivier, S; Bahi, J

    2005-01-01

    The main goal of external beam radiotherapy is the treatment of tumours, while sparing, as much as possible, surrounding healthy tissues. In order to master and optimize the dose distribution within the patient, dosimetric planning has to be carried out. Thus, for determining the most accurate dose distribution during treatment planning, a compromise must be found between the precision and the speed of calculation. Current techniques, using analytic methods, models and databases, are rapid but lack precision. Enhanced precision can be achieved by using calculation codes based, for example, on Monte Carlo methods. However, in spite of all efforts to optimize speed (methods and computer improvements), Monte Carlo based methods remain painfully slow. A newer way to handle all of these problems is to use a new approach in dosimetric calculation by employing neural networks. Neural networks (Wu and Zhu 2000 Phys. Med. Biol. 45 913-22) provide the advantages of those various approaches while avoiding their main inconveniences, i.e., time-consumption calculations. This permits us to obtain quick and accurate results during clinical treatment planning. Currently, results obtained for a single depth-dose calculation using a Monte Carlo based code (such as BEAM (Rogers et al 2003 NRCC Report PIRS-0509(A) rev G)) require hours of computing. By contrast, the practical use of neural networks (Mathieu et al 2003 Proceedings Journees Scientifiques Francophones, SFRP) provides almost instant results and quite low errors (less than 2%) for a two-dimensional dosimetric map

  15. Distributions of neutron and gamma doses in phantom under a mixed field

    International Nuclear Information System (INIS)

    Beraud-Sudreau, E.

    1982-06-01

    A calculation program, based on Monte Carlo method, allowed to estimate the absorbed doses relatives to the reactor primary radiation, in a water cubic phantom and in cylindrical phantoms modelized from tissue compositions. This calculation is a theoretical approach of gamma and neutron dose gradient study in an animal phantom. PIN junction dosimetric characteristics have been studied experimentally. Air and water phantom radiation doses measured by PIN junction and lithium 7 fluoride, in reactor field have been compared to doses given by dosimetry classical techniques as tissue equivalent plastic and aluminium ionization chambers. Dosimeter responses have been employed to evaluate neutron and gamma doses in plastinaut (tissue equivalent plastic) and animal (piglet). Dose repartition in the piglet bone medulla has been also determined. This work has been completed by comparisons with Doerschell, Dousset and Brown results and by neutron dose calculations; the dose distribution related to lineic energy transfer in Auxier phantom has been also calculated [fr

  16. Dose-mapping distribution around MNSR

    CERN Document Server

    Jamal, M H

    2002-01-01

    The aim of this study is to establish the dose-rate map through the determination of radiological dose-rate levels in reactor hall, adjacent rooms, and outside the MNSR facility. Controlling dose rate to reactor operating personnel , dose map was established. The map covers time and distances in the reactor hall, during reactor operation at nominal power. Different measurement of dose rates in other areas of the reactor buildings was established. The maximum dose rate, during normal operation of the MNSR was 40 and 21 Sv/hr on the top of the reactor and near the pool fence, respectively. Whereas, gamma and neutron doses have not exceeded natural background in all rooms adjacent to the reactor hall or nearly buildings. The relation between the dose rate for gamma rays and neutron flux at the top of cover of reactor pool was studied as well. It was found that this relation is linear.

  17. Dose-mapping distribution around MNSR

    International Nuclear Information System (INIS)

    Jamal, M. H.; Khamis, I.

    2002-12-01

    The aim of this study is to establish the dose-rate map through the determination of radiological dose-rate levels in reactor hall, adjacent rooms, and outside the MNSR facility. Controlling dose rate to reactor operating personnel , dose map was established. The map covers time and distances in the reactor hall, during reactor operation at nominal power. Different measurement of dose rates in other areas of the reactor buildings was established. The maximum dose rate, during normal operation of the MNSR was 40 and 21 Sv/hr on the top of the reactor and near the pool fence, respectively. Whereas, gamma and neutron doses have not exceeded natural background in all rooms adjacent to the reactor hall or nearly buildings. The relation between the dose rate for gamma rays and neutron flux at the top of cover of reactor pool was studied as well. It was found that this relation is linear. (author)

  18. Dose sculpting with generalized equivalent uniform dose

    International Nuclear Information System (INIS)

    Wu Qiuwen; Djajaputra, David; Liu, Helen H.; Dong Lei; Mohan, Radhe; Wu, Yan

    2005-01-01

    With intensity-modulated radiotherapy (IMRT), a variety of user-defined dose distribution can be produced using inverse planning. The generalized equivalent uniform dose (gEUD) has been used in IMRT optimization as an alternative objective function to the conventional dose-volume-based criteria. The purpose of this study was to investigate the effectiveness of gEUD optimization to fine tune the dose distributions of IMRT plans. We analyzed the effect of gEUD-based optimization parameters on plan quality. The objective was to determine whether dose distribution to selected structures could be improved using gEUD optimization without adversely altering the doses delivered to other structures, as in sculpting. We hypothesized that by carefully defining gEUD parameters (EUD 0 and n) based on the current dose distributions, the optimization system could be instructed to search for alternative solutions in the neighborhood, and we could maintain the dose distributions for structures already satisfactory and improve dose for structures that need enhancement. We started with an already acceptable IMRT plan optimized with any objective function. The dose distribution was analyzed first. For structures that dose should not be changed, a higher value of n was used and EUD 0 was set slightly higher/lower than the EUD value at the current dose distribution for critical structures/targets. For structures that needed improvement in dose, a higher to medium value of n was used, and EUD 0 was set to the EUD value or slightly lower/higher for the critical structure/target at the current dose distribution. We evaluated this method in one clinical case each of head and neck, lung and prostate cancer. Dose volume histograms, isodose distributions, and relevant tolerance doses for critical structures were used for the assessment. We found that by adjusting gEUD optimization parameters, the dose distribution could be improved with only a few iterations. A larger value of n could lead to

  19. Prediction of in-phantom dose distribution using in-air neutron beam characteristics for BNCS

    International Nuclear Information System (INIS)

    Verbeke, Jerome M.

    1999-01-01

    A monoenergetic neutron beam simulation study is carried out to determine the optimal neutron energy range for treatment of rheumatoid arthritis using radiation synovectomy. The goal of the treatment is the ablation of diseased synovial membranes in joints, such as knees and fingers. This study focuses on human knee joints. Two figures-of-merit are used to measure the neutron beam quality, the ratio of the synovium absorbed dose to the skin absorbed dose, and the ratio of the synovium absorbed dose to the bone absorbed dose. It was found that (a) thermal neutron beams are optimal for treatment, (b) similar absorbed dose rates and therapeutic ratios are obtained with monodirectional and isotropic neutron beams. Computation of the dose distribution in a human knee requires the simulation of particle transport from the neutron source to the knee phantom through the moderator. A method was developed to predict the dose distribution in a knee phantom from any neutron and photon beam spectra incident on the knee. This method was revealed to be reasonably accurate and enabled one to reduce by a factor of 10 the particle transport simulation time by modeling the moderator only

  20. Prediction of in-phantom dose distribution using in-air neutron beam characteristics for BNCS

    Energy Technology Data Exchange (ETDEWEB)

    Verbeke, Jerome M.

    1999-12-14

    A monoenergetic neutron beam simulation study is carried out to determine the optimal neutron energy range for treatment of rheumatoid arthritis using radiation synovectomy. The goal of the treatment is the ablation of diseased synovial membranes in joints, such as knees and fingers. This study focuses on human knee joints. Two figures-of-merit are used to measure the neutron beam quality, the ratio of the synovium absorbed dose to the skin absorbed dose, and the ratio of the synovium absorbed dose to the bone absorbed dose. It was found that (a) thermal neutron beams are optimal for treatment, (b) similar absorbed dose rates and therapeutic ratios are obtained with monodirectional and isotropic neutron beams. Computation of the dose distribution in a human knee requires the simulation of particle transport from the neutron source to the knee phantom through the moderator. A method was developed to predict the dose distribution in a knee phantom from any neutron and photon beam spectra incident on the knee. This method was revealed to be reasonably accurate and enabled one to reduce by a factor of 10 the particle transport simulation time by modeling the moderator only.

  1. Dose Distributions of an 192Ir Brachytherapy Source in Different Media

    Directory of Open Access Journals (Sweden)

    C. H. Wu

    2014-01-01

    Full Text Available This study used MCNPX code to investigate the brachytherapy 192Ir dose distributions in water, bone, and lung tissue and performed radiophotoluminescent glass dosimeter measurements to verify the obtained MCNPX results. The results showed that the dose-rate constant, radial dose function, and anisotropy function in water were highly consistent with data in the literature. However, the lung dose near the source would be overestimated by up to 12%, if the lung tissue is assumed to be water, and, hence, if a tumor is located in the lung, the tumor dose will be overestimated, if the material density is not taken into consideration. In contrast, the lung dose far from the source would be underestimated by up to 30%. Radial dose functions were found to depend not only on the phantom size but also on the material density. The phantom size affects the radial dose function in bone more than those in the other tissues. On the other hand, the anisotropy function in lung tissue was not dependent on the radial distance. Our simulation results could represent valid clinical reference data and be used to improve the accuracy of the doses delivered during brachytherapy applied to patients with lung cancer.

  2. Evaluation of gafchromic EBT film for intensity modulated radiation therapy dose distribution verification

    International Nuclear Information System (INIS)

    Sankar, A.; Gopalkrishna Kurup, P.G.; Murali, V.; Ayyangar, Komanduri M.; Mothilal Nehru, R.; Velmurugan, J.

    2006-01-01

    This work was undertaken with the intention of investigating the possibility of clinical use of commercially available self-developing radiochromic film - Gafchromic EBT film - for IMRT dose verification. The dose response curves were generated for the films using VXR-16 film scanner. The results obtained with EBT films were compared with the results of Kodak EDR2 films. It was found that the EBT film has a linear response between the dose ranges of 0 and 600 cGy. The dose-related characteristics of the EBT film, like post-irradiation color growth with time, film uniformity and effect of scanning orientation, were studied. There is up to 8.6% increase in the color density between 2 and 40 h after irradiation. There was a considerable variation, up to 8.5%, in the film uniformity over its sensitive region. The quantitative difference between calculated and measured dose distributions was analyzed using Gamma index with the tolerance of 3% dose difference and 3 mm distance agreement. EDR2 films showed good and consistent results with the calculated dose distribution, whereas the results obtained using EBT were inconsistent. The variation in the film uniformity limits the use of EBT film for conventional large field IMRT verification. For IMRT of smaller field size (4.5 x 4.5 cm), the results obtained with EBT were comparable with results of EDR2 films. (author)

  3. Influence of Daily Set-Up Errors on Dose Distribution During Pelvis Radiotherapy

    International Nuclear Information System (INIS)

    Kasabasic, M.; Ivkovic, A.; Faj, D.; Rajevac, V.; Sobat, H.; Jurkovic, S.

    2011-01-01

    An external beam radiotherapy (EBRT) using megavoltage beam of linear accelerator is usually the treatment of choice for the cancer patients. The goal of EBRT is to deliver the prescribed dose to the target volume, with as low as possible dose to the surrounding healthy tissue. A large number of procedures and different professions involved in radiotherapy process, uncertainty of equipment and daily patient set-up errors can cause a difference between the planned and delivered dose. We investigated a part of this difference caused by daily patient set-up errors. Daily set-up errors for 35 patients were measured. These set-up errors were simulated on 5 patients, using 3D treatment planning software XiO (CMS Inc., St. Louis, MO). The differences in dose distributions between the planned and shifted ''geometry'' were investigated. Additionally, an influence of the error on treatment plan selection was checked by analyzing the change in dose volume histograms, planning target volume conformity index (CI P TV) and homogeneity index (HI). Simulations showed that patient daily set-up errors can cause significant differences between the planned and actual dose distributions. Moreover, for some patients those errors could influence the choice of treatment plan since CI P TV fell under 97 %. Surprisingly, HI was not as sensitive as CI P TV on set-up errors. The results showed the need for minimizing daily set-up errors by quality assurance programme. (author)

  4. Effect of inhomogeneous activity distributions and airway geometry on cellular doses in radon lung dosimetry

    International Nuclear Information System (INIS)

    Szoke, Istvan; Balashazy, Imre; Farkas, Arpad; Hofmann, Werner

    2007-01-01

    The human tracheobronchial system has a very complex structure including cylindrical airway ducts connected by airway bifurcation units. The deposition of the inhaled aerosols within the airways exhibits a very inhomogeneous pattern. The formation of deposition hot spots near the carinal ridge has been confirmed by experimental and computational fluid and particle dynamics (CFPD) methods. In spite of these observations, current radon lung dosimetry models apply infinitely long cylinders as models of the airway system and assume uniform deposition of the inhaled radon progenies along the airway walls. The aim of this study is to investigate the effect of airway geometry and non-uniform activity distributions within bronchial bifurcations on cellular dose distributions. In order to answer these questions, the nuclear doses of the bronchial epithelium were calculated in three different irradiation situations. (1) First, CFPD methods were applied to calculate the distribution of the deposited alpha-emitting nuclides in a numerically constructed idealized airway bifurcation. (2) Second, the deposited radionuclides were randomly distributed along the surface of the above-mentioned geometry. (3) Finally, calculations were made in cylindrical geometries corresponding to the parent and daughter branches of the bifurcation geometry assuming random nuclide activity distribution. In all three models, the same 218 Po and 214 Po surface activities per tissue volumes were assumed. Two conclusions can be drawn from this analysis: (i) average nuclear doses are very similar in all three cases (minor differences can be attributed to differences in the linear energy transfer (LET) spectra) and (ii) dose distributions are significantly different in all three cases, with the highest doses at the carinal ridge in case 3. (authors)

  5. Calculation of the radial dose distribution around the trajectory of an ion

    International Nuclear Information System (INIS)

    Pretzsch, G.

    1979-01-01

    The dose caused in polyester by incoming protons, alpha beams, 127 I ions, and 16 O ions has been calculated as a function of the distance perpendicularly to their trajectory. Based on simplified assumptions regarding the binding state of target electrons, emission of secondary electrons and their propagation in matter, it has been found that the dose depends on the distance to the ion trajectory (R) in the form Rsup(-l), l being about 2. The calculated radial dose distributions agree well with values calculated or measured by other authors

  6. Evaluation of the effect of tooth and dental restoration material on electron dose distribution and production of photon contamination in electron beam radiotherapy.

    Science.gov (United States)

    Bahreyni Toossi, Mohammad Taghi; Ghorbani, Mahdi; Akbari, Fatemeh; Mehrpouyan, Mohammad; Sobhkhiz Sabet, Leila

    2016-03-01

    The aim of this study is to evaluate the effect of tooth and dental restoration materials on electron dose distribution and photon contamination production in electron beams of a medical linac. This evaluation was performed on 8, 12 and 14 MeV electron beams of a Siemens Primus linac. MCNPX Monte Carlo code was utilized and a 10 × 10 cm(2) applicator was simulated in the cases of tooth and combinations of tooth and Ceramco C3 ceramic veneer, tooth and Eclipse alloy and tooth and amalgam restoration materials in a soft tissue phantom. The relative electron and photon contamination doses were calculated for these materials. The presence of tooth and dental restoration material changed the electron dose distribution and photon contamination in phantom, depending on the type of the restoration material and electron beam's energy. The maximum relative electron dose was 1.07 in the presence of tooth including amalgam for 14 MeV electron beam. When 100.00 cGy was prescribed for the reference point, the maximum absolute electron dose was 105.10 cGy in the presence of amalgam for 12 MeV electron beam and the maximum absolute photon contamination dose was 376.67 μGy for tooth in 14 MeV electron beam. The change in electron dose distribution should be considered in treatment planning, when teeth are irradiated in electron beam radiotherapy. If treatment planning can be performed in such a way that the teeth are excluded from primary irradiation, the potential errors in dose delivery to the tumour and normal tissues can be avoided.

  7. Application of a Novel Dose-Uncertainty Model for Dose-Uncertainty Analysis in Prostate Intensity-Modulated Radiotherapy

    International Nuclear Information System (INIS)

    Jin Hosang; Palta, Jatinder R.; Kim, You-Hyun; Kim, Siyong

    2010-01-01

    Purpose: To analyze dose uncertainty using a previously published dose-uncertainty model, and to assess potential dosimetric risks existing in prostate intensity-modulated radiotherapy (IMRT). Methods and Materials: The dose-uncertainty model provides a three-dimensional (3D) dose-uncertainty distribution in a given confidence level. For 8 retrospectively selected patients, dose-uncertainty maps were constructed using the dose-uncertainty model at the 95% CL. In addition to uncertainties inherent to the radiation treatment planning system, four scenarios of spatial errors were considered: machine only (S1), S1 + intrafraction, S1 + interfraction, and S1 + both intrafraction and interfraction errors. To evaluate the potential risks of the IMRT plans, three dose-uncertainty-based plan evaluation tools were introduced: confidence-weighted dose-volume histogram, confidence-weighted dose distribution, and dose-uncertainty-volume histogram. Results: Dose uncertainty caused by interfraction setup error was more significant than that of intrafraction motion error. The maximum dose uncertainty (95% confidence) of the clinical target volume (CTV) was smaller than 5% of the prescribed dose in all but two cases (13.9% and 10.2%). The dose uncertainty for 95% of the CTV volume ranged from 1.3% to 2.9% of the prescribed dose. Conclusions: The dose uncertainty in prostate IMRT could be evaluated using the dose-uncertainty model. Prostate IMRT plans satisfying the same plan objectives could generate a significantly different dose uncertainty because a complex interplay of many uncertainty sources. The uncertainty-based plan evaluation contributes to generating reliable and error-resistant treatment plans.

  8. Geographical distribution of radiation risk unaccountable by direct exposure dose in hiroshima A-bomb victims

    International Nuclear Information System (INIS)

    Tonda, Tetsuji; Satoh, Kenichi; Ohani, Keiko

    2012-01-01

    Death risks due to solid cancer were estimated from region to region where the A-bomb survivors had been actually exposed, to visualize the risk distribution on the map, which resulting in risk regional difference that had been unaccountable by direct exposure dose estimation. Analysis was performed with 3 hazard models of the previous one, + direct exposed dose as a confounding factor and, further, + spatial distance from the explosion point. Subjects were 37,382 A-bomb survivors at Jan. 1, 1970 with known positional coordinate at explosion, followed until Dec. 31, 2009, whose endpoint was set by 4,371 deaths due to cancer except leukemia, cancers of thyroid and breast. Confounding factors in the previous hazard model were sex, age at the exposure, dose and shielding. With the previous model, risk distribution was observed in a concentric circular region around the hypocenter and in an additional west to northwestern suburbs. The latter risk distribution was also seen with the second model in the same region, where dose decreased with -7 powers of the distance. When adjusted with -3 powers of the distance with the third model, the actual risk distribution was found best fitted, indicating the presence of distance-dependent risk. It was suggested that the region exposed to additional dose possibly derived from fallout had been the actual black rainfall area as those regions agreed with each other. (T.T.)

  9. Dose distribution considerations of medium energy electron beams at extended source-to-surface distance

    International Nuclear Information System (INIS)

    Saw, Cheng B.; Ayyangar, Komanduri M.; Pawlicki, Todd; Korb, Leroy J.

    1995-01-01

    Purpose: To determine the effects of extended source-to-surface distance (SSD) on dose distributions for a range of medium energy electron beams and cone sizes. Methods and Materials: The depth-dose curves and isodose distributions of 6 MeV, 10 MeV, and 14 MeV electron beams from a dual photon and multielectron energies linear accelerator were studied. To examine the influence of cone size, the smallest and the largest cone sizes available were used. Measurements were carried out in a water phantom with the water surface set at three different SSDs from 101 to 116 cm. Results: In the region between the phantom surface and the depth of maximum dose, the depth-dose decreases as the SSD increases for all electron beam energies. The effects of extended SSD in the region beyond the depth of maximum dose are unobservable and, hence, considered minimal. Extended SSD effects are apparent for higher electron beam energy with small cone size causing the depth of maximum dose and the rapid dose fall-off region to shift deeper into the phantom. However, the change in the depth-dose curve is small. On the other hand, the rapid dose fall-off region is essentially unaltered when the large cone is used. The penumbra enlarges and electron beam flatness deteriorates with increasing SSD

  10. Study of distribution dose for chest radiography using the computational model ALDERSON/EGSnrc

    International Nuclear Information System (INIS)

    Muniz, B.C.; Menezes, C.J.M.

    2017-01-01

    Numerical dosimetry uses Computational Exposure Models (MCE) to perform dose studies in situations of radiation exposure without the need for individuals to be exposed. MCEs are essentially composed of a simulator of the radioactive source, a Monte Carlo code, and a phantom of voxels representing the human anatomy. The objective of this work was to perform a study of the dose distribution in the thoracic region in radiographic exams using the MCE ALDERSON / EGSnrc. For that, virtual simulations were performed using Monte Carlo Method techniques to calculate the dose in the simulator of voxels representative of the thoracic region. The results show that most beam energy was deposited in the skeleton for all simulated radiological techniques, while smaller fractions were deposited in the lungs and soft tissue. For example, at 90 kV voltage, 14% of the energy was deposited in the bone medium, while lungs and soft tissue receive only 5 and 3%, respectively. It is concluded that the ALDERSON / EGSnrc MCE can be used for studies of the dose distribution on chest radiographs used in radiodiagnosis practice, thus optimizing dose absorbed in the patient in clinical exams

  11. Approximate distribution of dose among foetal organs for radioiodine uptake via placenta transfer

    Science.gov (United States)

    Millard, R. K.; Saunders, M.; Palmer, A. M.; Preece, A. W.

    2001-11-01

    Absorbed radiation doses to internal foetal organs were calculated according to the medical internal radiation dose (MIRD) technique in this study. Anthropomorphic phantoms of the pregnant female as in MIRDOSE3 enabled estimation of absorbed dose to the whole foetus at two stages of gestation. Some foetal organ self-doses could have been estimated by invoking simple spherical models for thyroid, liver, etc, but we investigated the use of the MIRDOSE3 new-born phantom as a surrogate for the stage 3 foetus, scaled to be compatible with total foetal body mean absorbed dose/cumulated activity. We illustrate the method for obtaining approximate dose distribution in the foetus near term following intake of 1 MBq of 123I, 124I, 125I or 131I as sodium iodide by the mother using in vivo biodistribution data examples from a good model of placenta transfer. Doses to the foetal thyroid of up to 1.85 Gy MBq-1 were predicted from the 131I uptake data. Activity in the foetal thyroid was the largest contributor to absorbed dose in the foetal body, brain, heart and thymus. Average total doses to the whole foetus ranged from 0.16 to 1.2 mGy MBq-1 for stages 1 and 3 of pregnancy using the MIRDOSE3 program, and were considerably higher than those predicted from the maternal contributions alone. Doses to the foetal thymus and stomach were similar, around 2-3 mGy MBq-1. Some foetal organ doses from the radioiodides were ten times higher than to the corresponding organs of the mother, and up to 100 times higher to the thyroid. The fraction of activity uptakes in foetal organs were distributed similarly to the maternal ones.

  12. Approximate distribution of dose among foetal organs for radioiodine uptake via placenta transfer

    Energy Technology Data Exchange (ETDEWEB)

    Millard, R.K. [Medical Physics Research Centre, Bristol Oncology Centre, Bristol (United Kingdom)]. E-mail: rkmillard_69@yahoo.co.uk; Saunders, M.; Palmer, A.M.; Preece, A.W. [Medical Physics Research Centre, Bristol Oncology Centre, Bristol (United Kingdom)

    2001-11-01

    Absorbed radiation doses to internal foetal organs were calculated according to the medical internal radiation dose (MIRD) technique in this study. Anthropomorphic phantoms of the pregnant female as in MIRDOSE3 enabled estimation of absorbed dose to the whole foetus at two stages of gestation. Some foetal organ self-doses could have been estimated by invoking simple spherical models for thyroid, liver, etc, but we investigated the use of the MIRDOSE3 new-born phantom as a surrogate for the stage 3 foetus, scaled to be compatible with total foetal body mean absorbed dose/cumulated activity. We illustrate the method for obtaining approximate dose distribution in the foetus near term following intake of 1 MBq of {sup 123}I, {sup 124}I, {sup 125}I or {sup 131}I as sodium iodide by the mother using in vivo biodistribution data examples from a good model of placenta transfer. Doses to the foetal thyroid of up to 1.85 Gy MBq{sup -1} were predicted from the {sup 131}I uptake data. Activity in the foetal thyroid was the largest contributor to absorbed dose in the foetal body, brain, heart and thymus. Average total doses to the whole foetus ranged from 0.16 to 1.2 mGy MBq{sup -1} for stages 1 and 3 of pregnancy using the MIRDOSE3 program, and were considerably higher than those predicted from the maternal contributions alone. Doses to the foetal thymus and stomach were similar, around 2-3 mGy MBq{sup -1}. Some foetal organ doses from the radioiodides were ten times higher than to the corresponding organs of the mother, and up to 100 times higher to the thyroid. The fraction of activity uptakes in foetal organs were distributed similarly to the maternal ones. (author)

  13. Towards biologically conformal radiation therapy (BCRT): Selective IMRT dose escalation under the guidance of spatial biology distribution

    International Nuclear Information System (INIS)

    Yang Yong; Xing Lei

    2005-01-01

    It is well known that the spatial biology distribution (e.g., clonogen density, radiosensitivity, tumor proliferation rate, functional importance) in most tumors and sensitive structures is heterogeneous. Recent progress in biological imaging is making the mapping of this distribution increasingly possible. The purpose of this work is to establish a theoretical framework to quantitatively incorporate the spatial biology data into intensity modulated radiation therapy (IMRT) inverse planning. In order to implement this, we first derive a general formula for determining the desired dose to each tumor voxel for a known biology distribution of the tumor based on a linear-quadratic model. The desired target dose distribution is then used as the prescription for inverse planning. An objective function with the voxel-dependent prescription is constructed with incorporation of the nonuniform dose prescription. The functional unit density distribution in a sensitive structure is also considered phenomenologically when constructing the objective function. Two cases with different hypothetical biology distributions are used to illustrate the new inverse planning formalism. For comparison, treatments with a few uniform dose prescriptions and a simultaneous integrated boost are also planned. The biological indices, tumor control probability (TCP) and normal tissue complication probability (NTCP), are calculated for both types of plans and the superiority of the proposed technique over the conventional dose escalation scheme is demonstrated. Our calculations revealed that it is technically feasible to produce deliberately nonuniform dose distributions with consideration of biological information. Compared with the conventional dose escalation schemes, the new technique is capable of generating biologically conformal IMRT plans that significantly improve the TCP while reducing or keeping the NTCPs at their current levels. Biologically conformal radiation therapy (BCRT

  14. Dose distribution in lungs and thyroid from scatter photons of x-ray mammography imaging

    International Nuclear Information System (INIS)

    Faghihi, R.; Mehdizadeh, S.

    2006-01-01

    The contribution of scatter photons in dose of mammography image in thyroid and lungs are studied. Thyroid and in the form of distribution function and total delivered dose studied by direct measurement with Thermoluminescence dosimeter. The results of measurements compared to other published measurements and the total dose compared to our modelling with Monte Carlo method.. Our phantoms for direct measurement of Dose are a compressed breast phantom placed on a female RANDO phantom. The results of modelling and measurement are in agreement for the total delivered dose to thyroid and lungs and comparable to doses reported by the other researcher

  15. Establishing the impact of temporary tissue expanders on electron and photon beam dose distributions.

    Science.gov (United States)

    Asena, A; Kairn, T; Crowe, S B; Trapp, J V

    2015-05-01

    This study investigates the effects of temporary tissue expanders (TTEs) on the dose distributions in breast cancer radiotherapy treatments under a variety of conditions. Using EBT2 radiochromic film, both electron and photon beam dose distribution measurements were made for different phantoms, and beam geometries. This was done to establish a more comprehensive understanding of the implant's perturbation effects under a wider variety of conditions. The magnetic disk present in a tissue expander causes a dose reduction of approximately 20% in a photon tangent treatment and 56% in electron boost fields immediately downstream of the implant. The effects of the silicon elastomer are also much more apparent in an electron beam than a photon beam. Evidently, each component of the TTE attenuates the radiation beam to different degrees. This study has demonstrated that the accuracy of photon and electron treatments of post-mastectomy patients is influenced by the presence of a tissue expander for various beam orientations. The impact of TTEs on dose distributions establishes the importance of an accurately modelled high-density implant in the treatment planning system for post-mastectomy patients. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  16. Photon beam dose distributions for patients with implanted temporary tissue expanders

    Science.gov (United States)

    Asena, A.; Kairn, T.; Crowe, S. B.; Trapp, J. V.

    2015-01-01

    This study examines the effects of temporary tissue expanders (TTEs) on the dose distributions of photon beams in breast cancer radiotherapy treatments. EBT2 radiochromic film and ion chamber measurements were taken to quantify the attenuation and backscatter effects of the inhomogeneity. Results illustrate that the internal magnetic port present in a tissue expander causes a dose reduction of approximately 25% in photon tangent fields immediately downstream of the implant. It was also shown that the silicone elastomer shell of the tissue expander reduced the dose to the target volume by as much as 8%. This work demonstrates the importance for an accurately modelled high-density implant in the treatment planning system for post-mastectomy breast cancer patients.

  17. 137Cs source dose distribution using the Fricke Xylenol Gel dosimetry

    International Nuclear Information System (INIS)

    Sato, R.; De Almeida, A.; Moreira, M.V.

    2009-01-01

    Dosimetric measurements close to radioisotope sources, such as those used in brachytherapy, require high spatial resolution to avoid incorrect results in the steep dose gradient region. In this work the Fricke Xylenol Gel dosimeter was used to obtain the spatial dose distribution. The readings from a 137 Cs source were performed using two methods, visible spectrophotometer and CCD camera images. Good agreement with the Sievert summation method was found for the transversal axis dose profile within uncertainties of 4% and 5%, for the spectrophotometer and CCD camera respectively. Our results show that the dosimeter is adequate for brachytherapy dosimetry and, owing to its relatively fast and easy preparation and reading, it is recommended for quality control in brachytherapy applications.

  18. Computer calculation of dose distributions in radiotherapy. Report of a panel

    International Nuclear Information System (INIS)

    1966-01-01

    As in most areas of scientific endeavour, the advent of electronic computers has made a significant impact on the investigation of the physical aspects of radiotherapy. Since the first paper on the subject was published in 1955 the literature has rapidly expanded to include the application of computer techniques to problems of external beam, and intracavitary and interstitial dosimetry. By removing the tedium of lengthy repetitive calculations, the availability of automatic computers has encouraged physicists and radiotherapists to take a fresh look at many fundamental physical problems of radiotherapy. The most important result of the automation of dosage calculations is not simply an increase in the quantity of data but an improvement in the quality of data available as a treatment guide for the therapist. In October 1965 the International Atomic Energy Agency convened a panel in Vienna on the 'Use of Computers for Calculation of Dose Distributions in Radiotherapy' to assess the current status of work, provide guidelines for future research, explore the possibility of international cooperation and make recommendations to the Agency. The panel meeting was attended by 15 participants from seven countries, one observer, and two representatives of the World Health Organization. Participants contributed 20 working papers which served as the bases of discussion. By the nature of the work, computer techniques have been developed by a few advanced centres with access to large computer installations. However, several computer methods are now becoming 'routine' and can be used by institutions without facilities for research. It is hoped that the report of the Panel will provide a comprehensive view of the automatic computation of radiotherapeutic dose distributions and serve as a means of communication between present and potential users of computers

  19. Design and dosimetry of an eye plaque containing I-125 seeds: An improved dose distribution

    International Nuclear Information System (INIS)

    Detorie, N.A.; Tkacik, M.F.; Neglia, W.J.; Jenkins, D.; Shadday, J.

    1986-01-01

    To treat intraocular tumors, a temporarily implanted eye plaque, containing 24 I-125 seeds (3M model 6711), was fabricated from 0.6-mm-thick lead disk with a 1.5-cm diameter. The I-125 seeds were distributed in a particular geometric pattern to average the dose anisotropy of each individual seed. Water phantom measurements made with TLD chips (LiF) and film over the approximate depth range of 1-25 mm were compared with treatment planning computer calculations (Capintec RT-108). Data indicate that the specified geometry produces a dose distribution delivering a tumor dose of 10,000 rad to the tumor apex (7 mm) without exceeding a sclera dose (1 mm) of 40,000 rad. Information regarding fabrication, dosimetry, and radiation safety is presented

  20. Three-dimensional visualization and measurement of conformal dose distributions using magnetic resonance imaging of bang polymer gel dosimeters

    International Nuclear Information System (INIS)

    Ibbott, Geoffrey S.; Maryanski, Marek J.; Eastman, Peter; Holcomb, Stephen D.; Yashan, Zhang; Avison, Robin G.; Sanders, Michael; Gore, John C.

    1997-01-01

    Purpose/Objective: The measurement of complex dose distributions (those created by irradiation through multiple beams, multiple sources, or multiple source dwell positions) requires a dosimeter that can integrate the dose during a complete treatment. Integrating dosimeter devices generally are capable of measuring only dose at a point (ion chamber, diode, TLD) or in a plane (film). With increasing use of conformal dose distributions requiring shaped, non coplanar beams, there will be an increased requirement for a dosimeter that can record and display a 3D dose distribution. The use of a 3D dosimeter will be required to confirm the accuracy of treatment plans produced by the current generation of 3D treatment-planning computers. Methods and Materials: The use of a Fricke-infused gel and magnetic resonance imaging (MRI) to demonstrate the localization of stereotactic beams has been demonstrated (11). The recently developed BANG polymer gel dosimetry system (MGS Research, Inc., Guilford, CT), based on radiation-induced chain polymerization of acrylic monomers dispersed in a tissue-equivalent gel, surpasses the Fricke-gel method by providing accurate, quantitative dose distribution data that do not deteriorate with time (6, 9). The improved BANG2 formulation contains 3% N,N'-methylene-bis acrylamide, 3% acrylic acid, 1% sodium hydroxide, 5% gelatin, and 88% water, where all percentages are by weight. The gel was poured into volumetric flasks, of dimensions comparable to a human head. The gels were irradiated with complex beam arrangements, similar to those used for conformal radiation therapy. Images of the gels were acquired using a Siemens 1.5T imager and a Hahn spin-echo pulse sequence (90 deg. -τ-180 deg. -τ-acquire, for different values of τ). The images were transferred via network to a Macintosh computer for which a data analysis and display program was written. The program calculates R2 maps on the basis of multiple TE images, using a monoexponential

  1. Calculation of breaking radiation dose fields in heterogenous media by a method of the transformation of axial distribution

    International Nuclear Information System (INIS)

    Mil'shtejn, R.S.

    1988-01-01

    Analysis of dose fields in a heterogeneous tissue equivalent medium has shown that dose distributions have radial symmetry and can be described by a curve of axial distribution with renormalization of maximum ionization depth. A method of the calculation of a dose field in a heterogeneous medium using the principle of radial symmetry is presented

  2. Development of a high precision dosimetry system for the measurement of surface dose rate distribution for eye applicators

    Energy Technology Data Exchange (ETDEWEB)

    Eichmann, Marion; Fluehs, Dirk; Spaan, Bernhard [Fakultaet Physik, Technische Universitaet Dortmund, D 44221 Dortmund (Germany); Klinische Strahlenphysik, Universitaetsklinikum Essen, D 45122 Essen (Germany); Fakultaet Physik, Technische Universitaet Dortmund, D 44221 Dortmund (Germany)

    2009-10-15

    Purpose: The therapeutic outcome of the therapy with ophthalmic applicators is highly dependent on the application of a sufficient dose to the tumor, whereas the dose applied to the surrounding tissue needs to be minimized. The goal for the newly developed apparatus described in this work is the determination of the individual applicator surface dose rate distribution with a high spatial resolution and a high precision in dose rate with respect to time and budget constraints especially important for clinical procedures. Inhomogeneities of the dose rate distribution can be detected and taken into consideration for the treatment planning. Methods: In order to achieve this, a dose rate profile as well as a surface profile of the applicator are measured and correlated with each other. An instrumental setup has been developed consisting of a plastic scintillator detector system and a newly designed apparatus for guiding the detector across the applicator surface at a constant small distance. It performs an angular movement of detector and applicator with high precision. Results: The measurements of surface dose rate distributions discussed in this work demonstrate the successful operation of the measuring setup. Measuring the surface dose rate distribution with a small distance between applicator and detector and with a high density of measuring points results in a complete and gapless coverage of the applicator surface, being capable of distinguishing small sized spots with high activities. The dosimetrical accuracy of the measurements and its analysis is sufficient (uncertainty in the dose rate in terms of absorbed dose to water is <7%), especially when taking the surgical techniques in positioning of the applicator on the eyeball into account. Conclusions: The method developed so far allows a fully automated quality assurance of eye applicators even under clinical conditions. These measurements provide the basis for future calculation of a full 3D dose rate

  3. Development of a high precision dosimetry system for the measurement of surface dose rate distribution for eye applicators.

    Science.gov (United States)

    Eichmann, Marion; Flühs, Dirk; Spaan, Bernhard

    2009-10-01

    The therapeutic outcome of the therapy with ophthalmic applicators is highly dependent on the application of a sufficient dose to the tumor, whereas the dose applied to the surrounding tissue needs to be minimized. The goal for the newly developed apparatus described in this work is the determination of the individual applicator surface dose rate distribution with a high spatial resolution and a high precision in dose rate with respect to time and budget constraints especially important for clinical procedures. Inhomogeneities of the dose rate distribution can be detected and taken into consideration for the treatment planning. In order to achieve this, a dose rate profile as well as a surface profile of the applicator are measured and correlated with each other. An instrumental setup has been developed consisting of a plastic scintillator detector system and a newly designed apparatus for guiding the detector across the applicator surface at a constant small distance. It performs an angular movement of detector and applicator with high precision. The measurements of surface dose rate distributions discussed in this work demonstrate the successful operation of the measuring setup. Measuring the surface dose rate distribution with a small distance between applicator and detector and with a high density of measuring points results in a complete and gapless coverage of the applicator surface, being capable of distinguishing small sized spots with high activities. The dosimetrical accuracy of the measurements and its analysis is sufficient (uncertainty in the dose rate in terms of absorbed dose to water is <7%), especially when taking the surgical techniques in positioning of the applicator on the eyeball into account. The method developed so far allows a fully automated quality assurance of eye applicators even under clinical conditions. These measurements provide the basis for future calculation of a full 3D dose rate distribution, which then can be used as input for

  4. Dose distribution and clinical response of glioblastoma treated with boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, M. [Department of Neurosurgery, Graduate School of Comprehensive Human Science, University of Tsukuba, Tennodai 1-1-1, Tsukuba (Japan)], E-mail: mhide-m@gk9.so-net.ne.jp; Yamamoto, T. [Department of Neurosurgery, Graduate School of Comprehensive Human Science, University of Tsukuba, Tennodai 1-1-1, Tsukuba (Japan); Kumada, H. [Japan Atomic Energy Agency, Shirakatashirane 2-4, Tokai (Japan); Nakai, K.; Shirakawa, M.; Tsurubuchi, T.; Matsumura, A. [Department of Neurosurgery, Graduate School of Comprehensive Human Science, University of Tsukuba, Tennodai 1-1-1, Tsukuba (Japan)

    2009-07-15

    The dose distribution and failure pattern after treatment with the external beam boron neutron capture therapy (BNCT) protocol were retrospectively analyzed. BSH (5 g/body) and BPA (250 mg/kg) based BNCT was performed in eight patients with newly diagnosed glioblastoma. The gross tumor volume (GTV) and clinical target volume (CTV)-1 were defined as the residual gadolinium-enhancing volume. CTV-2 and CTV-3 were defined as GTV plus a margin of 2 and 3 cm, respectively. As additional photon irradiation, a total X-ray dose of 30 Gy was given to the T2 high intensity area on MRI. Five of the eight patients were alive at analysis for a mean follow-up time of 20.3 months. The post-operative median survival time of the eight patients was 27.9 months (95% CI=21.0-34.8). The minimum tumor dose of GTV, CTV-2, and CTV-3 averaged 29.8{+-}9.9, 15.1{+-}5.4, and 12.4{+-}2.9 Gy, respectively. The minimum tumor non-boron dose of GTV, CTV-2, and CTV-3 averaged 2.0{+-}0.5, 1.3{+-}0.3, and 1.1{+-}0.2 Gy, respectively. The maximum normal brain dose, skin dose, and average brain dose were 11.4{+-}1.5, 9.6{+-}1.4, and 3.1{+-}0.4 Gy, respectively. The mean minimum dose at the failure site in cases of in-field recurrence (IR) and out-field recurrence (OR) was 26.3{+-}16.7 and 14.9 GyEq, respectively. The calculated doses at the failure site were at least equal to the tumor control doses which were previously reported. We speculate that the failure pattern was related to an inadequate distribution of boron-10. Further improvement of the microdistribution of boron compounds is expected, and may improve the tumor control by BNCT.

  5. Effect of temporal distribution of dose on oncogenic transformation

    International Nuclear Information System (INIS)

    Miller, R.C.; Brenner, D.J.; Geard, C.R.; Marino, S.A.; Hall, E.J.

    1988-01-01

    Risk estimates for neutron hazards are of considerable social and economic importance. Effectiveness per unit dose of X or γ rays (low-LET radiations) has been consistently observed to be dependent on the temporal distribution of dose. In a series of comparisons, 0.5 Gy of single or fractionated (five fractions in 8 h), neutrons of 0.23, 0.35, 0.45, 5.9, or 13.7 MeV were delivered to a synchronous C3H 10T1/2 cells. Transformation frequencies per surviving cell are shown. Cells exposed to one energy (5.9 MeV) show a significant enhancement at the 95% level due to fractionated exposures, and at the 85% confidence level the 0.35- and 0.45-MeV fractionated exposures additionally result in significantly greater transformation frequencies. The frequencies of surviving cells per dish between a single or fractionated exposure vary by less than 10%. In three of five pairwise comparisons, fractionated exposures result in statistically greater frequencies of transformants per dish, and are in complete agreement with the results when induction is expressed as transformants per surviving cell. However, after 0.23-MeV neutron irradiation, the single dose resulted in a greater incidence of transformed foci than the fractionated dose

  6. Computational modelling of radiotherapy treatment equipment, relationship between the intricate details of a radiotherapy treatment beam and its subsequent dose distributions

    International Nuclear Information System (INIS)

    Hug, B.H.; Ebert, M.A.; Woodward, R.

    2011-01-01

    Full text: As treatment planning and delivery technology continues to improve, physicists are faced with new IMRT QA challenges. A proposed solution is beam monitoring devices capable of measuring beam fluence modulation. However, information provided by such a device is only a surrogate of the true beam fluence. This work examined the relationship between the level of knowledge of beam fluence provided by such a device and the implication on dosimetry calculations. Phase space files obtained from the TAEA database for varying linac manufacturer and field sizes particle characteristics were modified and used as the source for a DOSXYZnrc Monte Carlo dose calculation in a water phantom. Dose representations were produced for the unmodified and modified dose files and the dose variations quantified. Results show that altering the particle directions had the most effect in the penumbral regions. Reduced knowledge regarding the particle spectra and contamination lead to marked differences in the dose build up region as well as off axis regions at depth. Current Fluence measurement devices could potentially be oversimplifying the relationship between the beam characteristics and the subsequent calculated dose distribution. Conclusion suggest if a fluence device is to be used for dosimetry purposes, the device must be capable of resolving beam characteristics. The limit of information required to be known to accurately predict a dose distribution will be determined and used in conjunction with Monte Carlo simulations to investigate the response of novel detector geometries to such particle characteristics.

  7. Four-dimensional dose distributions of step-and-shoot IMRT delivered with real-time tumor tracking for patients with irregular breathing: Constant dose rate vs dose rate regulation

    International Nuclear Information System (INIS)

    Yang Xiaocheng; Han-Oh, Sarah; Gui Minzhi; Niu Ying; Yu, Cedric X.; Yi Byongyong

    2012-01-01

    Purpose: Dose-rate-regulated tracking (DRRT) is a tumor tracking strategy that programs the MLC to track the tumor under regular breathing and adapts to breathing irregularities during delivery using dose rate regulation. Constant-dose-rate tracking (CDRT) is a strategy that dynamically repositions the beam to account for intrafractional 3D target motion according to real-time information of target location obtained from an independent position monitoring system. The purpose of this study is to illustrate the differences in the effectiveness and delivery accuracy between these two tracking methods in the presence of breathing irregularities. Methods: Step-and-shoot IMRT plans optimized at a reference phase were extended to remaining phases to generate 10-phased 4D-IMRT plans using segment aperture morphing (SAM) algorithm, where both tumor displacement and deformation were considered. A SAM-based 4D plan has been demonstrated to provide better plan quality than plans not considering target deformation. However, delivering such a plan requires preprogramming of the MLC aperture sequence. Deliveries of the 4D plans using DRRT and CDRT tracking approaches were simulated assuming the breathing period is either shorter or longer than the planning day, for 4 IMRT cases: two lung and two pancreatic cases with maximum GTV centroid motion greater than 1 cm were selected. In DRRT, dose rate was regulated to speed up or slow down delivery as needed such that each planned segment is delivered at the planned breathing phase. In CDRT, MLC is separately controlled to follow the tumor motion, but dose rate was kept constant. In addition to breathing period change, effect of breathing amplitude variation on target and critical tissue dose distribution is also evaluated. Results: Delivery of preprogrammed 4D plans by the CDRT method resulted in an average of 5% increase in target dose and noticeable increase in organs at risk (OAR) dose when patient breathing is either 10% faster or

  8. MCNPX simulation of proton dose distribution in homogeneous and CT phantoms

    International Nuclear Information System (INIS)

    Lee, C.C.; Lee, Y.J.; Tung, C.J.; Cheng, H.W.; Chao, T.C.

    2014-01-01

    A dose simulation system was constructed based on the MCNPX Monte Carlo package to simulate proton dose distribution in homogeneous and CT phantoms. Conversion from Hounsfield unit of a patient CT image set to material information necessary for Monte Carlo simulation is based on Schneider's approach. In order to validate this simulation system, inter-comparison of depth dose distributions among those obtained from the MCNPX, GEANT4 and FLUKA codes for a 160 MeV monoenergetic proton beam incident normally on the surface of a homogeneous water phantom was performed. For dose validation within the CT phantom, direct comparison with measurement is infeasible. Instead, this study took the approach to indirectly compare the 50% ranges (R 50% ) along the central axis by our system to the NIST CSDA ranges for beams with 160 and 115 MeV energies. Comparison result within the homogeneous phantom shows good agreement. Differences of simulated R 50% among the three codes are less than 1 mm. For results within the CT phantom, the MCNPX simulated water equivalent R eq,50% are compatible with the CSDA water equivalent ranges from the NIST database with differences of 0.7 and 4.1 mm for 160 and 115 MeV beams, respectively. - Highlights: ► Proton dose simulation based on the MCNPX 2.6.0 in homogeneous and CT phantoms. ► CT number (HU) conversion to electron density based on Schneider's approach. ► Good agreement among MCNPX, GEANT4 and FLUKA codes in a homogeneous water phantom. ► Water equivalent R 50 in CT phantoms are compatible to those of NIST database

  9. Evaluation of the effect of tooth and dental restoration material on electron dose distribution and production of photon contamination in electron beam radiotherapy

    International Nuclear Information System (INIS)

    Bahreyni Toossi, M.T.; Ghorbani, Mahdi; Akbari, Fatemah; Sabet, Leila S.; Mehrpouyan, Mohammad

    2016-01-01

    The aim of this study is to evaluate the effect of tooth and dental restoration materials on electron dose distribution and photon contamination production in electron beams of a medical linac. This evaluation was performed on 8, 12 and 14 MeV electron beams of a Siemens Primus linac. MCNPX Monte Carlo code was utilized and a 10 × 10 cm 2 applicator was simulated in the cases of tooth and combinations of tooth and Ceramco C3 ceramic veneer, tooth and Eclipse alloy and tooth and amalgam restoration materials in a soft tissue phantom. The relative electron and photon contamination doses were calculated for these materials. The presence of tooth and dental restoration material changed the electron dose distribution and photon contamination in phantom, depending on the type of the restoration material and electron beam’s energy. The maximum relative electron dose was 1.07 in the presence of tooth including amalgam for 14 MeV electron beam. When 100.00 cGy was prescribed for the reference point, the maximum absolute electron dose was 105.10 cGy in the presence of amalgam for 12 MeV electron beam and the maximum absolute photon contamination dose was 376.67 μGy for tooth in 14 MeV electron beam. The change in electron dose distribution should be considered in treatment planning, when teeth are irradiated in electron beam radiotherapy. If treatment planning can be performed in such a way that the teeth are excluded from primary irradiation, the potential errors in dose delivery to the tumour and normal tissues can be avoided.

  10. Dose equivalent distribution during occupational exposure in oncology

    International Nuclear Information System (INIS)

    Marco H, J.

