WorldWideScience

Sample records for potato plants resistant

  1. ANALYSIS OF INTERACTION OF PLANT GENOTYPE AND STRAIN AGROBACTERIUM TUMEFACIENS IN BREEDING OF POTATO RESISTANCE TO COLORADO POTATO BEETLE

    Directory of Open Access Journals (Sweden)

    Denis I Bogomaz

    2005-03-01

    Full Text Available Efficiency of potato transformation depends on plant genotype and bacterial strain. Genotypes with high regeneration ability have high transformation ability. It is shown, that transgenosis of Bt gene increases potato resistance to collorado potato beetle, transgenosis of ipt gene does not influence on resistance.

  2. Transgenic potato plants expressing cry3A gene confer resistance to Colorado potato beetle.

    Science.gov (United States)

    Mi, Xiaoxiao; Ji, Xiangzhuo; Yang, Jiangwei; Liang, Lina; Si, Huaijun; Wu, Jiahe; Zhang, Ning; Wang, Di

    2015-07-01

    The Colorado potato beetle (Leptinotarsa decemlineata Say, CPB) is a fatal pest, which is a quarantine pest in China. The CPB has now invaded the Xinjiang Uygur Autonomous Region and is constantly spreading eastward in China. In this study, we developed transgenic potato plants expressing cry3A gene. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis indicated that the cry3A gene expressed in leaves, stems and roots of the transgenic plants under the control of CaMV 35S promoter, while they expressed only in leaves and stems under the control of potato leaf and stem-specific promoter ST-LS1. The mortality of the larvae was higher (28% and 36%) on the transgenic plant line 35S1 on the 3rd and 4th days, and on ST3 (48%) on the 5th day after inoculation with instar larvae. Insect biomass accumulation on the foliage of the transgenic plant lines 35S1, 35S2 and ST3 was significantly lower (0.42%, 0.43% and 0.42%). Foliage consumption was lowest on transgenic lines 35S8 and ST2 among all plant foliage (7.47 mg/larvae/day and 12.46 mg/larvae/day). The different transgenic plant foliages had varied inhibition to larval growth. The survivors on the transgenic lines obviously were smaller than their original size and extremely weak. The transgenic potato plants with CPB resistance could be used to develop germplasms or varieties for controlling CPB damage and halting its spread in China. Copyright © 2015 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  3. [Expression of plant antimicrobial peptide pro-SmAMP2 gene increases resistance of transgenic potato plants to Alternaria and Fusarium pathogens].

    Science.gov (United States)

    Vetchinkina, E M; Komakhina, V V; Vysotskii, D A; Zaitsev, D V; Smirnov, A N; Babakov, A V; Komakhin, R A

    2016-09-01

    The chickweed (Stellaria media L.) pro-SmAMP2 gene encodes the hevein-like peptides that have in vitro antimicrobial activity against certain harmful microorganisms. These peptides play an important role in protecting the chickweed plants from infection, and the pro-SmAMP2 gene was previously used to protect transgenic tobacco and Arabidopsis plants from phytopathogens. In this study, the pro-SmAMP2 gene under control of viral CaMV35S promoter or under control of its own pro-SmAMP2 promoter was transformed into cultivated potato plants of two cultivars, differing in the resistance to Alternaria: Yubiley Zhukova (resistant) and Skoroplodny (susceptible). With the help of quantitative real-time PCR, it was demonstrated that transgenic potato plants expressed the pro-SmAMP2 gene under control of both promoters at the level comparable to or exceeding the level of the potato actin gene. Assessment of the immune status of the transformants demonstrated that expression of antimicrobial peptide pro-SmAMP2 gene was able to increase the resistance to a complex of Alternaria sp. and Fusarium sp. phytopathogens only in potato plants of the Yubiley Zhukova cultivar. The possible role of the pro-SmAMP2 products in protecting potatoes from Alternaria sp. and Fusarium sp. is discussed.

  4. Biological Effects of Potato Plants Transformation with Glucose Oxidase Gene and their Resistance to Hyperthermia

    Directory of Open Access Journals (Sweden)

    O.I. Grabelnych

    2017-02-01

    Full Text Available It is known that regulation of plant tolerance to adverse environmental factors is connected with short term increase of the concentration of endogenous reactive oxygen species (ROS, which are signalling molecules for the induction of protective mechanisms. Introduction and expression of heterologous gox gene, which encodes glucose oxidase enzyme in plant genome, induce constantly higher content of hydrogen peroxide in plant tissues. It is not known how the introduction of native or modified gox gene affects the plant resistance to high-temperature stress, one of the most commonly used model for the study of stress response and thermal tolerance. In this study, we investigated biological effects of transformation and evaluated the resistance to temperature stress of potato plants with altered levels of glucose oxidase expression. Transformation of potato plants by gox gene led to the more early coming out from tuber dormancy of transformed plants and slower growth rate. Transformants containing the glucose oxidase gene were more sensitive to lethal thermal shock (50 °C, 90 min than the transformant with the empty vector (pBI or untransformed plants (CK. Pre-heating of plants at 37 °C significantly weakened the damaging effect of lethal thermal shock. This attenuation was more significant in the non-transformed plants.

  5. The Physiological and Biochemical Mechanisms Providing the Increased Constitutive Cold Resistance in the Potato Plants, Expressing the Yeast SUC2 Gene Encoding Apoplastic Invertase

    Directory of Open Access Journals (Sweden)

    A.N. Deryabin

    2016-05-01

    Full Text Available The expression of heterologous genes in plants is an effective method to improve our understanding of plant resistance mechanisms. The purpose of this work was to investigate the involvement of cell-wall invertase and apoplastic sugars into constitutive cold resistance of potato (Solanum tuberosum L., cv. Dйsirйe plants, which expressed the yeast SUC2 gene encoding apoplastic invertase. WT-plants of a potato served as the control. The increase in the essential cell-wall invertase activity in the leaves of transformed plants indicates significant changes in the cellular carbohydrate metabolism and regulatory function of this enzyme. The activity of yeast invertase changed the composition of intracellular sugars in the leaves of the transformed potato plant. The total content of sugars (sucrose, glucose, fructose in the leaves and apoplast was higher in the transformants, in comparison by WT-plants. Our data indicate higher constitutive resistance of transformants to severe hypothermia conditions compared to WT-plants. This fact allows us to consider cell-wall invertase as a enzyme of carbohydrate metabolism playing an important regulatory role in the metabolic signaling upon forming increased plant resistance to low temperature. Thus, the potato line with the integrated SUC2 gene is a convenient tool to study the role of the apoplastic invertase and the products of its activity during growth, development and formation constitutive resistance to hypothermia.

  6. Resistance of genetically modified potatoes to Potato virus Y under field conditions Resistência de plantas de batata geneticamente modificadas ao Potato virus Y em condições de campo

    Directory of Open Access Journals (Sweden)

    André Nepomuceno Dusi

    2009-09-01

    Full Text Available The objective of this work was to evaluate the resistance of genetically modified clones of potato to Potato virus Y (PVY under field conditions. Genetically modified plants were compared with nontransformed plants of the same cultivar. The plots were flanked with potato plants infected with both PVYº and PVY N strains (spread lines, in order to provide the experimental area with the source of virus, which was naturally spread by the native aphid population. The experiment was weekly monitored by visual inspections and by DAS-Elisa in the plants produced from the harvested tubers, in order to evaluate the resistance of transgenic plants throughout the plant growth cycle. By the end of the third year, no infection symptoms were observed in the 1P clone; clone 63P showed 1% of infection, in contrast to about 90% of nontransformed plants infected. The stable expression of resistance to PVY provided by the coat protein gene was obtained in genetically modified clones of potato plants cultivar Achat under field conditions, during three consecutive years.O objetivo deste trabalho foi avaliar a resistência de clones geneticamente modificados de batata ao Potato virus Y (PVY em condições de campo. As plantas geneticamente modificadas foram comparadas com plantas não modificadas da mesma cultivar. As parcelas foram delimitadas com plantas infectadas com as estirpes PVYº e PVY N (linhas disseminadoras, para tornar disponível, na área experimental, a fonte de inóculo de vírus, que foi naturalmente disseminada pela população nativa de afídeos. O experimento foi monitorado semanalmente por inspeção visual e por DAS-Elisa nas plantas produzidas a partir dos tubérculos colhidos, para avaliar a resistência de plantas transgênicas ao longo do ciclo de crescimento. Ao final do terceiro ano, nenhum sintoma de infecção foi observado no clone 1P; o clone 63P apresentou 1% de infecção, em contraste com cerca de 90% de plantas-controle infectadas

  7. Comparison of Resistance Index Some Potato Cultivars to the Colorado Potato Beetle, Leptinotarsa decemlineata (Say (Col.: Chrysomelidae

    Directory of Open Access Journals (Sweden)

    A. Ghassemi-Kahrizeh

    2016-03-01

    Full Text Available Introduction: Potato, Solanum tuberosum L. is an important crop with 5.24 million tons of production on 210,000 hectares of irrigated land in Iran. Several pests attack the potato crop which among them the Colorado potato beetle, Leptinotarsa decemlineata (Say, is the most important defoliating pest of potato throughout the world and Iran and considerably reduce crop yield. Growers rely on pesticides to control this pest in the field but this insect is well known for its rapid resistance development to pesticides, so that it has developed field resistance to nearly all insecticides used against it and it is now resistant to more than 40 chemical insecticides. The problems of insecticide resistance, combined with continuing environmental concerns associated with chemical pesticide use, have provided a considerable stimulus over the past 50 years for the development of alternative control methods. Host plant resistance is considered to be an important part of integrated pest management (IPM system of this pest, which is compatible with sustainable control methods and can reduce the use of chemical insecticides .With the aim of identifying the existence of resistance resources, a study was conducted to evaluate and comparison the resistance index (PRI of 33 potatocultivarsto the Colorado potato beetle. Detected resistant variety (ies could be used as a resistance source for IPM programs of this pest. Materials and Methods: Greenhouse and field experiments were conducted to compare resistance index (PRI of 33 potato cultivars to the Colorado potato beetle, Leptinotarsa decemlineata (Say, in Naghadeh region during 2007-2008. In a choice test, the numbers of attracted beetles to each cultivar was determined as antixenosis index in the field. Also, Percentage of larval and pupal mortality were determined and used as the antibiosis index under greenhouse conditions. To evaluate the tolerance index, infested and non infested plots were planted and

  8. Engineering resistance against potato virus Y

    NARCIS (Netherlands)

    Vlugt, van der R.A.A.

    1993-01-01

    Potato virus Y is the type species of the potyvirus genus, the largest genus of the plant virus family Potyviridae. The virus causes serious problems in the cultivation of several Solanaceous crops and although certain poly- and monogenic resistances are available,

  9. Transgenic rice plants harboring an introduced potato proteinase inhibitor II gene are insect resistant.

    Science.gov (United States)

    Duan, X; Li, X; Xue, Q; Abo-el-Saad, M; Xu, D; Wu, R

    1996-04-01

    We introduced the potato proteinase inhibitor II (PINII) gene (pin2) into several Japonica rice varieties, and regenerated a large number of transgenic rice plants. Wound-inducible expression of the pin2 gene driven by its own promoter, together with the first intron of the rice actin 1 gene (act1), resulted in high-level accumulation of the PINII protein in the transgenic plants. The introduced pin2 gene was stably inherited in the second, third, and fourth generations, as shown by molecular analyses. Based on data from the molecular analyses, several homozygous transgenic lines were obtained. Bioassay for insect resistance with the fifth-generation transgenic rice plants showed that transgenic rice plants had increased resistance to a major rice insect pest, pink stem borer (Sesamia inferens). Thus, introduction of an insecticidal proteinase inhibitor gene into cereal plants can be used as a general strategy for control of insect pests.

  10. Why Organic Farming Should Embrace Co-Existence with Cisgenic Late Blight–Resistant Potato

    Directory of Open Access Journals (Sweden)

    Godelieve Gheysen

    2017-01-01

    Full Text Available The EU regulation on organic farming does not allow the use of genetically modified organisms (GMOs which are subject to Directive 2001/18/EC. Mutagenesis using irradiation or chemicals is genetic modification, but the organisms obtained through these techniques are not subject to the provisions of the GMO directive. Such mutants can therefore be used in organic agriculture. Derived from its basic principles, organic farming can only use natural substances to control disease and crops should be resilient, which, in the case of disease resistance, means that durable (horizontal resistance is preferred to vertical (single gene resistance. Cisgenesis can achieve such a durable resistance by introducing multiple resistance genes in one step. These multiple-resistant plants only contain natural genes that can also be introduced by breeding. In case cisgenic plants are not subject to the provisions of the GMO legislation, they can even be legally used in organic agriculture. In case they are not exempted from the GMO regulation, the question is: why obstruct a cisgenic potato crop that can hardly be distinguished from a potato crop that is the result of conventional breeding? Among the reasons why organic agriculture does not allow the use of GMOs it is mentioned that genetic engineering is unpredictable, it causes genome disruption and it is unnatural. However, our knowledge of plant genome evolution and breeding has increased dramatically. We now know that breeding is more unpredictable and causes more genome disruption than genetic engineering. Recent field trials have shown the efficacy of cisgenic late blight–resistant potatoes carrying multiple resistance genes. Large-scale growing of such durably resistant potatoes would not only be environmentally beneficial by it would strongly reducing the need for fungicide sprays in conventional potato cultivation and it would also reduce the disease pressure in organic potato cultivation.

  11. Growth and development of Colorado potato beetle larvae, Leptinotarsa decemlineata, on potato plants expressing the oryzacystatin II proteinase inhibitor.

    Science.gov (United States)

    Cingel, Aleksandar; Savić, Jelena; Vinterhalter, Branka; Vinterhalter, Dragan; Kostić, Miroslav; Jovanović, Darka Šešlija; Smigocki, Ann; Ninković, Slavica

    2015-08-01

    Plant proteinase inhibitors (PIs) are attractive tools for crop improvement and their heterologous expression can enhance insect resistance in transgenic plants. PI oryzacystatin II (OCII), isolated from rice, showed potential in controlling pests that utilize cysteine proteinases for protein digestion. To evaluate the applicability of the OCII gene in enhancing plant defence, OCII-transformed potatoes were bioassayed for resistance to Colorado potato beetle (Leptinotarsa decemlineata Say). Feeding on transformed leaves of potato cultivars Desiree and Jelica significantly affected larval growth and development, but did not change mortality rates. During the L2 and L3 developmental stages larvae consumed the OCII-transformed foliage faster as compared to the nontransformed control. Also these larvae reached the prepupal stage (end of L4 stage) 2 days earlier than those fed on control leaves. However, the total amounts of consumed OCII-transformed leaves were up to 23% lower than of control, and the maximal weights of prepupal larvae were reduced by up to 18% as compared to larvae fed on nontransformed leaves. The reduction in insect fitness reported in this study in combination with other control measures, could lead to improved CPB resistance management in potato.

  12. Companion cropping with potato onion enhances the disease resistance of tomato against Verticillium dahliae

    Directory of Open Access Journals (Sweden)

    Xuepeng eFu

    2015-09-01

    Full Text Available Intercropping could alleviate soil-borne diseases, however, few studies focused on the immunity of the host plant induced by the interspecific interactions. To test whether or not intercropping could enhance the disease resistance of host plant, we investigated the effect of companion cropping with potato onion on tomato Verticillium wilt caused by Verticillium dahliae (V. dahliae. To investigate the mechanisms, the root exudates were collected from tomato and potato onion which were grown together or separately, and were used to examine the antifungal activities against V. dahliae in vitro, respectively. Furthermore, RNA-seq was used to examine the expression pattern of genes related to disease resistance in tomato companied with potato onion compared to that in tomato grown alone, under the condition of infection with V. dahliae. The results showed that companion cropping with potato onion could alleviate the incidence and severity of tomato Verticillium wilt. The further studies revealed that the root exudates from tomato companied with potato onion significantly inhibited the mycelia growth and spore germination of V. dahliae. However, there were no significant effects on these two measurements for the root exudates from potato onion grown alone or from potato onion grown with tomato. RNA-seq data analysis showed the disease defense genes associated with pathogenesis-related proteins, biosynthesis of lignin, hormone metabolism and signal transduction were expressed much higher in the tomato companied with potato onion than those in the tomato grown alone, which indicated that these defense genes play important roles in tomato against V. dahliae infection, and meant that the disease resistance of tomato against V. dahliae was enhanced in the companion copping with potato onion. We proposed that companion cropping with potato onion could enhance the disease resistance of tomato against V. dahliae by regulating the expression of genes related

  13. Transgenic resistance of eggplants to the Colorado potato beetle

    NARCIS (Netherlands)

    Arpaia, S.

    1999-01-01

    The subject of this thesis is the use of transgenic plant resistance as a method to control the Colorado potato beetle, Leptinotarsa decemlineata Say in eggplant. The gene conferring resistance is coding for a Cry3B toxin and it is a synthetic version of a wild-type

  14. Effects of potato fiber and potato-resistant starch on biomarkers of colonic health in rats fed diets containing red meat.

    Science.gov (United States)

    Paturi, Gunaranjan; Nyanhanda, Tafadzwa; Butts, Christine A; Herath, Thanuja D; Monro, John A; Ansell, Juliet

    2012-10-01

    The effects of red meat consumption with and without fermentable carbohydrates on indices of large bowel health in rats were examined. Sprague-Dawley rats were fed cellulose, potato fiber, or potato-resistant starch diets containing 12% casein for 2 wk, then similar diets containing 25% cooked beef for 6 wk. After week 8, cecal and colonic microbiota composition, fermentation end-products, colon structure, and colonocyte DNA damage were analyzed. Rats fed potato fiber had lower Bacteroides-Prevotella-Porphyromonas group compared to other diet groups. Colonic Bifidobacterium spp. and/or Lactobacillus spp. were higher in potato fiber and potato-resistant starch diets than in the cellulose diet. Beneficial changes were observed in short-chain fatty acid concentrations (acetic, butyric, and propionic acids) in rats fed potato fiber compared with rats fed cellulose. Phenol and p-cresol concentrations were lower in the cecum and colon of rats fed potato fiber. An increase in goblet cells per crypt and longer crypts were found in the colon of rats fed potato fiber and potato-resistant starch diets. Fermentable carbohydrates had no effect on colonic DNA damage. Dietary combinations of red meat with potato fiber or potato-resistant starch have distinctive effects in the large bowel. Future studies are essential to examine the efficacy of different types of nondigestible carbohydrates in maintaining colonic health during long-term consumption of high-protein diets. Improved understanding of interactions between the food consumed and gut microbiota provides knowledge needed to make healthier food choices for large bowel health. The impact of red meat on large bowel health may be ameliorated by consuming with fermentable dietary fiber, a colonic energy source that produces less harmful by-products than the microbial breakdown of colonic protein for energy. Developing functional red meat products with fermentable dietary fiber could be one way to promote a healthy and balanced

  15. Shihoro irradiation plant for potato

    International Nuclear Information System (INIS)

    Kameyama, Kenji

    1985-01-01

    There have been rapid moves toward the commercialization of food irradiation around the world since November, 1980, when a joint FAO/IAEA/WHO expert committee made a recommendation on the wholesomeness of irradiated foods. The bold US move toward the commercialization has had a great impact. Ahead of these move around the world, Japan built a commercial irradiation plant in 1974, which has been operated for inhibiting the sprouting of potatoes. This plant was built in Shihoro, Hokkaido, and two thirds of the 400 million yen construction cost was provided by the Government and Hokkaido authorities for five agricultural cooperative associations of four local townships. Since then, the plant has been under the joint management of these cooperatives. The aim and circumstance of the plant construction are described. The mechanism of the plant with conveyors, a turntable and a Co-60 source of 300,000 Ci is shown. The plant processes 15 tons of potatoes per hour with the dose from 60 to 150 Gy. Potato bruise and irradiation effect, irradiation time and effect, and post-irradiation storage temperature and potato quality are reported. (Kako, I.)

  16. 40 CFR 174.513 - Potato Leaf Roll Virus Resistance Gene (also known as orf1/orf2 gene); exemption from the...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Potato Leaf Roll Virus Resistance Gene... REQUIREMENTS FOR PLANT-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.513 Potato Leaf Roll... protectant Potato Leaf Roll Virus Resistance Gene (also known as orf1/orf2 gene) in or on all food...

  17. Identification of virus and nematode resistance genes in the Chilota Potato Genebank of the Universidad Austral de Chile

    Directory of Open Access Journals (Sweden)

    Marlon López

    2015-09-01

    Full Text Available Potato Genebank of the Universidad Austral de Chile (UACh is an important gene bank in Chile. The accessions collected all over the country possess high genetic diversity, present interesting agronomic and cooking traits, and show resistance to biotic and abiotic stress. A particularly interesting subgroup of the gene bank includes the accessions collected in the South of Chile, the Chilota Potato Genebank. The focus of this study is the identification of virus and nematode resistant genes in potatoes (Solatium tuberosum L., using the RYSC3 and YES3-3B molecular markers. The Potato virus Y(PVY resistance genes Ry adg and Ry sto were identified. Furthermore, the CP60 marker was used to assess the Rx resistance gene that confers resistance to Potato virus X (PVX. In addition, the HC and GRO1-4 markers were utilized to identify the GpaVvrn_QTL and Gro1-4, resistance genes of Globodera pallida and Globodera rostochiensis, respectively. Both G. pallida and G. rostochiensis are Potato Cyst Nematodes (PCN. The plant material used in this study included leaves from 271 accessions of the gene bank. These samples were collected in the field where natural pathogen pressure of potential viruses and diseases exists. ELISA assays were run for field detection of PVY and PVX. However, there have been no previous reports of nematode presence in the plant material. The results herein presented indicate presence of virus and nematode resistance genes in accessions of the Chilota Potato Genebank. In terms of virus resistance, 99 accessions out of the 271 tested possess the Ry adg resistance gene and 17 accessions of these 271 tested have the Ry sto resistance gene. Also, 10 accessions showed positive amplification of the Rxl resistant gene marker. As to nematode resistance, 99 accessions have possible resistance to G. pallida and 54 accessions show potential resistance to G. rostochiensis as detected using the available molecular markers.

  18. Proteome Analysis of Disease Resistance against Ralstonia solanacearum in Potato Cultivar CT206-10

    Directory of Open Access Journals (Sweden)

    Sangryeol Park

    2016-02-01

    Full Text Available Potato is one of the most important crops worldwide. Its commercial cultivars are highly susceptible to many fungal and bacterial diseases. Among these, bacterial wilt caused by Ralstonia solanacearum causes significant yield loss. In the present study, integrated proteomics and genomics approaches were used in order to identify bacterial wilt resistant genes from Rs resistance potato cultivar CT-206-10. 2-DE and MALDI-TOF/TOF-MS analysis identified eight differentially abundant proteins including glycine-rich RNA binding protein (GRP, tomato stress induced-1 (TSI-1 protein, pathogenesis-related (STH-2 protein and pentatricopeptide repeat containing (PPR protein in response to Rs infection. Further, semi-quantitative RT-PCR identified up-regulation in transcript levels of all these genes upon Rs infection. Taken together, our results showed the involvement of the identified proteins in the Rs stress tolerance in potato. In the future, it would be interesting to raise the transgenic plants to further validate their involvement in resistance against Rs in potato.

  19. Functionality of resistance gene Hero, which controls plant root-infecting potato cyst nematodes, in leaves of tomato.

    Science.gov (United States)

    Poch, H L Cabrera; López, R H Manzanilla; Kanyuka, K

    2006-07-01

    The expression of host genomes is modified locally by root endoparasitic nematode secretions to induce the development of complex cellular structures referred as feeding sites. In compatible interactions, the feeding sites provide the environment and nutrients for the completion of the nematode's life cycle, whereas in an incompatible (resistant) interaction, the host immune system triggers a plant cell death programme, often in the form of a hypersensitive reaction, which restricts nematode reproduction. These processes have been studied in great detail in organ tissues normally infected by these nematodes: the roots. Here we show that host leaves can support a similar set of programmed developmental events in the potato cyst nematode Globodera rostochiensis life cycle that are typical of the root-invading nematodes. We also show that a gene-for-gene type specific disease resistance that is effective against potato cyst nematodes (PCN) in roots also operates in leaves: the expression of the resistance (R) gene Hero and members of its gene family in leaves correlates with the elicitation of a hypersensitive response only during the incompatible interaction. These findings, and the ability to isolate RNA from relevant parasitic stages of the nematode, may have significant implications for the identification of nematode factors involved in incompatible interactions.

  20. Genome scans on experimentally evolved populations reveal candidate regions for adaptation to plant resistance in the potato cyst nematode Globodera pallida.

    Science.gov (United States)

    Eoche-Bosy, D; Gautier, M; Esquibet, M; Legeai, F; Bretaudeau, A; Bouchez, O; Fournet, S; Grenier, E; Montarry, J

    2017-09-01

    Improving resistance durability involves to be able to predict the adaptation speed of pathogen populations. Identifying the genetic bases of pathogen adaptation to plant resistances is a useful step to better understand and anticipate this phenomenon. Globodera pallida is a major pest of potato crop for which a resistance QTL, GpaV vrn , has been identified in Solanum vernei. However, its durability is threatened as G. pallida populations are able to adapt to the resistance in few generations. The aim of this study was to investigate the genomic regions involved in the resistance breakdown by coupling experimental evolution and high-density genome scan. We performed a whole-genome resequencing of pools of individuals (Pool-Seq) belonging to G. pallida lineages derived from two independent populations having experimentally evolved on susceptible and resistant potato cultivars. About 1.6 million SNPs were used to perform the genome scan using a recent model testing for adaptive differentiation and association to population-specific covariables. We identified 275 outliers and 31 of them, which also showed a significant reduction in diversity in adapted lineages, were investigated for their genic environment. Some candidate genomic regions contained genes putatively encoding effectors and were enriched in SPRYSECs, known in cyst nematodes to be involved in pathogenicity and in (a)virulence. Validated candidate SNPs will provide a useful molecular tool to follow frequencies of virulence alleles in natural G. pallida populations and define efficient strategies of use of potato resistances maximizing their durability. © 2017 John Wiley & Sons Ltd.

  1. Initial infection of roots and leaves reveals different resistance phenotypes associated with coat protein gene-mediated resistance to Potato mop-top virus.

    Science.gov (United States)

    Germundsson, Anna; Sandgren, Maria; Barker, Hugh; Savenkov, Eugene I; Valkonen, Jari P T

    2002-05-01

    Resistance to the pomovirus Potato mop-top virus (PMTV) was studied in potato (Solanum tuberosum cv. Saturna) and Nicotiana benthamiana transformed with the coat protein (CP) gene of PMTV. The incidence of PMTV infections was reduced in tubers of the CP-transgenic potatoes grown in the field in soil infested with the viruliferous vector, Spongospora subterranea. However, in those tubers that were infected, all three virus RNAs were detected and virus titres were high. The CP-transgenic N. benthamiana plants were inoculated with PMTV using two methods. Following mechanical inoculation of leaves, no RNA 3 (the CP-encoding RNA homologous to the transgene) was detected in leaves, but in some plants low amounts of RNA 3 were detected in roots; RNA 2 was readily detected in leaves and roots of several plants. Inoculation of roots using viruliferous S. subterranea resulted in infection of roots in all plants and the three PMTV RNAs were detected. However, no systemic movement of PMTV from roots to the above-ground parts was observed, indicating a novel expression of resistance. These data indicate that the CP gene-mediated resistance to PMTV specifically restricts accumulation of PMTV RNA 3, and is more effective in leaves than roots. Furthermore, expression of resistance is different depending on whether leaves or roots are inoculated. Data do not exclude the possibility that both a protein-mediated and an RNA-mediated resistance mechanism are involved.

  2. Molecular and genetic analyses of potato cyst nematode resistance loci

    NARCIS (Netherlands)

    Bakker, E.H.

    2003-01-01

    This thesis describes the genomic localisation and organisation of loci that harbour resistance to the potato cyst nematode species Globodera pallida and G. rostochiensis . Resistance to the potato cyst nematodes G. pallida and G. rostochiensis is an important aspect in potato breeding. To gain

  3. The use of tissue culture techniques with irradiation to improve potato resistance to late blight

    International Nuclear Information System (INIS)

    Al-Safadi, B.; Arabi, M.I.E.

    2004-01-01

    A mutation breeding program was conducted to improve potato (Solanum tuberosum) resistance to late blight disease caused by Phytophthora infestans. In vitro cultured explants from potato cvs. Draga, Diamant, Spunta were irradiated with gamma ray doses 25, 30, and 35 Gy. Growing shoots were cut and re-cultured every 2 weeks until the 4 t h generation (MV 4 ) to make sure no chimeral tissues still existed in the mutant material. Plantlets were subsequently propagated to obtain enough explants for in vitro selection pressure. Around 3000 plantlets from the three cultivars were subjected to selection pressure using co-culture technique. MV 4 explants were incubated in jars, containing MS medium, with mycelia of P. infestans. Surviving plantlets were propagated and re-incubated with the pathogen for three consecutive generations. Resistant plantlets were acclimatized and transferred to pots and grown under glasshouse conditions. Plants were later inoculated, at the adult stage, with sporangial suspension. Cultivar Draga produced the highest number of resistant plants. Ten plants of Draga appeared to be resistant to late blight whereas only one plant from each of the other 2 cultivars was resistant. Mutant plants varied in number of produced minitubers from 13 to 70, Also, weight of these minitubers varied from less than 1 to 35 grams. Selected mutant lines will undergo further testing under field conditions for P. infestans resistance and other agronomic characteristics. (author)

  4. Effect of potato plants grown from tubers irradiated with low doses of gamma radiation on feeding and reproductive behaviours of potato tuber moth Phtorimaea Operculella (Lep., Gelechiidae)

    International Nuclear Information System (INIS)

    Saour, G.; Makee, H.; Al-Oudat, M.

    1997-09-01

    The feeding behavior of potato tuber moth Phthorimaea Operculella (Lep., Gelechiidae) larvae reared on leaves and tubers of potato plants, which its seeds had been irradiated with low doses of gamma irradiation (1, 3, 5, 10, Gy) has been studied. Significant differences in the larval developmental time, pupae developmental time, pupae weight, mortality, fecundity and percentage of egg hatch, was observed between insects fed on plants grown from the irradiated seeds and the control. It appears that leaves of potato plants grown from the irradiated seeds, particularly those of 3 Gy, became more favourable for the larvae, whilst the resulted tubers, except tubers of the dose of 10 Gy, which could have repellent properties became more resistant to potato tuber moth. Plant development stage and tubers storage at ambient temperatures condition affect the degree of sensitivity of the larvae. Leaves and tubers of 10 Gy irradiated seeds became more suitable for insect development, indicating that the later dose may inhibit the production of secondary plant metabolites chemical compounds. (author)

  5. Revealing the importance of meristems and roots for the development of hypersensitive responses and full foliar resistance to Phytophthora infestans in the resistant potato cultivar Sarpo Mira

    DEFF Research Database (Denmark)

    Orlowska, Elzbieta Zofia; Basile, Alessio; Kandzia, Izabela

    2012-01-01

    The defence responses of potato against Phytophthora infestans were studied using the highly resistant Sarpo Mira cultivar. The effects of plant integrity, meristems, and roots on the hypersensitive response (HR), plant resistance, and the regulation of PR genes were analysed. Sarpo Mira shoots a...

  6. Transmission of scab resistance to tetraploid potato via unilateral sexual polyploidization

    Science.gov (United States)

    Resistance to common scab continues to be a high priority trait for potato breeders. We have identified a source of resistance in the diploid wild potato relative Solanum chacoense and have introgressed it into cultivated potato by crossing it to a dihaploid. A clone generated by crossing two full-s...

  7. Potatoes, pathogens and pests

    NARCIS (Netherlands)

    Lazebnik, Jenny

    2017-01-01

    Currently, fungicides are necessary to protect potato crops against late blight, Phytophthora infestans, one of the world’s most damaging crop pathogens. The introgression of plant resistance genes from wild potato species targeted specifically to the late blight pathogen into

  8. Determination of virulence contribution from Phytophthora infestans effector IPI-O4 in a resistant potato host contaning the RB gene

    Science.gov (United States)

    Potato late blight, caused by the oomycete pathogen Phytophthora infestans, is one of the most destructive plant diseases. Despite decades of intensive breeding efforts, it remains a threat to potato production worldwide, because newly evolved pathogen strains have overcome major resistance genes qu...

  9. Localization of potato leafroll virus in leaves of secondarily-infected potato plants

    NARCIS (Netherlands)

    Heuvel, van den J.F.J.M.; Blank, de C.M.; Peters, D.; Lent, van J.W.M.

    1995-01-01

    Potato leafroll virus (PLRV) antigen was localized by immunogold labelling in semi-thin leaf sections of secondarily-infected potato plants cv. Bintje. Viral antigen was present in all cell types of the phloem tissue. but occurred most abundantly in the companion cells. Detectable amounts of PLRV

  10. Production of potato minitubers using advanced environmental control technologies developed for growing plants in space

    Science.gov (United States)

    Britt, Robert G.

    1998-01-01

    Development of plant growth systems for use in outer space have been modified for use on earth as the backbone of a new system for rapid growth of potato minitubers. The automation of this new biotechnology provides for a fully controllable method of producing pathogen-free nuclear stock potato minitubers from tissue cultured clones of varieties of potato in a biomanufacturing facility. These minitubers are the beginning stage of seed potato production. Because the new system provides for pathogen-free minitubers by the tens-of-millions, rather than by the thousands which are currently produced in advanced seed potato systems, a new-dimension in seed potato development, breeding and multiplication has been achieved. The net advantage to earth-borne agricultural farming systems will be the elimination of several years of seed multiplication from the current system, higher quality potato production, and access to new potato varieties resistant to diseases and insects which will eliminate the need for chemical controls.

  11. Development and evaluation of four molecular markers tightly linked to the Potato virus Y resistance gene Rychc in diploid potato populations

    Science.gov (United States)

    In the last 15 years, Potato virus Y (PVY) has been the main pathogen causing seed potato lot rejections in North America. The most efficient and environmentally sound method of limiting incidence and spread of PVY is the use virus resistant potato cultivars. Several genes for extreme resistance to ...

  12. RNA-dependent RNA polymerase 1 in potato (Solanum tuberosum) and its relationship to other plant RNA-dependent RNA polymerases.

    Science.gov (United States)

    Hunter, Lydia J R; Brockington, Samuel F; Murphy, Alex M; Pate, Adrienne E; Gruden, Kristina; MacFarlane, Stuart A; Palukaitis, Peter; Carr, John P

    2016-03-16

    Cellular RNA-dependent RNA polymerases (RDRs) catalyze synthesis of double-stranded RNAs that can serve to initiate or amplify RNA silencing. Arabidopsis thaliana has six RDR genes; RDRs 1, 2 and 6 have roles in anti-viral RNA silencing. RDR6 is constitutively expressed but RDR1 expression is elevated following plant treatment with defensive phytohormones. RDR1 also contributes to basal virus resistance. RDR1 has been studied in several species including A. thaliana, tobacco (Nicotiana tabacum), N. benthamiana, N. attenuata and tomato (Solanum lycopersicum) but not to our knowledge in potato (S. tuberosum). StRDR1 was identified and shown to be salicylic acid-responsive. StRDR1 transcript accumulation decreased in transgenic potato plants constitutively expressing a hairpin construct and these plants were challenged with three viruses: potato virus Y, potato virus X, and tobacco mosaic virus. Suppression of StRDR1 gene expression did not increase the susceptibility of potato to these viruses. Phylogenetic analysis of RDR genes present in potato and in a range of other plant species identified a new RDR gene family, not present in potato and found only in Rosids (but apparently lost in the Rosid A. thaliana) for which we propose the name RDR7.

  13. Insights into Resistance to Fe Deficiency Stress from a Comparative Study of In Vitro-Selected Novel Fe-Efficient and Fe-Inefficient Potato Plants

    Directory of Open Access Journals (Sweden)

    Georgina A. Boamponsem

    2017-09-01

    Full Text Available Iron (Fe deficiency induces chlorosis (IDC in plants and can result in reduced plant productivity. Therefore, development of Fe-efficient plants is of great interest. To gain a better understanding of the physiology of Fe-efficient plants, putative novel plant variants were regenerated from potato (Solanum tubersosum L. var. ‘Iwa’ callus cultures selected under Fe deficient or low Fe supply (0–5 μM Fe. Based on visual chlorosis rating (VCR, 23% of callus-derived regenerants were classified as Fe-efficient (EF and 77% as Fe-inefficient (IFN plant lines when they were grown under Fe deficiency conditions. Stem height was found to be highly correlated with internodal distance, leaf and root lengths in the EF plant lines grown under Fe deficiency conditions. In addition, compared to the IFN plant lines and control parental biotype, the EF plants including the lines named A1, B2, and B9, exhibited enhanced formation of lateral roots and root hairs as well as increased expression of ferritin (fer3 in the leaf and iron-regulated transporter (irt1 in the root. These morphological adaptations and changes in expression the fer3 and irt1 genes of the selected EF potato lines suggest that they are associated with resistance to low Fe supply stress.

  14. Salicylic acid is an indispensable component of the Ny-1 resistance-gene-mediated response against Potato virus Y infection in potato.

    Science.gov (United States)

    Baebler, Š; Witek, K; Petek, M; Stare, K; Tušek-Žnidarič, M; Pompe-Novak, M; Renaut, J; Szajko, K; Strzelczyk-Żyta, D; Marczewski, W; Morgiewicz, K; Gruden, K; Hennig, J

    2014-03-01

    The purpose of the study was to investigate the role of salicylic acid (SA) signalling in Ny-1-mediated hypersensitive resistance (HR) of potato (Solanum tuberosum L.) to Potato virus Y (PVY). The responses of the Ny-1 allele in the Rywal potato cultivar and transgenic NahG-Rywal potato plants that do not accumulate SA were characterized at the cytological, biochemical, transcriptome, and proteome levels. Analysis of noninoculated and inoculated leaves revealed that HR lesions started to develop from 3 d post inoculation and completely restricted the virus spread. At the cytological level, features of programmed cell death in combination with reactive oxygen species burst were observed. In response to PVY infection, SA was synthesized de novo. The lack of SA accumulation in the NahG plants led to the disease phenotype due to unrestricted viral spreading. Grafting experiments show that SA has a critical role in the inhibition of PVY spreading in parenchymal tissue, but not in vascular veins. The whole transcriptome analysis confirmed the central role of SA in orchestrating Ny-1-mediated responses and showed that the absence of SA leads to significant changes at the transcriptome level, including a delay in activation of expression of genes known to participate in defence responses. Moreover, perturbations in the expression of hormonal signalling genes were detected, shown as a switch from SA to jasmonic acid/ethylene signalling. Viral multiplication in the NahG plants was accompanied by downregulation of photosynthesis genes and activation of multiple energy-producing pathways.

  15. Enhanced salt stress tolerance in transgenic potato plants expressing IbMYB1, a sweet potato transcription factor.

    Science.gov (United States)

    Cheng, Yu-Jie; Kim, Myoung-Duck; Deng, Xi-Ping; Kwak, Sang-Soo; Chen, Wei

    2013-12-01

    IbMYB1, a transcription factor (TF) for R2R3-type MYB TFs, is a key regulator of anthocyanin biosynthesis during storage of sweet potatoes. Anthocyanins provide important antioxidants of nutritional value to humans, and also protect plants from oxidative stress. This study aimed to increase transgenic potatoes' (Solanum tuberosum cv. LongShu No.3) tolerance to environmental stress and enhance their nutritional value. Transgenic potato plants expressing IbMYB1 genes under the control of an oxidative stress-inducible peroxidase (SWPA2) promoter (referred to as SM plants) were successfully generated through Agrobacterium-mediated transformation. Two representative transgenic SM5 and SM12 lines were evaluated for enhanced tolerance to salinity, UV-B rays, and drought conditions. Following treatment of 100 mM NaCl, seedlings of SM5 and SM12 lines showed less root damage and more shoot growth than control lines expressing only an empty vector. Transgenic potato plants in pots treated with 400 mM NaCl showed high amounts of secondary metabolites, including phenols, anthocyanins, and flavonoids, compared with control plants. After treatment of 400 mM NaCl, transgenic potato plants also showed high DDPH radical scavenging activity and high PS II photochemical efficiency compared with the control line. Furthermore, following treatment of NaCl, UV-B, and drought stress, the expression levels of IbMYB1 and several structural genes in the flavonoid biosynthesis such as CHS, DFR, and ANS in transgenic plants were found to be correlated with plant phenotype. The results suggest that enhanced IbMYB1 expression affects secondary metabolism, which leads to improved tolerance ability in transgenic potatoes.

  16. ENZYME RESISTANCE OF GENETICALLY MODIFIED STARCH POTATOES

    Directory of Open Access Journals (Sweden)

    A. Sh. Mannapova

    2015-01-01

    Full Text Available Here in this article the justification of expediency of enzyme resistant starch use in therapeutic food products is presented . Enzyme resistant starch is capable to resist to enzymatic hydrolysis in a small intestine of a person, has a low glycemic index, leads to decrease of postprandial concentration of glucose, cholesterol, triglycerides in blood and insulin reaction, to improvement of sensitivity of all organism to insulin, to increase in sense of fulness and to reduction of adjournment of fats. Resistant starch makes bifidogenшс impact on microflora of a intestine of the person, leads to increase of a quantity of lactobacillus and bifidobacterium and to increased production of butyric acid in a large intestine. In this regard the enzyme resistant starch is an important component in food for prevention and curing of human diseases such as diabetes, obesity, colitis, a cancer of large and direct intestine. One method is specified by authors for imitation of starch digestion in a human body. This method is based on the definition of an enzyme resistance of starch in vitro by its hydrolysis to glucose with application of a glucoamylase and digestive enzyme preparation Pancreatin. This method is used in researches of an enzyme resistance of starch, of genetically modified potato, high amylose corn starch Hi-Maize 1043 and HYLON VII (National Starch Food Innovation, USA, amylopectin and amylose. It is shown that the enzyme resistance of the starch emitted from genetically modified potatoes conforms to the enzyme resistance of the high amylose corn starch “Hi-Maize 1043 and HYLON VII starch”, (National Starch Food Innovation, the USA relating to the II type of enzyme resistant starch. It is established that amylopectin doesn't have the enzyme resistant properties. The results of researches are presented. They allow us to make the following conclusion: amylose in comparison with amylopectin possesses higher enzyme resistance and gives to

  17. Potato plants (Solanum tuberosum L.) are chloride-sensitive: Is this dogma valid?

    Science.gov (United States)

    Hütsch, Birgit W; Keipp, Katrin; Glaser, Ann-Kathrin; Schubert, Sven

    2018-06-01

    Chloride sensitivity of the potato (Solanum tuberosum L.) cultivars Marabel and Désirée was investigated in two pot experiments (soil/sand mixture and hydroponics). It was tested whether there are differential effects of KCl and K 2 SO 4 application on tuber yield and tuber quality, and whether both potato cultivars differ in their chloride sensitivity. Tuber yield, dry matter percentage of the tubers, starch concentration and starch yield were not significantly affected by potassium source (K 2 SO 4 or KCl). After exposure to salt stress in hydroponics (100 mmol L -1 NaCl, 50 mmol L -1 Na 2 SO 4 , 50 mmol L -1 CaCl 2 ) for 5 days, 3-week-old potato plants had significantly reduced shoot dry mass after NaCl and Na 2 SO 4 application. However, CaCl 2 treatment did not significantly affect shoot growth, although the chloride concentration reached 65 to 74 mg Cl - mg -1 dry matter, similar to the NaCl treatment. In contrast, growth reductions were closely related to sodium concentrations, thus plants suffered sodium toxicity and not chloride toxicity. Both potato cultivars are chloride-resistant and can be fertilised with KCl instead of K 2 SO 4 without the risk of depression in tuber yield or tuber quality. The statement that potatoes are chloride-sensitive and that chloride has negative effects on yield performance needs reconsideration. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  18. Debate on the Exploitation of Natural Plant Diversity to Create Late Blight Resistance in Potato

    NARCIS (Netherlands)

    Goverse, A.; Struik, P.C.

    2009-01-01

    This paper reports on a debate on intriguing propositions relating to the scientific, agronomic, societal and economic impact of the BIOEXPLOIT project, focusing on late blight resistance in potato. It discusses (i) whether identifying pathogen effectors will facilitate selecting durable R genes,

  19. Lipopolysaccharides of Rhizobium etli strain G12 act in potato roots as an inducing agent of systemic resistance to infection by the cyst nematode Globodera pallida.

    Science.gov (United States)

    Reitz, M; Rudolph, K; Schröder, I; Hoffmann-Hergarten, S; Hallmann, J; Sikora, R A

    2000-08-01

    Recent studies have shown that living and heat-killed cells of the rhizobacterium Rhizobium etli strain G12 induce in potato roots systemic resistance to infection by the potato cyst nematode Globodera pallida. To better understand the mechanisms of induced resistance, we focused on identifying the inducing agent. Since heat-stable bacterial surface carbohydrates such as exopolysaccharides (EPS) and lipopolysaccharides (LPS) are essential for recognition in the symbiotic interaction between Rhizobium and legumes, their role in the R. etli-potato interaction was studied. EPS and LPS were extracted from bacterial cultures, applied to potato roots, and tested for activity as an inducer of plant resistance to the plant-parasitic nematode. Whereas EPS did not affect G. pallida infection, LPS reduced nematode infection significantly in concentrations as low as 1 and 0.1 mg ml(-1). Split-root experiments, guaranteeing a spatial separation of inducing agent and challenging pathogen, showed that soil treatments of one half of the root system with LPS resulted in a highly significant (up to 37%) systemic induced reduction of G. pallida infection of potato roots in the other half. The results clearly showed that LPS of R. etli G12 act as the inducing agent of systemic resistance in potato roots.

  20. DNA marker-assisted evaluation of potato genotypes for potential resistance to potato cyst nematode pathotypes not yet invading into Japan.

    Science.gov (United States)

    Asano, Kenji; Kobayashi, Akira; Tsuda, Shogo; Nishinaka, Mio; Tamiya, Seiji

    2012-06-01

    One of major objectives of crop breeding is conferring resistance to diseases and pests. However, large-scale phenotypic evaluation for many diseases and pests is difficult because strict controls are required to prevent their spread. Detection of disease resistance genes by using DNA markers may be an alternative approach to select potentially resistant accessions. Potato (Solanum tuberosum L.) breeders in Japan extensively use resistance gene H1, which confers nearly absolute resistance to potato cyst nematode (Globodera rostochiensis) pathotype Ro1, the only pathotype found in Japan. However, considering the possibility of accidental introduction of the other pathotypes, breeding of resistant varieties is an important strategy to prevent infestation by non-invading pathotypes in Japan. In this study, to evaluate the prevalence of resistance genes in Japanese genetic resources, we developed a multiplex PCR method that simultaneously detects 3 resistance genes, H1, Gpa2 and Gro1-4. We revealed that many Japanese varieties possess not only H1 but Gpa2, which are potentially resistant to other pathotypes of potato cyst nematode. On the other hand, no genotype was found to have the Gro1-4, indicating importance of introduction of varieties having Gro1-4. Our results demonstrate the applicability of DNA-marker assisted evaluation of resistant potato genotypes without phenotypic evaluation.

  1. Avaliação de acessos de batata-doce para resistência à broca-da-raiz, crisomelídeos e elaterídeos Screening of sweet potato accessions for resistance to the West Indian sweet potato weevil, chrysomelids and elaterids

    Directory of Open Access Journals (Sweden)

    Félix Humberto França

    2002-03-01

    Full Text Available Foram avaliados para resistência a danos causados por insetos nas folhas e raízes, no campo, 366 acessos do Banco Ativo de Germoplasma de batata-doce da Embrapa Hortaliças. Os insetos de interesse foram Diabrotica spp., Conoderus sp., Epitrix sp., e a broca-da-raiz da batata-doce, Euscepes postfasciatus. Considerando o estrato raízes, aproximadamente 21% dos acessos avaliados mostraram-se resistentes a crisomelídeos e elaterídeos, tendo sido identificados pelo menos sete clones melhores que a referência padrão de resistência àqueles insetos, a cultivar Brazlândia Roxa. Sete acessos, entre esses o CNPH 005, CNPH 026 e CNPH 258 mostraram-se bastante homogêneos e consistentes em três avaliações. Esses mesmos clones, além dos clones CNPH 088, CNPH 295, CNPH 314 e CNPH 318 mostraram-se entre os mais resistentes à broca-da-raiz, porque tiveram 7% ou menos das suas raízes tuberosas danificadas por Euscepes postfasciatus enquanto as cultivares Brazlândia Branca e Princesa obtiveram, respectivamente, 23,3% e 53,3% de danos. Outros nove acessos foram classificados como mais suscetíveis que essas cultivares. A aplicação desses resultados no manejo integrado de pragas em batata-doce é discutido.Three hundred sixty six sweet potato plant accessions of the Sweet potato Germplasm Bank of Embrapa Hortali��as (Brazil were evaluated in the field for resistance to the Wireworm-Diabrotica-Systena (WDS pest complex: Diabrotica spp., Conoderus sp., Epitrix sp., and West Indian sweet potato weevil, Euscepes postfaciatus. About 21% of all plant accessions showed high resistance to chrysomelids and elaterids. Seven clones, among them CNPH 005, CNPH 026 and CNPH 258 were more resistant than the standard resistant commercial cultivar Brazlândia Roxa. These sweet potato accessions and CNPH 088, CNPH 295, CNPH 314 and CNPH 318, were the most promising sources of resistance against the West Indian sweet potato weevil because they had 7% or less

  2. The evolution of insecticide resistance in the peach potato aphid, Myzus persicae.

    Science.gov (United States)

    Bass, Chris; Puinean, Alin M; Zimmer, Christoph T; Denholm, Ian; Field, Linda M; Foster, Stephen P; Gutbrod, Oliver; Nauen, Ralf; Slater, Russell; Williamson, Martin S

    2014-08-01

    The peach potato aphid, Myzus persicae is a globally distributed crop pest with a host range of over 400 species including many economically important crop plants. The intensive use of insecticides to control this species over many years has led to populations that are now resistant to several classes of insecticide. Work spanning over 40 years has shown that M. persicae has a remarkable ability to evolve mechanisms that avoid or overcome the toxic effect of insecticides with at least seven independent mechanisms of resistance described in this species to date. The array of novel resistance mechanisms, including several 'first examples', that have evolved in this species represents an important case study for the evolution of insecticide resistance and also rapid adaptive change in insects more generally. In this review we summarise the biochemical and molecular mechanisms underlying resistance in M. persicae and the insights study of this topic has provided on how resistance evolves, the selectivity of insecticides, and the link between resistance and host plant adaptation. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Involvement of potato (Solanum tuberosum L.) MKK6 in response to potato virus Y.

    Science.gov (United States)

    Lazar, Ana; Coll, Anna; Dobnik, David; Baebler, Spela; Bedina-Zavec, Apolonija; Zel, Jana; Gruden, Kristina

    2014-01-01

    Mitogen-activated protein kinase (MAPK) cascades have crucial roles in the regulation of plant development and in plant responses to stress. Plant recognition of pathogen-associated molecular patterns or pathogen-derived effector proteins has been shown to trigger activation of several MAPKs. This then controls defence responses, including synthesis and/or signalling of defence hormones and activation of defence related genes. The MAPK cascade genes are highly complex and interconnected, and thus the precise signalling mechanisms in specific plant-pathogen interactions are still not known. Here we investigated the MAPK signalling network involved in immune responses of potato (Solanum tuberosum L.) to Potato virus Y, an important potato pathogen worldwide. Sequence analysis was performed to identify the complete MAPK kinase (MKK) family in potato, and to identify those regulated in the hypersensitive resistance response to Potato virus Y infection. Arabidopsis has 10 MKK family members, of which we identified five in potato and tomato (Solanum lycopersicum L.), and eight in Nicotiana benthamiana. Among these, StMKK6 is the most strongly regulated gene in response to Potato virus Y. The salicylic acid treatment revealed that StMKK6 is regulated by the hormone that is in agreement with the salicylic acid-regulated domains found in the StMKK6 promoter. The involvement of StMKK6 in potato defence response was confirmed by localisation studies, where StMKK6 accumulated strongly only in Potato-virus-Y-infected plants, and predominantly in the cell nucleus. Using a yeast two-hybrid method, we identified three StMKK6 targets downstream in the MAPK cascade: StMAPK4_2, StMAPK6 and StMAPK13. These data together provide further insight into the StMKK6 signalling module and its involvement in plant defence.

  4. influence of treatment of seed potato tubers with plant crude

    African Journals Online (AJOL)

    ACSS

    essential oil extracts, on the growth and yield of the potato crop. Treatments consisted of .... Seed potato tuber treatment with plant crude essential oil extracts. 297 were pipetted on to ..... and clove essential oils on sprout suppression in potato ...

  5. In vitro induction, isolation and selection of potato mutants resistant to late blight

    International Nuclear Information System (INIS)

    Al-Safadi, B.; Arabi, M.I.E.

    2003-01-01

    A mutation breeding program was conducted to improve potato resistance to late blight disease caused by Phytophthora infestans. In vitro cultured explants from cvs Draga, Diamant, Spunta were irradiated with gamma ray doses 25, 30, and 35 Gy. Growing shoots were cut and re-cultured every 2 weeks until the 4 th generation (MV 4 ) to make sure no chimeral tissues still existed in the mutant material. Plantlets were subsequently propagated to obtain enough explants for in vitro selection pressure. Around 3,000 plantlets from the 3 cultivars were subjected to selection pressure using co-culture technique. MV 4 explants were incubated in jars, containing MS medium, with mycelia of P. infestans. Surviving plantlets were propagated and re-incubated with the pathogen for 3 consecutive generations. Resistant plantlets were acclimatized and transferred to pots and grown under glasshouse conditions. Plants were later inoculated, at the adult stage, with sporangial suspension. Cv Draga produced the highest number of resistant plants. Ten plants of Draga appeared to be resistant to late blight, whereas only one plant from each of the other 2 cvs was resistant. Mutant plants varied in number of produced minitubers from 13 to 70. Also, weight of these minitubers varied from less than 1 to 35 grams. Selected mutant lines will undergo further testing under field conditions for P. infestans resistance and other agronomic characteristics

  6. Antifungal activity of secondary plant metabolites from potatoes (Solanum tuberosum L.): Glycoalkaloids and phenolic acids show synergistic effects.

    Science.gov (United States)

    Sánchez-Maldonado, A F; Schieber, A; Gänzle, M G

    2016-04-01

    To study the antifungal effects of the potato secondary metabolites α-solanine, α-chaconine, solanidine and caffeic acid, alone or combined. Resistance to glycoalkaloids varied among the fungal species tested, as derived from minimum inhibitory concentrations assays. Synergistic antifungal activity between glycoalkaloids and phenolic compounds was found. Changes in the fluidity of fungal membranes caused by potato secondary plant metabolites were determined by calculation of the generalized polarization values. The results partially explained the synergistic effect between caffeic acid and α-chaconine and supported findings on membrane disruption mechanisms from previous studies on artificial membranes. LC/MS analysis was used to determine variability and relative amounts of sterols in the different fungal species. Results suggested that the sterol pattern of fungi is related to their resistance to potato glycoalkaloids and to their taxonomy. Fungal resistance to α-chaconine and possibly other glycoalkaloids is species dependent. α-Chaconine and caffeic acid show synergistic antifungal activity. The taxonomic classification and the sterol pattern play a role in fungal resistance to glycoalkaloids. Results improve the understanding of the antifungal mode of action of potato secondary metabolites, which is essential for their potential utilization as antifungal agents in nonfood systems. © 2016 The Society for Applied Microbiology.

  7. Induction of in vitro mutation for resistance to potato brown rot (ralstonia solanacearum) disease

    International Nuclear Information System (INIS)

    Ragab, A. I.; Hassan, I. O. I.; Soliman, M. H.; Gamal El-din, A.

    2012-12-01

    Six genotypes were selected from M 1 V 2 generation on the bases on their high yield for assessment of genetic variability using protein and RAPD analysis. The results of RAPD analysis showed that 11 primers generated 56 distinct bands of which 31 (55.4%) were polymorphic. The similarity indices of the six mutants of potato and their parents ranged from 70 to 91%. The highest genetic similarity 91% was found between D 20 mutant and Do (Diamant parent), on the other hand, the lowest genetic similarity 705 was found between S 30, S 40 mutants and their parent S 0 (Spunta). In the artificial experiment under in vitro condition, the irradiated and non-irradiated plant lets of potato were cultured on medium inoculates of the selected genotypes form irradiated population of Diamant and Spunta Cultivar were susceptible except S 20 mutant which was resistant. Protein analysis showed that S 20 genotype (Resistant Mutant) displayed 2 negative unique bands that might be responsible for resistance to R. solanacea rum. (Author)

  8. The use of molecular approaches in overcoming salinity stress in potato plants (abstract)

    International Nuclear Information System (INIS)

    Hmida-Sayari, A.; Jaoura, S.; Gargouri-Bouzid, R.

    2005-01-01

    Proline is known as compatible osmolyte accumulated by plant cells in response to salt and drought stresses. It is supposed to be an osmoprotectant involved in the protection of cellular structures under osmotic stress. Therefore, in an attempt to increase salt tolerance in potato, a pyrroline-5-carboxylate synthetase (P5CS) cDNA. Arabidopsis thaliana was transferred to potato plants via Agrobacterium-mediated transformation. This enzyme is responsible for conversion of glutamate to delta-pyrroline-5-carboxylate that is reduced to Proline. The resulting transgenic potato plants showed an important increase in Pro production levels compared to non-transgenic plants. This Proline accumulation was particularly enhanced in the presence of salt up to 100 mM NaCl. The transgenic potato plants showed also an improved tolerance to salinity through an increase of the tuber yield. Indeed the potato tuber yield in such transgenic lines was much less altered than in the non-transgenic plants. (author)

  9. Molecular characterisation of resistance against potato wart races 1, 2, 6 and 18 in a tetraploid population of potato (Solanum tuberosum subsp. tuberosum).

    Science.gov (United States)

    Groth, Jennifer; Song, Yesu; Kellermann, Adolf; Schwarzfischer, Andrea

    2013-05-01

    Potato wart is caused by the obligate biotrophic fungus Synchytrium endobioticum, which is subject to quarantine regulations due to the production of long persisting spores in the soil and the lack of effective fungicides. The objective of this study was to identify quantitative trait loci (QTL) for resistance against potato wart races (R) 1, 2, 6 and 18 in a tetraploid potato population developed by crossing cv. Saturna (resistant to R1) with cv. Panda (resistant to R1, R2, R6, R18). A total of 92 progenies were used for phenotyping and genotyping. Resistance tests were performed for races 1 and 18 in 2 years and for races 2 and 6 in 1 year on 10 to 20 eyepieces per genotype. Based on amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) markers, linkage maps were established for the female and male parent, respectively. Single marker analysis followed by a multiple regression analysis revealed initial marker-trait associations. The interval mapping routine of TetraploidMap was applied for QTL analysis. A major QTL for resistance against race 1 explaining between 46 % and 56 % of the phenotypic variation was identified near Sen1, a known resistance locus for potato wart race 1 on chromosome XI. Other resistance QTL were detected on chromosomes I (to R2), II (to R6, 18), VI (to R1, 2, 6, 18), VII (to R2, 6, 18), VIII (to R1, 2, 6, 18), X (to R2, 6, 18), XI (to R2, 6, 18) and on an unknown linkage group (to R18) explaining minor to moderate effects of the phenotypic variation. Resistance QTL against different potato wart races often overlapped, particularly concerning races 2, 6 and 18. Overall, this study gives a valuable insight into the complex inheritance of resistance against potato wart.

  10. Infection of potato mesophyll protoplasts with five plant viruses.

    Science.gov (United States)

    Barker, H; Harrison, B D

    1982-12-01

    Methods are described for preparing potato mesophyll protoplasts that are suitable for infection with inocula of virus nucleoprotein or RNA. The protoplasts could be infected with four sap-transmissible viruses (tobacco mosaic, tobacco rattle, tobacco ringspot and tomato black ring viruses) and with potato leafroll virus, which is not saptransmissible. No differences were observed in ability to infect protoplasts with potato leafroll virus strains differing either in virulence in intact plants or in aphid transmissibility.

  11. Potato type I and II proteinase inhibitors: modulating plant physiology and host resistance.

    Science.gov (United States)

    Turra, David; Lorito, Matteo

    2011-08-01

    Serine protease inhibitors (PIs) are a large and complex group of plant proteins. Members of the potato type I (Pin1) and II (Pin2) proteinase inhibitor families are among the first and most extensively characterized plant PIs. Many insects and phytopathogenic microorganisms use intracellular and extracellular serine proteases playing important roles in pathogenesis. Plants, however, are able to fight these pathogens through the activation of an intricate defence system that leads to the accumulation of various PIs, including Pin1 and Pin2. Several transgenic plants over-expressing members of the Pin1 and Pin2 families have been obtained in the last twenty years and their enhanced defensive capabilities demonstrated against insects, fungi and bacteria. Furthermore, Pin1 and Pin2 genetically engineered plants showed altered regulation of different plant physiological processes (e.g., dehydratation response, programmed cell death, plant growth, trichome density and branching), supporting an endogenous role in various plant species in addition to the well established defensive one. This review summarizes the current knowledge about Pin1 and Pin2 structure, the role of these proteins in plant defence and physiology, and their potential exploitation in biotechnology.

  12. Detection and sequencing of Potato virus Y (PVY and Potato leafroll virus (PLRV in a volunteer plant of Solanum tuberosum L. cv. Diacol-Capiro

    Directory of Open Access Journals (Sweden)

    Héctor Camilo Medina Cárdenas

    2017-10-01

    Full Text Available Viral diseases are among the most limiting factors in the production of potato in Colombia and the rest of the world. The best strategy to control plant viruses consists on the use of certified seed tubers, control of arthropod vectors and the use of adequate crop management practices that reduce mechanical transmission and the presence of viral reservoirs like weeds and volun-teer plants. However, the successful implementation of these practices relies on the availability of highly sensitive techniques that allow for the asymptomatic detection of viruses. In this work, we tested the performance of Next-generation sequencing (NGS and real time RT-PCR (RT-qPCR on a single volunteer potato plant (cv. Diacol-Capiro growing naturally in a seed-tuber storage facility in Yarumal (Antioquia. Our NGS results demonstrate a mixed infection with Potato virus Y (PVY and Potato leafroll virus (PLRV. RT-qPCR was performed in roots, main stolons, crown (root collar and upper, middle and lower leaves using specific primers for PVY, PLRV, Potato virus S (PVS, Potato virus V (PVV, Potato virus X (PVX and Potato yellow vein virus (PYVV. Only PVY and PLRV were detected in good agreement with the NGS data. This work demonstrates the use-fulness of both techniques for supporting integrated management of plant viruses in potato, in-cluding virus detection in natural reservoirs such as volunteer plants and weeds.

  13. Características fotossintéticas de batata cv. Baronesa e seu genótipo transformado geneticamente para resistência ao PVY Photosynthetic characteristics of potato plants, cv. Baronesa and its genetically transformed genotype for PVY resistance

    Directory of Open Access Journals (Sweden)

    Marcos Antonio Bacarin

    2008-09-01

    Full Text Available O melhoramento genético da batata é complexo e requer uma grande demanda de tempo e energia. A tecnologia do DNA recombinante, com sua capacidade potencial de isolar e transferir genes a partir de qualquer organismo, permite incorporar nas plantas novos caracteres de interesse agrícola. No entanto, as conseqüências da inserção de determinados genes em relação às características fisiológicas da planta são, muitas vezes desconhecidas. O presente trabalho teve como objetivo avaliar as características fotossintéticas de plantas de batata cultivar Baronesa modificadas geneticamente com genes de resistência a vírus. Para isso, tubérculos de batata cultivar Baronesa e seu respectivo genótipo transformado foram plantados em vasos e mantidos em casa de vegetação. Durante o ciclo de vida das plantas foram avaliados parâmetros da fluorescência das clorofilas, fotossíntese líquida e fotossíntese potencial. As plantas de batata cv. Baronesa transformadas com genes de resistência ao vírus PVY apresentaram maior eficiência fotoquímica máxima e maior taxa de liberação de oxigênio do que plantas da mesma cultivar não modificadas geneticamente, embora tivessem mantido os demais parâmetros de fluorescência das clorofilas e a taxa de fotossíntese líquida iguais.Potato breeding is difficult and requires a great deal of time and energy. The use of recombinant DNA technology, with its potential capacity of isolating and transferring genes from any organism, allows incorporating in plants new characters of agricultural interest. However, consequences of the incorporation of determined genes on physiological characteristics are sometimes unknown. In this study we evaluated photosynthetic characteristics of potato plants genetically modified with resistance genes to PVY. Potato tubers of cv. Baronesa and its respective transformed genotype were planted in pots and kept in greenhouse. During the plant life cycle, parameters of

  14. Intercropping System for Protection the Potato Plant from Insect Infestation

    Directory of Open Access Journals (Sweden)

    Aziza Sharaby

    2015-06-01

    Full Text Available The use of intercropping system provides an option for insect control for organic farmers that are limited in their chemical use. Additionally, intercropping systems can be attractive to conventional growers as a cost-effective insect control solution. A study was carried out for two seasons 2011-2012 and 2012-2013 to evaluate the effect of intercropping of potato (Solanum tuberosum L. with onion (Allium cepa L. on whitefly (Bemicia tabasi Gennadius and aphids’ Myzus persicae Sulz. and Aphis gossypii Glover infestation in potato fields. Results indicated that intercropping significantly reduced potato plant infestation with whitefly by 42.7, 51.3% while it was 62.69% reduction with aphids during the two successive winter seasons than when potato plants were cultivated alone. Therefore, intercropping could be recommended as a protection method of reducing pest population in the fields.

  15. Correspondence of Charles Darwin on James Torbitt's project to breed blight-resistance potatoes.

    Science.gov (United States)

    DeArce, M

    2008-01-01

    The most prolific of Darwin's correspondents from Ireland was James Torbitt, an enterprising grocer and wine merchant of 58 North Street, Belfast. Between February 1876 and March 1882, 141 letters were exchanged on the feasibility and ways of supporting one of Torbitt's commercial projects, the large-scale production and distribution of true potato seeds (Solan um tuberosum) to produce plants resistant to the late blight fungus Phytophthora infestans, the cause of repeated potato crop failures and thus the Irish famines in the nineteenth century. Ninety-three of these letters were exchanged between Torbitt and Darwin, and 48 between Darwin and third parties, seeking or offering help and advice on the project. Torbitt's project required selecting the small proportion of plants in an infested field that survived the infection, and using those as parents to produce seeds. This was a direct application of Darwin's principle of selection. Darwin cautiously lobbied high-ranking civil servants in London to obtain government funding for the project, and also provided his own personal financial support to Torbit.

  16. In vitro induction of variability through radiation for late blight resistance and heat tolerance in potato

    International Nuclear Information System (INIS)

    Gosal, S.S.; Das, A.; Gopal, J.; Minocha, J.L.; Chopra, H.R.; Dhaliwal, H.S.

    2001-01-01

    In vitro cultured shoots of potato, cvs. 'Kufri Jyoti' and 'Kufri Chandramukhi', were irradiated with 20 and 40 Gy gamma rays. Microtubers, obtained from MIV3 shoots multiplied in vitro, were planted in pots. The resulting plants were screened for resistance to late blight, using detached leaf method. In 'Kufri Chandramukhi', 42% plants and in 'Kufri Jyoti' 36% plants, obtained from 40 Gy treatment, showed resistance to late blight. The frequency of resistant plants was lower from 20 Gy treatment. The progenies of putatively resistant plants were grown in field, and inoculated with sporangial inoculum of late blight fungus. The field grown progeny segregated for disease resistance, and approximately 56% plants showed resistance. During the next propagation, the frequency of resistant plants increased to 72%. For developing heat tolerance, microtubers obtained from 20 and 40 Gy treatments and in vitro multiplied M 1 V 3 shoots were cultured at high temperature of 28C. In both varieties, the number of the microtubers per plant was highly reduced and the resulting microtubers had distorted shape but showed better germination (62%), even in early sowing at relatively higher temperature. Of the two radiation doses, the higher dose of 40 Gy gave better results in both the varieties. Heat tolerance was also assessed from chlorophyll persistence. The progenies from putative heat-tolerant plants were tested in field by planting at higher temperature in two subsequent generations. The heat tolerant plants segregated in each generation, but the frequency of heat-tolerant plants increased. (author)

  17. Verticillium dahliae disease resistance and the regulatory pathway for maturity and tuberization in potato

    DEFF Research Database (Denmark)

    Tai, Helen H.; De Koyer, David; Sønderkær, Mads

    2018-01-01

    Verticillium dahliae Kleb. is a pathogenic fungus causing wilting, chlorosis and early dying in potato. Genetic mapping of resistance to V. dahliae was done using a diploid population of potato. The major quantitative trait locus (QTL) for Verticillium resistance was found on chromosome 5. The St...

  18. Responses of potatoes plants inoculated with arbuscular ...

    African Journals Online (AJOL)

    A pot experiment was set to examine the impact of the foliar litter (Hardwickia binata and Azadirachta indica) and an arbuscular mycorrhizal (AM) fungus on the development of two varieties of potato plants (Aida, Atlas). Three litter doses (0, 25 and 50 g) were applied to the pots after bedding plantlets. The plants were ...

  19. Molecular cloning of the potato Gro1-4 gene conferring resistance to pathotype Ro1 of the root cyst nematode Globodera rostochiensis, based on a candidate gene approach.

    Science.gov (United States)

    Paal, Jürgen; Henselewski, Heike; Muth, Jost; Meksem, Khalid; Menéndez, Cristina M; Salamini, Francesco; Ballvora, Agim; Gebhardt, Christiane

    2004-04-01

    The endoparasitic root cyst nematode Globodera rostochiensis causes considerable damage in potato cultivation. In the past, major genes for nematode resistance have been introgressed from related potato species into cultivars. Elucidating the molecular basis of resistance will contribute to the understanding of nematode-plant interactions and assist in breeding nematode-resistant cultivars. The Gro1 resistance locus to G. rostochiensis on potato chromosome VII co-localized with a resistance-gene-like (RGL) DNA marker. This marker was used to isolate from genomic libraries 15 members of a closely related candidate gene family. Analysis of inheritance, linkage mapping, and sequencing reduced the number of candidate genes to three. Complementation analysis by stable potato transformation showed that the gene Gro1-4 conferred resistance to G. rostochiensis pathotype Ro1. Gro1-4 encodes a protein of 1136 amino acids that contains Toll-interleukin 1 receptor (TIR), nucleotide-binding (NB), leucine-rich repeat (LRR) homology domains and a C-terminal domain with unknown function. The deduced Gro1-4 protein differed by 29 amino acid changes from susceptible members of the Gro1 gene family. Sequence characterization of 13 members of the Gro1 gene family revealed putative regulatory elements and a variable microsatellite in the promoter region, insertion of a retrotransposon-like element in the first intron, and a stop codon in the NB coding region of some genes. Sequence analysis of RT-PCR products showed that Gro1-4 is expressed, among other members of the family including putative pseudogenes, in non-infected roots of nematode-resistant plants. RT-PCR also demonstrated that members of the Gro1 gene family are expressed in most potato tissues.