    1996-01-01

    In this work are presented the results of the radiological surveillance of occupationally exposed workers at the National Institute of Oncology and Radiology during 26 years. The incidence of the equivalent dose in the personal working with radiant sources and radioactive substances in areas of x rays diagnostic, teletherapy, brachytherapy, nuclear medicine and biomedical research was showed. The employed dosimetric system makes use of ORWO RD3/RD4 monitoring film with copper and lead filters inside a plastic cassette manufactured in Cuba. The experimental method is supported by the optical densitometric analysis of films together with a set of standard film calibrated in standard X and gamma photon beams by means of a secondary standard dosimeter, type NPL. Statistics show that except those workings with radium-226, manual brachytherapy or Mo-99/Tc-99 generator elution, the equivalent dose distribution in our workers has been kept in regions well down the annual permissible limit. (authors). 6 refs., 3 tabs

  11. MCNPX calculations of dose rate distribution inside samples treated in the research gamma irradiating facility at CTEx

    Energy Technology Data Exchange (ETDEWEB)

    Rusin, Tiago; Rebello, Wilson F.; Vellozo, Sergio O.; Gomes, Renato G., E-mail: tiagorusin@ime.eb.b, E-mail: rebello@ime.eb.b, E-mail: vellozo@cbpf.b, E-mail: renatoguedes@ime.eb.b [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil). Dept. de Engenharia Nuclear; Vital, Helio C., E-mail: vital@ctex.eb.b [Centro Tecnologico do Exercito (CTEx), Rio de Janeiro, RJ (Brazil); Silva, Ademir X., E-mail: ademir@con.ufrj.b [Universidade Federal do Rio de Janeiro (PEN/COPPE/UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-Graduacao de Engenharia. Programa de Engenharia Nuclear

    2011-07-01

    A cavity-type cesium-137 research irradiating facility at CTEx has been modeled by using the Monte Carlo code MCNPX. The irradiator has been daily used in experiments to optimize the use of ionizing radiation for conservation of many kinds of food and to improve materials properties. In order to correlate the effects of the treatment, average doses have been calculated for each irradiated sample, accounting for the measured dose rate distribution in the irradiating chambers. However that approach is only approximate, being subject to significant systematic errors due to the heterogeneous internal structure of most samples that can lead to large anisotropy in attenuation and Compton scattering properties across the media. Thus this work is aimed at further investigating such uncertainties by calculating the dose rate distribution inside the items treated such that a more accurate and representative estimate of the total absorbed dose can be determined for later use in the effects-versus-dose correlation curves. Samples of different simplified geometries and densities (spheres, cylinders, and parallelepipeds), have been modeled to evaluate internal dose rate distributions within the volume of the samples and the overall effect on the average dose. (author)

  12. MCNPX calculations of dose rate distribution inside samples treated in the research gamma irradiating facility at CTEx

    International Nuclear Information System (INIS)

    Rusin, Tiago; Rebello, Wilson F.; Vellozo, Sergio O.; Gomes, Renato G.; Silva, Ademir X.

    2011-01-01

    A cavity-type cesium-137 research irradiating facility at CTEx has been modeled by using the Monte Carlo code MCNPX. The irradiator has been daily used in experiments to optimize the use of ionizing radiation for conservation of many kinds of food and to improve materials properties. In order to correlate the effects of the treatment, average doses have been calculated for each irradiated sample, accounting for the measured dose rate distribution in the irradiating chambers. However that approach is only approximate, being subject to significant systematic errors due to the heterogeneous internal structure of most samples that can lead to large anisotropy in attenuation and Compton scattering properties across the media. Thus this work is aimed at further investigating such uncertainties by calculating the dose rate distribution inside the items treated such that a more accurate and representative estimate of the total absorbed dose can be determined for later use in the effects-versus-dose correlation curves. Samples of different simplified geometries and densities (spheres, cylinders, and parallelepipeds), have been modeled to evaluate internal dose rate distributions within the volume of the samples and the overall effect on the average dose. (author)

  13. Calculation of the dose distribution in water from {sup 71}Ge K-shell x-rays

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sang H.; Reece, Warren D.; Poston, John W. Sr. [Department of Nuclear Engineering, Texas A and M University, College Station, TX (United States)

    1997-06-01

    The dose distribution in water from {sup 71}Ge K-shell x-rays (E{sub ave}=9.44 eV) was calculated for various source configurations using both analytic and GS4 Monte Carlo calculations. The point source kernel and the buildup factor are presented. The buildup factor for a point source in water has been found to increase up to about 1.1 as radial distance approaches 1 cm. Comparison between {sup 71}Ge and {sup 90}Sr/Y shows a similarity between their relative dose distribution in water. The dose distribution from a disc source was calculated using the EGS4 code and compared with the results from analytic calculation. Excellent agreement was observed, confirming the validity of analytic calculations. The dose rate at 0.01 cm from a {sup 71}Ge disc source was calculated to be about 1.3x10{sup -5} Gy MBq{sup -1}s{sup -1}. Based on the results from his study, {sup 71}Ge activity of the order of 3.7x10{sup 10} Bq({approx}1 Ci) might be necessary to obtain dose rates typical of {sup 90}Sr/Y ophthalmic applicators. The possibility of using {sup 71}Ge as a source of radioactive stents was also investigated. A {sup 71}Ge stent was modelled as a cylindrical shell source and the dose rates were determined by Monte Carlo calculations. Some calculated results are compared with published values for a {sup 32}P-coated stent. The dose rate at 0.01 cm from a {sup 71}Ge stent has been calculated to be about .5x10{sup -3} Gy MBq{sup -1}h{sup -1}, which is much lower than the reported dose rate at the same distance from a {sup 32}P-coated stent. However, an initial source activity of the order of 3.7x10{sup 7} Bq ({approx}1 mCi) would easily result in a typical target dose ({approx}24 Gy) needed for intravascular stent applications. In conclusion, {sup 71}Ge sources could be used as alternatives to beta sources and, unlike high-energy ({approx}MeV) beta sources, may provide easily predictable dose distributions in heterogeneous media and low dose rates, which might be beneficial for

  14. Dosimetric verification of stereotactic radiosurgery/stereotactic radiotherapy dose distributions using Gafchromic EBT3

    Energy Technology Data Exchange (ETDEWEB)

    Cusumano, Davide, E-mail: davide.cusumano@unimi.it [School of Medical Physics, University of Milan, Milan (Italy); Fumagalli, Maria L. [Health Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan (Italy); Marchetti, Marcello; Fariselli, Laura [Department of Neurosurgery, Radiotherapy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan (Italy); De Martin, Elena [Health Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan (Italy)

    2015-10-01

    Aim of this study is to examine the feasibility of using the new Gafchromic EBT3 film in a high-dose stereotactic radiosurgery and radiotherapy quality assurance procedure. Owing to the reduced dimensions of the involved lesions, the feasibility of scanning plan verification films on the scanner plate area with the best uniformity rather than using a correction mask was evaluated. For this purpose, signal values dispersion and reproducibility of film scans were investigated. Uniformity was then quantified in the selected area and was found to be within 1.5% for doses up to 8 Gy. A high-dose threshold level for analyses using this procedure was established evaluating the sensitivity of the irradiated films. Sensitivity was found to be of the order of centiGray for doses up to 6.2 Gy and decreasing for higher doses. The obtained results were used to implement a procedure comparing dose distributions delivered with a CyberKnife system to planned ones. The procedure was validated through single beam irradiation on a Gafchromic film. The agreement between dose distributions was then evaluated for 13 patients (brain lesions, 5 Gy/die prescription isodose ~80%) using gamma analysis. Results obtained using Gamma test criteria of 5%/1 mm show a pass rate of 94.3%. Gamma frequency parameters calculation for EBT3 films showed to strongly depend on subtraction of unexposed film pixel values from irradiated ones. In the framework of the described dosimetric procedure, EBT3 films proved to be effective in the verification of high doses delivered to lesions with complex shapes and adjacent to organs at risk.

  15. Vertebral lesion distribution in multiple myeloma - assessed by reduced-dose whole-body MDCT

    International Nuclear Information System (INIS)

    Bier, Georg; Kloth, Christopher; Schabel, Christoph; Bongers, Malte; Nikolaou, Konstantin; Horger, Marius

    2016-01-01

    To observe the distribution and potential distribution patterns of osteolytic and sclerotic vertebral involvement in a representative collective of multiple myeloma patients. A total of 66 consecutive patients with a diagnosis of multiple myeloma at initial diagnosis or during follow-up were examined by multidetector reduced-dose computed tomography to evaluate the distribution of bone lesions along the spine with focus on size, location, and lesion character. Confirmation of diagnosis was performed by comparison to follow-up computed tomography or magnetic resonance tomography. If >50 % of all detected malignant lesions occurred in one spinal segment, the distribution pattern was called cervical, thoracic, lumbar, or sacral, otherwise a ''mixed'' pattern was classified. Of a total number of 933 osseous spine lesions, 632 (67.7 %) were classified as malignant (98.9 % of them osteolytic) and 293 (31.5 %) as benign. The distribution pattern analysis yielded two patients (3.8 %) with a cervical, 26 (50 %) with a thoracic, 4 (7.7 %) with a lumbar, one (1.9 %) with a sacral pattern, and 19 cases (36.6 %) showed a mixed distribution pattern. Segment-wise, the mean lesion size was 6.52 ± 2.76 mm (cervical), 8.97 ± 5.43 mm (thoracic), 11.97 ± 7.11 mm (lumbar), and 17.5 ± 16.465 (sacral), whilst, related to the vertebra size, the lesion/vertebra size ratio is decreasing through the whole spine beginning from the top. Multiple myeloma bone lesions occur preferably and are larger in the thoracic and lumbar spine. Moreover, a specific distribution pattern is present in about 60 %. (orig.)

  16. Vertebral lesion distribution in multiple myeloma - assessed by reduced-dose whole-body MDCT

    Energy Technology Data Exchange (ETDEWEB)

    Bier, Georg; Kloth, Christopher; Schabel, Christoph; Bongers, Malte; Nikolaou, Konstantin; Horger, Marius [Eberhard-Karls-University Tuebingen, Department of Diagnostic and Interventional Radiology, Tuebingen (Germany)

    2016-01-15

    To observe the distribution and potential distribution patterns of osteolytic and sclerotic vertebral involvement in a representative collective of multiple myeloma patients. A total of 66 consecutive patients with a diagnosis of multiple myeloma at initial diagnosis or during follow-up were examined by multidetector reduced-dose computed tomography to evaluate the distribution of bone lesions along the spine with focus on size, location, and lesion character. Confirmation of diagnosis was performed by comparison to follow-up computed tomography or magnetic resonance tomography. If >50 % of all detected malignant lesions occurred in one spinal segment, the distribution pattern was called cervical, thoracic, lumbar, or sacral, otherwise a ''mixed'' pattern was classified. Of a total number of 933 osseous spine lesions, 632 (67.7 %) were classified as malignant (98.9 % of them osteolytic) and 293 (31.5 %) as benign. The distribution pattern analysis yielded two patients (3.8 %) with a cervical, 26 (50 %) with a thoracic, 4 (7.7 %) with a lumbar, one (1.9 %) with a sacral pattern, and 19 cases (36.6 %) showed a mixed distribution pattern. Segment-wise, the mean lesion size was 6.52 ± 2.76 mm (cervical), 8.97 ± 5.43 mm (thoracic), 11.97 ± 7.11 mm (lumbar), and 17.5 ± 16.465 (sacral), whilst, related to the vertebra size, the lesion/vertebra size ratio is decreasing through the whole spine beginning from the top. Multiple myeloma bone lesions occur preferably and are larger in the thoracic and lumbar spine. Moreover, a specific distribution pattern is present in about 60 %. (orig.)

  17. Assessment of radioactive residues arising from radiolabel instability in a multiple dose tissue distribution study in rats

    International Nuclear Information System (INIS)

    Slatter, J.G.; Sams, J.P.; Easter, J.A.

    2003-01-01

    Our study objectives were to quantitatively determine the effect of radiolabel instability on terminal phase radioactive tissue residues in a multiple dose tissue distribution study, to quantitatively compare tissue residue artifacts (non drug-related radioactivity) from two chemically-distinct radiolabel locations, and to conduct a definitive multiple dose tissue distribution study using the better of the two radiolabeled compounds. We compared the excretion and tissue distribution in rats of [ 14 C]linezolid, radiolabeled in two different locations, after 7 consecutive once daily [ 14 C] oral doses. The radiolabels were in the acetamide (two carbon) and oxazolidinone (isolated carbon) functional groups. Terminal phase tissue residue and excretion data were compared to data from rats dosed orally with [ 14 C]sodium acetate. Drug-related radioactivity was excreted rapidly over 24 h. After a single dose, the acetamide and oxazolidinone radiolabel sites both gave 3% of dose as exhaled 14 CO 2 . After 7 daily [ 14 C] oral doses, terminal phase radioactive tissue residues were higher from the acetamide radiolabel, relative to the oxazolidinone radiolabel, and were primarily not drug-related. In the definitive tissue distribution study, low concentrations of drug-related radioactivity in skin and thyroid were observed. We conclude that although small amounts of radiolabel instability do not significantly affect single dose tissue radioactivity C max and area under the curve (AUC), artifacts arising from radiolabel instability can prolong the apparent terminal phase half life and complicate study data interpretation. When possible, it is always preferable to use a completely stable radiolabel site. (author)

  18. Assessment of radioactive residues arising from radiolabel instability in a multiple dose tissue distribution study in rats

    Energy Technology Data Exchange (ETDEWEB)

    Slatter, J.G. [Pharmacia Corp., Peapack, NJ (United States); Sams, J.P.; Easter, J.A. [Pharmacia Corp., Kalamazoo, MI (United States)] [and others

    2003-05-01

    Our study objectives were to quantitatively determine the effect of radiolabel instability on terminal phase radioactive tissue residues in a multiple dose tissue distribution study, to quantitatively compare tissue residue artifacts (non drug-related radioactivity) from two chemically-distinct radiolabel locations, and to conduct a definitive multiple dose tissue distribution study using the better of the two radiolabeled compounds. We compared the excretion and tissue distribution in rats of [{sup 14}C]linezolid, radiolabeled in two different locations, after 7 consecutive once daily [{sup 14}C] oral doses. The radiolabels were in the acetamide (two carbon) and oxazolidinone (isolated carbon) functional groups. Terminal phase tissue residue and excretion data were compared to data from rats dosed orally with [{sup 14}C]sodium acetate. Drug-related radioactivity was excreted rapidly over 24 h. After a single dose, the acetamide and oxazolidinone radiolabel sites both gave 3% of dose as exhaled {sup 14}CO{sub 2}. After 7 daily [{sup 14}C] oral doses, terminal phase radioactive tissue residues were higher from the acetamide radiolabel, relative to the oxazolidinone radiolabel, and were primarily not drug-related. In the definitive tissue distribution study, low concentrations of drug-related radioactivity in skin and thyroid were observed. We conclude that although small amounts of radiolabel instability do not significantly affect single dose tissue radioactivity C{sub max} and area under the curve (AUC), artifacts arising from radiolabel instability can prolong the apparent terminal phase half life and complicate study data interpretation. When possible, it is always preferable to use a completely stable radiolabel site. (author)

  19. Simulation of lung cancer treatment with equivalent dose calculation and analysis of the dose distribution profile

    International Nuclear Information System (INIS)

    Thalhofer, J. L.; Marques L, J.; Da Silva, A. X.; Dos Reis J, J. P.; Da Silva J, W. F. R.; Arruda C, S. C.; Monteiro de S, E.; Santos B, D. V.

    2017-10-01

    Actually, lung cancer is one of the most lethal types, due to the disease in the majority of the cases asymptomatic in the early stages, being the detection of the pathology in advanced stage, with tumor considerable volume. Dosimetry analysis of healthy organs under real conditions is not feasible. Therefore, computational simulations are used to auxiliary in dose verification in organs of patients submitted to radiotherapy. The goal of this study is to calculate the equivalent dose, due to photons, in surrounding in healthy organs of a patient submitted to radiotherapy for lung cancer, through computational modeling. The simulation was performed using the MCNPX code (Version, 2006], Rex and Regina phantom [ICRP 110, 2008], radiotherapy room, Siemens Oncor Expression accelerator operating at 6 MV and treatment protocol adopted at the Inca (National Cancer Institute, Brazil). The results obtained, considering the dose due to photons for both phantom indicate that organs located inside the thoracic cavity received higher dose, being the bronchi, heart and esophagus more affected, due to the anatomical positioning. Clinical data describe the development of bronchiolitis, esophagitis, and cardiomyopathies with decreased cardiopulmonary function as one of the major effects of lung cancer treatment. In the Regina phantom, the second largest dose was in the region of the breasts with 615,73 mSv / Gy, while in the Rex 514,06 mSv / Gy, event related to the difference of anatomical structure of the organ. Through the t mesh command, a qualitative analysis was performed between the dose deposition profile of the planning system and the simulated treatment, with a similar profile of the dose distribution being verified along the patients body. (Author)

  20. Monte Carlo dose calculations and radiobiological modelling: analysis of the effect of the statistical noise of the dose distribution on the probability of tumour control

    International Nuclear Information System (INIS)

    Buffa, Francesca M.

    2000-01-01

    The aim of this work is to investigate the influence of the statistical fluctuations of Monte Carlo (MC) dose distributions on the dose volume histograms (DVHs) and radiobiological models, in particular the Poisson model for tumour control probability (tcp). The MC matrix is characterized by a mean dose in each scoring voxel, d, and a statistical error on the mean dose, σ d ; whilst the quantities d and σ d depend on many statistical and physical parameters, here we consider only their dependence on the phantom voxel size and the number of histories from the radiation source. Dose distributions from high-energy photon beams have been analysed. It has been found that the DVH broadens when increasing the statistical noise of the dose distribution, and the tcp calculation systematically underestimates the real tumour control value, defined here as the value of tumour control when the statistical error of the dose distribution tends to zero. When increasing the number of energy deposition events, either by increasing the voxel dimensions or increasing the number of histories from the source, the DVH broadening decreases and tcp converges to the 'correct' value. It is shown that the underestimation of the tcp due to the noise in the dose distribution depends on the degree of heterogeneity of the radiobiological parameters over the population; in particular this error decreases with increasing the biological heterogeneity, whereas it becomes significant in the hypothesis of a radiosensitivity assay for single patients, or for subgroups of patients. It has been found, for example, that when the voxel dimension is changed from a cube with sides of 0.5 cm to a cube with sides of 0.25 cm (with a fixed number of histories of 10 8 from the source), the systematic error in the tcp calculation is about 75% in the homogeneous hypothesis, and it decreases to a minimum value of about 15% in a case of high radiobiological heterogeneity. The possibility of using the error on the

  1. Three-dimensional neutron dose distribution in the environment around a 1-GeV electron synchrotron facility at INS

    International Nuclear Information System (INIS)

    Uwamino, Y.; Nakamura, T.

    1987-01-01

    The three-dimensional (surface and altitude) skyshine neutron-dose-equivalent distribution around the 1-GeV electron synchrotron (ES) of the Institute for Nuclear Study, University of Tokyo, was measured with a high-sensitivity dose-equivalent counter. The neutron spectrum in the environment was also measured with a multimoderator spectrometer incorporating a 3 He counter. The dose-equivalent distribution and the leakage neutron spectrum at the surface of the ES building were measured with a Studsvik 2202D counter and the multimoderator spectrometer, including an indium activation detector. Skyshine neutron transport calculations, beginning with the photoneutron spectrum and yielding the dose-equivalent distribution in the environment, were performed with the DOT3.5 code and two Monte Carlo codes, MMCR-2 and MMCR-3, using the DLC-87/HILO group cross sections. The calculated neutron spectra at the top surface of the concrete ceiling and at a point 111 m from the ES agreed well with the measured results, and the calculated three-dimensional dose-equivalent distribution also agreed. The dose value increased linearly with altitude, and the slope was estimated for neutron-producing facilities. (author)

  2. SU-D-204-02: BED Consistent Extrapolation of Mean Dose Tolerances

    Energy Technology Data Exchange (ETDEWEB)

    Perko, Z; Bortfeld, T; Hong, T; Wolfgang, J; Unkelbach, J [Massachusetts General Hospital, Boston, MA (United States)

    2016-06-15

    Purpose: The safe use of radiotherapy requires the knowledge of tolerable organ doses. For experimental fractionation schemes (e.g. hypofractionation) these are typically extrapolated from traditional fractionation schedules using the Biologically Effective Dose (BED) model. This work demonstrates that using the mean dose in the standard BED equation may overestimate tolerances, potentially leading to unsafe treatments. Instead, extrapolation of mean dose tolerances should take the spatial dose distribution into account. Methods: A formula has been derived to extrapolate mean physical dose constraints such that they are mean BED equivalent. This formula constitutes a modified BED equation where the influence of the spatial dose distribution is summarized in a single parameter, the dose shape factor. To quantify effects we analyzed 14 liver cancer patients previously treated with proton therapy in 5 or 15 fractions, for whom also photon IMRT plans were available. Results: Our work has two main implications. First, in typical clinical plans the dose distribution can have significant effects. When mean dose tolerances are extrapolated from standard fractionation towards hypofractionation they can be overestimated by 10–15%. Second, the shape difference between photon and proton dose distributions can cause 30–40% differences in mean physical dose for plans having the same mean BED. The combined effect when extrapolating proton doses to mean BED equivalent photon doses in traditional 35 fraction regimens resulted in up to 7–8 Gy higher doses than when applying the standard BED formula. This can potentially lead to unsafe treatments (in 1 of the 14 analyzed plans the liver mean dose was above its 32 Gy tolerance). Conclusion: The shape effect should be accounted for to avoid unsafe overestimation of mean dose tolerances, particularly when estimating constraints for hypofractionated regimens. In addition, tolerances established for a given treatment modality cannot

  3. Holographic Measurements of Electron-Beam Dose Distributions Around Inhomogeneities in Water

    DEFF Research Database (Denmark)

    Miller, Arne; McLaughlin, W. L.

    1976-01-01

    Dose distribution measurements made in a small quartz cell filled with water, and with an Al rod placed in the water are reported. The cell was irradiated vertically from above with monoenergetic 3 MeV electrons from a Van de Graaff accelerator. The holographic interferometric method previously...

  4. Evaluation of absorbed dose-distribution in the X-ray or gamma-irradiator for blood products

    International Nuclear Information System (INIS)

    Moriyama, Satoshi; Kurihara, Katsuhiko; Yokokawa, Nobuhiko; Satake, Masahiro; Juji, Takeo

    2001-01-01

    Irradiation of blood products abrogates the proliferation of lymphocytes present in cellular component, which is currently the only accepted methodology to prevent transfusion-associated graft versus host disease (TA-GVHD). A range of irradiation dose levels between 15 Gy and 50 Gy is being used, but the majority of facilities are employing 15 Gy. It should, however, be recognized that the delivered dose in the instrument canister might differ from the actual dose absorbed by the blood bag. This study have evaluated the actual dose distribution under practical conditions where a container was loaded with blood products or water bags, or filled with distilled water. This approach provides data that the maximum attenuation occurred when the container was completely filled with a blood-compatible material. Thus, an error of approximately 20 percent should be considered in the dose measured in the in-air condition. A dose calibration in an in-air condition may lead to substantial underexposure of the blood products. A dose distribution study using adequately prearranged exposure period verified that the absorbed dose of 15 Gy was attained at any point in the container for both linear accelerator and gamma-irradiator. The maximal difference in the absorbed dose between measured points was 1.5- and 1.6-fold for linear accelerator and gamma-irradiator, respectively. In conclusion, using blood-compatible materials, a careful dose calibration study should be employed in which the absorbed dose of 15 Gy is obtained at the point where the lowest dose could be expected. (author)

  5. EPR imaging of dose distributions aiming at applications in radiation therapy

    International Nuclear Information System (INIS)

    Lund, E.; Kolbun, N.; Adolfsson, E.; Gustafsson, H.

    2014-01-01

    A one-dimensional electron paramagnetic resonance (EPR) imaging method for visualisation of dose distributions in photon fields has been developed. Pressed pellets of potassium dithionate were homogeneously irradiated in a 60 Co radiation field to 600 Gy. The EPR analysis was performed with an X-Band (9.6 GHz) Bruker E540 EPR and EPR imaging spectrometer equipped with an E540 GC2X two-axis X-band gradient coil set with gradients along the y axis (along the sample tube) and z axis (along B 0 ) and an ER 4108TMHS resonator. Image reconstruction, including deconvolution, baseline corrections and corrections for the resonator sensitivity, was performed using an in-house-developed Matlab code for the purpose to have a transparent and complete algorithm for image reconstruction. With this method, it is possible to visualise a dose distribution with an accuracy of ∼5 % within ±5 mm from the centre of the resonator. (authors)

  6. The Potential Neurotoxic Effects of Low-Dose Sarin Exposure in a Guinea Pig Model

    Science.gov (United States)

    2002-01-01

    1 THE POTENTIAL NEUROTOXIC EFFECTS OF LOW-DOSE SARIN EXPOSURE IN A GUINEA PIG MODEL Melinda R. Roberson, PhD, Michelle B. Schmidt...Proving Ground, MD 21010 USA ABSTRACT This study is assessing the effects in guinea pigs of repeated low-dose exposure to the nerve...COVERED - 4. TITLE AND SUBTITLE The Potential Neurotoxic Effects Of Low-Dose Sarin Exposure In A Guinea Pig Model 5a. CONTRACT NUMBER 5b

  7. Dose distribution and dosimetry parameters calculation of MED3633 Palladium-103 source in water phantom using MCNP

    International Nuclear Information System (INIS)

    Mowlavi, A. A.; Binesh, A.; Moslehitabar, H.

    2006-01-01

    Palladium-103 ( 103 Pd) is a brachytherapy source for cancer treatment. The Monte Carlo codes are usually applied for dose distribution and effect of shieldings. Monte Carlo calculation of dose distribution in water phantom due to a MED3633 103 Pd source is presented in this work. Materials and Methods: The dose distribution around the 10 3Pd Model MED3633 located in the center of 30*30*30 m 3 water phantom cube was calculated using MCNP code by the Monte Carlo method. The percentage depth dose variation along the different axis parallel and perpendicular to the source was also calculated. Then, the isodose curves for 100%, 75%, 50% and 25% percentage depth dose and dosimetry parameters of TG-43 protocol were determined. Results: The results show that the Monte Carlo Method could calculate dose deposition in high gradient region, near the source, accurately. The isodose curves and dosimetric characteristics obtained for MED3633 103 Pd source are in good agreement with published results. Conclusion: The isodose curves of the MED3633 103 Pd source have been derived form dose calculation by MCNP code. The calculated dosimetry parameters for the source agree quite well with their Monte Carlo calculated and experimental measurement values

  8. Axial distribution of absorbed doses in fast neutron field at the RB reactor

    International Nuclear Information System (INIS)

    Sokcic-Kostic, M.; Pesic, M.; Antic, D.; Ninkovic, M.

    1988-11-01

    The coupled fast thermal system CFTS at the RB reactor is created for obtaining fast neutron fields. The axial distribution of fast neutron flux density in its second configuration (CFTS-2) is measured. The axial distribution of absorbed doses is computed on the basis of mentioned experimental results. At the end these experimental and computed results are given. (Author)

  9. Dose planning and dose delivery in radiation therapy

    International Nuclear Information System (INIS)

    Knoeoes, T.

    1991-01-01

    A method has been developed for calibration of CT-numbers to volumetric electron density distributions using tissue substitutes of known elemental composition and experimentally determined electron density. This information have been used in a dose calculation method based on photon and electron interaction processes. The method utilizes a convolution integral between the photon fluence matrix and dose distribution kernels. Inhomogeneous media are accounted for using the theorems of Fano and O'Connor for scaling dose distribution kernels in proportion to electron density. For clinical application of a calculated dose plan, a method for prediction of accelerator output have been developed. The methods gives the number of monitor units that has to be given to obtain a certain absorbed dose to a point inside an irregular, inhomogeneous object. The method for verification of dose distributions outlined in this study makes it possible to exclude the treatment related variance contributions, making an objective evaluation of dose calculations with experiments feasible. The methods for electron density determination, dose calculation and prediction of accelerator output discussed in this study will all contribute to an increased accuracy in the mean absorbed dose to the target volume. However, a substantial gain in the accuracy for the spatial absorbed dose distribution will also follow, especially using CT for mapping of electron density together with the dose calculation algorithm. (au)

  10. Optimization of dose distributions for adjuvant locoregional radiotherapy of gastric cancer by IMRT

    International Nuclear Information System (INIS)

    Lohr, F.; Dobler, B.; Mai, S.; Hermann, B.; Tiefenbacher, U.; Wieland, P.; Steil, V.; Wenz, F.

    2003-01-01

    Background and Purpose: Locoregional relapse is a problem frequently encountered with advanced gastric cancer. Data from the randomized Intergroup trial 116 suggest effectiveness of adjuvant radiochemotherapy, albeit with significant toxicity. The potential of intensity-modulated radiotherapy (IMRT) to reduce toxicity by significantly reducing maximum and median doses to organs at risk while still applying sufficient dose to the target volume in the upper abdomen was studied. Patient and Methods: For a typical configuration of target volumes and organs, a step-and-shoot IMRT plan (eight beam orientations), developed as a class solution for treatment of tumors in the upper abdomen (Figures 1 to 3), a conventional plan, a combination of the conventional plan with a kidney-sparing boost plan, and a conventional plan with noncoplanar ap and pa fields for improved kidney sparing were compared with respect to coverage of target volume and dose to organs at risk with a dose of 45 Gy delivered as the median dose to the target volume. Results: When using the conventional three-dimensionally planned box techniques, the right kidney could be kept below tolerance, but median dose to the left kidney amounted to between 14.8 and 26.9 Gy, depending on the plan. IMRT reduced the median dose to the left kidney to 10.5 Gy, while still keeping the dose to the right kidney 90% of prescription dose were delivered to > 90% of target volume with IMRT (Table 1). Conclusion: IMRT has the potential to deliver efficient doses to target volumes in the upper abdomen, while delivering dose to organs at risk in a more advantageous fashion than a conventional technique. For clinical implementation, the possibility of extensive organ motion in the upper abdomen has to be taken into account for treatment planning and patient positioning. The multitude of potential risks related to its application has to be the subject of thorough follow-up and further studies. (orig.)

  11. Potential radionuclide emissions from stacks on the Hanford Site. Part 1: Dose assessment

    International Nuclear Information System (INIS)

    Davis, W.E.; Barnett, J.M.

    1994-06-01

    On February 3, 1993, the US Department of Energy, Richland Operations Office (RL) received a Compliance Order and Information Request from the Director of the Air and Toxics Division of the US Environmental Protection Agency (EPA), Region 10. The Compliance Plan specified that a dose assessment would be performed for 84 Westinghouse Hanford Company (WHC) stacks registered with the Washington State Department of Health (WAC 246-247) on the Hanford Site. Stacks that have the potential emissions to cause an effective dose equivalent (EDE) to a maximum exposed individual (MEI) greater than 0.1 mrem y -1 must be monitored continuously for radionuclide emissions. Five methods were approved by EPA, Region 10 for performing the assessments: Release Fractions from Appendix D of 40 CFR 61, Back Calculations Using A HEPA Filtration Factor, Nondestructive Assay of HEPA Filters, A Spill Release Fraction, and Upstream of HEPA Filter Air Concentrations. The first two methods were extremely conservative for estimating releases. The third method which used a state-of-the-art portable gamma spectrometer, yielded surprising results from the distribution of radionuclides on the HEPA filters. All five methods are described

  12. Implementation of spot scanning dose optimization and dose calculation for helium ions in Hyperion

    DEFF Research Database (Denmark)

    Fuchs, Hermann; Alber, Markus; Schreiner, Thomas

    2015-01-01

    PURPOSE: Helium ions ((4)He) may supplement current particle beam therapy strategies as they possess advantages in physical dose distribution over protons. To assess potential clinical advantages, a dose calculation module accounting for relative biological effectiveness (RBE) was developed...... published so far. The advantage of (4)He seems to lie in the reduction of dose to surrounding tissue and to OARs. Nevertheless, additional biological experiments and treatment planning studies with larger patient numbers and more tumor indications are necessary to study the possible benefits of helium ion...

  13. The dose distribution of low dose rate Cs-137 in intracavitary brachytherapy: comparison of Monte Carlo simulation, treatment planning calculation and polymer gel measurement

    International Nuclear Information System (INIS)

    Fragoso, M; Love, P A; Verhaegen, F; Nalder, C; Bidmead, A M; Leach, M; Webb, S

    2004-01-01

    In this study, the dose distribution delivered by low dose rate Cs-137 brachytherapy sources was investigated using Monte Carlo (MC) techniques and polymer gel dosimetry. The results obtained were compared with a commercial treatment planning system (TPS). The 20 mm and the 30 mm diameter Selectron vaginal applicator set (Nucletron) were used for this study. A homogeneous and a heterogeneous-with an air cavity-polymer gel phantom was used to measure the dose distribution from these sources. The same geometrical set-up was used for the MC calculations. Beyond the applicator tip, differences in dose as large as 20% were found between the MC and TPS. This is attributed to the presence of stainless steel in the applicator and source set, which are not considered by the TPS calculations. Beyond the air cavity, differences in dose of around 5% were noted, due to the TPS assuming a homogeneous water medium. The polymer gel results were in good agreement with the MC calculations for all the cases investigated

  14. Estimated radiation dose from timepieces containing tritium

    International Nuclear Information System (INIS)

    McDowell-Boyer, L.M.

    1980-01-01

    Luminescent timepieces containing radioactive tritium, either in elemental form or incorporated into paint, are available to the general public. The purpose of this study was to estimate potential radiation dose commitments received by the public annually as a result of exposure to tritium which may escape from the timepieces during their distribution, use, repair, and disposal. Much uncertainty is associated with final dose estimates due to limitations of empirical data from which exposure parameters were derived. Maximum individual dose estimates were generally less than 3 μSv/yr, but ranged up to 2 mSv under worst-case conditions postulated. Estimated annual collective (population) doses were less than 5 person/Sv per million timepieces distributed

  15. Dose distribution in the thyroid gland following radiation therapy of breast cancer--a retrospective study.

    Science.gov (United States)

    Johansen, S; Reinertsen, K V; Knutstad, K; Olsen, D R; Fosså, S D

    2011-06-09

    To relate the development of post-treatment hypothyroidism with the dose distribution within the thyroid gland in breast cancer (BC) patients treated with loco-regional radiotherapy (RT). In two groups of BC patients postoperatively irradiated by computer tomography (CT)-based RT, the individual dose distributions in the thyroid gland were compared with each other; Cases developed post-treatment hypothyroidism after multimodal treatment including 4-field RT technique. Matched patients in Controls remained free for hypothyroidism. Based on each patient's dose volume histogram (DVH) the volume percentages of the thyroid absorbing respectively 20, 30, 40 and 50 Gy were then estimated (V20, V30, V40 and V50) together with the individual mean thyroid dose over the whole gland (MeanTotGy). The mean and median thyroid dose for the included patients was about 30 Gy, subsequently the total volume of the thyroid gland (VolTotGy) and the absolute volumes (cm3) receiving respectively thyroid gland receivingthyroid glands after loco-radiotherapy of BC, the risk of post-treatment hypothyroidism depends on the volume of the thyroid gland.

  16. Calculation of dose distribution on Rhizophora spp soy protein ...

    African Journals Online (AJOL)

    Some of the commercial solid phantoms were unable to provide a good simulation to water at low and high energy ranges. A potential phantom from Malaysian mangrove wood family, Rhizophoraspp was fabricated with addition of Soy Protein. An Electron Gamma Sho (EGSnrc) code was used to evaluate the dose ...

  17. Electron Irradiation of Conjunctival Lymphoma-Monte Carlo Simulation of the Minute Dose Distribution and Technique Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Brualla, Lorenzo, E-mail: lorenzo.brualla@uni-due.de [NCTeam, Strahlenklinik, Universitaetsklinikum Essen, Essen (Germany); Zaragoza, Francisco J.; Sempau, Josep [Institut de Tecniques Energetiques, Universitat Politecnica de Catalunya, Barcelona (Spain); Wittig, Andrea [Department of Radiation Oncology, University Hospital Giessen and Marburg, Philipps-University Marburg, Marburg (Germany); Sauerwein, Wolfgang [NCTeam, Strahlenklinik, Universitaetsklinikum Essen, Essen (Germany)

    2012-07-15

    Purpose: External beam radiotherapy is the only conservative curative approach for Stage I non-Hodgkin lymphomas of the conjunctiva. The target volume is geometrically complex because it includes the eyeball and lid conjunctiva. Furthermore, the target volume is adjacent to radiosensitive structures, including the lens, lacrimal glands, cornea, retina, and papilla. The radiotherapy planning and optimization requires accurate calculation of the dose in these anatomical structures that are much smaller than the structures traditionally considered in radiotherapy. Neither conventional treatment planning systems nor dosimetric measurements can reliably determine the dose distribution in these small irradiated volumes. Methods and Materials: The Monte Carlo simulations of a Varian Clinac 2100 C/D and human eye were performed using the PENELOPE and PENEASYLINAC codes. Dose distributions and dose volume histograms were calculated for the bulbar conjunctiva, cornea, lens, retina, papilla, lacrimal gland, and anterior and posterior hemispheres. Results: The simulated results allow choosing the most adequate treatment setup configuration, which is an electron beam energy of 6 MeV with additional bolus and collimation by a cerrobend block with a central cylindrical hole of 3.0 cm diameter and central cylindrical rod of 1.0 cm diameter. Conclusions: Monte Carlo simulation is a useful method to calculate the minute dose distribution in ocular tissue and to optimize the electron irradiation technique in highly critical structures. Using a voxelized eye phantom based on patient computed tomography images, the dose distribution can be estimated with a standard statistical uncertainty of less than 2.4% in 3 min using a computing cluster with 30 cores, which makes this planning technique clinically relevant.

  18. Measurement of dose distribution in the spherical phantom onboard the ISS-KIBO module -MATROSHKA-R in KIBO-

    Science.gov (United States)

    Kodaira, Satoshi; Kawashima, Hajime; Kurano, Mieko; Uchihori, Yukio; Nikolaev, Igor; Ambrozova, Iva; Kitamura, Hisashi; Kartsev, Ivan; Tolochek, Raisa; Shurshakov, Vyacheslav

    The measurement of dose equivalent and effective dose during manned space missions on the International Space Station (ISS) is important for evaluating the risk to astronaut health and safety when exposed to space radiation. The dosimetric quantities are constantly changing and strongly depend on the level of solar activity and the various spacecraft- and orbit-dependent parameters such as the shielding distribution in the ISS module, location of the spacecraft within its orbit relative to the Earth, the attitude (orientation) and altitude. Consequently, the continuous monitoring of dosimetric quantities is required to record and evaluate the personal radiation dose for crew members during spaceflight. The dose distributions in the phantom body and on its surface give crucial information to estimate the dose equivalent in the human body and effective dose in manned space mission. We have measured the absorbed dose and dose equivalent rates using passive dosimeters installed in the spherical phantom in Japanese Experiment Module (“KIBO”) of the ISS in the framework of Matroshka-R space experiment. The exposure duration was 114 days from May 21 to September 12, 2012. The phantom consists of tissue-equivalent material covered with a poncho jacket with 32 pockets on its surface and 20 container rods inside of the phantom. The phantom diameter is 35 cm and the mass is 32 kg. The passive dosimeters consisted of a combination of luminescent detectors of Al _{2}O _{3};C OSL and CaSO _{4}:Dy TLD and CR-39 plastic nuclear track detectors. As one of preliminary results, the dose distribution on the phantom surface measured with OSL detectors installed in the jacket pockets is found to be ranging from 340 muGy/day to 260 muGy/day. In this talk, we will present the detail dose distributions, and variations of LET spectra and quality factor obtained outside and inside of the spherical phantom installed in the ISS-KIBO.

  19. Monte Carlo dose calculation algorithm on a distributed system

    International Nuclear Information System (INIS)

    Chauvie, Stephane; Dominoni, Matteo; Marini, Piergiorgio; Stasi, Michele; Pia, Maria Grazia; Scielzo, Giuseppe

    2003-01-01

    The main goal of modern radiotherapy, such as 3D conformal radiotherapy and intensity-modulated radiotherapy is to deliver a high dose to the target volume sparing the surrounding healthy tissue. The accuracy of dose calculation in a treatment planning system is therefore a critical issue. Among many algorithms developed over the last years, those based on Monte Carlo proven to be very promising in terms of accuracy. The most severe obstacle in application to clinical practice is the high time necessary for calculations. We have studied a high performance network of Personal Computer as a realistic alternative to a high-costs dedicated parallel hardware to be used routinely as instruments of evaluation of treatment plans. We set-up a Beowulf Cluster, configured with 4 nodes connected with low-cost network and installed MC code Geant4 to describe our irradiation facility. The MC, once parallelised, was run on the Beowulf Cluster. The first run of the full simulation showed that the time required for calculation decreased linearly increasing the number of distributed processes. The good scalability trend allows both statistically significant accuracy and good time performances. The scalability of the Beowulf Cluster system offers a new instrument for dose calculation that could be applied in clinical practice. These would be a good support particularly in high challenging prescription that needs good calculation accuracy in zones of high dose gradient and great dishomogeneities

  20. 125I eye plaque dose distribution including penumbra characteristics.

    Science.gov (United States)

    de la Zerda, A; Chiu-Tsao, S T; Lin, J; Boulay, L L; Kanna, I; Kim, J H; Tsao, H S

    1996-03-01

    The two main purposes of this work are (1) to determine the penumbra characteristics for 125I eye plaque and the relative influence of the plaque and eye-air interface on the dose distribution, and (2) to initiate development of a treatment planning algorithm for clinical dose calculations. Dose was measured in a newly designed solid water eye phantom for an 125I (6711) seed at the center of a 20 mm COMS eye plaque using thermoluminescent dosimeter (TLD) "cubes" and "minichips" inside and outside the eye, in the longitudinal and transverse central planes. TLD cubes were used in most locations, except for short distances from the seed and in the penumbra region. In the presence of both the plaque and the eye-air interface, the dose along the central axis was found to be reduced by 10% at 1 cm and up to 20% at 2.5 cm, relative to the bulk homogeneous phantom case. In addition, the overall dose reduction was greater for larger off-axis coordinates at a given depth. The penumbra characteristics due to the lip collimation were quantified, particularly the dependence of penumbra center and width on depth. Only small differences were observed between the profiles in the transverse and longitudinal planes. In the bulk geometry (without the eye-air interface), the dose reduction due to the presence of the plaque alone was found to be 7% at a depth of 2.5 cm. The additional reduction of 13% observed, with the presence of eye-air interface (20% combined), can be attributed to the lack of backscattering from the air in front of the eye. The dose-reduction effect due to the anterior air interface alone became unnoticeable at a depth of 1.1 cm (1.5 cm from the eye-air interface). An analytic fit to measured data was developed for clinical dose calculations for a centrally loaded seed. The central axis values of the dose rates multiplied by distance squared, Dr2, were fitted with a double exponential function of depth. The off-axis profile of Dr2, at a given depth, was

  1. Emphysema quantification on low-dose CT using percentage of low-attenuation volume and size distribution of low-attenuation lung regions: Effects of adaptive iterative dose reduction using 3D processing

    Energy Technology Data Exchange (ETDEWEB)

    Nishio, Mizuho, E-mail: nmizuho@med.kobe-u.ac.jp [Advanced Biomedical Imaging Research Center, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017 (Japan); Division of Functional and Diagnostic Imaging Research, Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017 (Japan); Matsumoto, Sumiaki, E-mail: sumatsu@med.kobe-u.ac.jp [Advanced Biomedical Imaging Research Center, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017 (Japan); Division of Functional and Diagnostic Imaging Research, Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017 (Japan); Seki, Shinichiro, E-mail: sshin@med.kobe-u.ac.jp [Division of Radiology, Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017 (Japan); Koyama, Hisanobu, E-mail: hkoyama@med.kobe-u.ac.jp [Division of Radiology, Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017 (Japan); Ohno, Yoshiharu, E-mail: yosirad@kobe-u.ac.jp [Advanced Biomedical Imaging Research Center, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017 (Japan); Division of Functional and Diagnostic Imaging Research, Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017 (Japan); Fujisawa, Yasuko, E-mail: yasuko1.fujisawa@toshiba.co.jp [Toshiba Medical Systems Corporation, 1385 Shimoishigami, Otawara, Tochigi 324-8550 (Japan); Sugihara, Naoki, E-mail: naoki.sugihara@toshiba.co.jp [Toshiba Medical Systems Corporation, 1385 Shimoishigami, Otawara, Tochigi 324-8550 (Japan); and others

    2014-12-15

    Highlights: • Emphysema quantification (LAV% and D) was affected by image noise on low-dose CT. • For LAV% and D, AIDR 3D improved agreement of quantification on low-dose CT. • AIDR 3D has the potential to quantify emphysema accurately on low-dose CT. - Abstract: Purpose: To evaluate the effects of adaptive iterative dose reduction using 3D processing (AIDR 3D) for quantification of two measures of emphysema: percentage of low-attenuation volume (LAV%) and size distribution of low-attenuation lung regions. Method and materials: : Fifty-two patients who underwent standard-dose (SDCT) and low-dose CT (LDCT) were included. SDCT without AIDR 3D, LDCT without AIDR 3D, and LDCT with AIDR 3D were used for emphysema quantification. First, LAV% was computed at 10 thresholds from −990 to −900 HU. Next, at the same thresholds, linear regression on a log–log plot was used to compute the power law exponent (D) for the cumulative frequency-size distribution of low-attenuation lung regions. Bland–Altman analysis was used to assess whether AIDR 3D improved agreement between LDCT and SDCT for emphysema quantification of LAV% and D. Results: The mean relative differences in LAV% between LDCT without AIDR 3D and SDCT were 3.73%–88.18% and between LDCT with AIDR 3D and SDCT were −6.61% to 0.406%. The mean relative differences in D between LDCT without AIDR 3D and SDCT were 8.22%–19.11% and between LDCT with AIDR 3D and SDCT were 1.82%–4.79%. AIDR 3D improved agreement between LDCT and SDCT at thresholds from −930 to −990 HU for LAV% and at all thresholds for D. Conclusion: AIDR 3D improved the consistency between LDCT and SDCT for emphysema quantification of LAV% and D.

  2. Intercomparison of radiotherapy treatment planning systems using calculated and measured dose distributions for external photon and electron beams

    International Nuclear Information System (INIS)

    Kosunen, A.; Jaervinen, H.; Vatnitskij, S.; Ermakov, I.; Chervjakov, A.; Kulmala, J.; Pitkaenen, M.; Vaeyrynen, T.; Vaeaenaenen, A.

    1991-02-01

    The requirement of 5 % overall accuracy for the target absorbed dose in radiotherapy implies that the accuracy of the relative dose calculation should be within only a few per cent. According to the recommendation by the International Commission on radiation units and measurements (ICRU), a computer-produced dose distribution can be considered to be accurate enough if it differs from the results of relative dose measurements by less than 2 %, or 2 mm in the position of isodose curves involving very steep dose gradients. In this study five treatment planning systems, currently used by the hospitals in Finland or in the USSR, were intercompared with respect to the above requirement. Five typical cases of irradiation were selected: regular fields, oblique incidence, irregular field, wedge field and inhomogeneity in a water equivalent phantom. Complete dose distributions were used for the intercomparison, and the beam data for each TPS was that pertaining to the beam where the comparative relative measurements were performed. The results indicate that the dose distributions produced by different TPS:s can differ from each other as well as from the measured dose distributions up to a level which is not acceptable in terms of the above requirement. Greatest differences seem to be related to the omission or undue consideration of the scatter components of the beam. A suitable quality assurance program for the systematic testing of the performance of the treatment planning systems could be based on a selection of tests as used in this study.(orig.)

  3. Evaluation of the Accuracy of Polymer Gels for Determining Electron Dose Distributions in the Presence of Small Heterogeneities.

    Science.gov (United States)

    Asl, R Ghahraman; Nedaie, H A; Banaee, N

    2017-12-01

    The aim of this study is to evaluate the application and accuracy of polymer gels for determining electron dose distributions in the presence of small heterogeneities made of bone and air. Different cylindrical phantoms containing MAGIC (Methacrylic and Ascorbic acid in Gelatin Initiated by Copper) normoxic polymer gel were used under the slab phantoms during irradiation. MR images of the irradiated gel phantoms were obtained to determine their R2 (spin-spin) relaxation maps for conversion to absorbed dose. One- and 2-dimensional lateral dose profiles were acquired at depths of 1 and 4 cm for 8 and 15 MeV electron beams. The results were compared with the doses measured by a diode detector at the same positions. In addition, the dose distribution in the axial orientation was measured by the gel dosimeter. The slope and intercept for the R2 versus dose curve were 0.509 ± 0.002 Gy s and 4.581 ± 0.005 s, respectively. No significant variation in dose-R2 response was seen for the two electron energies within the applied dose ranges. The mean dose difference between the measured gel dose profiles was smaller than 3% compared to those measured by the diode detector. These results provide further demonstration that electron dose distributions are significantly altered in the presence of tissue inhomogeneities such as bone and air cavity and that MAGIC gel is a useful tool for 3-dimensional dose visualization and qualitative assessment of tissue inhomogeneity effects in electron beam dosimetry.

  4. Ranitidine Can Potentiate The Prokinetic Effect Of Itopride At Low Doses- An In Vitro Study.

    Science.gov (United States)

    Butt, Aroosa Ishtiaq; Khan, Bushra Tayyaba; Khan, Asma; Khan, Qamar-Uz-Zaman

    2017-01-01

    Gastroparesis and GERD occur concomitantly in 40 percent of the cases. Prokinetic drugs and acid blockers are employed as the main treatment modality. Ranitidine is an acid blocker with additional prokinetic activity and Itopride is a known prokinetic drug. This study was designed to observe the synergistic potentiating prokinetic effect of Ranitidine on itopride on isolated duodenum of rabbits. Ranitidine (10-5-10-3) and itopride (10-6-10-5) were added in increasing concentrations to isolated duodenum of rabbits and contractions were recorded on PowerLab Data acquisition unit AHK/214. Cumulative dose response curves were constructed. The potentiating prokinetic effect of Ranitidine on itopride was seen by using a fixed dose of ranitidine and cumulatively enhancing doses of itopride on iWorx. Ranitidine and itopride produced a dose dependent reversible contraction of the isolated tissue of rabbits with ranitidine showing a max response of 0.124mV and itopride showing a maximum response of 0.131mV. Ranitidine was able to potentiate the prokinetic effect of itopride at low doses but at high dose the effect began to wane off. Ranitidine and itopride produce a statistically significant synergistic potentiating prokinetic effect at low doses in vitro.

  5. Dose distribution of chest wall electron beam radiotherapy for patients with breast cancer after radical mastectomy

    International Nuclear Information System (INIS)

    Cong Yetong; Chen Dawei; Bai Lan; Zhou Yinhang; Piao Yongfeng; Wang Xi; Qu Yaqin

    2006-01-01

    Objective: To study the dose distribution of different bolus after different energy electron beam irradiation to different chest wall radiotherapy for the patients with breast cancer. Methods: The paper simulated the dose distribution of women's left breast cancer after radical mastectomy by 6 and 9 MeV electron beam irradiation, and TLD was used to measure. Results: The dose of skin became higher and the dose of lung was less when 0.5 and 1.0 cm bolus were used on the body; with the increasing of the energy of electron beam, the high dose field became larger; and with the same energy of electron beam, the high dose field moved to surface of the body when the bolus was thicker. Conclusion: When different energy electron ray irradiates different thickness bolus, the dosage of skin surface increases and the dosage of anterior margin of lung reduces. With electron ray energy increasing, the high dosage field is widen, when the electron ray energy is identity, the high dosage field migrates to the surface after adding bolus. Using certain depth bolus may attain the therapeutical dose of target area. (authors)

  6. Definition of the dose(tempo)-distribution in the biological irradiation-facility of the RIVM

    International Nuclear Information System (INIS)

    Bader, F.J.M.

    1990-02-01

    The RIVM biological irradiation facility (BBF) for the irradiation of biological samples and small animals is a self shielded device and can be safely operated in an existing laboratory environment. There are two 137 Cs sources (15TBq) in a bilateral geometry to give maximum dose uniformity. The easily accessible irradiation chamber is housed in a rotating lead shielding. The dosimetry of BBF was performed by the Dosimetry Section of the RIVM. Experiments were made to determine the absorbed dose in plastic tubes filled with water and the dose distribution over the tube-holder. Separate experiments were made to determine the absorbed dose during the rotation of the irradiation chamber and to check the irradiation timer. For the experiments LiF:Mg,Ti (TLD-100) extruded ribbons were used. The TLDs were calibrated in a collimated beam of 137 Cs gamma rays. The determination of the absorbed dose in water was based on a users biological irradiation set up. The TLDs were individually sealed in thin plastic foil and put in plastic tubes filled for 1/3 with water. The tubes were vertically placed in the tube-holder and placed in the centre of the irradiation chamber. The results show that the absorbed dose in water (determined on January 1, 1990) is equal to 0.97 Gy/timer-unit, with a total uncertainty of 7 percent (1σ). During the rotation of the irradiation chamber the absorbed dose (determined on January 1, 1990) is equal to 0.38 Gy, with a total uncertainty of 15 percent (1σ). The variation of the dose distribution was determined at 15 different measurement points distributed over the tube-holder. The dosis in the measurement point in the centre of the tube-holder was taken as reference value. The maximum observed deviation over the other 14 measurement points amounts to -16 percent of it. The BBF-timer was checked against a special timer. The results indicate that within a range from 2-11 'timer-units' no differences are present. (author). 6 refs.; 6 figs.; 3 fotos

  7. Dose measurement, its distribution and individual external dose assessments of inhabitants on high background radiation area in China

    Energy Technology Data Exchange (ETDEWEB)

    Koga, Taeko; Morishima, Hiroshige [Kinki Univ., Atomic Energy Research Institute, Osaka (Japan); Tatsumi, Kusuo [Kinki Univ., Life Science Research Institute, Osaka (Japan); Nakai, Sayaka; Sugahara, Tsutomu [Health Research Foundation, Kyoto (Japan); Yuan Yongling [Labor Hygiene Institute of Hunan Prov. (China); Wei Luxin [Laboratory of Industorial Hygiene, Ministry of Health (China)

    2001-01-01

    As a part of the China-Japan cooperative research on the natural radiation epidemiology, we have carried out a dose-assessment study to evaluate the external to natural radiation in the high background radiation area (HBRA) of Yangjiang in Guangdong province and in the control area (CA) of Enping prefecture since 1991. Because of the difficulties in measuring the individual doses of all inhabitants directly by the personal dosimeters, an indirect method was applied to estimate the exposed dose rates from the environmental radiation dose rates measured by survey meters and the occupancy factors of each hamlet. An individual radiation dose roughly correlates with the environmental radiation dose and the life style of the inhabitant. We have analyzed the environmental radiation doses in the hamlets and the variation of the occupancy factors to obtain the parameters of dose estimation on the inhabitants in selected hamlets; Madi and the several hamlets of the different level doses in HBRA and Hampizai hamlet in CA. With these parameters, we made estimations of individual dose rates and compared them with those obtained from the direct measurement using dosimeters carried by selected individuals. The results obtained are as follows: (1) The environmental radiation dose rates are influenced by the natural radioactive nuclide concentrations in building materials, the age of the building and the arrangement of the houses in a hamlet. There existed a fairly large and heterogeneous distribution of indoor and outdoor environmental radiation. The indoor radiation dose rates were due to the exposure from the natural radioactive nuclides in the building materials and they were about twice higher than the outdoor radiation dose rates. This difference was not observed in CA. (2) The occupancy factor was affected by the age of individuals and the seasons of a year. Indoor occupancy factors were higher for infants and aged individuals than for other age groups. This lead to higher

  8. Dose measurement, its distribution and individual external dose assessments of inhabitants on high background radiation area in China

    International Nuclear Information System (INIS)

    Koga, Taeko; Morishima, Hiroshige; Tatsumi, Kusuo; Nakai, Sayaka; Sugahara, Tsutomu; Yuan Yongling; Wei Luxin

    2001-01-01

    As a part of the China-Japan cooperative research on the natural radiation epidemiology, we have carried out a dose-assessment study to evaluate the external to natural radiation in the high background radiation area (HBRA) of Yangjiang in Guangdong province and in the control area (CA) of Enping prefecture since 1991. Because of the difficulties in measuring the individual doses of all inhabitants directly by the personal dosimeters, an indirect method was applied to estimate the exposed dose rates from the environmental radiation dose rates measured by survey meters and the occupancy factors of each hamlet. An individual radiation dose roughly correlates with the environmental radiation dose and the life style of the inhabitant. We have analyzed the environmental radiation doses in the hamlets and the variation of the occupancy factors to obtain the parameters of dose estimation on the inhabitants in selected hamlets; Madi and the several hamlets of the different level doses in HBRA and Hampizai hamlet in CA. With these parameters, we made estimations of individual dose rates and compared them with those obtained from the direct measurement using dosimeters carried by selected individuals. The results obtained are as follows: 1) The environmental radiation dose rates are influenced by the natural radioactive nuclide concentrations in building materials, the age of the building and the arrangement of the houses in a hamlet. There existed a fairly large and heterogeneous distribution of indoor and outdoor environmental radiation. The indoor radiation dose rates were due to the exposure from the natural radioactive nuclides in the building materials and they were about twice higher than the outdoor radiation dose rates. This difference was not observed in CA. 2) The occupancy factor was affected by the age of individuals and the seasons of a year. Indoor occupancy factors were higher for infants and aged individuals than for other age groups. This lead to higher

  9. Optical fibre temperature sensor technology and potential application in absorbed dose calorimetry

    International Nuclear Information System (INIS)

    Allen, P.D.; Hargrave, N.J.

    1992-09-01

    Optical fibre based sensors are proposed as a potential alternative to the thermistors traditionally used as temperature sensors in absorbed dose calorimetry. The development of optical fibre temperature sensor technology over the last ten years is reviewed. The potential resolution of various optical techniques is assessed with particular reference to the requirements of absorbed dose calorimetry. Attention is drawn to other issues which would require investigation before the development of practical optical fibre sensors for this purpose could occur. 192 refs., 5 tabs., 4 figs

  10. Dose distribution perturbation due to a Co-Cr-Mo prosthesis

    International Nuclear Information System (INIS)

    Castro Novais, J.; Rodriguez Rodriguez, C.; Cabello Murillo, E.; Fernandez Leton, P.; Perez Moreno, J. M.; Lopez Fernandez, A.; Ferrando Sanchez, A.; Martinez Gomez, L. C.

    2009-01-01

    Knowledge of the attenuation and interface effects when irradiating metallic prosthesis is necessary for the radiotherapy treatment of patients with this kind of implants. This report studies the dose distribution of a 6 MV photon beam in the vicinity of a 1,5 cm diameter Co-Cr-Mo prosthesis. Measurements with Gafchromic EBT radiochromic films have been made. Two blocks of cut films have been placed next to the prosthesis, one in each side. Forty two films reaching a height of 1 cm have been piled up in each block. A spatial resolution equal to the thickness of one film (0,24 mm) is achieved. The results show 28% attenuation and the production of a 42% overdose at the entrance interface, 12% and 3% at 1 mm and 2 mm away from the prosthesis respectively. A 5 mm build-up region is originated in the exit interface, where the under dose is less than 10%. The knowledge of the transmission factor and the interface effects allows us to assess the dose calculated by the treatment planning system. (Author) 11 refs.

  11. Comparison between the calculated and measured dose distributions for four beams of 6 MeV linac in a human-equivalent phantom

    Directory of Open Access Journals (Sweden)

    Reda Sonia M.

    2006-01-01

    Full Text Available Radiation dose distributions in various parts of the body are of importance in radiotherapy. Also, the percent depth dose at different body depths is an important parameter in radiation therapy applications. Monte Carlo simulation techniques are the most accurate methods for such purposes. Monte Carlo computer calculations of photon spectra and the dose ratios at surfaces and in some internal organs of a human equivalent phantom were performed. In the present paper, dose distributions in different organs during bladder radiotherapy by 6 MeV X-rays were measured using thermoluminescence dosimetry placed at different points in the human-phantom. The phantom was irradiated in exactly the same manner as in actual bladder radiotherapy. Four treatment fields were considered to maximize the dose at the center of the target and minimize it at non-target healthy organs. All experimental setup information was fed to the MCNP-4b code to calculate dose distributions at selected points inside the proposed phantom. Percent depth dose distribution was performed. Also, the absorbed dose as ratios relative to the original beam in the surrounding organs was calculated by MCNP-4b and measured by thermoluminescence dosimetry. Both measured and calculated data were compared. Results indicate good agreement between calculated and measured data inside the phantom. Comparison between MCNP-4b calculations and measurements of depth dose distribution indicated good agreement between both.

  12. Potential distribution of a nonuniformly charged ellipsoid

    International Nuclear Information System (INIS)

    Kiwamoto, Y.; Aoki, J.; Soga, Y.

    2004-01-01

    A convenient formula is obtained for fast calculation of the three-dimensional potential distribution associated with a spatially varying charge-density distribution by reconstructing it as a superposed set of nested spheroidal shells. It is useful for experimental analyses of near-equilibrium states of non-neutral plasmas and for quick evaluation of the gravity field associated with stellar mass distributions

  13. Robotic stereotactic radioablation of breast tumors: Influence of beam size on the absorbed dose distributions

    International Nuclear Information System (INIS)

    Garnica-Garza, H.M.

    2016-01-01

    Robotic stereotactic radioablation (RSR) therapy for breast tumors has been shown to be an effective treatment strategy when applied concomitantly with chemotherapy, with the purpose of reducing the tumor volume thus making it more amenable for breast conserving surgery. In this paper we used Monte Carlo simulation within a realistic patient model to determine the influence that the variation in beam collimation radius has on the resultant absorbed dose distributions for this type of treatment. Separate optimized plans were obtained for treatments using 300 circular beams with radii of 0.5 cm, 0.75 cm, 1.0 cm and 1.5 cm. Cumulative dose volume histograms were obtained for the gross, clinical and planning target volumes as well as for eight organs and structures at risk. Target coverage improves as the collimator size is increased, at the expense of increasing the volume of healthy tissue receiving mid-level absorbed doses. Interestingly, it is found that the maximum dose imparted to the skin is highly dependent on collimator size, while the dosimetry of other structures, such as both the ipsilateral and contralateral lung tissue are basically unaffected by a change in beam size. - Highlights: • Stereotactic body radiation therapy of breast tumors is analyzed using Monte Carlo simulation. • The influence of beam collimation on the absorbed dose distributions is determined. • Large field sizes increase target dose uniformity and midlevel doses to healthy structures. • Skin dose is greatly affected by changes in beam collimation.

  14. Fast neutron flux and intracranial dose distribution at a neutron irradiation facility

    International Nuclear Information System (INIS)

    Matsumoto, Tetsuo; Aizawa, Otohiko; Nozaki, Tetsuya

    1981-01-01

    A head phantom filled with water was used to measure the fast neutron flux using 115 In(n, n')sup(115m)In and 103 Rh(n, n')sup(103m)Rh reactions. γ-ray from sup(115m)In and x-ray from sup(103m)Rh were detected by a Ge(Li) and a Na(Tl)I counter, respectively. TLD was used to investigate the γ-dose rate distribution inside the phantom. Flux of fast neutron inside the phantom was about 1 x 10 6 n/cm 2 sec, which was 3 order smaller than that of thermal neutron. The fast neutron flux decreased to 1/10 at 15 cm depth, and γ-dose rate was about 200 R/h at 100 kW inside the phantom. Total dose at the surface was 350 rad/h, to which, fast neutrons contributed more than γ-rays. The rate of fast neutron dose was about 10% of thermal neutron's in Kerma dose unit (rad), however, the rate was highly dependent on RBE value. (Nakanishi, T.)

  15. Dose distributions in thorax inhomogeneity for fast neutron beam from NIRS cyclotron

    International Nuclear Information System (INIS)

    Kutsutani-Nakamura, Yuzuru; Furukawa, Shigeo; Iinuma, T.A.; Kawashima, Katsuhiro; Hoshino, Kazuo; Hiraoka, Takeshi; Maruyama, Takashi; Sakashita, Kunio; Tsunemoto, Hiroshi

    1990-01-01

    The power law tissue-air ratio (TAR) method developed by Batho appears to be practical use for inhomogeneity corrections to the dose calculated in a layered media for photon beam therapy. The validity was examined in applying the modified power law TAR and the isodose shift methods to the dose calculation in thorax tissue inhomogeneity containing the boundary region for fast neutron beam. The neutron beam is produced by bombarding a thick beryllium target with 30 MeV deuterons. Lung phantom was made of granulated tissue equivalent plastic, which resulted in density of 0.30 and 0.60 g/cm 3 . Depth dose distributions for neutron beam were measured in thorax phantom by an air-filled cylindrical ionization chamber with TE plastic wall. The power law TAR method considering TAR of zero depth at boundary was compared with the measured data and a good result was obtained that the calculated dose was within ±3 % against the measured. But the isodose shift method is not so good for dose calculation in thorax tissue inhomogeneity using fast neutron beam. (author)

  16. Dose distributions of patients from chest fluoroscopy, upper GI-tract radiography and cinematography in Japan

    International Nuclear Information System (INIS)

    Kusama, T.; Kai, M.; Ohta, K.

    1996-01-01

    The per caput dose from medical exposure in Japan is several times higher than in other developed countries. There are no dose limitations for medical exposure. Then, the appropriate applications of radiation diagnosis/treatments (justification of practices) and the quality control of diagnosis/treatments (optimization of protection) are needed to reduce the doses from medical exposure. It is well documented that patient doses from a X-ray diagnosis are distributed in the broad range. Recently, the IAEA introduced guidance levels for some typical X-ray diagnosis and in vivo nuclear medicines. We carried out the investigation of dose distribution of patients from the X-ray examinations of chest, cardiovascular cinematography and upper GI-tract X-ray examination in order to give the basic information on the quality control of each X-ray diagnosis. These X-ray diagnoses are performed frequently in Japan, and especially chest X-ray examinations are carried out periodically to all population more than 18 years old as legal health check and GI-tract X-ray examinations to the persons more than 35 years old. The cardiovascular cinematography and the upper GI-tract X-ray examination bring higher effective dose for patients. More information is therefore, needed for the reduction and quality control of medical exposure in Japan. (author)

  17. Calculation of age-dependent dose conversion coefficients for radionuclides uniformly distributed in air

    International Nuclear Information System (INIS)

    Hung, Tran Van; Satoh, Daiki; Takahashi, Fumiaki; Tsuda, Shuichi; Endo, Akira; Saito, Kimiaki; Yamaguchi, Yasuhiro

    2005-02-01

    Age-dependent dose conversion coefficients for external exposure to photons emitted by radionuclides uniformly distributed in air were calculated. The size of the source region in the calculation was assumed to be effectively semi-infinite in extent. Firstly, organ doses were calculated with a series of age-specific MIRD-5 type phantoms using MCNP code, a Monte Carlo transport code. The calculations were performed for mono-energetic photon sources of twelve energies from 10 keV to 5 MeV and for phantoms of newborn, 1, 5, 10 and 15 years, and adult. Then, the effective doses to the different age-phantoms from the mono-energetic photon sources were estimated based on the obtained organ doses. The calculated effective doses were used to interpolate the conversion coefficients of the effective doses for 160 radionuclides, which are important for dose assessment of nuclear facilities. In the calculation, energies and intensities of emitted photons from radionuclides were taken from DECDC, a recent compilation of decay data for radiation dosimetry developed at JAERI. The results are tabulated in the form of effective dose per unit concentration and time (Sv per Bq s m -3 ). (author)

  18. The influence of patient positioning uncertainties in proton radiotherapy on proton range and dose distributions

    Energy Technology Data Exchange (ETDEWEB)

    Liebl, Jakob, E-mail: jakob.liebl@medaustron.at [EBG MedAustron GmbH, 2700 Wiener Neustadt (Austria); Francis H. Burr Proton Therapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114 (United States); Department of Therapeutic Radiology and Oncology, Medical University of Graz, 8036 Graz (Austria); Paganetti, Harald; Zhu, Mingyao; Winey, Brian A. [Francis H. Burr Proton Therapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114 (United States)

    2014-09-15

    Purpose: Proton radiotherapy allows radiation treatment delivery with high dose gradients. The nature of such dose distributions increases the influence of patient positioning uncertainties on their fidelity when compared to photon radiotherapy. The present work quantitatively analyzes the influence of setup uncertainties on proton range and dose distributions. Methods: Thirty-eight clinical passive scattering treatment fields for small lesions in the head were studied. Dose distributions for shifted and rotated patient positions were Monte Carlo-simulated. Proton range uncertainties at the 50%- and 90%-dose falloff position were calculated considering 18 arbitrary combinations of maximal patient position shifts and rotations for two patient positioning methods. Normal tissue complication probabilities (NTCPs), equivalent uniform doses (EUDs), and tumor control probabilities (TCPs) were studied for organs at risk (OARs) and target volumes of eight patients. Results: The authors identified a median 1σ proton range uncertainty at the 50%-dose falloff of 2.8 mm for anatomy-based patient positioning and 1.6 mm for fiducial-based patient positioning as well as 7.2 and 5.8 mm for the 90%-dose falloff position, respectively. These range uncertainties were correlated to heterogeneity indices (HIs) calculated for each treatment field (38% < R{sup 2} < 50%). A NTCP increase of more than 10% (absolute) was observed for less than 2.9% (anatomy-based positioning) and 1.2% (fiducial-based positioning) of the studied OARs and patient shifts. For target volumes TCP decreases by more than 10% (absolute) occurred in less than 2.2% of the considered treatment scenarios for anatomy-based patient positioning and were nonexistent for fiducial-based patient positioning. EUD changes for target volumes were up to 35% (anatomy-based positioning) and 16% (fiducial-based positioning). Conclusions: The influence of patient positioning uncertainties on proton range in therapy of small lesions

  19. Design and implementation of a film dosimetry audit tool for comparison of planned and delivered dose distributions in high dose rate (HDR) brachytherapy

    Science.gov (United States)

    Palmer, Antony L.; Lee, Chris; Ratcliffe, Ailsa J.; Bradley, David; Nisbet, Andrew

    2013-10-01

    A novel phantom is presented for ‘full system’ dosimetric audit comparing planned and delivered dose distributions in HDR gynaecological brachytherapy, using clinical treatment applicators. The brachytherapy applicator dosimetry test object consists of a near full-scatter water tank with applicator and film supports constructed of Solid Water, accommodating any typical cervix applicator. Film dosimeters are precisely held in four orthogonal planes bisecting the intrauterine tube, sampling dose distributions in the high risk clinical target volume, points A and B, bladder, rectum and sigmoid. The applicator position is fixed prior to CT scanning and through treatment planning and irradiation. The CT data is acquired with the applicator in a near clinical orientation to include applicator reconstruction in the system test. Gamma analysis is used to compare treatment planning system exported RTDose grid with measured multi-channel film dose maps. Results from two pilot audits are presented, using Ir-192 and Co-60 HDR sources, with a mean gamma passing rate of 98.6% using criteria of 3% local normalization and 3 mm distance to agreement (DTA). The mean DTA between prescribed dose and measured film dose at point A was 1.2 mm. The phantom was funded by IPEM and will be used for a UK national brachytherapy dosimetry audit.

  20. Design and implementation of a film dosimetry audit tool for comparison of planned and delivered dose distributions in high dose rate (HDR) brachytherapy

    International Nuclear Information System (INIS)

    Palmer, Antony L; Bradley, David; Nisbet, Andrew; Lee, Chris; Ratcliffe, Ailsa J

    2013-01-01

    A novel phantom is presented for ‘full system’ dosimetric audit comparing planned and delivered dose distributions in HDR gynaecological brachytherapy, using clinical treatment applicators. The brachytherapy applicator dosimetry test object consists of a near full-scatter water tank with applicator and film supports constructed of Solid Water, accommodating any typical cervix applicator. Film dosimeters are precisely held in four orthogonal planes bisecting the intrauterine tube, sampling dose distributions in the high risk clinical target volume, points A and B, bladder, rectum and sigmoid. The applicator position is fixed prior to CT scanning and through treatment planning and irradiation. The CT data is acquired with the applicator in a near clinical orientation to include applicator reconstruction in the system test. Gamma analysis is used to compare treatment planning system exported RTDose grid with measured multi-channel film dose maps. Results from two pilot audits are presented, using Ir-192 and Co-60 HDR sources, with a mean gamma passing rate of 98.6% using criteria of 3% local normalization and 3 mm distance to agreement (DTA). The mean DTA between prescribed dose and measured film dose at point A was 1.2 mm. The phantom was funded by IPEM and will be used for a UK national brachytherapy dosimetry audit. (paper)

  1. Semi-empirical model for the generation of dose distributions produced by a scanning electron beam

    International Nuclear Information System (INIS)

    Nath, R.; Gignac, C.E.; Agostinelli, A.G.; Rothberg, S.; Schulz, R.J.

    1980-01-01

    There are linear accelerators (Sagittaire and Saturne accelerators produced by Compagnie Generale de Radiologie (CGR/MeV) Corporation) which produce broad, flat electron fields by magnetically scanning the relatively narrow electron beam as it emerges from the accelerator vacuum system. A semi-empirical model, which mimics the scanning action of this type of accelerator, was developed for the generation of dose distributions in homogeneous media. The model employs the dose distributions of the scanning electron beams. These were measured with photographic film in a polystyrene phantom by turning off the magnetic scanning system. The mean deviation calculated from measured dose distributions is about 0.2%; a few points have deviations as large as 2 to 4% inside of the 50% isodose curve, but less than 8% outside of the 50% isodose curve. The model has been used to generate the electron beam library required by a modified version of a commercially-available computerized treatment-planning system. (The RAD-8 treatment planning system was purchased from the Digital Equipment Corporation. It is currently available from Electronic Music Industries

  2. Measurement of relative depth-dose distribution in radiochromic film dosimeters irradiated with 43-70 keV electron beam for industrial application

    Science.gov (United States)

    Matsui, Shinjiro; Hattori, Takeaki; Nonaka, Takashi; Watanabe, Yuki; Morita, Ippei; Kondo, Junichi; Ishikawa, Masayoshi; Mori, Yoshitaka

    2018-05-01

    The relative dose in a layer, which is thinner than the thickness of the dosimeter is evaluated using simulated depth-dose distributions, and the measured responses of dosimeters with acceleration voltages from 43 to 70 kV, via ultra-low-energy electron beam (ULEB) irradiation. By stacking thin film dosimeters, we confirmed that the simulated depth-dose distributions coincided with the measured depth-dose curve within the measurement uncertainty (k = 2). Using the measurement dose of the 47 μm dosimeter and the simulated depth-dose distribution, the dose of 11 μm dosimeters in the surface was evaluated within the measurement uncertainty (k = 2). We also verified the effectiveness of this method for a thinner layer by changing the acceleration voltage of the irradiation source. We evaluated the relative dose for an adjusted depth of energy deposition from 4.4 μm to 22.8 μm. As a result, this method was found to be effective for a thickness, which is less than the thickness of the dosimeter. When irradiation conditions are well known with accuracy, using the confirmed relative depth-dose distributions across any dosimeter thickness range, a dose evaluation, in several μm steps will possibly improve the design of industrial ULEB processes.

  3. Clinical implications of alternative TCP models for nonuniform dose distributions

    International Nuclear Information System (INIS)

    Deasy, J. O.

    1995-01-01

    Several tumor control probability (TCP) models for nonuniform dose distributions were compared, including: (a) a logistic/inter-patient-heterogeneity model, (b) a probit/inter-patient-heterogeneity model, (c) a Poisson/radioresistant-strain/identical-patients model, (d) a Poisson/inter-patient-heterogeneity model and (e) a Poisson/intra-tumor- and inter-patient-heterogeneity model. The models were analyzed in terms of the probability of controlling a single tumor voxel (the voxel control probability, or VCP), as a function of voxel volume and dose. Alternatively, the VCP surface can be thought of as the effect of a small cold spot. The models based on the Poisson equation which include inter-patient heterogeneity ((d) and (e)) have VCP surfaces (VCP as a function of dose and volume) which have a threshold 'waterfall' shape: below the waterfall (in dose), VCP is nearly zero. The threshold dose decreases with decreasing voxel volume. However, models (a), (b), and (c) all show a high probability of controlling a voxel (VCP>50%) with very low dose (e.g., 1 Gy) if the voxel is small (smaller than about 10 -3 of the tumor volume). Model (c) does not have the waterfall shape at low volumes due to the assumption of patient uniformity and a neglect of the effect of the clonogens which are more radiosensitive (and more numerous). Models (a) and (b) deviate from the waterfall shape at low volumes due to numerical differences between the functions used and the Poisson function. Hence, the Possion models which include inter-patient heterogeneities ((d) and (e)) are more sensitive to the effects of small cold spots than the other models considered

  4. Optimized computational method for determining the beta dose distribution using a multiple-element thermoluminescent dosimeter system

    International Nuclear Information System (INIS)

    Shen, L.; Levine, S.H.; Catchen, G.L.

    1987-01-01

    This paper describes an optimization method for determining the beta dose distribution in tissue, and it describes the associated testing and verification. The method uses electron transport theory and optimization techniques to analyze the responses of a three-element thermoluminescent dosimeter (TLD) system. Specifically, the method determines the effective beta energy distribution incident on the dosimeter system, and thus the system performs as a beta spectrometer. Electron transport theory provides the mathematical model for performing the optimization calculation. In this calculation, parameters are determined that produce calculated doses for each of the chip/absorber components in the three-element TLD system. The resulting optimized parameters describe an effective incident beta distribution. This method can be used to determine the beta dose specifically at 7 mg X cm-2 or at any depth of interest. The doses at 7 mg X cm-2 in tissue determined by this method are compared to those experimentally determined using an extrapolation chamber. For a great variety of pure beta sources having different incident beta energy distributions, good agreement is found. The results are also compared to those produced by a commonly used empirical algorithm. Although the optimization method produces somewhat better results, the advantage of the optimization method is that its performance is not sensitive to the specific method of calibration

  5. Modelling normal tissue isoeffect distribution in conformal radiotherapy of glioblastoma provides an alternative dose escalation pattern through hypofractionation without reducing the total dose

    International Nuclear Information System (INIS)

    Mangel, L.; Skriba, Z.; Major, T.; Polgar, C.; Fodor, J.; Somogyi, A.; Nemeth, G.

    2002-01-01

    The purpose of this study was to prove that by using conformal external beam radiotherapy (RT) normal brain structures can be protected even when applying an alternative approach of biological dose escalation: hypofractionation (HOF) without total dose reduction (TDR). Traditional 2-dimensional (2D) and conformal 3-dimensional (3D) treatment plans were prepared for 10 gliomas representing the subanatomical sites of the supratentorial brain. Isoeffect distributions were generated by the biologically effective dose (BED) formula to analyse the effect of conventionally fractionated (CF) and HOF schedules on both the spatial biological dose distribution and biological dose-volume histograms. A comparison was made between 2D-CF (2.0 Gy/day) and 3D-HOF (2.5 Gy/day) regimens, applying the same 60 Gy total doses. Integral biologically effective dose (IBED) and volumes received biologically equivalent to a dose of 54 Gy or more (V-BED54) were calculated for the lower and upper brain stem as organs of risk. The IBED values were lower with the 3D-HOF than with the 2D-CF schedule in each tumour location, means 22.7±17.1 and 40.4±16.9 in Gy, respectively (p<0.0001). The V-BED54 values were also smaller or equal in 90% of the cases favouring the 3D-HOF scheme. The means were 2.7±4.8 ccm for 3D-HOF and 10.7±12.7 ccm for 2D-CF (p=0.0006). Our results suggest that with conformal RT, fraction size can gradually be increased. HOF radiotherapy regimens without TDR shorten the treatment time and seem to be an alternative way of dose escalation in the treatment of glioblastoma

  6. Modelling normal tissue isoeffect distribution in conformal radiotherapy of glioblastoma provides an alternative dose escalation pattern through hypofractionation without reducing the total dose

    Energy Technology Data Exchange (ETDEWEB)

    Mangel, L.; Skriba, Z.; Major, T.; Polgar, C.; Fodor, J.; Somogyi, A.; Nemeth, G. [National Research Inst. for Radiobiology and Radiohygiene, Budapest (Hungary)

    2002-04-01

    The purpose of this study was to prove that by using conformal external beam radiotherapy (RT) normal brain structures can be protected even when applying an alternative approach of biological dose escalation: hypofractionation (HOF) without total dose reduction (TDR). Traditional 2-dimensional (2D) and conformal 3-dimensional (3D) treatment plans were prepared for 10 gliomas representing the subanatomical sites of the supratentorial brain. Isoeffect distributions were generated by the biologically effective dose (BED) formula to analyse the effect of conventionally fractionated (CF) and HOF schedules on both the spatial biological dose distribution and biological dose-volume histograms. A comparison was made between 2D-CF (2.0 Gy/day) and 3D-HOF (2.5 Gy/day) regimens, applying the same 60 Gy total doses. Integral biologically effective dose (IBED) and volumes received biologically equivalent to a dose of 54 Gy or more (V-BED54) were calculated for the lower and upper brain stem as organs of risk. The IBED values were lower with the 3D-HOF than with the 2D-CF schedule in each tumour location, means 22.7{+-}17.1 and 40.4{+-}16.9 in Gy, respectively (p<0.0001). The V-BED54 values were also smaller or equal in 90% of the cases favouring the 3D-HOF scheme. The means were 2.7{+-}4.8 ccm for 3D-HOF and 10.7{+-}12.7 ccm for 2D-CF (p=0.0006). Our results suggest that with conformal RT, fraction size can gradually be increased. HOF radiotherapy regimens without TDR shorten the treatment time and seem to be an alternative way of dose escalation in the treatment of glioblastoma.

  7. Parotid gland tumors: A comparison of postoperative radiotherapy techniques using three dimensional (3D) dose distributions and dose-volume histograms (DVHs)

    International Nuclear Information System (INIS)

    Yaparpalvi, Ravindra; Fontenla, Doracy P.; Tyerech, Sangeeta K.; Boselli, Lucia R.; Beitler, Jonathan J.

    1998-01-01

    Purpose: To compare different treatment techniques for unilateral treatment of parotid gland tumors. Methods and Materials: The CT-scans of a representative parotid patient were used. The field size was 9 x 11 cm, the separation was 15.5 cm, and the prescription depth was 4.5 cm. Using 3D dose distributions, tissue inhomogeneity corrections, scatter integration (for photons) and pencil beam (for electrons) algorithms and dose-volume histogram (DVH), nine treatment techniques were compared. [1] unilateral 6 MV photons [2] unilateral 12 MeV electrons [3] unilateral 16 MeV electrons [4] an ipsilateral wedge pair technique using 6 MV photons [5] a 3-field AP (wedged), PA (wedged) and lateral portal technique using 6 MV photons [6] a mixed beam technique using 6 MV photons and 12 MeV electrons (1:4 weighting) [7] a mixed beam technique using 6 MV photons and 16 MeV electrons (1:4 weighting) [8] a mixed beam technique using 18 MV photons and 20 MeV electrons (2:3 weighting) [9] a mixed beam technique using 18 MV photons and 20 MeV electrons (1:1 weighting). Results: Using dose-volume histograms to evaluate the dose to the contralateral parotid gland, the percentage of contralateral parotid volume receiving ≥ 30% of the prescribed dose was 100% for techniques [1], [8] and [9], and < 5% for techniques [2] through [7]. Evaluating the 'hottest' 5 cc of the ipsilateral mandible and temporal lobes, the hot spots were: 152% and 150% for technique [2], 132% and 130% for technique [6]. Comparing the exit doses, techniques [1], [8] and [9] contributed to ≥ 50% of the prescribed dose to the contralateral mandible and the temporal lobes. Only techniques [2] and [6] kept the highest point doses to both the brain stem and the spinal cord below 50% of the prescribed dose. Conclusion: The single photon lateral field [1] and the mixed electron-photon beams [8] and [9] are not recommended treatment techniques for unilateral parotid irradiation because of high doses delivered to the

  8. Distribution and excretion after intravenous dosing of [{sup 14}C]micafungin to rats

    Energy Technology Data Exchange (ETDEWEB)

    Yamato, Yasuhiro; Kaneko, Hayato; Yamasaki, Sachiko; Fujiwara, Tomoichi; Katashima, Masataka; Kawamura, Akio; Terakawa, Masato; Kagayama, Akira [Fujisawa Pharmaceutical Co., Ltd., Osaka (Japan). Biopharmaceutical and Pharmacokinetic Research Lab.

    2002-12-01

    In this study, distribution and excretion after intravenous dosing of [{sup 14}C] micafungin (1 mg/kg) to rats and in vitro serum protein binding and distribution to blood cells in mouse, rat, dog and human were investigated. The concentration of radioactivity in plasma at 5 min, which was the first observation point, was 3,396 ng eq./mL and decreased triexponentially. At 24 h, the concentration had decreased to approximately 12.4% of that at 5 min, and thereafter it deceased with a half-time of 39.3 h. The blood to plasma radioactivity concentration ratios were in the range of 0.80 to 1.00 for up to 7 day after dosing, and were 1.00 or more thereafter. The radioactivity was widely distributed immediately after dosing. The highest radioactivity concentrations were observed in the lungs at 5 min and were 1.86 times higher than that in plasma, followed by the kidneys (1.09). The relative radioactivity concentrations in brain, eyeball, white fat and testis were less than 0.08 of that in plasma, and those in other tissues were in the range of 0.17 to 0.86. The radioactivity concentrations in all tissues examined at 24 h had decreased compared with those at 5 min or 6 h, and decreased almost in parallel with plasma radioactivity concentrations from 72 h with the exception of concentrations for white fat. Up to 240 h after intravenous dosing, 83.5% and 14.4% of the radioactivity had been excreted in feces and urine, respectively. At 240 h, 2.8% and 0.3% of the radioactivity were detected in carcass and gut, respectively. In the expired air, no radioactivity was detected up to 72 h. Up to 48 h after intravenous dosing, 43.9%, 13.2% and 8.3% of the radioactivity had been excreted in bile, urine and feces, respectively. At 48 h, 32.2% and 4.4% of radioactivity were detected in carcass and gut, respectively. (author)

  9. Dose measurement, its distribution and individual external dose assessments of inhabitants in the high background radiation areas in China

    International Nuclear Information System (INIS)

    Morishima, Hiroshige; Koga, Taeko; Tatsumi, Kusuo; Nakai, Sayaka; Sugahara, Tsutomu; Yuan Yongling; Wei Luxin

    2000-01-01

    As a part of the China-Japan cooperative research on natural radiation epidemiology, we have carried out a dose-assessment study to evaluate the external exposure to natural radiation in the high background radiation areas (HBRA) of Yangjiang in Guangdong province and in the control areas (CA) of Enping prefecture since 1991. Because of the difficulties in measuring the individual doses of all inhabitants directly by personal dosimeters, an indirect method was applied in which the exposed individual doses were estimated from the environmental radiation doses measured by survey meters and the occupancy factors of each hamlet. We analyzed the dose in the hamlets and the variation in the occupancy factors to obtain the parameters of dose estimation on the inhabitants in selected hamlets; Madi and several hamlets of different dose levels in HBRA and Hampizai hamlet in CA. With these parameters, we estimated individual dose rates and compared them with those obtained from direct measurement using dosimeters carried by selected individuals. The results obtained are as follows. The environmental radiation doses are influenced by the natural radioactive nuclide concentrations in building materials, the age of the building and the arrangement of the houses in a hamlet. There existed a fairly large and heterogeneous distribution of indoor and outdoor environmental radiations. The indoor radiation doses were due to exposure from the natural radioactive nuclides in the building materials and were about two times as large as the outdoor radiation doses. The difference between indoor and outdoor doses was not observed in CA. The occupancy factor was influenced by the age of individuals and by the season of the year. The occupancy factor was higher for infants and aged individuals than for other age groups. This lead to higher dose rates of exposure to those age groups. A good correlation was observed between the dose assessed indirectly and that measured directly and the

  10. Dose measurement, its distribution and individual external dose assessments of inhabitants in the high background radiation areas in China

    Energy Technology Data Exchange (ETDEWEB)

    Morishima, Hiroshige; Koga, Taeko [Kinki Univ., Higashi-Osaka, Osaka (Japan). Atomic Energy Research Inst.; Tatsumi, Kusuo; Nakai, Sayaka; Sugahara, Tsutomu; Yuan Yongling; Wei Luxin

    2000-10-01

    As a part of the China-Japan cooperative research on natural radiation epidemiology, we have carried out a dose-assessment study to evaluate the external exposure to natural radiation in the high background radiation areas (HBRA) of Yangjiang in Guangdong province and in the control areas (CA) of Enping prefecture since 1991. Because of the difficulties in measuring the individual doses of all inhabitants directly by personal dosimeters, an indirect method was applied in which the exposed individual doses were estimated from the environmental radiation doses measured by survey meters and the occupancy factors of each hamlet. We analyzed the dose in the hamlets and the variation in the occupancy factors to obtain the parameters of dose estimation on the inhabitants in selected hamlets; Madi and several hamlets of different dose levels in HBRA and Hampizai hamlet in CA. With these parameters, we estimated individual dose rates and compared them with those obtained from direct measurement using dosimeters carried by selected individuals. The results obtained are as follows. The environmental radiation doses are influenced by the natural radioactive nuclide concentrations in building materials, the age of the building and the arrangement of the houses in a hamlet. There existed a fairly large and heterogeneous distribution of indoor and outdoor environmental radiations. The indoor radiation doses were due to exposure from the natural radioactive nuclides in the building materials and were about two times as large as the outdoor radiation doses. The difference between indoor and outdoor doses was not observed in CA. The occupancy factor was influenced by the age of individuals and by the season of the year. The occupancy factor was higher for infants and aged individuals than for other age groups. This lead to higher dose rates of exposure to those age groups. A good correlation was observed between the dose assessed indirectly and that measured directly and the

  11. Entrances skin dose distribution maps for interventional neuroradiological procedures: A preliminary study

    International Nuclear Information System (INIS)

    Rampado, O.; Ropolo, R.

    2005-01-01

    Does estimation in interventional neuroradiology can be useful to limit skin radiation injuries. The purpose of this study was to evaluate the role of entrance skin dose (ESD) maps in planning exposure condition optimisation. Thirteen cerebral angiography and five embolisation procedures were monitored, measuring ESD, dose-area product (DAP) and other operational parameters. A transmission ionisation chamber, simultaneously measuring air kerma and DAP, measured dose-related quantities. Data acquisition software collected dosimetric and geometrical data during the interventional procedure and provided a distribution map of ESD on a standard phantom digital image, with maximum value estimation. Values of 88-1710 mGy for maximum skin dose and 16.7-343 Gy cm 2 for DAP were found. These data confirm the possibility of deterministic effects during therapeutic interventional neuroradiological procedures like cerebral embolisation. ESD maps are useful to retrospectively study the exposure characteristics of a procedure and plan patient exposure optimisation. (authors)

  12. Entrance surface dose distribution and organ dose assessment for cone-beam computed tomography using measurements and Monte Carlo simulations with voxel phantoms

    Science.gov (United States)

    Baptista, M.; Di Maria, S.; Vieira, S.; Vaz, P.

    2017-11-01

    Cone-Beam Computed Tomography (CBCT) enables high-resolution volumetric scanning of the bone and soft tissue anatomy under investigation at the treatment accelerator. This technique is extensively used in Image Guided Radiation Therapy (IGRT) for pre-treatment verification of patient position and target volume localization. When employed daily and several times per patient, CBCT imaging may lead to high cumulative imaging doses to the healthy tissues surrounding the exposed organs. This work aims at (1) evaluating the dose distribution during a CBCT scan and (2) calculating the organ doses involved in this image guiding procedure for clinically available scanning protocols. Both Monte Carlo (MC) simulations and measurements were performed. To model and simulate the kV imaging system mounted on a linear accelerator (Edge™, Varian Medical Systems) the state-of-the-art MC radiation transport program MCNPX 2.7.0 was used. In order to validate the simulation results, measurements of the Computed Tomography Dose Index (CTDI) were performed, using standard PMMA head and body phantoms, with 150 mm length and a standard pencil ionizing chamber (IC) 100 mm long. Measurements for head and pelvis scanning protocols, usually adopted in clinical environment were acquired, using two acquisition modes (full-fan and half fan). To calculate the organ doses, the implemented MC model of the CBCT scanner together with a male voxel phantom ("Golem") was used. The good agreement between the MCNPX simulations and the CTDIw measurements (differences up to 17%) presented in this work reveals that the CBCT MC model was successfully validated, taking into account the several uncertainties. The adequacy of the computational model to map dose distributions during a CBCT scan is discussed in order to identify ways to reduce the total CBCT imaging dose. The organ dose assessment highlights the need to evaluate the therapeutic and the CBCT imaging doses, in a more balanced approach, and the

  13. Normal tissue dose-effect models in biological dose optimisation

    International Nuclear Information System (INIS)

    Alber, M.

    2008-01-01

    Sophisticated radiotherapy techniques like intensity modulated radiotherapy with photons and protons rely on numerical dose optimisation. The evaluation of normal tissue dose distributions that deviate significantly from the common clinical routine and also the mathematical expression of desirable properties of a dose distribution is difficult. In essence, a dose evaluation model for normal tissues has to express the tissue specific volume effect. A formalism of local dose effect measures is presented, which can be applied to serial and parallel responding tissues as well as target volumes and physical dose penalties. These models allow a transparent description of the volume effect and an efficient control over the optimum dose distribution. They can be linked to normal tissue complication probability models and the equivalent uniform dose concept. In clinical applications, they provide a means to standardize normal tissue doses in the face of inevitable anatomical differences between patients and a vastly increased freedom to shape the dose, without being overly limiting like sets of dose-volume constraints. (orig.)

  14. Radiotherapy in differentiated thyroid cancer: Optimal dose distribution using a wax bolus

    International Nuclear Information System (INIS)

    Mayer, R.; Stucklschweiger, G.; Oechs, A.; Pakish, B.; Hackl, A.; Preidler, K.; Szola, D.

    1994-01-01

    The study includes 53 patients with differentiated thyroid cancer, who underwent surgical and radioiodine therapy as well as hormone therapy. Postoperative radiotherapy was performed in all patients in 'mini-mantle-technique' with parallel opposed fields, followed by an anterior boost-field with electrons up to 60-64 Gy, using a wax bolus for optimal dose distribution in the target volume sparing out the spinal cord as much as possible. The dose to the spinal cord did not exceed 44 Gy in any case. The study shows that radiotherapy with doses up to 60-64 Gy plays an important role in postsurgical therapeutic management. Therefore nonradical surgery is a less important prognostic factor for survival and local recurrence in patients with differentiated thyroid cancer than histological diagnosis in combination with age and lymph node involvement

  15. Potential Impact of Accelerating the Primary Dose of Rotavirus Vaccine in Infants

    OpenAIRE

    Halvorson, Elizabeth E.; Peters, Timothy R.; Snively, Beverly M.; Poehling, Katherine A.

    2012-01-01

    We estimated the potential impact of administering the first dose of rotavirus vaccine at 6 weeks (42 days of life) instead of 2 months of age, which is permissible for all U.S. vaccines recommended at 2 months of age, on rotavirus hospitalization rates. We used published data for hospitalization rates, vaccine coverage, and vaccine efficacy after one dose and assumed a two-week delay in seroconversion after vaccine administration in the United States. Administering the first dose of rotaviru...

  16. Conventional patient specific IMRT QA and 3DVH verification of dose distribution for helical tomotherapy

    International Nuclear Information System (INIS)

    Sharma, Prabhat Krishna; Joshi, Kishore; Epili, D.; Gavake, Umesh; Paul, Siji; Reena, Ph.; Jamema, S.V.

    2016-01-01

    In recent years, patient-specific IMRT QA has transitioned from point dose measurements by ion chambers to films to 2D array measurements. 3DVH software has taken this transition a step further by estimating the 3D dose delivered to the patient volume from 2D diode measurements using a planned dose perturbation (PDP) algorithm. This algorithm was developed to determine, if the conventional IMRT QA though sensitive at detecting errors, has any predictive power in detecting dose errors of clinical significance related to dose to the target volume and organs at risk (OAR). The aim of this study is to compare the conventional IMRT patient specific QA and 3DVH dose distribution for patients treated with helical tomotherapy (HT)

  17. Parotid gland tumors: a comparison of postoperative radiotherapy techniques using three dimensional (3-D) dose distributions and dose-volume histograms (DVH)

    International Nuclear Information System (INIS)

    Yaparpalvi, R.; Tyerech, S.K.; Boselli, L.R.; Fontenla, D.P.; Beitler, J.J.; Vikram, B.

    1996-01-01

    Purpose/Objective: To compare different treatment techniques for unilateral treatment of parotid gland tumors. Materials and Methods: Twenty patients previously treated postoperatively for parotid gland tumors were retrospectively reviewed. Average field size was 9 x 11 cm, average separation was 15.5 cm, and the average prescription depth was 4.5 cm. Using 3-D dose distributions, tissue inhomogeneity corrections, scatter integration (for photons) and pencil beam (for electrons) algorithms and DVH, nine treatment techniques were compared using a representative patient. The treatment techniques investigated were: [1] unilateral 6 MV photons. [2] unilateral 12 MeV electrons. [3] unilateral 16 MeV electrons. [4] a ipsilateral wedge pair technique using 6 MV photons and a 45-degree wedge. [5] a 3-field AP (wedged), PA (wedged) and lateral portal technique using 6 MV photons. [6] a mixed beam technique using 6 MV photons and 12 MeV electrons (1:4 weighting). [7] a mixed beam technique using 6 MV photons and 16 MeV electrons (1:4 weighting). [8] a mixed beam technique using 18 MV photons and 20 MeV electrons (2:3 weighting). [9] a mixed beam technique using 18 MV photons and 20 MeV electrons (1:1 weighting). Results: Using dose-volume histograms to evaluate the dose to the contralateral parotid gland, the percentage of contralateral parotid volume receiving ≥30% of the prescribed dose was 100% for techniques [1], [8] and [9], and <5% for techniques [2] through [7]. Evaluating the 'hottest' 5 cc of the ipsilateral mandible and temporal lobes, the hot spots were: 152% and 150% for technique [2], 132% and 130% for technique [6]. Comparing the exit doses, techniques [1] and [8] contributed to ≥50% of the prescribed dose to the contralateral mandible and the temporal lobes. Only techniques [2] and [6] kept the highest point doses to both the brain stem and the spinal cord below 50% of the prescribed dose. Conclusion: The single photon lateral field [1] and the mixed

  18. The influence of dose distributions on the results of UV-biodosimetry

    International Nuclear Information System (INIS)

    Cabaj, A.; Sommer, R.; Kundi, M.

    1996-01-01

    Disinfection of drinking water with ultraviolet radiation has become a common method in Austria and in many other countries. The water usually is disinfected in flow through systems with low pressure mercury lamps as UV source, which emit predominantly UV radiation with wavelength 253.7 nm. Because of varying residence times of microorganizms and the special distribution of fluence rate in the irradiation volume, caused by different distances from the radiation source, by absorption of radiation in the water and by reflexion at the walls of the reactor, the microorganizms passing through in a turbulent flow, receive different fluences. In Austria UV-disinfection plants for drinking water must deliver a minimal dose of 400 Jm -2 for radiation of wavelength 253.7 nm. The fulfillment of this demand is proved during type testing. As dosimeter suspensions of bacterial spores are used whose UV-susceptibility has to be measured in a laboratory irradiation device. The dose, determined in this way, is called Reduction Equivalent Dose'. (author)

  19. Dose Calculation Accuracy of the Monte Carlo Algorithm for CyberKnife Compared with Other Commercially Available Dose Calculation Algorithms

    International Nuclear Information System (INIS)

    Sharma, Subhash; Ott, Joseph; Williams, Jamone; Dickow, Danny

    2011-01-01

    Monte Carlo dose calculation algorithms have the potential for greater accuracy than traditional model-based algorithms. This enhanced accuracy is particularly evident in regions of lateral scatter disequilibrium, which can develop during treatments incorporating small field sizes and low-density tissue. A heterogeneous slab phantom was used to evaluate the accuracy of several commercially available dose calculation algorithms, including Monte Carlo dose calculation for CyberKnife, Analytical Anisotropic Algorithm and Pencil Beam convolution for the Eclipse planning system, and convolution-superposition for the Xio planning system. The phantom accommodated slabs of varying density; comparisons between planned and measured dose distributions were accomplished with radiochromic film. The Monte Carlo algorithm provided the most accurate comparison between planned and measured dose distributions. In each phantom irradiation, the Monte Carlo predictions resulted in gamma analysis comparisons >97%, using acceptance criteria of 3% dose and 3-mm distance to agreement. In general, the gamma analysis comparisons for the other algorithms were <95%. The Monte Carlo dose calculation algorithm for CyberKnife provides more accurate dose distribution calculations in regions of lateral electron disequilibrium than commercially available model-based algorithms. This is primarily because of the ability of Monte Carlo algorithms to implicitly account for tissue heterogeneities, density scaling functions; and/or effective depth correction factors are not required.

  20. Automated size-specific CT dose monitoring program: Assessing variability in CT dose

    International Nuclear Information System (INIS)

    Christianson, Olav; Li Xiang; Frush, Donald; Samei, Ehsan

    2012-01-01

    adjusted by patient size. Additionally, considerable differences were noted in ED adj distributions between scanners, with scanners employing iterative reconstruction exhibiting significantly lower ED adj (range: 9%–64%). Finally, a significant difference (up to 59%) in ED adj distributions was observed between institutions, indicating the potential for dose reduction. Conclusions: The authors developed a robust automated size-specific radiation dose monitoring program for CT. Using this program, significant differences in ED adj were observed between scanner models and across institutions. This new dose monitoring program offers a unique tool for improving quality assurance and standardization both within and across institutions.