  20. Expression of the Galanthus nivalis agglutinin (GNA) gene in transgenic potato plants confers resistance to aphids.

    Science.gov (United States)

    Mi, Xiaoxiao; Liu, Xue; Yan, Haolu; Liang, Lina; Zhou, Xiangyan; Yang, Jiangwei; Si, Huaijun; Zhang, Ning

    2017-01-01

    Aphids, the largest group of sap-sucking pests, cause significant yield losses in agricultural crops worldwide every year. The massive use of pesticides to combat this pest causes severe damage to the environment, putting in risk the human health. In this study, transgenic potato plants expressing Galanthus nivalis agglutinin (GNA) gene were developed using CaMV 35S and ST-LS1 promoters generating six transgenic lines (35S1-35S3 and ST1-ST3 corresponding to the first and second promoter, respectively). Quantitative real-time polymerase chain reaction (qRT-PCR) analysis indicated that the GNA gene was expressed in leaves, stems and roots of transgenic plants under the control of the CaMV 35S promoter, while it was only expressed in leaves and stems under the control of the ST-LS1 promoter. The levels of aphid mortality after 5 days of the inoculation in the assessed transgenic lines ranged from 20 to 53.3%. The range of the aphid population in transgenic plants 15 days after inoculation was between 17.0±1.43 (ST2) and 36.6±0.99 (35S3) aphids per plant, which corresponds to 24.9-53.5% of the aphid population in non-transformed plants. The results of our study suggest that GNA expressed in transgenic potato plants confers a potential tolerance to aphid attack, which appears to be an alternative against the use of pesticides in the future. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  1. GROWTH PROCESS OF ORGANIC VETIVER ROOT WITH POTATO AS INTERCROPPING PLANT

    Directory of Open Access Journals (Sweden)

    Asep Kadarohman

    2012-02-01

    Full Text Available Vetiver oil (Vetiveria zizanoides is one of Indonesia main export commodities. Vetiver root is perennial plant and generally planted with vegetables as intercropping plant. Increasing the selling price of vetiver oil can be done by transferring the production of conventional vetiver oil (non-organic to organic vetiver oil. Demonstration of land used was one hectare, which 2,000 m2 for planting vetiver root with potato (Solanum tuberosum as inter-cropping plant and 8,000 m2 for vetiver root without intercropping, in Sukakarya-Samarang, Garut. The planting used goat and cow dung as manure, distillate water of vetiver oil and liquid bio-pesticide as pesticide. Variables studied included plant height, number of leaf and crotch. In the first quarter of the years, the number of leaf and crotch of vetiver root with intercropping was better than vetiver root without inter-cropping. However, there was not significant difference for plant height of vetiver root, both with and without intercropping. Products of organic potato as intercropping plant of vetiver root were less than those of non-organic potato, but the latter had a better texture and durability.

  2. Automated detection and control of volunteer potato plants

    NARCIS (Netherlands)

    Nieuwenhuizen, A.T.

    2009-01-01

    High amounts of manual labor are needed to control volunteer potato plants in arable fields. Due to the high costs, this leads to incomplete control of these weed plants, and they spread diseases like Phytophthora infestans to other fields. This results in higher environmental loads by curative

  3. The effector SPRYSEC-19 of Globodera rostochiensis suppresses CC-NB-LRR-mediated disease resistance in plants.

    Science.gov (United States)

    Postma, Wiebe J; Slootweg, Erik J; Rehman, Sajid; Finkers-Tomczak, Anna; Tytgat, Tom O G; van Gelderen, Kasper; Lozano-Torres, Jose L; Roosien, Jan; Pomp, Rikus; van Schaik, Casper; Bakker, Jaap; Goverse, Aska; Smant, Geert

    2012-10-01

    The potato cyst nematode Globodera rostochiensis invades roots of host plants where it transforms cells near the vascular cylinder into a permanent feeding site. The host cell modifications are most likely induced by a complex mixture of proteins in the stylet secretions of the nematodes. Resistance to nematodes conferred by nucleotide-binding-leucine-rich repeat (NB-LRR) proteins usually results in a programmed cell death in and around the feeding site, and is most likely triggered by the recognition of effectors in stylet secretions. However, the actual role of these secretions in the activation and suppression of effector-triggered immunity is largely unknown. Here we demonstrate that the effector SPRYSEC-19 of G. rostochiensis physically associates in planta with the LRR domain of a member of the SW5 resistance gene cluster in tomato (Lycopersicon esculentum). Unexpectedly, this interaction did not trigger defense-related programmed cell death and resistance to G. rostochiensis. By contrast, agroinfiltration assays showed that the coexpression of SPRYSEC-19 in leaves of Nicotiana benthamiana suppresses programmed cell death mediated by several coiled-coil (CC)-NB-LRR immune receptors. Furthermore, SPRYSEC-19 abrogated resistance to Potato virus X mediated by the CC-NB-LRR resistance protein Rx1, and resistance to Verticillium dahliae mediated by an unidentified resistance in potato (Solanum tuberosum). The suppression of cell death and disease resistance did not require a physical association of SPRYSEC-19 and the LRR domains of the CC-NB-LRR resistance proteins. Altogether, our data demonstrated that potato cyst nematodes secrete effectors that enable the suppression of programmed cell death and disease resistance mediated by several CC-NB-LRR proteins in plants.

  4. A method for estimating the contribution of seed potatoes, machinery and soil tare in field infestations with potato cyst nematodes on a national scale.

    Science.gov (United States)

    Goeminne, M; Demeulemeester, K; Viaene, N

    2011-01-01

    In order to make a cost benefit analysis for the management of the potato cyst nematodes Globodera rostochiensis and G. pallida, we developed a method to estimate the relative importance of three basic distribution channels of potato cyst nematodes: seed potatoes, machinery and soil tare. The baseline is determined by the area planted with potatoes, the area infested with potato cysts, the proportion of resistant potato cultivars and the distribution of cysts trough different channels. This quantification forms a basis for the evaluation of the effects of different control measures for potato cyst nematode on a national scale. The method can be useful as an example for application in other countries.

  5. Gene Profiling in Late Blight Resistance in Potato Genotype SD20

    Directory of Open Access Journals (Sweden)

    Xiaohui Yang

    2018-06-01

    Full Text Available Late blight caused by the oomycete fungus Phytophthora infestans (Pi is the most serious obstacle to potato (Solanum tuberosum production in the world. A super race isolate, CN152, which was identified from Sichuan Province, China, could overcome nearly all known late blight resistance genes and caused serious damage in China. The potato genotype SD20 was verified to be highly resistant to CN152; however, the molecular regulation network underlying late blight resistance pathway remains unclear in SD20. Here, we performed a time-course experiment to systematically profile the late blight resistance response genes using RNA-sequencing in SD20. We identified 3354 differentially expressed genes (DEGs, which mainly encoded transcription factors and protein kinases, and also included four NBS-LRR genes. The late blight responsive genes showed time-point-specific induction/repression. Multi-signaling pathways of salicylic acid, jasmonic acid, and ethylene signaling pathways involved in resistance and defense against Pi in SD20. Gene Ontology and KEGG analyses indicated that the DEGs were significantly enriched in metabolic process, protein serine/threonine kinase activity, and biosynthesis of secondary metabolites. Forty-three DEGs were involved in immune response, of which 19 were enriched in hypersensitive response reaction, which could play an important role in broad-spectrum resistance to Pi infection. Experimental verification confirmed the induced expression of the responsive genes in the late blight resistance signaling pathway, such as WRKY, ERF, MAPK, and NBS-LRR family genes. Our results provided valuable information for understanding late blight resistance mechanism of potato.

  6. Identification of stable resistance to Phytophthora infestans in potato genotypes evaluated in field experiments in Peru

    DEFF Research Database (Denmark)

    Wulff, Ednar Gadelha; Pérez, W.; Nelson, R.J.

    2007-01-01

    Abstract: In this study, genotype by environment (G x E) interactions and phenotypic stability of resistance to Phytophthora infestans, the cause of late blight, were analysed in Peru lot 13 potato genotypes, using additive main effects and multiplicative interaction (AMMI) analysis and Huehn's non......-parametric test. The potato genotypes were tested in seven experiments over two years in the vicinity of Comas, Peru, an area used by the International potato Center to screen for resistance to late blight. Results of the two analyses generally correlated and indicated that quantitative resistance to P. infestans...

  7. Use of silicon as inductor of the resistance in potato to Myzus persicae (Sulzer) (Hemiptera: Aphididae)

    International Nuclear Information System (INIS)

    Gomes, Flavia B.; Moraes, Jair C.; Antunes, Cristiana; Santos, Custodio D. dos

    2008-01-01

    The aphid Myzus persicae (Sulzer) is an important pest of potato and causes direct harm, due to the quantity of sap extracted and for being vector of important phytovirus. This work was carried out to evaluate the action of silicon as a resistance inducer of potato to M. persicae. Four treatments were tried: foliar fertilization with silicon acid at 1%; soil fertilization with 250 ml silicic acid solution at 1%; foliar fertilization with silicon acid at 1% + soil fertilization with 250 ml silicic acid solution at 1%; and a control. The treatments were applied thirty days after the explants emergence. Fifteen days after the application of the treatments, feeding preference and some biological aspects of the aphids were evaluated. After, the content of tannins and lignin present in the leaves and the activity of the enzymes peroxidase and phenylalanine ammonia-lyase were also determined. The silicon fertilization did not affect the preference of the aphids; however it reduced fecundity and the rate of population growth of the insects. The lignin percentage increased in the leaves of plants fertilized with silicon via soil and/or foliar and the percentage of tannins increased only in the leaves fertilized via soil plus foliar. The silicon acted as a resistance inducer to M. persicae in potato. (author)

  8. Plastid transformation in potato: Solanum tuberosum.

    Science.gov (United States)

    Valkov, Vladimir T; Gargano, Daniela; Scotti, Nunzia; Cardi, Teodoro

    2014-01-01

    Although plastid transformation has attractive advantages and potential applications in plant biotechnology, for long time it has been highly efficient only in tobacco. The lack of efficient selection and regeneration protocols and, for some species, the inefficient recombination using heterologous flanking regions in transformation vectors prevented the extension of the technology to major crops. However, the availability of this technology for species other than tobacco could offer new possibilities in plant breeding, such as resistance management or improvement of nutritional value, with no or limited environmental concerns. Herein we describe an efficient plastid transformation protocol for potato (Solanum tuberosum subsp. tuberosum). By optimizing the tissue culture system and using transformation vectors carrying homologous potato flanking sequences, we obtained up to one transplastomic shoot per bombardment. Such efficiency is comparable to that usually achieved in tobacco. The method described in this chapter can be used to regenerate potato transplastomic plants expressing recombinant proteins in chloroplasts as well as in amyloplasts.

  9. biotechnological studies on the irradiated potato (solanum tuberosum) with gamma rays

    International Nuclear Information System (INIS)

    Hassan, I.O.I.

    2011-01-01

    Bacterial wilt or brown rot disease caused by Ralstonia solanacearum causes extensive annual losses of different crops especially potato crop. It is considered as one of the limiting factors for potato production and exportation in Egypt. Therefore, the main purposes of this study were to investigate the effect of gamma rays on two potato cultivars (Diamant and Spunta). And, to obtain new genotypes of potato resistant to bacterial wilt disease. This study was carried out in the field and Biotechnology laboratory of the Plant Res. Dept., Nuclear Res. Center, Inshas, Egypt and Genetics Dept., Faculty of Agricultural., Cairo Univ., during 2008-2011. In the field experiment, dry tubers of potato cultivars were irradiated by different doses of gamma rays (20, 30 and 40 Gy) to study the effect of gamma rays on the vegetative and yield traits. The results showed that there are no significant differences between cultivars for all studied traits except a number of tubers per plant trait. Also, there are only highly significant and significant differences between treatments for weight of tubers per plant and number of tubers per plant traits, respectively. However, there are only significant differences between the interactions of cultivars and treatments for plant height and weight of tubers per plant traits. Six genotypes were selected from M 1 V 2 generation depending on high yield for RAPD analysis to determine their genetic variability from its parents at molecular level using 11 primers. The results of RAPD analysis showed that 11 primers generated 56 distinct bands of which 31 (55.4%) were considered as polymorphic. The similarity indices of six genotypes of potato and its parents ranged from 70 to 91%. The highest genetic similarity 91% was found between D20 genotype and its parent D0 (Diamant control). On the other hand, the lowest genetic similarity 70% was found between S30, S40 genotypes and its parent S0 (Spunta control). In the artificial infection experiment

  10. Preparation of resistant sweet potato starch by steam explosion ...

    African Journals Online (AJOL)

    resistant sweet potato starch was identified by Fourier transform infrared ... can potentially be used in food or medicine for diabetic patients. ... were suspended in water (1:3.5, w/v), and ..... No conflict of interest associated with this work.

  11. Development of late blight resistance and heat tolerance through gamma irradiation of shoot cultures in potato

    International Nuclear Information System (INIS)

    Gosal, S.S.; Jitender Kaur, Adas; Minocha, J.L.

    2001-01-01

    In vitro shoot cultures of two potato varieties viz., Kufri jyoti and Kufri Chandramukhi were gamma irradiated at 20 Gy and 40 Gy. Micro tubers were induced in micro propagated M1V3 generation. For heat tolerance micro tubers were induced at elevated (28 C ) incubation temperature (optimum being 20 1C ) and were characterized by early sowing, chlorophyll persistence and harvest index. The number of micro tubers/plant was highly reduced at elevated temperature and the resulting tubers exhibited distorted shapes and growth of apical buds. Thus obtained micro tubers exhibited better germination (62.3%) even in early sowing at relatively higher temperature. The progenies from putative heat tolerant plants were grown in the field by sowing at higher temperature for four subsequent generations. Heat tolerant plants segregated in each generation but the frequency of heat tolerant plants increased in the advanced generation. For developing late blight resistance micro tubers produced from irradiated shoot cultures were sown in pots and resulting plants were screened using detached leaf method. The progenies of putative resistant plants grown in the field were artificially inoculated with sporangial inoculum of Phytophthora infection's. Field grown plants exhibited segregation with respect to disease reaction and about 56 per cent plants showed resistance. Segregation was reduced during following generation and the frequency of resistant plants was increased up to 72.3 per cent. Thus, repeated selections has helped in developing stable mutants in both the varieties

  12. Pathogen-derived resistance in potato to Potato virus Y: aspects of stability and biosafety under field conditions

    Czech Academy of Sciences Publication Activity Database

    Schubert, J.; Matoušek, Jaroslav; Mattern, D.

    2004-01-01

    Roč. 100, - (2004), s. 41-50 ISSN 0168-1702 R&D Projects: GA ČR GA522/00/0227 Keywords : virus diseases * resistance - potatoes Subject RIV: EE - Microbiology, Virology Impact factor: 2.155, year: 2004

  13. WAY OF PRE-PLANTING TREATMENT OF EARLY-RIPENNING POTATO

    Directory of Open Access Journals (Sweden)

    T. V. Semibratskaja

    2015-01-01

    Full Text Available The technology of pre-planting treatment of early-ripening potato increasing the volume of production in the Eastern forest-Steppe of Ukraine is presented. This technology is referred to development of organic-mineral container, which covers the surface of tubers and remains there until planting. During this period, the substance of the substrate has a direct impact on growth of apical points of tubers that stimulate its germination and development of root system, and prevent the breaking of sprouts. Comparative data of time of seedling emergence and yield of different potato varieties are presented.

  14. Synthetic Hexaploids Derived from Wild Species Related to Sweet Potato

    OpenAIRE

    SHIOTANI, Itaru; KAWASE, Tsuneo; 塩谷, 格; 川瀬, 恒男

    1987-01-01

    The utilization of germplasm of the wild species in sweet-potato breeding has been conducted for the last three decades. Such attempts brought some remarkable achievments in improving root yield, starch content and resistance to the nematodes of sweet potato. Some wild plants in polyploid series may have many genes potentially important for further improvement of the agronomic traits. However, the genomic relationship between the wild relatives and hexaploid sweet potato (2n=6x=90) has been u...

  15. Assessment of transformability of bacteria associated with tomato and potato plants

    NARCIS (Netherlands)

    Overbeek, van L.S.; Ray, J.L.; Elsas, van J.D.

    2007-01-01

    Transformation of plant-associated bacteria by plant DNA has never been demonstrated in agricultural fields. In total 552 bacterial isolates from stems of Ralstonia solanacearum-infected and healthy tomato plants and from stems and leaves of healthy potato plants were tested for natural genetic

  16. Potato transformation and potato cyst nematode infection on potato plantlets in tissue culture

    Science.gov (United States)

    These two protocols describe the methods for generating transgenic potato plants and for evaluating potato cyst nematode (Globodera rostochiensis and G. pallida) infection on potato plantlets in tissue culture. These methods are useful tools that can be used in the study of the interactions between ...

  17. Detection of potato mop-top virus in soils and potato tubers using bait-plant bioassay, ELISA and RT-PCR.

    Science.gov (United States)

    Arif, Muhammad; Ali, Murad; Rehman, Anayatur; Fahim, Muhammad

    2014-01-01

    The hilly region of Northwest of Pakistan is leading seed potato producing areas of the country. Soil and plant samples were collected from the region and tested for PMTV using both conventional and molecular techniques. The bait plants exhibited PMTV-characteristic v-shaped yellow leaf markings in Nicotiana debneyi plants grown in putative viruliferious soils from 20/26 locations. The results were confirmed by back inoculation of sap from both roots and leaves of bait plant on indicator hosts (N. debneyi, Nicotiana benthamiana). The root samples of bait plants grown in soils of 25 locations and leaves of 24 locations reproduced systemic infection on indicator hosts upon back inoculation. The virus was identified in bait plants grown in soils from 25/26 locations using double antibody sandwich-enzyme linked immunosorbent assay (DAS)-ELISA and reverse transcription and polymerase chain reaction (RT-PCR) methods. The products of the 566bp were amplified from coat protein region of PMTV RNA 3 in both root and leaf samples of baited plants. The virus was detected in 10 potato cultivars commercially grown in the region using DAS-ELISA and RT-PCR. The virus was also detected in zoospores of Spongospora subterranea derived from the peels of selected scabby tubers using triple antibody sandwich (TAS)-ELISA. The results indicate that a bait plant bioassay, infectivity assay, ELISA and RT-PCR can detect PMTV in roots and leaves of baited plants, field samples, zoospores of S. subterranea and tubers of 10 potato cultivars commercially grown in the region. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Physiological responses of sweet potato (Ipomoea batatas L. plants due to different copper concentrations

    Directory of Open Access Journals (Sweden)

    Cristina Copstein Cuchiara

    2015-12-01

    Full Text Available At low concentrations, Cu is considered as an essential micronutrient for plants and as a constituent and activator of several enzymes. However, when in excess, Cu can negatively affect plant growth and metabolism. Therefore, the aim of this study was to evaluate physiological responses of sweet potato plants at different Cu concentrations by measuring morphological parameters, antioxidant metabolism, stomatal characteristics, and mineral profile. For this purpose, sweet potato plants were grown hydroponically in complete nutrient solution for six days. Then, the plants were transferred to solutions containing different Cu concentrations, 0.041 (control, 0.082, and 0.164 mM, and maintained for nine days. The main effect of increased Cu concentration was observed in the roots. The sweet potato plants grown in 0.082 mM Cu solution showed increased activity of antioxidant enzymes and no changes in growth parameters. However, at a concentration of 0.164 mM, Cu was transported from the roots to the shoots. This concentration altered morpho-anatomical characteristics and activated the antioxidant system because of the stress generated by excess Cu. On the basis of the results, it can be concluded that the sweet potato plants were able to tolerate Cu toxicity until 0.082 mM.

  19. Screening of non-tuber bearing Solanaceae for resistance to and induction of juvenile hatch of potato cyst nematodes and their potential for trap cropping

    NARCIS (Netherlands)

    Scholte, K.

    2000-01-01

    Ninety accessions of non-tuber bearing Solanaceae were screened for (i) resistance to and (ii) stimulatory effect on juvenile hatch of potato cyst nematodes, and (iii) their growth under temperate climatic conditions. All plant species belonging to the genus Solanum tested induced hatching but this

  20. Genetic stability in potato germplasm for resistance to root galling caused by the powdery scab pathogen spongospora subterranea

    Science.gov (United States)

    Spongospora subteranea, the causal agent of potato powdery scab is becoming increasingly important worldwide. Little is known about the genetic basis of resistance to this disease. The present study tested the hypothesis that potato genotypes with stable genetic resistance to "Spongospora root galli...

  1. Mapping, isolation and characterization of genes responsible for late blight resistance in potato

    NARCIS (Netherlands)

    Pel, M.

    2010-01-01

    Late blight (LB), caused by the oomycete Phytophthora infestans, is one of the most
    devastating diseases on potato. Resistance (R) genes from the wild species Solanum demissum
    have been used by breeders to generate late blight resistant cultivars, but resistance was soon
    overcome

  2. The Effector SPRYSEC-19 of Globodera rostochiensis Suppresses CC-NB-LRR-Mediated Disease Resistance in Plants1[C][W][OA

    Science.gov (United States)

    Postma, Wiebe J.; Slootweg, Erik J.; Rehman, Sajid; Finkers-Tomczak, Anna; Tytgat, Tom O.G.; van Gelderen, Kasper; Lozano-Torres, Jose L.; Roosien, Jan; Pomp, Rikus; van Schaik, Casper; Bakker, Jaap; Goverse, Aska; Smant, Geert

    2012-01-01

    The potato cyst nematode Globodera rostochiensis invades roots of host plants where it transforms cells near the vascular cylinder into a permanent feeding site. The host cell modifications are most likely induced by a complex mixture of proteins in the stylet secretions of the nematodes. Resistance to nematodes conferred by nucleotide-binding-leucine-rich repeat (NB-LRR) proteins usually results in a programmed cell death in and around the feeding site, and is most likely triggered by the recognition of effectors in stylet secretions. However, the actual role of these secretions in the activation and suppression of effector-triggered immunity is largely unknown. Here we demonstrate that the effector SPRYSEC-19 of G. rostochiensis physically associates in planta with the LRR domain of a member of the SW5 resistance gene cluster in tomato (Lycopersicon esculentum). Unexpectedly, this interaction did not trigger defense-related programmed cell death and resistance to G. rostochiensis. By contrast, agroinfiltration assays showed that the coexpression of SPRYSEC-19 in leaves of Nicotiana benthamiana suppresses programmed cell death mediated by several coiled-coil (CC)-NB-LRR immune receptors. Furthermore, SPRYSEC-19 abrogated resistance to Potato virus X mediated by the CC-NB-LRR resistance protein Rx1, and resistance to Verticillium dahliae mediated by an unidentified resistance in potato (Solanum tuberosum). The suppression of cell death and disease resistance did not require a physical association of SPRYSEC-19 and the LRR domains of the CC-NB-LRR resistance proteins. Altogether, our data demonstrated that potato cyst nematodes secrete effectors that enable the suppression of programmed cell death and disease resistance mediated by several CC-NB-LRR proteins in plants. PMID:22904163

  3. Extracellular Alkalinization as a Defense Response in Potato Cells.

    Science.gov (United States)

    Moroz, Natalia; Fritch, Karen R; Marcec, Matthew J; Tripathi, Diwaker; Smertenko, Andrei; Tanaka, Kiwamu

    2017-01-01

    A quantitative and robust bioassay to assess plant defense response is important for studies of disease resistance and also for the early identification of disease during pre- or non-symptomatic phases. An increase in extracellular pH is known to be an early defense response in plants. In this study, we demonstrate extracellular alkalinization as a defense response in potatoes. Using potato suspension cell cultures, we observed an alkalinization response against various pathogen- and plant-derived elicitors in a dose- and time-dependent manner. We also assessed the defense response against a variety of potato pathogens, such as protists ( Phytophthora infestans and Spongospora subterranea ) and fungi ( Verticillium dahliae and Colletotrichum coccodes ). Our results show that extracellular pH increases within 30 min in proportion to the number of pathogen spores added. Consistently with the alkalinization effect, the higher transcription level of several defense-related genes and production of reactive oxygen species was observed. Our results demonstrate that the alkalinization response is an effective marker to study early stages of defense response in potatoes.

  4. Multiplex real-time PCR for detection, identification and quantification of 'Candidatus Liberibacter solanacearum' in potato plants with zebra chip.

    Science.gov (United States)

    Li, Wenbin; Abad, Jorge A; French-Monar, Ronald D; Rascoe, John; Wen, Aimin; Gudmestad, Neil C; Secor, Gary A; Lee, Ing-Ming; Duan, Yongping; Levy, Laurene

    2009-07-01

    The new Liberibacter species, 'Candidatus Liberibacter solanacearum' (Lso) recently associated with potato/tomato psyllid-transmitted diseases in tomato and capsicum in New Zealand, was found to be consistently associated with a newly emerging potato zebra chip (ZC) disease in Texas and other southwestern states in the USA. A species-specific primer LsoF was developed for both quantitative real-time PCR (qPCR) and conventional PCR (cPCR) to detect and quantify Lso in infected samples. In multiplex qPCR, a plant cytochrome oxidase (COX)-based probe-primer set was used as a positive internal control for host plants, which could be used to reliably access the DNA extraction quality and to normalize qPCR data for accurate quantification of the bacterial populations in environment samples. Neither the qPCR nor the cPCR using the primer and/or probe sets with LsoF reacted with other Liberibacter species infecting citrus or other potato pathogens. The low detection limit of the multiplex qPCR was about 20 copies of the target 16S rDNA templates per reaction for field samples. Lso was readily detected and quantified in various tissues of ZC-affected potato plants collected from fields in Texas. A thorough but uneven colonization of Lso was revealed in various tissues of potato plants. The highest Lso populations were about 3x10(8) genomes/g tissue in the root, which were 3-order higher than those in the above-ground tissues of potato plants. The Lso bacterial populations were normally distributed across the ZC-affected potato plants collected from fields in Texas, with 60% of ZC-affected potato plants harboring an average Lso population from 10(5) to 10(6) genomes/g tissue, 4% of plants hosting above 10(7) Lso genomes/g tissue, and 8% of plants holding below 10(3) Lso genomes/g tissue. The rapid, sensitive, specific and reliable multiplex qPCR showed its potential to become a powerful tool for early detection and quantification of the new Liberibacter species associated

  5. Harvesting soil with potatoes

    DEFF Research Database (Denmark)

    Egelyng, Henrik

    2017-01-01

    Norwegian authorities demand soil leaving potato packing plants to be deposited as waste. Depositing soil from potato processing plants is associated with significant cost for Norwegian producers. Therefore CYCLE investigated potato soil harvesting from an innovation and socio-economic perspective....

  6. Induced genetic variation for resistance to M-virus in potato

    Energy Technology Data Exchange (ETDEWEB)

    Tellheim, E; Kleinhempel, R; Oertel, H; Springmann, B [Institute for Potato Research, Gross-Luesewitz (German Democratic Republic)

    1989-01-01

    Full text: Seeds of the cross 'Mariella' x 'Xenia N' were treated with DMS, NEH or NMH at the Institute of Chemical Physics, USSR Academy of Sciences, Moscow. The parent varieties are moderately resistant to potato virus M, the resistance is probably under polygenic control. The mutagen treated progenies were subjected to artificial infection and subsequently tested for two years serologically. This screening was performed three times. It was found that the mutagen treatments increased resistance as well as susceptibility to the M-virus. (author)

  7. Extreme resistance to two Brazilian strains of Potato virus Y (PVY in transgenic potato, cv. Achat, expressing the PVYº coat protein Resistência extrema a duas estirpes do Potato virus Y (PVY de batata transgênica, cv. Achat, expressando o gene da capa protéica do PVY O

    Directory of Open Access Journals (Sweden)

    Eduardo Romano

    2001-07-01

    Full Text Available The coat protein (CP gene of the potato virus Y strain "o" (PVY O was introduced into potato, cultivar Achat, via Agrobacterium tumefaciens-mediated transformation. Sixty three putative transgenic lines were challenged against the Brazilian strains PVY-OBR and PVY-NBR. An extremely resistant phenotype, against the two strains, was observed in one line, denominated 1P. No symptoms or positive ELISA results were observed in 16 challenged plants from this line. Another clone, named as 63P, showed a lower level of resistance. Southern blot analysis showed five copies of the CP gene in the extremely resistant line and at least three copies in the other resistant line. The stability of the integrated transgenes in the extreme resistant line was examined during several in vitro multiplications over a period of three years, with no modification in the Southern pattern was observed. The stability of the transgenes, the absence of primary infections and the relatively broad spectrum of resistance suggest that the extremely resistant line obtained in this work can be useful for agricultural purposes.O gene da capa protéica (CP do Potato virus Y estirpe "o", foi introduzido em batata cultivar Achat, via Agrobacterium tumefaciens. Sessenta e três linhas possivelmente transgênicas foram desafiadas com as estirpes brasileiras PVY-OBR e PVY-NBR. Uma linha apresentou extrema resistência às duas estirpes inoculadas, e foi denominado clone 1P. Não foram observados sintomas sistêmicos de infecção e as plantas foram negativas em Elisa. Outra linha, denominada clone 63P, mostrou algum nível de resistência. Análises por Southern blot indicaram a presença de pelo menos cinco cópias do gen CP no clone 1P e pelo menos três cópias no clone 63P. A estabilidade do gene introduzido no clone 1P foi avaliada durante três anos, após várias multiplicações in vitro. Não foram observadas mudanças no padrão do Southern blot. A estabilidade do transgene, na

  8. Plant Materials as an Appropriate Replacement for Reducing Environmental Risk of using Chemical Insecticides (Case Study: Colorado Potato Beetle

    Directory of Open Access Journals (Sweden)

    Akram taghizadeh sarokolaei

    2017-10-01

    Full Text Available Introduction Natural and human hazards arising from the use of chemical pesticides to reduce pest damage are significantly increased. In this way, tend to use alternatives with similar efficacy and less risk like plant to control pests has increased. Therefore, it seems that plant compounds can be used as alternatives to chemical insecticides to protect agricultural products in the future. These compounds have no harmful and negative effects on nature and are safer than chemical insecticides; they decompose rapidly, do not remain in soil and water and have no effect on non-target populations. One of the important agricultural products around the world is potato and a major pest of it around the world and in Iran that damage the product is Colorado potato beetle, Leptinotarsa decemlineata (Say. Nowadays chemical control is the most common method to control of this pest but causes resistance. According to the Colorado potato beetle resistant to conventional chemical pesticides for controlling them, in recent year tendency to use insecticide with plant origin become more for this pest.One of the most important plant compounds are essential oils. Due to the low risk of essential oils to humans and the environment and their insecticidal effect, we motivated to investigate the insecticidal effects of three important medicinal plants on Colorado potato beetle for reducing the environmental hazards arising from the use of chemical insecticides. Materials and methods Three insecticides thiamethoxam, diniteforane, imidacloprid were bought and three essential oils Satureja khuzistanica Jamzad, Ocimum basilicum L. and Mentha spicata L. were gathered in spring then dried in shade at room temperature and for later use in special plastic bags were stored at -24 ° C. With Clevenger essential oils were extracted. In the spring and summer 4th instars larvae of Leptinotarsa decemlineata Say from potato fields of Ardabil plain collected. Investigation against this

  9. The expression of R genes in genetic and induced resistance to potato cyst nematode Globodera rostochiensis (Wollenweber, 1923) Behrens, 1975.

    Science.gov (United States)

    Lavrova, V V; Matveeva, E M; Zinovieva, S V

    2015-01-01

    The characteristics of expression of two genes, H1 and Gro1-4, which determine the resistance to the sedentary parasitic nematode Globodera rostochiensis (Wollenweber, 1923) Behrens, 1975, in the resistant (Krepysh) and susceptible (Nevskii) potato cultivars was studied under a short-term exposure to low temperatures. Such treatment of susceptible plants at the early stages of ontogeny led to the activation of expression of H1 and Gro1-4 genes in roots and the H1 gene in leaves. The transcriptional activity of R genes was detected not only in roots but also in leaves (i.e., in tissue remote from the site of direct injury by the nematode) in the case of both genetic and induced resistance, indicating the development of a systemic defense response of plants to infection.

  10. Molecular and genetic characterization of the Ry adg locus on chromosome XI from Andigena potatoes conferring extreme resistance to potato virus Y.

    Science.gov (United States)

    Herrera, María Del Rosario; Vidalon, Laura Jara; Montenegro, Juan D; Riccio, Cinzia; Guzman, Frank; Bartolini, Ida; Ghislain, Marc

    2018-05-31

    We have elucidated the Andigena origin of the potato Ry adg gene on chromosome XI of CIP breeding lines and developed two marker assays to facilitate its introgression in potato by marker-assisted selection. Potato virus Y (PVY) is causing yield and quality losses forcing farmers to renew periodically their seeds from clean stocks. Two loci for extreme resistance to PVY, one on chromosome XI and the other on XII, have been identified and used in breeding. The latter corresponds to a well-known source of resistance (Solanum stoloniferum), whereas the one on chromosome XI was reported from S. stoloniferum and S. tuberosum group Andigena as well. To elucidate its taxonomic origin in our breeding lines, we analyzed the nucleotide sequences of tightly linked markers (M45, M6) and screened 251 landraces of S. tuberosum group Andigena for the presence of this gene. Our results indicate that the PVY resistance allele on chromosome XI in our breeding lines originated from S. tuberosum group Andigena. We have developed two marker assays to accelerate the introgression of Ry adg gene into breeding lines by marker-assisted selection (MAS). First, we have multiplexed RYSC3, M6 and M45 DNA markers flanking the Ry adg gene and validated it on potato varieties with known presence/absence of the Ry adg gene and a progeny of 6,521 individuals. Secondly, we developed an allele-dosage assay particularly useful to identify multiplex Ry adg progenitors. The assay based on high-resolution melting analysis at the M6 marker confirmed Ry adg plex level as nulliplex, simplex and duplex progenitors and few triplex progenies. These marker assays have been validated and can be used to facilitate MAS in potato breeding.

  11. A Potato cDNA Encoding a Homologue of Mammalian Multidrug Resistant P-Glycoprotein

    Science.gov (United States)

    Wang, W.; Takezawa, D.; Poovaiah, B. W.

    1996-01-01

    A homologue of the multidrug resistance (MDR) gene was obtained while screening a potato stolon tip cDNA expression library with S-15-labeled calmodulin. The mammalian MDR gene codes for a membrane-bound P-glycoprotein (170-180 kDa) which imparts multidrug resistance to cancerous cells. The potato cDNA (PMDR1) codes for a polypeptide of 1313 amino acid residues (ca. 144 kDa) and its structural features are very similar to the MDR P-glycoprotein. The N-terminal half of the PMDR1-encoded protein shares striking homology with its C-terminal half, and each half contains a conserved ATP-binding site and six putative transmembrane domains. Southern blot analysis indicated that potato has one or two MDR-like genes. PMDR1 mRNA is constitutively expressed in all organs studied with higher expression in the stem and stolon tip. The PMDR1 expression was highest during tuber initiation and decreased during tuber development.

  12. Glycinebetaine synthesizing transgenic potato plants exhibit enhanced tolerance to salt and cold stresses

    International Nuclear Information System (INIS)

    Ahmad, R.; Hussain, J.

    2014-01-01

    Abiotic stresses are the most important contributors towards low productivity of major food crops. Various attempts have been made to enhance abiotic stress tolerance of crop plants by classical breeding and genetic transformation. Genetic transformation with glycinebetaine (GB) synthesizing enzymes' gene(s) in naturally non accumulating plants has resulted in enhanced tolerance against variety of abiotic stresses. Present study was aimed to evaluate the performance of GB synthesizing transgenic potato plants against salt and cold stresses. Transgenic potato plants were challenged against salt and cold stresses at whole plant level. Transgenic lines were characterized to determine the transgene copy number. Different parameters like integrity, chlorophyll contents, tuber yield and vegetative biomass were studied to monitor the stress tolerance of transgenic potato plants. The results were compared with Non-transgenic (NT) plants and statistically analyzed to evaluate significant differences. Multi-copy insertion of expression cassette was found in both transgenic lines. Upon salt stress, transgenic plants maintained better growth as compared to NT plants. The tuber yield of transgenic plants was significantly greater than NT plants in salt stress. Transgenic plants showed improved membrane integrity against cold stress by depicting appreciably reduced ion leakage as compared to NT plants. Moreover, transgenic plants showed significantly less chlorophyll bleaching than NT plants upon cold stress. In addition, NT plants accumulated significantly less biomass, and yielded fewer tubers as compared to transgenic plants after cold stress treatment. The study will be a committed step for field evaluation of transgenic plants with the aim of commercialization. (author)

  13. Detection of Methylobacterium radiotolerans IMBG290 in potato plants by in situ hybridization

    OpenAIRE

    Pirttila A. M.; Kozyrovska N. O.; Ovcharenko L. P.; Podolich O. V.

    2009-01-01

    A new bacterial strain of pink-pigmented facultative methylotroph (M. radiotolerans IMBG290) which was previously isolated from in vitro grown potato plantlets after their inoculation with Pseudomonas fluorescens IMBG163 was detected in tissues by in situ hybridization method (ISH/FISH). The presence of Methylobacterium rRNA was observed in leaves and stems of potato plantlets, whereas no signal was detected in potato roots. The signal was less abundant in the untreated plants than in the pla...

  14. Host Plant Volatiles and the Sexual Reproduction of the Potato Aphid, Macrosiphum euphorbiae

    Directory of Open Access Journals (Sweden)

    Jessica Hurley

    2014-10-01

    Full Text Available In late summer, heteroecious aphids, such as the potato aphid, Macrosiphum euphorbiae, move from their secondary summer host plants to primary host plants, where the sexual oviparae mate and lay diapausing eggs. We tested the hypothesis that volatiles of the primary host, Rosa rugosa, would attract the gynoparae, the parthenogenetic alate morph that produce oviparae, as well as the alate males foraging for suitable mates. In wind tunnel assays, both gynoparae and males oriented towards and reached rose cuttings significantly more often than other odour sources, including potato, a major secondary host. The response of males was as high to rose cuttings alone as to potato with a calling virgin oviparous female. These findings are discussed within the seasonal ecology of host alternating aphids.

  15. Potato psyllid and the South American desert plant Nolana: an unlikely psyllid host?

    Science.gov (United States)

    Managing zebra chip disease in the potato growing regions of Washington, Oregon, and Idaho is complicated by confusion about the role of non-crop plant species in zebra chip epidemiology. Weedy and ornamental Solanaceae have been shown to be reservoirs of both the potato psyllid (vector of the dise...

  16. Transfer of 137Cs, essential and trace elements from soil to potato plants in an agricultural field

    International Nuclear Information System (INIS)

    Tsukada, H.; Hasegawa, H.

    2000-01-01

    The concentrations of 137 Cs, essential and trace elements were measured in soils and potato tubers collected from 26 agricultural fields in Aomori, Japan, and soil-to-potato transfer factors were determined. The elements were divided into two groups. The first group (Cl, K, Ca, etc.) showed an inverse correlation between the transfer factors and the concentrations of the elements in the soils, while for the second group (Sc, Co, etc.) the transfer factors were independent of the soil concentrations of the elements. The transfer factors of 137 Cs (0.0037-0.16), derived from global fallout, were well correlated with those of naturally stable Cs (0.00052-0.080). These transfer factors showed a negative correlation with the soil concentrations of K and Cs, but they were independent of the organic material contents in the soils. These results suggest that the transfer of stable Cs could serve as a natural analog to predict the behavior of radiocesium in the soil-plant pathway. The distributions of these elements were determined for the entire potato plant. The concentrations of the elements were lower in the tubers than in leaves, petioles and stems. During the harvesting of potatoes the elements in the non-edible portions of the potato plants are returned to the soil, where they may again be utilized in the soil-potato pathways. Therefore, the distributions of elements in plant components can provide useful information for understanding the transfer of radionuclides and elements from the soil to plants in agricultural fields. The concentration ratios for Sr/Ca in potato plant components showed relatively constant values while those for Cs/K varied. These findings suggest that the translocation rates of both Ca and Sr were similar within a potato plant, whereas those of K and Cs were different. Consequently, the transfers of both Ca and Sr may predict the behavior of radiostrontium. The transfer of Cs could be used to predict the behavior of radiocesium, whereas the

  17. Hydroponic potato production on nutrients derived from anaerobically-processed potato plant residues

    Science.gov (United States)

    Mackowiak, C. L.; Stutte, G. W.; Garland, J. L.; Finger, B. W.; Ruffe, L. M.

    1997-01-01

    Bioregenerative methods are being developed for recycling plant minerals from harvested inedible biomass as part of NASA's Advanced Life Support (ALS) research. Anaerobic processing produces secondary metabolites, a food source for yeast production, while providing a source of water soluble nutrients for plant growth. Since NH_4-N is the nitrogen product, processing the effluent through a nitrification reactor was used to convert this to NO_3-N, a more acceptable form for plants. Potato (Solanum tuberosum L.) cv. Norland plants were used to test the effects of anaerobically-produced effluent after processing through a yeast reactor or nitrification reactor. These treatments were compared to a mixed-N treatment (75:25, NO_3:NH_4) or a NO_3-N control, both containing only reagent-grade salts. Plant growth and tuber yields were greatest in the NO_3-N control and yeast reactor effluent treatments, which is noteworthy, considering the yeast reactor treatment had high organic loading in the nutrient solution and concomitant microbial activity.

  18. Characterization of susceptibility and resistance responses to potato cyst nematode (Globodera spp.) infection of tomato lines in the absence and presence of the broad-spectrum nematode resistance Hero gene.

    Science.gov (United States)

    Sobczak, Miroslaw; Avrova, Anna; Jupowicz, Justyna; Phillips, Mark S; Ernst, Karin; Kumar, Amar

    2005-02-01

    The tomato Hero A gene is the only member of a multigene family that confers a high level (>80%) of resistance to all the economically important pathotypes of potato cyst nematode (PCN) species Globodera rostochiensis and G. pallida. Although the resistance levels of transgenic tomato lines were similar to those of the tomato line LA1792 containing the introgressed Hero multigene family, transgenic potato plants expressing the tomato Hero A gene are not resistant to PCNs. Comparative microscopy studies of in vitro infected roots of PCN-susceptible tomato cv. Money Maker, the resistant breeding line LA1792, and transgenic line L10 with Ro1 pathotype have revealed no statistically significant difference in the number of juveniles invading roots. However, syncytia (specialized feeding cells) induced in LA1792 and L10 roots mostly were found to have degenerated a few days after their induction, and a few surviving syncytia were able to support only the development of males rather than females. Thus, the ratio between males and females was biased towards males on LA1792 and L10 roots. A series of changes occur in resistant plants leading to formation of a layer of necrotic cells separating the syncytium from stellar conductive tissues and this is followed by degradation of the syncytium. Although the Hero A gene is expressed in all tissues, including roots, stems, leaves, and flower buds, its expression is upregulated in roots in response to PCN infection. Moreover, the expression profiles of the Hero A correlates with the timing of death of the syncytium.

  19. Molecular contest between potato and the potato cyst nematode Globodera pallida: modulation of Gpa2-mediated resistance

    NARCIS (Netherlands)

    Koropacka, K.B.

    2010-01-01

    Gpa2 recognition specificity
    Among all the multicellular animals, nematodes are the most numerous. In soil, a high variety
    of free living nematodes feeding on bacteria can be found as well as species that parasitize
    insects, animals or plants. The potato cyst nematode (PCN)

  20. Potato cyst nematodes Globodera rostochiensis and Globodera pallida, and their chemoecological interactions with the host plant

    OpenAIRE

    Čepulytė-Rakauskienė, Rasa

    2012-01-01

    Potato cyst nematodes Globodera rostochiensis and Globodera pallida are one of the most important solanaceous plant pests. Identification of potato cyst nematodes species is exposed to morphological similarities and overlapping morphometric measurements between species. Only modern molecular techniques allow more accurate identification of potato cyst nematode species. Hence, it is important to apply these techniques in order to reliably identify these species in Lithuania. Potato roo...

  1. THE INFLUENCE OF POTATO CYST NEMATODE G. ROSTOCHIENSIS INFESTATION ON DIFFERENT POTATO CULTIVARS

    Directory of Open Access Journals (Sweden)

    Gregor Urek

    2008-07-01

    Full Text Available The potato cyst nematode Globodera rostochiensis is one of the most serious pests of potato in Slovenia. Precise nematode identification and knowledge about potato cultivars, which are most suitable for growing in the Slovenian climate conditions and most resistant to G. rostochiensis, are necessary to develop an effective integrated pest control. Here we report the results of the influence of G. rostochiensis pathotype Ro1/4 on the yield of different potato cultivars: the susceptible cultivar Desiree, the resistant cultivars White Lady, Miranda, Aladin, Sante and Adora, and the clone KIS 94-1/5-14. The yield of cv. White Lady was the highest and that of susceptible cv. Desiree the lowest. The influence of several resistant and one susceptible potato cultivars on population dynamics of G. rostochiensis was also determined. The total number of cysts/100 cm3 and the number of eggs and juveniles per cyst increased in the susceptible cv. Desiree and decreased in the resistant cultivars White Lady, Sante and Adora.

  2. Detection of Methylobacterium radiotolerans IMBG290 in potato plants by in situ hybridization

    Directory of Open Access Journals (Sweden)

    Pirttila A. M.

    2009-04-01

    Full Text Available A new bacterial strain of pink-pigmented facultative methylotroph (M. radiotolerans IMBG290 which was previously isolated from in vitro grown potato plantlets after their inoculation with Pseudomonas fluorescens IMBG163 was detected in tissues by in situ hybridization method (ISH/FISH. The presence of Methylobacterium rRNA was observed in leaves and stems of potato plantlets, whereas no signal was detected in potato roots. The signal was less abundant in the untreated plants than in the plantlets infected with M. radiotolerans IMBG290.

  3. Influence of planting and harvesting dates on sweet potato yield ...

    African Journals Online (AJOL)

    home

    Two experiments were conducted to study the influence of harvesting date on three sweet potato ... determining whole top yields above ground level. .... plant storage organ (which in this case is the root) prior to harvesting and processing for.

  4. Using SNP markers to dissect linkage disequilibrium at a major quantitative trait locus for resistance to the potato cyst nematode Globodera pallida on potato chromosome V.

    Science.gov (United States)

    Achenbach, Ute; Paulo, Joao; Ilarionova, Evgenyia; Lübeck, Jens; Strahwald, Josef; Tacke, Eckhard; Hofferbert, Hans-Reinhard; Gebhardt, Christiane

    2009-02-01

    The damage caused by the parasitic root cyst nematode Globodera pallida is a major yield-limiting factor in potato cultivation . Breeding for resistance is facilitated by the PCR-based marker 'HC', which is diagnostic for an allele conferring high resistance against G. pallida pathotype Pa2/3 that has been introgressed from the wild potato species Solanum vernei into the Solanum tuberosum tetraploid breeding pool. The major quantitative trait locus (QTL) controlling this nematode resistance maps on potato chromosome V in a hot spot for resistance to various pathogens including nematodes and the oomycete Phytophthora infestans. An unstructured sample of 79 tetraploid, highly heterozygous varieties and breeding clones was selected based on presence (41 genotypes) or absence (38 genotypes) of the HC marker. Testing the clones for resistance to G. pallida confirmed the diagnostic power of the HC marker. The 79 individuals were genotyped for 100 single nucleotide polymorphisms (SNPs) at 10 loci distributed over 38 cM on chromosome V. Forty-five SNPs at six loci spanning 2 cM in the interval between markers GP21-GP179 were associated with resistance to G. pallida. Based on linkage disequilibrium (LD) between SNP markers, six LD groups comprising between 2 and 18 SNPs were identified. The LD groups indicated the existence of multiple alleles at a single resistance locus or at several, physically linked resistance loci. LD group C comprising 18 SNPs corresponded to the 'HC' marker. LD group E included 16 SNPs and showed an association peak, which positioned one nematode resistance locus physically close to the R1 gene family.

  5. In vitro induction of variation through radiation for late blight resistance and heat tolerance in potato

    International Nuclear Information System (INIS)

    Minocha, J.L.; Das, A.; Gopal, J.; Gosal, S.S.

    1997-01-01

    In vitro plants were obtained from nodal sections of sprouts of cvs. 'Kufri Jyoti' and 'Kufri Chandramukhi' of potato cultured on MS medium with 3% sucrose. Callus from leaves of in vitro cultured plantlets was induced on modified Linsmaier and Skoog medium supplemented with 5 mg/1 NAA. The obtained shoots and calli were irradiated with 20 and 40 Gy gamma rays. Irradiatied shoots were transferred to MS medium with 8% sucrose for multiplication, and then to MS medium with 8% sucrose and 10 mg/1 BAP to induce microtuber formation, which gave on average 1.3 microtubers per plant. The microtubers were planted in pots and variation was observed in plant morphology and tuber characters. To study variation for late blight resistance, irradiated calli were kept on Gamborg B-5 medium with culture filtrate of Phytophthora infestans. To induce variation for heat tolerance, in vitro shoots from irradiated material were mass-propagated and allowed to produce microtubers at high temperature. (author). 3 refs, 3 tabs

  6. In vitro induction of variation through radiation for late blight resistance and heat tolerance in potato

    Energy Technology Data Exchange (ETDEWEB)

    Minocha, J L; Das, A; Gopal, J; Gosal, S S [Biotechnology Centre, Punjab Agricultural Univ., Ludhiana, Punjab (India)

    1997-07-01

    In vitro plants were obtained from nodal sections of sprouts of cvs. `Kufri Jyoti` and `Kufri Chandramukhi` of potato cultured on MS medium with 3% sucrose. Callus from leaves of in vitro cultured plantlets was induced on modified Linsmaier and Skoog medium supplemented with 5 mg/1 NAA. The obtained shoots and calli were irradiated with 20 and 40 Gy gamma rays. Irradiatied shoots were transferred to MS medium with 8% sucrose for multiplication, and then to MS medium with 8% sucrose and 10 mg/1 BAP to induce microtuber formation, which gave on average 1.3 microtubers per plant. The microtubers were planted in pots and variation was observed in plant morphology and tuber characters. To study variation for late blight resistance, irradiated calli were kept on Gamborg B-5 medium with culture filtrate of Phytophthora infestans. To induce variation for heat tolerance, in vitro shoots from irradiated material were mass-propagated and allowed to produce microtubers at high temperature. (author). 3 refs, 3 tabs.

  7. Control of sweet potato virus diseases.

    Science.gov (United States)

    Loebenstein, Gad

    2015-01-01

    Sweet potato (Ipomoea batatas) is ranked seventh in global food crop production and is the third most important root crop after potato and cassava. Sweet potatoes are vegetative propagated from vines, root slips (sprouts), or tubers. Therefore, virus diseases can be a major constrain, reducing yields markedly, often more than 50%. The main viruses worldwide are Sweet potato feathery mottle virus (SPFMV) and Sweet potato chlorotic stunt virus (SPCSV). Effects on yields by SPFMV or SPCSV alone are minor, or but in complex infection by the two or other viruses yield losses of 50%. The orthodox way of controlling viruses in vegetative propagated crops is by supplying the growers with virus-tested planting material. High-yielding plants are tested for freedom of viruses by PCR, serology, and grafting to sweet potato virus indicator plants. After this, meristem tips are taken from those plants that reacted negative. The meristems were grown into plants which were kept under insect-proof conditions and away from other sweet potato material for distribution to farmers after another cycle of reproduction. © 2015 Elsevier Inc. All rights reserved.

  8. Selection and validation of potato candidate genes for maturity corrected resistance to Phytophthora infestans based on differential expression combined with SNP association and linkage mapping

    Directory of Open Access Journals (Sweden)

    Meki Shehabu Muktar

    2015-09-01

    Full Text Available Late blight of potato (Solanum tuberosum L. caused by the oomycete Phytophthora infestans (Mont. de Bary, is one of the most important bottlenecks of potato production worldwide. Cultivars with high levels of durable, race unspecific, quantitative resistance are part of a solution to this problem. However, breeding for quantitative resistance is hampered by the correlation between resistance and late plant maturity, which is an undesirable agricultural attribute. The objectives of our research are (i the identification of genes that condition quantitative resistance to P. infestans not compromised by late plant maturity and (ii the discovery of diagnostic single nucleotide polymorphism (SNP markers to be used as molecular tools to increase efficiency and precision of resistance breeding. Twenty two novel candidate genes were selected based on comparative transcript profiling by SuperSAGE (serial analysis of gene expression in groups of plants with contrasting levels of maturity corrected resistance (MCR. Reproducibility of differential expression was tested by quantitative real time PCR and allele specific pyrosequencing in four new sets of genotype pools with contrasting late blight resistance levels, at three infection time points and in three independent infection experiments. Reproducibility of expression patterns ranged from 28% to 97%. Association mapping in a panel of 184 tetraploid cultivars identified SNPs in five candidate genes that were associated with MCR. These SNPs can be used in marker-assisted resistance breeding. Linkage mapping in two half-sib families (n = 111 identified SNPs in three candidate genes that were linked with MCR. The differentially expressed genes that showed association and/or linkage with MCR putatively function in phytosterol synthesis, fatty acid synthesis, asparagine synthesis, chlorophyll synthesis, cell wall modification and in the response to pathogen elicitors.

  9. Bee Community of Commercial Potato Fields in Michigan and Bombus impatiens Visitation to Neonicotinoid-Treated Potato Plants

    Directory of Open Access Journals (Sweden)

    Amanda L. Buchanan

    2017-03-01

    Full Text Available We conducted a bee survey in neonicotinoid-treated commercial potato fields using bowl and vane traps in the 2016 growing season. Traps were placed outside the fields, at the field edges, and 10 and 30 m into the fields. We collected 756 bees representing 58 species, with Lasioglossum spp. comprising 73% of all captured bees. We found seven Bombus spp., of which B. impatiens was the only known visitor of potato flowers in our region. The majority of the bees (68% were collected at the field edges and in the field margins. Blue vane traps caught almost four-times as many bees and collected 30% more species compared to bowl traps. Bee communities did not differ across trap locations but they were different among trap types. We tested B. impatiens visitation to neonicotinoid treated and untreated potato flowers in field enclosures. The amount of time bees spent at flowers and the duration of visits were not significantly different between the two treatments. Our results demonstrate that a diverse assemblage of bees is associated with an agroecosystem dominated by potatoes despite the apparent lack of pollinator resources provided by the crop. We found no difference in B. impatiens foraging behavior on neonicotinoid-treated compared to untreated plants.

  10. The Potato Aphid Salivary Effector Me47 Is a Glutathione-S-Transferase Involved in Modifying Plant Responses to Aphid Infestation.

    Science.gov (United States)

    Kettles, Graeme J; Kaloshian, Isgouhi

    2016-01-01

    Polyphagous aphid pests cause considerable economic damage to crop plants, primarily through the depletion of photoassimilates and transfer of viruses. The potato aphid (Macrosiphum euphorbiae) is a notable pest of solanaceous crops, however, the molecular mechanisms that underpin the ability to colonize these hosts are unknown. It has recently been demonstrated that like other aphid species, M. euphorbiae injects a battery of salivary proteins into host plants during feeding. It is speculated that these proteins function in a manner analagous to secreted effectors from phytopathogenic bacteria, fungi and oomycetes. Here, we describe a novel aphid effector (Me47) which was identified from the potato aphid salivary secretome as a putative glutathione-S-transferase (GST). Expression of Me47 in Nicotiana benthamiana enhanced reproductive performance of green peach aphid (Myzus persicae). Similarly, delivery of Me47 into leaves of tomato (Solanum lycopersicum) by Pseudomonas spp. enhanced potato aphid fecundity. In contrast, delivery of Me47 into Arabidopsis thaliana reduced GPA reproductive performance, indicating that Me47 impacts the outcome of plant-aphid interactions differently depending on the host species. Delivery of Me47 by the non-pathogenic Pseudomonas fluorescens revealed that Me47 protein or activity triggers defense gene transcriptional upregulation in tomato but not Arabidopsis. Recombinant Me47 was purified and demonstrated to have GST activity against two specific isothiocyanates (ITCs), compounds implicated in herbivore defense. Whilst GSTs have previously been associated with development of aphid resistance to synthetic insecticides, the findings described here highlight a novel function as both an elicitor and suppressor of plant defense when delivered into host tissues.

  11. Enzyme-resistant dextrins from potato starch for potential application in the beverage industry.

    Science.gov (United States)

    Jochym, Kamila Kapusniak; Nebesny, Ewa

    2017-09-15

    The objective of this study was to produce soluble enzyme-resistant dextrins by microwave heating of potato starch acidified with small amounts of hydrochloric and citric acids and to characterize their properties. Twenty five samples were initially made and their solubility was determined. Three samples with the highest water solubility were selected for physico-chemical (dextrose equivalent, molecular weight distribution, pasting characteristics, retrogradation tendency), total dietary fiber (TDF) analysis, and stability tests. TDF content averaged 25%. Enzyme-resistant dextrins practically did not paste, even at 20% samples concentration, and were characterized by low retrogradation tendency. The stability of the samples, expressed as a percentage increase of initial and final reducing sugar content, at low pH and during heating at low pH averaged 10% and 15% of the initial value, respectively. The results indicate that microwave heating could be an effective and efficient method of producing highly-soluble, low-viscous, and enzyme-resistant potato starch dextrins. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. [Polymorphism of KPI-A genes from plants of the subgenus Potatoe (sect. Petota, Estolonifera and Lycopersicum) and subgenus Solanum].

    Science.gov (United States)

    Krinitsyna, A A; Mel'nikova, N V; Belenikin, M S; Poltronieri, P; Santino, A; Kudriavtseva, A V; Savilova, A M; Speranskaia, A S

    2013-01-01

    Kunitz-type proteinase inhibitor proteins of group A (KPI-A) are involved in the protection of potato plants from pathogens and pests. Although sequences of large number of the KPI-A genes from different species of cultivated potato (Solanum tuberosum subsp. tuberosum) and a few genes from tomato (Solanum lycopersicum) are known to date, information about the allelic diversity of these genes in other species of the genus Solanum is lacking. In our work, the consensus sequences of the KPI-A genes were established in two species of subgenus Potatoe sect. Petota (Solanum tuberosum subsp. andigenum--5 genes and Solanum stoloniferum--2 genes) and in the subgenus Solanum (Solanum nigrum--5 genes) by amplification, cloning, sequencing and subsequent analysis. The determined sequences of KPI-A genes were 97-100% identical to known sequences of the cultivated potato of sect. Petota (cultivated potato Solanum tuberosum subsp. tuberosum) and sect. Etuberosum (S. palustre). The interspecific variability of these genes did not exceed the intraspecific variability for all studied species except Solanum lycopersicum. The distribution of highly variable and conserved sequences in the mature protein-encoding regions was uniform for all investigated KPI-A genes. However, our attempts to amplify the homologous genes using the same primers and the genomes of Solanum dulcamarum, Solanum lycopersicum and Mandragora officinarum resulted in no product formation. Phylogenetic analysis of KPI-A diversity showed that the sequences of the S. lycopersicum form independent cluster, whereas KPI-A of S. nigrum and species of sect. Etuberosum and sect. Petota are closely related and do not form species-specific subclasters. Although Solanum nigrum is resistant to all known races of economically one of the most important diseases of solanaceous plants oomycete Phytophthora infestans aminoacid sequences encoding by KPI-A genes from its genome have nearly or absolutely no differences to the same from

  13. Detection of sweet potato virus C, sweet potato virus 2 and sweet potato feathery mottle virus in Portugal.

    Science.gov (United States)

    Varanda, Carla M R; Santos, Susana J; Oliveira, Mônica D M; Clara, Maria Ivone E; Félix, Maria Rosário F

    2015-06-01

    Field sweet potato plants showing virus-like symptoms, as stunting, leaf distortion, mosaic and chlorosis, were collected in southwest Portugal and tested for the presence of four potyviruses, sweet potato virus C (SPVC), sweet potato virus 2 (SPV2), sweet potato feathery mottle virus (SPFMV), sweet potato virus G (SPVG), and the crinivirus sweet potato chlorotic stunt virus (SPCSV). DsRNA fractions were extracted from symptomatic leaves and used as templates in single and multiplex RT-PCR assays using previously described specific primers for each analyzed virus. The amplified reaction products for SPVC, SPV2 and SPFMV were of expected size, and direct sequencing of PCR products revealed that they correspond to the coat protein gene (CP) and showed 98%, 99% and 99% identity, respectively, to those viruses. Comparison of the CP genomic and amino acid sequences of the Portuguese viral isolates recovered here with those of ten other sequences of isolates obtained in different countries retrieved from the GenBank showed very few differences. The application of the RT-PCR assays revealed for the first time the presence of SPVC and SPFMV in the sweet potato crop in Portugal, the absence of SPVG and SPCSV in tested plants, as well as the occurrence of triple virus infections under field conditions.

  14. The potato aphid salivary effector Me47 is a glutathione-S-transferase involved in modifying plant responses to aphid infestation

    Directory of Open Access Journals (Sweden)

    Graeme James Kettles

    2016-08-01

    Full Text Available Polyphagous aphid pests cause considerable economic damage to crop plants, primarily through the depletion of photoassimilates and transfer of viruses. The potato aphid (Macrosiphum euphorbiae is a notable pest of solanaceous crops, however the molecular mechanisms that underpin the ability to colonize these hosts are unknown. It has recently been demonstrated that like other aphid species, M. euphorbiae injects a battery of salivary proteins into host plants during feeding. It is speculated that these proteins function in a manner analagous to secreted effectors from phytopathogenic bacteria, fungi and oomycetes. Here we describe a novel aphid effector (Me47 which was identified from the potato aphid salivary secretome as a putative glutathione-S-transferase (GST. Expression of Me47 in Nicotiana benthamiana enhanced reproductive performance of green peach aphid (Myzus persicae. Similarly, delivery of Me47 into leaves of tomato (Solanum lycopersicum by Pseudomonas spp. enhanced potato aphid fecundity. In contrast, delivery of Me47 into Arabidopsis thaliana reduced GPA reproductive performance, indicating that Me47 impacts the outcome of plant-aphid interactions differently depending on the host species. Delivery of Me47 by the non-pathogenic Pseudomonas fluorescens revealed that Me47 protein or activity triggers defense gene transcriptional upregulation in tomato but not Arabidopsis. Recombinant Me47 was purified and demonstrated to have GST activity against two specific isothiocyanates (ITCs, compounds implicated in herbivore defense. Whilst GSTs have previously been associated with development of aphid resistance to synthetic insecticides, the findings described here highlight a novel function as both an elicitor and suppressor of plant defense when delivered into host tissues.

  15. Immunity to potato mop-top virus in Nicotiana benthamiana plants expressing the coat protein gene is effective against fungal inoculation of the virus.

    Science.gov (United States)

    Reavy, B; Arif, M; Kashiwazaki, S; Webster, K D; Barker, H

    1995-01-01

    Nicotiana benthamiana stem tissue was transformed with Agrobacterium tumefaciens harboring a binary vector containing the potato mop-top virus (PMTV) coat protein (CP) gene. PMTV CP was expressed in large amounts in some of the primary transformants. The five transgenic lines which produced the most CP were selected for resistance testing. Flowers on transformed plants were allowed to self-fertilize. Transgenic seedlings selected from the T1 seed were mechanically inoculated with two strains of PMTV. Virus multiplication, assayed by infectivity, was detected in only one transgenic plant of 98 inoculated. T1 plants were also highly resistant to graft inoculation; PMTV multiplied in only one plant of 45 inoculated. Transgenic T1 seedlings were challenged in a bait test in which they were grown in soil containing viruliferous spores of the vector fungus Spongospora subterranea. In these tests only two plants out of 99 became infected. Of the five transgenic lines tested, plants of three lines were immune to infection following manual, graft, or fungal inoculation.

  16. Effect of potato (Solanum tuberosum addition on dough properties, sensory qualities and resistant starch content of bread

    Directory of Open Access Journals (Sweden)

    Maria Lidia IANCU

    2015-08-01

    Full Text Available The aim of this study is to assess the effects of adding different varieties of boiled potatoes-pasta (PP, Impala (I and Orchestra (O, to wheat flour in bread making. These potato varieties were used to replace wholemeal 1250 type flour (F1 and hard wheat semolina flour (F2 in different concentrations: 5%, 10%, 20%, 30%. The rheological properties of dough with added potato were assessed by means of the flour-graphic technique. The study also determined the amount of resistant starch (RS, non-resistant starch (n-RS, total starch (TS and moisture content of the potato bread. The results showed that the water absorption (WA in the potato dough containing salt and yeast decreased by 28.8% (F2-I-PP, and by 41.2% (F1-I-PP respectively. The same happened with the dough development time, dough stability and quality number. We found out that the degree of dough softening was increased, as was the moisture content of the bread, which went from 47.7% (O-PP-F2 to 50.3% (I-PP-F1. The level of the ten analyzed sensory properties led to the conclusion that, by adding up to 20% PP, we enhance the bread quality. The RS content increased by 5.1 g/100 g d.m. for F1 bread for the 30% (O-PP-F2 potato content batch. In F2 bread, the RS content increased by up to 5.11g/100 g d.m. for the 30% (O-PP-F2 potato content batch. Given the method of analysis, RS may be a mixture of RS2 (natural granule starch and RS3 (retrograde or non crystalline retrograde. Therefore, potato bread is very healthy and recommended for its nutritional benefits.

  17. THE INFLUENCE OF POTATO CYST NEMATODE G. ROSTOCHIENSIS INFESTATION ON DIFFERENT POTATO CULTIVARS

    OpenAIRE

    Gregor Urek; S Širca; Stare Geric; B Dolničar; P Strajnar

    2008-01-01

    The potato cyst nematode Globodera rostochiensis is one of the most serious pests of potato in Slovenia. Precise nematode identification and knowledge about potato cultivars, which are most suitable for growing in the Slovenian climate conditions and most resistant to G. rostochiensis, are necessary to develop an effective integrated pest control. Here we report the results of the influence of G. rostochiensis pathotype Ro1/4 on the yield of different potato cultivars: the susceptible cultiva...

  18. Proteomics analysis suggests broad functional changes in potato leaves triggered by phosphites and a complex indirect mode of action against Phytophthora infestans.

    Science.gov (United States)

    Lim, Sanghyun; Borza, Tudor; Peters, Rick D; Coffin, Robert H; Al-Mughrabi, Khalil I; Pinto, Devanand M; Wang-Pruski, Gefu

    2013-11-20

    Phosphite (salts of phosphorous acid; Phi)-based fungicides are increasingly used in controlling oomycete pathogens, such as the late blight agent Phytophthora infestans. In plants, low amounts of Phi induce pathogen resistance through an indirect mode of action. We used iTRAQ-based quantitative proteomics to investigate the effects of phosphite on potato plants before and after infection with P. infestans. Ninety-three (62 up-regulated and 31 down-regulated) differentially regulated proteins, from a total of 1172 reproducibly identified proteins, were identified in the leaf proteome of Phi-treated potato plants. Four days post-inoculation with P. infestans, 16 of the 31 down-regulated proteins remained down-regulated and 42 of the 62 up-regulated proteins remained up-regulated, including 90% of the defense proteins. This group includes pathogenesis-related, stress-responsive, and detoxification-related proteins. Callose deposition and ultrastructural analyses of leaf tissues after infection were used to complement the proteomics approach. This study represents the first comprehensive proteomics analysis of the indirect mode of action of Phi, demonstrating broad effects on plant defense and plant metabolism. The proteomics data and the microscopy study suggest that Phi triggers a hypersensitive response that is responsible for induced resistance of potato leaves against P. infestans. Phosphie triggers complex functional changes in potato leaves that are responsible for the induced resistance against Phytophthora infestans. This article is part of a Special Issue entitled: Translational Plant Proteomics. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Composite potato plants with transgenic roots on non-transgenic shoots: a model system for studying gene silencing in roots.

    Science.gov (United States)

    Horn, Patricia; Santala, Johanna; Nielsen, Steen Lykke; Hühns, Maja; Broer, Inge; Valkonen, Jari P T

    2014-12-01

    Composite potato plants offer an extremely fast, effective and reliable system for studies on gene functions in roots using antisense or inverted-repeat but not sense constructs for gene inactivation. Composite plants, with transgenic roots on a non-transgenic shoot, can be obtained by shoot explant transformation with Agrobacterium rhizogenes. The aim of this study was to generate composite potato plants (Solanum tuberosum) to be used as a model system in future studies on root-pathogen interactions and gene silencing in the roots. The proportion of transgenic roots among the roots induced was high (80-100%) in the four potato cultivars tested (Albatros, Desirée, Sabina and Saturna). No wild-type adventitious roots were formed at mock inoculation site. All strains of A. rhizogenes tested induced phenotypically normal roots which, however, showed a reduced response to cytokinin as compared with non-transgenic roots. Nevertheless, both types of roots were infected to a similar high rate with the zoospores of Spongospora subterranea, a soilborne potato pathogen. The transgenic roots of composite potato plants expressed significantly higher amounts of β-glucuronidase (GUS) than the roots of a GUS-transgenic potato line event. Silencing of the uidA transgene (GUS) was tested by inducing roots on the GUS-transgenic cv. Albatros event with strains of A. rhizogenes over-expressing either the uidA sense or antisense transcripts, or inverted-repeat or hairpin uidA RNA. The three last mentioned constructs caused 2.5-4.0 fold reduction in the uidA mRNA expression. In contrast, over-expression of uidA resulted in over 3-fold increase in the uidA mRNA and GUS expression, indicating that sense-mediated silencing (co-suppression) was not functional in roots. The results suggest that composite plants offer a useful experimental system for potato research, which has gained little previous attention.

  20. Population dynamics of potato cyst nematodes and associated damage to potato

    NARCIS (Netherlands)

    Schans, J.

    1993-01-01

    Population dynamics of potato cyst nematodes (PCN; Globoderarostochiensis (Woll.) Skarbilovich and G. pallida Stone) and their interactions with potato plants are insufficiently understood to explain variations of population

  1. WEED MANAGEMENT AND CONTROL IN POTATOES

    Directory of Open Access Journals (Sweden)

    Marcelo Cleón de Castro Silva

    2011-07-01

    Full Text Available This review shows instructions to potatoes' farmer about behavior of the weeds and how to manage them so as to minimize loss of productivity through the use of control strategies for potato crop. The prevention consists in adoption of practices that prevents entry of unwanted species of weeds in the planting site. The control reduces the infestation of these species, but this practice does not eradicate them completely. However, it needs to control the weeds before the area preparation for planting the tubers until complete closure of the soil by shoots of potatoes during the critical period. After covering the soil, the potato crop does not suffer negative interference caused by weeds. The cultural practices include a good plane for harvest, plant crop rotation, the planting of appropriate plants for covering the soil, the ideal space to the planting and the correct time to potato planting. The control must be efficient to reduce the number of weeds in the area to avoid economic losses to farmers. It is necessary to establish weed management strategies in order to maintain sustainable farming systems, preserving the environment and quality of life of the farmer.

  2. Comparative metabolite profiling of Solanum tuberosum against six wild Solanum species with Colorado potato beetle resistance.

    Science.gov (United States)

    Tai, Helen H; Worrall, Kraig; Pelletier, Yvan; De Koeyer, David; Calhoun, Larry A

    2014-09-10

    The Colorado potato beetle Leptinotarsa decemlineata (Say) (CPB) is a coleopteran herbivore that feeds on the foliage on Solanum species, in particular, potato. Six resistant wild Solanum species were identified, and two of these species had low levels of glycoalkaloids. Comparative analysis of the untargeted metabolite profiles of the foliage using UPLC-qTOF-MS was done to find metabolites shared between the wild species but not with Solanum tuberosum (L.) to identify resistance-related metabolites. It was found that only S. tuberosum produced the triose glycoalkaloids solanine and chaconine. Instead, the six wild species produced glycoalkaloids that shared in common tetrose sugar side chains. Additionally, there were non-glycoalkaloid metabolites associated with resistance including hydroxycoumarin and a phenylpropanoid, which were produced in all wild species but not in S. tuberosum.

  3. Using SNP markers to dissect linkage disequilibrium at a major quantitative trait locus for resistance to the potato cyst nematode Globodera pallida on potato chromosome V

    NARCIS (Netherlands)

    Achenbach, U.; Caldas Paulo, M.J.; Ilarionova, E.; Lübeck, J.; Strahwald, J.; Tacke, E.; Hofferbert, H.R.

    2009-01-01

    The damage caused by the parasitic root cyst nematode Globodera pallida is a major yield-limiting factor in potato cultivation . Breeding for resistance is facilitated by the PCR-based marker 'HC', which is diagnostic for an allele conferring high resistance against G. pallida pathotype Pa2/3 that

  4. Genetic and physical mapping of homologues of the virus resistance gene Rx1 and the cyst nematode resistance gene Gpa2 in potato.

    Science.gov (United States)

    Bakker, E; Butterbach, P; Rouppe van der Voort, J; van der Vossen, E; van Vliet, J; Bakker, J; Goverse, A

    2003-05-01

    Nine resistance gene homologues (RGHs) were identified in two diploid potato clones (SH and RH), with a specific primer pair based on conserved motifs in the LRR domain of the potato cyst nematode resistance gene Gpa2 and the potato virus X resistance gene Rx1. A modified AFLP method was used to facilitate the genetic mapping of the RGHs in the four haplotypes under investigation. All nine RGHs appeared to be located in the Gpa2/ Rx1 cluster on chromosome XII. Construction of a physical map using bacterial artificial chromosome (BAC) clones for both the Solanum tuberosum ssp. tuberosum and the S. tuberosum ssp. andigena haplotype of SH showed that the RGHs are located within a stretch of less than 200 kb. Sequence analysis of the RGHs revealed that they are highly similar (93 to 95%) to Gpa2 and Rx1. The sequence identities among all RGHs range from 85 to 100%. Two pairs of RGHs are identical, or nearly so (100 and 99.9%), with each member located in a different genotype. Southern-blot analysis on genomic DNA revealed no evidence for additional homologues outside the Gpa2/ Rx1 cluster on chromosome XII.