  1. Hand dose distribution of workers at nuclear medicine department with PET

    International Nuclear Information System (INIS)

    Fueloep, M.; Bacek, D.; Povinec, P.; Cesnakova, Z; Vlk, P.; Husak, V.; Ptacek, J.

    2008-01-01

    In this study radio-pharmacists and physician hands during manipulation with syringes were recorded by video camera. The videos were analyzed and several hand phantoms were constructed to simulate the exposure geometries at which hands are irradiated by the highest doses. The hand dose distribution and conversion coefficient of ring dosimeter response to maximum dose equivalent of hand irradiation were evaluated by hand phantom experiments. Hand phantoms were performed from soft tissue equivalent material. FDG is commonly administered to patient by shielded syringe, which is connected on infusion line. At about 15% patients it is necessary to administered FDG directly without infusion line. For mapping hand dose dosimeters (TLD 100H calibrated on H p (0.07)) were located on fingers and wrist of hand phantom simulating physician hand. By ratio of dosimeter response at hand localities with maximum irradiation and ring dosimeter response was obtain value of about 30. It was proved that only one hand phantom was necessary for simulation of all radio-pharmacist operations with FDG during syringe preparation to patient PET. For this purpose by Monte Carlo simulations an effective position of radioactive source with regard to radio-pharmacist hands was found. (authors)

  2. Hand dose distribution of workers at nuclear medicine department with PET

    International Nuclear Information System (INIS)

    Fueloep, M.; Bacek, D.; Povinec, P.; Cesnakova, Z; Vlk, P.; Husak, V.; Ptacek, J.

    2009-01-01

    In this study radio-pharmacists and physician hands during manipulation with syringes were recorded by video camera. The videos were analyzed and several hand phantoms were constructed to simulate the exposure geometries at which hands are irradiated by the highest doses. The hand dose distribution and conversion coefficient of ring dosimeter response to maximum dose equivalent of hand irradiation were evaluated by hand phantom experiments. Hand phantoms were performed from soft tissue equivalent material. FDG is commonly administered to patient by shielded syringe, which is connected on infusion line. At about 15% patients it is necessary to administered FDG directly without infusion line. For mapping hand dose dosimeters (TLD 100H calibrated on H p (0.07)) were located on fingers and wrist of hand phantom simulating physician hand. By ratio of dosimeter response at hand localities with maximum irradiation and ring dosimeter response was obtain value of about 30. It was proved that only one hand phantom was necessary for simulation of all radio-pharmacist operations with FDG during syringe preparation to patient PET. For this purpose by Monte Carlo simulations an effective position of radioactive source with regard to radio-pharmacist hands was found. (authors)

  3. Dose distributions of a proton beam for eye tumor therapy: Hybrid pencil-beam ray-tracing calculations

    International Nuclear Information System (INIS)

    Rethfeldt, Ch.; Fuchs, H.; Gardey, K.-U.

    2006-01-01

    For the case of eye tumor therapy with protons, improvements are introduced compared to the standard dose calculation which implies straight-line optics and the constant-density assumption for the eye and its surrounding. The progress consists of (i) taking account of the lateral scattering of the protons in tissue by folding the entrance fluence distribution with the pencil beam distribution widening with growing depth in the tissue, (ii) rescaling the spread-out Bragg peak dose distribution in water with the radiological path length calculated voxel by voxel on ray traces through a realistic density matrix for the treatment geometry, yielding a trajectory dependence of the geometrical range. Distributions calculated for some specific situations are compared to measurements and/or standard calculations, and differences to the latter are discussed with respect to the requirements of therapy planning. The most pronounced changes appear for wedges placed in front of the eye, causing additional widening of the lateral falloff. The more accurate prediction of the dose dependence at the field borders is of interest with respect to side effects in the risk organs of the eye

  4. Benchmark experiments of dose distributions in phantom placed behind iron and concrete shields at the TIARA facility

    International Nuclear Information System (INIS)

    Nakane, Yoshihiro; Sakamoto, Yukio; Tsuda, Shuichi

    2004-01-01

    To verify the calculation methods used for the evaluations of neutron dose at the radiation shielding design of the high-intensity proton accelerator facility (J-PARC), dose distributions in a plastic phantom of 30x30x30 cm 3 slab placed behind iron and concrete test shields were measured by using a tissue equivalent proportional counter for 65-MeV quasi-monoenergetic neutrons generated from the 7 Li(p,n) reactions with 68-MeV protons at the TIARA facility. Dose distributions in the phantom were calculated by using the MCNPX and the NMTC/JAM-MCNP codes with the flux-to-dose conversion coefficients prepared for the shielding design of the facility. The comparison results show the calculated results were in good agreement with the measured ones within 20%. (author)

  5. Effect of dosimeter type for commissioning small photon beams on calculated dose distribution in stereotactic radiosurgery

    Energy Technology Data Exchange (ETDEWEB)

    García-Garduño, O. A., E-mail: oagarciag@innn.edu.mx, E-mail: amanda.garcia.g@gmail.com [Laboratorio de Física Médica, Instituto Nacional de Neurología y Neurocirugía, Mexico City 14269, México and Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Legaria, Instituto Politécnico Nacional, Legaria 694, México City 11500, México (Mexico); Rodríguez-Ponce, M. [Departamento de Biofísica, Instituto Nacional de Cancerología, Mexico City 14080, México (Mexico); Gamboa-deBuen, I. [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510 (Mexico); Rodríguez-Villafuerte, M. [Instituto de Física, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510 (Mexico); Galván de la Cruz, O. O. [Laboratorio de Física Médica, Instituto Nacional de Neurología y Neurocirugía, Mexico City 14269, México (Mexico); and others

    2014-09-15

    Purpose: To assess the impact of the detector used to commission small photon beams on the calculated dose distribution in stereotactic radiosurgery (SRS). Methods: In this study, six types of detectors were used to characterize small photon beams: three diodes [a silicon stereotactic field diode SFD, a silicon diode SRS, and a silicon diode E], an ionization chamber CC01, and two types of radiochromic film models EBT and EBT2. These detectors were used to characterize circular collimated beams that were generated by a Novalis linear accelerator. This study was conducted in two parts. First, the following dosimetric data, which are of particular interest in SRS, were compared for the different detectors: the total scatter factor (TSF), the tissue phantom ratios (TPRs), and the off-axis ratios (OARs). Second, the commissioned data sets were incorporated into the treatment planning system (TPS) to compare the calculated dose distributions and the dose volume histograms (DVHs) that were obtained using the different detectors. Results: The TSFs data measured by all of the detectors were in good agreement with each other within the respective statistical uncertainties: two exceptions, where the data were systematically below those obtained for the other detectors, were the CC01 results for all of the circular collimators and the EBT2 film results for circular collimators with diameters below 10.0 mm. The OAR results obtained for all of the detectors were in excellent agreement for all of the circular collimators. This observation was supported by the gamma-index test. The largest difference in the TPR data was found for the 4.0 mm circular collimator, followed by the 10.0 and 20.0 mm circular collimators. The results for the calculated dose distributions showed that all of the detectors passed the gamma-index test at 100% for the 3 mm/3% criteria. The aforementioned observation was true regardless of the size of the calculation grid for all of the circular collimators

  6. DISTRIBUTION OF A 2ND DOSE OF EXOGENOUS SURFACTANT IN RABBITS WITH SEVERE RESPIRATORY-FAILURE

    NARCIS (Netherlands)

    PLOTZ, FB; STEVENS, H; HEIKAMP, A; OETOMO, SB

    Newborn infants with respiratory distress who fail to respond to surfactant treatment receive a second dose of surfactant. The effect of this strategy on the distribution of surfactant to the lung is unknown. We therefore investigated the distribution of the first (100 mg/kg body weight) and second

  7. Combination of MALDI-MSI and cassette dosing for evaluation of drug distribution in human skin explant

    DEFF Research Database (Denmark)

    Sørensen, Isabella S; Janfelt, Christian; Nielsen, Mette Marie B

    2017-01-01

    Study of skin penetration and distribution of the drug compounds in the skin is a major challenge in the development of topical drug products for treatment of skin diseases. It is crucial to have fast and efficacious screening methods which can provide information concerning the skin penetration ...... that combination of MALDI-MSI and cassette dosing can be used as a medium throughput screening tool at an early stage in the drug discovery/development process. Graphical abstract Investigation of drug distribution in human skin explant by MALDI-MSI after cassette dosing....

  8. Trends of the effective dose distribution of occupational exposures in medical and research departments for KIRAMS in Republic of Korea

    International Nuclear Information System (INIS)

    Park, M.; Kim, G. S.; Ji, Y. H.; Jung, M. S.; Kim, K. B.; Jung, H.

    2014-01-01

    This work proposes the basic reference data of occupational dose management and statistical dose distribution with the classification of radiation work groups though analysis of occupational dose distribution. Data on occupational radiation exposure from medical and scientific usage of radiation in Korea Institute of Radiological and Medical Sciences for the years 2002-11 are presented and evaluated with the characteristic tendency of radiation working groups. The results of occupational radiation exposure were measured by personal dosemeters. The monitored occupational exposure dose data were evaluated according to the average effective dose and collective dose. The most annual average effective dose for all occupational radiation workers was under 1 mSv. Considering the dose distribution of each department, most overexposure workers worked in radiopharmaceutical product facilities, nuclear medicine department and radiation oncology department. In addition, no monitored workers were found to have received an occupational exposure over 50 mSv in single year or 100 mSv in this period. Although the trend of occupational exposure was controlled <1 mSv after 2007 and the radiation protection status was sufficient, it was consistently necessary to optimise and reduce the occupational radiation exposure. (authors)

  9. Radiation dose distribution monitoring at neutron radiography facility area, Nuclear Energy Unit, Malaysia

    International Nuclear Information System (INIS)

    Abdul Razak Daud

    1995-01-01

    One experiment was carried out to get the distribution of radiation doses at the neutron radiography facilities, Nuclear Energy Unit, Malaysia. The analysis was done to evaluate the safety level of the area. The analysis was used in neutron radiography work

  10. Effect of tissue inhomogeneity on dose distribution of point sources of low-energy electrons

    International Nuclear Information System (INIS)

    Kwok, C.S.; Bialobzyski, P.J.; Yu, S.K.; Prestwich, W.V.

    1990-01-01

    Perturbation in dose distributions of point sources of low-energy electrons at planar interfaces of cortical bone (CB) and red marrow (RM) was investigated experimentally and by Monte Carlo codes EGS and the TIGER series. Ultrathin LiF thermoluminescent dosimeters were used to measure the dose distributions of point sources of 204 Tl and 147 Pm in RM. When the point sources were at 12 mg/cm 2 from a planar interface of CB and RM equivalent plastics, dose enhancement ratios in RM averaged over the region 0--12 mg/cm 2 from the interface were measured to be 1.08±0.03 (SE) and 1.03±0.03 (SE) for 204 Tl and 147 Pm, respectively. The Monte Carlo codes predicted 1.05±0.02 and 1.01±0.02 for the two nuclides, respectively. However, EGS gave consistently 3% higher dose in the dose scoring region than the TIGER series when point sources of monoenergetic electrons up to 0.75 MeV energy were considered in the homogeneous RM situation or in the CB and RM heterogeneous situation. By means of the TIGER series, it was demonstrated that aluminum, which is normally assumed to be equivalent to CB in radiation dosimetry, leads to an overestimation of backscattering of low-energy electrons in soft tissue at a CB--soft-tissue interface by as much as a factor of 2

  11. The analysis of impact of irregularity in radionuclide coating of scaffold on the distribution of absorbed dose produced by grid of microsources

    Directory of Open Access Journals (Sweden)

    N. A. Nerosin

    2015-01-01

    Full Text Available The impact of irregularity in radionuclide coating of scaffold on the distribution of absorbed dose produced by grid of microsources was analyzed. On engineering software MATHCAD the program for calculation of absorbed dose produced by grid of microsources was created. To verify this algorithm the calculation model for MCNP code was established and represented the area consisted of soft biological tissue or any other tissue in which the grid of microsources was incorporated. Using the developed system the value of possible systematic irregular coating of radioactivity on the microsource’s core was analyzed. The distribution of activity along the surface of microsource was simulated to create distribution of absorbed dose rate corresponding to experimental data on radiation injury. The obtained model of microsource with irregular distribution of activity was compared to conventional microsource with core coated regularly along the entire area of the silver stem by main dosimetry characteristics. The results showed that even for extremely irregular distribution of activity the distribution of dose rate produced by microsource in the tumor area was not substantially different from dose-rate field obtained for microsource with regularly coated activity. The differences in dose rates (up to 10% in areas which were the nearest to the center of the grid were significantly lower than its decline from center to periphery of the grid. For spatial distribution of absorbed dose for specific configuration of microsource set and tracing of curves of equal level by selected cut-off the program SEEDPLAN was developed. The developed program represents precisely enough the spatial distribution of selected configuration set of microsources using results of calculation data for absorbed dose around the single microsource as basic data and may be used for optimal planning of brachytherapy with microsources. 

  12. The effect of voxel size on dose distribution in Varian Clinac iX 6 MV photon beam using Monte Carlo simulation

    International Nuclear Information System (INIS)

    Yani, Sitti; Dirgayussa, I Gde E.; Haryanto, Freddy; Arif, Idam; Rhani, Moh. Fadhillah

    2015-01-01

    Recently, Monte Carlo (MC) calculation method has reported as the most accurate method of predicting dose distributions in radiotherapy. The MC code system (especially DOSXYZnrc) has been used to investigate the different voxel (volume elements) sizes effect on the accuracy of dose distributions. To investigate this effect on dosimetry parameters, calculations were made with three different voxel sizes. The effects were investigated with dose distribution calculations for seven voxel sizes: 1 × 1 × 0.1 cm 3 , 1 × 1 × 0.5 cm 3 , and 1 × 1 × 0.8 cm 3 . The 1 × 10 9 histories were simulated in order to get statistical uncertainties of 2%. This simulation takes about 9-10 hours to complete. Measurements are made with field sizes 10 × 10 cm2 for the 6 MV photon beams with Gaussian intensity distribution FWHM 0.1 cm and SSD 100.1 cm. MC simulated and measured dose distributions in a water phantom. The output of this simulation i.e. the percent depth dose and dose profile in d max from the three sets of calculations are presented and comparisons are made with the experiment data from TTSH (Tan Tock Seng Hospital, Singapore) in 0-5 cm depth. Dose that scored in voxels is a volume averaged estimate of the dose at the center of a voxel. The results in this study show that the difference between Monte Carlo simulation and experiment data depend on the voxel size both for percent depth dose (PDD) and profile dose. PDD scan on Z axis (depth) of water phantom, the big difference obtain in the voxel size 1 × 1 × 0.8 cm 3 about 17%. In this study, the profile dose focused on high gradient dose area. Profile dose scan on Y axis and the big difference get in the voxel size 1 × 1 × 0.1 cm 3 about 12%. This study demonstrated that the arrange voxel in Monte Carlo simulation becomes important

  13. The effect of voxel size on dose distribution in Varian Clinac iX 6 MV photon beam using Monte Carlo simulation

    Science.gov (United States)

    Yani, Sitti; Dirgayussa, I. Gde E.; Rhani, Moh. Fadhillah; Haryanto, Freddy; Arif, Idam

    2015-09-01

    Recently, Monte Carlo (MC) calculation method has reported as the most accurate method of predicting dose distributions in radiotherapy. The MC code system (especially DOSXYZnrc) has been used to investigate the different voxel (volume elements) sizes effect on the accuracy of dose distributions. To investigate this effect on dosimetry parameters, calculations were made with three different voxel sizes. The effects were investigated with dose distribution calculations for seven voxel sizes: 1 × 1 × 0.1 cm3, 1 × 1 × 0.5 cm3, and 1 × 1 × 0.8 cm3. The 1 × 109 histories were simulated in order to get statistical uncertainties of 2%. This simulation takes about 9-10 hours to complete. Measurements are made with field sizes 10 × 10 cm2 for the 6 MV photon beams with Gaussian intensity distribution FWHM 0.1 cm and SSD 100.1 cm. MC simulated and measured dose distributions in a water phantom. The output of this simulation i.e. the percent depth dose and dose profile in dmax from the three sets of calculations are presented and comparisons are made with the experiment data from TTSH (Tan Tock Seng Hospital, Singapore) in 0-5 cm depth. Dose that scored in voxels is a volume averaged estimate of the dose at the center of a voxel. The results in this study show that the difference between Monte Carlo simulation and experiment data depend on the voxel size both for percent depth dose (PDD) and profile dose. PDD scan on Z axis (depth) of water phantom, the big difference obtain in the voxel size 1 × 1 × 0.8 cm3 about 17%. In this study, the profile dose focused on high gradient dose area. Profile dose scan on Y axis and the big difference get in the voxel size 1 × 1 × 0.1 cm3 about 12%. This study demonstrated that the arrange voxel in Monte Carlo simulation becomes important.

  14. Fieldable computer system for determining gamma-ray pulse-height distributions, flux spectra, and dose rates from Little Boy

    International Nuclear Information System (INIS)

    Moss, C.E.; Lucas, M.C.; Tisinger, E.W.; Hamm, M.E.

    1984-01-01

    Our system consists of a LeCroy 3500 data acquisition system with a built-in CAMAC crate and eight bismuth-germanate detectors 7.62 cm in diameter and 7.62 cm long. Gamma-ray pulse-height distributions are acquired simultaneously for up to eight positions. The system was very carefully calibrated and characterized from 0.1 to 8.3 MeV using gamma-ray spectra from a variety of radioactive sources. By fitting the pulse-height distributions from the sources with a function containing 17 parameters, we determined theoretical repsonse functions. We use these response functions to unfold the distributions to obtain flux spectra. A flux-to-dose-rate conversion curve based on the work of Dimbylow and Francis is then used to obtain dose rates. Direct use of measured spectra and flux-to-dose-rate curves to obtain dose rates avoids the errors that can arise from spectrum dependence in simple gamma-ray dosimeter instruments. We present some gamma-ray doses for the Little Boy assembly operated at low power. These results can be used to determine the exposures of the Hiroshima survivors and thus aid in the establishment of radation exposure limits for the nuclear industry

  15. Evaluation of the dose distribution of dynamic conical conformal therapy using a C-arm mounted accelerator

    International Nuclear Information System (INIS)

    Nakagawa, Keiichi; Aoki, Yukimasa; Ohtomo, Kuni

    2001-01-01

    Conformal radiation therapy, which is widely utilized in Japan as a standard, highly precise technique has limited advantage in dose confinement because of its coplanar beam entry. An improved form of conformal therapy is delivered by a linac mounted on a C-arm rotatable gantry. The linac head was designed to move along the C-arm with a maximum angle of 60 degrees. Simultaneous rotation of the gantry creates a Dynamic Conical irradiation technique. Dynamic Conical Conformal Therapy (Dyconic Therapy) was developed by combining the technique with continuous MLC motion based on beam's eye views of the target volume. Dose distributions were measured in a phantom using film densitometry and compared with conventional conformal radiation therapy. The measurements showed that the dose distribution conformed to the target shape identified by CT. In addition, the dose distribution for a cancer patient was evaluated through the use of DVHs generated by a treatment planning system. These measurements showed that the dose distribution along the patient's long axis conformed to the shape of the target volume. DVH analysis, however, did not indicate superiority of the present technique over the conventional technique. Angulation of the C-arm gantry allowed the primary beam to strike a larger area of the therapy room. This necessitated adding shielding to the walls and ceiling of the treatment room. It was confirmed that the leakage radiation was reduced to a negligible level by adding an iron plate 20 cm thick to several places on the side walls, by adding an iron plate 9 cm thick to several places on the ceiling, and by increasing the thickness of the concrete ceiling from 70 to 140 cm. The possible usefulness of Dyconic Therapy was confirmed. (author)

  16. A consideration of distributions and treatment schedules in high dose rate intracavitary therapy of carcinoma of the uterine cervix

    International Nuclear Information System (INIS)

    Sakata, Suoh; Sato, Sigehiro; Nakano, Masao; Iida, Koyo; Yui, Nobuharu

    1979-01-01

    A remotely controlled afterloading device for high dose rate intracavitary radiation, the remote afterloader Shimadzu Ralstron MTSW-20, was installed at Chiba Cancer Center Hospital in 1973 and put into clinical use for the treatment of carcinoma of the uterine cervix. Before the clinical use, isodose distributions and treatment schedules were investigated, compared with the low dose rate intracavitary radiation by linear sources of 137 Cs used hitherto. The isodose distributions, calculated by using an electronic computer, for various combinations of the length of uterine canal and the separation of vaginal applicators, were the same as those obtained with linear sources. As for the treatment schedules, by using PT (partial tolerance) which was derived from NSD concept of Ellis, a number of fractional radiation regimes with high dose rate, equivalent to continuous low dose rate radiation, was calculated. From these, a dose of 600 rad per fraction to point A every week has been chosen as the standard radiation schedule. The number of fractions has been varied with the clinical stages. Furthermore, some changes of total dose or small modification of dose distribution have been made for individual lesions. According to the preliminary results, three-year cumulative survival rate was 68.7% and complication rate was 15.2%. Comparing these results with those of the treatment at low dose rate, the former is nearly equal, while the latter is lower. The reduction of complication rate is probably due to the improvement of therapeutic techniques such as continuous observation by fractionated intracavitary radiation, variety of isodose distributions and accuracy of source placement by a short treatment time. (author)

  17. Comparison between beta radiation dose distribution due to LDR and HDR ocular brachytherapy applicators using GATE Monte Carlo platform.

    Science.gov (United States)

    Mostafa, Laoues; Rachid, Khelifi; Ahmed, Sidi Moussa

    2016-08-01

    Eye applicators with 90Sr/90Y and 106Ru/106Rh beta-ray sources are generally used in brachytherapy for the treatment of eye diseases as uveal melanoma. Whenever, radiation is used in treatment, dosimetry is essential. However, knowledge of the exact dose distribution is a critical decision-making to the outcome of the treatment. The Monte Carlo technique provides a powerful tool for calculation of the dose and dose distributions which helps to predict and determine the doses from different shapes of various types of eye applicators more accurately. The aim of this work consisted in using the Monte Carlo GATE platform to calculate the 3D dose distribution on a mathematical model of the human eye according to international recommendations. Mathematical models were developed for four ophthalmic applicators, two HDR 90Sr applicators SIA.20 and SIA.6, and two LDR 106Ru applicators, a concave CCB model and a flat CCB model. In present work, considering a heterogeneous eye phantom and the chosen tumor, obtained results with the use of GATE for mean doses distributions in a phantom and according to international recommendations show a discrepancy with respect to those specified by the manufacturers. The QC of dosimetric parameters shows that contrarily to the other applicators, the SIA.20 applicator is consistent with recommendations. The GATE platform show that the SIA.20 applicator present better results, namely the dose delivered to critical structures were lower compared to those obtained for the other applicators, and the SIA.6 applicator, simulated with MCNPX generates higher lens doses than those generated by GATE. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  18. SU-E-T-243: MonteCarlo Simulation Study of Polymer and Radiochromic Gel for Three-Dimensional Proton Dose Distribution

    International Nuclear Information System (INIS)

    Park, M; Jung, H; Kim, G; Ji, Y; Kim, K; Park, S

    2014-01-01

    Purpose: To estimate the three dimensional dose distributions in a polymer gel and a radiochromic gel by comparing with the virtual water phantom exposed to proton beams by applying Monte Carlo simulation. Methods: The polymer gel dosimeter is the compositeness material of gelatin, methacrylic acid, hydroquinone, tetrakis, and distilled water. The radiochromic gel is PRESAGE product. The densities of polymer and radiochromic gel were 1.040 and 1.0005 g/cm3, respectively. The shape of water phantom was a hexahedron with the size of 13 × 13 × 15 cm3. The proton beam energies of 72 and 116 MeV were used in the simulation. Proton beam was directed to the top of the phantom with Z-axis and the shape of beam was quadrangle with 10 × 10 cm2 dimension. The Percent depth dose and the dose distribution were evaluated for estimating the dose distribution of proton particle in two gel dosimeters, and compared with the virtual water phantom. Results: The Bragg-peak for proton particles in two gel dosimeters was similar to the virtual water phantom. Bragg-peak regions of polymer gel, radiochromic gel, and virtual water phantom were represented in the identical region (4.3 cm) for 72 MeV proton beam. For 116 MeV proton beam, the Bragg-peak regions of polymer gel, radiochromic gel, and virtual water phantom were represented in 9.9, 9.9 and 9.7 cm, respectively. The dose distribution of proton particles in polymer gel, radiochromic gel, and virtual water phantom was approximately identical in the case of 72 and 116 MeV energies. The errors for the simulation were under 10%. Conclusion: This work indicates the evaluation of three dimensional dose distributions by exposing proton particles to polymer and radiochromic gel dosimeter by comparing with the water phantom. The polymer gel and the radiochromic gel dosimeter show similar dose distributions for the proton beams

  19. SOILD: A computer model for calculating the effective dose equivalent from external exposure to distributed gamma sources in soil

    International Nuclear Information System (INIS)

    Chen, S.Y.; LePoire, D.; Yu, C.; Schafetz, S.; Mehta, P.

    1991-01-01

    The SOLID computer model was developed for calculating the effective dose equivalent from external exposure to distributed gamma sources in soil. It is designed to assess external doses under various exposure scenarios that may be encountered in environmental restoration programs. The models four major functional features address (1) dose versus source depth in soil, (2) shielding of clean cover soil, (3) area of contamination, and (4) nonuniform distribution of sources. The model is also capable of adjusting doses when there are variations in soil densities for both source and cover soils. The model is supported by a data base of approximately 500 radionuclides. 4 refs

  20. A model for dose estimation in therapy of liver with intraarterial microspheres

    International Nuclear Information System (INIS)

    Zavgorodni, S.F.

    1996-01-01

    Therapy with intraarterial microspheres is a technique which involves incorporation of radioisotope-labelled microspheres into a capillary bed of tumour and normal tissue. Beta-emitters such as 90 Y and 166 Ho are used for this purpose. This technique provides tumour to normal tissue (TNT) dose ratios in the range of 2-10 and demonstrates significant clinical benefit, which could potentially be increased with more accurate dose predictions and delivery. However, dose calculations in this modality face the difficulties associated with nonuniform and inhomogeneous activity distribution. Most of the dose calculations used clinically do not account for the nonuniformity and assume uniform activity distribution. This paper is devoted to the development of a model which would allow more accurate prediction of dose distributions from microspheres. The model calculates dose assuming that microspheres are aggregated into randomly distributed clusters, and using precomputed dose kernels for the clusters. The dose kernel due to a microsphere cluster was found by numerical integration of a point source dose kernel over the volume of the cluster. It is shown that a random distribution of clusters produces an intercluster distance distribution which agrees well with the one measured by Pillai et al in liver. Dose volume histograms (DVHs) predicted by the model agree closely with the results of Roberson et al for normal tissue and tumour. Dose distributions for different concentrations and types of radioisotope, as well as for tumours of different radii, have been calculated to demonstrate the model's possible applications. (author)

  1. SU-F-18C-11: Diameter Dependency of the Radial Dose Distribution in a Long Polyethylene Cylinder

    Energy Technology Data Exchange (ETDEWEB)

    Bakalyar, D; McKenney, S [Henry Ford Health System, Detroit, MI (United States); Feng, W [New York Presbyterian Hospital, Tenafly, NJ (United States)

    2014-06-15

    Purpose: The radial dose distribution in the central plane of a long cylinder following a long CT scan depends upon the diameter and composition of the cylinder. An understanding of this behavior is required for determining the spatial average of the dose in the central plane. Polyethylene, the material for construction of the TG200/ICRU phantom (30 cm in diameter) was used for this study. Size effects are germane to the principles incorporated in size specific dose estimates (SSDE); thus diameter dependency was explored as well. Method: ssuming a uniform cylinder and cylindrically symmetric conditions of irradiation, the dose distribution can be described using a radial function. This function must be an even function of the radial distance due to the conditions of symmetry. Two effects are accounted for: The direct beam makes its weakest contribution at the center while the contribution due to scatter is strongest at the center and drops off abruptly at the outer radius. An analytic function incorporating these features was fit to Monte Carlo results determined for infinite polyethylene cylinders of various diameters. A further feature of this function is that it is integrable. Results: Symmetry and continuity dictate a local extremum at the center which is a minimum for the larger sizes. The competing effects described above can Resultin an absolute maximum occurring between the center and outer edge of the cylinders. For the smallest cylinders, the maximum dose may occur at the center. Conclusion: An integrable, analytic function can be used to characterize the radial dependency of dose for cylindrical CT phantoms of various sizes. One use for this is to help determine average dose distribution over the central cylinder plane when equilibrium dose has been reached.

  2. Two-dimensional potential and charge distributions of positive surface streamer

    International Nuclear Information System (INIS)

    Tanaka, Daiki; Matsuoka, Shigeyasu; Kumada, Akiko; Hidaka, Kunihiko

    2009-01-01

    Information on the potential and the field profile along a surface discharge is required for quantitatively discussing and clarifying the propagation mechanism. The sensing technique with a Pockels crystal has been developed for directly measuring the potential and electric field distribution on a dielectric material. In this paper, the Pockels sensing system consists of a pulse laser and a CCD camera for measuring the instantaneous two-dimensional potential distribution on a 25.4 mm square area with a 50 μm sampling pitch. The temporal resolution is 3.2 ns which is determined by the pulse width of the laser emission. The transient change in the potential distribution of a positive surface streamer propagating in atmospheric air is measured with this system. The electric field and the charge distributions are also calculated from the measured potential profile. The propagating direction component of the electric field near the tip of the propagating streamer reaches 3 kV mm -1 . When the streamer stops, the potential distribution along a streamer forms an almost linear profile with the distance from the electrode, and its gradient is about 0.5 kV mm -1 .

  3. Dose distributions of asymmetric fields: comparison of the Helax-TMS with our developed 2D-program ASYMM

    International Nuclear Information System (INIS)

    Zakaria, G.A.; Schuette, W.

    2002-01-01

    The purpose of this investigation was to compare the commercial 3D-treatment planning system Helax TMS to a simple 2D program ASYMM, concerning the calculation of dose distributions for asymmetric fields. The dose calculation algorithm in Helax-TMS is based on the polyenergetic pencil beam model of Ahnesjoe. Our own developed 2D treatment planning program ASYMM, based on the Thomas and Thomas method for asymmetric open fields, has been extended to calculate the dose distributions for open and wedged fields. Using both methods, dose distributions for various asymmetric open and wedged fields of a 4-MV Linear accelerator were calculated and compared with measured data in water. The agreement of the Helax-TMS and the ASYMM with the experiment was good, whereas ASYMM showed a better accuracy for larger asymmetric angles. The explanation for this result is based on the consideration of beam hardening within the flattening filter and edges for different asymmetric settings in ASYMM algorithm. The TMS, however, owns the diverse possibilities that the 3D calculation and corresponding representation provide and holds better application opportunities in clinical routine. (orig.) [de

  4. Proton dose distribution measurements using a MOSFET detector with a simple dose‐weighted correction method for LET effects

    Science.gov (United States)

    Hotta, Kenji; Matsuura, Taeko; Matsubara, Kana; Nishioka, Shie; Nishio, Teiji; Kawashima, Mitsuhiko; Ogino, Takashi

    2011-01-01

    We experimentally evaluated the proton beam dose reproducibility, sensitivity, angular dependence and depth‐dose relationships for a new Metal Oxide Semiconductor Field Effect Transistor (MOSFET) detector. The detector was fabricated with a thinner oxide layer and was operated at high‐bias voltages. In order to accurately measure dose distributions, we developed a practical method for correcting the MOSFET response to proton beams. The detector was tested by examining lateral dose profiles formed by protons passing through an L‐shaped bolus. The dose reproducibility, angular dependence and depth‐dose response were evaluated using a 190 MeV proton beam. Depth‐output curves produced using the MOSFET detectors were compared with results obtained using an ionization chamber (IC). Since accurate measurements of proton dose distribution require correction for LET effects, we developed a simple dose‐weighted correction method. The correction factors were determined as a function of proton penetration depth, or residual range. The residual proton range at each measurement point was calculated using the pencil beam algorithm. Lateral measurements in a phantom were obtained for pristine and SOBP beams. The reproducibility of the MOSFET detector was within 2%, and the angular dependence was less than 9%. The detector exhibited a good response at the Bragg peak (0.74 relative to the IC detector). For dose distributions resulting from protons passing through an L‐shaped bolus, the corrected MOSFET dose agreed well with the IC results. Absolute proton dosimetry can be performed using MOSFET detectors to a precision of about 3% (1 sigma). A thinner oxide layer thickness improved the LET in proton dosimetry. By employing correction methods for LET dependence, it is possible to measure absolute proton dose using MOSFET detectors. PACS number: 87.56.‐v

  5. Systematic underestimation of the age of samples with saturating exponential behaviour and inhomogeneous dose distribution

    International Nuclear Information System (INIS)

    Brennan, B.J.

    2000-01-01

    In luminescence and ESR studies, a systematic underestimate of the (average) equivalent dose, and thus also the age, of a sample can occur when there is significant variation of the natural dose within the sample and some regions approach saturation. This is demonstrated explicitly for a material that exhibits a single-saturating-exponential growth of signal with dose. The result is valid for any geometry (e.g. a plain layer, spherical grain, etc.) and some illustrative cases are modelled, with the age bias exceeding 10% in extreme cases. If the dose distribution within the sample can be modelled accurately, it is possible to correct for the bias in the estimates of equivalent dose estimate and age. While quantifying the effect would be more difficult, similar systematic biases in dose and age estimates are likely in other situations more complex than the one modelled

  6. Dose distribution at junctional area abutting X-ray and electron fields

    International Nuclear Information System (INIS)

    Yang, Kwang Mo

    2004-01-01

    For the head and neck radiotherapy, abutting photon field with electron field is frequently used for the irradiation of posterior neck when tolerable dose on spinal cord has been reached. Using 6 MV X-ray and 9 MeV electron beams of Clinac1800(Varian, USA) linear accelerator, we performed film dosimetry by the X-OMAT V film of Kodak in solid water phantom according to depths(0 cm, 1.5 cm, 3 cm, 5 cm). 6 MV X-ray and 9 MeV electron(1 Gy) were exposes to 8 cm depth and surface(SSD 100 cm) of phantom. The dose distribution to the junction line between photon(10 x 10 cm field with block) and electron(15 cm x 15 cm field with block) fields was also measured according to depths(0 cm, 0.5 1.5 cm, 3 cm, 5 cm). At the junction line between photon and electron fields, the hot spot was developed on the side of the photon field and a cold spot was developed on that of the electron field. The hot spot in the photon side was developed at depth 1.5 cm with 7 mm width. The maximum dose of hot spot was increased to 6% of reference doses in the photon field. The cold spot in the electron side was developed at all measured depths(0.5 cm-3 cm) with 1-12.5 mm widths. The decreased dose in the cold spot was 4.5-30% of reference dose in the electron field. When we make use of abutting photon field with electron field for the treatment of head and neck cancer we should consider the hot and cold dose area in the junction of photon and electron field according to location of tumor.

  7. Calculated depth-dose distributions for H+ and He+ beams in liquid water

    International Nuclear Information System (INIS)

    Garcia-Molina, Rafael; Abril, Isabel; Denton, Cristian D.; Heredia-Avalos, Santiago; Kyriakou, Ioanna; Emfietzoglou, Dimitris

    2009-01-01

    We have calculated the dose distribution delivered by proton and helium beams in liquid water as a function of the target-depth, for incident energies in the range 0.5-10 MeV/u. The motion of the projectiles through the stopping medium is simulated by a code that combines Monte Carlo and a finite differences algorithm to consider the electronic stopping power, evaluated in the dielectric framework, and the multiple nuclear scattering with the target nuclei. Changes in projectile charge-state are taken into account dynamically as it moves through the target. We use the MELF-GOS model to describe the energy loss function of liquid water, obtaining a value of 79.4 eV for its mean excitation energy. Our calculated stopping powers and depth-dose distributions are compared with those obtained using other methods to describe the energy loss function of liquid water, such as the extended Drude and the Penn models, as well as with the prediction of the SRIM code and the tables of ICRU.

  8. The denoising of Monte Carlo dose distributions using convolution superposition calculations

    International Nuclear Information System (INIS)

    El Naqa, I; Cui, J; Lindsay, P; Olivera, G; Deasy, J O

    2007-01-01

    Monte Carlo (MC) dose calculations can be accurate but are also computationally intensive. In contrast, convolution superposition (CS) offers faster and smoother results but by making approximations. We investigated MC denoising techniques, which use available convolution superposition results and new noise filtering methods to guide and accelerate MC calculations. Two main approaches were developed to combine CS information with MC denoising. In the first approach, the denoising result is iteratively updated by adding the denoised residual difference between the result and the MC image. Multi-scale methods were used (wavelets or contourlets) for denoising the residual. The iterations are initialized by the CS data. In the second approach, we used a frequency splitting technique by quadrature filtering to combine low frequency components derived from MC simulations with high frequency components derived from CS components. The rationale is to take the scattering tails as well as dose levels in the high-dose region from the MC calculations, which presumably more accurately incorporates scatter; high-frequency details are taken from CS calculations. 3D Butterworth filters were used to design the quadrature filters. The methods were demonstrated using anonymized clinical lung and head and neck cases. The MC dose distributions were calculated by the open-source dose planning method MC code with varying noise levels. Our results indicate that the frequency-splitting technique for incorporating CS-guided MC denoising is promising in terms of computational efficiency and noise reduction. (note)

  9. Survey of the distributions of population and agricultural produce, etc. and the application for population dose evaluation

    International Nuclear Information System (INIS)

    Iijima, Toshinori

    1978-07-01

    The computer model CARIEN to calculate the population doses due to all LWRs in Japan needs the distributions of population and agricultural produce around the nuclear installations. These distributions were presumed to be obtainable from national censuses, and a case-study survey was carried out in 1976 for the area up to 1000 km from the JAERI Tokai Research Establishment. The present report describes the survey and its results, and then discusses applicability of the censuses for population dose evaluation. The national censuses of population and foodstuffs were found to be sufficient for determining these distributions and predicting the future population changes. Results indicated the following: a) the population and agricultural produce around little contribute to the population doses, b) the contributions of leafy vegetables and cow's milk are important compared with inhalation, and c) if such as rice, egg and pork concentrate radionuclides to the same extent as leafy vegetables or milk, these are also important. (auth.)

  10. Dose rate distribution of the GammaBeam: 127 irradiator using MCNPX code

    International Nuclear Information System (INIS)

    Gual, Maritza Rodriguez; Batista, Adriana de Souza Medeiros; Pereira, Claubia; Faria, Luiz O. de; Grossi, Pablo Andrade

    2013-01-01

    The GammaBeam - 127 Irradiator is widely used for biological, chemical and medical applications of the gamma irradiation technology using Cobalt 60 radioactive at the Centro de Desenvolvimento da Tecnologia Nuclear CDTN/CNEN, Belo Horizonte, Brazil. The source has maximum activity of 60.000Ci, which is composed by 16 double encapsulated radioactive pencils placed in a rack. The facility is classified by the IAEA as Category II (dry storage facility). The aim of this work is to present a modelling developed to evaluate the dose rates at the irradiation room and the dose distribution at the irradiated products. In addition, the simulations could be used as a predictive tool of dose evaluation in the irradiation facility helping benchmark experiments in new similar facilities. The MCNPX simulated results were compared and validated with radiometric measurements using Fricke and TLDs dosimeters along several positions inside the irradiation room. (author)

  11. Commercial milk distribution profiles and production locations. Hanford Environmental Dose Reconstruction Project

    Energy Technology Data Exchange (ETDEWEB)

    Deonigi, D.E.; Anderson, D.M.; Wilfert, G.L.

    1994-04-01

    The Hanford Environmental Dose Reconstruction (HEDR) Project was established to estimate radiation doses that people could have received from nuclear operations at the Hanford Site since 1944. For this period iodine-131 is the most important offsite contributor to radiation doses from Hanford operations. Consumption of milk from cows that ate vegetation contaminated by iodine-131 is the dominant radiation pathway for individuals who drank milk (Napier 1992). Information has been developed on commercial milk cow locations and commercial milk distribution during 1945 and 1951. The year 1945 was selected because during 1945 the largest amount of iodine-131 was released from Hanford facilities in a calendar year (Heeb 1993); therefore, 1945 was the year in which an individual was likely to have received the highest dose. The year 1951 was selected to provide data for comparing the changes that occurred in commercial milk flows (i.e., sources, processing locations, and market areas) between World War II and the post-war period. To estimate the doses people could have received from this milk flow, it is necessary to estimate the amount of milk people consumed, the source of the milk, the specific feeding regime used for milk cows, and the amount of iodine-131 contamination deposited on feed.

  12. Independent calculation of dose distributions for helical tomotherapy using a conventional treatment planning system

    Energy Technology Data Exchange (ETDEWEB)

    Klüter, Sebastian, E-mail: sebastian.klueter@med.uni-heidelberg.de; Schubert, Kai; Lissner, Steffen; Sterzing, Florian; Oetzel, Dieter; Debus, Jürgen [Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany, and Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany, and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 400, 69120 Heidelberg (Germany); Schlegel, Wolfgang [German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Oelfke, Uwe [German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany and Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London SM2 5NG (United Kingdom); Nill, Simeon [Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London SM2 5NG (United Kingdom)

    2014-08-15

    Purpose: The dosimetric verification of treatment plans in helical tomotherapy usually is carried out via verification measurements. In this study, a method for independent dose calculation of tomotherapy treatment plans is presented, that uses a conventional treatment planning system with a pencil kernel dose calculation algorithm for generation of verification dose distributions based on patient CT data. Methods: A pencil beam algorithm that directly uses measured beam data was configured for dose calculation for a tomotherapy machine. Tomotherapy treatment plans were converted into a format readable by an in-house treatment planning system by assigning each projection to one static treatment field and shifting the calculation isocenter for each field in order to account for the couch movement. The modulation of the fluence for each projection is read out of the delivery sinogram, and with the kernel-based dose calculation, this information can directly be used for dose calculation without the need for decomposition of the sinogram. The sinogram values are only corrected for leaf output and leaf latency. Using the converted treatment plans, dose was recalculated with the independent treatment planning system. Multiple treatment plans ranging from simple static fields to real patient treatment plans were calculated using the new approach and either compared to actual measurements or the 3D dose distribution calculated by the tomotherapy treatment planning system. In addition, dose–volume histograms were calculated for the patient plans. Results: Except for minor deviations at the maximum field size, the pencil beam dose calculation for static beams agreed with measurements in a water tank within 2%/2 mm. A mean deviation to point dose measurements in the cheese phantom of 0.89% ± 0.81% was found for unmodulated helical plans. A mean voxel-based deviation of −0.67% ± 1.11% for all voxels in the respective high dose region (dose values >80%), and a mean local

  13. Independent calculation of dose distributions for helical tomotherapy using a conventional treatment planning system

    International Nuclear Information System (INIS)

    Klüter, Sebastian; Schubert, Kai; Lissner, Steffen; Sterzing, Florian; Oetzel, Dieter; Debus, Jürgen; Schlegel, Wolfgang; Oelfke, Uwe; Nill, Simeon

    2014-01-01

    Purpose: The dosimetric verification of treatment plans in helical tomotherapy usually is carried out via verification measurements. In this study, a method for independent dose calculation of tomotherapy treatment plans is presented, that uses a conventional treatment planning system with a pencil kernel dose calculation algorithm for generation of verification dose distributions based on patient CT data. Methods: A pencil beam algorithm that directly uses measured beam data was configured for dose calculation for a tomotherapy machine. Tomotherapy treatment plans were converted into a format readable by an in-house treatment planning system by assigning each projection to one static treatment field and shifting the calculation isocenter for each field in order to account for the couch movement. The modulation of the fluence for each projection is read out of the delivery sinogram, and with the kernel-based dose calculation, this information can directly be used for dose calculation without the need for decomposition of the sinogram. The sinogram values are only corrected for leaf output and leaf latency. Using the converted treatment plans, dose was recalculated with the independent treatment planning system. Multiple treatment plans ranging from simple static fields to real patient treatment plans were calculated using the new approach and either compared to actual measurements or the 3D dose distribution calculated by the tomotherapy treatment planning system. In addition, dose–volume histograms were calculated for the patient plans. Results: Except for minor deviations at the maximum field size, the pencil beam dose calculation for static beams agreed with measurements in a water tank within 2%/2 mm. A mean deviation to point dose measurements in the cheese phantom of 0.89% ± 0.81% was found for unmodulated helical plans. A mean voxel-based deviation of −0.67% ± 1.11% for all voxels in the respective high dose region (dose values >80%), and a mean local

  14. Investigation of Anisotropy Caused by Cylinder Applicator on Dose Distribution around Cs-137 Brachytherapy Source using MCNP4C Code

    Directory of Open Access Journals (Sweden)

    Sedigheh Sina

    2011-06-01

    Full Text Available Introduction: Brachytherapy is a type of radiotherapy in which radioactive sources are used in proximity of tumors normally for treatment of malignancies in the head, prostate and cervix. Materials and Methods: The Cs-137 Selectron source is a low-dose-rate (LDR brachytherapy source used in a remote afterloading system for treatment of different cancers. This system uses active and inactive spherical sources of 2.5 mm diameter, which can be used in different configurations inside the applicator to obtain different dose distributions. In this study, first the dose distribution at different distances from the source was obtained around a single pellet inside the applicator in a water phantom using the MCNP4C Monte Carlo code. The simulations were then repeated for six active pellets in the applicator and for six point sources.  Results: The anisotropy of dose distribution due to the presence of the applicator was obtained by division of dose at each distance and angle to the dose at the same distance and angle of 90 degrees. According to the results, the doses decreased towards the applicator tips. For example, for points at the distances of 5 and 7 cm from the source and angle of 165 degrees, such discrepancies reached 5.8% and 5.1%, respectively.  By increasing the number of pellets to six, these values reached 30% for the angle of 5 degrees. Discussion and Conclusion: The results indicate that the presence of the applicator causes a significant dose decrease at the tip of the applicator compared with the dose in the transverse plane. However, the treatment planning systems consider an isotropic dose distribution around the source and this causes significant errors in treatment planning, which are not negligible, especially for a large number of sources inside the applicator.

  15. Three-dimensional photon dose distributions with and without lung corrections for tangential breast intact treatments

    International Nuclear Information System (INIS)

    Chin, L.M.; Cheng, C.W.; Siddon, R.L.; Rice, R.K.; Mijnheer, B.J.; Harris, J.R.

    1989-01-01

    The influence of lung volume and photon energy on the 3-dimensional dose distribution for patients treated by intact breast irradiation is not well established. To investigate this issue, we studied the 3-dimensional dose distributions calculated for an 'average' breast phantom for 60Co, 4 MV, 6 MV, and 8 MV photon beams. For the homogeneous breast, areas of high dose ('hot spots') lie along the periphery of the breast near the posterior plane and near the apex of the breast. The highest dose occurs at the inferior margin of the breast tissue, and this may exceed 125% of the target dose for lower photon energies. The magnitude of these 'hot spots' decreases for higher energy photons. When lung correction is included in the dose calculation, the doses to areas at the left and right margin of the lung volume increase. The magnitude of the increase depends on energy and the patient anatomy. For the 'average' breast phantom (lung density 0.31 g/cm3), the correction factors are between 1.03 to 1.06 depending on the energy used. Higher energy is associated with lower correction factors. Both the ratio-of-TMR and the Batho lung correction methods can predict these corrections within a few percent. The range of depths of the 100% isodose from the skin surface, measured along the perpendicular to the tangent of the skin surface, were also energy dependent. The range was 0.1-0.4 cm for 60Co and 0.5-1.4 cm for 8 MV. We conclude that the use of higher energy photons in the range used here provides lower value of the 'hot spots' compared to lower energy photons, but this needs to be balanced against a possible disadvantage in decreased dose delivered to the skin and superficial portion of the breast

  16. Automated size-specific CT dose monitoring program: Assessing variability in CT dose

    Energy Technology Data Exchange (ETDEWEB)

    Christianson, Olav; Li Xiang; Frush, Donald; Samei, Ehsan [Clinical Imaging Physics Group, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 and Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Clinical Imaging Physics Group, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States) and Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Clinical Imaging Physics Group, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 (United States); Department of Physics, Duke University, Durham, North Carolina 27710 (United States); and Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708 (United States)

    2012-11-15

    estimates that were not adjusted by patient size. Additionally, considerable differences were noted in ED{sub adj} distributions between scanners, with scanners employing iterative reconstruction exhibiting significantly lower ED{sub adj} (range: 9%-64%). Finally, a significant difference (up to 59%) in ED{sub adj} distributions was observed between institutions, indicating the potential for dose reduction. Conclusions: The authors developed a robust automated size-specific radiation dose monitoring program for CT. Using this program, significant differences in ED{sub adj} were observed between scanner models and across institutions. This new dose monitoring program offers a unique tool for improving quality assurance and standardization both within and across institutions.