  5. Characterization of Digestion Resistance Sweet Potato Starch ...

    African Journals Online (AJOL)

    Purpose: To analyze the physicochemical properties and in vitro digestibility of sweet potato starchphosphodiester prepared using sodium trimetaphosphate. Methods: The physicochemical properties of sweet potato starch phosphodiester were analyzed by using infrared spectrometry (IR), differential scanning calorimetry ...

  6. Preliminary survey of potato virus Y (PVy) strains in potato samples from Kurdistan (Iran).

    Science.gov (United States)

    Bahrami-Kamangar, S; De Jonghe, K; Kamangar, S; Maes, M; Smagghe, G

    2010-01-01

    Potato virus Y (PVY) is the type species in the potyvirus genus of the family potyviridae. This plant pathogenic virus is transmitted through plant sap inoculation by stem and core grafting and by at least 25 aphid species in a non-persistent manner. According to potato specialists in most parts of the world, PVY is currently considered as the most harmful virus in cultivated potatoes. This is also the case for potato production in Iran. In this project we investigated potato leaves that were collected in the Kurdistan province in Iran for the presence of PVY with use of different biochemical/molecular techniques as ELISA, RT-PCR and qPCR. The different PVY strains, including PVY-O, PVY-N, PVYN-TN, PVY-NWi, were determined by using a triplex RT-PCR. In conclusion, the results demonstrated the presence of PVY-NWi strains in the potato leaf samples from Kurdistan (Iran). The data are discussed in relation to prevalence of PVY strains in Iran.

  7. Resistance Responses of Potato to Vesicular-Arbuscular Mycorrhizal Fungi under Varying Abiotic Phosphorus Levels.

    Science.gov (United States)

    McArthur, D A; Knowles, N R

    1992-09-01

    In mycorrhizal symbioses, susceptibility of a host plant to infection by fungi is influenced by environmental factors, especially the availability of soil phosphorus. This study describes morphological and biochemical details of interactions between a vesicular-arbuscular mycorrhizal (VAM) fungus and potato (Solanum tuberosum L. cv Russet Burbank) plants, with a particular focus on the physiological basis for P-induced resistance of roots to infection. Root infection by the VAM fungus Glomus fasciculatum ([Thaxt. sensu Gerdemann] Gerdemann and Trappe) was extensive for plants grown with low abiotic P supply, and plant biomass accumulation was enhanced by the symbiosis. The capacity of excised roots from P-deficient plants to produce ethylene in the presence or absence of exogenous 1-amino cyclopropane-1-carboxylic acid (ACC) was markedly reduced by VAM infection. This apparent inhibition of ACC oxidase (ACC(ox)) activity was localized to areas containing infected roots, as demonstrated in split-root studies. Furthermore, leachate from VAM roots contained a potent water-soluble inhibitor of ethylene generation from exogenous ACC by nonmycorrhizal (NM) roots. The leachate from VAM-infected roots had a higher concentration of phenolics, relative to that from NM roots. Moreover, the rates of ethylene formation and phenolic concentration in leachates from VAM roots were inversely correlated, suggesting that this inhibitor may be of a phenolic nature. The specific activity of extracellular peroxidase recovered in root leachates was not stimulated by VAM infection, although activity on a fresh weight basis was significantly enhanced, reflecting the fact that VAM roots had higher protein content than NM roots. Polyphenol oxidase activity of roots did not differ between NM and VAM roots. These results characterize the low resistance response of P-deficient plants to VAM infection. When plants were grown with higher abiotic P supply, the relative benefit of the VAM symbiosis

  8. COMBINING EFFECTS OF CULTURAL PRACTICES AND RESISTANT CULTIVARS ON REDUCING THE INCIDENCE OF Meloidogyne spp. AND Thrips palmy Karny ON POTATO

    Directory of Open Access Journals (Sweden)

    Wiwin Setiawati

    2013-05-01

    Full Text Available Root-knot nematode (Meloidogyne spp. and melon thrips (Thrips palmy Karny are two serious pests on potato. These pests are conventionally controlled with synthetic pesticides. Cultural practices based on integrated pest management (IPM are alternative methods to control these pests. The study aimed to determine the effectiveness of combined applications of cultural practices and potato cultivars in reducing the incidences of nematode and thrips. Treatments evaluated were methods of nematode and thrips control by implementing IPM and conventional practices. A split-plot randomized complete block design with four replications was  sed. The main plots were IPM or cultural practices (subsoiling, soil solarization and use of trap crop of marigold Tagetes erecta and conventional practices using synthetic pesticides. The subplots were five potato cultivars, i.e. No. 095 (Herta x FLS–17, 720050/Kikondo, 676068/ I.1085, Granola, and Atlantic. The results showed that applications of cultural practices in combination with potato cultivars reduced Meloidogyne spp. population and potato tuber damage by 53.70% and 61.36%, respectively, as well as a significantly decreased thrips population. In the cultural control plots, thrips populations were below the action threshold (10.0 nymphs per leaf, therefore no single application of pesticide was used. This was in contrast to the conventional control treatments where insecticide was spayed 10 times until harvest. The subsoiling and solarization cut off the life cycle of the thrips and any survive thrips were trapped by marigold plant. Population of T. palmi on the five potato cultivars differed significantly; the lowest population was found on the cultivars No. 095 (Herta x FLS-17 and 676068/I.1085. The cultural control practices combined with potato cultivar No. 095 (Herta x FLS–17 were the best treatment for controlling Meloidogyne spp. and T. palmi on potato and also produced the highest yield (31.01 t

  9. Effects of planting times and plant densities of top-shoot cuttings on multiplication of breeder seed potato

    Directory of Open Access Journals (Sweden)

    Md. Abdullah Al Mamun

    2016-01-01

    Full Text Available Top-shoot cuttings were planted with the whole tuber (as a control at different dates using three spacings at the Horticultural Research Farm of Bangabandhu Sheikh Mujibur Rahman Agricultural University to evaluate the performance of top-shoots as planting material and to determine the optimum time of planting and the optimum spacing for top-shoot cuttings as planting material for breeder seed production. The survival of top shoot cuttings was more than 97.8% irrespective of the planting time and plant spacing. Significant variations were found among the treatment combinations for plant height at 45 and 60 days after planting (DAP, foliage coverage at 45 and 60 DAP, number of branches per plant, number of tubers per plant, individual tuber weight, tuber yields per plant and per hectare yield. The highest mean yield (46.57 t/ha was produced by whole tubers planted on 10 November with 50 × 10 cm spacing which was similar to whole tubers planted on 1 November with 50 × 10 cm spacing. On the other hand, plants from top-shoot cuttings yielded 34.82 t/ha in T3S2 followed by T1S1 (33.34 t/ha, T3S3 (30.70 t/ha. The total yield of potato increased 122.8% from a single, early crop due to taking two repeated cuttings compared with 89.6% from a single late crop. Early planting of top-shoot cuttings with closer spacing (50 × 10 cm and 50 × 15 cm is recommended for the multiplication of breeder seed potato.

  10. Lamoka, a variety with excellent chip color out of cold storage and resistance to the golden potato cyst nematode

    Science.gov (United States)

    Lamoka is a white-skinned, white-fleshed potato cultivar variety notable for excellent chip color from cold storage, good yield, and resistance to both common scab and race Ro1 of the golden potato cyst nematode (Globodera rostochiensis). It was selected from a cross made at Cornell University in 1...

  11. Monitoring changes in anthocyanin and steroid alkaloid glycoside content in lines of transgenic potato plants using liquid chromatography/mass spectrometry.

    Science.gov (United States)

    Stobiecki, Maciej; Matysiak-Kata, Iwona; Frański, Rafał; Skała, Jacek; Szopa, Jan

    2003-03-01

    Transgenic potato plants overexpressing and repressing enzymes of flavonoids biosynthesis were created and analyzed. The selected plants clearly showed the expected changes in anthocyanins synthesis level. Overexpression of a DNA encoding dihydroflavonol 4-reductase (DFR) in sense orientation resulted in an increase in tuber anthocyanins, a 4-fold increase in petunidin and pelargonidin derivatives. A significant decrease in anthocyanin level was observed when the plant was transformed with a corresponding antisense construct. The transformation of potato plants was also accompanied by significant changes in steroid alkaloid glycosides (SAG) level in transgenic potato tuber. The changes in SAGs content was not dependent on flavonoid composition in transgenic potato. However, in an extreme situation where the highest (DFR11) or the lowest (DFRa3) anthocyanin level was detected the positive correlation with steroid alkaloid content was clearly visible. It is suggested that the changes in SAGs content resulted from chromatin stressed upon transformation. A liquid chromatography/mass spectrometry (LC/MS) system with electrospray ionization was applied for profiling qualitative and quantitative changes of steroid alkaloid glycosides in tubers of twelve lines of transgenic potato plants. Except alpha-chaconine and alpha-solanine, in the extracts from dried tuber skin alpha-solamargine and alpha-solasonine, triglycosides of solasonine, were identified in minor amounts, triglycosides of solanidine dehydrodimers were also recognized.

  12. How Planting Density Affects Number and Yield of Potato Minitubers in a Commercial Glasshouse Production System

    NARCIS (Netherlands)

    Veeken, van der A.J.H.; Lommen, W.J.M.

    2009-01-01

    Commercial potato minituber production systems aim at high tuber numbers per plant. This study investigated by which mechanisms planting density (25.0, 62.5 and 145.8 plants/m2) of in vitro derived plantlets affected minituber yield and minituber number per plantlet. Lowering planting density

  13. Examples of alien pathogens in Finnish potato production - their introduction, establishment and consequences

    Directory of Open Access Journals (Sweden)

    A.O. HANNUKKALA

    2008-12-01

    Full Text Available Most pathogens on potato have been imported into Finland via contaminated seed more than hundred years ago. The history of migration and the consequences for potato production of potato wart, blackleg and soft rot, Potato mop-top virus (PMTV and its vector powdery scab are reviewed as examples of economically important and biologically different potato pathogens. Potato wart spread alarmingly during 1920-1960. Plant quarantine acts and the use of resistant cultivars were successful in eradicating the disease. The pathogens causing blackleg and soft rot increased rapidly in 1960-1970. Development of seed certification schemes after the end of the 1970s decreased disease incidence and made the disease insignificant other than for seed potato production. Introduction of new strains of blackleg bacteria in 2003 caused the disease again to become a considerable threat to potato production. PMTV was imported into Finland in the 1970s where it spread rapidly, especially in starch potato production. Currently it is common in all potato production except that of seed potato. The disease cannot be eradicated but contamination of clean fields can be prevented. New diseases can spread to Finland in future but population changes of existing pathogens have recently caused more problems than species completely new to Finland.;

  14. Induction of recessive mutations in potato using tissue culture techniques

    International Nuclear Information System (INIS)

    Enckevort, L.J.G. van; Hoogkamp, T.J.H.; Bergervoet, J.E.M.; Visser, R.G.F.; Jacobsen, E.; Stiekma, W.J.; Pereira, A.

    2001-01-01

    In potato, two different in vitro approaches were used to generate recessive mutants. In the first method, monoploid plant material was irradiated to isolate and identify amylose-free (amf) mutants in potato. For isolating secondary mutants in the amf background new monoploids of the amf type were developed. A few selected amf monoploids showed excellent vigour in vitro, large leave; and microtuber formation. A diploid and a monoploid were tested for in vitro mutation induction and irradiated with 0 to 16 Gy X rays. The optimal dose for survival and mutation induction was between 4 and 8 Gy and plants were regenerated from irradiated leaf explants. In the second approach, mutants were induced by insertion of transposable elements in the diploids. This method was used to mutate R genes for resistance to Phytophthora infestans. Diploid heterozygous Rr plants with the immobilised Ds element, closely linked to one of the R genes, were selected. Mobilisation of Ds using Ac element transposase resulted in the selection of plants with active somatic Ds excision frequency of about 10%. In vitro protoplast isolation and plant regeneration from such plants enabled the selection of regenerants with new independent Ds insertions. Hygromycin selection (Ds excision marker on the T-DNA) during protoplast regeneration increased the frequency of Ds excision regenerants to 56%. A total of 582 hygromycin resistant plants were regenerated and selected in vitro. Preliminary analysis of the regenerants showed re-insertions of Ds in the predicted coding sequences of genes. (author)

  15. [Allelic state of the molecular marker for the golden nematode (Globodera rostochiensis) resistance gene H1 among Ukrainian and world cultivars of potato (Solanum tuberosum ssp. tuberosum)].

    Science.gov (United States)

    Karelov, A V; Pilipenko, L A; Kozub, N A; Bondus, R A; Borzykh, A U; Sozinov, I A; Blium, Ia B; Sozinov, A A

    2013-01-01

    The purpose of our investigation was determination of allelic state of the H1 resistance gene against the pathotypes Ro1 and Ro4 of golden potato cyst nematode (Globodera rostochiensis) among Ukrainian and world potato (Solanum tuberosum ssp. tuberosum) cultivars. The allelic condition of the TG689 marker was determined by PCR with DNA samples isolated from tubers of potato and primers, one pair of which flanks the allele-specific region and the other one was used for the control of DNA quality. Among analyzed 77 potato cultivars the allele of marker associated with the H1-type resistance was found in 74% of Ukrainian and 90% foreign ones although some of those cultivars proved to be susceptible to the golden potato nematode in field. The obtained data confirm the presence of H1-resistance against golden nematode pathotypes Ro1 and Ro4 among the Ukrainian potato cultivars and efficiency of the used marker within the accuracy that has been declared by its authors.

  16. Influence of day-length and isolates of Phytophthora infestans on field resistance to late blight of potato.

    Science.gov (United States)

    Mihovilovich, E; Munive, S; Bonierbale, M

    2010-04-01

    Main and interaction effects of day-length and pathogen isolate on the reaction and expression of field resistance to Phytophthora infestans were analyzed in a sample of standard clones for partial resistance to potato late blight, and in the BCT mapping population derived from a backcross of Solanum berthaultii to Solanum tuberosum. Detached leaves from plants grown in field plots exposed to short- and long day-length conditions were independently inoculated with two P. infestans isolates and incubated in chambers under short- and long photoperiods, respectively. Lesion growth rate (LGR) was used for resistance assessment. Analysis of variance revealed a significant contribution of genotype x isolate x day-length interaction to variation in LGR indicating that field resistance of genotypes to foliar late blight under a given day-length depended on the infecting isolate. An allele segregating from S. berthaultii with opposite effects on foliar resistance to late blight under long- and short day-lengths, respectively, was identified at a quantitative trait locus (QTL) that mapped on chromosome 1. This allele was associated with positive (decreased resistance) and negative (increased resistance) additive effects on LGR, under short- and long day-length conditions, respectively. Disease progress on whole plants inoculated with the same isolate under field conditions validated the direction of its effect in short day-length regimes. The present study suggests the occurrence of an isolate-specific QTL that displays interaction with isolate behavior under contrasting environments, such as those with different day-lengths. This study highlights the importance of exposing genotypes to a highly variable population of the pathogen under contrasting environments when stability to late blight resistance is to be assessed or marker-assisted selection is attempted for the manipulation of quantitative resistance to late blight.

  17. Tuber formation in the wild potato species Solanum demissum Lindl.

    NARCIS (Netherlands)

    Helder, J.

    1994-01-01

    1. How does a potato plant form tubers?

    Potato plants produce sexual multiplication and survival structures, true seeds, and asexual multiplication and survival bodies, tubers. Berries of the potato plant contain a large number of minute seeds. Relatively large

  18. Isolation of Dickeya dadantii strains from potato disease and biocontrol by their bacteriophages

    Directory of Open Access Journals (Sweden)

    Abbas Soleimani-Delfan

    2015-09-01

    Full Text Available One of the most economically important bacterial pathogens of plants and plant products is Dickeya dadantii. This bacterium causes soft rot disease in tubers and other parts of the potato and other plants of the Solanaceae family. The application of restricted host range bacteriophages as biocontrol agents has recently gained widespread interest. This study purposed to isolate the infectious agent of the potato and evaluate its biocontrol by bacteriophages. Two phytopathogenic strains were isolated from infected potatoes, identified based on biochemical and 16S rRNA gene sequencing, and submitted to GenBank as D. dadantii strain pis3 (accession no. HQ423668 and D. dadantii strain sip4 (accession no. HQ423669. Their bacteriophages were isolated from Caspian Sea water by enriching the water filtrate with D. dadantii strains as hosts using spot or overlay methods. On the basis of morphotypes, the isolated bacteriophages were identified as members of the Myoviridae and Siphoviridae families and could inhibit the growth of antibiotic resistant D. dadantii strains in culture medium. Moreover, in Dickeya infected plants treated with bacteriophage, no disease progression was detected. No significant difference was seen between phage-treated and control plants. Thus, isolated bacteriophages can be suggested for the biocontrol of plant disease caused by Dickeya strains.

  19. Resistance to Root Galling Caused by the Powdery Scab Pathogen Spongospora subterranea in Potato

    Science.gov (United States)

    Potato selections (clones and commercial cultivars) were examined for resistance to root galling, caused by the powdery scab pathogen Spongospora subterranea in 7 field trials conducted between 2003 and 2007 in the states of Washington (WA) and Idaho (ID). In 2003, Shepody demonstrated the highest l...

  20. Tolerance of some potato mutants induced with gamma irradiation to drought in vitro

    International Nuclear Information System (INIS)

    Al-Safadi, B.; Ayyoubi, Z.

    2006-04-01

    An in vitro selection program was conducted in order to improve potato (Solanum tuberosum) tolerance to drought. Potato mutant plants were obtained through a previously conducted mutation breeding program on three potato cultivars (Draga, Spunta, and Diamant) aimed at improving potato tolerance to salinity and resistance to late blight disease. In order to apply selection pressure, growth media (MS based) were prepared with the addition of 1%, 2%, 3% concentrations of Poly Ethylene Glycol (PEG). As a result, three mutants were selected that were tolerant to water stress (i.e. drought tolerant) two of which came from the cultivar Draga and one from Spunta. Physiological growth parameters (plant length, leaf number, branch number, roots number, leaf area, stomata number, and chlorophyll concentration content) were taken on the growing plantlets. The selected mutants were distinguished with some characteristics which can help in their tolerance to drought. Some of these characteristics were an increase in leaf number, root number, and a decrease in stomata number. However a reduction in chlorophyll content was observed as compared with the control. These mutant lines will need further selection in the field for plants with larger tubers before they can be considered as certified lines. (author)

  1. Comparison of the chromosome maps around a resistance hot spot on chromosome 5 of potato and tomato using BAC-FISH painting.

    Science.gov (United States)

    Achenbach, Ute C; Tang, Xiaomin; Ballvora, Agim; de Jong, Hans; Gebhardt, Christiane

    2010-02-01

    Potato chromosome 5 harbours numerous genes for important qualitative and quantitative traits, such as resistance to the root cyst nematode Globodera pallida and the late blight fungus, Phytophthora infestans. The genes make up part of a "hot spot" for resistances to various pathogens covering a genetic map length of 3 cM between markers GP21 and GP179. We established the physical size and position of this region on chromosome 5 in potato and tomato using fluorescence in situ hybridization (FISH) on pachytene chromosomes. Five potato bacterial artificial chromosome (BAC) clones with the genetically anchored markers GP21, R1-contig (proximal end), CosA, GP179, and StPto were selected, labeled with different fluorophores, and hybridized in a five-colour FISH experiment. Our results showed the location of the BAC clones in the middle of the long arm of chromosome 5 in both potato and tomato. Based on chromosome measurements, we estimate the physical size of the GP21-GP179 interval at 0.85 Mb and 1.2 Mb in potato and tomato, respectively. The GP21-GP179 interval is part of a genome segment known to have inverted map positions between potato and tomato.

  2. Calcium soil amendment increases resistance of potato to blackleg ...

    African Journals Online (AJOL)

    This study shows that calcium soil amendments reduce blackleg and soft rot diseases under Zimbabwe's growing seasons in red fersiallitic soils. Compound S produces better results in potato production than compound D and farmers should be encouraged to use compound S when growing potatoes. Key words: potato ...

  3. Differential response of potato toward inoculation with taxonomically diverse plant growth promoting Rhizobacteria

    NARCIS (Netherlands)

    Naqqash, Tahir; Hameed, Sohail; Imran, Asma; Hanif, Muhammad Kashif; Majeed, Afshan; van Elsas, Jan Dirk

    2016-01-01

    Rhizosphere engineering with beneficial plant growth promoting bacteria offers great promise for sustainable crop yield. Potato is an important food commodity that needs large inputs of nitrogen and phosphorus fertilizers. To overcome high fertilizer demand (especially nitrogen), five bacteria,

  4. Sequence Exchange between Homologous NB-LRR Genes Converts Virus Resistance into Nematode Resistance, and Vice Versa.

    Science.gov (United States)

    Slootweg, Erik; Koropacka, Kamila; Roosien, Jan; Dees, Robert; Overmars, Hein; Lankhorst, Rene Klein; van Schaik, Casper; Pomp, Rikus; Bouwman, Liesbeth; Helder, Johannes; Schots, Arjen; Bakker, Jaap; Smant, Geert; Goverse, Aska

    2017-09-01

    Plants have evolved a limited repertoire of NB-LRR disease resistance ( R ) genes to protect themselves against myriad pathogens. This limitation is thought to be counterbalanced by the rapid evolution of NB-LRR proteins, as only a few sequence changes have been shown to be sufficient to alter resistance specificities toward novel strains of a pathogen. However, little is known about the flexibility of NB-LRR R genes to switch resistance specificities between phylogenetically unrelated pathogens. To investigate this, we created domain swaps between the close homologs Gpa2 and Rx1 , which confer resistance in potato ( Solanum tuberosum ) to the cyst nematode Globodera pallida and Potato virus X , respectively. The genetic fusion of the CC-NB-ARC of Gpa2 with the LRR of Rx1 (Gpa2 CN /Rx1 L ) results in autoactivity, but lowering the protein levels restored its specific activation response, including extreme resistance to Potato virus X in potato shoots. The reciprocal chimera (Rx1 CN /Gpa2 L ) shows a loss-of-function phenotype, but exchange of the first three LRRs of Gpa2 by the corresponding region of Rx1 was sufficient to regain a wild-type resistance response to G. pallida in the roots. These data demonstrate that exchanging the recognition moiety in the LRR is sufficient to convert extreme virus resistance in the leaves into mild nematode resistance in the roots, and vice versa. In addition, we show that the CC-NB-ARC can operate independently of the recognition specificities defined by the LRR domain, either aboveground or belowground. These data show the versatility of NB-LRR genes to generate resistance to unrelated pathogens with completely different lifestyles and routes of invasion. © 2017 American Society of Plant Biologists. All Rights Reserved.

  5. Economic viability and commercial experience with shihoro potato irradiation

    International Nuclear Information System (INIS)

    Kume, T.

    1985-01-01

    A commercial potato irradiation plant was established in 1973 at Shihoro in Hokkaido, Japan, with a capacity of about 10,000 tons per month using large baskets containing 1.5 tons of potatoes. For twelve seasons potatoes have been irradiated and marketed by the plant. The paper will discuss the experience with the Shihoro potato irradiator from the technical and economic viewpoints. From the technical viewpoint, the following are the main factors that have contributed to the success of potato irradiation. First, the Japanese government initiated research on food irradiation as a national project and provided financial support. Second, the presence of the Shihoro Agricultural Cooperative Association which handles a large amount of potatoes; and third, the mock-up test for the conceptual design of irradiation was conducted using large baskets for storage and transportation. The cost of the irradiation plant was about 389 million yen, of which 253 million yen was provided by the government. The irradiation plant processes about 15,000 tons of potatoes a year and the costs are 2,000 to 4,500 yen per ton. This accounts for 2 to 3% of the potato price and is within the range of commercial feasibility. The irradiated potatoes effectively controlled the market price and is within the range of commercial feasibility. The irradiated potatoes effectively controlled the market price fluctuations during the off-season

  6. Biological and biochemical studies on irradiated potato tubers

    International Nuclear Information System (INIS)

    Salem, E.A.F.M

    2008-01-01

    The present investigation aimed to study and overcome two important diseases which attacks potato plant, using some chemical and physical treatments. The first disease was pre harvest brown rot caused by ralstonia solanacearum and the second was post harvest dry rot caused by fusarium oxysporum. The results are summarized as follows: firstly brown rot : 1- Foliar treatment of salicylic acid or calcium chloride on potato plants leads to increasing in plant height and number of potato tubers, since salicylic acid give the highest value of plant height and also calcium chloride give the highest number of potato tubers. Also, this treatment leads to insignificant decreasing in number of potato tubers infected by brown rot. 2- The bacteria ralstonia solanacearum isolated from infected tubers obtained from the project of brown rot, Ministry of agriculture, Egypt, added with irrigate water to the pots this bacteria could infect healthy potato plant and the symptoms of brown rot observed on tubers also pathogenicity test was carried out using seedling of tomato cultivar Gs plants and wilting of tomato plant observed after 10-15 days from injection with R.solanacearum. 3- Concerning D 10 -value determined from the relation between dose rate of gamma ray (k-rad) and log count of bacterial number it was found that the D 10 -value for R.solanacearum was 0.25 kGy

  7. Comparison between Proteome and Transcriptome Response in Potato (Solanum tuberosum L.) Leaves Following Potato Virus Y (PVY) Infection.

    Science.gov (United States)

    Stare, Tjaša; Stare, Katja; Weckwerth, Wolfram; Wienkoop, Stefanie; Gruden, Kristina

    2017-07-06

    Plant diseases caused by viral infection are affecting all major crops. Being an obligate intracellular organisms, chemical control of these pathogens is so far not applied in the field except to control the insect vectors of the viruses. Understanding of molecular responses of plant immunity is therefore economically important, guiding the enforcement of crop resistance. To disentangle complex regulatory mechanisms of the plant immune responses, understanding system as a whole is a must. However, integrating data from different molecular analysis (transcriptomics, proteomics, metabolomics, smallRNA regulation etc.) is not straightforward. We evaluated the response of potato ( Solanum tuberosum L.) following the infection with potato virus Y (PVY). The response has been analyzed on two molecular levels, with microarray transcriptome analysis and mass spectroscopy-based proteomics. Within this report, we performed detailed analysis of the results on both levels and compared two different approaches for analysis of proteomic data (spectral count versus MaxQuant). To link the data on different molecular levels, each protein was mapped to the corresponding potato transcript according to StNIB paralogue grouping. Only 33% of the proteins mapped to microarray probes in a one-to-one relation and additionally many showed discordance in detected levels of proteins with corresponding transcripts. We discussed functional importance of true biological differences between both levels and showed that the reason for the discordance between transcript and protein abundance lies partly in complexity and structure of biological regulation of proteome and transcriptome and partly in technical issues contributing to it.

  8. Radiation preservation of foods of plant origin. Part 1. Potatoes and other tuber crops

    International Nuclear Information System (INIS)

    Thomas, P.

    1984-01-01

    In Part 1 of a planned series of articles on preservation of foods of plant origin by gamma irradiation, the current state of research on the technological, nutritional, and biochemical aspects of sprout inhibition of potatoes and other tuber crops are reviewed. These include varietal responses, dose effects, time of irradiation, pre- and postirradiation storage, and handling requirements; postirradiation changes in carbohydrates, ascorbic acid, amino acids, and other nutrients; respiration; biochemical mechanisms involved in sprout inhibition; wound healing and microbial infection during storage; formation of wound and light-induced glycoalkaloids and identification of irradiated potatoes. The culinary and processing qualities with particular reference to darkening of boiled and processed potatoes are discussed. The prospects of irradiation on an industrial scale as an alternative to chemical sprout inhibitors or mechanical refrigeration are considered

  9. Postharvest changes in glycoalkaloid content of potatoes.

    Science.gov (United States)

    Friedman, M; McDonald, G M

    1999-01-01

    Potatoes contain antinutritional and potentially toxic compounds including inhibitors of digestive enzymes, hemagglutinins, and glycoalkaloids. Solanum glycoalkaloids are reported to inhibit cholinesterase, disrupt cell membranes, and induce teratogenicity. In this overview, we describe the role of potatoes in the human diet, reported changes in glycoalkaloid content of fresh and processed potatoes during storage, under the influence of light and radiation, following mechanical damage, and as a result of food processing. Also covered are safety aspects and suggested research needs to develop a protocol that can be adopted by the potato producers and processors to minimize post-harvest synthesis of glycoalkaloids in potatoes. Reducing the glycoalkaloid content of potatoes will provide a variety of benefits extending from the farm to processing, shipping, marketing, and consumption of potatoes and potato products. A commercially available ELISA kit is described which permits rapid assay of glycoalkaloid content of parts of the potato plant including leaves, tubers, and peel, as well as processed potato products including french fries, chips, and skins. Understanding the multiple overlapping aspects of glycoalkaloids in the plant and in the diet will permit controlling postharvest glycoalkaloid production for the benefit of the producer and consumer.

  10. Stock indexing and Potato virus Y elimination from potato plants cultivated in vitro Indexação de matrizes e eliminação do Potato virus Y em plantas de batata cultivadas in vitro

    Directory of Open Access Journals (Sweden)

    Luciana Cordeiro Nascimento

    2003-01-01

    Full Text Available Potato cultivars (Solanum tuberosum L. have shown degeneration or run out caused by viruses after several cycles of propagation using seed tubers from commercial fields. This work reports the occurrence of single and mixed infections of four potato viruses in Paraíba-Brazil and presents a method for Potato virus Y (PVY elimination, by using thermo-and chemotherapies. Plants of potato cv. Baraka were tested by direct antigen coating ELISA. Antisera against PVY, Potato virus X (PVX, Potato virus S (PVS, and Potato leafroll virus (PLRV were used. Materials with positive reaction to PVY were treated for virus elimination. Single node cuttings (1.0 cm length were excised and inoculated in Murashige & Skoog (MS medium, supplemented with 1.0 mg L-1 of kinetin, 0.001 mg L-1 of naphthalene acetic acid (NAA and 0.1 mg L-1 of gibberellic acid (GA3. The thermotherapy at approximately 37ºC, during 30 and 40 days, resulted in 20.0 and 37.5% PVY elimination, respectively. Chemotherapy was undertaken with Ribavirin (RBV, 5-Azacytidine (AZA, and 3-Deazauridine (DZD. The RBV showed the highest rate of virus eradication, with 55.5% virus-free plants. Simultaneous thermo and chemotherapy had higher efficiency for the elimination of PVY, reaching rates of healthy plants of 83.3% with RBV, 70.0% with AZA, and 50.0% with DZD.Cultivares de batata (Solanum tuberosum L. têm mostrado degenerescência causada por vírus após ciclos sucessivos do uso de tubérculos de campos comerciais como material propagativo. Este trabalho verifica a ocorrência de infecção simples e mista de quatro vírus da batata na Paraíba e apresenta adequação da técnica de cultivo in vitro para obtenção de material livre de Potato virus Y (PVY, incluindo uso de microestacas, termo e quimioterapia. Plantas de batata do cv. Baraka foram submetidas à indexação sorológica pelo teste "direct antigen coating" ELISA. Utilizaram-se antissoros contra o PVY, Potato virus X (PVX, Potato virus

  11. Diffusion of PAH in potato and carrot slices and application for a potato model

    DEFF Research Database (Denmark)

    Trapp, Stefan; Cammarano, A.; Capri, E.

    2007-01-01

    of water, potato tissue, and carrot tissue. Naphthalene, phenanthrene, anthracene, and fluoranthene served as model substances. Their transfer from source to sink disk was measured by HPLC to determine a velocity rate constant proportional to the diffusive conductivity. The diffusive flux through the plant...... of the chemical. The findings of this study provide a convenient method to estimate the diffusion of nonvolatile organic chemicals through various plant materials. The application to a radial diffusion model suggests that "growth dilution" renders the concentration of highly hydrophobic chemicals in potatoes...... below their equilibrium partitioning level. This is in agreement with field results for the bioconcentration of PAHs in potatoes....

  12. Bacterial diversity on the surface of potato tubers in soil and the influence of the plant genotype.

    Science.gov (United States)

    Weinert, Nicole; Meincke, Remo; Gottwald, Christine; Heuer, Holger; Schloter, Michael; Berg, Gabriele; Smalla, Kornelia

    2010-10-01

    The surface of tubers might be a reservoir for bacteria that are disseminated with seed potatoes or that affect postharvest damage. The numbers of culturable bacteria and their antagonistic potential, as well as bacterial community fingerprints were analysed from tubers of seven field-grown potato genotypes, including two lines with tuber-accumulated zeaxanthin. The plant genotype significantly affected the number of culturable bacteria only at one field site. Zeaxanthin had no effect on the bacterial plate counts. In dual culture, 72 of 700 bacterial isolates inhibited at least one of the potato pathogens Rhizoctonia solani, Verticillium dahliae or Phytophthora infestans, 12 of them suppressing all three. Most of these antagonists were identified as Bacillus or Streptomyces. From tubers of two plant genotypes, including one zeaxanthin line, higher numbers of antagonists were isolated. Most antagonists showed glucanase, cellulase and protease activity, which could represent mechanisms for pathogen suppression. PCR-DGGE fingerprints of the 16S rRNA genes of bacterial communities from the tuber surfaces revealed that the potato genotype significantly affected the Pseudomonas community structure at one site. However, the genotypes showed nearly identical fingerprints for Bacteria, Actinobacteria, Alphaproteobacteria, Betaproteobacteria, Bacillus and Streptomycetaceae. In conclusion, tuber-associated bacteria were only weakly affected by the plant genotype. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  13. Use of biotechnological methods in the potato seed production

    Directory of Open Access Journals (Sweden)

    Janet Igarza Castro

    2012-01-01

    Full Text Available Potato crop has a large economic importance. Worldwide, propagation of potato by in vitro culture of axillary buds is commonly used in the production of in vitro plants and microtubers. These constitute the core plant material of a production program of potatoes seeds. This study aimed to present a review of scientific literature on the potato propagation by biotechnological methods. This also describes the main characteristics of this crop and the tuberization processes under natural and in vitro conditions. Key words: in vitro plants, microtubers, minitubers, Temporary Inmmersion System.

  14. Electrical conductivity of the nutrient solution and plant density in aeroponic production of seed potato under tropical conditions (winter/spring

    Directory of Open Access Journals (Sweden)

    Alex Humberto Calori

    Full Text Available ABSTRACT The recent introduction in Brazil of production of quality seed potatoes in hydroponic systems, such as aeroponics, demands studies on the nutritional and crop management. Thus, this study evaluated the influence of electrical conductivity of the nutrient solution and plant density on the seed potato minitubers production in aeroponics system. The Agata and Asterix cultivars were produced in a greenhouse under tropical conditions (winter/spring. The experimental design was a randomized block in a split-split plot design. The plot consisted of 4 electrical conductivities of the nutrient solution (1.0; 2.0; 3.0; and 4.0 dS∙m−1; the subplot, of 4 plant densities (25; 44; 66; and 100 plants∙m−2; and the subsubplot, of the 2 potato cultivars (Ágata and Asterix, totaling 4 blocks. The 2.2 and 2.1 dS∙m−1 electrical conductivities yielded the highest productivity of seed potato minitubers, for Ágata and Asterix cultivars, respectively, regardless of plant density. For both cultivars, the highest yield was observed for the 100 plants∙m−2 density.

  15. Treatment of banana and potato plants with a new antifungal composition (European patent specification)

    NARCIS (Netherlands)

    Stark, J.; Rijn, van F.T.J.; Krieken, van der W.M.; Stevens, L.H.

    2010-01-01

    International publication number: WO 2009/077613 (25.06.2009 Gazette 2009/26) The present invention relates to the treatment of banana and potato plants with a composition containing natamycin and at least one phosphite containing compound

  16. Lateral Root Development in Potato Is Mediated by Stu-mi164 Regulation of NAC Transcription Factor

    Directory of Open Access Journals (Sweden)

    Li Zhang

    2018-03-01

    Full Text Available The NAC designation is derived from petunia (Petunia hybrida gene NO APICAL MERISTEM (NAM and Arabidopsis genes ATAF1/ATAF2 and CUP-SHAPED COTYLEDON2 (CUC2, which belongs to the family of plant-specific transcription factors (TFs, and plays important role in plant development processes, such as response to biotic and abiotic stress, and hormone signaling. MicroRNAs (miRNAs are a class of small, non-coding endogenous RNAs which play versatile and significant role in plant stress response and development via negatively affecting gene expression at a post-transcriptional level. Here, we showed that Stu-mi164 had a complementary sequence in the CDS sequence of potato NAC TFs, and that NAC expression exhibited significant differences under osmotic stress. We measured expression levels of the Stu-mi164 target gene StNAC262 between control and PEG-treated plants using real-time PCR, and the results demonstrated that they had inverse relationship. We suggested that Stu-miR164 might drive overexpression of NAC gene under osmotic stress in potato. To confirm the regulation of NAC TFs by Stu-mi164, we developed transgenic plants, using Agrobacterium tumefaciens–mediated transformation, of the potato cultivars “Gannongshu 2” and “Kexin 3” overexpressing the Stu-mi164 or the TF StNAC262. Real-time PCR analysis of transgenic potato plants under osmotic (PEG stress, showed that potato plants overexpressing Stu-mi164 had reduced expression of StNAC262 and their osmotic resistance decreased. Furthermore, these plants had low number of lateral roots although the same length as the control. Our findings support the regulatory role of Stu-miRNAs in controlling plant response to osmotic stress via StNAC262.

  17. Effect of radiation on potato susceptibility to plant diseases

    International Nuclear Information System (INIS)

    Younis, N.A.

    1982-01-01

    The average world production of potatoes is about 7 billion bushels, having a value nearly, if not quite, equal to that of wheat. Hence, it has for years been recognized as the world's leading food crop (Thompson, 1949). Potato is the world's leading vegetable crop and rivals wheat in total value. There is probably no food article in daily diet of the white race more common than the potato. Potato tuber contains nearly 80 per cent water in it's uncooked state. Most of the remainder consists of about 2 per cent protein and 18 per cent starch. The potato is one of the cheapest and most common sources of carbohydrate food

  18. Improved tolerance to various abiotic stresses in transgenic sweet potato (Ipomoea batatas expressing spinach betaine aldehyde dehydrogenase.

    Directory of Open Access Journals (Sweden)

    Weijuan Fan

    Full Text Available Abiotic stresses are critical delimiters for the increased productivity and cultivation expansion of sweet potato (Ipomoea batatas, a root crop with worldwide importance. The increased production of glycine betaine (GB improves plant tolerance to various abiotic stresses without strong phenotypic changes, providing a feasible approach to improve stable yield production under unfavorable conditions. The gene encoding betaine aldehyde dehydrogenase (BADH is involved in the biosynthesis of GB in plants, and the accumulation of GB by the heterologous overexpression of BADH improves abiotic stress tolerance in plants. This study is to improve sweet potato, a GB accumulator, resistant to multiple abiotic stresses by promoted GB biosynthesis. A chloroplastic BADH gene from Spinacia oleracea (SoBADH was introduced into the sweet potato cultivar Sushu-2 via Agrobacterium-mediated transformation. The overexpression of SoBADH in the transgenic sweet potato improved tolerance to various abiotic stresses, including salt, oxidative stress, and low temperature. The increased BADH activity and GB accumulation in the transgenic plant lines under normal and multiple environmental stresses resulted in increased protection against cell damage through the maintenance of cell membrane integrity, stronger photosynthetic activity, reduced reactive oxygen species (ROS production, and induction or activation of ROS scavenging by the increased activity of free radical-scavenging enzymes. The increased proline accumulation and systemic upregulation of many ROS-scavenging genes in stress-treated transgenic plants also indicated that GB accumulation might stimulate the ROS-scavenging system and proline biosynthesis via an integrative mechanism. This study demonstrates that the enhancement of GB biosynthesis in sweet potato is an effective and feasible approach to improve its tolerance to multiple abiotic stresses without causing phenotypic defects. This strategy for trait

  19. Carbon balance assessment by eddy covariance method for agroecosystems with potato plants and oats & vetch mixture on sod-podzolic soils of Russia

    Science.gov (United States)

    Meshalkina, J. L.; Yaroslavtsev, A. M.; Vasenev, I. I.; Andreeva, I. V.; Tihonova, M. V.

    2018-01-01

    The carbon balance for the agroecosystems with potato plants and oats & vetch mixture on sod-podzolics soils was evaluated using the eddy covariance approach. Absorption of carbon was recorded only during the growing season; maximum values were detected for all crops in July. The number of days during the vegetation period, when the carbon stocked in the fields with potatoes and oats & vetch mixture was about the same and accounted for 53-55 days. During this period, the increase in gross primary production (GPP) is well correlated with the crop yields. The curve of the gross primary productivity is closely linked to the phases of development of plants; for potatoes, this graph differs significantly for all phases. Form of oats & vetch mixture biomass curve shown linear increases. Carbon losses were observed for all the studied agroecosystems: for fields with an oats & vetch mixture they were 254 g C m-2 y-1, while for fields with potato plants they were 307 g C m-2 y-1. Values about 250-300 g C m-2 per year may be considered as estimated values for the total carbon uptake for agroecosystems with potato plants and oats & vetch mixture on sod-podzolic soils.

  20. Novel bioassay demonstrates attraction of the white potato cyst nematode Globodera pallida (Stone) to non-volatile and volatile host plant cues.

    Science.gov (United States)

    Farnier, Kevin; Bengtsson, Marie; Becher, Paul G; Witzell, Johanna; Witzgall, Peter; Manduríc, Sanja

    2012-06-01

    Potato cyst nematodes (PCNs) are a major pest of solanaceous crops such as potatoes, tomatoes, and eggplants and have been widely studied over the last 30 years, with the majority of earlier studies focusing on the identification of natural hatching factors. As a novel approach, we focused instead on chemicals involved in nematode orientation towards its host plant. A new dual choice sand bioassay was designed to study nematode responses to potato root exudates (PRE). This bioassay, conducted together with a traditional hatching bioassay, showed that biologically active compounds that induce both hatching and attraction of PCNs can be collected by water extraction of incised potato roots. Furthermore, our results demonstrated that PCN also were attracted by potato root volatiles. Further work is needed to fully understand how PCNs use host plant chemical cues to orientate towards hosts. Nevertheless, the simple attraction assay used in this study provides an important tool for the identification of host-emitted attractants.

  1. USE MANURE AND ORGANIC WASTE AS PLANTING MEDIA OF SEED POTATOES PRODUCTION

    Directory of Open Access Journals (Sweden)

    Meksy Dianawati

    2014-02-01

    Full Text Available Manure and organic waste could be used as organic media at potato seed production of G1. The goal of this research was to increase production of potato seed G1 by several kinds of manure and organic waste. This research was conducted at plastic house in Lembang, West Java, from June to September 2014. This research used randomized completed block design with two treatment factors and six replications. The first factor was kinds of manure i.e chicken manure and sheep manure. The second factor was kinds of organic waste. Data was analysed by F test and followed by Duncan and correlation test at 95 percent confidence level. The results showed that media of husk waste with chicken and sheep manure has higher tuber weight and number of big-size tuber per plant than one of cocopeat significantly. Media of sheep manure with husk and bamboo waste has highest tuber weight per plant significantly. Number of total tuber was effected by number of smallsized tuber by 84 percent.

  2. Tolerance of some Potato Mutants Induced with Gamma Irradiation to Drought in Vitro

    International Nuclear Information System (INIS)

    Al-Safadi, B.; Al-Ayyoubi, Z.

    2007-01-01

    An in vitro selection program was conducted in order to improve potato (Solanum tuberosum,L.) tolerance to drought. Potato mutant plants were obtained through a previously conducted mutation breeding program on three potato cultivars (Draga, Spunta, and Diamant) aimed to improve potato tolerance to salinity and resistance to late blight disease. In order to apply selection pressure, growth media (MS based) were prepared with the addition of 1%, 2%, 3% concentrations of Poly Ethylene Glycol (PEG). As a result, three mutants were selected that were tolerant to water stress (i.e. drought tolerant), two of them were derived from the cultivar Draga and one came from Spunta. Physiological growth parameters (plant length, leaf number, branch number, roots number, leaf area, stomata number, and chlorophyll concentration content) were determined on the growing plantlets. The selected mutants were distinguished based on some characteristics which being associated with in their tolerance to drought. Such as an increases in leaf number, root number, and a decrease in stomata number. However a reduction in chlorophyll content was observed as compared with the control. This is considered a negative parameter which may result in a decrease in number and size of tubers. Thus it is important to continue selection for higher chlorophyll content. Also, these mutant lines will need further selection in the field for plants with larger tubers before they can be considered as certified lines.

  3. Breeding of a new potato variety 'Nagasaki Kogane' with high eating quality, high carotenoid content, and resistance to diseases and pests.

    Science.gov (United States)

    Sakamoto, Yu; Mori, Kazuyuki; Matsuo, Yuuki; Mukojima, Nobuhiro; Watanabe, Wataru; Sobaru, Norio; Tamiya, Seiji; Nakao, Takashi; Hayashi, Kazuya; Watanuki, Hitomi; Nara, Kazuhiro; Yamazaki, Kaoru; Chaya, Masataka

    2017-06-01

    'Nagasaki Kogane' is a new potato variety bred from a cross between 'Saikai 35' as a female parent and 'Saikai 33' as a male. 'Saikai 35' is resistant to bacterial wilt, contains the H1 and Ry chc genes for resistance to the potato cyst nematode (PCN) and potato virus Y (PVY), respectively, and has high carotenoid content, while 'Saikai 33' has large and high-yielding tubers and is resistant to both bacterial wilt and PCN. The carotenoid content of 'Nagasaki Kogane' is higher than that of 'Dejima', a common double cropping variety. The taste quality of steamed 'Nagasaki Kogane' is comparable to that of 'Inca-no-mezame' tubers, which has high levels of carotenoid, and superior to 'Nishiyutaka', another popular double cropping variety. 'Nagasaki Kogane' is suitable for French fries, because its tuber has high starch content. The marketable yield of 'Nagasaki Kogane' was higher than that of 'Inca-no-mezame' in spring cropping, although it was lower than that of 'Nishiyutaka' in double cropping regions. 'Nagasaki Kogane' tubers are larger on average than 'Inca-no-mezame' tubers in spring cropping. Moreover, the 'Nagasaki Kogane' variety is resistant to PCN and PVY, and exhibits a high level of resistance to bacterial wilt.

  4. Characterization of potato and tobacco isolates of Cucumber mosaic virus from Syria and the first report on CMV satellite RNA from potato

    Directory of Open Access Journals (Sweden)

    Mohamad CHIKH ALI

    2012-05-01

    Full Text Available Cucumber mosaic virus (CMV has been reported from potato production areas in Europe, USA, Japan and more frequently in regions with warm climates such as Egypt, India, Saudi Arabia and Syria. As it is considered as an uncommon virus in potato, the characterization of potato isolates of CMV is far behind those from other hosts. In addition to potato, CMV is a common virus infecting many crops in Syria, but nothing is known about its molecular characteristics. The present study aimed to characterize Syrian CMV isolates collected from potato and neighboring tobacco fields. All potato isolates of CMV (total of four co-infected potato plants with Potato virus Y (PVY which is the most frequent potato virus in Syria. According to the sequence analyses of the coat protein (CP coding region, three potato and three tobacco CMV isolates were found to be closely related regardless of the host species or geographic origin, and all belonged to the IA strain subgroup of CMV. A potato CMV isolate, PoCMV7-5, readily infected solanaceous plants in which it induced systemic infection, but was less infectious to other hosts including those of Leguminosae and Cucurbitaceae. When inoculated on potato plants, PoCMV7-5 alone or with various PVY strains was able to cause local but not systemic infection in all potato cultivars inoculated. PoCMV7-5 contained heterogeneous variants of satellite RNA which varied in length due to A or/and T deletion/insertion at approximate nucleotide position 225‒240. This is the first report on CMV satellite RNA from potato.

  5. Enhanced resistance to blister blight in transgenic tea (Camellia sinensis [L.] O. Kuntze) by overexpression of class I chitinase gene from potato (Solanum tuberosum).

    Science.gov (United States)

    Singh, H Ranjit; Deka, Manab; Das, Sudripta

    2015-07-01

    Tea is the second most consumed beverage in the world. A crop loss of up to 43 % has been reported due to blister blight disease of tea caused by a fungus, Exobasidium vexans. Thus, it directly affects the tea industry qualitatively and quantitatively. Solanum tuberosum class I chitinase gene (AF153195) is a plant pathogenesis-related gene. It was introduced into tea genome via Agrobacterium-mediated transformation with hygromycin phosphotransferase (hpt) gene conferring hygromycin resistance as plant selectable marker. A total of 41 hygromycin resistant plantlets were obtained, and PCR analysis established 12 plantlets confirming about the stable integration of transgene in the plant genome. Real-time PCR detected transgene expression in four transgenic plantlets (T28, C57, C9, and T31). Resistance to biotrophic fungal pathogen, E. vexans, was tested by detached leaf infection assay of greenhouse acclimated plantlets. An inhibitory activity against the fungal pathogen was evident from the detached leaves from the transformants compared with the control. Fungal lesion formed on control plantlet whereas the transgenic plantlets showed resistance to inoculated fungal pathogen by the formation of hypersensitivity reaction area. This result suggests that constitutive expression of the potato class I chitinase gene can be exploited to improve resistance to fungal pathogen, E. vexans, in economical perennial plantation crop like tea.

  6. 5-Azacytidine mediated reactivation of silenced transgenes in potato (Solanum tuberosum) at the whole plant level.

    Science.gov (United States)

    Tyč, Dimitrij; Nocarová, Eva; Sikorová, Lenka; Fischer, Lukáš

    2017-08-01

    Transient 5-azacytidine treatment of leaf explants from potato plants with transcriptionally silenced transgenes allows de novo regeneration of plants with restored transgene expression at the whole plant level. Transgenes introduced into plant genomes frequently become silenced either at the transcriptional or the posttranscriptional level. Transcriptional silencing is usually associated with DNA methylation in the promoter region. Treatments with inhibitors of maintenance DNA methylation were previously shown to allow reactivation of transcriptionally silenced transgenes in single cells or tissues, but not at the whole plant level. Here we analyzed the effect of DNA methylation inhibitor 5-azacytidine (AzaC) on the expression of two silenced reporter genes encoding green fluorescent protein (GFP) and neomycin phosphotransferase (NPTII) in potato plants. Whereas no obvious reactivation was observed in AzaC-treated stem cuttings, transient treatment of leaf segments with 10 μM AzaC and subsequent de novo regeneration of shoots on the selective medium with kanamycin resulted in the production of whole plants with clearly reactivated expression of previously silenced transgenes. Reactivation of nptII expression was accompanied by a decrease in cytosine methylation in the promoter region of the gene. Using the plants with reactivated GFP expression, we found that re-silencing of this transgene can be accidentally triggered by de novo regeneration. Thus, testing the incidence of transgene silencing during de novo regeneration could be a suitable procedure for negative selection of transgenic lines (insertion events) which have an inclination to be silenced. Based on our analysis of non-specific inhibitory effects of AzaC on growth of potato shoots in vitro, we estimated that AzaC half-life in the culture media is approximately 2 days.

  7. A temporal assessment of nematode community structure and diversity in the rhizosphere of cisgenic Phytophthora infestans-resistant potatoes.

    Science.gov (United States)

    Ortiz, Vilma; Phelan, Sinead; Mullins, Ewen

    2016-12-01

    Nematodes play a key role in soil processes with alterations in the nematode community structure having the potential to considerably influence ecosystem functioning. As a result fluctuations in nematode diversity and/or community structure can be gauged as a 'barometer' of a soil's functional biodiversity. However, a deficit exists in regards to baseline knowledge and on the impact of specific GM crops on soil nematode populations and in particular in regard to the impact of GM potatoes on the diversity of nematode populations in the rhizosphere. The goal of this project was to begin to address this knowledge gap in regards to a GM potato line, cisgenically engineered for resistance to Phytophthora infestans (responsible organism of the Irish potato famine causing late blight disease). For this, a 3 year (2013, 2014, 2015) field experimental study was completed, containing two conventional genotypes (cvs. Desiree and Sarpo Mira) and a cisgenic genotype (cv. Desiree + Rpi-vnt1). Each potato genotype was treated with different disease management strategies (weekly chemical applications and corresponding no spray control). Hence affording the opportunity to investigate the temporal impact of potato genotype, disease management strategy (and their interaction) on the potato rhizosphere nematode community. Nematode structure and diversity were measured through established indices, accounts and taxonomy with factors recording a significant effect limited to the climatic conditions across the three seasons of the study and chemical applications associated with the selected disease management strategy. Based on the metrics studied, the cultivation of the cisgenic potato genotype exerted no significant effect (P > 0.05) on nematode community diversity or structure. The disease management treatments led to a reduction of specific trophic groups (e.g. Predacious c-p = 4), which of interest appeared to be counteracted by a potato genotype with vigorous growth phenotype

  8. Systemic colonization of potato plants by a soil-borne, GFP-tagged strain of Dickeya sp. Biovar 3

    NARCIS (Netherlands)

    Czajkowski, R.L.; Boer, de W.; Velvis, H.; Wolf, van der J.M.

    2010-01-01

    Colonization of potato plants by soilborne, green fluorescent protein (GFP)-tagged Dickeya sp. IPO2254 was investigated by selective plating, epifluorescence stereo microscopy (ESM), and confocal laser scanning microscopy (CLSM). Replicated experiments were carried out in a greenhouse using plants

  9. Biolistic transmission of potato spindle tuber viroid (PSTVd) populations to weeds frequently grown on potato fields and PSTVd pathogenesis on cultured Chamomilla recutita

    Czech Academy of Sciences Publication Activity Database

    Matoušek, Jaroslav; Orctová, Lidmila; Ptáček, J.; Dědič, P.

    2009-01-01

    Roč. 16, č. 1 (2009), s. 43-55 ISSN 1802-940X Institutional research plan: CEZ:AV0Z50510513 Keywords : potato fields * weed plants * potato spindle tuber viroid (PSTVd) Subject RIV: GF - Plant Pathology, Vermin, Weed, Plant Protection

  10. Hyperspectral remote sensing for advanced detection of early blight (Alternaria solani) disease in potato (Solanum tuberosum) plants

    Science.gov (United States)

    Atherton, Daniel

    Early detection of disease and insect infestation within crops and precise application of pesticides can help reduce potential production losses, reduce environmental risk, and reduce the cost of farming. The goal of this study was the advanced detection of early blight (Alternaria solani) in potato (Solanum tuberosum) plants using hyperspectral remote sensing data captured with a handheld spectroradiometer. Hyperspectral reflectance spectra were captured 10 times over five weeks from plants grown to the vegetative and tuber bulking growth stages. The spectra were analyzed using principal component analysis (PCA), spectral change (ratio) analysis, partial least squares (PLS), cluster analysis, and vegetative indices. PCA successfully distinguished more heavily diseased plants from healthy and minimally diseased plants using two principal components. Spectral change (ratio) analysis provided wavelengths (490-510, 640, 665-670, 690, 740-750, and 935 nm) most sensitive to early blight infection followed by ANOVA results indicating a highly significant difference (p potato plants.

  11. A Genetic Survey of Pyrethroid Insecticide Resistance in Aphids in New Brunswick, Canada, with Particular Emphasis on Aphids as Vectors of Potato virus Y.

    Science.gov (United States)

    MacKenzie, Tyler D B; Arju, Irin; Poirier, René; Singh, Mathuresh

    2018-05-28

    Aphids are viral vectors in potatoes, most importantly of Potato virus Y (PVY), and insecticides are frequently used to reduce viral spread during the crop season. Aphids collected from the potato belt of New Brunswick, Canada, in 2015 and 2016 were surveyed for known and novel mutations in the Na-channel (para) gene, coding for the target of synthetic pyrethroid insecticides. Specific genetic mutations known to confer resistance (kdr and skdr) were found in great abundance in Myzus persicae (Sulzer) (Hemiptera: Aphididae), which rose from 76% in 2015 to 96% in 2016. Aphids other than M. persicae showed lower frequency of resistance. In 2015, 3% of individuals contained the resistance mutation skdr, rising to 13% in 2016 (of 45 species). Several novel resistance mutations or mutations not before reported in aphids were identified in this gene target. One of these mutations, I936V, is known to confer pyrethroid resistance in another unrelated insect, and three others occur immediately adjacent and prompt similar chemical shifts in the primary protein structure, to previously characterized mutations associated with pyrethroid resistance. Most novel mutations were found in species other than M. persicae or others currently tracked individually by the provincial aphid monitoring program, which were determined by cytochrome C oxidase I (cox1) sequencing. Through our cox1 DNA barcoding survey, at least 45 species of aphids were discovered in NB potato fields in 2015 and 2016, many of which are known carriers of PVY.

  12. Potato yield and quality as a function of the plant density

    Directory of Open Access Journals (Sweden)

    Eero Varis

    1975-05-01

    Full Text Available The effects of potato plant density on yield quantity and quality were investigated at the Hankkija Plant Breeding Institute from 1971-73, using seed rates of 1600, 3200 and 4800 kg/ha, and seed sizes of 40, 80 and 120 g. The varieties used were Ijsselster and Record. The number of stems per m2 rose with increasing seed rate and with increasing seed size. Stem number increased with seed rate faster for small seed than for large. The response in stem number was greater for Ijsselster than for Record. The number of stems per seed tuber fell as the plant density rose. The number of tubers per m2 altered in the same direction as the number of stems, but less responsively. The reason for this was that the number of tubers per stem decreased with increasing plant density. The tuber yield showed a continual increase with increasing plant density. At the lowest stem densities (less than 20—25 stems/m2 small seed gave better results than other sizes, but at the higher plant densities, the importance of seed size faded away and the yield was dependant on the plant density alone. Net yield (gross yield 2 x seed rate, however, was higher the smaller the seed used, whatever the stem density. Tuber size decreased when plant density increased, the proportion of large tubers diminishing most, especially when small seed was used. The proportion of small tubers altered more for Ijsselster than for Record. Seed size and seed rate did not on average significantly affect the proportion of Class I potatoes, though small seed gave results slightly better than other sizes. The starch content of the yield rose when the seed rate was increased (16.0-16.3 -16.5 % and fell with increasing seed size (16.5 16.2 16.1 %. The maximum variation was 15.8-16.7 %. The specific gravity distribution improved with increasing plant density. Raw discolouration of the tubers did not alter significantly as the plant density rose. Blackening of the tubers decreased with increasing plant

  13. Effector genomics accelerates discovery and functional profiling of potato disease resistance and phytophthora infestans avirulence genes.

    Directory of Open Access Journals (Sweden)

    Vivianne G A A Vleeshouwers

    Full Text Available Potato is the world's fourth largest food crop yet it continues to endure late blight, a devastating disease caused by the Irish famine pathogen Phytophthora infestans. Breeding broad-spectrum disease resistance (R genes into potato (Solanum tuberosum is the best strategy for genetically managing late blight but current approaches are slow and inefficient. We used a repertoire of effector genes predicted computationally from the P. infestans genome to accelerate the identification, functional characterization, and cloning of potentially broad-spectrum R genes. An initial set of 54 effectors containing a signal peptide and a RXLR motif was profiled for activation of innate immunity (avirulence or Avr activity on wild Solanum species and tentative Avr candidates were identified. The RXLR effector family IpiO induced hypersensitive responses (HR in S. stoloniferum, S. papita and the more distantly related S. bulbocastanum, the source of the R gene Rpi-blb1. Genetic studies with S. stoloniferum showed cosegregation of resistance to P. infestans and response to IpiO. Transient co-expression of IpiO with Rpi-blb1 in a heterologous Nicotiana benthamiana system identified IpiO as Avr-blb1. A candidate gene approach led to the rapid cloning of S. stoloniferum Rpi-sto1 and S. papita Rpi-pta1, which are functionally equivalent to Rpi-blb1. Our findings indicate that effector genomics enables discovery and functional profiling of late blight R genes and Avr genes at an unprecedented rate and promises to accelerate the engineering of late blight resistant potato varieties.

  14. Expression of an engineered heterologous antimicrobial peptide in potato alters plant development and mitigates normal abiotic and biotic responses.

    Directory of Open Access Journals (Sweden)

    Ravinder K Goyal

    Full Text Available Antimicrobial cationic peptides (AMPs are ubiquitous small proteins used by living cells to defend against a wide spectrum of pathogens. Their amphipathic property helps their interaction with negatively charged cellular membrane of the pathogen causing cell lysis and death. AMPs also modulate signaling pathway(s and cellular processes in animal models; however, little is known of cellular processes other than the pathogen-lysis phenomenon modulated by AMPs in plants. An engineered heterologous AMP, msrA3, expressed in potato was previously shown to cause resistance of the transgenic plants against selected fungal and bacterial pathogens. These lines together with the wild type were studied for growth habits, and for inducible defense responses during challenge with biotic (necrotroph Fusarium solani and abiotic stressors (dark-induced senescence, wounding and temperature stress. msrA3-expression not only conferred protection against F. solani but also delayed development of floral buds and prolonged vegetative phase. Analysis of select gene transcript profiles showed that the transgenic potato plants were suppressed in the hypersensitive (HR and reactive oxygen species (ROS responses to both biotic and abiotic stressors. Also, the transgenic leaves accumulated lesser amounts of the defense hormone jasmonic acid upon wounding with only a slight change in salicylic acid as compared to the wild type. Thus, normal host defense responses to the pathogen and abiotic stressors were mitigated by msrA3 expression suggesting MSRA3 regulates a common step(s of these response pathways. The stemming of the pathogen growth and mitigating stress response pathways likely contributes to resource reallocation for higher tuber yield.

  15. Mutation of a Nicotiana tabacum L. eukaryotic translation-initiation factor gene reduces susceptibility to a resistance-breaking strain of Potato Virus Y.

    Science.gov (United States)

    Takakura, Yoshimitsu; Udagawa, Hisashi; Shinjo, Akira; Koga, Kazuharu

    2018-04-06

    Eukaryotic translation-initiation factors eIF4E and eIF(iso)4E in plants play key roles in infection by potyviruses and other plant RNA viruses. Mutations in the genes encoding these factors reduce susceptibility to the viruses, and are the basis of several recessive virus-resistance genes widely used in plant breeding. Because virus variants occasionally break such resistance, the molecular basis for this process must be elucidated. Although deletion mutants of eIF4E1-S of tobacco (Nicotiana tabacum L.) resist Potato virus Y (PVY; the type member of the genus Potyvirus), resistance-breaking strains of PVY threaten tobacco production worldwide. Here, we used RNA interference technology to knock down tobacco eIF4E2-S and eIF4E2-T genes or eIF(iso)4E-S and eIF(iso)4E-T genes. Transgenic plants with reduced transcript levels of both eIF(iso)4E-S and eIF(iso)4E-T showed reduced susceptibility to a resistance-breaking PVY strain with a K105E mutation in the viral genome-associated protein (VPg). By screening a population of chemically-induced mutants of eIF(iso)4E-S and eIF(iso)4E-T, we showed that plants with a nonsense mutation in eIF(iso)4E-T, but not eIF(iso)4E-S, showed reduced susceptibility to the resistance-breaking PVY strain. In a yeast two-hybrid assay, VPg of the resistance-breaking strain, but not wild-type PVY, physically interacted with the eIF(iso)4E-T protein. Thus, eIF4E1-S is required for infection by PVY, but eIF(iso)4E-T is required for infection by the resistance-breaking strain. Our study provides the first evidence for the involvement of a host eukaryotic translation-initiation factor in the infection cycle of a resistance-breaking virus strain. The eIF(iso)4E-T mutants will be useful in tobacco breeding to introduce resistance against resistance-breaking PVY strains. This article is protected by copyright. All rights reserved. © 2018 BSPP and John Wiley & Sons Ltd.

  16. Potato Annexin STANN1 Promotes Drought Tolerance and Mitigates Light Stress in Transgenic Solanum tuberosum L. Plants

    Science.gov (United States)

    Szalonek, Michal; Sierpien, Barbara; Rymaszewski, Wojciech; Gieczewska, Katarzyna; Garstka, Maciej; Lichocka, Malgorzata; Sass, Laszlo; Paul, Kenny; Vass, Imre; Vankova, Radomira; Dobrev, Peter; Szczesny, Pawel; Marczewski, Waldemar; Krusiewicz, Dominika; Strzelczyk-Zyta, Danuta; Hennig, Jacek; Konopka-Postupolska, Dorota

    2015-01-01

    Annexins are a family of calcium- and membrane-binding proteins that are important for plant tolerance to adverse environmental conditions. Annexins function to counteract oxidative stress, maintain cell redox homeostasis, and enhance drought tolerance. In the present study, an endogenous annexin, STANN1, was overexpressed to determine whether crop yields could be improved in potato (Solanum tuberosum L.) during drought. Nine potential potato annexins were identified and their expression characterized in response to drought treatment. STANN1 mRNA was constitutively expressed at a high level and drought treatment strongly increased transcription levels. Therefore, STANN1 was selected for overexpression analysis. Under drought conditions, transgenic potato plants ectopically expressing STANN1 were more tolerant to water deficit in the root zone, preserved more water in green tissues, maintained chloroplast functions, and had higher accumulation of chlorophyll b and xanthophylls (especially zeaxanthin) than wild type (WT). Drought-induced reductions in the maximum efficiency and the electron transport rate of photosystem II (PSII), as well as the quantum yield of photosynthesis, were less pronounced in transgenic plants overexpressing STANN1 than in the WT. This conferred more efficient non-photochemical energy dissipation in the outer antennae of PSII and probably more efficient protection of reaction centers against photooxidative damage in transgenic plants under drought conditions. Consequently, these plants were able to maintain effective photosynthesis during drought, which resulted in greater productivity than WT plants despite water scarcity. Although the mechanisms underlying this stress protection are not yet clear, annexin-mediated photoprotection is probably linked to protection against light-induced oxidative stress. PMID:26172952

  17. Potato Annexin STANN1 Promotes Drought Tolerance and Mitigates Light Stress in Transgenic Solanum tuberosum L. Plants.

    Science.gov (United States)

    Szalonek, Michal; Sierpien, Barbara; Rymaszewski, Wojciech; Gieczewska, Katarzyna; Garstka, Maciej; Lichocka, Malgorzata; Sass, Laszlo; Paul, Kenny; Vass, Imre; Vankova, Radomira; Dobrev, Peter; Szczesny, Pawel; Marczewski, Waldemar; Krusiewicz, Dominika; Strzelczyk-Zyta, Danuta; Hennig, Jacek; Konopka-Postupolska, Dorota

    2015-01-01

    Annexins are a family of calcium- and membrane-binding proteins that are important for plant tolerance to adverse environmental conditions. Annexins function to counteract oxidative stress, maintain cell redox homeostasis, and enhance drought tolerance. In the present study, an endogenous annexin, STANN1, was overexpressed to determine whether crop yields could be improved in potato (Solanum tuberosum L.) during drought. Nine potential potato annexins were identified and their expression characterized in response to drought treatment. STANN1 mRNA was constitutively expressed at a high level and drought treatment strongly increased transcription levels. Therefore, STANN1 was selected for overexpression analysis. Under drought conditions, transgenic potato plants ectopically expressing STANN1 were more tolerant to water deficit in the root zone, preserved more water in green tissues, maintained chloroplast functions, and had higher accumulation of chlorophyll b and xanthophylls (especially zeaxanthin) than wild type (WT). Drought-induced reductions in the maximum efficiency and the electron transport rate of photosystem II (PSII), as well as the quantum yield of photosynthesis, were less pronounced in transgenic plants overexpressing STANN1 than in the WT. This conferred more efficient non-photochemical energy dissipation in the outer antennae of PSII and probably more efficient protection of reaction centers against photooxidative damage in transgenic plants under drought conditions. Consequently, these plants were able to maintain effective photosynthesis during drought, which resulted in greater productivity than WT plants despite water scarcity. Although the mechanisms underlying this stress protection are not yet clear, annexin-mediated photoprotection is probably linked to protection against light-induced oxidative stress.

  18. Potato Annexin STANN1 Promotes Drought Tolerance and Mitigates Light Stress in Transgenic Solanum tuberosum L. Plants.

    Directory of Open Access Journals (Sweden)

    Michal Szalonek

    Full Text Available Annexins are a family of calcium- and membrane-binding proteins that are important for plant tolerance to adverse environmental conditions. Annexins function to counteract oxidative stress, maintain cell redox homeostasis, and enhance drought tolerance. In the present study, an endogenous annexin, STANN1, was overexpressed to determine whether crop yields could be improved in potato (Solanum tuberosum L. during drought. Nine potential potato annexins were identified and their expression characterized in response to drought treatment. STANN1 mRNA was constitutively expressed at a high level and drought treatment strongly increased transcription levels. Therefore, STANN1 was selected for overexpression analysis. Under drought conditions, transgenic potato plants ectopically expressing STANN1 were more tolerant to water deficit in the root zone, preserved more water in green tissues, maintained chloroplast functions, and had higher accumulation of chlorophyll b and xanthophylls (especially zeaxanthin than wild type (WT. Drought-induced reductions in the maximum efficiency and the electron transport rate of photosystem II (PSII, as well as the quantum yield of photosynthesis, were less pronounced in transgenic plants overexpressing STANN1 than in the WT. This conferred more efficient non-photochemical energy dissipation in the outer antennae of PSII and probably more efficient protection of reaction centers against photooxidative damage in transgenic plants under drought conditions. Consequently, these plants were able to maintain effective photosynthesis during drought, which resulted in greater productivity than WT plants despite water scarcity. Although the mechanisms underlying this stress protection are not yet clear, annexin-mediated photoprotection is probably linked to protection against light-induced oxidative stress.

  19. R gene stacking by trans- and cisgenesis to achieve durable late blight resistance in potato

    NARCIS (Netherlands)

    Zhu, S.

    2014-01-01

    Among the many diseases of potato (Solanum tuberosum L.), which is the third food crop in the world after wheat and rice, late blight caused by the oomycete pathogen Phytophthora infestans, is one of the most serious diseases. In the last century, major resistance (R)

  20. In vitro mutagenesis and production of agronomically useful potato variants

    International Nuclear Information System (INIS)

    Das, A.; Gosal, S.S.; Sidhu, J.S.; Dhaliwal, H.S.

    2001-01-01

    In vitro grown shoot cultures of two Indian potato varieties 'Kufri jyoti' and 'Kufri Chandramukhi' were subjected to gamma irradiation at 20 and 40 Gy. The irradiated shoot cultures were subcultured to yield a generation of plantlets. After 4-6 weeks of incubation, these shoots were transferred onto MS medium supplemented with benzylaminopurine, BAP (10mg/1) and sucrose (8% w/v) and incubated at 20 deg. C. The M 1 V 3 plants were screened in vitro for late blight resistance by detached leaf method. The resistant plants were screened in M 1 V 4 generation by artificial inoculation of sporangial inoculum on the pot sown plants. Chlorophyll persistence is a simple screening method for heat tolerance. Chlorophyll persistence of different plantlets showed that the percentage of injury was less in the case of plants, which had been obtained from irradiated material. In the case of control plants, there was one hundred-percent damage to the plants. The mutation frequency was calculated for characters like late blight resistance and heat tolerance (in vitro microtuberisation and chlorophyll persistence). The gamma ray dose of 40 Gy was observed to produce a higher mutation frequency

  1. Effect Of Intercropping System On Green Peach Aphid Dinamics On Organic Farming Of Potato In Karo Highland

    Directory of Open Access Journals (Sweden)

    Lamria Sidauruk

    2015-08-01

    Full Text Available Abstract Green peach aphid Myzus persicae Sulzer represents one of the major pest affecting decreased production which found in different potato fields in Karo Highland. This study was conducted to determine the population dynamics of Myzus persicae Sulzer on potato cropping system. The experiment was laid out in split plot design with main plot are farming system such as conventional farming semi organic farming and organic farming. The sub plot are intercropping system consist of potato monoculture potato with cabbage potato with mustard potato with celery potato with cabbage and mustard potato with cabbage and celery potato with mustard and celery potato with cabbage mustard and celery. Research carried out for two planting season. The first at May-August and the second at September-December. The results showed that M. persicae was consistently at different densities in different intercropping system on potato. The aphid was first recorded at three week until planting. The kind of intercroppingculture plants significantly reduced the number of aphid at two planting season. Intercropping system decrease population of M. persicae at potato. At 9 weeks after planting the decreased are respectively at intercropping potato with mustard 3.97 aphidleaf potato with cabbage and mustard 4.43 aphidleaf and potato with celery 4.45 aphidleaf. At 11 weeks after planting the decreased are respectively at intercropping potato with mustard 2.99 aphid per leaf potato with cabbage 3.10 aphidleaf and potato with cabbage and mustard 3.60 aphidleaf. At 7 weeks after planting the highest population of natural enemies Braconid wasp was found on intercropping potato with cabbage2.62 braconid waspplant and at 9 weeks was found on intercropping potato with cabbage mustard and celery 2.38 braconid waspplant. The highest population of Coccinellidae found on intercropping potato with cabbage mustard and celery 1.80plant at 11 weeks after planting.