  17. Investigation of the HU-density conversion method and comparison of dose distribution for dose calculation on MV cone beam CT images

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Joo; Lee, Seu Ran; Suh, Tae Suk [Dept. of Biomedical Engineering, The Catholic University of Korea, Bucheon (Korea, Republic of)

    2011-11-15

    Modern radiation therapy techniques, such as Image-guided radiation therapy (IGRT), Adaptive radiation therapy (ART) has become a routine clinical practice on linear accelerators for the increase the tumor dose conformity and improvement of normal tissue sparing at the same time. For these highly developed techniques, megavoltage cone beam computed tomography (MVCBCT) system produce volumetric images at just one rotation of the x-ray beam source and detector on the bottom of conventional linear accelerator for real-time application of patient condition into treatment planning. MV CBCT image scan be directly registered to a reference CT data set which is usually kilo-voltage fan-beam computed tomography (kVFBCT) on treatment planning system and the registered image scan be used to adjust patient set-up error. However, to use MV CBCT images in radiotherapy, reliable electron density (ED) distribution are required. Patients scattering, beam hardening and softening effect caused by different energy application between kVCT, MV CBCT can cause cupping artifacts in MV CBCT images and distortion of Houns field Unit (HU) to ED conversion. The goal of this study, for reliable application of MV CBCT images into dose calculation, MV CBCT images was modified to correct distortion of HU to ED using the relationship of HU and ED from kV FBCT and MV CBCT images. The HU-density conversion was performed on MV CBCT image set using Dose difference map was showing in Figure 1. Finally, percentage differences above 3% were reduced depending on applying density calibration method. As a result, total error co uld be reduced to under 3%. The present study demonstrates that dose calculation accuracy using MV CBCT image set can be improved my applying HU-density conversion method. The dose calculation and comparison of dose distribution from MV CBCT image set with/without HU-density conversion method was performed. An advantage of this study compared to other approaches is that HU

  18. Electron dose distributions caused by the contact-type metallic eye shield: Studies using Monte Carlo and pencil beam algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Sei-Kwon; Yoon, Jai-Woong; Hwang, Taejin; Park, Soah; Cheong, Kwang-Ho; Jin Han, Tae; Kim, Haeyoung; Lee, Me-Yeon; Ju Kim, Kyoung, E-mail: kjkim@hallym.or.kr; Bae, Hoonsik

    2015-10-01

    A metallic contact eye shield has sometimes been used for eyelid treatment, but dose distribution has never been reported for a patient case. This study aimed to show the shield-incorporated CT-based dose distribution using the Pinnacle system and Monte Carlo (MC) calculation for 3 patient cases. For the artifact-free CT scan, an acrylic shield machined as the same size as that of the tungsten shield was used. For the MC calculation, BEAMnrc and DOSXYZnrc were used for the 6-MeV electron beam of the Varian 21EX, in which information for the tungsten, stainless steel, and aluminum material for the eye shield was used. The same plan was generated on the Pinnacle system and both were compared. The use of the acrylic shield produced clear CT images, enabling delineation of the regions of interest, and yielded CT-based dose calculation for the metallic shield. Both the MC and the Pinnacle systems showed a similar dose distribution downstream of the eye shield, reflecting the blocking effect of the metallic eye shield. The major difference between the MC and the Pinnacle results was the target eyelid dose upstream of the shield such that the Pinnacle system underestimated the dose by 19 to 28% and 11 to 18% for the maximum and the mean doses, respectively. The pattern of dose difference between the MC and the Pinnacle systems was similar to that in the previous phantom study. In conclusion, the metallic eye shield was successfully incorporated into the CT-based planning, and the accurate dose calculation requires MC simulation.

  19. The effect of voxel size on dose distribution in Varian Clinac iX 6 MV photon beam using Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Yani, Sitti, E-mail: sitti.yani@s.itb.ac.id [Nuclear Physics and Biophysics Division, Physics Department, Institut Teknologi Bandung (Indonesia); Akademi Kebidanan Pelita Ibu, Kendari (Indonesia); Dirgayussa, I Gde E.; Haryanto, Freddy; Arif, Idam [Nuclear Physics and Biophysics Division, Physics Department, Institut Teknologi Bandung (Indonesia); Rhani, Moh. Fadhillah [Tan Tock Seng Hospital (Singapore)

    2015-09-30

    Recently, Monte Carlo (MC) calculation method has reported as the most accurate method of predicting dose distributions in radiotherapy. The MC code system (especially DOSXYZnrc) has been used to investigate the different voxel (volume elements) sizes effect on the accuracy of dose distributions. To investigate this effect on dosimetry parameters, calculations were made with three different voxel sizes. The effects were investigated with dose distribution calculations for seven voxel sizes: 1 × 1 × 0.1 cm{sup 3}, 1 × 1 × 0.5 cm{sup 3}, and 1 × 1 × 0.8 cm{sup 3}. The 1 × 10{sup 9} histories were simulated in order to get statistical uncertainties of 2%. This simulation takes about 9-10 hours to complete. Measurements are made with field sizes 10 × 10 cm2 for the 6 MV photon beams with Gaussian intensity distribution FWHM 0.1 cm and SSD 100.1 cm. MC simulated and measured dose distributions in a water phantom. The output of this simulation i.e. the percent depth dose and dose profile in d{sub max} from the three sets of calculations are presented and comparisons are made with the experiment data from TTSH (Tan Tock Seng Hospital, Singapore) in 0-5 cm depth. Dose that scored in voxels is a volume averaged estimate of the dose at the center of a voxel. The results in this study show that the difference between Monte Carlo simulation and experiment data depend on the voxel size both for percent depth dose (PDD) and profile dose. PDD scan on Z axis (depth) of water phantom, the big difference obtain in the voxel size 1 × 1 × 0.8 cm{sup 3} about 17%. In this study, the profile dose focused on high gradient dose area. Profile dose scan on Y axis and the big difference get in the voxel size 1 × 1 × 0.1 cm{sup 3} about 12%. This study demonstrated that the arrange voxel in Monte Carlo simulation becomes important.

  20. Evaluation of ambient dose equivalent rates influenced by vertical and horizontal distribution of radioactive cesium in soil in Fukushima Prefecture.

    Science.gov (United States)

    Malins, Alex; Kurikami, Hiroshi; Nakama, Shigeo; Saito, Tatsuo; Okumura, Masahiko; Machida, Masahiko; Kitamura, Akihiro

    2016-01-01

    The air dose rate in an environment contaminated with (134)Cs and (137)Cs depends on the amount, depth profile and horizontal distribution of these contaminants within the ground. This paper introduces and verifies a tool that models these variables and calculates ambient dose equivalent rates at 1 m above the ground. Good correlation is found between predicted dose rates and dose rates measured with survey meters in Fukushima Prefecture in areas contaminated with radiocesium from the Fukushima Dai-ichi Nuclear Power Plant accident. This finding is insensitive to the choice for modeling the activity depth distribution in the ground using activity measurements of collected soil layers, or by using exponential and hyperbolic secant fits to the measurement data. Better predictions are obtained by modeling the horizontal distribution of radioactive cesium across an area if multiple soil samples are available, as opposed to assuming a spatially homogeneous contamination distribution. Reductions seen in air dose rates above flat, undisturbed fields in Fukushima Prefecture are consistent with decrement by radioactive decay and downward migration of cesium into soil. Analysis of remediation strategies for farmland soils confirmed that topsoil removal and interchanging a topsoil layer with a subsoil layer result in similar reductions in the air dose rate. These two strategies are more effective than reverse tillage to invert and mix the topsoil. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Assessment of ocular beta radiation dose distribution due to 106Ru/106Rh brachytherapy applicators using MCNPX Monte Carlo code

    Directory of Open Access Journals (Sweden)

    Nilseia Aparecida Barbosa

    2014-08-01

    Full Text Available Purpose: Melanoma at the choroid region is the most common primary cancer that affects the eye in adult patients. Concave ophthalmic applicators with 106Ru/106Rh beta sources are the more used for treatment of these eye lesions, mainly lesions with small and medium dimensions. The available treatment planning system for 106Ru applicators is based on dose distributions on a homogeneous water sphere eye model, resulting in a lack of data in the literature of dose distributions in the eye radiosensitive structures, information that may be crucial to improve the treatment planning process, aiming the maintenance of visual acuity. Methods: The Monte Carlo code MCNPX was used to calculate the dose distribution in a complete mathematical model of the human eye containing a choroid melanoma; considering the eye actual dimensions and its various component structures, due to an ophthalmic brachytherapy treatment, using 106Ru/106Rh beta-ray sources. Two possibilities were analyzed; a simple water eye and a heterogeneous eye considering all its structures. Two concave applicators, CCA and CCB manufactured by BEBIG and a complete mathematical model of the human eye were modeled using the MCNPX code. Results and Conclusion: For both eye models, namely water model and heterogeneous model, mean dose values simulated for the same eye regions are, in general, very similar, excepting for regions very distant from the applicator, where mean dose values are very low, uncertainties are higher and relative differences may reach 20.4%. For the tumor base and the eye structures closest to the applicator, such as sclera, choroid and retina, the maximum difference observed was 4%, presenting the heterogeneous model higher mean dose values. For the other eye regions, the higher doses were obtained when the homogeneous water eye model is taken into consideration. Mean dose distributions determined for the homogeneous water eye model are similar to those obtained for the

  2. The origin of dose distributions in fluvial sediments, and the prospect of dating single grains from fluvial deposits using optically stimulated luminescence

    CERN Document Server

    Olley, J M; Roberts, R G

    1999-01-01

    We examine the causes of the asymmetric distributions of dose observed from measurements of the optically stimulated luminescence emitted by small aliquots of fluvial quartz, and deduce that the asymmetry arises as a result of samples being composed of a mix of mainly well bleached grains with grains that were effectively unbleached at the time of deposition. We demonstrate that the shapes of the dose distributions can be used to assess the likelihood that aliquots consist only of grains that were well-bleached at the time of deposition. The more asymmetric the distribution, the greater the probability that the aliquots with the lowest dose most closely represent the true burial dose. Single grains with differing doses are present in each of the samples examined, and the population with the lowest dose gives an optical age consistent with the expected burial age. This result implies that the beta-dose heterogeneity in these deposits is small, and that the effects of micro-dosimetric variations on optical dati...

  3. Study of the impact of artificial articulations on the dose distribution under medical irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Buffard, E. [IRMA/CREST/FEMTO-st, UMR-CNRS 6174, Po-circumflex le Universitaire BP 71427 25211 Montbeliard (France)]. E-mail: edwige.buffard@pu-pm.univ-fcomte.fr; Gschwind, R. [IRMA/CREST/FEMTO-st, UMR-CNRS 6174, Po-circumflex le Universitaire BP 71427 25211 Montbeliard (France)]. E-mail: regine.gschwind@pu-pm.univ-fcomte.fr; Makovicka, L. [IRMA/CREST/FEMTO-st, UMR-CNRS 6174, Po-circumflex le Universitaire BP 71427 25211 Montbeliard (France); Martin, E. [IRMA/CREST/FEMTO-st, UMR-CNRS 6174, Po-circumflex le Universitaire BP 71427 25211 Montbeliard (France); Meunier, C. [IRMA/CREST/FEMTO-st, UMR-CNRS 6174, Po-circumflex le Universitaire BP 71427 25211 Montbeliard (France); David, C. [Departement Oncologie et Radiotherapie, CH A. Boulloche 25200 Montbeliard (France)

    2005-02-01

    Perturbations due to the presence of high density heterogeneities in the body are not correctly taken into account in the Treatment Planning Systems currently available for external radiotherapy. For this reason, the accuracy of the dose distribution calculations has to be improved by using Monte Carlo simulations. In a previous study, we established a theoretical model by using the Monte Carlo code EGSnrc [I. Kawrakow, D.W.O. Rogers, The EGSnrc code system: MC simulation of electron and photon transport. Technical Report PIRS-701, NRCC, Ottawa, Canada, 2000] in order to obtain the dose distributions around simple heterogeneities. These simulations were then validated by experimental results obtained with thermoluminescent dosemeters and an ionisation chamber. The influence of samples composed of hip prostheses materials (titanium alloy and steel) and a substitute of bone were notably studied. A more complex model was then developed with the Monte Carlo code BEAMnrc [D.W.O. Rogers, C.M. MA, G.X. Ding, B. Walters, D. Sheikh-Bagheri, G.G. Zhang, BEAMnrc Users Manual. NRC Report PPIRS 509(a) rev F, 2001] in order to take into account the hip prosthesis geometry. The simulation results were compared to experimental measurements performed in a water phantom, in the case of a standard treatment of a pelvic cancer for one of the beams passing through the implant. These results have shown the great influence of the prostheses on the dose distribution.

  4. The importance of non-uniform dose-distribution in an organ

    International Nuclear Information System (INIS)

    Richmond, C.R.

    1975-01-01

    The recent revival of interest in the 'hot particle' problem, especially as regards particulate plutonium and other actinide elements in the lung, stimulated the preparation of this paper. Non-uniformity of dose-distribution has been of concern to standards-setting bodies and other groups such as the National Academy of Sciences and to health protectionists for many years. This paper reviews data from animal experiments that are used by some to implicate particulate plutonium as being especially hazardous to man. Other relevant biological data are also discussed. (author)

  5. Dose Distribution in Bladder and Surrounding Normal Tissues in Relation to Bladder Volume in Conformal Radiotherapy for Bladder Cancer

    International Nuclear Information System (INIS)

    Majewski, Wojciech; Wesolowska, Iwona; Urbanczyk, Hubert; Hawrylewicz, Leszek; Schwierczok, Barbara; Miszczyk, Leszek

    2009-01-01

    Purpose: To estimate bladder movements and changes in dose distribution in the bladder and surrounding tissues associated with changes in bladder filling and to estimate the internal treatment margins. Methods and Materials: A total of 16 patients with bladder cancer underwent planning computed tomography scans with 80- and 150-mL bladder volumes. The bladder displacements associated with the change in volume were measured. Each patient had treatment plans constructed for a 'partially empty' (80 mL) and a 'partially full' (150 mL) bladder. An additional plan was constructed for tumor irradiation alone. A subsequent 9 patients underwent sequential weekly computed tomography scanning during radiotherapy to verify the bladder movements and estimate the internal margins. Results: Bladder movements were mainly observed cranially, and the estimated internal margins were nonuniform and largest (>2 cm) anteriorly and cranially. The dose distribution in the bladder worsened if the bladder increased in volume: 70% of patients (11 of 16) would have had bladder underdosed to 70%, 80%, and 90% of the prescribed dose was 23%, 20%, and 15% for the rectum and 162, 144, 123 cm 3 for the intestines, respectively) than with a 'partially full' bladder (volume that received >70%, 80%, and 90% of the prescribed dose was 28%, 24%, and 18% for the rectum and 180, 158, 136 cm 3 for the intestines, respectively). The change in bladder filling during RT was significant for the dose distribution in the intestines. Tumor irradiation alone was significantly better than whole bladder irradiation in terms of organ sparing. Conclusion: The displacements of the bladder due to volume changes were mainly related to the upper wall. The internal margins should be nonuniform, with the largest margins cranially and anteriorly. The changes in bladder filling during RT could influence the dose distribution in the bladder and intestines. The dose distribution in the rectum and bowel was slightly better with

  6. A 1.5 T transverse magnetic field in radiotherapy of rectal cancer: Impact on the dose distribution

    Energy Technology Data Exchange (ETDEWEB)

    Uilkema, Sander, E-mail: s.uilkema@nki.nl; Heide, Uulke van der; Sonke, Jan-Jakob; Triest, Baukelien van; Nijkamp, Jasper [Department of Radiotherapy, NKI-AVL, Amsterdam 1066 CX (Netherlands); Moreau, Michel [RTP Research Group, Elekta, Maryland Heights, Missouri 63043 (United States)

    2015-12-15

    Purpose: MRI guidance during radiotherapy has the potential to enable more accurate dose delivery, optimizing the balance between local control and treatment related toxicity. However, the presence of a permanent magnetic field influences the dose delivery, especially around air cavities. Here, electrons are able to return to the surface through which they entered the air cavity (electron return effect, ERE) locally resulting in dose hot- and cold-spots. Where RT of rectal cancer patients might benefit from MRI guidance for margin reduction, air cavities in and around the target volume are frequently present. The purpose of this research is to evaluate the impact of the presence of a 1.5 T transverse magnetic field on dose delivery in patients with rectal cancer. Methods: Ten patients treated with 5 × 5 Gy RT having large changes in pelvic air content were selected out of a cohort of 33 patients. On the planning CT, a 1.5 T, 6 MV, 7-field intensity modulated radiotherapy (IMRT) plan was created. This plan was subsequently recalculated on daily CT scans. For each daily CT, the CTV V{sub 95%} and V{sub 107%} and bowel area V{sub 5Gy}, V{sub 10Gy}, V{sub 15Gy}, V{sub 20Gy}, and V{sub 25Gy} were calculated to evaluate the changes in dose distribution from fraction to fraction. For comparison, the authors repeated this procedure for the 0 T situation. To study the effect of changing air cavities separate from other anatomical changes, the authors also generated artificial air cavities in the CTV of one patient (2 and 5 cm diameter), in the high dose gradient region (2 cm), and in the low dose area (2 cm). Treatment plans were optimized without and with each simulated air cavity. For appearing and disappearing air cavities, the CTV V{sub 95%} and V{sub 107%} were evaluated. The authors also evaluated the ERE separate from attenuation changes locally around appearing gas pockets. Results: For the ten patients, at 1.5 T, the V{sub 95%} was influenced by both appearing and

  7. From physical dose constraints to equivalent uniform dose constraints in inverse radiotherapy planning

    International Nuclear Information System (INIS)

    Thieke, Christian; Bortfeld, Thomas; Niemierko, Andrzej; Nill, Simeon

    2003-01-01

    Optimization algorithms in inverse radiotherapy planning need information about the desired dose distribution. Usually the planner defines physical dose constraints for each structure of the treatment plan, either in form of minimum and maximum doses or as dose-volume constraints. The concept of equivalent uniform dose (EUD) was designed to describe dose distributions with a higher clinical relevance. In this paper, we present a method to consider the EUD as an optimization constraint by using the method of projections onto convex sets (POCS). In each iteration of the optimization loop, for the actual dose distribution of an organ that violates an EUD constraint a new dose distribution is calculated that satisfies the EUD constraint, leading to voxel-based physical dose constraints. The new dose distribution is found by projecting the current one onto the convex set of all dose distributions fulfilling the EUD constraint. The algorithm is easy to integrate into existing inverse planning systems, and it allows the planner to choose between physical and EUD constraints separately for each structure. A clinical case of a head and neck tumor is optimized using three different sets of constraints: physical constraints for all structures, physical constraints for the target and EUD constraints for the organs at risk, and EUD constraints for all structures. The results show that the POCS method converges stable and given EUD constraints are reached closely

  8. Influence of bone and fat on dose distribution in electron beams in a semi-infinite medium

    International Nuclear Information System (INIS)

    Sordo, A.

    1983-12-01

    Hitherto, physical and theoretical aspects of the influence of heterogeneities in radiotherapy by electron beams had not been enough considered. We have developped an experimental method which permitted us to analyze the effect of the hard bone and the fat on the depth dose distributions when an infinite medium is irradiated by high energy electron beams. We have incorporated the KR. HOGSTROM's algorithm in a treatment planning system (TP11; AECL). This algorithm sums the dose distribution of individual pencil beams. A comparison between calculated and measured isodose lines obtained in a heterogeneous medium, shows us the performance and limits of this algorithm [fr

  9. Multiple anatomy optimization of accumulated dose

    International Nuclear Information System (INIS)

    Watkins, W. Tyler; Siebers, Jeffrey V.; Moore, Joseph A.; Gordon, James; Hugo, Geoffrey D.

    2014-01-01

    Purpose: To investigate the potential advantages of multiple anatomy optimization (MAO) for lung cancer radiation therapy compared to the internal target volume (ITV) approach. Methods: MAO aims to optimize a single fluence to be delivered under free-breathing conditions such that the accumulated dose meets the plan objectives, where accumulated dose is defined as the sum of deformably mapped doses computed on each phase of a single four dimensional computed tomography (4DCT) dataset. Phantom and patient simulation studies were carried out to investigate potential advantages of MAO compared to ITV planning. Through simulated delivery of the ITV- and MAO-plans, target dose variations were also investigated. Results: By optimizing the accumulated dose, MAO shows the potential to ensure dose to the moving target meets plan objectives while simultaneously reducing dose to organs at risk (OARs) compared with ITV planning. While consistently superior to the ITV approach, MAO resulted in equivalent OAR dosimetry at planning objective dose levels to within 2% volume in 14/30 plans and to within 3% volume in 19/30 plans for each lung V20, esophagus V25, and heart V30. Despite large variations in per-fraction respiratory phase weights in simulated deliveries at high dose rates (e.g., treating 4/10 phases during single fraction beams) the cumulative clinical target volume (CTV) dose after 30 fractions and per-fraction dose were constant independent of planning technique. In one case considered, however, per-phase CTV dose varied from 74% to 117% of prescription implying the level of ITV-dose heterogeneity may not be appropriate with conventional, free-breathing delivery. Conclusions: MAO incorporates 4DCT information in an optimized dose distribution and can achieve a superior plan in terms of accumulated dose to the moving target and OAR sparing compared to ITV-plans. An appropriate level of dose heterogeneity in MAO plans must be further investigated

  10. Multiple anatomy optimization of accumulated dose

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, W. Tyler, E-mail: watkinswt@virginia.edu; Siebers, Jeffrey V. [Department of Radiation Oncology, University of Virginia, Charlottesville, Virginia 22908 and Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298 (United States); Moore, Joseph A. [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland 21231 and Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298 (United States); Gordon, James [Henry Ford Health System, Detroit, Michigan 48202 and Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298 (United States); Hugo, Geoffrey D. [Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298 (United States)

    2014-11-01

    Purpose: To investigate the potential advantages of multiple anatomy optimization (MAO) for lung cancer radiation therapy compared to the internal target volume (ITV) approach. Methods: MAO aims to optimize a single fluence to be delivered under free-breathing conditions such that the accumulated dose meets the plan objectives, where accumulated dose is defined as the sum of deformably mapped doses computed on each phase of a single four dimensional computed tomography (4DCT) dataset. Phantom and patient simulation studies were carried out to investigate potential advantages of MAO compared to ITV planning. Through simulated delivery of the ITV- and MAO-plans, target dose variations were also investigated. Results: By optimizing the accumulated dose, MAO shows the potential to ensure dose to the moving target meets plan objectives while simultaneously reducing dose to organs at risk (OARs) compared with ITV planning. While consistently superior to the ITV approach, MAO resulted in equivalent OAR dosimetry at planning objective dose levels to within 2% volume in 14/30 plans and to within 3% volume in 19/30 plans for each lung V20, esophagus V25, and heart V30. Despite large variations in per-fraction respiratory phase weights in simulated deliveries at high dose rates (e.g., treating 4/10 phases during single fraction beams) the cumulative clinical target volume (CTV) dose after 30 fractions and per-fraction dose were constant independent of planning technique. In one case considered, however, per-phase CTV dose varied from 74% to 117% of prescription implying the level of ITV-dose heterogeneity may not be appropriate with conventional, free-breathing delivery. Conclusions: MAO incorporates 4DCT information in an optimized dose distribution and can achieve a superior plan in terms of accumulated dose to the moving target and OAR sparing compared to ITV-plans. An appropriate level of dose heterogeneity in MAO plans must be further investigated.

  11. Multiple anatomy optimization of accumulated dose.

    Science.gov (United States)

    Watkins, W Tyler; Moore, Joseph A; Gordon, James; Hugo, Geoffrey D; Siebers, Jeffrey V

    2014-11-01

    To investigate the potential advantages of multiple anatomy optimization (MAO) for lung cancer radiation therapy compared to the internal target volume (ITV) approach. MAO aims to optimize a single fluence to be delivered under free-breathing conditions such that the accumulated dose meets the plan objectives, where accumulated dose is defined as the sum of deformably mapped doses computed on each phase of a single four dimensional computed tomography (4DCT) dataset. Phantom and patient simulation studies were carried out to investigate potential advantages of MAO compared to ITV planning. Through simulated delivery of the ITV- and MAO-plans, target dose variations were also investigated. By optimizing the accumulated dose, MAO shows the potential to ensure dose to the moving target meets plan objectives while simultaneously reducing dose to organs at risk (OARs) compared with ITV planning. While consistently superior to the ITV approach, MAO resulted in equivalent OAR dosimetry at planning objective dose levels to within 2% volume in 14/30 plans and to within 3% volume in 19/30 plans for each lung V20, esophagus V25, and heart V30. Despite large variations in per-fraction respiratory phase weights in simulated deliveries at high dose rates (e.g., treating 4/10 phases during single fraction beams) the cumulative clinical target volume (CTV) dose after 30 fractions and per-fraction dose were constant independent of planning technique. In one case considered, however, per-phase CTV dose varied from 74% to 117% of prescription implying the level of ITV-dose heterogeneity may not be appropriate with conventional, free-breathing delivery. MAO incorporates 4DCT information in an optimized dose distribution and can achieve a superior plan in terms of accumulated dose to the moving target and OAR sparing compared to ITV-plans. An appropriate level of dose heterogeneity in MAO plans must be further investigated.

  12. SU-F-T-24: Impact of Source Position and Dose Distribution Due to Curvature of HDR Transfer Tubes

    Energy Technology Data Exchange (ETDEWEB)

    Khan, A; Yue, N [Rutgers University, New Brunswick, NJ (United States)

    2016-06-15

    Purpose: Brachytherapy is a highly targeted from of radiotherapy. While this may lead to ideal dose distributions on the treatment planning system, a small error in source location can lead to change in the dose distribution. The purpose of this study is to quantify the impact on source position error due to curvature of the transfer tubes and the impact this may have on the dose distribution. Methods: Since the source travels along the midline of the tube, an estimate of the positioning error for various angles of curvature was determined using geometric properties of the tube. Based on the range of values a specific shift was chosen to alter the treatment plans for a number of cervical cancer patients who had undergone HDR brachytherapy boost using tandem and ovoids. Impact of dose to target and organs at risk were determined and checked against guidelines outlined by radiation oncologist. Results: The estimate of the positioning error was 2mm short of the expected position (the curved tube can only cause the source to not reach as far as with a flat tube). Quantitative impact on the dose distribution is still in the process of being analyzed. Conclusion: The accepted positioning tolerance for the source position of a HDR brachytherapy unit is plus or minus 1mm. If there is an additional 2mm discrepancy due to tube curvature, this can result in a source being 1mm to 3mm short of the expected location. While we do always attempt to keep the tubes straight, in some cases such as with tandem and ovoids, the tandem connector does not extend as far out from the patient so the ovoid tubes always contain some degree of curvature. The dose impact of this may be significant.

  13. Comparison of Kodak EDR2 and Gafchromic EBT film for intensity-modulated radiation therapy dose distribution verification.

    Science.gov (United States)

    Sankar, A; Ayyangar, Komanduri M; Nehru, R Mothilal; Kurup, P G Gopalakrishna; Murali, V; Enke, Charles A; Velmurugan, J

    2006-01-01

    The quantitative dose validation of intensity-modulated radiation therapy (IMRT) plans require 2-dimensional (2D) high-resolution dosimetry systems with uniform response over its sensitive region. The present work deals with clinical use of commercially available self-developing Radio Chromic Film, Gafchromic EBT film, for IMRT dose verification. Dose response curves were generated for the films using a VXR-16 film scanner. The results obtained with EBT films were compared with the results of Kodak extended dose range 2 (EDR2) films. The EBT film had a linear response between the dose range of 0 to 600 cGy. The dose-related characteristics of the EBT film, such as post irradiation color growth with time, film uniformity, and effect of scanning orientation, were studied. There was up to 8.6% increase in the color density between 2 to 40 hours after irradiation. There was a considerable variation, up to 8.5%, in the film uniformity over its sensitive region. The quantitative differences between calculated and measured dose distributions were analyzed using DTA and Gamma index with the tolerance of 3% dose difference and 3-mm distance agreement. The EDR2 films showed consistent results with the calculated dose distributions, whereas the results obtained using EBT were inconsistent. The variation in the film uniformity limits the use of EBT film for conventional large-field IMRT verification. For IMRT of smaller field sizes (4.5 x 4.5 cm), the results obtained with EBT were comparable with results of EDR2 films.

  14. Comparison of Kodak EDR2 and Gafchromic EBT film for intensity-modulated radiation therapy dose distribution verification

    International Nuclear Information System (INIS)

    Sankar, A.; Ayyangar, Komanduri M.; Nehru, R. Mothilal; Gopalakrishna Kurup, P.G.; Murali, V.; Enke, Charles A.; Velmurugan, J.

    2006-01-01

    The quantitative dose validation of intensity-modulated radiation therapy (IMRT) plans require 2-dimensional (2D) high-resolution dosimetry systems with uniform response over its sensitive region. The present work deals with clinical use of commercially available self-developing Radio Chromic Film, Gafchromic EBT film, for IMRT dose verification. Dose response curves were generated for the films using a VXR-16 film scanner. The results obtained with EBT films were compared with the results of Kodak extended dose range 2 (EDR2) films. The EBT film had a linear response between the dose range of 0 to 600 cGy. The dose-related characteristics of the EBT film, such as post irradiation color growth with time, film uniformity, and effect of scanning orientation, were studied. There was up to 8.6% increase in the color density between 2 to 40 hours after irradiation. There was a considerable variation, up to 8.5%, in the film uniformity over its sensitive region. The quantitative differences between calculated and measured dose distributions were analyzed using DTA and Gamma index with the tolerance of 3% dose difference and 3-mm distance agreement. The EDR2 films showed consistent results with the calculated dose distributions, whereas the results obtained using EBT were inconsistent. The variation in the film uniformity limits the use of EBT film for conventional large-field IMRT verification. For IMRT of smaller field sizes (4.5 x 4.5 cm), the results obtained with EBT were comparable with results of EDR2 films

  15. Development of a multi-layer ion chamber for measurement of depth dose distributions of heavy-ion therapeutic beam for individual patients

    International Nuclear Information System (INIS)

    Shimbo, Munefumi; Futami, Yasuyuki; Yusa, Ken; Matsufuji, Naruhiro; Kanai, Tatsuaki; Urakabe, Eriko; Yamashita, Haruo; Akagi, Takashi; Higashi, Akio

    2000-01-01

    In heavy-ion radiotherapy, an accelerated beam is modified to realize a desired dose distribution in patients. The set-up of the beam-modifying devices in the irradiation system is changed according to the patient, and it is important to check the depth dose distributions in the patient. In order to measure dose distributions realized by an irradiation system for heavy-ion radiotherapy, a multi-layer ionization chamber (MLIC) was developed. The MLIC consists of 64 ionization chambers, which are stacked mutually. The interval between each ionization chamber is about 4.1 mm water. There are signal and high voltage plates in the MLIC, which are used as electrodes of the ionization chambers and phantom. Depth dose distribution from 5.09 mm to 261.92 mm water can be measured in about 30 seconds using this MLIC. Thus, it is possible to check beam quality in a short amount of time. (author)

  16. Electron dose distributions caused by the contact-type metallic eye shield: Studies using Monte Carlo and pencil beam algorithms.

    Science.gov (United States)

    Kang, Sei-Kwon; Yoon, Jai-Woong; Hwang, Taejin; Park, Soah; Cheong, Kwang-Ho; Han, Tae Jin; Kim, Haeyoung; Lee, Me-Yeon; Kim, Kyoung Ju; Bae, Hoonsik

    2015-01-01

    A metallic contact eye shield has sometimes been used for eyelid treatment, but dose distribution has never been reported for a patient case. This study aimed to show the shield-incorporated CT-based dose distribution using the Pinnacle system and Monte Carlo (MC) calculation for 3 patient cases. For the artifact-free CT scan, an acrylic shield machined as the same size as that of the tungsten shield was used. For the MC calculation, BEAMnrc and DOSXYZnrc were used for the 6-MeV electron beam of the Varian 21EX, in which information for the tungsten, stainless steel, and aluminum material for the eye shield was used. The same plan was generated on the Pinnacle system and both were compared. The use of the acrylic shield produced clear CT images, enabling delineation of the regions of interest, and yielded CT-based dose calculation for the metallic shield. Both the MC and the Pinnacle systems showed a similar dose distribution downstream of the eye shield, reflecting the blocking effect of the metallic eye shield. The major difference between the MC and the Pinnacle results was the target eyelid dose upstream of the shield such that the Pinnacle system underestimated the dose by 19 to 28% and 11 to 18% for the maximum and the mean doses, respectively. The pattern of dose difference between the MC and the Pinnacle systems was similar to that in the previous phantom study. In conclusion, the metallic eye shield was successfully incorporated into the CT-based planning, and the accurate dose calculation requires MC simulation. Copyright © 2015 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  17. Improvement of dose distributions in abutment regions of intensity modulated radiation therapy and electron fields

    International Nuclear Information System (INIS)

    Dogan, Nesrin; Leybovich, Leonid B.; Sethi, Anil; Emami, Bahman

    2002-01-01

    In recent years, intensity modulated radiation therapy (IMRT) is used to radiate tumors that are in close proximity to vital organs. Targets consisting of a deep-seated region followed by a superficial one may be treated with abutting photon and electron fields. However, no systematic study regarding matching of IMRT and electron beams was reported. In this work, a study of dose distributions in the abutment region between tomographic and step-and-shoot IMRT and electron fields was carried out. A method that significantly improves dose homogeneity between abutting tomographic IMRT and electron fields was developed and tested. In this method, a target region that is covered by IMRT was extended into the superficial target area by ∼2.0 cm. The length and shape of IMRT target extension was chosen such that high isodose lines bent away from the region treated by the electrons. This reduced the magnitude of hot spots caused by the 'bulging effect' of electron field penumbra. To account for the uncertainties in positioning of the IMRT and electron fields, electron field penumbra was modified using conventional (photon) multileaf collimator (MLC). The electron beam was delivered in two steps: half of the dose delivered with MLCs in retracted position and another half with MLCs extended to the edge of electron field that abuts tomographic IMRT field. The experimental testing of this method using film dosimetry has demonstrated that the magnitude of the hot spots was reduced from ∼45% to ∼5% of the prescription dose. When an error of ±1.5 mm in field positioning was introduced, the dose inhomogeneity in the abutment region did not exceed ±15% of the prescription dose. With step-and-shoot IMRT, the most homogeneous dose distribution was achieved when there was a 3 mm gap between the IMRT and electron fields

  18. Dose Distribution over Different Parts of Cancer Patients During Radiotherapy Treatment in Bangladesh

    International Nuclear Information System (INIS)

    Miah, F.K.; Ahmed, M.F.; Begum, Z.; Alam, B.; Chowdhury, Q.

    1998-01-01

    Measurements have been carried out to determine the dose distribution over different parts of the body of 12 cancer patients during radiotherapy treatment. Patients with breast cancer, lung cancer, cervix and larynx cancer treated with either X ray therapy or 60 Co therapy were particularly considered. The doses to the organs and tissues outside the primary beam of the patients under treatment were found to vary with a maximum value of 9096 ± 25 mSv at the neck of a lung cancer patient to a minimum value of 2 ± 0.5 mSv at the right leg of a breast cancer patient. The variation of doses was well explained by the exposure and patient data given for each patient. The measured data in each part of the body have been found to be consistent indicating confidence in the measurements. (author)

  19. Absorption, Distribution, and Excretion of 14C-APX001 after Single-Dose Administration to Rats and Monkeys

    Science.gov (United States)

    Mansbach, Robert; Shaw, Karen J; Hodges, Michael R; Coleman, Samantha; Fitzsimmons, Michael E

    2017-01-01

    Abstract Background APX001 is a small-molecule therapeutic agent in clinical development for the treatment of invasive fungal infections (IFI). Methods The absorption, distribution and excretion profiles of [14C]APX001-derived radioactivity were determined in rats (albino and pigmented) and monkeys. Rats (some implanted with bile duct cannulae) were administered a single 100 mg/kg oral dose or a 30 mg/kg intravenous (IV) dose. Monkeys were administered a single 6 mg/kg IV dose. Samples of blood, urine, feces and bile, as well as carcasses, were collected through 168 hours after dosing. Samples were analyzed for total radioactivity content by liquid scintillation counting, and carcasses were analyzed by quantitative whole-body autoradiography. Results [14C]APX001-derived radioactivity was rapidly and extensively absorbed and extensively distributed to most tissues for both routes of administration in both species. In rats, tissues with the highest radioactivity Cmax values included bile, abdominal fat, reproductive fat, subcutaneous fat, and liver, but radioactivity was also detected in tissues associated with IFI, including lung, brain and eye. In monkeys, the highest Cmax values were in bile, urine, uveal tract, bone marrow, abdominal fat, liver, and kidney cortex. Liver and kidney were the tissues with highest radioactivity, but as in the rat, radioactivity was also detected in lung, brain and eye tissues. In pigmented rats, radiocarbon was densely distributed into pigmented tissue and more slowly cleared than from other tissues. Mean recovery of radioactivity in rats was approximately 95–100%. In bile duct-intact rats, >90% of radioactivity was recovered in feces. In cannulated rats, biliary excretion of radioactivity was the major route of elimination and accounted for 88.8% of the dose, whereas urinary and fecal excretion of radioactivity was minor and accounted for 2.56% and 5.42% of the dose, respectively. In monkeys, the overall recovery of radioactivity

  20. Determination of the distal dose edge in a human phantom by measuring the prompt gamma distribution: a Monte Carlo study

    Energy Technology Data Exchange (ETDEWEB)

    Min, Chul Hee; Lee, Han Rim; Yeom, Yeon Su; Cho, Sung Koo; Kim, Chan Hyeong [Hanyang University, Seoul (Korea, Republic of)

    2010-06-15

    The close relationship between the proton dose distribution and the distribution of prompt gammas generated by proton-induced nuclear interactions along the path of protons in a water phantom was demonstrated by means of both Monte Carlo simulations and limited experiments. In order to test the clinical applicability of the method for determining the distal dose edge in a human body, a human voxel model, constructed based on a body-composition-approximated physical phantom, was used, after which the MCNPX code was used to analyze the energy spectra and the prompt gamma yields from the major elements composing the human voxel model; finally, the prompt gamma distribution, generated from the voxel model and measured by using an array-type prompt gamma detection system, was calculated and compared with the proton dose distribution. According to the results, effective prompt gammas were produced mainly by oxygen, and the specific energy of the prompt gammas, allowing for selective measurement, was found to be 4.44 MeV. The results also show that the distal dose edge in the human phantom, despite the heterogeneous composition and the complicated shape, can be determined by measuring the prompt gamma distribution with an array-type detection system.

  1. [Study of the influence of uniform transverse magnetic field on the dose distribution of high energy electron beam using Monte Carlo method].

    Science.gov (United States)

    You, Shihu; Xu, Yun; Wu, Zhangwen; Hou, Qing; Guo, Chengjun

    2014-12-01

    In the present work, Monte Carlo simulations were employed to study the characteristics of the dose distribution of high energy electron beam in the presence of uniform transverse magnetic field. The simulations carried out the transport processes of the 30 MeV electron beam in the homogeneous water phantom with different magnetic field. It was found that the dose distribution of the 30 MeV electron beam had changed significantly because of the magnetic field. The result showed that the range of the electron beam was decreased obviously and it formed a very high dose peak at the end of the range, and the ratio of maximum dose to the dose of the surface was greatly increased. The results of this study demonstrated that we could change the depth dose distribution of electron beam which is analogous to the heavy ion by modulating the energy of the electron and magnetic field. It means that using magnetic fields in conjunction with electron radiation therapy has great application prospect, but it also has brought new challenges for the research of dose algorithm.

  2. LiF thermoluminescence dosimetry for mapping absorbed dose distributions in the gamma ray disinfection of machine-baled sheep wool

    International Nuclear Information System (INIS)

    Dexi Jiang

    1985-01-01

    The measurement of absorbed dose distributions of 60 Co γ-rays in machine-baled sheep wool, which is disinfected of certain parasitic bacteria (e.g. Brucella bacilli) by γ-ray treatment, is summarized. The preparation and main physical properties of the LiF-TLD are described, as well as the shape, structure and the activity of the 60 Co source and typical dose distributions measured around the source in free air. The results of dose distributions measured by the LiF-TLD agreed within +-5% with those given by a calibrated ionization chamber. The exposure rates (units R/min) at three typical measurement points inside a bale of sheep's wool were found to be quite uniform: centre 3.8x10 3 (+-2.1%); upper region 3.9x10 3 (+-2.4%); lower region 3.9x10 3 (+-1.9%). (author)

  3. Radial dose distribution of 6.0 MeV/n α-particle in water

    International Nuclear Information System (INIS)

    Soga, F.; Sato, Y.; Hirabayashi, M.; Ohsawa, D.

    2003-01-01

    For the study of radiation biology and its application to radiotherapy, the double differential cross section of electron emission from water vapor induced by 6.0 MeV alpha particle beam is measured. The energy spectra of electrons ranging 7- 10000 eV are detected by the electrostatic analyzer and micro channel plate. The measurements are made at angles between 20 and 160 degrees. With use of this data set, the radial dose distribution in water is calculated by using KURBUC code. It is the Monte Carlo type code of the electron transport process, where the track of the electron is simulated through each individual interactions including elastic scattering, ionization cross section and total excitation cross section in case that electrons with certain energy are put in the liquid-density water. In order to understand the effect of radiation when the particle flux is injected in the human body like radiotherapy using accelerator beam, the dose distribution in the biological substances is essential as the first step to know the effect of irradiation. From the double differential cross sections obtained, the cumulative density functions are produced concerning both energy and angle. These functions are used for the initial randomly produced rays for 3 dimensional Monte Carlo track simulations. The results show that the track of electrons emitted and slowed down is most frequent in the perpendicular direction to the initial beam direction and most of the secondary electrons are stopped within the range of 100 nanometers. The characteristic of the obtained radial dose distribution is nearly 1/r 2 dependence with broad plateau region (penumbra) and gradual decreasing tail of penumbra extending more than a few micrometers which is much longer than the theoretical prediction

  4. Evaluation of the distribution of absorbed dose in child phantoms exposed to diagnostic medical x rays

    Energy Technology Data Exchange (ETDEWEB)

    Chen, W. L.; Poston, J. W.; Warner, G. G.

    1978-04-01

    The purpose of this study was to determine, by theoretical calculation and experimental measurement, the absorbed dose distributions in two heterogeneous phantoms representing one-year- and five-year-old children from typical radiographic examinations for those ages. Theoretical work included the modification of an existing internal dose code which uses Monte Carlo methods to determine doses within the Snyder-Fisher mathematical phantom. A Ge(Li) detector and a pinhole collimator were used to measure x-ray spectra which served as input to the modified Monte Carlo codes which were used to calculate organ doses in children. The calculated and measured tissue-air values were compared for a number of organs. For most organs, the results of the calculated absorbed doses agreed with the measured absorbed doses within twice the coefficient of variation of the calculated value. The absorbed dose to specific organs for several selected radiological examinations are given for one-year-old, five-year-old, and adult phantoms.

  5. Evaluation of the distribution of absorbed dose in child phantoms exposed to diagnostic medical x rays

    International Nuclear Information System (INIS)

    Chen, W.L.; Poston, J.W.; Warner, G.G.

    1978-04-01

    The purpose of this study was to determine, by theoretical calculation and experimental measurement, the absorbed dose distributions in two heterogeneous phantoms representing one-year- and five-year-old children from typical radiographic examinations for those ages. Theoretical work included the modification of an existing internal dose code which uses Monte Carlo methods to determine doses within the Snyder-Fisher mathematical phantom. A Ge(Li) detector and a pinhole collimator were used to measure x-ray spectra which served as input to the modified Monte Carlo codes which were used to calculate organ doses in children. The calculated and measured tissue-air values were compared for a number of organs. For most organs, the results of the calculated absorbed doses agreed with the measured absorbed doses within twice the coefficient of variation of the calculated value. The absorbed dose to specific organs for several selected radiological examinations are given for one-year-old, five-year-old, and adult phantoms

  6. Modelling the potential distribution of Betula utilis in the Himalaya

    Directory of Open Access Journals (Sweden)

    Maria Bobrowski

    2017-07-01

    Full Text Available Developing sustainable adaptation pathways under climate change conditions in mountain regions requires accurate predictions of treeline shifts and future distribution ranges of treeline species. Here, we model for the first time the potential distribution of Betula utilis, a principal Himalayan treeline species, to provide a basis for the analysis of future range shifts. Our target species Betula utilis is widespread at alpine treelines in the Himalayan mountains, the distribution range extends across the Himalayan mountain range. Our objective is to model the potential distribution of B. utilis in relation to current climate conditions. We generated a dataset of 590 occurrence records and used 24 variables for ecological niche modelling. We calibrated Generalized Linear Models using the Akaike Information Criterion (AIC and evaluated model performance using threshold-independent (AUC, Area Under the Curve and threshold-dependent (TSS, True Skill Statistics characteristics as well as visual assessments of projected distribution maps. We found two temperature-related (Mean Temperature of the Wettest Quarter, Temperature Annual Range and three precipitation-related variables (Precipitation of the Coldest Quarter, Average Precipitation of March, April and May and Precipitation Seasonality to be useful for predicting the potential distribution of B. utilis. All models had high predictive power (AUC ≥ 0.98 and TSS ≥ 0.89. The projected suitable area in the Himalayan mountains varies considerably, with most extensive distribution in the western and central Himalayan region. A substantial difference between potential and real distribution in the eastern Himalaya points to decreasing competitiveness of B. utilis under more oceanic conditions in the eastern part of the mountain system. A comparison between the vegetation map of Schweinfurth (1957 and our current predictions suggests that B. utilis does not reach the upper elevational limit in

  7. Dose volume assessment of high dose rate 192IR endobronchial implants

    International Nuclear Information System (INIS)

    Cheng, B. Saw; Korb, Leroy J.; Pawlicki, Todd; Wu, Andrew

    1996-01-01

    Purpose: To study the dose distributions of high dose rate (HDR) endobronchial implants using the dose nonuniformity ratio (DNR) and three volumetric irradiation indices. Methods and Materials: Multiple implants were configured by allowing a single HDR 192 Ir source to step through a length of 6 cm along an endobronchial catheter. Dwell times were computed to deliver a dose of 5 Gy to points 1 cm away from the catheter axis. Five sets of source configurations, each with different dwell position spacings from 0.5 to 3.0 cm, were evaluated. Three-dimensional (3D) dose distributions were then generated for each source configuration. Differential and cumulative dose-volume curves were generated to quantify the degree of target volume coverage, dose nonuniformity within the target volume, and irradiation of tissues outside the target volume. Evaluation of the implants were made using the DNR and three volumetric irradiation indices. Results: The observed isodose distributions were not able to satisfy all the dose constraints. The ability to optimally satisfy the dose constraints depended on the choice of dwell position spacing and the specification of the dose constraint points. The DNR and irradiation indices suggest that small dwell position spacing does not result in a more homogeneous dose distribution for the implant. This study supports the existence of a relationship between the dwell position spacing and the distance from the catheter axis to the reference dose or dose constraint points. Better dose homogeneity for an implant can be obtained if the spacing of the dwell positions are about twice the distance from the catheter axis to the reference dose or dose constraint points

  8. Device for the generation of homogeneous dose distributions in irradiated materials

    International Nuclear Information System (INIS)

    Leonhardt, J.; Schulze, H.; Boes, J.; Decker, U.; Schmidt, J.

    1985-01-01

    The invention has been directed at a device for the generation of homogeneous dose distributions in materials irradiated by charged particles. This device can be applied to the initiation of radiation-chemical reactions in solids, of cross-linking and vulcanizing reactors, of crystal defect annealings, etc. A movable absorber (e.g. a wedge or a solid of revolution) which periodically changes the energy of particles striking the specimen has been installed in the beam hole of the beam generating system

  9. Scaling neutron absorbed dose distributions from one medium to another

    International Nuclear Information System (INIS)

    Awschalom, M.; Rosenberg, I.; Ten Haken, R.K.

    1982-11-01

    Central axis depth dose (CADD) and off-axis absorbed dose ratio (OAR) measurements were made in water, muscle and whole skeletal bone TE-solutions, mineral oil and glycerin with a clinical neutron therapy beam. These measurements show that, for a given neutron beam quality and field size, there is a universal CADD distribution at infinity if the depth in the phantom is expressed in terms of appropriate scaling lengths. These are essentially the kerma-weighted neutron mean free paths in the media. The method used in ICRU No. 26 to scale the CADD by the ratio of the densities is shown to give incorrect results. the OAR's measured in different media at depths proportional to the respective mean free paths were also found to be independent of the media to a good approximation. It is recommended that relative CADD and OAR measurements be performed in water because of its universality and convenience. A table of calculated scaling lengths is given for various neutron energy spectra and for various tissues and materials of practical importance in neutron dosimetry

  10. NOTE: The denoising of Monte Carlo dose distributions using convolution superposition calculations

    Science.gov (United States)

    El Naqa, I.; Cui, J.; Lindsay, P.; Olivera, G.; Deasy, J. O.

    2007-09-01

    Monte Carlo (MC) dose calculations can be accurate but are also computationally intensive. In contrast, convolution superposition (CS) offers faster and smoother results but by making approximations. We investigated MC denoising techniques, which use available convolution superposition results and new noise filtering methods to guide and accelerate MC calculations. Two main approaches were developed to combine CS information with MC denoising. In the first approach, the denoising result is iteratively updated by adding the denoised residual difference between the result and the MC image. Multi-scale methods were used (wavelets or contourlets) for denoising the residual. The iterations are initialized by the CS data. In the second approach, we used a frequency splitting technique by quadrature filtering to combine low frequency components derived from MC simulations with high frequency components derived from CS components. The rationale is to take the scattering tails as well as dose levels in the high-dose region from the MC calculations, which presumably more accurately incorporates scatter; high-frequency details are taken from CS calculations. 3D Butterworth filters were used to design the quadrature filters. The methods were demonstrated using anonymized clinical lung and head and neck cases. The MC dose distributions were calculated by the open-source dose planning method MC code with varying noise levels. Our results indicate that the frequency-splitting technique for incorporating CS-guided MC denoising is promising in terms of computational efficiency and noise reduction.

  11. Comparison of dose distribution between 3DCRT and IMRT in middle thoracic and under thoracic esophageal carcinoma

    International Nuclear Information System (INIS)

    Li Dingjie; Liu Hailong; Mao Ronghu; Liu Ru; Guo Xiaoqi; Lei Hongchang; Wang Jianhua

    2011-01-01

    Objective: To compare the dose distribution between three-dimensional conformal radiotherapy (3DCRT) and intensity-modulated radiotherapy (IMRT) in treating esophageal carcinoma (middle thoracic section and under thoracic section) and to select reasonable treatment methods for esophagus cancer. Methods: Ten cases with cancer of the middle thoracic section and under thoracic section esophagus were chosen for a retrospective treatment-planning study. 3DCRT and IMRT plans were created for each patient: Some critical indicators were evolved in evaluating the treatment plans of IMRT (5B and 7B) and 3DCRT (3B), such as, PTV coverage and dose-volumes to irradiated normal structures. Evaluation indicators: prescription of 50 Gy. total lung volume (V5, V10, V20), mean lung dose (MLD), spinal cord (Dmax), heart (V40) and conformality index (CI). Each plan was evaluated with respect to dose distribution,dose-volume histograms (DVHs), and additional dosimetric endpoints described below. Results: There is no significance of CRT and IMRT technique in protection of total lung volume,mean lung dose, spinal cord (Dmax), target, CI and heart. Conclusion: As To radiotherapy of esophagus cancer of the middle thoracic section and under thoracic section, IMRT has no advantage compared with 3DCRT, the selection of plan should be adapted to the situations of every patient. (authors)

  12. Calculation of dose distribution in compressible breast tissues using finite element modeling, Monte Carlo simulation and thermoluminescence dosimeters

    Science.gov (United States)

    Mohammadyari, Parvin; Faghihi, Reza; Mosleh-Shirazi, Mohammad Amin; Lotfi, Mehrzad; Rahim Hematiyan, Mohammad; Koontz, Craig; Meigooni, Ali S.

    2015-12-01

    Compression is a technique to immobilize the target or improve the dose distribution within the treatment volume during different irradiation techniques such as AccuBoost® brachytherapy. However, there is no systematic method for determination of dose distribution for uncompressed tissue after irradiation under compression. In this study, the mechanical behavior of breast tissue between compressed and uncompressed states was investigated. With that, a novel method was developed to determine the dose distribution in uncompressed tissue after irradiation of compressed breast tissue. Dosimetry was performed using two different methods, namely, Monte Carlo simulations using the MCNP5 code and measurements using thermoluminescent dosimeters (TLD). The displacement of the breast elements was simulated using a finite element model and calculated using ABAQUS software. From these results, the 3D dose distribution in uncompressed tissue was determined. The geometry of the model was constructed from magnetic resonance images of six different women volunteers. The mechanical properties were modeled by using the Mooney-Rivlin hyperelastic material model. Experimental dosimetry was performed by placing the TLD chips into the polyvinyl alcohol breast equivalent phantom. The results determined that the nodal displacements, due to the gravitational force and the 60 Newton compression forces (with 43% contraction in the loading direction and 37% expansion in the orthogonal direction) were determined. Finally, a comparison of the experimental data and the simulated data showed agreement within 11.5%  ±  5.9%.

  13. Calculation of dose distribution in compressible breast tissues using finite element modeling, Monte Carlo simulation and thermoluminescence dosimeters

    International Nuclear Information System (INIS)

    Mohammadyari, Parvin; Faghihi, Reza; Mosleh-Shirazi, Mohammad Amin; Lotfi, Mehrzad; Hematiyan, Mohammad Rahim; Koontz, Craig; Meigooni, Ali S

    2015-01-01

    Compression is a technique to immobilize the target or improve the dose distribution within the treatment volume during different irradiation techniques such as AccuBoost ® brachytherapy. However, there is no systematic method for determination of dose distribution for uncompressed tissue after irradiation under compression. In this study, the mechanical behavior of breast tissue between compressed and uncompressed states was investigated. With that, a novel method was developed to determine the dose distribution in uncompressed tissue after irradiation of compressed breast tissue. Dosimetry was performed using two different methods, namely, Monte Carlo simulations using the MCNP5 code and measurements using thermoluminescent dosimeters (TLD). The displacement of the breast elements was simulated using a finite element model and calculated using ABAQUS software. From these results, the 3D dose distribution in uncompressed tissue was determined. The geometry of the model was constructed from magnetic resonance images of six different women volunteers. The mechanical properties were modeled by using the Mooney–Rivlin hyperelastic material model. Experimental dosimetry was performed by placing the TLD chips into the polyvinyl alcohol breast equivalent phantom. The results determined that the nodal displacements, due to the gravitational force and the 60 Newton compression forces (with 43% contraction in the loading direction and 37% expansion in the orthogonal direction) were determined. Finally, a comparison of the experimental data and the simulated data showed agreement within 11.5%  ±  5.9%. (paper)

  14. Effects of water chemistry and potential distribution on electrochemical corrosion potential measurements in 553 K pure water

    International Nuclear Information System (INIS)

    Ishida, Kazushige; Wada, Yoichi; Tachibana, Masahiko; Ota, Nobuyuki; Aizawa, Motohiro

    2013-01-01

    The effects of water chemistry distribution on the potential of a reference electrode and of the potential distribution on the measured potential should be known qualitatively to obtain accurate electrochemical corrosion potential (ECP) data in BWRs. First, the effects of oxygen on a platinum reference electrode were studied in 553 K pure water containing dissolved hydrogen (DH) concentration of 26 - 10 5 μg kg -1 (ppb). The platinum electrode worked in the same way as the theoretical hydrogen electrode under the condition that the molar ratio of DH to dissolved oxygen (DO) was more than 10 and that DO was less than 100 ppb. Second, the effects of potential distribution on the measured potential were studied by using the ECP measurement part without platinum deposition on the surfaces connected to another ECP measurement part with platinum deposition on the surfaces in 553 K pure water containing 100 - 130 ppb of DH or 100 - 130 ppb of DH plus 400 ppb of hydrogen peroxide. Measured potentials for each ECP measurement part were in good agreement with literature data for each surface condition. The lead wire connecting point did not affect the measured potential. Potential should be measured at the nearest point from the reference electrode in which case it will be not affected by either the potential distribution or the connection point of the lead wire in pure water. (author)

  15. Multi-isocenter stereotactic radiotherapy: implications for target dose distributions of systematic and random localization errors

    International Nuclear Information System (INIS)

    Ebert, M.A.; Zavgorodni, S.F.; Kendrick, L.A.; Weston, S.; Harper, C.S.

    2001-01-01

    Purpose: This investigation examined the effect of alignment and localization errors on dose distributions in stereotactic radiotherapy (SRT) with arced circular fields. In particular, it was desired to determine the effect of systematic and random localization errors on multi-isocenter treatments. Methods and Materials: A research version of the FastPlan system from Surgical Navigation Technologies was used to generate a series of SRT plans of varying complexity. These plans were used to examine the influence of random setup errors by recalculating dose distributions with successive setup errors convolved into the off-axis ratio data tables used in the dose calculation. The influence of systematic errors was investigated by displacing isocenters from their planned positions. Results: For single-isocenter plans, it is found that the influences of setup error are strongly dependent on the size of the target volume, with minimum doses decreasing most significantly with increasing random and systematic alignment error. For multi-isocenter plans, similar variations in target dose are encountered, with this result benefiting from the conventional method of prescribing to a lower isodose value for multi-isocenter treatments relative to single-isocenter treatments. Conclusions: It is recommended that the systematic errors associated with target localization in SRT be tracked via a thorough quality assurance program, and that random setup errors be minimized by use of a sufficiently robust relocation system. These errors should also be accounted for by incorporating corrections into the treatment planning algorithm or, alternatively, by inclusion of sufficient margins in target definition

  16. TLD-300 detectors for separate measurement of total and gamma absorbed dose distributions of single, multiple, and moving-field neutron treatments

    International Nuclear Information System (INIS)

    Rassow, J.

    1984-01-01

    Fast neutron therapy requirements, because of the poor depth dose characteristic of present therapeutical sources, are at least as complex in treatment plans as photon therapy. The physical part of the treatment planning is very important; however, it is much more complicated than for photons or electrons owing to the need for: Separation of total and gamma absorbed dose distributions (Dsub(T) and Dsub(G)); and more stringent tissue-equivalence conditions of phantoms than in photon therapy. Therefore, methods of clinical dosimetry for the separate determination of total and gamma absorbed dose distributions in irregularly shaped (inhomogeneous) phantoms are needed. A method using TLD-300 (CaF 2 :Tm) detectors is described, which is able to give an approximate solution of the above-mentioned dosimetric requirements. The two independent doses, Dsub(T) and Dsub(G), can be calculated by an on-line computer analysis of the digitalized glow curve of TLD-300 detectors, irradiated with d(14)+Be neutrons of the cyclotron isocentric neutron therapy facility CIRCE in Essen. Results are presented for depth and lateral absorbed dose distributions (Dsub(T) and Dsub(G)) for fixed neutron beams of different field sizes compared with measurements by standard procedures (TE-TE ionization chamber, GM counter) in an A-150 phantom. The TLD-300 results for multiple and moving-field treatments (with and without wedge filters) in a patient simulating irregularly shaped (inhomogeneous) phantoms, are shown together with computer calculations of these dose distributions. The probable causes for some systematic deviations are discussed, which lead to open problems for further investigations owing to features of the detector material and the evaluation method, but mainly to differences in the composition of phantom materials used for the calculations (standard dose distributions) and TLD-300 measurements. (author)

  17. Breast dose in mammography is about 30% lower when realistic heterogeneous glandular distributions are considered

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, Andrew M., E-mail: amhern@ucdavis.edu [Biomedical Engineering Graduate Group, University of California Davis, Sacramento, California 95817 (United States); Seibert, J. Anthony; Boone, John M. [Departments of Radiology and Biomedical Engineering, Biomedical Engineering Graduate Group, University of California Davis, Sacramento, California 95817 (United States)

    2015-11-15

    Purpose: Current dosimetry methods in mammography assume that the breast is comprised of a homogeneous mixture of glandular and adipose tissues. Three-dimensional (3D) dedicated breast CT (bCT) data sets were used previously to assess the complex anatomical structure within the breast, characterizing the statistical distribution of glandular tissue in the breast. The purpose of this work was to investigate the effect of bCT-derived heterogeneous glandular distributions on dosimetry in mammography. Methods: bCT-derived breast diameters, volumes, and 3D fibroglandular distributions were used to design realistic compressed breast models comprised of heterogeneous distributions of glandular tissue. The bCT-derived glandular distributions were fit to biGaussian functions and used as probability density maps to assign the density distributions within compressed breast models. The MCNPX 2.6.0 Monte Carlo code was used to estimate monoenergetic normalized mean glandular dose “DgN(E)” values in mammography geometry. The DgN(E) values were then weighted by typical mammography x-ray spectra to determine polyenergetic DgN (pDgN) coefficients for heterogeneous (pDgN{sub hetero}) and homogeneous (pDgN{sub homo}) cases. The dependence of estimated pDgN values on phantom size, volumetric glandular fraction (VGF), x-ray technique factors, and location of the heterogeneous glandular distributions was investigated. Results: The pDgN{sub hetero} coefficients were on average 35.3% (SD, 4.1) and 24.2% (SD, 3.0) lower than the pDgN{sub homo} coefficients for the Mo–Mo and W–Rh x-ray spectra, respectively, across all phantom sizes and VGFs when the glandular distributions were centered within the breast phantom in the coronal plane. At constant breast size, increasing VGF from 7.3% to 19.1% lead to a reduction in pDgN{sub hetero} relative to pDgN{sub homo} of 23.6%–27.4% for a W–Rh spectrum. Displacement of the glandular distribution, at a distance equal to 10% of the

  18. Absorption, Distribution, and Excretion of 14C-APX001 after Single-Dose Administration to Rats and Monkeys

    OpenAIRE

    Mansbach, Robert; Shaw, Karen J; Hodges, Michael R; Coleman, Samantha; Fitzsimmons, Michael E

    2017-01-01

    Abstract Background APX001 is a small-molecule therapeutic agent in clinical development for the treatment of invasive fungal infections (IFI). Methods The absorption, distribution and excretion profiles of [14C]APX001-derived radioactivity were determined in rats (albino and pigmented) and monkeys. Rats (some implanted with bile duct cannulae) were administered a single 100 mg/kg oral dose or a 30 mg/kg intravenous (IV) dose. Monkeys were administered a single 6 mg/kg IV dose. Samples of blo...

  19. Design of shared unit-dose drug distribution network using multi-level particle swarm optimization.

    Science.gov (United States)

    Chen, Linjie; Monteiro, Thibaud; Wang, Tao; Marcon, Eric

    2018-03-01

    Unit-dose drug distribution systems provide optimal choices in terms of medication security and efficiency for organizing the drug-use process in large hospitals. As small hospitals have to share such automatic systems for economic reasons, the structure of their logistic organization becomes a very sensitive issue. In the research reported here, we develop a generalized multi-level optimization method - multi-level particle swarm optimization (MLPSO) - to design a shared unit-dose drug distribution network. Structurally, the problem studied can be considered as a type of capacitated location-routing problem (CLRP) with new constraints related to specific production planning. This kind of problem implies that a multi-level optimization should be performed in order to minimize logistic operating costs. Our results show that with the proposed algorithm, a more suitable modeling framework, as well as computational time savings and better optimization performance are obtained than that reported in the literature on this subject.

  20. TENORM wastes and the potential alpha radiation dose to aquatic biota

    International Nuclear Information System (INIS)

    Paschoa, A.S.

    2002-01-01

    In the years seventies release-rates and derived limits for releasing radionuclides into the environment were adopted for each particular radionuclide and for a number of pathways. The release-rate limit adopted for alpha emitters was 10 15 Bq.y -1 for a single site, but limited to 10 14 Bq.y -1 for 226 Ra and supported 210 Po. In addition, to meet the requirements of the London Convention, a derived limit should be expressed in terms of concentration, which for alpha emitters was 10 10 Bq.t -1 , but limited to 10 14 Bq.t -1 for 226 Ra and supported 210 Po, assuming an upper limit to the mass dumping rate of 10 5 t per year at a single dumping site. New data on the radioactivity in the marine environment and biota, including plankton, indicated a potential alpha radiation dose to these aquatic organisms due to the release of technologically enhanced naturally occurring radioactive materials (TENORM) wastes. At the highest accumulation of 239 Pu in the zooplankton Gammarus in Thule, Greenland, due to an accidental release associated with military activities, the dose rate reached about 0.14 μGy.h -1 . Such dose rate was similar to that received by the phytoplankton Chaetoceros and Rhizosolenia from Agulhas current, Africa, due to naturally occurring radioactive materials (NORM) supposedly enhanced for almost one century of gold mining at first, and subsequently because of heap-leaching uranium extraction from the tailings left behind by earlier gold miners. The paper will discuss the alpha radiation dose to aquatic biota, in general, and to plankton, in particular, due to potential releases of TENORM wastes in the aquatic environment. (author)

  1. Accuracy in radiosurgery: The influence of collimator diameters and arc weights on the dose distribution for single target

    Energy Technology Data Exchange (ETDEWEB)

    Plazas, M S [National Univ. of Colombia (Colombia); Lefkopoulus, D; Schlienger, M [Service de Radiotherapie, Hopital Tenon, Paris (France). Unite de Radiophysique; Merienne, L [Hopital Sainte Anne, Paris (France). Service de Neurochirurgie

    1996-08-01

    The dosimetric characteristics of mini-beams and dose distributions in beams used for radio surgery defer substantially from beams used in common radiotherapy. The aim of radio surgery is to deliver a high dose to the lesion in one single fraction, while minimizing the dose delivered to the surrounding normal brain tissue. This type of irradiation is performed with a number of continuous arcs located in various corneal (patient sitting) or sagittal (patient in a supine position) inclined planes using a linear accelerator. A treatment planning system should take into account a large number of irradiation parameters such as the collimator diameter, number of arcs, their angular positions, length and weight of the arcs. We analysed the influence of collimator diameters in the range of 6 to 20 mm using 15 MV X-rays and stereo-tactic irradiation of ellipsoidal inclined arterio venous malformations (AVMs) with a single isocenter. Special arc weights were used to obtain an optimized dose distribution with 13 arcs distributed over an angular sector of 120 deg. x 13 deg. In the two studies made we used 3 dimensional dosimetric calculations. The results were used for the treatment of patients and enabled the choice of the optimal irradiation configuration for each patient. (author). 10 refs, 9 figs.

  2. Jaws calibration method to get a homogeneous distribution of dose in the junction of hemi fields

    International Nuclear Information System (INIS)

    Cenizo de Castro, E.; Garcia Pareja, S.; Moreno Saiz, C.; Hernandez Rodriguez, R.; Bodineau Gil, C.; Martin-Viera Cueto, J. A.

    2011-01-01

    Hemi fields treatments are widely used in radiotherapy. Because the tolerance established for the positioning of each jaw is 1 mm, may be cases of overlap or separation of up to 2 mm. This implies heterogeneity of doses up to 40% in the joint area. This paper presents an accurate method of calibration of the jaws so as to obtain homogeneous dose distributions when using this type of treatment. (Author)

  3. SU-E-T-427: Feasibility Study for Evaluation of IMRT Dose Distribution Using Geant4-Based Automated Algorithms

    International Nuclear Information System (INIS)

    Choi, H; Shin, W; Testa, M; Min, C; Kim, J

    2015-01-01

    Purpose: For intensity-modulated radiation therapy (IMRT) treatment planning validation using Monte Carlo (MC) simulations, a precise and automated procedure is necessary to evaluate the patient dose distribution. The aim of this study is to develop an automated algorithm for IMRT simulations using DICOM files and to evaluate the patient dose based on 4D simulation using the Geant4 MC toolkit. Methods: The head of a clinical linac (Varian Clinac 2300 IX) was modeled in Geant4 along with particular components such as the flattening filter and the multi-leaf collimator (MLC). Patient information and the position of the MLC were imported from the DICOM-RT interface. For each position of the MLC, a step- and-shoot technique was adopted. PDDs and lateral profiles were simulated in a water phantom (50×50×40 cm 3 ) and compared to measurement data. We used a lung phantom and MC-dose calculations were compared to the clinical treatment planning used at the Seoul National University Hospital. Results: In order to reproduce the measurement data, we tuned three free parameters: mean and standard deviation of the primary electron beam energy and the beam spot size. These parameters for 6 MV were found to be 5.6 MeV, 0.2378 MeV and 1 mm FWHM respectively. The average dose difference between measurements and simulations was less than 2% for PDDs and radial profiles. The lung phantom study showed fairly good agreement between MC and planning dose despite some unavoidable statistical fluctuation. Conclusion: The current feasibility study using the lung phantom shows the potential for IMRT dose validation using 4D MC simulations using Geant4 tool kits. This research was supported by Korea Institute of Nuclear safety and Development of Measurement Standards for Medical Radiation funded by Korea research Institute of Standards and Science. (KRISS-2015-15011032)

  4. Distribution of electric potential in hydrocarbon flames

    Energy Technology Data Exchange (ETDEWEB)

    Fialkov, B.S.; Shcherbakov, N.D.; Plitsyn, V.T.

    1978-01-01

    A study was made of the distribution of electrical potential and temperatures in laminar methane and propane--butane flames when the excess air coefficient in the mixture is changed from 0 to 1.2. 7 references, 3 figures.

  5. Distribution of onset of leukemia among atomic bomb survivors in the leukemia registry by dose, Hiroshima and Nagasaki, 1946-75

    International Nuclear Information System (INIS)

    Ishimaru, Toranosuke; Ichimaru, Michito; Mikami, Motoko; Yamada, Yasuaki; Tomonaga, Yuu.

    1982-03-01

    The data from the RERF Leukemia Registry for the years 1946-75 were used to determine the distribution of onset of acute leukemia and chronic granulocytic leukemia among atomic bomb survivors in relation to city, dose, and age at the time of the bomb (ATB). A total of 509 confirmed leukemia cases (297 in Hiroshima and 212 in Nagasaki) have occurred among A-bomb survivors in the open populations of these cities in these years. Analysis revealed that the onset of both acute leukemia and chronic granulocytic leukemia tends to shift to earlier years with increasing dose in Hiroshima, but in Nagasaki, although the onset of both types of leukemia was earlier in the high dose group than in the low dose or control groups, the latter two groups did not differ. The distribution of onset of acute leukemia in the three dose groups also depended upon age ATB. While the distribution of onset of acute leukemia among those survivors whose age ATB was less than 30 differed significantly in the three dose classes, this tendency was not observed among those individuals whose age ATB was 30 years or more. For chronic granulocytic leukemia, the onset was shifted to earlier years in the high dose group than in the control group regardless of age ATB in Hiroshima. These findings support the pattern of leukemogenesis observed in A-bomb survivors in the Life Span Study sample, a fixed cohort, in relation to city, dose, age ATB, and years after exposure. (author)

  6. The measurement of potential distribution of plasma in MM-4 fusion device

    International Nuclear Information System (INIS)

    Tian Zhongyu; Ming Linzhou; Feng Xiaozhen; Feng Chuntang; Yi Youjun; Wang Jihai; Liu Yihua

    1988-11-01

    Some experimental results of the potential distribution in MM-4 fusion device are presented by measuring the floating potential of probe. The results showed that the distribution of axial potential is asymmetrical, but the radial potential is symmetrical. There are double ion potential wells in the plasma. The depth of the deepest potential well become deeper is the strength of the magnetic field and injection current are increasing. The location of the deepest well is moved towards the device center along with the increasing of injection energy. This is different from others results. The mechanism of causing this distribution in also discussed

  7. A novel dose uncertainty model and its application for dose verification

    International Nuclear Information System (INIS)

    Jin Hosang; Chung Heetaek; Liu Chihray; Palta, Jatinder; Suh, Tae-Suk; Kim, Siyong

    2005-01-01

    Based on statistical approach, a novel dose uncertainty model was introduced considering both nonspatial and spatial dose deviations. Non-space-oriented uncertainty is mainly caused by dosimetric uncertainties, and space-oriented dose uncertainty is the uncertainty caused by all spatial displacements. Assuming these two parts are independent, dose difference between measurement and calculation is a linear combination of nonspatial and spatial dose uncertainties. Two assumptions were made: (1) the relative standard deviation of nonspatial dose uncertainty is inversely proportional to the dose standard deviation σ, and (2) the spatial dose uncertainty is proportional to the gradient of dose. The total dose uncertainty is a quadratic sum of the nonspatial and spatial uncertainties. The uncertainty model provides the tolerance dose bound for comparison between calculation and measurement. In the statistical uncertainty model based on a Gaussian distribution, a confidence level of 3σ theoretically confines 99.74% of measurements within the bound. By setting the confidence limit, the tolerance bound for dose comparison can be made analogous to that of existing dose comparison methods (e.g., a composite distribution analysis, a γ test, a χ evaluation, and a normalized agreement test method). However, the model considers the inherent dose uncertainty characteristics of the test points by taking into account the space-specific history of dose accumulation, while the previous methods apply a single tolerance criterion to the points, although dose uncertainty at each point is significantly different from others. Three types of one-dimensional test dose distributions (a single large field, a composite flat field made by two identical beams, and three-beam intensity-modulated fields) were made to verify the robustness of the model. For each test distribution, the dose bound predicted by the uncertainty model was compared with simulated measurements. The simulated

  8. Inter-patient image registration algorithms to disentangle regional dose bioeffects.

    Science.gov (United States)

    Monti, Serena; Pacelli, Roberto; Cella, Laura; Palma, Giuseppe

    2018-03-20

    Radiation therapy (RT) technological advances call for a comprehensive reconsideration of the definition of dose features leading to radiation induced morbidity (RIM). In this context, the voxel-based approach (VBA) to dose distribution analysis in RT offers a radically new philosophy to evaluate local dose response patterns, as an alternative to dose-volume-histograms for identifying dose sensitive regions of normal tissue. The VBA relies on mapping patient dose distributions into a single reference case anatomy which serves as anchor for local dosimetric evaluations. The inter-patient elastic image registrations (EIRs) of the planning CTs provide the deformation fields necessary for the actual warp of dose distributions. In this study we assessed the impact of EIR on the VBA results in thoracic patients by identifying two state-of-the-art EIR algorithms (Demons and B-Spline). Our analysis demonstrated that both the EIR algorithms may be successfully used to highlight subregions with dose differences associated with RIM that substantially overlap. Furthermore, the inclusion for the first time of covariates within a dosimetric statistical model that faces the multiple comparison problem expands the potential of VBA, thus paving the way to a reliable voxel-based analysis of RIM in datasets with strong correlation of the outcome with non-dosimetric variables.

  9. Helical Tomotherapy for Whole-Brain Irradiation With Integrated Boost to Multiple Brain Metastases: Evaluation of Dose Distribution Characteristics and Comparison With Alternative Techniques

    International Nuclear Information System (INIS)

    Levegrün, Sabine; Pöttgen, Christoph; Wittig, Andrea; Lübcke, Wolfgang; Abu Jawad, Jehad; Stuschke, Martin

    2013-01-01

    Purpose: To quantitatively evaluate dose distribution characteristics achieved with helical tomotherapy (HT) for whole-brain irradiation (WBRT) with integrated boost (IB) to multiple brain metastases in comparison with alternative techniques. Methods and Materials: Dose distributions for 23 patients with 81 metastases treated with WBRT (30 Gy/10 fractions) and IB (50 Gy) were analyzed. The median number of metastases per patient (N mets ) was 3 (range, 2-8). Mean values of the composite planning target volume of all metastases per patient (PTV mets ) and of the individual metastasis planning target volume (PTV ind met ) were 8.7 ± 8.9 cm 3 (range, 1.3-35.5 cm 3 ) and 2.5 ± 4.5 cm 3 (range, 0.19-24.7 cm 3 ), respectively. Dose distributions in PTV mets and PTV ind met were evaluated with respect to dose conformity (conformation number [CN], RTOG conformity index [PITV]), target coverage (TC), and homogeneity (homogeneity index [HI], ratio of maximum dose to prescription dose [MDPD]). The dependence of dose conformity on target size and N mets was investigated. The dose distribution characteristics were benchmarked against alternative irradiation techniques identified in a systematic literature review. Results: Mean ± standard deviation of dose distribution characteristics derived for PTV mets amounted to CN = 0.790 ± 0.101, PITV = 1.161 ± 0.154, TC = 0.95 ± 0.01, HI = 0.142 ± 0.022, and MDPD = 1.147 ± 0.029, respectively, demonstrating high dose conformity with acceptable homogeneity. Corresponding numbers for PTV ind met were CN = 0.708 ± 0.128, PITV = 1.174 ± 0.237, TC = 0.90 ± 0.10, HI = 0.140 ± 0.027, and MDPD = 1.129 ± 0.030, respectively. The target size had a statistically significant influence on dose conformity to PTV mets (CN = 0.737 for PTV mets ≤4.32 cm 3 vs CN = 0.848 for PTV mets >4.32 cm 3 , P=.006), in contrast to N mets . The achieved dose conformity to PTV mets , assessed by both CN and PITV, was in all investigated volume strata

  10. Analysis on the gamma dose distribution by major corrosion products during preventive maintenance period in nuclear power plant

    International Nuclear Information System (INIS)

    Ha, Wi Ho

    2006-02-01

    The information on dose distribution inside the containment building is an essential requirement to make a reduction of radiation exposure as well as effective operation and design of nuclear power plant. After reactor shutdown, radiation exposure to workers mainly occurs during preventive maintenance period due to inspection or repair works of major components. During that period, gamma doses are induced by major corrosion products in the primary coolant system. The radiation exposure to workers has been assessed by using the measurements. The measurements are, of course, a basic and reliable assessment. But the measurement has defect such as limitation of detecting area. In order to improve the defect of the measurements, system for assessment of gamma dose distribution during preventive maintenance period by using computational code was suggested in this study. First, activity of major corrosion products was calculated by using modified CRUDSIM code. Original CRUDSIM code was modified to add evaluation of other major corrosion products besides cobalt isotopes. Modeling of containment building for YGN Unit 3 was then performed. Gamma dose distribution by major corrosion products inside the containment building was calculated by using MCNPX code. Finally, the calculations were mapped for whole space inside the containment building and were compared with the measurements. As a result of this study, the defect of the measurement are supplemented by using computational calculation system, and it is expected that workers can make an effective work plan through providing dose distribution inside the containment building in advance. In addition, this study can be applied to technology development to make an effective containment shielding design of the next generation reactor as well as an improvement of the safety for workers in nuclear power plant

  11. Three dimensional measurement of dose distributions produced by a robot-mounted linac using magnetic resonance imaging of bang polymer gel dosimeters

    International Nuclear Information System (INIS)

    Wong, S.P.; Garwood, D.P.; Clarke, G.D.; McColl, R.W.; Maryanski, M.J.; Gore, J.C.

    1996-01-01

    Purpose/Objective: A novel image-guided robotic radiosurgical system, capable of irradiating 102 non-coplanar nodes in 3 π geometry, produces complex dose distributions which are difficult or impractical to measure with conventional dosimetry instrumentation. The recently developed BANG polymer gel dosimetry system provides accurate, high resolution and three dimensional dose distributions data and is ideally suited for the task described above. In this study, the polymer gels were used for imaging the dose distributions produced by this extremely flexible radiosurgical system. Materials and Methods: The dosimeter materials consist of 2-liter BANG polymer gels in spherical, clear glass flasks, closed with ground glass stoppers, with glass rods extending to the center of the gel that serve as a target for the frameless robotic radiosurgery. A compact 6 MV x-band linac (285 lbs) is mounted and maneuvered by a 6 degree-of-freedom robotic arm. The gels were irradiated using a 25 mm circular insert. A total of 10 Gy was delivered at isocenter at a dose rate of 300 cGy/min using all of the available 102 nodes. The gels were then imaged by MRI(GE Signa) at 1.5 T, using a series of Hahn spin echoes of TR = 3s, TE = 20,100,200,400 ms. Transverse relaxation rate (R 2 ) maps were constructed from those multiple images, using the non-linear least-squares Lavenberg-Marquardt algorithm and a data analysis and display program 'DoseMap' which was written using the scientific computational program MATLAB. R 2 maps were converted to dose maps using an R 2 -to-dose calibration curve. Dose maps and isodose curves were then compared with corresponding data from the treatment planning computer software. Results: The dose dependence of the NMR transverse relaxation rate, R 2 , is reproducible (less than 2 % variation) and is linear up to about 10 Gy, with a slope of 0.25 s -1 Gy -1 at 1.5 Tesla. Isodose curves in three orthogonal (axial, sagittal and coronal) planes show excellent

  12. SU-F-T-178: Optimized Design of a Diamond Detector Specifically Dedicated to the Dose Distribution Measurements in Clinical Proton Pencil Beams

    International Nuclear Information System (INIS)

    Moignier, C; Pomorski, M; Agelou, M; Hernandez, J Garcia; Lazaro, D; Marsolat, F; De Marzi, L; Mazal, A; Tromson, D

    2016-01-01

    Purpose: In proton-therapy, pencil beam scanning (PBS) dosimetry presents a real challenge due to the small size of the beam (about 3 to 8 mm in FWHM), the pulsed high dose rate (up to 100 Gy/s) and the proton energy variation (about 30 MeV to 250 MeV). In the framework of French INSERM DEDIPRO project, a specifically dedicated single crystal diamond dosimeter (SCDDo) was developed with the objective of obtaining accurate measurements of the dose distribution in PBS modality. Methods: Monte Carlo simulations with MCNPX were performed. A small proton beam of 5 mm in FWHM was simulated as well as diamond devices with various size, thickness and holder composition. The calculated doses-to-diamond were compared with the doses-to-water in order to reduce the perturbation effects. Monte-Carlo simulations lead to an optimized SCDDo design for small proton beams dosimetry. Following the optimized design, SCDDos were mounted in water-equivalent holders with electrical connection adapted to standard electrometer. First, SCDDos performances (stability, repeatability, signal-to-background ratio…) were evaluated with conventional photon beams. Then, characterizations (dose linearity, dose rate dependence…) with wide proton beams were performed at proton-therapy center (IC-CPO) from Curie Institute (France) with the passive proton delivery technique, in order to confirm dosimetric requirements. Finally, depth-dose distributions were measured in a water tank, for native and modulated Bragg Peaks with the collimator of 12 cm, and compared to a commercial PPC05 parallel-plate ionization chamber reference detector. Lateral-dose profiles were also measured with the collimator of 5 mm, and compared to a commercial SFD diode. Results: The results show that SCDDo design does not disturb the dose distributions. Conclusion: The experimental dose distributions with the SCDDo are in good agreement with the commercial detectors and no energy dependence was observed with this device

  13. SU-F-T-178: Optimized Design of a Diamond Detector Specifically Dedicated to the Dose Distribution Measurements in Clinical Proton Pencil Beams

    Energy Technology Data Exchange (ETDEWEB)

    Moignier, C; Pomorski, M; Agelou, M; Hernandez, J Garcia; Lazaro, D [Institut CEA LIST, Gif-sur-Yvette (France); Marsolat, F; De Marzi, L; Mazal, A [Institut Curie - Centre de Protontherapie d’Orsay, Orsay (France); Tromson, D

    2016-06-15

    Purpose: In proton-therapy, pencil beam scanning (PBS) dosimetry presents a real challenge due to the small size of the beam (about 3 to 8 mm in FWHM), the pulsed high dose rate (up to 100 Gy/s) and the proton energy variation (about 30 MeV to 250 MeV). In the framework of French INSERM DEDIPRO project, a specifically dedicated single crystal diamond dosimeter (SCDDo) was developed with the objective of obtaining accurate measurements of the dose distribution in PBS modality. Methods: Monte Carlo simulations with MCNPX were performed. A small proton beam of 5 mm in FWHM was simulated as well as diamond devices with various size, thickness and holder composition. The calculated doses-to-diamond were compared with the doses-to-water in order to reduce the perturbation effects. Monte-Carlo simulations lead to an optimized SCDDo design for small proton beams dosimetry. Following the optimized design, SCDDos were mounted in water-equivalent holders with electrical connection adapted to standard electrometer. First, SCDDos performances (stability, repeatability, signal-to-background ratio…) were evaluated with conventional photon beams. Then, characterizations (dose linearity, dose rate dependence…) with wide proton beams were performed at proton-therapy center (IC-CPO) from Curie Institute (France) with the passive proton delivery technique, in order to confirm dosimetric requirements. Finally, depth-dose distributions were measured in a water tank, for native and modulated Bragg Peaks with the collimator of 12 cm, and compared to a commercial PPC05 parallel-plate ionization chamber reference detector. Lateral-dose profiles were also measured with the collimator of 5 mm, and compared to a commercial SFD diode. Results: The results show that SCDDo design does not disturb the dose distributions. Conclusion: The experimental dose distributions with the SCDDo are in good agreement with the commercial detectors and no energy dependence was observed with this device

  14. Absorbed dose distributions in patients with bone metastases from hormone refractory prostate cancer treated with Re-186 HEDP

    International Nuclear Information System (INIS)

    Denis Bacelar, A.M.; Dearnaley, D.P.; Divoli, A.; Chittenden, S.; Du, Y.; Flux, G.D.; O'Sullivan, J.M.

    2015-01-01

    Full text of publication follows. Aim: intravenous administration of Re-186 hydroxyethylidene-diphosphonate (HEDP) is used for metastatic bone pain palliation in hormone refractory prostate cancer patients. Dosimetry for bone seeking radionuclides is challenging due to the complex structure with osteoblastic, osteolytic and mixed lesions. The aim of this study was to perform image-based patient-specific 3D convolution dosimetry to obtain a distribution of the absorbed doses to each lesion and estimate inter- and intra-patient variations. Materials and methods: 28 patients received a fixed 5 GBq activity of Re-186 HEDP followed by peripheral blood stem cell rescue at 14 days in a phase II trial. A FORTE dual-headed gamma camera was used to acquire sequential Single-Photon-Emission Computed Tomography (SPECT) data of the thorax and pelvis area at 1, 4, 24, 48 and 72 hours following administration. The projection data were reconstructed using filtered-back projection and were corrected for attenuation and scatter. Voxelised cumulated activity distributions were obtained with two different methods. First, the scans were co-registered and the time-activity curves were obtained on a voxel-by-voxel basis. Second, the clearance curve was obtained from the mean number of counts in each individual lesion and used to scale the uptake distribution taken at 24 hours. The calibration factors required for image quantification were obtained from a phantom experiment. An in-house developed EGSnrc Monte Carlo code was used for the calculation of dose voxel kernels for soft-tissue and cortical/trabecular bone used to perform convolution dosimetry. Cumulative dose-volume histograms were produced and mean absorbed doses calculated for each spinal and pelvic lesion. Results: preliminary results show that the lesion mean absorbed doses ranged from 25 to 55 Gy when the medium was soft tissue and decreased by 40% if bone was considered. The use of the cumulated activity distribution

  15. The effect of respiratory cycle and radiation beam-on timing on the dose distribution of free-breathing breast treatment using dynamic IMRT

    International Nuclear Information System (INIS)

    Ding Chuxiong; Li Xiang; Huq, M. Saiful; Saw, Cheng B.; Heron, Dwight E.; Yue, Ning J.

    2007-01-01

    In breast cancer treatment, intensity-modulated radiation therapy (IMRT) can be utilized to deliver more homogeneous dose to target tissues to minimize the cosmetic impact. We have investigated the effect of the respiratory cycle and radiation beam-on timing on the dose distribution in free-breathing dynamic breast IMRT treatment. Six patients with early stage cancer of the left breast were included in this study. A helical computed tomography (CT) scan was acquired for treatment planning. A four-dimensional computed tomography (4D CT) scan was obtained right after the helical CT scan with little or no setup uncertainty to simulate patient respiratory motion. After optimizing based on the helical CT scan, the sliding-window dynamic multileaf collimator (DMLC) leaf sequence was segmented into multiple sections that corresponded to various respiratory phases per respiratory cycle and radiation beam-on timing. The segmented DMLC leaf sections were grouped according to respiratory phases and superimposed over the radiation fields of corresponding 4D CT image set. Dose calculation was then performed for each phase of the 4D CT scan. The total dose distribution was computed by accumulating the contribution of dose from each phase to every voxel in the region of interest. This was tracked by a deformable registration program throughout all of the respiratory phases of the 4D CT scan. A dose heterogeneity index, defined as the ratio between (D 20 -D 80 ) and the prescription dose, was introduced to numerically illustrate the impact of respiratory motion on the dose distribution of treatment volume. A respiratory cycle range of 4-8 s and randomly distributed beam-on timing were assigned to simulate the patient respiratory motion during the free-breathing treatment. The results showed that the respiratory cycle period and radiation beam-on timing presented limited impact on the target dose coverage and slightly increased the target dose heterogeneity. This motion impact

  16. Experimental characterization and physical modelling of the dose distribution of scanned proton pencil beams

    International Nuclear Information System (INIS)

    Pedroni, E; Scheib, S; Boehringer, T; Coray, A; Grossmann, M; Lin, S; Lomax, A

    2005-01-01

    In this paper we present the pencil beam dose model used for treatment planning at the PSI proton gantry, the only system presently applying proton therapy with a beam scanning technique. The scope of the paper is to give a general overview on the various components of the dose model, on the related measurements and on the practical parametrization of the results. The physical model estimates from first physical principles absolute dose normalized to the number of incident protons. The proton beam flux is measured in practice by plane-parallel ionization chambers (ICs) normalized to protons via Faraday-cup measurements. It is therefore possible to predict and deliver absolute dose directly from this model without other means. The dose predicted in this way agrees very well with the results obtained with ICs calibrated in a cobalt beam. Emphasis is given in this paper to the characterization of nuclear interaction effects, which play a significant role in the model and are the major source of uncertainty in the direct estimation of the absolute dose. Nuclear interactions attenuate the primary proton flux, they modify the shape of the depth-dose curve and produce a faint beam halo of secondary dose around the primary proton pencil beam in water. A very simple beam halo model has been developed and used at PSI to eliminate the systematic dependences of the dose observed as a function of the size of the target volume. We show typical results for the relative (using a CCD system) and absolute (using calibrated ICs) dosimetry, routinely applied for the verification of patient plans. With the dose model including the nuclear beam halo we can predict quite precisely the dose directly from treatment planning without renormalization measurements, independently of the dose, shape and size of the dose fields. This applies also to the complex non-homogeneous dose distributions required for the delivery of range-intensity-modulated proton therapy, a novel therapy technique

  17. MONTEC, an interactive fortran program to simulate radiation dose and dose-rate responses of populations

    International Nuclear Information System (INIS)

    Perry, K.A.; Szekely, J.G.

    1983-09-01

    The computer program MONTEC was written to simulate the distribution of responses in a population whose members are exposed to multiple radiation doses at variable dose rates. These doses and dose rates are randomly selected from lognormal distributions. The individual radiation responses are calculated from three equations, which include dose and dose-rate terms. Other response-dose/rate relationships or distributions can be incorporated by the user as the need arises. The purpose of this documentation is to provide a complete operating manual for the program. This version is written in FORTRAN-10 for the DEC system PDP-10

  18. Potential Indoor Worker Exposure From Handling Area Leakage: Dose Calculation Methodology and Example Consequence Analysis

    International Nuclear Information System (INIS)

    Nes, Razvan; Benke, Roland R.

    2008-01-01

    The U.S. Department of Energy (DOE) is currently considering design options for preclosure facilities in a license application for a geologic repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain, Nevada. The Center for Nuclear Waste Regulatory Analyses (CNWRA) developed the PCSA Tool Version 3.0.0 software for the U.S. Nuclear Regulatory Commission (NRC) to aid in the regulatory review of a potential DOE license application. The objective of this paper is to demonstrate PCSA Tool modeling capabilities (i.e., a generic two-compartment, mass-balance model) for estimating radionuclide concentrations in air and radiological dose consequences to indoor workers in a control room from potential leakage of radioactively contaminated air from an adjacent handling area. The presented model computes internal and external worker doses from inhalation and submersion in a finite cloud of contaminated air in the control room and augments previous capabilities for assessing indoor worker dose. As a complement to the example event sequence frequency analysis in the companion paper, example consequence calculations are presented in this paper for the postulated event sequence. In conclusion: this paper presents a model for estimating radiological doses to indoor workers for the leakage of airborne radioactive material from handling areas. Sensitivity of model results to changes in various input parameters was investigated via illustrative example calculations. Indoor worker dose estimates were strongly dependent on the duration of worker exposure and the handling-area leakage flow rate. In contrast, doses were not very sensitive to handling-area exhaust ventilation flow rates. For the presented example, inhalation was the dominant radiological dose pathway. The two companion papers demonstrate independent analysis capabilities of the regulator for performing confirmatory calculations of frequency and consequence, which assist the assessment of worker

  19. The origin of dose distributions in fluvial sediments, and the prospect of dating single grains from fluvial deposits using optically stimulated luminescence

    International Nuclear Information System (INIS)

    Olley, J.M.; Caitcheon, G.G.; Roberts, R.G.

    1999-01-01

    We examine the causes of the asymmetric distributions of dose observed from measurements of the optically stimulated luminescence emitted by small aliquots of fluvial quartz, and deduce that the asymmetry arises as a result of samples being composed of a mix of mainly well bleached grains with grains that were effectively unbleached at the time of deposition. We demonstrate that the shapes of the dose distributions can be used to assess the likelihood that aliquots consist only of grains that were well-bleached at the time of deposition. The more asymmetric the distribution, the greater the probability that the aliquots with the lowest dose most closely represent the true burial dose. Single grains with differing doses are present in each of the samples examined, and the population with the lowest dose gives an optical age consistent with the expected burial age. This result implies that the beta-dose heterogeneity in these deposits is small, and that the effects of micro-dosimetric variations on optical dating of individual grains are not significant for these samples. We demonstrate that single-grain dating of fluvial material is possible and practicable using standard Risoe optical dating equipment, and we conclude that application of a new regenerative-dose protocol to single grains of quartz, using the lowest dose population to estimate the burial dose, is the best available means of obtaining reliable luminescence ages for heterogeneously bleached fluvial sediments

  20. Lithium formate EPR dosimetry for verifications of planned dose distributions prior to intensity-modulated radiation therapy

    Science.gov (United States)

    Gustafsson, H.; Lund, E.; Olsson, S.

    2008-09-01

    The objective of the present investigation was to evaluate lithium formate electron paramagnetic resonance (EPR) dosimetry for measurement of dose distributions in phantoms prior to intensity-modulated radiation therapy (IMRT). Lithium formate monohydrate tablets were carefully prepared, and blind tests were performed in clinically relevant situations in order to determine the precision and accuracy of the method. Further experiments confirmed that within the accuracy of the current method, the dosimeter response was independent of beam energies and dose rates used for IMRT treatments. The method was applied to IMRT treatment plans, and the dose determinations were compared to ionization chamber measurements. The experiments showed that absorbed doses above 3 Gy could be measured with an uncertainty of less than 2.5% of the dose (coverage factor k = 1.96). Measurement time was about 15 min using a well-calibrated dosimeter batch. The conclusion drawn from the investigation was that lithium formate EPR dosimetry is a promising new tool for absorbed dose measurements in external beam radiation therapy, especially for doses above 3 Gy.

  1. Lithium formate EPR dosimetry for verifications of planned dose distributions prior to intensity-modulated radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, H; Lund, E [Department of Medical and Health Sciences, Radiation Physics, Faculty of Health Sciences, Linkoeping University, S-581 85 Linkoeping (Sweden); Olsson, S [Division of Radiation Physics, Linkoeping University Hospital, S-581 85 Linkoeping (Sweden)], E-mail: hakgu@imv.liu.se

    2008-09-07

    The objective of the present investigation was to evaluate lithium formate electron paramagnetic resonance (EPR) dosimetry for measurement of dose distributions in phantoms prior to intensity-modulated radiation therapy (IMRT). Lithium formate monohydrate tablets were carefully prepared, and blind tests were performed in clinically relevant situations in order to determine the precision and accuracy of the method. Further experiments confirmed that within the accuracy of the current method, the dosimeter response was independent of beam energies and dose rates used for IMRT treatments. The method was applied to IMRT treatment plans, and the dose determinations were compared to ionization chamber measurements. The experiments showed that absorbed doses above 3 Gy could be measured with an uncertainty of less than 2.5% of the dose (coverage factor k = 1.96). Measurement time was about 15 min using a well-calibrated dosimeter batch. The conclusion drawn from the investigation was that lithium formate EPR dosimetry is a promising new tool for absorbed dose measurements in external beam radiation therapy, especially for doses above 3 Gy.

  2. Depth Dose Distribution Study within a Phantom Torso after Irradiation with a Simulated Solar Particle Event at NSRL

    Science.gov (United States)

    Berger, Thomas; Matthiae, Daniel; Koerner, Christine; George, Kerry; Rhone, Jordan; Cucinotta, Francis; Reitz, Guenther

    2010-01-01

    The adequate knowledge of the radiation environment and the doses incurred during a space mission is essential for estimating an astronaut's health risk. The space radiation environment is complex and variable, and exposures inside the spacecraft and the astronaut's body are compounded by the interactions of the primary particles with the atoms of the structural materials and with the body itself Astronauts' radiation exposures are measured by means of personal dosimetry, but there remains substantial uncertainty associated with the computational extrapolation of skin dose to organ dose, which can lead to over- or underestimation of the health risk. Comparisons of models to data showed that the astronaut's Effective dose (E) can be predicted to within about a +10% accuracy using space radiation transport models for galactic cosmic rays (GCR) and trapped radiation behind shielding. However for solar particle event (SPE) with steep energy spectra and for extra-vehicular activities on the surface of the moon where only tissue shielding is present, transport models predict that there are large differences in model assumptions in projecting organ doses. Therefore experimental verification of SPE induced organ doses may be crucial for the design of lunar missions. In the research experiment "Depth dose distribution study within a phantom torso" at the NASA Space Radiation Laboratory (NSRL) at BNL, Brookhaven, USA the large 1972 SPE spectrum was simulated using seven different proton energies from 50 up to 450 MeV. A phantom torso constructed of natural bones and realistic distributions of human tissue equivalent materials, which is comparable to the torso of the MATROSHKA phantom currently on the ISS, was equipped with a comprehensive set of thermoluminescence detectors and human cells. The detectors are applied to assess the depth dose distribution and radiation transport codes (e.g. GEANT4) are used to assess the radiation field and interactions of the radiation field

  3. Failure-probability driven dose painting

    International Nuclear Information System (INIS)

    Vogelius, Ivan R.; Håkansson, Katrin; Due, Anne K.; Aznar, Marianne C.; Kristensen, Claus A.; Rasmussen, Jacob; Specht, Lena; Berthelsen, Anne K.; Bentzen, Søren M.

    2013-01-01

    Purpose: To demonstrate a data-driven dose-painting strategy based on the spatial distribution of recurrences in previously treated patients. The result is a quantitative way to define a dose prescription function, optimizing the predicted local control at constant treatment intensity. A dose planning study using the optimized dose prescription in 20 patients is performed.Methods: Patients treated at our center have five tumor subvolumes from the center of the tumor (PET positive volume) and out delineated. The spatial distribution of 48 failures in patients with complete clinical response after (chemo)radiation is used to derive a model for tumor control probability (TCP). The total TCP is fixed to the clinically observed 70% actuarial TCP at five years. Additionally, the authors match the distribution of failures between the five subvolumes to the observed distribution. The steepness of the dose–response is extracted from the literature and the authors assume 30% and 20% risk of subclinical involvement in the elective volumes. The result is a five-compartment dose response model matching the observed distribution of failures. The model is used to optimize the distribution of dose in individual patients, while keeping the treatment intensity constant and the maximum prescribed dose below 85 Gy.Results: The vast majority of failures occur centrally despite the small volumes of the central regions. Thus, optimizing the dose prescription yields higher doses to the central target volumes and lower doses to the elective volumes. The dose planning study shows that the modified prescription is clinically feasible. The optimized TCP is 89% (range: 82%–91%) as compared to the observed TCP of 70%.Conclusions: The observed distribution of locoregional failures was used to derive an objective, data-driven dose prescription function. The optimized dose is predicted to result in a substantial increase in local control without increasing the predicted risk of toxicity

  4. Dose distribution in the thyroid gland following radiation therapy of breast cancer-a retrospective study

    International Nuclear Information System (INIS)

    Johansen, S; Reinertsen, KV; Knutstad, K; Olsen, DR; Fosså, SD

    2011-01-01

    To relate the development of post-treatment hypothyroidism with the dose distribution within the thyroid gland in breast cancer (BC) patients treated with loco-regional radiotherapy (RT). In two groups of BC patients postoperatively irradiated by computer tomography (CT)-based RT, the individual dose distributions in the thyroid gland were compared with each other; Cases developed post-treatment hypothyroidism after multimodal treatment including 4-field RT technique. Matched patients in Controls remained free for hypothyroidism. Based on each patient's dose volume histogram (DVH) the volume percentages of the thyroid absorbing respectively 20, 30, 40 and 50 Gy were then estimated (V20, V30, V40 and V50) together with the individual mean thyroid dose over the whole gland (MeanTotGy). The mean and median thyroid dose for the included patients was about 30 Gy, subsequently the total volume of the thyroid gland (VolTotGy) and the absolute volumes (cm 3 ) receiving respectively < 30 Gy and ≥ 30 Gy were calculated (Vol < 30 and Vol ≥ 30) and analyzed. No statistically significant inter-group differences were found between V20, V30, V40 and V50Gy or the median of MeanTotGy. The median VolTotGy in Controls was 2.3 times above VolTotGy in Cases (ρ = 0.003), with large inter-individual variations in both groups. The volume of the thyroid gland receiving < 30 Gy in Controls was almost 2.5 times greater than the comparable figure in Cases. We concluded that in patients with small thyroid glands after loco-radiotherapy of BC, the risk of post-treatment hypothyroidism depends on the volume of the thyroid gland

  5. POTENTIAL DISTRIBUTION OF ORANGE JASMINE (Murraya paniculata IN MEXICO

    Directory of Open Access Journals (Sweden)

    José López-Collado

    2013-04-01

    Full Text Available Orange jasmine (OJ is a common ornamental plant used as green hedge in public and private gardens in Mexico. It also hosts Huanglongbing, a worldwide citrus disease and its vector, Diaphorina citri. For risk analysis and management purpose is important to know its geographic distribution. The potential distribution of OJ was calculated in Mexico using a deductive approach. Based on temperature and precipitation requirements, a relative suitability index was computed by combining the normalized values of both variables. The distribution was overlapped with captures of D. citri to check their spatial similarity. The results showed that the potential of occurrence is high in the Pacific and Gulf of México coastal states, including the Yucatán peninsula, and the lowest values appeared in the north-western states. The OJ distribution overlaps with Huanglongbing occurrence and coincided with captures of D. citri for most of the suitable area but D. citri captures extended beyond the optimal OJ distribution values in the northern regions of México.