  2. Colonization of wild potato plants by Streptomyces scabies

    Science.gov (United States)

    The bacterial pathogen Streptomyces scabies produces lesions on potato tubers, reducing their marketability and profitability. M6 and 524-8 are two closely related inbred diploid lines of the wild potato species Solanum chacoense. After testing in both field and greenhouse assays, it was found that ...

  3. Genetic mapping and pyramiding of resistance genes in potato

    NARCIS (Netherlands)

    Tan, M.Y.A.

    2008-01-01

    Numerous pathogens can infect potato, but late blight (Phytophthora infestans (Mont.) de Bary) and potato cyst nematodes (PCN) Globodera rostochiensis and G. pallida are most damaging. Several species of root knot nematodes (RKN) are an emerging threat. Breeders have successfully deployed disease

  4. Transcriptome Profiling of the Potato (Solanum tuberosum L.) Plant under Drought Stress and Water-Stimulus Conditions.

    Science.gov (United States)

    Gong, Lei; Zhang, Hongxia; Gan, Xiaoyan; Zhang, Li; Chen, Yuchao; Nie, Fengjie; Shi, Lei; Li, Miao; Guo, Zhiqian; Zhang, Guohui; Song, Yuxia

    2015-01-01

    Drought stress can seriously affect tuberization, yield and quality of potato plant. However, the precise molecular mechanisms governing potato stolon's response to drought stress and water supply are not very well understood. In this work, a potato (Solanum tuberosum L.) variant, Ningshu 4, was subjected to severe drought stress treatment (DT) and re-watering treatment (RWT) at tuber bulking stage. Strand-specific cDNA libraries of stolon materials were constructed for paired-end transcriptome sequencing analyses and differentially expressed gene (DEG) examination. In comparison to untreated-control (CT) plants, 3189 and 1797 DEGs were identified in DT and RWT plants and 4154 solely expressed DEGs were screened out from these two comparison groups. Interestingly, 263 genes showed opposite expression patterns in DT and RWT plants. Among them, genes homologous to Protein Phosphatase 2C (PP2C), Aspartic protease in guard cell 1 (ASPG1), auxin-responsive protein, Arabidopsis pseudo response regualtor 2 (APRR2), GA stimulated transcripts in Arabidopsis 6 (GASA6), Calmodulin-like protein 19 (CML19), abscisic acid 8'-hydroxylases and calcium-transporting ATPase, et al. were related with drought-stress and water stimulus response. Sixteen DEGs involved in starch synthesis, accumulation and tuber formation exhibited significantly different expression upon re-watering. In addition, 1630, 1527 and 1596 transcription factor encoding genes were detected in CT, DT and RWT. DEGs of ERF, bHLH, MYB, NAC, WRKY, C2H2, bZIP and HD-ZIP families accounted for 50% in three comparison groups, respectively. Furthermore, characteristics of 565 gene ontology (GO) and 108 Kyoto Encyclopedia of Genes and Genomes pathways (KEGG) were analyzed with the 4154 DEGs. All these results suggest that the drought- and water-stimulus response could be implemented by the regulated expression of metabolic pathway DEGs, and these genes were involved in the endogenous hormone biosynthesis and signal

  5. Transcriptome Profiling of the Potato (Solanum tuberosum L. Plant under Drought Stress and Water-Stimulus Conditions.

    Directory of Open Access Journals (Sweden)

    Lei Gong

    Full Text Available Drought stress can seriously affect tuberization, yield and quality of potato plant. However, the precise molecular mechanisms governing potato stolon's response to drought stress and water supply are not very well understood. In this work, a potato (Solanum tuberosum L. variant, Ningshu 4, was subjected to severe drought stress treatment (DT and re-watering treatment (RWT at tuber bulking stage. Strand-specific cDNA libraries of stolon materials were constructed for paired-end transcriptome sequencing analyses and differentially expressed gene (DEG examination. In comparison to untreated-control (CT plants, 3189 and 1797 DEGs were identified in DT and RWT plants and 4154 solely expressed DEGs were screened out from these two comparison groups. Interestingly, 263 genes showed opposite expression patterns in DT and RWT plants. Among them, genes homologous to Protein Phosphatase 2C (PP2C, Aspartic protease in guard cell 1 (ASPG1, auxin-responsive protein, Arabidopsis pseudo response regualtor 2 (APRR2, GA stimulated transcripts in Arabidopsis 6 (GASA6, Calmodulin-like protein 19 (CML19, abscisic acid 8'-hydroxylases and calcium-transporting ATPase, et al. were related with drought-stress and water stimulus response. Sixteen DEGs involved in starch synthesis, accumulation and tuber formation exhibited significantly different expression upon re-watering. In addition, 1630, 1527 and 1596 transcription factor encoding genes were detected in CT, DT and RWT. DEGs of ERF, bHLH, MYB, NAC, WRKY, C2H2, bZIP and HD-ZIP families accounted for 50% in three comparison groups, respectively. Furthermore, characteristics of 565 gene ontology (GO and 108 Kyoto Encyclopedia of Genes and Genomes pathways (KEGG were analyzed with the 4154 DEGs. All these results suggest that the drought- and water-stimulus response could be implemented by the regulated expression of metabolic pathway DEGs, and these genes were involved in the endogenous hormone biosynthesis and signal

  6. Use of silicon as inductor of the resistance in potato to Myzus persicae (Sulzer) (Hemiptera: Aphididae); Uso de silicio como indutor de resistencia em batata a Myzus persicae (Sulzer) (Hemiptera: Aphididae)

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Flavia B.; Moraes, Jair C.; Antunes, Cristiana [Universidade Federal de Lavras, MG (Brazil). Dept. de Entomologia; Santos, Custodio D. dos [Universidade Federal de Lavras, MG (Brazil). Dept. de Quimica

    2008-03-15

    The aphid Myzus persicae (Sulzer) is an important pest of potato and causes direct harm, due to the quantity of sap extracted and for being vector of important phytovirus. This work was carried out to evaluate the action of silicon as a resistance inducer of potato to M. persicae. Four treatments were tried: foliar fertilization with silicon acid at 1%; soil fertilization with 250 ml silicic acid solution at 1%; foliar fertilization with silicon acid at 1% + soil fertilization with 250 ml silicic acid solution at 1%; and a control. The treatments were applied thirty days after the explants emergence. Fifteen days after the application of the treatments, feeding preference and some biological aspects of the aphids were evaluated. After, the content of tannins and lignin present in the leaves and the activity of the enzymes peroxidase and phenylalanine ammonia-lyase were also determined. The silicon fertilization did not affect the preference of the aphids; however it reduced fecundity and the rate of population growth of the insects. The lignin percentage increased in the leaves of plants fertilized with silicon via soil and/or foliar and the percentage of tannins increased only in the leaves fertilized via soil plus foliar. The silicon acted as a resistance inducer to M. persicae in potato. (author)

  7. Prediction of Host-Derived miRNAs with the Potential to Target PVY in Potato Plants

    Science.gov (United States)

    Iqbal, Muhammad S.; Hafeez, Muhammad N.; Wattoo, Javed I.; Ali, Arfan; Sharif, Muhammad N.; Rashid, Bushra; Tabassum, Bushra; Nasir, Idrees A.

    2016-01-01

    Potato virus Y has emerged as a threatening problem in all potato growing areas around the globe. PVY reduces the yield and quality of potato cultivars. During the last 30 years, significant genetic changes in PVY strains have been observed with an increased incidence associated with crop damage. In the current study, computational approaches were applied to predict Potato derived miRNA targets in the PVY genome. The PVY genome is approximately 9 thousand nucleotides, which transcribes the following 6 genes:CI, NIa, NIb-Pro, HC-Pro, CP, and VPg. A total of 343 mature miRNAs were retrieved from the miRBase database and were examined for their target sequences in PVY genes using the minimum free energy (mfe), minimum folding energy, sequence complementarity and mRNA-miRNA hybridization approaches. The identified potato miRNAs against viral mRNA targets have antiviral activities, leading to translational inhibition by mRNA cleavage and/or mRNA blockage. We found 86 miRNAs targeting the PVY genome at 151 different sites. Moreover, only 36 miRNAs potentially targeted the PVY genome at 101 loci. The CI gene of the PVY genome was targeted by 32 miRNAs followed by the complementarity of 26, 19, 18, 16, and 13 miRNAs. Most importantly, we found 5 miRNAs (miR160a-5p, miR7997b, miR166c-3p, miR399h, and miR5303d) that could target the CI, NIa, NIb-Pro, HC-Pro, CP, and VPg genes of PVY. The predicted miRNAs can be used for the development of PVY-resistant potato crops in the future. PMID:27683585

  8. Prediction of host-derived miRNAs with the potential to target PVY in potato plants

    Directory of Open Access Journals (Sweden)

    Muhammad Shahzad Iqbal

    2016-09-01

    Full Text Available Potato virus Y has emerged as a threatening problem in all potato growing areas around the globe PVY reduces the yield and quality of potato cultivars. During last 30 years, significant genetic changes in PVY strains have been observed with an increased incidence associated with crop damage. In the current study, computational approaches were applied to predict Potato derived miRNA targets in PVY genome. PVY genome is about 9 thousand nucleotides approximately which transcribes 6 genes CI, NIa, NIb-Pro, HC-Pro, CP and VPg. A total of 343 mature miRNAs were retrieved from miRbase database and searched for their target sequences in PVY genes using minimum free energy (mfe, minimum folding energy, sequence complementarity and mRNA-miRNA hybridization approaches. Identified Potato miRNAs against viral mRNA targets have antiviral activities leading to either translational inhibition by mRNA cleavage/mRNA blockage or both. We have found 86 miRNAs targeting PVY genome at 151 different sites on PVY genome. Moreover, only 36 miRNA potentially targeted the PVY genome at 101 loci. CI gene of PVY genome was targeted by 32 miRNAs followed by complementarity by 26, 19, 18, 16 and 13 miRNAs respectively. Most importantly, we found 5 miRNAs (miR160a-5p, miR7997b, miR166c-3p, miR399h and miR5303d could target CI, NIa, NIb-Pro, HC-Pro, CP and VPg genes of PVY. The predicted miRNAs can be used for development of PVY resistant potato crops in future.

  9. Accumulation of heavy metals in plants and potential phytoremediation of lead by potato, Solanum tuberosum L.

    Science.gov (United States)

    Antonious, George F; Snyder, John C

    2007-05-01

    The use of sewage sludge as a source of nutrients in crop production is increasing in the United States and worldwide. A field study was conducted on a 10% slope at Kentucky State University Research Farm. Eighteen plots of 22x3.7 m each were separated using metal borders and the soil in six plots was mixed with sewage sludge, six plots were mixed with yard waste compost, and six unamended plots were used for comparison purposes. During a subsequent 3-year study, plots were planted with potato (year 1), pepper (year 2), and broccoli (year 3). The objectives of this investigation were to: (i) characterize chemical properties of soil-incorporated sewage sludge and yard waste compost; (ii) determine the concentration of seven heavy metals (Cd, Cr, Ni, Pb, Zn, Cu, and Mo) in sewage sludge and yard waste compost used for land farming; and (iii) monitor heavy metal concentrations in edible portions of plants at harvest. Concentrations of heavy metals in sewage sludge were below the U.S. EPA limits. Analysis of potato tubers, peppers, and broccoli grown in sludge-amended soil showed that Cd, Cr, Ni, and Pb were not significantly different from control plants. Concentrations of Zn, Cu, and Mo were significantly greater in tubers and peppers grown in sludge compared to their respective controls. Zn and Mo in broccoli heads were higher than their control plants. The ability of potato to accumulate lead needs additional investigation to optimize the phytoremediation of this pollutant element.

  10. Effects of Moringa oleifera LAM, Leguminous Plants and NPK Fertilizer Comparatively on Orange Fleshed Sweet Potato in Alley Cropping System

    Directory of Open Access Journals (Sweden)

    IN Abdullahi

    2014-09-01

    Full Text Available The research work conducted at the Teaching and Research Farm of University of Abuja was aimed at assessing the effect of Moringa oleifera, selected leguminous plants and inorganic fertilizer on the performance of orange fleshed sweet potato in Alley Cropping System. Randomized Complete Block Design (RCBD using five treatments with three replications was applied. Data collected include: percentage survival of sweet potato, length per vine (cm, number of leaves per vine, leaf area of sweet potato, weed dry matter (g/m2, yield of sweet potato roots. Highest number of leaves (28 per plant was recorded in the control plot while the plots with NPK fertilizer had the highest length per vine (94.55cm though not significantly (p>0.05 different from others. Higher percent survival (88% of sweet potato was recorded from control plots. Stands grown in Arachis hypogeae plots produced the highest leaf area (0.202m2 while plots in which NPK fertilizer was applied experienced highest weed dry matter (4.083g/m2 although highest root yield (1.2t/ha was recorded from the plots with NPK fertilizer. DOI: http://dx.doi.org/10.3126/ije.v3i3.11061 International Journal of Environment Vol.3(3 2014: 24-35

  11. Investigations on the mechanism of oxygen-dependent plant processes: ethylene biosynthesis and cyanide-resistant respiration

    International Nuclear Information System (INIS)

    Stegink, S.J.

    1985-01-01

    Two oxygen-dependent plant processes were investigated. A cell-free preparation from pea (Pisum sativum L., cv. Alaska) was used to study ethylene biosynthesis from 1-aminocyclopropane-1-carboxylic acid. Mitochondrial cyanide-resistant respiration was investigated in studies with 14 C-butyl gallate and other respiratory effectors. Ethylene biosynthesis was not due to a specific enzyme, or oxygen radicals. Rather, hydrogen peroxide, generated at low levels, coupled with endogenous manganese produced ethylene. 14 C-butyl gallate bound specifically to mitochondria from cyanide-sensitive and -resistant higher plants and Neurospora crassa mitochondria. The amount of gallate bound was similar for all higher plant mitochondria. Rat liver mitochondria bound very little 14 C-butyl gallate. Plant mitochondria in which cyanide-resistance was induced bound as much 14 C-butyl gallate as before induction. However mitochondria from recently harvested white potato tubers did not bind the gallate. The observations suggest that an engaging factor couples with a gallate binding site in the mitochondrial membrane. With skunk cabbage spadix mitochondria the I 5 0 for antimycin A inhibition of oxygen uptake was decreased by salicylhydroxamic acid pretreatment; this was also true for reverse order additions. No shift was observed with mung bean hypocotyl or Jerusalem artichoke tuber mitochondria

  12. Identification of genes related to drought in native potatoes using RNA-Seq

    Directory of Open Access Journals (Sweden)

    Roberto Lozano

    2014-03-01

    Full Text Available The recent advent RNA sequencing technology (RNA-Seq, a massively parallel sequencing method for transcriptome analysis, provides an opportunity to understand the expression profile of plants in response to biotic and abiotic stress. In this study, the mRNA was sequencing from leaves and roots of two native potato varieties at different levels of drought. Fifty-base-pair reads from whole mRNAs were mapped to the potato genomic sequence: 75 – 82% mapped uniquely to the genome, 6 – 14% mapped to several locations in the genome and 9 – 12% had no match in the genome. Comparing expression profiles, 887 to 1925 genes were found to be induced/repressed by drought in the sensible variety and 998 to 1995 in the tolerant. This research provides valuable information for future studies and deeper understanding of the molecular mechanism of drought resistance in potato and related species.

  13. Suppression of the invasive plant mile-a-minute (Mikania micrantha) by local crop sweet potato (Ipomoea batatas) by means of higher growth rate and competition for soil nutrients.

    Science.gov (United States)

    Shen, Shicai; Xu, Gaofeng; Clements, David Roy; Jin, Guimei; Chen, Aidong; Zhang, Fudou; Kato-Noguchi, Hisashi

    2015-01-28

    There are a variety of ways of increasing crop diversity to increase agricultural sustainability and in turn having a positive influence on nearby natural ecosystems. Competitive crops may provide potent management tools against invasive plants. To elucidate the competitive mechanisms between a sweet potato crop (Ipomoea batatas) and an invasive plant, mile-a-minute (Mikania micrantha), field experiments were carried out in Longchuan County of Yunnan Province, Southwest China, utilizing a de Wit replacement series. The trial incorporated seven ratios of sweet potato and mile-a-minute plants in 25 m(2) plots. In monoculture, the total biomass, biomass of adventitious root, leafstalk length, and leaf area of sweet potato were all higher than those of mile-a-minute, and in mixed culture the plant height, branch, leaf, stem node, adventitious root, flowering and biomass of mile-a-minute were suppressed significantly (P competition was less than interspecific competition. The competitive balance index of sweet potato demonstrated a higher competitive ability than mile-a-minute. Except pH, other soil nutrient contents of initial soil (CK) were significantly higher than those of seven treatments. The concentrations of soil organic matter, total N, total K, available N, available P, available K, exchange Ca, exchange Mg, available Mn, and available B were significantly greater (P competition of sweet potato in the mixture. Evidently sweet potato has a competitive advantage in terms of plant growth characteristics and greater absorption of soil nutrients. Thus, planting sweet potato is a promising technique for reducing infestations of mile-a-minute, providing weed management benefits and economic returns from harvest of sweet potatoes. This study also shows the potential value of replacement control methods which may apply to other crop-weed systems or invaded natural ecosystems.

  14. Comparison of transcript profiles in different life stages of the nematode Globodera pallida under different host potato genotypes.

    Science.gov (United States)

    Palomares-Rius, Juan E; Hedley, Pete E; Cock, Peter J A; Morris, Jenny A; Jones, John T; Vovlas, Nikos; Blok, Vivian

    2012-12-01

    The potato cyst nematodes (PCNs) Globodera pallida and Globodera rostochiensis are important parasites of potato. PCNs undergo complex biotrophic interactions with their hosts that involve gene expression changes in both the nematode and the host plant. The aim of this study was to determine key genes that are differentially expressed in Globodera pallida life cycle stages and during the initiation of the feeding site in susceptible and partially resistant potato genotypes. For this purpose, two microarray experiments were designed: (i) a comparison of eggs, infective second-stage juveniles (J2s) and sedentary parasitic-stage J2s (SJ2); (ii) a comparison of SJ2s at 8 days after inoculation (DAI) in the susceptible cultivar (Desirée) and two partially resistant lines. The results showed differential expression of G. pallida genes during the stages studied, including previously characterized effectors. In addition, a large number of genes changed their expression between SJ2s in the susceptible cultivar and those infecting partially resistant lines; the number of genes with modified expression was lower when the two partially resistant lines were compared. Moreover, a histopathological study was performed at several time points (7, 14 and 30 DAI) and showed the similarities between both partially resistant lines with a delay and degeneration in the formation of the syncytia in comparison with the susceptible cultivar. Females at 30 DAI in partially resistant lines showed a delay in their development in comparison with those in the susceptible cultivar. © 2012 THE AUTHORS. MOLECULAR PLANT PATHOLOGY © 2012 BSPP AND BLACKWELL PUBLISHING LTD.

  15. Efficacy of mineral oil combined with insecticides for the control of aphid virus vectors to reduce potato virus Y infections in seed potatoes (Solanum tuberosum)

    DEFF Research Database (Denmark)

    Hansen, Lars M.; Nielsen, Steen L.

    2012-01-01

    Aphids are major vectors of plant viruses. Potato virus Y (PVY) is the most important aphid-transmitted virus affecting potato crops in Denmark. Because of a changed seed potato growing strategy, the seed potato area in Denmark is changing from regions with a low average temperature to regions...... with a higher average temperature. This means that the aphids may infest the potato crops earlier and the population development of the aphids may be faster, and consequently PVY may more easily become epidemic in seed potato crops. With a view to reducing the spread of PVY a 3-year experiment was carried out...... with a combination of mineral oil and insecticides. In 2005 and 2007 when a very high number of aphids were present, nearly all plants were infected with PVY. In 2006 with a lower number of aphids a smaller proportion of the plants were infected, and a tendency to a lower PVY incidence in mineral-oil treated plots...

  16. Breeding of a new potato variety ‘Nagasaki Kogane’ with high eating quality, high carotenoid content, and resistance to diseases and pests

    Science.gov (United States)

    Sakamoto, Yu; Mori, Kazuyuki; Matsuo, Yuuki; Mukojima, Nobuhiro; Watanabe, Wataru; Sobaru, Norio; Tamiya, Seiji; Nakao, Takashi; Hayashi, Kazuya; Watanuki, Hitomi; Nara, Kazuhiro; Yamazaki, Kaoru; Chaya, Masataka

    2017-01-01

    ‘Nagasaki Kogane’ is a new potato variety bred from a cross between ‘Saikai 35’ as a female parent and ‘Saikai 33’ as a male. ‘Saikai 35’ is resistant to bacterial wilt, contains the H1 and Rychc genes for resistance to the potato cyst nematode (PCN) and potato virus Y (PVY), respectively, and has high carotenoid content, while ‘Saikai 33’ has large and high-yielding tubers and is resistant to both bacterial wilt and PCN. The carotenoid content of ‘Nagasaki Kogane’ is higher than that of ‘Dejima’, a common double cropping variety. The taste quality of steamed ‘Nagasaki Kogane’ is comparable to that of ‘Inca-no-mezame’ tubers, which has high levels of carotenoid, and superior to ‘Nishiyutaka’, another popular double cropping variety. ‘Nagasaki Kogane’ is suitable for French fries, because its tuber has high starch content. The marketable yield of ‘Nagasaki Kogane’ was higher than that of ‘Inca-no-mezame’ in spring cropping, although it was lower than that of ‘Nishiyutaka’ in double cropping regions. ‘Nagasaki Kogane’ tubers are larger on average than ‘Inca-no-mezame’ tubers in spring cropping. Moreover, the ‘Nagasaki Kogane’ variety is resistant to PCN and PVY, and exhibits a high level of resistance to bacterial wilt. PMID:28744186

  17. Performance stability of potato genotypes under rainfed and ...

    African Journals Online (AJOL)

    YDessalegn

    The prevailing average monthly maximum temperature is higher in the irrigated potato production system than in the rainfed system. The average monthly minimum temperature is low and causes frost injury to the plant during the irrigated potato production system. Therefore, irrigated potato production is affected both by the.

  18. Carryover of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) from soil to plant and distribution to the different plant compartments studied in cultures of carrots (Daucus carota ssp. Sativus), potatoes (Solanum tuberosum), and cucumbers (Cucumis Sativus).

    Science.gov (United States)

    Lechner, Mareike; Knapp, Holger

    2011-10-26

    A vegetation study was carried out to investigate the carryover of Perfluorooctanoic Acid (PFOA) and Perfluorooctane Sulfonate (PFOS) from soil mixed with contaminated sewage sludge to potato, carrot, and cucumber plants. Analysis was done by liquid-extraction using acetonitrile with dispersive SPE cleanup and subsequent HPLC-MS/MS. In order to assess the transfer potential from soil, transfer factors (TF) were calculated for the different plant compartments: TF = [PFC](plant (wet substance))/[PFC](soil (dry weight)). The highest TF were found for the vegetative plant compartments with average values for PFOS below those for PFOA: cucumber, 0.17 (PFOS), 0.88 (PFOA); potato, 0.36 (PFOS), 0.40 (PFOA); carrot, 0.38 (PFOS), 0.53 (PFOA). Transfer of PFOA and PFOS into potato peelings (average values of TF: PFOA 0.03, PFOS 0.04) exceeded the carryover to the peeled tubers (PFOA 0.01, PFOS potatoes (TF < 0.01). For PFOA, it was higher (TF: 0.03).

  19. [Active crop canopy sensor-based nitrogen diagnosis for potato].

    Science.gov (United States)

    Yu, Jing; Li, Fei; Qin, Yong-Lin; Fan, Ming-Shou

    2013-11-01

    In the present study, two potato experiments involving different N rates in 2011 were conducted in Wuchuan County and Linxi County, Inner Mongolia. Normalized difference vegetation index (NDVI) was collected by an active GreenSeeker crop canopy sensor to estimate N status of potato. The results show that the NDVI readings were poorly correlated with N nutrient indicators of potato at vegetative Growth stage due to the influence of soil background. With the advance of growth stages, NDVI values were exponentially related to plant N uptake (R2 = 0.665) before tuber bulking stage and were linearly related to plant N concentration (R2 = 0.699) when plant fully covered soil. In conclusion, GreenSeeker active crop sensor is a promising tool to estimate N status for potato plants. The findings from this study may be useful for developing N recommendation method based on active crop canopy sensor.

  20. Potato market in Ukraine

    Directory of Open Access Journals (Sweden)

    С. І. Мельник

    2017-06-01

    Full Text Available Purpose. To study Ukrainian potato market at the current stage of the development and determine its future prospects. Results. The features of Ukrainian potato market were determined. Production is almost fully provided by private households, meeting the needs of the domestic market. Main regions with the highest gross output and production of potatoes were defined. Ukraine is one of the major potato producing countries in the world. Today our country is not a key supplier or importer of this product because of the low export orientation of the industry, its technological backwardness, limited product range and the large number of small producers. Ukraine exports potato mainly to CIS countries, the highest share of potato import comes from the European Union. Now there are only a few large manufacturing companies in the market, which can be classified as industrial. Most potato varieties, officially permitted for dissemination in Ukraine, are classified as table ones and recommended for cultivation in the Forest-Steppe and Polissia zones. Achievements of the industry include the development of such very popular and promising trend as organic potato growing, which area in our country is one of the largest in the world. Conclusions. Potato produced in Ukraine is used for human consumption, animal feeding, planting and processing, its volumes are relatively stable. Large-scale industrial production of potato is not widely practiced because of low wholesale prices and high labor intensity of the cultivation process. During next few years, in view of current trends, production of potato and severe limitations of the domestic market for foreign operations will remain unchanged. A shift in emphasis in the product range – from fresh potato to processed food products should be a prospect for domestic industrial producers to improve their position in Ukraine and abroad.

  1. Silencing of DND1 in potato and tomato impedes conidial germination, attachment and hyphal growth of Botrytis cinerea

    NARCIS (Netherlands)

    Sun, K.; Tuinen, van A.; Kan, van J.A.L.; Wolters, A.M.A.; Jacobsen, E.; Visser, R.G.F.; Bai, Y.

    2017-01-01

    Background
    Botrytis cinerea, a necrotrophic pathogenic fungus, attacks many crops including potato and tomato. Major genes for complete resistance to B. cinerea are not known in plants, but a few quantitative trait loci have been described in tomato. Loss of function of particular susceptibility

  2. Morphological characterization of the local potato (Solanum ...

    African Journals Online (AJOL)

    user

    2011-02-07

    Feb 7, 2011 ... agronomical characteristics of the genotypes were described according to the criteria developed for potato .... potato tubers were stored at 4°C and 80% moisture storage con- ...... Starch and Sugar Plant Production, Turkey VII.

  3. Infection of potato plants with potato leafroll virus changes attraction and feeding behaviour of Myzus persicae

    NARCIS (Netherlands)

    Alvarez, A.E.; Garzo, E.; Verbeek, M.; Vosman, B.; Dicke, M.; Tjallingii, W.F.

    2007-01-01

    Potato leafroll virus (PLRV; genus Polerovirus, family Luteoviridae) is a persistently transmitted circulative virus that depends on aphids for spreading. The primary vector of PLRV is the aphid Myzus persicae (Sulzer) (Homoptera: Aphididae). Solanum tuberosum L. potato cv. Kardal (Solanaceae) has a

  4. Memristors: Memory elements in potato tubers.

    Science.gov (United States)

    Volkov, Alexander G; Nyasani, Eunice K; Blockmon, Avery L; Volkova, Maya I

    2015-01-01

    A memristor is a nonlinear element because its current-voltage characteristic is similar to that of a Lissajous pattern for nonlinear systems. This element was postulated recently and researchers are looking for it in different biosystems. We investigated electrical circuitry of red Irish potato tubers (Solanum tuberosum L.). The goal was to discover if potato tubers might have a new electrical component - a resistor with memory. The analysis was based on a cyclic current-voltage characteristic where the resistor with memory should manifest itself. We found that the electrostimulation by bipolar sinusoidal or triangle periodic waves induces electrical responses in the potato tubers with fingerprints of memristors. Tetraethylammonium chloride, an inhibitor of voltage gated K(+) channels, transforms a memristor to a resistor in potato tubers. Our results demonstrate that a voltage gated K(+) channel in the excitable tissue of potato tubers has properties of a memristor. Uncoupler carbonylcyanide-4-trifluoromethoxy-phenyl hydrazone decreases the amplitude of electrical responses at low and high frequencies of bipolar periodic sinusoidal or triangle electrostimulating waves. The discovery of memristors in plants creates a new direction in the understanding of electrical phenomena in plants.

  5. Improved real-time PCR assay for detection of the quarantine potato pathogen, Synchytrium endobioticum, in zonal centrifuge extracts from soil and in plants

    NARCIS (Netherlands)

    Gent-Pelzer, van M.P.E.; Krijger, M.C.; Bonants, P.J.M.

    2010-01-01

    Real-time PCR was used for quantitative detection of the potato pathogen, Synchytrium endobioticum, in different substrates: zonal centrifuge extracts, warts and different plant parts of potato. Specific primers and a TaqMan probe, designed from the internal transcribed spacer region of the

  6. Molecular and biological characterization of Potato mop-top virus (PMTV, Pomovirus) isolates from potato-growing regions in Colombia

    DEFF Research Database (Denmark)

    Gil, José; Adams, Ian; Boonham, Neil

    2016-01-01

    Potato mop-top virus (PMTV) causes necrotic flecks inside and on tubers in temperate countries. In South America, these symptoms have not been observed, although the presence of the virus has been confirmed in the Andes and in Central America. To characterize PMTV isolates from the Andes, soil...... samples were taken from the main potato-producing regions in Colombia and virus was recovered by planting Nicotiana benthamiana as bait plants. The complete genomes of five isolates were sequenced and three of the isolates were inoculated to four different indicator plants. Based on sequence comparisons...

  7. The impact of R1and R3a genes on tuber resistance to late blight of the potato breeding clones

    Directory of Open Access Journals (Sweden)

    Zoteyeva Nadezhda

    2016-04-01

    Full Text Available Potato breeding clones were evaluated for resistance to late blight (agent Phytophthora infestans using tuber inoculation tests and for presence of the resistance alleles of R1 and R3a genes in polymerase chain reaction tests. Among clones tested those expressing high, moderate and low resistance were identified. The data were analysed for the impact of R1 and R3a genes on tuber resistance to late blight in tested plant material. In previous evaluations performed on smaller amount of clones the tuber resistance levels significantly depended on presence/absence of the resistance allele of R3a gene and did not depend on presence of R1 gene allele. In the current study the statistical analyses did not prove the significant difference in resistance levels depending on presence of the resistance alleles, neither of R1 gene, nor of R3a gene. Tuber resistant clones bearing R3a gene resistance alleles still noticeably prevailed over the clones bearing the alleles of R1 gene as well as over the clones bearing the no resistance alleles of both genes. In several cases the resistance of clones with detected resistance allele of R1 gene was higher compared to those derived from the same crosses and showing amplification of the allele of R3a gene or those with no resistance alleles. Clones accumulating the resistance alleles of both (R1 and R3a genes expressed high tuber resistance accompanied by necrotic reaction.

  8. Melatonin Attenuates Potato Late Blight by Disrupting Cell Growth, Stress Tolerance, Fungicide Susceptibility and Homeostasis of Gene Expression in Phytophthora infestans

    Directory of Open Access Journals (Sweden)

    Shumin Zhang

    2017-11-01

    Full Text Available Phytophthora infestans (P. infestans is the causal agent of potato late blight, which caused the devastating Irish Potato Famine during 1845-1852. Until now, potato late blight is still the most serious threat to potato growth and has caused significant economic losses worldwide. Melatonin can induce plant innate immunity against pathogen infection, but the direct effects of melatonin on plant pathogens are poorly understood. In this study, we investigated the direct effects of melatonin on P. infestans. Exogenous melatonin significantly attenuated the potato late blight by inhibiting mycelial growth, changing cell ultrastructure, and reducing stress tolerance of P. infestans. Notably, synergistic anti-fungal effects of melatonin with fungicides on P. infestans suggest that melatonin could reduce the dose levels and enhance the efficacy of fungicide against potato late blight. A transcriptome analysis was carried out to mine downstream genes whose expression levels were affected by melatonin. The analysis of the transcriptome suggests that 66 differentially expressed genes involved in amino acid metabolic processes were significantly affected by melatonin. Moreover, the differentially expressed genes associated with stress tolerance, fungicide resistance, and virulence were also affected. These findings contribute to a new understanding of the direct functions of the melatonin on P. infestans and provide a potential ecofriendly biocontrol approach using a melatonin-based paradigm and application to prevent potato late blight.

  9. Studies for Somatic Embryogenesis in Sweet Potato

    Science.gov (United States)

    Bennett, J. Rasheed; Prakash, C. S.

    1997-01-01

    The purpose of this study was to improve the somatic embryo (SE) system for plant production of sweet potato (Ipomoea batatas L(Lam)). Explants isolated from SE-derived sweet potato plants were compared with control (non SE-derived) plants for their competency for SE production. Leaf explants were cultured on Murashige-Skoog (MS) medium with 2,4-dichlorophenoxy acetic acid (0.2 mg/L) and 6-benzylaminopurine (2.5 mg/L) for 2 weeks in darkness and transferred to MS medium with abscisic acid (2.5 mg/L). Explants isolated from those plants developed through somatic embryogenesis produced new somatic embryos rapidly and in higher frequency than those isolated from control plants They also appeared to grow faster in tissue culture than the control plants. Current studies in the laboratory are examining whether plants derived from a cyclical embryogenesis system (five cycles) would have any further positive impact on the rapidity and frequency of somatic embryo development. More detailed studies using electron microscopy are expected to show the point of origin of the embryos and to allow determination of their quality throughout the cyclical process. This study may facilitate improved plant micropropagation, gene transfer and germplasm conservation in sweet potato.

  10. Consumptive qualities of different potato varieties

    Directory of Open Access Journals (Sweden)

    М. М. Фурдига

    2017-03-01

    Full Text Available Purpose. To summarize results of studying consumptive qualities of different varieties of potato and define basic characteristics which allow to subsume them under specific economic categories. Methods. Field study, laboratory test, summarizing, analytical approach. Results. Potato varieties entered in the State register of plant varieties suitable to dissemination in Ukraine and new ones especially to be bred at the Institute of Potato Growing of NAAS were studied during the period of 2005–2016 for such basic economic characters as consumptive quality of tubers, content of starch, dry matters, protein, sugar, vitamins, carotenoids and mineral substances as well as aminoacids, color of flesh, suitability for industrial manufacturing of potato products and for purpose of technology. Attention was paid to the good prospects to use varie­ties with purple, blue and red potato tuber flesh with high antioxidant capacity. Potato varieties with above cha­racteristics and their complex combination were defined and described. The requirements of processing industry for potato as a raw material for manufacturing of potato food were given. Conclusions. The major criterion for consumptive qualities of a potato variety and correspondingly division for the commercial use is consumptive quality of tubers, especially content of essential nutrients and their favorable combination, improved taste and cooking quality, high antioxidant capacity, suitability for potato products manufacturing and use for purpose of technology. Potato varieties can be divided for economic purposes into edible, suitable for potato products manufacturing, technical and multipurpose ones.

  11. RNA Interference towards the Potato Psyllid, Bactericera cockerelli, Is Induced in Plants Infected with Recombinant Tobacco mosaic virus (TMV)

    Science.gov (United States)

    Wuriyanghan, Hada; Falk, Bryce W.

    2013-01-01

    The potato/tomato psyllid, Bactericera cockerelli (B. cockerelli), is an important plant pest and the vector of the phloem-limited bacterium Candidatus Liberibacter psyllaurous (solanacearum), which is associated with the zebra chip disease of potatoes. Previously, we reported induction of RNA interference effects in B. cockerelli via in vitro-prepared dsRNA/siRNAs after intrathoracic injection, and after feeding of artificial diets containing these effector RNAs. In order to deliver RNAi effectors via plant hosts and to rapidly identify effective target sequences in plant-feeding B. cockerelli, here we developed a plant virus vector-based in planta system for evaluating candidate sequences. We show that recombinant Tobacco mosaic virus (TMV) containing B. cockerelli sequences can efficiently infect and generate small interfering RNAs in tomato (Solanum lycopersicum), tomatillo (Physalis philadelphica) and tobacco (Nicotiana tabacum) plants, and more importantly delivery of interfering sequences via TMV induces RNAi effects, as measured by actin and V-ATPase mRNA reductions, in B. cockerelli feeding on these plants. RNAi effects were primarily detected in the B. cockerelli guts. In contrast to our results with TMV, recombinant Potato virus X (PVX) and Tobacco rattle virus (TRV) did not give robust infections in all plants and did not induce detectable RNAi effects in B. cockerelli. The greatest RNA interference effects were observed when B. cockerelli nymphs were allowed to feed on leaf discs collected from inoculated or lower expanded leaves from corresponding TMV-infected plants. Tomatillo plants infected with recombinant TMV containing B. cockerelli actin or V-ATPase sequences also showed phenotypic effects resulting in decreased B. cockerelli progeny production as compared to plants infected by recombinant TMV containing GFP. These results showed that RNAi effects can be achieved in plants against the phloem feeder, B. cockerelli, and the TMV-plant system will

  12. Salicylic acid confers salt tolerance in potato plants by improving water relations, gaseous exchange, antioxidant activities and osmoregulation.

    Science.gov (United States)

    Faried, Hafiz Nazar; Ayyub, Chaudhary Muhammad; Amjad, Muhammad; Ahmed, Rashid; Wattoo, Fahad Masoud; Butt, Madiha; Bashir, Mohsin; Shaheen, Muhammad Rashid; Waqas, Muhammad Ahmed

    2017-04-01

    Potato is an important vegetable; however, salt stress drastically affects its growth and yield. A pot experiment was therefore conducted to assess salicylic acid efficacy in improving performance of potato cultivars, grown under salt stress (50 mmol L -1 ). Salicylic acid at 0.5 mmol L -1 was sprayed on to potato plants after 1 week of salinity application. Salt stress effects were ameliorated by salicylic acid effectively in both the studied cultivars. N-Y LARA proved more responsive to salicylic acid application than 720-110 NARC, which confirmed genetic variation between cultivars. Salicylic acid scavenged reactive oxygen species by improving antioxidant enzyme activities (superoxide dismutase, catalase, peroxidases) and regulating osmotic adjustment (proline, phenolic contents), which led to enhanced water relation and gaseous exchange attributes, and thereby increased potassium availability and reduced sodium content in potato leaves. Moreover, potato tuber yield showed a positive correlation with potassium content, photosynthesis and antioxidant enzyme activities. Salt tolerance efficacy of salicylic acid is authenticated in improving potato crop performance under salt stress. Salicylic acid effect was more pronounced in N-Y LARA, reflecting greater tolerance than 720-110 NARC, which was confirmed as a susceptible cultivar. Hence salicylic acid at 0.5 mmol L -1 and cultivation of N-Y LARA may be recommended in saline soil. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  13. In vivo thermoterapy: attempt to eliminate virus in potato tuber

    Science.gov (United States)

    Ayu Astarini, Ida; Margareth, Deborah; Temaja, I. Gede Rai Maya

    2018-03-01

    Potato is one of an important vegetable crop in Indonesia, including Bali. Main potato production areas in Bali are at Bedugul region, 1.200 m above sea level. Potato production in Bali continued to decrease due to diseases infection, such as early blight, late blight, black leg and virus diseases. Potato farmers in Bali usually set aside their harvest as seed potatoes, resulting in virus diseases being carried out on the next planting seasons and eventually would decrease potato production both in quantity and quality. Four types of virus were confirmed: PVY, PVX, PVS and PRLV. A number of studies have reported thermotherapy technique has been employed to eliminate potato virus in vitro. However, this technique is not readily available for farmers, since there is no established tissue culture laboratory to support. Therefore, there is an urgent need to develop a more practical method. The objective of this study was to eliminate virus on seed potatoes using thermotherapy on tuber. Seed potatoes with 1 cm sprout which were virus positive were placed on sterile charred rice paddy husk, and then put into a humidified incubator. Tubers were exposed to 37°C for four days followed by 34°C for three days alternately for two weeks and three weeks duration. Four tubers received heat exposure regime for each virus type. After thermotherapy, potato tubers were transferred to pots containing charred rice paddy husk and maintain for three weeks until new leaves emerge for virus analyses. Results show that seed tubers experienced delayed growth after thermotherapy. Control plants sprout one week after thermotherapy, while treated plants were not yet sprouting. Experiment is currently underway. It is expected that heat treatment on tuber will give a practical method for farmers to eliminate virus of seed potatoes.

  14. Disinfestation of different varieties of potato naturally or artificially infested by the potato tuber moth, Phthorimea Operculella Zell. In the storage

    International Nuclear Information System (INIS)

    Haiba, M.I.

    1994-01-01

    The exposure of potato tuber varieties of Alpha, Spunta, Cara and escort to radiation dose level of 150 Gy could be used to disinfest the potatoes from their natural attacked pest, Phthorimaea Operculella, after the harvest and before storage. Escort variety exhibited somewhat resistance to the natural infestation if compared with the others. The irradiation of the potato tubers did not protect them from the re infestation, during the storage. Also, there were significant changes in some biological properties of the resulted pests, among the four potato varieties, whether the potatoes were non-irradiated or irradiated. The feeding of the artificial infested larvae on the treated tubers gave some malformed adults. 3 tabs

  15. Evaluation of five pre-emergence herbicides for volunteer potato ...

    African Journals Online (AJOL)

    Volunteer potatoes can cause significant weed problems in crops following potatoes as large numbers of potato tubers remain behind in the field after mechanical harvesting. These volunteer plants can create havoc with rotation programs and serve as a source of pests and diseases. The aim of this project was to identify a ...

  16. Altered Tuber Yield in Genetically Modified High-Amylose and Oil Potato Lines Is Associated With Changed Whole-Plant Nitrogen Economy

    Directory of Open Access Journals (Sweden)

    Fereshteh Pourazari

    2018-03-01

    Full Text Available Breeding for improved crop quality traits can affect non-target traits related to growth and resource use, and these effects may vary in different cultivation conditions (e. g., greenhouse vs. field. The objectives of this study are to investigate the growth and whole-plant nitrogen (N economy of two genetically modified (GM potato lines compared to their non-GM parental varieties and when grown in different cultivation conditions. A high-amylose GM potato line and its parent were grown under field and greenhouse conditions for one growing season in Sweden; and a GM oil potato line and its parent were grown in greenhouse conditions only. Tuber yield, above ground biomass, N uptake efficiency and other plant N economy traits were assessed. In both cultivation conditions, the GM lines produced between 1.5 and two times more tubers as compared with their parents. In the greenhouse, fresh tuber yield and N uptake efficiency were unaffected by the genetic modifications, but the GM-lines produced less tuber biomass per plant-internal N compared to their parents. In the field, the fresh tuber yield was 40% greater in the high-amylose line as compared with its parent; the greater fresh tuber yield in the high-amylose GM line was accomplished by higher water allocation to the harvested tubers, and associated with increased N recovery from soil (+20%, N uptake efficiency (+53%, tuber N content (+20%, and N accumulation (+120% compared with the non-GM parent. The cultivation conditions influenced the yield and N economy. For example, the final fresh above-ground plant biomass and N pool were considerably higher in the greenhouse conditions, whilst the tuber yield was higher in the field conditions. In conclusion, the genetic modification inducing high accumulation of amylose in potato tubers affected several non-target traits related to plant N economy, and increased the plant N uptake and accumulation efficiency of the field-grown plants. Due to strongly

  17. Altered Tuber Yield in Genetically Modified High-Amylose and Oil Potato Lines Is Associated With Changed Whole-Plant Nitrogen Economy.

    Science.gov (United States)

    Pourazari, Fereshteh; Andersson, Mariette; Weih, Martin

    2018-01-01

    Breeding for improved crop quality traits can affect non-target traits related to growth and resource use, and these effects may vary in different cultivation conditions (e. g., greenhouse vs. field). The objectives of this study are to investigate the growth and whole-plant nitrogen (N) economy of two genetically modified (GM) potato lines compared to their non-GM parental varieties and when grown in different cultivation conditions. A high-amylose GM potato line and its parent were grown under field and greenhouse conditions for one growing season in Sweden; and a GM oil potato line and its parent were grown in greenhouse conditions only. Tuber yield, above ground biomass, N uptake efficiency and other plant N economy traits were assessed. In both cultivation conditions, the GM lines produced between 1.5 and two times more tubers as compared with their parents. In the greenhouse, fresh tuber yield and N uptake efficiency were unaffected by the genetic modifications, but the GM-lines produced less tuber biomass per plant-internal N compared to their parents. In the field, the fresh tuber yield was 40% greater in the high-amylose line as compared with its parent; the greater fresh tuber yield in the high-amylose GM line was accomplished by higher water allocation to the harvested tubers, and associated with increased N recovery from soil (+20%), N uptake efficiency (+53%), tuber N content (+20%), and N accumulation (+120%) compared with the non-GM parent. The cultivation conditions influenced the yield and N economy. For example, the final fresh above-ground plant biomass and N pool were considerably higher in the greenhouse conditions, whilst the tuber yield was higher in the field conditions. In conclusion, the genetic modification inducing high accumulation of amylose in potato tubers affected several non-target traits related to plant N economy, and increased the plant N uptake and accumulation efficiency of the field-grown plants. Due to strongly increased

  18. Palisade Russet: A late blight resistant potato cultivar having a low incidence of sugar ends and high specific gravity

    Science.gov (United States)

    Palisade Russet is a medium-late maturing, lightly russeted potato breeding clone notable for its resistance to late blight (Phytophthora infestans) infection of foliage and tuber. Palisade Russet is suitable for processing with low tuber glucose concentrations observed following long-term storage ...

  19. Resistance to Black Dot in Potato

    Science.gov (United States)

    Black dot fungus can colonize tubers on the surface, in the stolon end, or in a combination of both.On the surface the fungus is prevalent as sclerotia, and in the stolon end the fungus colonizes the vascular tissuesas hyphae. The fungus is introduced to non-infested soils mostly by infected potato ...

  20. Plant Residual Management in different Crop Rotations System on Potato Tuber Yield Loss Affected by Wireworms

    Directory of Open Access Journals (Sweden)

    A. Zarea Feizabadi

    2016-07-01

    Full Text Available Introduction: Selection a proper crop rotation based on environmental conservation rules is a key factor for increasing long term productivity. On the other hand, the major problem in reaching agricultural sustainability is lack of soil organic matter. Recently, a new viewpoint has emerged based on efficient use of inputs, environmental protection, ecological economy, food supply and security. Crop rotation cannot supply and restore plant needed nutrients, so gradually the productivity of rotation system tends to be decreased. Returning the plant residues to the soil helps to increase its organic matter and fertility in long-term period. Wireworms are multi host pests and we can see them in wheat and barley too. The logic way for their control is agronomic practices like as crop rotation. Wireworms’ population and damages are increased with using grasses and small seed gramineas in mild winters, variation in cropping pattern, reduced chemical control, and cover crops in winter. In return soil cultivation, crop rotation, planting date, fertilizing, irrigation and field health are the examples for the effective factors in reducing wireworms’ damage. Materials and Methods: In order to study the effect of crop rotations, residue management and yield damage because of wireworms’ population in soil, this experiment was conducted using four rotation systems for five years in Jolgeh- Rokh agricultural research station. Crop rotations were included, 1 Wheat monoculture for the whole period (WWWWW, 2 Wheat- wheat- wheat- canola- wheat (WWWCW, 3 Wheat- sugar beet- wheat- potato- wheat (WSWPW, 4 Wheat- maize- wheat- potato- wheat (WMWPW as main plots and three levels of returning crop residues to soil (returning 0, 50 and 100% produced crop residues to soil were allocated as sub plots. This experiment was designed as split plot based on RCBD design with three replications. After ending each rotation treatment, the field was sowed with potato cv. Agria

  1. Botanicals to Control Soft Rot Bacteria of Potato

    Directory of Open Access Journals (Sweden)

    M. M. Rahman

    2012-01-01

    Full Text Available Extracts from eleven different plant species such as jute (Corchorus capsularis L., cheerota (Swertia chiraita Ham., chatim (Alstonia scholaris L., mander (Erythrina variegata, bael (Aegle marmelos L., marigold (Tagetes erecta, onion (Allium cepa, garlic (Allium sativum L., neem (Azadiracta indica, lime (Citrus aurantifolia, and turmeric (Curcuma longa L. were tested for antibacterial activity against potato soft rot bacteria, E. carotovora subsp. carotovora (Ecc P-138, under in vitro and storage conditions. Previously, Ecc P-138 was identified as the most aggressive soft rot bacterium in Bangladeshi potatoes. Of the 11 different plant extracts, only extracts from dried jute leaves and cheerota significantly inhibited growth of Ecc P-138 in vitro. Finally, both plant extracts were tested to control the soft rot disease of potato tuber under storage conditions. In a 22-week storage condition, the treated potatoes were significantly more protected against the soft rot infection than those of untreated samples in terms of infection rate and weight loss. The jute leaf extracts showed more pronounced inhibitory effects on Ecc-138 growth both in in vitro and storage experiments.

  2. Historical collections reveal patterns of diffusion of sweet potato in Oceania obscured by modern plant movements and recombination.

    Science.gov (United States)

    Roullier, Caroline; Benoit, Laure; McKey, Doyle B; Lebot, Vincent

    2013-02-05

    The history of sweet potato in the Pacific has long been an enigma. Archaeological, linguistic, and ethnobotanical data suggest that prehistoric human-mediated dispersal events contributed to the distribution in Oceania of this American domesticate. According to the "tripartite hypothesis," sweet potato was introduced into Oceania from South America in pre-Columbian times and was then later newly introduced, and diffused widely across the Pacific, by Europeans via two historically documented routes from Mexico and the Caribbean. Although sweet potato is the most convincing example of putative pre-Columbian connections between human occupants of Polynesia and South America, the search for genetic evidence of pre-Columbian dispersal of sweet potato into Oceania has been inconclusive. Our study attempts to fill this gap. Using complementary sets of markers (chloroplast and nuclear microsatellites) and both modern and herbarium samples, we test the tripartite hypothesis. Our results provide strong support for prehistoric transfer(s) of sweet potato from South America (Peru-Ecuador region) into Polynesia. Our results also document a temporal shift in the pattern of distribution of genetic variation in sweet potato in Oceania. Later reintroductions, accompanied by recombination between distinct sweet potato gene pools, have reshuffled the crop's initial genetic base, obscuring primary patterns of diffusion and, at the same time, giving rise to an impressive number of local variants. Moreover, our study shows that phenotypes, names, and neutral genes do not necessarily share completely parallel evolutionary histories. Multidisciplinary approaches, thus, appear necessary for accurate reconstruction of the intertwined histories of plants and humans.

  3. Recombination of strain O segments to HCpro-encoding sequence of strain N of Potato virus Y modulates necrosis induced in tobacco and in potatoes carrying resistance genes Ny or Nc.

    Science.gov (United States)

    Tian, Yan-Ping; Valkonen, Jari P T

    2015-09-01

    Hypersensitive resistance (HR) to strains O and C of Potato virus Y (PVY, genus Potyvirus) is conferred by potato genes Ny(tbr) and Nc(tbr), respectively; however, PVY N strains overcome these resistance genes. The viral helper component proteinases (HCpro, 456 amino acids) from PVY(N) and PVY(O) are distinguished by an eight-amino-acid signature sequence, causing HCpro to fold into alternative conformations. Substitution of only two residues (K269R and R270K) of the eight-amino-acid signature in PVY(N) HCpro was needed to convert the three-dimensional (3D) model of PVY(N) HCpro to a PVY(O) -like conformation and render PVY(N) avirulent in the presence of Ny(tbr), whereas four amino acid substitutions were necessary to change PVY(O) HCpro to a PVY(N) -like conformation. Hence, the HCpro conformation rather than other features ascribed to the sequence were essential for recognition by Ny(tbr). The 3D model of PVY(C) HCpro closely resembled PVY(O), but differed from PVY(N) HCpro. HCpro of all strains was structurally similar to β-catenin. Sixteen PVY(N) 605-based chimeras were inoculated to potato cv. Pentland Crown (Ny(tbr)), King Edward (Nc(tbr)) and Pentland Ivory (Ny(tbr)/Nc(tbr)). Eleven chimeras induced necrotic local lesions and caused no systemic infection, and thus differed from both parental viruses that infected King Edward systemically, and from PVY(N) 605 that infected Pentland Crown and Pentland Ivory systemically. These 11 chimeras triggered both Ny(tbr) and Nc(tbr) and, in addition, six induced veinal necrosis in tobacco. Further, specific amino acid residues were found to have an additive impact on necrosis. These results shed new light on the causes of PVY-related necrotic symptoms in potato. © 2014 BSPP AND JOHN WILEY & SONS LTD.

  4. Applicability of impedance measuring method to the detection of irradiation treatment of potatoes

    International Nuclear Information System (INIS)

    Hayashi, Toru; Todoriki, Setsuko; Otobe, Kazunori; Sugiyama, Junnichi

    1993-01-01

    The incubation condition of potato tubers prior to impedance measurement greatly influenced the reliability of detection of irradiated potatoes; the impedance ratio at 5 kHz to 50 kHz (Z 5k /Z 50k ) determined at 22degC at an apical region of tuber which was pre-incubated at 22degC for 3 days or longer resulted in the best detection of radiation treatment of potatoes. The impedance ratio was dependent upon dose applied to potato tubers. Potatoes irradiated at 100 Gy could be distinguished from unirradiated potatoes for 10 cultivars of potatoes. The impedance ratio of potatoes irradiated at the same dose was little influenced by the planting locality if the cultivar was the same, although the ratio varied with potato cultivars. These results indicate that irradiated potatoes can be detected if the potato cultivar is known. Potatoes 'Danshaku' commercially irradiated at the Shihiro Potato Irradiation Center could be differentiated from unirradiated 'Danshaku' at different planting localities; the impedance ratio was lower than 2.75 for the unirradiated potatoes and higher than 2.75 for the irradiated ones. (author)

  5. Drying/rewetting cycles of the soil under alternate partial root-zone drying irrigation reduce carbon and nitrogen retention in the soil-plant systems of potato

    DEFF Research Database (Denmark)

    Sun, Yanqi; Yan, Fei; Liu, Fulai

    2013-01-01

    for five weeks. For each N rate, the PRD and DI plants received a same amount of water, which allowed re-filling one half of the PRD pots close to full water holding capacity. The results showed that plant dry biomass, plant water use, and water use efficiency were increased with increasing N...... retention in the soil–plant systems of potato. Potato plants were grown in 20 L split-root pots with three N-fertilization rates, viz., 1.4 (N1), 2.5 (N2), and 4 (N3) g N pot−1 soil, respectively. At tuber initiation and earlier tuber bulking stages, the plants were subjected to PRD and DI treatment...

  6. Contrasting Regulation of NO and ROS in Potato Defense-Associated Metabolism in Response to Pathogens of Different Lifestyles.

    Directory of Open Access Journals (Sweden)

    Jolanta Floryszak-Wieczorek

    Full Text Available Our research provides new insights into how the low and steady-state levels of nitric oxide (NO and reactive oxygen species (ROS in potato leaves are altered after the challenge with the hemibiotroph Phytophthora infestans or the necrotroph Botrytis cinerea, with the subsequent rapid and invader-dependent modification of defense responses with opposite effects. Mainly in the avirulent (avr P. infestans-potato system, NO well balanced with the superoxide level was tuned with a battery of SA-dependent defense genes, leading to the establishment of the hypersensitive response (HR successfully arresting the pathogen. Relatively high levels of S-nitrosoglutathione and S-nitrosothiols concentrated in the main vein of potato leaves indicated the mobile function of these compounds as a reservoir of NO bioactivity. In contrast, low-level production of NO and ROS during virulent (vr P. infestans-potato interactions might be crucial in the delayed up-regulation of PR-1 and PR-3 genes and compromised resistance to the hemibiotrophic pathogen. In turn, B. cinerea triggered huge NO overproduction and governed inhibition of superoxide production by blunting NADPH oxidase. Nevertheless, a relatively high level of H2O2 was found owing to the germin-like activity in cooperation with NO-mediated HR-like cell death in potato genotypes favorable to the necrotrophic pathogen. Moreover, B. cinerea not only provoked cell death, but also modulated the host redox milieu by boosting protein nitration, which attenuated SA production but not SA-dependent defense gene expression. Finally, based on obtained data the organismal cost of having machinery for HR in plant resistance to biotrophs is also discussed, while emphasizing new efforts to identify other components of the NO/ROS cell death pathway and improve plant protection against pathogens of different lifestyles.

  7. Effect of Transplanting Dates and Spacing on Yield Attributing Character, Productivity and Economics of Potato Cultivation Through True Potato Seed (TPS Technology

    Directory of Open Access Journals (Sweden)

    Debashish Sen

    2010-03-01

    Full Text Available A field experiment in split plot design was conducted during the rabi season of 2001-02 and 2002-03 at Potato Research and Seed Multiplication Farm, Anandapur,West Midnapore,West Bengal to study the effect of dates of transplanting and spacing on yield attributing character, productivity and economics of potato cultivation through true potato seed (TPS technology. The highest number of tubers per plant was recorded in early transplanted (December 3 crop, while, crop spacing did not produce any significant differences in recording tuber number per plant. Early established crop also produced significantly higher tuber weight per plant as compared to intermediate (December 11 and late (December 19 transplanted crops and widely spaced (60 x 15 cm crop recorded higher weight of tuber per plant as compared to the narrowly spaced crop. Early transplanting and wider spacing also showed its superiority in respect of recording harvest index of potato. As such, early transplanted and densely planted crops produced significantly higher yield of seedling tuber, marketable tuber and total tuber than their counterparts. Though cost of production of early transplanted and closely spaced crop was higher, but net profit and return per rupee investment was also higher in those cases.

  8. Efficiency of clinorotation usage on virus-infected seed potatoes for its improvement

    Science.gov (United States)

    Mishchenko, Ivan; Nechitailo, Galina S.; Dunich, Alina; Mishchenko, Anatoliy; Boiko, Anatolii

    organization, and physiological balances. Using microgravity simulated in the clinostats, it is possible to investigate the effects of this factor on the relationships in the system “virus - host plant”. This problem remains important as its solution allows to discover a wider set of techniques allowing to obtain plants free from viral infections. The possibility of the WSMV (wheat steak mosaic virus) elimination in wheat plants under the influence of simulated microgravity has been demonstrated in our works. The study of this phenomenon allowed to admit that the freeing of plants from viral infection under the impact of simulated microgravity occurs in the process of induced resistance formation. In our further research activities, we used potato plants for which the elimination of viral infections is of exceptional importance. Viruses transmitted mechanically have to use a vascular system to move all over the plant and, finally, into the tubers. The factors limiting this movability will at certain moments of plant growth favor the elimination of virus in certain parts of the plant. Introduction of tissues from such parts into in vitro cultures allows to regenerate virus-free plants. Epy efficiency of tissue culture in combination with clonal micro multiplication in vitro allows to obtain up to 1 mln plants from a single one in half a year. Such a productivity of a new technology allowed to prognosticate the potato production in vitro in the world on the level of 212 mln plantlets per year. But today, according to some estimates the in vitro potato production may be achieved with lower expenditures on plant remediation and freeing of the cultivars from viral infection. Therefore the purpose of work was to probe possibilities of receiving virus free seminal material of potato at the terms of clinorotation and set of its economic efficiency. Researches of simulated microgravity influence conducted on the potato varieties Sineglazka, Crimean, Agave, Linda, Bellaroza

  9. Production of Bioethanol from Waste Potato

    Directory of Open Access Journals (Sweden)

    Merve Duruyurek

    2015-02-01

    Full Text Available Using primary energy sources in World as fossil fuels, causes air pollution and climate change. Because of these reasons, people looking for renewable energy suppliers which has less carbondioxide and less pollution. Carbon in biofuels is producing from photosynthesis. For this, burning biofuels don’t increase carbondioxide in atmosphere. Scientists predict that plants with high carbonhydrate and protein contents are 21. centuries biofuels. Potatoes are producing over 280 million in whole world and Turkey is 6th potato producer. Turkey produces 5250000 tonne of potatoes. Approximately 20% of potatoes are waste in Niğde. Our study aimed to produce bioethanol from Solanum tuberosum by using the yeast Saccharomyces cerevisiae. As a result renewable energy sources can be produced from natural wastes.

  10. Resistant starch analysis of commonly consumed potatoes: Content varies by cooking method and service temperature but not by variety

    Science.gov (United States)

    Resistant starch (RS) has properties which may provide health benefits. We conducted a study to determine the contributions of cultivar, cooking method and service temperature on the RS contents of potatoes (Solanum tuberosum L.). We hypothesized that the RS content would vary by variety, cooking me...

  11. physiological mechanisms for potato dormancy release

    African Journals Online (AJOL)

    ACSS

    of deep dormancy, during which potato seeds do not germinate after ... dormancy period and sprouting behaviour are major criteria ... develop once sprouting begins; such as changes ...... an example of plant information processing. Plant Cell ...

  12. Expression of two functionally distinct plant endo-beta-1,4-glucanases is essential for the compatible interaction between potato cyst nematode and its hosts.

    Science.gov (United States)

    Karczmarek, Aneta; Fudali, Sylwia; Lichocka, Malgorzata; Sobczak, Miroslaw; Kurek, Wojciech; Janakowski, Slawomir; Roosien, Jan; Golinowski, Wladyslaw; Bakker, Jaap; Goverse, Aska; Helder, Johannes

    2008-06-01

    For the proliferation of their feeding sites (syncytia), the potato cyst nematode Globodera rostochiensis is thought to recruit plant endo-beta-1,4-glucanases (EGases, EC. 3.2.1.4). Reverse-transcription polymerase chain reaction experiments on tomato (Solanum lycopersicum) indicated that the expression of two out of the at least eight EGases, namely Sl-cel7 and Sl-cel9C1, is specifically upregulated during syncytium formation. In situ hybridization and immunodetection studies demonstrated that both EGases are specifically expressed inside and adjacent to proliferating syncytia. To assess the importance of Sl-cel7 and Sl-cel9C1 for nematode development, we decided to knock them out individually. Sl-cel9C1 probably is the only class C EGase in tomato, and we were unable to regenerate Sl-cel9C1-silenced plants. Potato (S. tuberosum), a close relative of tomato, harbors at least two class C EGases, and St-cel7-or St-cel9C1-silenced potato plants showed no obvious aberrant phenotype. Infection with potato cyst nematodes resulted in a severe reduction of the number of adult females (up to 60%) and a sharp increase in the fraction of females without eggs (up to 89%). Hence, the recruitment of CEL7, an enzyme that uses xyloglucan and noncrystalline cellulose as natural substrates, and CEL9C1, an enzyme that uses crystalline cellulose, is essential for growth and development of potato cyst nematodes.

  13. Spectral measurements at different spatial scales in potato: relating leaf, plant and canopy nitrogen status

    Science.gov (United States)

    Jongschaap, Raymond E. E.; Booij, Remmie

    2004-09-01

    Chlorophyll contents in vegetation depend on soil nitrogen availability and on crop nitrogen uptake, which are important management factors in arable farming. Crop nitrogen uptake is important, as nitrogen is needed for chlorophyll formation, which is important for photosynthesis, i.e. the conversion of absorbed radiance into plant biomass. The objective of this study was to estimate leaf and canopy nitrogen contents by near and remote sensing observations and to link observations at leaf, plant and canopy level. A theoretical base is presented for scaling-up leaf optical properties to whole plants and crops, by linking different optical recording techniques at leaf, plant and canopy levels through the integration of vertical nitrogen distribution. Field data come from potato experiments in The Netherlands in 1997 and 1998, comprising two potato varieties: Eersteling and Bintje, receiving similar nitrogen treatments (0, 100, 200 and 300 kg N ha -1) in varying application schemes to create differences in canopy nitrogen status during the growing season. Ten standard destructive field samplings were performed to follow leaf area index and crop dry weight evolution. Samples were analysed for inorganic nitrogen and total nitrogen contents. At sampling dates, spectral measurements were taken both at leaf level and at canopy level. At leaf level, an exponential relation between SPAD-502 readings and leaf organic nitrogen contents with a high correlation factor of 0.91 was found. At canopy level, an exponential relation between canopy organic nitrogen contents and red edge position ( λrep, nm) derived from reflectance measurements was found with a good correlation of 0.82. Spectral measurements (SPAD-502) at leaf level of a few square mm were related to canopy reflectance measurements (CropScan™) of approximately 0.44 m 2. Statistical regression techniques were used to optimise theoretical vertical nitrogen profiles that allowed scaling-up leaf chlorophyll measurements

  14. Use of induced mutations for potato improvement

    International Nuclear Information System (INIS)

    Kishore, H.; Das, B.; Subramanyam, K.N.; Chandra, R.; Upadhya, M.D.

    1975-01-01

    The investigations aim at the utilization of induced mutations for potato improvement. The effect of γ-rays was tested on selfed seeds and hybrid seeds as well as on tubers of several potato varieties. Chemical mutagens have been successfully employed to produce daylength neutral clones. An attempt to induce resistance against Pseudomonas solanacearum did not give conclusive results. Potato improvement in relation of yield and other characters of economic significance like maturity and attributes of tubers has been handicapped by several technical considerations world over. The crux of the problem lies in the narrow genetic base (variability) for potato breeders to work with. The use of mutation breeding, therefore, offers a good tool for this. Improvement by mutation breeding for the quantitative characters besides the resistance to disease and pest has been demonstrated in other crops like white mustard variety Primex (Anderson and Olsson, 1954), barley (Gustafsson, 1965) and peanut (Gregory, 1956). Keeping these in view and the success we had in isolating photoperiod insensitive types (Upadhaya et al, 1973, 1974) study was enlarged to use mutagens to increase as wide a spectrum as possible of the variability for quantative and qualitative characters. (author)

  15. A potato tuber-expressed mNRA with homology to steroid dehydrogenases affects gibberellin levels and plant development

    NARCIS (Netherlands)

    Bachem, C.W.B.; Horvath, B.M.; Trindade, L.M.; Claassens, M.M.J.; Davelaar, E.; Jordi, W.J.R.M.; Visser, R.G.F.

    2001-01-01

    Using cDNA-AFLP RNA fingerprinting throughout potato tuber development, we have isolated a transcript-derived fragment (TDF511) with strong homology to plant steroid dehydrogenases. During in vitro tuberization, the abundance profile of the TDF shows close correlation to the process of tuber

  16. Nucleocytoplasmic distribution is required for activation of resistance by the potato NB-LRR receptor Rx1 and is balanced by its functional domains

    NARCIS (Netherlands)

    Slootweg, E.J.; Roosien, J.; Spiridon, L.N.; Petrescu, A.J.; Tameling, W.I.L.; Joosten, M.H.A.J.; Pomp, H.; Schaik, van C.C.; Dees, R.H.L.; Borst, J.W.; Smant, G.; Schots, A.; Bakker, J.; Goverse, A.

    2010-01-01

    The Rx1 protein, as many resistance proteins of the nucleotide binding–leucine-rich repeat (NB-LRR) class, is predicted to be cytoplasmic because it lacks discernable nuclear targeting signals. Here, we demonstrate that Rx1, which confers extreme resistance to Potato virus X, is located both in the

  17. The effects of potato virus Y-derived virus small interfering RNAs of three biologically distinct strains on potato (Solanum tuberosum) transcriptome.

    Science.gov (United States)

    Moyo, Lindani; Ramesh, Shunmugiah V; Kappagantu, Madhu; Mitter, Neena; Sathuvalli, Vidyasagar; Pappu, Hanu R

    2017-07-17

    Potato virus Y (PVY) is one of the most economically important pathogen of potato that is present as biologically distinct strains. The virus-derived small interfering RNAs (vsiRNAs) from potato cv. Russet Burbank individually infected with PVY-N, PVY-NTN and PVY-O strains were recently characterized. Plant defense RNA-silencing mechanisms deployed against viruses produce vsiRNAs to degrade homologous viral transcripts. Based on sequence complementarity, the vsiRNAs can potentially degrade host RNA transcripts raising the prospect of vsiRNAs as pathogenicity determinants in virus-host interactions. This study investigated the global effects of PVY vsiRNAs on the host potato transcriptome. The strain-specific vsiRNAs of PVY, expressed in high copy number, were analyzed in silico for their proclivity to target potato coding and non-coding RNAs using psRobot and psRNATarget algorithms. Functional annotation of target coding transcripts was carried out to predict physiological effects of the vsiRNAs on the potato cv. Russet Burbank. The downregulation of selected target coding transcripts was further validated using qRT-PCR. The vsiRNAs derived from biologically distinct strains of PVY displayed diversity in terms of absolute number, copy number and hotspots for siRNAs on their respective genomes. The vsiRNAs populations were derived with a high frequency from 6 K1, P1 and Hc-Pro for PVY-N, P1, Hc-Pro and P3 for PVY-NTN, and P1, 3' UTR and NIa for PVY-O genomic regions. The number of vsiRNAs that displayed interaction with potato coding transcripts and number of putative coding target transcripts were comparable between PVY-N and PVY-O, and were relatively higher for PVY-NTN. The most abundant target non-coding RNA transcripts for the strain specific PVY-derived vsiRNAs were found to be MIR821, 28S rRNA,18S rRNA, snoR71, tRNA-Met and U5. Functional annotation and qRT-PCR validation suggested that the vsiRNAs target genes involved in plant hormone signaling, genetic

  18. Changes in protease activity and Cry3Aa toxin binding in the Colorado potato beetle: implications for insect resistance to Bacillus thuringiensis toxins

    Science.gov (United States)

    Olga Loseva; Mohamed Ibrahim; Mehmet Candas; C. Noah Koller; Leah S. Bauer; Lee A. Jr. Bulla

    2002-01-01

    Widespread commercial use of Bacillus thuringiensis Cry toxins to control pest insects has increased the likelihood for development of insect resistance to this entomopathogen. In this study, we investigated protease activity profiles and toxin-binding capacities in the midgut of a strain of Colorado potato beetle (CPB) that has developed resistance...

  19. Potatoes in Space

    Science.gov (United States)

    2004-01-01

    Astroculture is a suite of technologies used to produce and maintain a closed controlled environment for plant growth. The two most recent missions supported growth of potato, dwarf wheat, and mustard plants and provided scientists with the first opportunity to conduct true plant research in space. Light emitting diodes have particular usefulness for plant growth lighting because they emit a much smaller amount of radiant heat than do conventional lighting sources and because they have potential of directing a higher percentage of the emitted light onto plants surfaces. Furthermore, the high output LED's have emissions in the 600-700 nm waveband, which is of highest efficiency for photosynthesis by plants.

  20. Genetic modification of potato against microbial diseases: in vitro and in planta activity of a dermaseptin B1 derivative, MsrA2.

    Science.gov (United States)

    Osusky, Milan; Osuska, Lubica; Kay, William; Misra, Santosh

    2005-08-01

    Dermaseptin B1 is a potent cationic antimicrobial peptide found in skin secretions of the arboreal frog Phyllomedusa bicolor. A synthetic derivative of dermaseptin B1, MsrA2 (N-Met-dermaseptin B1), elicited strong antimicrobial activities against various phytopathogenic fungi and bacteria in vitro. To assess its potential for plant protection, MsrA2 was expressed at low levels (1-5 microg/g of fresh tissue) in the transgenic potato (Solanum tuberosum L.) cv. Desiree. Stringent challenges of these transgenic potato plants with a variety of highly virulent fungal phytopathogens--Alternaria, Cercospora, Fusarium, Phytophthora, Pythium, Rhizoctonia and Verticillium species--and with the bacterial pathogen Erwinia carotovora demonstrated that the plants had an unusually broad-spectrum and powerful resistance to infection. MsrA2 profoundly protected both plants and tubers from diseases such as late blight, dry rot and pink rot and markedly extended the storage life of tubers. Due to these properties in planta, MsrA2 is proposed as an ideal antimicrobial peptide candidate to significantly increase resistance to phytopathogens and improve quality in a variety of crops worldwide with the potential to obviate fungicides and facilitate storage under difficult conditions.