  6. Study of Different Tissue Density Effects on the Dose Distribution of a 103Pd Brachytherapy Source Model MED3633

    Directory of Open Access Journals (Sweden)

    Ali Asghar Mowlavi

    2010-09-01

    Full Text Available Introduction: Clinical application of encapsulated radioactive brachytherapy sources has a major role in cancer treatment. In the present research, the effects of different tissue densities on the dose distribution of a 103Pd brachytherapy source in a spherical phantom of 50 cm radius have been studied. Material and Methods: As is well known, absorbed dose in tissue depends to its density, but this difference is not clear in measurements. Therefore, we applied the MCNP code to evaluate the effect of density on the dose distribution. 103Pd brachytherapy sources are used to treat prostate, breast and other cancers. Results: Absorbed dose has been calculated and presented around a source placed in the center of the phantom for different tissue densities. Also, we derived anisotropy and radial dose functions and compared our Monte Carlo results with experimental results of Rivard and Li et al. for F(1, θ and g(r in 1.040 g/cm3 tissue. Conclusion: The results of this study show that relative dose variations around the source center are very considerable at different densities, because of the presence of a photoabsorber (Au-Cu alloy in the source core. Dose variation exceeds 80% at the point (Z = 2.4 mm, Y = 0 mm. Computed values of anisotropy and radial dose functions are in good agreement with the experimental results of Rivard and Li et al.

  7. Evaluation and distribution of doses received by Cuban population due to environmental sources of radioactivity

    International Nuclear Information System (INIS)

    Zerquera, Juan T.; Prendes Alonso, Miguel; Fernandez Gomez, Isis M.; Lopez Bejerano, Gladys

    2008-01-01

    Full text: In the frame of a national research project supported by the Nuclear Energy Agency of the Ministry of Science, Technology and Environment of the Republic of Cuba doses received by Cuban population due to the exposure to existing in the environment sources of radiation were assessed. Direct measurements of sources representing 90% of average total doses to world population according to UNSCEAR data were made and estimations of doses were obtained for the different components of the total dose: doses due to the exposure to cosmic radiation, external terrestrial radiation, potassium contained in human body and inhalation and ingestion of radionuclides present in the environment. Using the obtained results it was made an estimation of total doses to Cuban population due to environmental radiation sources and the contributions of different dose components were assessed. This was carried out through a Monte Carlo simulation of the total doses using the parameter of dose distributions obtained for the different contributors (components) to total dose. On the basis of the estimations the average total effective dose to Cuban population due to the exposure to environmental sources was estimated as 1.1 ± 0.3 mSv per year. This low dose value is in the range of doses estimated by UNSCEAR for world population due to natural background and can be explained by the specific of Cuban environment: a majority of the population living at the sea level or at low altitudes, relative low content of primordial radionuclides in soils and high ventilation rates in dwellings. All the instructions specified in the Call for Abstracts should be taken into account. e/ 41 and 457. (author)

  8. Natural background radiation and population dose distribution in India

    International Nuclear Information System (INIS)

    Nambi, K.S.V.; Bapat, V.N.; David, M.; Sundaram, V.K.; Sunta, C.M.; Soman, S.D.

    1986-01-01

    A country-wide survey of the outdoor natural background gamma radiation levels has been made using mailed thermoluminescent dosimeters (TLDs). The salient features of the results are: (1) The air-kerma levels and the population doses in various states follow log-normal and normal distributions respectively. (2) The national average value for the air dose (air-kerma) is 775 ± 370 (1σ)μGy/y. (3) The lowest air-kerma recorded is 0.23 mGy/y at Minicoy (Laccadive Islands) and the highest is 26.73 mGy/y at Chavra (monazite areas, Kerala). (4) There are significant temporal variation s (even as high as ± 40 per cent) of the background radiation level at many locations and at least in 10 locations where radon/thoron measurements are available, these could be associated with the seasonal variations in radon/thoron levels. (5) The mail control TLDs indicate a country-wide average value of 785 ± 225 μGy/y for the air-kerma which can be considered to provide a truly national average value for the natural background radiation level in India. (6) The mean natural radiation per caput for the country works out to be 690 ± 200 (1σ) Sv/y. (7) The natural radiation per caput seems to be maximum for Andhra Pradesh (1065 ± 325 μSv/y) and minimum for Maharashtra (370 ± 80 μSv/y). (8) The population dose from the external natural background radiation is estimated to be half a million person-Sievert. (9) Assuming 1 CRP risk factor, it can be estimated that just one out of the 43 cancer deaths occurring on an average per 100,000 population in India, can be attributed to the external natural background radiation. (author). 18 refs., 13 tabs., 9 figs

  9. Potential radiation dose from eating fish exposed to actinide contamination

    International Nuclear Information System (INIS)

    Emery, R.M.; Klopfer, D.C.; Baker, D.A.; Soldat, J.K.

    1981-01-01

    The purpose of this work is to establish a maximum potential for transporting actinides to man via fish consumption. The study took place in U-pond, a nuclear waste pond on the Hanford Site. It has concentrations of 238 U, 238 Pu, sup(239,240)Pu and 241 Am that are approx. 3 orders of magnitude greater than background levels. Fish living in the pond contain higher actinide concentrations than those observed in fish from any other location. Experiments were performed in U-Pond to determine maximum quantities of actinides that could accumulate in fillets and whole bodies of two centrarchid fish species. Doses to hypothetical consumers were then estimated. Results indicate that highest concentrations occurring in bluegill or bass muscle after more than a year's exposure to the pond would not be sufficient to produce a significant radiation dose to a human consumer, even if he ate 0.5 kg (of the order of 1 lb) of these fillets every day for 70 yr. Natural predators (heron or coyote), having lifetime diets of whole fish from U-Pond, would receive less radiation dose from the ingested actinides than from natural background sources. (author)

  10. The dose distribution determination in two kinds of polyethylene materials irradiated by electron beams-an experimental method for optimizing technology of radiation processing

    International Nuclear Information System (INIS)

    Zhang Daming

    2000-01-01

    The dose distribution in two kinds of polyethylene materials were determined by use of electron beam from 1.0-3.0 MeV electron accelerator. The effects of four different metal base-plate such as Al, Fe, Cu and Pb for dose depth distribution in materials were compared. And the boundary effects of absorbed dose were also observed. The expand uncertainty of absorbed dose measurement was 7.8%. This work is a useful experimental method for optimizing technology of radiation processing and realizing quality control of irradiation products

  11. New aspects in distribution of population dose loads in Semipalatinsk Nuclear Test Site region

    International Nuclear Information System (INIS)

    Hill, P.; Pivovarov, S.; Rukhin, A.; Seredavina, T.; Sushkova, N.

    2008-01-01

    Full text: The question on dose loads of Semipalatinsk Nuclear Test Site (SNTS) region population is not fully solved till now. There is rather different estimations of doses, received by people of nearest to SNTS settlements. It may be explain by absence of individual dosimeters during and after nuclear weapon tests and also many various ways of radiation exposure receiving. During last some years we have done a people dose loads estimations by Electron Paramagnetic Resonance (EPR) tooth enamel dosimetry method - one of the best and reliable for retrospective dosimetry. It was studied tooth enamel people from settlements Dolon, Bodene, Cheremushki, Mostik, which was irradiated mainly by the first atomic explosion 1949, settlement Sarjal, irradiated by the first thermonuclear explosion in 1953, and control settlement Maysk, which is sited close to SNTS, but there was no any radioactive traces due to east wind. The results display a not expected rather surprising picture: in all settlements, including control one Maysk, the dose loads distribution was rather similar, it has ex fast bimodal form with rather high doses in the second one. The possible reasons of such situation is discussed. The results obtained is compared with last estimations of Semipalatinsk region dose loads of population, which were specially attentively discussed at International Symposiums in Hiroshima (Japan, 2005) and Bethesda (MD, USA, 2006). (author)

  12. Probability distribution of dose rates in the body tissue as a function of the rhytm of Sr90 administration and the age of animals

    International Nuclear Information System (INIS)

    Rasin, I.M.; Sarapul'tsev, I.A.

    1975-01-01

    The probability distribution of tissue radiation doses in the skeleton were studied in experiments on swines and dogs. When introducing Sr-90 into the organism from the day of birth till 90 days dose rate probability distribution is characterized by one, or, for adult animals, by two independent aggregates. Each of these aggregates correspond to the normal distribution law

  13. Evaluation of induced activity, decay heat and dose rate distribution after shutdown in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Maki, Koichi [Hitachi Ltd., Ibaraki (Japan). Hitachi Research Lab.; Satoh, Satoshi; Hayashi, Katsumi; Yamada, Koubun; Takatsu, Hideyuki; Iida, Hiromasa

    1997-03-01

    Induced activity, decay heat and dose rate distributions after shutdown were estimated for 1MWa/m{sup 2} operation in ITER. The activity in the inboard blanket one day after shutdown is 1.5x10{sup 11}Bq/cm{sup 3}, and the average decay heating rate 0.01w/cm{sup 3}. The dose rate outside the 120cm thick concrete biological shield is two order higher than the design criterion of 5{mu}Sv/h. This indicates that the biological shield thickness should be enhanced by 50cm in concrete, that is, total thickness 170cm for workers to enter the reactor room and to perform maintenance. (author)

  14. Research on social communication network evolution based on topology potential distribution

    Science.gov (United States)

    Zhao, Dongjie; Jiang, Jian; Li, Deyi; Zhang, Haisu; Chen, Guisheng

    2011-12-01

    Aiming at the problem of social communication network evolution, first, topology potential is introduced to measure the local influence among nodes in networks. Second, from the perspective of topology potential distribution the method of network evolution description based on topology potential distribution is presented, which takes the artificial intelligence with uncertainty as basic theory and local influence among nodes as essentiality. Then, a social communication network is constructed by enron email dataset, the method presented is used to analyze the characteristic of the social communication network evolution and some useful conclusions are got, implying that the method is effective, which shows that topology potential distribution can effectively describe the characteristic of sociology and detect the local changes in social communication network.

  15. TU-H-CAMPUS-IeP1-05: A Framework for the Analytic Calculation of Patient-Specific Dose Distribution Due to CBCT Scan for IGRT

    Energy Technology Data Exchange (ETDEWEB)

    Youn, H; Jeon, H; Nam, J; Lee, J; Lee, J [Pusan National University Yangsan Hospital, Yangsan, Gyeongsangnam-do (Korea, Republic of); Kim, J; Kim, H [Pusan National University, Busan (Korea, Republic of); Cho, M; Yun, S [Samsung electronics Co., Suwon, Gyeonggi-do (Korea, Republic of); Park, D; Kim, W; Ki, Y; Kim, D [Pusan National University Hospital, Busan (Korea, Republic of)

    2016-06-15

    Purpose: To investigate the feasibility of an analytic framework to estimate patients’ absorbed dose distribution owing to daily cone-beam CT scan for image-guided radiation treatment. Methods: To compute total absorbed dose distribution, we separated the framework into primary and scattered dose calculations. Using the source parameters such as voltage, current, and bowtie filtration, for the primary dose calculation, we simulated the forward projection from the source to each voxel of an imaging object including some inhomogeneous inserts. Then we calculated the primary absorbed dose at each voxel based on the absorption probability deduced from the HU values and Beer’s law. In sequence, all voxels constructing the phantom were regarded as secondary sources to radiate scattered photons for scattered dose calculation. Details of forward projection were identical to that of the previous step. The secondary source intensities were given by using scatter-to- primary ratios provided by NIST. In addition, we compared the analytically calculated dose distribution with their Monte Carlo simulation results. Results: The suggested framework for absorbed dose estimation successfully provided the primary and secondary dose distributions of the phantom. Moreover, our analytic dose calculations and Monte Carlo calculations were well agreed each other even near the inhomogeneous inserts. Conclusion: This work indicated that our framework can be an effective monitor to estimate a patient’s exposure owing to cone-beam CT scan for image-guided radiation treatment. Therefore, we expected that the patient’s over-exposure during IGRT might be prevented by our framework.

  16. TU-H-CAMPUS-IeP1-05: A Framework for the Analytic Calculation of Patient-Specific Dose Distribution Due to CBCT Scan for IGRT

    International Nuclear Information System (INIS)

    Youn, H; Jeon, H; Nam, J; Lee, J; Lee, J; Kim, J; Kim, H; Cho, M; Yun, S; Park, D; Kim, W; Ki, Y; Kim, D

    2016-01-01

    Purpose: To investigate the feasibility of an analytic framework to estimate patients’ absorbed dose distribution owing to daily cone-beam CT scan for image-guided radiation treatment. Methods: To compute total absorbed dose distribution, we separated the framework into primary and scattered dose calculations. Using the source parameters such as voltage, current, and bowtie filtration, for the primary dose calculation, we simulated the forward projection from the source to each voxel of an imaging object including some inhomogeneous inserts. Then we calculated the primary absorbed dose at each voxel based on the absorption probability deduced from the HU values and Beer’s law. In sequence, all voxels constructing the phantom were regarded as secondary sources to radiate scattered photons for scattered dose calculation. Details of forward projection were identical to that of the previous step. The secondary source intensities were given by using scatter-to- primary ratios provided by NIST. In addition, we compared the analytically calculated dose distribution with their Monte Carlo simulation results. Results: The suggested framework for absorbed dose estimation successfully provided the primary and secondary dose distributions of the phantom. Moreover, our analytic dose calculations and Monte Carlo calculations were well agreed each other even near the inhomogeneous inserts. Conclusion: This work indicated that our framework can be an effective monitor to estimate a patient’s exposure owing to cone-beam CT scan for image-guided radiation treatment. Therefore, we expected that the patient’s over-exposure during IGRT might be prevented by our framework.

  17. Study on the dose distribution of the mixed field with thermal and epi-thermal neutrons for neutron capture therapy

    International Nuclear Information System (INIS)

    Kobayashi, Tooru; Sakurai, Yoshinori; Kanda, Keiji

    1994-01-01

    Simulation calculations using DOT 3.5 were carried out in order to confirm the characteristics of depth-dependent dose distribution in water phantom dependent on incident neutron energy. The epithermal neutrons mixed to thermal neutron field is effective improving the thermal neutron depth-dose distribution for neutron capture therapy. A feasibility study on the neutron energy spectrum shifter was performed using ANISN-JR for the KUR Heavy Water Facility. The design of the neutron spectrum shifter is feasible, without reducing the performance as a thermal neutron irradiation field. (author)

  18. Increased apoptotic potential and dose-enhancing effect of gold nanoparticles in combination with single-dose clinical electron beams on tumor-bearing mice

    International Nuclear Information System (INIS)

    Chang Mengya; Chen Yuhung; Chang Chihjui; Chen Helen H-W; Wu Chaoliang; Shiau Aili

    2008-01-01

    High atomic number material, such as gold, may be used in conjunction with radiation to provide dose enhancement in tumors. In the current study, we investigated the dose-enhancing effect and apoptotic potential of gold nanoparticles in combination with single-dose clinical electron beams on B16F10 melanoma tumor-bearing mice. We revealed that the accumulation of gold nanoparticles was detected inside B16F10 culture cells after 18 h of incubation, and moreover, the gold nanoparticles were shown to be colocalized with endoplasmic reticulum and Golgi apparatus in cells. Furthermore, gold nanoparticles radiosensitized melanoma cells in the colony formation assay (P=0.02). Using a B16F10 tumor-bearing mouse model, we further demonstrated that gold nanoparticles in conjunction with ionizing radiation significantly retarded tumor growth and prolonged survival compared to the radiation alone controls (P<0.05). Importantly, an increase of apoptotic signals was detected inside tumors in the combined treatment group (P<0.05). Knowing that radiation-induced apoptosis has been considered a determinant of tumor responses to radiation therapy, and the length of tumor regrowth delay correlated with the extent of apoptosis after single-dose radiotherapy, these results may suggest the clinical potential of gold nanoparticles in improving the outcome of melanoma radiotherapy. (author)

  19. The Hanford Environmental Dose Reconstruction Project: Overview

    International Nuclear Information System (INIS)

    Haerer, H.A.; Freshley, M.D.; Gilbert, R.O.; Morgan, L.G.; Napier, B.A.; Rhoads, R.E.; Woodruff, R.K.

    1990-01-01

    In 1988, researchers began a multiyear effort to estimate radiation doses that people could have received since 1944 at the U.S. Department of Energy's Hanford Site. The study was prompted by increasing concern about potential health effects to the public from more than 40 yr of nuclear activities. We will provide an overview of the Hanford Environmental Dose Reconstruction Project and its technical approach. The work has required development of new methods and tools for dealing with unique technical and communication challenges. Scientists are using a probabilistic, rather than the more typical deterministic, approach to generate dose distributions rather than single-point estimates. Uncertainties in input parameters are reflected in dose results. Sensitivity analyses are used to optimize project resources and define the project's scope. An independent technical steering panel directs and approves the work in a public forum. Dose estimates are based on review and analysis of historical data related to operations, effluents, and monitoring; determination of important radionuclides; and reconstruction of source terms, environmental conditions that affected transport, concentrations in environmental media, and human elements, such as population distribution, agricultural practices, food consumption patterns, and lifestyles. A companion paper in this volume, The Hanford Environmental Dose Reconstruction Project: Technical Approach, describes the computational framework for the work

  20. Considerations on absorbed dose estimates based on different β-dose point kernels in internal dosimetry

    International Nuclear Information System (INIS)

    Uchida, Isao; Yamada, Yasuhiko; Yamashita, Takashi; Okigaki, Shigeyasu; Oyamada, Hiyoshimaru; Ito, Akira.

    1995-01-01

    In radiotherapy with radiopharmaceuticals, more accurate estimates of the three-dimensional (3-D) distribution of absorbed dose is important in specifying the activity to be administered to patients to deliver a prescribed absorbed dose to target volumes without exceeding the toxicity limit of normal tissues in the body. A calculation algorithm for the purpose has already been developed by the authors. An accurate 3-D distribution of absorbed dose based on the algorithm is given by convolution of the 3-D dose matrix for a unit cubic voxel containing unit cumulated activity, which is obtained by transforming a dose point kernel into a 3-D cubic dose matrix, with the 3-D cumulated activity distribution given by the same voxel size. However, beta-dose point kernels affecting accurate estimates of the 3-D absorbed dose distribution have been different among the investigators. The purpose of this study is to elucidate how different beta-dose point kernels in water influence on the estimates of the absorbed dose distribution due to the dose point kernel convolution method by the authors. Computer simulations were performed using the MIRD thyroid and lung phantoms under assumption of uniform activity distribution of 32 P. Using beta-dose point kernels derived from Monte Carlo simulations (EGS-4 or ACCEPT computer code), the differences among their point kernels gave little differences for the mean and maximum absorbed dose estimates for the MIRD phantoms used. In the estimates of mean and maximum absorbed doses calculated using different cubic voxel sizes (4x4x4 mm and 8x8x8 mm) for the MIRD thyroid phantom, the maximum absorbed doses for the 4x4x4 mm-voxel were estimated approximately 7% greater than the cases of the 8x8x8 mm-voxel. They were found in every beta-dose point kernel used in this study. On the other hand, the percentage difference of the mean absorbed doses in the both voxel sizes for each beta-dose point kernel was less than approximately 0.6%. (author)

  1. Parametric distribution approach for flow availability in small hydro potential analysis

    Science.gov (United States)

    Abdullah, Samizee; Basri, Mohd Juhari Mat; Jamaluddin, Zahrul Zamri; Azrulhisham, Engku Ahmad; Othman, Jamel

    2016-10-01

    Small hydro system is one of the important sources of renewable energy and it has been recognized worldwide as clean energy sources. Small hydropower generation system uses the potential energy in flowing water to produce electricity is often questionable due to inconsistent and intermittent of power generated. Potential analysis of small hydro system which is mainly dependent on the availability of water requires the knowledge of water flow or stream flow distribution. This paper presented the possibility of applying Pearson system for stream flow availability distribution approximation in the small hydro system. By considering the stochastic nature of stream flow, the Pearson parametric distribution approximation was computed based on the significant characteristic of Pearson system applying direct correlation between the first four statistical moments of the distribution. The advantage of applying various statistical moments in small hydro potential analysis will have the ability to analyze the variation shapes of stream flow distribution.

  2. Three dimensional dose distribution comparison of simple and complex acquisition trajectories in dedicated breast CT

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Jainil P., E-mail: jainil.shah@duke.edu [Department of Biomedical Engineering, Duke University, Durham, North Carolina 27705 and Multi Modality Imaging Lab, Duke University Medical Center, Durham, North Carolina 27710 (United States); Mann, Steve D. [Medical Physics Graduate Program, Duke University Medical Center, Durham, North Carolina 27705 and Multi Modality Imaging Lab, Duke University Medical Center, Durham, North Carolina 27710 (United States); McKinley, Randolph L. [ZumaTek, Inc., Research Triangle Park, North Carolina 27709 (United States); Tornai, Martin P. [Department of Biomedical Engineering, Duke University, Durham, North Carolina 27705 (United States); Medical Physics Graduate Program, Duke University Medical Center, Durham, North Carolina 27705 (United States); Multi Modality Imaging Lab, Duke University Medical Center, Durham, North Carolina 27710 (United States)

    2015-08-15

    Purpose: A novel breast CT system capable of arbitrary 3D trajectories has been developed to address cone beam sampling insufficiency as well as to image further into the patient’s chest wall. The purpose of this study was to characterize any trajectory-related differences in 3D x-ray dose distribution in a pendant target when imaged with different orbits. Methods: Two acquisition trajectories were evaluated: circular azimuthal (no-tilt) and sinusoidal (saddle) orbit with ±15° tilts around a pendant breast, using Monte Carlo simulations as well as physical measurements. Simulations were performed with tungsten (W) filtration of a W-anode source; the simulated source flux was normalized to the measured exposure of a W-anode source. A water-filled cylindrical phantom was divided into 1 cm{sup 3} voxels, and the cumulative energy deposited was tracked in each voxel. Energy deposited per voxel was converted to dose, yielding the 3D distributed dose volumes. Additionally, three cylindrical phantoms of different diameters (10, 12.5, and 15 cm) and an anthropomorphic breast phantom, initially filled with water (mimicking pure fibroglandular tissue) and then with a 75% methanol-25% water mixture (mimicking 50–50 fibroglandular-adipose tissues), were used to simulate the pendant breast geometry and scanned on the physical system. Ionization chamber calibrated radiochromic film was used to determine the dose delivered in a 2D plane through the center of the volume for a fully 3D CT scan using the different orbits. Results: Measured experimental results for the same exposure indicated that the mean dose measured throughout the central slice for different diameters ranged from 3.93 to 5.28 mGy, with the lowest average dose measured on the largest cylinder with water mimicking a homogeneously fibroglandular breast. These results align well with the cylinder phantom Monte Carlo studies which also showed a marginal difference in dose delivered by a saddle trajectory in the

  3. Three dimensional dose distribution comparison of simple and complex acquisition trajectories in dedicated breast CT

    International Nuclear Information System (INIS)

    Shah, Jainil P.; Mann, Steve D.; McKinley, Randolph L.; Tornai, Martin P.

    2015-01-01

    Purpose: A novel breast CT system capable of arbitrary 3D trajectories has been developed to address cone beam sampling insufficiency as well as to image further into the patient’s chest wall. The purpose of this study was to characterize any trajectory-related differences in 3D x-ray dose distribution in a pendant target when imaged with different orbits. Methods: Two acquisition trajectories were evaluated: circular azimuthal (no-tilt) and sinusoidal (saddle) orbit with ±15° tilts around a pendant breast, using Monte Carlo simulations as well as physical measurements. Simulations were performed with tungsten (W) filtration of a W-anode source; the simulated source flux was normalized to the measured exposure of a W-anode source. A water-filled cylindrical phantom was divided into 1 cm"3 voxels, and the cumulative energy deposited was tracked in each voxel. Energy deposited per voxel was converted to dose, yielding the 3D distributed dose volumes. Additionally, three cylindrical phantoms of different diameters (10, 12.5, and 15 cm) and an anthropomorphic breast phantom, initially filled with water (mimicking pure fibroglandular tissue) and then with a 75% methanol-25% water mixture (mimicking 50–50 fibroglandular-adipose tissues), were used to simulate the pendant breast geometry and scanned on the physical system. Ionization chamber calibrated radiochromic film was used to determine the dose delivered in a 2D plane through the center of the volume for a fully 3D CT scan using the different orbits. Results: Measured experimental results for the same exposure indicated that the mean dose measured throughout the central slice for different diameters ranged from 3.93 to 5.28 mGy, with the lowest average dose measured on the largest cylinder with water mimicking a homogeneously fibroglandular breast. These results align well with the cylinder phantom Monte Carlo studies which also showed a marginal difference in dose delivered by a saddle trajectory in the

  4. A study of microscopic dose rate distribution of 99Tcm-MIBI in the liver of mice

    International Nuclear Information System (INIS)

    Wang Mingxi; Zhang Liang'an; Wang Yong; Dai Guangfu

    2002-01-01

    Objective: A microdosimetry model was tried to develop an accurate way to evaluate absorbed dose rates in target cell nuclei from radiopharmaceuticals. Methods: Microscopic frozen section autoradiography was used to determine the subcellular locations of 99 Tc m -MIBI relative to the tissue histology in the liver of mice after injection of 99 Tc m -MIBI via tail for two hours, and a mathematical model was developed to evaluate the microscopic dose rates in cell nuclei. The Medical Internal Radiation Dose (MIRD) schema was also used to evaluate the dose rates at the same time, and a comparison of the results of the two methods was conducted to determine which method is better to accurately estimate microscopic dose rates. Results: The spatial distribution of 99 Tc m -MIBI in the liver of mice at subcellular level was not uniform, and the differences between the microdosimetry model and MIRD schema were significant (P 99 Tc m -labeled pharmaceuticals at the microscopic level

  5. SU-F-T-442: Dose Distribution Comparison for Post-Laryngectomy Stoma Area Between Conventional AP and VMAT Plans with Or Without Bolus

    Energy Technology Data Exchange (ETDEWEB)

    Lee, B [University of California, Los Angeles, Los Angeles, CA (United States); Zhang, J; Cho-Lim, J [VA Long Beach Healthcare System, Long Beach, CA (United States); University of California, Irvine, Orange, CA (United States); Leu, M [VA Greater Los Angeles Healthcare System, Los Angeles, CA (United States); Inouye, W [VA Long Beach Healthcare System, Long Beach, CA (United States); Lorentz, W [University of California, Los Angeles, Los Angeles, CA (United States); VA Greater Los Angeles Healthcare System, Los Angeles, CA (United States); Lee, S [University of California, Los Angeles, Los Angeles, CA (United States); VA Long Beach Healthcare System, Long Beach, CA (United States); VA Greater Los Angeles Healthcare System, Los Angeles, CA (United States)

    2016-06-15

    Purpose: To compare dose distributions of conventional AP vs. VMAT treatment plans with or without bolus around post-laryngectomy stoma. Methods: Radiation dose coverage for post-laryngectomy stoma was analyzed using a set of real-case CT-simulation images. After meticulous contouring of the catheter cuff, stoma lumen, peri-stoma skin and subclinical tumor bed at the larynx, the resulting dosimetry plans were analyzed with or without a 5 mm bolus placement. Wet gauze was used to minimize the effect of any air gap. Four plans were generated: AP superclavicular (SCV) plan with or without bolus, and VMAT plan with or without bolus. A dose of 60Gy in 30 fractions was prescribed at 3 cm depth for AP SCV plan, and to 95% of the PTV volume for VMAT plan. Results: For the conventional AP SCV plan, the peri-stoma skin dose is sensitive to bolus placement as well as air gap compensation by wetted gauze (V95% of 20.7%, 33.0% and 94.8% for no bolus, bolus without and with air gap compensation, respectively). For stoma lumen, the dose drops off rapidly in depth. The catheter cuff may have certain dose-buildup effect, but air gap around it and under the bolus placed can pose a more serious problem. The dose distributions of the two VMAT plans are moderately different for peri-stoma skin (V95% of 95.0% with bolus and air gap compensation, and 82.3% without bolus), but nearly identical for stoma lumen (V95% of 91.5% and 92.0%, respectively). VMAT allows beamlets with different angles of incidence that helped achieve such dose distribution around the stoma even without bolus placement. Conclusion: Overall, the dose coverage around the stoma in the VMAT plan is better than the conventional AP SCV plan. To achieve optimal dose distribution, it is still recommended to place physical bolus and reduce the air gaps.

  6. Thermal transfer and apparent-dose distributions in poorly bleached mortar samples: results from single grains and small aliquots of quartz

    International Nuclear Information System (INIS)

    Jain, M.; Thomsen, K.J.; Boetter-Jensen, L.; Urray, A.S.

    2004-01-01

    In the assessment of doses received from a nuclear accident, considerable attention has been paid to retrospective dosimetry using the optically stimulated luminescence (OSL) of heated materials such as bricks and tiles. quartz extracted from these artefacts was heated during manufacture; this process releases all the prior trapped charge and simultaneously sensitises he quartz. Unfortunately unheated materials such as mortar and concrete are ore common in industrial sites and particularly in nuclear installations. These materials are usually exposed to daylight during quarrying and construction, but in general this exposure is insufficient to completely empty (bleach) any geological trapped charge. This leads to a distribution of apparent doses in the sample at the time of construction with only some (if ny) grains exposed to sufficient light to be considered well bleached for SL dosimetry. The challenge in using such materials as retrospective dosemeters is in identifying these well-bleached grains when an accident dose as been superimposed on the original dose distribution. We investigate here, sing OSL, the background dose in three different mortar samples: render, whitewash and inner wall plaster from a building built in 1964. These samples re found to be both poorly bleached and weakly sensitive (only 0.3% of rains giving a detectable dose response). We study thermal transfer in ingle grains of quartz, investigate the grain-size dependence of bleaching n the size range 90-300 μm and compare the dose-distributions obtained rom small aliquots and single-grain procedures. A comparison of three different methods viz. (a) first 5%, (b) probability plot and (c) comparison f internal and external uncertainties, is made for equivalent dose estimation. The results have implications for accident dosimetry, archaeological studies and dating of poorly bleached sediments

  7. Monte Carlo-based dose reconstruction in a rat model for scattered ionizing radiation investigations.

    Science.gov (United States)

    Kirkby, Charles; Ghasroddashti, Esmaeel; Kovalchuk, Anna; Kolb, Bryan; Kovalchuk, Olga

    2013-09-01

    In radiation biology, rats are often irradiated, but the precise dose distributions are often lacking, particularly in areas that receive scatter radiation. We used a non-dedicated set of resources to calculate detailed dose distributions, including doses to peripheral organs well outside of the primary field, in common rat exposure settings. We conducted a detailed dose reconstruction in a rat through an analog to the conventional human treatment planning process. The process consisted of: (i) Characterizing source properties of an X-ray irradiator system, (ii) acquiring a computed tomography (CT) scan of a rat model, and (iii) using a Monte Carlo (MC) dose calculation engine to generate the dose distribution within the rat model. We considered cranial and liver irradiation scenarios where the rest of the body was protected by a lead shield. Organs of interest were the brain, liver and gonads. The study also included paired scenarios where the dose to adjacent, shielded rats was determined as a potential control for analysis of bystander effects. We established the precise doses and dose distributions delivered to the peripheral organs in single and paired rats. Mean doses to non-targeted organs in irradiated rats ranged from 0.03-0.1% of the reference platform dose. Mean doses to the adjacent rat peripheral organs were consistent to within 10% those of the directly irradiated rat. This work provided details of dose distributions in rat models under common irradiation conditions and established an effective scenario for delivering only scattered radiation consistent with that in a directly irradiated rat.

  8. Gastrointestinal toxicity and its relation to dose distributions in the anorectal region of prostate cancer patients treated with radiotherapy

    International Nuclear Information System (INIS)

    Heemsbergen, Wilma D.; Hoogeman, Mischa S.; Hart, Guus A.M.; Lebesque, Joos V.; Koper, Peter C.M.

    2005-01-01

    Purpose: To study the correlations between the dose distributions in the anorectal region and late GI symptoms in patients treated for localized prostate carcinoma. Methods and materials: Data from a randomized study were analyzed. In this trial, patients were treated with either rectangular or conformal fields with a dose of 66 Gy. Data concerning GI symptoms were collected from questionnaires of 197 patients. The distributions of the anorectal region were projected on maps, and the dose parameters were calculated. The incidences of complaints were studied as a function of the dose-area parameters and clinical parameters, using a proportional hazard regression model. Finally, we tested a series of dose parameters originating from different parts of the anorectal region. Results: Analyzing the total region, only a statistically significant dose-area effect relation for bleeding was found (p < 0.01). Defining subareas, we found effect relations for bleeding, soiling, fecal incontinence, and mucus loss. For bleeding and mucus loss, the strongest correlation was found for the dose received by the upper 70-80% of the anorectal region (p < 0.01). For soiling and fecal incontinence, we found the strongest association with the dose to the lower 40-50% (p < 0.05). Conclusion: We found evidence that complaints originate from specific regions of the irradiated lower GI tract. Bleeding and mucus loss are probably related to irradiation of the upper part of the rectum. Soiling and fecal incontinence are more likely related to the dose to the anal canal and the lower part of the rectum

  9. SU-E-T-324: The Influence of Patient Positioning Uncertainties in Proton Radiotherapy On Proton Range and Dose Distributions

    Energy Technology Data Exchange (ETDEWEB)

    Liebl, J [EBG MedAustron GmbH, Wiener Neustadt (Austria); Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States); Medical University of Graz, Graz (Austria); Paganetti, H; Winey, B [Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States)

    2014-06-01

    Purpose: Proton radiotherapy allows radiation treatment delivery with high dose gradients. The nature of such dose distributions increases the influence of patient positioning uncertainties on their fidelity when compared to photon radiotherapy. The present work quantitatively analyzes the influence of setup uncertainties on proton range and dose distributions. Methods: 38 clinical passive scattering treatment fields for small lesions in the head were studied. Dose distributions for shifted and rotated patient positions were Monte Carlo-simulated. Proton range uncertainties at the 50% and 90%-dose falloff position were calculated considering 18 arbitrary combinations of maximal patient position shifts and rotations for two patient positioning methods. Normal tissue complication probabilities (NTCPs), equivalent uniform doses (EUDs) and tumor control probabilities (TCPs) were studied for organs at risk (OARs) and target volumes of eight patients. Results: We identified a median 1σ proton range uncertainty at the 50%-dose falloff of 2.8 mm for anatomy-based patient positioning and 1.6 mm for fiducial-based patient positioning as well as 7.2 mm and 5.8 mm for the 90%-dose falloff position respectively. These range uncertainties were correlated to heterogeneity indices (HIs) calculated for each treatment field (38% < R{sup 2} < 50%). A NTCP increase of more than 10% (absolute) was observed for less than 2.9% (anatomy-based positioning) and 1.2% (fiducial-based positioning) of the studied OARs and patient shifts. TCP decreases larger than 10% (absolute) were seen for less than 2.2% of the target volumes or non-existent. EUD changes were up to 178% for OARs and 35% for target volumes. Conclusion: The influence of patient positioning uncertainties on proton range in therapy of small lesions in the human brain and target and OAR dosimetry were studied. Observed range uncertainties were correlated with HIs. The clinical practice of using multiple compensator

  10. Evaluation of ambient dose equivalent rates influenced by vertical and horizontal distribution of radioactive cesium in soil in Fukushima Prefecture

    OpenAIRE

    Malins, Alex; Kurikami, Hiroshi; Nakama, Shigeo; Saito, Tatsuo; Okumura, Masahiko; Machida, Masahiko; Kitamura, Akihiro

    2015-01-01

    The air dose rate in an environment contaminated with 134Cs and 137Cs depends on the amount, depth profile and horizontal distribution of these contaminants within the ground. This paper introduces and verifies a tool that models these variables and calculates ambient dose equivalent rates at 1 m above the ground. Good correlation is found between predicted dose rates and dose rates measured with survey meters in Fukushima Prefecture in areas contaminated with radiocesium from the Fukushima D...

  11. High-dose zolpidem dependence - Psychostimulant effects? A case report and literature review

    Directory of Open Access Journals (Sweden)

    Abhijna Chandan Chattopadhyay

    2016-01-01

    Full Text Available Zolpidem, an imidazoline nonbenzodiazepine sedative drug, is used widely. Initial reports showed minimal abuse potential. However, multiple reports have appeared of dose escalation and abuse. Subjective effects of high-dose zolpidem are not known. In light of accumulating evidence of abuse potential, we hereby report a case of high-dose dependence and a review of relevant literature. A 33-year-old male presented with 5 years of daily use of 600–1700 mg of zolpidem tartrate. He reported subjective effects of euphoria, intense craving, and inability to stop use. Loss of receptor specificity, pharmacokinetic factors, and different receptor distributions can explain paradoxical stimulatory effects of high-dose zolpidem. Further studies are required to characterize subjective effects of high-dose zolpidem.

  12. Determining profile of dose distribution for PD-103 brachytherapy source

    International Nuclear Information System (INIS)

    Berkay, Camgoz; Mehmet, N. Kumru; Gultekin, Yegin

    2006-01-01

    Full text: Brachytherapy is a particular radiotherapy for cancer treatments. By destructing cancerous cells using radiation, the treatment proceeded. When alive tissues are subject it is hazardous to study experimental. For brachytherapy sources generally are studied as theoretical using computer simulation. General concept of the treatment is to locate the radioactive source into cancerous area of related tissue. In computer studies Monte Carlo mathematical method that is in principle based on random number generations, is used. Palladium radioisotope is LDR (Low radiation Dose Rate) source. Main radioactive material was coated with titanium cylinder with 3mm length, 0.25 mm radius. There are two parts of Pd-103 in the titanium cylinder. It is impossible to investigate differential effects come from two part as experimental. Because the source dimensions are small compared with measurement distances. So there is only simulation method. In dosimetric studies it is aimed to determine absorbed dose distribution in tissue as radial and angular. In nuclear physics it is obligation to use computer based methods for researchers. Radiation studies have hazards for scientist and people interacted with radiation. When hazard exceed over recommended limits or physical conditions are not suitable (long work time, non economical experiments, inadequate sensitivity of materials etc.) it is unavoidable to simulate works and experiments before practices of scientific methods in life. In medical area, usage of radiation is required computational work for cancer treatments. Some computational studies are routine in clinics and other studies have scientific development purposes. In brachytherapy studies there are significant differences between experimental measurements and theoretical (computer based) output data. Errors of data taken from experimental studies are larger than simulation values errors. In design of a new brachytherapy source it is important to consider detailed

  13. Radiation dose distributions close to the shower axis calculated for high energy electron initiated electromagnetic showers in air

    International Nuclear Information System (INIS)

    Geer, S.; Gsponer, A.

    1983-01-01

    Absorbed radiation doses produced by 500, 1,000 and 10,000 MeV electron initiated electromagnetic showers in air have been calculated using a Monte Carlo program. The radial distributions of the absorbed dose near to the shower axis are found to be significantly narrower than predicted by simple analytical shower theory. For a 500 MeV, 10 kA, 100 ns electron beam pulse, the region in which the total dose is in excess of 1 krad and the dose rate in excess of 10 10 rad/s is a cigar-shaped envelope of radius 1 m and length 200 m. (orig.) [de

  14. Problems in the measurement of electron-dose distribution with film dosimeters inserted into solid materials

    International Nuclear Information System (INIS)

    Okuda, Shuichi; Fukuda, Kyue; Tabata, Tatsuo; Okabe, Shigeru

    1981-01-01

    On the insertion of film dosimeters into solid materials, thin air gaps are formed. The influence of such gaps on measured profiles of depth-dose distributions was investigated for aluminum irradiated with collimated beams of 15-MeV electrons. Measurements were made by changing the gap width or the incidence angle of the electrons. The present results showed that streaming of incident electrons through the gaps resulted in the appearance of a peak and a minimum in a depth-dose curve measured. This effect was suppressed by the increase of the angle between the film and the electron-beam axis. (author)

  15. ORANGE: a Monte Carlo dose engine for radiotherapy

    International Nuclear Information System (INIS)

    Zee, W van der; Hogenbirk, A; Marck, S C van der

    2005-01-01

    This study presents data for the verification of ORANGE, a fast MCNP-based dose engine for radiotherapy treatment planning. In order to verify the new algorithm, it has been benchmarked against DOSXYZ and against measurements. For the benchmarking, first calculations have been done using the ICCR-XIII benchmark. Next, calculations have been done with DOSXYZ and ORANGE in five different phantoms (one homogeneous, two with bone equivalent inserts and two with lung equivalent inserts). The calculations have been done with two mono-energetic photon beams (2 MeV and 6 MeV) and two mono-energetic electron beams (10 MeV and 20 MeV). Comparison of the calculated data (from DOSXYZ and ORANGE) against measurements was possible for a realistic 10 MV photon beam and a realistic 15 MeV electron beam in a homogeneous phantom only. For the comparison of the calculated dose distributions and dose distributions against measurements, the concept of the confidence limit (CL) has been used. This concept reduces the difference between two data sets to a single number, which gives the deviation for 90% of the dose distributions. Using this concept, it was found that ORANGE was always within the statistical bandwidth with DOSXYZ and the measurements. The ICCR-XIII benchmark showed that ORANGE is seven times faster than DOSXYZ, a result comparable with other accelerated Monte Carlo dose systems when no variance reduction is used. As shown for XVMC, using variance reduction techniques has the potential for further acceleration. Using modern computer hardware, this brings the total calculation time for a dose distribution with 1.5% (statistical) accuracy within the clinical range (less then 10 min). This means that ORANGE can be a candidate for a dose engine in radiotherapy treatment planning

  16. Absorbed dose to mice in prolonged irradiation by low-dose rate ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Shiragai, Akihiro [National Inst. of Radiological Sciences, Chiba (Japan); Saitou, Mikio; Kudo, Iwao [and others

    2000-07-01

    In this paper, the dose absorbed by mice was evaluated as a preliminary study of the late effects of prolonged continuous irradiation of mice with low-dose rate ionizing radiation. Eight-week-old male and female SPF C3H/HeN mice in three irradiation rooms were exposed to irradiation at 8000, 400, and 20 mGy, respectively, using a {sup 137}Cs {gamma}-source. Nine racks were arranged in a circle approximately 2.5 m from the source in each room, and 10 cages were arranged on the 4 shelves of each rack. Dose distributions, such as in air at the source level, in the three rooms were estimated by using ionization chambers, and the absorbed dose distributions in the room and relative dose distributions in the cages in relation to the distance of the cage center were examined. The mean abdomen doses of the mice measured by TLD were compared with the absorbed doses in the cages. The absorbed dose distributions showed not only inverse-inverse-square-law behavior with distance from the source, but geometric symmetry in every room. The inherent scattering and absorption in each room are responsible for such behavior and asymmetry. Comparison of relative dose distributions revealed cage positions that are not suitable for experiments with high precision doses, but all positions can be used for prolonged continuous irradiation experiments if the position of the cages is rotated regularly. The mean abdomen doses of the mice were similar in each cage. The mean abdomen doses of the mice and the absorbed doses in a cage were almost the same in all cages. Except for errors concerning the positions of the racks and cages, the uncertainties in the exposure doses were estimated to be about {+-}12% for 8000 mGy group, 17% for 400 mGy group, and 35% for 20 mGy group. (K.H.)

  17. The dose distribution and DVH change analysis wing to effect of the patient setup error

    International Nuclear Information System (INIS)

    Kim, Kyung Tae; Ju, Sang Gyu; Ahn, Jae Hong; Park, Young Hwan

    2004-01-01

    The setup error due to the patient and the staff from radiation treatment as the reason which is important the treatment record could be decided is a possibility of effect. The SET-UP ERROR of the patient analyzes the effect of dose distribution and DVH from radiation treatment of the patient. This test uses human phantom and when C-T scan doing, It rotated the Left direction of the human phantom and it made SET-UP ERROR, Standard plan and 3 mm, 5 mm, 7 mm, 10 mm, 15 mm, 20 mm with to distinguish, it made the C-T scan error. With the result, The SET-UP ERROR got each C-T image Using RTP equipment It used the plan which is used generally from clinical - Box plan, 3 Dimension plan( identical angle 5beam plan) Also, ( CTV+1cm margin, CTV+0.5cm margin, CTV+0.3,cm margin = PTV) it distinguished the standard plan and each set-up error plan and the plan used a dose distribution and the DVH and it analyzed. The Box 4 the plan and 3 Dimension plan which it bites it got similar an dose distribution and DVH in 3 mm, 5 mm From rotation error and Rectilinear movement (0%-2%). Rotation error and rectilinear error 7 mm, 10 mm, 15 mm, 20 mm appeared effect it will go mad to a enough change in treatment (2%-11%) The diminishes the effect of the SET-UP ERROR must reduce move with tension of the patient Also, we are important accessory development and the supply that it reducing of reproducibility and the move.

  18. Effect of residual patient motion on dose distribution during image-guided robotic radiosurgery for skull tracking based on log file analysis

    International Nuclear Information System (INIS)

    Inoue, Mitsuhiro; Shiomi, Hiroya; Sato, Kengo

    2014-01-01

    The present study aimed to assess the effect of residual patient motion on dose distribution during intracranial image-guided robotic radiosurgery by analyzing the system log files. The dosimetric effect was analyzed according to the difference between the original and estimated dose distributions, including targeting error, caused by residual patient motion between two successive image acquisitions. One hundred twenty-eight treatments were analyzed. Forty-two patients were treated using the isocentric plan, and 86 patients were treated using the conformal (non-isocentric) plan. The median distance from the imaging center to the target was 55 mm, and the median interval between the acquisitions of sequential images was 79 s. The median translational residual patient motion was 0.1 mm for each axis, and the rotational residual patient motion was 0.1 deg for Δpitch and Δroll and 0.2 deg for Δyaw. The dose error for D 95 was within 1% in more than 95% of cases. The maximum dose error for D 10 to D 90 was within 2%. None of the studied parameters, including the interval between the acquisitions of sequential images, was significantly related to the dosimetric effect. The effect of residual patient motion on dose distribution was minimal. (author)

  19. A graphical user interface (GUI) toolkit for the calculation of three-dimensional (3D) multi-phase biological effective dose (BED) distributions including statistical analyses.

    Science.gov (United States)

    Kauweloa, Kevin I; Gutierrez, Alonso N; Stathakis, Sotirios; Papanikolaou, Niko; Mavroidis, Panayiotis

    2016-07-01

    A toolkit has been developed for calculating the 3-dimensional biological effective dose (BED) distributions in multi-phase, external beam radiotherapy treatments such as those applied in liver stereotactic body radiation therapy (SBRT) and in multi-prescription treatments. This toolkit also provides a wide range of statistical results related to dose and BED distributions. MATLAB 2010a, version 7.10 was used to create this GUI toolkit. The input data consist of the dose distribution matrices, organ contour coordinates, and treatment planning parameters from the treatment planning system (TPS). The toolkit has the capability of calculating the multi-phase BED distributions using different formulas (denoted as true and approximate). Following the calculations of the BED distributions, the dose and BED distributions can be viewed in different projections (e.g. coronal, sagittal and transverse). The different elements of this toolkit are presented and the important steps for the execution of its calculations are illustrated. The toolkit is applied on brain, head & neck and prostate cancer patients, who received primary and boost phases in order to demonstrate its capability in calculating BED distributions, as well as measuring the inaccuracy and imprecision of the approximate BED distributions. Finally, the clinical situations in which the use of the present toolkit would have a significant clinical impact are indicated. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Potential influence of new doses of A-bomb after re-evaluation of epidemiological research

    International Nuclear Information System (INIS)

    Maruyama, T.