  1. Low-input, low-cost IPM program helps manage potato psyllid

    Directory of Open Access Journals (Sweden)

    Sean M. Prager

    2016-04-01

    Full Text Available Potato psyllid is a pest of solanaceous plants throughout much of the western United States, including California, where it has increased and is now overwintering. The psyllid affects its plant hosts from direct feeding and by transmitting a plant pathogenic bacterium, Lso. Millions of dollars of damages have occurred in the U.S. potato industry, and a large acreage of crops is susceptible in California. Control is complicated because different crops have different pest complexes and susceptibilities to Lso; currently most growers use multiple pesticide applications, including broad-spectrum insecticides. Results of our field trials at South Coast Research and Extension Center indicate that the use of broad-spectrum insecticides actually increases psyllid numbers in both peppers and potatoes. We have developed a low-input IPM program, which in field trials produced encouraging results in peppers, potatoes and tomatoes compared to broad-spectrum insecticides. Economic analysis showed the low-input IPM approach was more cost effective than a standard insecticide program in tomatoes.

  2. Early responses of resistant and susceptible potato roots during invasion by the potato cyst nematode Globodera rostochiensis.

    Science.gov (United States)

    Sheridan, Jacqueline P; Miller, Anthony J; Perry, Roland N

    2004-03-01

    Signals from roots of resistant (cv. Maris Piper) and susceptible (cv. Désirée) potato cultivars during invasion by second stage juveniles (J2s) of the potato cyst nematode, Globodera rostochiensis, were investigated. Novel experimental chambers enabled the recording of electrophysiological responses from roots during nematode invasion. The root cell membrane potentials were maintained throughout the 3 d required to assess invasion and feeding site development. The steady-state resting membrane potentials of Désirée were more negative than those of Maris Piper on day 1, but the reverse on day 3. After 5 d there was no difference between the two cultivars. Intracellular microelectrodes detected marked spike activity in roots after the application of J2s and there were distinct and reproducible differences between the two cultivars, with the response from Désirée being much greater than that from Maris Piper. The responses to mechanical stimulation of roots by blunt micropipettes and sharp electrodes were consistent and similar in both cultivars to the responses in Maris Piper obtained after nematode invasion, but could not account for the marked response found in Désirée. Exogenous application of exoenzymes, used to mimic nematode chemical secretions, resulted in a distinct depolarization pattern that, although similar in both cultivars, was different from patterns obtained during nematode invasion or mechanical stimulation. The pH of homogenates prepared from roots of both cultivars was measured and a Ca2+ channel blocker was used to assess the role of Ca2+ in nematode invasion. The results indicated a role for Ca2+ in the signalling events that occur during nematode invasion.

  3. Dissection of the major late blight resistance cluster on potato linkage group IV

    NARCIS (Netherlands)

    Lokossou, A.A.

    2010-01-01

    Potato is consumed worldwide and represents the fourth most important staple food crop after rice and wheat. Potato cultivars display a large variety of color, shape, taste, cooking properties and starch content but are all derived from the same species; Solanum tuberosum. Potato breeding is an

  4. [Agricultural climate regionalization of dryland farming for potato in Yinshan based on GIS].

    Science.gov (United States)

    Miao, Bai-ling; Hou, Qiong; Liang, Cun-zhu

    2015-01-01

    Based on the meteorology dataset of 34 stations over the Yinshan area through the recent 30 years (1982-2010), we investigated the key environmental variables influencing potato yield using the correlation and regression methods. Two environmental variables, including the mean temperature difference, precipitation during the growing season, were selected as the major indexes for determining the suitable area for planting potato. Using the GIS-based small grid calculation model, we interpolated these two major environmental variables and produced the climatic map for potato in Yinshan area. The results showed the high potato yield area located in Qianshan and southern Houshan, and the medium-yield division was mainly concentrated in the central Houshan and north-west Qianshan, the low-yield division was distributed mainly in northern Yinshan. Moreover, this study examined the spatial patterns of potato production, and evaluated the stability of potato yield by combining the relative variability of potato yield. This study could provide valuable references for planting potato in Yinshan area.

  5. Natural Plant Oils and Terpenes as Protector for the Potato Tubers against Phthorimaea operculella Infestation by Different Application Methods

    Directory of Open Access Journals (Sweden)

    Aziza Sharaby

    2014-06-01

    Full Text Available For protecting potato tubers from the potato tuber moth (PTM infestation during storage, different concentrations of ten natural plant oils and three commercial monoterpnes were tested, some as fumigants or dusts against adults or dusts against neonate larvae, while others as sprays on the gunny sacks in which potato tubers were stored. Tuber damage indices as well as persistence indices for tested materials were assessed. Vapors of Cymbopogon citratus, Myristica fragrans (nutmag, Mentha citrata and a-Ionone (monoterpene caused a highly significant reductions in the life span of exposed moths as well as in new adult offsprings. Other tested oils as Cinnamonium zeylanicum, Myristica. fragrans (Mace and Pelargonium graveolens caused a insignificant effect. There was no significant effect of the tested vapors on egg hatchability, except in case of oils of C. citratus, M. fragrans (nutmag and M. tragrans(Mace oil which caused high reduction in egg hatchability. According to the values of damage indices, the most effective oil vapors were arranged ascendingly as follows: Myristica (nutmag < Cymbopogon < Mentha < a - Ionone. Dusting potato tubers with 1% conc., (mixed with talcum powder of Myristica, Mentha, Cymbopogons oils and a-Ionone (monoterpene caused high reduction in egg deposition, adult emergence as well as percentage of penetrated larvae of PTM. According to their damage indices, Cymbopogon and ά-Ionone were the most protective oils, followed by Myristica and Mentha. Spraying gunnysacks with 1% conc., of the aforementioned natural oils separately elicited high reduction in PTM progeny; while their combinations did not elicit any significant synergistic effect. According to their tuber damage indices, it was found that Cymbopogon oil alone or mixed with Myristica oil showed the best protective effect, followed by Myristica oil alone and Mentha oil mixed with Cymbopogon oil. Assessment of the persistence index of various tested materials

  6. Degradation Processes of Pesticides Used in Potato Cultivations.

    Science.gov (United States)

    Kurek, M; Barchańska, H; Turek, M

    Potato is one of the most important crops, after maize, rice and wheat. Its global production is about 300 million tons per year and is constantly increasing. It grows in temperate climate and is used as a source of starch, food, and in breeding industry.Potato cultivation requires application of numerous agro-technical products, including pesticides, since it can be affected by insects, weeds, fungi, and viruses. In the European Union the most frequently used pesticides in potato cultivations check are: thiamethoxam, lambda-cyhalothrin and deltamethrin (insecticides), rimsulfuron (herbicide) and metalaxyl (fungicide).Application of pesticides improves crop efficiency, however, as pesticides are not totally selective, it affects also non-target organisms. Moreover, the agrochemicals may accumulate in crops and, as a consequence, negatively influence the quality of food products and consumer health. Additional risks of plant protection products are related to their derivatives, that are created both in the environment (soil, water) and in plant organisms, since many of these compounds may exhibit toxic effects.This article is devoted to the degradation processes of pesticides used in potato crop protection. Attention is also paid to the toxicity of both parent compounds and their degradation products for living organisms, including humans. Information about the level of pesticide contamination in the environment (water, soil) and accumulation level in edible plants complement the current knowledge about the risks associated with widespread use of thiamethoxam, lambda-cyhalothrin and deltamethrin, rimsulfuron and metalaxyl in potato cultivation.

  7. Transgenic potatoes for potato cyst nematode control can replace pesticide use without impact on soil quality.

    Science.gov (United States)

    Green, Jayne; Wang, Dong; Lilley, Catherine J; Urwin, Peter E; Atkinson, Howard J

    2012-01-01

    Current and future global crop yields depend upon soil quality to which soil organisms make an important contribution. The European Union seeks to protect European soils and their biodiversity for instance by amending its Directive on pesticide usage. This poses a challenge for control of Globodera pallida (a potato cyst nematode) for which both natural resistance and rotational control are inadequate. One approach of high potential is transgenically based resistance. This work demonstrates the potential in the field of a new transgenic trait for control of G. pallida that suppresses root invasion. It also investigates its impact and that of a second transgenic trait on the non-target soil nematode community. We establish that a peptide that disrupts chemoreception of nematodes without a lethal effect provides resistance to G. pallida in both a containment and a field trial when precisely targeted under control of a root tip-specific promoter. In addition we combine DNA barcoding and quantitative PCR to recognise nematode genera from soil samples without microscope-based observation and use the method for nematode faunal analysis. This approach establishes that the peptide and a cysteine proteinase inhibitor that offer distinct bases for transgenic plant resistance to G. pallida do so without impact on the non-target nematode soil community.

  8. Transgenic potatoes for potato cyst nematode control can replace pesticide use without impact on soil quality.

    Directory of Open Access Journals (Sweden)

    Jayne Green

    Full Text Available Current and future global crop yields depend upon soil quality to which soil organisms make an important contribution. The European Union seeks to protect European soils and their biodiversity for instance by amending its Directive on pesticide usage. This poses a challenge for control of Globodera pallida (a potato cyst nematode for which both natural resistance and rotational control are inadequate. One approach of high potential is transgenically based resistance. This work demonstrates the potential in the field of a new transgenic trait for control of G. pallida that suppresses root invasion. It also investigates its impact and that of a second transgenic trait on the non-target soil nematode community. We establish that a peptide that disrupts chemoreception of nematodes without a lethal effect provides resistance to G. pallida in both a containment and a field trial when precisely targeted under control of a root tip-specific promoter. In addition we combine DNA barcoding and quantitative PCR to recognise nematode genera from soil samples without microscope-based observation and use the method for nematode faunal analysis. This approach establishes that the peptide and a cysteine proteinase inhibitor that offer distinct bases for transgenic plant resistance to G. pallida do so without impact on the non-target nematode soil community.

  9. A high-resolution map of the H1 locus harbouring resistance to the potato cyst nematode Globodera rostochiensis.

    Science.gov (United States)

    Bakker, Erin; Achenbach, Ute; Bakker, Jeroen; van Vliet, Joke; Peleman, Johan; Segers, Bart; van der Heijden, Stefan; van der Linde, Piet; Graveland, Robert; Hutten, Ronald; van Eck, Herman; Coppoolse, Eric; van der Vossen, Edwin; Bakker, Jaap; Goverse, Aska

    2004-06-01

    The resistance gene H1 confers resistance to the potato cyst nematode Globodera rostochiensis and is located at the distal end of the long arm of chromosome V of potato. For marker enrichment of the H1 locus, a bulked segregant analysis (BSA) was carried out using 704 AFLP primer combinations. A second source of markers tightly linked to H1 is the ultra-high-density (UHD) genetic map of the potato cross SH x RH. This map has been produced with 387 AFLP primer combinations and consists of 10,365 AFLP markers in 1,118 bins (http://www.dpw.wageningen-ur.nl/uhd/). Comparing these two methods revealed that BSA resulted in one marker/cM and the UHD map in four markers/cM in the H1 interval. Subsequently, a high-resolution genetic map of the H1 locus has been developed using a segregating F(1) SH x RH population consisting of 1,209 genotypes. Two PCR-based markers were designed at either side of the H1 gene to screen the 1,209 genotypes for recombination events. In the high-resolution genetic map, two of the four co-segregating AFLP markers could be separated from the H1 gene. Marker EM1 is located at a distance of 0.2 cM, and marker EM14 is located at a distance of 0.8 cM. The other two co-segregating markers CM1 (in coupling) and EM15 (in repulsion) could not be separated from the H1 gene.

  10. Reactive oxygen species accumulation and homeostasis are involved in plant immunity to an opportunistic fungal pathogen.

    Science.gov (United States)

    Taheri, Parissa; Kakooee, Tahereh

    2017-09-01

    Alternaria blight is a major and destructive disease of potato worldwide. In recent years, A. tenuissima is recognized as the most prevalent species of this phytopathogenic fungus in potato fields of Asian countries, which causes high yield losses every year. Any potato cultivar with complete resistance to this disease is not recognized, so far. Therefore, screening resistance levels of potatoes and identification of plant defense mechanisms against this fungus might be important for designing novel and effective disease management strategies for controlling the disease. In this research, the role of reactive oxygen species, antioxidants, lignin and phenolics in potato basal resistance to A. tenuissima was compared in the partially resistant Ramus and susceptible Bamba cultivars. Priming O 2 - and H 2 O 2 production and enhanced activity of peroxidase (POX) and catalase (CAT) during interaction with A. tenuissima were observed in Ramus cultivar. Application of ROS generating systems and scavengers revealed critical role of O 2 - and H 2 O 2 in potato defense, which was associated with lignification and phenolics production. More OH - and lipid peroxidation in the susceptible Bamba compared to Ramus cultivar showed their negative effects on resistance. Priming the POX and CAT activity, in correlation with upregulation of the corresponding genes was observed in Ramus. The POX and CAT inhibitors increased disease progress, which was related with decreased lignification. This assay demonstrated not only POX-dependency of lignification, but also its dependence on CAT. However, POX had more importance than CAT in potato defense and in lignification. These findings highlight the function of ROS accumulation and homeostasis in potato resistance against A. tenuissima. Copyright © 2017 Elsevier GmbH. All rights reserved.

  11. Detection and quantification of Spongospora subterranea f. sp. subterranea in bait plants and potato fields in Colombia using QPCR

    International Nuclear Information System (INIS)

    Garcia Bastidas, Nevar; Morales, Juan Gonzalo; Gonzalez Jaimes, Paola; Gutierrez, Pablo Andres; Marin Montoya, Mauricio

    2013-01-01

    In recent years, potato crops (Solanum tuberosum, S. phureja) have been seriously affected by powdery scab; a disease caused by Spongospora subterranea f.sp. subterranea (Sss). In Colombia, asymptomatic detection of Sss has been achieved with bait plants, PCR of its regions and ELISA tests. Unfortunately, these techniques have low sensitivity and may require long processing times. In this work, quantitative real time PCR (qPCR) was tested for detection of Sss using different sets of primers. Primers SsTQF1-SsTQR1, Spon421F-Spon494R and SscolF-SscolR (designed in this study), were tested using SYBR green, while primers sponfsponr were tested using the Taqman probe sponp. Primers Spon421F-Spon494R was discarded due to lack of specificity. Standard curves were obtained from serial dilutions of Cystosori. the 20 N. benthamiana and potato bait plants evaluated tested positive for Sss using primers SsTQF1-SsTQR1 (Ct: 10.57-29.34) and Sscolf-SscolR (Ct: 14.39-34.08) and 19 samples were positive with primers SponF-SponR-SponP, with Ct values ranging between 15,63 and 38,93. Sss was detected in 17 out of 20 root samples from potato crops in la Union (Antioquia) using primers SscolF-SscolRt with an estimated concentration of 6470 to 1,39x10 1 0 cystosori/ mL. these results suggest high levels of sss in the potato fields from this region and recall the importance of strengthening seed-certification programs in Colombia.

  12. Tuber and root resistance of potato genotypes against Meloidogyne chitwoodi in the presence of Avena strigosa, related to tuber quality

    NARCIS (Netherlands)

    Been, Thomas H.; Molendijk, Leendert P.G.; Teklu, Misghina G.; Schomaker, Corrie H.

    2017-01-01

    Relative tuber infestation and quality of two Meloidogyne chitwoodi resistant potato genotypes, AR04-4096 and 2011M1, were compared in glasshouse experiments at initial population density (Pi) = 16 second-stage juveniles (g dry soil)−1 in the presence and absence of the bristle oat, Avena strigosa.

  13. Lethal and Sublethal Effects of Mineral Oil on Potato Pests.

    Science.gov (United States)

    Galimberti, Andrew; Alyokhin, Andrei

    2018-05-28

    Mineral oil is a product used to reduce Potato Virus Y transmission in potato fields. However, there is little information available about other effects that oil may have on insect pests of potato. To better understand how mineral oil affects potato pests, we performed a series of experiments testing the effects of oil on mortality, behavior, and development of potato aphids, Macrosiphum euphorbiae (Thomas) (Hemiptera: Aphididae), green peach aphids, Myzus persicae (Sulzer) (Hemiptera: Aphididae), and Colorado potato beetles, Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae). All three species showed negative behavioral responses to oil-treated potato foliage. Oil treatment also increased aphid mortality. Colorado potato beetle mortality was not affected, but developing on oil-treated potato plants resulted in prolonged development and smaller adults. Additionally, oil acted synergistically with the entomopathogenic fungus Beauveria bassiana (Balsamo) Vuillemin (Hypocreales: Clavicipitaceae); Colorado potato beetle larvae were killed more rapidly when sprayed with both products compared with when sprayed with B. bassiana alone. Based on these results, mineral oil has the potential for expanded use in potato IPM programs.

  14. Nitrogen dynamics in the soil-plant system under deficit and partial root-zone drying irrigation strategies in potatoes

    DEFF Research Database (Denmark)

    Shahnazari, Ali; Ahmadi, Seyed Hamid; Lærke, Poul Erik

    2008-01-01

    Experiments were conducted in lysimeters with sandy soil under an automatic rain-out shelter to study the effects of subsurface drip irrigation treatments, full irrigation (FI), deficit irrigation (DI) and partial root-zone drying (PRD), on nitrogen (N) dynamics in the soil-plant system of potatoes...

  15. Combined effect of gamma irradiation and plant oils on the potato tuber moth, Phthorimaea operculella (Z)

    International Nuclear Information System (INIS)

    HASSAN, A.I.A.

    2012-01-01

    1- Susceptibility of Phthorimaea operculella to plant oil and gamma- irradiation. 2- Susceptibility of Phthorimaea operculella to powder of some plants and gamma irradiation.-selection of the suitable concentration of plant oils. - effect on male fertility. -effect on female fecundity. -effect on adult survival. 3- Separate and combined effects of radiation and plant oil on the male mating competitiveness using the sterile dose. 4- Separate and combined effects of radiation and plant oil on the male mating competitiveness using the sub sterile dose. 5- The effects of gamma- irradiation and plant oil on the pest when the potato tubers store for different periods. 6- Some biochemical studies. o Determine the adult total protein content of treated pupae. Determine the effect of plant oils and gamma- irradiation on the activity of some enzymes as proteinase, ATPase, keitenase cholinesterase.

  16. Marker Removal in Transgenic Plants Using Cre Recombinase Delivered with Potato Virus X.

    Science.gov (United States)

    Kopertekh, Lilya; Schiemann, Joachim

    2017-01-01

    In this chapter we present an alternative method to develop marker-free transgenic plants. It makes use of the Cre/loxP recombination system from bacteriophage P1 and consists of two essential components. The first component is the transgenic plant containing a loxP-flanked marker gene. The second component is a cre transient expression vector based on potato virus X. The great benefit of this transient delivery method consists in the avoidance of stable integration of the cre recombinase gene into the plant genome. Upon infection of the loxP-target plant with PVX-Cre, the virus spreads systemically through the plant and causes the recombinase-mediated excision of the marker gene. Marker-free transgenic loci can be transmitted to the progeny by plant regeneration from PVX-Cre systemically infected leaves or self-pollination of virus-infected plants. The protocol covers generation of loxP-target transgenic plants, PVX-mediated delivery of Cre recombinase protein, phenotypic and molecular analysis of recombination events, and transmission of marker-free transgenic loci to the next generation. The transient expression system described in this chapter can be adapted for marker gene removal in other plant species that are amenable for virus infection.

  17. Effect of Different Irrigation and Planting Methods on Water Productivity and Health of Commercial Varieties of Potato

    Directory of Open Access Journals (Sweden)

    H. R Salemi

    2016-07-01

    Full Text Available Introduction Water crisis as a main factor of agronomy limitation exists in all over the arid and semiarid regions such as Isfahan, province which is located in the central part of the Zayandehrud River Basin (ZRB. Due to the increase in the cultivated area of potato in Fareidan Region located in the west of Isfahan province, it will be necessary to use pressurized irrigation systems to achieve the highest irrigation application efficiency and water productivity. Materials and Methods The ZRB (41,500 km2 is a closed basin with no outlet to the sea. The research was conducted in the Fareidan region of Isfahan, which is located in the west part of the ZRB. The Rozveh Agricultural Research Station (32°, 58' N, 50°, 25' E is located at the altitude of 2390 m above the sea level. This study was conducted as a randomized complete blocks design as a split strip plot layout with three replications and during two years (2007-2008. Three irrigation systems (Drip tape, Sprinkler and furrow were considered as main plots, two planting methods (one - row planting and two-row planting as split subplots and two potato cultivars (Marfuna and Agria as split-split subplots. Production (Tuber-yield, the consumption water and cultivars reactions to common diseases were evaluated in different treatments. The soil of the experimental area, according to USDA Soil Taxonomy 1994 is of silty loamy. At the soil depth of 1m, soil salinity (1.1-2.0 dS m-1, water salinity (1.24 dS m-1, soil moisture at field capacity (23 Vol. %, and bulk density (BD = 1.44 g/cm3 at the field site were measured or experimentally obtained in the Isfahan Soil and Water Laboratory. The results were subjected to an ANOVA to analyze the effects of the treatments and their interactions. The data obtained were analyzed using the compound variance analysis and the averages of different treatments were separated using the Duncan multiple range test using the statistical software (SAS Institute, Inc

  18. Potential Use of Insecticides and Mineral Oils for the Control of Transmission of Major Aphid-Transmitted Potato Viruses

    Directory of Open Access Journals (Sweden)

    Drago Milošević

    2012-01-01

    Full Text Available Viruses occurring in Serbia and other countries in the region are a huge problem constrainingseed potato production. At lower altitudes, in lowland and hilly regions, wheretable potato production is widely distributed, more than 50% of healthy plants becomeinfected with potato virus Y during one growing season. Under these conditions, seed potatoproduction is hindered due to a high infection pressure of potato virus Y which spreads farmore rapidly compared to leaf roll virus, virus S and other viruses hosted by this plant species.This study tended to clarify a frequent dilemma regarding the use of insecticides in preventingthe infection of healthy plants with potato virus Y and leaf roll virus, given the oraland written recommendations from pesticide manufacturers, agronomists and scientistsin the field of crop protection arising from a logical conclusion that aphid vector controlresults in virus transmission control.The present findings, which are in agreement with reports of authors from other countries,show that the use of insecticides is ineffective in preventing potato virus Y which isnonpersistently transmitted by aphids from an external source of infection.However, insecticides can exhibit efficacy in preventing potato virus Y transmissionfrom infected plants to healthy plants within a crop, which can have an overall positiveeffect only if seed potato is grown in areas that have no external source of infection.The present results and those of other authors show that insecticides are effective inpreventing the infection of healthy plants with persistently transmitted leaf roll virus.Mineral oils provide effective control of potato virus Y by preventing the infection ofpotato plants with the virus. They can be combined with other management practices toprotect seed potato crops against the virus.Given the fact that the initial first-year infection of healthy potato plants with virus Y inrelation to leaf roll virus is approximately 10

  19. Cultural systems for growing potatoes in space

    Science.gov (United States)

    Tibbitts, T.; Bula, R.; Corey, R.; Morrow, R.

    1988-01-01

    Higher plants are being evaluated for life support to provide needed food, oxygen and water as well as removal of carbon dioxide from the atmosphere. The successful utilization of plants in space will require the development of not only highly productive growing systems but also highly efficient bioregenerative systems. It will be necessary to recycle all inedible plant parts and all human wastes so that the entire complement of elemental compounds can be reused. Potatoes have been proposed as one of the desirable crops because they are 1) extremely productive, yielding more than 100 metric tons per hectare from field plantings, 2) the edible tubers are high in digestible starch (70%) and protein (10%) on a dry weight basis, 3) up to 80% of the total plant production is in tubers and thus edible, 4) the plants are easily propagated either from tubers or from tissue culture plantlets, 5) the tubers can be utilized with a minimum of processing, and 6) potatoes can be prepared in a variety of different forms for the human diet (Tibbitts et al., 1982). However potatoes have a growth pattern that complicates the development of growing the plants in controlled systems. Tubers are borne on underground stems that are botanically termed 'rhizomes', but in common usage termed 'stolons'. The stolons must be maintained in a dark, moist area with sufficient provision for enlargement of tubers. Stems rapidly terminate in flowers forcing extensive branching and spreading of plants so that individual plants will cover 0.2 m2 or more area. Thus the growing system must be developed to provide an area that is darkened for tuber and root growth and of sufficient size for plant spread. A system developed for growing potatoes, or any plants, in space will have certain requirements that must be met to make them a useful part of a life support system. The system must 1) be constructed of materials, and involve media, that can be reused for many successive cycles of plant growth, 2

  20. Effects of plant genotype and growth stage on the structure of bacterial communities associated with potato (Solanum tuberosum L.)

    NARCIS (Netherlands)

    van Overbeek, Leo; van Elsas, Jan Dirk

    The effects of genotype, plant growth and experimental factors (soil and year) on potato-associated bacterial communities were studied. Cultivars Achirana Inta, Desiree, Merkur and transgenic Desiree line DL12 (containing T4 lysozyme gene) were assessed in two field experiments. Cross-comparisons

  1. A northward colonisation of the Andes by the potato cyst nematode during geological times suggests multiple host-shifts from wild to cultivated potatoes.

    Science.gov (United States)

    Picard, Damien; Sempere, Thierry; Plantard, Olivier

    2007-02-01

    The cyst nematode Globodera pallida is a major pest of potato in South America where this specialist parasite is native. To investigate its phylogeography, we have genotyped individuals from 42 Peruvian populations using mitochondrial and nuclear molecular markers. A clear south-to-north phylogeographical pattern was revealed with five well-supported clades. The clade containing the southern populations is genetically more diverse and forms the most basal branch. The large divergence among cytochrome b haplotypes suggests that they diverged before human domestication of potato. As the nematodes studied have been sampled on cultivated potato, multiple host-shifts from wild to cultivated potatoes must have occurred independently in each clade. We hypothesise that this south-to-north pattern took place during the uplift of the Andes beginning 20 My ago and following the same direction. To our knowledge, this is the first study of a plant parasite sampled on cultivated plants revealing an ancient phylogeographical pattern.

  2. Agronomic performance of locally adapted sweet potato (Ipomoea ...

    African Journals Online (AJOL)

    SERVER

    ELISA established that field plants had a higher virus titre compared to the tissue culture regenerated plants. Key words: Sweet potato (Ipomoea batatas), tissue culture, ..... Commercial Vegetable Production Guides (CVPG) (2003). Sweet.

  3. Comparative sequence analysis of Solanum and Arabidopsis in a hot spot for pathogen resistance on potato chromosome V reveals a patchwork of conserved and rapidly evolving genome segments

    Directory of Open Access Journals (Sweden)

    Bruggmann Rémy

    2007-05-01

    Full Text Available Abstract Background Quantitative phenotypic variation of agronomic characters in crop plants is controlled by environmental and genetic factors (quantitative trait loci = QTL. To understand the molecular basis of such QTL, the identification of the underlying genes is of primary interest and DNA sequence analysis of the genomic regions harboring QTL is a prerequisite for that. QTL mapping in potato (Solanum tuberosum has identified a region on chromosome V tagged by DNA markers GP21 and GP179, which contains a number of important QTL, among others QTL for resistance to late blight caused by the oomycete Phytophthora infestans and to root cyst nematodes. Results To obtain genomic sequence for the targeted region on chromosome V, two local BAC (bacterial artificial chromosome contigs were constructed and sequenced, which corresponded to parts of the homologous chromosomes of the diploid, heterozygous genotype P6/210. Two contiguous sequences of 417,445 and 202,781 base pairs were assembled and annotated. Gene-by-gene co-linearity was disrupted by non-allelic insertions of retrotransposon elements, stretches of diverged intergenic sequences, differences in gene content and gene order. The latter was caused by inversion of a 70 kbp genomic fragment. These features were also found in comparison to orthologous sequence contigs from three homeologous chromosomes of Solanum demissum, a wild tuber bearing species. Functional annotation of the sequence identified 48 putative open reading frames (ORF in one contig and 22 in the other, with an average of one ORF every 9 kbp. Ten ORFs were classified as resistance-gene-like, 11 as F-box-containing genes, 13 as transposable elements and three as transcription factors. Comparing potato to Arabidopsis thaliana annotated proteins revealed five micro-syntenic blocks of three to seven ORFs with A. thaliana chromosomes 1, 3 and 5. Conclusion Comparative sequence analysis revealed highly conserved collinear regions

  4. A Fixed-Precision Sequential Sampling Plan for the Potato Tuberworm Moth, Phthorimaea operculella Zeller (Lepidoptera: Gelechidae), on Potato Cultivars.

    Science.gov (United States)

    Shahbi, M; Rajabpour, A

    2017-08-01

    Phthorimaea operculella Zeller is an important pest of potato in Iran. Spatial distribution and fixed-precision sequential sampling for population estimation of the pest on two potato cultivars, Arinda ® and Sante ® , were studied in two separate potato fields during two growing seasons (2013-2014 and 2014-2015). Spatial distribution was investigated by Taylor's power law and Iwao's patchiness. Results showed that the spatial distribution of eggs and larvae was random. In contrast to Iwao's patchiness, Taylor's power law provided a highly significant relationship between variance and mean density. Therefore, fixed-precision sequential sampling plan was developed by Green's model at two precision levels of 0.25 and 0.1. The optimum sample size on Arinda ® and Sante ® cultivars at precision level of 0.25 ranged from 151 to 813 and 149 to 802 leaves, respectively. At 0.1 precision level, the sample sizes varied from 5083 to 1054 and 5100 to 1050 leaves for Arinda ® and Sante ® cultivars, respectively. Therefore, the optimum sample sizes for the cultivars, with different resistance levels, were not significantly different. According to the calculated stop lines, the sampling must be continued until cumulative number of eggs + larvae reached to 15-16 or 96-101 individuals at precision levels of 0.25 or 0.1, respectively. The performance of the sampling plan was validated by resampling analysis using resampling for validation of sampling plans software. The sampling plant provided in this study can be used to obtain a rapid estimate of the pest density with minimal effort.

  5. Genome-wide identification of potato long intergenic noncoding RNAs responsive to Pectobacterium carotovorum subspecies brasiliense infection.

    Science.gov (United States)

    Kwenda, Stanford; Birch, Paul R J; Moleleki, Lucy N

    2016-08-11

    Long noncoding RNAs (lncRNAs) represent a class of RNA molecules that are implicated in regulation of gene expression in both mammals and plants. While much progress has been made in determining the biological functions of lncRNAs in mammals, the functional roles of lncRNAs in plants are still poorly understood. Specifically, the roles of long intergenic nocoding RNAs (lincRNAs) in plant defence responses are yet to be fully explored. In this study, we used strand-specific RNA sequencing to identify 1113 lincRNAs in potato (Solanum tuberosum) from stem tissues. The lincRNAs are expressed from all 12 potato chromosomes and generally smaller in size compared to protein-coding genes. Like in other plants, most potato lincRNAs possess single exons. A time-course RNA-seq analysis between a tolerant and a susceptible potato cultivar showed that 559 lincRNAs are responsive to Pectobacterium carotovorum subsp. brasiliense challenge compared to mock-inoculated controls. Moreover, coexpression analysis revealed that 17 of these lincRNAs are highly associated with 12 potato defence-related genes. Together, these results suggest that lincRNAs have potential functional roles in potato defence responses. Furthermore, this work provides the first library of potato lincRNAs and a set of novel lincRNAs implicated in potato defences against P. carotovorum subsp. brasiliense, a member of the soft rot Enterobacteriaceae phytopathogens.

  6. Twenty-six years experience of commercialization on potato irradiation at Shihoro, Japan

    Science.gov (United States)

    Kameyama, K.; Ito, H.

    2000-03-01

    The township of Shihoro is Japan's biggest and most advanced dairy and field farming district which has been producing potatoes as a key crop. The potato irradiation plant was built at Shihoro in 1973 with a potato processing complex and has been shipping some 15,000 tons of sprout-inhibited potatoes a year during the sprouting season. From a technical viewpoint, the radiation efficiency of the Shihoro irradiator is lower than that of the usual irradiation facility using a carton box. The success of the Shihoro irradiator is shown in that radiation processing has been effectively included into one of the storage systems of a huge potato distribution facility. The sprout-inhibited potatoes as such are no guarantee of better business derived from potatoes, but producers see the merit of this process, because it makes possible year-round plant operations and planned shipments, keeps employees in year-round service and prevents rural depopulation, with an increase in the volume of business by expanding the area under crop. Recently in Japan, many companies have interests in commercial irradiation of spices, medical herbs and farm animal feeds before application to common foods.

  7. Twenty-six years experience of commercialization on potato irradiation at Shihoro, Japan

    International Nuclear Information System (INIS)

    Kameyama, K.; Ito, H.

    2000-01-01

    The township of Shihoro is Japan's biggest and most advanced dairy and field farming district which has been producing potatoes as a key crop. The potato irradiation plant was built at Shihoro in 1973 with a potato processing complex and has been shipping some 15,000 tons of sprout-inhibited potatoes a year during the sprouting season. From a technical viewpoint, the radiation efficiency of the Shihoro irradiator is lower than that of the usual irradiation facility using a carton box. The success of the Shihoro irradiator is shown in that radiation processing has been effectively included into one of the storage systems of a huge potato distribution facility. The sprout-inhibited potatoes as such are no guarantee of better business derived from potatoes, but producers see the merit of this process, because it makes possible year-round plant operations and planned shipments, keeps employees in year-round service and prevents rural depopulation, with an increase in the volume of business by expanding the area under crop. Recently in Japan, many companies have interests in commercial irradiation of spices, medical herbs and farm animal feeds before application to common foods. (author)

  8. Phytophthora infestans isolates lacking class I ipiO variants are virulent on Rpi-blb1 potato

    NARCIS (Netherlands)

    Champouret, N.; Bouwmeester, K.; Rietman, H.; Lee, van der T.; Maliepaard, C.A.; Heupink, A.; Vondervoort, van de P.J.I.; Jacobsen, E.; Visser, R.G.F.; Vossen, van der E.A.G.; Govers, F.; Vleeshouwers, V.G.A.A.

    2009-01-01

    A strategy to control the devastating late blight disease is providing potato cultivars with genes that are effective in resistance to a broad spectrum of Phytophthora infestans isolates. Thus far, most late blight resistance (R) genes that were introgressed in potato were quickly defeated. In

  9. Physiological Assessment of Water Stress in Potato Using Spectral Information.

    Science.gov (United States)

    Romero, Angela P; Alarcón, Andrés; Valbuena, Raúl I; Galeano, Carlos H

    2017-01-01

    Water stress in potato ( Solanum tuberosum L.) causes considerable losses in yield, and therefore, potato is often considered to be a drought sensitive crop. Identification of water deficit tolerant potato genotypes is an adaptation strategy to mitigate the climatic changes that are occurring in the Cundiboyacense region in Colombia. Previous studies have evaluated potato plants under water stress conditions using physiological analyses. However, these methodologies require considerable amounts of time and plant material to perform these measurements. This study evaluated and compared the physiological and spectral traits between two genotypes, Diacol Capiro and Perla Negra under two drought levels (10 and 15 days without irrigation from flowering). Reflectance information was used to calculate indexes which were associated with the physiological behavior in plants. The results showed that spectral information was correlated (ρ < 0.0001) with physiological variables such as foliar area (FA), total water content (H 2 Ot), relative growth rate of potato tubers (RGTtub), leaf area ratio (LAR), and foliar area index (AFI). In general, there was a higher concentration of chlorophyll under drought treatments. In addition, Perla Negra under water deficit treatments did not show significant differences in its physiological variables. Therefore, it could be considered a drought tolerant genotype because its physiological performance was not affected under water stress conditions. However, yield was affected in both genotypes after being subject to 15 days of drought. The results suggested that reflectance indexes are a useful and affordable approach for potato phenotyping to select parent and segregant populations in breeding programs.

  10. Expression of a potato antimicrobial peptide SN1 increases resistance to take-all pathogen Gaeumannomyces graminis var. tritici in transgenic wheat.

    Science.gov (United States)

    Rong, Wei; Qi, Lin; Wang, Jingfen; Du, Lipu; Xu, Huijun; Wang, Aiyun; Zhang, Zengyan

    2013-08-01

    Take-all, caused by soil-borne fungus Gaeumannomyces graminis var. tritici (Ggt), is a devastating root disease of wheat (Triticum aestivum) worldwide. Breeding resistant wheat cultivars is the most promising and reliable approach to protect wheat from take-all. Currently, no resistant wheat germplasm is available to breed cultivars using traditional methods. In this study, gene transformation was carried out using Snakin-1 (SN1) gene isolated from potato (Solanum tuberosum) because the peptide shows broad-spectrum antimicrobial activity in vitro. Purified SN1 peptide also inhibits in vitro the growth of Ggt mycelia. By bombardment-mediated method, the gene SN1 was transformed into Chinese wheat cultivar Yangmai 18 to generate SN1 transgenic wheat lines, which were used to assess the effectiveness of the SN1 peptide in protecting wheat from Ggt. Genomic PCR and Southern blot analyses indicated that the alien gene SN1 was integrated into the genomes of five transgenic wheat lines and heritable from T₀ to T₄ progeny. Reverse transcription-PCR and Western blot analyses showed that the introduced SN1 gene was transcribed and highly expressed in the five transgenic wheat lines. Following challenging with Ggt, disease test results showed that compared to segregants lacking the transgene and untransformed wheat plants, these five transgenic wheat lines expressing SN1 displayed significantly enhanced resistance to take-all. These results suggest that SN1 may be a potentially transgenic tool for improving the take-all resistance of wheat.

  11. Obtaining of potato microtubers cv. ‘Andinita’ in Temporary Immersion Systems

    Directory of Open Access Journals (Sweden)

    Janet Igarza Castro

    2011-01-01

    Full Text Available The Instituto Nacional de Investigaciones Agrícolas (INIA, Venezuela, is producing potato seed by biotechnology in its National Seed Plan. The seeds needed are greater than the installed capacity. The acquisition of temporary immersion system (ITS enables developing research in the production of seed potatoes to ensure quality, efficiency and reduced production costs. The purchase of seeds will decrease and contribute to food security and sovereignty of the country. This work was aimed to obtain potato microtubers cv. ‘Andinita’ in SIT. In vitro plants propagated by organogenesis and SIT in 10 liters capacity were used. Explants (100 were inoculated per pot. After five weeks in multiplication a change of culture medium was carried out to induce tuberization. Three immersion frequencies were tested. Plant height was measured and the number of microtubers and fresh dough was quantified. Potato microtubers cv. ‘Andinita’ in SIT were obtained. The best results were achieved with immersions every four hours, averaging five to seven microtubers per plant (approximately 600 microtubers per culture vessel, with sizes between 4 and 16 mm, with an average of 3 g fresh weight, which ensured budding efficiency and allow direct field planting. This result constitutes the first report of the use of SIT for propagation of potatoes in Venezuela. This is a new possibility to use SIT in other varieties. Key words: shoot tip, immersion frequency, seed

  12. Metal resistance sequences and transgenic plants

    Science.gov (United States)

    Meagher, Richard Brian; Summers, Anne O.; Rugh, Clayton L.

    1999-10-12

    The present invention provides nucleic acid sequences encoding a metal ion resistance protein, which are expressible in plant cells. The metal resistance protein provides for the enzymatic reduction of metal ions including but not limited to divalent Cu, divalent mercury, trivalent gold, divalent cadmium, lead ions and monovalent silver ions. Transgenic plants which express these coding sequences exhibit increased resistance to metal ions in the environment as compared with plants which have not been so genetically modified. Transgenic plants with improved resistance to organometals including alkylmercury compounds, among others, are provided by the further inclusion of plant-expressible organometal lyase coding sequences, as specifically exemplified by the plant-expressible merB coding sequence. Furthermore, these transgenic plants which have been genetically modified to express the metal resistance coding sequences of the present invention can participate in the bioremediation of metal contamination via the enzymatic reduction of metal ions. Transgenic plants resistant to organometals can further mediate remediation of organic metal compounds, for example, alkylmetal compounds including but not limited to methyl mercury, methyl lead compounds, methyl cadmium and methyl arsenic compounds, in the environment by causing the freeing of mercuric or other metal ions and the reduction of the ionic mercury or other metal ions to the less toxic elemental mercury or other metals.

  13. Effectoromics-based identification of cell surface receptors in potato

    NARCIS (Netherlands)

    Domazakis, Emmanouil; Lin, Xiao; Aguilera-Galvez, Carolina; Wouters, Doret; Bijsterbosch, Gerard; Wolters, Pieter J.; Vleeshouwers, Vivianne G.A.A.

    2017-01-01

    In modern resistance breeding, effectors have emerged as tools for accelerating and improving the identification of immune receptors. Effector-assisted breeding was pioneered for identifying resistance genes (R genes) against Phytophthora infestans in potato (Solanum tuberosum). Here we show that

  14. Efficacy of fungicide combinations, phosphoric acid, and plant extract from stinging nettle on potato late blight management and tuber yield

    Science.gov (United States)

    Late blight, caused by Phytophthora infestans is a major constraint to potato production. Inadequate management of the disease has often resulted in heavy losses in various production regions. We assessed the efficacy of fungicides, phosphoric acid, and stinging nettle plant extract combinations for...

  15. Effect of Acinetobacter sp on metalaxyl degradation and metabolite profile of potato seedlings (Solanum tuberosum L. alpha variety.

    Directory of Open Access Journals (Sweden)

    Fabiola G Zuno-Floriano

    Full Text Available One of the most serious diseases in potato cultivars is caused by the pathogen Phytophthora infestans, which affects leaves, stems and tubers. Metalaxyl is a fungicide that protects potato plants from Phytophthora infestans. In Mexico, farmers apply metalaxyl 35 times during the cycle of potato production and the last application is typically 15 days before harvest. There are no records related to the presence of metalaxyl in potato tubers in Mexico. In the present study, we evaluated the effect of Acinetobacter sp on metalaxyl degradation in potato seedlings. The effect of bacteria and metalaxyl on the growth of potato seedlings was also evaluated. A metabolite profile analysis was conducted to determine potential molecular biomarkers produced by potato seedlings in the presence of Acinetobacter sp and metalaxyl. Metalaxyl did not affect the growth of potato seedlings. However, Acinetobacter sp strongly affected the growth of inoculated seedlings, as confirmed by plant length and plant fresh weights which were lower in inoculated potato seedlings (40% and 27%, respectively compared to the controls. Acinetobacter sp also affected root formation. Inoculated potato seedlings showed a decrease in root formation compared to the controls. LC-MS/MS analysis of metalaxyl residues in potato seedlings suggests that Acinetobacter sp did not degrade metalaxyl. GC-TOF-MS platform was used in metabolic profiling studies. Statistical data analysis and metabolic pathway analysis allowed suggesting the alteration of metabolic pathways by both Acinetobacter sp infection and metalaxyl treatment. Several hundred metabolites were detected, 137 metabolites were identified and 15 metabolic markers were suggested based on statistical change significance found with PLS-DA analysis. These results are important for better understanding the interactions of putative endophytic bacteria and pesticides on plants and their possible effects on plant metabolism.

  16. Effects of plant genotype and growth stage on the structure of bacterial communities associated with potato (Solanum tuberosum L.)

    NARCIS (Netherlands)

    Overbeek, van L.S.; Elsas, van J.D.

    2008-01-01

    The effects of genotype, plant growth and experimental factors (soil and year) on potato-associated bacterial communities were studied. Cultivars Achirana Inta, Désirée, Merkur and transgenic Désirée line DL12 (containing T4 lysozyme gene) were assessed in two field experiments. Cross-comparisons

  17. Solanum venturii, a suitable model system for virus-induced gene silencing studies in potato reveals StMKK6 as an important player in plant immunity

    NARCIS (Netherlands)

    Dobnik, David; Lazar, Ana; Stare, Tjaša; Gruden, Kristina; Vleeshouwers, Vivianne G.A.A.; Žel, Jana

    2016-01-01

    Background: Virus-induced gene silencing (VIGS) is an optimal tool for functional analysis of genes in plants, as the viral vector spreads throughout the plant and causes reduced expression of selected gene over the whole plant. Potato (Solanum tuberosum) is one of the most important food crops,

  18. Reaction of sweet pepper to the potato virus y (PVYm

    Directory of Open Access Journals (Sweden)

    Echer Márcia de Moraes

    2002-01-01

    Full Text Available Traditional sweet pepper cultivars showing susceptibility to the Potato virus Y (PVY are being replaced by resistant hybrids with higher commercial value. Despite of much information about resistance source reaction and their inheritance, there is no knowledge about the genetic background of commercial resistant hybrids. Reaction of sweet pepper (Capsicum annuum L. hybrids to the Potato virus Y (PVYm such as Acuario, Magali R, Nathalie and their respective generations F2 and F3 as well as hybrids Amanda, Corteso W208, CPC-6272, Dagmar, Elisa, Magali, Margarita, Monteiro, Quantum, Vivo W205 was evaluated. Reaction to PVYm was evaluated as resistant or susceptible. Magali R and Nathalie hybrid did not show any mosaic symptoms. Magali R and Nathalie hybrids resistance is due to a single dominant gene indicating resistant versus susceptible parental lines crossing pedigree. Amanda, Acuario, Corteso W208, Dagmar, Elisa, Margarita, Monteiro, Quantum and Vivo W205, considered resistant to PVY, were highly susceptibility to PVY strain m. Hybrids, claimed as resistant to the Pepper mottle virus (PepMoV, were also resistant to PVYm.

  19. Bacterial microbiome and nematode occurrence in different potato agricultural soils

    Science.gov (United States)

    Pratylenchus neglectus and Meloidogyne chitwoodi are the main plant-parasitic nematodes in potato crops of the San Luis Valley, Colorado. Bacterial microbiome (16S rRNA copies per gram of soil) and nematode communities (nematodes per 200 gr of soil) from five different potato farms were analyzed to ...

  20. New co-operative potato distilleries - interesting and useful information

    Energy Technology Data Exchange (ETDEWEB)

    Dreipe, H

    1970-01-01

    Impressions and accounts of a series of new cooperative potato distilleries in north and north-west Germany are reported. Design and operation of the plants are described, and economic aspects of waste utilization and alcohol production are discussed. Indications of the starch content and yield of different varieties of potato mainly cultivated for distilleries are given. 100 kg of potatoes with 16% starch normally yield 10 l. of ethyl alcohol, which is sold at a guaranteed price. The protein in the residue is digestible and has a high feed value.

  1. Uptake of Plutonium-238 into Solanum tuberosum L. (potato plants) in presence of complexing agent EDTA.

    Science.gov (United States)

    Tawussi, Frank; Gupta, Dharmendra K; Mühr-Ebert, Elena L; Schneider, Stephanie; Bister, Stefan; Walther, Clemens

    2017-11-01

    Bioavailability and plant uptake of radionuclides depend on various factors. Transfer into different plant parts depends on chemical and physical processes, which need to be known for realistic ingestion dose modelling when these plants are used for food. Within the scope of the present work, the plutonium uptake by potato plants (Solanum tuberosum L.) was investigated in hydroponic solution of low concentration [Pu] = 10 -9  mol L -1 . Particular attention was paid to the speciation of radionuclides in the solution which was modelled by the speciation code PHREEQC. The speciation, the solubility and therefore the plant availability of radionuclides mainly depend on the pH value and the redox potential of the solution. During the contamination period, the redox potential did not change significantly. In contrast, the pH value showed characteristic changes depending on exudates excreted by the plants. Plant roots took up high amounts of plutonium (37%-50% of the added total amount). In addition to the uptake into the roots, the radionuclides can also adsorb to the exterior root surface. The solution-to-plant transfer factor showed values between 0.03 and 0.80 (Bq kg -1 / Bq L -1 ) for the potato tubers. By addition of the complexing agent EDTA (10 -4  mol L-1), the plutonium uptake from solution increased by 58% in tubers and by 155% in shoots/leaves. The results showed that excreted substances by plants affect bioavailability of radionuclides at low concentration, on the one hand. On the other hand, the uptake of plutonium by roots and the accumulation in different plant parts can lead to non-negligible ingestion doses, even at low concentration. We are aware of the limited transferability of data obtained in hydroponic solutions to plants growing in soil. However, the aim of this study is twofold: First we want to investigate the influence of Pu speciation on plant uptake in a rather well defined system which can be modelled using available thermodynamic data

  2. Postharvest application of organic and inorganic salts to control potato (Solanum tuberosum L.) storage soft rot: plant tissue-salt physicochemical interactions.

    Science.gov (United States)

    Yaganza, E S; Tweddell, R J; Arul, J

    2014-09-24

    Soft rot caused by Pectobacterium sp. is a devastating disease affecting stored potato tubers, and there is a lack of effective means of controlling this disease. In this study, 21 organic and inorganic salts were tested for their ability to control soft rot in potato tubers. In the preventive treatment, significant control of soft rot was observed with AlCl3 (≥66%) and Na2S2O3 (≥57%) and to a lesser extent with Al lactate and Na benzoate (≥34%) and K sorbate and Na propionate (≥27%). However, only a moderate control was achieved by curative treatment with AlCl3 and Na2S2O3 (42%) and sodium benzoate (≥33%). Overall, the in vitro inhibitory activity of salts was attenuated in the presence of plant tissue (in vivo) to different degrees. The inhibitory action of the salts in the preventive treatment, whether effective or otherwise, showed an inverse linear relationship with water ionization capacity (pK') of the salt ions, whereas in the curative treatment, only the effective salts showed this inverse linear relationship. Salt-plant tissue interactions appear to play a central role in the attenuated inhibitory activity of salts in potato tuber through reduction in the availability of the inhibitory ions for salt-bacteria interactions. This study demonstrates that AlCl3, Na2S2O3, and Na benzoate have potential in controlling potato tuber soft rot and provides a general basis for understanding of specific salt-tissue interactions.

  3. Potato agriculture, late blight science, and the molecularization of plant pathology.

    Science.gov (United States)

    Turner, R Steven

    2008-01-01

    By the mid-1980s nucleic-acid based methods were penetrating the farthest reaches of biological science, triggering rivalries among practitioners, altering relationships among subfields, and transforming the research front. This article delivers a "bottom up" analysis of that transformation at work in one important area of biological science, plant pathology, by tracing the "molecularization" of efforts to understand and control one notorious plant disease -- the late blight of potatoes. It mobilizes the research literature of late blight science as a tool through which to trace the changing typography of the research front from 1983 to 2003. During these years molecularization intensified the traditional fragmentation of the late blight research community, even as it dramatically integrated study of the causal organism into broader areas of biology. In these decades the pathogen responsible for late blight, the oomycete "Phytophthora infestans," was discovered to be undergoing massive, frightening, and still largely unexplained genetic diversification -- a circumstance that lends the episode examined here an urgency that reinforces its historiographical significance as a case-study in the molecularization of the biological sciences.

  4. Origin of Pest Lineages of the Colorado Potato Beetle (Coleoptera: Chrysomelidae).

    Science.gov (United States)

    Izzo, Victor M; Chen, Yolanda H; Schoville, Sean D; Wang, Cong; Hawthorne, David J

    2018-04-02

    Colorado potato beetle (Leptinotarsa decemlineata Say [Coleoptera: Chrysomelidae]) is a pest of potato throughout the Northern Hemisphere, but little is known about the beetle's origins as a pest. We sampled the beetle from uncultivated Solanum host plants in Mexico, and from pest and non-pest populations in the United States and used mitochondrial DNA and nuclear loci to examine three hypotheses on the origin of the pest lineages: 1) the pest beetles originated from Mexican populations, 2) they descended from hybridization between previously divergent populations, or 3) they descended from populations that are native to the Plains states in the United States. Mitochondrial haplotypes of non-pest populations from Mexico and Arizona differed substantially from beetles collected from the southern plains and potato fields in the United States, indicating that beetles from Mexico and Arizona did not contribute to founding the pest lineages. Similar results were observed for AFLP and microsatellite data . In contrast, non-pest populations from the states of Colorado, Kansas, Nebraska, New Mexico, and Texas were genetically similar to U.S. pest populations, indicating that they contributed to the founding of the pest lineages. Most of the pest populations do not show a significant reduction in genetic diversity compared to the plains populations in the United States. We conclude that genetically heterogeneous beetle populations expanded onto potato from native Solanum hosts. This mode of host range expansion may have contributed to the abundant genetic diversity of contemporary populations, perhaps contributing to the rapid evolution of climate tolerance, host range, and insecticide resistance.

  5. Host resistance in potato to three Globodera species

    Science.gov (United States)

    Potato cyst nematodes (PCN) under quarantine in the U.S. and Canada are the pale cyst nematode (Globodera pallida) and the golden cyst nematode (G. rostochiensis). A new species, G. ellingtonae was discovered in Oregon and Idaho in 2008 and is not currently a quarantine pest. In 2006 detection of ...

  6. Radiation hormesis in potatoes (Solanum tuberosum L.) part 1: Laboratory research

    International Nuclear Information System (INIS)

    Wiendl, F.M.; Arthur, V.; Wiendl, J.A.

    1995-01-01

    This paper describes the results of irradiation of potato (Solanum tuberosum L.) tubers of two varieties. Bintje and Baraka, with gamma radiations of Cobalt-60 at a dose of: 0.0. 2.5. 5.0 and 7.5 Gy, at the dose rate of 150 Gy per hour. Twenty eight potatoes of each variety were irradiated with each dose. Half of these potatoes were planted individually into aluminium cages of about 15 X 10 X 3 cm, using circa 120 ml of vermiculite in each cage, immediately after radiation. After seven days the rest of the potatoes was planted under the same conditions. The whole experiment was conducted into a chamber under dark conditions and temperature between 23 and 27 centigrade. Almost every two or three days each potato received circa 50 ml of plain water. After 143 to 154 days of irradiation the experiment was finished, and the following parameter were determined. Weight of potatoes without sprouts or roots; number of the eyes on which occurred sprouting; length of the longest sprout of its respective eye; humid weight of the sprouts; dry weight of the sprouts; humid weight of the roots; dry weight of the roots. (author). 19 refs, 2 tabs

  7. Control of Late Blight of Tomato and Potato by Oilgochitosan

    Directory of Open Access Journals (Sweden)

    Yong Ho Choi

    2011-08-01

    Full Text Available Chitosan is a linear polysaccharide composed of randomly distributed β-(1-4-linked D-glucosamine and Nacetyl- D-glucosamine. There have been many reports on the induced systemic resistance and in vivo antifungal activities of higher molecular weight chitosans with molecular weights over 3,000 amu (atomatic mass unit, but there are few papers on in vivo antifungal activities of low molecular weight chitosans (oligochitosans with molecular weights less than 3,000 amu. In our study, an oligochitosan sample (320?3,000 amu showed a potent 1-day protective activity with control values more than 94% at concentrations of 500 and 1,000 ?g/ml especially against tomato late blight caused by Phytophthora infestans under growth chamber conditions. It also displayed a moderate 1-day protective activity with control values of 67?89% at concentrations of 500 and 1,000 ?g/ml against wheat leaf rust and red pepper anthracnose. On the other hand, it showed a 16-hr curative activity against red pepper anthracnose, but not against tomato late blight and wheat leaf rust. In field experiments, oligochitosan effectively suppressed the development of late blight on potato and tomato plants with control values of 72% and 48%, respectively. The results strongly indicate that oligochitosan can be used as an eco-friendly organic material for the control of late blight on tomato and potato plants.

  8. Development of the yellow potato cyst nematode Globodera rostochiensis (Woll.) on potatoes after gamma irradiation of cysts

    International Nuclear Information System (INIS)

    Karnkowski, W.; Ignatowicz, S.

    1999-01-01

    Gamma irradiation inhibited the development of the yellow potato cyst nematode, Globodera rostochiensis (Woll.) Behrens when cysts containing juveniles in anabiosis were irradiated with a dose of 0.5 kGy or higher. A dose of 0.5 kGy reduced the infestation level and the density of females/cysts on root of infested plants. However, a few cysts were found on roots of plants grown in pots with soil treated with a dose of 3.0 kGy. Development of the second generation of the potato cyst nematode (= F1 cysts that originated from irradiated cysts) was much weaker than that of the parental generation. The F1 females and/or cysts were found only in the control and in the 0.5 kGy treatment in low numbers. (author)

  9. Test results of the experimental laser device for potato tubers radiation treatment

    International Nuclear Information System (INIS)

    Anufrik, S.S.; Korzun, O.S.

    2007-01-01

    Results of 3 year investigation of the influence of the presowing low intensity laser radiation treatment of potato (Solanum tuberosum L.) tubers with the help of laser device with various spectral composition and exposition on plant growth, development and productivity and potato tubers quality and starch content in the conditions of the Republic of Belarus were presented. Presowing tubers treatment of potato cultivars Sante, Yavar and Arkhideya was realized by He-Ne, Ar-, Cu (in course of 3 and 5 minutes) and CO2 (in course of 5 seconds) lasers. Research results have shown that presowing treatment with CO2 laser promoted the higher (on 1,7-6,6%) potato germination capacity in comparison with the control variant without radiation treatment. Height of potato plants of Sante variety after radiation treatment fell behind the control ones. Haulm quantity per one plant and yield quality did not depend on radiation treatment Treatment with CO2 laser exercised the stimulatory action on productivity of Sante variety without changing the starch content in tubers. Tuber weight increased up to 0,4 kg (0,2 kg in the control variant). Similar effect for Arkhideya and Yavar varieties was obtained after Cu-laser treatment in course of 5 minutes. Radiation treatment with He-Ne laser caused the increased starch accumulation (on 0,4-0,6% in comparison with the control variant) in potato tubers of all studied varieties

  10. Mutation breeding techniques and behaviour of irradiated shoot apices of potato

    International Nuclear Information System (INIS)

    Harten, A.M. van.

    1978-01-01

    The author describes part of the investigations being carried out at the Institute of Plant Breeding, Wageningen into mutation breeding in potato; in particular, efforts to produce a di(ha)ploid tester clone for reliable mutation frequency data are described, the formation of adventitious roots and shoots from potato leaves, leaflets and stem parts in vivo is studied, and damage and recovery of irradiated potato tuber eyes is investigated. (G.T.H.)

  11. Resistance to Erwinia spp. in potato (Solanum tuberosum L.)

    NARCIS (Netherlands)

    Allefs, S.

    1995-01-01

    Blackleg is a disease of potato, Solanum tuberosum , which is caused by the bacteria Erwinia carotovora subsp. carotovora ( Ecc ), E.c. subsp. atroseptica ( Eca ) or

  12. Utilizing ‘Omic’ technologies to identify and prioritize novel sources of resistance to the oomycete pathogen Phytophthora infestans in potato germplasm collections

    Directory of Open Access Journals (Sweden)

    Pauline Stephanie Marie Van Weymers

    2016-05-01

    Full Text Available The biggest threat to potato production world-wide is late blight, caused by the oomycete pathogen Phytophthora infestans. A screen of 126 wild diploid Solanum accessions from the Commonwealth Potato Collection (CPC with P. infestans isolates belonging to the genotype 13-A2 identified resistances in the species S. bulbocastanum, S. capsicibaccatum, S. microdontum, S. mochiquense, S. okadae, S. pinnatisectum, S. polyadenium, S. tarijense and S. verrucosum. Effector-omics, allele mining and diagnostic RenSeq (dRenSeq were utilized to investigate the nature of resistances in S. okadae accessions. dRenSeq in resistant S. okadae accessions 7129, 7625, 3762 and a bulk of 20 resistant progeny confirmed the presence of full-length Rpi-vnt1.1 under stringent mapping conditions and corroborated allele mining results in the accessions 7129 and 7625 as well as Avr-vnt1 recognition in transient expression assays. In contrast, susceptible S. okadae accession 3761 and a bulk of 20 susceptible progeny lacked sequence homology in the 5’ end compared to the functional Rpi-vnt1.1 gene. Further evaluation of S. okadae accessions with late blight isolates that have a broad spectrum of virulence demonstrated that, although S. okadae accessions 7129, 7625 and 7629 contain functional Rpi-vnt1.1, they also carry a novel resistance gene. We provide evidence that existing germplasm collection are important sources of novel resistances and that ‘omic’ technologies such as dRenSeq-based genomics and effector-omics are efficacious tools to rapidly explore the diversity within these collections.

  13. The Potato Aphid Salivary Effector Me47 Is a Glutathione-S-Transferase Involved in Modifying Plant Responses to Aphid Infestation

    OpenAIRE

    Kettles, Graeme J.; Kaloshian, Isgouhi

    2016-01-01

    Polyphagous aphid pests cause considerable economic damage to crop plants, primarily through the depletion of photoassimilates and transfer of viruses. The potato aphid (Macrosiphum euphorbiae) is a notable pest of solanaceous crops, however, the molecular mechanisms that underpin the ability to colonize these hosts are unknown. It has recently been demonstrated that like other aphid species, M. euphorbiae injects a battery of salivary proteins into host plants during feeding. It is speculate...

  14. Determination of physiomorphological characteristics of potato crop regulated by potassium management

    International Nuclear Information System (INIS)

    Pervez, M.A.; Ayyub, C.M.; Shaheen, M.R.; Noor, M.A.

    2013-01-01

    Balanced use of nutrients is essential for sustainable productivity of crops. Nitrogen and phosphorus fertilizers are being used while potassium (K) application is ignored which causes serious decrease in the status of K in soils of potato growing areas. Has prodigious importance in improving quality and yield of potatoes. Therefore, the research project of field studies was designed with different levels K from SOP to determine its effects on some physio-morphological features of potato. A promising red potato cultivar Desiree was selected. Optimal recommended doses of nitrogen and phosphors (250 and 125 kg ha/sup -1/ respectively) along with 6 levels of K, i.e. 50, 100, 150, 200, 250, 300 kg K/sub 2/O ha/sup -1/ were applied. Data of different qualitative and quantitative characteristics was collected under the Randomized Complete Block Design with three replications and was analyzed by using standard statistical over the year techniques. The results revealed that SOP at the level of 150 kg ha/sup -1/ gave the best results in most of the parameters (i.e. total emergence percentage, plant height, number of tubers per plant, tuber weight per plant, yield per hectare, TSS, tuber dry weight per plant) while, extremely high dose of SOP showed the poor results as compared to control for some of the parameters. Number of aerial stems per plant, number of leaves per plant, specific gravity of tubers and tuber dry mass did not show any significant change with change in K levels. (author)

  15. Agro-transformation and evaluation of resistance to Phytophthora infestansin Solanum tuberosumL. variety Désirée

    Directory of Open Access Journals (Sweden)

    Jeanette Orbegozo

    2014-03-01

    Full Text Available The Oomycete Phytophthora infestans (Mont. de Bary, the causal agent of the disease known as late blight, is primarily responsible for the decreased in production performance and potato crops worldwide. The integration of the complete Rgenes sequences in the potato genome using Agro-transformation appears an alternative to be considered in the fight against this pathogen. The Rpi-blb2 gene (Rgene from the wild species Solanum bulbocastanumDunal shows a broad resistance to isolates ofP. infestans,making it an important candidate for plant breeding studies. This paper reports the integration of the Rpi-blb2gene into potato var. Désirée genome by Agrobacterium tumefaciens- mediated transformation system, the molecular characterization of 29 events transformed and whole plant infection with isolate POX67 of P. infestansfrom Peru. Désirée events [Rpi-blb2] 4 and Désirée [Rpi-blb2] 30, showed a substantial resistance to P. infestansinfection confirming complete transfer of the Rpi-blb2gene from a wild species to a cultivated species by genetic transformation.

  16. Sweet potato (Ipomoea batatas L. growing in conditions of southern Slovak republic

    Directory of Open Access Journals (Sweden)

    Miroslav Šlosár

    2016-07-01

    Full Text Available The sweet potato (Ipomoea batatas L. belongs to very important crops from aspect of its world production. It is grown in large areas in Asia, on the contrary, sweet potato production in Europe presents minimal part of its total world rate. The sweet potato is less-known crop, grown only on small area in home gardens in Slovak Republic. Tubers of sweet potato are characterized by anti-diabetic, anti-oxidant and anti-proliferative properties due to the presence of valuable health-promoting components, such as carotenoids or vitamin C. The main objective of study was testing of sweet potato growing in conditions of southern Slovak Republic with focus on quantity and quality of its yield. The field trial was realised on land of the Slovak University of Agriculture in Nitra in 2015. Within trial, effect of cultivar and mulching on the selected quantitative (average tuber weight; yield per plant; yield in t.ha-1 and qualitative (total carotenoids; vitamin C parameters were tested. One certified cultivar of sweet potato 'Beauregard' was used as a comparative cultivar. Other two cultivars were marked according to the market place at which were purchased and sequentially used for seedling preparation. Tubers of first un-known cultivar were purchased in the Serbian market (marked as 'Serbian'. Tubers of next sweet potato cultivar were purchased on the market in Zagreb (marked as 'Zagrebian'. Outplating of sweet potato seedlings were realised on the 19th May 2015. The sweet potato was grown by hillock system. Each cultivar was planted in two variants (rows: non-mulching (bare soil and mulching by black non-woven textile. All variants were divided to three replications with 6 plants. Difference between rows was 1.20 m and seedlings were planted in distance of 0.30 m in row. The harvested tubers were classified in two size classes: >150 g (marketable yield and <150 g (non-marketable yield. Total carotenoid content was determined spectrophotometrically. The

  17. Prospects and Potential Uses of Genomic Prediction of Key Performance Traits in Tetraploid Potato

    Directory of Open Access Journals (Sweden)

    Benjamin Stich

    2018-03-01

    Full Text Available Genomic prediction is a routine tool in breeding programs of most major animal and plant species. However, its usefulness for potato breeding has not yet been evaluated in detail. The objectives of this study were to (i examine the prospects of genomic prediction of key performance traits in a diversity panel of tetraploid potato modeling additive, dominance, and epistatic effects, (ii investigate the effects of size and make up of training set, number of test environments and molecular markers on prediction accuracy, and (iii assess the effect of including markers from candidate genes on the prediction accuracy. With genomic best linear unbiased prediction (GBLUP, BayesA, BayesCπ, and Bayesian LASSO, four different prediction methods were used for genomic prediction of relative area under disease progress curve after a Phytophthora infestans infection, plant maturity, maturity corrected resistance, tuber starch content, tuber starch yield (TSY, and tuber yield (TY of 184 tetraploid potato clones or subsets thereof genotyped with the SolCAP 8.3k SNP array. The cross-validated prediction accuracies with GBLUP and the three Bayesian approaches for the six evaluated traits ranged from about 0.5 to about 0.8. For traits with a high expected genetic complexity, such as TSY and TY, we observed an 8% higher prediction accuracy using a model with additive and dominance effects compared with a model with additive effects only. Our results suggest that for oligogenic traits in general and when diagnostic markers are available in particular, the use of Bayesian methods for genomic prediction is highly recommended and that the diagnostic markers should be modeled as fixed effects. The evaluation of the relative performance of genomic prediction vs. phenotypic selection indicated that the former is superior, assuming cycle lengths and selection intensities that are possible to realize in commercial potato breeding programs.

  18. Multiple different defense mechanisms are activated in the young transgenic tobacco plants which express the full length genome of the Tobacco mosaic virus, and are resistant against this virus.

    Science.gov (United States)

    Jada, Balaji; Soitamo, Arto J; Siddiqui, Shahid Aslam; Murukesan, Gayatri; Aro, Eva-Mari; Salakoski, Tapio; Lehto, Kirsi

    2014-01-01

    Previously described transgenic tobacco lines express the full length infectious Tobacco mosaic virus (TMV) genome under the 35S promoter (Siddiqui et al., 2007. Mol Plant Microbe Interact, 20: 1489-1494). Through their young stages these plants exhibit strong resistance against both the endogenously expressed and exogenously inoculated TMV, but at the age of about 7-8 weeks they break into TMV infection, with typical severe virus symptoms. Infections with some other viruses (Potato viruses Y, A, and X) induce the breaking of the TMV resistance and lead to synergistic proliferation of both viruses. To deduce the gene functions related to this early resistance, we have performed microarray analysis of the transgenic plants during the early resistant stage, and after the resistance break, and also of TMV-infected wild type tobacco plants. Comparison of these transcriptomes to those of corresponding wild type healthy plants indicated that 1362, 1150 and 550 transcripts were up-regulated in the transgenic plants before and after the resistance break, and in the TMV-infected wild type tobacco plants, respectively, and 1422, 1200 and 480 transcripts were down-regulated in these plants, respectively. These transcriptome alterations were distinctly different between the three types of plants, and it appears that several different mechanisms, such as the enhanced expression of the defense, hormone signaling and protein degradation pathways contributed to the TMV-resistance in the young transgenic plants. In addition to these alterations, we also observed a distinct and unique gene expression alteration in these plants, which was the strong suppression of the translational machinery. This may also contribute to the resistance by slowing down the synthesis of viral proteins. Viral replication potential may also be suppressed, to some extent, by the reduction of the translation initiation and elongation factors eIF-3 and eEF1A and B, which are required for the TMV replication

  19. Phenolic Compounds in the Potato and Its Byproducts: An Overview

    Science.gov (United States)

    Akyol, Hazal; Riciputi, Ylenia; Capanoglu, Esra; Caboni, Maria Fiorenza; Verardo, Vito

    2016-01-01

    The potato (Solanum tuberosum L.) is a tuber that is largely used for food and is a source of different bioactive compounds such as starch, dietary fiber, amino acids, minerals, vitamins, and phenolic compounds. Phenolic compounds are synthetized by the potato plant as a protection response from bacteria, fungi, viruses, and insects. Several works showed that these potato compounds exhibited health-promoting effects in humans. However, the use of the potato in the food industry submits this vegetable to different processes that can alter the phenolic content. Moreover, many of these compounds with high bioactivity are located in the potato’s skin, and so are eliminated as waste. In this review the most recent articles dealing with phenolic compounds in the potato and potato byproducts, along with the effects of harvesting, post-harvest, and technological processes, have been reviewed. Briefly, the phenolic composition, main extraction, and determination methods have been described. In addition, the “alternative” food uses and healthy properties of potato phenolic compounds have been addressed. PMID:27240356

  20. Virulence assessment of Portuguese isolates of potato cyst nematodes (Globodera spp.

    Directory of Open Access Journals (Sweden)

    Maria José M. DA CUNHA

    2012-05-01

    Full Text Available Identification of species and virulence groups of potato cyst nematodes (PCN, Globodera pallida and G. rostochiensis, present in field populations is important in the control of these nematodes by means of resistant cultivars. In order to characterize the virulence of Globodera spp. isolates from Portugal, 43 G. rostochiensis and three G. pallida isolates were evaluated by measuring their multiplication rates on a susceptible potato cultivar and five differential potato genotypes in a growth chamber pot experiment. Principal Component Analysis and Hierarchical Cluster Analysis showed that the reproduction rates were different in terms of both the numbers of eggs and the numbers of cysts produced. Portuguese isolates of PCN were more virulent on genotypes derived from Solanum vernei than on genotypes derived from other Solanum resistance sources, and there was a significant nematode isolate × host genotype interaction. The virulence bioassay clearly distinguished the two PCN species but failed to differentiate isolates into pathotypes. There was a wide and continuous range of virulence to the resistant genotypes, especially in G. rostochiensis isolates.

  1. 21 CFR 102.41 - Potato chips made from dried potatoes.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Potato chips made from dried potatoes. 102.41... Specific Nonstandardized Foods § 102.41 Potato chips made from dried potatoes. (a) The common or usual name of the food product that resembles and is of the same composition as potato chips, except that it is...

  2. Good Manufacturing Practices and Microbial Contamination Sources in Orange Fleshed Sweet Potato Puree Processing Plant in Kenya

    OpenAIRE

    Malavi, Derick Nyabera; Muzhingi, Tawanda; Abong’, George Ooko

    2018-01-01

    Limited information exists on the status of hygiene and probable sources of microbial contamination in Orange Fleshed Sweet Potato (OFSP) puree processing. The current study is aimed at determining the level of compliance to Good Manufacturing Practices (GMPs), hygiene, and microbial quality in OFSP puree processing plant in Kenya. Intensive observation and interviews using a structured GMPs checklist, environmental sampling, and microbial analysis by standard microbiological methods were use...

  3. Potato cv. Romano reaction to primary and secondary infection with potato necrotic strain Y virus (PVYNTN

    Directory of Open Access Journals (Sweden)

    Drago Milošević

    2015-01-01

    Full Text Available Primary and secondary infections with PVYNTN were investigated on forty plants of the potato cv. Romano inoculated in a greenhouse in Serbia in 2012 and 2013. PVY isolates were collected from the potato growing region of Čačak and identified by ELISA and RT-PCR methods. The sequence of the Serbian isolate 3D (Acc. No. KJ946936 showed 100% match with seven PVY isolates deposited in GenBank and described as NTN. A significant difference was detected between PVYNTN symptoms exibited on leaves of the cv. Romano under primary and secondary infections. The findings are significant because they are based on symptoms observed, so that it is clear that there are two distinct types of infection: primary and secondary. Symptoms of primary and secondary infection were the same on potato tubers and had the form of necrotic rings.

  4. Genome analyses of an aggressive and invasive lineage of the Irish potato famine pathogen.

    Directory of Open Access Journals (Sweden)

    David E L Cooke

    Full Text Available Pest and pathogen losses jeopardise global food security and ever since the 19(th century Irish famine, potato late blight has exemplified this threat. The causal oomycete pathogen, Phytophthora infestans, undergoes major population shifts in agricultural systems via the successive emergence and migration of asexual lineages. The phenotypic and genotypic bases of these selective sweeps are largely unknown but management strategies need to adapt to reflect the changing pathogen population. Here, we used molecular markers to document the emergence of a lineage, termed 13_A2, in the European P. infestans population, and its rapid displacement of other lineages to exceed 75% of the pathogen population across Great Britain in less than three years. We show that isolates of the 13_A2 lineage are among the most aggressive on cultivated potatoes, outcompete other aggressive lineages in the field, and overcome previously effective forms of plant host resistance. Genome analyses of a 13_A2 isolate revealed extensive genetic and expression polymorphisms particularly in effector genes. Copy number variations, gene gains and losses, amino-acid replacements and changes in expression patterns of disease effector genes within the 13_A2 isolate likely contribute to enhanced virulence and aggressiveness to drive this population displacement. Importantly, 13_A2 isolates carry intact and in planta induced Avrblb1, Avrblb2 and Avrvnt1 effector genes that trigger resistance in potato lines carrying the corresponding R immune receptor genes Rpi-blb1, Rpi-blb2, and Rpi-vnt1.1. These findings point towards a strategy for deploying genetic resistance to mitigate the impact of the 13_A2 lineage and illustrate how pathogen population monitoring, combined with genome analysis, informs the management of devastating disease epidemics.

  5. Recessive Resistance to Plant Viruses: Potential Resistance Genes Beyond Translation Initiation Factors

    Directory of Open Access Journals (Sweden)

    Masayoshi Hashimoto

    2016-10-01

    Full Text Available The ability of plant viruses to propagate their genomes in host cells depends on many host factors. In the absence of an agrochemical that specifically targets plant viral infection cycles, one of the most effective methods for controlling viral diseases in plants is taking advantage of the host plant’s resistance machinery. Recessive resistance is conferred by a recessive gene mutation that encodes a host factor critical for viral infection. It is a branch of the resistance machinery and, as an inherited characteristic, is very durable. Moreover, recessive resistance may be acquired by a deficiency in a negative regulator of plant defense responses, possibly due to the autoactivation of defense signaling. Eukaryotic translation initiation factor (eIF 4E and eIF4G and their isoforms are the most widely exploited recessive resistance genes in several crop species, and they are effective against a subset of viral species. However, the establishment of efficient, recessive resistance-type antiviral control strategies against a wider range of plant viral diseases requires genetic resources other than eIF4Es. In this review, we focus on recent advances related to antiviral recessive resistance genes evaluated in model plants and several crop species. We also address the roles of next-generation sequencing and genome editing technologies in improving plant genetic resources for recessive resistance-based antiviral breeding in various crop species.

  6. Maximal release of highly bifidogenic soluble dietary fibers from industrial potato pulp by minimal enzymatic treatment

    DEFF Research Database (Denmark)

    Thomassen, Lise Vestergaard; Vigsnæs, Louise Kristine; Licht, Tine Rask

    2011-01-01

    Potato pulp is a poorly utilized, high-volume co-processing product resulting from industrial potato starch manufacturing. Potato pulp mainly consists of the tuber plant cell wall material and is particularly rich in pectin, notably galactan branched rhamnogalacturonan I type pectin which has...

  7. Mini Tuber Production in Potato Via Aeroponic System

    Directory of Open Access Journals (Sweden)

    Hussein Abdullah Ahmed AHMED

    2018-02-01

    Full Text Available The aeroponic production system is one of the new applications in soilless agriculture. This system is also an alternative seed production system for mini-tuber production of potato in terms of providing optimum growth conditions, enabling potato production to be free from diseases and pests and to make economic use of agricultural inputs. This system, which is independent of climatic conditions, has the advantage of improving the vegetative growth, delaying tuber formation, prolonging the vegetative period, increasing the tuber yield per plant and total tuber yield while decreasing the tuber weight. Due to the problems experienced in potato seedling tuber production in recent years, it emerged as an alternative production system for our country.

  8. Inheritance and effectiveness of two transgenes determining PVY resistance in progeny from crossing independently transformed tobacco lines.

    Science.gov (United States)

    Czubacka, Anna; Sacco, Ermanno; Olszak-Przybyś, Hanna; Doroszewska, Teresa

    2017-05-01

    Genetic transformation of plants allows us to obtain improved genotypes enriched with the desired traits. However, if transgenic lines were to be used in breeding programs the stability of inserted transgenes is essential. In the present study, we followed the inheritance of transgenes in hybrids originated from crossing two transgenic tobacco lines resistant to Potato virus Y (PVY): MN 944 LMV with the transgene containing Lettuce mosaic virus coat protein gene (LMV CP) and AC Gayed ROKY2 with PVY replicase gene (ROKY2). Progeny populations generated by successive self-pollination were analyzed with respect to the transgene segregation ratio and resistance to Potato virus Y in tests carried out under greenhouse conditions. The presence of the virus in inoculated plants was detected by DAS-ELISA method. The results demonstrated the Mendelian fashion of inheritance of transgenes which were segregated independently and stably. As a result, we obtained T 4 generation of hybrid with both transgenes stacked and which was highly resistant to PVY.

  9. Heterologous expression of a ketohexokinase in potato plants leads to inhibited rates of photosynthesis, severe growth retardation and abnormal leaf development

    DEFF Research Database (Denmark)

    Geigenberger, P.; Regierer, B.; Lytovchenko, A.

    2004-01-01

    of ketohexokinase but did not accumulate fructose 1-phosphate. They were, however, characterised by a severe growth retardation and abnormal leaf development. Studies of (14)CO(2) assimilation and metabolism, and of the levels of photosynthetic pigments, revealed that these lines exhibited restricted photosynthesis......In the present paper we investigated the effect of heterologous expression of a rat liver ketohexokinase in potato (Solanum tuberosum L.) plants with the aim of investigating the role of fructose 1-phosphate in plant metabolism. Plants were generated that contained appreciable activity...

  10. Development of diagnostic markers for use in breeding potatoes resistant to Globodera pallida pathotype Pa2/3 using germplasm derived from Solanum tuberosum ssp. andigena CPC 2802.

    Science.gov (United States)

    Moloney, Claire; Griffin, Denis; Jones, Peter W; Bryan, Glenn J; McLean, Karen; Bradshaw, John E; Milbourne, Dan

    2010-02-01

    Quantitative resistance to Globodera pallida pathotype Pa2/3, originally derived from Solanum tuberosum ssp. andigena Commonwealth Potato Collection (CPC) accession 2802, is present in several potato cultivars and advanced breeding lines. One genetic component of this resistance, a large effect quantitative trait locus (QTL) on linkage group IV (which we have renamed GpaIV(adg)(s)) has previously been mapped in the tetraploid breeding line 12601ab1. In this study, we show that GpaIV(adg)(s) is also present in a breeding line called C1992/31 via genetic mapping in an F(1) population produced by crossing C1992/31 with the G. pallida susceptible cultivar Record. C1992/31 is relatively divergent from 12601ab1, confirming that GpaIV(adg)(s) is an ideal target for marker-assisted selection in currently available germplasm. To generate markers exhibiting diagnostic potential for GpaIV(adg)(s), three bacterial artificial chromosome clones were isolated from the QTL region, sequenced, and used to develop 15 primer sets generating single-copy amplicons, which were examined for polymorphisms exhibiting linkage to GpaIV(adg)(s) in C1992/31. Eight such polymorphisms were found. Subsequently, one insertion/deletion polymorphism, three single nucleotide polymorphisms and a specific allele of the microsatellite marker STM3016 were shown to exhibit diagnostic potential for the QTL in a panel of 37 potato genotypes, 12 with and 25 without accession CPC2082 in their pedigrees. STM3016 and one of the SNP polymorphisms, C237(119), were assayed in 178 potato genotypes, arising from crosses between C1992/31 and 16 G. pallida susceptible genotypes, undergoing selection in a commercial breeding programme. The results suggest that the diagnostic markers would most effectively be employed in MAS-based approaches to pyramid different resistance loci to develop cultivars exhibiting strong, durable resistance to G. pallida pathotype Pa2/3.

  11. Climate change and potato cropping in the Peruvian Altiplano

    Science.gov (United States)

    Sanabria, J.; Lhomme, J. P.

    2013-05-01

    The potential impacts of climate change on potatoes cropping in the Peruvian highlands (Altiplano) is assessed using climate projections for 2071-2100, obtained from the HadRM3P regional atmospheric model of the Hadley Centre. The atmospheric model is run under two different special report on emission scenarios: high CO2 concentration (A2) and moderate CO2 concentration (B2) for four locations situated in the surroundings of Lake Titicaca. The two main varieties of potato cultivated in the area are studied: the Andean potato ( Solanum tuberosum) and the bitter potato ( Solanum juzepczukii). A simple process-oriented model is used to quantify the climatic impacts on crops cycles and yields by combining the effects of temperature on phenology, of radiation and CO2 on maximum yield and of water balance on yield deficit. In future climates, air temperature systematically increases, precipitation tends to increase at the beginning of the rainy season and slightly decreases during the rest of the season. The direct effects of these climatic changes are earlier planting dates, less planting failures and shorter crop cycles in all the four locations and for both scenarios. Consequently, the harvesting dates occur systematically earlier: roughly in January for the Andean potato instead of March in the current situation and in February for the bitter potato instead of April. Overall, yield deficits will be higher under climate change than in the current climate. There will be a strong negative impact on yields for S. tuberosum (stronger under A2 scenario than under B2); the impact on S. juzepczukii yields, however, appears to be relatively mixed and not so negative.

  12. The TOR Pathway Is Involved in Adventitious Root Formation in Arabidopsis and Potato.

    Science.gov (United States)

    Deng, Kexuan; Dong, Pan; Wang, Wanjing; Feng, Li; Xiong, Fangjie; Wang, Kai; Zhang, Shumin; Feng, Shun; Wang, Bangjun; Zhang, Jiankui; Ren, Maozhi

    2017-01-01

    In the agriculture industry, adventitious root formation is a core issue of plants asexual propagation. However, the underlying molecular mechanism of adventitious root formation is far beyond understanding. In present study we found that target of rapamycin (TOR) signaling plays a key role in adventitious root formation in potato and Arabidopsis . The core components of TOR complex including TOR, RAPTOR, and LST8 are highly conserved in potato, but the seedlings of potato are insensitive to rapamycin, implying FK506 Binding Protein 12 KD (FKBP12) lost the function to bridge the interaction of rapamycin and TOR in potato. To dissect TOR signaling in potato, the rapamycin hypersensitive potato plants (BP12-OE) were engineered by introducing yeast FKBP12 ( ScFKBP12 ) into potato. We found that rapamycin can significantly attenuate the capability of adventitious root formation in BP12-OE potatoes. KU63794 (KU, an active-site TOR inhibitor) combined with rapamycin can more significantly suppress adventitious root formation of BP12-OE potato than the single treatments, such as KU63794 or rapamycin, indicating its synergistic inhibitory effects on potato adventitious root formation. Furthermore, RNA-seq data showed that many genes associated with auxin signaling pathway were altered when BP12-OE potato seedlings were treated with rapamycin + KU, suggesting that TOR may play a major role in adventitious root formation via auxin signaling. The auxin receptor mutant tir1 was sensitive to TOR inhibitors and the double and quadruple mutants including tir1afb2, tir1afb3 , and tir1afb1afb2afb3 displayed more sensitive to asTORis than single mutant tir1 . Consistently, overexpression of AtTIR1 in Arabidopsis and potato can partially overcome the inhibitory effect of asTORis and promote adventitious root formation under asTORis treatments. These observations suggest that TOR signaling regulates adventitious root formation by mediating auxin signaling in Arabidopsis and potato.

  13. Application of potato (Solanum tuberosum plant wastes for the removal of methylene blue and malachite green dye from aqueous solution

    Directory of Open Access Journals (Sweden)

    Neha Gupta

    2016-09-01

    Full Text Available Dye pollutants from the textile, paper, and leather industries are important sources of environmental contamination. In the present study an agricultural waste from potato plant (potato stem powder, PSP and potato leaves powder, PLP was used as an adsorbent for removal of the methylene blue (MB and malachite green (MG dyes from aqueous solution. The adsorbent materials were characterized by scanning electron microscope (SEM and Fourier transform infrared (FTIR spectroscopy. Batch experiments were performed to investigate the effect of physico-chemical parameters, such as pHpzc, ionic strength, adsorbent dose, contact time, initial dyes concentration and temperature. The kinetics of adsorption was studied by applying the pseudo-first order, pseudo-second order and intraparticle diffusion models. The pseudo-second order model better represented the adsorption kinetics and the mechanism was controlled by surface adsorption and intraparticle diffusion. Equilibrium data were analyzed using Langmuir and Freundlich isotherm models. The thermodynamic parameters such as change in enthalpy (ΔH°, entropy (ΔS° and Gibb’s free energy (ΔG° of adsorption systems were also determined and evaluated.

  14. Looking ahead…how biotechnology may change potato storage

    Science.gov (United States)

    We have been growing, harvesting, storing and characterizing tubers from transgenic potato plants for the past four years. The plants have low expression of the vacuolar invertase gene and were produced for research purposes by Jiming Jiang’s group at UW-Madison. We’ve analyzed sugars from over 2400...

  15. 78 FR 59628 - Importation of Potatoes From Mexico

    Science.gov (United States)

    2013-09-27

    ... Mexico AGENCY: Animal and Plant Health Inspection Service, USDA. ACTION: Proposed rule. SUMMARY: We are... importation of fresh potatoes (Solanum tuberosum L.) from Mexico into the United States. As a condition of... plant protection organization (NPPO) of Mexico would have to provide a bilateral workplan to the Animal...

  16. Molecular variation in the potato cyst nematode, Globodera pallida, in relation to virulence.

    Science.gov (United States)

    Blok, V C; Pylypenko, L; Phillips, M S

    2006-01-01

    The potato cyst nematode Globodera pallida poses a challenge for potato growers. The potato cyst nematodes (PCN) Globodera rostochiensis and G. pallida cause damage valued at over pounds 50m per annum in the U.K. and problems in controlling PCN are growing due to the increase in populations and spread of G. pallida, the lack of many commercially attractive cultivars with resistance to this species and the pressure to reduce nematicide use. Over 60% of potato fields in the U.K. are infected with G. pallida (Minnis et al. 2000). The Scottish Agricultural Science Agency (SASA) figures show that the incidence of both species of PCN on Scottish seed potato land, though low, has been increasing. The proportion of potato land in ware production in Scotland is also increasing and now represents 50% of the potato growing area. This situation potentially increases the risk of the spread of PCN unless it is very carefully monitored and managed.

  17. PLANT PROTECTION PRODUCT RESIDUES IN APPLES, CAULIFLOWER, CEREALS, GRAPE, LETTUCE, PEAS, PEPPERS, POTATOES AND STRAWBERRIES OF THE SLOVENE ORIGIN IN 2006

    Directory of Open Access Journals (Sweden)

    Helena BAŠA ČESNIK

    2010-02-01

    Full Text Available In the year 2006, 181 apple, cauliflower, cereal, grape, lettuce, pea, pepper, potato and strawberry samples from Slovene producers were analysed for plant protection product residues. The samples were analysed for the presence of 86 different active compounds using four analytical methods. In nine samples (5.0 % exceeded maximum residue levels (MRLs were determined which is comparable with the results of the monitoring of plant protection product residues in products of plant origin in the European union, Norway, Iceland and Liechtenstein in 2005 (4.9 %.

  18. Technical efficiency of potato and dairy farming in mountainous Kazbegi district, Georgia

    Directory of Open Access Journals (Sweden)

    R. Shavgulidze

    2017-03-01

    Full Text Available The study employs a stochastic frontier analysis to assess technical efficiency of potato and cheese production and determine socio-economic factors that influence farmers' technical efficiency levels in mountainous Kazbegi district of Georgia. The study found improved feeding to be inversely related with technical inefficiency in cheese production. In potato production, the analysis revealed implementation of the plant protection measures and use of quality seeds to be significant aspects that influence technical efficiency of potato growers.

  19. Melatonin-Stimulated Triacylglycerol Breakdown and Energy Turnover under Salinity Stress Contributes to the Maintenance of Plasma Membrane H+-ATPase Activity and K+/Na+ Homeostasis in Sweet Potato.

    Science.gov (United States)

    Yu, Yicheng; Wang, Aimin; Li, Xiang; Kou, Meng; Wang, Wenjun; Chen, Xianyang; Xu, Tao; Zhu, Mingku; Ma, Daifu; Li, Zongyun; Sun, Jian

    2018-01-01

    Melatonin (MT) is a multifunctional molecule in animals and plants and is involved in defense against salinity stress in various plant species. In this study, MT pretreatment was simultaneously applied to the roots and leaves of sweet potato seedlings [ Ipomoea batatas (L.) Lam.], which is an important food and industry crop worldwide, followed by treatment of 150 mM NaCl. The roles of MT in mediating K + /Na + homeostasis and lipid metabolism in salinized sweet potato were investigated. Exogenous MT enhanced the resistance to NaCl and improved K + /Na + homeostasis in sweet potato seedlings as indicated by the low reduced K + content in tissues and low accumulation of Na + content in the shoot. Electrophysiological experiments revealed that exogenous MT significantly suppressed NaCl-induced K + efflux in sweet potato roots and mesophyll tissues. Further experiments showed that MT enhanced the plasma membrane (PM) H + -ATPase activity and intracellular adenosine triphosphate (ATP) level in the roots and leaves of salinized sweet potato. Lipidomic profiling revealed that exogenous MT completely prevented salt-induced triacylglycerol (TAG) accumulation in the leaves. In addition, MT upregulated the expression of genes related to TAG breakdown, fatty acid (FA) β-oxidation, and energy turnover. Chemical inhibition of the β-oxidation pathway led to drastic accumulation of lipid droplets in the vegetative tissues of NaCl-stressed sweet potato and simultaneously disrupted the MT-stimulated energy state, PM H + -ATPase activity, and K + /Na + homeostasis. Results revealed that exogenous MT stimulated TAG breakdown, FA β-oxidation, and energy turnover under salinity conditions, thereby contributing to the maintenance of PM H + -ATPase activity and K + /Na + homeostasis in sweet potato.

  20. A high-resolution map of the Grp1 locus on chromosome V of potato harbouring broad-spectrum resistance to the cyst nematode species Globodera pallida and Globodera rostochiensis.

    Science.gov (United States)

    Finkers-Tomczak, Anna; Danan, Sarah; van Dijk, Thijs; Beyene, Amelework; Bouwman, Liesbeth; Overmars, Hein; van Eck, Herman; Goverse, Aska; Bakker, Jaap; Bakker, Erin

    2009-06-01

    The Grp1 locus confers broad-spectrum resistance to the potato cyst nematode species Globodera pallida and Globodera rostochiensis and is located in the GP21-GP179 interval on the short arm of chromosome V of potato. A high-resolution map has been developed using the diploid mapping population RHAM026, comprising 1,536 genotypes. The flanking markers GP21 and GP179 have been used to screen the 1,536 genotypes for recombination events. Interval mapping of the resistances to G. pallida Pa2 and G. rostochiensis Ro5 resulted in two nearly identical LOD graphs with the highest LOD score just north of marker TG432. Detailed analysis of the 44 recombinant genotypes showed that G. pallida and G. rostochiensis resistance could not be separated and map to the same location between marker SPUD838 and TG432. It is suggested that the quantitative resistance to both nematode species at the Grp1 locus is mediated by one or more tightly linked R genes that might belong to the NBS-LRR class.

  1. Tuber resistance and slow rotting characteristics of potato clones associated with the Solanaceae Coordinated Agricultural Project to the US-24 clonal lineage of Phytophthora infestans

    Science.gov (United States)

    Late blight, caused by Phytophthora infestans, is a devastating disease on potato worldwide and new lineages of the pathogen continue to develop in the U.S. Breeding for resistance is important for economic and environmental purposes. The Solanaceae Coordinated Agricultural Project (SolCAP) focuses ...

  2. Preparation of calcium- and magnesium-fortified potato starches with altered pasting properties.

    Science.gov (United States)

    Noda, Takahiro; Takigawa, Shigenobu; Matsuura-Endo, Chie; Ishiguro, Koji; Nagasawa, Koichi; Jinno, Masahiro

    2014-09-15

    Calcium- and magnesium-fortified potato starches were prepared by immersion in various concentrations of CaCl2 and MgCl2 aqueous solutions, respectively. The pasting properties, i.e., peak viscosity and breakdown, of all the starches obtained above were analyzed using a Rapid Visco Analyzer. Furthermore, the gelatinization properties and in vitro digestibility of the representative calcium- and magnesium-fortified starches were tested. The maximum calcium content of the fortified potato starches was as high as 686 ppm with the addition of a high-concentration CaCl2 solution, while the calcium content of the control potato starch was 99 ppm. The magnesium content increased from 89 to 421 ppm by treatment of the potato starch with an MgCl2 solution. Markedly lower values of peak viscosity and breakdown were observed in calcium- and magnesium-fortified potato starches than in the control potato starch. However, the gelatinization temperature and enthalpy as well as resistant starch content of calcium- and magnesium-fortified potato starches were similar to those of the control potato starch. It is concluded that potato starches with altered pasting properties can be easily manufactured by the use of solutions containing high levels of calcium and magnesium.

  3. Combined effects of CO2 enrichment, changes in diurnal light level and water stress on foliar metabolites of potato plants grown in naturally sunlit controlled environment chambers

    Science.gov (United States)

    Potato plants (Solanum tuberosum L. cv Kennebec) were grown in outdoor, naturally sunlit, soil-plant-atmosphere research (SPAR) chambers. Drought treatments were imposed at post-tuber initiation stage to assess water stress effects on leaf metabolites, and interactions with enriched CO2 concentrati...

  4. Metabolite profiling and quantification of phytochemicals in potato extracts using ultra-high-performance liquid chromatography-mass spectrometry.

    Science.gov (United States)

    Chong, Esther Swee Lan; McGhie, Tony K; Heyes, Julian A; Stowell, Kathryn M

    2013-12-01

    Potatoes contain a diverse range of phytochemicals which have been suggested to have health benefits. Metabolite profiling and quantification were conducted on plant extracts made from a white potato cultivar and 'Urenika', a purple potato cultivar traditionally consumed by New Zealand Maori. There is limited published information regarding the metabolite profile of Solanum tuberosum cultivar 'Urenika'. Using ultra-high- performance liquid chromatography-mass spectrometry (UHPLC-MS), a total of 31 compounds were identified and quantified in the potato extracts. The majority of the compounds were identified for the first time in 'Urenika'. These compounds include several types of anthocyanins, hydroxycinnamic acid (HCA) derivatives, and hydroxycinnamic amides (HCAA). Six classes of compounds, namely organic acids, amino acids, HCA, HCAA, flavonols and glycoalkaloids, were present in both extracts but quantities varied between the two extracts. The unknown plant metabolites in both potato extracts were assigned with molecular formulae and identified with high confidence. Quantification of the metabolites was achieved using a number of appropriate standards. High-resolution mass spectrometry data critical for accurate identification of unknown phytochemicals were achieved and could be added to potato or plant metabolomic database. © 2013 Society of Chemical Industry.

  5. Detection of Potato Leaf Roll Virus (PLRV), Potato Virus Y (PVY) and Potato Virus X (PVX) on Five Potato Varieties by Using of DAS-ELISA and RT-PCR Methods

    OpenAIRE

    Kuswinanti, Tutik

    2012-01-01

    Potato is a staple food crop that widely grown around the world. Virus infection is main factor that affects great loss of the potato production. Potato virus X(PVX), potato virus Y(PVY),and potato leaf roll virus(PLRV) are top three viruses that result in decreased yield of potato in Indonesia. Therefore, the rapid methods of DAS-ELISA was studied to test tuber samples of five potato varieties, Granola, Atlantik, Raja, Super John, Kalosi, and Masalle. Two simple, rapid, sensitive, reliable...

  6. Uptake of manganese in potatoes tolerant of high tissue manganese levels

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, K.B.

    1987-01-01

    Observations on the accumulations of Mn in potatoes (Solanum tuberosum cv. Norland) focused on factors which enabled plants in field studies to withstand high concentrations of Mn in their foliage. A microculture method for assessing nutrient uptake was introduced and applied to studies of the effects of P and temperature on Mn toxicity. Potato plants in microculture behaved similarly in the symptomatology of Mn toxicity to those grown in solution culture but were more responsive to P. The effects of both P and temperature on Mn toxicity in microculture correlated with changes in Mn uptake and with growth reductions due to low P or temperature stress. The uptake of Mn from solution culture increased with increasing P level in solution. This increase was attributed to an increased health and vitality of potato plants under high P and to changes in pH and nutrient solution concentration as plants matured at different rates. When limited control over solution pH and nutrient concentration was provided the effects of P on Mn uptake were largely eliminated. The well-documented time dependence of Mn accumulation was confirmed in a fractionation experiment.

  7. Resistance mechanisms to plant viruses: an overview

    NARCIS (Netherlands)

    Goldbach, R.W.; Bucher, E.C.; Prins, A.H.

    2003-01-01

    To obtain virus-resistant host plants, a range of operational strategies can be followed nowadays. While for decades plant breeders have been able to introduce natural resistance genes in susceptible genotypes without knowing precisely what these resistance traits were, currently a growing number of

  8. Cereal cystatins delay sprouting and nutrient loss in tubers of potato, Solanum tuberosum.

    Science.gov (United States)

    Munger, Aurélie; Simon, Marie-Aube; Khalf, Moustafa; Goulet, Marie-Claire; Michaud, Dominique

    2015-12-21

    Recent studies have reported agronomically useful ectopic effects for recombinant protease inhibitors expressed in leaves of transgenic plants, including improved tolerance to abiotic stress conditions and partial resistance to necrotrophic pathogens. Here we assessed the effects of these proteins on the post-dormancy sprouting of storage organs, using as a model potato tubers expressing cysteine protease inhibitors of the cystatin protein superfamily. Sprout emergence and distribution, soluble proteins, starch and soluble sugars were monitored in tubers of cereal cystatin-expressing clones stored for several months at 4 °C. Cystatin expression had a strong repressing effect on sprout growth, associated with an apparent loss of apical dominance and an increased number of small buds at the skin surface. Soluble protein content remained high for up to 48 weeks in cystatin-expressing tubers compared to control (untransformed) tubers, likely explained by a significant stabilization of the major storage protein patatin, decreased hydrolysis of the endogenous protease inhibitor multicystatin and low cystatin-sensitive cysteine protease activity in tuber tissue. Starch content decreased after several months in cystatin-expressing tubers but remained higher than in control tubers, unlike sucrose showing a slower accumulation in the transgenics. Plantlet emergence, storage protein processing and height of growing plants showed similar time-course patterns for control and transgenic tubers, except for a systematic delay of 2 or 3 d in the latter group likely due to limited sprout size at sowing. Our data point overall to the onset of metabolic interference effects for cereal cystatins in sprouting potato tubers. They suggest, in practice, the potential of endogenous cysteine proteases as relevant targets for the development of potato varieties with longer storage capabilities.

  9. The role of the potato (Solanum tuberosum) CCD8 gene in stolon and tuber development.

    Science.gov (United States)

    Pasare, Stefania A; Ducreux, Laurence J M; Morris, Wayne L; Campbell, Raymond; Sharma, Sanjeev K; Roumeliotis, Efstathios; Kohlen, Wouter; van der Krol, Sander; Bramley, Peter M; Roberts, Alison G; Fraser, Paul D; Taylor, Mark A

    2013-06-01

    · Strigolactones (SLs) are a class of phytohormones controlling shoot branching. In potato (Solanum tuberosum), tubers develop from underground stolons, diageotropic stems which originate from basal stem nodes. As the degree of stolon branching influences the number and size distribution of tubers, it was considered timely to investigate the effects of SL production on potato development and tuber life cycle. · Transgenic potato plants were generated in which the CAROTENOID CLEAVAGE DIOXYGENASE8 (CCD8) gene, key in the SL biosynthetic pathway, was silenced by RNA interference (RNAi). · The resulting CCD8-RNAi potato plants showed significantly more lateral and main branches than control plants, reduced stolon formation, together with a dwarfing phenotype and a lack of flowering in the most severely affected lines. New tubers were formed from sessile buds of the mother tubers. The apical buds of newly formed transgenic tubers grew out as shoots when exposed to light. In addition, we found that CCD8 transcript levels were rapidly downregulated in tuber buds by the application of sprout-inducing treatments. · These results suggest that SLs could have an effect, solely or in combination with other phytohormones, in the morphology of potato plants and also in controlling stolon development and maintaining tuber dormancy. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  10. Isolation and Identification of L-asparaginase producing Erwinia strains which isolated from Potato Farms

    Directory of Open Access Journals (Sweden)

    Arastoo Badoei-Dalfard

    2016-09-01

    Full Text Available Introduction: L-Asparaginase can be effectively used for the treatment of lymphoblastic leukemia. The rapid growth of cancer cells are needed for L-asparagine abundant storage. L-asparaginase catalyzes the hydrolysis of L-asparagine into L-aspartic acid and ammonia. The purpose of this study was to isolate and identify the L-asparaginase producing Erwinia strains from the potato farms of Jiroft. Materials and methods: Pectolytic Erwinia species isolated from crumbling potato in M9 medium. The desired L-asparaginase producing bacteria were isolated based on the color changes. Biochemical-microbial and the plant pathogenicity tests of these strains were also investigated with potato and geranium. The L-asparaginase production and molecular detection of these Erwinia strains were also investigated. Results: In this study, L-asparaginase producing Erwinia was isolated on the CVP and M9 mediums. The inoculation of Erwinia strains on the potato and geranium plants showed that Er8 and Er11 species have the ability to cause plant pathogenicity. Results showed that the maximum pathogenicity of Er8 and Er11 was observed after 48 and 15 h of inoculation in potato and geranium plants, respectively. 16S rDNA sequencing and phylogenetic analyses exhibited that Er8 and Er11 strains were similar to Erwinia chrysanthemi with 98% homology. Discussion and conclusion: Because of several applications of the Erwinia L-asparaginase in various fields, isolated Erwinia and their L-asparaginase can be suitable for applied utilization.

  11. Melatonin-Stimulated Triacylglycerol Breakdown and Energy Turnover under Salinity Stress Contributes to the Maintenance of Plasma Membrane H+–ATPase Activity and K+/Na+ Homeostasis in Sweet Potato

    Directory of Open Access Journals (Sweden)

    Yicheng Yu

    2018-02-01

    Full Text Available Melatonin (MT is a multifunctional molecule in animals and plants and is involved in defense against salinity stress in various plant species. In this study, MT pretreatment was simultaneously applied to the roots and leaves of sweet potato seedlings [Ipomoea batatas (L. Lam.], which is an important food and industry crop worldwide, followed by treatment of 150 mM NaCl. The roles of MT in mediating K+/Na+ homeostasis and lipid metabolism in salinized sweet potato were investigated. Exogenous MT enhanced the resistance to NaCl and improved K+/Na+ homeostasis in sweet potato seedlings as indicated by the low reduced K+ content in tissues and low accumulation of Na+ content in the shoot. Electrophysiological experiments revealed that exogenous MT significantly suppressed NaCl-induced K+ efflux in sweet potato roots and mesophyll tissues. Further experiments showed that MT enhanced the plasma membrane (PM H+–ATPase activity and intracellular adenosine triphosphate (ATP level in the roots and leaves of salinized sweet potato. Lipidomic profiling revealed that exogenous MT completely prevented salt-induced triacylglycerol (TAG accumulation in the leaves. In addition, MT upregulated the expression of genes related to TAG breakdown, fatty acid (FA β-oxidation, and energy turnover. Chemical inhibition of the β-oxidation pathway led to drastic accumulation of lipid droplets in the vegetative tissues of NaCl-stressed sweet potato and simultaneously disrupted the MT-stimulated energy state, PM H+–ATPase activity, and K+/Na+ homeostasis. Results revealed that exogenous MT stimulated TAG breakdown, FA β-oxidation, and energy turnover under salinity conditions, thereby contributing to the maintenance of PM H+–ATPase activity and K+/Na+ homeostasis in sweet potato.

  12. Identification, characterization and high-resolution mapping of resistance genes to Phytophthora infestans in potato

    NARCIS (Netherlands)

    Park, T.H.

    2005-01-01

    Potato ( Solanum tuberosum L.) is one of the most important crops in the world. The oomycete Phytophthora infestans (Mont. de Bary) is the causal agent of late blight which is the most devastating disease of the cultivated potato. It causes economic losses of several billion US dollars in crop

  13. Linking aboveground and belowground inducible plant resistance

    NARCIS (Netherlands)

    Bezemer, T.M.

    2009-01-01

    Induced resistance of plants against pests and diseases via plant defense responses is well documented and can occur aboveground, in the leaves, and belowground in the roots. A number of recent studies have shown that soil-borne pests can also induce plant resistance aboveground and vice versa.

  14. The historical role of species from the Solanaceae plant family in genetic research.

    Science.gov (United States)

    Gebhardt, Christiane

    2016-12-01

    This article evaluates the main contributions of tomato, tobacco, petunia, potato, pepper and eggplant to classical and molecular plant genetics and genomics since the beginning of the twentieth century. Species from the Solanaceae family form integral parts of human civilizations as food sources and drugs since thousands of years, and, more recently, as ornamentals. Some Solanaceous species were subjects of classical and molecular genetic research over the last 100 years. The tomato was one of the principal models in twentieth century classical genetics and a pacemaker of genome analysis in plants including molecular linkage maps, positional cloning of disease resistance genes and quantitative trait loci (QTL). Besides that, tomato is the model for the genetics of fruit development and composition. Tobacco was the major model used to establish the principals and methods of plant somatic cell genetics including in vitro propagation of cells and tissues, totipotency of somatic cells, doubled haploid production and genetic transformation. Petunia was a model for elucidating the biochemical and genetic basis of flower color and development. The cultivated potato is the economically most important Solanaceous plant and ranks third after wheat and rice as one of the world's great food crops. Potato is the model for studying the genetic basis of tuber development. Molecular genetics and genomics of potato, in particular association genetics, made valuable contributions to the genetic dissection of complex agronomic traits and the development of diagnostic markers for breeding applications. Pepper and eggplant are horticultural crops of worldwide relevance. Genetic and genomic research in pepper and eggplant mostly followed the tomato model. Comparative genome analysis of tomato, potato, pepper and eggplant contributed to the understanding of plant genome evolution.

  15. Cloning and functional characterization of SAD genes in potato.

    Science.gov (United States)

    Li, Fei; Bian, Chun Song; Xu, Jian Fei; Pang, Wan Fu; Liu, Jie; Duan, Shao Guang; Lei, Zun-Guo; Jiwan, Palta; Jin, Li-Ping

    2015-01-01

    Stearoyl-acyl carrier protein desaturase (SAD), locating in the plastid stroma, is an important fatty acid biosynthetic enzyme in higher plants. SAD catalyzes desaturation of stearoyl-ACP to oleyl-ACP and plays a key role in determining the homeostasis between saturated fatty acids and unsaturated fatty acids, which is an important player in cold acclimation in plants. Here, four new full-length cDNA of SADs (ScoSAD, SaSAD, ScaSAD and StSAD) were cloned from four Solanum species, Solanum commersonii, S. acaule, S. cardiophyllum and S. tuberosum, respectively. The ORF of the four SADs were 1182 bp in length, encoding 393 amino acids. A sequence alignment indicated 13 amino acids varied among the SADs of three wild species. Further analysis showed that the freezing tolerance and cold acclimation capacity of S. commersonii are similar to S. acaule and their SAD amino acid sequences were identical but differed from that of S. cardiophyllum, which is sensitive to freezing. Furthermore, the sequence alignments between StSAD and ScoSAD indicated that only 7 different amino acids at residues were found in SAD of S. tuberosum (Zhongshu8) against the protein sequence of ScoSAD. A phylogenetic analysis showed the three wild potato species had the closest genetic relationship with the SAD of S. lycopersicum and Nicotiana tomentosiformis but not S. tuberosum. The SAD gene from S. commersonii (ScoSAD) was cloned into multiple sites of the pBI121 plant binary vector and transformed into the cultivated potato variety Zhongshu 8. A freeze tolerance analysis showed overexpression of the ScoSAD gene in transgenic plants significantly enhanced freeze tolerance in cv. Zhongshu 8 and increased their linoleic acid content, suggesting that linoleic acid likely plays a key role in improving freeze tolerance in potato plants. This study provided some new insights into how SAD regulates in the freezing tolerance and cold acclimation in potato.

  16. Cloning and functional characterization of SAD genes in potato.

    Directory of Open Access Journals (Sweden)

    Fei Li

    Full Text Available Stearoyl-acyl carrier protein desaturase (SAD, locating in the plastid stroma, is an important fatty acid biosynthetic enzyme in higher plants. SAD catalyzes desaturation of stearoyl-ACP to oleyl-ACP and plays a key role in determining the homeostasis between saturated fatty acids and unsaturated fatty acids, which is an important player in cold acclimation in plants. Here, four new full-length cDNA of SADs (ScoSAD, SaSAD, ScaSAD and StSAD were cloned from four Solanum species, Solanum commersonii, S. acaule, S. cardiophyllum and S. tuberosum, respectively. The ORF of the four SADs were 1182 bp in length, encoding 393 amino acids. A sequence alignment indicated 13 amino acids varied among the SADs of three wild species. Further analysis showed that the freezing tolerance and cold acclimation capacity of S. commersonii are similar to S. acaule and their SAD amino acid sequences were identical but differed from that of S. cardiophyllum, which is sensitive to freezing. Furthermore, the sequence alignments between StSAD and ScoSAD indicated that only 7 different amino acids at residues were found in SAD of S. tuberosum (Zhongshu8 against the protein sequence of ScoSAD. A phylogenetic analysis showed the three wild potato species had the closest genetic relationship with the SAD of S. lycopersicum and Nicotiana tomentosiformis but not S. tuberosum. The SAD gene from S. commersonii (ScoSAD was cloned into multiple sites of the pBI121 plant binary vector and transformed into the cultivated potato variety Zhongshu 8. A freeze tolerance analysis showed overexpression of the ScoSAD gene in transgenic plants significantly enhanced freeze tolerance in cv. Zhongshu 8 and increased their linoleic acid content, suggesting that linoleic acid likely plays a key role in improving freeze tolerance in potato plants. This study provided some new insights into how SAD regulates in the freezing tolerance and cold acclimation in potato.

  17. Plant Translation Factors and Virus Resistance

    Directory of Open Access Journals (Sweden)

    Hélène Sanfaçon

    2015-06-01

    Full Text Available Plant viruses recruit cellular translation factors not only to translate their viral RNAs but also to regulate their replication and potentiate their local and systemic movement. Because of the virus dependence on cellular translation factors, it is perhaps not surprising that many natural plant recessive resistance genes have been mapped to mutations of translation initiation factors eIF4E and eIF4G or their isoforms, eIFiso4E and eIFiso4G. The partial functional redundancy of these isoforms allows specific mutation or knock-down of one isoform to provide virus resistance without hindering the general health of the plant. New possible targets for antiviral strategies have also been identified following the characterization of other plant translation factors (eIF4A-like helicases, eIF3, eEF1A and eEF1B that specifically interact with viral RNAs and proteins and regulate various aspects of the infection cycle. Emerging evidence that translation repression operates as an alternative antiviral RNA silencing mechanism is also discussed. Understanding the mechanisms that control the development of natural viral resistance and the emergence of virulent isolates in response to these plant defense responses will provide the basis for the selection of new sources of resistance and for the intelligent design of engineered resistance that is broad-spectrum and durable.

  18. Enhancement of the efficacy of a carbamate nematicide against the potato cyst nematode, Globodera pallida, through mycorrhization in commercial potato fields.

    Science.gov (United States)

    Deliopoulos, T; Minnis, S T; Jones, P W; Haydock, P P J

    2010-03-01

    Two experiments were conducted over 2 years in commercial potato fields in Shropshire, UK, to evaluate the compatibility of the nematicide aldicarb with commercial inocula of arbuscular mycorrhizal fungi (AMF) in the control of the potato cyst nematode Globodera pallida. The AMF used were Vaminoc (mixed-AMF inoculum), Glomus intraradices (BioRize BB-E) and G. mosseae (isolate BEG 12). In the absence of AMF, the in-soil hatch of G. pallida increased 30% (P potato (cv. Golden Wonder) tubers with AMF eliminated this delay in G. pallida hatch by stimulating a mean increase of 32% (P < 0.01) in hatch within 2 wk after planting. In the aldicarb-treated plots in Experiment 1, G. pallida multiplication rate was 38% lower (P < 0.05) in roots of AMF-inoculated than noninoculated plants, but in Experiment 2, this effect was slightly lower (P = 0.07). In these plots, the single AMF inocula showed also a weak trend (P = 0.10) towards greater tuber yields relative to their noninoculated counterparts. Mycorrhization therefore appears to enhance the efficacy of carbamate nematicides against G. pallida and consequently more research is proposed to validate these findings and fully explore the potential of this model.

  19. The potato chips and dry mashed as products of potato rational processing

    Directory of Open Access Journals (Sweden)

    A. Mazur

    2015-05-01

    Full Text Available Introduction. The percentage of potato processing for food products in the former Soviet Union decreased to 1%, at the same time in some countries of Europe and the USA the share of potato processing is 60-80%. Numerous works have shown the economic feasibility of potato processing for food products. Materials and methods. In laboratory and industrial conditions of the open stock company «Mashpishcheprod» (Maryina Gorka, Minsk region, Belarus researches have been conducted on increase of efficiency of technological processes potato processing. Sampling, preparation and conducting of tests were performed by standard and special methods of analysis. Results and discussion. Potato varieties suitable for the production of dry mashed potatoes and potatocrisps have been determined, acclimatization before processing ensures minimumthe content of the reducing sugars, which provide high quality of the finished product. Studies have shown that the process of kneading potato at temperatures close to cooking temperature is optimal, in which the process of destruction cells is hardly taking place. Pneumatic dryers for drying boiled potato provide high product quality due to the low temperature of heating and short contact of a powdered product with a drying agent. However, the contents of damaged cells in the finished product do not exceed 1.3-2.6%. The optimum modes and parameters of potato crisps production have been defined, the processes of cutting, blanching, treatment with salt, drying and roasting have been scientifically grounded, that provide a finished product with fat content not more than 27.7%. Conclusion. Economic expediency of processing the following varieties of potato Desire, Temp, Synthesis for dry mashed potato and potato crisps has been proved. The processes of kneading and drying potato are decisive stages of the processing, because they determine the number of destroyedcells in the finished product. Optimal parameters of production

  20. The Inter-genebank Potato Database and the dimensions of available wild potato germplasm

    NARCIS (Netherlands)

    Huamán, Z.; Hoekstra, R.; Bamberg, J.B.

    2000-01-01

    The Association of Potato Inter-genebank Collaborators (APIC) constructed a database of all wild potato holdings of the most important potato genebanks in Europe, the United States, Peru, and Argentina. The Inter-genebank Potato Database (IPD) now contains data of 11,819 wild potato accessions

  1. Defense mechanisms of Solanum tuberosum L. in response to attack by plant-pathogenic bacteria

    Directory of Open Access Journals (Sweden)

    VERA A D POIATTI

    2009-01-01

    Full Text Available The natural resistance of plants to disease is based not only on preformed mechanisms, but also on induced mechanisms. The defense mechanisms present in resistant plants may also be found in susceptible ones. This study attempted to analyze the metabolic alterations in plants of the potato Solanum tuberosum L. cv. Agata that were inoculated with the incompatible plant-pathogenic bacteria X. axonopodis and R. solanacearum, and the compatible bacterium E. carotovora. Levels of total phenolic compounds, including the flavonoid group, and the activities of polyphenol oxidase (PPO and peroxidase (POX were evaluated. Bacteria compatibility was evaluated by means of infiltration of tubers. The defense response was evaluated in the leaves of the potato plants. Leaves were inoculated depending on their number and location on the stem. Multiple-leaf inoculation was carried out on basal, intermediate, and apical leaves, and single inoculations on intermediate leaves. Leaves inoculated with X. axonopodis and with R. solanacearum showed hypersensitive responses within 24 hours post-inoculation, whereas leaves inoculated with E. carotovora showed disease symptoms. Therefore, the R. solanacearum isolate used in the experiments did not exhibit virulence to this potato cultivar. Regardless of the bacterial treatments, the basal leaves showed higher PPO and POX activities and lower levels of total phenolic compounds and flavonoids, compared to the apical leaves. However, basal and intermediate leaves inoculated with R. solanacearum and X. axonopodis showed increases in total phenolic compounds and flavonoid levels. In general, multiple-leaf inoculation showed the highest levels of total phenolics and flavonoids, whereas the single inoculations resulted in the highest increase in PPO activity. The POX activity showed no significant difference between single- and multiple-leaf inoculations. Plants inoculated with E. carotovora showed no significant increase in

  2. Detection of DNA specific sequences of Spongospora subterranea in soil and potato tubers

    Directory of Open Access Journals (Sweden)

    Cristian Oswaldo Saavedra Rodríguez

    2004-01-01

    Full Text Available A test has been developed for early identification of the casual agent for potato powdery scab (Spongospora subterranea fs subterranea. Identification was carried out in seeds and soil where this tuber is grown. A polymerase chain reaction (PCR was set up for detecting 372, 390 and 391 bp ribosomal DNA internal transcribed spacer sequences (ITS in the S. subterraneagenome. A method for extracting and purifying DNA from infected plant material (potato root nodes and pustules on the potato was standardised. Plant tissue was obtained by potato tuber propagation using an inoculum from the pathogen in greenhouse conditions. After the PCR had been optimised and its sensitivity determined, a molecular methodology was validated by examining plant material infected with S. subterranea and soil samples infested with the pathogen obtained from the departments of Cundinamarca and Nariño. The PCR detected S. subterranea DNA from infected material and soil samples (all thirty samples from the experimental area analysed proved PCR positive. These results show that this molecular method was not just useful for the early detection of the pathogen in soil samples but as a tool for detecting or determining the possible presence of this micro-organism in places that have been declared f ree of S. subterranea and an effective form of quality control in producing the certif ied potato seed. Key words: Powdery scab, cystosori, internal transcribed spacer, PCR, plasmodiophorid.

  3. A quantitative and constraint-specific method to assess the potential impact of new agricultural technology : the case of frost resistant potato for the Altiplano (Peru and Bolivia)

    NARCIS (Netherlands)

    Hijmans, R.J.; Condori, B.; Carrillo, R.; Kropff, M.J.

    2003-01-01

    A quantitative and constraint-specific approach to assess the potential impact of new agricultural technology is described and applied to frost resistant potato cultivars for the Altiplano (Peru and Bolivia). The approach uses geo-referenced databases and a simulation model. Calculations are made

  4. Seed Potato Production and Its Importance

    OpenAIRE

    Erdoğan ÖZTÜRK; Taşkın POLAT

    2017-01-01

    Our country has different agricultural regions showed different ecological properties in terms of climate and soil characteristics increase the plant variety. Within this variety the potato is one of the most important plants for agriculture and economic of our country, also it is an important food source for human. It is important to use productive and quality seed for healthy agricultural production. With the using of good quality seed, can be obtained about 20% increase in yield. Certified...

  5. MULCHING MATERIALS OF PLANT ORIGIN AT POTATO GROWING IN ASTRAKHAN REGION

    Directory of Open Access Journals (Sweden)

    S. B. Bairambekov

    2016-01-01

    Full Text Available The application of phytogenous mulching materials based on local processed raw materials at potato cultivation in irrigated conditions of the Astrakhan region has allowed optimization of temperature and moisture regime of the soil. It was found that in case of the spring term of planting, the mulching has increased the soil temperature up to 0,6-0,9°C on April-May at a depth of 0,10 m as compared to the control. During heat period, mulching materials have decreased the soil temperature. Antecedent soil water under mulching materials in the phase of tubers formation was on 1,15-1,19 times higher than in the control variant without mulching. The most effective materials for the soils of different grain-size distribution were determined: for the heavy-loamy soil the best mulching material was straw, for the sandy loam soil the more efficient mulching was saw-dust.

  6. Editing plants for virus resistance using CRISPR-Cas.

    Science.gov (United States)

    Green, J C; Hu, J S

    This minireview summarizes recent advancements using the clustered regularly interspaced palindromic repeats-associated nuclease systems (CRISPR-Cas) derived from prokaryotes to breed plants resistant to DNA and RNA viruses. The CRISPR-Cas system represents a powerful tool able to edit and insert novel traits into plants precisely at chosen loci offering enormous advantages to classical breeding. Approaches to engineering plant virus resistance in both transgenic and non-transgenic plants are discussed. Iterations of the CRISPR-Cas system, FnCas9 and C2c2 capable of editing RNA in eukaryotic cells offer a particular advantage for providing resistance to RNA viruses which represent the great majority of known plant viruses. Scientists have obtained conflicting results using gene silencing technology to produce transgenic plants resistant to geminiviruses. CRISPR-Cas systems engineered in plants to target geminiviruses have consistently reduced virus accumulation providing increased resistance to virus infection. CRISPR-Cas may provide novel and reliable approaches to control geminiviruses and other ssDNA viruses such as Banana bunchy top virus (BBTV).

  7. Mutation breeding on potato by using nuclear techniques

    International Nuclear Information System (INIS)

    2010-01-01

    Potato breeding is one of the most frequent cases in terms of production and growing distinct after cultivation of cereals. The utilization of potato increases everyday since the nodes of potato are available for using fresh food and also chipping, producing starch, alcohol as well as animal feed. At the present day, potatoes are more significant as a result of uses of them. The most productive country in potato is china. According to data 2007, Turkey produces 4280 million ton potatoes every year. Potato is in the group of nodule plants. Even though potato production is frequent every place in Turkey, the most productive place is Central part of Turkey especially Nigde and Nevsehir. 43.2% of production is obtained in these cities. According to 2007 data, potato production area 158.500 ha in Turkey. The most significant input is seed for potato since potatoes are reduced by nodes as being vegetative. Even though amount of used seed is predicated on aim, ecologic circumstances, breed, is 200-300 kg/da. Seed registration certification system have been started since 1972 in potato. Until 2007, 68 variety breed were registered but all of them except. Pasinler and Nif are brought from abroad. Pasinler and Nif which are cultivated in Turkey does not hold a place among seed program. There is no domestic breed in potato - seed. For that reason, mutant diversities, which are highly acclimatized to adapt, fertile, substantial against diseases, pests and substantial for storage, are aimed to grow to provide them for farmers. These diversities also must have different elaboration periods and highly weedy starch to being useful for industries. In this study, we used Marfona potato variety which has been grown in large areas for a long time in Turkey. Marfona potato which is registered in 1991 in our country is in middle-early maturity growing group, also it has light yellow as well as peel with its white bloom and big node. Marfona which is highly substantial against virus

  8. Transport of calcium in stolones of potato plants

    International Nuclear Information System (INIS)

    Krauss, A.; Marschner, H.

    1974-01-01

    In hydroculture tests with potato plants, the 45 Ca displacement into the stolons depending on the growth rate and the degree of supply of Ca of the tuber as well as on the relative air humidity in the region of stolons and tubers was investigated. 45 Ca was either applied via the roots or via the stolon surface. With the 45 Ca supply via the root, only a small 45 Ca displacement into the stolon or tuber takes place if the stolon tip or the tubers were additionally supplied exagenously with Ca (CaSO 4 solution) or if the relative humidity of the air in the region of the stolons or tubers was high. At high relative air humidity around the tubers, there was no 'sink' effect of the tuber on the 45 Ca displacement in the stolon even if the Ca supply of the tuber was bad. 45 Ca applied via the stolon surface at high relative air humidity in the stolon region was practically exclusively displaced to the direction of the sprout. At low air humidity in the region of the stolen and tuber, on the other hand, the 45 Ca was well displaced into the stolon in the direction of the sprout or tuber after application via the root as well as via the stolon. (GSE/LH) [de

  9. The potato tuber mitochondrial proteome

    DEFF Research Database (Denmark)

    Møller, Ian Max; Salvato, Fernanda; Havelund, Jesper

    We are testing the hypothesis that oxidized peptides are released from stressed mitochondria and contribute to retrograde signalling (Møller IM & Sweetlove LJ 2010 Trends Plant Sci 15, 370-374). However, there is a large gap between the number of experimentally verified mitochondrial proteins (~450......) and in silico-predicted mitochondrial proteins (2000-3000). Thus, before starting to look for oxidized peptides, we wanted to expand the current compendium of plant mitochondrial proteins while obtaining what could be termed the "baseline proteome" from our model organelle, the potato tuber mitochondrion. Its...

  10. Analysis of weed flora in conventional and organic potato production

    Directory of Open Access Journals (Sweden)

    Nikolić, Lj.

    2013-12-01

    Full Text Available Composition of weed flora is highly dynamic and depends upon great number of factors, of which cultural practices that are applied by humans in certain crops are the most important. One of the most frequently grown plants in the world and in our country is potato (Solanum tuberosum L., Solanaceae, due to its high biological and nutritive value. Therefore, in the paper was presented taxonomic analysis of weed flora in potato grown conventionally and according to the principles of organic agricultural production, with the intention to point out to eventual differences between present weeds. Of the total number of identified species, from phylum Equisetophyta and class Equisetopsida, in organic potato crop, was determined only one, Equisetum arvense. Of remaining 38 weeds from phylum Magnoliophyta., classified into two classes, Magnoliopsida and Liliopsida. On both of potato growing systems, 39 weed species were found, classified into 16 families and 32 genus. Of the total number, 31 species was identified in conventional potato crop, and only 23 species in potato crop grown according to organic principles, which is for about quarter less. Biological spectrum of weed flora in both potato growing systems is pronouncedly of terrophytic – geophytic type. In the spectrum of area types were recorded differences, i.e. in the conventional potato crop represented are only widely distributed species, while in the organic crop, beside species of wide distribution are also present elements of Pontic group.

  11. Minitubers production of four potato Cuban varieties in greenhouse with zeolite as substrate

    Directory of Open Access Journals (Sweden)

    Manuel de Feria

    2016-10-01

    Full Text Available The obtaining of original seed of national potato varieties (Solanum tuberosum L. is of great importance. The objective of the present work was to obtain minitubers from four national potato varieties in a greenhouse with zeolite as substrate. The plants in vitro propagated of the varieties 'Grettel', 'Yuya', 'Ibis' and 'Marinca' were planted and received cultural and phytosanitary attention according to the protocol existing at IBP. Harvest was performed at 75 days of culture and the total number of minitubers and the number of minitubers with a diameter greater than 15 mm were quantified for each plant. Plants and tubers showed the typical characteristics of each variety under zeolite substrate culture conditions. The highest number of minitubers per plant was achieved in the 'Yuya' and 'Ibis' varieties with 3.84 and 3.52 respectively. For the number of minitubers available as original seed (>15 mm, the 'Yuya' variety was superior with 82.3%. The culture conditions with zeolite substrate allow to obtain minitubers of potatoes of the four varieties from plants in vitro cultured. 'Yuya' and 'Ibis' showed the best results and potentially could be incorporated into the national seed production program in Cuba.   Keywords: agamic seed, ‘Ibis’, ‘Grettel’, ‘Marinca’, Solanum tuberosum, ‘Yuya’

  12. Expression of Two Functionally Distinct Plant Endo-ß-1,4-Glucanases Is Essential for the Compatible Interaction Between Potato Cyst Nematode and Its Hosts

    NARCIS (Netherlands)

    Karczmarek, A.; Fudali, S.; Lichocka, M.; Sobczak, M.; Kurek, W.; Janakowski, S.; Roosien, J.; Golinowski, W.; Bakker, J.; Goverse, A.; Helder, J.

    2008-01-01

    For the proliferation of their feeding sites (syncytia), the potato cyst nematode Globodera rostochiensis is thought to recruit plant endo-ß-1,4-glucanases (EGases, EC. 3.2.1.4). Reverse-transcription polymerase chain reaction experiments on tomato (Solanum lycopersicum) indicated that the

  13. Push-Pull Effects of Three Plant Secondary Metabolites on Oviposition of the Potato Tuber Moth, Phthorimaea operculella

    Science.gov (United States)

    Ma, Y.F.; Xiao, C.

    2013-01-01

    The push-pull effects of three plant secondary metabolites, azadirachtin, eucalyptol, and heptanal, on the oviposition choices of potato tubers by the potato tuber moth, Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae) were tested in the laboratory. Azadirachtin at concentrations from 1.5 to 12 mg/L had a significant repellent effect on oviposition. Eucalyptol at concentrations from 3 to 12 mg/L promoted oviposition. Heptanal promoted oviposition at low concentrations from 0.1875 to 3.0 mg/L but repelled it at higher concentrations from 12 to 24 mg/L. The combination of azadirachtin (12 mg/L) with eucalyptol (3.0 mg/L) resulted in a significant pushpull effect of 56.3% on oviposition. The average maximum push-pull effects occurred with the combinations of azadirachtin with heptanal (12 and 0.375 mg/L, respectively; 38.7% push-pull effect), heptanal with eucalyptol (12 and 6 mg/L, respectively; 31.4% push-pull effect), and heptanal (high concentration) with heptanal (low concentration) (12.0 and 0.375 mg/L, respectively; 25% push-pull effect). PMID:24786822

  14. Novel receptor-like protein kinases induced by Erwinia carotovora and short oligogalacturonides in potato.

    Science.gov (United States)

    Montesano, M; Kõiv, V; Mäe, A; Palva, E T

    2001-11-01

    summary Identification of potato genes responsive to cell wall-degrading enzymes of Erwinia carotovora resulted in the isolation of cDNA clones for four related receptor-like protein kinases. One of the putative serine-threonine protein kinases might have arisen through alternative splicing. These potato receptor-like kinases (PRK1-4) were highly equivalent (91-99%), most likely constituting a family of related receptors. All PRKs and four other plant RLKs share in their extracellular domain a conserved bi-modular pattern of cysteine repeats distinct from that in previously characterized plant RLKs, suggesting that they represent a new class of receptors. The corresponding genes were rapidly induced by E. carotovora culture filtrate (CF), both in the leaves and tubers of potato. Furthermore, the genes were transiently induced by short oligogalacturonides. The structural identity of PRKs and their induction pattern suggested that they constitute part of the early response of potato to E. carotovora infection.

  15. Evaluation of Quantitative and Qualitative Traits of 18 Potato Clones

    Directory of Open Access Journals (Sweden)

    A. R Bolandi

    2016-10-01

    Full Text Available Introduction Introducing potato cultivars with high yield, early maturing and desirable quality have a key role in food security, decreasing the fluctuation of the price and the store costs and also providing fresh crops throughout the year. Potato (Solanum tuberosum L. plant is one of leading agricultural products in the world with 365 million ton glands in year stands in fourth place after wheat, rice and corn. The main objective of the breeding program is yield. Increase in plant yield in the past due to the gradual elimination of defects visible by experts and today the new criteria for selection are based on principles of morphological and functional characteristics associated with the plant. Variety is one of the effective factors on plant growth and development on potato that yields components of potato is heavily dependent on it. Yield increasing in each variety affect the genetic and natural structure of variety. Nine clones of Solanum tuberosum L. cv. Kennebec from sources in Victoria, South Australia and Tasmania, and the commercially grown clone, clone 1, which was imported from Vancouver, were multiplied from pathogen-tested seed and compared in 3 Victorian potato districts during 2 seasons. The results showed that differences exist in total and size grade yield and tuber number and appearance between clones of a cultivar. They further highlight the importance of selection work to maintain desirable characteristics of established cultivars and to remove mutants with undesirable characteristics. The results of the study, Hassanpanah and Hassanabadi (2012 showed that the clones 397003-7, 396151-27, 397045-100 and Savalan (check produced higher total and marketable tuber yield, tuber number and weight per plant, plant height, main stem number per plant, tuber size average and stable tuber yield. These clones produced high and mid-uniform tuber, tuber inner crack and tuber inner ring, mid-late maturity and mid and high dry in comparison

  16. Genome sequence of M6, a diploid inbred clone of the high-glycoalkaloid-producing tuber-bearing potato species Solanum chacoense, reveals residual heterozygosity.

    Science.gov (United States)

    Leisner, Courtney P; Hamilton, John P; Crisovan, Emily; Manrique-Carpintero, Norma C; Marand, Alexandre P; Newton, Linsey; Pham, Gina M; Jiang, Jiming; Douches, David S; Jansky, Shelley H; Buell, C Robin

    2018-05-01

    Cultivated potato (Solanum tuberosum L.) is a highly heterozygous autotetraploid that presents challenges in genome analyses and breeding. Wild potato species serve as a resource for the introgression of important agronomic traits into cultivated potato. One key species is Solanum chacoense and the diploid, inbred clone M6, which is self-compatible and has desirable tuber market quality and disease resistance traits. Sequencing and assembly of the genome of the M6 clone of S. chacoense generated an assembly of 825 767 562 bp in 8260 scaffolds with an N50 scaffold size of 713 602 bp. Pseudomolecule construction anchored 508 Mb of the genome assembly into 12 chromosomes. Genome annotation yielded 49 124 high-confidence gene models representing 37 740 genes. Comparative analyses of the M6 genome with six other Solanaceae species revealed a core set of 158 367 Solanaceae genes and 1897 genes unique to three potato species. Analysis of single nucleotide polymorphisms across the M6 genome revealed enhanced residual heterozygosity on chromosomes 4, 8 and 9 relative to the other chromosomes. Access to the M6 genome provides a resource for identification of key genes for important agronomic traits and aids in genome-enabled development of inbred diploid potatoes with the potential to accelerate potato breeding. © 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.

  17. Plant age, communication, and resistance to herbivores: young sagebrush plants are better emitters and receivers.

    Science.gov (United States)

    Shiojiri, Kaori; Karban, Richard

    2006-08-01

    Plants progress through a series of distinct stages during development, although the role of plant ontogeny in their defenses against herbivores is poorly understood. Recent work indicates that many plants activate systemic induced resistance after herbivore attack, although the relationship between resistance and ontogeny has not been a focus of this work. In addition, for sagebrush and a few other species, individuals near neighbors that experience simulated herbivory become more resistant to subsequent attack. Volatile, airborne cues are required for both systemic induced resistance among branches and for communication among individuals. We conducted experiments in stands of sagebrush of mixed ages to determine effects of plant age on volatile signaling between branches and individuals. Young and old control plants did not differ in levels of chewing damage that they experienced. Systemic induced resistance among branches was only observed for young plants. Young plants showed strong evidence of systemic resistance only if airflow was permitted among branches; plants with only vascular connections showed no systemic resistance. We also found evidence for volatile communication between individuals. For airborne communication, young plants were more effective emitters of cues as well as more responsive receivers of volatile cues.

  18. Reducing Severity of Late Blight (Phytophthora infestans and Improving Potato (Solanum tuberosum L. Tuber Yield with Pre-Harvest Application of Calcium Nutrients

    Directory of Open Access Journals (Sweden)

    Yewubnesh Wendimu Seifu

    2017-10-01

    Full Text Available The efficiency of pre-harvest application of calcium chloride alone, calcium nitrate alone, and combined application of calcium chloride and calcium nitrate (1:1 was evaluated in reducing the severity of P. infestans and improving potato tuber yield. Pot experiment was conducted in randomized complete block design with four replications. The treatments consisted of combination of two potato varieties (Shenkola and Gera and three types of calcium nutrients (calcium chloride alone, calcium nitrate alone, and calcium chloride mixed with calcium nitrate, each at three levels (5, 10, and 15 g per liter per plant and the control treatment (0 g of calcium nutrients. In comparison to the control treatment, the application of calcium nutrients significantly decreased the severity of late blight disease and improved potato tuber yield. The effect of calcium nutrients on the severity of late blight disease and potato tuber yield differed among the two potato varieties. The maximum severity reduction (60% was noticed in the Gera potato variety with the application of calcium chloride mixed with calcium nitrate (1:1, supplied at 15 g per plant. However, the highest average tuber yield was obtained with the application of calcium nitrate at 15 g per plant, and average tuber yield was increased by 77% in both potato varieties. Hence, foliar application of either calcium nitrate alone or calcium nitrate mixed with calcium chloride was found to be more efficient than the application of calcium chloride alone. This result suggests that the nitrate ion present in the calcium nitrate may make a difference in terms of reducing the severity of late blight disease and improving potato tuber yield. The lowered severity of late blight disease and the increased tuber yield in potato plants sprayed with calcium nutrients may be because of the higher accumulation of calcium in the plant tissue.

  19. Identification of Differentially Expressed miRNAs in Colorado Potato Beetles (Leptinotarsa decemlineata (Say)) Exposed to Imidacloprid.

    Science.gov (United States)

    Morin, Mathieu D; Lyons, Pierre J; Crapoulet, Nicolas; Boquel, Sébastien; Morin, Pier Jr

    2017-12-16

    The Colorado potato beetle ( Leptinotarsa decemlineata (Say)) is a significant pest of potato plants that has been controlled for more than two decades by neonicotinoid imidacloprid. L. decemlineata can develop resistance to this agent even though the molecular mechanisms underlying this resistance are not well characterized. MicroRNAs (miRNAs) are short ribonucleic acids that have been linked to response to various insecticides in several insect models. Unfortunately, the information is lacking regarding differentially expressed miRNAs following imidacloprid treatment in L. decemlineata . In this study, next-generation sequencing and quantitative real-time polymerase chain reaction (qRT-PCR) were used to identify modulated miRNAs in imidacloprid-treated versus untreated L. decemlineata . This approach identified 33 differentially expressed miRNAs between the two experimental conditions. Of interest, miR-282 and miR-989, miRNAs previously shown to be modulated by imidacloprid in other insects, and miR-100, a miRNA associated with regulation of cytochrome P450 expression, were significantly modulated in imidacloprid-treated beetles. Overall, this work presents the first report of a miRNA signature associated with imidacloprid exposure in L. decemlineata using a high-throughput approach. It also reveals interesting miRNA candidates that potentially underly imidacloprid response in this insect pest.

  20. Identification of Differentially Expressed miRNAs in Colorado Potato Beetles (Leptinotarsa decemlineata (Say Exposed to Imidacloprid

    Directory of Open Access Journals (Sweden)

    Mathieu D. Morin

    2017-12-01

    Full Text Available The Colorado potato beetle (Leptinotarsa decemlineata (Say is a significant pest of potato plants that has been controlled for more than two decades by neonicotinoid imidacloprid. L. decemlineata can develop resistance to this agent even though the molecular mechanisms underlying this resistance are not well characterized. MicroRNAs (miRNAs are short ribonucleic acids that have been linked to response to various insecticides in several insect models. Unfortunately, the information is lacking regarding differentially expressed miRNAs following imidacloprid treatment in L. decemlineata. In this study, next-generation sequencing and quantitative real-time polymerase chain reaction (qRT-PCR were used to identify modulated miRNAs in imidacloprid-treated versus untreated L. decemlineata. This approach identified 33 differentially expressed miRNAs between the two experimental conditions. Of interest, miR-282 and miR-989, miRNAs previously shown to be modulated by imidacloprid in other insects, and miR-100, a miRNA associated with regulation of cytochrome P450 expression, were significantly modulated in imidacloprid-treated beetles. Overall, this work presents the first report of a miRNA signature associated with imidacloprid exposure in L. decemlineata using a high-throughput approach. It also reveals interesting miRNA candidates that potentially underly imidacloprid response in this insect pest.

  1. Genetic improvement of sweet potato through somatic embyrogenesis and in vitro induction of mutations

    Energy Technology Data Exchange (ETDEWEB)

    Sonnino, A; Thinh, N T; Santangelo, E; Mini, P [Centro Ricerche Energia, ENEA, Rome (Italy)

    1997-07-01

    Mutation breeding is a promising option for the genetic improvement of sweet potato. Callus induction, somatic embryogenesis and plant regeneration was investigated in twenty-two sweet potato varieties of different origin. Plant regeneration was found to depend on the genotype and composition of the induction medium. The regeneration through somatic embryogenesis induced morphological and physiological changes among the regenerated plants. The irradiation with 30 to 50 Gy of meristems before culture on induction medium inhibited somatic embryogenesis. A number of accessions were evaluated in field trials and showed wide differences in yield. (author). 6 refs, 6 tabs.

  2. Genetic improvement of sweet potato through somatic embyrogenesis and in vitro induction of mutations

    International Nuclear Information System (INIS)

    Sonnino, A.; Thinh, N.T.; Santangelo, E.; Mini, P.

    1997-01-01

    Mutation breeding is a promising option for the genetic improvement of sweet potato. Callus induction, somatic embryogenesis and plant regeneration was investigated in twenty-two sweet potato varieties of different origin. Plant regeneration was found to depend on the genotype and composition of the induction medium. The regeneration through somatic embryogenesis induced morphological and physiological changes among the regenerated plants. The irradiation with 30 to 50 Gy of meristems before culture on induction medium inhibited somatic embryogenesis. A number of accessions were evaluated in field trials and showed wide differences in yield. (author). 6 refs, 6 tabs

  3. Overexpression of the IbMYB1 gene in an orange-fleshed sweet potato cultivar produces a dual-pigmented transgenic sweet potato with improved antioxidant activity.

    Science.gov (United States)

    Park, Sung-Chul; Kim, Yun-Hee; Kim, Sun Ha; Jeong, Yu Jeong; Kim, Cha Young; Lee, Joon Seol; Bae, Ji-Yeong; Ahn, Mi-Jeong; Jeong, Jae Cheol; Lee, Haeng-Soon; Kwak, Sang-Soo

    2015-04-01

    The R2R3-type protein IbMYB1 is a key regulator of anthocyanin biosynthesis in the storage roots of sweet potato [Ipomoea batatas (L.) Lam]. Previously, we demonstrated that IbMYB1 expression stimulated anthocyanin pigmentation in tobacco leaves and Arabidopsis. Here, we generated dual-pigmented transgenic sweet potato plants that accumulated high levels of both anthocyanins and carotenoids in a single sweet potato storage root. An orange-fleshed cultivar with high carotenoid levels was transformed with the IbMYB1 gene under the control of either the storage root-specific sporamin 1 (SPO1) promoter or the oxidative stress-inducible peroxidase anionic 2 (SWPA2) promoter. The SPO1-MYB transgenic lines exhibited higher anthocyanin levels in storage roots than empty vector control (EV) or SWPA2-MYB plants, but carotenoid content was unchanged. SWPA2-MYB transgenic lines exhibited higher levels of both anthocyanin and carotenoids than EV plants. Analysis of hydrolyzed anthocyanin extracts indicated that cyanidin and peonidin predominated in both overexpression lines. Quantitative reverse transcription-polymerase chain reaction analysis demonstrated that IbMYB1 expression in both IbMYB1 transgenic lines strongly induced the upregulation of several genes in the anthocyanin biosynthetic pathway, whereas the expression of carotenoid biosynthetic pathway genes varied between transgenic lines. Increased anthocyanin levels in transgenic plants also promoted the elevation of proanthocyanidin and total phenolic levels in fresh storage roots. Consequently, all IbMYB1 transgenic plants displayed much higher antioxidant activities than EV plants. In field cultivations, storage root yields varied between the transgenic lines. Taken together, our results indicate that overexpression of IbMYB1 is a highly promising strategy for the generation of transgenic plants with enhanced antioxidant capacity. © 2014 Scandinavian Plant Physiology Society.

  4. Evaluation of potato germplasm (Population A & B) for resistance to ...

    African Journals Online (AJOL)

    Treatments consisted of germplasm materials introduced from International Potato Centre (CIP) headquarters in Lima, Peru from two populations arranged in a completely randomised block design with three replications. At Loreto, late blight was more severe during the long rains than in the short rains while at Kabete late ...