    1983-01-01

    Since the peaceful use of atomic energy appears essential for future human existence, we must provide risk estimates from low-dose exposures to human beings. The largest body of human data has been derived from the studies of atomic bomb survivors in Hiroshima and Nagasaki. Recently, it was proposed by an Oak Ridge National Laboratory group that the current free-in-air doses of atomic bombs are significantly different from the doses recalculated on the basis of the new output spectra of neutrons and gamma rays from the atomic bombs which were declassified by the US Department of Energy in 1976. A joint commission on dose re-evaluation of the United States of America and Japan was established in 1981 to pursue the dose reassessment programme between US and Japanese research groups and to decide an agreed best estimate of organ or tissue doses in survivors as soon as possible. The paper reviews the physical concepts of the re-evaluation of atomic bomb doses and discusses the potential influence of new dosimetric parameters on the epidemiological studies of the atomic bomb survivors in future, although the re-assessment programme is still in progress. (author)

  1. Contribution of time-activity pattern and microenvironment to black carbon (BC) inhalation exposure and potential internal dose among elementary school children

    Science.gov (United States)

    Jeong, Hyeran; Park, Donguk

    2017-09-01

    The aims of this study were to quantify the contributions of activities or microenvironments (MEs) to daily total exposure to and potential dose of black carbon (BC). Daily BC exposures (24-h) were monitored using a micro-aethalometer micoAeth AE51 with forty school-aged children living in an urban area in Korea from August 2015 to January 2016. The children's time-activity patterns and the MEs they visited were investigated by means of a time-activity diary (TAD) and follow-up interviews with the children and their parents. Potential inhaled dose was estimated by multiplying the airborne BC concentrations (μg/m3) we monitored for the time the children spent in a particular ME by the inhalation rate (IR, m3/h) for the time-activity performed. The contribution of activities and MEs to overall daily exposure to and potential dose of BC was quantified. Overall mean daily potential dose was equal to 24.1 ± 10.6 μg/day (range: 6.6-46.3 μg/day). The largest contribution to BC exposure and potential dose (51.9% and 41.7% respectively) occurred in the home thanks to the large amount of time spent there. Transportation was where children received the most intense exposure to (14.8%) and potential dose (20.2%) of BC, while it accounted for 7.6% of daily time. School on weekdays during the semester was responsible for 20.3% of exposure and 22.5% of potential dose. Contribution to BC exposure and potential dose was altered by several time-activity parameters, such as type of day (weekdays vs. weekends; school days vs. holidays), season, and gender. Traveling by motor vehicle and subway showed more elevated exposure or potential dose intensity on weekdays or school days, probably influenced by the increased surrounding traffic volumes on these days compared to on weekends or holidays. This study may be used to prioritize targets for minimizing children's exposure to BC and to indicate outcomes of BC control strategies.

  2. Analysis of workers' dose records from the Greek Dose Registry Information System

    International Nuclear Information System (INIS)

    Kamenopoulou, V.; Dimitriou, P.; Proukakis, Ch.

    1995-01-01

    The object of this work is the study of the individual film badge annual dose information of classified workers in Greece, monitored and assessed by the central dosimetry service of the Greek Atomic Energy Commission. Dose summaries were recorded and processed by the Dose Registry Information System. The statistical analysis refers to the years 1989-93 and deals with the distribution of individuals in the occupational groups, the mean annual dose, the collective dose, the distribution of the dose over the different specialties and the number of workers that have exceeded any of the established dose limits. Results concerning the annual dose summaries, demonstrate a year-by-year reduction in the mean individual dose to workers in the health sector. Conversely, exposures in the industrial sector did not show any decreasing tendency during the period under consideration. (Author)

  3. Dietary toxicity of field-contaminated invertebrates to marine fish: effects of metal doses and subcellular metal distribution.

    Science.gov (United States)

    Dang, Fei; Rainbow, Philip S; Wang, Wen-Xiong

    2012-09-15

    There is growing awareness of the toxicological effects of metal-contaminated invertebrate diets on the health of fish populations in metal-contaminated habitats, yet the mechanisms underlying metal bioaccumulation and toxicity are complex. In the present study, marine fish Terapon jurbua terepon were fed a commercial diet supplemented with specimens of the polychaete Nereis diversicolor or the clam Scrobicularia plana, collected from four metal-impacted estuaries (Tavy, Restronguet Creek, West Looe, Gannel) in southwest England, as environmentally realistic metal sources. A comparative toxicological evaluation of both invertebrates showed that fish fed S. plana for 21 d exhibited evident mortality compared to those fed N. diversicolor. Furthermore, a spatial effect on mortality was observed. Differences in metal doses rather than subcellular metal distributions between N. diversicolor and S. plana appeared to be the cause of such different mortalities. Partial least squares regression was used to evaluate the statistical relationship between multiple-metal doses and fish mortality, revealing that Pb, Fe, Cd and Zn in field-collected invertebrates co-varied most strongly with the observed mortality. This study provides a step toward exploring the underlying mechanism of dietary toxicity and identifying the potential causality in complex metal mixture exposures in the field. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Potential geographic distribution of hantavirus reservoirs in Brazil.

    Directory of Open Access Journals (Sweden)

    Stefan Vilges de Oliveira

    Full Text Available Hantavirus cardiopulmonary syndrome is an emerging zoonosis in Brazil. Human infections occur via inhalation of aerosolized viral particles from excreta of infected wild rodents. Necromys lasiurus and Oligoryzomys nigripes appear to be the main reservoirs of hantavirus in the Atlantic Forest and Cerrado biomes. We estimated and compared ecological niches of the two rodent species, and analyzed environmental factors influencing their occurrence, to understand the geography of hantavirus transmission. N. lasiurus showed a wide potential distribution in Brazil, in the Cerrado, Caatinga, and Atlantic Forest biomes. Highest climate suitability for O. nigripes was observed along the Brazilian Atlantic coast. Maximum temperature in the warmest months and annual precipitation were the variables that most influence the distributions of N. lasiurus and O. nigripes, respectively. Models based on occurrences of infected rodents estimated a broader area of risk for hantavirus transmission in southeastern and southern Brazil, coinciding with the distribution of human cases of hantavirus cardiopulmonary syndrome. We found no demonstrable environmental differences among occurrence sites for the rodents and for human cases of hantavirus. However, areas of northern and northeastern Brazil are also apparently suitable for the two species, without broad coincidence with human cases. Modeling of niches and distributions of rodent reservoirs indicates potential for transmission of hantavirus across virtually all of Brazil outside the Amazon Basin.

  5. EGSnrc calculated and MRI-polymer gel dosimeter measured dose distribution of gamma knife in presence of inhomogeneities

    International Nuclear Information System (INIS)

    Allahverdi Pourfallah, T.; Allahverdi, M.; Riahi Alam, N.; Ay, M.; Zahmatkesh, M.; Ibbott, J.S.

    2008-01-01

    Stereotactic gamma-knife radiosurgery plays an important role in managing small intracranial brain lesions. Currently, polymer gel dosimetry is still the only dosimetry method for directly measuring three-dimensional dose distributions. polymer gel dosimeters are tissue equivalent and can act as a phantom material. In this study effects of inhomogeneities on those distributions have been investigated using both EGSnrc calculation and PAGAT polymer gel dosimeter. (author)

  6. SU-E-T-625: Robustness Evaluation and Robust Optimization of IMPT Plans Based on Per-Voxel Standard Deviation of Dose Distributions.

    Science.gov (United States)

    Liu, W; Mohan, R

    2012-06-01

    Proton dose distributions, IMPT in particular, are highly sensitive to setup and range uncertainties. We report a novel method, based on per-voxel standard deviation (SD) of dose distributions, to evaluate the robustness of proton plans and to robustly optimize IMPT plans to render them less sensitive to uncertainties. For each optimization iteration, nine dose distributions are computed - the nominal one, and one each for ± setup uncertainties along x, y and z axes and for ± range uncertainty. SD of dose in each voxel is used to create SD-volume histogram (SVH) for each structure. SVH may be considered a quantitative representation of the robustness of the dose distribution. For optimization, the desired robustness may be specified in terms of an SD-volume (SV) constraint on the CTV and incorporated as a term in the objective function. Results of optimization with and without this constraint were compared in terms of plan optimality and robustness using the so called'worst case' dose distributions; which are obtained by assigning the lowest among the nine doses to each voxel in the clinical target volume (CTV) and the highest to normal tissue voxels outside the CTV. The SVH curve and the area under it for each structure were used as quantitative measures of robustness. Penalty parameter of SV constraint may be varied to control the tradeoff between robustness and plan optimality. We applied these methods to one case each of H&N and lung. In both cases, we found that imposing SV constraint improved plan robustness but at the cost of normal tissue sparing. SVH-based optimization and evaluation is an effective tool for robustness evaluation and robust optimization of IMPT plans. Studies need to be conducted to test the methods for larger cohorts of patients and for other sites. This research is supported by National Cancer Institute (NCI) grant P01CA021239, the University Cancer Foundation via the Institutional Research Grant program at the University of Texas MD

  7. Isodose distributions and dose uniformity in the Portuguese gamma irradiation facility calculated using the MCNP code

    CERN Document Server

    Oliveira, C

    2001-01-01

    A systematic study of isodose distributions and dose uniformity in sample carriers of the Portuguese Gamma Irradiation Facility was carried out using the MCNP code. The absorbed dose rate, gamma flux per energy interval and average gamma energy were calculated. For comparison purposes, boxes filled with air and 'dummy' boxes loaded with layers of folded and crumpled newspapers to achieve a given value of density were used. The magnitude of various contributions to the total photon spectra, including source-dependent factors, irradiator structures, sample material and other origins were also calculated.

  8. The Monte Carlo SRNA-VOX code for 3D proton dose distribution in voxelized geometry using CT data

    International Nuclear Information System (INIS)

    Ilic, Radovan D; Spasic-Jokic, Vesna; Belicev, Petar; Dragovic, Milos

    2005-01-01

    This paper describes the application of the SRNA Monte Carlo package for proton transport simulations in complex geometry and different material compositions. The SRNA package was developed for 3D dose distribution calculation in proton therapy and dosimetry and it was based on the theory of multiple scattering. The decay of proton induced compound nuclei was simulated by the Russian MSDM model and our own using ICRU 63 data. The developed package consists of two codes: the SRNA-2KG, which simulates proton transport in combinatorial geometry and the SRNA-VOX, which uses the voxelized geometry using the CT data and conversion of the Hounsfield's data to tissue elemental composition. Transition probabilities for both codes are prepared by the SRNADAT code. The simulation of the proton beam characterization by multi-layer Faraday cup, spatial distribution of positron emitters obtained by the SRNA-2KG code and intercomparison of computational codes in radiation dosimetry, indicate immediate application of the Monte Carlo techniques in clinical practice. In this paper, we briefly present the physical model implemented in the SRNA package, the ISTAR proton dose planning software, as well as the results of the numerical experiments with proton beams to obtain 3D dose distribution in the eye and breast tumour

  9. CT for evaluation of potential renal donors – How does iterative reconstruction influence image quality and dose?

    Energy Technology Data Exchange (ETDEWEB)

    Kahn, Johannes, E-mail: johannes.kahn@charite.de [Department of Radiology, Charité, Charitéplatz 1, 10117 Berlin (Germany); Grupp, Ulrich, E-mail: ulrich.grupp@charite.de [Department of Radiology, Charité, Charitéplatz 1, 10117 Berlin (Germany); Rotzinger, Roman, E-mail: roman.rotzinger@charite.de [Department of Radiology, Charité, Charitéplatz 1, 10117 Berlin (Germany); Kaul, David, E-mail: david.kaul@charite.de [Department of Radiooncology and Radiotherapy, Charité, Charitéplatz 1, 10117 Berlin (Germany); Schäfer, Max-Ludwig, E-mail: max-ludwig.schaefer@charite.de [Department of Radiology, Charité, Charitéplatz 1, 10117 Berlin (Germany); Streitparth, Florian, E-mail: florian.streitparth@charite.de [Department of Radiology, Charité, Charitéplatz 1, 10117 Berlin (Germany)

    2014-08-15

    Purpose: To assess ASIR (adaptive statistical iterative reconstruction) technique regarding dose reduction and its impact on image quality in evaluation CTs of potential kidney donors. Materials and methods: Between May and November 2013, a prospective study of 53 assumingly healthy potential kidney donors was conducted. The subjects underwent abdominal evaluation CT prior to the planned explantation of a kidney and were randomly divided into 2 groups: Group A was examined with an ASIR 40 protocol (n = 26), group B (n = 27) was examined using a standard FBP (filtered back projection) protocol. Image quality was assessed both quantitatively (by obtaining attenuation values in different organ regions and calculating SNR and CNRs) and qualitatively (by two observers who evaluated image quality using a 5-point scale system). Applied dose was analyzed as CTDIvol (mGy), total DLP (mGy × cm) and effective dose (mSv). Results: Applied dose in group A was about 26% lower than in group B (p < 0.05). Between both groups, dose determining parameters such as scan length and patients’ body diameter showed no significant difference. SNR (signal-to-noise ratio) was significantly higher in group A (p < 0.05). CNRs (contrast-to-noise ratios) for different tissues were not significantly different. Observer rated image quality showed no significant difference. Conclusion: ASIR can contribute to a relevant dose reduction without any loss of image quality in CT scans for evaluating potential kidney donors.

  10. Development and verification of an analytical algorithm to predict absorbed dose distributions in ocular proton therapy using Monte Carlo simulations

    International Nuclear Information System (INIS)

    Koch, Nicholas C; Newhauser, Wayne D

    2010-01-01

    Proton beam radiotherapy is an effective and non-invasive treatment for uveal melanoma. Recent research efforts have focused on improving the dosimetric accuracy of treatment planning and overcoming the present limitation of relative analytical dose calculations. Monte Carlo algorithms have been shown to accurately predict dose per monitor unit (D/MU) values, but this has yet to be shown for analytical algorithms dedicated to ocular proton therapy, which are typically less computationally expensive than Monte Carlo algorithms. The objective of this study was to determine if an analytical method could predict absolute dose distributions and D/MU values for a variety of treatment fields like those used in ocular proton therapy. To accomplish this objective, we used a previously validated Monte Carlo model of an ocular nozzle to develop an analytical algorithm to predict three-dimensional distributions of D/MU values from pristine Bragg peaks and therapeutically useful spread-out Bragg peaks (SOBPs). Results demonstrated generally good agreement between the analytical and Monte Carlo absolute dose calculations. While agreement in the proximal region decreased for beams with less penetrating Bragg peaks compared with the open-beam condition, the difference was shown to be largely attributable to edge-scattered protons. A method for including this effect in any future analytical algorithm was proposed. Comparisons of D/MU values showed typical agreement to within 0.5%. We conclude that analytical algorithms can be employed to accurately predict absolute proton dose distributions delivered by an ocular nozzle.

  11. Impact of intensity-modulated radiation therapy as a boost treatment on the lung-dose distributions for non-small-cell lung cancer

    International Nuclear Information System (INIS)

    Choi, Youngmin; Kim, Jeung Kee; Lee, Hyung Sik; Hur, Won Joo; Chai, Gyu Young; Kang, Ki Mun

    2005-01-01

    Purpose: To investigate the feasibility of intensity-modulated radiotherapy (IMRT) as a method of boost radiotherapy after the initial irradiation by the conventional anterior/posterior opposed beams for centrally located non-small-cell lung cancer through the evaluation of dose distributions according to the various boost methods. Methods and Materials: Seven patients with T3 or T4 lung cancer and mediastinal node enlargement who previously received radiotherapy were studied. All patients underwent virtual simulation retrospectively with the previous treatment planning computed tomograms. Initial radiotherapy plans were designed to deliver 40 Gy to the primary tumor and involved nodal regions with the conventional anterior/posterior opposed beams. Two radiation dose levels, 24 and 30 Gy, were used for the boost radiotherapy plans, and four different boost methods (a three-dimensional conformal radiotherapy [3DCRT], five-, seven-, and nine-beam IMRT) were applied to each dose level. The goals of the boost plans were to deliver the prescribed radiation dose to 95% of the planning target volume (PTV) and minimize the volumes of the normal lungs and spinal cord irradiated above their tolerance doses. Dose distributions in the PTVs and lungs, according to the four types of boost plans, were compared in the boost and sum plans, respectively. Results: The percentage of lung volumes irradiated >20 Gy (V20) was reduced significantly in the IMRT boost plans compared with the 3DCRT boost plans at the 24- and 30-Gy dose levels (p 0.007 and 0.0315 respectively). Mean lung doses according to the boost methods were not different in the 24- and 30-Gy boost plans. The conformity indexes (CI) of the IMRT boost plans were lower than those of the 3DCRT plans in the 24- and 30-Gy plans (p = 0.001 in both). For the sum plans, there was no difference of the dose distributions in the PTVs and lungs according to the boost methods. Conclusions: In the boost plans the V20s and CIs were

  12. Low doses of six toxicants change plant size distribution in dense populations of Lactuca sativa.

    Science.gov (United States)

    Belz, Regina G; Patama, Marjo; Sinkkonen, Aki

    2018-08-01

    Toxicants are known to have negligible or stimulatory, i.e. hormetic, effects at low doses below those that decrease the mean response of a plant population. Our earlier observations indicated that at such low toxicant doses the growth of very fast- and slow-growing seedlings is selectively altered, even if the population mean remains constant. Currently, it is not known how common these selective low-dose effects are, whether they are similar among fast- and slow-growing seedlings, and whether they occur concurrently with hormetic effects. We tested the response of Lactuca sativa in complete dose-response experiments to six different toxicants at doses that did not decrease population mean and beyond. The tested toxicants were IAA, parthenin, HHCB, 4-tert-octylphenol, glyphosate, and pelargonic acid. Each experiment consisted of 14,400-16,800 seedlings, 12-14 concentrations, 24 replicates per concentration and 50 germinated seeds per replicate. We analyzed the commonness of selective low-dose effects and explored if toxic effects and hormetic stimulation among fast- and slow-growing individuals occurred at the same concentrations as they occur at the population level. Irrespective of the observed response pattern and toxicant, selective low-dose effects were found. Toxin effects among fast-growing individuals usually started at higher doses compared to the population mean, while the opposite was found among slow-growing individuals. Very low toxin exposures tended to homogenize plant populations due to selective effects, while higher, but still hormetic doses tended to heterogenize plant populations. Although the extent of observed size segregation varied with the specific toxin tested, we conclude that a dose-dependent alteration in size distribution of a plant population may generally apply for many toxin exposures. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. CONDOS-II, Radiation Dose from Consumer Product Distribution Chain

    International Nuclear Information System (INIS)

    1984-01-01

    1 - Description of problem or function: This code was developed under sponsorship of the Nuclear Regulatory Commission to serve as a tool for assessing radiation doses that may be associated with consumer products that contain radionuclides. The code calculates radiation dose equivalents resulting from user-supplied scenarios of exposures to radionuclides contained in or released from sources that contain radionuclides. Dose equivalents may be calculated to total body, skin surface, skeletal bone, testes, ovaries, liver, kidneys, lungs, and maximally exposed segments of the gastrointestinal tract from exposures via (1) direct, external irradiation by photons (including Bremsstrahlung) emitted from the source, (2) external irradiation by photons during immersion in air containing photon-emitting radionuclides that have escaped from the source, (3) internal exposures by all radiations emitted by inhaled radionuclides that have escaped from the source, and (4) internal exposures by all radiations emitted by ingested radionuclides that have escaped from the source. 2 - Method of solution: Organ dose equivalents are approximated in two ways, depending on the exposure type. For external exposures, energy specific organ-to-skin-surface dose conversion ratios are used to approximate dose equivalents to specific organs from doses calculated to a point on the skin surface. The organ-to-skin ratios are incorporated in organ- and nuclide-specific dose rate factors, which are used to approximate doses during immersion in contaminated air. For internal exposures, 50 year dose equivalents are calculated using organ- and nuclide-specific, 50 year dose conversion factors. Doses from direct, external exposures are calculated using the energy-specific dose conversion ratios, user supplied exposure conditions, and photon flux approximations for eleven source geometries. Available source geometries include: point, shielded and unshielded; line, shielded and unshielded; disk, shielded

  14. Radiation-induced temporary partial epilation in the pig: a biological indicator of radiation dose and dose distribution to the skin

    International Nuclear Information System (INIS)

    Sieber, V.K.; Hopewell, J.W.

    1990-01-01

    Radiation damage to the matrix cells of actively growing hairs can result in transient epilation in the pig, the severity of which can be assessed using a visual scoring system. The extent of hair loss was found to be dose-dependent for single doses in the range 6 - 14 Gy for 250 kV X rays. The ED 50 for detectable hair loss was 9.83 ± 0.58 Gy whilst that for the loss of > 50% of hairs was 13.78 ± 0.90 Gy. The system is simple, non-invasive and would appear to have considerable potential for use in biological dosimetry for high exposures that are likely to require local treatment. (author)

  15. Practical use of Gafchromic(®) EBT films in electron beams for in-phantom dose distribution measurements and monitor units verification.

    Science.gov (United States)

    El Barouky, Jad; Fournier-Bidoz, Nathalie; Mazal, Alejandro; Fares, Georges; Rosenwald, Jean-Claude

    2011-04-01

    The possibility of using the Gafchromic(®) EBT films parallel to incident electron beams was assessed in order to facilitate quality assurance tests for electron dose calculation algorithms. Calibration curves were made for electron energies of 6, 9 and 12MeV. A set-up was suggested for EBT film irradiation parallel to the beam, and the dose measurements were compared to Ionization Chamber (IC) measurements in standard and small electrons beams. A more complex Quality Assurance (QA) set-up was performed with the cylindrical CARPET(®) phantom in order to test our Treatment Planning System (TPS) (Eclipse, Varian Medical Systems, Palo Alto, California) for the clinical situation of a chest wall electron beam therapy. Two dimensional dose distribution and gamma index results were compared to the calculated distribution given by the TPS. The reproducibility was found to be better than 1.5%. We found that applying strong pressure and aligning carefully the film edge with the phantom surface, as recommended for radiographic films, did not completely eliminate the air gap effect. Adding an ultrasound transmission gel and 2 complementary EBT films on the surface gave satisfactory results. The absolute dose for the reference 10×10cm(2) field was always within 1% of IC measurements and for smaller elongated fields (5×10, 4×10 and 3×10cm(2)) the mean difference was -1.4% for the three energies. The mean difference with the IC measurements in R(100), R(90) and R(50) was 0.9mm for all fields and for the three energies. The mean difference in the width of the 90% and the 50% isodoses at R(100) was 0.6mm. With the CARPET(®) phantom set-up very good agreement was found in the 2D dose distribution; 99% of the points satisfied the γdose distribution if ultrasound gel and overlying perpendicular films are added on the phantom surface. Copyright © 2010 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  16. Distribution of absorbed dose in human eye simulated by SRNA-2KG computer code

    International Nuclear Information System (INIS)

    Ilic, R.; Pesic, M.; Pavlovic, R.; Mostacci, D.

    2003-01-01

    Rapidly increasing performances of personal computers and development of codes for proton transport based on Monte Carlo methods will allow, very soon, the introduction of the computer planning proton therapy as a normal activity in regular hospital procedures. A description of SRNA code used for such applications and results of calculated distributions of proton-absorbed dose in human eye are given in this paper. (author)

  17. Potential radiation dose from eating fish exposed to actinide contamination

    International Nuclear Information System (INIS)

    Emery, R.M.; Klopfer, D.C.; Baker, D.A.; Soldat, J.K.

    1980-01-01

    The purpose of this work is to establish a maximum potential for transporting actinides to man via fish consumption. The study took place in U-Pond, a nuclear waste pond on the Hanford Site. It has concentrations of 238 U, 238 Pu, /sup 239,240/Pu and 241 Am that are approximately three orders of magnitude greater than background levels. Fish living in the pond contain higher actinide concentrations than those observed in fish from any other location. Experiments were performed in U-pond to determine maximum quantities of actinides that could accumulate in fillets and whole bodies of two centrarchid fish species. Doses to hypothetical consumers were then estimated by assuming that actinide behavior in their bodies was similar to that defined for Standard Man by the International Commission on Radiological Protection. Results indicate that highest concentrations occurring in bluegill or bass muscle after more than a year's exposure to the pond would not be sufficient to produce a significant radiation dose to a human consumer, even if he ate 0.5 kg (∼1 lb) of these fillets every day for 70 years. Natural predators (heron or coyote), having lifetime diets of whole fish from U-Pond, would receive less radiation dose from the ingested actinides than from natural background sources. 34 refs., 5 figs., 4 tabs

  18. Preliminary evaluation of lung doses for dogs exposed to 239PuO2

    International Nuclear Information System (INIS)

    Fisher, D.R.; Cannon, W.C.; Hadley, R.T.; Park, J.F.

    1986-01-01

    A group of beagle dogs exposed to inhaled 239 PuO 2 is being followed for life-span effects. This paper reports preliminary lung dose estimates and dose-response relationships for incidence of lung tumors and radiation pneumonitis which have been observed to date. Doses were estimated by using both conventional dose-averaging and microdosimetric techniques. Cascade impactor sampling data were used to reconstruct the original plutonium aerosol size distributions unique to each of about 120 individual dogs exposed to 239 PuO 2 . Data providing the initial plutonium lung burden and lifetime lung retention-clearance functions of plutonium for each dog were used for calculating average dose rates, cumulative absorbed doses, and specific energy distributions. A linear dose-response relationship for lung tumor induction was estimated on the basis of cumulative lung dose. Average time to death was estimated as a function of average dose rate. Conclusions regarding the potential value of microdosimetry in the interpretation of such dose-response relationships are discussed. 8 refs., 5 figs., 1 tab

  19. Redox potential distribution of an organic-rich contaminated site obtained by the inversion of self-potential data

    Science.gov (United States)

    Abbas, M.; Jardani, A.; Soueid Ahmed, A.; Revil, A.; Brigaud, L.; Bégassat, Ph.; Dupont, J. P.

    2017-11-01

    Mapping the redox potential of shallow aquifers impacted by hydrocarbon contaminant plumes is important for the characterization and remediation of such contaminated sites. The redox potential of groundwater is indicative of the biodegradation of hydrocarbons and is important in delineating the shapes of contaminant plumes. The self-potential method was used to reconstruct the redox potential of groundwater associated with an organic-rich contaminant plume in northern France. The self-potential technique is a passive technique consisting in recording the electrical potential distribution at the surface of the Earth. A self-potential map is essentially the sum of two contributions, one associated with groundwater flow referred to as the electrokinetic component, and one associated with redox potential anomalies referred to as the electroredox component (thermoelectric and diffusion potentials are generally negligible). A groundwater flow model was first used to remove the electrokinetic component from the observed self-potential data. Then, a residual self-potential map was obtained. The source current density generating the residual self-potential signals is assumed to be associated with the position of the water table, an interface characterized by a change in both the electrical conductivity and the redox potential. The source current density was obtained through an inverse problem by minimizing a cost function including a data misfit contribution and a regularizer. This inversion algorithm allows the determination of the vertical and horizontal components of the source current density taking into account the electrical conductivity distribution of the saturated and non-saturated zones obtained independently by electrical resistivity tomography. The redox potential distribution was finally determined from the inverted residual source current density. A redox map was successfully built and the estimated redox potential values correlated well with in

  20. Sexual differentiation in the distribution potential of northern jaguars (Panthera onca)

    Science.gov (United States)

    Boydston, Erin E.; Lopez Gonzalez, Carlos A.

    2005-01-01

    We estimated the potential geographic distribution of jaguars in the southwestern United States and northwestern Mexico by modeling the jaguar ecological niche from occurrence records. We modeled separately the distribution of males and females, assuming records of females probably represented established home ranges while male records likely included dispersal movements. The predicted distribution for males was larger than that for females. Eastern Sonora appeared capable for supporting male and female jaguars with potential range expansion into southeastern Arizona. New Mexico and Chihuahua contained environmental characteristics primarily limited to the male niche and thus may be areas into which males occasionally disperse.

  1. Potential, Distribution, Ethno-Botany and Tapping Procedures of ...

    African Journals Online (AJOL)

    Potential, Distribution, Ethno-Botany and Tapping Procedures of Gum Producing Acacia Species in the Somali Region, Southeastern Ethiopia. ... Therefore, promotion of gum extraction in the Somali Region both for economic benefit of the community and sustainable management of the fragile ecosystem is recommended.

  2. Estimation and comparison of effective dose (E) in standard chest CT by organ dose measurements and dose-length-product methods and assessment of the influence of CT tube potential (energy dependency) on effective dose in a dual-source CT

    International Nuclear Information System (INIS)

    Paul, Jijo; Banckwitz, Rosemarie; Krauss, Bernhard; Vogl, Thomas J.; Maentele, Werner; Bauer, Ralf W.

    2012-01-01

    Highlights: ► The dual-energy protocol delivers the lowest effective dose of the investigated protocols for standard chest CT examinations, thus enabling functional imaging (like dual-energy perfusion) and can produce weighted images without dose penalty. ► The high-pitch protocol goes along with a 16% increase in dose compared to the standard 120 kV protocol and thus should preferably be used in pediatric, acute care settings (e.g. pulmonary embolism, aortic dissection and the like) or restless patients. ► The difference in effective dose estimates between ICRP 60 and 103 is minimal. ► Tube potential definitely has an effect on estimates of effective dose. - Abstract: Purpose: To determine effective dose (E) during standard chest CT using an organ dose-based and a dose-length-product-based (DLP) approach for four different scan protocols including high-pitch and dual-energy in a dual-source CT scanner of the second generation. Materials and methods: Organ doses were measured with thermo luminescence dosimeters (TLD) in an anthropomorphic male adult phantom. Further, DLP-based dose estimates were performed by using the standard 0.014 mSv/mGycm conversion coefficient k. Examinations were performed on a dual-source CT system (Somatom Definition Flash, Siemens). Four scan protocols were investigated: (1) single-source 120 kV, (2) single-source 100 kV, (3) high-pitch 120 kV, and (4) dual-energy with 100/Sn140 kV with equivalent CTDIvol and no automated tube current modulation. E was then determined following recommendations of ICRP publication 103 and 60 and specific k values were derived. Results: DLP-based estimates differed by 4.5–16.56% and 5.2–15.8% relatively to ICRP 60 and 103, respectively. The derived k factors calculated from TLD measurements were 0.0148, 0.015, 0.0166, and 0.0148 for protocol 1, 2, 3 and 4, respectively. Effective dose estimations by ICRP 103 and 60 for single-energy and dual-energy protocols show a difference of less than 0.04 m

  3. Proton therapy for head and neck cancer: Rationale, potential indications, practical considerations, and current clinical evidence

    International Nuclear Information System (INIS)

    Mendenhall, Nancy P.; Malyapa, Robert S.; Su, Zhong; Yeung, Daniel; Mendenhall, William M.; Li, Zuofeng

    2011-01-01

    There is a strong rationale for potential benefits from proton therapy (PT) for selected cancers of the head and neck because of the opportunity to improve the therapeutic ratio by improving radiation dose distributions and because of the significant differences in radiation dose distribution achievable with x-ray-based radiation therapy (RT) and PT. Comparisons of dose distributions between x-ray-based and PT plans in selected cases show specific benefits in dose distribution likely to translate into improved clinical outcomes. However, the use of PT in head and neck cancers requires special considerations in the simulation and treatment planning process, and currently available PT technology may not permit realization of the maximum potential benefits of PT. To date, few clinical data are available, but early clinical experiences in sinonasal tumors in particular suggest significant improvements in both disease control and radiation-related toxicity

  4. Proton therapy for head and neck cancer: Rationale, potential indications, practical considerations, and current clinical evidence

    Energy Technology Data Exchange (ETDEWEB)

    Mendenhall, Nancy P.; Malyapa, Robert S.; Su, Zhong; Yeung, Daniel; Mendenhall, William M.; Li, Zuofeng (Univ. of Florida Proton Therapy Inst., Jacksonville, Florida (United States)), e-mail: menden@shands.ufl.edu

    2011-08-15

    There is a strong rationale for potential benefits from proton therapy (PT) for selected cancers of the head and neck because of the opportunity to improve the therapeutic ratio by improving radiation dose distributions and because of the significant differences in radiation dose distribution achievable with x-ray-based radiation therapy (RT) and PT. Comparisons of dose distributions between x-ray-based and PT plans in selected cases show specific benefits in dose distribution likely to translate into improved clinical outcomes. However, the use of PT in head and neck cancers requires special considerations in the simulation and treatment planning process, and currently available PT technology may not permit realization of the maximum potential benefits of PT. To date, few clinical data are available, but early clinical experiences in sinonasal tumors in particular suggest significant improvements in both disease control and radiation-related toxicity

  5. Measurement of the dose distribution at the gammatron in homogeneous water phantoms with films and ionization chambers

    International Nuclear Information System (INIS)

    Mark, B.

    1978-01-01

    The check of the analytic function for the depth-dose-curve by means of computer calculations of films shows, that only with the knowledge of the phantom depth factor the film is able to deliver quick and relatively simple gives information on the degree of the decrease of the dose with increasing phantom depth. Outside of the effective beam the deviation between the values, determines photometrically and ionometrically is up to 100 per cent. The analytic function could be veryfied well ionometrically. The transversal distributions were also checked, that are the basis for the dose calculation in a pendulum irradiation. A good agreement was found between the ionometrical and film-dosimetrical values. (orig.) [de

  6. Synchronized dynamic dose reconstruction

    International Nuclear Information System (INIS)

    Litzenberg, Dale W.; Hadley, Scott W.; Tyagi, Neelam; Balter, James M.; Ten Haken, Randall K.; Chetty, Indrin J.

    2007-01-01

    Variations in target volume position between and during treatment fractions can lead to measurable differences in the dose distribution delivered to each patient. Current methods to estimate the ongoing cumulative delivered dose distribution make idealized assumptions about individual patient motion based on average motions observed in a population of patients. In the delivery of intensity modulated radiation therapy (IMRT) with a multi-leaf collimator (MLC), errors are introduced in both the implementation and delivery processes. In addition, target motion and MLC motion can lead to dosimetric errors from interplay effects. All of these effects may be of clinical importance. Here we present a method to compute delivered dose distributions for each treatment beam and fraction, which explicitly incorporates synchronized real-time patient motion data and real-time fluence and machine configuration data. This synchronized dynamic dose reconstruction method properly accounts for the two primary classes of errors that arise from delivering IMRT with an MLC: (a) Interplay errors between target volume motion and MLC motion, and (b) Implementation errors, such as dropped segments, dose over/under shoot, faulty leaf motors, tongue-and-groove effect, rounded leaf ends, and communications delays. These reconstructed dose fractions can then be combined to produce high-quality determinations of the dose distribution actually received to date, from which individualized adaptive treatment strategies can be determined

  7. Assessing mixed dose distributions in young sediments identified using small aliquots and a simple two-step SAR procedure: the F-statistic as a diagnostic tool

    International Nuclear Information System (INIS)

    Spencer, J.Q.; Sanderson, D.C.W.; Deckers, Katleen; Sommerville, A.A.

    2003-01-01

    In this study we have investigated the apparent dose (D e *) distribution in four samples of young sedimentary quartz from different depositional environments, and on standard quartz comprised of artificial binary-dose mixtures. We have used a simplified two-step single-aliquot regenerative-dose (SAR) approach to rapidly measure D e * from a large number of small aliquots (∼50-100 grains), with a small sub-set subjected to routine SAR measurements to enable monitoring of luminescence characteristics. We have used an F-ratio analysis to interpret D e * distributions. This analysis is sensitive to structure, the leading edge and modal data in D e * distributions, indicated by inflections and plateaux in F-ratio plots. We cautiously suggest that F-ratios at or approaching unity may indicate a single dose component

  8. Measurement of radon and thoron progeny size distributions and dose assessments at the mineral treatment industry in Thailand

    International Nuclear Information System (INIS)

    Chutima Kranrod; Supitcha Chanyotha; Nares Chankow

    2013-01-01

    A new portable type cascade impactor has been developed to determine the activity size distribution of radon and thoron progeny in a natural environment more efficiently. The modified impactor consists of 4 stages with a back up filter stage for the collection of aerosol samples. The aerosol cut points in the impactor are set for 10, 2.5, 1 and 0.5 μm at a flow rate of 4 L min -1 . Five CR-39 chips were used as alpha detectors for each stage. In order to separate α particles emitted from radon and thoron progeny, CR-39 detectors are covered with aluminum-vaporized Mylar films. The thickness of each film is adjusted to allow α particles emitted from radon and thoron progeny to reach the CR-39 detectors. The technique has been successfully tested in field studies, particularly inside a mineral treatment industry in Thailand to estimate doses in the working environment. The dose calculations by lung dose evaluation program showed that activity median aerodynamic diameters played a significant role in determining the particle size distributions of the attached radon and thoron progeny. The dose conversion factor determined from short term measurements due to exposure from the inhalation of thoron and its progeny was found to be 4 times higher than comparable values for radon and its progeny. The effective dose for workers exposed to radon is about 4-6 times higher than thoron. (author)

  9. Measurements of spatial distribution of absorbed dose in proton therapy with Gafchromic EBT3

    International Nuclear Information System (INIS)

    Gambarini, G.; Regazzoni, V.; Grisotto, S.; Artuso, E.; Giove, D.; Borroni, M.; Carrara, M.; Pignoli, E.; Mirandola, A.; Ciocca, M.

    2014-08-01

    A study of the response of EBT3 films has been carried out. Light transmittance images (around 630 nm) were acquired by means of a Ccd camera. The difference of optical density was assumed as dosimeter response. Calibration was performed by means of 60 Co photons, at a radiotherapy facility. A study of the response variation during the time after exposure has been carried out. EBT3 films were exposed, in a solid-water phantom, to proton beams of various energies and the obtained depth-dose profiles were compared with those measured with a ionization chamber. As expected, in the Bragg peak region the values obtained with EBT3 films were lower than those obtained with the ionization chamber. The ratio of such values was evaluated, along dose profiles, for each utilized energy. A method for correcting the data measured with EBT3 has been proposed and tested. The results confirm that the method can be advantageously applied for obtaining spatial distribution of the absorbed dose in proton therapy. (author)

  10. Measurements of spatial distribution of absorbed dose in proton therapy with Gafchromic EBT3

    Energy Technology Data Exchange (ETDEWEB)

    Gambarini, G.; Regazzoni, V.; Grisotto, S.; Artuso, E.; Giove, D. [Universita degli Studi di Milano, Department of Physics, via Celoria 16, 20133 Milano (Italy); Borroni, M.; Carrara, M.; Pignoli, E. [Fondazione IRCCS, Istituto Nazionale dei Tumori di Milano, Medical Physics Unit, via Giacomo Venezian 16, 20133 Milano (Italy); Mirandola, A.; Ciocca, M., E-mail: grazia.gambarini@mi.infn.it [Centro Nazionale Adroterapia Oncologica, Medical Physics Unit, Strada Campeggi 53, 27100 Pavia (Italy)

    2014-08-15

    A study of the response of EBT3 films has been carried out. Light transmittance images (around 630 nm) were acquired by means of a Ccd camera. The difference of optical density was assumed as dosimeter response. Calibration was performed by means of {sup 60}Co photons, at a radiotherapy facility. A study of the response variation during the time after exposure has been carried out. EBT3 films were exposed, in a solid-water phantom, to proton beams of various energies and the obtained depth-dose profiles were compared with those measured with a ionization chamber. As expected, in the Bragg peak region the values obtained with EBT3 films were lower than those obtained with the ionization chamber. The ratio of such values was evaluated, along dose profiles, for each utilized energy. A method for correcting the data measured with EBT3 has been proposed and tested. The results confirm that the method can be advantageously applied for obtaining spatial distribution of the absorbed dose in proton therapy. (author)

  11. Nuclear momentum distribution and potential energy surface in hexagonal ice

    Science.gov (United States)

    Lin, Lin; Morrone, Joseph; Car, Roberto; Parrinello, Michele

    2011-03-01

    The proton momentum distribution in ice Ih has been recently measured by deep inelastic neutron scattering and calculated from open path integral Car-Parrinello simulation. Here we report a detailed investigation of the relation between momentum distribution and potential energy surface based on both experiment and simulation results. The potential experienced by the proton is largely harmonic and characterized by 3 principal frequencies, which can be associated to weighted averages of phonon frequencies via lattice dynamics calculations. This approach also allows us to examine the importance of quantum effects on the dynamics of the oxygen nuclei close to the melting temperature. Finally we quantify the anharmonicity that is present in the potential acting on the protons. This work is supported by NSF and by DOE.

  12. High-resolution mapping of 1D and 2D dose distributions using X-band electron paramagnetic resonance imaging

    International Nuclear Information System (INIS)

    Kolbun, N.; Lund, E.; Adolfsson, E.; Gustafsson, H.

    2014-01-01

    Electron paramagnetic resonance imaging (EPRI) was performed to visualise 2D dose distributions of homogeneously irradiated potassium dithionate tablets and to demonstrate determination of 1D dose profiles along the height of the tablets. Mathematical correction was applied for each relative dose profile in order to take into account the inhomogeneous response of the resonator using X-band EPRI. The dose profiles are presented with the spatial resolution of 0.6 mm from the acquired 2D images; this value is limited by pixel size, and 1D dose profiles from 1D imaging with spatial resolution of 0.3 mm limited by the intrinsic line-width of potassium dithionate. In this paper, dose profiles from 2D reconstructed electron paramagnetic resonance (EPR) images using the Xepr software package by Bruker are focussed. The conclusion is that using potassium dithionate, the resolution 0.3 mm is sufficient for mapping steep dose gradients if the dosemeters are covering only ±2 mm around the centre of the resonator. (authors)

  13. Time and dose in carcinogenesis

    International Nuclear Information System (INIS)

    Mayneord, W.V.; Clarke, R.H.

    1978-05-01

    Previous work on the implications of different forms of dose response relationships is extended to include time as a variable, not only in time of irradiation but also in the time of appearance of effects following irradiation. The forms of relationships for time distribution of tumours revealed experimentally for both radiation and chemical carcinogens are first considered. It appears that much data may be correlated in terms of a log-normal distribution of tumour yield following the insult. Further, it is noted, that there is evidence that the median time of tumour appearance may be a function of total dose received or even of dose rate for protracted exposure. Using numerical values of these parameters derived from the biological literature speculative studies have been made of the effects on dose response relationships of using a time distribution of tumour yield, considering both uniform irradiation and point sources. In addition the effects of using dose rate rather than dose to define the log-normal distribution to tumour appearance have been investigated. It is assumed that biological response is directly proportional to dose but that effect is distributed in time. From this linear assumption the appearance of non-linear dose response relationships and apparent thresholds are continually seen. Finally, both the importance of attempting analyses of biological data in terms of stochastic concepts and the need for biological data to test our hypotheses is emphasised. (author)

  14. Sci—Fri PM: Topics — 04: What if bystander effects influence cell kill within a target volume? Potential consequences of dose heterogeneity on TCP and EUD on intermediate risk prostate patients

    Energy Technology Data Exchange (ETDEWEB)

    Balderson, M.J.; Kirkby, C. [Department of Physics and Astronomy, University of Calgary, Calgary, Alberta (Canada); Department of Medical Physics, Tom Baker Cancer Centre, Calgary, Alberta (Canada); Department of Medical Physics, Jack Ady Cancer Centre, Lethbridge, Alberta (Canada)

    2014-08-15

    In vitro evidence has suggested that radiation induced bystander effects may enhance non-local cell killing which may influence radiotherapy treatment planning paradigms. This work applies a bystander effect model, which has been derived from published in vitro data, to calculate equivalent uniform dose (EUD) and tumour control probability (TCP) and compare them with predictions from standard linear quadratic (LQ) models that assume a response due only to local absorbed dose. Comparisons between the models were made under increasing dose heterogeneity scenarios. Dose throughout the CTV was modeled with normal distributions, where the degree of heterogeneity was then dictated by changing the standard deviation (SD). The broad assumptions applied in the bystander effect model are intended to place an upper limit on the extent of the results in a clinical context. The bystander model suggests a moderate degree of dose heterogeneity yields as good or better outcome compared to a uniform dose in terms of EUD and TCP. Intermediate risk prostate prescriptions of 78 Gy over 39 fractions had maximum EUD and TCP values at SD of around 5Gy. The plots only dropped below the uniform dose values for SD ∼ 10 Gy, almost 13% of the prescribed dose. The bystander model demonstrates the potential to deviate from the common local LQ model predictions as dose heterogeneity through a prostate CTV is varies. The results suggest the potential for allowing some degree of dose heterogeneity within a CTV, although further investigations of the assumptions of the bystander model are warranted.

  15. Sci—Fri PM: Topics — 04: What if bystander effects influence cell kill within a target volume? Potential consequences of dose heterogeneity on TCP and EUD on intermediate risk prostate patients

    International Nuclear Information System (INIS)

    Balderson, M.J.; Kirkby, C.

    2014-01-01

    In vitro evidence has suggested that radiation induced bystander effects may enhance non-local cell killing which may influence radiotherapy treatment planning paradigms. This work applies a bystander effect model, which has been derived from published in vitro data, to calculate equivalent uniform dose (EUD) and tumour control probability (TCP) and compare them with predictions from standard linear quadratic (LQ) models that assume a response due only to local absorbed dose. Comparisons between the models were made under increasing dose heterogeneity scenarios. Dose throughout the CTV was modeled with normal distributions, where the degree of heterogeneity was then dictated by changing the standard deviation (SD). The broad assumptions applied in the bystander effect model are intended to place an upper limit on the extent of the results in a clinical context. The bystander model suggests a moderate degree of dose heterogeneity yields as good or better outcome compared to a uniform dose in terms of EUD and TCP. Intermediate risk prostate prescriptions of 78 Gy over 39 fractions had maximum EUD and TCP values at SD of around 5Gy. The plots only dropped below the uniform dose values for SD ∼ 10 Gy, almost 13% of the prescribed dose. The bystander model demonstrates the potential to deviate from the common local LQ model predictions as dose heterogeneity through a prostate CTV is varies. The results suggest the potential for allowing some degree of dose heterogeneity within a CTV, although further investigations of the assumptions of the bystander model are warranted

  16. SU-E-T-409: Evaluation of Tissue Composition Effect On Dose Distribution in Radiotherapy with 6 MV Photon Beam of a Medical Linac

    Energy Technology Data Exchange (ETDEWEB)

    Ghorbani, M; Tabatabaei, Z; Noghreiyan, A Vejdani [Mashhad University of Medical Sciences, Mashhad (Iran, Islamic Republic of); Meigooni, A Soleimani [Comprehensive Cancer Center of Nevada, Las Vegas, NV (United States)

    2015-06-15

    Purpose: The aim of this study is to evaluate soft tissue composition effect on dose distribution for various soft tissues and various depths in radiotherapy with 6 MV photon beam of a medical linac. Methods: A phantom and Siemens Primus linear accelerator were simulated using MCNPX Monte Carlo code. In a homogeneous cubic phantom, six types of soft tissue and three types of tissue-equivalent materials were defined separately. The soft tissues were muscle (skeletal), adipose tissue, blood (whole), breast tissue, soft tissue (9-component) and soft tissue (4-component). The tissue-equivalent materials included: water, A-150 tissue-equivalent plastic and perspex. Photon dose relative to dose in 9-component soft tissue at various depths on the beam’s central axis was determined for the 6 MV photon beam. The relative dose was also calculated and compared for various MCNPX tallies including,F8, F6 and,F4. Results: The results of the relative photon dose in various materials relative to dose in 9-component soft tissue and using different tallies are reported in the form of tabulated data. Minor differences between dose distributions in various soft tissues and tissue-equivalent materials were observed. The results from F6 and F4 were practically the same but different with,F8 tally. Conclusion: Based on the calculations performed, the differences in dose distributions in various soft tissues and tissue-equivalent materials are minor but they could be corrected in radiotherapy calculations to upgrade the accuracy of the dosimetric calculations.

  17. Radiation monitoring and dose distribution of medical workers in A.P. state 1999-2000

    International Nuclear Information System (INIS)

    Singh, D.R.; Reddy, K.S.; Kamble, M.K.; Roy, Madhumita

    2001-01-01

    Individual monitoring for external ionizing radiation is being conducted for all radiation workers in Andhra Pradesh State by TLD Unit located in Nuclear Fuel Complex, Hyderabad.The Unit comes under Personnel Monitoring Section of Bhabha Atomic Research Center, Mumbai. The aim of monitoring is to confirm that the radiation safety standards are strictly adhered in the institutions and also to investigate excessive exposures, if any. Personnel monitoring also provides data for epidemiological studies. In view of ICRP/AERB recommendations of 100 mSv dose limit for the five years block of 1994-98, the dose distribution among radiation workers in Andhra Pradesh State is analyzed for the period 1994-98. In continuation of above work, we have analyzed the data for the year 1999-2000 for various medical diagnostic procedures and these are presented

  18. Repair and dose-response at low doses

    International Nuclear Information System (INIS)

    Totter, J.R.; Weinberg, A.M.

    1977-04-01

    The DNA of each individual is subject to formation of some 2-4 x 10 14 ion pairs during the first 30 years of life from background radiation. If a single hit is sufficient to cause cancer, as is implicit in the linear, no-threshold theories, it is unclear why all individuals do not succumb to cancer, unless repair mechanisms operate to remove the damage. We describe a simple model in which the exposed population displays a distribution of repair thresholds. The dose-response at low dose is shown to depend on the shape of the threshold distribution at low thresholds. If the probability of zero threshold is zero, the response at low dose is quadratic. The model is used to resolve a longstanding discrepancy between observed incidence of leukemia at Nagasaki and the predictions of the usual linear hypothesis

  19. Distribution of gamma-ray dose rate in Fukushima prefecture by a car-borne survey method

    International Nuclear Information System (INIS)

    Sugihara, Shinji; Momoshima, Noriyuki; Maekawa, Akihiro; Ichikawa, Ryohei; Kawamura, Hidehisa

    2013-01-01

    The Tohoku Pacific Earthquake and Tsunami on March 11, 2011, caused severe damage to the TEPCO Fukushima Dai-ichi NPP. This was followed by a nuclear accident at an unprecedented scale, and huge amounts of radioactive material were released into the environment. The distributions of the gamma-ray dose rate in Fukushima prefecture were measured using a NaI(Tl) scintillation survey meter as part of a car-borne survey method on April 18-21, June 20-22, October 18-21, 2011, and on April 9-11 and July 30 - August 1, 2012. The dose rate near TEPCO Fukushima Dai-ichi NPP and at Iitate-mura, Fukushima-city was high (1 to >30 μSv/h). (author)

  20. Interpretation of proton relative biological effectiveness using lesion induction, lesion repair, and cellular dose distribution

    International Nuclear Information System (INIS)

    Paganetti, H.

    2005-01-01

    Phenomenological biophysical models have been successfully used to estimate the relative biological effectiveness (RBE) of ions. The predictive power of these models is limited because they require measured dose-response data that are not necessarily available for all clinically relevant end points. Furthermore, input parameters often lack mechanistic interpretation. In order to link RBE to more fundamental biological parameters we combine the concepts of two well-established biophysical models, i.e., the phenomenological 'track structure' model and the more mechanistic 'lethal lesion/potentially lethal lesion' (LPL) model. We parametrize a relation between RBE, dose homogeneity in the cell nucleus and induction rates for different lesion types. The macroscopic dose-response relationship is described in the LPL model and the microscopic, subcellular, relationship is determined by the local dose deposition pattern. The formalism provides a framework for a mechanistic interpretation of RBE values