  5. Effect of Deficit irrigation on the Productivity of Processing Potato

    International Nuclear Information System (INIS)

    Darwish, T.M.; Atallah, T.W.

    2003-01-01

    The area under potatoes in Lebanon has extended to over 15.000 ha to form 17% of irrigated arable land. More farmers rely on processing varieties for prices and marketing reasons. Studies focused so far on irrigation and fertilization of table potatoes. The current recommendations indicate excess N fertilizer input exceeding 600 kg N/ha in the form of compound fertilizers. Potato is irrigated with macro sprinklers with a water input reaching 850 mm/season. Water mismanagement and shortage eventually influence the yield quantity and quality of processing potatoes. Therefore, deficit irrigation is an important water saving tool regarding the increasing pressure on limited water resources in the dry areas. Information on potato response to water stress imposed at different crop stages is available. The aim of this paper is to study the impact of continuous deficit irrigation imposed from the stage of maximum plant development-flowering stage until physiological maturity on the performance of processing potato (Santana) and water and fertilizer use efficiency. Fertilizer placement and irrigation were done through fertigation using drip system. A neutron probe was used to assess water consumption from the soil. The 15 N methodology was used to follow the N recovery as affected by water deficit

  6. Transformation of heat shock protein gene (HspB-C) of helicobacter pylori into sweet potato varieties

    International Nuclear Information System (INIS)

    Wu Jie; Yan Wenzhao; Zhou Yu; Zhang Xuemei

    2010-01-01

    Sweet potato which is one of the most important crops in the world has many advantages as a new bioreactor. Helicobacter pylori, as a kind of cancer-causing factor by the World Health Organization, has a strong immunogenicity, and its monoclonal antibody has bactericidal activity, which has the possibility as the vaccine components. In this research, we have constructed the plant expression vector with heat shock protein gene (HspB-C) of Helicobacter pylori. This vector was transformed by agrobactrium tumefaciens EHA105 into four sweet potato varieties. After callus-induction and re-differentiation, we got the transgenic plants from sweet potato variety of Nancy holl. (authors)

  7. Discovery and characterization of the major late blight resistance complex in potato: genomic structure, functional diversity, and implications

    NARCIS (Netherlands)

    Huang, S.

    2005-01-01

    Potato is the most important non-cereal crop in the world. Late blight, caused by the oomycete pathogen Phytophthora infestans, is the most devastating disease of potato. In the mid-191h century, P. infestans attacked the European potato fields and this resulted in a widespread famine in Ireland.

  8. Selection of maintaining, method for keeping of biologial purity, patternship and health, regarding viruses infection of distinguished potato breeding lines

    Directory of Open Access Journals (Sweden)

    Luiza MIKE

    2008-05-01

    Full Text Available A large number of potato varieties and distinguished breeding lines disappeared as an effect of nonfavourable climatically conditions and especially by viruses diseases, as well as other biological and viruses degeneration. To avoid the negative effect of degeneration on potato varieties and distinguished breeding lines, the method of selection for maintaining and multiplication of potato is applying in Romania in the frame of National Center for Maintaining of potato varieties and distinguished breeding lines Apa Rosie, Covasna County, which belong to the Station for Research and Development of Potato, Targu Secuiesc, Covasna County.In this center are maintained and multiplied all distinguished varieties and breeding centers from Romania (National Institute for research and Development of Potato and Sugar beet Brasov, Research and Development Station for Agriculture Suceava, Research and Development Station for Potato Targu Secuiesc, Research and development Station for Potato Miercurea Ciuc.Using the method of selection for maintaining it is possible an early identification of somatic mutations, disease (especially viruses infection by visual elimination or by serological testing.The viruses’ infection of potato leads to disturbed the metabolism of plants and produces anatomical – morphological alters as: mosaic, crinkle, rolling, browning of leaves and plants deformation.The disturbing of plant metabolism has as negative effect the reduction of vegetation period, decreasing the yield capacity, depreciation of physical and chemical quality of tubers.The genetically complex structure of cultivated potato (2n = 4x = 48 and strong segregation of long – expected characters in the obtained future progeny by sexual hybridization, complicated many times by nonfavourable linkage, are the backgrounds for initiation of maintain selection.

  9. Assessing Changes in Potato Canopy Caused by Late Blight in Organic Production Systems Through Uav-Based Pushbroom Imaging Spectrometer

    Science.gov (United States)

    Franceschini, M. H. D.; Bartholomeus, H.; van Apeldoorn, D.; Suomalainen, J.; Kooistra, L.

    2017-08-01

    Productivity of cropping systems can be constrained simultaneously by different limiting factors and approaches allowing to indicate and identify plants under stress in field conditions can be valuable for farmers and breeders. In organic production systems, sensing solutions are not frequently studied, despite their potential for crop traits retrieval and stress assessment. In this study, spectral data in the optical domain acquired using a pushbroom spectrometer on board of a unmanned aerial vehicle is used to evaluate the potential of this information for assessment of late blight (Phytophthora infestans) incidence on potato (Solanum tuberosum) under organic cultivation. Vegetation indices formulations with two and three spectral bands were tested for the complete range of the spectral information acquired (i.e., from 450 to 900 nm, with 10 nm of spectral resolution). This evaluation concerned the discrimination between plots cultivated with only one resistant potato variety in contrast with plots with a variety mixture, with resistant and susceptible cultivars. Results indicated that indices based on three spectral bands performed better and optimal wavelengths (i.e., near 490, 530 and 670 nm) are not only related to chlorophyll content but also to other leaf pigments like carotenoids.

  10. Transgenic Strategies for Enhancement of Nematode Resistance in Plants

    Directory of Open Access Journals (Sweden)

    Muhammad A. Ali

    2017-05-01

    Full Text Available Plant parasitic nematodes (PPNs are obligate biotrophic parasites causing serious damage and reduction in crop yields. Several economically important genera parasitize various crop plants. The root-knot, root lesion, and cyst nematodes are the three most economically damaging genera of PPNs on crops within the family Heteroderidae. It is very important to devise various management strategies against PPNs in economically important crop plants. Genetic engineering has proven a promising tool for the development of biotic and abiotic stress tolerance in crop plants. Additionally, the genetic engineering leading to transgenic plants harboring nematode resistance genes has demonstrated its significance in the field of plant nematology. Here, we have discussed the use of genetic engineering for the development of nematode resistance in plants. This review article also provides a detailed account of transgenic strategies for the resistance against PPNs. The strategies include natural resistance genes, cloning of proteinase inhibitor coding genes, anti-nematodal proteins and use of RNA interference to suppress nematode effectors. Furthermore, the manipulation of expression levels of genes induced and suppressed by nematodes has also been suggested as an innovative approach for inducing nematode resistance in plants. The information in this article will provide an array of possibilities to engineer resistance against PPNs in different crop plants.

  11. Levels of Intra-specific AFLP Diversity in Tuber-Bearing Potato Species with Different Breeding Systems and Ploidy Levels

    Directory of Open Access Journals (Sweden)

    Glenn J. Bryan

    2017-09-01

    Full Text Available DNA-based marker analysis of plant genebank material has become a useful tool in the evaluation of levels of genetic diversity and for the informed use and maintenance of germplasm. In this study, we quantify levels of amplified fragment length polymorphism (AFLP in representative accessions of wild and cultivated potato species of differing geographic origin, ploidy, and breeding system. We generated 449 polymorphic AFLP fragments in 619 plants, representing multiple plants (16–23 from 17 accessions of 14 potato taxa as well as single plants sampled from available accessions (from 3 to 56 of the same 14 taxa. Intra-accession diversities were compared to those of a synthetic ‘taxon-wide’ population comprising a single individual from a variable number of available accessions of each sampled taxon. Results confirm the expected considerably lower levels of polymorphism within accessions of self-compatible as compared to self-incompatible taxa. We observed broadly similar levels of ‘taxon-wide’ polymorphism among self-compatible and self-incompatible species, with self-compatible taxa showing only slightly lower rates of polymorphism. The most diverse accessions were the two cultivated potato accessions examined, the least diverse being the Mexican allohexaploids Solanum demissum and S. iopetalum. Generally allopolyploid self-compatible accessions exhibited lower levels of diversity. Some purported self-incompatible accessions showed relatively low levels of marker diversity, similar to the more diverse self-compatible material surveyed. Our data indicate that for self-compatible species a single plant is highly representative of a genebank accession. The situation for self-incompatible taxa is less clear, and sampling strategies used will depend on the type of investigation. These results have important implications for those seeking novel trait variation (e.g., disease resistance in gene banks as well as for the selection of individuals

  12. Potassium and calcium nutrition improves potato production in drip ...

    African Journals Online (AJOL)

    The response of Spunta potato (Solanum tuberosum L.) plants to different rates of potassium (60 and 120 kg Fed-1 ) in presence or absence of Ca nutrition was studied. The study was performed in sandy-loam soil under a drip-irrigation system during fall seasons of 1996 and 1997 years. Plants fertilised with high rate of K ...

  13. HRE-type genes are regulated by growth-related changes in internal oxygen concentrations during the normal development of potato (Solanum tuberosum) tubers.

    Science.gov (United States)

    Licausi, Francesco; Giorgi, Federico Manuel; Schmälzlin, Elmar; Usadel, Björn; Perata, Pierdomenico; van Dongen, Joost Thomas; Geigenberger, Peter

    2011-11-01

    The occurrence of hypoxic conditions in plants not only represents a stress condition but is also associated with the normal development and growth of many organs, leading to adaptive changes in metabolism and growth to prevent internal anoxia. Internal oxygen concentrations decrease inside growing potato tubers, due to their active metabolism and increased resistance to gas diffusion as tubers grow. In the present work, we identified three hypoxia-responsive ERF (StHRE) genes whose expression is regulated by the gradual decrease in oxygen tensions that occur when potato tubers grow larger. Increasing the external oxygen concentration counteracted the modification of StHRE expression during tuber growth, supporting the idea that the actual oxygen levels inside the organs, rather than development itself, are responsible for the regulation of StHRE genes. We identified several sugar metabolism-related genes co-regulated with StHRE genes during tuber development and possibly involved in starch accumulation. All together, our data suggest a possible role for low oxygen in the regulation of sugar metabolism in the potato tuber, similar to what happens in storage tissues during seed development.

  14. Studies regarding the effects of Rosmarinus officinalis oil treatments in healthy and potato virus Y (PVY infected plants Solanum tuberosum L.

    Directory of Open Access Journals (Sweden)

    Carmen Liliana BĂDĂRĂU

    2010-11-01

    Full Text Available The potato virus Y cause loss in yield and quality of tubers. Hydrogen peroxide, ascorbic acid and antioxidants such as rosmarinic acid present in oils extracted from Rosmarinus officinalis plants are implicated in signaling against stress. The effects of these chemicals on tuber yield and pigments content were evaluated in plants testing positive after virus mechanical infection. Without chemical treatment, positive plants showed significant reductions in leaf pigments content and tuber weights compared to uninfected controls. Hydrogen peroxide, ascorbic acid and oil treatments of PVY infected plants significantly reduced the number of minitubers, enhancing their weights, while leaf pigment content also increased. This research demonstrates potential benefits of treatments with oils extracted from Rosmarinus officinalis plants and hydrogen peroxide or ascorbic acid in enhancing the yield and quality of tubers.

  15. evaluation of selected composted organic sources on potato plant grown in sandy soil using nuclear technique

    International Nuclear Information System (INIS)

    Moursy, A.A.A.

    2008-01-01

    the main point of this study is the evaluation of organic compost as a source of nutrient demand by potatoes cultivated in light texture soil under drip irrigation system. the composted materials either applied alone or in combination with mineral fertilizer have an effective role on potato yields and nutrients management under field scale. so, many objectives were achieved. the valuable results obtained in the present study could be summarized as follows: part one: composting experiment contains ph changes of composted materials, EC changes with time, nitrogen content in composted materials, change of c/n ratio with time, organic matter content of the composted materials, phosphorus content in composted materials,. part two: potato field experiment contains .dry matter yield, tuber dry weight, tuber yield, nutrients uptake by potato varieties,. part three contains . application of 15 N isotope dilution technique, nitrogen derived from fertilizer (Ndff), nitrogen derived from organic compost (% Ndf comp),nitrogen derived from soil (% Ndfs), fertilizer use efficiency (% FUE), 15 N recovered by potatoes.

  16. Estimativa da área da folha da batateira utilizando medidas lineares Evaluation of the potato plant leaf area using linear measures

    Directory of Open Access Journals (Sweden)

    Marcelo CC Silva

    2008-03-01

    Full Text Available O objetivo deste experimento foi determinar o modelo mais apropriado para estimar a área da folha da batateira, utilizando-se medidas de comprimento e largura da folha. Foram coletadas 300 folhas de 300 plantas de batata, cultivar Monalisa, de forma aleatória, aos 21 e 56 dias após a emergência (DAE. Em laboratório, foram medidos o comprimento (C, a largura (L e a área de cada folha (AF. Os dados foram submetidos à análise de regressão com o valor da AF sendo considerado a variável dependente e os valores de comprimento e largura de folha as variáveis independentes. Foram testados três modelos estatísticos: linear, exponencial e logarítmico. A AF da batateira foi mais precisamente estimada (R² = 0,88, usando as medidas, L e C (AF = 0,2798**LC + 71,267. Para maior rapidez e praticidade, a AF da batateira, foi também apropriadamente estimada medindo-se apenas L ou C da folha e utilizando-se as equações AF = 0,0479**L + 10,777 (R² = 0,83 ou AF = 0,0659**C + 12,979 (R² = 0,82. A área foliar estimada 21 DAE, utilizando o modelo linear foi de 234,41 cm², sendo que o valor real medido, foi de 185,52 cm². Aos 56 DAE, a área foliar estimada pelo mesmo modelo foi de 175,60 cm², o valor real medido, foi de 176,01 cm². Com um dos modelos propostos, a área da folha pode ser estimada em tempo real, de forma rápida e sem a necessidade de coletar a folha.The objective of this experiment was to determine the most appropriate model to estimate potato leaf area through the leaf length and width. 300 leaves of 300 potato plants, cv. Monalisa were collected in an aleatory way, 21 and 56 days after the plant emergence (DAE. In laboratory, the length (C, width (L and area of each leaf (AF were measured. The data were submitted to the regression analysis with the AF value as a dependent variable and the leaf length and width values as the independent variables. Three statistical models were tested (linear, exponential and logarithmic. Potato

  17. The three-dimensional distribution of minerals in potato tubers

    Science.gov (United States)

    Subramanian, Nithya K.; White, Philip J.; Broadley, Martin R.; Ramsay, Gavin

    2011-01-01

    Background and Aims The three-dimensional distributions of mineral elements in potato tubers provide insight into their mechanisms of transport and deposition. Many of these minerals are essential to a healthy human diet, and characterizing their distribution within the potato tuber will guide the effective utilization of this staple foodstuff. Methods The variation in mineral composition within the tuber was determined in three dimensions, after determining the orientation of the harvested tuber in the soil. The freeze-dried tuber samples were analysed for minerals using inductively coupled plasma-mass spectrometry (ICP-MS). Minerals measured included those of nutritional significance to the plant and to human consumers, such as iron, zinc, copper, calcium, magnesium, manganese, phosphorus, potassium and sulphur. Key Results The concentrations of most minerals were higher in the skin than in the flesh of tubers. The potato skin contained about 17 % of total tuber zinc, 34 % of calcium and 55 % of iron. On a fresh weight basis, most minerals were higher in tuber flesh at the stem end than the bud end of the tuber. Potassium, however, displayed a gradient in the opposite direction. The concentrations of phosphorus, copper and calcium decreased from the periphery towards the centre of the tuber. Conclusions The distribution of minerals varies greatly within the potato tuber. Low concentrations of some minerals relative to those in leaves may be due to their low mobility in phloem, whereas high concentrations in the skin may reflect direct uptake from the soil across the periderm. In tuber flesh, different minerals show distinct patterns of distribution in the tuber, several being consistent with phloem unloading in the tuber and limited onward movement. These findings have implications both for understanding directed transport of minerals in plants to stem-derived storage organs and for the dietary implications of different food preparation methods for potato tubers

  18. Sweepoviruses cause disease in sweet potato and related Ipomoea spp.: fulfilling Koch's postulates for a divergent group in the genus begomovirus.

    Science.gov (United States)

    Trenado, Helena P; Orílio, Anelise F; Márquez-Martín, Belén; Moriones, Enrique; Navas-Castillo, Jesús

    2011-01-01

    Sweet potato (Ipomoea batatas) and related Ipomoea species are frequently infected by monopartite begomoviruses (genus Begomovirus, family Geminiviridae), known as sweepoviruses. Unlike other geminiviruses, the genomes of sweepoviruses have been recalcitrant to rendering infectious clones to date. Thus, Koch's postulates have not been fullfilled for any of the viruses in this group. Three novel species of sweepoviruses have recently been described in Spain: Sweet potato leaf curl Lanzarote virus (SPLCLaV), Sweet potato leaf curl Spain virus (SPLCSV) and Sweet potato leaf curl Canary virus (SPLCCaV). Here we describe the generation of the first infectious clone of an isolate (ES:MAL:BG30:06) of SPLCLaV. The clone consisted of a complete tandem dimeric viral genome in a binary vector. Successful infection by agroinoculation of several species of Ipomoea (including sweet potato) and Nicotiana benthamiana was confirmed by PCR, dot blot and Southern blot hybridization. Symptoms observed in infected plants consisted of leaf curl, yellowing, growth reduction and vein yellowing. Two varieties of sweet potato, 'Beauregard' and 'Promesa', were infected by agroinoculation, and symptoms of leaf curl and interveinal loss of purple colouration were observed, respectively. The virus present in agroinfected plants was readily transmitted by the whitefly Bemisia tabaci to I. setosa plants. The progeny virus population present in agroinfected I. setosa and sweet potato plants was isolated and identity to the original isolate was confirmed by sequencing. Therefore, Koch's postulates were fulfilled for the first time for a sweepovirus.

  19. Sweepoviruses cause disease in sweet potato and related Ipomoea spp.: fulfilling Koch's postulates for a divergent group in the genus begomovirus.

    Directory of Open Access Journals (Sweden)

    Helena P Trenado

    Full Text Available Sweet potato (Ipomoea batatas and related Ipomoea species are frequently infected by monopartite begomoviruses (genus Begomovirus, family Geminiviridae, known as sweepoviruses. Unlike other geminiviruses, the genomes of sweepoviruses have been recalcitrant to rendering infectious clones to date. Thus, Koch's postulates have not been fullfilled for any of the viruses in this group. Three novel species of sweepoviruses have recently been described in Spain: Sweet potato leaf curl Lanzarote virus (SPLCLaV, Sweet potato leaf curl Spain virus (SPLCSV and Sweet potato leaf curl Canary virus (SPLCCaV. Here we describe the generation of the first infectious clone of an isolate (ES:MAL:BG30:06 of SPLCLaV. The clone consisted of a complete tandem dimeric viral genome in a binary vector. Successful infection by agroinoculation of several species of Ipomoea (including sweet potato and Nicotiana benthamiana was confirmed by PCR, dot blot and Southern blot hybridization. Symptoms observed in infected plants consisted of leaf curl, yellowing, growth reduction and vein yellowing. Two varieties of sweet potato, 'Beauregard' and 'Promesa', were infected by agroinoculation, and symptoms of leaf curl and interveinal loss of purple colouration were observed, respectively. The virus present in agroinfected plants was readily transmitted by the whitefly Bemisia tabaci to I. setosa plants. The progeny virus population present in agroinfected I. setosa and sweet potato plants was isolated and identity to the original isolate was confirmed by sequencing. Therefore, Koch's postulates were fulfilled for the first time for a sweepovirus.

  20. Potato carrot agar with manganese as an isolation medium for Alternaria, Epicoccum and Phoma

    DEFF Research Database (Denmark)

    Sørensen, Jens Laurids; Mogensen, Jesper Mølgaard; Thrane, Ulf

    2009-01-01

    A semi-selective medium for isolation of Alternaria spp., Epicoccum sp. and Phoma spp. from soil and plant samples was developed. The basal medium was a modified potato carrot agar (PCA), containing 10 g/L of potato and carrot. It is known that the target genera sporulate well on standard PCA when...

  1. Protein profiling in potato (Solanum tuberosum L.) leaf tissues by differential centrifugation.

    Science.gov (United States)

    Lim, Sanghyun; Chisholm, Kenneth; Coffin, Robert H; Peters, Rick D; Al-Mughrabi, Khalil I; Wang-Pruski, Gefu; Pinto, Devanand M

    2012-04-06

    Foliar diseases, such as late blight, result in serious threats to potato production. As such, potato leaf tissue becomes an important substrate to study biological processes, such as plant defense responses to infection. Nonetheless, the potato leaf proteome remains poorly characterized. Here, we report protein profiling of potato leaf tissues using a modified differential centrifugation approach to separate the leaf tissues into cell wall and cytoplasmic fractions. This method helps to increase the number of identified proteins, including targeted putative cell wall proteins. The method allowed for the identification of 1484 nonredundant potato leaf proteins, of which 364 and 447 were reproducibly identified proteins in the cell wall and cytoplasmic fractions, respectively. Reproducibly identified proteins corresponded to over 70% of proteins identified in each replicate. A diverse range of proteins was identified based on their theoretical pI values, molecular masses, functional classification, and biological processes. Such a protein extraction method is effective for the establishment of a highly qualified proteome profile.

  2. 7 CFR 1207.306 - Potatoes.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Potatoes. 1207.306 Section 1207.306 Agriculture... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE POTATO RESEARCH AND PROMOTION PLAN Potato Research and Promotion Plan Definitions § 1207.306 Potatoes. Potatoes means any or all varieties...

  3. 7 CFR 946.5 - Potatoes.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Potatoes. 946.5 Section 946.5 Agriculture Regulations... Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE IRISH POTATOES GROWN IN WASHINGTON Order Regulating Handling Definitions § 946.5 Potatoes. Potatoes means all varieties of Irish potatoes grown within...

  4. 7 CFR 953.5 - Potatoes.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Potatoes. 953.5 Section 953.5 Agriculture Regulations... Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE IRISH POTATOES GROWN IN SOUTHEASTERN STATES Order Regulating Handling Definitions § 953.5 Potatoes. Potatoes means all varieties of Irish potatoes...

  5. 7 CFR 948.5 - Potatoes.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Potatoes. 948.5 Section 948.5 Agriculture Regulations... Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE IRISH POTATOES GROWN IN COLORADO Order Regulating Handling Definitions § 948.5 Potatoes. Potatoes means and includes all varieties of Irish potatoes...

  6. Carbohydrates and gibberellins relationship in potato tuberization

    Czech Academy of Sciences Publication Activity Database

    Ševčíková, H.; Mašková, P.; Tarkowská, Danuše; Mašek, T.; Lipavská, H.

    2017-01-01

    Roč. 214, JUL (2017), s. 53-63 ISSN 0176-1617 R&D Projects: GA ČR GA14-34792S Institutional support: RVO:61389030 Keywords : Carbohydrate distribution * Gibberellin * Photoautotrophic cultivation * Potato * Tuberization Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Plant sciences, botany Impact factor: 3.121, year: 2016

  7. Genetic variability, correlation and path analysis of yield contributing characters in sweet potato (ipomoea batatas lam.)

    International Nuclear Information System (INIS)

    Hossain, M.D.; Rabbani, M.G.; Mollah, M.L.R.

    2000-01-01

    Evaluation of 30 sweet potato (Ipomoea batatas Lam.) genotypes for yield contributing characters and tuber yield per plant revealed high phenotypic and genotypic coefficient of variation (PCV and GCV, respectively) for number of tubers per plant, average tuber weight and tuber yield per plant. The heritability and genetic advance were higher for tuber yield per plant, average tuber weight and number of tubers per plant. These three characters also reflected high heritability as well as high genetic advance. As high positive significant correlation, as well as positive direct effect of average tuber weight and number of tubers per plant on tuber yield per plant were found, these characters should be given prime importance for selecting high yielding sweet potato genotypes. (author)

  8. Vitamins for enhancing plant resistance.

    Science.gov (United States)

    Boubakri, Hatem; Gargouri, Mahmoud; Mliki, Ahmed; Brini, Faiçal; Chong, Julie; Jbara, Moez

    2016-09-01

    This paper provides an overview on vitamins with inducing activities in plants, the molecular and cellular mechanisms implicated, and the hormonal signalling-network regulating this process. Moreover, it reports how vitamins might be part of the molecular events linked to induced resistance by the conventional elicitors. Induced resistance (IR), exploiting the plant innate-defense system is a sustainable strategy for plant disease control. In the last decade, vitamins have been proven to act as inducers of disease resistance, and these findings have received an important attention owing to their safety and cost effectiveness. Vitamins, including thiamine (TH, vitamin B1), riboflavin (RF, vitamin B2), menadione sodium bisulfite (MSB, vitamin K3), Para-aminobenzoic acid (PABA, vitamin Bx), and folic acid (FA, vitamin B9) provided an efficient protection against a wide range of pathogens through the modulation of specific host-defense facets. However, other vitamins, such as ascorbic acid (AA, vitamin C) and tocopherols (vitamin E), have been shown to be a part of the molecular mechanisms associated to IR. The present review is the first to summarize what vitamins are acting as inducers of disease resistance in plants and how could they be modulated by the conventional elicitors. Thus, this report provides an overview on the protective abilities of vitamins and the molecular and cellular mechanisms underlying their activities. Moreover, it describes the hormonal-signalling network regulating vitamin-signal transduction during IR. Finally, a biochemical model describing how vitamins are involved in the establishment of IR process is discussed.

  9. Evaluation of Some Plant Extracts and Gamma Radiation for Controlling Potato Tuber Moth, Phthorimea operculella (Zeller)

    International Nuclear Information System (INIS)

    Ghally, S.E.; Abdel Kawy, F.K; Abd-alla, M.S; Mohamed, S.A.

    2005-01-01

    In This work two plant species: fruits of chinaberry, Melia azedarach and leaves of Duranta plumieri were chosen to study the efficiency of these plant extracts with concentrations from 2 to 6 % (w/v) for the first and from 15 to 25% (w/v) for the second with joint action of gamma radiation at 200 Gy in controlling potato tuber moth Ph. operculella. It was noticed that, the solved used have no effect on the larval development. Percent pupation was adversely affected by increasing the concentration of plant extracts. Also the reduction in adult emergence was increased with increasing treatments used. The gradual increase in susceptibility of insect larvae to plant extract was noticed as the dose of gamma irradiation applied. The sex ratio of the resulting adults was not affected at all concentrations used. Duranta extracts have a slight effects on all the stages of Ph. operculella. Percent pupation was 19.54% with Melia fruits extract at concentration 5%, while it was 45.05% with Duranta leaves extract at 15% concentration. Finally Duranta extract had a little toxicity against Ph. operculella comparing with another extract

  10. Phosphorylation and proteome dynamics in pathogen-resistant tomato plants

    OpenAIRE

    Stulemeijer, I.J.E.

    2008-01-01

    Microbial plant pathogens impose a continuous threat on global food production. Similar to disease resistance in mammals, an innate immune system allows plants to recognise pathogens and swiftly activate defence. For the work described in this thesis, the interaction between tomato and the extracellular fungal pathogen Cladosporium fulvum serves as a model system to study host resistance and susceptibility in plant-pathogen interactions. Resistance to C. fulvum in tomato plants follows the ge...

  11. 7 CFR 947.5 - Potatoes.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Potatoes. 947.5 Section 947.5 Agriculture Regulations... Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE IRISH POTATOES GROWN IN MODOC AND SISKIYOU... Definitions § 947.5 Potatoes. Potatoes means all varieties of Irish potatoes grown within the aforesaid...

  12. Development of technique on the induction and selection of in vitro mutant lines(Potato, Solanum tuberosum L.)

    International Nuclear Information System (INIS)

    Hong, Joo Bong; Lee, Young Il; Song, Hee Sup; Kim, Jae Sung; Byun, Myung Woo; Lee, Young Keun; Shin, In Chul; Lee, Sang Jae; Lee, Ki Woon; Lim, Yong Taek

    1992-08-01

    The radiosensitivity and salt resistance on the single cell and callus of potato, mass production method of plantlet and microtuber of potato by in vitro culture and microtuber formation from the stem irradiated with radiation were investigated to obtain a optimum condition for selection of mutant cell line. (Author)

  13. Improving potato production for increased food security of ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    collecting new potato clones but these have to be tested for nutritional and processing qualities, as well as yield and resistance to late blight and other diseases. There is also a need among farmers to adopt more environmentally sound agricultural and post-harvest practices, such as applying compost to reduce chemical ...

  14. Improvement of potato tolerance to salinity using tissue culture techniques and irradiation with in vitro selection

    International Nuclear Information System (INIS)

    Al-Safadi, B.; Arabi, M. I. E.

    2006-01-01

    A mutation breeding program was conducted to improve potato (Solanum tuberosum) tolerance to salinity. In vitro cultured explants from potato cvs. Draga, Diamant, Spunta were irradiated with gamma doses 25, 30, and 35 Gy. Mutants were isolated to get rid of chimeral tissues and subsequently propagated for in vitro and pot selection pressure. Cultivar Sponta produced the highest number of tolerant plants (4) and only one plant was obtained from Diamant. (authors)

  15. Reevaluating the conceptual framework for applied research on host-plant resistance.

    Science.gov (United States)

    Stout, Michael J

    2013-06-01

    Applied research on host-plant resistance to arthropod pests has been guided over the past 60 years by a framework originally developed by Reginald Painter in his 1951 book, Insect Resistance in Crop Plants. Painter divided the "phenomena" of resistance into three "mechanisms," nonpreference (later renamed antixenosis), antibiosis, and tolerance. The weaknesses of this framework are discussed. In particular, this trichotomous framework does not encompass all known mechanisms of resistance, and the antixenosis and antibiosis categories are ambiguous and inseparable in practice. These features have perhaps led to a simplistic approach to understanding arthropod resistance in crop plants. A dichotomous scheme is proposed as a replacement, with a major division between resistance (plant traits that limit injury to the plant) and tolerance (plant traits that reduce amount of yield loss per unit injury), and the resistance category subdivided into constitutive/inducible and direct/indirect subcategories. The most important benefits of adopting this dichotomous scheme are to more closely align the basic and applied literatures on plant resistance and to encourage a more mechanistic approach to studying plant resistance in crop plants. A more mechanistic approach will be needed to develop novel approaches for integrating plant resistance into pest management programs. © 2012 Institute of Zoology, Chinese Academy of Sciences.

  16. Potato seed dressing with Pseudomonas aeruginosa strain RZ9 enhances yield and reduces black scurf

    Directory of Open Access Journals (Sweden)

    Moncef MRABET

    2015-09-01

    Full Text Available A rhizospheric strain RZ9 of Pseudomonas aeruginosa was assessed for in-vitro growth inhibition of Rhizoctonia solani and effectiveness to control black scurf on potatoes (Solanum tuberosum L. of the cultivars Spunta and Nicola, in greenhouse and field experiments. The strain RZ9 inhibited R. solani mycelial growth by more than 60% and completely inhibited the germination of sclerotia from infested potato tubers in in-vitro tests. In greenhouse assays, seed potato treatment with RZ9 cell suspension increased stem length, decreased the relative weight of infected potato tubers (by 67%, and increased the potato yield (by 16% compared to pathogen-inoculated plants for both potato cultivars. In field trials conducted on sandy soils during 2012 and 2013, strain RZ9 reduced black scurf incidence and increased potato yield by an average of 5.3 t ha-1 for ′Spunta′ and 5 t ha-1 for ′Nicola′. This study showed that the selected strain of P. aeruginosa is an efficient bacterium for enhancing yield and reducing black scurf of field-grown potatoes.

  17. Regeneration of multiple shoots from transgenic potato events facilitates the recovery of phenotypically normal lines: assessing a cry9Aa2 gene conferring insect resistance

    Directory of Open Access Journals (Sweden)

    Jacobs Jeanne ME

    2011-10-01

    Full Text Available Abstract Background The recovery of high performing transgenic lines in clonal crops is limited by the occurrence of somaclonal variation during the tissue culture phase of transformation. This is usually circumvented by developing large populations of transgenic lines, each derived from the first shoot to regenerate from each transformation event. This study investigates a new strategy of assessing multiple shoots independently regenerated from different transformed cell colonies of potato (Solanum tuberosum L.. Results A modified cry9Aa2 gene, under the transcriptional control of the CaMV 35S promoter, was transformed into four potato cultivars using Agrobacterium-mediated gene transfer using a nptII gene conferring kanamycin resistance as a selectable marker gene. Following gene transfer, 291 transgenic lines were grown in greenhouse experiments to assess somaclonal variation and resistance to potato tuber moth (PTM, Phthorimaea operculella (Zeller. Independently regenerated lines were recovered from many transformed cell colonies and Southern analysis confirmed whether they were derived from the same transformed cell. Multiple lines regenerated from the same transformed cell exhibited a similar response to PTM, but frequently exhibited a markedly different spectrum of somaclonal variation. Conclusions A new strategy for the genetic improvement of clonal crops involves the regeneration and evaluation of multiple shoots from each transformation event to facilitate the recovery of phenotypically normal transgenic lines. Most importantly, regenerated lines exhibiting the phenotypic appearance most similar to the parental cultivar are not necessarily derived from the first shoot regenerated from a transformed cell colony, but can frequently be a later regeneration event.

  18. Effect of an alternate weed host, hairy nightshade, Solanum sarrachoides, on the biology of the two most important potato leafroll virus (Luteoviridae: Polerovirus) vectors, Myzus persicae and Macrosiphum euphorbiae (Aphididae: Homoptera).

    Science.gov (United States)

    Srinivasan, Rajagopalbabu; Alvarez, Juan M; Bosque-Pérez, Nilsa A; Eigenbrode, Sanford D; Novy, Richard G

    2008-04-01

    Hairy nightshade, Solanum sarrachoides (Sendtner), is a ubiquitous weed in potato agro-ecosystems and nonagricultural lands of southeastern Idaho and the Pacific Northwest. This weed increases the complexity of the Potato leafroll virus (PLRV) (Luteoviridae: Polervirus)-potato pathosystem by serving as aphid and virus reservoir. Previous field studies showed higher densities of green peach aphid, Myzus persicae (Sulzer), and potato aphid, Macrosiphum euphorbiae (Thomas), the two most important vectors of PLRV, on S. sarrachoides compared with potato plants in the same fields. Some of the S. sarrachoides plants sampled in these surveys tested positive for PLRV. Viral infections can alter the physiology of plant hosts and aphid performance on such plants. To understand better the potential effects of S. sarrachoides on the PLRV-potato-aphid pathosystem, the life histories of M. persicae and M. euphorbiae were compared on virus-free and PLRV-infected S. sarrachoides and potato. Individual nymphs of each aphid species were held in clip cages on plants from each treatment to monitor their development, survival, and reproductive output. Nymphal survival for both aphids across plant species was higher on S. sarrachoides than on potato, and, within plant species, it was higher on PLRV-infected plants than on noninfected plants. With a few exceptions, similar patterns occurred for fecundity, reproductive periods, adult longevity, and intrinsic rate of increase. The enhanced performance of aphids on S. sarrachoides and on PLRV-infected plants could alter the vector population dynamics and thus the PLRV-disease epidemiology in fields infested with this weed.

  19. Evaluation of Indigenous Potato Challisha (Solanum tuberosum L. Cv. Challisha Somaclonals Tolerance to Salinity In Vitro

    Directory of Open Access Journals (Sweden)

    Md. Sanaullah Biswas

    2017-04-01

    Full Text Available Potato is one of the most important food crops in the world. It is generally sensitive to salinity and likes to grow in neutral soil. On the other hand, salinity is increasing alarmingly in the ever changing climatic conditions. Thus, the selection of salt tolerant potato cultivars is necessary to keep pace the production of potato. To select salt tolerant cultivars, here we attempt to compare the salinity level between indigenous and modern cultivars. In vitro selection of local and modern potato cultivars were investigated with five levels of NaCl (0, 30, 60, 90 and 120 mM. The indigenous potato Challisha and modern cultivars Diamant and Felsina were used as plant materials. Significant differences were noticed among the cultivars in response to different levels of NaCl. Plant growth and root development were gradually reduced with increased concentration of NaCl. All three cultivars were survived well with exhibiting different growth status up to 60 mM NaCl, but they performed poorly at 120 mM of NaCl. Cultivar Challisha performed better regarding shoot length, root length, the number of nodes per plantlet and the fresh weight per plant up to 90 mM of NaCl. Thus, we can conclude that local indigenous variety Challisha is salt tolerant comparing with the modern cultivated varieties.

  20. Use of organic waste as biofumigant for controlling root knot nematodes (Meloidogyne spp.) on potato

    Science.gov (United States)

    Sari, D. I. P.; Lisnawita; Oemry, S.; Safni, I.; Lubis, K.; Tantawi, A. R.

    2018-02-01

    Root knot nematode (Meloidogyne spp.) is one of the important pathogens that causes big impact on potato crop yields. One of the control strategies for controlling this nematode is the use of biofumigants. Biofumigants are volatile toxic compound derived from plants, and have biocide properties against insects and plant pathogens. Organic waste such as Brassicaceae, Leguminoceae, and Solanaceae can be used as biofumigant sources. This research was conducted to determine the effectiveness of Brassicaceae, Leguminoceae, and Solanaceae as biofumigants against Meloidogyne spp. The experiment was set in a completely randomized design (CRD) with the treatments were organic wastes including Brassicaceae, Leguminoceae, and Solanaceae, both single and combinations, and 2 controls (positive and negative controls) with 3 replications. Each of the biofumigant treatments was prepared and stored for 2 weeks. Potato tubers were transplanted 15 days after germination into polybag inoculated with 1,000 Meloidogyne spp. J2s. The results showed that Brassicaceae + Solanaceae were effective in decreasing the number of galls in potato plants, however only Solanaceae improved plant growth.

  1. Rhizosphere bacteria affected by transgenic potatoes with antibacterial activities compared with the effects of soil, wild-type potatoes, vegetation stage and pathogen exposure

    NARCIS (Netherlands)

    Rasche, F; Hodl, [No Value; Poll, C; Kandeler, E; Gerzabek, MH; van Elsas, JD; Sessitsch, A

    A greenhouse experiment was performed to analyze a potential effect of genetically modified potatoes expressing antibacterial compounds (attacin/cecropin, T4 lysozyme) and their nearly isogenic, nontransformed parental wild types on rhizosphere bacterial communities. To compare plant

  2. Technical Efficiency of Potato and Dairy Farming in Mountainous Kazbegi District, Georgia

    OpenAIRE

    Shavgulidze, R.; Bedoshvili, D.; Aurbacher, J.

    2017-01-01

    The study employs a stochastic frontier analysis to assess technical efficiency of potato and cheese production and determine socio-economic factors that influence farmers' technical efficiency levels in mountainous Kazbegi district of Georgia. The study found improved feeding to be inversely related with technical inefficiency in cheese production. In potato production, the analysis revealed implementation of the plant protection measures and use of quality seeds to be significant aspects th...

  3. HOST PLANT PREFERENCES OF BEMISIA TABACI GENNADIUS

    Institute of Scientific and Technical Information of China (English)

    JINGYing; HUANGJian; MARui-yan; HANJu-cai

    2003-01-01

    The preferences of Bemisia tabaci Gennadius for five host plants:poinsettia, tomato, cabbage,sweet potato and flowering Chinese cabbage, was tested using a Y-tube olfactometer and a desiccator in the labo-ratory. The results show that B. tabaci adults were attracted by the odors of the five plants. The order of prefer-ence was poinsettia > flowering Chinese cabbage > sweet potato > cabbage > tomato. Preference was extremely sig-nificant between poinsettia and the other four plants, and between flowering Chinese cabbage, cabbage and toma-to. There was no significant difference in preference for flowering Chinese cabbage and sweet potato, sweet pota-to, cabbage and tomato or between cabbage and tomato.

  4. Structural and functional diversity of CLAVATA3/ESR (CLE)-like genes from the potato cyst nematode Globodera rostochiensis.

    Science.gov (United States)

    Lu, Shun-Wen; Chen, Shiyan; Wang, Jianying; Yu, Hang; Chronis, Demosthenis; Mitchum, Melissa G; Wang, Xiaohong

    2009-09-01

    Plant CLAVATA3/ESR-related (CLE) peptides have diverse roles in plant growth and development. Here, we report the isolation and functional characterization of five new CLE genes from the potato cyst nematode Globodera rostochiensis. Unlike typical plant CLE peptides that contain a single CLE motif, four of the five Gr-CLE genes encode CLE proteins with multiple CLE motifs. These Gr-CLE genes were found to be specifically expressed within the dorsal esophageal gland cell of nematode parasitic stages, suggesting a role for their encoded proteins in plant parasitism. Overexpression phenotypes of Gr-CLE genes in Arabidopsis mimicked those of plant CLE genes, and Gr-CLE proteins could rescue the Arabidopsis clv3-2 mutant phenotype when expressed within meristems. A short root phenotype was observed when synthetic GrCLE peptides were exogenously applied to roots of Arabidopsis or potato similar to the overexpression of Gr-CLE genes in Arabidopsis and potato hairy roots. These results reveal that G. rostochiensis CLE proteins with either single or multiple CLE motifs function similarly to plant CLE proteins and that CLE signaling components are conserved in both Arabidopsis and potato roots. Furthermore, our results provide evidence to suggest that the evolution of multiple CLE motifs may be an important mechanism for generating functional diversity in nematode CLE proteins to facilitate parasitism.

  5. The effect of biological and chemical control agents on the health status of the very early potato cultivar Rosara

    Directory of Open Access Journals (Sweden)

    Cwalina-Ambroziak Bożena

    2015-12-01

    Full Text Available The external appearance and quality of table potatoes are determined, among other factors, by the health status of the plants during the growing season. Chemical control methods are often combined with biocontrol agents to effectively fight potato pathogens. Potatoes of the very early cultivar Rosara were grown in experimental plots. The plots were located in Tomaszkowo (NE Poland, 2007-2009. The experiment involved the following treatments: 1 biological control − mycorrhizal Glomus spp. inoculum was applied to the roots, − tubers were dressed and plants were sprayed with Polyversum three times during the growing season, 2 chemical control - at two-week intervals, plants were sprayed with the following fungicides: Infinito 687.5 SC and Tanos 50 WG, Valbon 72 WG and Tanos 50 WG. In the control treatment, potato plants were not protected against pathogens. During the growing season, the severity of late blight and early blight was evaluated on a nine-point scale. The composition of fungal communities colonising potato stems was analysed. The fungistatic properties of the fungicides used in the field experiment were evaluated in an in vitro test. The symptoms of infections caused by Phytophthora infestans and Alternaria spp. were significantly reduced in the treatment which used the integrated chemical and biological control. The least diverse fungal community was isolated from fungicide-treated plants. In the in vitro test, fungicides at all analysed concentrations inhibited the linear mycelial growth of selected pathogens.

  6. Ralstonia solanacearum – a New Threat to Potato Production in Serbia

    Directory of Open Access Journals (Sweden)

    Svetlana Milijašević-Marčić

    2013-12-01

    Full Text Available A survey of ware potatoes (a total of 1127 samples from localities in Serbia during two consecutive years resulted in detection and identification of R. solanacearum in 17 tuber samples. The monitoring detected the causal agent of bacterial wilt and brown rot of potato in three districts of Vojvodina province. In 2011, the infection by R. solanacearum was confirmed in 7 samples of ware potato tubers (varieties – Saturna, Pirol, Hermes, Panda in West Bačka and South Bačka Districts. In 2012, the infection by R. solanacearum was confirmed in 10 potato tuber samples (Lady Claire, Desiree, Panda, Red Fantasy and Vineta varieties from two districts: South Bačka and Central Banat. Bacterial strains obtained from positive samples were identified as R. solanacearum biovar 2 using PCR/RFLP analysis, pathogenicity test on tomato transplants, and nutritional, enzymatic and biovar determination tests. To our best knowledge, these are the only findings of R. solanacearum infection in ware potatoes in Serbia. R. solanacearum was not detected in tomato or any other host plant tested in this study. Furthermore, the bacterium was not found in any of the water samples tested, including those originating from areas in which the bacterium was found in ware potato samples.

  7. Frost resistance in alpine woody plants.

    Science.gov (United States)

    Neuner, Gilbert

    2014-01-01

    This report provides a brief review of key findings related to frost resistance in alpine woody plant species, summarizes data on their frost resistance, highlights the importance of freeze avoidance mechanisms, and indicates areas of future research. Freezing temperatures are possible throughout the whole growing period in the alpine life zone. Frost severity, comprised of both intensity and duration, becomes greater with increasing elevation and, there is also a greater probability, that small statured woody plants, may be insulated by snow cover. Several frost survival mechanisms have evolved in woody alpine plants in response to these environmental conditions. Examples of tolerance to extracellular freezing and freeze dehydration, life cycles that allow species to escape frost, and freeze avoidance mechanisms can all be found. Despite their specific adaption to the alpine environment, frost damage can occur in spring, while all alpine woody plants have a low risk of frost damage in winter. Experimental evidence indicates that premature deacclimation in Pinus cembra in the spring, and a limited ability of many species of alpine woody shrubs to rapidly reacclimate when they lose snow cover, resulting in reduced levels of frost resistance in the spring, may be particularly critical under the projected changes in climate. In this review, frost resistance and specific frost survival mechanisms of different organs (leaves, stems, vegetative and reproductive over-wintering buds, flowers, and fruits) and tissues are compared. The seasonal dynamics of frost resistance of leaves of trees, as opposed to woody shrubs, is also discussed. The ability of some tissues and organs to avoid freezing by supercooling, as visualized by high resolution infrared thermography, are also provided. Collectively, the report provides a review of the complex and diverse ways that woody plants survive in the frost dominated environment of the alpine life zone.

  8. Frost resistance of alpine woody plants

    Directory of Open Access Journals (Sweden)

    Gilbert eNeuner

    2014-12-01

    Full Text Available This report provides a brief review of key findings related to frost resistance in alpine woody plant species, summarizes data on their frost resistance, highlights the importance of freeze avoidance mechanisms, and indicates areas of future research.Freezing temperatures are possible throughout the whole growing period in the alpine life zone. Frost severity, comprised of both intensity and duration, becomes greater with increasing elevation and, there is also a greater probability, that small statured woody plants, may be insulated by snow cover.Several frost survival mechanisms have evolved in woody alpine plants in response to these environmental conditions. Examples of tolerance to extracellular freezing and freeze dehydration, life cycles that allow species to escape frost, and freeze avoidance mechanisms can all be found. Despite their specific adaption to the alpine environment, frost damage can occur in spring, while all alpine woody plants have a low risk of frost damage in winter. Experimental evidence indicates that premature deacclimation in Pinus cembra in the spring, and a limited ability of many species of alpine woody shrubs to rapidly reacclimate when they lose snow cover, resulting in reduced levels of frost resistance in the spring, may be particularly critical under the projected changes in climate.In this review, frost resistance and specific frost survival mechanisms of different organs (leaves, stems, vegetative and reproductive over-wintering buds, flowers and fruits and tissues are compared. The seasonal dynamics of frost resistance of leaves of trees, as opposed to woody shrubs, is also discussed. The ability of some tissues and organs to avoid freezing by supercooling, as visualized by high resolution infrared thermography, are also provided. Collectively, the report provides a review of the complex and diverse ways that woody plants survive in the frost dominated environment of the alpine life zone.

  9. Absorption of nutrients in the MNF-80 potato crop

    International Nuclear Information System (INIS)

    Cabalceta, Gilberto; Alvarado, Alfredo; Saldias, Miren

    2005-01-01

    Absorption curves of nutrients of MNF-80 potato variety cycle were determined at the Irazu (3000 masl) and Juan Vinas (1500 masl) sites, planted on Andisols of medium fertility status. Tissue samples were taken every 15 days after planting; separated into aerial biomass, tuber and root, to estimate dry weight and nutrient contents. At Juan Vinas the crop matured after 80-90 days, contrasting with 135 days at Irazu, due to temperature, total radiation, and growth rate reductions at the higher elevation. Higher amounts of absorbed K and N in both farms (>100 kg ha -1 ) were followed by smaller amounts of P, Ca, Mg y S (8-20 kg ha -1 ). At the Irazu site, the potato yielded 36 t ha -1 , and absorbed 110, 15, 166, 12, 10 and 11 kg ha -1 on N, P, K, Ca, Mg and S, respectively. Also, 904, 68, 162, 317 and 42 g ha -1 of Fe, Cu, Zn, Mn and B, respectively. At the Juan Vinas site, the potato yielded 28 t ha -1 , and absorbed 133, 8, 173, 22, 10 and 10 Kg ha -1 of N, P, K, Ca, Mg and S, respectively. Also, 1097, 68, 181, 651 and 84 g ha -1 of Fe, Cu, Zn, Mn and B, respectively. At the Irazu site most of N, P, K, Ca, Mg and S were absorbed up to 60 days after planting, and except for Ca, the other elements showed a second peak of absorption at the end of the crop cycle. At the Juan Vinas site only one peak of absorption was observed up to 45 days after planting. (author) [es

  10. Agronomic assessment of some sweet potato varieties for ...

    African Journals Online (AJOL)

    Field experiments were conducted at the National Root Crops Research Institute sub-station, Otobi, in 2006 and 2007 to assess the suitability of improved sweet potato varieties for intercropping with pigeonpea and also to determine the planting pattern and the productivity of the intercropping system. Intercropping ...

  11. An accelerated soil bait assay for the detection of potato mop top virus in agricultural soil.

    Science.gov (United States)

    Davey, Triona

    2009-01-01

    An accelerated soil bait test can be used to determine whether a field harbours virus-carrying Spongospora subterranea. S. subterranea is the causal agent of powdery scab and also the only vector of potato mop top virus (PMTV). Real-time RT-PCR can detect PMTV RNA in the roots of bait plants after 2 weeks of growth in viruliferous soil. This test may be used to assess the risk of planting potato crops in a particular field.

  12. Field efficacy of nonpathogenic Streptomyces species against potato common scab

    Science.gov (United States)

    Reports of potato fields suppressive to common scab (CS) and of association of non-pathogenic streptomycetes with CS resistance suggest that non-pathogenic strains have potential to control or modulate CS disease. Biocontrol potential of non-pathogenic Streptomyces was examined in field experiments ...

  13. Development of the system nematode, Ditylenchus Dipsaci (Kuehn) Filipjev, and the potato tuber nematode, D. Destructor thore, after gamma irradiation

    International Nuclear Information System (INIS)

    Ignatowicz, S.; Karnkowski, W.

    1996-01-01

    Juvenile and adult nematodes emerged from onion and garlic samples on the 3 rd week after irradiation with doses up to 0.5 kGy and from potato treated with doses up to 2.0 kGy. However, irradiation of onion infected with Ditylenchus dipsaci caused the inhibition of the development and growth of juvenile nematodes to mature forms. Doses of gamma radiation ranging from 0.1 to 0.5 kGy had only a slight effect, if any, on the development and growth of D. dipsaci nematodes infecting garlic, but they increased juvenile mortality. Gamma radiation at doses up to 2.0 kGy induced increased mortality of nematode juveniles of the potato tuber nematode, D. destructor but less so inhibited their development to mature forms. Nematodes were found to be resistant to irradiation treatment. Therefore the use of gamma irradiation for nematode disinfestation of agricultural products seems to be impractical, if the aim of the treatment is to kill these pests within a few weeks. The level of radiation required to kill nematodes in infected plants would damage plant tissues so that the further storage of vegetables will be impossible. (author). 22 refs, 3 figs, 2 tabs

  14. Electroantennogram responses of the potato tuber moth ...

    Indian Academy of Sciences (India)

    PRAKASH

    lay eggs in soil cracks and on exposed tubers (Radcliffe ... Compounds belonging to the fatty acid derivatives class appear to be important for an oligophagous pest such as the potato tuber moth and the findings are discussed in relation to host plant selection in ..... specific adaptation of the set of olfactory receptors on the.

  15. Molecular and physiological properties associated with zebra complex disease in potatoes and its relation with Candidatus Liberibacter contents in psyllid vectors.

    Directory of Open Access Journals (Sweden)

    Veria Y Alvarado

    Full Text Available Zebra complex (ZC disease on potatoes is associated with Candidatus Liberibacter solanacearum (CLs, an α-proteobacterium that resides in the plant phloem and is transmitted by the potato psyllid Bactericera cockerelli (Šulc. The name ZC originates from the brown striping in fried chips of infected tubers, but the whole plants also exhibit a variety of morphological features and symptoms for which the physiological or molecular basis are not understood. We determined that compared to healthy plants, stems of ZC-plants accumulate starch and more than three-fold total protein, including gene expression regulatory factors (e.g. cyclophilin and tuber storage proteins (e.g., patatins, indicating that ZC-affected stems are reprogrammed to exhibit tuber-like physiological properties. Furthermore, the total phenolic content in ZC potato stems was elevated two-fold, and amounts of polyphenol oxidase enzyme were also high, both serving to explain the ZC-hallmark rapid brown discoloration of air-exposed damaged tissue. Newly developed quantitative and/or conventional PCR demonstrated that the percentage of psyllids in laboratory colonies containing detectable levels of CLs and its titer could fluctuate over time with effects on colony prolificacy, but presumed reproduction-associated primary endosymbiont levels remained stable. Potato plants exposed in the laboratory to psyllid populations with relatively low-CLs content survived while exposure of plants to high-CLs psyllids rapidly culminated in a lethal collapse. In conclusion, we identified plant physiological biomarkers associated with the presence of ZC and/or CLs in the vegetative potato plant tissue and determined that the titer of CLs in the psyllid population directly affects the rate of disease development in plants.

  16. Molecular and Physiological Properties Associated with Zebra Complex Disease in Potatoes and Its Relation with Candidatus Liberibacter Contents in Psyllid Vectors

    Science.gov (United States)

    Alvarado, Veria Y.; Odokonyero, Denis; Duncan, Olivia; Mirkov, T. Erik; Scholthof, Herman B.

    2012-01-01

    Zebra complex (ZC) disease on potatoes is associated with Candidatus Liberibacter solanacearum (CLs), an α-proteobacterium that resides in the plant phloem and is transmitted by the potato psyllid Bactericera cockerelli (Šulc). The name ZC originates from the brown striping in fried chips of infected tubers, but the whole plants also exhibit a variety of morphological features and symptoms for which the physiological or molecular basis are not understood. We determined that compared to healthy plants, stems of ZC-plants accumulate starch and more than three-fold total protein, including gene expression regulatory factors (e.g. cyclophilin) and tuber storage proteins (e.g., patatins), indicating that ZC-affected stems are reprogrammed to exhibit tuber-like physiological properties. Furthermore, the total phenolic content in ZC potato stems was elevated two-fold, and amounts of polyphenol oxidase enzyme were also high, both serving to explain the ZC-hallmark rapid brown discoloration of air-exposed damaged tissue. Newly developed quantitative and/or conventional PCR demonstrated that the percentage of psyllids in laboratory colonies containing detectable levels of CLs and its titer could fluctuate over time with effects on colony prolificacy, but presumed reproduction-associated primary endosymbiont levels remained stable. Potato plants exposed in the laboratory to psyllid populations with relatively low-CLs content survived while exposure of plants to high-CLs psyllids rapidly culminated in a lethal collapse. In conclusion, we identified plant physiological biomarkers associated with the presence of ZC and/or CLs in the vegetative potato plant tissue and determined that the titer of CLs in the psyllid population directly affects the rate of disease development in plants. PMID:22615987

  17. Antibacterial activity of caffeine against plant pathogenic bacteria.

    Science.gov (United States)

    Sledz, Wojciech; Los, Emilia; Paczek, Agnieszka; Rischka, Jacek; Motyka, Agata; Zoledowska, Sabina; Piosik, Jacek; Lojkowska, Ewa

    2015-01-01

    The objective of the present study was to evaluate the antibacterial properties of a plant secondary metabolite - caffeine. Caffeine is present in over 100 plant species. Antibacterial activity of caffeine was examined against the following plant-pathogenic bacteria: Ralstonia solanacearum (Rsol), Clavibacter michiganesis subsp. sepedonicus (Cms), Dickeya solani (Dsol), Pectobacterium atrosepticum (Pba), Pectobacterium carotovorum subsp. carotovorum (Pcc), Pseudomonas syringae pv. tomato (Pst), and Xanthomonas campestris subsp. campestris (Xcc). MIC and MBC values ranged from 5 to 20 mM and from 43 to 100 mM, respectively. Caffeine increased the bacterial generation time of all tested species and caused changes in cell morphology. The influence of caffeine on the synthesis of DNA, RNA and proteins was investigated in cultures of plant pathogenic bacteria with labelled precursors: [(3)H]thymidine, [(3)H]uridine or (14)C leucine, respectively. RNA biosynthesis was more affected than DNA or protein biosynthesis in bacterial cells treated with caffeine. Treatment of Pba with caffeine for 336 h did not induce resistance to this compound. Caffeine application reduced disease symptoms caused by Dsol on chicory leaves, potato slices, and whole potato tubers. The data presented indicate caffeine as a potential tool for the control of diseases caused by plant-pathogenic bacteria, especially under storage conditions.

  18. Inbreeding and population structure of the potato cyst nematode (Globodera pallida) in its native area (Peru).

    Science.gov (United States)

    Picard, D; Plantard, O; Scurrah, M; Mugniery, D

    2004-10-01

    The dispersal abilities and the population genetic structure of nematodes living in the soil are poorly known. In the present study, we have pursued these issues in the potato cyst nematode Globodera pallida, which parasitizes potato roots and is indigenous to South America. A hierarchical sampling regime was conducted in Peru to investigate gene flow on regional, field and plant scales. Multilocus genotypes of single individuals were obtained using eight polymorphic microsatellites markers. Large heterozygote deficiencies were observed at most loci. The limited active dispersal of larvae from their cyst, which favours mating between (half) siblings, could be responsible for this pattern. Within fields, as well as among fields within regions (even 35 km apart), low F(ST) values suggest extensive gene flow. Among fields within regions, only 1.5-4.4% genetic variability was observed. Passive dispersal of cysts by natural means (wind, running water, or wild animals) or by anthropogenic means (tillage, movement of infected seed tubers) is probably responsible for the results observed. Among regions, high F(ST) values were observed. Thus long-range dispersal (more than 320 km apart) is probably limited by major biogeographical barriers such as the mountains found in the Andean Cordillera. These results provide useful information for the management of resistant varieties, to slow down the emergence and spread of resistance-breaking pathotypes.

  19. Physico-chemical properties of starches isolated from potato cultivars grown in soils with different phosphorus availability.

    Science.gov (United States)

    Leonel, Magali; Carmo, Ezequiel L; Fernandes, Adalton M; Franco, Célia M L; Soratto, Rogério P

    2016-04-01

    Starch is the major component of potato tubers, amounting approximately to 150-200 g kg (-1) of the tuber weight. Starch is considered to be a major factor for the functionality of the potato in food applications. This study evaluated the physical characteristics of potato starches isolated from tubers of different potato cultivars grown in soil with three levels of phosphorus (P) availability. All potatoes were growing according the same method. The starches were isolated by physical methods and the samples were analyzed for the amylose, P content, paste properties (RVA) and thermal properties of gelatinization and retrogradation (DSC). Experimental data were analyzed considering the potato cultivars and the three soil P availability. For all measured parameters significant impact of cultivar and soil P availability was determined. Phosphorus contents in potato starches ranged from 0.252 to 0.647 g kg(-1) and amylose from 27.18 to 30.8%. Starches from different potato cultivars independent of soil showed a small range of gelatinization temperature. All starches showed low resistance heating and shear stress. The results showed the influence of growing conditions (soil P availability) and also of the differences between the potato cultivars on important characteristics of applicability of starches. © 2015 Society of Chemical Industry.

  20. New varieties of potato can feed the poor | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2013-09-23

    Sep 23, 2013 ... But high-quality varieties are required. This Canadian–Colombian research project uses innovative genetic techniques to produce biofortified potatoes with higher crop yields and greater resistance to disease. Already available genetic information from native varieties forms the basis of this work.

  1. DNA from herbarium specimens settles a controversy about origins of the European potato.

    Science.gov (United States)

    Ames, Mercedes; Spooner, David M

    2008-02-01

    Landrace potato cultivars are native to two areas in South America: the high Andes from eastern Venezuela to northern Argentina and the lowlands of south-central Chile. Potato first appeared outside of South America in Europe in 1567 and rapidly diffused worldwide. Two competing hypotheses suggested the origin of the "European" potato from the Andes or from lowland Chile, but the Andean origin has been widely accepted over the last 60 years. All modern potato cultivars predominantly have Chilean germplasm, explained as originating from breeding with Chilean landraces subsequent to the late blight epidemics beginning in 1845 in the UK. The Andean origin has been questioned recently through examination of landraces in India and the Canary Islands, but this evidence is inferential. Through a plastid DNA deletion marker from historical herbarium specimens, we report that the Andean potato predominated in the 1700s, but the Chilean potato was introduced into Europe as early as 1811 and became predominant long before the late blight epidemics in the UK. Our results provide the first direct evidence of these events and change the history of introduction of the European potato. They shed new light on the value of past breeding efforts to recreate the European potato from Andean forms and highlight the value of herbarium specimens in investigating origins of crop plants.

  2. Methylobacterium sp. resides in unculturable state in potato tissues in vitro and becomes culturable after induction by Pseudomonas fluorescens IMGB163.

    Science.gov (United States)

    Podolich, O; Laschevskyy, V; Ovcharenko, L; Kozyrovska, N; Pirttilä, A M

    2009-03-01

    To induce growth of endophytic bacteria residing in an unculturable state in tissues of in vitro-grown potato plantlets. To isolate and identify the induced bacteria and to localize the strains in tissues of in vitro-grown potato plantlets. The inoculation of in vitro-grown potato plants with Pseudomonas fluorescens IMBG163 led to induction of another bacterium, a pink-pigmented facultative methylotroph that was identified as Methylobacterium sp. using phylogenetic 16S rDNA approach. Two molecular methods were used for localizing methylobacteria in potato plantlets: PCR and in situ hybridization (ISH/FISH). A PCR product specific for the Methylobacterium genus was found in DNA isolated from the surface-sterilized plantlet leaves. Presence of Methylobacterium rRNA was detected by ISH/FISH in leaves and stems of inoculated as well as axenic potato plantlets although the bacterium cannot be isolated from the axenic plants. Methylobacterium sp. resides in unculturable state within tissues of in vitro-grown potato plants and becomes culturable after inoculation with P. fluorescens IMBG163. In order to develop endophytic biofertilizers and biocontrol agents, a detailed knowledge of the life-style of endophytes is essential. To our knowledge, this is the first report on increase of the culturability of endophytes in response to inoculation by nonpathogenic bacteria.

  3. Comparative sequence analysis of the potato cyst nematode resistance locus H1 reveals a major lack of co-linearity between three haplotypes in potato (Solanum tuberosum ssp.).

    Science.gov (United States)

    Finkers-Tomczak, Anna; Bakker, Erin; de Boer, Jan; van der Vossen, Edwin; Achenbach, Ute; Golas, Tomasz; Suryaningrat, Suwardi; Smant, Geert; Bakker, Jaap; Goverse, Aska

    2011-02-01

    The H1 locus confers resistance to the potato cyst nematode Globodera rostochiensis pathotypes 1 and 4. It is positioned at the distal end of chromosome V of the diploid Solanum tuberosum genotype SH83-92-488 (SH) on an introgression segment derived from S. tuberosum ssp. andigena. Markers from a high-resolution genetic map of the H1 locus (Bakker et al. in Theor Appl Genet 109:146-152, 2004) were used to screen a BAC library to construct a physical map covering a 341-kb region of the resistant haplotype coming from SH. For comparison, physical maps were also generated of the two haplotypes from the diploid susceptible genotype RH89-039-16 (S. tuberosum ssp. tuberosum/S. phureja), spanning syntenic regions of 700 and 319 kb. Gene predictions on the genomic segments resulted in the identification of a large cluster consisting of variable numbers of the CC-NB-LRR type of R genes for each haplotype. Furthermore, the regions were interspersed with numerous transposable elements and genes coding for an extensin-like protein and an amino acid transporter. Comparative analysis revealed a major lack of gene order conservation in the sequences of the three closely related haplotypes. Our data provide insight in the evolutionary mechanisms shaping the H1 locus and will facilitate the map-based cloning of the H1 resistance gene.

  4. 78 FR 30737 - Irish Potatoes Grown in Colorado; Reestablishment of Membership on the Colorado Potato...

    Science.gov (United States)

    2013-05-23

    ... FR] Irish Potatoes Grown in Colorado; Reestablishment of Membership on the Colorado Potato...: This final rule reestablishes the membership on the Colorado Potato Administrative Committee, Area No... Irish potatoes grown in Colorado. This action modifies the Committee membership structure by amending...

  5. Bioproducts from Potatoes. A Review

    Science.gov (United States)

    Priedniece, Vivita; Spalvins, Kriss; Ivanovs, Kaspars; Pubule, Jelena; Blumberga, Dagnija

    2017-12-01

    The increasing amount of food waste througout the world is becoming a major problem for waste management plants. The food waste produced amounts to 1.3 million tons a year. This is a resource that could be used for production of new products. Decreasing fossil resources and a rapidly growing population lead to the necessity to produce more food and to replace existing with new materials ones that are biological and produce little effect on environment. Bioeconomy is a method that can help achieve production of value-added products that use local resources and waste to manufacture products efficiently. In this article, we are looking at possibilities to use potatoes for production of new materials, such as bioplastics, antioxidants, proteins, instead of their conventional use for food production. We have studied potato components, extraction technologies and summed up possible directions for development for new products, looking at the use of processing waste as a raw material.

  6. Bioproducts from Potatoes. A Review

    Directory of Open Access Journals (Sweden)

    Priedniece Vivita

    2017-12-01

    Full Text Available The increasing amount of food waste througout the world is becoming a major problem for waste management plants. The food waste produced amounts to 1.3 million tons a year. This is a resource that could be used for production of new products. Decreasing fossil resources and a rapidly growing population lead to the necessity to produce more food and to replace existing with new materials ones that are biological and produce little effect on environment. Bioeconomy is a method that can help achieve production of value-added products that use local resources and waste to manufacture products efficiently. In this article, we are looking at possibilities to use potatoes for production of new materials, such as bioplastics, antioxidants, proteins, instead of their conventional use for food production. We have studied potato components, extraction technologies and summed up possible directions for development for new products, looking at the use of processing waste as a raw material.

  7. Efficacy of selected Pseudomonas strains for biocontrol of Rhizoctonia solani in potato

    Directory of Open Access Journals (Sweden)

    Moncef MRABET

    2014-01-01

    Full Text Available Thirty seven bacterial isolates from faba bean (Vicia faba L. root-nodules were screened for their antagonistic activity against eight Rhizoctonia solani strains isolated from infected potato (Solanum tuberosum L. tubers. Two bacterial strains (designated as Kl.Fb14 and S8.Fb11 gave 50% in vitro inhibition of R. solani mycelial growth. 16S rDNA sequence analysis indicated that strain Kl.Fb14 exhibited 99.5% identity with Pseudomonas moraviensis, and that S8.Fb11 exhibited 99.8% identity with Pseudomonas reinekei. Greenhouse trials in soil showed that strain S8.Fb11 reduced the percentage of sclerotia on potato tubers and amounts of tuber infection for the potato cultivars Spunta and Nicola. In a field trial conducted in South Tunisia, infection with R. solani reduced potato yield by approximately 40% for ‘Spunta’ and 17% for ‘Nicola’; about 20% of the total tuber production was severely infected. However, when potato tubers were treated with strain S8.Fb11 prior to sowing, disease incidence was reduced to 6% of total production with low infection levels; potato yield was enhanced by about 6 kg per 10 m row in comparison to R. solani infected plants. The second selected Pseudomonas sp. (strain Kl.Fb14 did not affect either the levels of sclerotia on tubers or potato yield.

  8. Potato irradiation technology in Japan

    International Nuclear Information System (INIS)

    Takehisa, M.

    1981-01-01

    After the National research program on potato irradiation, the public consumption of potatoes irradiated to a maximum of 15 krad was authorized by the Ministry of Welfare. Shihoro Agricultural Cooperative Association, one of the largest potato producers in Japan with an annual production of 200,000 tons, intended an application of the irradiation to their potato storage system. This paper describes the technological background of the potato irradiation facility and operational experience. (author)

  9. ASSESSING CHANGES IN POTATO CANOPY CAUSED BY LATE BLIGHT IN ORGANIC PRODUCTION SYSTEMS THROUGH UAV-BASED PUSHBROOM IMAGING SPECTROMETER

    Directory of Open Access Journals (Sweden)

    M. H. D. Franceschini

    2017-08-01

    Full Text Available Productivity of cropping systems can be constrained simultaneously by different limiting factors and approaches allowing to indicate and identify plants under stress in field conditions can be valuable for farmers and breeders. In organic production systems, sensing solutions are not frequently studied, despite their potential for crop traits retrieval and stress assessment. In this study, spectral data in the optical domain acquired using a pushbroom spectrometer on board of a unmanned aerial vehicle is used to evaluate the potential of this information for assessment of late blight (Phytophthora infestans incidence on potato (Solanum tuberosum under organic cultivation. Vegetation indices formulations with two and three spectral bands were tested for the complete range of the spectral information acquired (i.e., from 450 to 900 nm, with 10 nm of spectral resolution. This evaluation concerned the discrimination between plots cultivated with only one resistant potato variety in contrast with plots with a variety mixture, with resistant and susceptible cultivars. Results indicated that indices based on three spectral bands performed better and optimal wavelengths (i.e., near 490, 530 and 670 nm are not only related to chlorophyll content but also to other leaf pigments like carotenoids.

  10. The Red Queen in a potato field: integrated pest management versus chemical dependency in Colorado potato beetle control.

    Science.gov (United States)

    Alyokhin, Andrei; Mota-Sanchez, David; Baker, Mitchell; Snyder, William E; Menasha, Sandra; Whalon, Mark; Dively, Galen; Moarsi, Wassem F

    2015-03-01

    Originally designed to reconcile insecticide applications with biological control, the concept of integrated pest management (IPM) developed into the systems-based judicious and coordinated use of multiple control techniques aimed at reducing pest damage to economically tolerable levels. Chemical control, with scheduled treatments, was the starting point for most management systems in the 1950s. Although chemical control is philosophically compatible with IPM practices as a whole, reduction in pesticide use has been historically one of the main goals of IPM practitioners. In the absence of IPM, excessive reliance on pesticides has led to repeated control failures due to the evolution of resistance by pest populations. This creates the need for constant replacement of failed chemicals with new compounds, known as the 'insecticide treadmill'. In evolutionary biology, a similar phenomenon is known as the Red Queen principle - continuing change is needed for a population to persevere because its competitors undergo constant evolutionary adaptation. The Colorado potato beetle, Leptinotarsa decemlineata (Say), is an insect defoliator of potatoes that is notorious for its ability to develop insecticide resistance. In the present article, a review is given of four case studies from across the United States to demonstrate the importance of using IPM for sustainable management of a highly adaptable insect pest. Excessive reliance on often indiscriminate insecticide applications and inadequate use of alternative control methods, such as crop rotation, appear to expedite evolution of insecticide resistance in its populations. Resistance to IPM would involve synchronized adaptations to multiple unfavorable factors, requiring statistically unlikely genetic changes. Therefore, integrating different techniques is likely to reduce the need for constant replacement of failed chemicals with new ones. © 2014 Society of Chemical Industry.

  11. Managing potato biodiversity to cope with frost risk in the high Andes: a modeling perspective.

    Science.gov (United States)

    Condori, Bruno; Hijmans, Robert J; Ledent, Jean Francois; Quiroz, Roberto

    2014-01-01

    Austral summer frosts in the Andean highlands are ubiquitous throughout the crop cycle, causing yield losses. In spite of the existing warming trend, climate change models forecast high variability, including freezing temperatures. As the potato center of origin, the region has a rich biodiversity which includes a set of frost resistant genotypes. Four contrasting potato genotypes--representing genetic variability--were considered in the present study: two species of frost resistant native potatoes (the bitter Solanum juzepczukii, var. Luki, and the non-bitter Solanum ajanhuiri, var. Ajanhuiri) and two commercial frost susceptible genotypes (Solanum tuberosum ssp. tuberosum var. Alpha and Solanum tuberosum ssp. andigenum var. Gendarme). The objective of the study was to conduct a comparative growth analysis of four genotypes and modeling their agronomic response under frost events. It included assessing their performance under Andean contrasting agroecological conditions. Independent subsets of data from four field experiments were used to parameterize, calibrate and validate a potato growth model. The validated model was used to ascertain the importance of biodiversity, represented by the four genotypes tested, as constituents of germplasm mixtures in single plots used by local farmers, a coping strategy in the face of climate variability. Also scenarios with a frost routine incorporated in the model were constructed. Luki and Ajanhuiri were the most frost resistant varieties whereas Alpha was the most susceptible. Luki and Ajanhuiri, as monoculture, outperformed the yield obtained with the mixtures under severe frosts. These results highlight the role played by local frost tolerant varieties, and featured the management importance--e.g. clean seed, strategic watering--to attain the yields reported in our experiments. The mixtures of local and introduced potatoes can thus not only provide the products demanded by the markets but also reduce the impact of frosts

  12. Managing potato biodiversity to cope with frost risk in the high Andes: a modeling perspective.

    Directory of Open Access Journals (Sweden)

    Bruno Condori

    Full Text Available Austral summer frosts in the Andean highlands are ubiquitous throughout the crop cycle, causing yield losses. In spite of the existing warming trend, climate change models forecast high variability, including freezing temperatures. As the potato center of origin, the region has a rich biodiversity which includes a set of frost resistant genotypes. Four contrasting potato genotypes--representing genetic variability--were considered in the present study: two species of frost resistant native potatoes (the bitter Solanum juzepczukii, var. Luki, and the non-bitter Solanum ajanhuiri, var. Ajanhuiri and two commercial frost susceptible genotypes (Solanum tuberosum ssp. tuberosum var. Alpha and Solanum tuberosum ssp. andigenum var. Gendarme. The objective of the study was to conduct a comparative growth analysis of four genotypes and modeling their agronomic response under frost events. It included assessing their performance under Andean contrasting agroecological conditions. Independent subsets of data from four field experiments were used to parameterize, calibrate and validate a potato growth model. The validated model was used to ascertain the importance of biodiversity, represented by the four genotypes tested, as constituents of germplasm mixtures in single plots used by local farmers, a coping strategy in the face of climate variability. Also scenarios with a frost routine incorporated in the model were constructed. Luki and Ajanhuiri were the most frost resistant varieties whereas Alpha was the most susceptible. Luki and Ajanhuiri, as monoculture, outperformed the yield obtained with the mixtures under severe frosts. These results highlight the role played by local frost tolerant varieties, and featured the management importance--e.g. clean seed, strategic watering--to attain the yields reported in our experiments. The mixtures of local and introduced potatoes can thus not only provide the products demanded by the markets but also reduce the

  13. The sweet potato IbMYB1 gene as a potential visible marker for sweet potato intragenic vector system.

    Science.gov (United States)

    Kim, Cha Young; Ahn, Young Ock; Kim, Sun Ha; Kim, Yun-Hee; Lee, Haeng-Soon; Catanach, Andrew S; Jacobs, Jeanne M E; Conner, Anthony J; Kwak, Sang-Soo

    2010-07-01

    MYB transcription factors play important roles in transcriptional regulation of many secondary metabolites including anthocyanins. We cloned the R2R3-MYB type IbMYB1 complementary DNAs from the purple-fleshed sweet potato (Ipomoea batatas L. cv Sinzami) and investigated the expression patterns of IbMYB1 gene with IbMYB1a and IbMYB1b splice variants in leaf and root tissues of various sweet potato cultivars by reverse transcription-polymerase chain reaction. The transcripts of IbMYB1 were predominantly expressed in the purple-fleshed storage roots and they were also detectable in the leaf tissues accumulating anthocyanin pigments. In addition, transcript levels of IbMYB1 gene were up-regulated by treatment with methyl jasmonate or salicylic acid in leaf and root tissues of cv. White Star. To set up the intragenic vector system in sweet potato, we first evaluated the utilization of the IbMYB1 gene as a visible selectable marker. The IbMYB1a was transiently expressed in tobacco leaves under the control of a constitutive cauliflower mosaic virus 35S promoter, a root-specific and sucrose-inducible sporamin promoter, and an oxidative stress-inducible sweet potato anionic peroxidase2 promoter. We also showed that overexpression of IbMYB1a induced massive anthocyanin pigmentation in tobacco leaves and up-regulated the transcript levels of the structural genes in anthocyanin biosynthetic pathway. Furthermore, high-performance liquid chromatography analysis revealed that the expression of IbMYB1a led to production of cyanidin as a major core molecule of anthocyanidins in tobacco leaves. These results suggest that the IbMYB1 gene can be applicable to a visible marker for sweet potato transformation with intragenic vectors, as well as the production of anthocyanin as important nutritive value in other plant species.

  14. A review of the latest concepts in molecular plant pathology and applications to potato breeding

    Science.gov (United States)

    Co-evolution between pathogens and plants has led to the development of a range of constitutive and inducible resistance mechanisms that help plants survive pathogen attack. Different models have been proposed to describe the plant immune system. The most popular current model indicates that plants ...

  15. Glutathione peroxidases of the potato cyst nematode Globodera Rostochiensis

    NARCIS (Netherlands)

    Jones, J.T.; Reavy, B.; Smant, G.; Prior, A.E.

    2004-01-01

    We report the cloning and characterisation of full-length DNAs complementary to RNA (cDNAs) encoding two glutathione peroxidases (GpXs) from a plant parasitic nematode, the potato cyst nematode (PCN) Globodera rostochiensis. One protein has a functional signal peptide that targets the protein for

  16. Potato production in Thailand

    Science.gov (United States)

    Potato production has increased dramatically in recent years in Thailand. Consumer demand for fresh and processed potatoes has driven this trend. Most potatoes are produced in northern Thailand in either double cropping highland zones or as a single winter crop following rice in lowland regions. Maj...

  17. Detection, identification and differentiation of Pectobacterium and Dickeya species causing potato blackleg and tuber soft rot: a review

    NARCIS (Netherlands)

    Czajkowski, R.L.; Pérombelon, M.C.M.; Jafra, S.; Lojkowska, E.; Potrykus, M.; Wolf, van der J.M.; Sledz, W.

    2015-01-01

    The soft rot Enterobacteriaceae (SRE) Pectobacterium and Dickeya species (formerly classified as pectinolytic Erwinia spp.) cause important diseases on potato and other arable and horticultural crops. They may affect the growing potato plant causing blackleg and are responsible for tuber soft rot in

  18. 7 CFR 948.6 - Seed potatoes.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Seed potatoes. 948.6 Section 948.6 Agriculture... and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE IRISH POTATOES GROWN IN COLORADO Order Regulating Handling Definitions § 948.6 Seed potatoes. Seed potatoes or seed means any potatoes...

  19. The Lr34 adult plant rust resistance gene provides seedling resistance in durum wheat without senescence.

    Science.gov (United States)

    Rinaldo, Amy; Gilbert, Brian; Boni, Rainer; Krattinger, Simon G; Singh, Davinder; Park, Robert F; Lagudah, Evans; Ayliffe, Michael

    2017-07-01

    The hexaploid wheat (Triticum aestivum) adult plant resistance gene, Lr34/Yr18/Sr57/Pm38/Ltn1, provides broad-spectrum resistance to wheat leaf rust (Lr34), stripe rust (Yr18), stem rust (Sr57) and powdery mildew (Pm38) pathogens, and has remained effective in wheat crops for many decades. The partial resistance provided by this gene is only apparent in adult plants and not effective in field-grown seedlings. Lr34 also causes leaf tip necrosis (Ltn1) in mature adult plant leaves when grown under field conditions. This D genome-encoded bread wheat gene was transferred to tetraploid durum wheat (T. turgidum) cultivar Stewart by transformation. Transgenic durum lines were produced with elevated gene expression levels when compared with the endogenous hexaploid gene. Unlike nontransgenic hexaploid and durum control lines, these transgenic plants showed robust seedling resistance to pathogens causing wheat leaf rust, stripe rust and powdery mildew disease. The effectiveness of seedling resistance against each pathogen correlated with the level of transgene expression. No evidence of accelerated leaf necrosis or up-regulation of senescence gene markers was apparent in these seedlings, suggesting senescence is not required for Lr34 resistance, although leaf tip necrosis occurred in mature plant flag leaves. Several abiotic stress-response genes were up-regulated in these seedlings in the absence of rust infection as previously observed in adult plant flag leaves of hexaploid wheat. Increasing day length significantly increased Lr34 seedling resistance. These data demonstrate that expression of a highly durable, broad-spectrum adult plant resistance gene can be modified to provide seedling resistance in durum wheat. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  20. Impact of heat-moisture and annealing treatments on physicochemical properties and digestibility of starches from different colored sweet potato varieties.

    Science.gov (United States)

    Trung, Phan Thanh Bao; Ngoc, Luu Bui Bao; Hoa, Phan Ngoc; Tien, Nguyen Ngoc Thanh; Hung, Pham Van

    2017-12-01

    The objective of this study is to investigate the change in physicochemical properties and digestibility of starches isolated from colored sweet potato varieties under heat-moisture treatment (HMT) or annealing treatment (ANN). The results showed that morphology and X-ray diffraction patterns of the sweet potato starches remained unchanged after the HMT or ANN. The HMT significantly reduced peak viscosity, breakdown and setback and significantly increased pasting temperature, trough and final viscosities of the sweet potato starches. The swelling powers and solubility of the heat-moisture treated starches were significantly lower than those of the native or annealed starches. The decreased rapid digestible starch and the increased slowly digestible and resistant starch contents of the sweet potato starches after HMT or ANN as compared to those of the native starches were observed. The resistant starch (RS) contents of the heat-moisture treated sweet potato starches were in a range of 30.6-39.3%, significantly higher than those of the annealed starches (28.8-32.0%). The strong impact of the HMT on physicochemical properties and RS formation of the sweet potato starches compared to the ANN might be due to the high stability of the occurred interactions between starch molecules and amylopectin chains during treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Isolation and identification of bacteria causing blackleg and soft rot of potato

    Science.gov (United States)

    Both Dickeya and Pectobacterium spp. are important causal agents of blackleg and soft rot of potato. To understand the outbreak of blackleg in the Northeastern U.S. in 2015, samples were collected from symptomatic plants, dormant tubers, and surface water in 2016 and 2017. Diseased plant samples wer...

  2. Analysis of small RNA production patterns among the two potato spindle tuber viroid variants in tomato plants

    Directory of Open Access Journals (Sweden)

    Charith Raj Adkar-Purushothama

    2015-12-01

    Full Text Available In order to analyze the production of small RNA (sRNA by viroids upon infecting the plants, the tomato plants (Solanum lycopersicum cultivar Rutgers were inoculated with the variants of Potato spindle tuber viroid (PSTVd. After 21-days of postinoculation, total RNA was extracted and subjected for deep-sequencing using Illumina HiSeq platform. The primers were trimmed and only 21- to 24-nt long sRNAs were filtered after quality check of the raw data. The filtered sRNA population was then mapped against both the genomic (+ and antigenomic (− strands of the respective PSTVd variants using standard pattern-matching algorithm. The profiling of viroid derived sRNA (vd-sRNA revealed that the viroids are susceptible to host RNA silencing mechanism. High-throughput sequence data linked to this project have been deposited in the Gene Expression Omnibus (GEO database under accession number GSE69225.

  3. 7 CFR 947.12 - Seed potatoes.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Seed potatoes. 947.12 Section 947.12 Agriculture... and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE IRISH POTATOES GROWN IN MODOC AND... Definitions § 947.12 Seed potatoes. Seed potatoes means and includes all potatoes officially certified and...

  4. Potato (Solanum tuberosum) greenhouse tuber production as an assay for asexual reproduction effects from herbicides

    Science.gov (United States)

    The present study determined whether young potato plants can be used as an assay to indicate potential effects of pesticides on asexual reproduction. Solanum tuberosum (Russet Burbank) plants were grown from seed pieces in a mineral soil in pots under greenhouse conditions. Plant...

  5. Genome Microscale Heterogeneity among Wild Potatoes Revealed by Diversity Arrays Technology Marker Sequences

    Directory of Open Access Journals (Sweden)

    Alessandra Traini

    2013-01-01

    Full Text Available Tuber-bearing potato species possess several genes that can be exploited to improve the genetic background of the cultivated potato Solanum tuberosum. Among them, S. bulbocastanum and S. commersonii are well known for their strong resistance to environmental stresses. However, scant information is available for these species in terms of genome organization, gene function, and regulatory networks. Consequently, genomic tools to assist breeding are meager, and efficient exploitation of these species has been limited so far. In this paper, we employed the reference genome sequences from cultivated potato and tomato and a collection of sequences of 1,423 potato Diversity Arrays Technology (DArT markers that show polymorphic representation across the genomes of S. bulbocastanum and/or S. commersonii genotypes. Our results highlighted microscale genome sequence heterogeneity that may play a significant role in functional and structural divergence between related species. Our analytical approach provides knowledge of genome structural and sequence variability that could not be detected by transcriptome and proteome approaches.

  6. Genome Microscale Heterogeneity among Wild Potatoes Revealed by Diversity Arrays Technology Marker Sequences.

    Science.gov (United States)

    Traini, Alessandra; Iorizzo, Massimo; Mann, Harpartap; Bradeen, James M; Carputo, Domenico; Frusciante, Luigi; Chiusano, Maria Luisa

    2013-01-01

    Tuber-bearing potato species possess several genes that can be exploited to improve the genetic background of the cultivated potato Solanum tuberosum. Among them, S. bulbocastanum and S. commersonii are well known for their strong resistance to environmental stresses. However, scant information is available for these species in terms of genome organization, gene function, and regulatory networks. Consequently, genomic tools to assist breeding are meager, and efficient exploitation of these species has been limited so far. In this paper, we employed the reference genome sequences from cultivated potato and tomato and a collection of sequences of 1,423 potato Diversity Arrays Technology (DArT) markers that show polymorphic representation across the genomes of S. bulbocastanum and/or S. commersonii genotypes. Our results highlighted microscale genome sequence heterogeneity that may play a significant role in functional and structural divergence between related species. Our analytical approach provides knowledge of genome structural and sequence variability that could not be detected by transcriptome and proteome approaches.

  7. Characterization of resistance to Globodera rostochiensis pathotype Ro1 in cultivated and wild potato species accessions from the Vavilov Institute of Plant Industry

    Science.gov (United States)

    Potato cyst nematodes (PCN) in Russia are represented by only Globodera rostochiensis pathotype Ro1. It is a quarantine pathogen with losses in yield in susceptible cultivars which can reach 50-90%. The aims of our study were to verify the species and pathotype composition of natural PCN populations...

  8. Engineering resistance to plant viruses: Present status and future prospects

    Science.gov (United States)

    Plant viruses cause severe crop losses across the globe. Resistant cultivars together with pesticide application are commonly used to avoid the losses caused by plant viruses. However, very limited success has been achieved at diminishing the impact of plant viruses. Use of virus resistant plant is ...

  9. Creation of initial breeding material of potato with complex resistance to Fusarium dry rot and tuber late blight

    Directory of Open Access Journals (Sweden)

    В. В. Гордієнко

    2017-09-01

    Full Text Available Purpose. To select the initial breeding material with complex resistance to Fusarium dry rot and tuber late blight among the created potato of secondary interspecific hyb­rids. Methods. Interspecific hybridization, laboratory test, analytical approach. Results. Based on the interspecific hybridization, the initial breeding material was created and the degree of its resistance to the above pathogens was determined by way of artificial infection of tubers with the inoculum of such fungi as Fusarium sambucinum Fuck and Phytophthora infestans (Mont. De Bary. During interspecific hybridization based on schemes of saturating and enriching crosses, using forms of various species with a high phenotypic expression of resistance to Fusarium dry rot, the result of the cumulative effect of genes that control resistance to the pathogen was observed. Crossing combinations differed significantly for the degree of population average manifestation of resistance to the diseases. Conclusions. Combinations В54, В53, В61 with a mean resistance (above 7 grades to Fusarium dry rot have been selected. Such combinations as B52, B50 and B54 had increased resistance to tuber late blight. It was found that the combination В54 is characterized by complex resistance to both diseases. For further work, the following samples with complex resistance to Fusarium dry rot and tuber late blight (7 grades or more were selected: В59с42, В59с43, В50с16, В50с19, В50с44, В51с1, В51с26, В51с28, В52с11, В52с23, В52с24, В52с29, В53с1, В53с11, В53с17 , В53с23, В54с13, В54с14.

  10. Nuclear targeting by fragmentation of the Potato spindle tuber viroid genome

    International Nuclear Information System (INIS)

    Abraitiene, Asta; Zhao Yan; Hammond, Rosemarie

    2008-01-01

    Transient expression of engineered reporter RNAs encoding an intron-containing green fluorescent protein (GFP) from a Potato virus X-based expression vector previously demonstrated the nuclear targeting capability of the 359 nucleotide Potato spindle tuber viroid (PSTVd) RNA genome. To further delimit the putative nuclear-targeting signal, PSTVd subgenomic fragments were embedded within the intron, and recombinant reporter RNAs were inoculated onto Nicotiana benthamiana plants. Appearance of green fluorescence in leaf tissue inoculated with PSTVd-fragment-containing constructs indicated shuttling of the RNA into the nucleus by fragments as short as 80 nucleotides in length. Plant-to-plant variation in the timing of intron removal and subsequent GFP fluorescence was observed; however, earliest and most abundant GFP expression was obtained with constructs containing the conserved hairpin I palindrome structure and embedded upper central conserved region. Our results suggest that this conserved sequence and/or the stem-loop structure it forms is sufficient for import of PSTVd into the nucleus

  11. Salicylic and jasmonic acid pathways are necessary for defence against Dickeya solani as revealed by a novel method for Blackleg disease screening of in vitro grown potato.

    Science.gov (United States)

    Burra, D D; Mühlenbock, P; Andreasson, E

    2015-09-01

    Potato is major crop ensuring food security in Europe, and blackleg disease is increasingly causing losses in yield and during storage. Recently, one blackleg pathogen, Dickeya solani has been shown to be spreading in Northern Europe that causes aggressive disease development. Currently, identification of tolerant commercial potato varieties has been unsuccessful; this is confounded by the complicated etiology of the disease and a strong environmental influence on disease development. There is currently a lack of efficient testing systems. Here, we describe a system for quantification of blackleg symptoms on shoots of sterile in vitro potato plants, which saves time and space compared to greenhouse and existing field assays. We found no evidence for differences in infection between the described in vitro-based screening method and existing greenhouse assays. This system facilitates efficient screening of blackleg disease response of potato plants independent of other microorganisms and variable environmental conditions. We therefore used the in vitro screening method to increase understanding of plant mechanisms involved in blackleg disease development by analysing disease response of hormone- related (salicylic and jasmonic acid) transgenic potato plants. We show that both jasmonic (JA) and salicylic (SA) acid pathways regulate tolerance to blackleg disease in potato, a result unlike previous findings in Arabidopsis defence response to necrotrophic bacteria. We confirm this by showing induction of a SA marker, pathogenesis-related protein 1 (StPR1), and a JA marker, lipoxygenase (StLOX), in Dickeya solani infected in vitro potato plants. We also observed that tubers of transgenic potato plants were more susceptible to soft rot compared to wild type, suggesting a role for SA and JA pathways in general tolerance to Dickeya. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  12. The effect of gamma-irradiation on the sucrose content in sweet potato roots and potato tubers

    International Nuclear Information System (INIS)

    Hayashi, T.; Kawashima, K.

    1982-01-01

    The sucrose content in both potato tubers and sweet potato roots was considerably increased by gamma-irradiation. The maximum increase was achieved by an irradiation dose of 3 to 4 kGy for potatoes and 0.8 to 2 kGy for sweet potatoes. Cooling treatment (15°C, 2 weeks) for sweet potato roots also enhanced the sucrose content (almost 2 times) but was not additive to the irradiation treatment; the maximum sucrose content in irradiated sweet potato roots was in the range of 7 to 12% irrespective of the cooling treatment, depending on the variety of sweet potatoes. Irradiation made the sucrose content in the roots 2 to 4 times higher

  13. Plant-Derived Antimicrobials: Insights into Mitigation of Antimicrobial Resistance

    Directory of Open Access Journals (Sweden)

    Shun-Kai Yang

    2018-07-01

    Full Text Available Antibiotic resistance had first been reported not long after the discovery of the first antibiotic and has remained a major public health issue ever since. Challenges are constantly encountered during the mitigation process of antibiotic resistance in the clinical setting; especially with the emergence of the formidable superbug, a bacteria with multiple resistance towards different antibiotics; this resulted in the term multidrug resistant (MDR bacteria. This rapid evolution of the resistance phenomenon has propelled researchers to continuously uncover new antimicrobial agents in a bid to hopefully, downplay the rate of evolution despite a drying pipeline. Recently, there has been a paradigm shift in the mining of potential antimicrobials; in the past, targets for drug discovery were from microorganisms and at current, the focus has moved onto plants, this is mainly due to the beneficial attributes that plants are able to confer over that of microorganisms. This review will briefly discuss antibiotic resistance mechanisms employed by resistant bacteria followed by a detailed expository regarding the use of secondary metabolites from plants as a potential solution to the MDR pathogen. Finally, future prospects recommending enhancements to the usage of plant secondary metabolites to directly target antibiotic resistant pathogens will be discussed.

  14. Genetic Diversity of Local and Introduced Sweet Potato [Ipomoea ...

    African Journals Online (AJOL)

    This study was therefore conducted to estimate the genetic diversity of 114 Sweet potato [Ipomoea batatas (L.) Lam] accessions obtained from Nigeria, Asia, Latin America and Local collections along with two improved varieties. Accessions were planted in 2012/13 cropping season at Haramaya University, eastern Ethiopia ...

  15. Response of potato to drip and gun irrigation systems

    DEFF Research Database (Denmark)

    Zhenjiang, Zhou; Andersen, Mathias Neumann; Plauborg, Finn

    2015-01-01

    The objective of this study was to evaluate effects of different irrigation and N fertilization regimes by gun irrigation and drip-fertigation on potato production, and subsequently optimize the supply of water and N fertilizer to the growth condition of the specific season and minimize nitrate......-fertigation system (DFdsNds) and two gun irrigation systems (GIdsN120 and GIaN120) to display the differences on growth, yield and water use efficiency of potato. All treatments were irrigated according to model simulated soil water content. For fertilization all treatments received a basic dressing at planting of P......, K, Mg and micronutrients, and in addition 120 kg N/ha in the gun irrigated treatments and 36 kg N/ha in the drip-fertigated. For the latter, portion of 20 kg N/ha was applied whenever plant N concentration approached a critical value as simulated by the Daisy model. As a result differences in soil...

  16. Effects of CO2 enrichment and drought pretreatment on metabolite responses to water stress and subsequent rehydration using potato tubers from plants grown in sunlit SPAR chambers

    Science.gov (United States)

    Experiments were performed using naturally sunlit Soil–Plant–Atmosphere-Research chambers that provided ambient or elevated CO2. Potato plants were grown in pots that were water sufficient (W), water insufficient for 12 to 18 days during both vegetative and tuber development stages (VR), or water i...

  17. Isolation of Mercury-Resistant Fungi from Mercury-Contaminated Agricultural Soil

    Directory of Open Access Journals (Sweden)

    Reginawanti Hindersah

    2018-02-01

    Full Text Available Illegal gold mining and the resulting gold mine tailing ponds on Buru Island in Maluku, Indonesia have increased Mercury (Hg levels in agricultural soil and caused massive environmental damage. High levels of Hg in soil lowers plant productivity and threatens the equilibrium of the food web. One possible method of handling Hg-contaminated soils is through bioremediation, which could eliminate Hg from the rhizosphere (root zone. In this study, indigenous fungi isolated from Hg-contaminated soil exhibited Hg-resistance in vitro. Soil samples were collected from the rhizosphere of pioneer plants which grew naturally in areas contaminated with gold mine tailing. The fungi’s capacity for Hg-resistance was confirmed by their better growth in chloramphenicol-boosted potato dextrose agar media which contained various HgCl2 concentrations. Four isolates exhibited resistance of up to 25 mg kg−1 of Hg, and in an experiment with young Chinese cabbage (Brassica rapa L. test plants, two fungi species (including Aspergillus were demonstrated to increase the soil’s availability of Hg. The results suggest that Hg-resistant indigenous fungi can mobilize mercury in the soil and serve as potential bioremediation agents for contaminated agricultural land.

  18. Antiviral Activity of Sukomycin Against Potato Virus Y And Tomato Mosaic Virus

    Directory of Open Access Journals (Sweden)

    Nikolay Petrov

    2016-12-01

    Full Text Available Potato virus Y (PVY and Tomato mosaic virus (ToMV are one of the most important plant viruses that strongly influence the quality and quantity of vegetable production and cause substantial losses to farmers. The most convetional and common method of pest and disease control is trough the use of pesticides. Unfortunately, most of them are synthetic compounds without antiviral activities and possess inherent toxicities that endanger the health of the farm operators, consumers and the environment. In order to carry out a control of viral infections in plants and to reduce the loss of production it is necessary the search for alternative and environmentally friendly methods for control. Sukomycin is a complex of substances with antimicrobial and antiviral activities produced from Streptomyces hygroscopicus isolated from soil. This natural complex reduces significantly symptoms and DAS-ELISA values of Potato virus Y and Tomato mosaic virus in tobacco plants.

  19. Residues of maneb in potatoes and lettuce and their persistence during cooking, washing and uv exposition

    International Nuclear Information System (INIS)

    Bennaceur, M.; Sennaoui, Z.; Zennouche, B.; Hylin, J.W.

    1992-01-01

    Lettuce plants were treated each with 0,186 mg of 14C maneb and 1,86 mg unlabelled maneb. The plants were analyzed 30 days later and subjected to washing. Washing eliminates 17,46% of total 14C maneb applied. No Etu was observed in water.Washing and baking cause a significant decrease of EBDC in potatoes samples and the UV exposition involves a decrease of the fungicide and a formation of Etu. On the other hand 54 % and 38% of lettuce and potatoe samples analyzed by CS2 method exceed the authorized norms

  20. Pesticide uptake in potatoes: model and field experiments.

    Science.gov (United States)

    Juraske, Ronnie; Vivas, Carmen S Mosquera; Velásquez, Alexander Erazo; Santos, Glenda García; Moreno, Mónica B Berdugo; Gomez, Jaime Diaz; Binder, Claudia R; Hellweg, Stefanie; Dallos, Jairo A Guerrero

    2011-01-15

    A dynamic model for uptake of pesticides in potatoes is presented and evaluated with measurements performed within a field trial in the region of Boyacá, Colombia. The model takes into account the time between pesticide applications and harvest, the time between harvest and consumption, the amount of spray deposition on soil surface, mobility and degradation of pesticide in soil, diffusive uptake and persistence due to crop growth and metabolism in plant material, and loss due to food processing. Food processing steps included were cleaning, washing, storing, and cooking. Pesticide concentrations were measured periodically in soil and potato samples from the beginning of tuber formation until harvest. The model was able to predict the magnitude and temporal profile of the experimentally derived pesticide concentrations well, with all measurements falling within the 90% confidence interval. The fraction of chlorpyrifos applied on the field during plant cultivation that eventually is ingested by the consumer is on average 10(-4)-10(-7), depending on the time between pesticide application and ingestion and the processing step considered.

  1. Host Status of Different Potato (Solanum tuberosum) Varieties and Hatching in Root Diffusates of Globodera ellingtonae.

    Science.gov (United States)

    Zasada, Inga A; Peetz, Amy; Wade, Nadine; Navarre, Roy A; Ingham, Russ E

    2013-09-01

    Globodera ellingtonae was detected in Oregon in 2008. In order to make decisions regarding the regulation of this nematode, knowledge of its biology is required. We determined the host status of a diversity of potato (Solanum tuberosum) varieties in soil-based experiments and identified hatching stimulants in in vitro hatching assays. 'Russet Burbank,' 'Desiree,' 'Modac,' 'Norland,' 'Umatilla,' and 'Yukon Gold' were good hosts (RF > 14) for G. ellingtonae. Potato varieties 'Maris Piper,' 'Atlantic,' and 'Satina,' all which contain the Ro1 gene that confers resistance to G. rostochiensis, were not hosts for G. ellingtonae. In in vitro hatching assays, G. ellingtonae hatched readily in the presence of diffusates from potato (PRD) and tomato (Solanum lycopersicum; TRD). Egg hatch occurred in an average of between 87% and 90% of exposed cysts, with an average of between 144 and 164 juveniles emerging per cyst, from PRD- and TRD-treated cysts, respectively. This nematode hatched rapidly in the presence of PRD and TRD, with at least 66% of total hatch occurring by day 3 of exposure. There was no dose-response of egg hatch to concentrations of PRD or TRD ranging from 1:5 to 1:100 diffusate to water. When G. ellingtonae was exposed to root diffusates from 21 different plants, hatch occurred in 0% to 70% of exposed cysts, with an average of between 0 to 27 juveniles emerging per cyst. When root diffusate-exposed cysts were subsequently transferred to PRD to test viability, root diffusates from arugula (Eruca sativa), sudangrass (Sorghum bicolor subsp. drummondii), and common vetch (Vicia sativa) continued to inhibit egg hatch compared with the other root diffusates or water in which hatch occurred readily (60 to 182 juveniles emerging per cyst). Previously known hatching stimulants of G. rostochiensis and G. pallida, sodium metavanadate, sodium orthovanadate, and sodium thiocyanate, stimulated some egg hatch. Although, Globodera ellingtonae hatched readily in PRD and TRD

  2. Flavouring compounds in Indian potato snacks.

    Science.gov (United States)

    Raigond, Pinky; Singh, Brajesh; Dhulia, Akshita; Chopra, Shelly; Dutt, Som

    2015-12-01

    Market for processed potato products is rising day by day. Flavour plays important role in decision making by consumers due to their preferences for better tasting food. In potato and potato products, glutamic acid, aspartic acid, guanosine 5'-monophosphate (GMP) and adenosine 5'-monophosphate (AMP) are the major umami compounds which contribute towards flavour. Therefore, umami 5' nucleotides (AMP+GMP) were estimated from local potato products available as common fried products in the Indian markets and processed potato products being sold by the retailers. The analysis was also carried in raw, microwaved and pressure cooked tubers of forty seven Indian potato cultivars. Umami 5' nucleotide content ranged from 2.63 (Aloo seekh) to 8.26 μg/g FW (fried lachcha) in local potato products. In processed potato products, the content ranged from 2.72 μg/g FW (Smiles) to 14.75 μg/g FW (Aloo Bhujia). Along with aloo bhujia, umami 5' nucleotides were also high in dehydrated aloo lachcha (11.14 μg/g FW) and dehydrated potato chips (10.13 μg/g FW) and low in Smiles (2.72 μg/g FW) and Potato Shortz (3.40 μg/g FW). The study suggests that the potato products prepared solely from potato contained higher levels of umami 5' nucleotides compared to other products prepared by mixing potato with other cereals and vegetables. In Indian potato cultivars overall there was 14 % increase on microwave cooking and 31 % increase in flavouring compounds on pressure cooking. This type of study enabled in identifying better tasting cultivars for further product development and also to develop products with less addition of salt.

  3. Water erosion on areas planted to potato in Tucumán by climate change.

    Science.gov (United States)

    Rios Caceres, Arq. Estela Alejandra; Rios, Victor Hugo; Lucena, Valeria; Guyot, Elia

    Climate changes, monitored by experts from all over the world, have been a matter of con-sciousness raising about the impacts global warming will have on all areas of interest on the planet. The foreseeable direct impacts expected from this evidence are clear: fewer water reserves for agricultural, industrial and urban use; acceleration of desertification processess; destruction of freshwater ecosystems; ecosystem modification due to a drop in rainfall and an increase in temperature to the north of the XI. Region; disappearance of large areas of snow and ice; severe erosion of unprotected basins; reduced water availability for plants in non irrigated land, due to an increase in rain fall intensity. Climate changes demand from the Argentine society a much greater effort than it has been made up to now to mitigate the impacts on our territory and its inhabitants. Potato crop is of a great economic importance in the agricultural GDP of the province of Tucumán (4th place), the geographic location of its production area a is a fragile agro-ecosystem and for this reason the management of water erosion problems is essential. Therefore the aim of this work is to improve potatoe crop irrigation management through information from satellites combined with farm practice. The digital terrain model was obtained from ASTER images. Irrigation practices were followed by an irrigation management software (FAO) and satellite image processing (ENVI). Preliminary results of this experience enabled, through a multi temporal study, the observation of the evolution of crops and irriga-tion practices rescheduling for next season reducing detected water erosion and economically optimizing productivity.

  4. Isolation of Mitochondria from Potato Tubers

    DEFF Research Database (Denmark)

    Havelund, Jesper F.; Salvato, Fernanda; Chen, Mingjie

    2014-01-01

    One way to study the function of plant mitochondria is to extract them from plant tissues in an uncontaminated, intact and functional form. The reductionist assumption is that the components present in such a preparation and the in vitro measurable functions or activities reliably reflect...... the in vivo properties of the organelle inside the plant cell. Here, we describe a method to isolate mitochondria from a relatively homogeneous plant tissue, the dormant potato tuber. The homogenization is done using a juice extractor, which is a relatively gentle homogenization procedure where...... the mitochondria are only exposed to strong shearing forces once. After removal of starch and large tissue pieces by filtration, differential centrifugation is used to remove residual starch as well as larger organelles. The crude mitochondria are then first purified by using a step Percoll gradient...

  5. Participatory assessment of potato production constraints and trait preferences in potato cultivar development in Rwanda

    Directory of Open Access Journals (Sweden)

    Jean Baptiste Muhinyuza

    2012-09-01

    Full Text Available Potato (Solanum tuberosum L. is the major food and cash crop in the highland regions of Rwanda. However, farmers are not integrated into the potato breeding process. The objectives of this research were to identify farmers’ key potato production constraints and establish preferred traits in potato cultivar development in Rwanda. A participatory rural appraisal (PRA study was conducted through structured survey involving 144 households and 22 focus groups with 258 participants in Musanze, Gicumbi and Nyamagabe districts. The structured survey used a questionnaire administered to farmers to collect information on importance of potatoes and other main crops. While focus groups discussions used matrix scoring of key production constraints and pair-wise ranking of traits. Potato is the most important food and cash crop, followed by maize, beans and wheat. The dominant potato varieties are Kirundo, Cruza, Mabondo and Victoria. The most important potato production constraints are lack of access to credit, lack of high yielding cultivars, insufficient clean seeds and late blight disease. Variety Mabondo is the most tolerant to late blight, followed by Cruza, Kirundo, Kinigi and Rutuku in all the districts. High yield, disease tolerance and high dry matter content are the most important attributes preferred by farmers. Active farmer participation in early breeding stages is critical for a successful potato breeding programme.

  6. Comparative effects of partial root-zone drying and deficit irrigation on nitrogen uptake in potatoes (Solanum tuberosum L.)

    DEFF Research Database (Denmark)

    Wang, Huiqun; Liu, Fulai; Andersen, Mathias Neumann

    2009-01-01

    The effects of partial root-zone drying (PRD) as compared with deficit irrigation (DI) and full irrigation (FI) on nitrogen (N) uptake and partitioning in potato (Solanum tuberosum L.) were investigated. Potato plants were grown in split-root pots and were exposed to FI, PRD, and DI treatments...

  7. Adaptability Evaluation of 104 Potato Hybrids in Ardabil and Alborz Provinces

    Directory of Open Access Journals (Sweden)

    Davoud Hassanpanah

    2016-03-01

    Full Text Available This study was performed to assess potato hybrids for their promising agronomic, and marketability traits and their adaptability to climatic conditions of potato production areas in country. Some 104 potato hybrids selected during five years (2010-2014 along with Savalan, Ceaser, Agria and Khavaran cultivars, as controls, were compared in an augment design (preliminary experiment without replications both at the Agricultural and Natural Resources Research Station of Ardabil and Seed and Plant Institute Improvement of Karaj. These hybrids (104, tested in this experiment, were from 8 breeding populations. One half of the hybrids (52 in Ardabil and the other half (52 in Karaj (a total of 104 hybrids each were planted in the 4 blocks and each block consisted of 13 hybrids with four control (Agria, Khavaran, Ceaser and Savalan cultivars. During growing period and after harvest the traits like: plant height, main stem number per plant, main stem diameter, tuber number and weight per plant, marketable tuber yield and tuber dry matter percent were measured. Then 81 hybrids were selected as superior hybrids as to their marketable tuber yield and tuber dry matter content. Hybrids selected consisted of 17 hybrids from ♂ Satina × ♀ Luca population, 36 hybrids from ♂ Ceaser × ♀ Luca population, 14 hybrids from ♂ Savalan × ♀ Luca population, 7 hybrids from ♂ Savalan × ♀ Ceaser population, 4 hybrids from ♂ Ceaser × ♀ Savalan population, 1 hybrids from ♂ Satina × ♀ Savalan population and 2 hybrids from ♂ Satina × ♀ Savalan population. Cluster analysis divided 104 hybrids and cultivars into three groups. The first group with 49 hybrids had higher average tuber number per plant, marketable tuber yield and tuber dry matter percent than the remaining hybrids. In factor analysis, three independent factor total explained 73.90% of the variations. These were named as, 1- tuber yield and its components factor (marketable tuber yield

  8. EFFECT OF COMPLEX FERTILIZERS USED IN EARLY CROP POTATO CULTURE ON LOAMY SAND SOIL

    Directory of Open Access Journals (Sweden)

    Wanda Wadas

    2015-03-01

    Full Text Available To obtain a high tuber yield of early crop potato good conditions for plant growth must be ensured. Potato has a relatively shallow root system and requires significant nutrient inputs to maintain tuber productivity and quality. The paper presents the results of the research on the effect of complex fertilizers type NPK MgS with and without microelements from the nitrophoska (HydroComplex, Nitrophoska Blue Special and Viking 13 and the amophoska group (Polimag S, and single-nutrient fertilizers on the plant growth and tuber yield of very early potato cultivars (‘Aster’, ‘Fresco’, ‘Gloria’ on loamy sand soil. The field experiment was carried out in mideastern Poland (52°03'N, 22°33'E. Potatoes were harvested 75 days after planting (the end of June. The type of fertilizer (single-nutrient or complex fertilizer slightly affected the growth of potato plants. With the use of complex fertilizers, the assimilation leaf area and leaf area index (LAI were similar to the application of single-nutrient fertilizers. Of the examined complex fertilizers, Viking 13 (representing the nitrophoska group without microelements resulted in a smaller increase of assimilation leaf area in comparison with the cultivation without mineral fertilization. The type of fertilizer exerted a greater influence on the plant growth of ‘Aster’ (Poland than ‘Fresco’ (The Netherlands and ‘Gloria’ (Germany. The productive effects of complex fertilizers in early crop potato culture on loamy sand soil were comparable with single-nutrient fertilizers. The highest tuber yield was achieved with the application of Nitrophoska Blue Special (from the nitrophoska group with the lowest NNH4+ concentration; the total tuber yield was higher on average by 2.94 t*ha-1 (21.0% and the yield of marketable tuber fraction (diameter above 30 mm by 2.55 t*ha-1 (20.4% in comparison with the cultivation without mineral fertilization. Although the total tuber yield was a little

  9. Seed degeneration in potato: the need for an integrated seed health strategy to mitigate the problem in developing countries

    NARCIS (Netherlands)

    Thomas-Sharma, S.; Abdurahman, A.A.; Ali, S.; Andrade-Piedra, J.L.; Bao, S.; Charkowski, A.O.; Crook, D.; Kadian, M.; Kromann, P.; Struik, P.C.; Torrance, L.; Garrett, K.A.; Forbes, G.A.

    2016-01-01

    Seed potato degeneration, the reduction in yield or quality caused by an accumulation of pathogens and pests in planting material due to successive cycles of vegetative propagation, has been a long-standing production challenge for potato growers around the world. In developed countries this problem

  10. Chromium in potatoes

    International Nuclear Information System (INIS)

    Stoddard-Gilbert, K.; Blincoe, C.

    1989-01-01

    Chromium concentration in potatoes was determined, and tubes were labeled either intrinsically or extrinsically with radioactive chromate ( 51 Cr). A labeled chromium complex was isolated from preparations of raw, baked, or fried potatoes and chromatographed on gel permeation media. Potato pulp and peel contained 1.63 and 2.70 μg of Cr/g tissue, respectively. There was no correlation between the two, nor did they respond similarly to changes of variety or locations. No significant differences were apparent in relative migration of the isolated complexes except between raw and cooked extrinsically labeled preparations

  11. Stem nematode counteracts plant resistance of aphids in alfalfa, Medicago sativa.

    Science.gov (United States)

    Ramirez, Ricardo A; Spears, Lori R

    2014-10-01

    Plants are exploited by a diverse community of insect herbivores and phytopathogens that interact indirectly through plant-mediated interactions. Generally, plants are thought to respond to insects and pathogens through different defensive signaling pathways. As plants are selected for resistance to one phytophagous organism type (insect vs. pathogen) in managed systems, it is not clear how this selection may affect community interactions. This study examined the effect of nematode-resistant varieties on aphid (Acyrthosiphon pisum) suppression, and then determined how infection by the stem nematode, Ditylenchus dipsaci, mediated ecological effects on aphids and on plant defense proteins. Four alfalfa (Medicago sativa) varieties were selected with resistance to nematodes only (+,-), aphids only (-,+), nematodes and aphids (+,+), and susceptibility to nematodes and aphids (-,-). Field and greenhouse experiments were conducted to isolate the effect of nematode infection and aphid abundance on each variety. We found that varieties resistant to nematode, regardless of aphid resistance, had the lowest aphid counts, suggesting possible cross-resistance. Aphid abundance, however, increased when plants were exposed to nematodes. Resistant varieties were associated with elevated saponins but these compounds were not affected by insect or pathogen feeding. Concentrations of peroxidases and trypsin inhibitors, however, were increased in nematode resistant varieties when exposed to nematodes and aphids, respectively. The patterns of plant defense were variable, and a combination of resistance traits and changes in nutrient availability may drive positive interactions between nematodes and aphids aboveground.

  12. CLONAL MICROPROPAGATION OF POTATO VARIETIES BY WESTERN SIBERIA SELECTION– THE NEW FEATURES

    Directory of Open Access Journals (Sweden)

    E.P. Miakisheva

    2015-04-01

    Full Text Available The article is sanctified urgent need to use methods of modern biotechnology in primary seed farming of potatoes in the territory of the Russian Federation. Lack of required amount of good quality planting material is a major factor limiting stable high yield. The crop of potatoes, annually produced in Russia, significantly below global, and does not meet genetic capabilities of the species. Many viral infections tend to accumulate in the tubers, reducing their quality and keeping quality during storage. For the first time peculiarities of clonal micropropagation and in vitro culture of early-maturing potato varieties Lubava Russian breeding (agricultural research Institute of the city of Kemerovo, the Kemerovo region of the Russian Federation. At the stage of introduction to the culture of the parameters, providing pure cultures using lizoformin as sterilizing compounds. At the stage of actually breeding to obtain plants-regenerants of a certain morphological structure was studied the influence of certain components of the nutrient medium. The influence of agar, sucrose and vitamins such morphological indicators of development of regenerated plants as number of internodes and plant height. In the rooting stage the effect of different of growth regulators auxin nature: α-naphthyloxy acid, β-indoleacetic acid and β-indolebutyric acid, in concentrations of 0.1-5 μm. Selected concentrations of these compounds, the introduction of which in the nutrient medium provided the maximum indices of rhisogenesis: the number and length of roots. At the stage of adaptation to non-sterile growing conditions ex vitro the efficiency of the hydroponic plants, filled with a liquid nutrient solution. A successful stage adaptation has characterizability 100% survival rate of plants and increase the morphological characteristics of regenerants.

  13. Role of the plant cell wall in gravity resistance.

    Science.gov (United States)

    Hoson, Takayuki; Wakabayashi, Kazuyuki

    2015-04-01

    Gravity resistance, mechanical resistance to the gravitational force, is a principal graviresponse in plants, comparable to gravitropism. The cell wall is responsible for the final step of gravity resistance. The gravity signal increases the rigidity of the cell wall via the accumulation of its constituents, polymerization of certain matrix polysaccharides due to the suppression of breakdown, stimulation of cross-link formation, and modifications to the wall environment, in a wide range of situations from microgravity in space to hypergravity. Plants thus develop a tough body to resist the gravitational force via an increase in cell wall rigidity and the modification of growth anisotropy. The development of gravity resistance mechanisms has played an important role in the acquisition of responses to various mechanical stresses and the evolution of land plants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Greatly reduced phylogenetic structure in the cultivated potato clade of potatoes, Solanum section Petota

    Science.gov (United States)

    The species boundaries of wild and cultivated potatoes, Solanum section Petota, are controversial with most of the taxonomic problems in a clade containing cultivated potatoes. We here provide the first in-depth phylogenetic study of the cultivated potato clade to explore possible causes of these pr...

  15. Potato Bacterial Wilt Management in the Central Highlands of ...

    African Journals Online (AJOL)

    management measures of potato wilt, late blight and viruses. The result ... symptom less carriers of the pathogen (Rueda,. 1990 .... diffuse light store (DLS) based on cost sharing. Bacterial wilt ..... nitrogen from the air which increases the availability of the element to the plant and ..... Bacterial wilt disease in Asia and South.

  16. THE RESEARCH OF TOTAL POLYPHENOLS CONTENT AND THEIR CHANGES IN DIFFERENT VARIETIES OF POTATOES

    Directory of Open Access Journals (Sweden)

    Beáta Volnová

    2015-02-01

    Full Text Available Polyphenols are secondary metabolites of plants with antioxidant properties. In this work we research the changes in the content of total polyphenols in five varieties of potatoes (Rumelia, Arwen, Megan, Malvína, Erídia. Potatoes were grown at the stage of full maturity from Matejovce nad Hornádom, region of Poprad. Total polyphenols we determined in whole peeled potatoes; in the outside part of peeled potato tubers (1 cm; in inside part of potato tubers (mean 2 cm and in the whole peel-boiled potatoes. The total polyphenols content was determined by spectrophotometry (λ = 765 nm and it was used lyophilized samples in ethanol extracts. In whole peeled potatoes was the content of total polyphenols in the range from 243.34 mg.kg-1 DM (cv. Rumelia to 446.38 mg.kg-1 DM (cv. Megan, in the outside part of peeled potato tubers was content in the range from 190.45 mg.kg-1 (cv. Rumelia to 446.84 mg.kg-1 DM (cv. Malvína and in inside part of potato tubers from 245.51 mg.kg-1 to 446.26 mg.kg-1 DM (Arwen < Rumelia < Megan < Erídia < Malvína. In the whole peel-boiled potatoes was the lowest content of total polyphenols in variety Rumelia (252.5 mg.kg-1 DM and the highest content in variety Megan (440.54 mg.kg-1 DM. Results were statistically evaluated by the Analysis of Variance (ANOVA – Multiple Range Tests, Method: 95.0 percent LSD using statistical software STATGRAPHICS (Centurion XVI.I, USA and the regression and correlation analysis (Microsoft Excel was used.

  17. PAMP-induced defense responses in potato require both salicylic acid and jasmonic acid.

    Science.gov (United States)

    Halim, Vincentius A; Altmann, Simone; Ellinger, Dorothea; Eschen-Lippold, Lennart; Miersch, Otto; Scheel, Dierk; Rosahl, Sabine

    2009-01-01

    To elucidate the molecular mechanisms underlying pathogen-associated molecular pattern (PAMP)-induced defense responses in potato (Solanum tuberosum), the role of the signaling compounds salicylic acid (SA) and jasmonic acid (JA) was analyzed. Pep-13, a PAMP from Phytophthora, induces the accumulation of SA, JA and hydrogen peroxide, as well as the activation of defense genes and hypersensitive-like cell death. We have previously shown that SA is required for Pep-13-induced defense responses. To assess the importance of JA, RNA interference constructs targeted at the JA biosynthetic genes, allene oxide cyclase and 12-oxophytodienoic acid reductase, were expressed in transgenic potato plants. In addition, expression of the F-box protein COI1 was reduced by RNA interference. Plants expressing the RNA interference constructs failed to accumulate the respective transcripts in response to wounding or Pep-13 treatment, neither did they contain significant amounts of JA after elicitation. In response to infiltration of Pep-13, the transgenic plants exhibited a highly reduced accumulation of reactive oxygen species as well as reduced hypersensitive cell death. The ability of the JA-deficient plants to accumulate SA suggests that SA accumulation is independent or upstream of JA accumulation. These data show that PAMP responses in potato require both SA and JA and that, in contrast to Arabidopsis, these compounds act in the same signal transduction pathway. Despite their inability to fully respond to PAMP treatment, the transgenic RNA interference plants are not altered in their basal defense against Phytophthora infestans.

  18. Use of radiation and in vitro techniques for development of salt tolerant mutants in sugarcane and potato

    International Nuclear Information System (INIS)

    Saif-Ur-Rasheed, M.; Asad, S.; Zafar, Y.; Waheed, R.A.

    2001-01-01

    Sugarcane and potato are propagated vegetatively and are important crops in Pakistan. Protocols were established to initiate callus and regenerate plants in sugarcane and to multiply potato in- vitro from nodal segments. Cultures of potato and sugarcane were irradiated with 5, 20, 40, and 60 Gy. Increase in radiation dose above 20 Gy reduced regeneration capacity of sugarcane callus. Doses higher than 20 Gy were lethal to micropropagated plants of potato. Culture of irradiated sugarcane callus on media containing salt was tried, but no regeneration was obtained. Variants for tolerance to salinity were selected, and evaluated under saline field conditions at four locations. The study showed that the selected variants of both sugarcane and potato were sensitive to high levels of salinity. Variants tested within the same salinity treatment did not differ significantly from each other in the traits investigated. Only boron uptake in the variants was much higher on saline soil than on the normal soil. Polymorphism was detected among the variants by DNA fingerprinting using randomly amplified polymorphic DNA (RAPD) markers. RAPD analysis showed that most of the variants reverted back to normal type. It is concluded that a large number of variants need be screened to obtain the desired mutants. (author)

  19. Within plant resistance to water flow in tomato and sweet melons ...

    African Journals Online (AJOL)

    Efficient water resource management in relation to water use and crop yields is premised on the knowledge of plant resistance to water flow. However, such studies are limited and for most crops, the within plant resistance to water flow remains largely unknown. In this study, within plant resistance to water transport ...

  20. Tracer study on sulphur use efficiency in potato-barley sequence on acid soil of Shimla

    International Nuclear Information System (INIS)

    Sud, K.C.; Sharma, R.C.; Sharma, N.K.

    1999-01-01

    Controlled studies were conducted on acidic soil of Fagu (Shimla) to study the efficiency of labelled ammonium sulphate as effected by farmyard manure (FYM) on potato (Solanum tuberosum L.) and its residual effect on succeeding barley (Hordeum vulgare L.). The direct and residual effects of FYM and sulphur on dry matter yield and S concentration in potato and barley plants were significant. Applied FYM had a positive effect on radioassay values i.e. % Sdff and % S utilization by potato from labelled S carrier, whereas, the residual effect of applied S on barley was more than its direct effect on potato. Results indicate that combined application of S and FYM resulted in 3.4 per cent more S contribution to barley crop and was reflected in % S utilization values. (author)

  1. Potato virus Y (PVY) Isolates from Physalis peruviana are Unable to Systemically Infect Potato or Pepper and Form a Distinct New Lineage Within the PVYC Strain Group.

    Science.gov (United States)

    Green, Kelsie J; Chikh-Ali, Mohamad; Hamasaki, Randall T; Melzer, Michael J; Karasev, Alexander V

    2017-11-01

    Poha, or cape gooseberry (Physalis peruviana L.), is a plant species cultivated in Hawaii for fresh fruit production. In 2015, an outbreak of virus symptoms occurred on poha farms in the South Kohala District of the island of Hawaii. The plants displayed mosaic, stunting, and leaf deformation, and produced poor fruit. Initial testing found the problem associated with Potato virus Y (PVY) infection. Six individual PVY isolates, named Poha1 to Poha6, were collected from field-grown poha plants and subjected to biological and molecular characterization. All six isolates induced mosaic and vein clearing in tobacco, and three of them exhibited O-serotype while the other three reacted only with polyclonal antibodies and had no identifiable serotype. Until now, PVY isolates have been broadly divided into pepper or potato adapted; however, these six PVY isolates from poha were unable to establish systemic infection in pepper and in four tested potato cultivars. Whole-genome sequences for the six isolates were determined, and no evidence of recombination was found in any of them. Phylogenetic analysis placed poha PVY isolates in a distinct, monophyletic "Poha" clade within the PVY C lineage, suggesting that they represented a novel, biologically and evolutionarily unique group. The genetic diversity within this poha PVY C clade was unusually high, suggesting a long association of PVY C with this solanaceous host or a prolonged geographical separation of PVY C in poha in Hawaii.

  2. Hairy nightshade as a potential Potato leafroll virus (Luteoviridae: Polerovirus) inoculum source in Pacific Northwest potato ecosystems.

    Science.gov (United States)

    Srinivasan, R; Alvarez, J M

    2008-09-01

    Hairy nightshade, Solanum sarrachoides, is a solanaceous weed found abundantly in Pacific Northwest potato ecosystems. It serves as a reservoir for one of the important potato viruses, Potato leafroll virus (PLRV) (Luteoviridae: Polerovirus), and its most important vector, the green peach aphid, Myzus persicae (Homoptera: Aphididae). Laboratory research indicated an increased green peach aphid settling and performance on S. sarrachoides than on potato. It also revealed that green peach aphids transmitted PLRV more efficiently from S. sarrachoides to potato than from potato to potato. To test the efficiency of S. sarrachoides as an inoculum source in the field, a two season (2004 and 2005) trial was conducted at Kimberly, Idaho. Two inoculum sources, PLRV-infected potato and PLRV-infected S. sarrachoides, were compared in this trial. Green peach aphid density and temporal and spatial PLRV spread were monitored at weekly intervals. Higher densities of green peach aphids were observed on plots with S. sarrachoides and inoculum sources (PLRV-infected S. sarrachoides and potato) than on plots without S. sarrachoides and inoculum sources. PLRV infection in plots with PLRV-infected S. sarrachoides was similar to or slightly higher than in plots with PLRV-infected potato as an inoculum source. Temporal and spatial PLRV spread was similar in plots with either inoculum source. Thus, S. sarrachoides is as efficient as or a better PLRV inoculum source than potato.

  3. Leaf wetness distribution within a potato crop

    Science.gov (United States)

    Heusinkveld, B. G.

    2010-07-01

    The Netherlands has a mild maritime climate and therefore the major interest in leaf wetness is associated with foliar plant diseases. During moist micrometeorological conditions (i.e. dew, fog, rain), foliar fungal diseases may develop quickly and thereby destroy a crop quickly. Potato crop monocultures covering several hectares are especially vulnerable to such diseases. Therefore understanding and predicting leaf wetness in potato crops is crucial in crop disease control strategies. A field experiment was carried out in a large homogeneous potato crop in the Netherlands during the growing season of 2008. Two innovative sensor networks were installed as a 3 by 3 grid at 3 heights covering an area of about 2 hectares within two larger potato crops. One crop was located on a sandy soil and one crop on a sandy peat soil. In most cases leaf wetting starts in the top layer and then progresses downward. Leaf drying takes place in the same order after sunrise. A canopy dew simulation model was applied to simulate spatial leaf wetness distribution. The dew model is based on an energy balance model. The model can be run using information on the above-canopy wind speed, air temperature, humidity, net radiation and within canopy air temperature, humidity and soil moisture content and temperature conditions. Rainfall was accounted for by applying an interception model. The results of the dew model agreed well with the leaf wetness sensors if all local conditions were considered. The measurements show that the spatial correlation of leaf wetness decreases downward.

  4. Distribution of radionuclides in potato tubers. Implication for dose assessments

    International Nuclear Information System (INIS)

    Green, N.; Wilkins, B.T.; Poultney, S.

    1997-01-01

    A study of the distribution of 137 Cs, 90 Sr, Pu and Am in potato tubers has been carried out. Cesium-137 was essentially uniformly distributed throughout the tuber, whereas up to about 50% of the 90 Sr activity was found in the peel. Results for actinides indicated that most of the activity would be found in the peel and of this more than half would be located in the thin outermost skin. When account is taken of the form in which potatoes are consumed in the UK, the values of soil-plant transfer factors currently assumed in the NRPB model FARMLAND are reasonable for general assessment purposes. (author)

  5. Potato (Solanum tuberosum L.).

    Science.gov (United States)

    Chetty, Venkateswari J; Narváez-Vásquez, Javier; Orozco-Cárdenas, Martha L

    2015-01-01

    Agrobacterium-mediated transformation is the most common method for the incorporation of foreign genes into the genome of potato as well as many other species in the Solanaceae family. This chapter describes protocols for the genetic transformation of three species of potato: Solanum tuberosum subsp. tuberosum (Desiréé), S. tuberosum subsp. andigenum (Blue potato), and S. tuberosum subsp. andigena using internodal segments as explants.

  6. Steroidal glycoalkaloids in Solanum species : consequences for potato breeding and food safety

    NARCIS (Netherlands)

    Gelder, van W.M.J.

    1989-01-01

    Tuberiferous and nontuberiferous wild Solanum species are increasingly being used in potato breeding as a source of genes for disease and pest resistances and for other valuable characteristics. A disadvantage of Solanum species, from a consumers point

  7. 7 CFR 946.12 - Seed potatoes.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Seed potatoes. 946.12 Section 946.12 Agriculture... and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE IRISH POTATOES GROWN IN WASHINGTON Order Regulating Handling Definitions § 946.12 Seed potatoes. Seed potatoes means and includes all...

  8. Top 10 plant viruses in molecular plant pathology.

    Science.gov (United States)

    Scholthof, Karen-Beth G; Adkins, Scott; Czosnek, Henryk; Palukaitis, Peter; Jacquot, Emmanuel; Hohn, Thomas; Hohn, Barbara; Saunders, Keith; Candresse, Thierry; Ahlquist, Paul; Hemenway, Cynthia; Foster, Gary D

    2011-12-01

    Many scientists, if not all, feel that their particular plant virus should appear in any list of the most important plant viruses. However, to our knowledge, no such list exists. The aim of this review was to survey all plant virologists with an association with Molecular Plant Pathology and ask them to nominate which plant viruses they would place in a 'Top 10' based on scientific/economic importance. The survey generated more than 250 votes from the international community, and allowed the generation of a Top 10 plant virus list for Molecular Plant Pathology. The Top 10 list includes, in rank order, (1) Tobacco mosaic virus, (2) Tomato spotted wilt virus, (3) Tomato yellow leaf curl virus, (4) Cucumber mosaic virus, (5) Potato virus Y, (6) Cauliflower mosaic virus, (7) African cassava mosaic virus, (8) Plum pox virus, (9) Brome mosaic virus and (10) Potato virus X, with honourable mentions for viruses just missing out on the Top 10, including Citrus tristeza virus, Barley yellow dwarf virus, Potato leafroll virus and Tomato bushy stunt virus. This review article presents a short review on each virus of the Top 10 list and its importance, with the intent of initiating discussion and debate amongst the plant virology community, as well as laying down a benchmark, as it will be interesting to see in future years how perceptions change and which viruses enter and leave the Top 10. © 2011 The Authors. Molecular Plant Pathology © 2011 BSPP and Blackwell Publishing Ltd.

  9. Glycoalkaloids in potatoes: Content of glycoalkaloids in potatoes for consumption

    DEFF Research Database (Denmark)

    Knuthsen, Pia; Jensen, Udo; Schmidt, Bjørn

    2009-01-01

    mg/kg. Thus the aim of this study was to make a survey of the distribution and contents of TGA in potatoes on the Danish market, including many different and relevant varieties during a 6-year period. A total of 386 samples of potato tubers were analysed for α-solanine and α-chaconine by extraction...... with acetic acid and determination by RP-HPLC with UV-detection at 202 nm. The results not only confirmed that contents above 100 mg TGA/kg in potato tubers frequently occurred in some years, but also showed the possibility of finding lower contents in the same varieties other years. This led to the cautious...

  10. Work of multiple organizations to improve seed potato health in U.S.A. and an example of change to reduce Potato virus Y in seed potato lots

    Science.gov (United States)

    Work of multiple organizations to improve seed potato health in U.S.A. and an example of change to reduce Potato virus Y in seed lots. In the United States, seed potato improvement starts with the individual seed potato grower. The seed grower also has resources that are available from university e...

  11. Effects of drying on caffeoylquinic acid derivative content and antioxidant capacity of sweet potato leaves

    Directory of Open Access Journals (Sweden)

    Toong Long Jeng

    2015-12-01

    Full Text Available Caffeoylquinic acid (CQA derivatives are known to possess antioxidative potential and have many beneficial effects on human health. The present study compared the CQA contents and antioxidant activities of aerial parts of sweet potato plants. The effects of drying methods (freeze drying, and drying at 30°C, 70°C, and 100°C on these two parameters of the first fully expanded leaves were also assessed. The results indicated that the CQA derivatives were detectable in leaves, stem, and flowers of sweet potato plants (varied from 39.34 mg/g dry weight to 154.05 mg/g dry weight, with the leaves (particularly expanding and first fully expanded leaves containing more CQA derivatives than other aerial plant parts. The expanding and first fully expanded leaves also exhibited greater antioxidant activities than other aerial plant parts, possibly due to their higher contents of CQA derivatives. Drying method significantly affected the content of CQA derivatives in dried sweet potato leaf tissues. Drying treatments at both 70°C and 100°C significantly reduced the CQA derivative content and antioxidant activity in the first fully expanded leaves. Among the tested drying methods, the freeze-drying method demonstrated the preservation of the highest amount of CQA derivatives (147.84 mg/g and antioxidant property. However, 30°C cool air drying was also a desirable choice (total CQA derivative content was reduced to only 129.52 mg/g, compared to 70°C and 100°C hot air drying, for commercial-scale processing of sweet potato leaves, if the higher operation cost of freeze drying was a major concern.

  12. Potential of high isostatic pressure and pulsed electric fields for the processing of potato and pea proteins:structural and techno-functional characterization in model solutions and plant tissue

    OpenAIRE

    Baier, Anne Kathrin

    2016-01-01

    The aim of this thesis was to evaluate the potential of high isostatic pressure and pulsed electric fields for the production of high quality plant proteins. Induced changes in protein solutions and plant tissue of potato and pea were analyzed by means of structural and techno-functional characterization as well as by investigation of diffusion and extractions procedures. The application of high isostatic pressure provides a gentle alternative to conventional heat preservation. Especially ...

  13. 7 CFR 945.7 - Certified seed potatoes.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Certified seed potatoes. 945.7 Section 945.7... Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE IRISH POTATOES GROWN IN CERTAIN... Certified seed potatoes. Certified seed potatoes means and includes all potatoes officially certified and...

  14. Genetic modifications of established varieties of potato through mutagenesis

    International Nuclear Information System (INIS)

    Brown, C.R.

    1984-01-01

    Owing to the high intercrossability of improved clones with primitive cultivars and many wild species there is little justification for use of induced mutations in potato to increase variability per se. Modification of certain traits while leaving the genotype basically intact is a promising use of mutagenesis in potato. The successful curing of defects in clones will depend on the establishment a priori of three principles. First, the clones undergoing mutagenesis should be well established varieties tolerant or resistant to the major biotic and abiotic stresses in the area of cultivation. The yield and culinary quality should also be considered high. Second, there should exist some indication that the variation desired is induceable, either through reports of natural intra-clone variation or previous mutagenesis studies. Third, initial screening should be done in virus-free materials

  15. Dickeya species: an emerging problem for potato production in Europe

    NARCIS (Netherlands)

    Toth, I.K.; Wolf, van der J.M.; Saddler, G.; Lojkowska, E.; Hélias, V.; Pirhonen, M.; Tsror, L.; Elphinstone, J.G.

    2011-01-01

    Dickeya species (formerly Erwinia chrysanthemi) cause diseases on numerous crop and ornamental plants world-wide. Dickeya spp. (probably D. dianthicola) were first reported on potato in the Netherlands in the 1970s and have since been detected in many other European countries. However, since 2004–5

  16. Fitness of Bt-resistant cabbage loopers on Bt cotton plants.

    Science.gov (United States)

    Tetreau, Guillaume; Wang, Ran; Wang, Ping

    2017-10-01

    Development of resistance to the insecticidal toxins from Bacillus thuringiensis (Bt) in insects is the major threat to the continued success of transgenic Bt crops in agriculture. The fitness of Bt-resistant insects on Bt and non-Bt plants is a key parameter that determines the development of Bt resistance in insect populations. In this study, a comprehensive analysis of the fitness of Bt-resistant Trichoplusia ni strains on Bt cotton leaves was conducted. The Bt-resistant T. ni strains carried two genetically independent mechanisms of resistance to Bt toxins Cry1Ac and Cry2Ab. The effects of the two resistance mechanisms, individually and in combination, on the fitness of the T. ni strains on conventional non-Bt cotton and on transgenic Bt cotton leaves expressing a single-toxin Cry1Ac (Bollgard I) or two Bt toxins Cry1Ac and Cry2Ab (Bollgard II) were examined. The presence of Bt toxins in plants reduced the fitness of resistant insects, indicated by decreased net reproductive rate (R 0 ) and intrinsic rate of increase (r). The reduction in fitness in resistant T. ni on Bollgard II leaves was greater than that on Bollgard I leaves. A 12.4-day asynchrony of adult emergence between the susceptible T. ni grown on non-Bt cotton leaves and the dual-toxin-resistant T. ni on Bollgard II leaves was observed. Therefore, multitoxin Bt plants not only reduce the probability for T. ni to develop resistance but also strongly reduce the fitness of resistant insects feeding on the plants. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  17. Engineering Potato Starch with a Higher Phosphate Content.

    Directory of Open Access Journals (Sweden)

    Xuan Xu

    Full Text Available Phosphate esters are responsible for valuable and unique functionalities of starch for industrial applications. Also in the cell phosphate esters play a role in starch metabolism, which so far has not been well characterized in storage starch. Laforin, a human enzyme composed of a carbohydrate-binding module and a dual-specificity phosphatase domain, is involved in the dephosphorylation of glycogen. To modify phosphate content and better understand starch (dephosphorylation in storage starch, laforin was engineered and introduced into potato (cultivar Kardal. Interestingly, expression of an (engineered laforin in potato resulted in significantly higher phosphate content of starch, and this result was confirmed in amylose-free potato genetic background (amf. Modified starches exhibited altered granule morphology and size compared to the control. About 20-30% of the transgenic lines of each series showed red-staining granules upon incubation with iodine, and contained higher phosphate content than the blue-stained starch granules. Moreover, low amylose content and altered gelatinization properties were observed in these red-stained starches. Principle component and correlation analysis disclosed a complex correlation between starch composition and starch physico-chemical properties. Ultimately, the expression level of endogenous genes involved in starch metabolism was analysed, revealing a compensatory response to the decrease of phosphate content in potato starch. This study provides a new perspective for engineering starch phosphate content in planta by making use of the compensatory mechanism in the plant itself.

  18. Preferential colonization of Solanum tuberosum L. roots by the fungus Glomus intraradices in arable soil of a potato farming area.

    Science.gov (United States)

    Cesaro, Patrizia; van Tuinen, Diederik; Copetta, Andrea; Chatagnier, Odile; Berta, Graziella; Gianinazzi, Silvio; Lingua, Guido

    2008-09-01

    The symbiosis between plant roots and arbuscular mycorrhizal (AM) fungi has been shown to affect both the diversity and productivity of agricultural communities. In this study, we characterized the AM fungal communities of Solanum tuberosum L. (potato) roots and of the bulk soil in two nearby areas of northern Italy, in order to verify if land use practices had selected any particular AM fungus with specificity to potato plants. The AM fungal large-subunit (LSU) rRNA genes were subjected to nested PCR, cloning, sequencing, and phylogenetic analyses. One hundred eighty-three LSU rRNA sequences were analyzed, and eight monophyletic ribotypes, belonging to Glomus groups A and B, were identified. AM fungal communities differed between bulk soil and potato roots, as one AM fungal ribotype, corresponding to Glomus intraradices, was much more frequent in potato roots than in soils (accounting for more than 90% of sequences from potato samples and less than 10% of sequences from soil samples). A semiquantitative heminested PCR with specific primers was used to confirm and quantify the AM fungal abundance observed by cloning. Overall results concerning the biodiversity of AM fungal communities in roots and in bulk soils from the two studied areas suggested that potato roots were preferentially colonized by one AM fungal species, G. intraradices.

  19. A model species for agricultural pest genomics: the genome of the Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae).

    Science.gov (United States)

    Schoville, Sean D; Chen, Yolanda H; Andersson, Martin N; Benoit, Joshua B; Bhandari, Anita; Bowsher, Julia H; Brevik, Kristian; Cappelle, Kaat; Chen, Mei-Ju M; Childers, Anna K; Childers, Christopher; Christiaens, Olivier; Clements, Justin; Didion, Elise M; Elpidina, Elena N; Engsontia, Patamarerk; Friedrich, Markus; García-Robles, Inmaculada; Gibbs, Richard A; Goswami, Chandan; Grapputo, Alessandro; Gruden, Kristina; Grynberg, Marcin; Henrissat, Bernard; Jennings, Emily C; Jones, Jeffery W; Kalsi, Megha; Khan, Sher A; Kumar, Abhishek; Li, Fei; Lombard, Vincent; Ma, Xingzhou; Martynov, Alexander; Miller, Nicholas J; Mitchell, Robert F; Munoz-Torres, Monica; Muszewska, Anna; Oppert, Brenda; Palli, Subba Reddy; Panfilio, Kristen A; Pauchet, Yannick; Perkin, Lindsey C; Petek, Marko; Poelchau, Monica F; Record, Éric; Rinehart, Joseph P; Robertson, Hugh M; Rosendale, Andrew J; Ruiz-Arroyo, Victor M; Smagghe, Guy; Szendrei, Zsofia; Thomas, Gregg W C; Torson, Alex S; Vargas Jentzsch, Iris M; Weirauch, Matthew T; Yates, Ashley D; Yocum, George D; Yoon, June-Sun; Richards, Stephen

    2018-01-31

    The Colorado potato beetle is one of the most challenging agricultural pests to manage. It has shown a spectacular ability to adapt to a variety of solanaceaeous plants and variable climates during its global invasion, and, notably, to rapidly evolve insecticide resistance. To examine evidence of rapid evolutionary change, and to understand the genetic basis of herbivory and insecticide resistance, we tested for structural and functional genomic changes relative to other arthropod species using genome sequencing, transcriptomics, and community annotation. Two factors that might facilitate rapid evolutionary change include transposable elements, which comprise at least 17% of the genome and are rapidly evolving compared to other Coleoptera, and high levels of nucleotide diversity in rapidly growing pest populations. Adaptations to plant feeding are evident in gene expansions and differential expression of digestive enzymes in gut tissues, as well as expansions of gustatory receptors for bitter tasting. Surprisingly, the suite of genes involved in insecticide resistance is similar to other beetles. Finally, duplications in the RNAi pathway might explain why Leptinotarsa decemlineata has high sensitivity to dsRNA. The L. decemlineata genome provides opportunities to investigate a broad range of phenotypes and to develop sustainable methods to control this widely successful pest.

  20. Impedance measurement of irradiated potatoes: a method to identify radiation processing

    International Nuclear Information System (INIS)

    Mastro, N.L. del; Villavicencio, A.L.C.H.

    1992-01-01

    The potato is firmly established in many parts of the world as a major staple food. Then, radiation processing of potato is approved in many countries for sprouting inhibition and extension of shelf life in a dose range from about 0.01 to 0.15 kGy of 60 Co. The use of electrical conductance methods for the detection of Salmonella, some virus or the action of herbicides on plant has been reported and differences have been observed between instruments in respect of the magnitude of conductance change or rates of change in conductance response. A reliable technique to identify potatoes or other food products has not been established so far, though several methods have been reported. Electrical impedance might thus serve for characterization of unirradiated and irradiated tissues and cells. In this work, potato tubers from an European variety, named Bintje, grown in Sao Paulo State were employed. Potatoes were punctured with steel electrodes and impedance measured at different frequencies (1 k Hz-100 k Hz) by passing 3-5 m A alternating current through it. The impedance ratio of 50 k Hz/5 k Hz calculated from ten replicate samples decreases with the increment of the dose when doses of O 0.75 and 0.15 kGy from a Gamma Cell 220 were utilized. The impedance measurement were slightly affected by the place of puncture. (author)